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1 Incident Field

A completely polarised plane wave having arbitrary po-
larisation is incident from bearing 6 with elevation [, as
shown in figure 1.1.

Zenith
o

\\\ " ~~=> North
. ]

Figure 1.1: Signal incident on bearing 6 with el-
evation (8

YEast

The E-field can be represented as the sum of two per-
pendicular transverse components E; and Eg which are
in phase quadrature. These components are related by

Eq = jPE;
1
Er=—F
V= (1.1)
P

Fp= 21 _p
CT it P2

where E is the complex incident E-field amplitude from
which the real amplitude is given by R(E exp(jwt)), and
P is a polarisation parameter defined by

P = +1; right circular
0 < P < 1; right elliptical

(1.2)

P = 0; linear polarisation
0 > P > —1; left elliptical

P = —1; left circular

In these notes, the direction of rotation, left (anti-
clockwise) and right (clockwise), is defined looking along
the wave vector towards the receiver. The locus of E traces
out a polarisation ellipse in the plane of the wavefront,
with orientation defined in figure 1.2a. FEj is positioned
at a tilt angle « from the vertical plane of incidence. Ej
and Eg form the semi-major and semi-minor axes of the
polarisation ellipse, and the ellipticity is given by 1/|P)|.
Figure 1.2b shows the corresponding definitions of the H-
field components.

The Stokes parameters are given in terms of the field
strength and polarisation coefficient by

I=F?

Q = E? fi;Q cos 2a

U=FE? 1 J_r Pz sin 2« (13)
5 2P
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Figure 1.2: Incident field in the plane of the
wavefront, looking directly towards
the wave normal. | and H” define
the TE axes, | and H, define the
TM axes.

Transverse components are resolved in the plane of the
wavefront. TE components £, , H|, and TM components
Ey, H} are resolved by

E, =
E)
H, = Hrcosa — Hgsina

—FErsina — Eg cosa

FErcosa — Fpsina
! @ (1.4)

H|=—-Hsina— Hgcosa

2 Free-space Antenna Response

Vertical loop antennas will respond to the orthogonal hori-
zontal components H, and H| sin 3 of the incident signal.
A north/south aligned vertical loop antenna will experi-
ence a field strength of

Hys= H, cosf — H)sin Bsinf (2.1)

which is the westward pointing component of the hori-
zontal H-field. Similarly an east/west aligned loop will
respond to the northward pointing component,

Heyw = H) sinf + H) sin 3 cosf) (2.2)
A vertical E-field probe responds to
E, = E)cosf (2.3)



The loop orientations are shown in figure 2.1. Here the
loop polarity is chosen such that a signal from the north-
east will have H, s, and H¢, both in phase with FE,.

H:i::>>

H’n,s

Figure 2.1: Plan view of the horizontal H-field
components. The north pointing
component H.,, is picked up by the
east/west loop and the north/south

loop responds to the west pointing
component Hps.

Substituting equations 1.1, 1.4 into 2.1 - 2.3 produces
the orthogonal loop field strengths in terms of the incident
field parameters,

H,; =H;{(cosa — jPsina)cosf

+ (sina + jP cos ) sin Bsin 0}
Hew = Hi{(cosa — jPsina)siné

— (sina + jP cosa)sin 3 cos 0}

(2.4)

E, = Ef(cosa — jPsina)cos 8

The presence of terms in jP ensures that for anything
other than pure linear polarisation or a signal at zero ele-
vation, the phase angle between the two loop signals will
not be exactly 0 or 7 radians. Figure 2.2 shows the rela-
tive polarity of the received components in response to a
signal from each quadrant.

North
Hew = - 3 Hew =+
Hns =+ : Hns =+
E,=+ 1 E,=+
West ¢« -------- +-------- > Bast
Heypy = — : Hew =+
Hns = - : Hns = -
Ev =+ 3 Ev =+
South

Figure 2.2: Relative polarity of the 3-axis re-
ceived components.

3 Watson-Watt Goniometry

A loop at azimuth B will experience a field strength

Hg =H,,cos B+ H,.,sinB (3.1)

An estimate B = 6 (modulo 7) of the signal’s azimuth is
obtained when |Hp| is at a maximum or minimum. This
is determined by setting d|Hpg|/dB = 0 which leads to

.1
b= atan2(Heo HY o + HEy Hos, | Hos)? — |Hew|?)

. (3.2)
=5 atan2(2| Hey H,y 5| cos 0, | Hys|® — |Hew|?)

where ¢ is the phase angle between the two loop signals.
This corresponds to orientation of the major axis of the
Lissajous ellipse formed on the Watson-Watt DF display.

Substituting from 2.4, the measured bearing in terms of
the signal’s true azimuth 6 is given by

0 = 0 + atan2(F, G) /2 (3.3)
where
F =sin (2a)sin B (P? — 1)
G = (sin® a — cos® asin® B) P? (3.4)

2 2

— sin® asin® B + cos? a
The term atan2(F, G)/2 is referred to as the polarisation
error. The error is zero when F' = 0, therefore the er-
ror tends to zero with low elevation signals, with circular
polarised signals, and with linear or elliptical polarisation
where the major axis is vertical (& = 0) or horizontal
(a =m/2).

