Shell Programming in 24 hours

http://kickme.to/tiger/

http://kickme.to/tiger/

Table Of Contents

Sams Teach Yoursel Shell Programmingin 24 Hours

Sams Teach Yourself Shell Programming in 24
Hours

Copyright

I ntroduction
e How This Book Is Organized
e Conventions Used in This Book
o About the Author
e Dedication
¢ Acknowledgments

Part | Introduction to UNIX and Shell Tools

Hour 1: Shell Basics
e What Isa Command?
e What Isthe Shell?
e Summary
e Questions

e Terms

Hour 2: Script Basics
e TheUNIX System
e Shell Initialization
o Getting Help
e Summary
e Questions

e Terms

Hour 3: Working with Files

e Listing Files
¢ Viewing the Content of aFile

e Manipulating Files
e SUMMary
e Questions

e Terms

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/default.htm (1 von 7) [06.05.2000 23:03:40]

Table Of Contents
Hour 4: Working With Directories
e TheDirectory Tree

e Switching Directories

e Listing Files and Directories

e Manipulating Directories
. Summary
e Questions
Hour 5. Manipulating File Attributes

° FI|€TYQGS
e Owners, Groups, and Permissions

e SUmMmMary
e Questions

Hour 6: Processes

e Starting a Process

e Listing Running Processes

e Killing aProcess (kill Command)

e Parent and Child Processes

° Summary
e Questions

e Terms

Part Il Shell Programming

Hour 7: Variables
e Defining Variables
e Unsetting Variables
e Environment Variables
e SUMMary
e Questions

e Terms

Hour 8: Substitution
o Filename Substitution (Globbing)
e Variable Substitution
e Command and Arithmetic Substitution

e SUmMmMary
e Questions

Hour 9: Quoting

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/default.htm (2 von 7) [06.05.2000 23:03:40]

Table Of Contents

Quoting with Backslashes
Using Single Quotes

Using Double Quotes

Quoting Rules and Situations

Summary
Questions

Terms

10: Flow Control

Hour

Theif Statement
The case Statement

Summary
Questions

11: L oops

Hour

The while Loop

The for and select L oops

Loop Control
Summary
Questions

Terms

12: Parameters

Hour

Specia Variables

Options and Arguments
Option Parsing in Shell Scripts
Conclusion

Questions
13: Input/Output

Hour

Output

Input

File Descriptors
Summary
Questions

Terms

14: Functions

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/default.htm (3 von 7) [06.05.2000 23:03:40]

Creating and Using Functions

Sharing Data Between Functions, an Example

Table Of Contents

e Conclusion
e Questions

Hour 15: Text Filters
e Thehead and tail Commands
e Usingar

Counting Words

e SUMMary
Questions

Hour 16: Filtering Text Using Regular Expressions
The Basics of awk and sed

e Using sed

e Summary

Questions

Hour 17: Filtering Text with awk
What is awk?

Using awk Features

e SUmMmMary

e Questions

e Terms

Hour 18: Miscellaneous Tools

e Theeva Command

e The: Command

e Thetype Command

e Thedeep Command

e Thefind Command

e Xargs
e The expr Command

e Thebc Command

e remsh/rsh/rcmd/remote (Remote Shell)
e Summary

e Questions

e Terms

Part [I1 Advanced Topics
Hour 19: Dealing with Signals

e How Are Signhal Represented?

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/default.htm (4 von 7) [06.05.2000 23:03:40]

Table Of Contents
e Deding with Signals
e Conclusion

e Questions

Hour 20: Debugging
o Enabling Debugging
o Syntax Checking
e Shell Tracing
e SUmMmMary
e Questions

Hour 21: Problem Solving with Functions

e Creating aLibrary of Functions

e Useful Functions

e SUMMary
e Questions

e Terms

Hour 22: Problem Solving with Shell Scripts
Moving Directories

Maintaining an Address Book

e SUMMary
Questions

e Terms

Hour 23: Scripting for Portability
Determining UNIX Versions

Techniques for Increasing Portability

e SUMMary
Questions

e Terms

Hour 24. Shell Programming FAQs
¢ Shell and Command Questions
¢ Variable and Argument Questions

e Fileand Directory Questions
e SUmMmMary

Part IV Appendixes

Appendix A: Command Quick Reference
e Reserved Words and Built-in Shell Commands

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/default.htm (5 von 7) [06.05.2000 23:03:40]

Table Of Contents
o Conditional Expressions
o Arithmetic Expressions (Korn/Bash Only)
e Parameters and Variables
e Parameter Substitution
o Pattern Matching
e 1/0

¢ Miscellaneous Command Summaries

o Regular Expression Wildcards

° Summary
e Questions

Appendix B: Glossary

Appendix C: Quiz Answers

e Chapter 1
o Chapter 2
e Chapter 3
o Chapter 4
o Chapter 5
o Chapter 6
o Chapter 7
o Chapter 8
e Chapter 9
e Chapter 10
e Chapter 11
e Chapter 12
e Chapter 13
e Chapter 14
e Chapter 15
o Chapter 16
e Chapter 17
o Chapter 18
e Chapter 19
e Chapter 20
o Chapter 21
o Chapter 22
e Chapter 23
e Appendix A

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/default.htm (6 von 7) [06.05.2000 23:03:40]

Table Of Contents

I ndex

Sams Teach Yoursel Shell Programmingin 24 Hours

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/default.htm (7 von 7) [06.05.2000 23:03:40]

Index

Sams Teach Yourself Shell Programmingin 24 Hours

Index
A

absol ute pathnames
find command, 1st

absolute paths, 1st
abstraction

accounts
root, 1st

user, 1st

actions

-exec

find command, 1st
-print

find command, 1st
addperson script, 1st
address book, 1st, 2nd

interactive mode, 1st

listing peoplein, 1st, 2nd, 3rd
noninteractive mode, 1st
ALARM signds, 1st, 2nd
example timer script, 1st, 2nd
handler function, 1st, 2nd
setting timer, 1st, 2nd
unsetting timer, 1st
AlarmHandler function, 1st, 2nd
diases, 1st

displaying pathnames for, 1st
ampersand (&)

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindex.htm (1 von 3) [06.05.2000 23:03:52]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexb.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexc.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexd.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexe.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexf.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexg.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexh.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexi.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexj.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexk.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexl.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexm.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexn.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexo.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexp.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexq.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexr.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexs.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindext.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexu.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexv.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexw.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexx.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexy.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexz.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindex3.htm

Index
background processes, 1st
global substitutions, 1st

anchoring
patterns, 1st, 2nd, 3rd

and-and operator (& &), 1st
appending output to files, 1st, 2nd
arguments, 1st

basename command, 1st

commands, 1st

considering one at atime, 1st
debugging scripts, 1st

example, 1st

forwarding to another command, 1st
passing to commands with xargs commmand, 1st
promptRESPONSE function, 1st
shell tracing, 1st

troubleshooting, 1st, 2nd, 3rd, 4th

arithmetic

bc command, 1st

expr command, 1st

arithmetic expressions, 1st, 2nd, 3rd
arithmetic substitution, 1st, 2nd
arrays

accessing values, 1st, 2nd, 3rd
indices, 1st

notation, 1st

support arrays, 1st

ASCII characters

filenames, 1st

assigning

variables

awk, 1st

assignment operators

numeric expressions, 1st, 2nd
associating

files

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindex.htm (2 von 3) [06.05.2000 23:03:52]

Index
with file descriptors, 1st, 2nd
asterisk (*)
expr command, 1st
anchoring patterns, 1st, 2nd, 3rd
built-in variables, 1st
comparison operators, 1st, 2nd
compound expressions, 1st
next command, 1st, 2nd, 3rd
escaping metacharacters, 1st, 2nd, 3rd
field editing, 1st, 2nd, 3rd
flow control
do statement, 1st, 2nd

for statement, 1st, 2nd, 3rd

if statement, 1st, 2nd, 3rd, 4th
while statement, 1st

formatting address book with, 1st
FS, 1st

matching characters, 1st, 2nd, 3rd
matching sets of characters, 1st
metacharacters, 1st, 2nd

numeric variables, 1st

pattern-specific actions, 1st, 2nd
sets of characters, 1st, 2nd
STDIN asinput, 1st, 2nd
variables, 1st, 2nd

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindex.htm (3 von 3) [06.05.2000 23:03:52]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexb.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexc.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexd.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexe.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexf.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexg.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexh.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexi.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexj.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexk.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexl.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexm.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexn.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexo.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexp.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexq.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexr.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexs.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindext.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexu.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexv.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexw.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexx.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexy.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindexz.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/bkindex3.htm

Copyright
Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Copyright —_ oPrevious Chapter—_Next Chapten—

Copyright

Sams Teach Yourself Shell Programming in 24 Hours

Copyright © 1999 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in aretrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the information contained herein.

International Standard Book Number: 0-672-31481-9
Library of Congress Catalog Card Number: 98-89272
Printed in the United States of America

First Printing: March 1999
010099 4321

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized.
Sams cannot attest to the accuracy of thisinformation. Use of aterm in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitnessis
implied. The information provided ison an "asis' basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information contained in this
book or from the use of the programs accompanying it.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Copyright —_— oPrevious Chapter__Next Chapter

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480001.htm [06.05.2000 23:03:52]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Introduction: How This Book Is Organized

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Introduction — —Previous Chapter—_Next Chapten

Sectionsin this Chapter:
How ThisBook IsOrganized "~ Dedication

Conventions Used in This Book ™ Acknowledgments
About the Author - cPrevious Section_Next Section—

Introduction

In recent years, the UNIX operating system has seen a huge boost in its popularity, especialy with the emergence of
Linux. For programmers and users of UNIX, this comes as no surprise: UNIX was designed to provide an environment
that's powerful yet easy to use.

One of the main strengths of UNIX isthat it comes with alarge collection of standard programs. These programs perform
awide variety of tasks from listing your filesto reading email. Unlike other operating systems, one of the key features of
UNIX isthat these programs can be combined to perform complicated tasks and solve your problems.

One of the most powerful standard programs available in UNIX isthe shell. The shell isa program that provides you with
aconsistent and easy-to-use environment for executing programs in UNIX. If you have ever used a UNIX system, you
have interacted with the shell.

The main responsibility of the shell isto read the commands you type and then ask the UNIX kernel to perform these
commands. In addition to this, the shell provides sophisticated programming constructs that enable you to make decisions,
repeatedly execute commands, create functions, and store valuesin variables.

This book concentrates on the standard UNIX shell called the Bourne shell. When Dennis Ritche and Ken Thompson were
developing much of UNIX in the early 1970s, they used avery simple shell. Thefirst real shell, written by Stephen
Bourne, appeared in the mid 1970s. The original Bourne shell has changed slightly over the years; some features were
added and others were removed, but its syntax and its resulting power have remained the same.

The most attractive feature of the shell isthat it enables you to create scripts. Scripts are files that contain alist of
commands you want to run. Because every script is contained in afile and every file has a name, scripts enable you to
combine existing programs to create completely new programs that solve your problems. This book teaches you how to
create, execute, modify, and debug shell scripts quickly and easily. After you get used to writing scripts, you will find
yourself solving more and more problems with them.

How This Book Is Organized

About the Examples

| assume that you have some familiarity with UNIX and know how to log in, create and edit files, and work with files and
directoriesto alimited extent. If you haven't used UNIX in awhile or you aren't familiar with one of these topics, don't
worry. Thefirst part of this book reviews this material thoroughly.

This book is divided into three parts:
e Part | isan introduction to UNIX, the shell, and some common tools.
o Part Il covers programming using the shell.
e Part Il covers advanced topicsin shell programming.

Part | consists of Chapters 1 through 6. The following material covered in the individual chapters:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480003.htm (1 von 4) [06.05.2000 23:03:53]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Introduction: How This Book Is Organized

Chapter 1, "Shell Basics," discusses several important concepts related to the shell and describes the different
versions of the shell.

Chapter 2, "Script Basics," describes the process of creating and running a shell script. It also coversthelogin
process and the different modes in which the shell executes.

Chapters 3, "Working with Files," and 4, "Working with Directories,” provide an overview of the commands used

when working with files and directories. These chapters show you how to list the contents of a directory, view the
contents of afile, and manipulate files and directories.

Chapter 5, "Manipulating File Attributes,” introduces the concept of file attributes. It covers the different types of
files along with modifying afile's permissions.

In UNIX every program runs as a process. Chapter 6, "Processes," shows you how to start and stop a process. It
also explains the term process ID and how you can view them.

By this point, you should have a good foundation in the UNIX basics. Thiswill enable you to start writing shell scripts that
solve real problems using the concepts covered in Part I1. Part |1 isthe heart of this book, consisting of Chapters 7 through
18. It teaches you about all the tools available when programming in the shell. The following material is covered in these
chapters:

Chapter 7, "Variables," explains the use of variablesin shell programming, shows you how to create and delete
variables, and explains the concept of environment variables.

Chapters 8, "Substitution,” and 9, "Quoting," cover the topics of substitution and quoting. Chapter 8 shows you the

four main types of substitution: filename, variables, command, and arithmetic substitution. Chapter 9 shows you
the behavior of the different types of quoting and its effect on substitution.

Chapters 10, "Flow Control," and 11, "Loops," provide complete coverage of flow control and looping. The flow
control constructsif and case are covered along with the loop constructs for and while.

Chapter 12, "Parameters,” shows you how to write scripts that use command line arguments. The special variables
and the getopts command are covered in detail.

Chapter 13, "Input/Output,” covers the echo, printf, and read commands along with the < and > input redirection
operators. This chapter also covers using file descriptors.

Chapter 14, "Functions,” discusses shell functions. Functions provide a mapping between a name and a set of

commands. Learning to use functionsin a shell script is a powerful technique that helps you solve complicated
problems.

Chapters 15, "Text Filters," 16, "Filtering Text Using Regular Expressions,” and 17, "Filtering Text with awk,"
cover text filtering. These chapters show you how to use a variety of UNIX commands including grep, tr, sed, and
awk.

Chapter 18, "Miscellaneous Tools," provides an introduction to some tools that are used in shell programming.
Some of the commands that are discussed include type, find, bc, and remsh.

At this point, you will know enough about the shell and the external tools available in UNIX that you can solve most
problems. The last part of the book, Part 111, is designed to help you solve the most difficult problems encountered in shell
programming. Part 111 spans Chapters 19 through 24 and covers the following material:

Chapter 19, "Dealing with Signals,” explains the concept of signals and shows you how to deliver asignal and how
to deal with asignal using the trap command.

Chapter 20, "Debugging,” discusses the shell's built-in debugging tools. It shows you how to use syntax checking
and shell tracing to track down bugs and fix them.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480003.htm (2 von 4) [06.05.2000 23:03:53]

Introduction: How This Book Is Organized

o Chapters 21, "Problem Solving with Functions,”" and 22, "'Problem Solving with Shell Scripts,” cover problem
solving. Chapter 21 covers problems that can be solved using functions. Chapter 22 introduces some real-world
problems and shows you how to solve them using a shell script.

o Chapter 23, "Scripting for Portability,” coversthe topic of portability. In this chapter, you rewrite several scripts
from previous chapters to be portable to different versions of UNIX.

o Chapter 24, "Shell Programming FAQs," is a question-and-answer chapter. Several common programming
guestions are presented along with detailed answers and examples.

Each chapter in this book includes complete syntax descriptions for the various commands along with several examplesto
illustrate the use of commands. The examples are designed to show you how to apply the commands to solve real
problems. At the end of each chapter are afew questions that you can use to check your progress. Some of the questions
are short answer while others require you to write scripts.

After Chapter 24, three appendixes are available for your reference:

e Appendix A, "Command Quick Reference,” provides you with a complete command reference.

e Appendix B, "Glossary," contains the terms used in this book.

e Appendix C, "Quiz Answers,” contains the answers to al the questions in the book.

About the Examples

Asyou work through the chapters, try typing in the examples to get a better feeling of how the computer responds and how
each command works. After you get an example working, try experimenting with the example by changing commands.
Don't be afraid to experiment. Experiments (both successes and failures) teach you important things about UNIX and the
shell.

Many of the examples and the answers to the questions are available for downloading from the following URL.:
http://ww. csua. berkel ey. edu/ ~ranga/ downl oads/tyspl.tar.Z

After you have downloaded this file, change to the directory where the file was saved and execute the following
commands:

$ unconpress tyspl.tar.Z
$ tar -xvf tyspl.tar

This creates a directory named tyspl that contains the examples from this book.

There is no warranty of any kind on the examplesin this book. | have tried to make the examples as portable as possible,
and to thisend | have tested each example on the following versions of UNIX:

e Sun Solarisversions2.5.1, 2.6, 2.7

¢ Hewlett-Packard HP-UX versions 10.10, 10.20, 11.0
e RedHat Linux versions4.2,5.1, 5.2

e FreeBSD version 2.2.6

It is possible that some of the examples might not work on other versions of UNIX. If you encounter a problem or have a
suggestion about improvements to the examples or the content of the book, please feel free to contact me at the following
email address:

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480003.htm (3 von 4) [06.05.2000 23:03:53]

http://www.csua.berkeley.edu/%7Eranga/downloads/tysp1.tar.Z

Introduction: How This Book Is Organized

ranga@oda. ber kel ey. edu

| appreciate any suggestions and feedback you have regarding this book.
Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

How ThisBook IsOrganized = Dedication

Conventions Used in This Book = Acknowledgments

About the Author - cPrevious Section__Next Section—

© Copyright Macmillan USA. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480003.htm (4 von 4) [06.05.2000 23:03:53]

mailto:ranga@soda.berkeley.edu
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Introduction: Conventions Used in This Book

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
—_ oPrevious Chapter._Next Chapten—s

Introduction

Sectionsin this Chapter:
How This Book IsOrganized = Dedication

Conventions Used in This Book ~ Acknowledgments
About the Author -

—Previous Section__Next Sectiono

Conventions Used in This Book

Features in this book include the following:

Note - Notes give you comments and asides about the topic at hand, as well as full explanations of certain
concepts.

Tip - Tips provide great shortcuts and hints on how to program in shell more effectively.

Caution - Cautions warn you against making your life miserable and avoiding the pitfallsin programming.

Paragraphs containing new terms feature the New Term icon. The new term appearsin italic.

At the end of each chapter, you'll find a handy Summary and a Quiz section (with answers found in Appendix C). Many
times, you'll aso find a Terms section.

In addition, you'll find various typographic conventions throughout this book:
o Commands, variables, directories, and files appear in text in a special monospaced font .

o Commands and such that you type appear in boldface type.

o Placeholdersin syntax descriptions appear in a monospaced italic typeface. This indicates that you will replace the
placeholder with the actual filename, parameter, or other element that it represents.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

—_— oPrevious Chapter—_Next Chaptenm

Introduction

Sections in this Chapter:
How This Book IsOrganized ™ Dedication

Conventions Used in This Book ~ Acknowledgments
About the Author - cPrevious Section_Next Section—

© Copyright Macmillan USA. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480004.htm [06.05.2000 23:03:53]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Introduction: About the Author

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

How This Book IsOrganized ™ Dedication

Conventions Used in This Book = Acknowledgments) . .
About the Author - oPrevious Section_Next Sectiono

About the Author

Sriranga Veer araghavan works in the Enterprise Network Management group at Cisco Systems, Inc. He has severd
years of experience developing software in C, Java, Perl, and Bourne Shell and has contributed to several books, including
UNIX Unleashed and Specia Edition Using UNIX. Sriranga graduated from the University of Californiaat Berkeley in
1997 with adegree in engineering and is currently pursuing further studies at Stanford University. Among other interests,
Sriranga enjoys mountain biking, classical music, and playing Marathon with his brother Srivathsa.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

How This Book IsOrganized ™ Dedication

Conventions Used in This Book = Acknowledgments) . .
About the Author - oPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480005.htm [06.05.2000 23:03:53]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Introduction: Dedication

Sams Teach Yourself Shell Programmingin 24 Hours

Contents [ndex

Sectionsin this Chapter:
How This Book IsOrganized = Dedication

Conventions Used in This Book ™ Acknowledgments
About the Author -

Dedication

For my grandmother, who taught me to love the English language.

For my mother, who taught me to love programming languages.
Sams Teach Yourself Shell Programmingin 24 Hours

cPrevious Section__Next Sectiono

Contents Index

Sections in this Chapter:
How This Book IsOrganized ™ Dedication
Conventions Used in This Book = Acknowledgments

About the Author -

© Copyright Macmillan Computer Publishing. All rights reserved.

—Previous Section__Next Sectiono

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480006.htm [06.05.2000 23:03:53]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Introduction: Acknowledgments

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Introduction — —Previous Chapter—_Next Chapten

Sectionsin this Chapter:
How This Book IsOrganized "~ Dedication
Conventions Used in This Book ~ Acknowledgments

About the Author - —Previous Section__Next Sectiono

Acknowledgments

Writing a book on shell programming is a daunting task, due to the myriad of UNIX versions and shell versions that are
available. Thanks to the work of my development editor Hugh Vandivier and my technical editor Aron Hsiao, | was able to
make sure the book covered all the material completely and correctly. Their suggestions and comments have helped me
enormously.

In addition to the technical side of the book, many things about the publishing process were new to me. Thanks to my
acquisitions editor Gretchen Ganser and my executive editor Jeff Koch for handling all of the editorial issues and patiently
working with me to keep this book on schedule. | would also like to thank Jane Brownlow who got me started on this
project.

Working on abook takes alot of time from work, as | found out. Thanks to the cooperation and understanding of my
managers Pat Shriver and Larry Coryell, | was able to balance work and authoring. | know thereis athing called regular
work, Pat. I'll get to it soon. | promise.

| need to thank my parents; my brother, Srivathsa; and my aunt and uncle, Srinivasa and Suma; who put off family
activities so that | could finish this book. | promise we'll go to Lake Tahoe next year. Also thanksto my cousin's wife,
Katherine, who wanted to see her name in my book.

Thanks to everyone else on the excellent team at Sams who worked on this book. Without their support, this book would
not exist.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Introduction — —Previous Chapter._Next Chaptern

Sections in this Chapter:
How This Book Is Organized = Dedication
Conventions Used in This Book ~ Acknowledgments

About the Author - —Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480007.htm [06.05.2000 23:03:53]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 1: Shell Basics: What Is a Command?

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 1: Shell Basics —_ oPrevious Chapter._Next Chapten—
Sectionsin this Chapter:

What Is a Command? “Questions

What |s the Shell? " Terms

Summary - cPrevious Section__Next Section

Hour 1
Shell Basics

My father has atool chest that holds all his woodworking tools, from screwdrivers and chisels to power sanders and power
drills. He has used these tools to build several desks, a shed, a bridge, and many toys. By applying the same tools, he has
been able to build all the different elements required for his projects.

New T L . . . , .
Skl Shell scripting is similar to awoodworking project. To build something out of wood, you need to use the right

tools. In UNIX, the tools you use are called utilities or commands. There are simple commands like Is and cd, and there are
power tools like awk, sed, and the shell.

One of the biggest problems in woodworking is using the wrong tool or technigque while building a project. Knowing
which tool to use comes from experience. In this book, you will learn how to use the UNIX tools via examples and

exercises.

