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471 INTRODUCTION

Although radio direction finding (DF) is as old as radio itself, new algorithms and new
techniques are used in modern digital systems. This chapter looks at the classical underpin-
nings of DF and its modern applications.

Purpose of Direction Finding

In essence, DF is any technique that determines the direction of a radio transmitter.'
More formally, radio DF is defined by the National Telecommunications and Information
Administration (NTIA) as: “the determination of the position, velocity and/or other
characteristics of an object, or the obtaining of information relating to these parameters, by
means of the propagation properties of radio waves.”?> Radio DF systems as well as radar
and navigation systems are registered in the U.S. Patent system under Class 342.

Application of Direction Finding Systems
The practical applications of DF are numerous:

* Radio navigation and satellite global positioning services The terrestrial Long
Range Navigation (LORAN) uses phase-comparison of beacon signals for hyperbolic
line of bearing (LOB) and geolocation. The U.S. satellite Global Positioning System
(GPS) and the Russian counterpart Global Navigation Satellite System (GLONASS) pro-
vide time of arrival signals for measuring precise geolocation and velocity.

* Search and rescue services The U.S. Coast Guard and worldwide organizations such
as COSPAS-SARSAT monitor emergency radio channels for rescue. Both terrestrial and
satellite DF networks are used to continuously locate emergency signals.

e Signal direction finding and location systems These systems operate throughout the
radio spectrum from the high-frequency (HF) band to 18 GHz for purposes that range
from animal tracking to locating stolen cars to gathering military intelligence.

* Homing systems These are typically small DF systems designed to guide a weapon or
artillery shell toward a location. Active RF systems use radar, while passive systems can
DF target emitter signals (i.e., “home on jam”).

* Warning systems Also called Electronic Support Measure (ESM) systems. These are
typically rapid response DF and identification systems to protect against hostile radars
and homing systems.

* Radio astronomy These are characterized by large antenna dishes or arrays that can be
synchronized into large interferometric systems spanning continents. The resulting radio
maps show density and velocity of natural signals from spin-flip states of hydrogen and
various molecular energy state transitions.

* Smart antennas Recent advances in adaptive arrays or “‘smart antennas” provide spatial
isolation of emitters, interference cancellation, and resistance to multipath signal fading?
(see Chapter 25).

Brief History of Direction Finding

Heinrich Hertz began radio DF with experiments in the directionality of antennas in 1888.
The first mobile DF system occurred in 1906 when the Stone Radio & Telegraph Co.
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installed a direction-indicating device on the U.S. naval collier Lebanon. The device was
not particularly effective as it “necessitated the swinging of the ship to obtain the maximum
signal [strength] and the bearing.” In 1915 Dr. Frederick A. Kolster, a former Stone Radio
& Telegraph employee working at the U.S. Bureau of Standards, discovered that wire
wound on a rectangular frame could be rotated to determine the direction of a signal. One
year later, 20 Kolster loop DF systems called the “SE 74” were installed on U.S. ships.’

Radio navigation service experiments continued at the U.S. Bureau of Standards, resulting
in the first workable aircraft DF system in the early 1920s.% The first aircraft DF antennas
were manually rotated, but by the 1940s, systems such as the Japanese Type 1-3 system and
the Fairchild Aero Compass from which it was copied, provided a twin-loop antenna rotated
by a motor.”

In the mid-1920s Robert Watson-Watt, inventor of radar, conducted DF research at
Ditton Park. Co-researcher Edward Appleton rediscovered the Heavyside propagation
layer 300 km above the earth’s atmosphere, which Watson-Watt dubbed the “ionosphere”.?
By 1937 the U.S. Navy was using the ionosphere for long-range High Frequency Direction
Finding (HFDF, pronounced “Huff-Duff” by old-timers) and in 1941 established both the
Atlantic and Mid-Pacific Strategic Direction-Finder Nets, giving Allies the worldwide
capability to track German submarines.’ In 1943 the Germans improved HFDF with the
Waullenweber circularly disposed antenna array (CDAA). After the war, it was copied by
the Russians (naming their version “Krug”) and by the U.S. (whose operators called it the
“Elephant Cage” for its size).

The LORAN system was also an outcome of World WarII. Developed at the Massachusetts
Institute of Technology, the system used a set of continuous wave beacons that could be
phase differenced for hyperbolic contours of constant phase. LORAN-C replaced the origi-
nal LORAN in the 1950s using pulsed signals, resulting in 0.5-km accuracy.

The mathematics for using Doppler direction finding were first developed by the
Russian Kotelnikov,'? but it was the U.S. who launched the first operational satellite sys-
tem in 1960. The system was called “Transit” and it used a cluster of six low earth orbit
(LEO) satellites to provide precise 150/400-MHz reference transmissions.'' In 1967 the
Soviet Union launched Tsyklon, a similar Doppler navigation system.'? Today the U.S.
NAVSTAR GPS and its Russian counterpart, GLONASS, provide precise time, position,
and velocity determination worldwide.

Using the same Doppler method as for navigation, Lehan and Brown received U.S.
Patent 3063048 for a satellite search and rescue location system.! In 1977 the COSPAS-
SARSAT satellite search and rescue system was realized as a joint U.S.-Soviet effort that
now includes over 35 countries from Algeria to Vietnam.'*

Since 1980 satellite and terrestrial DF systems have gone through a digital revolution,
replacing analog DF processing with digital algorithms such as Bartlett correlation and
Schmidt’s now famous Multiple Signal Classification (MUSIC) algorithm. '3

Section 47.2 examines DF systems and sources of error. Section 47.3 looks at specific
antenna array systems, while Section 47.4 surveys digital DF algorithms. Section 47.5 explains
two techniques for combining LOBs into geolocations, and because of the parallel in approach,
Section 47.5 presents a basic Time Difference of Arrival (TDOA) geolocation algorithm.

472 DIRECTION FINDING SYSTEM DESIGN

DF systems with antenna arrays determine a signal’s LOB by using antenna voltage mea-
surements. While signal direction may be sufficient for many applications, a network of
DF systems can combine LOBs to form signal “fixes” or geolocations. Systems that mea-
sure time and frequency without antenna arrays may work in a Time Difference of Arrival
(TDOA) network to determine signal geolocation directly without LOBs.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2007 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



Direction Finding Antennas and Systems

47-4 CHAPTER FORTY-SEVEN

System Components

At its core, a DF system requires an antenna array, a receiver to amplify and filter antenna
radio frequency (RF) voltages, some means to process the antenna array voltages into a signal
angle of arrival (AOA), and an operator display (see Figure 47-1, solid boxes). Modern
DF systems now include automated signal detection, classification, digital processing, and
remote display (see Figure 47-1, dotted boxes). In all, modern DF systems are comprised
of the following elements (numbers correspond to those in Figure 47-1):

1. Anantenna or antenna array to collect signal energy from an emitted signal. Arrays can
span continents, be compact in a handheld wireless device, or be virtual extensions of
an existing array, exploiting techniques such as ESPRIT.!®

2. An RF distribution system to provide interference filtering, antenna element combining,
antenna element selection or switching, and distribution of RF output to the rest of the
DF system. An important attribute of the RF distribution system is to allow calibration
signals to be switched or multiplexed with the RF input.

3. A calibration system that provides known noise characteristics or test signal amplitude
and phase to allow measurement of filter, cable, and receiver effects on system estimates
of time, amplitude, and phase.

4. Areceiving system to measure the response of the antenna system. RF radio waves are
transformed into electron currents. Historic systems used analog measurements and
processes to determine DF. Modern systems use analog to digital (A/D) converters to
represent signal measurements in digital form.

5. Atime and frequency reference system. Modern systems that digitize voltages and use
both amplitude and phase information need all receivers and A/D converters synchro-
nized.

