
VLF Notes

Paul Nicholson

2018-04-02

Contents

1 Incident Field 2

2 Free-space Antenna Response 2

3 Watson-Watt Goniometry 3

4 Poynting Vector Method 3

5 Tsuruda and Hayashi NPE method 4

6 Angle Averaging 4

7 Loop Alignment Correction 4

8 Ground Reflections 5

9 Antenna Response With Ground Reflection 6

10 Elevation Estimation 6

11 Polarisation Estimation 7

12 Ionospheric Reflection 7

13 Convergence/Divergence Factor 9

14 Hertzian Dipole 9

15 Sky Ray Propagation Model 9

16 Ground Wave Propagation Model 11

17 Loop Receiver Calibration 11

18 Simple Propagation Model 12

19 Sferic Simulation 12

20 n-vectors 13

1



1 Incident Field

A completely polarised plane wave having arbitrary po-
larisation is incident from bearing θ with elevation β, as
shown in figure 1.1.
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Figure 1.1: Signal incident on bearing θ with el-
evation β

The E-field can be represented as the sum of two per-
pendicular transverse components EI and EQ which are
in phase quadrature. These components are related by

EQ = jPEI

EI =
1√

1 + P 2
E

EQ =
jP√
1 + P 2

E

(1.1)

where E is the complex incident E-field amplitude from
which the real amplitude is given by ℜ(E exp(jωt)), and
P is a polarisation parameter defined by

P = +1; right circular

0 < P < 1; right elliptical

P = 0; linear polarisation

0 > P > −1; left elliptical

P = −1; left circular

(1.2)

In these notes, the direction of rotation, left (anti-
clockwise) and right (clockwise), is defined looking along
the wave vector towards the receiver. The locus of E traces
out a polarisation ellipse in the plane of the wavefront,
with orientation defined in figure 1.2a. EI is positioned
at a tilt angle α from the vertical plane of incidence. EI

and EQ form the semi-major and semi-minor axes of the
polarisation ellipse, and the ellipticity is given by 1/|P |.
Figure 1.2b shows the corresponding definitions of the H-
field components.
The Stokes parameters are given in terms of the field

strength and polarisation coefficient by

I = E2

Q = E2P
2 − 1

1 + P 2
cos 2α

U = E2 1− P 2

1 + P 2
sin 2α

V = E2 2P

1 + P 2

(1.3)
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Figure 1.2: Incident field in the plane of the
wavefront, looking directly towards
the wave normal. E⊥ and H‖ define
the TE axes, E‖ and H⊥ define the
TM axes.

Transverse components are resolved in the plane of the
wavefront. TE components E⊥, H‖, and TM components
E‖, H⊥ are resolved by

E⊥ = −EI sinα− EQ cosα

E‖ = EI cosα− EQ sinα

H⊥ = HI cosα−HQ sinα

H‖ = −HI sinα−HQ cosα

(1.4)

2 Free-space Antenna Response

Vertical loop antennas will respond to the orthogonal hori-
zontal components H⊥ and H‖ sinβ of the incident signal.
A north/south aligned vertical loop antenna will experi-
ence a field strength of

Hns = H⊥ cos θ −H‖ sinβ sin θ (2.1)

which is the westward pointing component of the hori-
zontal H-field. Similarly an east/west aligned loop will
respond to the northward pointing component,

Hew = H⊥ sin θ +H‖ sinβ cos θ (2.2)

A vertical E-field probe responds to

Ev = E‖ cosβ (2.3)
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The loop orientations are shown in figure 2.1. Here the
loop polarity is chosen such that a signal from the north-
east will have Hns, and Hew both in phase with Ev.
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Figure 2.1: Plan view of the horizontal H-field
components. The north pointing
component Hew is picked up by the
east/west loop and the north/south
loop responds to the west pointing
component Hns.

Substituting equations 1.1, 1.4 into 2.1 - 2.3 produces
the orthogonal loop field strengths in terms of the incident
field parameters,

Hns = HI {(cosα− jP sinα) cos θ

+ (sinα+ jP cosα) sinβ sin θ}
Hew = HI {(cosα− jP sinα) sin θ

− (sinα+ jP cosα) sinβ cos θ}
Ev = EI(cosα− jP sinα) cos β

(2.4)

The presence of terms in jP ensures that for anything
other than pure linear polarisation or a signal at zero ele-
vation, the phase angle between the two loop signals will
not be exactly 0 or π radians. Figure 2.2 shows the rela-
tive polarity of the received components in response to a
signal from each quadrant.

North
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Hew = +

Hns = +

Ev = +

Hew = +

Hns = −
Ev = +

Hew = +

Hns = −
Ev = +

Hew = −
Hns = −
Ev = +

Hew = −
Hns = +

Ev = +

Figure 2.2: Relative polarity of the 3-axis re-
ceived components.