The simple tools are easy to learn. Y ou probably already know how to use many of them. The power tools take longer to
learn, but when you get the hang of them, you'll be able to tackle any problem. This book teaches you how to use both the
simple tools and the power tools. The main focusis on the most powerful tool in UNIX, the shell.

Before you can build things using the shell, you need to learn some basics. This chapter looks at the following topics:

¢ Commands
e Theshell

It'stimeto get started.

What Is a Command?

Simple Commands ===Compound Commands
Complex Commands===Command Separators

MNew T . . .

In UNIX, acommand is a program that you can run. In other operating systems, such as Mac OS or Windows,
you point to the program you want to run and click it. To run acommand in UNIX, you type its name and press Enter.

For example:

$ date [ENTER]
Wed Dec 9 08:49:13 PST 1998

$

Here, the date command has been entered. This command displays the current day, date, time, and year. After the current
date appears, notice that the $ character is displayed.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480009.htm (1 von 4) [06.05.2000 23:03:54]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 1: Shell Basics: What Is a Command?

In this book, | use the $ character to indicate the prompt. Wherever you see a prompt, you can type the name of a
command and press Enter. This executes the command that you type. While a command executes, the prompt is not
displayed. When the command finishes executing, the prompt is displayed again.

Caution - The $ character is a prompt for you to enter acommand. It is not part of the command itself.

For example, to execute the date command, you type the word date at the prompt, $. Don't type $ date .
Depending on your version of UNIX, an error message might be displayed if you type $ date instead of date
at the prompt.

Now look at another example of running a command:

$ who

vat hsa ttyl Dec 6 19: 36
sveerara ttyp2 Dec 6 19:38
ranga ttypO Dec 9 09:23
$

Here, | entered the command who at the prompt. This command displays alist of al the people, or users, who are currently
using the UNIX machine.

The first column of the output lists the usernames of the people who are logged in. On my system, you can see that there
are three users, vathsa, sveerara, and ranga. The second column lists the terminals they are logged in to, and the final
column lists the time they logged in.

The output varies from system to system. Try it on your system to see who islogged in.

For those readers who are not familiar with the process of logging in to a UNIX system, the details are discussed in
Chapter 2, "Script Basics.”

Simple Commands

New TErM : . .
- The who and date commands are examples of simple commands. A simple command is one that you can
execute by just giving its name at the prompt:

$ conmmand

Here, command is the name of the command you want to execute. Simple commands in UNIX can be small commands
like who and date, or they can be large commands like a Web browser or a spreadsheet program.Y ou can execute most
commands in UNIX as simple commands.

Complex Commands

Y ou can use the who command to gather information about yourself when you execute it as follows:

$ who ami
ranga pts/ 0 Dec 9 08:49
$

Thistells me the following information:
e My usernameisranga.

e | amlogged in to the terminal pts/0.

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480009.htm (2 von 4) [06.05.2000 23:03:54]

Hour 1: Shell Basics: What Is a Command?

e |loggedinat 8:49 on Dec 9.

MNew T Exn g . o .
- This command also introduces the concept of a complex command, which is acommand that consists of a
command name and alist of arguments.

MNEw TERM e . . .
- Arguments are command modifiers that change the behavior of acommand. In this case, the command name is
who, and the arguments aream and i.

When the who command runs as a simple command, it displays information about everyone who islogged in
to aUNIX system. The output that is generated when a command runs as a simple command is called the default behavior
of that command.

The arguments am and i change the behavior of the who command to list information about you only. In UNIX, most
commands accept arguments that modify their behavior.

The formal syntax for acomplex command is:
$ command argunentl argument2 argunent3 ... argumentN

Here, command is the name of the command you want to execute, and argumentl through argumentN are the arguments
you want to give command.

Compound Commands

One of the most powerful features of UNIX isthe capability to combine simple and complex commands together to obtain
compound commands.

A compound command consists of alist of simple and complex commands separated by the semicolon
character (;). An example of acomplex command is
$ date ; who ami ;
Wed Dec 9 10:10:10 PST 1998
ranga pts/ 0 Dec 9 08:49
$

Here, the compound command consists of the simple command date and the complex command who ami. Asyou can see
from the output, the date command executes first, followed by the who am i command. When you give a compound
command, each of the individual commands that compose it execute in order.

In this example, the complex command behaves as if you typed the commands in the following order:

$ date

Wed Dec 9 10: 25:34 PST 1998

$ who ami

ranga pts/0 Dec 9 08:49
$

The main difference between executing commands in this fashion and using a complex command is that in a complex
command you do not get the prompt back between the two commands.

The formal syntax for acomplex command is:
$ commandl ; command2 ; command3 ; ... :; commandN ;

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480009.htm (3 von 4) [06.05.2000 23:03:54]

Hour 1: Shell Basics: What Is a Command?

Here, commandl through commandN are either ssmple or complex commands. The order of execution is commandl,
followed by command2, followed by command3, and so on. When commandN finishes executing, the prompt returns.

Command Separators

New TERM . . S
- The semicolon character (;) istreated as acommand separator, which indicates where one command ends and
another begins.

If you don't use it to separate each of the individual commands in a complex command, the computer will not be able to
tell where one command ends and the next command starts. If you execute the previous example without the first
semicolon

$ date who amii

an error message similar to the following will be produced:
date: bad conversion
Here, the date command thinks that it is being run as a complex command with the arguments who, am, and i. The date

command is confused by these arguments and displays an error message. When using complex commands, remember to
use the semicolon character.

Y ou can aso terminate individual ssmple and complex commands using the semicolon character. For example, the
commands

$ date
and$ date ;

produce the same output due to the order in which commands execute.
In thefirst case, the simple command date executes, and the prompt returns.

In the second case, the computer thinks that a complex command is executing. It begins by executing the first command in
the complex command. In this case, it is the date command. When this command finishes, the computer tries to execute the
next command. Because no other commands are |eft to execute, the prompt returns.

Note - Y ou will frequently see the semicolon used to terminate simple and complex commands in scripts.
Because the semicolon is required to terminate commands in other languages, such as C, Perl, and Java,
many script programmers use it the same way in scripts. No extra overhead is incurred by using the
semicolon in this manner.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents |ndex
Hour 1: Shell Basics — —Previous Chapter—_Next Chapten
Sections in this Chapter:

What Is a Command? “"Questions

What Is the Shell? “Terms

Summary - Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480009.htm (4 von 4) [06.05.2000 23:03:54]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 1: Shell Basics: What Is the Shell?

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 1: Shell Basics —_ oPrevious Chapter._Next Chapten—
Sectionsin this Chapter:™

What |s a Command? Questions

What Is the Shell? “Terms

Summary - cPrevious Section__Next Section
What Is the Shell?

The Shell Prompt —
Different Types of Shell S

In the preceding section, | explained that when you type the command
$ date

the computer executes the date command and displays the result.

But how does the computer know that you wanted to run the command date?

The computer uses a specia program called the shell to figure this out. The shell provides you with an
interface to the UNIX system. It gathers input from you and executes programs based on that input. When a program
finishes executing, it displays that program'’s output.

For this reason, the shell is often referred to as the UNIX system's command interpreter. For users familiar with Windows,
the UNIX shell issimilar to the DOS shell, COMMAND.COM.

The real power of the UNIX shell liesin the fact that it is much more than a command interpreter. It is also a powerful
programming language, complete with conditional statements, loops, and functions.

If you are familiar with these types of statements from other programming languages, great. Y ou'll pick up shell
programming quickly. If you haven't seen these before, don't fret. By the time you finish this book, you'll know how to use
each of these statements.

The Shell Prompt

The prompt, $, which was discussed in the beginning of this chapter, isissued by the shell.

While the prompt is displayed, you can type a command. The shell reads your input after you press Enter. It determines the
command you want executed by looking at the first word of your input. A word is an unbroken set of characters. Spaces
and tabs separate words.

To the shell, your input looks like the following:
$ wordl word2 word3 ... wordN

The shell always picks word1 as the name of the command you want executed. If thereis only one word
$ date

the shell'sjob is easy. It executes the command. If there are more words
$ who ami

the shell passes the extra words as arguments to the command specified by word1.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480010.htm (1 von 5) [06.05.2000 23:03:54]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 1: Shell Basics: What Is the Shell?

Different Types of Shells

Y ou might notice that your prompt looks slightly different than the $ prompt | am using. The actual prompt that is
displayed depends on the type of shell you are using.

In UNIX there are two major types of shells:
e TheBourne shell (includes sh, ksh, and bash)
e The C shell (includes csh and tcsh)

If you are using a Bourne-type shell, the default prompt is the $ character. If you are using a C-type shell, the default
prompt is the % character. This book covers only Bourne-type shells because the C-type shells are not powerful enough for
shell programming.

Note - In UNIX there are two types of accounts, regular user accounts and the root account. Normal users are
given regular user accounts. The root account is an account with special privileges the administrator of a
UNIX system (called the sysadmin) uses to perform maintenance and upgrades.

If you are using the root account, both the Bourne and C shells display the # character as a prompt. Be
extremely careful when executing commands as the root user because your commands effect the whole
system.

None of the examplesin this book require that you have access to the root account to execute them.

The different Bourne-type shells follow:
e Bourne shell (sh)
e Kornshell (ksh)
e Bourne Again shell (bash)
e POSIX shell (sh)
The different C-type shells follow:
e Cshell (csh)
e TENEX/TOPSC shell (tcsh)

Unless explicitly noted, the examples and exercise answers in this book will work with any Bourne-type shell.

The Original Bourne Shell

The original UNIX shell was written in the mid-1970s by Stephen R. Bourne whilehewas at AT& T Bell Labsin New
Jersey. The Bourne shell was the first shell to appear on UNIX systems, thusit is referred to as "the shell.” In this book,
when | refer to the shell, | am referring to the Bourne shell.

The Bourne shell isusually installed as /bin/sh on most versions of UNIX. For thisreason, it is the shell of choice for
writing scripts to use on several different versions of UNIX.

In addition to being a command interpreter, the Bourne shell is a powerful language with a programming syntax similar to
that of the ALGOL language. It contains the following features:

o Process control (see Chapter 6, "Processes")

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480010.htm (2 von 5) [06.05.2000 23:03:54]

Hour 1: Shell Basics: What Is the Shell?
e Variables (see Chapter 7, "Variables")

e Regular expressions (see Chapter 8, "Substitution")

o Flow control (see Chapter 10, "Flow Control," and Chapter 11, "L oops")

o Powerful input and output controls (see Chapter 13, "Input/Output™)

e Functions (see Chapter 14, "Functions')

All Bourne-type shells support these features.

One of the main drawbacks of the original Bourne shell isthat it is hard to use interactively. The three major drawbacks
are

o No file name completion
e No command history or command editing

o Difficulty in executing multiple background processes or jobs
The C Shell

Bill Joy developed the C shell while he was at the University of Californiaat Berkeley in the early 1980s. It was designed
to make interactive use of the shell easier for users. Another design goal was to change the syntax of the shell from the
Bourne shell'solder ALGOL style to the newer C style.

The C language style of the C shell was intended as an improvement because the C language was familiar to the
programmers working on UNIX at Berkeley. The ideawas that a shell that used C language style syntax would be easier to
write scriptsin than a shell that used the ALGOL style syntax.

Asit turned out, the C shell could not be used for much more than the most trivial scripts. Some of the major drawbacks
are

o Weak input and output controls
e Lack of functions
¢ Confusing syntax due to a"lazy" command interpreter

Although the C shell did not catch on for scripts, it has become extremely popular for interactive use. Some of the key
improvements responsible for this popularity follow:

e Command History. You can recall commands you previously executed for re- execution. Y ou can also edit the
command before it is re-executed.

e Aliases. You can create short mnemonic names for commands. Aliases are a ssimplified form of the Bourne shell
functions.

o File Name Completion. Y ou can have the C shell automatically complete afilename by just typing afew characters
of the file's name.

o Job Controls. The C shell enables you to execute multiple processes and control them using the jobs command.
The C shell isusually installed on most systems as /bin/csh.

The TENEX/TOPS C shell, tcsh, is anewer version of the C shell that enables you to scroll through the command history
using the up and down arrow keys. It also enables you to edit commands using right and left arrow keys.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480010.htm (3 von 5) [06.05.2000 23:03:54]

Hour 1: Shell Basics: What Is the Shell?

Although it iswidely available in educational UNIX machines, tcsh is not always present on corporate UNIX machines.
For more information on obtaining tcsh, take alook at the following URL :

http://ww. prinmate. w sc. edu/ sof t ware/ csh-t csh- book/

This page includes information on obtaining and installing tcsh in both source and binary form.
The Korn Shell

For along time, the only two shells to choose from were the Bourne shell and the C shell. This meant that most users had
to know two shells, the Bourne shell for programming and the C shell for interactive use.

To rectify this situation, David Korn of AT& T Bell Labs wrote the Korn shell, ksh, which incorporates all the C shell's
interactive features into the Bourne shell's syntax. For this reason, the Korn shell has become afavorite with users.

In recent years, most vendors have started to ship the Korn shell with their versions of UNIX. Usually you will find it
installed as /bin/ksh or /usr/bin/ksh.

In general, ksh can be treated as fully compatible with sh, but some differences will prevent scripts from functioning
correctly. These exceptions are noted throughout the book.

Some of the additional features that the Korn shell brings to the Bourne shell include the following:
e Command history and history substitution
e Command aliases and functions

o File name completion

Arrays (see Chapter 7)

Built-in integer arithmetic (see Chapter 8)
There are three magjor versions of ksh available:

e The Officia version (ksh)

e The Public Domain version (pdksh)

e The Desktop version (dtksh)

The Official version is availablein binary format (no sources) from
http://ww. kornshell.com

The Public Domain version is available in both binary and source format from
ftp://ftp.cs. mun.ca:/pub/ pdksh

For the shell programmer, there is no difference between the Official and the Public Domain versions of ksh--all scripts
that run in one version will run in the other.

For shell users, the Official version provides afew nice features like command line compl etion with the Tab key rather
than the Esc key.

The Desktop version comes with all major implementations of CDE. This version provides the capability to create and

display Graphical User Interfaces (GUIS) using ksh syntax. Scripts written for the other two versions of ksh will run
correctly under this version.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480010.htm (4 von 5) [06.05.2000 23:03:54]

http://www.primate.wisc.edu/software/csh-tcsh-book/
http://www.kornshell.com/
ftp://ftp.cs.mun.ca/pub/pdksh

Hour 1: Shell Basics: What Is the Shell?

The POSIX shell is another variant of the Korn shell. Currently, the only major vendor shipping the POSIX shell is
Hewlett-Packard. In HP-UX 11.0, the POSIX shell isinstalled as/bin/sh. The Bourne shell isinstalled as /usr/old/bin/sh.

The Bourne Again Shell

The Bourne Again shell, bash, was developed as part of the GNU project and has replaced the Bourne shell, sh, for
GNU-based systems like Linux. All major Linux distributions, including Red Hat, Slackware, and Caldera, ship with bash
astheir sh replacement.

Although it includes C shell (csh and tcsh) and Korn shell (ksh) features, bash retains syntax compatibility with the
Bourne shell, enabling it to run amost all Bourne shell scripts.

bash was written by Brian Fox (bfox@gnu.ai.mit.edu) of the Free Software Foundation and is currently maintained by
Chester Ramey (chet@ins.cwru.edu) of Case Western Reserve University.

bash is available for anonymous FTP from any of the GNU archive sites, including the main GNU archive site:
ftp://prep.ai.mt.edu/ pub/gnu/

As of thiswriting, the most recent release version of bash is 2.02.1.

Because bash is an implementation of the IEEE POSIX 1003.2/1SO 9945.2 Shell and Tools specification, it is extremely
portable and can be built on most UNIX systems. It has also been ported to QNX, Minix, OS2, and Windows 95/NT.

Currently, only Linux ships with the Bourne Again shell. It isinstalled as /bin/bash. On most Linux systems, it isalso
installed as /bin/sh.

Some features that bash includes in addition to those of the Korn shell are
o Name completion for variable names, usernames, host names, commands, and filenames
e Spelling correction for pathnames in the cd command

e Arraysof unlimited size

o Integer arithmetic in any base between 2 and 64

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 1: Shell Basics — —Previous Chapter—_Next Chaptern
Sectionsin this Chapter:

What |s a Command? “Questions

What Isthe Shell? “Terms

Summary - cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480010.htm (5 von 5) [06.05.2000 23:03:54]

mailto:bfox@gnu.ai.mit.edu
mailto:chet@ins.cwru.edu
ftp://prep.ai.mit.edu/pub/gnu/
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 1: Shell Basics: Summary

Sams Teach Yourself Shell Programmingin 24 Hours

Contents [ndex

Sectionsin this Chapter:™

What |s a Command? “Questions

What |s the Shell? ~Terms . . .
Summary - oPrevious Section_Next Sectiono
Summary

In this chapter, you looked at the shell basics. Y ou saw how to execute simple commands, complex commands, and
compound commands. Y ou also covered the concept of a shell along with descriptions of the different shells that you are

likely to encounter.

In the next chapter, "Script Basics," you explore the function of the shell in greater detail, starting with its use,
interactively. | then show you how to use the shell for shell scripts.

One chapter down, only 23 more to go until you are a shell programming expert.

Sams Teach Yourself Shell Programmingin 24 Hours

Contents Index

Sectionsin this Chapter:™

What |s a Command? “Questions
Wheat |s the Shell? ~Tems)))
Summary - cPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480011.htm [06.05.2000 23:03:54]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 1: Shell Basics: Questions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

What |s a Command? “Questions
What |s the Shell? ~Terms
Summary - cPrevious Section__Next Sectiono
Questions
1. Classify each of the following as ssmple, complex, or compound commands:
$1Is
$ date ; uptine
$1ls -1

$ echo "hello worl d"

If you haven't seen some of these commands before, try them out on your system. Asyou progress through the
book, each will be formally introduced.

2. What is the effect of putting a semicolon at the end of a single simple command or a complex command?

For example, will the output of the following commands be different?

$ who amii
$ who ami ;

3. What are the two major types of shells? Give an example of a shell that fallsinto each type.
Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

What |s a Command? “Questions
What |s the Shell? “Terms
Summary - oPrevious Section._Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480012.htm [06.05.2000 23:03:55]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 1: Shell Basics: Terms

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 1: Shell Basics — —Previous Chapter—_Next Chapten
Sectionsin this Chapter:™

What |s a Command? “Questions

What Is the Shell? “Terms

Summary - cPrevious Section__Next Sectiono
Terms

Commands A command is a program you can run. To run acommand, type its name and press Enter.

Prompts When you see a prompt, type the name of acommand and press Enter. In this book, the $ character is used to
indicate the prompt.

Simple Commands A simple command is a command that you can execute by giving its name at the prompt.

Default Behavior The output that is generated when a command runs as a simple command is called the default behavior
of that command.

Complex Commands A complex command is acommand that consists of acommand name and alist of arguments.
Arguments Arguments are command modifiers that change the behavior of acommand.

Compound Commands A compound command consists of alist of simple and complex commands separated by the
semicolon character (;).

Command Separators A command separator indicates where one command ends and another begins. The most common
command separator is the semicolon character (;).

Shell The shell provides you with an interface to the UNIX system. It gathers input from you and executes programs
based on that input. When a program has finished executing, it displays that program's output. The shell is sometimes
called acommand interpreter.

Words A word is an unbroken set of characters. The shell uses spaces and tabs to separate words.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 1: Shell Basics —_— —Previous Chapter—_Next Chapten
Sections in this Chapter:

What |s a Command? ““Questions

What Is the Shell? “Terms

Summary - —Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480013.htm [06.05.2000 23:03:55]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 2: Script Basics: The UNIX System

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 2: Script Basics —_ oPrevious Chapter._Next Chapten—s
Sectionsin this Chapter:

The UNIX System = Summary

Shell Initialization “Questions

Getting Help ~Terms cPrevious Section__Next Sectiono

Hour 2
Script Basics

In Chapter 1, "Shell Basics," | introduced the concept of a shell and commands. | showed you how the shell reads your
input and executes the command you requested.

In this chapter | will explain in detail what the shell isand how it works. Y ou will learn how the shell is started during the
login process and what happens when you log out.

After | explain this behavior, | will show you how to group commands that are normally executed interactively into afile
to create a script. Scripts are the power behind the shell because they enable you to group commands together to create
new commands.

The UNIX System

Logging In

The UNIX system consists of two components:
o Utilities
e Thekernd

Utilities are programs you can run or execute. The programs who and date that you saw in the previous
chapter are examples of utilities. AlImost every program that you know is considered a utility.

New T . . _ .

Commands are sightly different than utilities. The term utility refers to the name of a program, whereas the
term command refers to the program and any arguments you specify to that program to change its behavior. Y ou might see
the term command used instead of the term utility for simple commands, where only the program name to execute is given.

The kernel isthe heart of the UNIX system. It provides utilities with a means of accessing a machine's hardware. It also
handles the scheduling and execution of commands.

When a machine is turned off, both the kernel and the utilities are stored on the machine's hard disks. But when the
computer is booted, the kernel isloaded from disk into memory. The kernel remains in memory until the machine is turned
off.

Utilities, on the other hand, are stored on disk and loaded into memory only when they are executed. For example, when
you execute the command

$ who

the kernel loads the who command from the machine's hard disk, placesit in memory, and executes it. When the program

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480015.htm (1 von 3) [06.05.2000 23:03:55]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 2: Script Basics: The UNIX System

finishes executing, it remains in the machine's memory for a short period of time before it isremoved. This enables
frequently used commands to execute faster. Consider what happens when you execute the date command three times:

$ date
Sun Dec 27 09:42:37 PST 1998
$ date
Sun Dec 27 09:42: 38 PST 1998
$ date
Sun Dec 27 09:42: 39 PST 1998

Thefirst time the date command can be loaded from the machine's hard disk, but the second and third time the date
command usually remains in the machine's memory alowing it to execute faster.

The shell is a program similar to the who command. The main difference is that the shell isloaded into memory when you
login.

Logging In
When you first connect to a UNIX system, you usually see a prompt such as the following:
| ogi n:

Y ou need to enter your username at this prompt. After you enter your username, another prompt is presented:
| ogi n: ranga
Passwor d:

Y ou need to enter your password at this prompt.
These two prompts are presented by a program called getty. These are its tasks:
1. Display the prompt login.
2. Wait for a user to type a username.
3. After a username has been entered, display the password prompt.
4. Wait for auser to enter a password.
5. Give the username and password entered by the user to the login command and exit.

After login receives your username and password, it looks through the file /etc/passwd for an entry matching the
information you provided. If it finds a match, login executes a shell and exits.

As an example, on my system the matching entry for my username, ranga, in file /etc/passwd is:
ranga: x: 500: 100: Sri ranga Veer araghavan:/ hone/ ranga: / bi n/ bash

Asyou progress through the book, | will explain the information stored here.