The vertical E-field E, can be used to resolve the am-
biguity of 7w radians inherent in equation 3.2. First, the
signal from a loop aligned on 0 is constructed,

Hy, = H,, cos 0 + H,, sinf (3.5)

The cosine of the phase angle between Hj, and E,, is then
examined and if negative, m radians is added to 6

4 Poynting Vector Method

In section 3 the E-field component was used only to resolve
the 7 radian ambiguity of the bearing derived from the
orthogonal loops. This does not use all the information
available from the phase of the F,, component and a better
estimate is obtained with the following,

|Hew EX| cos 61
|Hyps E%| cos 62
H. B} + H;wEv>
H,;E:+ H!.E,
where 01 and Jo are the phase differences between He,,
and FE,, and between H, s and F,, respectively. Equation
4.1 is derived by considering the horizontal components of
the Poynting vector and discarding the products of hori-
zontal electric field and vertical magnetic field. As before,
substituting from 2.4 gives the measured bearing in terms
of the signal’s true azimuth plus a polarisation error term,
cos a sin asin B(P? — 1))
cos? a4+ P2 sin” a

é = arctan (
(4.1)

= arctan (

0 = 0 + arctan ( (4.2)
The polarisation error with this method is always less than
or equal to the goniometric polarisation error, and in many
cases is much less. In particular the error is zero for hor-
izontal or vertical linear polarisation, and for both states
of pure circular polarisation.



5 Tsuruda and Hayashi NPE

method

If the incident signal is not linearly polarised (at VLF,
signals almost never have linear polarisation), then there
will be some phase difference between the three measured
components. Let 61, d2, 03 be the phase differences, defined
by

01 = arg(Ey,/Hew)

0o = arg(E, /Hpys) (5.1)
03 = arg(Hps/Hew)
The sines of these angles are given by the identities
sinéy = j(EyHY, — EjHew)/ (2| Ev|[Hew!)
sindy = j(E,Hyy — By Hns) /(2| Ey|[Hns|) (5.2)

sin d3 = j(H’ﬂSH;w - Hr*stew)/(2|Hn5||Hew|)

Eliminating terms involving a and P from equations 2.4
gives

E, = Ef(Hey sin + Hy, s cos ) cos 8 (5.3)

Using 5.3 to eliminate E), from 5.2 leads to an expression

for 6
| Hys| sin 92/ sin d3
|Hew| SiH(Sl/SiH(Sg

0 = — arctan ( (5.4)
in which the atan2() function should be used in order to
preserve quadrant information. This is an exact expression
for @ and therefore there is no polarisation error (NPE).
This method relies on accurate determination of the phase
angles between the three components.

6 Angle Averaging

It is often necessary to produce an average of several az-
imuth or phase angle measurements. However the nor-
mal arithmetic mean of the angles fails, since for example
mean(20 4+ 40) = 30 works fine, but mean(350 4+ 30) =
190 fails. Any particular case can be dealt with by a
repositioning of the angle meridian or by addition or
substraction of whole cycles. For example in this case
mean(—10 + 30) = 10, and this leads to the Mitsuta algo-
rithm.

An alternative method which performs better when the
raw angles are very noisy involves summing the direction
cosines. Given a set 8; of raw angles in radians, the direc-
tion cosines are summed and the average angle is produced
by the atan2() function,

N N
A= Zsin@i ; B = Zcos@i (6.1)
i=1 i=1

average = atan2(A, B) (6.2)

The above is conveniently carried out using complex arith-
metic,

N
average = arg <Z (cosB; + jsin 91-)> (6.3)
i=1

b[1];

sum = D
= * D;

sumsq = D

for( i from 2 to N)

{
delta = b[i] - D;
if( delta < -180) D = D + delta + 360;
else
if( delta < 180) D = D + delta;
else
D = D + delta - 360;
sum = sum + D;
sumsq = sumsq + D * D;
}
mean = sum/N;
std_dev = sqrt(sumsq/N - mean * mean);

Listing 6.1: Mitsuta algorithm operating on an
array b[1..N] of raw bearings mod
360. For mod 180 operation, replace
360 and 180 by 180 and 90.

It is usually desirable to weight each contribution to the
average, eg by the signal power or amplitude. If each 6;
has weight w;, then

(6.4)

i=1

N
average = arg <Z wj (cosB; + jsin 91-)>

If the angles are modulo 7 radians, then the averaging
formula becomes

N
1
average = - arg (Z wj (cos 20; + jsin 291-)) (6.5)

i=1

The direction cosine averaging does not offer a standard
deviation but an accurate approximation is obtained with
the Yamartino formula,

N
S = Zwi (cosB; + jsinb;)

i=1

N
. W=> w (6.6)
=1

standard deviation ~ (1 4 0.15472%)sin™! z

v =/1—|S]2/W2

6.7
where (6.7)

7 Loop Alignment Correction

Signal analysis assumes the availability of orthogonal loop
signals, eg Hcy, Hys. In practice the actual loop signals
may not be so aligned, or even orthogonal, due to site or
installation limits, or distortion of the effective loop plane
due to non-uniform ground properties or nearby struc-
tures. A linear transformation must be applied to the loop
signals to synthesise the desired orthogonal loop signals.