6. A DF processor to extract radio determination information such as signal LOB and
elevation angle. DF processors may estimate geolocation from multiple signals (e.g.,
navigation satellites), from coordinated DF systems (e.g. a worldwide HFDF network),
or from a single DF system using running LOBs.

7. The DF processor may need extensive antenna array manifold calibration data on the
response of the array at different signal angles and different frequencies. Some DF
processors, such as the Watson-Watt DF system, use a predetermined mathematical
formulation of the signal response. Correlation and eigen decomposition systems process
the signal covariance matrix.

8. A signal detection and qualification processor. It is important for the DF processor
to provide valid measurement output on signal energy. Further, some systems may
qualify the energy as a “signal of interest” before performing DF.

9. In modern DF systems, there is usually a function of signal parameter collection,
including time, frequency, angle of arrival, signal strength, etc.

10. If the DF system is on a mobile platform, platform position, velocity, time (PVT),
attitude, and heading reference system (AHRS) information is required. This allows
transformation of platform measured AOA to earth fixed LOB.

11. Network infrastructure allows control and display to be distributed worldwide to a
multitude of users.

12. What was once a simple cockpit indicator has evolved into remote displays of LOBs,
emitter location estimates, and confidence error ellipses on a geographical information
system (GIS) used by one or many operators.
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FIGURE 47-1 Traditional (solid boxes) and modern (dotted boxes) DF system design

The use of real-time signal-processing techniques now makes it possible to use phase and
amplitude responses, employ antennas of any polarization, and to dynamically calibrate the
receiver system for accurate measurements. Now the Internet makes it possible for remote
command and control and worldwide data distribution.

System Accuracy and Sources of Error

Direction finding and geolocation system performance are measured primarily in terms
of accuracy, timeliness, and throughput. DF accuracy is usually specified in degrees root
mean squared (rms), while TDOA systems use rms time. Geolocation accuracy for both
is described in terms of a confidence containment ellipse and occasionally in terms of
Geometric Dilution of Precision (GDOP). Emitter to receiving site geometry is important
and can greatly influence geolocation accuracy. The best geolocation accuracy is obtained
when the emitter is in the center of an equilateral triangle of sensor sites.

For DF AOA systems, as a rule of thumb, the array DF accuracy is inversely propor-
tional to the array aperture size. The upper frequency limit of the array is set by the Nyquist
spacing of array elements. Ambiguous AOA occurs if the spacing exceeds c/2f where ¢
is the speed of light and f is the highest frequency of operation. DF accuracy degrades
proportional to 1/f (see Figure 47-2), and there is no distinct bound for lowest frequency
of operation. Most common wideband antenna arrays span a frequency range of 1:5 up to
1:8. For example, the VHF/UHF range can be broken into arrays that span 100-500 MHz
and 500-3000 MHz.

An array can be made “sparse” when antenna elements are left out of a periodic
structure. For example, a simple uniform linear array can be altered to minimal redun-
dancy'” by leaving certain elements out. Additional elements can be added to an array
to provide a larger eigen processing space that gives interference cancellation capa-
bility, immunity to fading, and increased hearability, especially in the presence of
co-channel signals.

Other key parameters influencing DF accuracy include signal-to-noise ratio (SNR)
resulting from a combination of emitter power, propagation distance and path mode (e.g.
HF ground wave, ordinary and extraordinary skywave paths, and ionospheric tilting),
atmospheric propagation (ducting, especially at VHF and UHF frequencies), atmospheric
noise (e.g. lightning in HF), manmade noise (e.g. power line noise, automobile, broadcast
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FIGURE 47-2 DF accuracy vs. frequency for VHF array
100-500 MHz

transmitters, etc.), and system internals (antenna gain, cable loss, receiver noise figure,
and signal integration time). All of these effects can degrade and possibly corrupt DF
results.

Antenna arrays and the systems behind them are usually calibrated and characterized
under high SNR conditions, and whenever possible under threshold or minimum SNR
conditions. The high SNR conditions establish instrumentation error, while threshold SNR
testing more closely predicts operational performance. DF rms error and the Cramer-Rao
bound is discussed at the end of Section 47.4.

For TDOA systems, Stein'® shows that the rms error in measurement from cross cor-
relating two signal samples is based on the Cramer-Rao bound

3 47-1)

Omoa =" -
”Bs V Brch/}/SNR

where B, is the signal bandwidth, B, , is the receiving system bandwidth, T'is correlation time,
and Yy is the input correlation SNR. ¥\ is derived from the sensor site pair contributing to
the correlation

[ 1 1 1
-1 472
) [SNRl TSNR, T SNR, ~SNR2] “47-2)

When the site pair signals are well above the noise floor, the effective Yy is just the
average of the two intercepts and the cross term 1/SNR ;SNR, can be ignored. Under low
SNR conditions, all terms must be considered, and under very low SNR conditions, the
cross term of Eq. 47-2 dominates. If one of the site pairs has a strong signal intercept, the
correlation process can “pull out” the signal from the second site even when the signal is
buried in noise (see Table 47-1)."°
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TABLE 47-1 SNR Input, Correlation Gain, and TDOA Measurement Error

Sensor 1 Sensor 2 Effective Input ~ Time-Bandwidth Ideal ~ Correlator TDOA

SNR SNR SNR to Correlator Correlation Gain Peak SNR error
(dB) (dB) (dB) (dB) (dB) (ns)
20 20 20.0 37.0 57.0 16
20 12 14.3 37.0 51.3 30
20 4 6.9 37.0 43.9 71
20 0 2.9 37.0 39.9 111
20 —4 -1.0 37.0 359 176

System Calibration and Characterization

A core set of DF processing algorithms relies on the existence of a well-defined array
manifold. The array manifold describes the antenna voltage response for an arbitrary
N-element array from a set of M signal azimuth angles 6. This can be written in a matrix as

a,(6,) a,6) --- a/(8,)
a@)=| @) @@ - aby) (47-3)

ay(6,) ay(@) - ay6,)

Actual array manifolds are composed of more terms than the idealized response to
azimuth described in Eq. 47-3. Array manifolds are taken at discrete steps of azimuth over
many frequencies (typically at steps ~5 percent of the frequency) and may also include the
dimensions of signal elevation and polarization angle. When raw manifold data is mea-
sured on a range, the result must be smoothed and interpolated to produce a manifold
with uniform azimuth steps. Metadata may be included with the manifold to indicate what
frequency, elevation, polarization, or other parameters are used for the manifold creation.

The accuracy of the array manifold typically dominates the system error budget and
establishes DF performance. The design of the array can mitigate manifold errors through
careful selection of antenna element position and number of elements. Both of these choices
are almost always constrained by the platform or site physical boundaries and obstacles,
and by the number of processing resources available.

For fixed-site HF antenna arrays, the electrical properties of the ground plane contrib-
ute significantly to low angle signal response, particularly the signal magnitude. For this
reason, phase-only solutions should be considered. Site errors can be caused by array element
interaction with adjacent antennas and nearby structures (mutual coupling, multipath, and
blockage), and terrain irregularity (ground plane discontinuities). More information on site
errors can be found in Gething.?

For transportable or mobile systems, the arrays may need preliminary Numerical
Electromagnetics Code (NEC) modeling for antenna position selection. Many times there
is a difference between NEC modeling and actual field measurements (see Figure 47-3).

As expected, accurate measurements are typically difficult to obtain near resonant
frequencies when the array antennas electrically couple with other antennas or structures.
There is an unwritten law of DF that frequency ranges which are difficult to calibrate tend

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2007 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



Direction Finding Antennas and Systems

47-8 CHAPTER FORTY-SEVEN

Fun 1P hase Cures for 137 MHzZ Fun 1 Gain Curves for 137 MHz

gain

Pras= (deqg)
dB Gan

@ 2qred
8 31 hiue
o 4lam

] 50 10 1 200 25 0 39
mimuh (deg)

FIGURE 47-3 (a) VHF array phase and (b) gain comparison between NEC and measurement

to match the ranges where the greatest manifold accuracy is needed. Range calibration
planning is required to ensure that all frequencies, azimuth and elevation angles, and signal
polarizations are adequately covered.