Note - For those readers who are not familiar with UNIX files or filenames such as /etc/passwd, thistopic is
covered extensively in Chapters 3, "Working with Files," and 4, "Working with Directories.”

| will discuss files briefly in this chapter. A general ideafrom other operating systems of what filesareis
enough to understand these examples.

If no match isfound, the login program issues an error message and exits. At this point the getty program takes over and
displays a new login prompt.

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480015.htm (2 von 3) [06.05.2000 23:03:55]

Hour 2: Script Basics: The UNIX System

The shell that login executes is specified in the file /etc/passwd. Usually thisis one of the shellsthat | covered in the
previous chapter.

In this book | assume that the shell started by the login program is /bin/sh. Depending on the version of UNIX you are
running, this might or might not be the Bourne shell:

e On Solaris and FreeBSD, it isthe Bourne shell.
e OnHP-UX, itisthe POSIX shell.

e OnLinux, itisthe Bourne Again shell.
Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The UNIX System =Summary
Shell Initialization ““Questions
Getting Help =Terms cPrevious Section_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480015.htm (3 von 3) [06.05.2000 23:03:55]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 2: Script Basics: Shell Initialization

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 2: Script Basics —_ oPrevious Chapter._Next Chapten—s
Sectionsin this Chapter:

The UNIX System = Summary

Shell Initialization “Questions

Getting Help ~Terms cPrevious Section__Next Sectiono

Shell Initialization

Interactive Versus Noninteractive Shells==Making a Shell Script Executable
Initialization File Contents —

When the login program executes a shell, that shell is uninitialized. When a shell is uninitialized, important parameters
required by the shell to function correctly are not defined.

The shell undergoes a phase called initialization to set up these parameters. Thisis usually atwo step process that involves
the shell reading the following files:

o /etc/profile
e profile
The processis asfollows:
1. The shell checks to see whether the file /etc/profile exists.
2. If it exists, the shell reads it. Otherwise, thisfileis skipped. No error message is displayed.

3. The shell checks to see whether the file .profile exists in your home directory. Y our home directory is the
directory that you start out in after you log in.

4. If it exists, the shell reads it; otherwise, the shell skipsit. No error message is displayed.

As soon as both of these files have been read, the shell displays a prompt:
$
Thisis the prompt where you can enter commands in order to have them execute.

Note - The shell initialization process detailed here applies to all Bourne type shells, but some additional files
are used by bash and ksh.

Y ou can obtain more information about this process for a particular shell using the man command explained
later in this chapter.

Interactive Versus Noninteractive Shells

When the shell displays a prompt for you, it is running in interactive mode.

- -

Interactive mode means that the shell expects to read input from you and execute the commands that you
specify. This mode is called interactive because the shell isinteracting with auser. Thisis usually the mode of the shell
that most users are familiar with: you log in, execute some commands, and log out. When you log out using the exit
command, the shell exits.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480016.htm (1 von 5) [06.05.2000 23:03:56]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 2: Script Basics: Shell Initialization

The shell can be run in another mode, called noninteractive mode . In this mode, the shell does not interact
with you; instead it reads commands stored in afile and executes them. When it reaches the end of thefile, the shell exits.

How login Starts a Shell

When the login program starts a shell, it basically executes the following command:
/ bi n/ sh

By issuing this command, it puts the shell into interactive mode. Y ou can start a shell in interactive mode by issuing the
same command at the prompt:

$ /bin/sh
$

Thefirst prompt $ isdisplayed by the shell that login started; the second one is displayed by the shell you started. To exit
from this shell, use the exit command:

$ exit
$

The prompt that is displayed now isfrom the original shell started by login. Typing exit at this prompt logs you out.
How to Start the Shell Noninteractively

Y ou can start the shell noninteractively as follows:

$ /bin/sh fil enanme

Here filename is the name of afile that contains commands to execute. As an example, consider the compound command:
$ date ; who

Put these commands into afile called logins. First open afile called loginsin an editor and type the command shown
previously. Assuming that the file is located in the current directory, after thefile is saved, the command can run as

$ /bin/sh | ogins

This executes the compound command and displays its output.

New T i . . . _ : . .
Thisisthefirst example of ashell script . Basically, ashell script isalist of commands stored in afile that the
shell executes noninteractively.

Initialization File Contents

Usually the shell initialization files are quite short. They are designed to provide a complete working environment with as
little overhead as possible for both interactive and noninteractive shells.

Thefile/etc/profile is maintained by the system administrator of your UNIX machine and contains shell initialization
information required by all users on a system.

Thefile .profileis under your control. Y ou can add as much shell customization information as you want to thisfile. The
minimum set of information that you need to configure includes

e Thetype of terminal you are using

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480016.htm (2 von 5) [06.05.2000 23:03:56]

Hour 2: Script Basics: Shell Initialization

e A list of directoriesin which to locate commands

o A list of directoriesin which to locate manual pages for commands

Setting the Terminal Type

Usually the type of terminal you are using is automatically configured by either the login or getty programs. Sometimes,
the autoconfiguration process guesses your terminal incorrectly. This can occur when you are using adial-up or modem
connection.

If your terminal is set incorrectly, the output of commands might look strange, or you might not be able to interact with the
shell properly. To make sure that thisis not the case, most users set their terminal to the lowest common denominator as
follows:

TERMFVt 100

When | introduce the case statement in Chapter 10, "Flow Control,” you will see a more advanced method of setting the
terminal type that enables access to advanced terminal features.

Setting the PATH

When you type the command
$ date

the shell has to locate the command date before it can be executed. The PATH specifies the locations in which the shell
should look for commands. Usually it is set as follows:

PATH=/ bi n: / usr/ bi n

Each of the individua entries separated by the colon character, :, are directories. Directories are discussed in Chapter 4.

If you request the shell to execute acommand and it cannot find it in any of the directories given in the PATH variable, a
message similar to the following appears:

$ hello
hel |l o: not found

Setting the MANPATH

In UNIX, online help has been available since the beginning. In the section "Getting Help" | will discuss how to access it
using the man command.

In order for you to access all the available help, you have to tell the shell where to look for the online help pages. This
information is specified using the MANPATH. A common setting is

MANPATH=/ usr/ man: / usr/ shar e/ man
Like the path, each of the individual entries separated by the colon character, :, are directories.

When you use the man command to request online help as follows, the man command searches every directory givenin
the MANPATH for an online help page corresponding to the topic you requested.

$ man who

In this case it looks for the online help page corresponding to the who command. If this page isfound, it is displayed as
discussed in the next section.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480016.htm (3 von 5) [06.05.2000 23:03:56]

Hour 2: Script Basics: Shell Initialization

Making a Shell Script Executable

One of the most important tasks in writing shell scripts is making the shell script executable and making sure that the
correct shell isinvoked on the script.

In aprevious example, you created the logins script that executes the following compound command:
date ; who ;

If you wanted to run the script by typing its name, you need to do two things:
o Makeit executable,
o Make surethat the right shell is used when the script is run.

To make this script executable, do the following:
chnod a+x ./l ogins

Here you are using the chmod command. For a complete discussion of how to use this command, please see Chapter 5,
"Manipulating File Attributes."

To ensure that the correct shell is used to run the script, you must add the following "magic" line to the beginning of the
script:

#! / bi n/ sh

Y our script then has two lines:

#/ bi n/ sh
date ; who ;

The magic line causes anew shell (in this case, /bin/sh) to be called to execute the script. Without the magic line, the
current shell is always used to evaluate the script, regardless of which shell the script was written for. For example,
without amagic line, csh and tcsh users might not be able to get a Bourne shell (sh) script to run correctly.

The Magic of #/bin/sh
The #!/bin/sh must be thefirst line of a shell script in order for sh to be used to run the script. If this appears
on any other ling, it istreated as a comment and ignored by all shells.

Comments

The magic first line #/bin/sh introduces the topic of comments. A comment is a statement that is embedded in
ashell script but should not be executed by the shell.

In shell scripts, comments start with the # character. Everything between the # and end of the line are considered part of
the comment and are ignored by the shell.

Adding commentsto a script is quite simple: Open the script using an editor and add lines that start with the # character.
For example, to add the following line to the logins shell script:

print out the date and who's | ogged on

| opened the file logins with my editor and inserted this line as the second line in the file. The shell script is now as
follows:

#! / bi n/ sh

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480016.htm (4 von 5) [06.05.2000 23:03:56]

Hour 2: Script Basics: Shell Initialization

print out the date and who's | ogged on
date ; who ;

There is no change in the output of the script because comments are ignored. Also comments do not slow down a script
because the shell can easily skip them.

Y ou can aso add comments to lines that contain commands by adding the # character after the commands. For example,
you can add a comment to the line date ; who ; asfollows:

date ; who ; # execute the date and who conmands

When you are writing a shell script, make sure to use comments to explain what you are doing in case someone else has to
look at your shell script. You might find that this helps you figure out what your own scripts are doing, months after you
write them.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 2: Script Basics —_ oPrevious Chapter._Next Chapten—
Sectionsin this Chapter:

The UNIX System = Summary

Shell Initialization " Questions

Getting Help ~Terms cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480016.htm (5 von 5) [06.05.2000 23:03:56]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 2: Script Basics: Getting Help

Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex
Hour 2: Script Basics —_— cPrevious Chapter._Next Chapterm
Sections in this Chapter:

The UNIX System =“Summary

Shell Initialization “Questions

Getting Help ~Terms cPrevious Section.Next Sectionz

Getting Help

Using the man CommanCe=
Manual Sections —

Asyou read through this book, you will want to get more information about the commands and features | discuss. Thisinformation is available
by using the online help feature of UNIX.

Every version of UNIX comes with an extensive collection of online help pages called manual pages. These are often referred to as man pages .
The man pages are the authoritative source about your UNIX system. They contain complete information about both the kernel and al the
utilities.

Using the man Command

To access aman page you need to use the man (man asin manual) command as follows:
man command

Here, command is the name of a command that you want more information about. As an example,
$ man uptine

displays the following on a Solaris machine;
User Commands uptinme(1)

NAVE
uptime - show how | ong the system has been up

SYNOPSI S
upti nme

DESCRI PTI ON
The uptinme command prints the current tinme, the Ilength of
time the system has been up, and the average nunber of jobs
in the run queue over the last 1, 5 and 15 mnutes. It is,
essentially, the first line of a w(1) comuand.

EXAVPLE
Bel ow i s an exanple of the output uptinme provides:
exanpl e% upti ne
10: 47am up 27 day(s), 50 mins, 1 user, |load average: 0.18, 0.26, 0.20

SEE ALSO
w(1), who(1l), whodo(1M, attributes(5)

NOTES
who -b gives the tine the systemwas | ast booted.

Asyou can see this man page is divided into several sections. These sections are described in Table 2.1.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480017.htm (1 von 3) [06.05.2000 23:03:56]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 2: Script Basics: Getting Help
Table 2.1 Sections in a Man Page

|Section |Description
|NAM E |This section gives the name of the command along with a short description of the command.

SYNOPSIS This section describes al the different modes in which the command can be run. If acommand accepts arguments they are
shown in this section.

DESCRIPTION |This section includes a verbose description of the command. If acommand accepts arguments, each argument will be fully
explained in this section

|EXAM PLE |Thi s section usually shows you how to execute a command, along with some sample output.
|[SEEALSO |Thissection lists other commands that are related to this command.

NOTES This section usualy lists some additional information about the command. Sometimesit lists known bugs with a particul ar
command.

Most man pages include all the sections given in Table 2.1 and might include one or two optional sections described in Table 2.2.

Table 2.2 Optional Sections Found in Man Pages

|Section |Description

AVAILABILITY This section describes the versions of UNIX that include support for a given command. Sometimesit lists the
optional software packages you need to purchase from the vendor to gain extra functionality from a command.

KNOWN BUGS This section usually lists one or more known problems with a command. If you encounter a problem that is
not included in this section, you should report it to your UNIX vendor.

FILES This section lists the files that are required for acommand to function correctly. It might also list the files that

can be used to configure a command.
AUTHORS or CONTACTS |Thwe sections list the command's authors or provide some contact information regarding a command.

STANDARDS COMPLIANCE |Some commands have behavior that is specified by a standards organization such as SO (International
Standards Organization), IEEE (Institute of Electrical and Electronic Engineers), or ANSI (American National
Standards Institute). This section lists the standards with which a particular command complies.

Try using the man command to get more information on some of the commands | have discussed in this chapter.

If the man command cannot find a man page corresponding to the command you requested, it issues an error message. For example, the
command

$ man appl e

produces an error message similar to the following on my system:
No manual entry for apple

The exact error message depends on your version of UNIX.
Manual Sections

The term manual page comes from the original versions of UNIX, when the online pages were available as large bound manuals. In al, there
were eight different manuals covering the main topics of the UNIX system. These manuals are described in Table 2.3.

Table 2.3 The UNIX System Manuals

[Manual Section |Description

|1 Covers commands.

|2 Covers UNIX system calls. System calls are used inside a program, such as date, to ask the kernel for a service.
|3 Coverslibraries. Libraries are used to store non-kernel-related functions used by C programmers.

|4 Coversfile formats. This manual specifies the format of files such as/etc/passwd.

5 Also coversfile formats.

|6 Includes the instructions for playing the games that came with UNIX.

|7 Covers device drivers.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480017.htm (2 von 3) [06.05.2000 23:03:56]

Hour 2: Script Basics: Getting Help

8 Covers system maintenance.

Unlike the printed version, where you had to know the section where you needed to look for a particular manual page, the man command looks
in al the sections for the information you requested. This makes it much easier to get help using the man pages.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The UNIX System =“Summary
Shell Initialization uestions
Getting Help ~Terms cPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480017.htm (3 von 3) [06.05.2000 23:03:56]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 2: Script Basics: Summary

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The UNIX System = Summary
Shell Initialization “Questions
Getting Help ~Terms cPrevious Section_Next Section—

In this chapter, | explained in greater detail what the shell isand how it works. Y ou saw how the login process works and
what the login command does to start a shell. From this you were able to look at the two modes in which the shell can be
run:

o Interactively
o Noninteractively

In shell programming, the noninteractive use of the shell should interest you the most. This mode enables you to specify
commands inside afile and then have the shell execute the commands within that file. Y ou also saw how to make afile
containing commands executable. This enables you to treat shell scripts as new commands.

Y ou aso looked at some details of shell initialization and getting help using the man command.

The next chapter formally introduces the concept of files by showing you how to list files, view the contents of files, and
manipulate files.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The UNIX System = Summary
Shell Initialization “Questions
Getting Help ~Terms cPrevious Section_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480018.htm [06.05.2000 23:03:56]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 2: Script Basics: Questions

Sams Teach Yourself Shell Programmingin 24 Hours

Contents [ndex

Sectionsin this Chapter:™

The UNIX System = Summary
Shell Initialization “Questions
Getting Help “Terms
Questions

1. What are the two files used by the shell to initidlize itself?
2. Why do you need to set PATH and MANPATH?

3. What purpose does the following line
#!/ bin/sh

servein ascript?

4. What command should you use to access the online help?

Sams Teach Yourself Shell Programmingin 24 Hours

cPrevious Section__Next Sectiono

Contents [ndex

Sectionsin this Chapter:™

The UNIX System Summary
Shell Initialization “TQuestions
Getting Help “Terms

© Copyright Macmillan Computer Publishing. All rights reserved.

Previous Section__Next Sectiono

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480019.htm [06.05.2000 23:03:56]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 2: Script Basics: Terms

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 2: Script Basics —_ oPrevious Chapter._Next Chapten—
Sectionsin this Chapter:™

The UNIX System = Summary

Shell Initialization “Questions

Getting Help ~Terms cPrevious Section__Next Sectiono
Terms

Utilities Utilities are programs, such as who and date, that you can run or execute.

Commands A command is the name of a program and any arguments you specify to that program to cause its behavior to
change. Y ou might see the term command used instead of the term utility for simple commands, where only the program
name to execute is given.

Kernel Thekernel isthe heart of the UNIX system. It provides utilities with a means of accessing a machine's hardware.
It also handles the scheduling and execution of commands.

Uninitialized Shell When ashell is started it is uninitialized. This means that important parameters required by the shell
to function correctly are not defined.

Shell Initialization After ashell is started it undergoes a phase called initialization to set up some important parameters.
Thisisusually atwo step process that involves the shell reading the files /etc/profile and .profile.

Interactive Mode In interactive mode the shell reads input from you and executes the commands that you specify. This
mode is called interactive because the shell is interacting with a user.

Noninteractive Mode In noninteractive mode, the shell does not interact with you; instead it reads commands stored in a
file and executes them. When it reaches the end of the file, the shell exits.

Shell Script A shell script isalist of commands stored in afile that the shell executes noninteractively.
Home Directory Y our home directory isthe directory in which you start out after you log in.

Comments A comment is a statement that is embedded in a shell script but should not be executed by the shell.

Man Pages Every version of UNIX comes with an extensive collection of online help pages called man pages (short for
manual pages). The man pages are the authoritative source about your UNIX system. They contain complete information
about both the kernel and all the utilities.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 2: Script Basics —_— cPrevious Chapter._Next Chapter—
Sectionsin this Chapter:

The UNIX System = Summary

Shell Initialization “Questions

Getting Help ~Terms cPrevious Section__Next Sectionz

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480020.htm [06.05.2000 23:03:57]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 3: Working with Files: Listing Files

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 3: Working with Files —_ cPrevious Chapter._Next Chaptenr

Sectionsin this Chapter:™

Listing Files = Summary

Viewing the Content of aFile = Questions

Manipulating Files ~Terms cPrevious Section__Next Sectiono

Hour 3
Working with Files

In UNIX there are three basic types of files:
e Ordinary Files
e Directories
e Special Files

Anordinary fileis afile on the system that contains data, text, or program instructions. In this chapter, you look at working
with ordinary files.

New T : . : . ,
Directories, covered in Chapter 4, "Working with Directories,” store both special and ordinary files. For users
familiar with Windows or Mac OS, UNIX directories are equivalent to folders.

Specia files are covered in Chapter 5, "Manipulating File Attributes." Some special files provide access to hardware such as

hard drives, CD-ROM drives, modems, and Ethernet adapters. Other special files are similar to aliases or shortcuts and enable
you to access a single file using different names.

Listing Files

Hidden Files
Option Groupi NQ=

Firgt, list the files and directories stored in the current directory. Use the following command:

$1Is

Here's a sample directory listing:

bi n host s lib res. 03

ch07 hwl pub test results
ch07. bak hw2 res. 01 users

docs hw3 res. 02 wor k

This output indicates that several items are in the current directory, but this output does not tell us whether these items are files
or directories. To find out which of the items are files and which are directories, specify the -F option to Is:

$1s -F

Now the output for the directory is dightly different:

bi n/ host s i b/ res. 03
ch07 hwl pub/ test results

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480022.htm (1 von 4) [06.05.2000 23:03:57]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 3: Working with Files: Listing Files

ch07. bak hw2 res. 01 users
docs/ hw3 res. 02 wor k/

Asyou can see, some of theitems now have a/ at the end: each of theseitemsis adirectory. The other items, such as hwl,
have no character appended to them. Thisindicates that they are ordinary files.

When the -F option is specified to Is, it appends a character indicating the file type of each of theitemsit lists. The exact
character depends on your version of Is. For ordinary files, no character is appended. For special files, a character such as!, @,
or # is appended to the filename.

For more information on the exact characters your version of |s appends to the end of a filename when the -F option is
specified, please check the UNIX manual page for the s command. Y ou can do this as follows:

$ man I s

So far, you have seen Is list more than one file on aline. Although thisisfine for humans reading the output, it is hard to
manipulate in ashell script. Shell scripts are geared toward dealing with lines of text, not the individual words on aline.
Without using external tools, such as the awk language covered in Chapter 17, "Filtering Text Using awk," it is hard to deal

with thewords on aline.

In ashell script it is much easier to manipulate the output when each file islisted on a separate line. Fortunately Is supports the
-1 option to do this. For example,

$1s -1

produces the following listing:
bi n

chO07

chO07. bak
docs

host s

hwl

hw2

hw3

lib

pub

res. 01

res. 02

res. 03

test results
users

wor k

Hidden Files

Bl o far you have used I to list visible files and directories, but Is can also list invisible or hidden files and

directories. Aninvisiblefileis one whose first character is the dot or period character (.). UNIX programs (including the shell)
use most of these files to store configuration information. Some common examples of hidden filesinclude the files

o .profile, the Bourne shell (sh) initialization script
e .kshrc, the Korn shell (ksh) initialization script
e .cshrc, the C shell (csh) initialization script

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480022.htm (2 von 4) [06.05.2000 23:03:57]

Hour 3: Working with Files: Listing Files
o .rhosts, the remote shell configuration file
All filesthat do not start with the . character are considered visible.

Tolist invisiblefiles, specify the-aoptiontoIs:
$1s -a

The directory listing now looks like this:

.profile docs lib test_results
.. .rhosts host s pub users
. enmacs bi n hwl res. 01 wor k
. exrc ch07 hw2 res. 02
. kshrc ch07. bak hw3 res. 03

Asyou can see, this directory contains many invisible files.

Notice that in this output, the file type information is missing. To get the file type information, specify the -F and the -a options
asfollows:

$1s -a-F

The output changes to the following:

A .profile docs/ l'ib/ test _results
i .rhosts host s pub/ users

. emacs bi n/ hwl res. 01 wor k/

. exrc ch07 hw2 res. 02

. kshrc ch07. bak hw3 res. 03

With the file type information you see that there are two hidden directories (. and ..). These two directories are special entries
that are present in al directories. Thefirst one, ., represents the current directory. The second one, .., represents the parent
directory. We discuss these conceptsin greater detail in section "The Directory Tree" of Chapter 4.

