

﻿﻿

Google Hacking for
Penetration Testers

Third Edition

Page left intentionally blank

Google Hacking for
Penetration Testers

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD
PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Syngress is an imprint of Elsevier

Johnny Long
Bill Gardner

Justin Brown

Third Edition

Acquiring Editor: Chris Katsaropoulos
Editorial Project Manager: Anna Valutkevich
Project Manager: Punithavathy Govindaradjane
Designer: Matthew Limbert

Syngress is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2016, 2008, 2005 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage
and retrieval system, without permission in writing from the publisher. Details on how to
seek permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by
the Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods, professional practices,
or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information, methods, compounds, or experiments described
herein. In using such information or methods they should be mindful of their own safety
and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or
editors, assume any liability for any injury and/or damage to persons or property as a matter
of products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions, or ideas contained in the material herein.

ISBN: 978-0-12-802964-0

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

For information on all Syngress publications
visit our website at http://store.elsevier.com/Syngress

http://www.elsevier.com/permissions
http://store.elsevier.com/

v

﻿﻿

Contents

CHAPTER 1	 Google Search Basics..1
	 Introduction... 1
	 Exploring Google’s web-based interface.. 1
	 Summary..17
	 Fast track solutions..18

CHAPTER 2	 Advanced Operators..21
	 Introduction..21
	 Operator syntax..22
	 Troubleshooting your syntax..23
	 Introducing Google’s advanced operators.......................................24
	 “Intitle” and “allintitle”: search within the title of a page.................24
	 Allintext: locate a string within the text of a page............................27
	 Inurl and allinurl: finding text in a URL...27
	 Site: narrow search to specific sites..29
	 Filetype: search for files of a specific type.......................................30
	 Link: search for links to a page..32
	 Inanchor: locate text within link text...35
	 Cache: show the cached version of a page.......................................36
	 Numrange: search for a number..36
	� Daterange: search for pages published within a certain

date range...36
	 Info: show Google’s summary information......................................37
	 Related: show related sites..38
	 Stocks: search for stock information...38
	 Define: show the definition of a term...39
	 Colliding operators and bad search-fu..40
	 Summary..42
	 Fast track solutions..43
	 Links to sites..45

Contentsvi

CHAPTER 3	 Google Hacking Basics..47
	 Introduction..47
	 Anonymity with caches...48
	 Directory listings..51
	 Locating directory listings..52
	 Finding specific directories..52
	 Finding specific files...53
	 Server versioning...53
	 Going out on a limb: traversal techniques.......................................55
	 Summary..58
	 Fast track solutions..59

CHAPTER 4	 Document Grinding and Database Digging..........................61
	 Introduction..61
	 Configuration files..61
	 Locating files..65
	 Log files..66
	 Office documents..67
	 Database digging..67
	 Login portals..68
	 Support files...68
	 Error messages..69
	 Database dumps...70
	 Actual database files..71
	 Automated grinding..71
	 Summary..76
	 Fast track solutions..76

CHAPTER 5	 Google’s Part in an Information Collection Framework.......79
	 Introduction..79
	 The principles of automating searches..80
	 The original search term..82
	 Expanding search terms..82
	 Using “special” operators..87
	 Getting the data from the source...88
	 Scraping it yourself: requesting and receiving responses..............88
	 Scraping it yourself: the butcher shop...94
	 Using other search engines...102
	 Parsing the data...102
	 Domains and subdomains..107
	 Telephone numbers..108
	 Postprocessing...109

Contents vii

	 Collecting search terms...113
	 Summary..118

CHAPTER 6	 Locating Exploits and Finding Targets................................119
	 Introduction..119
	 Locating exploit code..119
	 Locating exploits via common code strings...................................121
	 Locating vulnerable targets...122
	 Locating targets via source code...122
	 Summary..122

CHAPTER 7	 Ten Simple Security Searches That Work...........................125
	 Introduction..125
	 Site..125
	 Intitle:index.of...126
	 Error | Warning...126
	 Login | Logon..128
	 Username | Userid | Employee.ID \ “Your username is”...............129
	 Password | Passcode | “Your password is”....................................129
	 Admin | Administrator..130
	 –Ext:html –ext:htm –ext:shtml –ext:asp –ext:php.........................132
	 Inurl:temp | inurl:tmp | inurl:backup | Inurl.bak...........................134
	 Intranet | Help.desk...134
	 Summary..136

CHAPTER 8	� Tracking Down Web Servers, Login Portals,
and Network Hardware...137

	 Introduction..137
	 Locating and profiling web servers..138
	 Locating login portals...149
	 Using and locating various web utilities..151
	 Targeting web-enabled network devices.......................................156
	 Locating network reports...156
	 Locating network hardware...157
	 Summary..158

CHAPTER 9	 Usernames, Passwords, and Secret Stuff, Oh My!.............161
	 Introduction..161
	 Searching for usernames...162
	 Searching for passwords..163
	� Searching for credit card numbers, social security

numbers, and more..165
	 Social security numbers..167

Contentsviii

	 Personal financial data..167
	 Searching for other juicy info...167
	 Summary..168

CHAPTER 10	 Hacking Google Services...171
	 Calendar...171
	 Signaling alerts..172
	 Google co-op...173
	 Google’s custom search engine...174

CHAPTER 11	 Hacking Google Showcase..175
	 Introduction..175
	 Geek stuff...176
	 Open network devices..179
	 Open applications...186
	 Cameras...191
	 Telco gear...198
	 Power..203
	 Sensitive info..206
	 Summary..207

CHAPTER 12	 Protecting Yourself from Google Hackers..........................209
	 Introduction...209
	 A good solid security policy...209
	 Web server safeguards...210
	 Software default settings and programs.......................................214
	 Hacking your own site..214
	 Wikto...215
	 Advance dork..216
	 Getting help from Google...216
	 Summary..217
	 Fast track solutions..217
	 Links to sites..218

SUBJECT INDEX...219

1

﻿﻿

Google Search Basics

CHAPTER 1

INTRODUCTION
Google’s Web interface is unmistakable. It is clean and simple. Its “look and
feel” is copyright-protected for good reason. What most people fail to realize
is that the interface is also extremely powerful. Throughout this book, we will
see how you can use Google to uncover truly amazing things. However, as with
most things in life, before you can run, you must learn to walk.

This chapter takes a look at the basics of Google searching. We begin by ex-
ploring the powerful Web-based interface that has made Google a household
word. Even the most advanced Google users still rely on the Web-based inter-
face for the majority of their day-to-day queries. Once we understand how to
navigate and interpret the results from the various interfaces, we will explore
basic search techniques.

Understanding basic search techniques will help us build a firm foundation
on which to base more advanced queries. You will learn how to properly use
the Boolean operators (AND, NOT, and OR), as well as explore the power and
flexibility of grouping searches. You will also learn Google’s unique implemen-
tation of several different wildcard characters. Finally, you will learn the syntax
of Google’s Uniform Resource Locator (URL) structure.

Learning the ins and outs of the Google URL structure will give you access to
greater speed and flexibility when submitting a series of related Google search-
es. We will see that the Google URL structure provides excellent “shorthand”
for exchanging interesting searches with friends and colleagues.

EXPLORING GOOGLE’S WEB-BASED INTERFACE
Google’s Web Search Page
The main Google Web page, shown in Figure 1.1, can be found at www.google.
com. The interface is known for its clean lines, pleasingly uncluttered presenta-
tion and user-friendly layout.

http://www.google.com/
http://www.google.com/

CHAPTER 1:   Google Search Basics2

Although the interface might seem relatively featureless at first glance, we
will see that many different search functions can be performed right from
the first page.

As shown in Figure 1.1, there’s only one place to type. This is the search field.
In order to ask Google a question or query, you simply type what you’re look-
ing for, then either press Enter (if your browser supports it), or click the Google
Search button to be taken to the results page for your query.

Google Web Results Page
After Google processes a search query, it displays a results page. This page lists
the results of your search and provides links to the Web pages that contain your
search text. The top part of the search result page mimics the main Web search
page. Notice the Images, Video, News, Maps, and Gmail links at the top of
the page. By clicking these links from a search page, you automatically resub-
mit your search as another type of search without having to retype your query.

The results line shows which results are displayed (1–10, in this case), the ap-
proximate total number of matches (here, over 8 million), the search query
itself (including links to dictionary lookups of individual words), and the
amount of time the query took to execute.

The speed of the query is often overlooked, but it is quite impressive. Even
large queries resulting in millions of hits are returned within a fraction of a sec-
ond. For each entry on the results page, Google lists the name of the site. This
is followed by a summary of the site, usually with the first few lines of content,
the URL of the page that matched, the size and date the page was last crawled, a

FIGURE 1.1  

Exploring Google’s Web-based Interface 3

cached link that shows the page as it appeared when Google last crawled it, and
a link to pages with similar content. If the result page is written in a language
other than the default language, and Google supports the translation from that
language to the default that is set in the preferences screen, a link titled “Trans-
late this page” will appear, allowing you to read an approximation of that page
in your own language (see Figure 1.2).

Google Groups
Due to the surge in popularity of Web-based discussion forums, blogs, mail-
ing lists, and instant messaging technologies, the oldest of public discussion
forums, USENET newsgroups, has become an overlooked form of online pub-
lic discussion. Thousands of users still post to USENET on a daily basis. (A
thorough discussion about what USENET encompasses can be found at www.
faqs.org/faqs/usenet/what-is/part1/.) DejaNews (www.deja.com) was once
considered the authoritative collection point for all past and present news-
group messages until Google acquired deja.com in February 2001 (see www.
google.com/press/pressrel/pressrelease48.html). This acquisition gave users
the ability to search the entire archive of USENET messages posted since 1995
via the simple and straightforward Google search interface. Google now refers
to USENET groups as Google Groups.

Today, Internet users around the globe turn to Google Groups for general dis-
cussion and problem solving. It is very common for Information Technology
(IT) practitioners to turn to Google’s Groups section for answers to all sorts of
technology-related issues. The old USENET community still thrives and flour-
ishes behind the sleek interface of the Google Groups search engine.

The Google Groups search can be accessed by clicking the Groups tab of
the main Google Web page, or by surfing to http://groups.google.com.
The search interface (shown in Figure 1.3) looks quite different from other
Google search pages, yet the search capabilities operate in much the same way.
The major difference between the Groups search page and the Web search page
lies in the newsgroup browsing links.

Google Image Search
The Google Image search feature allows you to search (at the time of this writ-
ing) over a billion graphic files that match your search criteria. Google will at-
tempt to locate your search terms in the image filename, the image caption, the

FIGURE 1.2  

http://www.faqs.org/faqs/usenet/what-is/part1/
http://www.faqs.org/faqs/usenet/what-is/part1/
http://www.deja.com/
http://www.google.com/press/pressrel/pressrelease48.html
http://www.google.com/press/pressrel/pressrelease48.html
http://groups.google.com/

CHAPTER 1:   Google Search Basics4

text surrounding the image, and/or in other undisclosed locations to return a
somewhat “de-duplicated” list of images that match your search criteria. The
Google Image search operates identically to the Web search with the exception
of a few of the advanced search terms, which we will discuss in the next chapter.

The page header looks familiar but contains a few additions unique to the
search results page. The Moderate SafeSearch link below the search field allows
you to enable or disable images that may be sexually explicit. The Showing
dropdown box (located in the Results line) allows you to narrow image results
by size. Below the header, each matching image is shown in a thumbnail view
with the original resolution and size, followed by the name of the site that
hosts the image.

Google Preferences
You can access the Preferences page by clicking the Preferences link from any
Google search page or by browsing to www.google.com/preferences. These op-
tions primarily pertain to language and locality settings. The Interface Lan-
guage option describes the language that Google will use when printing tips
and informational messages. In addition, this setting controls the language of
text printed on Google’s navigation items, such as buttons and links. Google
assumes that the language you select here is your native language and will
“speak” to you in this language whenever possible. Setting this option is not
the same as using the translation features of Google (discussed in the following

FIGURE 1.3  

http://www.google.com/preferences

Exploring Google’s Web-based Interface 5

section). Web pages written in French will still appear in French, regardless of
what you select here.

To get an idea of how Google’s Web pages would be altered by a change in the
interface language, take a look at Figure 1.4 to see Google’s main page ren-
dered in “hacker speak.” In addition to changing this setting on the preferences
screen, you can access all language specific Google interfaces directly from the
Language Tools screen at www.google.com/language_tools.

By default, Google will always try to locate Web pages written in any language.
Even though the main Google Web page is now rendered in “hacker speak,”
Google is still searching for Web pages written in any language. If you are in-
terested in locating Web pages that are written in a particular language, modify
the Search Language setting on the Google preferences page.

SafeSearch Filtering blocks explicit sexual content from appearing in Web
searches.

Although this is a welcome option from day-to-day Web searching, this option
should be disabled when you’re performing searches as part of a vulnerability
assessment. If sexually explicit content exists on a Web site whose primary con-
tent is not sexual in nature, the existence of this material may be of interest to
the site owner.

The Number of Results setting describes how many results are displayed on
each search result page. This option is highly subjective, based on your tastes
and Internet connection speed. However, you may quickly discover that the
default setting of 10 hits per page is simply not enough. If you’re on a relatively
fast connection, you should consider setting this to 100, the maximum num-
ber of results per page as shown in Figure 1.5.

FIGURE 1.4  

http://www.google.com/language_tools

CHAPTER 1:   Google Search Basics6

When checked, the Results Window setting opens search results in a new brows-
er window. This setting is subjective based on your personal tastes. Checking or
unchecking this option should have no ill effects unless your browser (or other
software) detects the new window as a pop-up advertisement and blocks it. If
you notice that your Google results pages are not displaying after you click the
Search button, you might want to uncheck this setting in your Google prefer-
ences. As noted at the bottom of this page, these changes won’t stick unless you
have enabled cookies in your browser.

Language Tools
The Language Tools screen, accessed from the main Google page, offers several
different utilities for locating and translating Web pages written in different
languages. If you rarely search for Web pages written in other languages, it can
become cumbersome to modify your preferences before performing this type
of search. The first portion of the Language Tools screen allows you to perform
a quick search for documents written in other languages, as well as documents
located in other countries. The Language Tools screen also includes a utility
that performs basic translation services.

The translation form allows you to paste a block of text from the clipboard
or supply a Web address to a page that Google will translate into a variety of
languages.

In addition to the translation options available from this screen, Google inte-
grates translation options into the search results page. The translation options
available from the search results page are based on the language options that
are set from the Preferences screen. In other words, if your interface language
is set to English, and a Web page listed in a search result is French, Google will

FIGURE 1.5  

Exploring Google’s Web-based Interface 7

give you the option to translate that page into language of your preference,
English. The list of available language translations is shown in Figure 1.6.

Building Google Queries
Google query building is a process. There’s really no such thing as an incorrect
search. It’s entirely possible to create an ineffective search, but with the explo-
sive growth of the Internet and increasing size of Google’s cache, a query that’s
inefficient today may just provide good results tomorrow – or next month, or
next year. The idea behind effective Google searching is to get a firm grasp on
the basic syntax and then to get a good grasp of effective narrowing techniques.

Learning the Google query syntax is the easy part. Learning to effectively nar-
row searches can take some time and requires a bit of practice. Eventually, it
will become second nature to find the required information from the plethora
of available Web sites.

The Golden Rules of Google Searching
Before we discuss Google searching, we should understand some of the basic
ground rules:

Google Queries are not Case Sensitive
Google doesn’t care if you type your query in lowercase letters (hackers), up-
percase (HACKERS), camel case (hAcKeR), or psycho-case (haCKeR). The word
is always regarded the same way. This is especially important when you’re
searching things such as source code listings, when the case of the term car-
ries a great deal of meaning for the programmer. The one notable exception
is the word “or.” When used as the Boolean operator, “or” must be written in
uppercase as OR.

FIGURE 1.6  

CHAPTER 1:   Google Search Basics8

Google Wildcards
Google’s concept of wildcards is not the same as a programmer’s concept of
wildcards. Most consider wildcards to be either a symbolic representation
of any single letter (UNIX users may think of the question mark), or any
series of letters represented by an asterisk. This type of technique is called
stemming.

Google’s wildcard, the asterisk (*), represents nothing more than a single word
in a search phrase. Using an asterisk at the beginning or end of a word will not
provide you any more hits than using the word by itself.

Google Reserves the Right to Ignore You
Google ignores certain common words, characters, and single digits in a search.
These are sometimes called stop words. According to Google’s basic search
document (www.google.com/help/basics.html), these words include where
and how. However, Google does seem to include those words in a search. For
example, a search for WHERE 1 = 1 returns less results than a search for 1 = 1.
This is an indication that the WHERE is being included in the search. A search
for where pig returns significantly less results than a simple search for pig,
again an indication that Google does in fact include words like how and where.
Sometimes Google will silently ignore these stop words. For example, a search
for HOW 1 = WHERE 4 returns the same number of results as a query for
1 = WHERE 4. This seems to indicate that the word HOW is irrelevant to the
search results, and that Google silently ignored the word. There are no obvi-
ous rules for the word exclusion, but sometimes when Google ignores a search
term, a notification will appear on the results page just below the query box.

32-Word Limit
Google limits searches up to 32 words, which is up from the previous limit of
10 words. This includes search terms as well as advanced operators, which we’ll
discuss in a moment. While this is sufficient for most users, there are ways to
get beyond that limit. One way is to replace some terms with the wildcard char-
acter (*). Google does not count the wildcard character as a search term, allow-
ing you to extend your searches quite a bit. Consider a query for the wording
of the beginning of the US Constitution: “We the people of the United States
in order to form a more perfect union establish justice.”

This search term is seventeen words long. If we replace some of the words with
the asterisk (the wildcard character) and submit it as “we * people * * united
states * order * form * more perfect * establish *” including the quote, Google
sees this as a nine-word query with eight uncounted wildcard characters. We
could extend our search even further by two more real words and just about
any number of wildcards.

http://www.google.com/help/basics.html

Exploring Google’s Web-based Interface 9

Basic Searching
Google searching is a process, the goal of which is to find information about a
topic. The process begins with a basic search, which is modified in a variety of
ways until only the pages of relevant information are returned. Google’s rank-
ing technology helps this process along by placing the highest-ranking pages
on the first results page. The details of this ranking system are complex and
somewhat speculative, but it suffices to say that for our purposes. Google rarely
gives us exactly what we need following a single search.

The simplest Google query consists of a single word or a combination of indi-
vidual words typed into the search interface. Some basic word searches could
include:

j	 hacker
j	 FBI hacker Mitnick
j	 mad hacker dpak

Slightly more complex than a word search is a phrase search. A phrase is a
group of words enclosed in double-quote marks. When Google encounters
a phrase, it searches for all words in that phrase in the exact order you pro-
vide them. Google does not exclude common words found in a phrase. Phrase
searches can include:

j	 “Google hacker”
j	 “adult humor”
j	 “Carolina gets pwnt”

Phrase and word searches can be combined and used with advanced operators,
as we will see in the next chapter.

Using Boolean Operators and Special Characters
More advanced than basic word searches, phrase searches are still a basic form
of a Google query. To perform advanced queries, it is necessary to understand
the Boolean operators AND, OR, and NOT. To properly segment the various
parts of an advanced Google query, we must also explore visual grouping tech-
niques that use the parenthesis characters. Finally, we will combine these tech-
niques with certain special characters that may serve as shorthand for certain
operators, wildcard characters, or placeholders.

If you have used any other Web search engines, you have probably been ex-
posed to Boolean operators. Boolean operators help specify the results that
are returned from a query. If you are already familiar with Boolean operators,
take a moment to skim this section to help you understand Google’s particular
implementation of these operators, since many search engines handle them

CHAPTER 1:   Google Search Basics10

in different ways. Improper use of these operators could drastically alter the
results that are returned.

The most commonly used Boolean operator is AND. This operator is used to
include multiple terms in a query. For example, a simple query like hacker
could be expanded with a Boolean operator by querying for hacker AND crack-
er. The latter query would include not only pages that talk about hackers, but
also sites that talk about hackers and the snacks they might eat. Some search
engines require the use of this operator, but Google does not. The term AND
is redundant to Google. By default, Google automatically searches for all the
terms you include in your query. In fact, Google will warn you when you have
included terms that are obviously redundant.

The plus symbol (+) forces the inclusion of the word that follows it. There
should be no space following the plus symbol. For example, if you were to
search for “and,” “justice,” “for,” and “all” as separate, distinct words, Google
would warn that several of the words are too common and are excluded from
the search. To force Google to search for those common words, preface them
with the plus sign. It’s okay to go overboard with the plus sign. It has no ill
effects if it is used excessively. To perform this search with the inclusion of all
words, consider a query such as +and justice for +all. In addition, the words
could be enclosed in double quotes. This generally will force Google to include
all the common words in the phrase. This query presented as a phrase would
be: “and justice for all.”

Another common Boolean operator is NOT. Functionally the opposite of the
AND operator, the NOT operator excludes a word from a search. The best way
to use this operator is to preface a search word with the minus sign (–). Be
sure to leave no space between the minus sign and the search term. Consider
a simple query, such as hacker. This query is very generic and will return hits
for all sorts of occupations like golfers, woodchoppers, serial killers, and those
with chronic bronchitis. With this type of query, you are most likely not inter-
ested in each and every form of the word hacker but rather a more specific ren-
dition of the term. To narrow the search, you could include more terms, which
Google would automatically AND together, or you could start narrowing the
search by using NOT to remove certain terms from your search. To remove
some of the more unsavory characters from your search, consider using queries
such as hacker –golf or hacker –phlegm. This would allow you to get closer to
the dastardly wood choppers you’re looking for. Or, you could try a Google
Video search for lumberjack song. Talk about twisted.

A less common and sometimes more confusing Boolean operator is OR. The
OR operator, represented by the pipe symbol (|) or simply the word OR in
uppercase letters, instructs Google to locate either one term or another in a
query. Although this seems fairly straightforward when considering a simple

Exploring Google’s Web-based Interface 11

query, such as “evil cybercriminal” or hacker, things can get terribly confusing
when you string together a bunch of ANDs, ORs and NOTs. To help alleviate
this confusion, don’t think of the query as anything more than a sentence read
from left to right. Forget all that order of operations stuff you learned in high
school algebra. For our purposes, an AND is weighed equally with an OR,
which is weighed as equally as an advanced operator. These factors may affect
the rank or order in which the search results appear on the page, but have no
bearing on how Google handles the search query.

Let’s take a look at a very complex example, the exact mechanics of which we
will discuss in Chapter 2: intext:password | passcode intext:username | userid |
user filetype:csv. This example uses advanced operators combined with the OR
Boolean to create a query that reads like a sentence written as a polite request.
The request reads, “Locate all pages that have either password or passcode in
the text of the document. From those pages, show me only the pages that con-
tain either the words username, userid, or user in the text of the document.
From those pages, only show me documents that are CSV files.” Google doesn’t
get confused by the fact that technically those OR symbols break up the query
into all sorts of possible interpretations. Google isn’t bothered by the fact that
from an algebraic standpoint, your query is syntactically wrong. For the pur-
poses of learning how to create queries, all we need to remember is that Google
reads our query from left to right.

Google’s cut-and-dried approach to combining Boolean operators is still very
confusing to the reader. Fortunately, Google is not offended (or affected by)
parenthesis. The previous query can also be submitted as intext:(password |
passcode) intext:(username | userid | user) filetype:csv. This query is infinitely
more readable for us humans, and it produces exactly the same results as
the more confusing query that lacked parentheses.

Search Reduction
To achieve the most relevant results, you’ll often need to narrow your search
by modifying the search query. Although Google tends to provide very relevant
results for most basic searches, we will begin looking at fairly complex searches
aimed at locating a very narrow subset of Web sites. The vast majority of this
book focuses on search reduction techniques and suggestions, but it’s impor-
tant that you at least understand the basics of search reduction.

As a simple example, we’ll take a look at GNU Zebra, free software that man-
ages Transmission Control Protocol (TCP)/Internet Protocol (IP)-based rout-
ing protocols. GNU Zebra uses a file called zebra.conf to store configuration
settings, including interface information and passwords. After downloading
the latest version of Zebra from the Web, we learn that the included zebra.conf.
sample file looks like this:

CHAPTER 1:   Google Search Basics12

To attempt to locate these files with Google, we might try a simple search
such as:

“! Interface’s description.” This is considered the base search. Base searches
should be as unique as possible in order to get as close to our desired results
as possible, remembering the old adage, “Garbage in, garbage out.” Starting
with a poor base search completely negates all the hard work you’ll put into
reduction. Our base search is unique not only because we have focused on

Exploring Google’s Web-based Interface 13

the words Interface’s and description, but we have also included the excla-
mation mark, the spaces, and the period following the phrase as part of our
search. This is the exact syntax that the configuration file itself uses, so this
seems like a very good place to start. However, Google takes some liberties
with this search query, making the results less than adequate, as shown in
Figure 1.7. looking for zebra.conf files. So let’s add this to our search to help
narrow the results. This makes our next query: “! Interface’s description.”
zebra.conf.

As Figure 1.8 shows, the results are slightly different but not necessarily better.

For starters, the SeattleWireless hit we had in our first search is missing. This
was a valid hit, but because the configuration file was not named zebra.conf, (it
was named ZebraConfig) our “improved” search doesn’t see it. This is a great
lesson to learn about search reduction: don’t reduce your way past valid results.

These sample files may clutter valid results, so we’ll add to our existing query,
reducing hits that contain this phrase. This makes our new query: “! Interface’s
description.” – “zebra.conf.sample”.

Now, it helps to step into the shoes of the software’s users for just a moment.
Software installations like this one often ship with a sample configuration file
to help guide the process of setting up a custom configuration. Most users
will simply edit this file, changing only the settings that need to be changed
for their environments, saving the file not as a .sample file but as a .conf file.

FIGURE 1.7  

CHAPTER 1:   Google Search Basics14

In this situation, the user could have a live configuration file with the term ze-
bra.conf.sample still in place. Reduction based on this term may remove valid
configuration files created in this manner.

There’s yet another reduction angle. Notice that our zebra.conf.sample file con-
tained the term hostname Router. This is most likely one of the settings that
a user will change; although we’re making an assumption that his machine is
not named Router. This is less a gamble than reducing based on zebra.conf.
sample, however. Adding the reduction term “hostname Router” to our query
brings our results number down and reduces our hits on potential sample files,
all without sacrificing potential live hits.

Although it’s certainly possible to keep reducing, often it’s enough to make just
a few minor reductions that can be validated by eye than to spend too much
time coming up with the perfect search reduction. Our final (that’s four quali
fiers for just one word!) query becomes: “! Interface’s description.” – “host-
name Router”. This is not the best query for locating these files, but it’s good
enough to give you an idea about how search reduction works. As we’ll see in
Chapter 2, advanced operators will get us even closer to that perfect query.

Working With Google URLs
Advanced Google users begin testing advanced queries right from the Web in-
terface’s search field, refining queries until they are just right. Every Google
query can be represented with a URL that points to the results page. Google’s
results pages are not static pages. They are dynamic and are created on the fly

FIGURE 1.8  

Exploring Google’s Web-based Interface 15

when you click the Search button or activate a URL that links to a results page.
Submitting a search through the Web interface takes you to a results page that
can be represented by a single URL. For example, consider the query ihack-
stuff. Once you enter this query, you are whisked away to a URL similar to the
following: www.google.com/search?q=ihackstuff. If you bookmark this URL
and return to it later, or simply enter the URL into your browser’s address bar,
Google will reprocess your search for ihackstuff and display the results.

This URL then becomes not only an active connection to a list of results, but it
also serves as a nice, compact sort of shorthand for a Google query. Any experi-
enced Google searcher can take a look at this URL and realize the search subject.
This URL can also be modified fairly easily. By changing the word ihackstuff to
iwritestuff, the Google query is changed to find the term iwritestuff. This simple
example illustrates the usefulness of the Google URL for advanced searching. A
quick modification of the URL can make changes happen fast!

URL Syntax
To fully understand the power of the URL, we need to understand the syntax.
The first part of the URL, www.google.com/search, is the location of Google’s
search script. I refer to this URL, as well as the question mark that follows it, as
the base or starting URL. Browsing to this URL presents you with a nice, blank
search page. The question mark after the word search indicates that parameters
are about to be passed into the search script. Parameters are options that in-
struct the search script to actually do something. Parameters are separated by
the ampersand (&) and consist of a variable followed by the equal sign (=),
followed by the value that the variable should be set to. The basic syntax will
look something like this: www.google.com/search?variable1=value&variable
2=value. This URL contains very simple characters. More complex URL’s will
contain special characters, which must be represented with hex code equiva-
lents. Let’s take a second to talk about hex encoding.

Special Characters
Hex encoding is definitely geek stuff, but sooner or later you may need to in-
clude a special character in your search URL. When that time comes, it’s best to
just let your browser help you out. Most modern browsers will adjust a typed
URL, replacing special characters and spaces with hex-encoded equivalents. If
your browser supports this behavior, your job of URL construction is that much
easier. Try this simple test: Type the following URL in your browser’s address
bar, making sure to use spaces between i, hack, and stuff: www.google.com/
search?q=“i hack stuff”. If your browser supports this autocorrecting feature,
after you press Enter in the address bar, the URL should be corrected to www.
google.com/search?q=”i%20hack%20stuff”, or something similar. Notice that
the spaces were changed to %20. The percent sign indicates that the next two

http://www.google.com/search?q=ihackstuff
http://www.google.com/search
http://www.google.com/search?variable1=value%26variable2=value
http://www.google.com/search?variable1=value%26variable2=value
http://www.google.com/search?q=“ihackstuff”
http://www.google.com/search?q=“ihackstuff”
http://www.google.com/search?q=''i%20hack%20stuff''
http://www.google.com/search?q=''i%20hack%20stuff''

CHAPTER 1:   Google Search Basics16

digits are the hexadecimal value of the space character, 20. Some browsers will
take the conversion one step further, changing the double-quotes to %22 as
well. If your browser refuses to convert those spaces, the query will not work
as expected. There may be a setting in your browser to modify this behavior. If
not, do yourself a favor and use a modern browser. Internet Explorer, Firefox,
Safari, Chrome, and Opera are all excellent choices.

Putting the Pieces Together
Google search URL construction is like putting together Legos. You start with a
URL, and you modify it as needed to achieve varying search results. Many times
your base URL will come from a search you submitted, via the Google Web
interface. If you need some added parameters, you can add them directly to the
base URL in any order. If you need to modify parameters in your search, you
can change the value of the parameter and resubmit your search. If you need to
remove a parameter, you can delete that entire parameter from the URL and re-
submit your search. This process is especially easy if you are modifying the URL
directly in your browser’s address bar. You simply make changes to the
URL and press Enter. The browser will automatically fetch the address and take
you to an updated search page. You could achieve similar results by poking
around Google’s advanced search page (www.google.com/advanced_search,
shown in Figure 1.9), and by setting various preferences, as discussed earlier.
Ultimately, most advanced users find it faster and easier to make quick search
adjustments directly through URL modification.

A Google search URL can contain many different parameters. Depending on
the options you selected and the search terms you provided, you will see some

FIGURE 1.9  

http://www.google.com/advanced_search

Summary 17

or all of the variables listed. These parameters can be added or modified as
needed to change your search criteria. Some parameters accept a language re-
strict (lr) code as a value. The lr value instructs Google to only return pages
written in a specific language. For example, lr = lang_ar only returns
pages written in Arabic. The hl variable changes the language of Google’s
messages and links. This is not the same as the lr variable, which restricts our
results to pages written in a specific language, nor is it like the translation ser-
vice, which translates a page from one language to another.

To understand the contrast between hl and lr, consider the food search resub-
mitted as an lr search, as shown in Figure 1.10. Notice that our URL is differ-
ent: There are now far fewer results. The search results are written in Danish,
Google added a Search Danish pages button, and Google’s messages and links
are written in English. Unlike the hl option, the lr option changes our search
results. We have asked Google to return only pages written in Danish.

The restrict variable is easily confused with the lr variable, since it restricts your
search to a particular language. However, restrict has nothing to do with lan-
guage. This variable gives you the ability to restrict your search results to one or
more countries, determined by the top-level domain name (.us, for example),
and/or by geographic location of the server’s IP address. If you think this seems
somewhat inexact, you’re right. Although inexact, this variable works amazingly
well. Consider a search for people, in which we restrict our results to JP (Japan),
as shown in Figure 1.11. Our URL has changed to include the restrict value but
notice that the second hit is from www.unu.edu, the location of which is un-
known. As our sidebar reveals, the host does in fact appear to be located in Japan.

SUMMARY
Google is deceptively simple in appearance, but offers many powerful options
that provide the groundwork for powerful searches. Many different types of con-
tent can be searched, including Web pages, message groups such as USENET,

FIGURE 1.10  

http://www.unu.edu/

CHAPTER 1:   Google Search Basics18

images, video, and more. Beginners to Google searching are encouraged to use
the Google-provided forms for searching, paying close attention to the mes-
sages and warnings Google provides about syntax. Boolean operators, such as
OR and NOT, are available through the use of the minus sign and the word OR
(or the | symbol) respectively, whereas the AND operator is ignored, since
Google automatically includes all terms in a search. Advanced search options
are available through the Advanced Search page, which allows users to narrow
search results quickly. Advanced Google users narrow their searches through cus-
tomized queries and a healthy dose of experience and good old common sense.

FAST TRACK SOLUTIONS
Exploring Google’s Web-Based Interface

There are several distinct Google search areas (including Web, group,
video, and image searches), each with distinct searching characteristics
and results pages.
The Web search page, the heart and soul of Google, is simple, streamlined,
and powerful, enabling even the most advanced searches.
A Google Groups search allows you to search all past and present
newsgroup posts.
The Image search feature allows you to search for nearly a billion graphics
by keyword.
Google’s preferences and language tools enable search customization,
translation services, language-specific searches, and much more.

FIGURE 1.11  

Fast Track Solutions 19

Building Google Queries
Google query building is a process that includes determining a solid base
search and expanding or reducing that search to achieve the desired results.
Always remember the golden rules of Google searching. These basic
premises serve as the foundation for a successful search.
Used properly, Boolean operators and special characters help expand or
reduce searches. They can also help clarify a search for fellow humans
who might read your queries later on.

Working With Google URLs
Once a Google query has been submitted, you are whisked away to the
Google results page, the URL of which can be used to modify a search or
recall it later.
Although there are many different variables that can be set in a Google
search URL, the only one that is really required is the q, or query, variable.
Some advanced search options, such as as_qdr (date-restricted search by
month), cannot be easily set anywhere besides the URL.

Links to Sites
www.google.com: This is the main Google Web page, the entry point for
most searches.
http://groups.google.com: The Google Groups Web page.
http://images.google.com: Search Google for images and graphics.
http://video.google.com: Search Google for video files.
www.google.com/language_tools: Various language and translation
options.
www.google.com/advanced_search: The advanced search form.
www.google.com/preferences: The Preferences page, which allows you
to set options such as interface language, search language, SafeSearch
filtering, and number of results per page.

Q: �Some people like using nifty toolbars. Where can I find information about
Google toolbars?

A: �Ask Google. Seriously, if you aren’t already in the habit of simply asking Google
when you have a Google-related question, you should get in that habit. Google
can almost always provide an answer if you can figure out the query.

Here’s a list of some popular Google search tools:

Platform Tool Location
Mac Google Notifier, Google; www.google.com/mac.html
Desktop, Google Sketchup PC Google Pack (includes IE and www.google.
com/tools Firefox toolbars, Google Desktop and more)

http://www.google.com/
http://groups.google.com/
http://images.google.com/
http://video.google.com/
http://www.google.com/language_tools
http://www.google.com/advanced_search
http://www.google.com/preferences
http://www.google.com/mac.html
http://www.google.com/tools
http://www.google.com/tools

CHAPTER 1:   Google Search Basics20

Mozilla Browser Googlebar; http://googlebar.mozdev.org/
Firefox, Internet Groowe multiengine Toolbar; www.groowe.com/
Explorer

Q: �Are there any techniques I can use to learn how to build Google URL’s?
A: �Yes. There are a few ways. First, submit basic queries through the Web

interface and look at the URL that’s generated when you submit the search.
From the search results page, modify the query slightly and look at how the
URL changes when you submit it. This boils down to “do it, watch what it does
then do it again.” The second way involves using “query builder” programs that
present a graphical interface, which allows you to select the search options
you want, building a Google URL as you navigate through the interface. Keep
an eye on the search engine hacking forums at http://johnny.ihackstuff.com,
specifically the “coders corner” where users discuss programs that perform
this type of functionality.

Frequently Asked Questions
The following frequently asked questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts.
To have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: What’s better? Using Google’s interface, using toolbars, or writing URL’s?
A: �It’s not fair to claim that any one technique is better than the others. It boils

down to personal preference, and many advanced Google users use each of
these techniques in different ways. Many lengthy Google sessions begin as a
simple query typed into the www.google.com Web interface. Depending on the
narrowing process, it may be easier to add or subtract from the query right
in the search field. Other times, like in the case of the date range operator
(covered in Chapter 2), it may be easier to add a quick as_qdr parameter to the
end of the URL. Toolbars excel at providing you quick access to a Google search
while you’re browsing another page. Most toolbars allow you to select text on a
page, right-click on the page and select “Google search” to submit the selected
text as a query to Google. Which technique you decide to use ultimately
depends on your tastes and the context in which you perform searches.

http://googlebar.mozdev.org/
http://www.groowe.com/
http://johnny.ihackstuff.com/
http://www.syngress.com/solutions
http://www.google.com/

21

﻿﻿

Advanced Operators

CHAPTER 2

INTRODUCTION
Beyond the basic searching techniques explored in the previous chapter, Google
offers special terms known as advanced operators to help you perform more
advanced queries. These operators, used properly, can help you get to exactly
the information you’re looking for without spending too much time poring
over page after page of search results. When advanced operators are not pro-
vided in a query, Google will locate your search terms in any area of the Web
page, including the title, the text, the Uniform Resource Locator (URL), or the
like. We will take a look at the following advanced operators in this chapter:

j	 intitle, allintitle
j	 inurl, allinurl
j	 filetype
j	 allintext
j	 site
j	 link
j	 inanchor
j	 daterange
j	 cache
j	 info
j	 related
j	 phonebook
j	 rphonebook
j	 bphonebook
j	 author
j	 group
j	 msgid
j	 insubject
j	 stocks
j	 define

CHAPTER 2:   Advanced Operators22

OPERATOR SYNTAX
Advanced operators are additions to a query designed to narrow down the
search results. Although they are relatively easy to use, they have a fairly rig-
id syntax that must be followed. The basic syntax of an advanced operator
is operator:search_term. When using advanced operators, keep in mind the
following:

j	 There is no space between the operator, the colon, and the search
term. Violating this syntax can produce undesired results and will
keep Google from understanding what you are trying to do. In most
cases, Google will treat a syntactically bad advanced operator as just
another search term. For example, providing the advanced operator
intitle without a following colon and search term will cause Google to
return pages that contain the word intitle.

j	 The search_term portion of an operator search follows the syntax
discussed in the previous chapter. For example, a search term can be a
single word or a phrase surrounded by quotes. If you use a phrase, just
make sure there are no spaces between the operator, the colon, and the
first quote of the phrase.

j	 Boolean operators and special characters (such as OR and +) can still be
applied to advanced operator queries, but be sure they don’t get in the
way of the separating colon.

j	 Advanced operators can be combined in a single query as long as you
honor both the basic Google query syntax as well as the advanced
operator syntax. Some advanced operators combine better than others,
and some simply cannot be combined. We will take a look at these
limitations later in this chapter.

j	 The ALL operators (the operators beginning with the word ALL) are
oddballs. They are generally used once per query and cannot be mixed
with other operators.