3 Watson-Watt Goniometry

A loop at azimuth B will experience a field strength

HB = Hns cosB +Hew sinB (3.1)

An estimate B = θ̂ (modulo π) of the signal’s azimuth is
obtained when |HB| is at a maximum or minimum. This
is determined by setting d|HB|/dB = 0 which leads to

θ̂ =
1

2
atan2(HewH

⋆
ns +H⋆

ewHns, |Hns|2 − |Hew |2)

=
1

2
atan2(2|HewHns| cos δ, |Hns|2 − |Hew|2)

(3.2)

where δ is the phase angle between the two loop signals.
This corresponds to orientation of the major axis of the
Lissajous ellipse formed on the Watson-Watt DF display.
Substituting from 2.4, the measured bearing in terms of

the signal’s true azimuth θ is given by

θ̂ = θ + atan2(F,G)/2 (3.3)

where

F =sin (2α) sinβ
(

P 2 − 1
)

G =
(

sin2 α− cos2 α sin2 β
)

P 2

− sin2 α sin2 β + cos2 α

(3.4)

The term atan2(F,G)/2 is referred to as the polarisation
error. The error is zero when F = 0, therefore the er-
ror tends to zero with low elevation signals, with circular
polarised signals, and with linear or elliptical polarisation
where the major axis is vertical (α = 0) or horizontal
(α = π/2).
The vertical E-field Ev can be used to resolve the am-

biguity of π radians inherent in equation 3.2. First, the
signal from a loop aligned on θ̂ is constructed,

Hb = Hns cos θ̂ +Hew sin θ̂ (3.5)

The cosine of the phase angle between Hb and Ev is then
examined and if negative, π radians is added to θ̂

4 Poynting Vector Method

In section 3 the E-field component was used only to resolve
the π radian ambiguity of the bearing derived from the
orthogonal loops. This does not use all the information
available from the phase of the Ev component and a better
estimate is obtained with the following,

θ̂ = arctan

( |HewE
⋆
v | cos δ1

|HnsE⋆
v | cos δ2

)

= arctan

(

HewE
⋆
v +H⋆

ewEv

HnsE⋆
v +H⋆

nsEv

) (4.1)

where δ1 and δ2 are the phase differences between Hew

and Ev, and between Hns and Ev, respectively. Equation
4.1 is derived by considering the horizontal components of
the Poynting vector and discarding the products of hori-
zontal electric field and vertical magnetic field. As before,
substituting from 2.4 gives the measured bearing in terms
of the signal’s true azimuth plus a polarisation error term,

θ̂ = θ + arctan

(

cosα sinα sinβ(P 2 − 1)

cos2 α+ P 2 sin2 α

)

(4.2)

The polarisation error with this method is always less than
or equal to the goniometric polarisation error, and in many
cases is much less. In particular the error is zero for hor-
izontal or vertical linear polarisation, and for both states
of pure circular polarisation.
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5 Tsuruda and Hayashi NPE

method

If the incident signal is not linearly polarised (at VLF,
signals almost never have linear polarisation), then there
will be some phase difference between the three measured
components. Let δ1, δ2, δ3 be the phase differences, defined
by

δ1 = arg(Ev/Hew)

δ2 = arg(Ev/Hns)

δ3 = arg(Hns/Hew)

(5.1)

The sines of these angles are given by the identities

sin δ1 = j(EvH
⋆
ew − E⋆

vHew)/(2|Ev||Hew|)
sin δ2 = j(EvH

⋆
ns − E⋆

vHns)/(2|Ev||Hns|)
sin δ3 = j(HnsH

⋆
ew −H⋆

nsHew)/(2|Hns||Hew|)
(5.2)

Eliminating terms involving α and P from equations 2.4
gives

Ev = EI(Hew sin θ +Hns cos θ) cosβ (5.3)

Using 5.3 to eliminate Ev from 5.2 leads to an expression
for θ

θ = − arctan

( |Hns| sin δ2/ sin δ3
|Hew | sin δ1/ sin δ3

)

(5.4)

in which the atan2() function should be used in order to
preserve quadrant information. This is an exact expression
for θ and therefore there is no polarisation error (NPE).
This method relies on accurate determination of the phase
angles between the three components.

6 Angle Averaging

It is often necessary to produce an average of several az-
imuth or phase angle measurements. However the nor-
mal arithmetic mean of the angles fails, since for example
mean(20 + 40) = 30 works fine, but mean(350 + 30) =
190 fails. Any particular case can be dealt with by a
repositioning of the angle meridian or by addition or
substraction of whole cycles. For example in this case
mean(−10+ 30) = 10, and this leads to the Mitsuta algo-
rithm.
An alternative method which performs better when the

raw angles are very noisy involves summing the direction
cosines. Given a set θi of raw angles in radians, the direc-
tion cosines are summed and the average angle is produced
by the atan2() function,

A =

N
∑

i=1

sin θi ; B =

N
∑

i=1

cos θi (6.1)

average = atan2(A,B) (6.2)

The above is conveniently carried out using complex arith-
metic,

average = arg

(

N
∑

i=1

(cos θi + j sin θi)

)

(6.3)

sum = D = b[1];

sumsq = D * D;

for( i from 2 to N)

{

delta = b[i] - D;

if( delta < -180) D = D + delta + 360;

else

if( delta < 180) D = D + delta;

else

D = D + delta - 360;

sum = sum + D;

sumsq = sumsq + D * D;

}

mean = sum/N;

std_dev = sqrt(sumsq/N - mean * mean);

Listing 6.1: Mitsuta algorithm operating on an
array b[1..N ] of raw bearings mod
360. For mod 180 operation, replace
360 and 180 by 180 and 90.