Option Grouping

In the previous example, the command that you used specified the optionsto |Is separately. These options can aso be grouped
together. For example, the commands

$1ls -aF
$1s -Fa

are the same as the command
$Is -a-F

Asyou can see, the order of the options does not matter to Is. As an example of option grouping, consider the equivalent
following commands:

ls -1 -a -F
| s -1aF

s -alF

ls -Fal

Any combination of the options -1, -a, and -F produces identical output:

A
A

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480022.htm (3 von 4) [06.05.2000 23:03:57]

Hour 3: Working with Files: Listing Files

. emacs
. exrc

. kshrc
.profile
.rhosts
bi n/
ch07
ch07. bak
docs/
host s
hwl

hw2

hw3

i b/
pub/

res. 01
res. 02
res. 03
test results
users
wor k/

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Listing Files = Summary
Viewing the Content of aFile = Questions
Manipulating Files ~Terms cPrevious Section._Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480022.htm (4 von 4) [06.05.2000 23:03:57]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 3: Working with Files: Viewing the Content of a File

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 3: Working with Files —_— oPrevious Chapter._Next Chapten—

Sectionsin this Chapter:
Listing Files o

Summary
Viewing the Content of aFile ™ Questions

Manipulating Files ~Terms —Previous Section__Next Sectiono

Viewing the Content of a File

cat —
Counting Words (WC)=

The ability to list filesis very important, but shell scripts also need to be able to view the contents of afile.

cat

New TERM . . .
- To view the content of afile, use the cat (short for concatenate) command. Its syntax is as follows:
cat files

Here files are the names of the files that you want to view. For example,
$ cat hosts

prints out the contents of afile called hosts:

127.0.0.1 | ocal host | oopback
10.8.11. 2 kanchi . bosl and. us kanchi
10.8.11.9 kashi . bosl and. us kashi

128. 32. 43. 52 soda. ber kel ey. edu soda

Y ou can specify more than one file as follows:
$ cat hosts users

If the usersfile contains alist of users, this produces the following output:

127.0.0.1 | ocal host | oopback
10.8.11.2 kanchi . bosl and. us kanchi
10.8.11.9 kashi . bosl and. us kashi

128. 32. 43. 52 soda. ber kel ey. edu soda
ranga

sveerara

vat hsa

ama

Numbering Lines

New TermM
- The cat command also understands several options. One of these is the -n option, which numbers the output

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480023.htm (1 von 4) [06.05.2000 23:03:58]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 3: Working with Files: Viewing the Content of a File
lines. You can use it asfollows:
$ cat -n hosts

This produces the output

1 127.0.0.1 | ocal host | oopback
2 10.8.11.2 kanchi . bosl and. us kanchi

3 10.8.11.9 kashi . bosl and. us kashi

4 128.32.43.52 soda. ber kel ey. edu soda
5

The numbered output shows us that the last line in thisfile is blank. Y ou can ask cat to skip numbering blank
lines using the -b option:

$ cat -b hosts

In this case the output looks like the following:

1 127.0.0.1 | ocal host | oopback
2 10.8.11.2 kanchi . bosl and. us kanchi
3 10.8.11.9 kashi . bosl and. us kashi

4 128.32.43.52 soda. ber kel ey. edu soda

Although the blank lineis till there, it is no longer numbered.

Counting Words (wc)

Now that you know how to view the contents of afile, look at how to get some information about the contents.

New TeErM . . .
- Y ou can use the wc command to get a count of the total number of lines, words, and characters contained in a
file. The basic syntax of thiscommand is

wc [options] files
Here options are one or more of the options given in Table 3.1 and files are the files you want examined.

If no options are specified, the output contains a summary of the number of lines, words, and characters. For example, the
command

$ we .rhosts

produces the following output for my .rhostsfile:

7 14 179 .rhosts

Thefirst number, in this case 7, is the number of linesin the file. The second number, in this case 14, is the number of
words in the file. The third number, in this case 179, is the number of charactersin thefile. Finally, the filenameislisted.
The filename isimportant if more than onefileis specified.

If you specify more than onefile, wc givesthe individual counts along with atotal. For example, the command
$ wc .rhosts .profile

produces the following output:
7 14 179 .rhosts

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480023.htm (2 von 4) [06.05.2000 23:03:58]

Hour 3: Working with Files: Viewing the Content of a File

133 405 2908 .profile
140 419 3087 total

Y ou can aso use wc to get the individual counts as shown in the next sections. The options covered in these sections are
givenin Table 3.1.

Table 3.1 wc Options

|Option |Description

|-I |Counts the number of lines

|-w |Counts the number of words

|-m or -c |Countsthe number of characters

The -m option is available on Solaris and HP-UX. It is not available on Linux. On Linux systems, you need to use the -c
option instead.

Number of Lines

New TERM . - .

- To count the number of lines, use the -I (| asin lines) option. For example, the command
$w -I .profile

produces the output

133 .profile

Number of Words

New TeErM
- To count the number of words in afile, use the -w (w asin words) option. For example, the command
$ wc -w .rhosts

produces the output
14 .rhosts

which iswhat you expected.

Number of Characters

To count the number of characters, use either the -m option or the -c option. As mentioned, the -m option
should be used on Solaris and HP-UX. The -c option should be used on Linux systems.

For example, the command
$we -m.profile

produces the output
2908 .profile

In Linux or GNU, the equivalent command is

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480023.htm (3 von 4) [06.05.2000 23:03:58]

Hour 3: Working with Files: Viewing the Content of a File

$w -c .profile
Combining Options

Like the Is command, the options to wc can be grouped together and given in any order.

For example, if you wanted a count of the number of words and charactersin the file test_results you can use any of the
following commands:

$w -w-mtest results
$ w -wntest results
$ wec -nw test results

The output from each of these commandsisidentical:
606 3768 test results

The output lists the words in the files first, the number of charactersin the file, and the name of the file.

In this case, there are 606 words and 3,768 charactersin the file test_results.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 3: Working with Files —_— cPrevious Chapter._Next Chapten—
Sectionsin this Chapter:

Listing Files = Summary

Viewing the Content of aFile = Questions

Manipulating Files ~Terms cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480023.htm (4 von 4) [06.05.2000 23:03:58]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 3: Working with Files: Manipulating Files

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 3: Working with Files —_— oPrevious Chapter._Next Chapten—

Sectionsin this Chapter:
Listing Files = Summary
Viewing the Content of aFile ™ Questions

Manipulating Files ~Terms cPrevious Section_Next Section—

Manipulating Files

Copying Files(cp) ===Removing Files (rm)
Renaming Files (MV)em=

In the preceding sections, you looked at listing files and viewing their content. In this section you look at the following
methods of manipulating files:

e Copying files
e Renaming files

e Removing files

Copying Files (cp)
To make a copy of afile use the cp command. The basic syntax of the command is
cp source destination

Here source is the name of the file that is copied and destination is the name of the copy. For example, the following
command makes a copy of thefiletest_results and places the copy in afile named test_results.orig:

$ cp test results test results.orig

Common Errors

There is no output from the cp command, unless it encounters an error. Two common errors occur when
e Thesourceisadirectory
e The source does not exists

An example of thefirst caseis the command
$ cp work docs

This causes an error message similar to the following:
cp: work: is a directory

An example of the second case is the command
$ cp test _relsuts test_results.orig

Here | have mistyped the filenametest_results astest_relsuts and cp gives the following error:
cp: cannot access test relsuts: No such file or directory

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480024.htm (1 von 4) [06.05.2000 23:03:58]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 3: Working with Files: Manipulating Files

Interactive Mode

New TERM . . N . . L _ .
- No error message is generated if the destination already exists. In this case, the destination file is automatically
overwritten. This can lead to serious problems.

To avoid this behavior you can specify the -i (i asin interactive) optionsto cp.

If thefiletest_results.orig exists, the command
$cp -i test results test results.orig

resultsin a prompt something like the following:
overwite test _results.orig? (y/n)

If you choosey (yes), the file will is overwritten. If you choose n (no), the file test_results.orig isn't changed.

Copying Files to a Different Directory

If the destination is a directory, the copy has the same name as the source but is located in the destination directory. For
example, the command

$ cp test _results work/

places a copy of thefile test_resultsin the directory work.

Multiple Inputs

If more than two inputs are given, cp treats the last argument as the destination and the other files as sources. This works
only if the sources are files and the destination is a directory, as in the following example:

$ cp res.01 res. 02 res. 03 work/

If one or more of the sources are directories the following error message is produced. For example, the command
$ cp res. 01 work/ docs/ pub/

produces the following error:

cp: work: is a directory
cp: docs: is a directory

Although cp reports errors, the sourcefile, in this case res.01, is correctly copied to the directory pub.

If the destination is afile, but multiple inputs are given, as in the following example,
$ cp hwi hw2 hw3

an error message similar to the following
cp: hw3: No such file or directory

is generated. In this case no files are copied.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480024.htm (2 von 4) [06.05.2000 23:03:58]

Hour 3: Working with Files: Manipulating Files

Renaming Files (mv)

MNew TErM) . .
- To change the name of afile use the mv command. Its basic syntax is
mv/ source destination

Here source is the original name of the file and destination is the new name of the file. As an example,
$ nmv test result test result.orig

changes the name of the file test_result to test_result.orig. A new file called test_result.orig is not produced like in cp; only
the name of the fileis changed. Thereis no output from mv if the name change is successful.

If the source does not exist, asin the following example,
$ nmv test reslut test result.orig

an error similar to the following is reported:

nv: test reslut: cannot access: No such file or directory

Interactive Mode

Like cp, mv does not report an error if the destination already exists: it smply overwrites the file. to avoid this problem
you can specify the -i option.

For example, if the file ch07.bak already exists, the following command
$ mv -i ch07 ch07. bak

results in a confirmation prompt:
renmove chO07. bak? (n/y)

If you choose n (no), the destination file is not touched. If you choosey (yes), the destination file is removed and the
sourcefileis renamed.

The actual prompt varies between the different versions of UNIX.

Removing Files (rm)

MNew T Em . .
- To remove files use the rm command. The syntax is
rmfiles

Herefilesisalist of one or more filesto remove. For example, the command
$ rmres.01 res.02

removes thefiles res.01 and res.02.

Common Errors

The two most common errors using rm are

o One of the specified files does not exist

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480024.htm (3 von 4) [06.05.2000 23:03:58]

Hour 3: Working with Files: Manipulating Files
o One of the specified filesis adirectory

As an example of the first case, the command
$rmres.01 res.02 res. 03

produces an error message if the file res.02 does not exist:
rm res.02 non-existent

The other two files are removed.

An example of the second case is the command
$ rmres. 0l res. 03 work/

This command produces another error message:
rm work directory

The two files are removed.
Interactive Mode

Because there is no way to recover afile that has been deleted using rm, you can specify the -i option. In interactive mode,
rm prompts you for every file that is requested for deletion.

For example, the command
$rm-i hwli hw2 hw3

produces confirmation prompts similar to the following:
hwi: ? (n/y) vy
hw2: ? (n/y) n
hw3: ? (n/ly) vy

Inthiscase | answer y to deleting hwl and hw3, but | answer n to deleting hw2.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 3: Working with Files —_— cPrevious Chapter._Next Chapten—

Sectionsin this Chapter:™

Listing Files = Summary

Viewing the Content of aFile "~ Questions

Manipulating Files ~Terms cPrevious Section_Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480024.htm (4 von 4) [06.05.2000 23:03:58]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 3: Working with Files: Summary

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Listing Files = Summary
Viewing the Content of aFile ™ Questions
Manipulating Files ~Terms cPrevious Section_Next Section—

In this chapter, you covered the following topics:
e Listingfilesusingls
e Viewing the content of afile using cat
e Counting the words, lines, and charactersin afile using wc
e Copying filesusing cp
e Renaming files using mv
e Removingfilesusing rm

Knowing how to perform each of these tasksis essential to becoming a good shell programmer. In the chapters ahead you
use these basics to create scripts for solving real world problems.

Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex

Sectionsin this Chapter:™

Listing Files = Summary
Viewing the Content of aFile Questions
Manipulating Files ~Terms Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480025.htm [06.05.2000 23:03:58]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 3: Working with Files: Questions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Listing Files = Summary
Viewing the Content of aFile ™ Questions
Manipulating Files ~Terms cPrevious Section_Next Section—

1. What are invisible files? How do you use Isto list them?
2. Will there be any difference in the output of the following commands?
a. $ls-al
b.$ls-1-a
c.$ls-1a
3. Which options should be specified to wc in order to count the number of lines and charactersin afile?

4. Given that hwl, hw2, chl, and ch2 are files and book and homework are directories, which of the following
commands generates an error message?

a. $ cp hwl ch2 homework

b. $ cp hwl homework hw2 book

c. $ rm hwl homework chl

d. $rm hw2 ch2
Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex

Sectionsin this Chapter:™

Listing Files = Summary
Viewing the Content of aFile ™ Questions
Manipulating Files ~Terms Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480026.htm [06.05.2000 23:03:58]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 3: Working with Files: Terms

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Listing Files = Summary
Viewing the Content of aFile ™ Questions
Manipulating Files ~Terms cPrevious Section_Next Sectionz

Is The command that lists the filesin a directory.

cat The command that views the contents of afile.

wc The command that counts the words, lines, and charactersin afile.

cp The command that copiesfiles.

mv The command that renamesfiles.

rm The command that removesfiles.

Ordinary File A fileon the system that contains data, text, or program instructions.

Directories A type of filethat stores other files. For users familiar with Windows or Mac OS, UNIX directories are
equivalent to folders.

Invisible Filesor Hidden Files Files whose names start with the . character. By default the Is command does not list
thesefiles. You can list them by specifying the -aoption to Is.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Listing Files = Summary
Viewing the Content of aFile ™ Questions
Manipulating Files ~Terms cPrevious Section._Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480027.htm [06.05.2000 23:03:59]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 4: Working With Directories: The Directory Tree

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 4: Working With Directories —_ oPrevious Chapter._Next Chapten—s

Sectionsin this Chapter:
The Directory Tree ~Manipulating Directories

Switching Directories = Summary
Listing Files and Directories ~~— Questions cPrevious Section__Next Sectiono

Hour 4
Working With Directories

MNew T
UNIX uses a hierarchical structure for organizing files and directories. This structure is often referred to asa
directory tree . The tree has a single root node, the slash character (/), and all other directories are contained below it.

Y ou can use every directory, including /, to store both files and other directories. Every fileis stored in adirectory, and
every directory except / is stored in another directory.

Thisis dlightly different from the multiroot hierarchical structure used by Windows and Mac OS. In those operating
systems, all devices (floppy disk drives, CD-ROMSs, hard drives, and so on) are mounted at the highest directory level. The
UNIX modd is dlightly different, but after a short time most users find it extremely convenient.

This chapter introduces the directory tree and shows you how to manipulate its building blocks: directories.

The Directory Tree

Filenames e
PathnameSee

To explain the origin and advantages of the directory tree, consider a project that requires organization, such aswriting a
book.

When you start out, it is easiest to put al the documents related to the book in one location. As you work on the book, you
might find it hard to locate the material related to a particular chapter.

If you are writing the book with pen and paper, the easiest solution to this problem isto take all the pages related to the
first chapter and put them into afolder labeled "Chapter 1." Asyou write more chapters, you can put the material related to
these chapters into separate folders.

In this method, when you finish the book, you will have many separate folders. Y ou might put al the foldersinto a box
and label that box with the name of the book. (Then you can stack the boxes in your closet.)

By grouping the material for the different chaptersinto folders and grouping the folders into boxes, the multitude of pages
required to write a book becomes organized and easily accessible. When you want to see Chapter 5 from a particular book,
you can grab that box from your closet and look only at the folder pertaining to Chapter 5.

Y ou can carry this same method over to a project on your computer. When you start out, all the files for the book might be
in your home directory, but as you write more chapters, you can create directories to store the material relating to a
particular chapter. Finally, you can group all the directories for the book into a directory named after the book.

Asyou can probably see, this arrangement creates an upside-down tree with the root at the top and the
directories branching off from the root. The files stored in the directories can be though of as|eaves.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480029.htm (1 von 4) [06.05.2000 23:04:58]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 4: Working With Directories: The Directory Tree

This brings up the notion of parent directories and child or subdirectories. For example, consider two
directories A and B, where directory A contains directory B. In thiscase, A iscalled the parent of B, and B is called a child
of A.

The depth of the directory treeislimited only by the fact that the absolute path to a file cannot have more than 1,024
characters. | cover absolute paths later in the chapter.

Filenames

In UNIX, every file and directory has a name associated with it. This nameisreferred to as the file or directory's filename.

In addition to their filenames, every file and directory is associated with the name of its parent directory. When afilename
is combined with the parent directory's name, the result is called a pathname. Two examples of pathnames are

/ home/ r anga/ docs/ book/ ch5. doc

/usr/ | ocal / bin/

Asyou can see, each of these pathnames consists of several "words" separated by the slash (/) character. In UNIX, the
slash separates directories, whereas the individual words are the names of files or directories. The sum of al the words and
the / characters makes up the pathname.

The last set of characters in a pathname is the actual name of thefile or directory being referred to: The rest of the
characters represent its parent directories. In the first example, the filename is ch5.doc.

The name of afile can be up to 255 characters long and can contain any ASCII character except /. Generally, the
characters used in pathnames are the alphanumeric characters (ato z, A to Z, and 0 to 9) along with periods (.), hyphens (
-), and underscores ().

Other characters, especially the space, are usually avoided because many programs cannot deal with them properly. For
example, consider afile with the following name:
A Farewel|l To Arns

Most programs treat this afour separate files named A, Farewell, To, and Arms, instead of onefile. You look at a
workaround to this problem in Chapter 9, "Quoting."

One thing to keep in mind about filenamesis that two files in the same directory cannot have the same name. Thus both of
the following filenames

/ home/ r anga/ docs/ ch5. doc

/ hone/ r anga/ docs/ ch5. doc

refer to the same file, but the following filenames

/ home/ r anga/ docs/ ch5. doc

/ hone/ r anga/ docs/ books/ ch5. doc

refer to different files because they are located in different directories. In addition, because UNIX is case-sensitive, you
can have two filesin the same directory whose names differ only by case. UNIX considers the following

/ home/ r anga/ docs/ chb5. doc
/ home/ ranga/ docs/ CH5. doc

to be different files. This often confuses users coming from the Windows or DOS environments.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480029.htm (2 von 4) [06.05.2000 23:04:58]

Hour 4: Working With Directories: The Directory Tree

Pathnames

In order to access afile or directory, its pathname must be specified. As you have seen, a pathname consists of two parts:
the name of the directory and the names of its parents. UNIX offers two ways to specify the names of the parent directory.
This leads to two types of pathnames:

e Absolute
o Relative
An Analogy for Pathnames

The following statements illustrate a good analogy for the difference between absolute and relative
pathnames:

"l livein San Jose."
"] livein San Jose, Cdlifornia, USA."

Thefirst statement gives only the city in which | live. It does not give any more information, thus the
location of my houseisrelative. It could be located in any state or country containing acity called San Jose.
The second statement fully qualifies the location of my house, thus it is an absolute location.

Absolute Pathnames

An absolute pathname represents the location of afile or directory starting from the root directory and listing
all the directories between the root and the file or directory of interest.

Because absolute pathnames list the path from the root directory, they always start with the slash (/) character. Regardless
of what the current directory is, an absolute path points to an exact location of afile or directory. The following isan
example of an absolute pathname:

/ home/ r anga/ wor k/ bugs. t xt

This absolute path tells you that the file bugs.txt islocated in the directory work, which is located in the directory ranga,
whichin turn islocated in the directory home. The slash at the beginning of the path tells you that the directory homeis
located in the root directory.

Relative Pathnames

New TERM e . .
A relative pathname enables you to access files and directories by specifying a path to that file or directory
within your current directory. When your current directory changes, the relative pathname to afile can also change.

To find out what the current directory is, use the pwd (print working directory) command, which prints the
name of the directory in which you are currently located. For example

$ pwd
/ honme/ r anga/ pub

tellsmethat | am located in the directory /home/ranga/pub.
When you're specifying arelative pathname, the slash character is not present at the beginning of the pathname. This

indicates that a relative pathname is being used instead of an absolute pathname. The relative pathnameis alist of the
directories located between your current directory and the file or directory you are representing.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480029.htm (3 von 4) [06.05.2000 23:04:58]

Hour 4: Working With Directories: The Directory Tree

If you are pointing to a directory in your pathname that is below your current one, you can access it by specifying its name.
For example, the directory name:

docs/
refers to the directory docs located in the current directory.

In order to access the current directory's parent directory or other directories at a higher level in the tree than the current
level, use the special name of two dots (..).

The UNIX file system uses two dots (..) to represent the directory above you in the tree, and asingle dot (.) to represent
your current directory.

Look at an example that illustrates how relative pathnames are used. Assume that the current directory is
/ home/ r anga/ wor k

Then the relative pathname
../ docs/ ch5. doc

represents the file
/ home/ ranga/ docs/ ch5. doc

whereas
./ docs/ ch5. doc

representsthefile
/ honme/ r anga/ wor k/ docs/ ch5. doc

Y ou can aso refer to this file using the following relative path:
docs/ chb. doc

As mentioned previously, you do not have to append the ./ to the beginning of pathnames that refer to files or directories
located within the current directory or one of its subdirectories.

Sams Teach Yourself Shell Programming in 24 Hours Contents Index

Hour 4: Working With Directories —_ oPrevious Chapter._Next Chapters

Sectionsin this Chapter:™

The Directory Tree “Manipulating Directories

Switching Directories = Summary

Listing Files and Directories ™ Questions cPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480029.htm (4 von 4) [06.05.2000 23:04:58]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 4: Working With Directories: Switching Directories

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 4: Working With Directories —_— oPrevious Chapter._Next Chapten—
Sectionsin this Chapter:

The Directory Tree “Manipulating Directories

Switching Directories = Summary

Listing Files and Directories ™~ Questions cPrevious Section__Next Sectiono

Switching Directories

Home Directories e
Changing Directori €S

New T
Now that you have covered the basics of the directory tree, look at moving around the tree using the cd
(change directory) command.

Home Directories

First print the working directory:

$ pwd
/ honme/ r anga

Thisindicates that | am in my home directory. Y our home directory isthe initial directory where you start when you login
to aUNIX machine. Most systems use either /home or /users as directories under which home directories are stored. On
my system | use /home.

The easiest way to determine the location of your home directory is to do the following:

$ cd
$ pwd
/ honme/ r anga

When you issue the cd command without arguments, it changes the current directory to your home directory. Therefore,
after the cd command completes, the pwd command prints the working directory that is your home directory.

Changing Directories

Y ou can use the cd command to do more than change to a home directory: Y ou can use it to change to any directory by
specifying avalid absolute or relative path. The syntax is as follows:

cd directory

Here, directory is the name of the directory that you want to change to. For example, the command
$ cd /usr/local/bin

changes to the directory /usr/local/bin. Here, you used an absolute path.

Say that the current directory is

$ pwd
/ hone/ r anga

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480030.htm (1 von 3) [06.05.2000 23:04:58]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 4: Working With Directories: Switching Directories
From this directory, you can cd to the directory /ust/local/bin using the following relative path:
$ cd ../../lusr/local/bin

Changing the current directory means that all your relative path specifications must be relative to the new directory rather
than the previous directory. For example, consider the following sequence of commands:

$ pwd

/ home/ ranga/ docs

$ cat nanes

ranga

vat hsa

amma

$ cd /usr/l ocal

$ cat nanes

cat: cannot open nanes

When the first cat command was issued, the working directory was /home/ranga/docs. The file, names, was located in this
directory, thus the cat command found it and displayed its contents.

After the cd command, the working directory became /usr/local. Because no file was called names in that directory, cat
produces an error message stating that it could not open the file. To access the file names from the new directory, you need
to specify either the absolute path to the file or arelative path from the current directory.

Common Errors

The most common errors are
¢ Specifying more than one argument
e Tryingtocdto afile
e Tryingto cdto adirectory that does not exist

An example of thefirst caseis

$ cd /honme /tnp /var
$ pwd
/ home

Asyou can see, cd uses only itsfirst argument. The other arguments are ignored. Sometimes in shell programming, this
becomes an issue. When you issue a cd command in a shell script, make sure that you end up in the directory you intended
to reach.