Signals H; and Hy from loops having effective azimuth
A; and A, respectively, and A; # A (mod 7), are given
by



Hy|  |cosA; sinA;| |Hps (7.1)
Hy|  |cosAy sinAs| | Hew '

Inverting the above expression gives a formula by which
H,s and H., can be synthesised from the loop signals.

H,, _i sin Ay  —sinAy| |H;
Hew _D 7COSA2 COSAl H2

D = cos A; sin Ay — sin A; cos Ay

(7.2)

8 Ground Reflections

The VLF antenna is normally located much less than a
wavelength above ground and therefore the loops and E-
field probe will respond to the superposition of the inci-
dent field and the field resulting from ground reflection.
This section deals with the ground reflection local to the
antenna, in which the reflected signal has negligible prop-
agation delay compared with the incident signal. Distant
ground reflections produce multi-path signals which are
considered in another section.

The ground is assumed to be isotropic and non-magnetic
and described by the following physical attributes

Permeability o
1 x 1073 mhos/m (poor ground)
Conductivity o, — 5 X 10*2 mhos/m (average ground)
2 x 1072 mhos/m (good ground)
5 mhos/m (sea
5¢p (poor ground)
15 d
Permittivity e, = €0 (average ground)
25¢p  (good ground)
80¢p (sea)

and the following derived quantities

TM reflection coefficient

Ly (8)
TE reflection coefficient T, (p)

Complex refractive index n=1/(eg — jog/w) /€0

The reflection coefficients are functions of the elevation an-
gle 3 of the incident field described in section 1. Isotropic
ground implies the reflected and incident wave normals
share the same plane of incidence with azimuth 6. Lossy
conductive ground produces a complex refractive index n.

Isotropic ground implies that TM and TE components
are uncoupled and reflected independently, so they can be
analysed separately. Separating the field into TM and TE
components, and separating each of these into incident
and reflected, perpendicular and parallel H and FE field

strengths, we have

EF = incident parallel E-field

HY = incident perpendicular H-field

EY = incident perpendicular E-field

H Hv = incident parallel H-field ®.1)
E® = reflected parallel E-field -
Hf = reflected perpendicular H-field

Ef = reflected perpendicular E-field

Hy
The orientations of these components are defined in figure
8.1. The four components of the incident field are given
by equation 1.4.

= reflected parallel H-field

Reflected signal Incident signal

2 By
HP HY
Air B p
Ground

(a) TM components

Reflected signal Incident signal

EY

HV

Ground
(b) TE components

Figure 8.1: Incident and reflected field compo-
nents, in the plane of incidence

The following Fresnel reflection coefficients apply,

r - Hf _ n2sin B — /72 — cos? f3
HY  @2sin +\/~2—c052
X P (8.2)
I ET  sinf— /0% —cos?f3
L= — =
EY  sinf+ /n?—cos?j

As ground conductivity improves, I') — —Tand 'y — +1.
At VLF this is particularly so since og4/w > €, even with
poor ground.

The horizontal E-field perpendicular to the plane of inci-
denceis —EY —E{ = —EY (14T ). The horizontal radial
E-field (pointing towards the source) is —EY (1—I}) sin 8.
Both these components tend to zero with typical VLF re-
flection coefficients. Table 8.1 shows some typical values



Freq poor gnd | avg gnd | good gnd sea

0.2kHz 0.99/-0 | 1.00/-0 1.002-0 | 1.00£-0
1.0kHz 0.99/-1 | 0.99/-0 1.00£-0 | 1.00£-0
5.0kHz 0.97/-2 | 0.99/-1 0.99/-0 | 1.00£-0
20.0kHz | 0.95/-3 | 0.98/-1 0.99/-1 | 1.00Z-0
50.0kHz 0.92/-5 0.96/-2 0.982-1 1.00£-0

(a) TM reflection coefficient I'|;, 60 deg elevation

Freq poor gnd | avg gnd | good gnd sea

0.2kHz 0.97/-2 0.99/-1 0.99/-0 | 1.00£-0
1.0kHz 0.94/-3 0.97/-2 0.99/-1 1.004-0
5.0kHz 0.87/-8 0.94/-3 0.97/-2 | 1.00£-0
20.0kHz | 0.76£-16 | 0.89/-7 0.94/-3 | 1.00£-0
50.0kHz | 0.66/-25 | 0.83/-11 | 0.91/-6 | 0.99/-0

(b) TM reflection

coefficient I, 10 deg elevation

Freq poor gnd | avg gnd | good gnd sea

0.2kHz -1.00£-0 | -1.00£-0 | -1.00£-0 | -1.00£-0
1.0kHz -0.994-1 | -1.00£-0 | -1.00£-0 | -1.00£-0
5.0kHz -0.982-1 | -0.994-1 | -1.00£-0 | -1.00£-0
20.0kHz | -0.96/-2 | -0.984-1 | -0.99/-1 | -1.00Z-0
50.0kHz | -0.94/-4 | -0.97£-2 | -0.99/-1 | -1.00Z4-0