Examples of valid queries that use advanced operators include these:

j	 intitle:Google – This query will return pages that have the word Google in
their title.

j	 intitle:“index of” – This query will return pages that have the phrase
“index of” in their title. Remember from the previous chapter that this
query could also be given as “intitle:index.of”, since the period serves
as any character. This technique also makes it easy to supply a phrase
without having to type the spaces and the quotation marks around the
phrase.

j	 intitle:“index of” private – This query will return pages that have the
phrase “index of” in their title and also have the word “private” anywhere
in the page, including in the URL, the title, the text, and so on. Notice

Troubleshooting Your Syntax 23

that “intitle” only applies to the phrase “index of” and not the word
“private,” since the first unquoted space follows the phrase “index of.”
Google interprets that space as the end of your advanced operator
search term and continues processing the rest of the query.

j	 intitle:“index of” “backup files” – This query will return pages that
have the phrase “index of” in their title and the phrase “backup files”
anywhere in the page, including the URL, the title, the text, and so on.
Again, notice that “intitle” only applies to the phrase “index of.”

TROUBLESHOOTING YOUR SYNTAX
Before we jump head first into the advanced operators, let’s talk about trouble-
shooting the inevitable syntax errors you’ll run into when using these opera-
tors. Google is kind enough to tell you when you’ve made a mistake, as shown
in Figure 2.1.

In this example, we tried to give Google an invalid option to the as_qdr vari-
able in the URL. (The correct syntax would be as_qdr = m3, as we’ll see later.)
Google’s search result page listed right at the top that there was some sort of
problem. These messages are often the key to unraveling errors in either your
query string or your URL, so keep an eye on the top of the results page. We’ve
found that it’s easy to overlook this spot on the results page, since we normally
scroll past it to get down to the results.

Sometimes, however, Google is less helpful, returning a blank results page with
no error text, as shown in Figure 2.2.

FIGURE 2.1  

CHAPTER 2:   Advanced Operators24

INTRODUCING GOOGLE’S ADVANCED OPERATORS
Google’s advanced operators are very versatile, but not all operators can be
used everywhere, as we saw in the previous example. Some operators can
only be used in performing a Web search, and others can only be used in
a Groups search. If you have trouble remembering these rules, keep an eye
on the results line near the top of the page. If Google picks up on your
bad syntax, an error message will be displayed, letting you know what you
did wrong. Sometimes, however, Google will not pick up on your bad form
and will try to perform the search anyway. If this happens, keep an eye on the
search results page, specifically the words Google shows in bold within
the search results. These are the words Google interpreted as your search
terms. If you see the word “intitle” in bold, for example, you’ve probably
made a mistake using the “intitle” operator.

“INTITLE” AND “ALLINTITLE”: SEARCH WITHIN
THE TITLE OF A PAGE
From a technical standpoint, the title of a page can be described as the text that
is found within the TITLE tags of a Hypertext Markup Language (HTML) docu-
ment. The title is displayed at the top of most browsers when viewing a page,
as shown in Figure 2.3. In the context of Google groups, “intitle” will find the
term in the title of the message post.

FIGURE 2.2  

25“Intitle” and “Allintitle”: Search within the Title of a Page

As shown in Figure 2.3, the title of the Web page is “Syngress Publishing.” It is
important to realize that some Web browsers will insert text into the title of a
Web page, under certain circumstances.

This time, the title of the page is prepended with the word “Loading” and quo-
tation marks, which were inserted by the Safari browser. When using intitle, be
sure to consider what text is actually from the title and which text might have
been inserted by the browser.

Title text is not limited, however, to the TITLE HTML tag. A Web page’s docu-
ment can be generated in any number of ways, and in some cases, a Web page
might not even have a title at all. The thing to remember is that the title is
the text that appears at the top of the Web page, and you can use “intitle” to
locate text in that spot.

When using “intitle”, it’s important that you pay special attention to the syn-
tax of the search string, since the word or phrase following the word “intitle”
is considered the search phrase. “Allintitle” breaks this rule. “Allintitle” tells
Google that every single word or phrase that follows is to be found in the title
of the page. For example, we just looked at the intitle:“index of”“backup files”
query as an example of an “intitle” search. In this query, the term “backup files”
is found not in the title of the second hit but rather in the text of the document,
as shown in Figure 2.4.

If we were to modify this query to allintitle:”index of”“backup files” we would get
a different response from Google, as shown in Figure 2.5.

FIGURE 2.3  

CHAPTER 2:   Advanced Operators26

Now, every hit contains both “index of” and “backup files” in the title of each hit.
Notice also that the “allintitle” search is also more restrictive, returning only a
fraction of the results as the “intitle” search.

Be wary of using the “allintitle” operator. It tends to be clumsy when it’s used
with other advanced operators and tends to break the query entirely, causing
it to return no results. It’s better to go overboard and use a bunch of “intitle”
operators in a query rather than using “allintitle operators.”

FIGURE 2.5  

FIGURE 2.4  

27Inurl and Allinurl: Finding Text in a URL

ALLINTEXT: LOCATE A STRING WITHIN
THE TEXT OF A PAGE
The allintext operator is perhaps the simplest operator to use since it per-
forms the function that search engines are most known for: locating a term
within the text of the page. Although this advanced operator might seem too
generic to be of any real use, it is handy when you know that the text you’re
looking for should only be found in the text of the page. Using allintext can
also serve as a type of shorthand for “find this string anywhere except in
the title, the URL, and links.” Since this operator starts with the word all,
every search term provided after the operator is considered part of the opera-
tor’s search query.

For this reason, the allintext operator should not be mixed with other advanced
operators.

INURL AND ALLINURL: FINDING TEXT IN A URL
Having been exposed to the intitle operators, it might seem like a fairly simple
task to start throwing around the inurl operator with reckless abandon. I en-
courage such flights of fancy in searching, but first realize that a URL is a much
more complicated beast than a simple page title, and the workings of the inurl
operator can be equally complex.

First, let’s talk about what a URL is. Short for Uniform Resource Locator, a
URL is simply the address of a Web page. The beginning of a URL consists of
a protocol, followed by ://, like the very common http:// or ftp://. Following
the protocol is an address followed by a pathname, all separated by forward
slashes (/). Following the pathname comes an optional filename. A common
basic URL, like http://www.uriah.com/apple-qt/1984.html, can be seen as sev-
eral different components. The protocol, http, indicates that this is basically
a Web server. The server is located at www.uriah.com, and the requested file,
1984.html, is found in the /apple-qt directory on the server. As we saw in the
previous chapter, a Google search can be conveyed as a URL, which can look
something like http://www.google.com/search?q=ihackstuff.

We’ve discussed the protocol, server, directory, and file pieces of the URL, but
that last part of our example URL, ?q = ihackstuff, bears a bit more examina-
tion. Explained simply, this is a list of parameters that are being passed into the
“search” program or file. Without going into much more detail, simply under-
stand that all this “stuff ” is considered to be part of the URL, which Google can
be instructed to search with the inurl and allinurl operators.

So far this doesn’t seem much more complex than dealing with the intitle op-
erator, but there are a few complications. First, Google can’t effectively search

http://www.uriah.com/apple-qt/1984.html
http://www.uriah.com/
http://www.google.com/search?q=ihackstuff

CHAPTER 2:   Advanced Operators28

the protocol portion of the URL – http://, for example. Second, there are a ton
of special characters sprinkled around the URL, which Google also has trouble
weeding through. Attempting to specifically include these special characters
in a search could cause unexpected results and might limit your search in un-
desired ways. Third, and most important, other advanced operators (site and
filetype, for example) can search more specific places inside the URL even better
than inurl can. These factors make inurl much trickier to use effectively than an
intitle search, which is very simple by comparison. Regardless, inurl is one of
the most indispensable operators for advanced Google users; we’ll see it used
extensively throughout this book.

As with the intitle operator, inurl has a companion operator, known as allinurl.
Consider the inurl search results page shown in Figure 2.6.

This search located the word admin in the URL of the document and the word
index anywhere in the document, returning more than two million results. Re-
placing the intitle search with an allintitle search, we receive the results page
shown in Figure 2.7.

This time, Google was instructed to find the words admin and index only in the
URL of the document, resulting in about a million less hits. Just like the allin-
title search, allinurl tells Google that every single word or phrase that follows is
to be found only in the URL of the page. And just like allintitle, allinurl does not
play very well with other queries. If you need to find several words or phrases
in a URL, it’s better to supply several inurl queries than to succumb to the rather
unfriendly allinurl conventions.

FIGURE 2.6  

29Site: Narrow Search to Specific Sites

SITE: NARROW SEARCH TO SPECIFIC SITES
Although technically a part of a URL, the best way to search address (or domain
name) of a server is with the site operator. Site allows you to search only for
pages that are hosted on a specific server or in a specific domain. Although fairly
straightforward, proper use of the site operator can take a little bit of getting used
to, since Google reads Web server names from right to left, as opposed to the
human convention of reading site names from left to right. Consider a common
Web server name, www.apple.com. To locate pages that are hosted on blackhat.
com, a simple query of site:blackhat.com will suffice, as shown in Figure 2.8.

Notice that the first two results are from www.blackhat.com and japan.
blackhat.com. Both of these servers end in blackhat.com and are valid results
of our query.

Like many of Google’s advanced operators, site can be used in interesting ways.
Take, for example, a query for site:r, the results of which are shown in Figure 2.9.

Look very closely at the results of the query and you’ll discover that the URL for
the first returned result looks a bit odd. Truth be told, this result is odd. Google
(and the Internet at large) reads server names (really domain names) from right
to left, not from left to right. So a Google query for site:r can never return valid
results because there is no .r domain name. So why does Google return results?
It’s hard to be certain, but one thing’s for sure: these oddball searches and their
associated responses are very interesting to advanced search engine users and
fuel the fire for further exploration.

FIGURE 2.7  

http://www.apple.com/
http://www.blackhat.com/

CHAPTER 2:   Advanced Operators30

The site operator can be easily combined with other searches and operators, as
we’ll see later in this chapter.

FILETYPE: SEARCH FOR FILES OF A SPECIFIC TYPE
Google searches more than just Web pages. Google can search many different
types of files, including PDF (Adobe Portable Document Format) and Microsoft
Office documents. The filetype operator can help you search for these types of files.

FIGURE 2.9  

FIGURE 2.8  

31Filetype: Search for Files of a Specific Type

More specifically, filetype searches for pages that end in a particular file extension.
The file extension is the part of the URL following the last period of the filename
but before the question mark that begins the parameter list. Since the file exten-
sion can indicate what type of program opens a file, the filetype operator can be
used to search for specific types of files by searching for a specific file extension.

So much has changed in the ten plus years since this process was run for the first
edition of this book. Just look at how many more hits Google is reporting! The
jump in hits is staggering. If you’re unfamiliar with some of these extensions,
check out www.filext.com, a great resource for getting detailed information
about file extensions, what they are, and what programs they are associated with.

Google converts every document it searches to either HTML or text for online
viewing. You can see that Google has searched and converted a file by looking
at the results page shown in Figure 2.10.

Notice that the first result lists [DOC] before the title of the document and
a file format of MicrosoftWord. This indicates that Google recognized the file
as a Microsoft Word document. In addition, Google has provided a View as
HTML link that, when clicked, will display an HTML approximation of the file,
as shown in Figure 2.11.

When you click the link for a document that Google has converted, a header
is displayed at the top of the page, indicating that you are viewing the HTML
version of the page. A link to the original file is also provided. If you think this
looks similar to the cached view of a page, you’re right. This is the cached ver-
sion of the original page, converted to HTML.

FIGURE 2.10  

http://www.filext.com/

CHAPTER 2:   Advanced Operators32

Although these are great features, Google isn’t perfect. Keep these things in mind:

j	 Google doesn’t always provide a link to the converted version of a page.
j	 Google doesn’t always properly recognize the file type of even the most

common file formats.
j	 When Google crawls a page that ends in a particular file extension but

that file is blank, Google will sometimes provide a valid file type and
a link to the converted page. Even the HTML version of a blank Word
document is still, well, blank.

This operator flakes out when ORed. As an example, the query filetype:doc re-
turns 39 million results. The query filetype:pdf returns 255 million results. The
query (filetype:doc | filetype:pdf) returns 335 million results, which is pretty close
to the two individual search results combined. However, when you start add-
ing to this precocious combination with things like (filetype:doc | filetpye:pdf)
(doc | pdf), Google flakes out and returns 441 million results: even more than
the original, broader query. I’ve found that Boolean logic applied to this opera-
tor is usually flaky, so beware when you start tinkering.

This operator can be mixed with other operators and search terms.

LINK: SEARCH FOR LINKS TO A PAGE
The link operator allows you to search for pages that link to other pages. In-
stead of providing a search term, the link operator requires a URL or server
name as an argument. Shown in its most basic form, link is used with a server
name, as shown in Figure 2.12.

FIGURE 2.11  

33Link: Search for Links to a Page

Each of the search results shown in Figure 2.12 contains HTML links to the
http://www.defcon.org Web site. The link operator can be extended to include
not only basic URLs, but complete URLs that include directory names, file-
names, parameters, and the like. Keep in mind that long URLs are much more
specific and will return fewer results than their shorter counterparts.

The only place the URL of a link is visible is in the browser’s status bar or in
the source of the page. For that reason, unlike other cached pages, the cached
page for a link operator’s search result does not highlight the search term, since
the search term (the linked Web site) is never really shown in the page. In fact,
the cached banner does not make any reference to your search query, as shown
in Figure 2.13.

It is a common misconception to think that the link operator can actually
search for text within a link. The inanchor operator performs something similar
to this, as we’ll see next. To properly use the link operator, you must provide
a full URL (including protocol, server, directory, and file), a partial URL (in-
cluding only the protocol and the host), or simply a server name; otherwise,
Google could return unpredictable results. As an example, consider a search for
link:linux, which returns 151,000 results. This search is not the proper syntax
for a link search, since the domain name is invalid. The correct syntax for a
search like this might be link:linux.org (with 317 results) or link:linux.org (with
no results). These numbers don’t seem to make sense, and they certainly don’t
begin to account for the 151,000 hits on the original query. So what exactly is
being returned from Google for a search like link:linux? Figure 2.14 shows the
answer to this question.

FIGURE 2.12  

http://www.defcon.org/

CHAPTER 2:   Advanced Operators34

When an invalid link: syntax is provided, Google treats the search as a phrase
search. Google offers another clue as to how it handles invalid link searches
through the cache page. As shown in Figure 2.15, the cached banner for a site
found with a link:linux search does not resemble a typical link search cached
banner, but rather a standard search cache banner with included high
lighted terms.

FIGURE 2.14  

FIGURE 2.13  

35Inanchor: Locate Text within Link Text

This is an indication that Google did not perform a link search, but instead
treated the search as a phrase, with a colon representing a word break.

The link operator cannot be used with other operators or search terms.

INANCHOR: LOCATE TEXT WITHIN LINK TEXT
This operator can be considered a companion to the link operator, since they
both help search links. The inanchor operator, however, searches the text repre-
sentation of a link, not the actual URL. For example, the Google link to “current
page” is shown in typical form – as an underlined portion of text. When you
click that link, you are taken to the URL http://dmoz.org/Computers/Software/
Operating_Systems/Linux. If you were to look at the actual source of that page,
you would see something like this:

<A HREF = “http://dmoz.org/Computers/Software/Operating_Systems/Linux/”
 > current page < /A>

The inanchor operator helps search the anchor, or the displayed text on the
link, which in this case is the phrase “current page.” This is not the same as
using inurl to find this page with a query like inurl:Computers inurl:Operating_
Systems.

Inanchor accepts a word or phrase as an argument, such as inanchor:click or
inanchor:James.Foster. This search will be handy later, especially when we begin
to explore ways of searching for relationships between sites. The inanchor
operator can be used with other operators and search terms.

FIGURE 2.15  

http://dmoz.org/Computers/Software/Operating_Systems/Linux
http://dmoz.org/Computers/Software/Operating_Systems/Linux
http://dmoz.org/Computers/Software/Operating_Systems/Linux/

CHAPTER 2:   Advanced Operators36

CACHE: SHOW THE CACHED VERSION OF A PAGE
As we’ve already discussed, Google keeps snapshots of pages it has crawled that
we can access via the cached link on the search results page. If you would like
to jump right to the cached version of a page without first performing a Google
query to get to the cached link on the results page, you can simply use the cache
advanced operator in a Google query such as cache:blackhat.com or cache:www.
netsec.net/content/index.jsp. If you don’t supply a complete URL or hostname,
Google could return unpredictable results. Just as with the link operator, pass-
ing an invalid hostname or URL as a parameter to cache will submit the query
as a phrase search. A search for cache:linux returns exactly as many results as
“cache linux”, indicating that Google did indeed treat the cache search as a stan-
dard phrase search.

The cache operator can be used with other operators and terms, although the
results are somewhat unpredictable.

NUMRANGE: SEARCH FOR A NUMBER
The numrange operator requires two parameters, a low number and a high
number, separated by a dash. This operator is powerful but dangerous when
used by malicious Google hackers. As the name suggests, numrange can be used
to find numbers within a range. For example, to locate the number 12345,
a query such as numrange:12344–12346 will work just fine. When searching
for numbers, Google ignores symbols such as currency markers and commas,
making it much easier to search for numbers on a page. A shortened version
of this operator exists as well. Instead of supplying the numrange operator, you
can simply provide two numbers in a query, separated by two periods. The
shortened version of the query just mentioned would be 12344..12346. Notice
that the numrange operator was left out of the query entirely.

This operator can be used with other operators and search terms.

DATERANGE: SEARCH FOR PAGES PUBLISHED WITHIN
A CERTAIN DATE RANGE
The daterange operator can tend to be a bit clumsy, but it is certainly help-
ful and worth the effort to understand. You can use this operator to locate
pages indexed by Google within a certain date range. Every time Google crawls
a page, this date changes. If Google locates some very obscure Web page, it
might only crawl it once, never returning to index it again. If you find that your
searches are clogged with these types of obscure Web pages, you can remove
them from your search (and subsequently get fresher results) through effective
use of the daterange operator.

http://www.netsec.net/content/index.jsp
http://www.netsec.net/content/index.jsp

37Info: Show Google’s Summary Information

The parameters to this operator must always be expressed as a range, two dates
separated by a dash. If you only want to locate pages that were indexed on
one specific date, you must provide the same date twice, separated by a dash.
If this sounds too easy to be true, you’re right. It is too easy to be true. Both
dates passed to this operator must be in the form of two Julian dates. The Ju-
lian date is the number of days that have passed since January 1, 4713 B.C.
For example, the date September 11, 2001, is represented in Julian terms as
2452164. So, to search for pages that were indexed by Google on September
11, 2001, and contained the word “Osama Bin Laden,” the query would be dat-
erange:2452164–2452164 “osama bin laden”.

Google does not officially support the daterange operator, and as such your
mileage may vary. Google seems to prefer the date limit used by the advanced
search form at www.google.com/advanced_search. As we discussed in the last
chapter, this form creates fields in the URL string to perform specific functions.
Google designed the as_qdr field to help you locate pages that have been up-
dated within a certain time frame. For example, to find pages that have been
updated within the past three months and that contain the word Google, use
the query http://www.google.com/search?q=google&as_qdr=m3. The info operator
shows the summary information for a site and provides links to other Google
searches that might pertain to that site, as shown. The parameter to this opera-
tor must be a valid URL or site name. You can achieve this same functionality
by supplying a site name or URL as a search query.

This might be a better alternative date restrictor than the clumsy daterange op-
erator. Just understand that these are very different functions. Daterange is not
the advanced-operator equivalent for as_qdr, and unfortunately, there is no
operator equivalent. If you want to find pages that have been updated within
the past year or less, you must either use Google advanced search interface or
stick &as_qdr = 3m (or equivalent) at the end of your URL.

The daterange operator must be used with other search terms or advanced op-
erators. It will not return any results when used by itself.

INFO: SHOW GOOGLE’S SUMMARY INFORMATION
The info operator shows the summary information for a site and provides
links to other Google searches that might pertain to that site, as shown in
Figure 2.16. The parameter to this operator must be a valid URL or site name.
You can achieve the same functionality by supplying a site name or URL as a
search query.

If you don’t supply a complete URL or hostname, Google could return un-
predictable results. Just as with the link and cache operators, passing an inval-
id hostname or URL as a parameter to info will submit the query as a phrase

http://www.google.com/advanced_search
http://www.google.com/search?q=google%26as_qdr=m3

CHAPTER 2:   Advanced Operators38

search. A search for info:linux returns exactly as many results as “info linux,” indi-
cating that Google did indeed treat the info search as a standard phrase search.

The info operator cannot be used with other operators or search terms.

RELATED: SHOW RELATED SITES
The related operator displays sites that Google has determined are related to a
site, as shown in Figure 2.17. The parameter to this operator is a valid site name
or URL. You can achieve this same functionality by clicking the “Similar Pages”
link from any search results page, or by using the “Find pages similar to the
page” portion of the advanced search form.

If you don’t supply a complete URL or hostname, Google could return unpre-
dictable results. Passing an invalid hostname or URL as a parameter to related
will submit the query as a phrase search. A search for related:linux returns ex-
actly as many results as “related linux,” indicating that Google did indeed treat
the cache search as a standard phrase search.

The related operator cannot be used with other operators or search terms.

STOCKS: SEARCH FOR STOCK INFORMATION
The stocks operator allows you to search for stock market information about a
particular company. The parameter to this operator must be a valid stock abbre-
viation. If you provide a valid stock ticker symbol, you will be taken to a screen
that allows further searching for a correct ticker symbol, as shown in Figure 2.18.

FIGURE 2.16  

39Define: Show the Definition of a Term

The stocks operator cannot be used with other operators or search terms.

DEFINE: SHOW THE DEFINITION OF A TERM
The define operator returns definitions for a search term. Fairly simple, and very
straightforward, arguments to this operator may be a word or phrase. Links to
the source of the definition are provided, as shown in Figure 2.19.

FIGURE 2.17  

FIGURE 2.18  

CHAPTER 2:   Advanced Operators40

COLLIDING OPERATORS AND BAD SEARCH-FU
When you start using advanced operators, you’ll realize that some combina-
tions work better than others for finding what you’re looking for. Just as quick-
ly, you’ll begin to realize that some operators just don’t mix well at all.

Allintext gives incorrect results when it is mixed with other operators. For example,
a search for allintext:moo goo gai filetype:pdf works well for finding Chinese food
menus, whereas allintext:Sum Dum Goy intitle:Dragon gives you that empty feeling
inside – like a year without the 1985 classic The Last Dragon (see Figure 2.20).

Despite the fact that some operators do combine with others, it’s still pos-
sible to get less than optimal results by running your operators head-on into
each other. This section focuses on pointing out a few of the potential bad
collisions that could give useless results. We’ll start with some of the more
obvious ones.

First, consider a query like something – something. By asking for something
and taking away something, we end up with... nothing, and Google tells
you as much. This is an obvious example, but consider intitle:something –
intitle:something. This query, just like the first, returns nothing, since we’ve ne-
gated our first search with a duplicate NOT search. Literally, we’re saying “find
something in the title and hide all the results with something in the title.” Both
of these examples clearly illustrate the point that you can’t query for something
and negate that query, because your results will be zero.

It gets bit tricky when the advanced operators start overlapping. Consider
site and inurl. The URL includes the name of the site. So, extending the “don’t

FIGURE 2.19  

41Colliding Operators and Bad Search-fu

contradict yourself” rule, don’t include a term with site and exclude that term
with inurl and vice versa and expect valid results. A query like site:microsoft.
com -inurl:microsoft.com doesn’t make much sense, and shouldn’t work, but as
Figure 2.21 shows, it does work.

When you’re really trying to home in on a topic, keep the “rules” in mind and
you’ll accelerate toward your target at a much faster pace. Save the rule break-
ing for your required Google hacking license test!

FIGURE 2.20  

FIGURE 2.21  

CHAPTER 2:   Advanced Operators42

Here’s a quick breakdown of some broken searches and why they’re broken:

site:com site:edu – A hit can’t be both an edu and a com at the same time.
What you’re more likely to search for is (site:edu | site:com), which
searches for either domain.
inanchor:click –click – This is contradictory. Remember, unless you use an
advanced operator, your search term can appear anywhere on the page,
including the title, URL, text, and even anchors.
allinurl:pdf allintitle:pdf – Operators starting with all are notoriously bad
at combining. Get out of the habit of combining them before you get into
the habit of using them! Replace allinurl with inurl, allintitle with intitle,
and never use allintext.
site:syngress.com allinanchor:syngress publishing – This query returns zero
results, which seems natural considering the last example and the fact
that most all* searches are nasty to use. However, this query suffers from
an ordering problem, a fairly common problem that can really throw
off some narrow searches. By changing the query to allinanchor:syngress
publishing site:syngress.com, which moves the allinanchor to the beginning
of the query, we can get many more results. This does not at all seem
natural, since the allintitle operator considers all the following terms to be
parameters to the operator, but that’s just the way it is.
link:www.microsoft.com linux – This is a troublesome search for a beginner
because it appears to work, finding sites that link to Microsoft and
mention the word linux on the page. Unfortunately, link doesn’t mix with
other operators, but instead of sending you an error message, Google
“fixes” the query for you and provides the exact results as “link.www.
microsoft.com” linux.

SUMMARY
Google offers plenty of options when it comes to performing advanced search-
es. URL modification, discussed in Chapter 1, can provide you with lots of
options for modifying a previously submitted search, but advanced operators
are better used within a query. Easier to remember than the URL modifiers,
advance operators are the truest tools of any Google hacker’s arsenal. As such,
they should be the tools used by the good guys when considering the protec-
tion of Web-based information.

Most of the operators can be used in combination, the most notable excep-
tions being the allintitle, allinurl, allinanchor, and allintext operators. Advanced
Google searchers tend to steer away from these operators, opting to use the
intitle, inurl, and link operators to find strings within the title, URL, or links
to pages, respectively. Allintext, used to locate all the supplied search terms

http://www.microsoft.com/
http://www.microsoft.com/
http://www.microsoft.com/

Fast Track Solutions 43

within the text of a document, is one of the least used and most redundant
of the advanced operators. Filetype and site are very powerful operators that
search specific sites or specific file types. The daterange operator allows you
to search for files that were indexed within a certain time frame, although
the URL parameter as_qdr seems to be more in vogue. When crawling Web
pages, Google generates specific information such as a cached copy of a page,
an information snippet about the page, and a list of sites that seem related.
This information can be retrieved with the cache, info, and related operators,
respectively. The stocks operator returns stock information about a specific
ticker symbol, whereas the define operator returns the definition of a word or
simple phrase.

FAST TRACK SOLUTIONS
Intitle

j	 Finds strings in the title of a page
j	 Mixes well with other operators
j	 Best used with Web, Group, Images, and News searches

Allintitle
j	 Finds all terms in the title of a page
j	 Does not mix well with other operators or search terms
j	 Best used with Web, Group, Images, and News searches

Inurl
j	 Finds strings in the URL of a page
j	 Mixes well with other operators
j	 Best used with Web and Image searches

Allinurl
j	 Finds all terms in the URL of a page
j	 Does not mix well with other operators or search terms
j	 Best used with Web, Group, and Image searches

Filetype
j	 Finds specific types of files based on file extension
j	 Synonymous with ext
j	 Requires an additional search term
j	 Mixes well with other operators
j	 Best used with Web and Group searches

Allintext
j	 Finds all provided terms in the text of a page
j	 Pure evil – don’t use it
j	 Forget you ever heard about allintext

CHAPTER 2:   Advanced Operators44

Site
j	 Restricts a search to a particular site or domain
j	 Mixes well with other operators
j	 Can be used alone
j	 Best used with Web, Groups and Image searches

Link
j	 Searches for links to a site or URL
j	 Does not mix with other operators or search terms
j	 Best used with Web searches

Inanchor
j	 Finds text in the descriptive text of links
j	 Mixes well with other operators and search terms
j	 Best used for Web, Image, and News searches

Daterange
j	 Locates pages indexed within a specific date range
j	 Requires a search term
j	 Mixes well with other operators and search terms
j	 Best used with Web searches
j	 Might be phased out to make way for as_qdr.

Numrange
j	 Finds a number in a particular range
j	 Mixes well with other operators and search terms
j	 Best used with Web searches
j	 Synonymous with ext.

Cache
j	 Displays Google’s cached copy of a page
j	 Does not mix with other operators or search terms
j	 Best used with Web searches

Info
j	 Displays summary information about a page
j	 Does not mix with other operators or search terms
j	 Best used with Web searches

Related
j	 Shows sites that are related to provided site or URL
j	 Does not mix with other operators or search terms
j	 Best used with Web searches

45Links to Sites

Stocks
j	 Shows the Yahoo Finance stock listing for a ticker symbol
j	 Does not mix with other operators or search terms
j	 Best provided as a Web query

Define
j	 Shows various definitions of a provided word or phrase
j	 Does not mix with other operators or search terms
j	 Best provided as a Web query

LINKS TO SITES
j	 The Google file types FAQ, www.google.com/help/faq_filetypes.html
j	 The resource for file extension information, www.filext.com. This

site can help you figure out what program a particular extension is
associated with.

j	 This article discusses some of the issues associated with Google’s date
restrict search options. http://searchenginewatch.com/article/2064851/
Its-Tough-to-Get-a-Good-Date-with-a-Search-Engine

http://www.google.com/help/faq_filetypes.html
http://www.filext.com/
http://searchenginewatch.com/article/2064851/Its-Tough-to-Get-a-Good-Date-with-a-Search-Engine
http://searchenginewatch.com/article/2064851/Its-Tough-to-Get-a-Good-Date-with-a-Search-Engine

Page left intentionally blank

47

﻿﻿
﻿

Google Hacking Basics

CHAPTER 3

INTRODUCTION
A fairly large portion of this book is dedicated to the techniques the “bad guys”
will use to locate sensitive information. We present this information to help
you become better informed about their motives so that you can protect your-
self and perhaps your customers. We’ve already looked at some of the benign
basic searching techniques that are foundational for any Google user who
wants to break the barrier of the basics and charge and go to the next level: the
ways of the Google hacker. Now we’ll start looking at more nefarious uses of
Google that hackers are likely to employ.

First, we’ll talk about Google’s cache. If you haven’t already experimented with
the cache, you’re missing out. I suggest you at least click a few various cached
links from the Google search results page before reading further. As any decent
Google hacker will tell you, there’s a certain anonymity that comes with brows-
ing the cached version of a page. That anonymity goes only so far, and there are
some limitations to the coverage it provides. Google can, however, very nicely
veil your crawling activities to the point that the target Web site might not even
get a single packet of data from you as you cruise the Web site. We’ll show you
how it’s done.

Next, we’ll talk about directory listings. These “ugly” Web pages are chock full
of information, and their mere existence serves as the basis for some of the
more advanced attack searches that we’ll discuss in later chapters.

To round things out, we’ll take a look at a technique that has come to be
known as traversing: the expansion of a search to try and gather more informa-
tion. We’ll look at directory traversal, number range expansion, and extension
trolling, all of which are techniques that should be second nature to any decent
hacker – and the good guys that defend against them.

CHAPTER 3:   Google Hacking Basics48

ANONYMITY WITH CACHES
Google’s cache feature is truly an amazing thing. The simple fact is that if
Google crawls a page or document, you can almost always count on getting a
copy of it, even if the original source has since dried up and blown away. Of
course the down side of this is that hackers can get a copy of your sensitive data
even if you’ve pulled the plug on that pesky Web server. Another down side
of the cache is that the bad guys can crawl your entire Web site (including the
areas you “forgot” about) without even sending a single packet to your server.
If your Web server doesn’t get so much as a packet, it can’t write anything to the
log files. (You are logging your Web connections, aren’t you?) If there’s noth-
ing in the log files, you might not have any idea that your sensitive data has
been carried away. It’s sad that we even have to think in these terms, but untold
megabytes, gigabytes, and even terabytes of sensitive data leak from Web serv-
ers every day. Understanding how hackers can mount an anonymous attack on
your sensitive data via Google’s cache is of utmost importance.

Google grabs a copy of most Web data that it crawls. There are exceptions, and
this behavior is preventable, as we’ll discuss later, but the vast majority of
the data Google crawls is copied and filed away, accessible via the cached link
on the search page. We need to examine some subtleties to Google’s cached
document banner. The banner shown in Figure 3.1 was gathered from www.
phrack.org.

If you’ve gotten so familiar with the cache banner that you just blow right past
it, slow down a bit and actually read it. The cache banner in Figure 3.2 notes,

FIGURE 3.1  

http://www.phrack.org/
http://www.phrack.org/

49Anonymity with Caches

“This cached page may reference images which are no longer available. ”This
message is easy to miss, but it provides an important clue about what Google’s
doing behind the scenes.

To get a better idea of what’s happening, let’s take a look at a snippet of tcpdump
output gathered while browsing this cached page. To capture this data, tcpdump is
simply run as tcpdump –n. Your installation or implementation of tcpdump
might require you to also set a listening interface with the –i switch.

Let’s take apart this output a bit, starting at the bottom. This is a port 80 (Web)
conversation between our browser (10.9.5) and a Google server (66.249.83.83).
This is the type of traffic we should expect from any transaction with Google,
but the beginning of the capture reveals another port 80 (Web) connection to
200.199.20.162. This is not a Google server, and an nslookup of that Internet
Protocol (IP) shows that it is the www.phrack.org Web server. The connection
to this server can be explained by rerunning tcpdump with more options specifi-
cally designed to show a few hundred bytes of the data inside the packets as
well as the headers, and shift-reloading the cached page. Shift-reloading forces
most browsers to contact the Web host again, not relying on any caches the
browser might be using.

Lines 0x30 and 0x40 show that we are downloading (via a GET request) an im-
age file – specifically, a JPG image from the server. Farther along in the network
trace, a Host field reveals that we are talking to the www.phrack.org Web server.
Because of this Host header and the fact that this packet was sent to IP address
200.199.20.162, we can safely assume that the Phrack Web server is virtually

FIGURE 3.2  

http://www.phrack.org/
http://www.phrack.org/

CHAPTER 3:   Google Hacking Basics50

hosted on the physical server located at that address. This means that when
viewing the cached copy of the Phrack Web page, we are pulling images directly
from the Phrack server itself. If we were striving for anonymity by viewing the
Google cached page, we just blew our cover! Furthermore, line 0x90 shows that
the REFERER field was passed to the Phrack server, and that field contained a
Uniform Resource Locator (URL) reference to Google’s cached copy of Phrack’s
page. This means that not only were we not anonymous, but our browser in-
formed the Phrack Web server that we were trying to view a cached version of
the page! So much for anonymity.

It’s worth noting that most real hackers use proxy servers when browsing a tar-
get’s Web pages, and even their Google activities are first bounced off a proxy
server. If we had used an anonymous proxy server for our testing, the Phrack
Web server would have gotten our proxy server’s IP address only, not our actual
IP address.

The cache banner does, however, provide an option to view only the data that
Google has captured, without any external references. Despite the fact that
we loaded the same page as before, this time we communicated only with a
Google server (at 216.239.51.104), not any external servers. If we were to look
at the URL generated by clicking the “cached text only” link in the cached
page’s header, we would discover that Google appended an interesting parame-
ter, &strip = 1. This parameter forces a Google cache URL to display only cached
text, avoiding any external references. This URL parameter only applies to URLs
that refer to a Google cached page.

Pulling it all together, we can browse a cached page with a fair amount of ano-
nymity without a proxy server, using a quick cut and paste and a URL modi-
fication. As an example, consider query for site:phrack.org. Instead of clicking
the cached link, we will right-click the cached link and copy the URL to the
Clipboard. Browsers handle this action differently, so use whichever technique
works for you to capture the URL of this link.

Once the URL is copied to the Clipboard, paste it into the address bar
of your browser, and append the &strip=1 parameter to the end of the
URL. The URL should now look something like http://216.239.51.104/
search?q=cache:LBQZIrSkMgUJ:www.phrack.org/+site:phrack.org&hl=en&ct=
clnk&cd=1&gl=us&client=safari&strip=1. Press Enter after modifying the URL
to load the page, and you will be taken to the stripped version of the cached page,
which has a slightly different banner.

Notice that the stripped cache header reads differently than the standard cache
header. Instead of the “This cached page may reference images which are no
longer available” line, there is a new line that reads, “Click here for the full
cached version with images included.” This is an indicator that the current

http://216.239.51.104/search%3Fq(cache
http://216.239.51.104/search%3Fq(cache
http://www.phrack.org/

Directory Listings 51

cached page has been stripped of external references. Unfortunately, the
stripped page does not include graphics, so the page could look quite different
from the original, and in some cases a stripped page might not be legible at all.
If this is the case, it never hurts to load up a proxy server and hit the page, but
real Google hackers “don’t need no steenkin’ proxy servers!”

DIRECTORY LISTINGS
A directory listing is a type of Web page that lists files and directories that exist
on a Web server. Designed to be navigated by clicking directory links, directory
listings typically have a title that describes the current directory, a list of files
and directories that can be clicked, and often a footer that marks the bottom of
the directory listing. Each of these elements is shown in the sample directory
listing in Figure 3.3.