An example of the second caseis

$ pwd

/ hone/ r anga

$ cd docs/ chb. doc

cd: docs/ch5.doc: Not a directory
$ pwd

/ hone/ ranga

Here, you tried to change to a location that was not a directory, and cd reported an error. If this error occurs, the working
directory does not change. The final pwd command in this example illustrates this.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480030.htm (2 von 3) [06.05.2000 23:04:58]

Hour 4: Working With Directories: Switching Directories

An example of the third caseis

$ pwd

/ hone/ ranga

$ cd final _exam answers

cd: final _examanswers: No such file or directory
$ pwd

/ honme/ r anga

Here, | tried to change into the directory final_exam_answers, but because this directory did not exist, cd reported an error.
The final pwd command shows that the working directory did not change.

The problem in this last example occurs because none of my professors were kind enough to make a copy of the directory
final_exam answersfor me.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 4: Working With Directories —_— oPrevious Chapter._Next Chapten—

Sectionsin this Chapter:™

The Directory Tree “Manipulating Directories

Switching Directories = Summary

Listing Filesand Directories ™~ Questions cPrevious Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480030.htm (3 von 3) [06.05.2000 23:04:58]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 4: Working With Directories: Listing Files and Directories

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 4: Working With Directories —_— cPrevious Chapter._Next Chaptern

Sectionsin this Chapter:™

The Directory Tree ““Manipulating Directories

Switching Directories ~“Summary

Listing Filesand Directories ™~ Questions oPrevious Section__Next Section

Listing Files and Directories

Listing Directori €Sm
Listing Files —

In Chapter 3, "Working with Files," you looked at using the Is command to list the files in the current directory. Now look at
using the Is command to list the files in any directory.

Listing Directories

To list the filesin adirectory you can use the following syntax:
I's directory

Here, directory is the absolute or relative pathname of the directory whose contents you want listed.

For example, both of the following commands list the contents of the directory /usr/local (assuming the working directory is
/home/ranga):

$ I's /usr/local
$I1s ../../lusr/local

On my system the listing looks like

X11 bi n gi mp j 1 kes shin
ace doc I ncl ude lib share
at al k etc info man turboj-1.1.0

The listing on your system might look quite different.
Y ou can use any of the options you covered in Chapter 3 to change the output. For example, the command

$ |s -aF /usr/local

produces the following output

i at al k/ gi np/ i b/ turboj-1.1.0/
- bi n/ I ncl ude/ man/

X11/ doc/ i nf o/ sbin/

ace/ etc/ j 1 kes/ shar e/

Y ou can specify more than one directory as an argument. For example
$ I's /hone /usr/local

produces the following output on my system:

/ homre:
anma ftp htt pd ranga vathsa

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480031.htm (1 von 3) [06.05.2000 23:04:59]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 4: Working With Directories: Listing Files and Directories

[usr/| ocal:

X11 bi n gi np] 1 kes sbin

ace doc i ncl ude lib share

at al k etc i nfo man turboj-1.1.0

A blank line separates the contents of each directory.
Listing Files

If you specify the name of afileinstead of adirectory, Islists only that onefile. For example
$1s .profile

.profile

Y ou can intermix files and directories as argumentsto Is:

$ Is .profile docs/ /usr/local /bin/sh

This produces alisting of the specified files and the contents of the directories.

If you don't want the contents of the directory listed, specify the -d option to Is. Thisforces|sto display only the name of the
directory, not its contents:

$ Is -d /hone/ ranga
/ honme/ r anga
Y ou can combine the -d option with any of the other |s options you have covered. An example of thisis

$ Is -aFd /usr/local /hone/ranga /bin/sh
/ bi n/ sh* /[home/ranga/ /usr/local/

Common Errors

If thefile or directory you specify does not exist, |s reports an error. For example
$ Is tonorrows_stock_prices.txt
tonorrows_stock prices.txt: No such file or directory

If you specify several arguments instead of one, Is reports errors only for those files or directories that do not exist. It correctly
lists the others. For example

$ Is tonmorrows_stock _prices.txt /usr/local .profile

produces an error message
tonorrows_stock prices.txt: No such file or directory

[usr/ | ocal:

X11 bi n gi nmp] 1 kes sbhin

ace doc i ncl ude lib share

at al k etc i nfo man turboj-1.1.0
.profile

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 4: Working With Directories —_ cPrevious Chapter._Next Chapterm

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480031.htm (2 von 3) [06.05.2000 23:04:59]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 4: Working With Directories: Listing Files and Directories

Sectionsin this Chapter:™

The Directory Tree ““Manipulating Directories
Switching Directories “TSummary
Listing Filesand Directories ™~ Questions oPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480031.htm (3 von 3) [06.05.2000 23:04:59]

Hour 4: Working With Directories: Manipulating Directories

Sams Teach Yourself Shell Programming in 24 Hours Contents Index

Hour 4: Working With Directories —_— cPrevious Chapter._Next Chapter

Sectionsin this Chapter:™

The Directory Tree ““Manipulating Directories

Switching Directories ~"Summary

Listing Files and Directories ™ Questions cPrevious Section__Next Sectiono

Manipulating Directories

Creating Directories ==\ oving Files and Directories
Copying Files and Directories—=Removing Directories

Now that you have covered using directories, look at manipulating them. The most common manipulations are
o Creating directories
o Copying directories
e Moving directories

e Removing directories

Creating Directories
Y ou can create directories with the mkdir command. Its syntax is
nkdir directory

Here, directory is the absolute or relative pathname of the directory you want to create. For example, the command
$ nkdir hwl

creates the directory hwl in the current directory. Here is another example:

$ nkdir /tnp/test-dir

This command creates the directory test-dir in the /tmp directory. The mkdir command produces no output if it successfully creates
the requested directory.

If you give more than one directory on the command line, mkdir creates each of the directories. For example

$ nkdir docs pub

creates the directories docs and pub under the current directory.

Creating Parent Directories

Sometimes when you want to create a directory, its parent directory or directories might not exist. In this case, mkdir issues an error
message. Here is an illustration of this:

$ nkdir /tnp/ch04/testl
nkdir: Failed to make directory "/tnp/chO4/testl1l"; No such file or directory

In such cases, you can specify the -p (p asin parent) option to the mkdir command. It creates all the necessary directories for you.
For example

$ nkdir -p /tnp/ch04/testl
creates all the required parent directories.

The mkdir command uses the following procedure to create the requested directory:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480032.htm (1 von 6) [06.05.2000 23:04:59]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 4: Working With Directories: Manipulating Directories

1. The mkdir command checks whether the directory /tmp exists. If it does not exist, it is created.
2. The mkdir command checks whether the directory /tmp/ch0O4 exists. If it does not exist, it is created.

3. The mkdir command checks whether the directory /tmp/chO4/test1 exists. If it does not, it is created.

Common Errors

The most common error in using mkdir is trying to make a directory that already exists. If the directory /tmp/ch04 already exists, the
command

$ nkdir /tnp/ch0o4

generates an error message similar to the following:
nkdi r: cannot nake directory '/tnp/chO4': File exists

An error also occurs if you try to create a directory with the same name as afile. For example, the following commands

$ I's -F docs/ nanes. t xt
names
$ nkdir docs/ nanes

result in the error message
nkdi r: cannot nake directory 'docs/nanes': File exists

If you specify more than one argument to mkdir, it creates as many of these directories asit can. Any directory that could not be
created generates an error message.

Copying Files and Directories

In Chapter 3, you looked at using the cp command to copy files. Now look at using it to copy directories.

To copy adirectory, you specify the -r option to cp. The syntax is as follows:
Cp -r source destination

Here, source is the pathname of the directory you want to copy, and destination is where you want to place the copy. For example
$ cp -r docs/book /mt/zip

copies the directory book located in the docs directory to the directory /mnt/zip. It creates a new directory called book under
/mnt/zip.

Copying Multiple Directories

In the same way that you can copy multiple files with cp, you can also copy multiple directories. If cp encounters more than one
source, all the source directories are copied to the destination. The destination is assumed to be the last argument.

For example, the command
$ cp -r docs/book docs/school work/src /mt/zip

copies the directories school and book, located in the directory docs, to /mnt/zip. It also copies the directory src, located in the
directory work, to /mnt/zip. After the copies finish, /mnt/zip looks like the following:

$1ls -aF /mt/zip
i o] book/ school / src/

Y ou can also mix files and directories in the argument list. For example
$ cp -r .profile docs/book .kshrc doc/nanes work/src /mt/jaz

copies all the requested files and directories to the directory /mnt/jaz.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480032.htm (2 von 6) [06.05.2000 23:04:59]

Hour 4: Working With Directories: Manipulating Directories

If your argument list consists only of files, the -r option has no effect.

Common Errors

The most common error in copying files and directories is in the requested destination. The most common problems in copying
directories involve using a destination that is not a directory.

An example of thisis

$ cp -r docs /mt/ zi p/ backup

cp: cannot create directory '/mt/zip/backup': File exists
$ |Is -F /I mt/zip/ backup

/ mt/ zi p/ backup

Asyou can see, the cp operation fails because afile called /mnt/zip/backup already exists.

Moving Files and Directories

Y ou have looked at the mv command to rename files, but its real purpose isto move files and directories between different locations
in the directory tree. The basic syntax isthis:

mv source destination

Here source is the name of the file or directory you want to move, and destination is the directory where you want the file or
directory to end up. For example

$ mv /hone/ rangal/ nanes /tnp
moves the file names located in the directory /home/ranga to the directory /tmp.

Moving a directory is exactly the same:
$ nmv docs/ work/

moves the directory docs into the directory work. To move the directory docs back to the current directory you can use the
command:

$ nv work/docs .

One nice feature of mv isthat you can move and rename afile or directory all in one command. For example
$ mv docs/ nanes /tnp/ nanes. t xt

moves the file names in the directory docs to the directory /tmp and renames it names.txt.
Moving Multiple Items

Asyou can with ¢p, you can specify more than one file or directory as the source. For example
$ mv work/ docs/ .profile pub/

moves the directories work and docs along with the file .profile into the directory pub.

When you are moving multiple items, you cannot rename them. If you want to rename an item and move it, you must use a separate
mv command for each item.

Common Errors

Y ou can encounter three common errors with mv:
e Moving multiple files and directories to adirectory that does not exist

e Moving files and directoriesto afile

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480032.htm (3 von 6) [06.05.2000 23:04:59]

Hour 4: Working With Directories: Manipulating Directories

e Trying to move directories across file systems

The first and second cases produce the same error message, so look at one example that illustrates what happens:

$ mv .profile docs pub /mt/jaz/ backup

mv: when noving nultiple files, last argunent nust be a directory
$1ls -aF /mt/jaz

o i archive/ | ost +f ound/ ol d/

Asyou can see, no directory named backup existsin the /mnt/jaz directory, so mv reports an error. The same error is reported if
backup was afile in the /mnt/jaz directory.

The third case occurs when you try to move a directory from one file system to another. For the purposes of this book, you can think
of afile system as either ahard drive or a hard drive partition.

Assume that /home and /tmp are on separate partitions. In this case, the command
$ nmv /tnp/ chOl1 /home/rangal/ docs

returns error output
nmv: cannot nove '/tnp/chOl' across filesystens: Not a regular file

The most common workaround to thisis to use the cp -r to copy the directory and then remove the original with rm:

$ cp -r /tnp/ch0l /hone/ ranga
$rm-r /tnp/chOl

| cover the -r option of rm later in this chapter.

Sometimes, you might use thetar (asin tape archive) command instead of cp:

$(cd/tmp; tar -cvpf - chOl | (cd /honme/ranga ; tar -xvpf -))
$rm-r /tnp/chOl

| explain the tar version of moving directoriesin Chapter 22, "Problem Solving with Shell Scripts.”

Removing Directories

Y ou can use two commands to remove directories:
e rmdir
e m-r

Use the first command to remove empty directories. It is considered "safe" because in the worst case, you can accidentally lose an
empty directory, which you can quickly re-create with mkdir.

The second command removes directories along with their contents. It is considered "unsafe" because in the worst case of rm -r, you
could lose your entire system.

Caution - When using rm to remove either files or directories, make sure that you remove only those files
that you don't want.

Thereis no way to restore files deleted with rm, so mistakes can be very hard to recover from.

rmdir

To remove an empty directory, you can use the rmdir command. Its syntax is
rndir directories

Here, directories includes the names of the directories you want removed. For example, the command
$ rmdir ch0l1 ch02 ch03

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480032.htm (4 von 6) [06.05.2000 23:04:59]

Hour 4: Working With Directories: Manipulating Directories

removes the directories ch01, ch02, and ch03 if they are empty. The rmdir command produces no output if it is successful.
Common Errors

Y ou might encounter two common error messages from rmdir. These occur when you
e Try toremove adirectory that is not empty
e Try toremove fileswith rmdir

For the first case, you need to know how to determine whether a directory is empty. Y ou can do this by using the -A option of thels
command. An empty directory produces no output. If there is some output, the directory you specified is not empty.

For example, if the directory bar is empty, the following command
$1s -A bar

returns nothing.

Now say that the directory docs is not empty. The following command
$ rndir docs

produces an error message
rndir: docs: Directory not enpty

To illustrate the second error, assume that namesis afile. The following command
$ rndir nanes

produces an error message

rndir: nanmes: Not a directory

rm -r

Y ou can specify the -r option to rm to remove a directory and its contents. The syntax is as follows:
rm-r directories

Here directories includes the names of the directories you want removed.

For example, the command
$rm-r ch01/

removes the directory ch01 and its contents. This command produces no output.

Y ou can specify a combination of files and directories as follows:
$ rm-r chOl/ testl.txt chOl-old.txt ch02/

In order to make rm safer, you can combine the -r and -i options.
Common Errors

Usually the only error reported by rmis that a requested file or directory cannot be removed. If the file or directory
midterm_answers does not exist, rm reports an error:

$ rm-r mdtermanswers
rm mdtermanswers: No such file or directory

Sams Teach Yourself Shell Programming in 24 Hours Contents Index

Hour 4: Working With Directories —_— —Previous Chapter._Next Chapter

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480032.htm (5 von 6) [06.05.2000 23:04:59]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 4: Working With Directories: Manipulating Directories

Sectionsin this Chapter:™

The Directory Tree ““Manipulating Directories
Switching Directories = Summary
Listing Files and Directories ™~ Questions cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480032.htm (6 von 6) [06.05.2000 23:04:59]

Hour 4: Working With Directories: Summary

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The Directory Tree ““Manipulating Directories
Switching Directories Summary
Listing Filesand Directories ™ Questions cPrevious Section__Next Section

In this chapter, you have looked at working with directories. Specifically, you covered the following topics:
e Working with filenames and pathnames
e Switching directories
e Listing files and directories
e Creating directories
e Copying and moving directories
e Removing directories

Y ou reviewed each of these topics because it isimportant to know how to perform these functions when writing shell
scripts. Asyou progress further into this book, you see how common directory manipulations occur in shell scripts.

Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex

Sectionsin this Chapter:™

The Directory Tree ““Manipulating Directories
Switching Directories = Summary
Listing Filesand Directories ™ Questions cPrevious Section_Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480033.htm [06.05.2000 23:05:00]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 4: Working With Directories: Questions

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The Directory Tree “Manipulating Directories

Switching Directories = Summary

Listing Filesand Directories ™~ Questions cPrevious Section__Next Sectiono

Questions

1. Which of the following are absolute pathnames? Which are relative?
a. /usr/local/bin
b. ../../home/ranga
c. docs/book/ch01
d./

2. What is the output of the pwd command after the following sequence of cd commands have been issued?
$ cd /usr/local

$ cd bin
$cd../../tnp
$ cd

3. What command should be used to copy the directory /usr/local to /opt/pgms?
4. What command(s) should be used to move the directory /usr/local to /opt/pgms?

5. Given the following listing for the directory backup, can you use the rmdir command to remove this directory? If
not, please give acommand that can be used.

$ |I's -a backup
i - sysbak- 980322 sysbak-980112

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The Directory Tree ““Manipulating Directories
Switching Directories = Summary
Listing Filesand Directories ~™Questions cPrevious Section_Next Sectionz

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480034.htm [06.05.2000 23:05:00]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 5: Manipulating File Attributes: File Types

Sams Teach Yourself Shell Programming in 24 Hours Contents Index
Hour 5: Manipulating File Attributes —_ cPrevious Chapter._Next Chaptero
Sectionsin this Chapter: —

File Types = Summary

Owners, Groups, and Permissions Questions oPrevious Section—Next Section

Hour 5
Manipulating File Attributes

In addition to working with files and directories, shell scripts are often called on to manipulate the attributes of afile. In this chapter, you
learn how to manipulate the following file attributes:

e Permissions
e Owners
o Groups

Y ou will examine the different types of files available on UNIX systems and how to identify them.

File Types

Determining a File's Type===Device Files

Regular Files ==Named Pipes
Symbalic Links —

UNIX supports several different types of files. Files can contain your important data, such as files from aword processor or graphics
package, or they can represent devices, directories, or symbolic links. In this section, you will ook at the different types of files available
under UNIX.

Determining a File's Type

To determine afile's type, specify the -1 option to the Is. When this option is specified, Is lists the file type for the specified files. For
example, the command

$1Is -1 /hone/rangal/.profile

produces the following output:
- I WXT - XTI - X 1 ranga users 2368 Jul 11 15:57 .profile*

Here, you see that the very first character is ahyphen (-). Thisindicates that the fileis aregular file. For special files, the first character will
be one of the letters given in Table 5.1.

To obtain file type information about a directory, you must specify the -d option along with the -l option:
$Is -1d /hone/ranga

This produces the following output:
drwxr-xr-x 27 ranga users 2048 Jul 23 23:49 /hone/ rangal

Table 5.1 Special Characters for Different File Types

|Character |File Type

|- |Reguler file

|I |Symbolic link

c |Character special
b |Block special

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480036.htm (1 von 4) [06.05.2000 23:05:00]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 5: Manipulating File Attributes: File Types

ip iNamed pipe
B | Socket
\d Directory file

I'll provide the actual descriptions of each of these file typesin the following sections.

Regular Files

NEw T
Regular files are the most common type of files you will encounter. These files store any kind of data. This data can be stored as
plain text, an application- specific format, or a specia binary format that the system can execute.

UNIX does not have to understand the data contained in aregular file. A regular file can store any form of raw data because UNIX does not
interpret the data that isin the file.

Note - Often simply determining that afileisaregular file tells you very little about the file itself. Usually you need to know whether a
particular fileis abinary program, a shell script, or alibrary. In these instances, the file program is very useful.

It isinvoked asfollows:
file fil enane

Here, filename is the name of the file you want to examine. As an example, on my system, the command
$ file /sbin/sh

produces the following output:

/ sbin/sh: ELF 32-bit MSB executabl e SPARC Version 1, statically linked, stripped
Here you see that the file, /shin/sh, is an executable program. Try it out on afew filesto get an idea of the kind of information that it can
give you.

Symbolic Links

NEW T ERM T N
A symbolic link is a special file that points to another file on the system. When you access one of thesefiles, it has a pathname
stored inside it. Use this pathname to advance to the file or directory on the system represented by the pathname stored in the symbolic link.

For readers who are familiar with Windows or Mac OS, asymbolic link is similar to a shortcut or an alias.

Y ou can use symbolic links to make afile appear as though it islocated in many different places or has many different namesin thefile
system. Symbolic links can point to any type of file or directory.

Thels-l output for asymboalic link looks like this:
| rwxr wxr wx 1 root r oot 9 Cct 23 13:58 /bin/ -> ./usr/bin/

The output indicates that the directory /bin isreally alink to the directory ./usr/bin.

Therelative path in the output is not relative to your current working directory: it isrelative to the directory where the link resides. In this
case, thelink /bin resides in the / directory, thus ./usr/bin indicates that /bin is alink to the directory /usr/bin.

Creating Symbolic Links

Create symbolic links using the In command with the -s option. The syntax is as follows:
In -s source destination

Here, source is either the absolute or relative path to the original version of the file, and destination is the name you want the link to have.

For example, the following command
$ In -s /hone/ httpd/ htm /users/ranga / hone/ rangal/ public_htn

creates alink in my home directory to my Web files. If you encounter an error while creating alink, In will display an error message.

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480036.htm (2 von 4) [06.05.2000 23:05:00]

Hour 5: Manipulating File Attributes: File Types
Otherwise, it displays no output.

In this example, you used absolute paths. In practice, relative paths are preferred for the source and the destination. For example, the actua
commands | used to create alink to my Web files are the following:

$ cd
$In-s ../httpd/htm/users/ranga ./public_htn

Y ou can see therelative path by using Is-I:
$1s -1 ./public_htm

[rwxr wxr wx 1 ranga users 26 Nov 9 1997 public_htm ->
../ httpd/ htm /users/ranga

This output indicates that the fileisalink and aso shows the file or directory that the link pointsto.
Common Errors

The two most common errors encountered when creating symbolic links happen when
e Thedestination already exists.
e Thedestination is adirectory.

If the specified destination is afile, it does not create the requested link. For example, if the file .exrc existsin my home directory, the
command

$In -s /etc/exrc .exrc

produces the following error message:
I n: cannot create .exrc: File exists

If the specified destination is adirectory, In creates alink in that directory with the same name as the source. For example, if the directory
pub exists in the current directory, the following command

$ In -s /hone/ftp/publ/ranga pub

creates the link pub/ranga rather than complaining that the destination is adirectory. | mention this behavior of In as acommon error because
forgetting about that fact is a common shell script bug.

Device Files

Y ou can access UNIX devices through reading and writing to device files. These device files are access points to the device within thefile
systems.

Usually, device files are located under the /dev directory. The two main types of devicefiles are
e Character specidl files

o Block specid files

Character Special Files

New T e . . —
Character special files provide a mechanism for communicating with a device one character at atime. Usually character devices
represent a"raw" device. The output of |s on a character specid file looks like the following:

Crw------ 1 ranga users 4, O Feb 7 13:47 /dev/ttyO

Thefirst |etter in the output is ¢, therefore you know that this particular file is a character special file, but you also see two extra
numbers before the date. The first number is called the major number and the second number is called the minor number. UNIX uses these
two numbers to identify the device driver that this file communicates with.

Block Special Files

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480036.htm (3 von 4) [06.05.2000 23:05:00]

Hour 5: Manipulating File Attributes: File Types

Block special files also provide a mechanism for communicating with device drivers viathe file system. Thesefiles are called
block devices because they transfer large blocks of data at atime. Thistype of file typically represents hard drives and removable media.
Look at thels-I output for atypical block device. For example, /dev/sda:

brwrw --- 1 root di sk 8, 0 Feb 7 13:47 /dev/sda

Here the first character is b, indicating that thisfile is ablock special file. Just like the character specid files, these files also have a major
and a minor number.

Named Pipes

One of the greatest features of UNIX isthat you can redirect the output of one program to the input of another program with
very little work. For example, the command who | grep ranga takes the output of the who command and makes it the input to the grep
command. Thisis called piping the output of one command into another. Y ou will examine input and output redirection in great detail in
Chapter 13, "Input/Output."

On the command line, temporary anonymous pipes are used, but sometimes more control is needed than the command line provides. For
such instances, UNIX provides away to create a named pipe, so that two or more process can communicate with each other viaafile that
acts like a pipe. Because these files allow process to communicate with one another, they are one of the most popular forms of interprocess
communication (IPC for short) available under UNIX.