(c) TE reflection coefficient I' | , 60 deg elevation

Freq poor gnd | avg gnd | good gnd sea

0.2kHz -1.00£-0 | -1.00£4-0 | -1.004-0 | -1.00£-0
1.0kHz -1.002-0 | -1.00/-0 | -1.00Z-0 | -1.00/-0
5.0kHz -1.00£-0 | -1.00£4-0 | -1.004-0 | -1.00£-0
20.0kHz | -0.99/-0 | -1.00£4-0 | -1.00£-0 | -1.00£-0
50.0kHz | -0.99/-1 | -0.99/-0 | -1.00/-0 | -1.00/-0

(d) TE reflection coefficient '} , 10 deg elevation

Table 8.1: Reflection coefficients for various
grounds with low and high elevation
signals. Phase angles are in degrees.

for T'y and I' | for various types of ground. The TM re-
flection coeflicient exhibits a clear Brewster effect at very
low elevation. This is illustrated in figure 8.2. The reflec-
tion coefficient is a minimum at the Brewster angle and
below this angle the phase of the reflection is reversed.
The Brewster angle increases as the frequency or ground
resistance increases.

9 Antenna Response With

Ground Reflection

The components of the superposition of the incident and
reflected fields relevant for 3-axis reception, as defined in
section 2, are

H,, = fH”V(l —TI'1)sinfBsinf + HY (1+1T))cosf

He, = HHV(I —TI'1)sinfcosf+ HY(1+T))sinf

E, = Ew(l +1I'))cos

(9.1)

The horizontal components are illustrated in figure 9.1.
Substituting the definitions of the incident field from equa-
tions 1.1, 1.4 leads to

(9.2)

[
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Figure 8.2: Ground reflection coefficient I'| at
6kHz as a function of elevation.

Hyns = Hi {(1+T))(cos o — jPsin ) cos 6
+(1—=T_1)(sina+ jPcosa)sinSsinf}
Hew = Hi {(1+T))(cosa — jPsina)sin 6
—(1-T,)(sina+ jP cosa)sin S cos 0}
E, = Er(1+T))(cosa — jPsina)cos 8
(9.3)

In the absence of any ground reflection, Iy =I'; = 0 and
9.3 reduces to 2.4.

10 Elevation Estimation

Consider a vertical loop in the plane of incidence, azimuth
6. This will respond to a horizontal magnetic field com-
ponent of

H®)=HY + H}
= H;(1+T)(cosa — jPsina)
= Heysin + H,5cosd

(10.1)
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Hns
Figure 9.1: Plan view of the horizontal H-field
components. The north pointing
component H.,, is picked up by the
east/west loop and the north/south

loop responds to the west pointing
component Hps.

Then from equation 9.3, it is clear that F, and H} are in
phase irrespective of ground reflection and signal polari-
sation, and

E,
H(0)

E
= FﬁcosﬁzZocosﬁ

(10.2)

where Zj is the free space impedance.

If an estimate 6 of the signal azimuth is obtained using
one of the direction finding methods described earlier, then
an elevation estimate B is given by

B = cos™* { Ev/Z }
H.,sinf + H,scosf

(10.3)

When 6 is obtained by goniometry or Poynting vector
methods, the resulting 5 can have large error, especially
for signals with nearly linear and horizontal polarisation.

11 Polarisation Estimation

Once the signal azimuth and elevation are measured using
the methods described earlier, the signal polarisation P
and tilt angle o can be determined.

A vertical loop in the plane of incidence intercepts a
field component

H®)=HY + H}

_ (11.1)
= H;(1+4T)(cosa — jPsina)

and this signal is synthesised from the H.,, and H,s loop
signals with

H(0) = Heyy sinf + Hy,5 cos (11.2)

Similarly, a loop oriented perpendicular (rotated clock-
wise) to the plane of incidence intercepts a field compo-
nent

H(O +7/2) = (H”V - H”A) sin 8

=—H;(1-T,)(sina+ jPcosa)sinf
(11.3)

which is synthesised with

H(0+7/2) = HeyycosO — Hy s sin 6 (11.4)

Orthogonal components of the incident field in the plane
of the polarisation ellipse, H and H)|, as defined in figure
1.2b and equation 1.4 are then obtained by correcting for
the ground reflection and signal elevation,

H
()
(L+1y) (11.5)
_ H(047/2)
I~ A=T.)sinp
The tilt angle « is then given by
0= arg(H”/HJ_)
1 _1 2|HH||HL|COS((5)
a=——=tan T e o
2 |H)[? — [HL| (11.6)
1 1 H”Hj_ +H|THJ_
=——tan"! |
2 H”HH - H,H7y

which should be implemented with the atan2() function.
Then the polarisation parameter P is given by

p_ Hysina+ Hjcosa

jHH sina — H,| cosa (11.7)
In practice, the values of azimuth and elevation used in
these formulas are the estimates é,éz obtained through
one of the methods described earlier. If § is obtained
by goniometry, then H(f) and H(f + 7/2) are in ex-
act phase quadrature and the resulting « is zero, with
sen(P) = —sgn(arg(H (0 + 7/2)/H(9)).