Much like an FTP server, directory listings offer a no-frills, easy-install solution
for granting access to files that can be stored in categorized folders. Unfortu-
nately, directory listings have many faults, specifically:

j	 They are not secure in and of themselves. They do not prevent users
from downloading certain files or accessing certain directories.
This task is often left to the protection measures built into the Web
server software or third-party scripts, modules, or programs designed
specifically for that purpose.

j	 They can display information that helps an attacker learn specific
technical details about the Web server.

FIGURE 3.3  

CHAPTER 3:   Google Hacking Basics52

j	 They do not discriminate between files that are meant to be public and
those that are meant to remain behind the scenes.

j	 They are often displayed accidentally, since many Web servers display
a directory listing if a top-level index file (index.htm, index.html, default.
asp, and so on) is missing or invalid.

All this adds up to a deadly combination. In the following section, we’ll take a
look at some of the ways Google hackers can take advantage of directory listings.

LOCATING DIRECTORY LISTINGS
j	 The most obvious way an attacker can abuse a directory listing is by

simply finding one! Since directory listings offer “parent directory”
links and allow browsing through files and folders, even the most basic
attacker might soon discover that sensitive data can be found by simply
locating the listings and browsing through them.

j	 Locating directory listings with Google is fairly straightforward.
Figure 3.3 shows that most directory listings begin with the phrase
“Index of,” which also shows in the title. An obvious query to find this
type of page might be intitle:index.of, which could find pages with the
term “index of” in the title of the document. Remember that the period
(.) serves as a single-character wildcard in Google. Unfortunately, this
query will return a large number of false positives, such as pages with
the following titles:
j	 Index of Native American Resources on the Internet
j	 LibDex – Worldwide index of library catalogues
j	 Iowa State Entomology Index of Internet Resources

j	 Judging from the titles of these documents, it is obvious that not only
are these Web pages intentional, they are also not the type of directory
listings we are looking for. As Ben Kenobi might say, “This is not the
directory listing you’re looking for.” Several alternate queries provide
more accurate results – for example, intitle:index.of “parent directory”
(shown in Figure 3.4) or intitle:index.of name size. These queries indeed
reveal directory listings by not only focusing on index.of in the title,
but on keywords often found inside directory listings, such as parent
directory, name, and size. Even judging from the summary on the search
results page, you can see that these results are indeed the types of
directory listings we’re looking for.

FINDING SPECIFIC DIRECTORIES
In some cases, it might be beneficial not only to look for directory listings,
but also to look for directory listings that allow access to a specific directory.

Server Versioning 53

This is easily accomplished by adding the name of the directory to the search
query. To locate “admin” directories that are accessible from directory list-
ings, queries such as intitle:index.of.admin or intitle:index.of inurl:admin will
work well.

FINDING SPECIFIC FILES
Because these types of pages list names of files and directories, it is possible to
find very specific files within a directory listing. For example, to find WS_FTP
log files, try a search such as intitle:index.of ws_ftp.log. This technique can be
extended to just about any kind of file by keying in on the index.of in the title
and the filename in the text of the Web page.

You can also use filetype and inurl to search for specific files. To search again for
ws_ftp.log files, try a query like filetype:log inurl:ws_ftp.log. This technique will
generally find more results than the somewhat restrictive index.of search. We’ll
be working more with specific file searches throughout the book.

SERVER VERSIONING
One piece of information an attacker can use to determine the best method for
attacking a Web server is the exact software version. An attacker could retrieve
that information by connecting directly to the Web port of that server and is-
suing a request for the Hypertext Transfer Protocol (HTTP) (Web) headers. It
is possible, however, to retrieve similar information from Google without ever

FIGURE 3.4  

CHAPTER 3:   Google Hacking Basics54

connecting to the target server. One method involves using the information
provided in a directory listing.

Figure 3.5 shows the bottom portion of a typical directory listing. Notice that
some directory listings provide the name of the server software as well as the
version number. An adept Web administrator could fake these server tags, but
most often this information is legitimate and exactly the type of information
an attacker will use to refine his attack against the server.

The Google query used to locate servers this way is simply an extension of the
intitle:index.of query. The listing shown was located with a query of intitle:index.
of “server at”. This query will locate all directory listings on the Web with index
of in the title and server at anywhere in the text of the page. This might not seem
like a very specific search, but the results are very clean and do not require fur-
ther refinement.

To search for a specific server version, the intitle:index.of query can be extended
even further to something like intitle:index.of “Apache/1.3.27 Server at”. This
query would find pages like the one listed in Figure 3.5.

In addition to identifying the Web server version, it is also possible to deter-
mine the operating system of the server as well as modules and other software
that is installed. We’ll look at more specific techniques to accomplish this later,
but the server versioning technique we’ve just looked at can be extended by
including more details in our query.

One convention used by these sprawling tags is the use of parenthesis to offset
the operating system of the server. For example, Apache/1.3.26 (Unix) indicates

FIGURE 3.5  

55Going Out on a Limb: Traversal Techniques

a UNIX-based operating system. Other more specific tags are used as well,
some of which are listed below.

j	 CentOS
j	 Debian
j	 Debian GNU/Linux
j	 Fedora
j	 FreeBSD
j	 Linux/SUSE
j	 Linux/SuSE
j	 NETWARE
j	 Red Hat
j	 Ubuntu
j	 UNIX
j	 Win32

An attacker can use the information in these operating system tags in conjunc-
tion with the Web server version tag to formulate a specific attack. If this in-
formation does not hint at a specific vulnerability, an attacker can still use this
information in a data-mining or information-gathering campaign, as we will
see in a later chapter.

GOING OUT ON A LIMB: TRAVERSAL TECHNIQUES
The next technique we’ll examine is known as traversal. Traversal in this context
simply means to travel across. Attackers use traversal techniques to expand a
small “foothold” into a larger compromise.

Directory Traversal
To illustrate how traversal might be helpful, consider a directory listing that
was found with intitle:index.of inurl:“admin”.

In this example, our query brings us to a relative URL of /admin/php/tour. If
you look closely at the URL, you’ll notice an “admin” directory two directory
levels above our current location. If we were to click the “parent directory”
link, we would be taken up one directory, to the “php” directory. Clicking
the “parent directory” link from the “envr” directory would take us to the
“admin” directory, a potentially juicy directory. This is very basic directory
traversal. We could explore each and every parent directory and each of the
subdirectories, looking for juicy stuff. Alternatively, we could use a creative
site search combined with an inurl search to locate a specific file or term
inside a specific subdirectory, such as site:anu.edu inurl:admin ws_ftp.log, for
example. We could also explore this directory structure by modifying the URL
in the address bar.

CHAPTER 3:   Google Hacking Basics56

Regardless of how we were to “walk” the directory tree, we would be travers-
ing outside the Google search, wandering around on the target Web server.
This is basic traversal, specifically directory traversal. Another simple example
would be replacing the word admin with the word student or public. Another
more serious traversal technique could allow an attacker to take advantage of
software flaws to traverse to directories outside the Web server directory tree.
For example, if a Web server is installed in the /var/www directory, and public
Web documents are placed in /var/www/htdocs, by default any user attaching to
the Web server’s top-level directory is really viewing files located in /var/www/
htdocs. Under normal circumstances, the Web server will not allow Web users
to view files above the /var/www/htdocs directory. Now, let’s say a poorly coded
third-party software product is installed on the server that accepts directory
names as arguments. A normal URL used by this product might be www.some-
sadsite.org/badcode.pl?page=/index.html. This URL would instruct the badcode.pl
program to “fetch” the file located at /var/www/htdocs/index.html and display it
to the user, perhaps with a nifty header and footer attached. An attacker might
attempt to take advantage of this type of program by sending a URL such as
www.somesad-site.org/badcode.pl?page=../../../etc/passwd. If the badcode.pl program
is vulnerable to a directory traversal attack, it would break out of the /var/www/
htdocs directory, crawl up to the real root directory of the server, dive down into
the /etc directory, and “fetch” the system password file, displaying it to the user
with a nifty header and footer attached!

Automated tools can do a much better job of locating these types of files and
vulnerabilities, if you don’t mind all the noise they create. If you’re a program-
mer, you will be very interested in the Libwhisker Perl library, written and main-
tained by Rain Forest Puppy (RFP) and available from www.wiretrip.net/rfp.
Security Focus wrote a great article on using Libwhisker. That article is available
from www.securityfocus.com/infocus/1798. If you aren’t a programmer, RFP’s
Whisker tool, also available from the Wiretrip site, is excellent, as are other
tools based on Libwhisker, such as nikto, written by sullo@cirt.net, which is
said to be updated even more than the Whisker program itself. Another tool
that performs (amongst other things) file and directory mining is Wikto from
SensePost that can be downloaded at www.sensepost.com/research/wikto. The
advantage of Wikto is that it does not suffer from false positives on Web sites
that responds with friendly 404 messages.

Incremental Substitutions
Another technique similar to traversal is incremental substitution. This technique
involves replacing numbers in a URL in an attempt to find directories or files
that are hidden, or unlinked from other pages. Remember that Google gener-
ally only locates files that are linked from other pages, so if it’s not linked,
Google won’t find it. (Okay, there’s an exception to every rule. See the FAQ

http://www.somesad-site.org/badcode.pl?page=../../../etc/passwd
http://www.wiretrip.net/rfp
http://www.securityfocus.com/infocus/1798
http://www.sensepost.com/research/wikto

57

at the end of this chapter.) As a simple example, consider a document called
exhc-1.xls, found with Google. You could easily modify the URL for that docu-
ment, changing the 1 to a 2, making the filename exhc-2.xls. If the document is
found, you have successfully used the incremental substitution technique! In
some cases it might be simpler to use a Google query to find other similar files
on the site, but remember, not all files on the Web are in Google’s databases.
Use this technique only when you’re sure a simple query modification won’t
find the files first.

This technique does not apply only to filenames, but just about anything that
contains a number in a URL, even parameters to scripts. Using this technique
to toy with parameters to scripts is beyond the scope of this book, but if you’re
interested in trying your hand at some simple file or directory substitutions,
look up some test sites with queries such as filetype:xls inurl:1.xls or intitle:index.
of inurl:0001 or even an images search for 1.jpg. Now use substitution to try to
modify the numbers in the URL to locate other files or directories that exist on
the site. Here are some examples:

j	 /docs/bulletin/1.xls could be modified to /docs/bulletin/2.xls
j	 /DigLib_thumbnail/spmg/hel/0001/H/ could be changed to/DigLib_

thumbnail/spmg/hel/0002/H/
j	 /gallery/wel008-1.jpg could be modified to /gallery/wel008-2.jpg

Extension Walking
We’ve already discussed file extensions and how the filetype operator can be
used to locate files with specific file extensions. For example, we could easily
search for HTM files with a query such as filetype:HTM1. Once you’ve located
HTM files, you could apply the substitution technique to find files with the
same file name and different extension. For example, if you found /docs/index.
htm, you could modify the URL to /docs/index.asp to try to locate an index.asp
file in the docs directory. If this seems somewhat pointless, rest assured, this is,
in fact, rather pointless. We can, however, make more intelligent substitutions.
Consider the directory listing. This listing shows evidence of a very common
practice, the creation of backup copies of Web pages.

Backup files can be a very interesting find from a security perspective. In some
cases, backup files are older versions of an original file. Backup files on the
Web have an interesting side effect: they have a tendency to reveal source code.
Source code of a Web page is quite a find for a security practitioner, because
it can contain behind-the-scenes information about the author, the code cre-
ation and revision process, authentication information, and more.

To see this concept in action, consider the directory listing. Clicking the link for
index.php will display that page in your browser with all the associated graphics
and text, just as the author of the page intended. If this were an HTM or HTML

Going Out on a Limb: Traversal Techniques

CHAPTER 3:   Google Hacking Basics58

file, viewing the source of the page would be as easy as right-clicking the page
and selecting view source. PHP files, by contrast, are first executed on the server.
The results of that executed program are then sent to your browser in the form
of HTML code, which your browser then displays. Performing a view source on
HTML code that was generated from a PHP script will not show you the PHP
source code, only the HTML. It is not possible to view the actual PHP source
code unless something somewhere is misconfigured. An example of such a
misconfiguration would be copying the PHP code to a filename that ends in
something other than PHP, like BAK. Most Web servers do not understand
what a BAK file is. Those servers, then, will display a PHP.BAK file as text. When
this happens, the actual PHP source code is displayed as text in your browser.
PHP source code can be quite revealing, showing things like Structured Query
Language (SQL) queries that list information about the structure of the SQL
database that is used to store the Web server’s data.

The easiest way to determine the names of backup files on a server is to locate
a directory listing using intitle:index.of or to search for specific files with queries
such as intitle:index.of index.php.bak or inurl:index.php.bak. Directory listings are
fairly uncommon, especially among corporate-grade Web servers. However, re-
member that Google’s cache captures a snapshot of a page in time. Just because
a Web server isn’t hosting a directory listing now, doesn’t mean the site never
displayed a directory listing. One page was found in Google’s cache and was dis-
played as a directory listing because an index.php (or similar file) was missing. In
this case, if you were to visit the server on the Web, it would look like a normal
page because the index file has since been created. Clicking the cache link, how-
ever, shows this directory listing, leaving the list of files on the server exposed.
This list of files can be used to intelligently locate files that still most likely exist
on the server (via URL modification) without guessing at file extensions.

Directory listings also provide insight into the file extensions that are in use
in other places on the site. If a system administrator or Web authoring pro-
gram creates backup files with a .BAK extension in one directory, there’s a good
chance that BAK files will exist in other directories as well.

SUMMARY
The Google cache is a powerful tool in the hands of the advanced user. It can
be used to locate old versions of pages that may expose information that nor-
mally would be unavailable to the casual user. The cache can be used to high-
light terms in the cached version of a page, even if the terms were not used as
part of the query to find that page. The cache can also be used to view a Web
page anonymously via the &strip = 1 URL parameter, and can be used as a ba-
sic transparent proxy server. An advanced Google user will always pay careful
attention to the details contained in the cached page’s header, since there can

Fast Track Solutions 59

be important information about the date the page was crawled, the terms that
were found in the search, whether the cached page contains external images,
links to the original page, and the text of the URL used to access the cached
version of the page. Directory listings provide unique behind-the-scenes views
of Web servers, and directory traversal techniques allow an attacker to poke
around files that may not be intended for public view.

FAST TRACK SOLUTIONS
Anonymity With Caches

j	 Clicking the cache link will not only load the page from Google’s
database, it will also connect to the real server to access graphics and
other non-HTML content.

j	 Adding &strip = 1 to the end of a cached URL will only show the HTML
of a cached page. Accessing a cached page in this way will not connect
to the real server on the Web, and could protect your anonymity if you
use the cut and paste method shown in this chapter.

Locating Directory Listings
j	 Directory listings contain a great deal of invaluable information.
j	 The best way to home in on pages that contain directory listings is with

a query such as intitle:index.of “parent directory” or intitle:index.of name
size.

Locating Specific Directories in a Listing
j	 You can easily locate specific directories in a directory listing by adding

a directory name to an index.of search. For example, intitle:index.of
inurl:backup could be used to find directory listings that have the word
backup in the URL. If the word backup is in the URL, there’s a good
chance it’s a directory name.

Locating Specific Files in a Directory Listing
j	 You can find specific files in a directory listing by simply adding the

filename to an index.of query, such as intitle:index.of ws_ftp.log.

Server Versioning With Directory Listings
j	 Some servers, specifically Apache and Apache derivatives, add a server

tag to the bottom of a directory listing. These server tags can be located
by extending an index.of search, focusing on the phrase server at – for
example, intitle:index.of server.at.

CHAPTER 3:   Google Hacking Basics60

j	 You can find specific versions of a Web server by extending this search
with more information from a correctly formatted server tag. For
example, the query intitle:index.of server.at “Apache Tomcat/” will locate
servers running various versions of the Apache Tomcat server.

Directory Traversal
j	 Once you have located a specific directory on a target Web server, you

can use this technique to locate other directories or subdirectories.
j	 An easy way to accomplish this task is via directory listings. Simply click

the parent directory link, which will take you to the directory above the
current directory. If this directory contains another directory listing, you
can simply click links from that page to explore other directories. If the
parent directory does not display a directory listing, you might have to
resort to a more difficult method, guessing directory names and adding
them to the end of the parent directory’s URL. Alternatively, consider
using site and inurl keywords in a Google search.

Incremental Substitution
j	 Incremental substitution is a fancy way of saying “take one number and

replace it with the next higher or lower number.”
j	 This technique can be used to explore a site that uses numbers in

directory or filenames. Simply replace the number with the next higher
or lower number, taking care to keep the rest of the file or directory
name identical (watch those zeroes!). Alternatively, consider using site
with either inurl or filetype keywords in a creative Google search.

Extension Walking
j	 This technique can help locate files (for example, backup files) that

have the same filename with a different extension.
j	 The easiest way to perform extension walking is by replacing one

extension with another in a URL – replacing html with bak, for example.
j	 Directory listings, especially cached directory listings, are easy ways to

determine whether backup files exist and what kinds of file extensions
might be used on the rest of the site.

61

﻿﻿
﻿

Document Grinding
and Database Digging

CHAPTER 4

INTRODUCTION
There’s no shortage of documents on the Internet. Good guys and bad guys
alike can use information found in documents to achieve their distinct pur-
poses. In this chapter we take a look at the ways you can use Google to not
only locate these documents but to search within these documents to locate
information. There are so many different types of documents and we can’t
cover them all, but we’ll look at the documents in distinct categories based
on their function. Specifically, we’ll take a look at configuration files, log files,
and office documents. Once we’ve looked at distinct file types, we’ll delve into
the realm of database digging. We won’t examine the details of the Structured
Query Language (SQL) or database architecture and interaction; rather, we’ll
look at the many ways Google hackers can locate and abuse database systems
armed with nothing more than a search engine.

One important thing to remember about document digging is that Google will
only search the rendered, or visible, view of a document. For example, consider
a Microsoft Word document. This type of document can contain metadata, as
shown in Figure 4.1. These fields include such things as the subject, author,
manager, company, and much more. Google will not search these fields. If
you’re interested in getting to the metadata within a file, you’ll have to down-
load the actual file and check the metadata yourself.

CONFIGURATION FILES
Configuration files store program settings. An attacker (or security specialist)
can use these files to glean insight into the way a program is used and perhaps,
by extension, into how the system or network it is operating on is used or con-
figured. As we’ve seen in previous chapters, even the smallest bit of informa-
tion can be of interest to a skilled attacker.

CHAPTER 4:   Document Grinding and Database Digging 62

Consider the file shown in Figure 4.2. This file, found with a query such as
filetype:ini inurl:ws_ftp, is a configuration file used by the WS_FTP client pro-
gram. When the WS_FTP program is downloaded and installed, the configura-
tion file contains nothing more than a list of popular, public Internet FTP serv-
ers. However, over time, this configuration file can be automatically updated
to include the name, directory, username, and password of FTP servers the user
connects to. Although the password is encoded when it is stored, some free
programs can crack these passwords with relative ease.

Regardless of the type of data in a configuration file, sometimes the mere ex-
istence of a configuration file is significant. If a configuration file is located on
a server, there’s a chance that the accompanying program is installed some-
where on that server or on neighboring machines on the network. Although
this might not seem like a big deal in the case of FTP client software, consider
a search like filetype:conf inurl:firewall, which can locate generic firewall con-
figuration files. This example demonstrates one of the most generic naming

FIGURE 4.1  

Configuration Files 63

conventions for a configuration file, the use of the conf file extension. Other
generic naming conventions can be combined to locate other equally com-
mon naming conventions. One of the most common base searches for locat-
ing configuration files is simply (inurl:conf OR inurl:config OR inurl:cfg), which
incorporates the three most common configuration file prefixes. You may also
opt to use the filetype operator.

If an attacker knows the name of a configuration file as it shipped from the
software author or vendor, he can simply create a search targeting that filename
using the filetype and inurl operators. However, most programs allow you to ref-
erence a configuration file of any name, making a Google search slightly more
difficult. In these cases, it helps to get an idea of the contents of the configura-
tion file, which could be used to extract unique strings for use in an effective
base search. Sometimes, combining a generic base search with the name (or
acronym) of a software product can have satisfactory results, as a search for
(inurl:conf OR inurl:config OR inurl:cfg) MRTG shows in Figure 4.3.

Although this first search is not far off the mark, it’s fairly common for even the
best config file search to return page after page of sample or example files, like
the sample MRTG configuration file shown in Figure 4.4.

This brings us back, once again, to perhaps the most valuable weapon in a
Google hacker’s arsenal: effective search reduction. Here’s a list of the most com-
mon points a Google hacker considers when trolling for configuration files:

j	 Create a strong base search using unique words or phrases from live files.
j	 Filter out the words sample, example, test, how to, and tutorial to narrow

the obvious example files.
j	 Filter out CVS repositories, which often house default config files, with –cvs.

FIGURE 4.2  

CHAPTER 4:   Document Grinding and Database Digging 64

j	 Filter out manpage or Manual if you’re searching for a UNIX program’s
configuration file.

j	 Locate the one most commonly changed field in a sample configuration
file and perform a negative search on that field, reducing potentially
“lame” or sample files.

j	 To illustrate these points, consider the search filetype:cfg mrtg “target[*]” -
sample -cvs –example, which locates potentially live MRTG files. As
shown in Figure 4.5, this query uses a unique string “target[*]” (which
is a bit ubiquitous to Google, but still a decent place to start) and
removes potential example and CVS files, returning decent results.

FIGURE 4.4  

FIGURE 4.3  

Locating Files 65

Some of the results shown in Figure 4.5 might not be real, live MRTG con-
figuration files, but they all have potential, with the exception of the first hit,
located in “/Squid-Book.”

There’s a good chance that this is a sample file, but because of the reduction
techniques we’ve used, the other results are potentially live, production MRTG
configuration files.

There is a list of searches that locate various configuration files. These entries
were gathered by the many contributors to the GHDB (https://www.exploit-
db.com/google-hacking-database/. This list highlights the various methods
that can be used to target configuration files. You’ll see examples of CVS re-
duction, sample reduction, unique word and phrase isolation, and more.
Most of these queries took imagination on the part of the creator and in
many cases took several rounds of reduction by several searchers to get to the
query you see here. Learn from these queries, and try them out for yourself.
It might be helpful to remove some of the qualifiers, such as –cvs or –sample,
where applicable, to get an idea of what the “messy” version of the search
might look like.

LOCATING FILES
To locate files, it’s best to try different types of queries. For example, intitle:index.
of ws_ftp.ini will return results, but so will filetype:ini inurl:ws_ftp.ini. The inurl
search, however, is often the better choice. First, the filetype search allows you
to browse right to a cached version of the page. Second, the directory listings

FIGURE 4.5  

https://www.exploit-db.com/google-hacking-database/
https://www.exploit-db.com/google-hacking-database/

CHAPTER 4:   Document Grinding and Database Digging 66

found by the index.of search might allow you to view a list of files but not allow
you access to the actual file. Third, directory listings are not overly common.
The filetype search will locate your file no matter how Google found it.

LOG FILES
Log files record information. Depending on the application, the information
recorded in a log file can include anything from timestamps and IP addresses
to usernames and passwords – even incredibly sensitive data such as credit card
numbers!

Like configuration files, log files often have a default name that can be used as
part of a base search. The most common file extension for a log file is simply
log, making the simplest base search for log files simply filetype:log inurl:log or
the even simpler ext:log log. Remember that the ext (filetype) operator requires
at least one search argument. Log file searches seem to return fewer samples
and example files than configuration file searches, but search reduction is still
required in some cases. Refer to the rules for configuration file reduction listed
previously.

There is also a collection of log file searches collected from the GHDB. These
searches show the various techniques that are employed by Google hackers
and serve as an excellent learning tool for constructing your own searches dur-
ing a penetration test.

Log files reveal various types of information, as shown in the search for
filetype:log user- name putty in Figure 4.6. This log file lists machine names and
associated usernames that could be reused in an attack against the machine.

FIGURE 4.6  

Database Digging 67

OFFICE DOCUMENTS
The term office document generally refers to documents created by word process-
ing software, spreadsheet software, and lightweight database programs. Com-
mon word processing software includes Microsoft Word, Corel WordPerfect,
MacWrite, and Adobe Acrobat. Common spreadsheet programs include Micro-
soft Excel, Lotus 1-2-3, and Linux’s Gnumeric. Other documents that are gen-
erally lumped together under the office document category include Microsoft
PowerPoint, Microsoft Works, and Microsoft Access documents.

In many cases, simply searching for these files with filetype is pointless without
an additional specific search. Google hackers have successfully uncovered all
sorts of interesting files by simply throwing search terms such as private or
password or admin onto the tail end of a filetype search. However, simple base
searches such as (inurl:xls OR inurl:doc OR inurl:mdb) can be used as a broad
search across many file types.

Some searches, such as filetype:xls inurl:password.xls, focus on a file with a spe-
cific name. The password.xls file does not necessarily belong to any specific soft-
ware package, but it sounds interesting simply because of the name. Other
searches, such as filetype:xls username password email, shift the focus from the
file’s name to its contents. The reasoning here is that if an Excel spreadsheet
contains the words username password and email, there’s a good chance the
spreadsheet contains sensitive data such as passwords. The heart and soul of
a good Google search involves refining a generic search to uncover something
extremely relevant. Google’s ability to search inside different types of docu-
ments is an extremely powerful tool in the hands of an advanced Google user.

DATABASE DIGGING
There has been intense focus recently on the security of Web-based database
applications, specifically the front–end software that interfaces with a data-
base. Within the security community, talk of SQL injection has all but replaced
talk of the once-common CGI vulnerability, indicating that databases have ar-
guably become a greater target than the underlying operating system or Web
server software.

An attacker will not generally use Google to break into a database or muck
with a database front–end application; rather, Google hackers troll the Inter-
net looking for bits and pieces of database information leaked from poten-
tially vulnerable servers. These bits and pieces of information can be used to
first select a target and then to mount a more educated attack (as opposed
to a ground-zero blind attack) against the target. Bearing this in mind, under-
stand that here we do not discuss the actual mechanics of the attack itself, but
rather the surprisingly invasive information-gathering phase an accomplished
Google hacker will employ prior to attacking a target.

CHAPTER 4:   Document Grinding and Database Digging 68

LOGIN PORTALS
A login portal is the “front door” of a Web-based application. Proudly display-
ing a username and password dialog, login portals generally bear the scrutiny
of most Web attackers simply because they are the one part of an application
that is most carefully secured. There are obvious exceptions to this rule, but as
an analogy, if you’re going to secure your home, aren’t you going to first make
sure your front door is secure?

A typical database login portal is shown in Figure 4.7. This login page an-
nounces not only the existence of an SQL server but also the Microsoft Web
Data Administrator software package.

Regardless of its relative strength, the mere existence of a login portal provides a
glimpse into the type of software and hardware that might be employed at a target.
Put simply, a login portal is terrific for footprinting. In extreme cases, an unsecured
login portal serves as a welcome mat for an attacker. To this end, let’s look at some
queries that an attacker might use to locate database front ends on the Internet.

One way to locate login portals is to focus on the word login. Another way is
to focus on the copyright at the bottom of a page. Most big-name portals put
a copyright notice at the bottom of the page. Combine this with the product
name, and a welcome or two, and you’re off to a good start.

SUPPORT FILES
Another way an attacker can locate or gather information about a database is
by querying for support files that are installed with, accompany, or are created
by the database software. These can include configuration files, debugging

FIGURE 4.7  

Error Messages 69

scripts, and even sample database files. Some searches locate specific sup-
port files that are included with or are created by popular database clients
and servers. As an example of a support file, PHP scripts using the mysql_con-
nect function reveal machine names, usernames, and cleartext passwords, as
shown in Figure 4.8. Strictly speaking, this file contains PHP code, but the
INC extension makes it an include file. It’s the content of this file that is of
interest to a Google hacker.

ERROR MESSAGES
As we’ve discussed throughout this book, error messages can be used for all
sorts of profiling and information-gathering purposes. Error messages also
play a key role in the detection and profiling of database systems. As is the
case with most error messages, database error messages can also be used to
profile the operating system and Web server version. Conversely, operating
system and Web server error messages can be used to profile and detect da-
tabase servers.

In addition to revealing information about the database server, error messages
can also reveal much more dangerous information about potential vulnerabili-
ties that exist in the server. For example, consider an error such as “SQL com-
mand not properly ended”, displayed in Figure 4.9. This error message indicates
that a terminating character was not found at the end of an SQL statement. If
a command accepts user input, an attacker could leverage the information in
this error message to execute an SQL injection attack.

FIGURE 4.8  

CHAPTER 4:   Document Grinding and Database Digging 70

DATABASE DUMPS
The output of a database into any format can be constituted as a database
dump. For the purposes of Google hacking, however, we’ll use the term
database dump to describe the text-based conversion of a database. As we’ll see
next in this chapter, it’s entirely possible for an attacker to locate just about any
type of binary database file, but standardized formats (such as the text-based
SQL dump shown in Figure 4.10) are very commonplace on the Internet.

FIGURE 4.9  

FIGURE 4.10  

Automated Grinding 71

Using a full database dump, a database administrator can completely rebuild a
database. This means that a full dump details not only the structure of the da-
tabase’s tables but also every record in each and every table. Depending on the
sensitivity of the data contained in the database, a database dump can be very
revealing and obviously makes a terrific tool for an attacker. There are several
ways an attacker can locate database dumps. One of the most obvious ways is
by focusing on the headers of the dump, resulting in a query such as “#Dump-
ing data for table”, as shown in Figure 4.10. This technique can be expanded to
work on just about any type of database dump headers by simply focusing on
headers that exist in every dump and that are unique phrases that are unlikely
to produce false positives.

Specifying additional specific interesting words or phrases such as username,
password, or user can help narrow this search. For example, if the word password
exists in a database dump, there’s a good chance that a password of some sort
is listed inside the database dump. With proper use of the OR symbol (|), an
attacker can craft an extremely effective search, such as “# Dumping data for table”
(user | username | pass | password). In addition, an attacker could focus on file
extensions that some tools add to the end of a database dump by querying for
filetype:sql sql and further narrowing to specific words, phrases, or sites. The SQL
file extension is also used as a generic description of batched SQL commands.

ACTUAL DATABASE FILES
Another way an attacker can locate databases is by searching directly for the da-
tabase itself. This technique does not apply to all database systems, only those
systems in which the database is represented by a file with a specific name or
extension. Be advised that Google will most likely not understand how to pro-
cess or translate these files, and the summary (or snippet) on the search result
page will be blank and Google will list the file as an “unknown type,” as shown
in Figure 4.11.

If Google does not understand the format of a binary file, as with many of
those located with the filetype operator, you will be unable to search for strings
within that file. This considerably limits the options for effective searching,
forcing you to rely on inurl or site operators instead.

AUTOMATED GRINDING
Searching for files is fairly straightforward – especially if you know the type
of file you’re looking for. We’ve already seen how easy it is to locate files that
contain sensitive data, but in some cases it might be necessary to search files
offline. For example, assume that we want to troll for yahoo.com email ad-
dresses. A query such as “@yahoo.com” email is not at all effective as a Web
search, and even as a Group search it is problematic, as shown in Figure 4.12.

CHAPTER 4:   Document Grinding and Database Digging 72

This search located one email address, jg65_83@yahoo.com, but also keyed on
store.yahoo.com, which is not a valid email address. In cases like this, the best
option for locating specific strings lies in the use of regular expressions. This in-
volves downloading the documents you want to search (which you most likely
found with a Google search) and parsing those files for the information you’re
looking for. You could opt to automate the process of downloading these files,
as we’ll show in Chapter 12, but once you have downloaded the files, you’ll

FIGURE 4.11  

FIGURE 4.12  

Automated Grinding 73

need an easy way to search the files for interesting information. Consider the
following Perl script:

This script accepts two arguments: a file to search and a list of words to search
for. As it stands, this program is rather simplistic, acting as nothing more than
a glorified grep script. However, the script becomes much more powerful when
instead of words, the word list contains regular expressions. For example, con-
sider the following regular expression, written by Don Ranta:

Unless you’re somewhat skilled with regular expressions, this might look like
a bunch of garbage text. This regular expression is very powerful, however, and
will locate various forms of email address.

CHAPTER 4:   Document Grinding and Database Digging 74

Let’s take a look at this regular expression in action. For this example, we’ll
save the results of a Google Groups search for “@yahoo.com” email to a file
called results.html, and we’ll enter the preceding regular expression all on one
line of a file called wordfile.txt. We can also grab the search results from the
command line with a program like Lynx, a common text-based Web browser.
Other programs could be used instead of Lynx – Curl, Netcat, Telnet, or even
“save as” from a standard Web browser. Remember that Google’s terms of
service frown on any form of automation. In essence, Google prefers that you
simply execute your search from the browser, saving the results manually.
However, as we’ve discussed previously, if you honor the spirit of the terms
of service, taking care not to abuse Google’s free search service with exces-
sive automation, the folks at Google will most likely not turn their wrath
upon you. Regardless, most people will ultimately decide for themselves how
strictly to follow the terms of service.

Back to our Google search. Notice that the URL indicates we’re grabbing the
first hundred results, as demonstrated by the use of the num = 100 parameter.
This will potentially locate more email addresses. Once the results are saved to
the results.html file, we’ll run our ssearch.pl script against the results.html file,
searching for the email expression we’ve placed in the wordfile.txt file. To help
narrow our results, we’ll pipe that output into “grep yahoo | head –15 | sort –u”
to return utmost 15 unique addresses that contain the word yahoo. The final
(obfuscated) results are shown in Figure 4.13.

As you can see, this combination of commands works fairly well at unearth-
ing email addresses. If you’re familiar with UNIX commands, you might

FIGURE 4.13  

Automated Grinding 75

have already noticed that there is little need for two separate commands.
This entire process could have been easily combined into one command
by modifying the Perl script to read standard input and piping the output
from the Lynx command directly into the ssearch.pl script, effectively by-
passing the results.html file. Presenting the commands this way, however,
opens the door for irresponsible automation techniques, which isn’t overtly
encouraged.

Other regular expressions can come in handy as well. This expression, also by
Don Ranta, locates URLs:

This expression, which will locate URLs and parameters, including addresses
that consist of either IP addresses or domain names, is great at processing a
Google results page, returning all the links on the page. This doesn’t work as
well as the API-based methods, but it is simpler to use than the API method.
This expression locates IP addresses:

We can use an expression like this to help map a target network. These tech-
niques could be used to parse not only HTML pages but also practically any
type of document. However, keep in mind that many files are binary, meaning
that they should be converted into text before they’re searched. The UNIX
strings command (usually implemented with strings –8 for this purpose) works
very well for this task, but don’t forget that Google has the built-in capability
to translate many different types of documents for you. If you’re searching
for visible text, you should opt to use Google’s translation, but if you’re
searching for nonprinted text such as metadata, you’ll need to first download
the original file and search it offline. Regardless of how you implement these
techniques, it should be clear to you by now that Google can be used as an
extremely powerful information-gathering tool when it’s combined with even
a little automation.

CHAPTER 4:   Document Grinding and Database Digging 76

SUMMARY
The subject of document grinding is topic worthy of an entire book. In a
single chapter, we can only hope to skim the surface of this topic. An attack-
er (black or white hat) who is skilled in the art of document grinding can
glean loads of information about a target. In this chapter we’ve discussed
the value of configuration files, log files, and office documents, but obvi-
ously there are many other types of documents we could focus on as well.
The key to document grinding is first discovering the types of documents
that exist on a target and then, depending on the number of results, to
narrow the search to the more interesting or relevant documents. Depend-
ing on the target, the line of business they’re in, the document type, and
many other factors, various keywords can be mixed with filetype searches to
locate key documents.

Database hacking is also a topic for an entire book. However, there is obvious
benefit to the information Google can provide prior to a full-blown database
audit. Login portals, support files, and database dumps can provide various
information that can be recycled into an audit. Of all the information that
can be found from these sources, perhaps the most telling (and devastating) is
source code. Lines of source code provide insight into the way a database
is structured and can reveal flaws that might otherwise go unnoticed from an
external assessment. In most cases, though, a thorough code review is required
to determine application flaws. Error messages can also reveal a great deal of
information to an attacker.

Automated grinding allows you to search many documents programmatically
for bits of important information. When it’s combined with Google’s excellent
document location features, you’ve got a very powerful information-gathering
weapon at your disposal.

FAST TRACK SOLUTIONS
Configuration Files

j	 Configuration files can reveal sensitive information to an attacker.
j	 Although the naming varies, configuration files can often be found with

file extensions like INI, CONF, CONFIG, or CFG.

Log Files
j	 Log files can also reveal sensitive information that is often more current

than the information found in configuration files.
j	 Naming convention varies, but log files can often be found with file

extensions like LOG.

Fast Track Solutions 77

Office Documents
j	 In many cases, office documents are intended for public release.

Documents that are inadvertently posted to public areas can contain
sensitive information.

j	 Common office file extensions include PDF, DOC, TXT, or XLS.
j	 Document content varies, but strings like private, password, backup, or

admin can indicate a sensitive document.

Database Digging
j	 Login portals, especially default portals supplied by the software

vendor, are easily searched for and act as magnets for attackers seeking
specific versions or types of software. The words login, welcome, and
copyright statements are excellent ways of locating login portals.

j	 Support files exist for both server and client software. These files can
reveal information about the configuration or usage of an application.

j	 Error messages have varied content that can be used to profile a target.
j	 Database dumps are arguably the most revealing of all database finds

because they include full or partial contents of a database. These dumps
can be located by searching for strings in the headers, like “# Dumping
data for table”.

Links to Sites
j	 www.filext.com – A great resource for getting information about file

extensions.
j	 www.exploit-db.com/google-dorks/ – The home of the Google

Hacking Database, where you can find more searches like those listed in
this chapter.

Frequently Asked Questions
The following frequently asked questions, answered by the authors of this
book, are designed to both measure your understanding of the concepts pre-
sented in this chapter and to assist you with real-life implementation of these
concepts.

Q: �What can I do to help prevent this form of information leakage?
A: �To fix this problem on a site you are responsible for, first review all documents

available from a Google search. Ensure that the returned documents are, in
fact, supposed to be in the public view. Although you might opt to scan your
site for database information leaks with an automated tool the best way to
prevent this is at the source. Your database remote administration tools should
be locked down from outside users, default login portals should be reviewed

http://www.filext.com/
http://www.exploit-db.com/google-dorks/

CHAPTER 4:   Document Grinding and Database Digging 78

for safety and checked to ensure that software versioning information has
been removed, and support files should be removed from your public servers.
Error messages should be tailored to ensure that excessive information is not
revealed, and a full application review should be performed on all applications
in use. In addition, it doesn’t hurt to configure your Web server to only allow
certain file types to be downloaded. It’s much easier to list the file types you will
allow than to list the file types you don’t allow.