Sockets

NEW T ERM . . R . .
Socket files are another form of interprocess communication, but sockets can pass data and information between two processes

that are not running on the same machine. Socket files are created when communication to a process on another machine located on a
network is required. Internet tools in use today, such as Web browsers, use sockets to make a connection to the Web server.

Sams Teach Yoursef Shell Programmingin 24 Hours Contents Index
Hour 5: Manipulating File Attributes —_— —Previous Chapter._Next Chapterns
Sections in this Chapter:

File Types = Summary

Owners, Groups, and Permissions™ Questions cPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480036.htm (4 von 4) [06.05.2000 23:05:00]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 5: Manipulating File Attributes: Owners, Groups, and Permissions

Sams Teach Y ourself Shell Programmingin 24 Hours Contents |ndex
Hour 5: Manipulating File Attributes — oPrevious Chapter—_Next Chapters
Sections in this Chapter:

File Types =Summary

Owners, Groups, and Permissions™ Questions cPrevious Section_.Next Sectiono

Owners, Groups, and Permissions

Viewing Permissions ==Changing Owners and Groups
Changing File and Directory Permissi onSee=

File ownership is an important component of UNIX that provides a secure method for storing files. Every filein UNIX has
the following attributes:

e Owner permissions
e Group permissions
o Other (world) permissions

The owner's permissions determine what actions the owner of the file can perform on the file. The group's permissions
determine what actions a user, who is a member of the group that afile belongs to, can perform on the file. The permissions
for othersindicate what action all other users can perform on thefile.

Y ou can perform the following actions on afile:
e Read
o Write
e Execute

If auser has read permissions, that person can view the contents of afile. A user with write permissions can
change the contents of afile, whereas a user with execute permissions can run afile as a program.

Viewing Permissions

Y ou can display the permissions of afile using the Is -l command. For example, the following command
$1s -1 /hone/ranga/.profile

produces the following output:
- WXT - XTI - X 1 ranga users 2368 Jul 11 15:57 .profile*

Because the first character isahyphen (-), you know that thisis aregular file. Several characters appear after this hyphen.
Thefirst three characters indicate the permissions for the owner of the file, the next three characters indicate the
permissions for the group the file is associated with, and the last three characters indicate the permissions for all other
USErsS.

The permission block for thisfile indicates that the user has read, write, and execute permissions, whereas members of the
group users and all other users have only read and execute permissions.

Three basic permissions that can be granted or denied on afile are read, write, and execute. These permissions are defined

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480037.htm (1 von 7) [06.05.2000 23:05:01]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 5: Manipulating File Attributes: Owners, Groups, and Permissions

in Table5.2.

After the permissions block, the owner and the group are listed. For thisfile, the owner israngaand the group is users.

Table 5.2 Basic Permissions

|Letter |Permission |Definition

|r |Read |The user can view the contents of the file.
|W |Write |The user can alter the contents of thefile.

X Execute [Theuser can run thefile, which islikely a program. For directories, the execute permission must be
set in order for users to access the directory.

Directory Permissions

The x bit on adirectory grants access to the directory. The read and write permissions have no effect if the access bit is not
Set.

The read permission on a directory enables users to use the Is command to view files and their attributes that are located in
the directory.

The write permission on adirectory isthe permission to watch out for because it lets a user add and also remove files from
the directory.

A directory that grants a user only execute permission will not enable the user to view the contents of the directory or add
or delete any files from the directory, but it will let the user run executable files located in the directory.

Tip - To ensure that your files are secure, check both the file permissions and the permissions of the
directory where the file is located.

If afile has write permission for owner, group, and other, the file isinsecure. Inversaly, if afileisina
directory that has write and execute permissions for owner, group, and other, all files located in the directory
are insecure, no matter what the permissions on the files themselves are.

SUID and SGID File Permission

Often when a command is executed, it will have to be executed with special privilegesin order to accomplish its task.

As an example, when you change your password with the passwd command, your new password is stored in thefile
/etc/shadow. As aregular user, you do not have read or write accessto thisfile for security reasons, but when you change
your password, you need to have write permission to this file. This means that the passwd program hasto give you
additional permissions so that you can write to the file /etc/shadow.

Additiona permissions are given to programs viaa mechanism known as the Set User ID (SUID) and Set Group ID (
SGID) bits. When you execute a program that has the SUID bit enabled, you inherit the permissions of that program's
owner. Programs that do not have the SUID bit set are run with the permissions of the user who started the program.

Thisistruefor SGID aswell. Normally programs execute with your group permissions, but instead your group will be
changed just for this program to the group owner of the program.

As an example, the passwd command, used to change your password, is owned by the root and has the set SUID bit
enabled. When you execute it, you effectively become root while the command runs.

The SUID and SGID bitswill appear as the letter "s" if the permission is available. The SUID "s" bit will be
located in the permission bits where the owners execute permission would normally reside. For example, the command

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480037.htm (2 von 7) [06.05.2000 23:05:01]

Hour 5: Manipulating File Attributes: Owners, Groups, and Permissions

$1Is -1 /usr/bin/passwd

produces the following output:
-r-Sr-xr-x 1 root bi n 19031 Feb 7 13:47 /usr/bin/passwd*

which shows that the SUID bit is set and that the command is owned by the root. A capital letter Sin the execute position
instead of alowercase s indicates that the execute bit is not set.

The SUID hit or stick bit imposes extra file removal permissions on adirectory. A directory with write permissions enabled
for auser enables that user to add and delete any files from this directory. If the sticky bit is enabled on the directory, files
can only be removed if you are one of the following users:

e Theowner of the sticky directory
e The owner thefile being removed
e The super user, root

Y ou should consider enabling the sticky bit for any directories that nonprivileged users can write. Examples of such
directories would include temporary directories and public file upload sites.

Directories can a so take advantage of the SGID bit. If adirectory has the SGID bit set, any new files added to the directory
automatically inherit that directories group, instead of the group of the user writing the file.

Changing File and Directory Permissions

Y ou can change file and directory permissions with the chmod command. The basic syntax is as follows:
chnod expression files

New Tem L
- Here, expression is a statement of how to change the permissions. This expression can be of the following
types:

e Symbolic
o Octd

The symbolic expression method uses letters to alter the permissions, and the octal expression method uses numbers. The
numbersin the octal method are base-8 (octal) numbers ranging from 0 to 7.

Symbolic Method

The symbolic expression has the syntax of
(who) (acti on) (perm ssi ons)

Table 5.3 shows the possible values for who, Table 5.4 shows the possible actions, and Table 5.5 shows the possible
per missions settings. Using these three reference tables, you can build an expression.

Table 5.3 who

|Letter |Represents
u |Owner
[|Group

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480037.htm (3 von 7) [06.05.2000 23:05:01]

Hour 5: Manipulating File Attributes: Owners, Groups, and Permissions

|o |Other
|a |AII

Table 5.4 actions

|Symbol |Represents

+ |Adding permissions to the file

- |Removing permission from the file
B |Explicitly set the file permissions

Table 5.5 permissions

|Letter |Represents

|r |Read
|W |Write
|x |Execute

|s |SUID or SGID

Now look at afew examples of using chmod.

To givethe "world" read accessto all filesin adirectory, you can use one of the following commands:
$ chnod a=r *

or

$ chnod guo=r *

If the command is successful, it produces no outpui.

To stop anyone except the owner of the file .profile from writing to it, try this:
$ chnod go-w .profile

To deny accessto the filesin your home directory, you can try the following:
$ cd ; chnpd go= *

or

$ cd ; chnpbd go-rwx *

Caution - If you do this, be warned because some users will call you afile miser .

When specifying the users part or the permissions part, the order in which you give the lettersisirrelevant. Thus these
commands are equivalent:

$ chnmod guo+rx *
$ chnmod uog+xr *

If you need to apply more than one set of permissions changesto afile or files, use a comma separated list: For example
$ chnod go-w, a+x a. out

removes the groups and "world" write permission on a.out and adds the execute permission for everyone.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480037.htm (4 von 7) [06.05.2000 23:05:01]

Hour 5: Manipulating File Attributes: Owners, Groups, and Permissions

To set the SUID and SGID bits for your home directory, try the following:
$ cd ; chnod ug+s

So far, the examples you have examined involve changing the permissions for filesin a directory, but chmod aso enables
you to change the permissions for every filein adirectory including the files in subdirectories. Y ou can accomplish this by
specifying the -R option.

For example, if the directory pub contains the following directories:

$ I's pub
A . READMVE faqs/ src/

you can change the permission read permissions of the file README aong with the files contained in the directories fags
and src with the following command:

$ chnmod -R o+r pub

Be careful when doing this to large subtrees because you can change the permissions of afile in away that you did not
intend.

Octal Method

By changing permissions with an octal expression, you can only explicitly set file permissions. This method uses asingle
number to assign the desired permission to each of the three categories of users (owner, group, and other).

The values of the individual permissions are the following:
e Read permission hasavalue of 4
e Write permission has avalue of 2
o Execute permission hasavaueof 1

Adding the value of the permissions that you want to grant will give you a number between 0 and 7. This number will be
used to specify the permissions for the owner, group, and finally the other category.

Setting SUID and SGID using the octal method places these bits out in front of the standard permissions. The permissions
SUID and SGID take on the values 4 and 2, respectively.

Go through some of the examples covered in the previous section to get an idea of how to use the octal method of changing
permissions.

In order to set the "world" read accessto all filesin adirectory, do this:
chnod 0444 *

To stop anyone except the owner of the file .profile from writing to it, do this:
chnod 0600 .profile

Common Errors

Many new users find the octal specification of file permissions confusing. The most important thing to keep in mind is that
the octal method sets or assigns permissions to afile, but it does not add or delete them.

This means that the octal mode does not have an equivalent to
chnod u+rw . profile

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480037.htm (5 von 7) [06.05.2000 23:05:01]

Hour 5: Manipulating File Attributes: Owners, Groups, and Permissions
The closest possible octal version would be
chnod 0600 .profile

But this removes permissions for everyone except the user. It can also reduce the user's permissions by removing that
person’'s execute permission.

Just keep in mind that the octal mode sets the permissions of files not to modify them, and you will not run into any
problems.

Changing Owners and Groups

Two commands are available to change the owner and the group of files:
e chown

e chgrp

The chown command stands for "change owner" and is used to change the owner of afile.
The chgrp command stands for "change group™ and is used to change the group of afile.

On some older systems, the chgrp command might not be available, and the chown command must be used instead. Y ou
will learn how to use both chown and chgrp to change the group of afile. For maximum portability, you should stick to
using chown to change both the owner and the group of afile.

Changing Ownership
The chown command changes the ownership of afile. The basic syntax is as follows:

chown options user:group files

Here, options can be one or more of the options listed in the man page for chown. Because considerable variation existsin
the available options, please consult the man page on your system for acomplete list.

The value of user can be either the name of a user on the system or the user id (uid) of auser on the system. The value of
group can be the name of a group on the system or the group ID (GID) of agroup on the system. To just change the owner,
you can omit the group value.

Asan example
chown ranga: /hone/httpd/ htm /users/ranga

changes the owner of the given directory to the user ranga.
Restrictions

The super user, root, has the unrestricted capability to change the ownership of afile, but some restrictions occur for normal
users.

Normal users can change only the owner of files they own. This meansthat if you give another user ownership of afile, you
will not be able to regain ownership of that file. Only the new owner of the file or the super user can return the ownership to
youl.

On some systems, the chown command will be disabled for normal user use. This generally happensif the systemis
running disk quotas. Under a disk quota system, users might be allowed to store only 100MB of files, but if they change the
ownership of somefiles, their free available disk space increases, and they still have accessto their files.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480037.htm (6 von 7) [06.05.2000 23:05:01]

Hour 5: Manipulating File Attributes: Owners, Groups, and Permissions

The chown command will recursively change the ownership of all files when the -R option isincluded. For example, the
command

chown -R ranga: /hone/ httpd/ htm /users/ranga

changes the owner of all the files and subdirectories located under the given directory to be the user ranga.
Changing Group Ownership

Y ou can change group ownership of afile with the chgrp command. Its basic syntax is as follows:
chgrp options group files

Here, optionsis one or more of the options listed in the man page for chgrp. The value of group can be either the name of a
group or the GID of agroup on the system. As an example

chgrp aut hors /hone/ranga/ docs/ ch5. doc

changes the group of the given file to be the group authors. Just like chown, all versions of chgrp understand the -R option
also.

On systems without this command, you can use chown to change the group of afile. For example, the command
chown : aut hors /hone/rangal/ docs/ ch5. doc

changes the group of the given file to the group authors.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index
Hour 5: Manipulating File Attributes —_ cPrevious Chapter__Next Chaptero
Sections in this Chapter:

File Types ="Summary

Owners, Groups, and Permissions™ Questions oPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480037.htm (7 von 7) [06.05.2000 23:05:01]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 5: Manipulating File Attributes: Summary

Sams Teach Yourself Shell Programmingin 24 Hours

Contents [ndex

Sectionsin this Chapter: —

File Types Summary
Owners, Groups, and Permissions™ Questions cPrevious Section__Next Sectiono

Summary

In this chapter, | covered several important topics relating to files and file permissions. Specifically, | covered the
following tasks:

e Determining afile'stype

e Changing file and directory permissions using symbolic and octal notation
e Enabling SUID and SGID permissions for files and directories

e Changing the owner of afile or directory

o Changing the group of afile or directory

Asyou will seein subsequent chapters, each of these tasks isimportant in shell scripts.

Sams Teach Yourself Shell Programmingin 24 Hours

Contents Index

Sectionsin this Chapter: —

File Types = Summary
Owners, Groups, and Permissions™ Questions —Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480038.htm [06.05.2000 23:05:01]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 5: Manipulating File Attributes: Questions

Sams Teach Y ourself Shell Programmingin 24 Hours

Contents Index

Sectionsin this Chapter: —

File Types =Summary
Owners, Groups, and Permissions™ Questions cPrevious Section_Next Sectiono

Questions

For the three questions, refer to the following Is -l output:

CrWr----- 1 bin Sys 188 0x001000 Cct 13 00: 31 /dev/rdsk/cOt 1d0
-r--r--r-- 1 root Sys 418 Cct 13 16: 25 /etc/ passwd
drwxrwxrwx 10 bin bi n 1024 Cct 15 20:27 /usr/local/
-r-sr-xr-x 1 root bi n 28672 Nov 6 1997 /usr/sbin/ping

1. Identify the file type of each of the files given above.

2. |dentify the owner and group of each of the files given above.

3. Describe the permissions for the owner, group, and all "other" users for each of the files given above.

Sams Teach Yourself Shell Programmingin 24 Hours

Contents Index

Sectionsin this Chapter: =

File Types =Summary
Owners, Groups, and Permissions™ Questions oPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480039.htm [06.05.2000 23:05:02]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 6: Processes: Starting a Process

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 6: Processes —_— oPrevious Chapter_Next Chapter—
Sectionsin this Chapter: —

Starting a Process ~Summary

Listing Running Processes “Questions
Killing a Process (kill Command)™ Terms
Parent and Child Processes - cPrevious Section.Next Sectiono

Hour 6
Processes

By David B. Horvath, CCP

In this chapter you learn the concepts of processes and jobs. In UNIX every program runs as a process. | explain background and foreground
processes and how to start a process. Y ou are introduced to the commands that list and kill processes. Finally, the concept of parent and child
processes are explained.

In this chapter you look at the four major topics involving processes provided with the shell:
o Starting processes
e Listing running processes
o Killing processes

e Parent and child processes

Starting a Process

Foreground Processes me=
Background ProcesseSm

Whenever you issue acommand in UNIX, it creates, or starts, a new process. When you tried out the Is command to list directory contentsin
Chapter 4, "Working with Directories,” you started a process (the Is command).

The operating system tracks processes through afive digit ID number known as the pid or process ID . Each process in the system has a unique pid.
Pids eventually repeat because all the possible numbers are used up and the next pid rolls or starts over. At any onetime, no two processes with the
same pid exist in the system because it is the pid that UNIX uses to track each process. Y ou might be interested in the fact that the pid usualy rolls
over at the 16-hit signed boundary. The highest it gets before rolling over is 32,767.

Y ou can use the ps command to see what processes you are running and all processes on the system. The ps command is described in the "Listing
Running Processes’ section of this chapter.

When you start a process (run a command), there are two ways you can run it--in the foreground or background. The difference is how the process
interacts with you at the terminal.

Foreground Processes

By default, every process that you start runs in the foreground. It gets itsinput from the keyboard and sends its output to the screen. Y ou can
redirect process input and output (see Chapter 13, "Input/Output™), but by default, input and output are connected to your terminal.

Y ou can see this happen with the Is command. If | want to list al the filesin my current directory (various chapters that start with a zero), | can use
the following command:

$ I's chO*. doc

On my screen, | see the following output:

ch01-1.doc ¢h010. doc ch02. doc ch03-2.doc ¢ch04-1. doc ch040. doc ch05. doc

ch06- 2. doc
ch01-2.doc c¢ch02-1.doc ¢ch020. doc ch03. doc ch04- 2. doc ch05-1. doc ¢ch050. doc

ch06. doc

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480041.htm (1 von 6) [06.05.2000 23:05:02]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 6: Processes: Starting a Process

chO01. doc ch02-2.doc ¢ch03-1.doc ¢ch030. doc ch04. doc ch05- 2. doc ¢ch06-1. doc
ch060. doc

The process runs in the foreground, the output is directed to my screen, and if the Is command wants any input (which it does not), it waits for it
from the keyboard.

While this command is running, | cannot run any other commands (start any other processes). | can enter commands, but no prompt appears and
nothing happens until this one completes because UNIX buffers keystrokes. For the Is command, which usualy runs very quickly, thisis not a
problem. But if | have something that runs for along time--such as a large compile, database query, program that calculated pi, or a server--my
termina will betied up.

Fortunately, | do not have to wait for one process to complete before | can start another. UNIX provides facilities for starting processesin the
background, suspending foreground processes, and moving processes between the foreground and background.

Caution - When you log off or are disconnected from the system by a communication problem, your
processes are terminated. If you have along running process that you do not want terminated, you need to
use the nohup command. nohup stands for no HUP (Hang UP). The nohup command is described later, in the
section "Keeping Background Processes Around (_nohup Command)."

Background Processes

A background process runs without being connected to your keyboard. If the background process requires any keyboard input, it waits.

The advantage of running a process in the background is that you can run other commands; you do not have to wait until it completes to start
another!

The simplest way to start a background processis to add an ampersand (&) at the end of the command.

Running the same Is command as in the foreground example, | use the following:

$ Is chO*.doc &

On the screen, | see the following:
[1] 20757
$ ch01-1.doc ch010. doc ch02. doc ch03-2.doc c¢ch04-1. doc ch040. doc ch05. doc

ch06- 2. doc
ch01-2.doc c¢ch02-1.doc ¢ch020. doc ch03. doc ch04- 2. doc ch05-1. doc ¢ch050. doc

ch06. doc
ch01. doc ch02-2.doc c¢ch03-1.doc ch030. doc ch04. doc ch05-2.doc ch06-1. doc

ch060. doc

| can see from thefirst line of output that the process runs in the background. The output is directed to my screen. If the Is command wants any
input (which it does not), it goesinto a stop state until | move it into the foreground and give it the data from the keyboard.

That first line contains information about the background process--the job number and process ID. Y ou need to know the job number to manipulate
it between background and foreground.

If you run this command yourself, you might notice that you do not get a prompt back after the last line of the directory listing. That's because the
prompt actually appears immediately after the job/pid line, next to ch01-1.doc. Y ou are able to enter acommand immediately instead of waiting for
Isto finish.

If you press the Enter key now, you see the following:
[1] + Done | s chO*. doc &
$

Thefirst line tells you that the Is command background process finishes successfully. The second is a prompt for another command.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480041.htm (2 von 6) [06.05.2000 23:05:02]

Hour 6: Processes: Starting a Process

Tip - If you try this command and do not see the completion messages, it might be because your shell has
been told not to show it to you. When enabled, those messages are part of process or job monitoring. Y ou can
enable monitoring with the following:

set -0 nonitor

To disable the monitoring messages, you use +0:
set +o nonitor

You can aso check all the shell options with the following:
set -0

Y ou see adifferent completion message if an error occurs. Thereis no file with the name no_such_filein my directory, soif | try tolist it with s |
get an error. The command is

$ Is no_such file &

resulting in output that looks like

[1] 25389
$ no_such_file: No such file or directory

Thefirst line is the background process information, and the second shows the prompt for the next command and the output from Is--the error
message. | get the same error message if | run |s as aforeground process.

If you have process and job monitoring enabled, pressing Enter again results in the following appearing on your screen:

[1] + Done(2) | s no_such_file &

$

The ls command returns a nonzero status. That value (2) is shown after the Done message to inform you that it did not run successfully. Of course,
the dollar sign ($) on the next line is the command prompt.

Background Processes That Require I nput

If you run a background process that requires input and do not redirect it to read afile instead of the
keyboard, the process stops. |f you have process and job monitoring enabled, pressing Enter at an empty
command prompt or starting a command returns a message. The following is an example of running a
command in the background that needs input (using asimple program | created that is not part of UNIX):

$ i _need_ input &
Because this command does not produce any output until you give it input, all you seeisthe command
prompt. Pressing Enter results in a message as follows:

[1] + Stopped (SIGITIN) i _need_input &

On some systems the message |ooks like the following:
[1] + Stopped (tty input) i _need_i nput &

SIGTTIN (seen in the first example) isasignal (SIG) that tells me the program is waiting for terminal (TT)
input (IN). See Chapter 19, "Dealing with Signals,”" for more information on signals.

If you get a message like this, you have two choices. Y ou can kill the process and rerun it with input
redirected, or you can bring the process to the foreground, give it the input it needs, and then let it continue as
aforeground or background process. This chapter explains how to handle either of these choices.

file:///D]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480041.htm (3 von 6) [06.05.2000 23:05:02]

Hour 6: Processes: Starting a Process
Tip - Background Processes That Write Output

Some processes force their output to the screen and go into a stop state if they run in the background and
want to write output. These processes display a message like:

[1] + Stopped (SIGITQU) i _wite &
On some systems the message might display as follows:
[1] + Stopped (tty output) i _wite &

SIGTTOU (seenin the first example) isasignal (SIG) that tells me that the program wants to write output (
OU) to the terminal (TT) but is in the background. See Chapter 19 for more information on signals.

If you get a message like this, you have two choices. Y ou can kill the process and rerun it with output
redirected, or you can bring the process to the foreground where it writes its output and let it continue as a
foreground or background process. This chapter explains how to handle either of those choices.

Moving a Foreground Process to the Background

In addition to running a process in the background using &, you can move aforeground process into the background. While aforeground process
runs, the shell does not process any new commands. Before you can enter any commands, you have to suspend the foreground processto get a
command prompt. The suspend key on most UNIX systemsis Ctrl+Z.