It is usually desirable to weight each contribution to the
average, eg by the signal power or amplitude. If each θi
has weight wi, then

average = arg

(

N
∑

i=1

wi (cos θi + j sin θi)

)

(6.4)

If the angles are modulo π radians, then the averaging
formula becomes

average =
1

2
arg

(

N
∑

i=1

wi (cos 2θi + j sin 2θi)

)

(6.5)

The direction cosine averaging does not offer a standard
deviation but an accurate approximation is obtained with
the Yamartino formula,

S =

N
∑

i=1

wi (cos θi + j sin θi) , W =

N
∑

i=1

wi (6.6)

standard deviation ≈ (1 + 0.1547x3) sin−1 x

where x =
√

1− |S|2/W 2
(6.7)

7 Loop Alignment Correction

Signal analysis assumes the availability of orthogonal loop
signals, eg Hew, Hns. In practice the actual loop signals
may not be so aligned, or even orthogonal, due to site or
installation limits, or distortion of the effective loop plane
due to non-uniform ground properties or nearby struc-
tures. A linear transformation must be applied to the loop
signals to synthesise the desired orthogonal loop signals.
Signals H1 and H2 from loops having effective azimuth

A1 and A2 respectively, and A1 6= A2 (mod π), are given
by
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[

H1

H2

]

=

[

cosA1 sinA1

cosA2 sinA2

] [

Hns

Hew

]

(7.1)

Inverting the above expression gives a formula by which
Hns and Hew can be synthesised from the loop signals.

[

Hns

Hew

]

=
1

D

[

sinA2 − sinA1

− cosA2 cosA1

] [

H1

H2

]

D = cosA1 sinA2 − sinA1 cosA2

(7.2)

8 Ground Reflections

The VLF antenna is normally located much less than a
wavelength above ground and therefore the loops and E-
field probe will respond to the superposition of the inci-
dent field and the field resulting from ground reflection.
This section deals with the ground reflection local to the
antenna, in which the reflected signal has negligible prop-
agation delay compared with the incident signal. Distant
ground reflections produce multi-path signals which are
considered in another section.

The ground is assumed to be isotropic and non-magnetic
and described by the following physical attributes

Permeabilityµ0

Conductivity σg =



















1× 10−3mhos/m (poor ground)

5× 10−3mhos/m (average ground)

2× 10−2mhos/m (good ground)

5mhos/m (sea)

Permittivity ǫg =



















5ǫ0 (poor ground)

15ǫ0 (average ground)

25ǫ0 (good ground)

80ǫ0 (sea)

and the following derived quantities

TM reflection coefficient Γ‖(β)

TE reflection coefficient Γ⊥(β)

Complex refractive index ñ =
√

(ǫg − jσg/ω) /ǫ0

The reflection coefficients are functions of the elevation an-
gle β of the incident field described in section 1. Isotropic
ground implies the reflected and incident wave normals
share the same plane of incidence with azimuth θ. Lossy
conductive ground produces a complex refractive index ñ.

Isotropic ground implies that TM and TE components
are uncoupled and reflected independently, so they can be
analysed separately. Separating the field into TM and TE
components, and separating each of these into incident
and reflected, perpendicular and parallel H and E field

strengths, we have

E▽
‖ = incident parallel E-field

H▽
⊥ = incident perpendicular H-field

E▽
⊥ = incident perpendicular E-field

H▽
‖ = incident parallel H-field

E△
‖ = reflected parallel E-field

H△
⊥ = reflected perpendicular H-field

E△
⊥ = reflected perpendicular E-field

H△
‖ = reflected parallel H-field

(8.1)

The orientations of these components are defined in figure
8.1. The four components of the incident field are given
by equation 1.4.

Air

Ground

β

Incident signal

E▽
‖

H▽
⊥

β

Reflected signal

E△
‖

H△
⊥

(a) TM components

Air

Ground

β

Incident signal

H▽
‖

E▽
⊥

β

Reflected signal

H△
‖

E△
⊥

(b) TE components

Figure 8.1: Incident and reflected field compo-
nents, in the plane of incidence

The following Fresnel reflection coefficients apply,

Γ‖ =
H△

⊥

H▽
⊥

=
ñ2 sinβ −

√

ñ2 − cos2 β

ñ2 sinβ +
√

ñ2 − cos2 β

Γ⊥ =
E△

⊥

E▽
⊥

=
sinβ −

√

ñ2 − cos2 β

sinβ +
√

ñ2 − cos2 β

(8.2)

As ground conductivity improves, Γ⊥ → −1 and Γ‖ → +1.
At VLF this is particularly so since σg/ω ≫ ǫg even with
poor ground.
The horizontal E-field perpendicular to the plane of inci-

dence is−E▽
⊥ −E△

⊥ = −E▽
⊥ (1+Γ⊥). The horizontal radial

E-field (pointing towards the source) is −E▽
⊥ (1−Γ‖) sinβ.

Both these components tend to zero with typical VLF re-
flection coefficients. Table 8.1 shows some typical values
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Freq poor gnd avg gnd good gnd sea

0.2kHz 0.996 -0 1.006 -0 1.006 -0 1.006 -0
1.0kHz 0.996 -1 0.996 -0 1.006 -0 1.006 -0
5.0kHz 0.976 -2 0.996 -1 0.996 -0 1.006 -0
20.0kHz 0.956 -3 0.986 -1 0.996 -1 1.006 -0
50.0kHz 0.926 -5 0.966 -2 0.986 -1 1.006 -0

(a) TM reflection coefficient Γ‖, 60 deg elevation

Freq poor gnd avg gnd good gnd sea

0.2kHz 0.976 -2 0.996 -1 0.996 -0 1.006 -0
1.0kHz 0.946 -3 0.976 -2 0.996 -1 1.006 -0
5.0kHz 0.876 -8 0.946 -3 0.976 -2 1.006 -0
20.0kHz 0.766 -16 0.896 -7 0.946 -3 1.006 -0
50.0kHz 0.666 -25 0.836 -11 0.916 -6 0.996 -0