Q: �I’m concerned about excessive metadata in office documents. Can I do anything
to clean up my documents?

A: �Microsoft provides a Web page dedicated to the topic: http://support.microsoft.
com/default.aspx?scid(kb;EN-US;Q223396. In addition, several utilities are
available to automate the cleaning process.

Q: �Many types of software rely on include files to pull in external content. As I
understand it, include files, like the INC files discussed in this chapter, are a
problem because they often reveal sensitive information meant for programs,
not Web visitors. Is there any way to resolve the dangers of include files?

A: �Include files are in fact a problem because of their file extensions. If an
extension such as .INC is used, most Web servers will display them as text,
revealing sensitive data. Consider blocking .INC files (or whatever extension
you use for includes) from being downloaded. This server modification will keep
the file from presenting in a browser but will still allow back-end processes to
access the data within the file.

Q: �Our software uses .INC files to store database connection settings. Is there
another way?

A: �Rename the extension to .PHP so that the contents are not displayed.
Q: �How can I avoid our application database from being downloaded by a Google

hacker?
A: �Read the documentation. Some badly written software has hardcoded paths but

most allow you to place the file outside the Web server’s docroot.

http://support.microsoft.com/default.aspx%3Fscid(kb;EN-US;Q223396
http://support.microsoft.com/default.aspx%3Fscid(kb;EN-US;Q223396

79

﻿﻿
﻿

Google’s Part in an Information
Collection Framework

CHAPTER 5

INTRODUCTION
There are various reasons for hacking. When most of us hear hacker we think
about computer and network security, but lawyers, salesmen, and policemen
are also hackers at heart. It’s really a state of mind and a way of thinking rather
than a physical attribute. Why do people hack? There are a couple of motiva-
tors, but one specific reason is to be able to know things that the ordinary
man on the street doesn’t. From this many of the other motivators stem out.
Knowledge is power – there’s a rush to seeing what others are doing without
them knowing it. Understanding that the thirst for knowledge is central to
hacking, consider Google, a massively distributed supercomputer, with access
to all known information and with a deceivingly simple user interface, just
waiting to answer any query within seconds. It is almost as if Google was made
for hackers.

The first and second editions of this book brought to light many techniques
that a hacker (or penetration tester) might use to obtain information that
would help him or her in conventional security assessments (e.g., finding
networks, domains, email addresses, and so on). During such a conven-
tional security test (or pen test) the aim is almost always to breach security
measures and get access to information that is restricted. However, this in-
formation can be reached simply by assembling related pieces of informa-
tion together to form a bigger picture. This, of course, is not true for all
information. The chances that I will find your super secret double encrypted
document on Google is extremely slim, but you can bet that the way to get to
it will eventually involve a lot of information gathering from public sources
like Google.

If you are reading this book you are probably already interested in informa-
tion mining, getting the most from search engines by using them in interest-
ing ways. In this chapter I hope to show interesting and clever ways to do
just that.

CHAPTER 5:   Google’s Part in an Information Collection Framework80

THE PRINCIPLES OF AUTOMATING SEARCHES
Computers help automate tedious tasks. Clever automation can accomplish
what a thousand disparate people working simultaneously cannot. But it’s im-
possible to automate something that cannot be done manually. If you want
to write a program to perform something, you need to have done the entire
process by hand, and have that process work every time. It makes little sense
to automate a flawed process. Once the manual process is ironed out, an algo-
rithm is used to translate that process into a computer program.

Let’s look at an example. A user is interested in finding out which Web sites
contain the email address andrew@syngress.com. As a start, the user opens
Google and types the email address in the input box. The results are shown
in Figure 5.1.

The user sees that there are three different sites with that email address listed:
g.bookpool.com, www.networksecurityarchive.org, and book.google.com. In the back
of his or her mind is the feeling that these are not the only sites where the
email address appears, and remembers that he or she has seen places where
email addresses are listed as andrew at syngress dot com. When the user puts
this search into Google, he or she gets different results, as shown in Figure 5.2.

Clearly the lack of quotes around the query gave incorrect results. The user
adds the quotes and gets the results shown in Figure 5.3.

By formulating the query differently, the user now has a new result: taosecurity.
blogspot.com. The manipulation of the search query worked, and the user has
found another site reference.

FIGURE 5.1  

mailto:andrew@syngress.com
http://www.networksecurityarchive.org/

81The Principles of Automating Searches

If we break this process down into logical parts, we see that there are actually
many different steps that were followed. Almost all searches follow these steps:

j	 Define an original search term
j	 Expand the search term
j	 Get data from the data source
j	 Parse the data
j	 Postprocess the data into information.

Let’s look at these in more detail.

FIGURE 5.2  

FIGURE 5.3  

CHAPTER 5:   Google’s Part in an Information Collection Framework82

THE ORIGINAL SEARCH TERM
The goal of the previous example was to find Web pages that reference a specif-
ic email address. This seems rather straightforward, but clearly defining a goal
is probably the most difficult part of any search. Brilliant searching won’t help
attain an unclear goal. When automating a search, the same principles apply as
when doing a manual search: garbage in, garbage out.

Computers are bad at “thinking” and good at “number crunching.” Don’t try
to make a computer think for you, because you will be bitterly disappointed
with the results. The principle of garbage in, garbage out simply states that
if you enter bad information into a computer from the start, you will only
get garbage (or bad information) out. Inexperienced search engine users often
wrestle with this basic principle.

In some cases, goals may need to be broken down. This is especially true of broad
goals, like trying to find email addresses of people that work in cheese factories
in the Netherlands. In this case, at least one subgoal exists – you’ll need to define
the cheese factories first. Be sure your goals are clearly defined, then work your
way to a set of core search terms. In some cases, you’ll need to play around with
the results of a single query in order to work your way towards a decent start-
ing search term. I have often seen results of a query and thought, “Wow, I never
thought that my query would return these results. If I shape the query a little dif-
ferently each time with automation, I can get loads of interesting information.”

In the end the only real limit to what you can get from search engines is your
own imagination, and experimentation is the best way to discover what types
of queries work well.

EXPANDING SEARCH TERMS
In our example, the user quickly figured out that they could get more results
by changing the original query into a set of slightly different queries. Expand-
ing search terms is fairly natural for humans, and the real power of search
automation lies in thinking about that human process and translating it into
some form of algorithm. By programmatically changing the standard form of a
search into many different searches, we save ourselves from manual repetition,
and more importantly, from having to remember all of the expansion tricks.
Let’s take a look at a few of these expansion techniques.

Email Addresses
Many sites try obscure email addresses in order to fool data-mining programs.
This is done for a good reason: the majority of the data-mining programs troll
sites to collect email addresses for spammers. If you want a sure fire way to
receive a lot of spam, post to a mailing list that does not obscure your email

Expanding Search Terms 83

address. While it’s a good thing that sites automatically obscure the email ad-
dress, it also makes our lives as Web searchers difficult. Luckily, there are ways
to beat this; however, these techniques are also not unknown to spammers.

When searching for an email address we can use the following expansions. The
email address andrew@syngress.com could be expanded as follows:

j	 andrew at syngress.com
j	 andrew at syngress dot com
j	 andrew@syngress dot com
j	 andrew_at_syngress.com
j	 andrew_at_syngress dot com
j	 andrew_at_syngress_dot_com
j	 andrew@syngress.remove.com
j	 andrew@_removethis_syngress.com

Note that the “@” sign can be written in many forms (e.g., – (at), _at_ or -at-).
The same goes for the dot (“.”). You can also see that many people add “remove”
or “removethis” in an email address. At the end it becomes an 80/20 thing – you
will find 80% of addresses when implementing the top 20% of these expansions.

At this stage you might feel that you’ll never find every instance of the ad-
dress (and you may be right). But there is a tiny light at the end of the tunnel.
Google ignores certain characters in a search. A search for andrew@syngress.com
and “andrew syngress com” returns the same results. The @ sign and the dot are
simply ignored. So when expanding search terms, don’t include both, because
you are simply wasting a search.

Verifying an Email Address
Here’s a quick hack to verify if an email address exists. While this might not
work on all mail servers, it works on the majority of them – including Gmail.
Have a look:

j	 Step 1. Find the mail server: $ host -t mx gmail.com
j	 gmail.com mail is handled by 5 gmail-smtp-in.l.google.com.
j	 gmail.com mail is handled by 10 alt1.gmail-smtp-in.l.google.com.
j	 gmail.com mail is handled by 10 alt2.gmail-smtp-in.l.google.com.
j	 gmail.com mail is handled by 50 gsmtp163.google.com.
j	 gmail.com mail is handled by 50 gsmtp183.google.com.

j	 Step 2. Pick one and Telnet to port 25 $ telnet gmail-smtp-in.l.google.
com 25
j	 Trying 64.233.183.27
j	 Connected to gmail-smtp-in.l.google.com.
j	 Escape character is “^]”.
j	 220 mx.google.com ESMTP d26si15626330nfh

mailto:andrew@syngress.com
mailto:andrew@syngress.remove.com
mailto:andrew@_removethis_syngress.com
mailto:andrew@syngress.com

CHAPTER 5:   Google’s Part in an Information Collection Framework84

j	 Step 3. Mimic the Simple Mail Transfer Protocol (SMTP): HELO test
j	 250 mx.google.com at your service
j	 MAIL FROM: <test@test.com>
j	 250 2.1.0 OK

j	 Step 4a. Positive test – RCPT TO: <roelof.temmingh@gmail.com>
j	 250 2.1.5 OK

j	 Step 4b. Negative test – RCPT TO: <kosie.kramer@gmail.com>
j	 550 5.1.1 No such user d26si15626330nfh

j	 Step 5. Say goodbye: quit
j	 221 2.0.0 mx.google.com closing connection d26si15626330nfh

By inspecting the responses from the mail server we have now verified that
roelof.temmingh@gmail.com exists, while kosie.kramer@gmail.com does not. In
the same way, we can verify the existence of other email addresses.

On Windows platforms you will need to use the nslookup command to find
the email servers for a domain. You can do this as follows: nslookup -qtype=mx
gmail.com

Telephone Numbers
While email addresses have a set format, telephone numbers are a different
kettle of fish. It appears that there is no standard way of writing down a phone
number. Let’s assume you have a number that is in South Africa and the num-
ber itself is 012 555 1234. The number can appear on the Internet in many
different forms:

j	 012 555 1234 (local)
j	 012 5551234 (local)
j	 012555124 (local)
j	 +27 12 555 1234 (with the country code)
j	 +27 12 5551234 (with the country code)
j	 +27 (0)12 555 1234 (with the country code)
j	 0027 (0)12 555 1234 (with the country code)

One way of catching all of the results would be to look for the most significant
part of the number, “555 1234” and “5551234.” However, this has a drawback
as you might find that the same number exists in a totally different country,
giving you a false positive.

An interesting way to look for results that contain telephone numbers within
a certain range is by using Google’s numrange operator. A shortcut for this is to
specify the start number, then “..” followed by the end number. Let’s see how
this works in real life. Imagine I want to see what results I can find on the area
code +1 252 793. You can use the numrange operator to specify the query as
shown in Figure 5.4.

mailto:test@test.com
mailto:roelof.temmingh@gmail.com
mailto:kosie.kramer@gmail.com
mailto:roelof.temmingh@gmail.com
mailto:kosie.kramer@gmail.com

Expanding Search Terms 85

We can clearly see that the results all contain numbers located in the specified
range in North Carolina. We will see how this ability to restrict results to a cer-
tain area is very useful later in this chapter.

People
One of the best ways to find information about someone is to Google them.
If you haven’t Googled for yourself, you are the odd one out. There are many
ways to search for a person and most of them are straightforward. If you don’t
get results straight away don’t worry, there are numerous options. Assuming
you are looking for Andrew Williams you might search for:

j	 “Andrew Williams”
j	 “Williams Andrew”
j	 “A Williams”
j	 “Andrew W”
j	 Andrew Williams
j	 Williams Andrew

Note that the last two searches do not have quotes around them. This is to find
phrases like “Andrew is part of the Williams family”.

With a name like Andrew Williams you can be sure to get a lot of false posi-
tives as there are probably many people named Andrew Williams on the In-
ternet. As such, you need to add as many additional search terms to your
search as possible. For example, you may try something like “Andrew Williams”
Syngress publishing security. Another tip to reduce false positives is to restrict
the site to a particular country. If Andrew stayed in England, adding the site:uk

FIGURE 5.4  

CHAPTER 5:   Google’s Part in an Information Collection Framework86

operator would help limit the results. But keep in mind that your searches are
then limited to sites in the UK. If Andrew is indeed from the UK but posts on
sites that end in any other top level domains (TLD), this search won’t return
hits from those sites.

Getting Lots of Results
In some cases you’d be interested in getting a lot of results, not just specific
results. For instance, you want to find all Web sites or email addresses within
a certain TLD. Here you want to combine your searches with keywords that
do two things: get past the 1000 result restriction and increase your yield per
search. As an example, consider finding Web sites in the ****.gov domain, as
shown in Figure 5.5.

You will get a maximum of 1000 sites from the query, because it is most likely
that you will get more than one result from a single site. In other words, if 500
pages are located on one server and 500 pages are located on another server
you will only get two site results.

Also, you will be getting results from sites that are not within the ****.gov
domain. How do we get more results and limit our search to the ****.gov
domain? By combining the query with keywords and other operators. Con-
sider the query site:****.gov - www.****.gov. The query means find any result
within sites that are located in the ****.gov domain, but that are not on their
main Web site. While this query works beautifully, it will again only get a
maximum of 1000 results. There are some general additional keywords we can

FIGURE 5.5  

87Using “Special” Operators

add to each query. The idea here is that we use words that will raise sites that
were below the 1000 mark surface to within the first 1000 results. Although
there is no guarantee that it will lift the other sites out, you could consider
adding terms like about, official, page, site, and so on. While Google says that
words like the, a, or, and so on are ignored during searches, we do see that
results differ when combining these words with the site: operator. Looking at
these results in Figure 5.6 shows that Google is indeed honoring the “ignored”
words in our query.

More Combinations
When the idea is to find lots of results, you might want to combine your search
with terms that will yield better results. For example, when looking for email
addresses, you can add keywords like contact, mail, email, and send. When look-
ing for telephone numbers you might use additional keywords like phone, tele-
phone, contact, number, and mobile.

USING “SPECIAL” OPERATORS
Depending on what it is that we want to get from Google, we might have to
use some of the other operators. Imagine we want to see what Microsoft Office
documents are located on a Web site. We know we can use the filetype: operator
to specify a certain file type, but we can only specify one type per query. As a
result, we will need to automate the process of asking for each Office file type
at a time. Consider asking Google these questions:

FIGURE 5.6  

CHAPTER 5:   Google’s Part in an Information Collection Framework88

j	 filetype:ppt site:www.****.gov
j	 filetype:doc site:www.****.gov
j	 filetype:xls site:www.****.gov
j	 filetype:pdf site:www.****.gov

Keep in mind that in certain cases, these expansions can now be combined
again using boolean logic. In the case of our Office document search, the
search filetype:ppt or filetype:doc site www.****.gov could work just as well. Keep
in mind that we can change the site: operator to be site:****.gov, which will
fetch results from any Web site within the ****.gov domain. We can use the
site: operator in other ways as well. Imagine a program that will see how many
time the word iPhone appears on sites located in different countries. If we mon-
itor the Netherlands, France, Germany, Belgium, and Switzerland our query
would be expanded as such:

j	 iphone site:nl
j	 iphone site:fr
j	 iphone site:de
j	 iphone site:be
j	 iphone site:ch

At this stage we only need to parse the returned page from Google to get the
amount of results, and monitor how the iPhone campaign is/was spreading
through Western Europe over time. Doing this right now (at the time of writing
this book) would probably not give you meaningful results (as the hype has
already peaked), but having this monitoring system in place before the release
of the actual phone could have been useful. (For a list of all country codes see
http://ftp.ics.uci.edu/pub/websoft/wwwstat/country-codes.txt, or just Google
for Internet country codes.)

GETTING THE DATA FROM THE SOURCE
At the lowest level we need to make a Transmission Control Protocol (TCP)
connection to our data source (which is the Google Web site) and ask for the
results. Because Google is a Web application, we will connect to port 80. Ordi-
narily, we would use a Web browser, but if we are interested in automating the
process we will need to be able to speak programmatically to Google.

SCRAPING IT YOURSELF: REQUESTING AND
RECEIVING RESPONSES
This is the most flexible way to get results. You are in total control of the pro-
cess and can do things like set the number of results (which was never possible
with the Application Programming Interface (API)). But it is also the most

http://ftp.ics.uci.edu/pub/websoft/wwwstat/country-codes.txt

89Scraping it Yourself: Requesting and Receiving Responses

labor intensive. However, once you get it going, your worries are over and you
can start to tweak the parameters.

Scraping is not allowed by most Web applications.

To start we need to find out how to ask a question/query to the Web site. If
you normally Google for something (in this case the word test), the returned
Uniform Resource Locator (URL) looks like this:

http://www.google.co.za/search?hl=en&q=test&btnG=Search&meta=

The interesting bit sits after the first slash (/) – search?hl=en&q=test&btnG=
Search&meta=. This is a GET request and parameters and their values are sepa-
rated with an “&” sign. In this request we have passed four parameters:

j	 hl
j	 q
j	 btnG
j	 meta

The values for these parameters are separated from the parameters with the
equal sign (=). The “hl” parameter means “home language,” which is set to
English. The “q” parameter means “question” or “query,” which is set to our
query “test.” The other two parameters are not of importance (at least not
now). Our search will return 10 results. If we set our preferences to return 100
results we get the following GET request: http://www.google.co.za/search?num=1
00&hl=en&q=test&btnG=Search&meta=. Note the additional parameter that is
passed; “num” is set to 100. If we request the second page of results (e.g., results
101–200), the request looks as follows: http://www.google.co.za/search?q=test&nu
m=100&hl=en&start=100&sa=N. There are a couple of things to notice here. The
order in which the parameters are passed is ignored and yet the “start” param-
eter is added. The start parameter tells Google on which page we want to start
getting results and the “num” parameter tell them how many results we want.
Thus, following this logic, in order to get 301–400 results our request should
look like this: http://www.google.co.za/search?q=test&num=100&hl=en&start=300
&sa=N. Let’s try that and see what we get.

It seems to be working. Let’s see what happens when we search for something
a little more complex. The search “testing testing 123” site:uk results in the fol-
lowing query: http://www.google.co.za/search?num=100&hl=en&q=%22testing+tes
ting+123%22+site%3Auk&btnG=Search&meta=

What happened there? Let’s analyze it a bit. The num parameter is set to 100.
The btnG and meta parameters can be ignored. The site: operator does not re-
sult in an extra parameter, but rather is located within the question or query.
The question says %22testing + testing + 123%22 + site%3Auk. Actually, al-
though the question seems a bit intimidating at first, there is really no magic

CHAPTER 5:   Google’s Part in an Information Collection Framework90

there. The %22 is simply the hexadecimal encoded form of a quote (“). The
%3A is the encoded form of a colon (:). Once we have replaced the encoded
characters with their unencoded form, we have our original query back: “testing
testing 123” site:uk.

So, how do you decide when to encode a character and when to use the un-
encoded form? This is a topic on it’s own, but as a rule of thumb you cannot
go wrong to encode everything that’s not in the range A–Z, a–z, and 0–9. The
encoding can be done programmatically, but if you are curious you can see all
the encoded characters by typing man ascii in a UNIX terminal, by Googling
for ascii hex encoding, or by visiting http://en.wikipedia.org/wiki/ASCII.

Now that we know how to formulate our request, we are ready to send it to
Google and get a reply back. Note that the server will reply in Hypertext Mark-
up Language (HTML). In it’s simplest form, we can Telnet directly to Google’s
Web server and send the request by hand. Figure 5.7 shows how it is done.

The resultant HTML is truncated for brevity. In Figure 5.7, the commands that
were typed out are highlighted. There are a couple of things to notice. The first
is that we need to connect (Telnet) to the Web site on port 80 and wait for a
connection before issuing our Hypertext Transfer Protocol (HTTP) request. The
second is that our request is a GET that is followed by “HTTP/1.0” stating that
we are speaking HTTP version 1.0 (you could also decide to speak 1.1). The last
thing to notice is that we added the Host header, and ended our request with
two carriage return line feeds (by pressing Enter two times). The server replied
with a HTTP header (the part up to the two carriage return line feeds) and a
body that contains the actual HTML (the bit that starts with <html>).

FIGURE 5.7  

http://en.wikipedia.org/wiki/ASCII

91

This seems like a lot of work, but now that we know what the request looks
like, we can start building automation around it. Let’s try this with Netcat.

Netcat has been described as the Swiss Army Knife of TCP/Internet Protocol
(IP). It is a tool that is used for good and evil; from catching the reverse shell
from an exploit (evil) to helping network administrators dissect a protocol
(good). In this case we will use it to send a request to Google’s Web servers and
show the resulting HTML on the screen. You can get Netcat for UNIX as well as
Microsoft Windows by Googling “netcat download.”

To describe the various switches and uses of Netcat is well beyond the scope
of this chapter; therefore, we will just use Netcat to send the request to Google
and catch the response. Before bringing Netcat into the equation, consider the
following commands and their output:

Note that the last echo command (the blank one) adds the necessary carriage
return line feed (CRLF) at the end of the HTTP request. To hook this up to Net-
cat and make it connect to Google’s site we do the following:

The output of the command is as follows:

The rest of the output is truncated for brevity. Note that we have parenthesis
() around the echo commands, and the pipe character (|) that hooks it up to
Netcat. Netcat makes the connection to www.google.com on port 80 and sends
the output of the command to the left of the pipe character to the server. This
particular way of hooking Netcat and echo together works on UNIX, but needs
some tweaking to get it working under Windows.

Scraping it Yourself: Requesting and Receiving Responses

http://www.google.com/

CHAPTER 5:   Google’s Part in an Information Collection Framework92

There are other (easier) ways to get the same results. Consider the “wget” com-
mand (a Windows version of wget is available at http://xoomer.alice.it/hher-
old/). Wget in itself is a great tool, and using it only for sending requests to a
Web server is a bit like contracting a rocket scientist to fix your microwave oven.
To see all the other things wget can do, simply type wget -h. If we want to use
wget to get the results of a query we can use it as follows:

wget http://www.google.co.za/search?hl=en&q=test-O output

The output looks like this:

The output of this command is the first indication that Google is not too keen
on automated processes. What went wrong here? HTTP requests have a field
called “User-Agent” in the header. This field is populated by applications that
request Web pages (typically browsers, but also “grabbers” like wget), and is
used to identify the browser or program. The HTTP header that wget generates
looks like this:

You can see that the User-Agent is populated with Wget/1.10.1. And that’s the
problem. Google inspects this field in the header and decides that you are us-
ing a tool that can be used for automation. Google does not like automating
search queries and returns HTTP error code 403, Forbidden. Luckily this is not
the end of the world. Because wget is a flexible program, you can set how it
should report itself in the User Agent field. So, all we need to do is tell wget to

http://xoomer.alice.it/hherold/
http://xoomer.alice.it/hherold/

93

report itself as something different than wget. This is done easily with an ad-
ditional switch. Let’s see what the header looks like when we tell wget to report
itself as “my_diesel_driven_browser.” We issue the command as follows:

The resultant HTTP request header looks like this:

Note the changed User-Agent. Now the output of the command looks like this:

The HTML for the query is located in the file called “output”. This example illus-
trates a very important concept – changing the User-Agent. Google has a large
list of User-Agents that are not allowed.

Another popular program for automating Web requests is called “curl,” which
is available for Windows at http://fileforum.betanews.com/detail/cURL_for_
Windows/966899018/1. For Secure Sockets Layer (SSL) use, you may need to
obtain the file libssl32.dll from somewhere else. Google for libssl32.dll download.
Keep the EXE and the DLL in the same directory. As with wget, you will need to

Scraping it Yourself: Requesting and Receiving Responses

http://fileforum.betanews.com/detail/cURL_for_Windows/966899018/1
http://fileforum.betanews.com/detail/cURL_for_Windows/966899018/1

CHAPTER 5:   Google’s Part in an Information Collection Framework94

set the User-Agent to be able to use it. The default behavior of curl is to return
the HTML from the query straight to standard output. The following is an ex-
ample of using curl with an alternative User-Agent to return the HTML from a
simple query. The command is as follows:

The output of the command is the raw HTML response. Note the changed
User-Agent.

Google also uses the user agent of the Lynx text-based browser, which tries to
render the HTML, leaving you without having to struggle through the HTML.
This is useful for quick hacks like getting the amount of results for a query.
Consider the following command:

Clearly, using UNIX commands like sed, grep, awk, and so on makes using Lynx
with the dump parameter a logical choice in tight spots.

There are many other command line tools that can be used to make requests
to Web servers. It is beyond the scope of this chapter to list all of the different
tools. In most cases, you will need to change the User-Agent to be able to speak
to Google. You can also use your favorite programming language to build the
request yourself and connect to Google using sockets.

SCRAPING IT YOURSELF: THE BUTCHER SHOP
In the previous section, we learned how to Google a question and how to get
HTML back from the server. While this is mildly interesting, it’s not really that
useful if we only end up with a heap of HTML. In order to make sense of the
HTML, we need to be able to get individual results. In any scraping effort, this
is the messy part of the mission. The first step of parsing results is to see if there
is a structure to the results coming back. If there is a structure, we can unpack
the data from the structure into individual results.

The FireBug extension from FireFox (https://addons.mozilla.org/firefox/down-
loads/latest/1843/addon-1843-latest.xpi?src=ss) can be used to easily map

https://addons.mozilla.org/firefox/downloads/latest/1843/addon-1843-latest.xpi?src=ss
https://addons.mozilla.org/firefox/downloads/latest/1843/addon-1843-latest.xpi?src=ss

95Scraping it Yourself: The Butcher Shop

HTML code to visual structures. Viewing a Google results page in FireFox and
inspecting a part of the results in FireBug looks like Figure 5.8.

With FireBug, every result snippet starts with the HTML code <div class=“g”>.
With this in mind, we can start with a very simple PERL script that will only
extract the first of the snippets. Consider the following code:

FIGURE 5.8  

CHAPTER 5:   Google’s Part in an Information Collection Framework96

In the third line of the script, we externally call curl to get the result of a
simple request into the $result variable (the question/query is test and we get
the first 10 results). In line 4, we create a scalar ($start) that contains the posi-
tion of the first occurrence of the “ < div class=g > ” token. In Line 5, we look
at the next occurrence of the token, the end of the snippet (which is also the
beginning of the second snippet), and we assign the position to $end. In line
6, we literally cut the first snippet from the entire HTML block, and in line 7
we display it. Let’s see if this works:

It looks right when we compare it to what the browser says. The script now
needs to somehow work through the entire HTML and extract all of the snip-
pets. Consider the following PERL script:

97

While this script is a little more complex, it’s still really simple. In this script
we’ve put the “<div class=g>” string into a token, because we are going to use
it more than once. This also makes it easy to change when Google decides to
call it something else. In lines 9 through 19, a loop is constructed that will
continue to look for the existence of the token until it is not found anymore.
If it does not find a token (line 12), then the loop simply exists. In line 18, we
move the position from where we are starting our search (for the token) to the
position where we ended up in our previous search.

Running this script results in the different HTML snippets being sent to stan-
dard output. But this is only so useful. What we really want is to extract the
URL, the title, and the summary from the snippet. For this we need a function
that will accept four parameters: a string that contains a starting token, a string
that contains the ending token, a scalar that will say where to search from, and

Scraping it Yourself: The Butcher Shop

CHAPTER 5:   Google’s Part in an Information Collection Framework98

a string that contains the HTML that we want to search within. We want this
function to return the section that was extracted, as well as the new position
where we are within the passed string. Such a function looks like this:

Now that we have this function, we can inspect the HTML and decide how to
extract the URL, the summary, and the title from each snippet. The code to do
this needs to be located within the main loop and looks as follows:

Notice how the URL is the first thing we encounter in the snippet. The URL
itself is a hyperlink and always start with “<a href= and ends with a quote.
Next up is the heading, which is within the hyperlink and as such starts with a
“>” and ends with “”. Finally, it appears that the summary is always in
a “” and ends in a “
”. Putting it all together we get the
following PERL script:

99

Now that we have this function, we can inspect the HTML and decide how to
extract the URL, the summary, and the title from each snippet. The code to do
this needs to be located within the main loop and looks as follows:

Notice how the URL is the first thing we encounter in the snippet. The URL
itself is a hyperlink and always start with “<a href= and ends with a quote.
Next up is the heading, which is within the hyperlink and as such starts with
a “>” and ends with “”. Finally, it appears that the summary is always in
a “” and ends in a “
”. Putting it all together we get the fol-
lowing PERL script:

Scraping it Yourself: The Butcher Shop

CHAPTER 5:   Google’s Part in an Information Collection Framework100

101

Note that Google highlights the search term in the results. We therefore take
the “and” tags out of the results, which is done in the “cleanB” subroutine. Let’s
see how this script works (see Figure 5.9).

It seems to be working. There could well be better ways of doing this with
tweaking and optimization, but for a first pass it’s not bad.

Scraping it Yourself: The Butcher Shop

FIGURE 5.9  

CHAPTER 5:   Google’s Part in an Information Collection Framework102

USING OTHER SEARCH ENGINES
Believe it or not, there are search engines other than Google! Bing search en-
gine still supports an API and is worth looking into. But this book is not called
Bing Hacking for Penetration Testers, so figuring out how to use the Bing API is
left as an exercise for the reader.

PARSING THE DATA
Let’s assume at this stage that everything is in place to connect to our data
source (Google in this case), we are asking the right questions, and we have
something that will give us results in neat plain text. For now, we are not going
to worry how exactly that happens. It might be with a proxy API, scraping it
yourself, or getting it from some provider. This section only deals with what
you can do with the returned data.

To get into the right mindset, ask yourself what you as a human would do with
the results. You may scan it for email addresses, Web sites, domains, telephone
numbers, places, names, and surnames. As a human you are also able to put
some context into the results. The idea here is that we put some of that human
logic into a program. Again, computers are good at doing things over and over,
without getting tired or bored, or demanding a raise. And as soon as we have
the logic sorted out, we can add other interesting things like counting how
many of each result we get, determining how much confidence we have in
the results from a question, and how close the returned data is to the original
question. But this is discussed in detail later on. For now let’s concentrate on
getting the basics right.

Parsing Email Addresses
There are many ways of parsing email addresses from plain text, and most
of them rely on regular expressions. Regular expressions are like your quirky
uncle that you’d rather not talk to, but the more you get to know him, the more
interesting and cool he gets. If you are afraid of regular expressions you are not
alone, but knowing a little bit about it can make your life a lot easier. If you
are a regular expressions guru, you might be able to build a one-liner regex to
effectively parse email addresses from plain text, but since I only know enough
to make myself dangerous, we’ll take it easy and only use basic examples. Let’s
look at how we can use it in a PERL program.

103Parsing the Data

This seems to work, but in the real world there are some problems. The script
cuts the text into words based on spaces between words. But what if the text
was “Is your address roelof@paterva.com?” Now the script fails. If we convert the
@ sign, underscores (_), and dashes (-) to letter tokens, and then remove all
symbols and convert the letter tokens back to their original values, it could
work. Let’s see:

CHAPTER 5:   Google’s Part in an Information Collection Framework104

105Parsing the Data

It seems to work, but still there are situations where this is going to fail. What
if the line reads “My email address is roelof@paterva.com.”? Notice the period
after the email address. The parsed address is going to retain that period. Luck-
ily that can be fixed with a simple replacement rule; changing a dot space se-
quence to two spaces. In PERL:

With this in place, we now have something that will effectively parse 99% of
valid email addresses (and about 5% of invalid addresses). Admittedly the
script is not the most elegant, optimized, and pleasing, but it works!

Remember the expansions we did on email addresses in the previous section?
We now need to do the exact opposite. In other words, if we find the text “an-
drew at syngress.com” we need to know that it’s actually an email address. This
has the disadvantage that we will create false positives. Think about a piece
of text that says “you can contact us at paterva.com.” If we convert at back to @,
we’ll parse an email that reads us@paterva.com. But perhaps the pros outweigh
the cons, and as a general rule you’ll catch more real email addresses than false
ones. (This depends on the domain as well. If the domain belongs to a compa-
ny that normally adds a .com to their name, for example amazon.com, chances
are you’ll get false positives before you get something meaningful). We further-
more want to catch addresses that include the _remove_ or removethis tokens.

To do this in PERL is a breeze. We only need to add these translations in front
of the parsing routines. Let’s look at how this would be done:

mailto:roelof@paterva.com
mailto:us@paterva.com

CHAPTER 5:   Google’s Part in an Information Collection Framework106

These replacements are bound to catch lots of email addresses, but could also be
prone to false positives. Let’s give it a run and see how it works with some test data:

After: testing test1@paterva.com this is normal text.for a.matrix printer.this is
normal text...no really it is @work we all need to work hard test2@paterva.
com test3@paterva.com test4@paterva.com roelof@paterva.com i want to
stay@home.really i do.

mailto:test1@paterva.com
mailto:test2@paterva.com
mailto:test2@paterva.com
mailto:test3@paterva.com
mailto:test4@paterva.com
mailto:roelof@paterva.com
mailto:stay@home.really

107Domains and Subdomains

For the test run, you can see that it caught four of the five test email addresses
and included one false positive. Depending on the application, this rate of
false positives might be acceptable because they are quickly spotted using visu-
al inspection. Again, the 80/20 principle applies here; with 20% effort you will
catch 80% of email addresses. If you are willing to do some postprocessing,
you might want to check if the email addresses you’ve mined ends in any of
the known TLDs (see next section). But, as a rule, if you want to catch all email
addresses (in all of the obscured formats), you can be sure to either spend a lot
of effort or deal with plenty of false positives.

DOMAINS AND SUBDOMAINS
Luckily, domains and subdomains are easier to parse if you are willing to make
some assumptions. What is the difference between a hostname and a domain
name? How do you tell the two apart? Seems like a silly question. Clearly www.
paterva.com is a hostname and paterva.com is a domain, because www.paterva.
com has an IP address and paterva.com does not. But the domain google.com (and
many others) resolve to an IP address as well. Then again, you know that google.
com is a domain. What if we get a Google hit from fpd.gsfc.****.gov? Is it a host-
name or a domain? Or a CNAME for something else? Instinctively you would
add www. to the name and see if it resolves to an IP address. If it does then it’s a
domain. But what if there is no www entry in the zone? Then what’s the answer?

A domain needs a name server entry in its zone. A hostname does not have to
have a name server entry, in fact it very seldom does. If we make this assump-
tion, we can make the distinction between a domain and a host. The rest seems
easy. We simply cut our Google URL field into pieces at the dots and put it back
together. Let’s take the site fpd.gsfc.****.gov as an example. The first thing we
do is figure out if it’s a domain or a site by checking for a name server. It does
not have a name server, so we can safely ignore the fpd part, and end up with
gsfc.****.gov. From there we get the domains:

j	 gsfc.****.gov****.gov
j	 gov

There is one more thing we’d like to do. Typically we are not interested in TLDs
or even sub-TLDs. If you want to you can easily filter these out. There is another
interesting thing we can do when looking for domains. We can recursively call
our script with any new information that we’ve found. The input for our domain
hunting script is typically going to be a domain, right? If we feed the domain
****.gov to our script, we are limited to 1000 results. If our script digs up the
domain gsfc.****.gov, we can now feed it back into the same script, allowing for
1000 fresh results on this subdomain (which might give us deeper subdomains).
Finally, we can have our script terminate when no new subdomains are found.

Another way of obtaining domains without having to perform the host/domain
check is to post process-mined email addresses. As almost all email addresses

http://www.paterva.com/
http://www.paterva.com/
http://www.paterva.com/
http://www.paterva.com/

CHAPTER 5:   Google’s Part in an Information Collection Framework108

are already at a domain (and not a host), the email address can simply be cut
after the @ sign and used in a similar fashion.

TELEPHONE NUMBERS
Telephone numbers are very hard to parse with an acceptable rate of false posi-
tives (unless you limit it to a specific country). This is because there is no stan-
dard way of writing down a telephone number. Some people add the country
code, but on regional sites (or mailing lists) it’s seldom done. And even if the
country code is added, it could be added by using a plus sign (e.g., +44) or using
the local international dialing method (e.g., 0044). It gets worse. In most cases,
if the city code starts with a zero, it is omitted if the internal dialing code is
added (e.g., +27 12 555 1234 vs. 012 555 1234). And then some people put the
zero in parentheses to show it’s not needed when dialing from abroad (e.g., +27
(0)12 555 1234). To make matters worse, a lot of European nations like to split
the last four digits in groups of two (e.g., 012 12 555 12 34). Of course, there are
those people that remember numbers in certain patterns, thereby breaking all
formats and making it almost impossible to determine which part is the coun-
try code (if at all), the city, and the area within the city (e.g., +271 25 551 234).

Then as an added bonus, dates can look a lot like telephone numbers. Consid-
er the text “From 1823-1825 1520 people couldn’t parse telephone numbers.” Better
still are time frames such as “Andrew Williams: 1971-04-01 – 2007-07-07.” And,
while it’s not that difficult for a human to spot a false positive when dealing
with email addresses, you need to be a local to tell the telephone number of a
plumber in Burundi from the ISBN number of “Stealing the network.” So, is all
lost? Not quite. There are two solutions: the hard but cheap solution and the
easy but costly solution. In the hard but cheap solution, we will apply all of the
logic we can think of to telephone numbers and live with the false positives. In
the easy (OK, it’s not even that easy) solution, we’ll buy a list of country, city,
and regional codes from a provider. Let’s look at the hard solution first.

One of the most powerful principles of automation is that if you can figure out
how to do something as a human being, you can code it. It is when you cannot
write down what you are doing when automation fails. If we can code all the
things we know about telephone numbers into an algorithm, we have a shot at
getting it right. The following are some of the important rules that I have used
to determine if something is a real telephone number.

j	 Convert 00 to +, but only if the number starts with it.
j	 Remove instances of (0).
j	 Length must be between 9 and 13 numbers.
j	 Has to contain at least one space (optional for low tolerance).
j	 Cannot contain two (or more) single digits (e.g., 2383 5 3 231 will be

thrown out).