12 TIonospheric Reflection

The D-layer can be approximated by a smooth sharp
boundary above which is a cold neutral plasma with the
following physical characteristics.

wg = Barge/me = electron gyro frequency

| N,
Wp = Qe eoni = electron plasma frequency
€

v = electron collision frequency
electron mass,9.109 x 10731 K g

electron density

Me
Ne
¢e = electron charge,1.602 x 10~
By = static field flux density ~ 50uT

€0 = 8.854 x 10712

(12.1)

Coulombs

The electron density N, varies with solar zenith angle
and increases exponentially with height. Estimates can
be obtained from the IRI model. Figure 12.1 shows some
typical mid-latitude values. The electron-neutral collision
frequency v is a function of density and temperature. A
useful approximation as a function of height, based on ob-
servational results (Wait & Spies 1964) is given by

v(h) = 1.816 x 10" exp (—1.5 x 107 %) (12.2)
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Figure 12.1: Electron density in the D-layer, cal-
culated for western Europe using
the IRI model.

In terms of these plasma properties, the reflection coef-
ficients are

”FH = (E+ F)/D

HFL = QjC(ﬁOCO — ﬁeCe)/D
LF” = QjC(ﬁoCe — ﬁeCO)/D
Tr=(E-F)/D

C =cos¢
C, = cos @,
C. = cos ¢

D = (fig + 71)(C2 + C,C.) (12.3)

+ (fiofte +1)(Co + Ce)C
E = (7o + 1) (C? — C,C,)
F = (fofe — 1)(Cy + C.)C

¢, = sin? sin¢
. =

The two complex refractive indices n, and 7. deter-
mine the propagation. An arbitrary wave is decomposed
into components parallel and perpendicular to the static
magnetic field. For the perpendicular component, 71, ap-
plies to the ordinary wave and 7. to the extraordinary
wave. For the parallel component, the n, and n. describe
opposite states of circular polarisation.

The values of n, and 7, are obtained from the Appleton-

Property | Day | Night
Effective height, i 70 x 103 | 90 x 103
Electron density, N, | 3 x 10% | 1 x 10°

Table 12.1: Typical values of D-layer physical

properties
Hartree equations,
- X
ni =1- 1
1T Xz
X
=2
n,=1-— vy
Al — =%z
where
1y2gin?0
Ay =1—iz7 -2 "‘

1-X -7
1 1/2
Ay = (ZY4 sin® 0, + Y2 cos® 0,, (1 — X — iZ)Q)

X =w}/w?

Y =wy/w
Z=v/w
0,, = angle between wave direction and magnetic field

(12.4)

At VLF, v < w and therefore Z is usually approximated
by zero, thus treating the plasma as collisionless.

At VLF and at mid to high latitudes, it is common
to invoke the quasi-linear (QL) approximation in which
only the vertical component of the static magnetic field is
considered. This produces reflection coefficients which are
independent of the angle of incidence to the magnetic field
and therefore there is no difference between eastwards and
westwards propagation. With the QL approximation the
refractive indices simplify to

No = \/1 — jlwr/w)etiT
fle = /1 — j(wr Jw)e=i7
T =tan"(wy/v)

— 42 2 2
w.rprq/y erg

Anisotropy due to the static magnetic field produces
coupling between TM and TE modes during reflection.
Four complex amplitude reflection coefficients are there-
fore required. These are

(12.5)

Ty = TM to TM
/L1 =TM to TE
T, =TE to TE

1T =TE to TM

(12.6)

The values of these coefficients depend on the zenith angle
of incidence ¢ and the angle 8,,, between the incident signal
and the static magnetic field.



13 Convergence/Divergence Fac-
tor

Signals incident on the ionosphere from below encounter a
concave reflector and therefore experience a focusing effect
on reflection. Conversely, the ground is a convex reflector
and produces a divergence of reflected rays. These factors
are quite significant and are accounted for by a conver-
gence coefficient.

a(n) = (14 h/Rg)y/ ai(n)as(n)

an(n) = 2n sin &
' sin (RLE)
~ (I4+h/Rg) —cos¢
az(n) = (14 h/Rg)cos€ —1
where
d
5: QHRE

d = great circle distance between end points
h = height of ionosphere
n = number of ionospheric reflections in the path

Rp = Radius of earth, 6370 x 10> metres
(13.1)

This formula is valid up to a caustic limit where the factor
az(n) has a pole at a great circle distance distance given
by

1

=2 - -
d nRg cos 15 h/Rp

(13.2)

at which point the downwards propagating ray meets
the ground at a tangent. This occurs at approximately
2000km for the single hop (n = 1) ray with h = 80 x 103.