(b) TM reflection coefficient Γ‖, 10 deg elevation

Freq poor gnd avg gnd good gnd sea

0.2kHz -1.006 -0 -1.006 -0 -1.006 -0 -1.006 -0
1.0kHz -0.996 -1 -1.006 -0 -1.006 -0 -1.006 -0
5.0kHz -0.986 -1 -0.996 -1 -1.006 -0 -1.006 -0
20.0kHz -0.966 -2 -0.986 -1 -0.996 -1 -1.006 -0
50.0kHz -0.946 -4 -0.976 -2 -0.996 -1 -1.006 -0

(c) TE reflection coefficient Γ⊥, 60 deg elevation

Freq poor gnd avg gnd good gnd sea

0.2kHz -1.006 -0 -1.006 -0 -1.006 -0 -1.006 -0
1.0kHz -1.006 -0 -1.006 -0 -1.006 -0 -1.006 -0
5.0kHz -1.006 -0 -1.006 -0 -1.006 -0 -1.006 -0
20.0kHz -0.996 -0 -1.006 -0 -1.006 -0 -1.006 -0
50.0kHz -0.996 -1 -0.996 -0 -1.006 -0 -1.006 -0

(d) TE reflection coefficient Γ⊥, 10 deg elevation

Table 8.1: Reflection coefficients for various
grounds with low and high elevation
signals. Phase angles are in degrees.

for Γ‖ and Γ⊥ for various types of ground. The TM re-
flection coefficient exhibits a clear Brewster effect at very
low elevation. This is illustrated in figure 8.2. The reflec-
tion coefficient is a minimum at the Brewster angle and
below this angle the phase of the reflection is reversed.
The Brewster angle increases as the frequency or ground
resistance increases.

9 Antenna Response With
Ground Reflection

The components of the superposition of the incident and
reflected fields relevant for 3-axis reception, as defined in
section 2, are

Hns = −H▽
‖ (1− Γ⊥) sinβ sin θ +H▽

⊥ (1 + Γ‖) cos θ

Hew = H▽
‖ (1− Γ⊥) sinβ cos θ +H▽

⊥ (1 + Γ‖) sin θ

Ev = E▽
‖ (1 + Γ‖) cosβ

(9.1)

The horizontal components are illustrated in figure 9.1.
Substituting the definitions of the incident field from equa-
tions 1.1, 1.4 leads to

(9.2)
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Figure 8.2: Ground reflection coefficient Γ‖ at
6kHz as a function of elevation.

Hns = HI

{

(1 + Γ‖)(cosα− jP sinα) cos θ

+ (1− Γ⊥)(sinα+ jP cosα) sin β sin θ}
Hew = HI

{

(1 + Γ‖)(cosα− jP sinα) sin θ

− (1− Γ⊥)(sinα+ jP cosα) sin β cos θ}
Ev = EI(1 + Γ‖)(cosα− jP sinα) cos β

(9.3)

In the absence of any ground reflection, Γ‖ = Γ⊥ = 0 and
9.3 reduces to 2.4.

10 Elevation Estimation

Consider a vertical loop in the plane of incidence, azimuth
θ. This will respond to a horizontal magnetic field com-
ponent of

H(θ) = H▽
⊥ +H△

⊥

= HI(1 + Γ‖)(cosα− jP sinα)

= Hew sin θ +Hns cos θ

(10.1)
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North

East

(H▽
‖ −H△

‖ ) sinβ
H▽

⊥ +H△
⊥

Hew

Hns

θ

Figure 9.1: Plan view of the horizontal H-field
components. The north pointing
component Hew is picked up by the
east/west loop and the north/south
loop responds to the west pointing
component Hns.

Then from equation 9.3, it is clear that Ev and Hb are in
phase irrespective of ground reflection and signal polari-
sation, and

Ev

H(θ)
=

EI

HI
cosβ = Z0 cosβ (10.2)

where Z0 is the free space impedance.
If an estimate θ̂ of the signal azimuth is obtained using

one of the direction finding methods described earlier, then
an elevation estimate β̂ is given by

β̂ = cos−1

{

Ev/Z0

Hew sin θ̂ +Hns cos θ̂

}

(10.3)

When θ̂ is obtained by goniometry or Poynting vector
methods, the resulting β̂ can have large error, especially
for signals with nearly linear and horizontal polarisation.

11 Polarisation Estimation

Once the signal azimuth and elevation are measured using
the methods described earlier, the signal polarisation P
and tilt angle α can be determined.
A vertical loop in the plane of incidence intercepts a

field component

H(θ) = H▽
⊥ +H△

⊥

= HI(1 + Γ‖)(cosα− jP sinα)
(11.1)

and this signal is synthesised from the Hew and Hns loop
signals with

H(θ) = Hew sin θ +Hns cos θ (11.2)

Similarly, a loop oriented perpendicular (rotated clock-
wise) to the plane of incidence intercepts a field compo-
nent

H(θ + π/2) =
(

H▽
‖ −H△

‖

)

sinβ

= −HI(1− Γ⊥)(sinα+ jP cosα) sinβ

(11.3)

which is synthesised with

H(θ + π/2) = Hew cos θ −Hns sin θ (11.4)

Orthogonal components of the incident field in the plane
of the polarisation ellipse, H⊥ and H‖, as defined in figure
1.2b and equation 1.4 are then obtained by correcting for
the ground reflection and signal elevation,

H⊥ =
H(θ)

(1 + Γ‖)

H‖ =
H(θ + π/2)

(1− Γ⊥) sinβ

(11.5)

The tilt angle α is then given by

δ = arg(H‖/H⊥)