Tip - You can determine which key performs which function by using the stty command. By entering
$ stty -a

you are shown the following, along with alot of other information:
intr = ~C, quit = "\; erase = "H Kkill
eol2 = "@ start = "Q stop = "S; susp
discard = "OQ werase = "W | next = "V

AU, eof = AD; eol =7
NZ; dsusp = MY, reprint = 2R

The entry after susp (~Z in this example) is the key that suspends aforeground process. The character ~ stands for Ctrl. If
Ctrl+Z does not work for you, use the stty command as shown previously to determine the key for your system.

When aforeground process is suspended, a command prompt enables you to enter more commands; the original processis still in memory but is not
getting any CPU time. To resume the foreground process, you have two choices--background and foreground. The bg command enables you to
resume the suspended process in the background; the fg command returns it to the foreground. fg is covered in the next section.

For example, you start along running process. I'm using long_running_process for the following example:

$ | ong_runni ng_process

Whileit isrunning, you decide that it should run in the background so your terminal is not tied up. To do that, you press the Ctrl+Z key and see the
following (the *Z isyour Ctrl+Z key being echoed):

NZ[1] + Stopped (SIGISTP) | ong_runni ng_process
$

Y ou are told the job number (1) and that the processis Stopped. Y ou then get a prompt. To resume the job in the background, you enter the bg
command as follows:

$ bg
[1] | ong_runni ng_process &
$

As aresult, the process runs in the background. L ook at the last character on the second line, the ampersand (&). Asareminder, the shell displays
the ampersand there to remind you that the job is running in the background. It behaves just like a command where you type the ampersand at the
end of theline.

By default, the bg command moves the most recently suspended process to the background. Y ou can have multiple processes suspended at one
time. To differentiate them, put the job number prefixed with a percent sign (%) on the command line.

In the following example, | start two long running processes, suspend both of them, and put the first one into the background. The next few lines
show starting and suspending two foreground processes:

$ | ong_runni ng_process
NZ[1] + Stopped (SI GISTP) | ong_r unni ng_process
$ | ong_runni ng_process?2

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480041.htm (4 von 6) [06.05.2000 23:05:02]

Hour 6: Processes: Starting a Process

NZ[2] + Stopped (Sl GISTP) | ong_r unni ng_process?2
$

To move the first one to the background, | use the following:

$ bg %

[1] | ong_runni ng_process &

$

The second process s still suspended and can be moved to the background as follows:

$ bg W

[2] | ong_runni ng_process2 &

$

The capability to specify which job to perform an action on (move to foreground or background for instance) shows the importance of having job
numbers assigned to background processes.

Moving a Background Process to the Foreground (fg Command)

When you have a process that is in the background or suspended, you can move it to the foreground with the fg command. By default, the process
most recently suspended or moved to the background moves to the foreground. Y ou can also specify which job, using its job number, you want to
make foreground.

Tip - If you're ever in doubt about which job will be moved to the background or foreground, don't guess.
Put the job number on the bg or fg command, prefixed with a percent sign.

Using the long running process in the previous section, a foreground process is suspended and moved into the background in the following example:
$ | ong_runni ng_process

NZ[1] + Stopped (SI GISTP) | ong_runni ng_process
$ bg
E$1] | ong_runni ng_process &

Y ou can move it back to the foreground as follows:
$fg YU
| ong_runni ng_process

The second line shows you which command you moved back to the foreground. The same thing would have happened if it was moved back to the
foreground after being suspended.

Keeping Background Processes Around (nohup Command)

Y ou can prevent a background process from terminating, which is the default action, when you sign off or are disconnected. The nohup command
prevents your process from getting the HUP (Hang UP) signal and enables it to continue processing.

The nohup command is simple to use--just add it before the command you actually want to run. Because nohup is designed to run when there is no
terminal attached, it wants you to redirect output to afile. If you do not, nohup redirects it automatically to afile known as nohup.out.

Running a process in the background with nohup looks like the following:

$ nohup Is &
[1] 6695
$ Sendi ng output to nohup. out

Because | do not redirect the output from nohup, it doesit for me. If | redirect the output (nohup Is > results &), | do not see the second message.

After waiting a few moments and pressing Enter, | see the following:

[1] + Done nohup Is &
$

Y ou can look at the file nohup.out using cat, more, pg, vi, view, or your preferred tool to see the results.

Waiting for Background Processes to Finish (wait Command)

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480041.htm (5 von 6) [06.05.2000 23:05:02]

Hour 6: Processes: Starting a Process

There are two ways to wait for a background process to finish before doing something else. Y ou can press the Enter key every few minutes until
you get the completion message, or you can use the wait command.

There are three ways to use the wait command--with no options (the default), with a process ID, or with ajob number prefixed with a percent sign.
The command will wait for the completion of the job or process you specify.

If you do not specify ajob or process (the default setting), the wait command waits for all background jobs to finish. Using wait without any options
isuseful in ashell script that starts a series of background jobs. When they are all done, it can continue processing.

With the Is command from the previous example running, | can force await with the following:
$ wait %

| can not enter another command until job number 1 finishes. If | use wait, | do not get the completion message (Done).

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 6: Processes —_— oPrevious Chapter_Next Chapter—
Sectionsin this Chapter: —

Starting a Process ~Summary

Listing Running Processes “Questions
Killing a Process (kill Command)™ Terms

Parent and Child Processes oPrevious Section_Next Sectiont

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480041.htm (6 von 6) [06.05.2000 23:05:02]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 6: Processes: Listing Running Processes

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 6: Processes —_ oPrevious Chapter._Next Chapten—
Sectionsin this Chapter: —

Starting a Process = Summary

Listing Running Processes “Questions
Killing a Process (kill Command)™ Terms
Parent and Child Processes -

—Previous Section__Next Sectiono

Listing Running Processes

jobs Commante
S Command e

Y ou can start processes in the foreground and background, suspend them, and move them between the foreground and
background, but how do you know what is running? There are two commands to help you find out--jobs and ps.

jobs Command

The jobs command shows you the processes you have suspended and the ones running in the background. Because the jobs
command is aforeground process, it cannot show you your active foreground processes.

In the following example, | have three jobs. Thefirst one (job 3) is running, the second (job 2) is suspended (a foreground
process after | used Ctrl+Z), and the third one (job 1) is stopped in the background to wait for keyboard input:

$ j obs

[3] + Running first_one &
[2] - Stopped (SIGISTP) second_one

[1] St opped (SI GITIN) third one &

I can manipulate these jobs with the fg and bg commands. The most recent job isjob number 3 (shown with a plus sign);
thisisthe one that bg or fg act on if no job number is supplied. The most recent job before that is job number two (shown
with aminus sign).

Note - The reason for the plus and minus symbols on the jobs listing is that job numbers are reassigned when
one completes and another starts. In the previous example, if job number 2 finishes and you start another job,
it isassigned job number 2 and a plus sign because it is the most recent job.

ps Command

Another command that shows all processes running is the ps (Process Status) command. By default, it shows those
processes that you are running. It also accepts many different options, afew of which are shown here.

There are different flavors, or versions, of UNIX. psis one command where the differences are very obvious. The
examplesin this chapter are based on System V, a UNIX standard developed by UNIX Systems Labs (USL) when it was
part of AT&T. If you are using aversion of UNIX based on Berkeley Systems Division (BSD), like Linux, your output
will be different.

The simplest example (with the same three jobs running as the previous example) is the ps command alone:

$ ps
PID TTY TI ME C\VD
6738 pts/6 0: 00 first_one

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480042.htm (1 von 3) [06.05.2000 23:05:03]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 6: Processes: Listing Running Processes

6739 pts/6 0: 00 second_one
3662 pts/6 0: 00 ksh
8062 pts/6 0: 00 ps
6770 pts/6 0:01 third_one

For each running process, this provides me with four pieces of information: the pid, the TTY (terminal running this
process), the Time or amount of CPU consumed by this process, and the command name running.

I am running three jobs but have five processes. Of course, one of the extra processes is the ps command itself. The
remaining process, ksh, is the command shell that interprets what | type at the keyboard and manages the processes and
jobs. It is my interface to the operating system and nothing would happen without it. ksh is the Korn shell.

Note - If you are using aversion of UNIX based on BSD, like Linux, your output is different and looks like
the following:

$ ps

PID TT STAT TI ME COMVAND
13049 90 Ss 0: 00. 06 -ksh (ksh)
13108 g0 R+ 0: 00. 01 ps

For each running process, this provides you with five pieces of information: the pid, the TT (terminal running
this process), STAT (the state of the job), the TIME or amount of CPU consumed by this process, and finally
the command name running.

Use the man ps command for an explanation of the states and options available.

Note - In some versions of UNIX, the ps command does not show itself in the listing. That's just the way it
works. | used aversion that does show it. If you don't see it on your system, don't worry.

One of the most commonly used flags for psisthe -f (f for full) option, which provides more information as shown in the
following example:
$ ps -f

ubD PID PPID C STIME TTY TI ME C\VD

dhorvath 6738 3662 0 10:23:03 pts/6 0: 00 first_one

dhorvath 6739 3662 0 10:22:54 pts/6 0: 00 second_one

dhorvath 3662 3657 0 08:10:53 pts/6 0: 00 -ksh

dhorvath 6892 3662 4 10:51:50 pts/6 0:00 ps -f

dhorvath 6770 3662 2 10:35:45 pts/6 0: 03 third_one

Table 6.1 shows the meaning of each of these columns.

Table 6.1 ps -f Columns

|Co|umn Heading|Description

|UI D |User ID that this process belongs to (the person running it).
|PID |ProcessID.

|PPI D |Parent process ID (the ID of the process that started it).

|C |CPU utilization of process.

|un| abeled |Ni ce value--used in cal culating process priority.

|ISTIME |Process start time (when it began).

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480042.htm (2 von 3) [06.05.2000 23:05:03]

Hour 6: Processes: Listing Running Processes

[CMD [The command that started this process. CMD with -f is different from CMD without it; it shows any
command line options and arguments.

Note that the PPID of all my commandsis 3662, which isthe pid of ksh. Everything | do runs under ksh.

Note - Y ou might be wondering why TIME changed for third_one. Between the time | entered the ps and the
ps -f commands, third_one used some CPU time--two seconds. On larger UNIX servers, alot of work can be
done with very little CPU time. That's why the ps command itself is showing with zero CPU time; it used
time, but not enough to round up to one second.

Two more common options are -e (e for every) and -u (u for user). The -e option is handy if you want to see whether the
database is running or who is playing Zork (an old text-based computer game). Because so many processes run on a busy
system, it is common to pipe the output of ps -eto atext filter like grep (see Chapter 15, "Text Filters"). The-u option is
handy if you want to see what a specific user is doing--are they busy or do they have time to chat; is your boss busy or
checking to make sure you're not playing Zork?. With -u, you specify the user you want to list after the -u.

Y ou can combine the -f option with -e or -u, but you cannot combine -e with -u.

Table 6.2 shows more BSD ps command options.

Table 6.2 More BSD ps Command Options.

|Column Heading |Description

Ips-a |Shows information about all users

|ps -X |Shows information about processes without terminals (daemons and jobs running nohup)
Ips-u |Shows additional information (like the System V ps-f)

Use the man ps command for an explanation of all the available options. If you are ever in doubt about a command or
option, use the man command to obtain information about that command. For the ps command, man ps gets you the
manual page.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 6: Processes —_ oPrevious Chapter._Next Chapten—
Sectionsin this Chapter: —

Starting a Process = Summary

Listing Running Processes “Questions
Killing a Process (kill Command)™ Terms
Parent and Child Processes - cPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480042.htm (3 von 3) [06.05.2000 23:05:03]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 6: Processes: Killing a Process (kill Command)

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

—Previous Chapter—_Next Chapten

Hour 6: Processes —_—
Sectionsin this Chapter:
Starting a Process = Summary

Listing Running Processes “Questions

Killing a Process (kill Command)™ Terms
Parent and Child Processes - —Previous Section__Next Sectiono

Killing a Process (kill Command)

Another handy command to use with jobs and processesis the kill command. As the name implies, the kill command kills,
or ends, a process.

Just like the fg and bg commands, the job number is prefixed with a percent sign. To kill job number 1 in the earlier
example regarding waiting for keyboard input, | use the following:

$ kill %
[1] - Term nated third_one &
$

Y ou can aso kill aspecific process by specifying the process ID on the command line without the percent sign used with
job numbers. To kill job number 2 (process 6738) in the earlier example using process ID, | use the following:

$ kill 6739
$

In redlity, kill does not physically kill a process; it sends the process asignal. By default, it sends the TERM (value 15)
signal. A process can choose to ignore the TERM signal or use it to begin an orderly shut down (flushing buffers, closing
files, and so on). If aprocessignores aregular kill command, you can use kill -9 or kill -KILL followed by the process ID
or job number (prefixed with a percent sign). This forces the process to end.

Caution - Be very careful when specifying which processto kill, especialy if you are using kill -9, because
you can end ajob by accident or even log yourself off. My command interpreter has the process 1D of 3662,
and | cantry tokill it asfollows:

$ ps -f

u D PID PPID C STIME TTY TI ME CVD
billing 3662 3657 0 08:10:53 pts/6 0: 01 -ksh
$ kill 3662
$ ps -f

ubD PID PPID C STIME TTY TI ME CNVD

billing 3662 3657 0 08:10:53 pts/6 0: 01 -ksh

ksh ignores aregular kill but not akill -9, asfollows:
$ kill -9 3662.

There is no command prompt after this command. | was disconnected from the system.

If your UNIX version does not support ps -f, you can use ps -ux.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents |ndex

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480043.htm (1 von 2) [06.05.2000 23:05:03]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 6: Processes: Killing a Process (kill Command)

Sectionsin this Chapter: —

Starting a Process =Summary

Listing Running Processes “~Questions

Killing a Process (kill Command)™ Terms

Parent and Child Processes = oPrevious Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480043.htm (2 von 2) [06.05.2000 23:05:03]

Hour 6: Processes: Parent and Child Processes

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 6: Processes — —Previous Chapter—_Next Chapten

Sectionsin this Chapter:
Starting a Process = Summary
Listing Running Processes “Questions

Killing a Process (kill Command)™ Terms)) _
Parent and Child Processes - —Previous Section_Next Sectiono

Parent and Child Processes

Job ID Versus Process | D==Process Permissions
Subshells ==QVerlaying the Current Process (exec Command)

In the ps -f example in the ps command section, each process has two ID numbers assigned to it: process ID (pid) and
parent process ID (ppid). Each user process in the system has a parent process. Most commands that you run have the shell
astheir parent. The parent of your shell is usually the operating system or the terminal communications process (in.telnetd
for telnet connections).

| have recreated this earlier example to demonstrate the ppid of all my commands is 3662, the pid of ksh, asfollows:

$ ps -f
ub PID PPID C STI ME TTY TI ME CMVMD

dhorvath 6738 3662 0 10:23:03 pts/6 0: 00 first_one

dhorvath 6739 3662 0 10:22:54 pts/6 0: 00 second_one

dhorvath 3662 3657 0 08:10:53 pts/6 0: 00 -ksh

dhorvath 6892 3662 4 10:51:50 pts/6 0:00 ps -f

dhorvath 6770 3662 2 10:35:45 pts/6 0: 03 third_one

The ppid of kshis3657. Using ps -ef (or ps-aux on some systems) and grep to find that number, | see the following:
$ ps -ef | grep 3657
dhorvath 9778 3662 4 10:52:50 pts/6 0:00 ps -f
dhorvath 9779 3662 0 10:52:51 pts/6 0: 00 grep 3657
root 3657 711 O 08:10:53 ? 0:00 in.tel netd
dhorvath 3657 3662 0 08:10:53 pts/6 0: 00 -ksh

Thistells me that my terminal session is being handled by in.telnetd (the telnet daemon) that owns, or is the parent of, my
Korn shell command interpreter.

Thereis a parent-child relationship between processes. in.telnetd is the parent of ksh, which isthe child of in.telnetd but
the parent of psand grep.

When a child isforked, or created, from its parent, it receives a copy of the parent's environment, including environment
variables. The child can change its own environment, but those changes do not reflect in the parent and go away when the
child exits.

Job ID Versus Process ID

Background and suspended processes are usually manipulated via job number (job ID). This number is different from the
process ID and is used because it is shorter. In addition, ajob can consist of multiple processes running in series or at the
sametime, in parallel, so using thejob ID is easier than tracking the individual processes.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480044.htm (1 von 3) [06.05.2000 23:05:04]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 6: Processes: Parent and Child Processes

Subshells

Whenever you run a shell script, in addition to any commands in the script, another copy of the shell interpreter is created.
This new shell is known as a subshell, just as a directory contained in or under another is known as a subdirectory.

The best way to show thisiswith an example. | created a script known as psit and gave it execute permissions. This script
runs ps and exitsin the following example:

#!' [/ bin/ ksh
ps -ef | grep dhorvath
exit O

When run, psit produces the following:
$ psit
dhorvath 9830 3662 0 13:58:42 pts/6 0: 00 ksh psit
dhorvath 9831 9830 19 14:05:24 pts/6 0: 00 ps -ef
dhorvath 3662 3657 0 08:10:53 pts/6 0: 00 -ksh
dhorvath 9832 9830 0 13:58:42 pts/6 0: 00 grep dhorvath
$

The subshell running as process 9830 is a child of process 3662, the original ksh shell. ps and grep are the children of
process 9830 (ksh psit). When the psit script is done and exits, the subshell exits, and control is returned to the original
shell.

Y ou can aso start a subshell by entering the shell name (ksh for Korn, sh for Bourne, and csh for C Shell). Thisfeatureis
handy if you have one login (default) shell and want to use another. Starting out in Korn shell and starting C Shell would
look like the following:
$ csh

% ps -f

ubD PID PPID C STIME TTY TI ME CVD

dhorvath 3662 3657 0 08:10:53 pts/6 0: 00 -ksh

dhorvath 3266 8848 11 10:50:40 pts/6 0:00 ps -f

dhorvath 8848 3662 1 10:50:38 pts/6 0: 00 csh

%

The C shell uses the percent sign as a prompt. After the csh command starts the shell, the prompt becomes the percent
sign. The ps command shows csh as a child process and subshell of ksh. To exit csh and return to the parent shell, you
enter exit.

Process Permissions

By default, a process runs with the permissions of the user running it. In most cases, this makes sense, enabling you to run
acommand or utility only on your files. There are times, however, when users need to access files that they do not own. A
good example of thisis the passwd command, which is usually stored as /usr/bin/passwd. It is used to change passwords
and modify /etc/passwd and the shadow password file, if the system is so equipped.

It does not make sense for general users to have write access to the password files; they could create users on the fly. The
program itself has these permissions. If you look at the file using Is, you see the letter swhere x normally appearsin the
owner and group permissions. The owner of /usr/bin/passwd is root, and it belongs to the sys group. No matter who runsiit,
it has the permissions of the root user.

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480044.htm (2 von 3) [06.05.2000 23:05:04]

Hour 6: Processes: Parent and Child Processes

Overlaying the Current Process (exec Command)

In addition to creating (forking) child processes, you can overlay the current process with another. The exec command
replaces the current process with the new one. Use this command only with great caution. If you use exec in your primary
(login) shell interpreter, that shell interpreter (' ksh with pid 3662 in the previous examples) is replaced with the new
process.

Using the command exec Is at your login shell prompt gives you a directory listing and then disconnects you from the
system, logging you out. Because exec overlays your shell (ksh, for example), there are no programs to handle commands
for you when Is finishes and exits.

Y ou can use exec to change your shell interpreter completely without creating a subshell. To convert from ksh to csh, you
can use the following:
$ exec csh
% ps -f
ul D PID PPID C STIME TTY TI ME CVD

dhorvath 3662 3657 0 08:10:53 pts/6 0: 00 csh

dhorvath 3266 3662 11 14:50:40 pts/6 0:00 ps -f

%

The prompt changes and ps shows csh instead of ksh but with the original pid and start time.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 6: Processes —_— cPrevious Chapter._Next Chapten—
Sectionsin this Chapter: —

Starting a Process =Summary

Listing Running Processes “~Questions

Killing a Process (kill Command)™ Terms)))
Parent and Child Processes = Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480044.htm (3 von 3) [06.05.2000 23:05:04]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 6: Processes: Summary

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
Starting a Process ~Summary
Listing Running Processes “Questions

Killing a Process (kill Command)™ Terms
Parent and Child Processes - cPrevious Section__Next Section—

Summary

In this chapter, you looked at the four major topics involving processes provided with the shell:
e Starting aprocess
e Listing running processes
e Killing a process (kill command)

e Parent and child processes

Asyou write scripts and use the shell, knowing how to work with processes improves your productivity.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:
Starting a Process ~Summary
Listing Running Processes “Questions

Killing a Process (kill Command)™ Terms
Parent and Child Processes - —Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480045.htm [06.05.2000 23:05:04]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 6: Processes: Questions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter: —

Starting a Process = Summary

Listing Running Processes “Questions

Killing a Process (kill Command)™ Terms

Parent and Child Processes - cPrevious Section__Next Section
Questions

1. How do you run acommand in the background?
2. How do you determine what processes you are running?

3. How do you change a foreground process into a background process?

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter: —

Starting a Process = Summary

Listing Running Processes “Questions

Killing a Process (kill Command)™ Terms

Parent and Child Processes ™ cPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480046.htm [06.05.2000 23:05:04]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 6: Processes: Terms

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 6: Processes —_ oPrevious Chapter._Next Chapten—
Sectionsin this Chapter: —

Starting a Process = Summary

Listing Running Processes “Questions
Killing a Process (kill Command)™ Terms
Parent and Child Processes - cPrevious Section__Next Sectiono

Terms

Backgr ound--Background describes processes usually running at alower priority and with their input disconnected from
the interactive session. Input and output are usually directed to afile or other process.

Background Processes --Background processes are autonomous processes that run under UNIX without requiring user
interaction.

bash--bash stands for the GNU Bourne Again Shell and is based on the Bourne shell, sh, the origina command interpreter.
Bourne Shell --This shell isthe original standard user interface to UNIX that supported limited programming capability.
BSD--BSD is an acronym for Berkeley Software Distribution.

BSD UNI X --Thisversion of UNIX was developed by Berkeley Software Distribution and written at University of
Cdlifornia, Berkeley.

C Shell --This user interface for UNIX, written by Bill Joy at Berkeley, features C programming-like syntax.
Child Processes --See subprocesses.
Child Shells--See subshells.

Daemons--Daemons are system-related background processes that often run with the permissions of root and services
requests from other processes.

Korn Shell --This shell isauser interface for UNIX with extensive scripting (programming) support. It was written by
David G. Korn. The shell features command-line editing and also accepts scripts written for the Bourne shell.

Parent Process | dentifier --The parent process identifier is shown in the heading of the ps command as PPID. Thisisthe
process identifier of the parent process. See also parent processes .

Par ent Processes --These processes control other processes that are often referred to as child processes or subprocesses.
See processes.

Parent Shell --This shell controls other shells, which are often referred to as child shells or subshells. The login shell is
typically the parent shell. See shells.

Process | dentifier --The process identifier is shown in the heading of the ps command as pid. It is the unique number
assigned to every process running in the system.