14 Hertzian Dipole

At VLF, a transmitting antenna approximates a vertical
Hertzian dipole constituting a point source of TM waves.
It consists of two vertically separated charge reservoirs of
+q separated by a distance [ and connected by a uniform
current I oscillating with angular frequency w. It is char-
acterised entirely by the equation

1l = —jwql

where
Il = current dipole moment
ql = electric dipole moment
q=CV

C = antenna capacitance

(14.1)

[ = length of dipole
I = antenna (peak) current

V = antenna (peak) voltage

The radiated far field of this source at range r along an
angle ¢ to the dipole axis is given by

—jwr/c

E| = —jwpll sin ¢

(14.2)

4rr
H, = EH/ZO

If the dipole is at ground level with the earth forming one
electrode, the radiation pattern is modified by the ground
reflection coefficient I'| (3) described in section 8. The far
field described by equation 14.3 must be multiplied by the
factor (1+1")(3)). Below the Brewster angle, I'| tends to
—1 and the radiation is zero at zero elevation. However,
at low elevations radiation also takes place via a Norton
surface wave described in section 16. Ignoring the surface
wave, the far field of a physical grounded vertical at range
r along elevation angle S can be modelled by

. e—jwr/c
E” = _JwﬂlahaKaT(l + F” (6)) COSﬁ
mnr

—jwr/c
= _WQIU/CaVahaKaei(l + FH (6)) COS B
4dmr
H, = Ey/Z
E, = H” =0

where
I, = antenna current (peak)
V, = antenna voltage (peak)
C, = antenna capacitance
ha

= antenna overall height
(14.3)

The factor K, is required to allow for the average current
distribution, or equivalently, the average charge separa-
tion, or alternatively, an effective height coefficient. K,
will be 0.5 for a straight vertical wire, and closer to unity
for a long horizontal wire.

The time averaged (RMS) power density is given by

2

S(r,8) (—‘”“h“K"

4mre

) (14+Ty(B8))*cos®> B (14.4)

Integrating the above over a sphere produces the total
radiated power. For a unity ground reflection coefficient,
the total power is

8 LhoK,\> I?R
T 0(“ ) — a7 (14.5)

Pr=-27
=3 2

4re

where Ryp is the radiation resistance of the antenna and
the denominator 2 converts from peak current to RMS
current.

The description of the far field, radiated power, and
radiation resistance given above does not take account of
radiation via the surface wave. This topic is covered in
section 16.

15 Sky Ray Propagation Model

The received signal is the superposition of multiple rays.
Each ray undergoes uniform expansion so that its ampli-
tude is inversely proportional to the distance it travels.



A ray is labelled by the number of hops n. The ray n
undergoes n ionospheric reflections and n — 1 ground re-
flections. The ionospheric reflections occur at a zenith
angle ¢, with reflection coefficients given in section 12.
The ground reflections occur at elevation angles 3, with
reflection coefficients defined in section 8. Each ray is also
subject to the convergence coefficient described in section
13. The signal incident at the receiver from ray n is given

by
El(‘n) n—1 €_ij"/c 1
| = (V)" (ST et zp |
where
(5] = [|T||(¢n) LFH(%)}
ITi(Pn) 1L1(dn)
_ (Ty(Bn) 0
(1] = [ " 11(6”)] (15.1)
D = *jw,UIahaKa(l + FH(B)) cos
_ _ Rpsiné
On = tan”! h+ Rg(1 —cosé)
Bn = 7T/2 - ¢n - €
d
5 - 27’LRE

A corresponding equation is satisfied by the magnetic field
components. The components EI(In) and ES_") are respec-
tively the TM and TE electric field strengths incident at
the receiver site, not including the ground effects at the
receiver. «(n) is the convergence coefficient for ray n given
by equation 13.1 and R, is the total path length of ray n

given by

(15.2)

Equation 15.1 assumes uniform ground and ionosphere
properties along the entire path, for simplicity of pre-
sentation. For numeric calculations it is straightfor-
ward to calculate the reflection matrices independently for
each encounter with ground and ionosphere in order to
take account of varying path properties such as land/sea,
day /night, and path orientation with respect to the earth’s
magnetic field.

The total field incident at the receiver is the vector sum
of the incident rays. The composite signal is an elliptically
polarised wave as described in section 1. From equations
2.1 to 2.3, the fields to which the loops and vertical an-

tenna respond are
(n (n
H,, = Z {HL)COSQS fHH )

H., = Z {HJ(_”) sinf, + Hﬁn) sin 3,, cos 95}

o

E, = Z EI(In) cos Bn

sin 3, sin 95}

1

(n)
E
Zo

| cos 0 — Ej_n) sin /3, sin 95}

(15.3)

| sinds + E(f) sin B, cos 95}

where

0, = arrival azimuth of the rays

Typically, the sum must include rays up to n = 10 or
n = 20 before further contributions are negligible at about
the 1 percent level.