α = −1

2
tan−1

(

2|H‖||H⊥| cos(δ)
|H‖|2 − |H⊥|2

)

= −1

2
tan−1

(

H‖H
⋆
⊥ +H⋆

‖H⊥

H‖H
⋆
‖ −H⊥H⋆

⊥

)

(11.6)

which should be implemented with the atan2() function.
Then the polarisation parameter P is given by

P = −j
H⊥ sinα+H‖ cosα

H‖ sinα−H⊥ cosα
(11.7)

In practice, the values of azimuth and elevation used in
these formulas are the estimates θ̂, α̂ obtained through
one of the methods described earlier. If θ̂ is obtained
by goniometry, then H(θ̂) and H(θ̂ + π/2) are in ex-
act phase quadrature and the resulting α is zero, with
sgn(P ) = − sgn(arg(H(θ̂ + π/2)/H(θ̂))).

12 Ionospheric Reflection

The D-layer can be approximated by a smooth sharp
boundary above which is a cold neutral plasma with the
following physical characteristics.

ωg = BMqe/me = electron gyro frequency

ωp = qe

√

Ne

ǫ0me
= electron plasma frequency

ν = electron collision frequency

me = electron mass,9.109× 10−31Kg

Ne = electron density

qe = electron charge,1.602× 10−19 Coulombs

BM = static field flux density ≈ 50uT

ǫ0 = 8.854× 10−12

(12.1)

The electron density Ne varies with solar zenith angle
and increases exponentially with height. Estimates can
be obtained from the IRI model. Figure 12.1 shows some
typical mid-latitude values. The electron-neutral collision
frequency ν is a function of density and temperature. A
useful approximation as a function of height, based on ob-
servational results (Wait & Spies 1964) is given by

ν(h) = 1.816× 1011 exp
(

−1.5× 10−4h
)

(12.2)
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Figure 12.1: Electron density in the D-layer, cal-
culated for western Europe using
the IRI model.

In terms of these plasma properties, the reflection coef-
ficients are

‖Γ‖ = (E + F )/D

‖Γ⊥ = 2jC(ñoCo − ñeCe)/D

⊥Γ‖ = 2jC(ñoCe − ñeCo)/D

⊥Γ⊥ = (E − F )/D

C = cosφ

Co = cosφo

Ce = cosφe

D = (ño + ñe)(C
2 + CoCe)

+ (ñoñe + 1)(Co + Ce)C

E = (ño + ñe)(C
2 − CoCe)

F = (ñoñe − 1)(Co + Ce)C

φo = sin−1 sinφ

ño

φe = sin−1 sinφ

ñe

(12.3)

The two complex refractive indices ño and ñe deter-
mine the propagation. An arbitrary wave is decomposed
into components parallel and perpendicular to the static
magnetic field. For the perpendicular component, ño ap-
plies to the ordinary wave and ñe to the extraordinary
wave. For the parallel component, the ño and ñe describe
opposite states of circular polarisation.

The values of ño and ñe are obtained from the Appleton-

Property Day Night
Effective height, h 70× 103 90× 103

Electron density, Ne 3× 108 1× 106

Table 12.1: Typical values of D-layer physical
properties

Hartree equations,

ñ2
o = 1− X

A1 +
A2

1−X−iZ

ñ2
e = 1− X

A1 − A2

1−X−iZ

where

A1 = 1− iZ −
1
2Y

2 sin2 θm

1−X − iZ

A2 =

(

1

4
Y 4 sin4 θm + Y 2 cos2 θm (1−X − iZ)

2

)1/2

X = ω2
p/ω

2

Y = ωg/ω

Z = ν/ω

θm = angle between wave direction and magnetic field

(12.4)

At VLF, ν ≪ ω and therefore Z is usually approximated
by zero, thus treating the plasma as collisionless.

At VLF and at mid to high latitudes, it is common
to invoke the quasi-linear (QL) approximation in which
only the vertical component of the static magnetic field is
considered. This produces reflection coefficients which are
independent of the angle of incidence to the magnetic field
and therefore there is no difference between eastwards and
westwards propagation. With the QL approximation the
refractive indices simplify to

ño =
√

1− j(ωτ/ω)e+jτ

ñe =
√

1− j(ωτ/ω)e−jτ

τ = tan−1(ωg/ν)

ωτ = ω2
p

√

ν2 + ω2
g

(12.5)

Anisotropy due to the static magnetic field produces
coupling between TM and TE modes during reflection.
Four complex amplitude reflection coefficients are there-
fore required. These are

‖Γ‖ = TM to TM

‖Γ⊥ = TM to TE

⊥Γ⊥ = TE to TE

⊥Γ‖ = TE to TM

(12.6)

The values of these coefficients depend on the zenith angle
of incidence φ and the angle θm between the incident signal
and the static magnetic field.
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13 Convergence/Divergence Fac-
tor

Signals incident on the ionosphere from below encounter a
concave reflector and therefore experience a focusing effect
on reflection. Conversely, the ground is a convex reflector
and produces a divergence of reflected rays. These factors
are quite significant and are accounted for by a conver-
gence coefficient.

α(n) = (1 + h/RE)
√

α1(n)α2(n)

α1(n) =
2n sin ξ

sin
(

d
RE

)

α2(n) =
(1 + h/RE)− cos ξ

(1 + h/RE) cos ξ − 1

where

ξ =
d

2nRE

d = great circle distance between end points

h = height of ionosphere

n = number of ionospheric reflections in the path

RE = Radius of earth, 6370× 103 metres

(13.1)

This formula is valid up to a caustic limit where the factor
α2(n) has a pole at a great circle distance distance given
by

d = 2nRE cos−1 1

1 + h/RE
(13.2)

at which point the downwards propagating ray meets
the ground at a tangent. This occurs at approximately
2000km for the single hop (n = 1) ray with h = 80× 103.