Postprocessing 109

j	 Should not look like a date (various formats).
j	 Cannot have a plus sign if it’s not at the beginning of the number.
j	 Less than four numbers before the first space (unless it starts with a + or

a 0).
j	 Should not have the string “ISBN” in near proximity.
j	 Rework the number from the last number to the first number and put it

in +XX- XXX-XXX-XXXX format.

To find numbers that need to comply to these rules is not easy. I ended up not
using regular expressions but rather a nested loop, which counts the number of
digits and accepted symbols (pluses, dashes, and spaces) in a sequence. Once
it’s reached a certain number of acceptable characters followed by a number of
unacceptable symbols, the result is sent to the verifier (that use the rules listed
above). If verified, it is repackaged to try to get in the right format. Of course
this method does not always work. In fact, approximately one in five numbers
are false positives. But the technique seldom fails to spot a real telephone num-
ber, and more importantly, it does not cost anything. There are better ways to
do this. If we have a list of all country and city codes we should be able to figure
out the format as well as verify if a sequence of numbers is indeed a telephone
number. Such a list exists but is not in the public domain.

Because I don’t have the complete database, I don’t have code for this, but
suspect that you will need to write a program that will measure the distance be-
tween the first couple of numbers from the parsed number to those in the list.
You will surely end up in a situation where there is more than one possibility.
This will happen because the same number might exist in multiple countries
and if they are specified on the Web page without a country code it’s impos-
sible to determine in which country they are located.

The database can be bought at www.numberingplans.com, but they are rather
strict about selling the database to just anyone. They also provide a nifty look-
up interface (limited to just a couple of lookups a day), which is not just for
phone numbers. But that’s a story for another day.

POSTPROCESSING
Even when we get good data back from our data source there might be the need
to do some form of postprocessing on it. Perhaps you want to count how many
of each result you mined in order to sort it by frequency. In the next section we
look at some things that you should consider doing.

Sorting Results by Relevance
If we parse an email address when we search for “Andrew Williams,” that email
address would almost certainly be more interesting than the email addresses
we would get when searching for “A Williams.” Indeed, some of the expansions
we’ve done in the previous section borders on desperation. Thus, what we need

http://www.numberingplans.com/

CHAPTER 5:   Google’s Part in an Information Collection Framework110

is a method of implementing a “confidence” to a search. This is actually not
that difficult. Simply assign this confidence index to every result you parse.

There are other ways of getting the most relevant result to bubble to the top of
a result list. Another way is simply to look at the frequency of a result. If you
parse the email address andrew@syngress.com ten times more than any other
email address, the chances are that that email address is more relevant than an
email address that only appears twice.

Yet another way is to look at how the result correlates back to the original
search term. The result andrew@syngress.com looks a lot like the email address
for Andrew Williams. It is not difficult to write an algorithm for this type of
correlation. An example of such a correlation routine looks like this:

mailto:andrew@syngress.com
mailto:andrew@syngress.com

Postprocessing 111

This routine breaks the longer of the two strings into sections of three letters
and compares these sections to the other (shorter) string. For every section that
matches, the resultant return value is doubled. This is by no means a “stan-
dard” correlation function, but will do the trick, because basically all we need
is something that will recognize parts of an email address as looking similar to
the first name or the last name. Let’s give it a quick spin and see how it works.
Here we will “weigh” the results of the following email addresses to an original
search of “Roelof Temmingh”:

This seems to work, scoring the first address as the best, and the two addresses
containing the entire last name as a distant second. What’s interesting is to see
that the algorithm does not know what is the username and what is a domain.
This is something that you might want to change by simply cutting the email
address at the @ sign and only comparing the first part. On the other hand, it
might be interesting to see domains that look like the first name or last name.

There are two more ways of weighing a result. The first is by looking at the dis-
tance between the original search term and the parsed result on the resultant
page. In other words, if the email address appears right next to the term that
you searched for, the chances are more likely that it’s more relevant than when
the email address is 20 paragraphs away from the search term. The second is by
looking at the importance (or popularity) of the site that gives the result. This
means that results coming from a site that is more popular is more relevant
than results coming from sites that only appear on page five of the Google
results. Luckily by just looking at Google results, we can easily implement both
of these requirements. A Google snippet only contains the text surrounding
the term that we searched for, so we are guaranteed some proximity (unless the
parsed result is separated from the parsed results by “...”). The importance or
popularity of the site can be obtained by the Pagerank of the site. By assigning
a value to the site based on the position in the results (e.g., if the site appears
first in the results or only much later) we can get a fairly good approximation
of the importance of the site.

CHAPTER 5:   Google’s Part in an Information Collection Framework112

A note of caution here. These different factors need to be carefully balanced.
Things can go wrong quickly. Imagine that Andrew’s email address is whip-
master@midgets.com, and that he always uses the alias “WhipMaster” when
posting from this email address. As a start, our correlation to the original term
(assuming we searched for Andrew Williams) is not going to result in a null
value. And if the email address does not appear many times in different places,
it will also throw the algorithm off the trail. As such, we may choose to only
increase the index by 10% for every three-letter word that matches, as the code
stands a 100% increase if used. But that’s the nature of automation, and the
reason why these types of tools ultimately assist but do not replace humans.

Beyond Snippets
There is another type of postprocessing we can do, but it involves lots of band-
width and loads of processing power. If we expand our mining efforts to the
actual page that is returned (i.e., not just the snippet) we might get many more
results and be able to do some other interesting things. The idea here is to get
the URL from the Google result, download the entire page, convert it to plain
text (as best as we can), and perform our mining algorithms on the text. In
some cases, this expansion would be worth the effort (imagine looking for
email addresses and finding a page that contains a list of employees and their
email addresses. What a gold mine!). It also allows for parsing words and
phrases, something that has a lot less value when only looking at snippets.

Parsing and sorting words or phrases from entire pages is best left to the ex-
perts (think the PhDs at Google), but nobody says that we can’t try our hand
at some very elementary processing. As a start we will look at the frequency of
words across all pages. We’ll end up with common words right at the top (e.g.,
the, and, and friends). We can filter these words using one of the many lists
that provides the top ten words in a specific language. The resultant text will
give us a general idea of what words are common across all the pages; in other
words, an idea of “what this is about.” We can extend the words to phrases by
simply concatenating words together. A next step would be looking at words
or phrases that are not used in high frequency in a single page, but that has a
high frequency when looking across many pages. In other words, what we are
looking for are words that are only used once or twice in a document (or Web
page), but that are used on all the different pages. The idea here is that these
words or phrases will give specific information about the subject.

Presenting Results
As many of the searches will use expansion and thus result in multiple search-
es, with the scraping of many Google pages we’ll need to finally consolidate all
of the subresults into a single result. Typically this will be a list of results and
we will need to sort the results by their relevance.

mailto:whipmaster@midgets.com
mailto:whipmaster@midgets.com

Collecting Search Terms 113

COLLECTING SEARCH TERMS
Google’s ability to collect search terms is very powerful. If you doubt this, visit
the Google ZeitGeist page. Google has the ability to know what’s on the mind
of just about everyone that’s connected to the Internet. They can literally read
the minds of the (online) human race.

If you know what people are looking for, you can provide them (i.e., sell to
them) that information. In fact, you can create a crude economic model. The
number of searches for a phrase is the “demand ” while the number of pages
containing the phrase is the “supply.” The price of a piece of information is
related to the demand divided by the supply. And while Google will probably
(let’s hope) never implement such billing, it would be interesting to see them
adding this as some form of index on the results page.

Let’s see what we can do to get some of that power. This section looks at ways
of obtaining the search terms of other users.

Spying on Your Own
When you search for something, the query goes to Google’s computers. Every
time you do a search at Google, they check to see if you are passing along a
cookie. If you are not, they instruct your browser to set a cookie. The browser
will be instructed to pass along that cookie for every subsequent request to any
Google system (e.g., *.google.com), and to keep doing it until 2038. Thus, two
searches that were done from the same laptop in two different countries, two
years apart, will both still send the same cookie (given that the cookie store
was never cleared), and Google will know it’s coming from the same user. The
query has to travel over the network, so if I can get it as it travels to them, I can
read it. This technique is called “sniffing.” In the previous sections, we’ve seen
how to make a request to Google. Let’s see what a cookieless request looks like,
and how Google sets the cookie:

CHAPTER 5:   Google’s Part in an Information Collection Framework114

Notice the Set-Cookie part. The ID part is interesting. The other cookies (TM
and LM) contain the birth date of the cookie (in seconds from 1970), and
when the preferences were last changed. The ID stays constant until you clear
your cookie store in the browser. This means every subsequent request coming
from your browser will contain the cookie.

If we have a way of reading the traffic to Google we can use the cookie to
identify subsequent searches from the same browser. There are two ways to be
able to see the requests going to Google. The first involves setting up a sniffer
somewhere along the traffic, which will monitor requests going to Google. The
second is a lot easier and involves infrastructure that is almost certainly already
in place; using proxies. There are two ways that traffic can be proxied. The user
can manually set a proxy in his or her browser, or it can be done transparently
somewhere upstream. With a transparent proxy, the user is mostly unaware
that the traffic is sent to a proxy, and it almost always happens without the
user’s consent or knowledge. Also, the user has no way to switch the proxy
on or off. By default, all traffic going to port 80 is intercepted and sent to the
proxy. In many of these installations other ports are also intercepted, typically
standard proxy ports like 3128, 1080, and 8080. Thus, even if you set a proxy
in your browser, the traffic is intercepted before it can reach the manually con-
figured proxy and is sent to the transparent proxy. These transparent proxies are
typically used at boundaries in a network, say at your ISP’s Internet gateway or
close to your company’s Internet connection.

On the one hand, we have Google that is providing a nice mechanism to keep
track of your search terms, and on the other hand we have these wonderful
transparent devices that collect and log all of your traffic. Seems like a perfect
combination for data mining.

Collecting Search Terms 115

Let’s see how can we put something together that will do all of this for us. As
a start we need to configure a proxy to log the entire request header and the
GET parameters as well as accepting connections from a transparent network
redirect. To do this you can use the popular Squid proxy with a mere three
modifications to the stock standard configuration file. These three lines that
you need are:

The first tells Squid to accept connections from the transparent redirect on port
3128:

The second tells Squid to log the entire HTTP request header:

The last line tells Squid to log the GET parameters, not just the host and path:

With this set and the Squid proxy running, the only thing left to do is to send
traffic to it. This can be done in a variety of ways and it is typically done at the
firewall. Assuming you are running FreeBSD with all the kernel options set to
support it (and the Squid proxy is on the same box), the following one liner
will direct all outgoing traffic to port 80 into the Squid box:

Similar configurations can be found for other operating systems and/or fire-
walls. Google for “transparent proxy network configuration” and choose the
appropriate one. With this set we are ready to intercept all Web traffic that
originates behind the firewall. While there is a lot of interesting information
that can be captured from these types of Squid logs, we will focus on Google-
related requests.

Once your transparent proxy is in place, you should see requests coming in.
The following is a line from the proxy log after doing a simple search on the
phrase “test phrase”:

CHAPTER 5:   Google’s Part in an Information Collection Framework116

Notice the search term appearing as the value of the “q” parameter “test + phrase.”
Also notice the ID cookie that is set to “35d1cc1c7089ceba.” This value of the
cookie will remain the same regardless of subsequent search terms. In the text
above, the IP number that made the request is also listed (but mostly crossed
out). From here on it is just a question of implementation to build a system
that will extract the search term, the IP address, and the cookie and shove it
into a database for further analysis. A system like this will silently collect search
terms day in and day out.

How to Spot a Transparent Proxy
In some cases it is useful to know if you are sitting behind a transparent proxy.
There is a quick way of finding out. Telnet to port 80 on a couple of random IP
addresses that are outside of your network. If you get a connection every time,
you are behind a transparent proxy. (Note: try not to use private IP address
ranges when conducting this test.)

Another way is looking up the address of a Web site, then Telnetting to the IP
number, issuing a GET/HTTP/1.0 (without the Host: header), and looking at

Collecting Search Terms 117

the response. Some proxies use the Host: header to determine where you want
to connect, and without it should give you an error.

Not only do we know we are being transparently proxied, but we can also see
the type and server of the proxy that’s used. Note that the second method does
not work with all proxies, especially the bigger proxies in use at many ISPs.

Referrals
Another way of finding out what people are searching for is to look at the Referer:
header of requests coming to your Web site. Of course there are limitations. The
idea here being that someone searches for something on Google, your site shows
up on the list of results, and they click on the link that points to your site. While
this might not be super exciting for those with none or low traffic sites, it works
great for people with access to very popular sites. How does it actually work?
Every site that you visit knows about the previous site that you visited. This is
sent in the HTTP header as a referrer. When someone visits Google, their search
terms appear as part of the URL (as it’s a GET request) and are passed to your site
once the user arrives there. This gives you the ability to see what they searched
for before they got to your site, which is very useful for marketing people.

Typically an entry in an Apache log that came from a Google search looks like
this:

CHAPTER 5:   Google’s Part in an Information Collection Framework118

From this entry we can see that the user was searching for “evolution beta gui”
on Google before arriving at our page, and that he or she then ended up at the
“/evolution-gui.html” page. A lot of applications that deal with analyzing Web
logs have the ability to automatically extract these terms for your logs, and
present you with a nice list of terms and their frequency.

Is there a way to use this to mine search terms at will? Not likely. The best op-
tion (and it’s really not that practical) is to build a popular site with various
types of content and see if you can attract visitors with the only reason to mine
their search terms. Again, you’ll surely have better uses for these visitors than
just their search terms.

SUMMARY
In this chapter we looked at various ways that you can use Google to dig up
useful information. The power of searching really comes to life when you have
the ability to automate certain processes. This chapter showed how this auto-
mation might be achieved using simple scripts. Also, the fun really starts when
you have the means of connecting bits of information together to form a com-
plete picture (e.g., not just searching, but also performing additional functions
with the mined information). The tools and tricks shown in the chapter is
really only the top of a massive iceberg called data collection (or mining). Hope-
fully it will open your mind as to what can be achieved. The idea was never to
completely exhaust every possible avenue in detail, but rather to get your mind
going in the right direction and to stimulate creative thoughts. If the chapter
has inspired you to hack together your own script to perform something amaz-
ing, it has served its purpose (and I would love to hear from you).

119

﻿﻿
﻿

Locating Exploits and Finding Targets

CHAPTER 6

INTRODUCTION
Exploits are tools of the hacker trade. Designed to penetrate a target, most hack-
ers have many different exploits at their disposal. Some exploits, termed zero
day or 0day, remain underground for some period of time, eventually becom-
ing public, posted to newsgroups or Web sites for the world to share. With so
many Web sites dedicated to the distribution of exploit code, it’s fairly simple
to harness the power of Google to locate these tools. It can be a slightly more
difficult exercise to locate potential targets, even though many modern Web
application security advisories include a Google search designed to locate po-
tential targets.

In this chapter we’ll explore methods of locating exploit code and potentially
vulnerable targets. These are not strictly “dark side” exercises, since security
professionals often use public exploit code during a vulnerability assessment.
However, only blackhats use those tools against systems without prior consent.

LOCATING EXPLOIT CODE
Untold hundreds and thousands of Web sites are dedicated to providing ex-
ploits to the general public. Blackhats generally provide exploits to aid fellow
blackhats in the hacking community. White hats provide exploits as a way of
eliminating false positives from automated tools during an assessment. Simple
searches such as remote exploit and vulnerable exploit locate exploit sites by focus-
ing on common lingo used by the security community. Other searches, such
as inurl:0day, don’t work nearly as well as they used to, but old standbys like
inurl:sploits still work fairly well. The problem is that most security folks don’t
just troll the Internet looking for exploit caches; most of them frequent a hand-
ful of sites for the more mainstream tools, venturing to a search engine only
when their bookmarked sites fail them. When it comes to trolling the Web for
a specific security tool, Google’s a great place to turn up at first.

CHAPTER 6:   Locating Exploits and Finding Targets120

Locating Public Exploit Sites
One way to locate exploit code is to focus on the file extension of the source
code and then search for specific content within that code. Since source code
is the text-based representation of the difficult-to-read machine code, Google
is well suited for this task. For example, a large number of exploits are written
in C, which generally uses source code ending in a .c extension. Of course, a
search for filetype:c c returns nearly 500,000 results, meaning that we need to
narrow our search. A query for filetype:c exploit returns around 5,000 results,
most of which are exactly the types of programs we’re looking for. Bearing in
mind that these are the most popular sites hosting C source code containing
the word exploit, the returned list is a good start for a list of bookmarks. Using
page-scraping techniques, we can isolate these sites by running a UNIX com-
mand such as:

against the dumped Google results page. Using good, old-fashioned cut and
paste or a command such as lynx –dump works well for capturing the page this
way. The slightly polished results of scraping 20 results from Google in this way
are shown in the list as follows.

121Locating Exploits via Common Code Strings

LOCATING EXPLOITS VIA COMMON CODE STRINGS
Since Web pages display source code in various ways, a source code listing
could have practically any file extension. A PHP page might generate a text view
of a C file, for example, making the file extension from Google’s perspective
.PHP instead of .C.

Another way to locate exploit code is to focus on common strings within
the source code itself. One way to do this is to focus on common inclu-
sions or header file references. For example, many C programs include the
standard input/output library functions, which are referenced by an include
statement such as #include <stdio.h> within the source code. A query such
as “#include <stdio.h>” exploit would locate C source code that contained
the word exploit, regardless of the file’s extension. This would catch code
(and code fragments) that are displayed in HTML documents. Extending
the search to include programs that include a friendly usage statement with
a query such as “#include <stdio.h>” usage exploit returns the results shown
in Figure 6.1.

This search returns quite a few hits, nearly all of which contain exploit code.
Using traversal techniques (or simply hitting up the main page of the site) can
reveal other exploits or tools. Notice that most of these hits are HTML docu-
ments, which our previous filetype:c query would have excluded. There are lots
of ways to locate source code using common code strings, but not all source
code can be fit into a nice, neat little box. Some code can be nailed down
fairly neatly using this technique; other code might require a bit more query
tweaking.

FIGURE 6.1  

CHAPTER 6:   Locating Exploits and Finding Targets122

LOCATING VULNERABLE TARGETS
Attackers are increasingly using Google to locate Web-based targets vulnerable
to specific exploits. In fact, it’s not uncommon for public vulnerability an-
nouncements to contain Google links to potentially vulnerable targets.

Locating Targets via Vulnerability Disclosures
Software vendors and security researchers regularly post advisories about vul-
nerable software that display a link to the affected software vendor’s Web site.
Not all advisories list such a link, but a quick Google query should help you
locate the vendor’s page. Since our goal is to develop a query string to locate
vulnerable targets on the Web, the vendor’s Web site is a good place to dis-
cover what exactly the product’s Web pages look like. Especially useful is the
“Powered by …” search string.

LOCATING TARGETS VIA SOURCE CODE
In some cases, a good query is not as easy to come by, although as we’ll see,
the resultant query is nearly identical in construction. Although this method is
more drawn out (and could be short-circuited by creative thinking), it shows
a typical process for detecting an exact working query for locating vulnerable
targets. Here we take a look at how a hacker might use the source code of a
program to discover ways to search for that software with Google. A phrase like
“Powered by” can be very useful in locating specific targets due to their high
degree of uniqueness.

Too many examples of this technique are in action to even begin to list them
all, but in the tradition of the rest of this book, Examples can be found in the
Google Hacking Database.

SUMMARY
There are so many ways to locate exploit code that it’s nearly impossible to
categorize them all. Google can be used to search the Web for sites that host
public exploits, and in some cases you might stumble on “private” sites that
host tools as well. Bear in mind that many exploits are not posted to the Web.
New (or 0day) exploits are guarded very closely in many circles, and an open
public Web page is the last place a competent attacker is going to stash his or
her tools. If a toolkit is online, it is most likely encrypted or at least password
protected to prevent dissemination, which would alert the community, result-
ing in the eventual lockdown of potential targets. This isn’t to say that new,
unpublished exploits are not online, but frankly it’s often easier to build rela-
tionships with those in the know. Still, there’s nothing wrong with having a

Summary 123

nice hit list of public exploit sites, and Google is great at collecting those with
simple queries that include the words exploit, vulnerability, or vulnerable. Google
can also be used to locate source code by focusing on certain strings that ap-
pear in that type of code.

Locating potential targets with Google is a fairly straightforward process, re-
quiring nothing more than a unique string presented by a vulnerable Web
application. In some cases these strings can be culled from demonstration
applications that a vendor provides. In other cases, an attacker might need
to download the product or source code to locate a string to use in a Google
query. Either way, a public Web application exploit announcement, combined
with the power of Google, leaves little time for a defender to secure a vulner-
able application or server.

Page left intentionally blank

125

﻿﻿
﻿

Ten Simple Security Searches That Work

CHAPTER 7

INTRODUCTION
Although we see literally hundreds of Google searches throughout this book,
sometimes it’s nice to know there are a few searches that give good results
just about every time. In the context of security work, we’ll take a look at 10
searches that work fairly well during a security assessment, especially when
combined with the site operator, which secures the first position in our list.
As you become more and more comfortable with Google, you’ll certainly add
to this list, modifying a few searches and quite possibly deleting a few, but
the searches here should serve as a very nice baseline for your own top 10 list.
Without further ado, let’s dig into some queries.

SITE
The site operator is absolutely invaluable during the information-gathering
phase of an assessment. Combined with a host or domain name, this query
presents results that can be overwhelming, to say the least. However, the site
operator is meant to be used as a base search, not necessarily as a standalone
search. Sure, it’s possible (and not entirely discouraged) to scan through ev-
ery single page of results from this query, but in most cases it’s just downright
impractical.

Important information can be gained from a straight-up site search, however.
First, remember that Google lists the results in page-ranked order. In other
words, the most popular pages float to the top. This means you can get a quick
idea about what the rest of the Internet thinks is most worthwhile about a site.
The implications of this information are varied, but at a basic level you can at
least get an idea of the public image or consensus about an online presence by
looking at what floats to the top. Outside the specific site search itself, it can
be helpful to read into the context of links originating from other sites. If a
link’s text says something to the effect of “CompanyXYZ s***s!”, there’s a good
chance that someone is discontent about CompanyXYZ.

CHAPTER 7:   Ten Simple Security Searches That Work126

As we saw in Chapter 5, the site search can also be used to gather information
about the servers and hosts that a target maintains. Using simple reduction
techniques, we can quickly get an idea about a target’s online presence. Con-
sider the simple example of site:nytimes.com –site: www.nytimes.com shown in
Figure 7.1.

This query effectively locates hosts on the nytimes.com domain other than
www.nytimes.com. Just from a first pass, Figure 7.1 shows three hosts: theater.
nytimes.com, www2.nytimes.com, salary.nytimes.com and realestate.nytimes.
com. These may be hosts, or they may be subdomains. Further investigation
would be required to determine this. Also remember to validate your Google
results before unleashing your megascanner of choice.

INTITLE:INDEX.OF
intitle:index.of is the universal search for directory listings. Directory listings
are chock-full of juicy details, as we saw in Chapter 3. Firing an intitle:index.of
query against a target is fast and easy and could produce a killer payoff.

ERROR | WARNING
As we’ve seen throughout this book, error messages can reveal a great deal
of information about a target. Often overlooked, error messages can provide
insight into the application or operating system software a target is running,
the architecture of the network the target is on, information about users on
the system, and much more. Not only are error messages informative, they are

FIGURE 7.1

http://www.nytimes.com/
http://www.nytimes.com/
http://www2.nytimes.com/

Error | Warning 127

prolific. This query will take some playing with, and is best when combined
with a site query. For example, a query of (“for more information” | “not found”)
(error | warning) returns interesting results, as shown in Figure 7.2.

Unfortunately, some error messages don’t actually display the word error, as
shown in the SQL located with a query of “access denied for user”“using password”
shown in Figure 7.3.

FIGURE 7.2

FIGURE 7.3

CHAPTER 7:   Ten Simple Security Searches That Work128

This error page reveals usernames, filenames, path information, IP addresses,
and line numbers, yet the word error does not occur anywhere on the page.
Nearly as prolific as error messages, warning messages can be generated from
application programs. In some cases, however, the word warning is specifically
written into the text of a page to alert the Web user that something important
has happened or is about to happen. Regardless of how they are generated,
pages containing these words may be of interest during an assessment, as long
as you don’t mind teasing out the results a bit.

LOGIN | LOGON
As we’ll see in Chapter 8, a login portal is a “front door” to a Web site. Login
portals can reveal the software and operating system of a target, and in many
cases “self-help” documentation is linked from the main page of a login portal.
These documents are designed to assist users who run into problems during
the login process. Whether the user has forgotten a password or even a user-
name, this documents can provide clues that might help an attacker, or in our
case a security tester, gain access to the site.

Many times, documentation linked from login portals lists email addresses,
phone numbers, or URLs of human assistants who can help a troubled user
regain lost access. These assistants, or help desk operators, are perfect targets
for a social engineering attack. Even the smallest security testing team should
not be without a social engineering whiz that could talk an Eskimo out of his
thermal underwear. The vast majority of all security systems have one common
weakest link: a human behind a keyboard. The words login and logon are widely
used on the Internet, occurring on millions of pages, as shown in Figure 7.4.

FIGURE 7.4

129Password | Passcode | “Your Password Is”

Also common is the phrase login trouble in the text of the page. A phrase like this
is designed to steer wayward users who have forgotten their login credentials.
This information is of course very valuable to attackers and pen testers alike.

USERNAME | USERID | EMPLOYEE.ID \
“YOUR USERNAME IS”
As we’ll see in Chapter 9, there are many different ways to obtain a username
from a target system. Even though a username is the less important half of
most authentication mechanisms, it should at least be marginally protected
from outsiders. Figure 7.5 shows that even sites that reveal very little informa-
tion in the face of a barrage of probing Google queries, return many potentially
interesting results to this query. To avoid implying anything negative about the
target used in this example, some details of the Figure 7.5 have been edited.

The mere existence of the word username in a result is not indicative of a vul-
nerability, but results from this query provide a starting point for an attacker.
Since there’s no good reason to remove derivations of the word username from
a site you protect, why not rely on this common set of words to at least get a
foothold during an assessment?

PASSWORD | PASSCODE | “YOUR PASSWORD IS”
The word password is so common on the Internet, there are over a billion results
for this one-word query. Launching a query for derivations of this word makes
little sense unless you actually combine that search with the site operator.

FIGURE 7.5

CHAPTER 7:   Ten Simple Security Searches That Work130

During an assessment, it’s very likely that results for this query combined with
a site operator will include pages that provide help to users who have forgot-
ten their passwords. In some cases, this query will locate pages that provide
policy information about the creation of a password. This type of information
can be used in an intelligent-guessing or even a brute-force campaign against
a password field.

Despite how this query looks, it’s quite uncommon for this type of query to
return actual passwords. Passwords do exist on the Web, but this query isn’t
well suited for locating them. (We’ll look at queries to locate passwords in
Chapter 9.) Like the login portal and username queries, this query can provide
an informational foothold into a system. Most often, this query should be used
alongside a site operator, but with a little tweaking, the query can be used with-
out site to illustrate the point, as shown in Figure 7.6. “Forgotten password”
pages like these can be very informative.

ADMIN | ADMINISTRATOR
The word administrator is often used to describe the person in control of a
network or system. There are so many references to the word on the Web
that a query for admin | administrator weighs in at half a billion results. This
suggests that these words have most likely been referred to on a site that
you’re assessing. However, the value of these and other words in a query
does not lie in the number of results but in the contextual relevance of the
words. Tweaking this query, with the addition of “change your” can return

FIGURE 7.6

Admin | Administrator 131

interesting results, even without the addition of a site operator, as shown in
Figure 7.7.

The phrase Contact your system administrator is a fairly common phrase on the
Web, as are several basic derivations. A query such as “please contact your * ad-
ministrator” will return results that refer to local, company, site, department,
server, system, network, database, email, and even tennis administrators. If a
Web user is told to contact an administrator, odds are that there’s data of at
least moderate importance to a security tester.

The word administrator can also be used to locate administrative login
pages, or login portals. (We’ll take a closer look at login portal detection
in Chapter 8.) A query for “administrative login” returns millions of results,
many of which are administrative login pages. A security tester can profile
Web servers using seemingly insignificant clues found on these types of log-
in pages. Most login portals provide clues to an attacker about what software
is in use on the server and act as a magnet, drawing attackers who are armed
with an exploit for that particular type of software. As shown in Figure 7.8,
many of the results for the combined admin query reveal administrative
login pages.

Another interesting use of the administrator derivations is to search for them in
the URL of a page using an inurl search. If the word admin is found in the host-
name, a directory name, or a filename within a URL, there’s a decent chance
that the URL has some administrative function, making it interesting from a
security standpoint.

FIGURE 7.7

CHAPTER 7:   Ten Simple Security Searches That Work132

–EXT:HTML –EXT:HTM –EXT:SHTML –EXT:ASP –EXT:PHP
The –ext:html –ext:htm –ext:shtml –ext:asp –ext:php query uses ext, a synonym
for the filetype operator, and is a negative query. It returns no results when used
alone and should be combined with a site operator to work properly. The idea
behind this query is to exclude some of the most common Internet file types in
an attempt to find files that might be more interesting for our purposes.

As you’ll see through this book, there are certainly lots of HTML, PHP, and ASP
pages that reveal interesting information, but this chapter is about cutting to
the chase, and that’s what this query attempts to do. The documents returned
by this search often have great potential for document grinding, which we’ll
explore in more detail in Chapter 10. The file extensions used in this search
were selected very carefully. First, www.filext.com (one of the Internet’s best
resources for all known file extensions) was consulted to obtain a list of every
known file extension. Each entry in the list of over 8000 file extensions was
converted into a Google query using the filetype operator. For example, if we
wanted to search for the PDF extension, we might use a query like filetype:PDF
to get the number of known results on the Internet. This type of Google query
was performed for each and every known file extension from filext.com, which
can take quite some time, especially when done in accordance with Google
Terms of Use agreement. Once the results were gathered, they were sorted in
descending order by the number of hits.

A site search combined with a negative search for the top ten most common
file types can lead you right to some potentially interesting documents. In
some cases, this query will need to be refined, especially if the site uses a less

FIGURE 7.8

http://www.filext.com/

133–EXT:HTML –EXT:HTM –EXT:SHTML –EXT:ASP –EXT:PHP

common server-generated file extension. For example, consider this query
combined with a site operator, as shown in Figure 7.9. (To protect the identity
of the target, certain portions of the Figure 7.9 have been edited.)

As revealed in the search results, this site uses the ASPX extension for some
Web content. By adding –ext:aspx to the query and resubmitting it, that type of
content is removed from the search results. This modified search reveals some
interesting information, as shown in Figure 7.10.

FIGURE 7.9

FIGURE 7.10

CHAPTER 7:   Ten Simple Security Searches That Work134

By adding a common file extension used on this site, after a few pages of me-
diocre results we discover a page full of interesting information. Result line 1
reveals that the site supports the HTTPS protocol, a secured version of HTTP
used to protect sensitive information. The mere existence of the HTTPS proto-
col often indicates that this server houses something worth protecting. Result
line 1 also reveals several nested subdirectories (/research/files/summaries)
that could be explored or traversed to locate other information. This same line
also reveals the existence of a PDF document dated the first quarter of 2003.

Result line 2 reveals the existence of what is most likely a development server
named DEV. This server also contains subdirectories (/events/archives/
strategiesNAM2003) that could be traversed to uncover more information.
One of the subdirectory names, strategiesNAM2003, contains a “the string
2003,” most likely a reference to the year 2003. Using the incremental substi-
tution technique discussed in Chapter 3, it’s possible to modify the year in this
directory name to uncover similarly named directories. Result line 2 also re-
veals the existence of an attendee list that could be used to discover usernames,
email addresses, and so on.

Result line 3 reveals another machine name, JOBS, which contains a ColdFu-
sion application that accepts parameters. Depending on the nature and secu-
rity of this application, an attack based on user input might be possible. Result
line 4 reveals new directory names, /help/emp, which could be traversed or fed
into other third-party assessment applications.

The results continue, but the point is that once common, purposefully placed
files are removed from a search, interesting information tends to float to the
top. This type of reduction can save an attacker or a security technician a good
deal of time in assessing a target.

INURL:TEMP | INURL:TMP | INURL:BACKUP | INURL.BAK
The inurl:temp | inurl:tmp | inurl:backup | inurl:bak query, combined with the site
operator, searches for temporary or backup files or directories on a server. Al-
though there are many possible-naming conventions for temporary or backup
files, this search focuses on the most common terms. Since this search uses the
inurl operator, it will also locate files that contain these terms as file extensions,
such as index.html.bak, for example. Modifying this search to focus on file ex-
tensions is one option, but these terms are more interesting if found in a URL.

INTRANET | HELP.DESK
The term intranet, despite more specific technical meanings, has become a ge-
neric term that describes a network confined to a small group. In most cas-
es the term intranet describes a closed or private network, unavailable to the

Intranet | Help.desk 135

general public. However, many sites have configured portals that allow access
to an intranet from the Internet, bringing this typically closed network one step
closer to potential attackers.

In rare cases, private intranets have been discovered on the public Internet
due to a network device misconfiguration. In these cases, network adminis-
trators were completely unaware that their private networks were accessible
to anyone via the Internet. Most often, an Internet-connected intranet is
only partially accessible from the outside. In these cases, filters are em-
ployed that only allow access to certain pages from specific addresses, pre-
sumably inside a facility or campus. There are two major problems with
this type of configuration. First, it’s an administrative nightmare to keep
track of the access rights of specific pages. Second, this is not true access
control. This type of restriction can be bypassed very easily if an attacker
gains access to a local proxy server, bounces a request off a local misconfig-
ured Web server, or simply compromises a machine on the same network as
trusted intranet users. Unfortunately, it’s nearly impossible to provide a re-
sponsible example of this technique in action. Each example we considered
for this section was too easy for an attacker to reconstruct with a few simple
Google queries.

Help desks have a bad reputation of being, well, too helpful. Since the incep-
tion of help desks, hackers have been donning alternate personalities in an
attempt to gain sensitive information from unsuspecting technicians. Recently,
help desk procedures have started to address the hacker threat by insisting that
technicians validate callers before attempting to assist them. Most help desk
workers will (or should) ask for identifying information such as usernames,
Social Security numbers, employee numbers, and even PIN numbers to prop-
erly validate callers’ identities. Some procedures are better than others, but for
the most part, today’s help desk technicians are at least aware of the potential
threat that is posed by an imposter.

In Chapter 4, we discussed ways Google can be used to harvest the iden-
tification information a help desk may require, but the intranet | help.desk
query is not designed to bypass help desk procedures but rather to locate
pages describing help desk procedures. When this query is combined with a
site search, the results could indicate the location of a help desk (Web page,
telephone number, or the like), the information that might be requested
by help desk technicians (which an attacker could gather before calling),
and in many cases links that describe troubleshooting procedures. Self-help
documentation is often rather verbose, and a crafty attacker can use the
information in these documents to profile a target network or server. There
are exceptions to every rule, but odds are that this query, combined with
the site operator, will dig up information about a target that can feed a
future attack.

CHAPTER 7:   Ten Simple Security Searches That Work136

SUMMARY
This list may not be perfect, but these 10 searches should serve you well as you
seek to compile your own list of killer searches. It’s important to realize that a
search that works against one target might not work well against other targets.
Keep track of the searches that work for you, and try to reach some common
ground about what works and what doesn’t. Automated tools, discussed in
Chapters 11 and 12, can be used to feed longer lists of Google queries such as
those found in the Google Hacking Database, but in some cases, simpler might
be better. If you’re having trouble finding common ground in some queries
that work for you, don’t hesitate to keep them in a list for use in one of the
automated tools that we’ll discuss later.

137

﻿﻿
﻿

Tracking Down Web Servers, Login
Portals, and Network Hardware

CHAPTER 8

INTRODUCTION
Penetration (pen) testers are sometimes thought of as professional hackers
since they essentially break into their customers’ networks in an attempt to
locate, document, and ultimately help resolve security flaws in a system or
network. However, pen testers and hackers differ quite a bit in several ways.

For example, most penetration testers are provided with specific instruc-
tions about which networks and systems they will be testing. Their targets are
specified for many reasons, but in all cases, their targets are clearly defined
or bounded in some fashion. Hackers, on the other hand, have the luxury of
selecting from a wider target base. Depending on his or her motivations and
skill level, the attacker might opt to select a target based on known exploits at
his or her disposal. This reverses the model used by pen testers, and as such
it affects the structure we will use to explore the topic of Google hacking. The
techniques we’ll explore in the next few chapters are most often employed by
hackers – the “bad guys.”

Penetration testers have access to the techniques we’ll explore in these chapters,
but in many cases these techniques are too cumbersome for use during a vul-
nerability assessment, when time is of the essence. Security professionals often
use specialized tools that perform these tasks in a much more streamlined fash-
ion, but these tools make lots of noise and often overlook the simplest form
of information leakage that Google is so capable of revealing – and revealing
in a way that’s nearly impossible to catch on the “radar.” The techniques we’ll
examine here are used on a daily basis to locate and explore the systems and
networks attached to the Internet, so it’s important that we explore how these
techniques are used to better understand the level of exposure and how that
exposure can be properly mitigated.

The techniques we explore in this chapter are used to locate and analyze the
front-end systems on an Internet-connected network. We look at ways an

CHAPTER 8:   Tracking Down Web Servers, Login Portals, and Network Hardware138

attacker can profile Web servers using seemingly insignificant clues found
with Google queries. Next, we’ll look at methods used to locate login por-
tals, the literal front door of most Web sites. As we will see, some login
portals provide administrators of a system an access point for performing
various administrative functions. Most login portals provide clues to an at-
tacker about what software is in use on the server, and draws the attention of
attackers that are armed with an exploit for that particular type of software.
We round out the chapter by showing techniques that can be used to locate
all sorts of network devices – firewalls, routers, network printers, and even
Web cameras.

LOCATING AND PROFILING WEB SERVERS
If an attacker hasn’t already decided on a target, he might begin with a Google
search for specific targets that match an exploit at his disposal. He might fo-
cus specifically on the operating system, the version and brand of Web server
software, default configurations, vulnerable scripts, or any combination of
factors.