The azimuth 6 and elevation 8 of the composite signal
are then given by one of the direction finding methods
described earlier. When using Tsuruda and Hayashi di-
rection finding method described in section 5, there is no
polarisation error and the result gives the true azimuth
of the composite signal. Typically, this differs from the
ray azimuth 6, and the difference is the multi-path er-
ror. When using the Poynting method of direction finding,
there is also a polarisation error. In practice, the polari-
sation error and multipath error tend to cancel each other
out and the Poynting method often produces the most
reliable estimate of the actual source azimuth 6.
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Figure 15.1: Vertical E-field and horizontal B-
field components for the first three
hops. Transmit power is ImW at
6kHz

Figure 15.1 illustrates the amplitude of the first three
hops of a signal at 6kHz, with the composite of the first
12 sky waves shown in figure 15.2. The vertical scales are
commensurate at the free space impedance of 377 ohms,
to which all the signals converge at long range. At short
range the impedance appears lower due to the high eleva-
tion incidence of the signal.
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E-field, uV/m
B-field, fT

Range, km

Figure 15.2: Vertical E-field and horizontal B-
field components of the compos-
ite of 1-hop to 12-hop sky waves.
Transmit power is ImW at 6kHz

Ray modelling is effective up to a range approaching
the caustic limit of the 1-hop ray. Beyond this range it is
necessary to allow for surface diffraction, or to switch to
waveguide mode modelling.

16 Ground Wave
Model

Propagation

The vertical E-field due to a vertical current element was
given by equation 14.3 which takes account of the ground
beneath the transmitter by including a coefficient of 1 4
I'y(B). At VLF, with 3 above a degree or so, I'j is close
to +1. However, as the elevation reduces through the
Brewster angle, the reflection coefficient phase rotates m
degrees and the reflection coefficient tends to —1 as zero
elevation is approached, causing the direct ray and ground
reflected ray to cancel. Below the Brewster angle, another
mode of radiation takes place - the Norton surface wave,
with vertical E-field amplitude at ground range r given by,

~1
——W (16.1)

where 7 is the complex refractive index of the ground and
W is a complex coefficient described below. This repre-
sents a wave diffracted along the ground surface, although
it is not a true surface wave because the amplitude decays
with 1/r rather than the 1/y/r of a wave confined to the
surface (a Zenneck wave). There is also a smaller hori-
zontal radial E-field component, pointing away from the
source, with amplitude

(16.2)

For a flat earth, W is given by

W= F(Q)
— 1 — jeiQ erfC (]\/ﬁ) V 7TQ (163)
-2
Q= —jt—dn 1r

2n4
in which erfc() is the complimentary error function with

complex argument. For a spherical earth, the coefficient
W has a polynomial expansion

c

3
W:F(Q)—%W1+56W2+...
Wi =1—jvVaQ — (1 +2Q)F(Q)

. 502 02
WQZl-](l-Q)VT{'Q-QQ‘FT‘F 7—1 F(Q)
1
5=
2¢3
VRZ—1 (wRE>1/3
Q= —J)—"—=— —
n 2c

(16.4)

The ground wave is significant at VLF out to a range of
several hundred km, as illustrated in figure 16.1

9 : . —
E-field ground wave
8 E-field 1-hop sky wave ---------
7L
g 6
~
Z 5t
=
< 4r
=
3| 3+
2 L
1k
O L

Range, km

Figure 16.1: Vertical E-field and horizontal B-
field components of the ground
wave. The 1-hop sky wave is shown
for comparison. Transmit power is
1mW at 6kHz

17 Loop Receiver Calibration

Consider a loop antenna with impedance Z, composed of
the reactance of the loop inductance L, in series with the
AC resistance R, of the loop. Let the loop area be A
and number of turns be N. We can safely neglect loop
capacitance and radiation resistance.

The voltage induced in the loop by an incident flux B
tesla passing through the loop will be

V, = juNAB (17.1)
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Figure 16.2: Vertical E-field and horizontal B-

field components of the received
signal.  Ground and up to 12-
hop sky waves combined. Transmit
power is ImW at 6kHz

and if a low-impedance receiver front end of input resis-
tance R, is in series with the loop, the current flowing in
the loop and through the receiver’s input will be

jwNAB

="
R, 4+ R, + jwL,

(17.2)
Now consider a calibration current I.,; injected from a
test signal voltage V., delivered by a pad consisting of
Req; and Cgy in series. If Ry is much greater than Z,
and R,, the injected current is given by

‘/cal
Rcal +

1
JjwCleal

Low = (17.3)

A proportion of I, goes into the loop and the rest, I;,
goes into the receiver, where I;, is given by

Za
lin = learqy =7
Vo Ra+ jwLq (17.4)
Rcal + m R’I‘ + Ra +JwLa

and we can equate this with the current into the receiver
from a flux B given by equation 17.2,

jWNAB o ‘/cal Ra + jWLa
Ry + Ra+jwLla  Real + 56— Rr + Ra + jwLa
(17.5)
If we choose Cq; so that
L,

Ceal = 17.6
: RaRcal ( )

then we find that equation 17.5 reduces to

NAR.,

Vit = 510 g (17.7)

The quantities N, A, and L, can be measured accurately,
R, can be selected accurately, and Cq; and Vi, can be

adjusted to reasonably good accuracy. The calibration is
independent of the receiever’s input resistance, so long as
it is small compared to R.q;.