The process of array manifold generation is performed using “collect” and “verify”
functions. For the “collect,” test emissions are generated at the frequencies and polarizations
of interest and the antenna array is rotated and/or tilted for the range of azimuths and
elevations of interest. This may be done at a test range where the antenna array is tilted
and rotated, or done on a ship or aircraft moving in a circle, arc, or other pattern at a
distance from the test emitter. DF array voltages are recorded in approximately equal steps
(e.g. every 1° in azimuth and at FCC allowable frequencies), smoothed, and interpolated
to the final array manifold.

For the “verify,” the test emitter repeats a subset of the “collect” frequencies and
polarizations. Additional frequencies are also included. The DF system receives and
processes these emissions using the prepared “collect” array manifolds and computes the
LOB rms error to the test emitter. Figure 47-4a illustrates LOB error magnitude versus both
azimuth (y-axis degrees) and frequency (x-axis MHz). Figure 47-4b plots aggregate rms error
(y-axis degrees) across the azimuth range versus frequency (x-axis MHz). The LOB accuracies
expected from the system and array manifold are determined and verified in this fashion.

Built-in system features that facilitate testing of individual antenna elements, cabling
loss, time delay and phase error, and overall system processing are vital to long-term AOA
direction finding and TDOA geolocation effectiveness. Without such features, degradations
in antenna dielectric or temperature changes in electrical properties go uncalibrated. Since
DF systems often coexist with other electronic equipment, antenna element responses may
change when nearby equipment and structures change. Degradations are manifested as a
lack of DF productivity or increase in wild LOB estimates. Antenna designs need to include
the ability to inject, couple, and radiate calibration signals without impacting voltage stand-
ing wave ratio (VSWR) and reliability.

473 DIRECTION FINDING SYSTEM EXAMPLES

This section examines the radio DF systems of the classic Wullenweber CDAA, the popular
amateur pseudo-Doppler DF system, the historic Watson-Watt DF system, variations of the
N-channel DF system, and Butler DF using antenna phase combining.
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FIGURE 47-4 (a) Azimuth error vs. azimuth and frequency and (b) mean azimuth error vs.
frequency

CDAA Goniometer Direction Finding System

During the 1950s the University of Illinois improved the HFDF Wullenweber CDAA for
the U.S. Navy. Aring of 120 monopole antennas was cabled to a central operations building
for HF analog beam combining. In the building, matched cables from the antennas were
brought together at a circular stator. A spinning rotor, called a goniometer, capacitively
coupled to 36 contiguous elements of the stator at any moment in time provided both
summed and differenced outputs. Thus, the goniometer acted both as a commutator sequen-
tially switching between antenna elements and as a beamformer.

The goniometer delay lines (see Figure 47-5) were electrical lengths equal to the free-
space path of the signal to the antenna elements referenced to the center of the goniometer.

The HFDF operator could select either the sum or the difference output on a CRT display
with a synchronized rotating time base so that the response pattern of the antenna appeared as
a polar beam pattern centered on the direction of the emitter. When searching for an emitter, the
sum mode was used, but when the emitter had been identified, the difference mode was used so
that the sharp null response pattern displayed azimuth angle with maximum accuracy.

Pseudo-Doppler Direction Finding System

The pseudo-Doppler DF system is a phase-measurement system that uses commutation
and stems from the research of Earp and Godfrey in 1947.%! This DF system is sometimes
described in terms of a rotating antenna and the Doppler effect. However, the antennas do
not move and there is no change of frequency due to true Doppler (Af = vf/c). Rather, this is
a clever system that measures signal phase changes using commutated (switched) sequen-
tial elements located on the circumference of a circle.
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As each antenna element is sampled, the signal phase appears spatially shifted. The
pseudo-Doppler DF system (see Figure 47-6) relies on a very short sampling time from
each element. This is done by using a simple pin-diode set of switches that funnels each
antenna element sequentially into a common RF path. The spatially induced phase shifts
become manifest in the FM demodulator as slightly different audio tones. The audio is
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FIGURE 47-6 Pseudo-Doppler DF system using phase commutation
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integrated into different summing units, commutating them synchronously at the same
clocking speed that sampled the antenna elements. The integrated voltages are fitted with
a sine curve whose phase is directly proportional to signal azimuth 6.

Watson-Watt Direction Finding System

The Watson-Watt DF system is a simple, but continuous, amplitude comparison scheme using
two orthogonal Adcock beamforming arrays.?”> Each Adcock array is made of two dipole
elements that are phase-reversed to create a figure “8” beam pattern (see Figure 47-7). The
optimal array spacing is about A/8 with relatively short (0.1 A) dipole element lengths.

The Watson-Watt Adcock DF process (see Figure 47-8) uses two orthogonal Adcock
arrays nicknamed the “sine” and “cosine” receiver channels, where the angle of arrival 0 1is
estimated by taking the arctangent of the voltages from these two RF channels.?

Ccos

6 =90 —arctan ( Viin ) (47-4)

The Watson-Watt DF process has two fundamental problems: first, the correct quadrant
of the azimuth cannot be determined uniquely, and second, the arctangent approximation
deviates as the array diameter to signal wavelength (D/A) ratio changes. That is, Eq. 47-4
is only an approximation to the true relationship between the two antenna array voltages,
which is fully given as

. (mD .
V. V(E,~E,) sm(—l sm(G))
Vcos - V(EI _EB) - . (”D
sin

47-5)
Tcos(@))

The LOB error in using the Watson-Watt arctangent approximation is illustrated in
Figure 47-9.

—— D=0 1255—™ Adcock Azmuthal Pattern
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combining :
dinale ¢
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H « Coaxial Cable

FIGURE 47-7 Adcock antenna and azimuthal beam pattern
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Brueninger Direction Finding System

To correct the deficiencies of Watson-Watt DF, the Brueninger DF system makes a
number of improvements:

1. Asense (reference) antenna is used to distinguish signal phase that resolves LOB quadrant
ambiguities. The omni antenna may be a separate antenna or can be formed from the
sum of all four Adcock elements.
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2L Adcockarray made for Frequencies plotted from
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FIGURE 47-9 Watson-Watt DF error
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2. More than two antenna elements may be combined to create the sine and cosine beam
patterns (e.g. a symmetric set of 8 or 16 dipoles is common).

3. Explicit phase-amplitude correlation methods are used instead of taking the arctangent
of voltages (e.g. Bartlett correlation DF is common).

The Brueninger DF uses three RF input channels: omni, sine, and cosine channels.
Modern systems use A/D voltage conversion for digital RF processing, as shown in
Figure 47-10.

In this example the DF processor implements the Bartlett correlation algorithm exploiting
both the phase and amplitude of the voltages. The RF omni, sine, and cosine beam pattern
complex voltages (I + jQ, or “IQ” for short) are collected into an array manifold over 0°
to 360° in azimuth.

To determine the direction of a signal, the voltages v, v, and v, from the omni, sine, and
cosine RF channels are measured in K snapshots, forming a voltage matrix representing all
data. The voltage matrix is then used to form a time-integrated covariance matrix, R:

v,() v, - v (K] [V,
v={v(D) v(2) - v(K)[=|V (47-6)
v.) v.(2) - v.(K) v

o

where v, (k) indicates the kth snapshot of complex voltages from element n = omni, sine,
and cosine and v, is the time set of voltages with time indices suppressed.