14 Hertzian Dipole

At VLF, a transmitting antenna approximates a vertical
Hertzian dipole constituting a point source of TM waves.
It consists of two vertically separated charge reservoirs of
±q separated by a distance l and connected by a uniform
current I oscillating with angular frequency ω. It is char-
acterised entirely by the equation

Il = −jωql

where

Il = current dipole moment

ql = electric dipole moment

q = CV

C = antenna capacitance

l = length of dipole

I = antenna (peak) current

V = antenna (peak) voltage

(14.1)

The radiated far field of this source at range r along an
angle φ to the dipole axis is given by

E‖ = −jωµIl
e−jωr/c

4πr
sinφ

H⊥ = E‖/Z0

(14.2)

If the dipole is at ground level with the earth forming one
electrode, the radiation pattern is modified by the ground
reflection coefficient Γ‖(β) described in section 8. The far
field described by equation 14.3 must be multiplied by the
factor (1 +Γ‖(β)). Below the Brewster angle, Γ‖ tends to
−1 and the radiation is zero at zero elevation. However,
at low elevations radiation also takes place via a Norton
surface wave described in section 16. Ignoring the surface
wave, the far field of a physical grounded vertical at range
r along elevation angle β can be modelled by

E‖ = −jωµIahaKa
e−jωr/c

4πr
(1 + Γ‖(β)) cos β

= −ω2µCaVahaKa
e−jωr/c

4πr
(1 + Γ‖(β)) cos β

H⊥ = E‖/Z0

E⊥ = H‖ = 0

where

Ia = antenna current (peak)

Va = antenna voltage (peak)

Ca = antenna capacitance

ha = antenna overall height

(14.3)

The factor Ka is required to allow for the average current
distribution, or equivalently, the average charge separa-
tion, or alternatively, an effective height coefficient. Ka

will be 0.5 for a straight vertical wire, and closer to unity
for a long horizontal wire.
The time averaged (RMS) power density is given by

S(r, β) =
Z0

2

(

ωIahaKa

4πrc

)2

(1 + Γ‖(β))
2 cos2 β (14.4)

Integrating the above over a sphere produces the total
radiated power. For a unity ground reflection coefficient,
the total power is

PT =
8π

3
Z0

(

ωIahaKa

4πc

)2

=
I2aRT

2
(14.5)

where RT is the radiation resistance of the antenna and
the denominator 2 converts from peak current to RMS
current.
The description of the far field, radiated power, and

radiation resistance given above does not take account of
radiation via the surface wave. This topic is covered in
section 16.

15 Sky Ray Propagation Model

The received signal is the superposition of multiple rays.
Each ray undergoes uniform expansion so that its ampli-
tude is inversely proportional to the distance it travels.
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A ray is labelled by the number of hops n. The ray n
undergoes n ionospheric reflections and n − 1 ground re-
flections. The ionospheric reflections occur at a zenith
angle φn with reflection coefficients given in section 12.
The ground reflections occur at elevation angles βn with
reflection coefficients defined in section 8. Each ray is also
subject to the convergence coefficient described in section
13. The signal incident at the receiver from ray n is given
by

[

E
(n)
‖

E
(n)
⊥

]

=
([

S
] [

T
])n−1 [

S
]

α(n)
e−jωRn/c

4πRn
D

[

1
0

]

where

[

S
]

=

[

‖Γ‖(φn) ⊥Γ‖(φn)

‖Γ⊥(φn) ⊥Γ⊥(φn)

]

[

T
]

=

[

Γ‖(βn) 0
0 Γ⊥(βn)

]

D = −jωµIahaKa(1 + Γ‖(β)) cos β

φn = tan−1 RE sin ξ

h+RE(1− cos ξ)

βn = π/2− φn − ξ

ξ =
d

2nRE

(15.1)

A corresponding equation is satisfied by the magnetic field

components. The components E
(n)
‖ and E

(n)
⊥ are respec-

tively the TM and TE electric field strengths incident at
the receiver site, not including the ground effects at the
receiver. α(n) is the convergence coefficient for ray n given
by equation 13.1 and Rn is the total path length of ray n
given by

Rn = 2nRE
sin ξ

sinφn
(15.2)

Equation 15.1 assumes uniform ground and ionosphere
properties along the entire path, for simplicity of pre-
sentation. For numeric calculations it is straightfor-
ward to calculate the reflection matrices independently for
each encounter with ground and ionosphere in order to
take account of varying path properties such as land/sea,
day/night, and path orientation with respect to the earth’s
magnetic field.