There are many different ways to locate a server. The most common way is with
a simple portscan. Using a tool such as Nmap, a simple scan of port 80 across
a class C network will expose potential Web servers. Integrated tools such as
Nessus, OpenVAS, Qualys, or Retina will run some type of portscan, followed
by a series of security tests. These functions can be replicated with Google que-
ries, although in most cases the results are nowhere near as effective as the
results from a well-thoughtout vulnerability scanner or Web assessment tool.
Remember, though, that Google queries are less obvious and provide a degree
of separation between an attacker and a target. Also remember that hackers
can use Google hacking techniques to find systems you may be charged with
protecting. The bottom line is that it’s important to understand the capabili-
ties of the Google hacker and realize the role Google can play in an attacker’s
methodology.

Directory Listings
We discussed directory listings in Chapter 3, but the importance of
directory listings with regard to profiling methods is important. The
server tag at the bottom of a directory listing can provide explicit detail
about the type of Web server software that’s running. If an attacker has an
exploit for Apache 2.4.12 running on a UNIX server, a query such as server.at
“Apache/2.4.12” will locate servers that host a directory listing with an Apache
2.4.12 server tag.

139Locating and Profiling Web Servers

Not all Web servers place this tag at the bottom of directory listings, but most
Apache derivatives turn on this feature by default. Other platforms, such as
Microsoft’s Internet Information Server (IIS), display server tags as well, as a
query for “Microsoft-IIS/7.0 server at”.

When searching for these directory tags, keep in mind that your syntax is
very important. There are many irrelevant results from a query for “Microsoft-
IIS/7.0”“server at”, whereas a query like “Microsoft-IIS/7.0 server at” provides
very relevant results. Since we’ve already covered directory listings, we won’t
dwell on it here. Refer to Chapter 3 if you need for directory listings.

Web Server Software Error Messages
Error messages contain a lot of useful information, but in the context of locat-
ing specific servers, we can use portions of various error messages to locate serv-
ers running specific software versions. We’ll begin our discussion by looking at
error messages that are generated by the Web server software itself.

Microsoft IIS
The best way to find error messages is to figure out what messages the server
is capable of generating. You could gather these messages by examining the
server source code or configuration files or by actually generating the errors on
the server yourself. The best way to get this information from IIS is by examin-
ing the source code of the error pages themselves.

IIS 5.0 and 6.0, by default, display static Hypertext Transfer Protocol (HTTP)/1.1
error messages when the server encounters some sort of problem. These er-
ror pages are stored by default in the %SYSTEMROOT%\help\iisHelp\common
directory. These files are essentially Hypertext Markup language (HTML) files
named by the type of error they produce, such as 400.htm, 401-1.htm, 501.
htm, and so on. By analyzing these files, we can come up with trends and com-
monalities between the pages that are essential for effective Google searching.
For example, the file that produces 400 error pages, 400.htm, contains a line
(line 12) that looks like this:

This is a dead giveaway for an effective intitle query such as intitle:”“The page
cannot be found”. Unfortunately, this search yields (as you might guess) far too
many results. We’ll need to dig deeper into the 400.htm file to get more clues
about what to look for. Lines 65–88 of 400.htm are shown here:

CHAPTER 8:   Tracking Down Web Servers, Login Portals, and Network Hardware140

141Locating and Profiling Web Servers

The phrase “Please try the following” in line 65 exists in every single error file
in this directory, making it a perfect candidate for part of a good base search.
This line could effectively be reduced to “please * * following.” Line 88 shows
another phrase that appears in every error document; “Internet Information Ser-
vices,” These are “golden terms” to use to search for IIS HTTP/1.1 error pag-
es that Google has crawled. A query such as intitle:“The page cannot be found”
“please * * following” “Internet * Services” can be used to search for IIS servers
that present a 400 error page.

Looking at this cached page carefully, you’ll notice that the actual error code
itself is printed on the page, about halfway down. This error line is also printed
on each of IIS’s error pages, making for another good limiter for our searching.
The line on the page begins with “HTTP Error 404,” which might seem out of
place, considering we were searching for a 400 error code, not a 404 error code,
as seen in Figures 8.1 and 8.2. This occurs because several IIS error pages pro-
duce similar pages. Although commonalities are often good for Google search-
ing, they could lead to some confusion and produce ineffective results if we are
searching for a specific, less benign error page. It’s obvious that we’ll need to
sort out exactly what’s what in these error page files.

These page titles, used in an intitle search, combined with the other golden IIS
error searches, make for very effective searches, locating all sorts of IIS servers
that generate all sorts of telling error pages. To troll for IIS servers with the eso-
teric 404.1 error page, try a query such as intitle:“The Web site cannot be found”
“please * * following”. A more common error can be found with a query such
as intitle:“The page cannot be displayed” “Internet Information Services” “please *
* following”, which is very effective because this error page is shown for many
different error codes.

FIGURE 8.1

CHAPTER 8:   Tracking Down Web Servers, Login Portals, and Network Hardware142

In addition to displaying the default static HTTP/1.1 error pages, IIS can be
configured to display custom error messages, configured via the Management
Console. An example of this type of custom error page. This type of function-
ality makes the job of the Google hacker a bit more difficult since there is no
apparent way to home in on a customized error page. However, some error
messages, including 400, 403.9, 411, 414, 500, 500.11, 500.14, 500.15, 501,
503, and 505 pages, cannot be customized. In terms of Google hacking, this
means that there is no easy way an IIS 6.0 server can prevent displaying the
static HTTP/1.1 error pages we so effectively found previously. This opens the
door for locating these servers through Google, even if the server has been con-
figured to display custom error pages.

Besides trolling through the IIS error pages looking for exact phrases, we can
also perform more generic queries, such as intitle:“the page cannot be found”
inetmgr“, which focuses on the fairly unique term used to describe the IIS Man-
agement console, inetmgr. Other ways to perform this same search might be
intitle:“the page cannot be found” “internet information services”, or intitle:“Under
construction” “Internet Information Services”.

Other, more specific searches can reveal the exact version of the IIS server, such
as a query for intext:” “404 Object Not Found” Microsoft-IIS/5.0.

Apache Web Server
Apache Web servers can also be located by focusing on server-generated error
messages. Some generic searches such as “Apache/2.4.12 Server at”“-intitle:index.
of intitle:inf” or “Apache/2.4.12 Server at” -intitle:index.of intitle:error can be used
to locate servers that might be advertising their server version via an info or
error message.

FIGURE 8.2

143

A query such as “Apache/2.4.12” intitle:“Object not found!” will locate Apache
2.4.12 Web servers that presented this error message. Although there might be
nothing wrong with throwing queries around looking for commonalities and
good base searches, we’ve already seen in the IIS section that it’s more effective
to consult the server software itself for search clues. Most Apache installations
rely on a configuration file called httpd.conf. Searching through Apache 2.0.40’s
httpd.conf file reveals the location of the HTML templates for error messages.
The referenced files (which follow) are located in the Web root directory, such
as /error/http_BAD_REQUEST.html.var, which refers to the /var/www/error direc-
tory on the file system:

Taking a look at one of these template files, we can see recognizable HTML
code and variable listings that show the construction of an error page. The file
itself is divided into sections by language. The English portion of the HTTP_
NOT_FOUND.html.var file is shown here:

Locating and Profiling Web Servers

CHAPTER 8:   Tracking Down Web Servers, Login Portals, and Network Hardware144

Content-language: en Content-type: text/html Body:----------en-- < !—#set
var = “TITLE” value = “Object not found!” —> <!—#include virtual = “include/
top.html” —>

The requested URL was not found on this server.

Notice that the sections of the error page are clearly labeled, making it easy
to translate into Google queries. The TITLE variable, shown near the top of
the listing, indicates that the text “Object not found!” will be displayed in the
browser’s title bar. When this file is processed and displayed in a Web browser.
However, Google hacking is not always this easy. A search for intitle:“Object not
found!” is too generic.

These results are not what we’re looking for. To narrow our results, we need
a better base search. Constructing our base search from the template files in-
cluded with the Apache 2.0 source code not only enables us to locate all the
potential error messages the server is capable of producing, it also shows us
how those messages are translated into other languages, resulting in very solid
multilingual base searches.

The HTTP_NOT_FOUND.html.var file listed previously referred to two
virtual include lines, one near the top (include/top.html) and one near the
bottom (include/bottom.html). These lines instruct Apache to read and insert
the contents of these two files (located in our case in the /var/www/error/
include directory) into the current file. The following code lists the contents
of the bottom.html file and shows some subtleties that will help construct
that perfect base search:

145

First, notice line 4, which will display the word “Error” on the page. Although
this might seem very generic, it’s an important subtlety that would keep results
from displaying. Line 2 shows that another file (/var/www/error/contact.html.
var) is read and included into this file. The contents of this file, listed as follows,
contain more details that we can include into our base search:

1.	 Content-language: en
2.	 Content-type: text/html
3.	 Body:----------en--
4.	 If you think this is a server error, please contact the <a

href = “mailto: < !--#echo encoding = ”none“ var = ”SERVER_ADMIN“
-- >” > webmaster < /a>

5.	 ----------en--

This file, like the file that started this whole “include chain,” is broken up into
sections by language. The portion of this file listed here shows yet another
unique string we can use. We’ll select a fairly unique piece of this line, “think
this is a server error,” as a portion of our base search instead of just the word
error, which we used initially to remove some false positives. The other part of
our base search, intitle:“Object not found!”, was originally found in the /error/
http_BAD_REQUEST.html.var file. The final base search for this file then be-
comes intitle:“Object Not Found!”“think this is a server error”, which returns more
accurate results.

Now that we’ve found a good base search for one error page, we can automate
the query-hunting process to determine good base searches for the other error
pages referenced in the httpd.conf file, helping us create solid base searches for
each and every default Apache (2.0) error page. The contact.html.var file that we
saw previously is included in each and every Apache 2.0 error page via the bot-
tom.html file. This means that “think this is a server error” will work for all the dif-
ferent error pages that Apache 2.0 will produce. The other critical element to our
search was the intitle search, which we could grep for in each of the error files.

Locating and Profiling Web Servers

CHAPTER 8:   Tracking Down Web Servers, Login Portals, and Network Hardware146

While we’re at it, we should also try to grab a snippet of the text that is
printed in each of the error pages, remembering that in some cases a more
specific search might be needed. Using some basic shell commands, we can
isolate both the title of an error page and the text that might appear on the
error page:

Instead of searching for English messages only, we could search for errors in
other Apache-supported languages by simply replacing the Content-language
string in the previous grep command from en to either de, es, fr, or sv, for Ger-
man, Spanish, French, or Swedish, respectively.

To use this table, simply supply the text in the Error Page Title column as an
intitle search and a portion of the text column as an additional phrase in the
search query. Since some of the text is lengthy, you might need to select a
unique portion of the text or replace common words with an asterisk, which
will reduce your search query to the 10-word limit imposed on Google que-
ries. For example, a good query for the first line of the table might be “response
from * upstream server.” intitle:“Bad Gateway!”. Alternately, you could also
rely on the “think this is a server error” phrase combined with a title search,
such as “think this is a server error” intitle:“Bad Gateway!”. Different versions
of Apache will display slightly different error messages, but the process of
locating and creating solid base searches from software source code is some-
thing you should get comfortable with to stay ahead of the ever-changing
software market.

This technique can be expanded to find Apache servers in other languages
by reviewing the rest of the contact.html.var file. Because these sentences and
phrases are included in every Apache error message, they should appear in
the text of every error page that the Apache server produces, making them
ideal for base searches. It is possible (and fairly easy) to modify these error
pages to provide a more polished appearance when a user encounters an
error; but remember, hackers have different motivations. Some are simply
interested in locating particular versions of a server, perhaps to exploit. Us-
ing these criteria, there is no shortage of servers on the Internet that are
using these default error phrases, and by extension may have a default, less-
secured configuration.

Besides Apache and IIS, other servers (and other versions of these servers) can
be located by searching for server-produced error messages, but we’re trying to
keep this book just a bit thinner than your local yellow pages, so we’ll draw the
line at just these two servers.

147

Application Software Error Messages
The error messages we’ve looked at so far have all been generated by the Web
server itself. In many cases, applications running on the Web server can gen-
erate errors that reveal information about the server as well. There are untold
thousands of Web applications on the Internet, each of which can gener-
ate any number of error messages. Dedicated Web assessment tools such as
SPI Dynamic’s WebInspect excel at performing detailed Web application
assessments, making it seem a bit pointless to troll Google for application
error messages. However, we search for error message output throughout
this book simply because the data contained in error messages should not
be overlooked.

We’ve looked at various error messages in previous chapters, and we’ll see more
error messages in later chapters, but let’s take a quick look at how error mes-
sages can help profile a Web server and its applications. Admittedly, we will
hardly scratch the surface of this topic, but we’ll make an effort to stimulate
your thinking about Google’s ability to locate these sometimes very telling er-
ror messages.

One query, “Fatal error: Call to undefined function” -reply -the –next, will locate
Active Server Page (ASP) error messages. These messages often reveal informa-
tion about the database software in use on the server as well as information
about the application that caused the error.

Although this ASP message is fairly benign, some ASP error messages are
much more revealing. Consider the query “ASP.NET_SessionId” “data source = ”,
which locates unique strings found in ASP.NET application state dumps. These
dumps reveal all sorts of information about the running application and the
Web server that hosts that application. An advanced attacker could use en-
crypted password data and variable information in these stack traces to subvert
the security of the application and perhaps the Web server itself.

Hypertext Preprocessor (PHP) application errors are fairly commonplace. They
can reveal all sorts of information that an attacker can use to profile a server.
One very common error can be found with a query such as intext:“Warning:
Failed opening” include_path.

CGI programs often reveal information about the Web server and its applica-
tions in the form of environment variable dumps.

This screen shows information about the Web server and the client that con-
nected to the page when the data was produced. Since Google’s bot crawls pag-
es for us, one way to find these CGI environment pages is to focus on the trail
left by the bot, reflected in these pages as the “HTTP_FROM = googlebot” line.
We can search for pages like this with a query such as “HTTP_FROM = google-
bot” googlebot.com “Server_Software”. These pages are dynamically generated,

Locating and Profiling Web Servers

CHAPTER 8:   Tracking Down Web Servers, Login Portals, and Network Hardware148

which means that you must look at Google’s cache to see the document as it
was crawled.

To locate good base searches for a particular application, it’s best to look at the
source code of that application. Using the techniques we’ve explored so far, it’s
simple to create these searches.

Default Pages
Another way to locate specific types of servers or Web software is to search for
default Web pages. Most Web software, including the Web server software itself,
ships with one or more default or test pages. These pages can make it easy for
a site administrator to test the installation of a Web server or application. By
providing a simple page to test, the administrator can simply connect to his
own Web server with a browser to validate that the Web software was installed
correctly. Some operating systems even come with Web server software already
installed. In this case, the owner of the machine might not even realize that a
Web server is running on his machine. This type of casual behavior on the part
of the owner will lead an attacker to rightly assume that the Web software is
not well maintained and is, by extension, insecure. By further extension, the
attacker can also assume that the entire operating system of the server might be
vulnerable by virtue of poor maintenance.

In some cases, Google crawls a Web server while it is in its earliest stages
of installation, still displaying a set of default pages. In these cases there’s
generally a short window of time between the moment when Google crawls
the site and when the intended content is actually placed on the server. This
means that there could be a disparity between what the live page is display-
ing and what Google’s cache displays. This makes little difference from a
Google hacker’s perspective, since even the past existence of a default page
is enough for profiling purposes. Remember, we’re essentially searching
Google’s cached version of a page when we submit a query. Regardless of
the reason a server has default pages installed, there’s an attacker somewhere
who will eventually show interest in a machine displaying default pages
found with a Google search.

Notice that the administrator’s email is generic as well, indicating that not a
lot of attention was paid to detail during the installation of this server. These
default pages do not list the version number of the server, which is a required
piece of information for a successful attack. It is possible, however, that an at-
tacker could search for specific variations in these default pages to find specific
ranges of server versions.

Using these subtle differences to our advantage, we can use specific Google
queries to locate servers with these default pages, indicating that they are most
likely running a specific version of Apache.

Locating Login Portals 149

Although each version of IIS displays distinct default Web pages, in some cases
service packs or hotfixes could alter the content of a default page. In these cas-
es, the subtle page changes can be incorporated into the search to find not only
the operating system version and Web server version, but also the service pack
level and security patch level. This information is invaluable to an attacker
bent on hacking not only the Web server, but hacking beyond the Web server
and into the operating system itself. In most cases, an attacker with control on
the operating system can wreak more havoc on a machine than a hacker who
controls only the Web server.

Default Documentation
Web server software often ships with manuals and documentation that end
up in the Web directories. An attacker could use this documentation to either
profile or locate Web software.

In most cases, default documentation does not as accurately portray the server
version as well as error messages or default pages, but this information can
certainly be used to locate targets and to gain an understanding of the potential
security posture of the server. If the server administrator has forgotten to delete
the default documentation, an attacker has every reason to believe that other
details such as security have been overlooked as well.

In most cases, specialized programs such as CGI scanners or Web application
assessment tools are better suited for finding these default pages and programs,
but if Google has crawled the pages (for example, from a link on a default main
page), you’ll be able to locate these pages with Google queries.

LOCATING LOGIN PORTALS
Login portal is a term I use to describe a Web page that serves as a “front door”
to a Web site. Login portals are designed to allow access to specific features
or functions after a user logs in. Google hackers search for login portals as a
way to profile the software that’s in use on a target, and to locate links and
documentation that might provide useful information for an attack. In addi-
tion, if an attacker has an exploit for a particular piece of software, and that
software provides a login portal, the attacker can use Google queries to locate
potential targets.

Some login portals, like the one shown in Figure 8.3, captured with “micro-
soft outlook” “web access” version, are obviously default pages provided by the
software manufacturer – in this case, Microsoft. Just as an attacker can get an
idea of the potential security of a target by simply looking for default pages, a
default login portal can indicate that the technical skill of the server’s adminis-
trators is generally low, revealing that the security of the site will most likely be

CHAPTER 8:   Tracking Down Web Servers, Login Portals, and Network Hardware150

poor as well. To make matters worse, default login portals like the one shown
in Figure 8.4, indicate the software revision of the program. An attacker can use
this information to search for known vulnerabilities in that software version.

By following links from the login portal, an attacker can often gain access to
other information about the target. The Outlook Web Access portal is particu-
larly renowned for this type of information leak, because it provides an anony-
mous public access area that can be viewed without logging in to the mail
system. This public access area sometimes provides access to a public directory
or to broadcast emails that can be used to gather usernames or information, as
shown in Figure 8.2.

Some login portals provide more details than others. As shown in Figure 8.4,
provides a great deal of information about the server, including server software
version and revision, application software version and revision, software up-
grade date, and server uptime. This type of information is very handy for an
attacker staging an attack against the server.

Login portals provide great information for use during a vulnerability assess-
ment. Chapter 4 provides more details on getting the most from these pages.

FIGURE 8.3

151Using and Locating Various Web Utilities

USING AND LOCATING VARIOUS WEB UTILITIES
Google is amazing and very flexible, but it certainly can’t do everything. Some
things are much easier when you don’t use Google. Tasks like WHOIS lookups,
“pings,” traceroutes, and portscans are much easier when performed outside of
Google. There is a wealth of tools available that can perform these functions,
but with a bit of creative Googling, it’s possible to perform all of these arduous
functions and more, preserving the level of anonymity Google hackers have
come to expect. Consider a tool called the Network Query Tool (NQT), shown
in Figure 8.5.

Default installations of NQT allow any Web user to perform Internet Proto-
col (IP) hostname and address lookups, Domain Name Server (DNS) queries,
WHOIS queries, port testing, and traceroutes. This is a Web-based application,
meaning that any user who can view the page can generally perform these
functions against just about any target. This is a very handy tool for any secu-
rity person, and for good reason. NQT functions appear to originate from the
site hosting the NQT application. The Web server masks the real address of
the user. The use of an anonymous proxy server would further mask the user’s
identity.

We can use Google to locate servers hosting the NQT program with a very
simple query. The NQT program is usually called nqt.php, and in its default
configuration displays the title “Network Query Tool.” A simple query like
inurl:nqt.php intitle:“Network Query Tool” returns many results, as shown in
Figure 8.6.

FIGURE 8.4

CHAPTER 8:   Tracking Down Web Servers, Login Portals, and Network Hardware152

After submitting this query, it’s a simple task to simply click on the results
pages to locate a working NQT program. However, the NQT program accepts
remote POSTS, which means it’s possible to send an NQT “command” from
your Web server to the foo.com server, which would execute the NQT “com-
mand” on your behalf. If this seems pointless, consider the fact that this would

FIGURE 8.5

FIGURE 8.6

153Using and Locating Various Web Utilities

allow for simple extension of NQT’s layout and capabilities. We could, for
example, easily craft an NQT “rotator” that would execute NQT commands
against a target, first bouncing it off an Internet NQT server. Let’s take a look at
how that might work.

First, we’ll scrape the results page shown in Figure 8.5, creating a list of sites
that host NQT. Consider the following Linux/Mac OS X command:

This command grabs 100 results of the Google query inurl:nqt.php intitle:“Network
Query Tool”, locates the word nqt.php at the end of a line, removes any line that
contains the word google, prints the second field in the list (which is the URL of
the NQT site), and uniquely sorts that list. This command will not catch NQT
URLs that contain parameters (since nqt.php will not be the last word in the
link), but it produces clean output that might look something like this:

We could dump this output into a file by appending >> nqtfile.txt to the end
of the previous sort command. Now that we have a working list of NQT servers,
we’ll need a copy of the NQT code that produces the interface. This interface,

CHAPTER 8:   Tracking Down Web Servers, Login Portals, and Network Hardware154

with its buttons and “enter host or IP” field, will serve as the interface for our
“rotator” program. Getting a copy of this interface is as easy as viewing the
source of an existing nqt.php Web page (say, from the list of sites in the nqtfile.
txt file), and saving the HTML content to a file we’ll call rotator.php on our own
Web server. At this point, we have two files in the same directory of our Web
server – an nqtfile.txt file containing a list of NQT servers, and a rotator.php file
that contains the HTML source of NQT. We’ll be replacing a single line in the
rotator.php file to create our “rotator” program. This line, which is the beginning
of the NQT input form, reads:

This line indicates that once the “Do it” button is pressed, data will be sent to a script
called nqt.php. If we were to modify this form field to <form method = “post” ac-
tion = “http://foo.com/nqt.php”>, our rotator program would send the NQT com-
mand to the NQT program located at foo.com, which would execute it on our
behalf. We’re going to take this one step further, inserting PHP code that will
read a random site from the nqtfile.txt program, inserting it into the form line for
us. This code might look something like this (lines numbered for clarity):

http://foo.com/nqt.php

155Using and Locating Various Web Utilities

lines in the original NQT HTML code. Line 1 indicates that a PHP code seg-
ment is about to begin. Since the rest of the rotator.php file is HTML, this line, as
well as line 7 that terminates the PHP code segment, is required. Line 2 reads
our nqtsites.txt file, assigning each line in the file (a URL to an NQT site) to an
array element. Line 3, included as a separate line for readability, assigns one
random line from the nqtsites.txt program to the variable $site. Line 4 outputs
the modified version of the original form line, modifying the action target to
point to a random remote NQT site. Lines 5 and 6 simply output informative
messages about the NQT site that was selected, and instructions for loading a
new NQT site. The next line in the rotator.php script would be the table line that
draws the main NQT table.

Our rotator program looks very similar to the standard NQT program interface,
with the addition of the two initial lines of text. However, when the “check
port” box is checked, www.microsoft.com is entered into the host field, and the
Do It button is clicked, we are whisked away to the results page on a remote
NQT server that displays the results – port 80 is, in fact, open and accepting
connections, as shown in Figure 8.7.

This example is designed to suggest that Google can be used to supplement
the use of many Web-based applications. All that’s required is a bit of Google
know-how and a healthy dose of creativity.

FIGURE 8.7

http://www.microsoft.com/

CHAPTER 8:   Tracking Down Web Servers, Login Portals, and Network Hardware156

TARGETING WEB-ENABLED NETWORK DEVICES
Google can also be used to detect the presence of many Web-enabled network
devices. Many network devices come preinstalled with a Web interface to allow
an administrator to query the status of the device or to change device settings
with a Web browser. While this is convenient, and can even be primitively se-
cured through the use of a Secure Sockets Layer (SSL)-enabled connection, if
the Web interface of a device is crawled with Google, even the mere existence
of that device can add to a silently created network map. For example, a query
like intitle:“BorderManager information alert” can reveal the existence of a Novell
BorderManager Proxy/Firewall server.

A crafty attacker could use the mere existence of this device to craft his attack
against the target network. For example, if this device is acting as a proxy server,
the attacker might attempt to use it to gain access to machines inside a trust-
ed network by bouncing connections off this server. Additionally, an attacker
might search for any public vulnerabilities for this product in an attempt to
exploit this device directly. Although many different devices can be located in
this way, it’s generally easier to harvest IP and network data using the output
from network statistical programs as we’ll see in the next section. To get an
idea of the types of devices that can be located with this technique, consider
queries like “Version Info”“BootVersion”“Internet Settings”, which locate Belkin
Cable/DSL routers; intitle:“wbem” compaq login, which locates HP Insight Man-
agement Agents; intitle:“lantronix web-manager”, which locates Lantronix Web
managers; inurl:tech-support inurl:show Cisco or intitle:“switch home page” “cisco
systems” “Telnet - to”, which locates various Cisco products; or intitle:“axis stor-
point CD” intitle:“ip address”, which can locate Axis StorPoint servers. Each of
these queries reveals pages that report various bits of information about the
networks on which they’re installed.

LOCATING NETWORK REPORTS
The ntop program shows network traffic statistics that can be used to deter-
mine the network architecture of a target. The query intitle:“Welcome to ntop!”
will locate servers that have publicized their ntop programs.

Practically any Web-based network statistics package can be located with
Google. You can find several examples from the Google Hacking Database
(GHDB) that show searches for various network documentation.

This type of information is a huge asset during a security audit, which can save
a lot of time, but realize that any information found in this manner should be
validated before using it in any type of finished report.

Locating Network Hardware 157

LOCATING NETWORK HARDWARE
It’s not uncommon for a network-connected device to have a Web page of
some sort. If that device is connected to the Internet and a link to that device’s
Web page ever existed, there’s a good chance that that page is in Google’s da-
tabase, waiting to be located with a crafty query. As we discussed in Chapter 5,
these pages can reveal information about the target network. This type of infor-
mation can play a very important role in mapping a target network.

All types of devices can be connected to a network. These devices, ranging from
switches and routers to printers and even firewalls, are considered great finds
for any attacker interested in network reconnaissance, but some devices such
as Webcams are interesting finds for an attacker as well.

In most cases, a network-connected Webcam is not considered a security threat
but more a source of entertainment for any Web surfer. Keep a few things in
mind, however. First, some companies consider it trendy and cool to provide
customers a look around their workplace. Netscape was known for this back in
its heyday. The Webcams located on these companies’ premises were obviously
authorized by upper management. A look inside a facility can be a huge benefit
if your job boils down to a physical assessment. Second, it’s not all that un-
common for a Webcam to be placed outside a facility, as shown in Figure 8.8.
This type of cam is a boon for a physical assessment. Also, don’t forget that
what an employee does at work doesn’t necessarily reflect what he does on his
own time. If you locate an employee’s personal Web space, there’s a fair chance
that these types of devices will exist.

FIGURE 8.8

CHAPTER 8:   Tracking Down Web Servers, Login Portals, and Network Hardware158

Most network printers manufactured these days have some sort of Web-based
interface installed. If these devices (or even the documentation or drivers sup-
plied with these devices) are linked from a Web page, various Google queries
can be used to locate them.

Once located, network printers can provide an attacker with a wealth of infor-
mation. As shown in Figure 8.9, it is very common for a network printer to list
details about the surrounding network, naming conventions, and more. Many
devices located through a Google search are still running a default, insecure
configuration with no username or password needed to control the device. In a
worst-case scenario, attackers can view print jobs and even coerce these printers
to store files or even send network commands.

SUMMARY
Attackers use Google for a variety of reasons. An attacker might have access to
an exploit for a particular version of Web software and may be on the prowl
for vulnerable targets. Other times the attacker might have decided on a target
and is using Google to locate information about other devices on the network.
In some cases, an attacker could simply be looking for Web devices that are

FIGURE 8.9

Summary 159

poorly configured with default pages and programs, indicating that the security
around the device is soft.

Directory listings provide information about the software versions in use on a
device. Server and application error messages can provide a wealth of informa-
tion to an attacker and are perhaps the most underestimated of all informa-
tion-gathering techniques. Default pages, programs, and documentation not
only can be used to profile a target, but they serve as an indicator that the server
is somewhat neglected and perhaps vulnerable to exploitation. Login portals,
while serving as the “front door” of a Web server for regular users, can be used
to profile a target, used to locate more information about services and proce-
dures in use, and used as a virtual magnet for attackers armed with matching
exploits. In some cases, login portals are set up by administrators to allow re-
mote access to a server or network. This type of login portal, if compromised,
can provide an entry point for an intruder as well.

Google can be used to locate or augment Web-based networking tools like
NQT, which enables remote execution of various network-querying applica-
tions. Using creative queries, Google may even locate Web-enabled network de-
vices in use by the target or output from network statistical packages. Whatever
your goal during a network-based assessment, there’s a good chance Google
can be used to augment your existing tools and techniques.

Page left intentionally blank

161

﻿﻿

Usernames, Passwords,
and Secret Stuff, Oh My!

CHAPTER 9

INTRODUCTION
This chapter is not about finding sensitive data during an assessment as much
as it is about what the “bad guys” might do to troll for the data. The examples
presented in this chapter generally represent the lowest-hanging fruit on the
security tree. Hackers target this information on a daily basis. To protect against
this type of attacker, we need to be fairly candid about the worst-case possibili-
ties. We won’t be overly candid, however. We don’t want to give the bad guys
any ideas they don’t already have.

We start by looking at some queries that can be used to uncover usernames, the
less important half of most authentication systems. The value of a username is
often overlooked, but as we’ve already discussed, an entire multimillion-dollar
security system can be shattered through skillful crafting of even the smallest,
most innocuous bit of information.

Next, we will take a look at queries that are designed to uncover passwords.
Some of the queries we look at reveal encrypted or encoded passwords, which
will take a bit of work on the part of an attacker to use to his or her advan-
tage. We also take a look at queries that can uncover cleartext passwords. These
queries are some of the most dangerous in the hands of even the most nov-
ice attacker. What could make an attack easier than handing a username and
cleartext password to an attacker?

We wrap up this chapter by discussing the very real possibility of uncovering
highly sensitive data such as credit card information and information used
to commit identity theft, such as Social Security numbers. Our goal here is to
explore ways of protecting against this very real threat. To that end, we don’t
go into details about uncovering financial information and the like. If you’re a
“dark side” hacker, you’ll need to figure these things out on your own, or make
the wise decision to turn to the light side of the force.

CHAPTER 9:   Usernames, Passwords, and Secret Stuff, Oh My!162

SEARCHING FOR USERNAMES
Most authentication mechanisms use a username and password to protect in-
formation. To get through the “front door” of this type of protection, you’ll
need to determine usernames as well as passwords. Usernames also can be
used for social engineering efforts, as we discussed earlier.

Many methods can be used to determine usernames. In Chapter 4, we explored
ways of gathering usernames via database error messages. In Chapter 8, we
explored Web server and application error messages that can reveal various
kinds of information, including usernames. These indirect methods of locating
usernames are helpful, but an attacker could target a usernames directory with
a simple query like “your username is”. This phrase can locate help pages that
describe the username creation process.

An attacker could use this information to postulate a username based on in-
formation gleaned from other sources, such as Google Groups posts or phone
listings. The usernames could then be recycled into various other phases of the
attack, such as a worm-based spam campaign or a social-engineering attempt.
An attacker can gather usernames from a variety of sources.

In some cases, usernames can be gathered from Web-based statistical pro-
grams that check Web activity. The Webalizer program shows all sorts of in-
formation about a Web server’s usage. Output files for the Webalizer program
can be located with a query such as +intext:webalizer +intext:“Total Usernames”
+intext:“Usage Statistics for”. Among the information displayed is the username
that was used to connect to the Web server. In some cases, however, the user-
names displayed are not valid or current, but the “Visits” column lists the num-
ber of times a user account was used during the capture period. This enables an
attacker to easily determine which accounts are more likely to be valid.

The Windows registry holds all sorts of authentication information, including
usernames and passwords. Though it is unlikely (and fairly uncommon) to
locate live, exported Windows registry files on the Web, at the time of this writ-
ing there are nearly 200 hits on the query filetype:reg HKEY_CURRENT_USER
username, which locates Windows registry files that contain the word username
and in some cases passwords.

Remember that there are several ways to search for a known filename. One
way relies on locating the file in a directory listing, like intitle:index.of install.
log. Another, often better, method relies on the filetype operator, as in filetype:log
inurl:install.log. Directory listings are not all that common. Google will crawl
a link to a file in a directory listing, meaning that the filetype method will find
both directory listing entries as well as files crawled in other ways.

As any talented attacker or security person will tell you, it’s rare to get informa-
tion served to you on a silver platter. Most decent finds take a bit of persistence,

163Searching for Passwords

creativity, intelligence, and just a bit of good luck. For example, consider the
Microsoft Outlook Web Access portal, which can be located with a query like
inurl:root.asp?acs = anon. There are few hits for this query, even though there
lots of sites run the Microsoft Web-based mail portal. Regardless of how you
might locate a site running this email gateway, it’s not uncommon for the site
to host a public directory (denoted “Find Names,” by default), as shown in
Figure 9.1.

The public directory allows access to a search page that can be used to find us-
ers by name. In most cases, wildcard searching is not allowed, meaning that a
search for * will not return a list of all users, as might be expected. Entering a
search for a space is an interesting idea; since most user descriptions contain
a space, but most large directories will return an error message reading “This
query would return too many addresses!” Applying a bit of creativity, an attack-
er could begin searching for individual common letters, such as the “Wheel of
Fortune letters” R, S, T, L, N, and E. Eventually one of these searches will most
likely reveal a list of user information.

Once a list of user information is returned, the attacker can then recycle the
search with words contained in the user list, searching for the words Voyager,
Freshmen, or Campus, for example. Those results can then be recycled, eventu-
ally resulting in a nearly complete list of user information.

SEARCHING FOR PASSWORDS
Password data, one of the “Holy Grails” during a penetration test, should be
protected. Unfortunately, many examples of Google queries can be used to
locate passwords on the Web.

FIGURE 9.1

CHAPTER 9:   Usernames, Passwords, and Secret Stuff, Oh My!164

In most cases, passwords discovered on the Web are either encrypted or en-
coded in some way. In most cases, these passwords can be fed into a password
cracker such as John the Ripper from www.openwall.com/john to produce
plaintext passwords that can be used in an attack. Figure 9.2 shows the results
of the search ext:pwd inurl:_vti_pvt inurl:(Service | authors | administrators),
which combines a search for some common Microsoft FrontPage support files.
While Microsoft FrontPage is no longer supported by Microsoft it can still be
found in use around. Note that live, exported Windows registry files are not
very common, but it’s not uncommon for an attacker to target a site simply
because of one exceptionally insecure file. It’s also possible for a Google query
to uncover cleartext passwords. These passwords can be used as is, without
having to employ a password-cracking utility. In these extreme cases, the only
challenge is determining the username as well as the host on which the pass-
word can be used. As shown in Figure 9.3, certain queries will locate all the
following information: usernames, cleartext passwords, and the host that uses
that authentication!

There is no magic query for locating passwords, but during an assessment,
remember that the simplest queries directed at a site can have amazing results,
as we discussed in Chapter 7. For example, a query like “Your password” forgot
would locate pages that provide a forgotten password recovery mechanism.
The information from this type of query can be used to formulate any number
of attacks against a password. As always, effective social engineering is a terrific
nontechnical solution to “forgotten” passwords.

Another generic search for password information, intext:(password | passcode |
pass) intext:(username | userid | user), combines common words for passwords

FIGURE 9.2

http://www.openwall.com/john

165Searching for Credit Card Numbers, Social Security Numbers, and More

and user IDs into one query. This query returns a lot of results, but the vast ma-
jority of the top hits refer to pages that list forgotten password information,
including either links or contact information.

Using Google’s translate feature, found at http://translate.google.com/
translate_t, we could also create multilingual password searches. Note that the
terms username and userid in most languages translate to username and use-
rid, respectively.

SEARCHING FOR CREDIT CARD NUMBERS, SOCIAL
SECURITY NUMBERS, AND MORE
Most people have heard news stories about Web hackers making off with cus-
tomer credit card information. With so many fly-by night retailers popping up
on the Internet, it’s no wonder that credit card fraud is so prolific. These mom-
and-pop retailers are not the only ones successfully compromised by hackers.
Corporate giants by the hundreds have had financial database compromises
over the years, victims of sometimes very technical, highly focused attackers.

What might surprise you is that it doesn’t take a rocket scientist to uncover live
credit card numbers on the Internet as seen in Figure 9.4. Thanks to search
engines like Google, everything from credit information to banking data or
supersensitive classified government documents can be found on the Web.

This document, found using Google, lists hundreds and hundreds of credit
card numbers (including expiration date and card validation numbers) as well
as the owners’ names, addresses, and phone numbers. This particular docu-
ment also included phone card (calling card) numbers. In most cases, pages

FIGURE 9.3

http://translate.google.com/translate_t
http://translate.google.com/translate_t

CHAPTER 9:   Usernames, Passwords, and Secret Stuff, Oh My!166

that contain these numbers are not “leaked” from online retailers or e-com-
merce sites but rather are most likely the fruits of a scam known as phishing,
in which users are solicited via telephone or email for personal information.
Several Web sites, including MillerSmiles.co.uk, document these scams and
hoaxes. Figure 9.5 shows a screenshot of a popular eBay phishing scam that
encourages users to update their eBay profile information.

Once a user fills out this form, all the information is sent via email to the at-
tacker, who can use it for just about anything. Sometimes this data is stored
on a Web server used by the attacker. In some cases I’ve seen online “phish-
ing investigators” post reports which link to the phisher’s cache of pilfered

FIGURE 9.4

FIGURE 9.5

167Searching for Other Juicy Info

personal data. When a search engine crawls those links, all that personal data
is suddenly available to even the most amateur Google hacker.