The covariance matrix (Eq. 47-7) is the product of the voltage matrix v and its Hermitian
transpose v and is normalized by 1/K samples:

ST 99T voT
1 1 VOVO VOVS VOVC
szva =% CAMER AL A (47-7)
AR
c o c's c C
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FIGURE 47-10 Brueninger omni, sine, and cosine DF system

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2007 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



Direction Finding Antennas and Systems

47-14 CHAPTER FORTY-SEVEN

Bartlett correlation uses the covariance matrix R and the corresponding array manifold
a(0) (interpolated to signal frequency) to form a correlation coefficient C(8) for every
discrete 0 in the antenna manifold:

a(0)" Ra(0)

c®)= a(0)"a(0)

(47-8)

The coefficient C(0) can be normalized to values 0-1 by multiplying by 1/trace(R). Once
C(0) is formed, the Bartlett DF process looks for the maximum C(6 ) using standard peak
finding and interpolation techniques (see Figure 47-11a). In a simulation, all signal azimuth
angles can be examined to create a correlation surface (see Figure 47-11b). With a VHF four-
element Adcock array 40 cm in diameter, the bearing error at 150 MHz is about 2° rms.

Commutated Direction Finding Systems

As described earlier in this section, the CDAA and pseudo-Doppler DF systems use antenna
element commutation. The Brueninger DF system and other arbitrary DF arrays can also be
commutated. One antenna element (usually the “omni”) is selected as the reference element
to which all other antenna elements are sequentially compared. Although the array manifold
remains the same, the covariance matrix becomes sparse. For example, if antenna element #1
is the reference element, the covariance matrix for an N-element array becomes

91(’1T QJQE leg

1|y 0
R=%| . Lo (“47-9)

VWT0 0

The Bartlett Eq. 47-8 is modified to the commutated form
R7a(6
CcO) = —()_ (47-10)
[a®)" @)
YHF Brueninger Correlation Slice 150 MHz at 28 deg WHF Brueninger Correlation wiE rmor 150 MHz

Crad©) at 6=28°

«+— parabalic fit
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o
tn
Azimuth - deg

__________
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FIGURE 47-11 (a) Bartlett correlation with peak finding and (b) Bartlett correlation surface

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2007 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



Direction Finding Antennas and Systems

DIRECTION FINDING ANTENNAS AND SYSTEMS 47-15
“HF -Brueninger Comrelation Slice 150 MHz at 28 dey WHF -Brueninger Commutation wiError 150 MHz

4
oal /

0&r

increased
sidelobe

|

07

M
i}
=

06

5]
=1
=

I

150

Com Coefficient
Azimuth - deg

04t

03F

=l
=

02

01t

o f L L L L n L L ¥
50 1) a0 100 150 200 280 300 350 400 a0 100 1500 200 230 300 350

Azim uth - deg Azimuth - deg

FIGURE 47-12 VHF Brueninger commutated DF (a) correlation with signal at 28° and (b) correlation
surface

In spite of what appears to be a paucity of data, DF commutation using the Bartlett
algorithm performs nearly as well as the full N-channel solution provided that the total
number of voltage samples is the same. However, an N-element commutated array takes N
times longer to collect the same number of RF voltage samples. For example, the Brueninger
omni, sine, cosine DF system performing three-channel correlation (see Figure 47-11) can
be compared to two different commutation variations: a Brueninger commutated system
(see Figure 47-12) and a four-element array that is commutated directly without Adcock
element combining (see Figure 47-13). As in the previous section, the array example contains
four VHF dipoles on a 40-cm circle operating at 150 MHz. Notice that for Brueninger commu-
tation, there is an increase in spatial sidelobes that is not present in four-element sampling.

Why commutate? Because it reduces the amount of DF hardware by a factor of 2:N,
which for an 8- or 16-element array can be significant. Regardless of array size, the com-
mutating system only requires two channels of filters, tuners, and A/D converters. Similar
efficiencies are gained in digital signal processing. However, the commutation system pays
a penalty in time to collect the same number of data snapshots and may totally corrupt the
covariance matrix if either the signal transmission is shorter than the commutation cycle time
or two or more signals occur at the same frequency during the commutation cycle time.

WHF 4Element Corelation Slice 150 MHz at 28 deg WHF -4E lemert Correlation wE rmor 150 MHz
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FIGURE 47-13 VHF four-element commutated DF (a) correlation with signal at 28° and (b) correlation
surface
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FIGURE 47-14 (a) Fast Fourier transform and (b) Butler Matrix antenna combining

Butler Direction Finding System

When discussing antenna element combining, people often confuse the Brueninger and
Butler combiners. The Brueninger, even in its most complex form, only phase reverses
antenna elements by 180° before combining, and the result is always three outputs of an
omni, sine, and cosine phased beam pattern. Butler combining, most often implemented as
a “Butler Matrix” (see Figure 47-14b), is more akin to fast Fourier transform (FFT) and
uses combinations of 45°, 90°, and 180° phase shift components.

The FFT example above shows eight inputs and the corresponding eight outputs after
“bit reversal” that reorders the output. If the input is time-ordered data, the output is
frequency-ordered data with F(0) being the DC component. Butler antenna combining
follows the same “butterfly diagram.” Each node creates a sum and difference (A + B) and
(A —B) without exponential phase weighting. The phase weighting comes at discrete points
in the diagram, requiring 45° and 90° phase shifters. If the input is RF energy from eight
equally spaced antennas around a circle, the output is spatial phase shifted modes. Mode 0
has no spatial phase shifting with respect to signal azimuth and is exactly equivalent to an
omnidirectional beam combiner. Mode 1 and Mode 7 (referred to as Mode —1) have spatial
phase shifting proportional to signal azimuth. Similarly Mode 2 and 6 (Mode —2) have
spatial phase shifting proportional to twice the signal azimuth. Mode 3 has spatial phase
shifting proportional to three times the signal azimuth.

Figure 47-15a shows a Monte Carlo simulation of Mode 0 and Mode 1 while Figure 47-15b
shows the corresponding Butler DF response using the same notional VHF four-element array
used earlier in Section 47.3.
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FIGURE 47-15 (a) Butler Mode 0 and 1 and () resulting DF output
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The Butler system uses Mode O for signal acquisition and reference to which other
modes are phase compared. Mode 1 is typically used for coarse DF with the DF algorithm
switching to Mode 2 and even Mode 3 for higher resolution. The DF cascade is necessary
because Mode 2 and Mode 3 by themselves are double and triple valued over the full azimuth
range and need guidance to signal direction from the previous stage.

474 DIRECTION FINDING ALGORITHMS

Modern radio DF systems are dependent upon the direction finding algorithm. Section 47.3
introduced the Bartlett DF algorithm, but it is just one of a host of DF solutions. In this
section, we consider several classes of DF algorithms, which include correlation-based,
eigen-structured, root-finding, and maximum-likelihood algorithms. We then introduce the
Cramer-Rao bound (CRB) that specifies the lower bound for DF error due to additive
white Gaussian noise. We then compare various DF algorithms against the CRB. Lastly, we
consider the effects of correlated cochannel interference on DF performance.

Basic Correlation Algorithms

We have already introduced the Watson-Watt voltage comparison algorithm and Bartlett
correlation for Brueninger and commutated arrays. Here we present a comparison of
generic DF algorithms that can be applied to any arbitrary array geometry. Two matrices
define the environment that the DF algorithms operate in. The first is a, the N-element by
M-azimuth array manifold that specifies the complex response of each of the N elements
over the M azimuths in the field of regard. The second is the sampled signal voltage v,
which is an N X K matrix, where K is the number of signal samples:

a,(8)) a,0) - a(8,) vi(0) v - vi(K)

a2(.90) az('Ol) az(QM) v Vz.(()) vzl(l) vz(.K)

a(6) = 47-11)

aN(e()) aN(el) aN(eM) VN(O) VN(l) VN(K)

The covariance matrix remains defined as R = +vv*. Using these definitions, various
correlation DF algorithms have been created.?**

Bartlett (Normalized): C6)= (ﬁ)% (47-12)
Capon (Classic): CO)= % (47-13)
Capon (Smooth): CcO=1- % (47-14)
Maximum Entropy: G (0)= % (47-15)
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The performance of these algorithms will be given later in the chapter, in the section
“DF Algorithm Comparison.” For the Bartlett algorithm, we included the factor 1/trace(R)
to ensure C(0) varies between zero and one. The Capon algorithm is written in both its
classic form and in a smooth (inverted) form that ensures C(6 ) varies between zero and one and
allows easier peak interpolation when using discrete array manifold 6 steps. For the Maximum
Entropy algorithm, ¢, is the kth column vector of the inverse covariance matrix (R™).