The total field incident at the receiver is the vector sum
of the incident rays. The composite signal is an elliptically
polarised wave as described in section 1. From equations
2.1 to 2.3, the fields to which the loops and vertical an-

tenna respond are

Hns =
∑

n

{

H
(n)
⊥ cos θs −H

(n)
‖ sinβn sin θs

}

=
∑

n

1

Z0

{

E
(n)
‖ cos θs − E

(n)
⊥ sinβn sin θs

}

Hew =
∑

n

{

H
(n)
⊥ sin θs +H

(n)
‖ sinβn cos θs

}

=
∑

n

1

Z0

{

E
(n)
‖ sin θs + E

(n)
⊥ sinβn cos θs

}

Ev =
∑

n

E
(n)
‖ cosβn

where

θs = arrival azimuth of the rays

(15.3)

Typically, the sum must include rays up to n = 10 or
n = 20 before further contributions are negligible at about
the 1 percent level.
The azimuth θ and elevation β of the composite signal

are then given by one of the direction finding methods
described earlier. When using Tsuruda and Hayashi di-
rection finding method described in section 5, there is no
polarisation error and the result gives the true azimuth
of the composite signal. Typically, this differs from the
ray azimuth θs, and the difference is the multi-path er-
ror. When using the Poynting method of direction finding,
there is also a polarisation error. In practice, the polari-
sation error and multipath error tend to cancel each other
out and the Poynting method often produces the most
reliable estimate of the actual source azimuth θs.
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Figure 15.1: Vertical E-field and horizontal B-
field components for the first three
hops. Transmit power is 1mW at
6kHz

Figure 15.1 illustrates the amplitude of the first three
hops of a signal at 6kHz, with the composite of the first
12 sky waves shown in figure 15.2. The vertical scales are
commensurate at the free space impedance of 377 ohms,
to which all the signals converge at long range. At short
range the impedance appears lower due to the high eleva-
tion incidence of the signal.
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Figure 15.2: Vertical E-field and horizontal B-
field components of the compos-
ite of 1-hop to 12-hop sky waves.
Transmit power is 1mW at 6kHz

Ray modelling is effective up to a range approaching
the caustic limit of the 1-hop ray. Beyond this range it is
necessary to allow for surface diffraction, or to switch to
waveguide mode modelling.

16 Ground Wave Propagation
Model

The vertical E-field due to a vertical current element was
given by equation 14.3 which takes account of the ground
beneath the transmitter by including a coefficient of 1 +
Γ‖(β). At VLF, with β above a degree or so, Γ‖ is close
to +1. However, as the elevation reduces through the
Brewster angle, the reflection coefficient phase rotates π
degrees and the reflection coefficient tends to −1 as zero
elevation is approached, causing the direct ray and ground
reflected ray to cancel. Below the Brewster angle, another
mode of radiation takes place - the Norton surface wave,
with vertical E-field amplitude at ground range r given by,

Egv = −jωµIahaKa
e−jωr/c

4πr
(1 − Γ‖(β))

ñ2 − 1

ñ2
W (16.1)

where ñ is the complex refractive index of the ground and
W is a complex coefficient described below. This repre-
sents a wave diffracted along the ground surface, although
it is not a true surface wave because the amplitude decays
with 1/r rather than the 1/

√
r of a wave confined to the

surface (a Zenneck wave). There is also a smaller hori-
zontal radial E-field component, pointing away from the
source, with amplitude

Egr =
Egv√
ñ2 − 1

(16.2)

For a flat earth, W is given by

W = F (Ω)

= 1− je−Ω erfc
(

j
√
Ω
)√

πΩ

Ω = −j
ω

c

ñ2 − 1

2ñ4
r

(16.3)

in which erfc() is the complimentary error function with
complex argument. For a spherical earth, the coefficient
W has a polynomial expansion

W = F (Ω)− δ3

2
W1 + δ6W2 + . . .

W1 = 1− j
√
πΩ− (1 + 2Ω)F (Ω)

W2 = 1− j(1− Ω)
√
πΩ− 2Ω +

5Ω2

6
+

[

Ω2

2
− 1

]

F (Ω)

δ3 = − 1

2q3

q = −j

√
ñ2 − 1

ñ2

(

ωRE

2c

)1/3

(16.4)

The ground wave is significant at VLF out to a range of
several hundred km, as illustrated in figure 16.1
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Figure 16.1: Vertical E-field and horizontal B-
field components of the ground
wave. The 1-hop sky wave is shown
for comparison. Transmit power is
1mW at 6kHz

17 Loop Receiver Calibration

Consider a loop antenna with impedance Za composed of
the reactance of the loop inductance La in series with the
AC resistance Ra of the loop. Let the loop area be A
and number of turns be N . We can safely neglect loop
capacitance and radiation resistance.
The voltage induced in the loop by an incident flux B

tesla passing through the loop will be

Va = jωNAB (17.1)
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Figure 16.2: Vertical E-field and horizontal B-
field components of the received
signal. Ground and up to 12-
hop sky waves combined. Transmit
power is 1mW at 6kHz

and if a low-impedance receiver front end of input resis-
tance Rr is in series with the loop, the current flowing in
the loop and through the receiver’s input will be

Ia =
jωNAB

Rr +Ra + jωLa
(17.2)

Now consider a calibration current Ical injected from a
test signal voltage Vcal delivered by a pad consisting of
Rcal and Ccal in series. If Rcal is much greater than Za

and Rr, the injected current is given by

Ical =
Vcal

Rcal +
1

jωCcal

(17.3)

A proportion of Ical goes into the loop and the rest, Iin
goes into the receiver, where Iin is given by

Iin = Ical
Za

Rr + Za

=
Vcal

Rcal +
1

jωCcal

Ra + jωLa

Rr +Ra + jωLa

(17.4)

and we can equate this with the current into the receiver
from a flux B given by equation 17.2,

jωNAB

Rr +Ra + jωLa
=

Vcal

Rcal +
1

jωCcal

Ra + jωLa

Rr +Ra + jωLa

(17.5)
If we choose Ccal so that

Ccal =
La

RaRcal
(17.6)

then we find that equation 17.5 reduces to

Vcal =
NARcal

La
B (17.7)

The quantities N , A, and La can be measured accurately,
Rcal can be selected accurately, and Ccal and Vcal can be

adjusted to reasonably good accuracy. The calibration is
independent of the receiever’s input resistance, so long as
it is small compared to Rcal.