SOCIAL SECURITY NUMBERS
Attackers can use similar techniques to home in on Social Security numbers
(SSNs) and other sensitive data. For a variety of reasons, SSNs might appear
online – for example, educational facilities are notorious for using an SSN as
a student ID, then posting grades to a public Web site with the “student ID”
displayed next to the grade. A creative attacker can do quite a bit with just an
SSN, but in many cases it helps to also have a name associated with that SSN.
Again, educational facilities have been found exposing this information via Ex-
cel spreadsheets listing student’s names, grades, and SSNs, despite the fact that
the student ID number is often used to help protect the privacy of the student!
Although I’ve never revealed how to locate SSN’s, several media outlets have
done just that – irresponsibly posting the search details online. Although the
blame lies with the sites that are leaking this information, in my opinion it’s
still not right to draw attention to how exactly the information can be located.

PERSONAL FINANCIAL DATA
In some cases, phishing scams are responsible for publicizing personal infor-
mation; in other cases, hackers attacking online retails are to blame for this
breach of privacy. Sadly, there are many instances where an individual is per-
sonally responsible for his own lack of privacy. Such is the case with personal
financial information. With the explosion of personal computers in today’s
society, users have literally hundreds of personal finance programs to choose
from. Many of these programs create data files with specific file extensions
that can be searched with Google. It’s hard to imagine why anyone would post
personal financial information to a public Web site (which subsequently gets
crawled by Google), but it must happen quite a bit, judging by the number of
hits for program files generated by Quicken and Microsoft Money, for exam-
ple. Although it would be somewhat irresponsible to provide queries here that
would unearth personal financial data, it’s important to understand the types
of data that could potentially be uncovered by an attacker.

SEARCHING FOR OTHER JUICY INFO
As we’ve seen, Google can be used to locate all sorts of sensitive information.
In this section we take a look at some of the data that Google can find that’s
harder to categorize. From address books to chat log files and network vulner-
ability reports, there’s no shortage of sensitive data online.

CHAPTER 9:   Usernames, Passwords, and Secret Stuff, Oh My!168

Some of this information is fairly benign – for example, MSN Messenger con-
tact list files that can be found with a query like filetype:ctt messenger, or AOL
Instant Messenger (AIM) buddy lists that can be located with a query such as
filetype:blt blt +intext:screenname.

This screen shows a list of “buddies,” or acquaintances an individual has en-
tered into his or her AIM client. An attacker often uses personal information
like this in a social-engineering attack, attempting to convince the target that
they are a friend or an acquaintance. This practice is akin to pilfering a Rolo-
dex or address book from a target. For a seasoned attacker, information like
this can lead to a successful compromise. However, in some cases, data found
with a Google query reveals sensitive security-related information that even the
most novice attacker could use to compromise a system.

For example, consider the output of the Nessus security scanner available from
www.nessus.org. This excellent open-source tool conducts a series of security
tests against a target, reporting on any potential vulnerability. The report gen-
erated by Nessus can then be used as a guide to help system administrators
lock down any affected systems. An attacker could also use a report like this to
uncover a target’s potential vulnerabilities. Using a Google query such as “This
file was generated by Nessus”, an attacker could locate reports generated by the
Nessus tool. This report lists the IP address of each tested machine as well as
the ports opened and any vulnerabilities that were detected.

In most cases, reports found in this manner are samples, or test reports, but in
a few cases, the reports are live and the tested systems are, in fact, exploitable as
listed. One can only hope that the reported systems are honeypots – machines
created for the sole purpose of luring and tracing the activities of hackers.
In the next chapter, we’ll talk more about “document-grinding” techniques,
which are also useful for digging up this type of information. This chapter fo-
cused on locating the information based on the name of the file, whereas the
next chapter focuses on the actual content of a document rather than the name.

SUMMARY
Make no mistake – there’s sensitive data on the Web, and Google can find it.
There’s hardly any limit to the scope of information that can be located, if only
you can figure out the right query. From usernames to passwords, credit card
and Social Security numbers, and personal financial information, it’s all out
there. As a purveyor of the “dark arts,” you can relish in the stupidity of others,
but as a professional tasked with securing a customer’s site from this dangerous
form of information leakage, you could be overwhelmed by the sheer scale of
your defensive duties.

http://www.nessus.org/

Summary 169

As droll as it might sound, a solid, enforced security policy is a great way to
keep sensitive data from leaking to the Web. If users understand the risks asso-
ciated with information leakage and understand the penalties that come with
violating policy, they will be more willing to cooperate in what should be a
security partnership.

In the meantime, it certainly doesn’t hurt to understand the tactics an adversary
might employ in attacking a Web server. One thing that should become clear as
you read this book is that any attacker has an overwhelming number of files to
go after. One way to prevent dangerous Web information leakage is by denying
requests for unknown file types. Whether your Web server normally serves up
CFM, ASP, PHP, or HTML, it’s infinitely easier to manage what should be served
by the Web server instead of focusing on what should not be served. Adjust
your servers or your border protection devices to allow only specific content
or file types.

Page left intentionally blank

171

﻿﻿

Hacking Google Services

CHAPTER 10

CALENDAR
Google Calendar is powerful calendar management application, which sup-
ports features like calendar sharing, creation of invitations, search and calendar
publishing. The service is also integrated with Google Mail (GMail) and can be
accessed via a Mobile device. All in all, Google Calendar is very useful addition
to our day-to-day work.

Calendar sharing in particular is a very useful feature since individual users
can maintain event lists and calendars to which others may be interested in as
well. Usually in order to share a calendar you have to explicitly do so from the
calendar management interface.

Once the calendar is shared, everyone will be able to look at it or even sub-
scribe to the events that are inside. This can be done via the Calendar applica-
tion or any RSS feed reader.

As a security expert, these shared calendars are especially interesting. Very of-
ten, even when performing the most basic searches, it is entirely possible to
stumble across sensitive information that can be used for malicious purposes.
For example, logging into Calendar and searching for the term “password”
returns many results.

As you can see, there are several calendar entries that meet our search criteria.
Among them, there are a few that are quite interesting and worth our attention.
Another interesting query that brings a lot of juicy information is “passcode”,
as shown in Figure 10.1.

Figure 10.1 reveals several scheduled telephone conferences. Notice that the
conference phone number and access code are also listed. An attacker could
easily join the telephone conference at the scheduled time and silently eaves-
drop on the conference. Mission accomplished. There is a lot attackers can
learn from the conversation, like corporate secrets, technical details about sys-
tems in operations, etc.

CHAPTER 10:   Hacking Google Services172

Of course we can try variations of the above queries and even space them up
with more keywords so we can get a better picture. For example the query
“username password” returns results about people who may store sensitive login
information within their calendar.

This is just the beginning though, how about looking for birthdays, pet’s
names, etc. As you probably know, a lot of password reminder facilities have a
secret question. The secrets answer is usually something that we choose from
our daily life so there is no chance that we can forget. However, the Calendar
application may also contain our daily activities. When we mash both, we
might be able to crack into the targeted user account by simply reading their
calendar.

There are many different ways; the Calendar service can be abused. The main
and most important security consideration that we, as users, need to make is
whether the information that is enclosed within the Google’s shiny event cells
is sensitive and can be used to harm us.

SIGNALING ALERTS
Very often we need to track changes in Google’s result set. For example, let’s say
that we want to monitor a certain site for vulnerabilities. How can we do that?
We can simply run scanners every once in a while but this is a noisy exercise
and will definitely take loads of time. Instead, being dedicated Google hack-
ers, we can use Google itself and use a few powerful Google dorks to locate
the things that we are interested in without the need for automated scanning

FIGURE 10.1  

Google Co-op 173

software. Then we can setup a cron task to monitor the results returned by
Google and when a change is detected email us the result.

Then again, we could simply use Google Alerts. Google Alerts is a powerful sys-
tem that detects when a query’s result set changes. The system can be modified
to send updates once a day, once a week, or as they happen. Keep in mind that
only the first 10 entries (the first page) are taken into consideration. Neverthe-
less, the Alert system does a good job when optimized.

This is a great tool, but it can be used for more interesting purposes. Let’s say
that we know that a target is using MsSQL as database backend. We could use
Google alerts to poll the target, searching for error messages as they pop up.
That search might look something like this:

“[SQL Server Driver][SQL Server]Line 1: Incorrect syntax near” -forum -thread -
showthread site:example.com

For the type of alert select Web, usually default option. Select the frequency of
the alert, and your email address and click Create Alert.

Notice that the query that we use for this alert is domain restricted (site:example.
com). Also pay attention to the actual Google dork. Obviously we look for
messages that look like generated failures in the SQL queries sent to backend.
These types of messages are sign for SQL Injection vulnerable resources.

A malicious user can use this service to alert whenever a vulnerability or inter-
esting message appears on a target site. This is very low profile, and does not
alert the target; the transaction happens between the user and Google. An at-
tacker could even enter alerts for every entry in the Google Hacking Database.
Although this would be overkill, some of the entries in the database reveal
extremely sensitive information, which could be harvested with very little fur-
ther effort.

GOOGLE CO-OP
Google Co-op (www.google.com/coop) is a powerful service that allows you
to create powerful custom search engines. You do not need to be registered
Google user in order to use the service but if you want to create an engine, it is
required. In the following section, we’ll guide you through some of the most
interesting features of this service and we’ll show you how to create your own
search engines.

Let’s start with the simplest of search engines. Browse the Google Co-op page
and click Create a Custom Search Engine, or simply browse to www.google.
com/coop/cse. From the Custom Engine configuration page we need to define
the characteristics we need.

http://www.google.com/coop
http://www.google.com/coop/cse
http://www.google.com/coop/cse

CHAPTER 10:   Hacking Google Services174

First enter a search engine name. We’ll call ours the “Google Hacking Database
Search.” Enter a description and some basic search keywords, both of which
are optional. The keywords are primarily used by Google to find the most rel-
evant results. This means that our query will be mingled with these keywords.
For now, we’ll leave this alone. Moving forward, to the field titled What do you
want to search, we will define the scope of the search queries. For this example,
we are going to use the default option entitled Only sites that I select.

Now, the interesting part, we need to supply the URLs Google will look into when
performing the queries. Since our search engine will do stuff around the Google
Hacking Database located at https://www.exploit-db.com/google-hacking-
database/, we’ll simply drop that URL into this field. We’ll customize this entry
option further with the use of wildcards, in order to search URLs that match a
specific syntax. Here are a few examples taken from Co-op’s documentation:

The rest of the options from the Co-op Custom engine creation page are irrele-
vant at this point. Agree to Google’s terms of service and click on the next button.

No we’ll test how the search engine works. Type a few queries like “index” or
“secret,” and you’ll see some sample results. If everything works as expected,
click finish, and the custom search engine will be displayed.

GOOGLE’S CUSTOM SEARCH ENGINE
The GNUCITIZEN group http://www.gnucitizen.org has discovered that Google’s
Custom Search Engine platform can be used for many other useful things such
as fingerprinting and enumerating hidden Web servers. It is well known fact that
not all Web resources are exposed to the Internet. We call that part of the net-
work the hidden Web. By using Custom Search Engines we can recover them and
enumerate their content. Among the gathered information, we may find Intranet
interfaces, administrative panels and other types of sensitive information.

https://www.exploit-db.com/google-hacking-database/
https://www.exploit-db.com/google-hacking-database/
http://www.gnucitizen.org/

175

﻿﻿

Hacking Google Showcase

CHAPTER 11

INTRODUCTION
A self-respecting Google hacker spends hours trolling the Internet for juicy stuff.
Firing off search after search, they thrive on the thrill of finding clean, mean,
streamlined queries and get a real rush from sharing those queries and trading
screenshots of their findings. I know because I’ve seen it with my own eyes. As
the founder of the Google Hacking Database (GHDB) and the Search engine
hacking forums at http://johnny.ihackstuff.com, I am constantly amazed at
what the Google hacking community comes up with. It turns out the rumors
are true – creative Google searches can reveal medical, financial, proprietary
and even classified information. Despite government edicts, regulation, and
protection acts like HIPPA and the constant barking of security watchdogs, this
problem still persists. Stuff still makes it out onto the Web, and Google hackers
snatch it right up.

In my quest to put a spotlight on the threat, I began speaking on the topic of
Google hacking at security conferences like Blackhat and Defcon. In addition, I
was approached to write my first book, the first edition of the book that you’re
holding. After months of writing, I assumed our cause would finally catch the
eye of the community at large and that change would be on the horizon. I just
knew people would be talking about Google hacking and that awareness about
the problem would increase.

Google Hacking, first edition, has made a difference. But nothing made waves
like the “Google Hacking Showcase,” the fun part of my infamous Google
hacking conference talks. The showcase wasn’t a big deal to me – it consisted of
nothing more than screenshots of wild Google hacks I had witnessed. Borrow-
ing from the pool of interesting Google queries I had created, along with scores
of queries from the community; I snagged screenshots and presented them one
at a time, making smarmy comments along the way. Every time I presented the
showcase, I managed to whip the audience into a frenzy of laughter at the ab-
surd effectiveness of a hacker armed only with a browser and a search engine. It
was fun, and it was effective. People talked about those screenshots for months

http://johnny.ihackstuff.com/

CHAPTER 11:   Hacking Google Showcase176

after each talk. They were, after all, the fruits of a Google hacker’s labor. Those
photos represented the white-hot center of the Google hacking threat.

It made sense then to include the showcase in this edition of Google Hacking.
In keeping with the original format of the showcase, this chapter will be heavy
on photos and light on gab because the photos speak for themselves. Some of
the screenshots in this chapter are dated, and some no longer exist on the Web,
but this is great news. It means that somewhere in the world, someone (per-
haps inadvertently) graduated from the level of googledork and has taken a step
closer to a better security posture. Regardless, I left in many outdated photos as
a stark reminder to those charged with protecting online resources. They serve
as proof that this threat is pervasive – it can happen to anyone, and history has
shown that it has happened to just about everyone.

So without further ado, enjoy this print version of the Google Hacking Show-
case, brought to you by Johnny Long and the contributions of the Google
Hacking community.

GEEK STUFF
This section is about computer stuff. It’s about technical stuff, the stuff of geeks.
We will take a look at some of the more interesting technical finds uncovered
by Google hackers. We’ll begin by looking at various utilities that really have
no business being online, unless of course your goal is to aid hackers. Then
we’ll look at open network devices and open applications, neither of which
requires any real hacking to gain access to.

Utilities
Any self-respecting hacker has a war chest of tools at his disposal, but the thing
that’s interesting about the tools in this section is that they are online – they
run on a Web server and allow an attacker to effectively bounce his recon-
naissance efforts off of that hosting Web server. To make matters worse, these
application-hosting servers were each located with clever Google queries. We’ll
begin with the handy PHP script shown in Figure 11.1 That allows a Web visi-
tor to ping any target on the Internet. A ping isn’t necessarily a bad thing, but
why offer the service to anonymous visitors?

Unlike the ping tool, the finger tool has been out of commission for quite a
long time. This annoying service allowed attackers to query users on a UNIX
machine, allowing enumeration of all sorts of information such as user connect
times, home directory, full name and more. Enter the finger CGI script, an awk-
ward attempt to “webify” this irritating service. As shown in Figure 11.2, a well-
placed Google query locates installations of this script, providing Web visitors
with a finger client that allows them to query the service on remote machines.

Geek Stuff 177

Pings and finger lookups are relatively benign; most system administrators won’t
even notice them traversing their networks. Portscans, on the other hand, are
hardly ever considered benign, and a paranoid administrator (or piece of de-
fense software) will take note of the source of a portscan. Although most modern
portscanners provide options, which allow for covert operation, a little Google
hacking can go a long way. Figure 11.3 reveals a Google search submitted by Jim-
my Neutron that locates sites that will allow a Web visitor to portscan a target.

Remember, scans performed in this way will originate from the Web server, not
from the attacker. Even the most paranoid system administrator will struggle
to trace a scan launched in this way. Of course, most attackers won’t stop at

FIGURE 11.1  

FIGURE 11.2  

CHAPTER 11:   Hacking Google Showcase178

a portscan. They will most likely opt to continue probing the target with any
number of network utilities that could reveal their true location. However, if
an attacker locates a Web page like the one shown in Figure 11.4 (submitted by
Jimmy Neutron), he can channel various network probes through the WebUtil
Perl script hosted on that remote server. Once again, the probes will appear to
come from the Web server, not from the attacker.

The Web page listed in Figure 11.5 (submitted by Golfo) lists the name, address
and device information for a school’s “student enrollment” systems. Clicking
through the interface reveals more information about the architecture of the

FIGURE 11.3  

FIGURE 11.4  

Open Network Devices 179

network, and the devices connected to it. Consolidated into one easy-to-read
interface and located with a Google search, this page makes short work of an
attacker’s reconnaissance run.

OPEN NETWORK DEVICES
Why hack into a network server or device when you can just point and click
your way into an open network device? Management devices, like the one sub-
mitted by Jimmy Neutron in Figure 11.6, often list all sorts of information
about a variety of devices.

When m00d submitted the query shown in Figure 11.7, I honestly didn’t think
much of it. The SpeedStream router is a decidedly lightweight device installed
by home users, but I was startled to find them sitting wide-open on the Inter-
net. I personally like the button in the point-to-point summary listing. Who do
you want to disconnect today?

Belkin is a household name in home network gear. With their easy-to-use
Web-based administrative interfaces, it makes sense that eventually pages like
the one in Figure 11.8 would get crawled by Google. Even without login cre-
dentials, this page reveals a ton of information that could be interesting to
a potential attacker. I got a real laugh out of the Features section of the page.
The firewall is enabled, but the wireless interface is wide open and unen-
crypted. As a hacker with a social conscience, my first instinct is to enable

FIGURE 11.5  

CHAPTER 11:   Hacking Google Showcase180

encryption on this access point – in an attempt to protect this poor home
user from themselves.

Milkman brings us the query shown in Figure 11.9, which digs up the con-
figuration interface for Smoothwall personal firewalls. There’s something just
wrong about Google hacking someone’s firewall.

FIGURE 11.6  

FIGURE 11.7  

Open Network Devices 181

FIGURE 11.8  

FIGURE 11.9  

CHAPTER 11:   Hacking Google Showcase182

As Jimmy Neutron reveals in the next two figures, even big-name gear like Cis-
co shows up in the recesses of Google’s cache every now and again. Although
it’s not much to look at, the switch interface shown in Figure 11.10 leaves little
to the imagination – all the configuration and diagnostic tools are listed right
on the main page.

This second Cisco screenshot as seen in Figure 11.11 should look familiar to
Cisco geeks. I don’t know why, but the Cisco nomenclature reminds me of a

FIGURE 11.10  

FIGURE 11.11  

Open Network Devices 183

bad Hollywood flick. I can almost hear the grating voice of an oversynthesized
computer beckoning, “Welcome to Level 15.”

The search shown in Figure 11.12 (submitted by Murfie) locates interfaces for
an Axis network print server. Most printer interfaces are really boring, but this
one in particular piqued my interest. First, there’s the button named configura-
tion wizard, which I’m pretty sure launches a configuration wizard. Then there’s
the handy link labeled Print Jobs, which lists the print jobs. In case you haven’t
already guessed, Google hacking sometimes leaves little to the imagination.

Printers aren’t entirely boring things. Consider the Web Image Monitor shown
in Figure 11.13. I particularly like the document on Recent Religion Work. That’s
quite an honorable pursuit, except when combined with the document about
Aphrodisiacs. I really hope the two documents are unrelated. Then again, noth-
ing surprises me these days.

CP has a way of finding Google hacks that make me laugh, and Figure 11.14 is
no exception. Yes, this is the Web-based interface to a municipal water fountain.

After watching the water temperature fluctuate for a few intensely boring sec-
onds, it’s only logical to click on the Control link to see if it’s possible to actually
control the municipal water fountain. As Figure 11.15 reveals, yes it is possible
to remotely control the municipal water fountain.

One bit of advice though – if you happen to bump into one of these, be nice.
Don’t go rerouting the power into the water storage system. I think that would
definitely constitute an act of terrorism.

FIGURE 11.12  

CHAPTER 11:   Hacking Google Showcase184

FIGURE 11.13  

FIGURE 11.14  

Open Network Devices 185

Moving along to a more traditional network fixture, consider the screenshot
captured in Figure 11.16.

Now, I’ve been in the security business for many years, and I’m not exactly bril-
liant in any one particular area of the industry. But I do know a little bit about
a lot of different things, and one thing I know for sure is that security products
are designed to protect stuff. It’s the way of things. But when I see something
like the log shown in Figure 11.16, I get all confused. See, this is a Web-based
interface for the Snort intrusion detection system. The last time I checked, this
data was supposed to be kept away from the eyes of an attacker, but I guess I
missed an email or something. Yet, I suppose there’s logic to this somewhere.
Maybe if the attacker sees his mistakes on a public Web page, he’ll be too
ashamed to ever hack again, and he’ll go on to lead a normal productive life.
Then again, maybe he and his hacker buddies will just get a good laugh out of
his good fortune. It’s hard to tell.

FIGURE 11.15  

CHAPTER 11:   Hacking Google Showcase186

OPEN APPLICATIONS
Many mainstream Web applications are relatively idiot-proof, designed for the
point-and-click masses that know little about security. Even still, the Google
hacking community has discovered hundreds of online apps that are wide
open, just waiting for a point-and-click script novice to come along and own
them. The first in this section was submitted by Shadowsliv and is shown in
Figure 11.17.

FIGURE 11.16  

FIGURE 11.17  

Open Applications 187

The bad news is that if a hacker can figure out what to type in those confusing
fields, he’ll have his very own Pivot Web log. The good news is that most skilled
attackers will leave this site alone, figuring that any software left this unpro-
tected must be a honey pot. It’s really sad that hacking (not real hacking mind
you) can be reduced to a point-and-click affair, but as Arrested’s search reveals
in Figure 11.18, owning an entire Web site can be a relatively simple affair.

Sporting one less field than the open Pivot install, this configuration page will
create a PHP-Nuke Administrator account, and allow any visitor to start up-
loading content to the page as if it were their own. Of course, this takes a bit of
malicious intent on behalf of the Web visitor. There’s no mistaking the fact that
he or she is creating an Administrator account on a site that does not belong to
them. However, the text of the page in Figure 11.19 is a bit more ambiguous.

The bold text in the middle of the page really cracks me up. I can just imagine
somebody’s poor Grandma running into this page and reading it aloud. “For
security reasons, the best idea is to create the Super User right NOW by clicking
HERE.” I mean who in their right mind would avoid doing something that was
for security reasons? For all Grandma knows, she may be saving the world from
evil hackers... by hacking into some poor fool’s PHP-Nuke install.

And as if owning a Web site isn’t cool enough, Figure 11.20 (submitted by
Quadster) reveals a phpMyAdmin installation logged in as root, providing un-
fettered access to a MySQL database.

With a Web site install and an SQL database under his belt, it’s a natural pro-
gression for a Google hacker to want the ultimate control of a system. VNC

FIGURE 11.18  

CHAPTER 11:   Hacking Google Showcase188

installations provide remote control of a system’s keyboard and mouse.
Figure 11.21, submitted by Lester, shows a query that locates RealVNC’s Java-
based client.

Locating a client is only part of the equation, however. An attacker will still
need to know the address, port and (optional) password for a VNC server. As
Figure 11.22 reveals, the Java client itself often provides two-thirds of that equa-
tion in a handy popup window.

FIGURE 11.19  

FIGURE 11.20  

Open Applications 189

If the hacker is luckyenough to stumble on a server that’s not password protect-
ed, he’s faced with the daunting task of figuring out which of the four buttons
to click in the above connection window. Here’s a hint for the script novice
looking to make his way in the world: it’s not the Cancel button.

Of course running without a password is just plain silly. But passwords can
be so difficult to remember and software vendors obviously realize this as evi-
denced by the password prompt shown in Figure 11.23.

Posting the default username/password combination on a login popup is just
craziness. Unfortunately it’s not an isolated event. Check out Figure 11.24, sub-
mitted by Jimmy Neutron. Can you guess the default password?

Graduating to the next level of hacker leetness requires a bit of work. Check out
the user screen shown in Figure 11.25, which was submitted by Dan Kaminsky.

FIGURE 11.21  

FIGURE 11.22  

CHAPTER 11:   Hacking Google Showcase190

If you look carefully, you’ll notice that the URL contains a special field called
ADMIN, which is set to False. Think like a hacker for a moment and imagine
how you might gain administrative access to the page. The spoiler is listed in
Figures 11.26 and 11.27.

Check out the shiny new Exit Administrative Access button. By Changing the
ADMIN field to True, the application drops us into Administrative access mode.
Hacking really is hard, I promise.

FIGURE 11.23  

FIGURE 11.24  

FIGURE 11.25  

Cameras 191

CAMERAS
I’ve got to be honest and admit that like printer queries, I’m really sick of Web
cam queries. For a while there, every other addition to the GHDB was a Web
cam query. Still, some Web cam finds are pretty interesting and worth men-
tioning in the showcase. I’ll start with a cell phone camera dump, submitted
by Vipsta as shown in Figures 11.28 and 11.29.

Not only is this an interesting photo of some pretty serious-looking vehicular
carnage but the idea that Google trolls camera phone picture sites is interest-
ing. Who knows what kind of blackmail fodder lurks in the world’s camera
phones. Not that anyone would ever use that kind of information for sensa-
tionalistic or economically lucrative purposes. Ahem.

FIGURE 11.26  

FIGURE 11.27  

CHAPTER 11:   Hacking Google Showcase192

FIGURE 11.28  

FIGURE 11.29  

Cameras 193

Moving on, check out the office-mounted open Web camera submitted by
Klouw as shown in Figures 11.30 and 11.31.

This is really an interesting Web cam. Not only does it reveal all the activity
in the office, but also it seems especially designed to allow remote shoulder
surfing. Hackers had to get out of the house to participate in this classic sport
earlier. These days all they have to do is fire off a few Google searches.

FIGURE 11.30  

FIGURE 11.31  

CHAPTER 11:   Hacking Google Showcase194

Figure 11.32, however (submitted by JBrashars) is unmistakable. It’s definitely
a parking lot camera. I’m not sure why, exactly, a camera is pointed at a handi-
capped parking space, but my guess is that there have been reports of handi-
capped parking spot abuse. Imagine the joy of being the guard that gets to
witness the CIO parking in the spot, leaping out of his convertible and running
into the building. Those are the stories of security guard legends.

I can’t be the only one that thinks it’s insane to put open security camera feeds
on the Internet. Of course it happens in Hollywood movies all the time. It
seems the first job for the hired hacker is to tap into the video surveillance
feeds. But the movies make it look all complicated and technical. I’ve never
once seen a Hollywood hacker use Google to hack the security system. Then
again, that wouldn’t look nearly as cool as using fiber optic cameras, wire cut-
ters and alligator clips.

Moving on, the search shown in Figure 11.33 (submitted by JBrashars) returns
quite a few hits for open Everfocus EDSR applets.

The Everfocus EDSR is a multichannel digital video recording system with a
Web-based interface. It’s a decent surveillance product, and as such it is pass-
word protected by default, as shown in Figure 11.34.

Unfortunately, as revealed by an anonymous contributor, the factory-default
administrative username and password provides access to many of these sys-
tems, as shown in Figure 11.35.

FIGURE 11.32  

Cameras 195

FIGURE 11.33  

FIGURE 11.34  

CHAPTER 11:   Hacking Google Showcase196

Once inside, the EDSR applet provides access to multiple live video feeds and
a historic record of any previously recorded activity. Again, just like the magic
of Hollywood without all the hacker smarts.

The EDSR isn’t the only multichannel video system that is targeted by Google
hackers. As Murfie reveals, a search for I-catcher CCTV returns many systems
like the one shown in Figure 11.36.

Although the interface may look simple, it provides access to multiple live
camera views, including one called “Woodie,” which I was, personally, afraid
to click on.

These cameras are all interesting, but I’ve saved my favorite for last. Check out
Figure 11.37.

This camera provides open access to Web visitors. Located in a computer lab, the
camera’s remote control capability allows anonymous visitors to peer around,
panning and zooming to their hearts content. Not only does this allow for some
great shoulder surfing, but also the sticker in the screen capture had me practi-
cally falling out of my chair. It lists a username and password for the lab’s online
FTP server. Stickers listing usernames and passwords are bad enough, but I won-
der whose bright idea it was to point an open Web cam at them?

FIGURE 11.35  

Cameras 197

FIGURE 11.36  

FIGURE 11.37  

CHAPTER 11:   Hacking Google Showcase198

TELCO GEAR
I’ve never been much of a phreaker (phone hacker), but thanks to the depth
of Google’s searching capabilities, I wouldn’t need to have much experience to
get into this shady line of work. As JBrashar’s search reveals in Figure 11.38, the
surge of Voice over IP (VOIP) service has resulted in a host of new Web-based
phone interfaces.

It’s interesting to me that by just using Google, an attacker could get phone
history information such as last called number and last caller number. Nor-
mally, the Sipura SPA software does a better job of protecting this information,
but this particular installation is improperly configured. Other, more technical
information can also be uncovered by clicking through the links on the Web
interface, as shown in Figure 11.39.

There are so many VOIP devices that it’s impossible to cover them all, but the
new kid on the VOIP server block is definitely Asterisk. After checking out the
documentation for the Asterisk management portal, Jimmy Neutron uncov-
ered the interesting search shown in Figure 11.40.

From this opening, an attacker can make changes to the Asterisk server, includ-
ing forwarding incoming calls, as shown in Figure 11.41.

Unfortunately, a hacker’s fun wouldn’t necessarily stop there. It’s simple to
reroute extensions, monitor or reroute voicemail, enable or disable digi-
tal receptionists and even upload disturbing on-hold music. But Jimmy’s

FIGURE 11.38  

Telco Gear 199

Asterisk VOIP digging didn’t stop there; he later submitted the search shown
in Figure 11.42.

This flash-based operator panel provides access to similar capabilities, and
once again, the interface was found open to any Internet visitor.

FIGURE 11.39  

FIGURE 11.40  

CHAPTER 11:   Hacking Google Showcase200

Moving along, Yeseins serves up the interesting search shown in Figure 11.43,
which locates videoconferencing management systems.

This management system allows a Web visitor to connect, disconnect, and
monitor conference calls, take snapshots of conference participants, and even
change line settings as shown in Figure 11.44.

FIGURE 11.41  

FIGURE 11.42  

Telco Gear 201

A malicious hacker could even change the system name and password, locking
legitimate administrators out of their own system, as shown in Figure 11.45.

Despite all the new-fangled Web interfaces we’ve looked at, Google hacking
bridges the gap to older systems as well, as shown in Figure 11.46.

FIGURE 11.43  

FIGURE 11.44  

CHAPTER 11:   Hacking Google Showcase202

This front-end was designed to put a new face on an older PBX product, but cli-
ent security seems to have been an afterthought. Notice that the interface asks
the user to “Logout” of the interface, indicating that the user is already logged
in. Also, notice that cryptic button labeled Start Managing the Device. After fir-
ing off a Google search, all a malicious hacker has to do is figure out which
button to press. What an unbelievably daunting task.

FIGURE 11.45  

FIGURE 11.46  

Power 203

POWER
I get a lot of raised eyebrows when I talk about using Google to hack power
systems. Most people think I’m talking about UPS systems like the one submit-
ted by Yeseins in Figure 11.47.

This is a clever Google query, but it’s only an uninterruptible power system
(UPS)-monitoring page. This can be amusing, but as Jimmy Neutron shows in
Figure 11.48, there are more interesting power hacking opportunities available.

AMX NetLinx systems are designed to allow control of power systems. Fig-
ure 11.48 seems to suggest that a Web visitor could control power in a theater,
a family room and the master bedroom of a residence. The problem is that the
Google search turns up a scarce number of results, most of which are password
protected. As an alternative, Jimmy offers the search shown in Figure 11.49.

Although this query results in a long list of password-protected sites, many
sites still use the default password, providing access to the control panel shown
in Figure 11.50.

This control panel lists power sockets alongside interesting buttons named
Power and Restart, which even the dimmest of hackers will undoubtedly be
able to figure out. The problem with this interface is that it’s just not much fun.
A hacker will definitely get bored flipping unnamed power switches – unless
of course he also finds an open Web cam so he can watch the fun. The search
shown in Figure 11.51 seems to address this, naming each of the devices for
easy reference.

FIGURE 11.47  

CHAPTER 11:   Hacking Google Showcase204

FIGURE 11.48  

FIGURE 11.49  

Power 205

FIGURE 11.50  

FIGURE 11.51  

CHAPTER 11:   Hacking Google Showcase206

Of course even the most vicious hackers would probably consider it rude to
nail someone’s Christmas lights, but no hacker in their right mind could resist
the open HomeSeer control panel shown in Figure 11.52.

The HomeSeer control panel puts the fun back into power hacking, listing
descriptions for each control, as well as an On, Off and slider switch for appli-
cable elements. Some of the elements in this list are quite interesting, includ-
ing Lower Motion and Bathroom. The best though is definitely Electric Bong. If
you’re a member of the Secret Service looking to bust the owner of this system,
I would suggest a preemptive Google strike before barging into the home. Start
by dimming the lights, and then nail the motion sensors. Last but not least,
turn on the electric bong in case your other charges don’t stick.

SENSITIVE INFO
Sensitive info is such a generic term, but that’s what this section includes: a
hodgepodge of sensitive info discovered while surfing Google.

There’s at least a decent possibility that these calendar files were made pub-
lic on purpose For starters, the file contains the user’s POP email username

FIGURE 11.52  

Summary 207

and encoded password. Then there’s the issue of his URL history, which con-
tains not only the very respectable IBM.com, but also the not-so-respectable
hotchicks.com, which I’m pretty sure is NSFW.

This file lists the contact names and email addresses found in someone’s con-
tact list. At best, this file is Spam fodder. There’s really no shortage of email
address lists, phone number lists and more on the Web, but what’s surprising
is how many documents containing this type of information were created with
the express intention of sharing that information. Consider the screen shown
in Figure 11.53, which was submitted by CP.

SUMMARY
This chapter is all about what can go drastically wrong when the Google hack-
ing threat is ignored. Use this chapter whenever you have trouble conveying
the seriousness of the threat. Help spread the word, and become part of the
solution and not part of the problem. And before you go sending cease and
desist papers to Google, remember – it’s not Google’s fault if your sensitive
data makes it online.

FIGURE 11.53  

Page left intentionally blank

209

﻿﻿

Protecting Yourself from Google Hackers

CHAPTER 12

INTRODUCTION
The purpose of this book is to help you understand the tactics a Google hacker
might employ so that you can properly protect yourself and your customers
from this seemingly innocuous threat. The best way to do this, in my opinion,
is to show you exactly what an attacker armed with a search engine like Google
is capable of. There is a point at which we must discuss in no uncertain terms
exactly how to prevent this type of information exposure or how to remedy an
existing exposure. This chapter is all about protecting your site (or your cus-
tomer’s site) from this type of attack.

We’ll look at this topic from several perspectives. First, it’s important that you
understand the value of strong policy with regard to posting data on the In-
ternet. This is not a technical topic and could very easily put the techie in you
fast asleep, but a sound security policy is absolutely necessary when it comes
to properly securing any site. Second, we’ll look at slightly more technical top-
ics that describe how to secure your Web site from Google’s (and other search
engine’s) crawlers. We’ll then look at some tools that can be used to help check
a Web site’s Google exposure, and we’ll spend some time talking about ways
Google can help you shore up your defenses.

There are too many types of servers and configurations to show how to lock
them all down. A discussion on Web server security could easily span an entire
book series. We’ll look at server security at a high level here, focusing on strate-
gies you can employ to specifically protect you from the Google hacker threat.
For more details, please check the references in the Section “Links to Sites.”

A GOOD SOLID SECURITY POLICY
The best hardware and software configuration that money can buy can’t pro-
tect your resources if you don’t have an effective security policy. Before imple-
menting any software assurances, take the time to review your security policy.

CHAPTER 12:   Protecting Yourself from Google Hackers210

A good security policy, properly enforced, outlines the assets you’re trying to
protect, how the protection mechanisms are installed, the acceptable level of
operational risk, and what to do in the event of a compromise or disaster.
Without a solid, enforced security policy, you’re fighting a losing battle.

WEB SERVER SAFEGUARDS
There are several ways to keep the prying eyes of a Web crawler from digging
too deeply into your site. However, bear in mind that a Web server is designed
to store data that is meant for public consumption. Despite all the best protec-
tions, information leaks happen. If you’re really concerned about keeping your
sensitive information private, keep it away from your public Web server. Move
that data to an intranet or onto a specialized server that is dedicated to serving
that information in a safe, responsible, policy-enforced manner.

Don’t get in the habit of splitting a public Web server into distinct roles
based on access levels. It’s too easy for a user to copy data from one file to
another, which could render some directory-based protection mechanisms
useless. Likewise, consider the implications of a public Web server system
compromise. In a well-thoughtout, properly constructed environment, the
compromise of a public Web server only results in the compromise of pub-
lic information. Proper access restrictions would prevent the attacker from
bouncing from the Web server to any other machine, making further infiltra-
tion of more sensitive information all the more difficult for the attacker. If
sensitive information were stored alongside public information on a public
Web server, the compromise of that server could potentially compromise the
more sensitive information as well.

We’ll begin by taking a look at some fairly simple measures that can be taken to
lock down a Web server from within. These are general principles; they’re not
meant to provide a complete solution but rather to highlight some of the com-
mon key areas of defense. We will not focus on any specific type of server but
will look at suggestions that should be universal to any Web server. We will not
delve into the specifics of protecting a Web application, but rather we’ll explore
more common methods that have proven especially and specifically effective
against Web crawlers.

Directory Listings and Missing Index Files
We’ve already seen the risks associated with directory listings. Although minor
information leaks, directory listings allow the Web user to see most (if not all)
of the files in a directory, as well as any lower-level subdirectories. As opposed
to the “guided” experience of surfing through a series of prepared pages, direc-
tory listings provide much more unfettered access. Depending on many factors,

Web Server Safeguards 211

such as the permissions of the files and directories as well as the server’s settings
for allowed files, even a casual Web browser could get access to files that should
not be public.

Normally, this file (which should be called .htaccess, not htaccess) serves
to protect the directory contents from unauthorized viewing. However, a
server misconfiguration allows this file to be seen in a directory listing and
even read.