Eigen Structured Algorithms

Many DF algorithms depend upon decomposing the covariance matrix into subspaces
that comprise the signal and noise. One of the first spectral estimation methods using
eigenvectors was developed in 1973 by V. F. Pisarenko,?® whose eigen method originally
focused on harmonic decomposition. The Min-Norm eigen approach was developed in
1983 by Kumaresan and Tufts.”” However, the most popular and versatile algorithm is
Schmidt’s 1986 MUSIC algorithm.'> The algorithms are

1

Pisarenko: Ck (0) = “0)7 (47—] 6)
a e,
(uTE Efy )2
Min-Norm: — Tk NTNTR 47-17)
C(6)= >
la(0)" E \Ellu,|
1
1ic)e C 9 = -
MUSIC (classic): ©) a0)" {ENEZ}a(G) (47-18)

MUSIC (smooth): gy =1— a"(O{EE[}a©) _a"O{EEI}a®) 479
- a(©a@6)  al0)a®)

The performance of these algorithms will also be given later in the chapter, in the
section “DF Algorithm Comparison.” For the Pisarenko algorithm, e, is one or more
eigenvectors associated with the smallest (noise) eigenvalues. The span of the eigenvectors
is of dimension N, the number of elements in the array. We normally expect only one signal
present for DF. Hence the signal eigenvector Eg is of dimension N x 1, and E, the matrix
of noise eigenvectors, is of dimension N X (N — 1). If D co-channel signals are present in
the voltage samples that make up the covariance matrix, Eg is an N X D subspace and E,
is an N X (N — D) subspace.

For the Min-Norm algorithm, u,, is the kth column of an N x N identity matrix. The
MUSIC algorithm is presented in its classical form in Eq. 47-18, which shows distinctive
sharp spectral peaks, and is presented in a smoothed form in Eq. 47-19, which has smoother
peaks and is easier to interpolate when using a discrete array manifold. Further, MUSIC is
written using either the noise or signal eigenvectors E, or Eg: choose the form that has the
smaller subspace for the lowest computational load.

Root DF Algorithms

Root DF algorithms are specialty DF algorithms applicable to only uniformly spaced linear
arrays with N elements, where the array manifold can be written using an index to specify
the array element of interest. The array manifold is then written as
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a(0,n) =exp (— jn % cos(O)) (47-20)

where n goes from —(N — 1)/2 to (N—1)/2 (odd-numbered element arrays), A is the signal
wavelength, and d is the spacing between elements. For a standard linear array, just at the
Nyquist limit, d = A/2. Then Eq. 47-20 reduces to

a(0,n) = exp(—jnr cos(6)) 47-21)

The array manifold can further be transformed into a vector of polynomial coefficients
z by using the representation

z=exp(jmcos(P)) giving a (z)=[1 z - M (47-22)

The most common DF approach is the Root MUSIC algorithm using noise subspace
eigenvectors. The correlation coefficient is written in terms of the eigenvector noise subspace
and the antenna manifold as

C(z)=a" G){ENEg}a(Z) (47-23)

The Root MUSIC algorithm computes the roots of C(z) and chooses the D roots, ii , that
lie inside a unit circle and are closest to the unit circle. The estimates of signal azimuth 6,
are found by the inverse relation between 0 and z for the i = 1...D roots, giving

6, = cos™ (@) (47-24)

From Eq. 47-24 it can be seen that Root MUSIC is not affected by the magnitude of Z; .
Thus we expect Root MUSIC to provide a better estimate of signal direction than the classical
MUSIC algorithm. The performance of these algorithms is given later in the chapter, in the
section “DF Algorithm Comparison.”

Since the Min-Norm algorithm also uses eigenvectors of the noise subspace, we expect

that there should be a Root Min-Norm algorithm that is a better estimator than Eq. 47-17.
While the development of both root MUSIC and Root Min-Norm is developed using a
uniformly spaced linear array, these algorithms are applicable to circular arrays as well.
The starting point for Root Min-Norm begins by defining a subspace vector d, of dimension
N x 1, that has the property of being orthogonal to the signal subspace. That is, given the
array manifold a(6,) at discrete 6, for i = 1...D signal directions, d has the property

a(6,)"d=0 (47-25)

The only set of vectors orthogonal to the signal vectors is the set of noise eigenvec-
tors with arbitrary magnitude. Thus the vector d is found as a weighted noise subspace
eigenvector

1 c*
d=W2EN Z(T)EN (47-26)
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2007 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



Direction Finding Antennas and Systems

47-20 CHAPTER FORTY-SEVEN

where c¢ is created from the first elements of each of the noise eigenvectors. As with
Root MUSIC, Root Min-Norm uses the transform z; = exp(jm cos(6,)) to represent the
i =1...D signal directions, allowing d to be written in polynomial form

D) =1+dz" +...+dyz™" (47-27)

The polynomial roots of D(z) provide the estimate of z;, which are selected within and
close to the unit circle. The inverse trigonometric transform of Eq. 47-24 converts Z; to the
Root Min-Norm estimate of signal arrival 6, for the i =1...D signals.

Maximum Likelihood DF Algorithms

The Maximum Likelihood (ML) estimator for the direction é,. , for i = 1...D signals, uses
a signal subspace that is as close as possible to the data subspace. This is formulated by
taking the maximum of

0, = argmglx {tr[P,R]} (47-28)

where R is the covariance matrix of the antenna array voltage data and P, is the
projection vector of the i = 1...D signals. P, is formed from the discrete N x D steering vectors
a(6) as

P, =a(6,)(a(6,)" a(6,) ' a(6,)" (47-29)

To search over the actual N-elements by the M-azimuth array manifold a(6), the
computational complexity of the ML algorithm is O(MP). Fortunately there is a way to
reduce computational complexity to find P,. The alternating projection maximization
(APM) algorithm, invented by Ziskind and Wax,? replaces the multidimensional maximi-
zation problem with a sequence of one-dimensional maximization problems, reducing the
computational complexity to O(MD).

The first step of the APM algorithm is an initialization step where 6! is estimated for
i=1..Dsignals. 6 is estimated by finding the angle 6 that maximizes Eq. 47-28 assum-
ing only one signal is present. 69 is found by assuming the first signal is at 60 and maxi-
mizing Eq. 47-28 for the second signal. The initialization is complete after repeating for
D signals.

Next, a projection of the manifold is created so that all of the manifold vectors are
orthogonal to all of the estimated steering vectors except the steering vector that is being
updated. Notationally, a(6,) represents the set of steering vectors for all of the estimated
signals except for signal i. APM creates a projected manifold b such that the vector at each
6, b(6,0,)is orthogonal to all of the vectors in a(6;). That is

b(0.6)a(6) =0 (47-30)
APM then determines 6%*! for iteration k + 1 and signal i as
A~ \H A
6/*! = argmax b(6.6}) Rb(6.6/) (47-31)
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The iterations are repeated until a criterion & is reached such that

o1 -0 <6 (47-32)

Power Method Algorithms for Eigen Structures

In this section we investigate ways of computing eigenvalues and eigenvectors efficiently.
Many computer languages provide a Linear Algebra extension from the LAPACK library to
compute eigenvectors and eigenvalues quickly.? For an N-element array, this requires O(N°?)
operations. For many applications, the LAPACK library meets all computational needs.
Although efficient, the standard LAPACK library has a highly complex logical structure
that cannot be implemented efficiently in pipeline hardware such as Field Programmable
Gate Arrays (FPGAs).