18 Simple Propagation Model

A simple propagation model for VLF assumes the radi-
ated signal is trapped between the two spherical shells
of the Earth-Ionosphere cavity, thus giving approximately
a 1/

√
r field strength dependence on range r. Combin-

ing with an exponential decay factor to allow for average
losses, we have,

E =
300

h
e−r/a

√

PTλ

RE sin(r/RE)

where

E = field strength, volts/metre

r = great circle range, metres

a = attenuation factor,

= 2.9× 106(day),4.3× 106(night)

PT = effective radiated power, watts

h = D-region height, metres, 70× 103 day, 95× 103 night

RE = Radius of earth, 6370× 103 metres

(18.1)

19 Sferic Simulation

It is often useful to simulate a typical lightning sferic for
the purpose of testing receiver and signal processing soft-
ware. A commonly used method assumes that most of the
energy of the lightning stroke is radiated from the lower
few km of the lightning path, approximating a vertical
Hertzian dipole so that all frequency components are ra-
diated in phase. The sharp pulse of the discharge is then
modeled by a sum of many cosines, all with zero phase.
Each term of the sum is then multiplied by an amplitude
weighting and a delay factor.
The field strength waveform at a distance r metres can

be synthesized with a sum such as

V (t) =
∑

A(ω)cos

(

ω

(

t− r

vp(ω)

))

(19.1)

where t is the time elapsed since the lightning discharge,
and vp(ω) is the phase velocity in the Earth-ionosphere
cavity at the frequency ω. vp(ω) is given by

vp(ω) =
c

√

1− ω2
0/ω

2
(19.2)

in which ω0 is the cut-off frequency, typically 1700 Hz.
The sum over ω in 19.1 is usually taken from ω0 up

to the maximum frequency of interest. The amplitude
coefficientA(ω) is chosen to represent the typical spectrum
of a distant sferic. A simple example is

A(ω) = cos2
(

π
ω − ωa

2ωr

)

(19.3)
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where ωa is the angular frequency of the spectral peak and
ωr sets the spectral half-width. Then the sum in 19.1 is
taken from ω0 to 2ωr.
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Figure 19.1: Synthetic sferic at range 3000km

An example of a synthesized sferic waveform is given in
figure 19.1.

20 n-vectors

The commonly used latitude and longitude representation
of a position on the Earth’s surface is problematic for cal-
culation purposes due to the mathematical singularities at
the poles and the longitude discontinuity.
An alternative position representation which avoids

these problems is the n-vector in which a position is rep-
resented by an outward pointing (vertical) unit 3-vector.
Calculations involving positions, distances, and bearings
on spherical or ellipsoidal Earth are considerably simpli-
fied when implemented with n-vectors.
n-vectors are usually expressed with respect to an

Earth-centered cartesian coordinate basis. For example
a point P with latitude λ and longitude µ can be repre-
sented by the n-vector

P̂ =





Px

Py

Pz



 =





cos(λ) cos(µ)
cos(λ) sin(µ)

sin(µ)



 (20.1)

The north pole in this representation is

N̂ =





0
0
1



 (20.2)

The conversion back to latitude and longitude is given by

λ = atan2(Pz,
√

P 2
x + P 2

y )

µ = atan2(Py, Px)
(20.3)

Note that while there are no singularities in n-vector cal-
culations, a singularity may occur when transforming back
to latitude and longitude.

Directions are represented as unit 3-vectors using the
same cartesian basis. For example, the northwards and
eastwards directions from a n-vector point P̂ are given by

eastwards = unit(N̂ × P̂ )

northwards = unit(P̂ × N̂ × P̂ )
(20.4)

where

unit(Â) =
Â

|Â|
(20.5)

The great circle distance between two points represented
by n-vectors Â and B̂ is given by

d = Re atan2(|Â× B̂|, Â · B̂) (20.6)

where Re is the Earth radius.
The bearing of a forepoint f̂ from a standpoint ŝ is given

by

x̂1 = unit(N̂ × ŝ)

x̂2 = unit(f̂ × ŝ)

θ = −ŝ · unit(x̂1 × x̂2) atan2(|x̂1 × x̂2|, x̂1 · x̂2)

(20.7)

The forepoint f̂ reached by travelling a distance d along
a great circle with initial bearing θ from standpoint ŝ is
given by

D = unit(ŝ× N̂ × ŝ) cos(θ) + unit(N̂ × ŝ) sin(θ)

f̂ = ŝ cos

(

d

Re

)

+D sin

(

d

Re

)

(20.8)

Averaging of a set of positions Âk is simply the nor-
malised sum of the n-vectors,

average position = unit

(

∑

k

Âk

)

(20.9)

The point midway between two points Â and B̂ is just
the normalised sum of the two vectors,

midpoint = unit(Â+ B̂) (20.10)

and similarly, the point Ĉ at a fraction r of the way from
Â to B̂ is

Ĉ = unit(Â(1− r) + B̂r) (20.11)

The great circle joining two points Â and B̂ is repre-
sented by their normalised cross product,

ĉ = unit
(

Â× B̂
)

(20.12)

and the two antipodal intersection points of great circles
ĉ1 and ĉ2 are given by

P̂1 = unit (ĉ1 × ĉ2)

P̂2 = unit (ĉ2 × ĉ1)

= − unit (ĉ1 × ĉ2)

(20.13)
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