Directory listings should be disabled unless you intend to allow visitors to
peruse files in an FTP-style. On some servers, a directory listing will appear if
an index file (as defined by your server configuration) is missing. These files,
such as index.html, index.htm, or default.asp, should appear in each and every
directory that should present a page to the user. On an Apache Web server, you
can disable directory listings by placing a dash or minus sign before the word
Indexes in the httpd.conf file. The line might look something like this if direc-
tory listings (or “indexes,” as Apache calls them) are disabled:

Robots.txt: Preventing Caching
The robots.txt file provides a list of instructions for automated Web crawlers,
also called robots or bots. Standardized at www.robotstxt.org/wc/norobots.
html, this file allows you to define, with a great deal of precision, which
files and directories are off-limits to Web robots. The robots.txt file must be
placed in the root of the Web server with permissions that allow the Web
server to read the file. Lines in the file beginning with a # sign are considered
comments and are ignored. Each line not beginning with a # should begin
with either a User-agent or a disallow statement, followed by a colon and an
optional space. These lines are written to disallow certain crawlers from ac-
cessing certain directories or files. Each Web crawler should send a user-agent
field, which lists the name or type of the crawler. The value of Google’s user-
agent field is Googlebot. To address a disallow to Google, the user-agent line
should read:

According to the original specification, the wildcard character * can be used
in the user-agent field to indicate all crawlers. The disallow line describes what,
exactly; the crawler should not look at. The original specifications for this file
were fairly inflexible, stating that a disallow line could only address a full or
partial URL. According to that original specification, the crawler would ignore

http://www.robotstxt.org/wc/norobots.html
http://www.robotstxt.org/wc/norobots.html

CHAPTER 12:   Protecting Yourself from Google Hackers212

any URL starting with the specified string. For example, a line like Disallow: /foo
would instruct the crawler to ignore not only /foo but /foo/index.html, whereas a
line like Disallow: /foo/ would instruct the crawler to ignore /foo/index.html but
not /foo, since the slash trailing foo must exist. For example, a valid robots.txt
file is shown here:

This file indicates that no crawler is allowed on any part of the site – the ulti-
mate exclude for Web crawlers. The robots.txt file is read from top to bottom as
ordered rules. There is no allow line in a robots.txt file. To include a particular
crawler, disallow its access to nothing. This might seem like backward logic, but
the following robots.txt file indicates that all crawlers are to be sent away except
for the crawler named Palookaville:

Notice that there is no slash after Palookaville’s disallow. (Norman Cook fans
will be delighted to notice the absence of both slashes and dots from anywhere
near Palookaville.) Saying that there’s no disallow is like saying that user agent
is allowed – sloppy and confusing, but that’s the way it is.

Google allows for extensions to the robots.txt standard. A disallow pattern may
include * to match any number of characters. In addition, a $ indicates the end
of a name. For example, to prevent the Googlebot from crawling all your PDF
documents, you can use the following robots.txt file:

Once you’ve gotten a robots.txt file in place, you can check its validity by
visiting the Robots.txt Validator at www.sxw.org.uk/computing/robots/
check.html.

Hackers don’t have to obey your robots.txt file. In fact, Web crawlers really don’t
have to either, although most of the big-name Web crawlers will, if only for the
“CYA” factor. One fairly common hacker trick is to view a site’s robots.txt file
first to get an idea of how files and directories are mapped on the server. In fact
a quick Google query can reveal lots of sites that have had their robots.txt files
crawled. This, of course, is a misconfiguration, because the robots.txt file is
meant to stay behind the scenes.

http://www.sxw.org.uk/computing/robots/check.html
http://www.sxw.org.uk/computing/robots/check.html

Web Server Safeguards 213

NOARCHIVE: The Cache “Killer”
The robots.txt file keeps Google away from certain areas of your site. However,
there could be cases where you want Google to crawl a page, but you don’t
want Google to cache a copy of the page or present a “cached” link in its search
results. This is accomplished with a META tag. To prevent all (cooperating)
crawlers from archiving or caching a document, place the following META tag
in the HEAD section of the document:

If you prefer to keep only Google from caching the document, use this META
tag in the HEAD section of the document:

Any cooperating crawler can be addressed in this way by inserting its name as
the META NAME. Understand that this rule only addresses crawlers. Web visi-
tors (and hackers) can still access these pages.

NOSNIPPET: Getting Rid of Snippets
A snippet is the text listed below the title of a document on the Google results
page. Providing insight into the returned document, snippets are convenient
when you’re blowing through piles of results. However, in some cases, snippets
should be removed. Consider the case of a subscription-based news service.
Although this type of site would like to have the kind of exposure that Google
can offer, it needs to protect its content (including snippets of content) from
nonpaying subscribers. Such a site can accomplish this goal by combining the
NOSNIPPET META tag with IP-based filters that allow Google’s crawlers to
browse content unmolested. To keep Google from displaying snippets, insert
this code into the document:

An interesting side effect of the NOSNIPPET tag is that Google will not cache
the document. NOSNIPPET removes both the snippet and the cached page.

Password-Protected Mechanisms
Google does not fill in user authentication forms. When presented with a typi-
cal password form, Google seems to simply back away from that page, keep-
ing nothing but the page’s URL in its database. Although it was once rumored
that Google bypasses or somehow magically side-steps security checks, those

CHAPTER 12:   Protecting Yourself from Google Hackers214

rumors have never been substantiated. These incidents are more likely an issue
of timing.

If Google crawls a password-protected page either before the page is pro-
tected or while the password protection is down, Google will cache an image
of the protected page. Clicking the original page will show the password
dialog, but the cached page does not – providing the illusion that Google
has bypassed that page’s security. In other cases, a Google news search will
provide a snippet of a news story from a subscription site, but clicking the
link to the story presents a registration screen. This also creates the illusion
that Google somehow magically bypasses pesky password dialogs and regis-
tration screens.

If you’re really serious about keeping the general public (and crawlers like
Google) away from your data, consider a password authentication mechanism.
A basic password authentication mechanism, htaccess, exists for Apache. An
htaccess file, combined with an htpasswd file, allows you to define a list of
username/password combinations that can access specific directories. You’ll
find an Apache htaccess tutorial at http://httpd.apache.org/docs/howto/
htac-cess.html, or try a Google search for htaccess howto.

SOFTWARE DEFAULT SETTINGS AND PROGRAMS
As we’ve seen throughout this book, even the most basic Google hacker can
home in on default pages, phrases, page titles, programs, and documentation
with very little effort. Keep this in mind and remove these items from any
Web software you install. It’s also good security practice to ensure that default
accounts and passwords are removed as well as any installation scripts or pro-
grams that were supplied with the software. Since the topic of Web server secu-
rity is so vast, we’ll take a look at some of the highlights you should consider
for a few common servers.

It certainly sounds like a cliché in today’s security circles, but it can’t be stressed
enough: If you choose to do only one thing to secure any of your systems, it
should be to keep up with and install all the latest software security patches.
Misconfigurations make for a close second, but without a firm foundation,
your server doesn’t stand a chance.

HACKING YOUR OWN SITE
Hacking into your own site is a great way to get an idea of its potential security
risks. Obviously, no single person can know everything there is to know about
hacking, meaning that hacking your own site is no replacement for having a
real penetration test performed by a professional. Even if you are a pen tester

http://httpd.apache.org/docs/howto/htac-cess.html
http://httpd.apache.org/docs/howto/htac-cess.html

Wikto 215

by trade, it never hurts to have another perspective on your security posture. In
the realm of Google hacking, there are several automated tools and techniques
you can use to give yourself another perspective on how Google sees your site.
We’ll start by looking at some manual methods, and we’ll finish by discussing
some automated alternatives.

As we’ll see in this chapter, there are several ways a Google search can be auto-
mated. Google frowns on any method that does not use its supplied Application
Programming Interface (API) along with a Google license key. Assume that any
program that does not ask you for your license key is running in violation of
Google’s terms of service and could result in banishment from Google. Check
out www.google.com/accounts/TOS for more information. Be nice to Google
and Google will be nice to you!

Site Yourself
We’ve talked about the site operator throughout the book, but remember that
site allows you to narrow a search to a particular domain or server. If you’re
Sullo, the author of the (most impressive) NIKTO tool and administrator of
cirt.net, a query like site:cirt.net will list all Google’s cached pages from your
cirt.net server.

You could certainly click each and every one of these links or simply browse
through the list of results to determine if those pages are indeed supposed to
be public, but this exercise could be very time consuming, especially if the
number of results is more than a few hundred.

WIKTO
Wikto is an amazing Web scanning tool written by Roloef Temmingh while he
was with Sensepost (www.sensepost.com). Wikto does many different things,
but since this book focuses on Google hacking, we’ll take a look at the Google
scanning portions of the tool. By default, Wikto launches a wizard interface.
Wikto will first prompt for the target you wish to scan, as well as details about
the target server. Clicking the Next button loads the Configuration panel. This
panel prompts for proxy information and asks for your Google API key. The
API issue is tricky, as Google is no longer giving out SOAP API keys. If you
already have a SOAP API key, lucky you.

Notice that the output fields list files and directories that were located on the
target site. All of this information was gathered through Google queries, mean-
ing the transactions are transparent to the target. Wikto will use this directory
and file information in later scanning stages.

Next, we’ll take a look at the GoogleHacks tab.

http://www.google.com/accounts/TOS
http://www.sensepost.com/

CHAPTER 12:   Protecting Yourself from Google Hackers216

This scanning phase relies on the Google Hacking Database. Clicking the Load
Google Hacks Database will load the most current version of the GHDB, pro-
viding Wikto with thousands of potentially malicious Google queries. Once
the GHDB is loaded, pressing the Start button will begin the Google scan of
the target site. What’s basically happening here is Wikto is firing off tons of
Google queries, each with a site operator which points to the target Web site.
The GHDB is shown in the upper panel, and any results are presented in the
lower panel. Clicking on a result in the lower panel will show the detailed in-
formation about that query (from the GHDB) in the middle panel.

In addition to this automated scanning process, Wikto allows you to perform
manual Google queries against the target through the use of the Manual Query
button and the associated input field.

Wikto is an amazing tool with loads of features. Combined with GHDB com-
patibility, Wikto is definitely the best Google hacking tool currently available.

ADVANCE DORK
Advanced Dork is an extension for Firefox and Mozilla browsers, which pro-
vides Google Advanced Operators for use directly from the right-click context
menu. Written by CP, the tool is available from https://addons.mozilla.org/
en-US/firefox/addon/2144.

Like all Firefox extensions, installation is a snap: simply click the link to the .xpi
file from within Firefox and the installation will launch.

Advanced Dork is context sensitive – right-clicking will invoke Advanced Dork
based on where the right-click was performed. For example, right-clicking on a
link will invoke link-specific options.

Right-clicking on a highlighted text will invoke the highlighted text search
mode of Advanced Dork

This mode will allow you to use the highlighted word in an intitle, inurl, intext,
site or ext search. Several awesome options are available to Advanced Dork.

Advanced Dork is an amazing tool for any serious Google user. You should
definitely add it to your arsenal.

GETTING HELP FROM GOOGLE
So far we’ve looked at various ways of checking your site for potential informa-
tion leaks, but what can you do if you detect such leaks? First and foremost,
you should remove the offending content from your site. This may be a fairly
involved process, but to do it right, you should always figure out the source of the

https://addons.mozilla.org/en-US/firefox/addon/2144
https://addons.mozilla.org/en-US/firefox/addon/2144

Fast Track Solutions 217

leak, to ensure that similar leaks don’t happen in the future. Information leaks
don’t just happen; they are the result of some event that occurred. Figure out the
event, resolve it, and you can begin to stem the source of the problem. Solving
the local problem is only half the battle. In some cases, Google has a cached copy
of your information leak just waiting to be picked up by a Google hacker.

SUMMARY
The subject of Web server security is too big for any one book. There are so
many varied requirements combined with so many different types of Web
server software, application software, and operating system software that not
a single book could do justice to the topic. However, a few general principles
can at least help you prevent the devastating effects a malicious Google hacker
could inflict on a site you’re charged with protecting.

First, understand how the Web server software operates in the event of an un-
expected condition. Directory listings, missing index files, and specific error
messages can all open up avenues for offensive information gathering. Robots.
txt files, simple password authentication, and effective use of META tags can
help steer Web crawlers away from specific areas of your site. Although Web
data is generally considered public, remember that Google hackers might take
interest in your site if it appears as a result of a malicious Google search. De-
fault pages, directories and programs can serve as an indicator that there is a
low level of technical know-how behind a site. Servers with this type of default
information serve as targets for hackers. Get a handle on what, exactly; a search
engine needs to know about your site to draw visitors without attracting undue
attention as a result of too much exposure. Use any of the available tools, such
as Gooscan, Wikto, Advanced Dork, to help you search Google for your site’s
information leaks. If you locate a page that shouldn’t be public, use Google’s
removal tools to flush the page from Google’s database.

FAST TRACK SOLUTIONS
A Good, Solid Security Policy

j	 An enforceable, solid security policy should serve as the foundation of
any security effort.

j	 Without a policy, your safeguards could be inefficient or unenforceable.

Web Server Safeguards
j	 Directory listings, error messages, and misconfigurations can provide

too much information.
j	 Robots.txt files and specialized META tags can help direct search engine

crawlers away from specific pages or directories.

CHAPTER 12:   Protecting Yourself from Google Hackers218

j	 Password mechanisms, even basic ones, keep crawlers away from
protected content.

j	 Default pages and settings indicate that a server is not well maintained
and can make that server a target.

Hacking Your Own Site
j	 Use the site operator to browse the servers you’re charged with

protecting. Keep an eye out for any pages that don’t belong there.
j	 Use a tool like Gooscan, or Advanced Dork to assess your exposure.

These tools do not use the Google API, so be aware that any blatant
abuse or excessive activity could get your IP range cut off from Google.

j	 Use a tool like Wikto, which uses the Google API and should free you
from fear of getting shut down.

j	 Use the Google Hacking Database to monitor the latest Google hacking
queries. Use the GHDB exports with tools like Gooscan, or Wikto.

Getting Help from Google
j	 Use Google’s Webmaster page for information specifically geared

toward Webmasters.
j	 Use Google’s URL removal tools to get sensitive data out of Google’s

databases.

LINKS TO SITES
j	 http://www.exploit-db.com/google-dorks/ – The home of the Google

Hacking Database (GHDB), the search engine hacking forums, the
Gooscan tool, and the GHDB export files.

j	 http://www.seorank.com/robots-tutorial.htm – A good tutorial on
using the robots.txt file.
j	 http://googleblog.blogspot.com/2007/02/robots-exclusion-protocol

.html – Information about Google’s Robots policy.
j	 https://addons.mozilla.org/en-US/firefox/addon/2144 – Home of

Cp’s Advanced Dork

http://www.exploit-db.com/google-dorks/
http://www.seorank.com/robots-tutorial.htm
http://googleblog.blogspot.com/2007/02/robots-exclusion-protocol.html
http://googleblog.blogspot.com/2007/02/robots-exclusion-protocol.html
https://addons.mozilla.org/en-US/firefox/addon/2144

219

Subject Index

A
Abuse database systems, 61
Active server page (ASP) error

messages, 147
Actual database files, 71
Admin directories, 52
Administrator, 130, 131

account, 187
Adobe Acrobat, 67
Advanced operators, 21–45

allintext operator, 27
cache, 36
colliding operators and bad search-

FU, 40–42
daterange operator, 36–37
define operator, 39–40
filetype operator, 30–32
google’s advanced operators, 24
inanchor operator, 35
info operator, 37–38
“intitle” and “allintitle” operator,

24–26
introduction, 21
inurl and allinurl operator, 27–29
link operator, 32–35
numrange operator, 36
operator syntax, 22–23
related operator, 38
site operator, 29–30
stocks operator, 38–39
summary, 42–43
troubleshooting your syntax, 23–24

AIM. See AOL Instant Messenger (AIM)
Allintext:moo goo gai filetype:pdf, 40
Allintext operator, 27
Allintext:Sum Dum Goy intitle:Dragon, 40
Allintitle:”index of”“backup files”, 25
“Allintitle” operator, 24–26
Allinurl operator, 27–29
Allinurl:pdf allintitle:pdf, 42

ALL operators, 22
Amazon.com, 105
AMX NetLinx systems, 203
AND operator, 17
andrew@syngress.com, 110
Anonymity, 47

with caches, 48–51
AOL Instant Messenger (AIM), 168
Apache log, 117
Apache servers, 146
Apache 2.0 source code, 144
Apache web server, 211

2.4.12 web servers, 143
API. See Application programming

interface (API)
Application programming interface

(API), 88, 215
based methods, 75

Application software version and
revision, 150

ASP. See Active server page (ASP)
error messages

ASP.NET application, 147
ASPX extension, 133
as_qdr field, 37
as_qdr variable, 23
Authentication mechanisms, 129, 162
Authentication systems, 161
Automated grinding, 71–76
Automated scanning process, 216
Automated scanning software, 172
Automated tools, 56, 136
Automating searches

principles of, 80–81
Automation, principles of, 108
Axis network print server, 183

B
Backup files, 57, 58
Belkin, 179

Bing hacking for penetration
testers, 102

Bing search engine, 102
Blackmail fodder, 191
Boolean logic, 32
Boolean operators, 1, 9–11, 22
Bottom.html file, 144

C
Cache, 36

banner, 48, 50
blackhat.com, 36
www.netsec.net/content/index.jsp, 36

Calendar, 171–172
files, 206
service, 172

Cameras, 191–198
Carriage return line feed (CRLF), 91
CGI programs, 147
CGI scanners, 149
CGI vulnerability, 67
Cleartext passwords, 161
Clipboard, 50
CNAME, 107
Colliding operators

and bad search-FU, 40–42
Common file extension, 134
Computer program, 80
Conf file extension, 62
Configuration files, 61–62, 65

contents of, 63
store program, 61

Configuration panel, 215
Configured portals, 134
Content-language string, 146
Conventional security assessments, 79
Co-op Custom engine, 174
Corel WordPerfect, 67
Correlation function, 111
C programs, 121

Subject Index220

Credit card numbers, 165
searching for, 165–167

CRLF. See Carriage return line feed
(CRLF)

CSV files, 11
Curl request, 93
Customers’ networks, 137
Custom search engines, 174
Cut-and-dried approach, 11
CVS files, 64

D
“Dark side” exercises, 119
“Dark side” hacker, 161
Database

digging, 67, 162
dumps, 70–71

headers, 71
hacking, 76
systems, 71

Data collection, 118
Data-mining programs, 82
Data source, 109
Daterange operator, 36–37
Date restrictor, 37
0day. See Zero day
Default documentation, 149
Default username/password combi-

nation, 189
Define operator, 39–40
DejaNews, 3
Difficult-to-read machine code, 120
Directory listings, 51–52, 58, 159, 162

advantage of, 52
importance of, 138
locating, 52

Directory traversal, 55–56
DNS. See Domain name server

(DNS) queries
Document digging, 61
Document grinding, 76, 132
Documents, types of, 61
Domain name server (DNS)

queries, 151
Domains, 102, 107–108

names, 29
Dropdown box, 4

E
Electric bong, 206
Email addresses, 82–83, 102, 109

parsing, 102–107
verifying, 83–84

Error messages, 69, 127, 139, 147
Everfocus EDSR applets, 194, 196
“Evil cybercriminal”, 10
Exit administrative access button, 190
Exploits, 119–123

caches, 119
code, 120, 121
introduction, 119
locating exploit code, 119
locating exploits via common code

strings, 121
locating public exploit sites, 120
summary, 122–123

Extension walking, 57–58

F
Favorite programming language, 94
File extensions, 30, 134
Filetype:c c, 120
Filetype:c exploit, 120
Filetype:conf inurl:firewall, 62
Filetype:c query, 121
Filetype:doc, 32
Filetype:ini inurl:ws_ftp, 62
Filetype:log inurl:log, 66
Filetype operator, 30–32, 57, 62, 71,

87, 132
Filetype:pdf, 32
Filetype:ppt, 88
Filetype search, 65, 76
Filetype:xls inurl:password.xls, 67
Finger CGI script, 176
Finger tool, 176
FireBug extension, 94, 95
Firefox extensions, 216
foo.com server, 152
FTP client software, 62
FTP servers, 51, 62, 196

G
Gain sensitive information, 135
GEEK stuff, 176–179

utilities, 176–179
GET parameters, 115
GHDB. See Google hacking database

(GHDB)
Gmail, 2, 171
GNUCITIZEN group, 174
GNU Zebra, 11
Golden rules, of google searching,

7–8
google queries are not case

sensitive, 7

google reserves the right to ignore
you, 8

google wildcards, 8
32-word limit, 8

Google, 21, 31, 79, 101, 111, 114, 123,
151, 198

advanced operators, 24
advanced search page, 16
alerts, 173
cached page, 49
crawls, 148
custom search engine, 174
databases, 56
free search service, 74
navigation items, 4
pages, 112
preferences, 4–6

and language tools, 18
processes, 2
result, 112
searches, 17, 27, 56, 119,

125, 138, 158, 177,
193, 202

areas, 18
button, 2
interface, 3
reduction, 11–14
results, 47

server, 49
system, 113
translate feature, 165
translation features of, 4
trolls camera phone picture

sites, 191
URLs, working with, 14–15
users, 27, 47
video, 2
warnings, 17
web interface, 1
web pages, 5
web results page, 1–3
web search page, 1–2
ZeitGeist page, 113

Googlebot, 211
Google Co-op, 173–174
Googledork, 176
Google Groups, 3, 24, 162

search, 18, 74
Google hackers, 47, 137, 138, 142,

175, 187, 214
arsenal, 42

effective search reduction, 63
protecting from, 209–218

advanced dork, 216

Subject Index 221

directory listings and missing
index files, 210–211

getting help from google, 216–217
good solid security policy,

209–210
hacking your own site, 214–215
introduction, 209
NOARCHIVE, cache “killer”, 213
NOSNIPPET, getting rid of

snippets, 213–214
password-protected mechanisms,

213–214
Robots.txt: preventing caching,

211–212
site yourself, 215
software default settings and

programs, 214
web server safeguards, 210
Wikto tool, 215–216

search, 149
target, 161
trade, 119

Google hacking, 47–60, 175,
176, 183

actual database files, 71
anonymity with caches, 48–51
automated grinding, 71–75
basics, 61–77
configuration files, 61–65
database digging, 67
database dumps, 70–71
directory listings, 51–52
error messages, 69
going out on limb, traversal

techniques, 55–58
directory traversal, 55–56
extension walking, 57–58
incremental substitutions, 56–57

introduction, 47, 61
locate files, 65–66
locating directory listings, 52
log files, 66
login portals, 68
office document, 67
server versioning, 53–55
specific directories, finding of,

52–53
specific files, finding of, 53
summary, 58–59, 76
support files, 68–69

Google hacking database (GHDB), 66,
122, 156, 173, 175, 191, 216

search, 174
Google hacking license test, 41

Google Images, 2
search, 3–4

Google license key, 215
Google Mail. See GMail
Google Maps, 2
Google News, 2
Google queries, 9, 54, 122, 149, 163,

168, 215
building, 7, 19
syntax, 7, 22

Google’s cache, 7, 47, 58, 148, 182
feature, 48

Google search basics, 1–20
exploring google’s web-based

interface, 1–17
basic searching, 9
building google queries, 7
golden rules of, 7–8
Google Groups, 3
Google Image search, 3–4
google preferences, 4–6
language tools, 6–7
putting the pieces together,

16–17
search reduction, 11–14
special characters, 15–16
URL syntax, 15
using Boolean operators and

special characters, 9–11
web results page, 2–3
web search page, 1–2
working with google URLs,

14–15
fast track solutions, 18–20

building google queries, 19
exploring google’s web-based

interface, 18
working with google URLs, 19

introduction, 1
summary, 17–18

Grabbers, 92
Grep script, 73
Groups search, 24

H
Hackers. See Google hackers
Hacking, 214

reasons for, 79
Hacking google services, 171–174

calendar, 171–172
Google Co-op, 173–174
google’s custom search engine, 174
signaling alerts, 172–173

Hacking google showcase, 175–207
cameras, 191–198
GEEK stuff, 176–179

utilities, 176–179
introduction, 175–176
open applications, 186–191
open network devices, 179–186
power, 203–206
sensitive info, 206–207
summary, 207
telco gear, 198–203

HELO test, 84
Hex encoding, 15
HIPPA act, 175
Home language, 89
HomeSeer control panel, 206
Hosting C source code, 120
Hostname router, 14
HTM files, 57
HTML. See Hypertext Markup

Language (HTML)
HTTP. See Hypertext Transfer

Protocol (HTTP)
HTTPS protocol, 134
http://www.defcon.org web site, 33
Hyperlink, 98
Hypertext Markup Language

(HTML), 24, 31, 90, 99
content, 153
files, 139
pages, 75
templates, 143

Hypertext preprocessor (PHP)
application errors, 147
files, 57
Nuke administrator account, 187
script, 176

Hypertext Transfer Protocol
(HTTP), 92

error 404, 141
error code 403, 92
1.1 error messages, 139
1.1 error pages, 142
header, 92, 117
version 1.0, 90

I
IBM.com, 206
ID cookie, 116
Identity theft, 161
IIS. See Internet Information Server

(IIS)
Inanchor:click, 35

Subject Index222

Inanchor:click –click, 42
Inanchor operator, 35
Incremental substitutions, 56–57
Inevitable syntax errors, 23
Info linux, 37
Info operator, 37–38
Information collection framework

google’s part in, 79–118
automating searches

principles of, 80–81
collecting search terms, 113–118

referrals, 117–118
spot transparent proxy,

116–117
spying on your own, 113–116

domains and subdomains,
107–108

expanding search terms, 82–87
email addresses, 82–83
email addresses, verifying,

83–84
getting lots of results, 86–87
people, 85–86

getting data from source, 88
introduction, 79
original search term, 82
parsing the data, 102–107

parsing email addresses,
102–107

postprocessing, 109–112
beyond snippets, 112
presenting results, 112
sorting results by relevance,

109–112
scraping it yourself, requesting

and receiving responses,
88–94

scraping it yourself, the butcher
shop, 94–101

summary, 118
telephone numbers, 108–109
using other search engines, 102
using “special” operators,

87–88
Information-gathering phase,

79, 125
Integrated tools, 138

Nessus, 138
OpenVAS, 138
Qualys, 138
Retina, 138

Internet, 61, 84, 125, 165
users, 3

Internet-connected network, 137

Internet Information Server (IIS), 139
error pages, 142
HTTP/1.1 error pages, 141

Internet Information Services, 141
Internet Protocol (IP), 151

addresses, 75, 107, 168
based filters, 213
based routing protocols, 11
nslookup of, 49

“Intitle” operator, 22, 24–26
google, 22
index.of, 22, 52, 54
index.of.admin, 52
index of backup files, 23
“index of”“backup files”, 25
index.of inurl:“admin”, 55
index of private, 22
query, 139
search, 141
something, 40

Intranet, 134
Intranet#help.desk query, 135
Inurl:Computers inurl:Operating_

Systems, 35
Inurl:0day, 119
Inurl operator, 27–29
IP. See Internet Protocol (IP)
iPhone, 88
ISBN number, 108
ISP’s Internet gateway, 114

J
JPG image, 49
Juicy info

searching for, 167
Julian dates, 37

L
Language tools, 6–7
Learning tool, 66
Libssl32.dll download, 93
Libwhisker Perl library, 56
Link:linux.org, 33
Link:linux search, 34
Link operator, 32–35
Link: syntax, 34
Link: www.microsoft.com linux, 42
Linux/Mac OS X command, 153
Load google hacks database, 216
Loading, 25
Local international dialing

method, 108
Locate files, 65–66

Log files, 66
record, 66

Login portals, 68, 128, 137
locating, 149–150

Login process, 128
Login trouble, 129
Lynx command, 74
Lynx text-based browser, 94

M
MacWrite, 67
Malicious hacker, 201
Management devices, 179
Management system, 200
Metadata, 61
META tag, 213
Microsoft, 149, 164

Internet Information Server
(IIS), 139

Money, 167
web-based mail portal, 162
web data administrator software

package, 68
Microsoft Access documents, 67
Microsoft FrontPage support

files, 164
Microsoft-IIS/5.0, 142
Microsoft-IIS/7.0 server at, 139
Microsoft Office documents, 30
Microsoft outlook web access

portal, 162
Microsoft Word, 31, 67

document, 31, 61
Microsoft Works, 67
MillerSmiles.co.uk, 165
Moderate SafeSearch, 4
Mozilla browsers, 216
MRTG configuration file, 63
MSN Messenger, 168
MsSQL, 173
Multimillion-dollar security

system, 161
mysql_connect function, 68
MySQL database, 187

N
Nessus security scanner, 168
Netcat, uses of, 91
Netscape, 157
Network-connected device, 157
Network hardware, location,

157–158
Network query tool (NQT), 151

Subject Index 223

code, 153
functions, 151
HTML code, 155
installations of, 151
program, 151, 152, 154
server, 155

Network reports, location, 156
Network server, 179
NIKTO tool, 215
NOT operator, 17
NQT. See Network query tool (NQT)
nqtfile.txt program, 154
Ntop program, 156
Number crunching, 82
Numrange operator, 36, 84

O
Office document, 67
Open network devices, 179–186
Operating systems, 126, 148
Operator syntax, 22–23
ORed, 32
OR operator, 17
Outlook web access portal, 150

P
Page-scraping techniques, 120
Paranoid system administrator, 177
Parent directory, 52
Passcode, 171
Passwords, 129, 168

cracking utility, 164
data, 163
information, 164
protected mechanisms, 213–214
protected page, 214
searching for, 163–165

PBX product, 202
PDF. See Portable document format

(PDF)
Penetration (pen) testers, 137
Pen test. See Conventional security

assessments
People, 85–86
PERL program, 102, 105
Perl script, 72
Personal finance programs, 167
Personal financial data, 167
Phishing scams, 167
Phone card (calling card)

numbers, 165
PHP. See Hypertext preprocessor

(PHP)

PHP.BAK file, 57
phpMyAdmin installation, 187
Phrack Web server, 49
Phreaker, 198
Ping tool, 176
Pivot Web log, 187
Point-and-click script novice, 186
Portable document format

(PDF), 30
document, 134
extension, 132

Portscans, 177
Postprocessing, 109–112

beyond snippets, 112
presenting results, 112
sorting results by relevance,

109–112
type of, 112

Power, 203–206
PowerPoint, 67
Preferences screen, 6
80/20 principle, 107
Private intranets, 135
Private networks, 135
Professional hackers, 137
Proxy API, 102
Proxy servers, 50, 156

IP address, 50
Public access area, 150
Public directory, 163
Public exploit code, 119
Public web application exploit

announcement, 123
Public web server, 210

R
Radar, 137
Rain Forest Puppy (RFP), 56
Ranking technology, 9
Recent religion work, 183
Reduction techniques, 65
Referrals, 117–118
Regular expressions, 72
Related linux, 38
Related operator, 38
Remote exploit, 119
Restrict variable, 17
Results window setting, 6
$result variable, 96
RFP. See Rain Forest Puppy

(RFP)
Robots.txt file, 211
rotator.php file, 155

Rotator program, 155
RSS feed reader, 171

S
SafeSearch filtering, 5
Sample database files, 68
Sample files, 13
Scraping, 89
Search engines, 79, 102

hacking forums, 175
users, 82

Searching techniques, 21
Search reduction techniques, 11
Search script, 15
Search techniques, 1
Search _ term operator, 22
Secret Service, 206
Secure sockets layer (SSL), 93
Secure Sockets Layer (SSL)-enabled

connection, 156
Security assessment, 125
Security expert, 171
Security person, 162
Security policy, 169, 209
Security searches, 125–136

ADMIN#ADMINISTRATOR,
130–132

error # warning, 126–128
–EXT:HTML–EXT:HTM–

EXT:SHTML–EXT:ASP–
EXT:PHP, 132–134

Intitle:index.of, 126
INTRANET#HELP.DESK, 134–135
introduction, 125
INURL:TEMP#

INURL:TMP#INURL:
BACKUP#INURL.BAK, 134

login # logon, 128–129
PASSWORD#PASSCODE#“your

password is”, 129–130
site, 125–126
USERNAME#USERID#EMPLOYEE.

ID“your username is”, 129
Security systems, 128
“Self-help” documentation, 128
Self-respecting hacker, 176
Sensitive data, 161, 168
Sensitive info, 206–207
Sensitive information, 47
Sensitive security-related

information, 168
Server administrator, 149
Server-generated file extension, 132

Subject Index224

Server software, 54
Server tags, 54
Server versioning technique,

53–55
Set-Cookie, 114
Shiny event cells, 172
“ & ” sign, 89
“ @ ” sign, 83, 111
Signaling alerts, 172–173
Simple Mail Transfer Protocol

(SMTP), 84
Simple reduction techniques, 126
Sipura SPA software, 198
Site:anu.edu inurl:admin ws_ftp.log, 55
Site:blackhat.com, 29
Site:com site:edu, 42
Site:microsoft. com -inurl:microsoft.

com, 40
Site:nytimes.com, 126
Site operator, 29–30, 125
Site:phrack.org, 50
Site: syngress.com allinanchor:syngress

publishing, 42
Smoothwall personal firewalls, 180
SMTP. See Simple Mail Transfer

Protocol (SMTP)
Sniffing, 113
Snippet, 213
Snort intrusion detection

system, 185
SOAP API key, 215
Social-engineering attack, 168
Social security numbers (SSNs), 161,

167, 168
searching for, 165–167

Software vendors, 122, 189
Sound security policy, 209
Special characters, 9–11, 15–16, 22
“Special” operators, 87–88
Specific directories, finding of,

52–53
Specific files, finding of, 53
SpeedStream router, 179
SPI Dynamic’s WebInspect excel, 147
Spot transparent proxy, 116–117
Spying, 113–116
Squid proxy, 115
SSL. See Secure sockets layer (SSL)
SSNs. See Social security numbers

(SSNs)
Stickers, 196
Stocks operator, 38–39
Stop words, 8
Straight-up site search, 125

Structured Query Language (SQL),
61, 127

injection, 67, 69
queries, 57, 173

“Student enrollment” systems, 178
Student ID number, 167
Subdirectory names, 134
Subdomains, 107–108
Subscription-based news service, 213
Syngress publishing security, 25, 85
Syntax, troubleshooting, 23–24
System password file, 56

T
Targets, 119–123

introduction, 119
locating targets via source code,

122
locating vulnerable targets, 122

via vulnerability disclosures, 122
network, 135
summary, 122–123

TCP. See Transmission Control
Protocol (TCP)

Tcpdump, 49
Telco gear, 198–203
Telephone conferences, 171
Telephone numbers, 87, 102,

108–109
Telnet, 90
TITLE HTML tag, 25
TITLE variable, 144
TLD. See Top level domains (TLD)
Top level domains (TLD), 85, 107
Traditional network fixture, 185
Transmission Control Protocol

(TCP), 11, 88
TCP/Internet Protocol (IP), 91

Transparent proxy, 114
network configuration, 115

Traversal techniques, 121
going out on limb, 55–58

directory traversal, 55–56
extension walking, 57–58
incremental substitutions, 56–57

Traversing, 47

U
“Ugly” web pages, 47
Uniform resource locator (URL), 14,

15, 21, 37, 49, 89, 153, 174
beginning of, 27
construction, 15, 16

parameter, 58
short for, 27
structure, 1
syntax, 15

Uninterruptible power system
(UPS), 203

monitoring page, 203
UNIX

based operating system, 54
commands, 74, 94
program’s configuration file, 64
server, 138
terminal, 90
users, 8

UPS. See Uninterruptible power
system (UPS)

URL. See Uniform resource locator
(URL)

USENET community, 3
USENET newsgroups, 3
User-agent, 92
Usernames, 129

password, 67
searching for, 162–163

V
Valid queries

examples of, 22
View source, 57
VNC server, 188
Voice over IP (VOIP) service, 198

digging, 198
VOIP. See Voice over IP (VOIP)

service
Vulnerability assessment, 150
Vulnerable exploit, 119
Vulnerable servers, 67

W
Warning, 128
Webalizer program, 162
Web application, 68, 88, 151,

155, 210
assessment tools, 149

Web assessment tools, 147
Web-based administrative

interfaces, 179
Web-based database, 67
Web-based discussion forums, 3
Web-based interface, 1, 158, 183
Web-based networking tools, 159
Web-based network statistics

package, 156

Subject Index 225

Web-based statistical programs, 162
Web-based targets, 122
Web browser, 74, 88
Web cam. See Web camera
Web camera, 157, 193, 203

queries, 191
Web crawler, 210
Web crawlers, 212
Web data, 48
Web directories, 149
Web-enabled network devices,

targeting, 156
Web hackers, 165
Web image monitor, 183
Web pages, 6, 17, 25, 30, 51, 57, 82,

121, 149, 177, 185
Web scanning tool. See Wikto
Web search, 3

engines, 9
Web searchers, 82
Web servers, 27, 29, 48, 52, 53, 57,

139, 147, 159, 162, 166, 169,
176, 211

locating and profiling, 138–149
application software error

messages, 147–148
default pages, 148–149
directory listings in, 138–139
software error messages,

139–146
apache web servers,

142–146
microsoft IIS, 139–142

security, 209, 214, 217
software, 149, 217
version, 54, 69, 149
version tag, 55

Web sites, 5, 80, 86, 102, 116,
119, 187

google exposure, 209
Web software, 148, 158
Web space, 157
Web surfer, 157
Web utilities, using and locating,

151–155
Web visitors, 177, 196, 213

Wget, 92
WhipMaster, 112
WHOIS lookups, 151
WHOIS queries, 151
Wikto tool, 215–216
Wildcards, 8

character, 8
searching, 163

Windows platforms, 84
Windows registry, 162
Woodie, 196
Worm-based spam campaign, 162
WS_FTP log files, 53
WS_FTP program, 62
www.filext.com, 31

Y
“@yahoo.com” email, 71

Z
Zebra.conf files, 11
Zero day, 119

Page left intentionally blank

	Contents
	1 Google Search Basics
	2 Advanced Operators
	3 Google Hacking Basics
	4 Document Grinding and Database Digging
	5 Google’s Part in an Information Collection Framework
	6 Locating Exploits and Finding Targets
	7 Ten Simple Security Searches That Work
	8 Tracking Down Web Servers, Login Portals, and Network Hardware
	9 Usernames, Passwords,and Secret Stuff, Oh My!
	10 Hacking Google Services
	11 Hacking Google Showcase
	12 Protecting Yourself from Google Hackers
	Subject Index