The Jacobi algorithm for computing eigenvalues and eigenvectors is not optimal in
terms of multiply, divide, and add operations, but it can be implemented using Coordinate
Rotation Digital Computer (CORDIC) processes™ that are suitable for pipeline hardware.
Ahmedsaid et al*' implemented the Jacobi algorithm using CORDIC blocks for an 8 x 8
covariance matrix. Computing the eigenvectors and values to 14-bit resolution required
16,681 slices and approximately 18,000 clock cycles.

Another pipeline approach is the “power method” by Stewart,’> which shows there is
an extremely simple way of estimating the dominant eigenvector, E,, from a covariance
matrix R:

E, = R‘R(m) = (LL¥ *LL(m)" (47-33)

where k is an integer > 0, R = LL”, R(m) is a column vector from R, and L(m) is a row
vector from L. In the case of a single signal with positive SNR, E, (an orthonormal vector)
can be used in place of E in the MUSIC DF of Eq. 47-19 and is quickly solved.

With a modest extension, the power method is able to determine a set of orthonormal
vectors and bases to replace the eigenvectors and values of multiple signals. Once E, has
been found, the L matrix is updated as

u=E"L, (47-34)

L.=L-Eu (47-35)

where E, is normalized such that EYE, =1. The corresponding basis value 4, is then esti-
mated as

A =ufu (47-36)

This procedure is repeated to estimate E, and A, from n = 1 to N array elements. In

all, the power method requires (2k + 4)N° — (2k + 1)N? — 2N multiply and accumulate

(MAC) operations. Up to N =8 and k =2 MAC operations can be supported using modern
FPGA:s.

Cramer-Rao DF Error Limit

Before evaluating each of the algorithms given in the preceding section, we would like a base-
line that gives the limit of DF performance for any given array and incoming co-channel set
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of signals. This can be obtained using the Cramer-Rao bound (CRB) where additive white
Gaussian noise (AWGN) corrupts the received signal voltages without bias. A thorough
treatment is given by Van Trees.?

We start with a model of the received signal V as an M X K matrix of voltages sampled
at each of M antenna array elements over K snapshots. (We use M vice N to avoid confusion
with the noise component N.) V is the result of D co-channel signals S received through the
array manifold a(0) plus direction independent noise N. S is a D X K matrix, while N is an
M x K diagonal matrix of AWGN noise samples with variance o2 .

V=2a(0)S+N 47-37)

Using this separation of signal and noise, the covariance matrix R, of measured voltages
can be written in terms of signal and noise as well:

R, =R, +R, =a(0)S,a(6)" +0I (47-38)

where Ry is the signal covariance matrix (equal to a(6)S,a(6 )"), R, is the noise
covariance matrix (equal to ¢2I), and S, is the D X D signal matrix (equal to SS™). The

w

resulting Cramer-Rao bound of variance becomes

-1
2 H
Cer(6)= g - {Re[[aaé? P agf)]o[s ,a0)"R1a(0)S fﬂ} (47-39)

where ° is the Hadamard product of two matrices using element by element multiplica-
tion and Py is the projection matrix of the array manifold onto the noise subspace and is
defined as

Py =I-a(0)(a(0)"a(6))"'a(0)” (47-40)

Clearly the CRB decreases with increasing data samples, K, and decreasing noise vari-
ance. At high SNR the CRB is proportional to 02, but at low SNR, the CRB is proportional
to 0. The transition from low to high SNR is determined by the signal correlation, spatial
separation of the signals, and the beamwidth of the array. As the signals become more
correlated, Rg becomes less diagonal, increasing the CRB. As the separation of the signal
steering vectors a(0)” a(0) becomes less diagonal, CRB likewise increases.

DF Algorithm Comparison

Monte Carlo simulations were run to compare DF performance in which two uncorrelated,
equal power signals impinge on a standard linear array with elements spaced A/2 apart. The
signals were positioned nearly broadside to the array at azimuths of 87.5° and 92.5°. The
array SNR (ASNR) was varied from —20 dB to +30 dB and resulting DF rms errors were
determined from 200 trials per algorithm. Each trial uses 100 data (voltage) snapshots with
additive white Gaussian noise.

If only one signal is present in the array manifold (per frequency channel, etc.), all
computational methods produce the same directional estimate, with Bartlett correlation
the simplest to implement. The Bartlett correlation algorithm can be used on many differ-
ent array geometries, can handle Brueninger element combining, and can be used in com-
mutating systems. But the Bartlett DF algorithm cannot resolve closely spaced co-channel
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FIGURE 47-16 (a) Basic DF and Eigen algorithm DF performance and (b) Eigen and Root algorithm DF
performance

signals. The Capon method provides much better signal resolution than Bartlett, but eigen
structure methods provide even more capability. The Min-Norm algorithm provides slightly
better performance than MUSIC at low ASNR, but with much more complexity (see
Figure 47-16a). For restricted array geometry, Root MUSIC and Root Min-Norm give
better DF performance than their general array counterparts MUSIC and Min-Norm.
Root MUSIC is slightly better than Root Min-Norm in accuracy and is considerably more
efficient to compute (see Figure 47-16b).

The power method creating orthogonal basis vectors and values can be used in the
MUSIC, Root MUSIC, Min-Norm, and Root Min-Norm algorithms just as the eigenvec-
tors and values are used. In a DF simulation consistent with the other comparisons in this
section, the eigen decomposition required double floating point values (64 bits) while the
power method used only 18-bit integer multipliers and 48-bit integer accumulators. The
power method thus provides significant computational load savings without loss of accuracy
(see Figure 47-17).
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FIGURE 47-17 DF performance of Eigen versus power
method implementations
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Estimating the Number of Co-Channel Signals

For an N-element array, eigen decomposition of the covariance matrix gives N eigenvalues
A and corresponding eigenvectors E. The eigen subspace is divided into Eg, a subspace of
1... D signal eigenvectors, and E,, a subspace of (N — D) noise vectors. These eigenvectors
and their eigenvalues are related to the original covariance matrix as

R=EAE] +E A EY (47-41)

The problem is to estimate the number of signals D when the noise eigenvalues A, can
be represented by a span of (N — D) noise terms containing AGWN,

Ay =diag[o? ... 02] (47-42)

An ad hoc ratio test can be established to compare the smallest eigenvalue with the (N —1)
remaining eigenvalues in a threshold test. An optimal approach uses the likelihood ratio
that challenges the hypothesis that the (N — D) smallest eigenvalues are equal against the
hypothesis that the (N — D — 1) smallest eigenvalues are equal. Van Trees* shows that for
a covariance matrix R, created from K snapshots and decomposed into N eigenvalues, the
likelihood of D signals, L(D), can be written as

1 N
b 2t
L(D)=K(N-D)lnq———=+— (47-43)

1

N N-D
[114)
i=D+1

The term in the brackets is the ratio of the arithmetic mean of the (N — D) smallest eigen-
values to the geometric mean of (N — D — 1) eigenvalues. If the (N — D) smallest eigenvalues
are equal (i.e., have the same noise variance 02 ) then the arithmetic and geometric means
are equal and L(D) = 0.