18 Simple Propagation Model

A simple propagation model for VLF assumes the radi-
ated signal is trapped between the two spherical shells
of the Earth-Ionosphere cavity, thus giving approximately
a 1/+/r field strength dependence on range r. Combin-
ing with an exponential decay factor to allow for average
losses, we have,

—r/a PT>\
Rgsin(r/REg)
where
E = field strength, volts/metre
r = great circle range, metres
a = attenuation factor,
= 2.9 x 10°(day),4.3 x 10°(night)

Pr = effective radiated power, watts

h = D-region height, metres, 70 x 10% day, 95 x 10 night

Rr = Radius of earth, 6370 x 10% metres
(18.1)

19 Sferic Simulation

It is often useful to simulate a typical lightning sferic for
the purpose of testing receiver and signal processing soft-
ware. A commonly used method assumes that most of the
energy of the lightning stroke is radiated from the lower
few km of the lightning path, approximating a vertical
Hertzian dipole so that all frequency components are ra-
diated in phase. The sharp pulse of the discharge is then
modeled by a sum of many cosines, all with zero phase.
Each term of the sum is then multiplied by an amplitude
weighting and a delay factor.

The field strength waveform at a distance r metres can
be synthesized with a sum such as

V()= Aw)cos <w <t -

where t is the time elapsed since the lightning discharge,
and vp,(w) is the phase velocity in the Earth-ionosphere
cavity at the frequency w. v,(w) is given by

r

Up(w)

(19.1)

C

in which wy is the cut-off frequency, typically 1700 Hz.

The sum over w in 19.1 is usually taken from wy up
to the maximum frequency of interest. The amplitude
coefficient A(w) is chosen to represent the typical spectrum
of a distant sferic. A simple example is

vp(w) = (19.2)

W — Wq

A(w) = cos? <7r (19.3)

2w,
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where w, is the angular frequency of the spectral peak and
w, sets the spectral half-width. Then the sum in 19.1 is
taken from wg to 2w;..
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Figure 19.1: Synthetic sferic at range 3000km

An example of a synthesized sferic waveform is given in
figure 19.1.

20 n-vectors

The commonly used latitude and longitude representation
of a position on the Earth’s surface is problematic for cal-
culation purposes due to the mathematical singularities at
the poles and the longitude discontinuity.

An alternative position representation which avoids
these problems is the n-vector in which a position is rep-
resented by an outward pointing (vertical) unit 3-vector.
Calculations involving positions, distances, and bearings
on spherical or ellipsoidal Earth are considerably simpli-
fied when implemented with n-vectors.

n-vectors are usually expressed with respect to an
Earth-centered cartesian coordinate basis. For example
a point P with latitude A and longitude p can be repre-
sented by the n-vector

R P, cos(A) cos(p)
P=|P,| = |cos(A)sin(u) (20.1)
P, sin(p)
The north pole in this representation is
R 0
N=1]o0 (20.2)
1

The conversion back to latitude and longitude is given by

A = atan2(P;, \/PZ + P2)

= atan2(Py, Py)

(20.3)

Note that while there are no singularities in n-vector cal-
culations, a singularity may occur when transforming back
to latitude and longitude.

Directions are represented as unit 3-vectors using the
same cartesian basis. For example, the northwards and
eastwards directions from a n-vector point P are given by

castwards = unit(N x P)

. (20.4)
northwards = unit(P x N x P)
where R
it(A) A (20.5)
uni = — .
|A]

The great circle distance between two points represented
by n-vectors A and B is given by
d = R.atan2(]A x B|, A- B) (20.6)

where R, is the Earth radius.A
The bearing of a forepoint f from a standpoint § is given
by

unit(N x )

xr, =
£y = unit(f x ) (20.7)
0=-—5- unit(fl X fg) atan2(|f1 X fgl,fl fg)

The forepoint f reached by travelling a distance d along
a great circle with initial bearing 6 from standpoint $ is
given by

D = unit(§ x N x 3) cos(f) + unit(N x 8)sin(6)

f:§COS<d >

R.
Averaging of a set of positions Ay is simply the nor-
malised sum of the n-vectors,
) (20.9)

The point midway between two points A and B is just
the normalised sum of the two vectors,

(20.8)

d
Dsi
)—i— sm(R

€

>

average position = unit <
k

midpoint = unit(A + B) (20.10)

and similarly, the point C at a fraction r of the way from
A to B is

C = wit(A(1 —r) + Br) (20.11)

The great circle joining two points A and B is repre-
sented by their normalised cross product,

& = unit (/1 x B) (20.12)

and the two antipodal intersection points of great circles
¢1 and ¢3 are given by

131 = unit (CAl X CAQ)
pg = unit (62 X CAl) (2013)

= —unit (& X é)

13



	Incident Field
	Free-space Antenna Response
	Watson-Watt Goniometry
	Poynting Vector Method
	Tsuruda and Hayashi NPE method
	Angle Averaging
	Loop Alignment Correction
	Ground Reflections
	Antenna Response With Ground Reflection
	Elevation Estimation
	Polarisation Estimation
	Ionospheric Reflection
	Convergence/Divergence Factor
	Hertzian Dipole
	Sky Ray Propagation Model
	Ground Wave Propagation Model
	Loop Receiver Calibration
	Simple Propagation Model
	Sferic Simulation
	n-vectors