Two common tests use this likelihood ratio to determine the number of signals present:
the Akaike information-theoretic criterion (AIC)* and the minimum description length
(MDL) of Wax and Kailath.*® These tests add a penalty function based on the degrees of
freedom of the likelihood function. Akaike introduces AIC as

Dy = argmin{L (D) +[D2N = D)l} (47-44)

while the MDL test uses
Dy = argngn {L(D)+%[D(2N—D)+l]an} (47-45)

As with any eigen structure method, the power method of determining orthonormal
vectors and values may be substituted. For the antenna array and simulation parameters
defined in the preceding section, the AIC test (using eigen structures or orthonormal
vectors) has a better probability of signal detection at low ASNR than the MDL test.
Both AIC and MDL may underestimate the number of signals present. Above 8 dB, all
methods successfully estimate the presence of two signals (see Figure 47-18).
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FIGURE 47-18 Estimates of the number of signals present vs. array signal-
to-noise ratio (ASNR)

DF when Co-Channel Signals Are Correlated

All of the DF algorithms discussed so far have some ability to separate co-channel signals.
But none can separate perfectly correlated or coherent signals. They cannot separate the
signals because the signal covariance matrix, S, as defined in Eq. 47-38, has a rank of one
for coherent signals.

Unfortunately, multiple signal correlation generally occurs in a multipath situation. That
is, a single signal travels on multiple paths from the transmitter to the receiving antenna
array. If the signal arrives on two paths that are equal length, then the antenna array would
see two signals that are 100 percent correlated. As the path length difference increases, the
correlation ratio drops. An estimate of the correlation, p, is given

B- Apath ~
p=l-—p—ro (47-46)

where B is signal bandwidth, Apath is the path length difference, and c is the velocity of
light. For example, if the signal bandwidth is 25 kHz and the path length difference is 600
meters, then p=0.95.

A Monte Carlo simulation similar to that used previously in Section 47.4 was used
to evaluate MUSIC and Root MUSIC using two signals with 95 percent correlation (see
Figure 47-19). At low ASNR, both MUSIC and Root MUSIC are erroneous, randomly
determining the DF. Even a moderately strong ASNR of 10-12 dB still produces random
DF. Only when the SNR is greater than 15 dB does Root MUSIC begin to determine the
correct direction of both signals, while the classic MUSIC algorithm needs ASNR > 25 dB
to produce useful DF. Both Root MUSIC and classic MUSIC can resolve highly correlated,
closely spaced signals given sufficient ASNR.
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FIGURE 47-19 DF performance for two closely spaced signals that are
95 percent correlated

475 GEOLOCATION ALGORITHMS

In this section, we present three geolocation algorithms. The Stansfield algorithm is the
oldest and has been used successfully in both worldwide HFDF systems and line-of-sight
angle-of-arrival systems as well. The Wangsness algorithm uses LOBs drawn on a spherical
earth and likewise can be used globally or locally for geolocation solutions. A simple 2D
TDOA geolocation algorithm is also presented. These three approaches are compared using
confidence ellipse containment.

Stansfield AOA Geolocation Algorithm

The Stansfield algorithm®” was developed during World War II for AOA geolocation using
a flat (Cartesian) geometry, illustrated in Figure 47-20.

The LOB from a receiving site has a bearing angle J from north (y-axis). Using an
arbitrary coordinate system, the LOB is also described by d, the perpendicular distance to
the coordinate system origin; m is the LOB miss distance from point (p,, p).)T.

The miss distances from a set of K lines of bearing with common Cartesian origin
created by some number of DF sites is written in matrix form as

m=Ap+d (47-47)

where m is the miss vector, A is a transformation matrix, p is the position vector, and d is
the LOB origin offset parameter:

m, —cos(B,) sin(f3) d,
m= ”:’2 A= —Cof(ﬂz) Sin(:ﬁz) p= px:|,andd= d:2
my —cos(By) sin(By) ' dy
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FIGURE 47-20 Stansfield geolocation geometry

The goal is to find a position P that minimizes m’m = 2&m?, which can be done in
an iterative approach using the gradient form of Eq. 47-47, The 1terat1ve improvement in
position is

dp=inv(ATA)-(A"m) (47-48)

and ﬁnew = ﬁold + dp (47_49)

Inspection of the components of Eq. 47-48 reveals that the ATA and ATm matrices are
the classic unweighted least squares normal equations. These should be used on the first
iteration from an arbitrary starting point p,. Subsequent iterations should use a weighted
version of ATA and A’m that account for the LOB a priori DF variance o} iog and distance
r, from the ith bearing site to emitter. Using a covariance matrix R whose diagonal elements
contain the squared weights w? =1/(02,37) , Eq. 47-48 is modified to be

=inv(A"RA)-(A"Rm) (47-50)
The weighted normal equations are written as

i cos?(f3) 2 cos(ﬁ )sm(,B )

2 2

Ol o}
(ATRA) = -1 OLoB’i -1 LoB/; (47-51)
z cos(f3; )sm(ﬂ ) Z s1n2(ﬁ )
i=1 o-LOB” i1 O-LOBr
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TABLE 47-2  Ellipse Confidence Factor

Ellipse Confidence Factor Scaling Factor (jo)
68% 1
80% 1.79
90% 2.15
95% 2.45

& m, cos(f3)
and (Rm=| [T Tlort @2
i 2i

2
o1 OLosli

Convergence to P requires only three or four iterations from an arbitrary starting point,
making the Stansfield geolocation algorithm fairly efficient. It is customary to estimate a
confidence containment ellipse about the location P, which can be determined from the eigen-
values of the inv(ATRA) matrix. Letting the inverse matrix be noted as Q, the eigenvalues are
found by solving the determinate |AI — Q| = 0. Two eigenvalues result, designated A, (maxi-
mum) and A_ (minimum). The confidence ellipse is scaled by the number of LOBs, K, and by
a scaling factor, jo, which establishes the statistical confidence level (see Table 47-2).

The confidence ellipse is then described by the semi-major and semi-minor axes:

smaj= joh, % and smin = jo, }% (47-53)

The unambiguous ellipse orientation (see Table 47-3) requires testing of the terms of
the Q matrix.

A Monte Carlo simulation of LOBs from three bearing sites illustrates the Stansfield
algorithm. LOBs with 2° rms error were generated from three sites, producing a best esti-
mate position and 95 percent confidence containment ellipse (see Figure 47-21a). To evalu-
ate 300 trials, the confidence ellipse, normally centered on each estimated position, is shifted
to the true emitter location, and allows comparison of the theoretical 68%, 80%, and 95%
confidence ellipse containment with the trial estimated positions (see Figure 47-21b).

TABLE 47-3 Confidence Ellipse Orientation

Compare Diagonal Terms Orientation
1 term
Q1<=Qy, 90——atan2(—y )
2 X term
1 term
Q1>Q,, —atanz(y )
2 X term
where yerm=Q,,+Q,,

xterm=Q,; - Q,,

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2007 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



Direction Finding Antennas and Systems

DIRECTION FINDING ANTENNAS AND SYSTEMS 47-29

Stansield Geolocation Algorithm Stansield Geolocation Algorthm

‘Stansfield

3400 3LOB per site
2°L.OB rms error

4000

T T T 3500
Stansfield

3500 3 LOB per site
2°LOB rms error

3300

3000
3200
2500
300
2000
3000

1500

% 2818 m 2900 300 Trials
y. 2834 m

smaj: 417m
smin: 126 m 1 2700

arient: 53.7°

Horth-South (metsrs)
North-South (meters)

1000
2800

00

2600 95% 80% 63%

s

5 , , . . . . . . <00 . , . . . \ . . .
500 0 S00 1000 1500 2000 2500 3000 3500 4000 7500 2600 2700 2500 2800 3000 3100 3200 3300 3400 3500
Eastiwest (meters) Eastiwiest (meters)

FIGURE 47-21 (a) Stansfield LOBs, geolocation, and 95% confidence ellipse and (b) 300 trials with 68%,
80%, and 95% confidence ellipse centered on the true emitter

Wangsness AOA Geolocation Algorithm

In 1973 Dennis Wangsness proposed an elegant solution to geolocation on a spherical
earth.®® It has the advantage of being a fast, non-iterative eigenvector approach to produce
both geolocation and a confidence containment ellipse. Extending the spherical solution
onto a geoid allows the algorithm to be WGS-84 compliant.

Wangsness recognized that any LOB describes a great circle around the earth and is
anchored through the bearing site. These great circles are described by perpendicular
normal vectors, n, which collectively produce an eigenvector solution for best estimate of
position and error ellipse.

First, the LOB normal vectors are described in terms of the Earth Centered Earth Fixed
(ECEF) coordinate system and are collected into transformation matrix A for K LOBs:

nx, ny, ng ,
A=| ¢ 2 Cl=[myg o omp o g (47-54)

nXg Nnyg NZg

nx;

i

where n; =|ny;, | is the ith LOB normal vector in ECEF coordinates.
n;

Once the ATA matrix is formed, the Wangsness algorithm solves for the three eigenvalues
and associated eigenvectors using |AI — ATA| = 0. The normalized eigenvector associated
with the smallest eigenvalue is a unit vector that points toward the best estimate of emitter
position. This unit vector can be transformed into spherical latitude and longitude and
further transformed into geodetic latitude and longitude using a standard geoid such as
WGS-84.

Although the eigen solution is not iterative, once an approximate emitter position is
found, a weighted solution using the covariance error matrix R =diag(1/r?), where r,
is the arc distance between the ith-LOB bearing site and the estimated location. The ATA
matrix now becomes the weighted matrix A’RA.
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The three eigenvalues of |AI — ATRA| = 0 are sorted smallest to largest (4, A,, and A;)
to provide the confidence ellipse equations:
%

0 0
sma]— "] 1 and s min=——— "J

2 VK

where K is the number of LOBs, jo is the ellipse scaling factor for confidence of contain-
ment, and a, is the earth’s radius to convert arc distances into meters. Ellipse orientation is
derived from the arc cosine of the dot product formed by the eigenvector associated with
A, (the eigenvalue associated with semi-major axis) and a unit vector at the estimated loca-
tion that points east.

A similar Monte Carlo simulation was run for the Wangsness algorithm with the same
LOB error and site geometry of the Stansfield simulation. LOB, best position, and confidence
ellipse were computed (see Figure 47-22a) and 300 trials were made (see Figure 47-22b).
Again, the confidence ellipse was shifted to the true emitter location, for comparison of the
theoretical 68%, 80%, and 95% confidence containment ellipses.

(47-55)

TDOA Geolocation Algorithm

When the LORAN hyperbolic location system was first developed by MIT in 1942, it was
computationally intensive and highly classified.?* Now TDOA geolocation can be done
with small radio tuners and inexpensive computer chips. The algorithm presented here is
consistent with the two-dimensional Stansfield approach, but can be easily extended to a
three-dimensional solution on a spherical earth or WGS-84 geoid.**4!

The time difference of a signal arriving at two sites s, and s, from an emitter at s, can
be written in terms of the two distances D, and D, between the sites and emitter, scaled by
the speed of light, c:

Di_Dk

= (47-56)

TDOA,, =

where D, is the distance between site s, and emitter at s,

Wiangsness Geolocation Algorthm Wangsness Geolocation Algorithm
4000 T T T T T T T T 3500 T T T T T T
Wangsness
=0 g i Wangsnes;
3 LOB per site 3 LOB per site
2°LOB rms error 3300 20 0B rms efrar

3000

3200 g )
2500 i b
00
2000
3000
1500
2900

North-Sauth (m eters)
North-Sauth (m eters)

x 2920 m
1000

y 2833 m il 2800
smaj: 306 m + g

s00 1 300 Trials
smin: 99 rm e
orient: 53.7°

8 2600 95% 80% 68%
500 . . . . . . . 2500 . . . . . . . . .
S00 0 500 1000 1500 2000 2500 3000 3500 4000 7500 2600 2700 2600 2900 3000 3100 3200 3300 3400 3500
East¥est neters) East¥Vest (meters)

FIGURE 47-22 (a) Wangsness LOBs, geolocation, and 95% confidence ellipse and (b) 300 trials with
68%, 80%, and 95% confidence ellipse centered on the true emitter
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1
D, =|s;—s,|= {0, = x,)* +(y, = y,*}2 (47-57)

i

The hyperbolic TDOA solution of location is written in an iterative, gradient form similar
to the Stansfield approach of Eqs. 47-48 and 47-49:

ds,=(ATA)-d(TDOA) (47-58)

and Spew =8, +ds, (47-59)

The matrix d(TDOA) is a K x 1 vector of K observed minus calculated TDOA values
from the i-k site pair, where the calculated TDOA,, and its derivative are based on the
current estimate of emitter position §,. The ATA matrix is a K X 2 transformation matrix
of partial derivatives of TDOA,, with respect to §,. The fundamental d(TDOA) vector and
A matrix are written as

TDOA ; (measured), — TDOA  (calculated),

A(TDOA) = TDOA , (measured), —:TDOA,.,( (calculated), (47-60)
TDOA; (measured), — TDOA; (calculated) .
[ [oTDOA, dx, JTDOA,, &,
ox, . oy, .
JdTDOA dr JdTDOA p
and A= o P, (47-61)

ox, ay,

o

{aTDOA,k 0 } {aTDOA,k & }
L K K

The partial differential of TDOA,, with respect to the current estimate of emitter posi-
tion is further expanded using the definitions of time delay from Eqs. 47-56 and 47-57:

dTDOA, 1(dD, D, (,=x)  (x,—x,)

T (W‘ ox, ) ( D, D, (47-62)

dTDOA, _1(9D, dD, 3, =) (3, =) )
and S, ?(ayo - E) C( D, D (4763

At least two different site pairs are required for geolocation convergence, and care must
be taken to avoid ambiguities, since, unlike LOB observations, the hyperbolic TDOA iso-
chrones have left-right symmetry about a line between the measuring i-k site pair.
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FIGURE 47-23 GDOP for TDOA geolocation from three sites. Lightest color
indicates lowest GDOP and area of best geolocation.

A useful concept in evaluating the geolocation geometry is a quantity called the
Geometric Dilution of Precision (GDOP), defined as

GDOP = trace(inv(ATA)) (47-64)

A low value of GDOP indicates good geometry for the geolocation solution, while a
high GDOP indicates poor geometry (see Figure 47-23).

A Monte Carlo simulation with a geometry similar to Stansfield and Wangsness was
run for TDOA geolocation (see Figure 47-24). Each TDOA has opg, = 50-ns rms error.

TOOA Geolocation Algorithm TDOA Geolacation Algorithm
4000 3500

4 TDOA from each site pair aonl 4 TDOA from each site pair
| 50ns rms error 50ns rms error
3000 -

3500

3300
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2500
00
2000
3000 |
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1500

® 2884 m 2a00

Y2813 m L
smaj 330 m 2800 +
smin: 31m 2700
arient57.2¢

1000

300 Trials

500+

2600

L L L . . 2800 . L . . L L . L L
1500 2000 2500 3000 3500 4000 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500
x meters = meters

FIGURE 47-24 (a) TDOA hyperbolic isochrones, geolocation, and 95% confidence ellipse and (b) 300
trials with 95% confidence ellipse centered on the true emitter
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Although the TDOA algorithm estimates position entirely in the time domain, the simulation
also drew hyperbolic isochrones for comparison with the LOB geolocation approach
(compare Figure 47-24a with Figures 47-21a and 47-22b). Four TDOA measures were
made from each site pair (shown as dotted lines connecting the sites). The calculation of
the confidence error ellipse closely parallels that of the Stansfield algorithm described by
Eq. 47-53 and Table 47-3. In Figure 47-24b, the confidence ellipse is shifted to the true
emitter location to examine the 95% containment of 300 geolocation trials. The TDOA
geolocation error is distributed very differently from the LOB geolocation error (compare
Figure 47-24b with Figures 47-21b and 47-22b).
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