Pr ocesses--Processes are discrete, running programs under UNIX. The user's interactive session is a process. A process
can invoke (run) and control another program that is then referred to as a subprocess. Ultimately, everything a user doesis
a subprocess of the operating system.

Shell--The shell isthe part of UNIX that handles user input and invokes other programs to run commands. It includes a
programming language. See also Bourne shell , C shell , Korn shell , tcsh, and bash.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480047.htm (1 von 2) [06.05.2000 23:05:04]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 6: Processes: Terms

Shell or Command Prompt --The prompt is a single character or set of characters that the UNIX shell displays at which a
user can enter acommand or set of commands.

Shell Scripts--Shell scripts are programs written using a shell programming language like those supported by Bourne,
Korn, or C shells.

Subprocesses--Subprocesses run under the control of other processes, which are often referred to as parent processes. See
Pr OCesses.

Subshells--Subshells run under the control of another shell, which is often referred to as the parent shell. Typically, the
login shell isthe parent shell. See shells.

tcsh--Thisis a C shell-like user interface featuring command-line editing.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 6: Processes —_ oPrevious Chapter._Next Chapten—
Sectionsin this Chapter: —

Starting a Process = Summary

Listing Running Processes “Questions
Killing a Process (kill Command)™ Terms
Parent and Child Processes - cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480047.htm (2 von 2) [06.05.2000 23:05:04]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 7: Variables: Defining Variables

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 7: Variables —_ cPrevious Chapter—_Next Chapter—m
Sectionsin this Chapter:

Defining Variables = Summary

Unsetting Variables “Questions

Environment Variables ~Terms cPrevious Section__Next Sectiono

Hour 7/
Variables

Variables are "words" that hold a value. The shell enables you to create, assign, and delete variables. Although
the shell manages some variables, it is mostly up to the programmer to manage variables in shell scripts.

This chapter shows you how to
o Createvariables
e Deletevariables

This chapter also explains what environment variables are and how to use them properly. By using variables, you are able
to make your scripts flexible and maintainable.

Defining Variables

Variable Names ==Accessing Array Vaues
Accessing Vaues==Read-only Variables

Array Variables

Variables are defined as follows:
nane=val ue

In this example, name is the name of the variable, and valueis the value it should hold. For example,
FRUI T=peach

defines the variable FRUIT and assignsiit the value peach.

Variables of thistype are called scalar variables. A scalar variable can hold only one value at atime. Later in this chapter,
you look at a different type of variable called an array variable that can hold multiple values.

Scalar variables are also referred to as name value pairs, because a variable's name and its value can be thought of asa
pair.

Variable Names

The name of avariable can contain only letters (ato z or A to Z), numbers (0 to 9) or the underscore character (). In
addition, a variable's name can start only with aletter or an underscore.

The following examples are valid variable names:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480049.htm (1 von 6) [06.05.2000 23:05:05]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 7: Variables: Defining Variables

_FRU'T

FRU T_BASKET
TRUST _NO 1

TWO TI MES 2

but

2 TIMES 2 EQUALS 4

isnot avalid variable name. To make thisavalid name, add an underscore at the beginning of its name:
2 TIMES 2

Variable names, such as 1, 2 or 11, that start with numbers are reserved for use by the shell. Y ou can use the value stored
in these variables, but you cannot set the value yourself.

The reason you cannot use other characters such as!,*, or - is that these characters have a special meaning for the shell. If
you try to make a variable name with one of these special charactersit confuses the shell. For example, the variable names

FRUI T- BASKET
_2%2
TRUST_NO 1!

are invalid names. The error message generated by one of these variable name looks something like the following:

$ FRUI T- BASKET=appl e
/ bi n/sh: FRU T- BASKET=appl e: not found.

Variable Values

The shell enables you to store any value you want in a variable. For example,
FRUI T=peach

FRUI T=2appl es

FRUI T=appl e+pear +ki wi

The one thing to be careful about is using values that have spaces. For example,
$ FRUI T=appl e orange plum

results in the following error message:
sh: orange: not found.

In order to use spaces you need to quote the value. For example, both of the following are valid assignments:

$ FRU T="appl e orange pl unf
$ FRU T=' appl e orange pl umn

The difference between these two quoting schemesis covered in Chapter 9, "Quoting."

Accessing Values

To access the value stored in a variable, prefix its name with the dollar sign ($). For example, the command

$ echo $FRU T
peach

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480049.htm (2 von 6) [06.05.2000 23:05:05]

Hour 7: Variables: Defining Variables

prints out the value stored in the variable FRUIT, in this case peach.

If you do not use the dollar sign ($) to access the value of avariable, the name of the variableis printed instead of its
value. For example,

$ echo FRUT
FRU T

simply prints out FRUIT, not the value of the variable FRUIT.

The dollar sign ($) is used only to access avariable's value, not to defineit. For example, the assignment
$ $FRUI T=appl e

generates the following warning message
sh: peach=appl e: not found

if FRUIT isdefined as given previoudly.

If the variable FRUIT is undefined the error would be
sh: =apple: not found

Remember that when the dollar sign ($) character precedes a variable name, the value of the variable is substituted. For
more information on the types of variable substitution available in sh, please consult the section, "V ariable Substitution,"

in Chapter 8, "Substitution."

Array Variables

The Bourne shell, sh, supports only scalar variables, which are the type of variables you have seen so far. The Korn shell,
ksh, extends this to include array variables. Version 2.0 and later of the Bourne Again shell, bash, also support array
variables. The examplesin the following section assume that you are using either ksh or bash 2. x or later.

Arrays provide amethod of grouping a set of variables. Instead of creating a new name for each variable that is required,
you can use asingle array variable that stores all the other variables.

The difference between an array variable and a scalar variable can be explained as follows. Say that you are trying to
represent the chaptersin this book as a set of variables. Each of the individual variablesis ascalar variable.

Some of these variables might be

CHO1
CHO2
CH15
CHO/

Hereisaformat for each of the variable names: the letters CH followed by the chapter number. Thisformat servesasa
way of grouping these variablestogether. An array variable formalizes this grouping by using an array namein
conjunction with a number that is called an index.

The simplest method of creating an array variable isto assign avalue to one of itsindices. Thisis expressed as follows:
name[i ndex] =val ue

Here name is the name of the array, index is the index of the item in the array that you want to set, and value is the value
you want to set for that item.

As an example, the following commands

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480049.htm (3 von 6) [06.05.2000 23:05:05]

Hour 7: Variables: Defining Variables

$ FRUI T[0] =appl e

$ FRU T[1] =banana

$ FRU T[2] =or ange

set the values of the first three items in the array named FRUIT. Y ou could do the same thing with scalar variables as
follows:

$ FRU T O=appl e
$ FRUI T_1=banana
$ FRU T_2=or ange

Although this works fine for small numbers of items, the array notation is much more efficient for large numbers of items.
If you have to write a script using only sh, you can use this method for simulating arrays.

In the previous example, you set the array indices in sequence, but thisis not necessary. For example, if you issue the
command

$ FRUI T[10] =pl um

the value of theitem at index 10 in the array FRUIT is set to plum. One thing to note here is that the shell does not create a
bunch of blank array itemsto fill the space between index 2 and index 10. Instead, it keeps track of only those array
indices that contain values.

Caution - In ksh, numerical indices for arrays must be between 0 and 1,023. In bash thereis no such
requirement.

In addition, both ksh and bash support only integer array indices. This means that you cannot use floating
point or decimal numbers such as 10.3.

If an array variable with the same name as a scalar variable is defined, the value of the scalar variable becomes the value of
the element of the array at index 0. For example, if the following commands are executed

$ FRU T=appl e
$ FRU T[1] =peach

the element FRUIT has the value apple. At this point any accesses to the scalar variable FRUIT are treated like an access
to the array item FRUIT[O].

The second form of array initialization is used to set multiple elements at once. In ksh, thisis done as follows:
set -A nane val uel value2 ... val uen

In bash, the multiple elements are set as follows:
nanme=(val uel ... val uen)

Here, name is the name of the array and the values, 1 to n, are the values of the itemsto be set. When setting multiple
elements at once, both ksh and bash use consecutive array indices beginning at 0. For example the ksh command

$ set -A band derri terry mke gene

or the bash command
$ band=(derri terry m ke gene)

is equivalent to the following commands:
$ band[0] =derri
$ band[1]=terry
$ band[2] =mi ke

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480049.htm (4 von 6) [06.05.2000 23:05:05]

Hour 7: Variables: Defining Variables
$ band[3] =gene

Tip - When setting multiple array elements in bash, you can place an array index before the value:
myarray=([O] =derri [3]=gene [2]=m ke [1l]=terry)

The array indices don't have to be in order, as shown previously, and the indices don't have to be integers.

Thisfeature is not present in ksh.

Accessing Array Values

After you have set any array variable, you access it as follows:
${ nane[i ndex] }

Here name is the name of the array, and index is the index that interests us. For example, if the array FRUIT was initialized
as given previously, the command

$ echo ${FRU T[2]}

produces the following output:
or ange

Y ou can access al theitemsin an array in one of the following ways:
${ nane[*]}
${ nanme[@}

Here name is the name of the array you are interested in. If the FRUIT array isinitialized as given previoudly, the
command

$ echo ${FRU T[*]}

produces the following output:
appl e banana orange

If any of the array items hold values with spaces, this form of array access will not work and will need to use the second
form. The second form quotes al the array entries so that embedded spaces are preserved.

For example, define the following array item:
FRUI T[3] =" passion fruit"

Assuming that FRUIT is defined as given previously, accessing the entire array using the following command
$ echo ${FRU T[*]}

resultsin five items, not four:
appl e banana orange passion fruit

Commands accessing FRUIT using this form of array access get five values, with passion and fruit treated as separate
items.

To get only four items, you have to use the following form:

$ echo ${FRU T[@}

The output from this command looks similar to the previous commands:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480049.htm (5 von 6) [06.05.2000 23:05:05]

Hour 7: Variables: Defining Variables

appl e banana orange passion fruit

but the commands see only four items because the shell quotes the last item as passion fruit.

Read-only Variables

The shell provides away to mark variables as read-only by using the readonly command. After avariableis marked
read-only, its value cannot be changed.

Consider the following commands:

$ FRU T=ki wi

$ readonly FRU T
$ echo $FRU T

Ki w

$ FRU T=cant al oupe

The last command resultsin an error message:
/bin/sh: FRUT: This variable is read only.

Asyou can see, the echo command can read the value of the variable FRUIT, but the shell did not enable us to overwrite
the value stored in the variable FRUIT.

Thisfeature is often used in scripts to make sure that critical variables are not overwritten accidentally.

In ksh and bash, the readonly command can be used to mark array and scalar variables as read-only.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index
Hour 7: Variables —_— oPrevious Chapter—_Next Chaptena
Sectionsin this Chapter:

Defining Variables =—Summary

Unsetting Variables ““Questions

Environment Variables ~Terms Previous Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480049.htm (6 von 6) [06.05.2000 23:05:05]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 7: Variables: Unsetting Variables

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Defining Variables Summary
Unsetting Variables “Questions
Environment Variables ~Terms cPrevious Section__Next Sectiono

Unsetting Variables

Unsetting a variable tells the shell to remove the variable from thelist of variablesthat it tracks. Thisislike
asking the shell to forget a piece of information because it is no longer required.

Both scalar and array variables are unset using the unset command:
unset nane

Here name is the name of the variable to unset. For example,
unset FRU T

unsets the variable FRUIT.

Y ou cannot use the unset command to unset variables that are marked readonly.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Defining Variables =—Summary
Unsetting Variables ““Questions
Environment Variables =Terms cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480050.htm [06.05.2000 23:05:05]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 7: Variables: Environment Variables

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 7: Variables — —Previous Chapter—_Next Chapten
Sectionsin this Chapter:

Defining Variables = Summary

Unsetting Variables “Questions

Environment Variables ~Terms —Previous Section__Next Section—

Environment Variables

When a shell is running, three main types of variables are present:
e Local Variables
e Environment Variables
e Shell Variables

A local variableis avariable that is present within the current instance of the shell. It is not available to
programs that are started by the shell. The variables that you looked at previously have all been local variables.

An environment variable is avariable that is available to any child process of the shell. Some programs need
environment variables in order to function correctly. Usually a shell script defines only those environment variables that
are needed by the programs that it runs.

A shell variableisaspecia variablethat is set by the shell and isrequired by the shell in order to function
correctly. Some of these variables are environment variables whereas others are local variables.

Table 7.1 gives asummary of the different types of variables discussed in this section. This table compares local variables
set by the user, environment variables set by the user, and shell variables set by the shell.

Table 7.1 A Comparison of Local, Environment, and Shell Variables

|Attribute |Local |[Environment |Shell
|Accessibleby |No |Yes |Yes child processes
|Setby users |Yes |Yes INo

|Set by the shell [No |No [Yes

|User modifiable|Yes |Yes INo

|Required by the|No ~ |No |Y es shell

Exporting Environment Variables

New TERM
- Y ou place variables in the environment by exporting them. Exporting can be done as follows:
export nane

This command marks the variable with the specified name for export. Thisisthe only form supported by sh, thusit isthe
most commonly encountered form. The standard shell idiom for exporting environment variablesis

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480051.htm (1 von 3) [06.05.2000 23:05:06]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 7: Variables: Environment Variables
nane=val ue ; export nane

An example of thisis
PATH=/ sbin:/bin ; export PATH

Here you set the value of the variable PATH and then export it. Usually the assignment statement of an environment
variable and the corresponding export statement are written on one line to clarify that the variable is an environment
variable. This helps the next programmer who has to maintain the script quickly grasp the use of certain variables.

Y ou can aso use the export command to export more than one variable to the environment. For example,
export PATH HOVE U D

exports the variables PATH, HOME, and UID to the environment.

Exporting Variables in ksh and bash

A second form for exporting variables is supported by ksh and bash:

export nane=val ue

In thisform, the variable specified by name is assigned the given value. Then that variable is marked for export. In this
form, you can write the previous example as

export PATH=/sbin:/bin

In bash and ksh, any combination of name or name=value pairs can be given to the export command. For example, the
command

export FMHOVE=/usr/frame CLEARHOME=/usr/atria PATH

assigns the given valuesto the variables FMHOME and CLEARHOME and then exports the variables FMHOME,
CLEARHOME, and PATH.

Shell Variables

New TERM
- The variables that you have examined so far have all been user variables. A user variableis one that the user
can manually set and reset.

In this section, you look at shell variables, which are variables that the shell sets during initialization and uses internally.
Users can modify the value of these variables.

Table 7.2 gives apartial list of these shell variables. In addition to these variables, | cover several special variablesin the
section "Variable Substitution” in Chapter 8. Unless noted, all the variables givenin Table 7.2 are available in sh, ksh, and
bash.

Table 7.2 Shell Variables

|Variable [Description

|PVVD |I ndicates the current working directory as set by the cd command.
|UI D |Expands to the numeric user 1D of the current user, initialized at shell startup.
Increments by one each time an instance of bash is started. This variable is useful for determining whether

SHLVL
the built-in exit command ends the current session.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480051.htm (2 von 3) [06.05.2000 23:05:06]

Hour 7: Variables: Environment Variables

REPLY

Expandsto the last input line read by the read built-in command when it is given no arguments. This
variable is not available in sh.

RANDOM

Generates arandom integer between 0 and 32,767 each time it is referenced. Y ou can initialize the sequence
of random numbers by assigning a value to SRANDOM. If SRANDOM isunset, it loses its special
properties, even if it is subsequently reset. Thisvariable is not availablein sh.

SECONDS

Each time this parameter is referenced, it returns the number of seconds since shell invocation. If avalueis
assigned to $SECONDS, the value returned on subsequent references is the number of seconds since the
assignment plus the value assigned. If $SECONDS is unset, it losesits specia properties, eveniif itis
subsequently reset. Thisvariable isnot availablein sh.

IFS

Indicates the Internal Field Separator that is used by the parser for word splitting after expansion. $IFSis
also used to split lines into words with the read built-in command. The default valueisthe string, " \t\n ",
where" " isthe space character, \t is the tab character, and \n is the newline character.

PATH

Indicates search path for commands. It is a colon-separated list of directoriesin which the shell looks for
commands. A common valueis

PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/ucb

|HOME

|I ndicates the home directory of the current user: the default argument for the cd built-in command.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 7: Variables — oPrevious Chapter—_Next Chaptero
Sectionsin this Chapter:

Defining Variables = Summary

Unsetting Variables “Questions

Environment Variables ~Terms —Previous Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool

Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480051.htm (3 von 3) [06.05.2000 23:05:06]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 7: Variables: Summary

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Defining Variables = Summary
Unsetting Variables “Questions
Environment Variables ~Terms cPrevious Section__Next Sectiono

In this chapter, you looked at using variables for shell script programming. Y ou learned how to define, access, and unset
scalar and array variables. You also looked at special classes of variables known as environment variables and shell
variables.

In the following chapters, you look at how variables are used to achieve a greater degree of flexibility and clarity in shell
scripts. Asyou read, continue learning about shell programming until using variables becomes second nature to you.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Defining Variables Summary
Unsetting Variables “Questions
Environment Variables ~Terms cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480052.htm [06.05.2000 23:05:06]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 7: Variables: Questions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Defining Variables = Summary
Unsetting Variables “Questions
Environment Variables ~Terms cPrevious Section__Next Sectiono

1. Which of the following are valid variable names?
a. _FRUIT BASKET
b.1 APPLE_A_DAY
c. FOUR-SCORE& 7YEARS _AGO
d. Variable

2. Isthe following sequence of array assignments valid in sh, ksh, and bash?

adans[0] =hi t chhi ker s_gui de
adans[1] =r est aur ant

adans[3] =t hanks_for_all _the fish
adans[42] =l i fe_uni verse_everyt hi ng
adans[5] =nost |y _harnl ess

@ h e

3. Given the preceding array assignments, how would you access the array item at index 5 in the array adams? How
about every item in the array?

4. What is the difference between an environment variable and alocal variable?

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Defining Variables = Summary
Unsetting Variables “Questions
Environment Variables ~Terms —Previous Section_Next Sectiono

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480053.htm [06.05.2000 23:05:06]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 7: Variables: Terms

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Defining Variables Summary
Unsetting Variables “Questions
Environment Variables ~Terms cPrevious Section__Next Sectiono

Scalar Variable A scalar variable can hold only one value at atime.

Array Variable Anarray variableisamechanism availablein bash and ksh for grouping scalar variables together. The
scalar variables stored in an array are accessed using a single name in conjunction with a number. This number is referred
to as an index.

Local Variable A local variableisavariablethat is present within the current instance of the shell. It is not available to
programs that are started by the shell.

Environment Variable An environment variable isavariable that is available to any program that is started by the shell.

Shell Variable A shell variableisaspecia variable that is set by the shell and is required by the shell in order to function
correctly.

Exporting A variableis placed in the environment by exporting it using the export command.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Defining Variables =Summary
Unsetting Variables ““Questions
Environment Variables =Terms —Previous Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480054.htm [06.05.2000 23:05:06]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 8: Substitution: Filename Substitution (Globbing)

Sams Teach Yourself Shell Programmingin 24 Hours Contents |ndex

Hour 8: Substitution —_ oPrevious Chapter._Next Chaptemr

Sectionsin this Chapter:

Filename Substitution (Globbing) = Summary

Variable Substitution “Questions

Command and Arithmetic Substitution™ cPrevious Section_Next Section

Hour 8
Substitution

The shell performs substitution when it encounters an expression that contains one or more special characters.
In the last chapter, you learned how to access a variable's value using the special $ character. The process of retrieving the value of a
variableis called variable substitution. In addition to this type of substitution, the shell can perform severa other types of substitutions:
o Filename substitution (called globbing)
o Vaue-based variable substitution
o Command substitution
o Arithmetic substitution

In this chapter, you look at each of these types of substitution in detail.

Filename Substitution (Globbing)

MNew TErm T _ . . .
- The most common type of substitution is filename substitution. It is sometimes referred to as globbing.

Filename substitution is the process by which the shell expands a string containing wildcardsinto alist of filenames. Table 8.1 provides the
wildcards that the shell understands.

Tip - Any command or script that operates on files can take advantage of filename substitution. The
examplesin this section use the Is command so that the results of the filename substitution are clear. Y ou can
use any command in place of the |s command.

Table 8.1 Wildcards Used in Filename Substitution

Wildcard |Description

* Matches zero or more occurrences of any character

|? |M atches one occurrence of any character

|[characters] |M atches one occurrence of any of the given characters

Using the * Wildcard

The simplest form of filename substitution isthe * character. The * tells the shell to match zero or more occurrences of any character. If given by
itself, it matches al filenames. For example, the command

$I1s *

lists every file and the contents of every directory in the current directory. If there are any invisible files or directories, they are not listed. You
need to specify the -a option to Is, as described in Chapter 3, "Working with Files."

Using the * character by itself isrequired in many cases, but its strength liesin the fact that you can use it to match file suffixes, prefixes, or both.

Matching a File Prefix

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480056.htm (1 von 4) [06.05.2000 23:05:07]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 8: Substitution: Filename Substitution (Globbing)
To match afile prefix, use the * character as follows:
command prefix*

Here, command is the name of a command, such asls, and prefix is the filename prefix you want to match. For example, the command
$ Is chl*

matches all the files and directoriesin the current directory that start with the letters chl. The output is similar to the following:
ch10-01 c¢h10-02 c¢h10-03 <ch11-01 <ch11-02 <chl11-03

By varying the prefix dightly, you can change lists of files that are matched. For example, the command
$ I's chi0*

generates the following list of files on your system:
ch10-01 ch10-02 ch10-03

Y ou can vary the suffix until it matches the list of files that you want to manipulate.
Matching a File Suffix

To match afile suffix, you use the * character asfollows:
command *suffi x

Here, command is the name of a command, such asls, and suffix is the filename suffix you want to match. For example, the command
$ I's *doc

matches all the files and directoriesin the current directory that end with the letters doc:

Backup of ch10-01.doc Backup of ch10-06.doc ch10-05. doc
Backup of ch10-02.doc c¢h10-01. doc ch10- 06. doc
Backup of ch10-03.doc c¢hl10-02. doc ch10- 07. doc
Backup of ch10-04.doc c¢hl10-03. doc
Backup of c¢ch10-05.doc c¢hl0-04. doc

The command
$ Is *.doc

matches the same set of files because all the files that were matched end with the filename suffix .doc.

By varying the suffix, you can obtain the list of files you want to manipulate.
Matching Suffixes and Prefixes

Y ou can match both the suffix and the prefix of filesusing the * character as follows:
command prefix*suffix

Here, command is the name of a command, such asls, prefix is the filename prefix, and suffix is the filename suffix you want to match. For
example, the command

$ |'s Backup*doc

matches all the filesin the current directory that start with the letters Backup and end with the | etters doc:

Backup of ch10-01.doc Backup of ch10-03.doc Backup of ch1l0-05. doc
Backup of ch10-02.doc Backup of ch10-04.doc Backup of ch10-06. doc

Y ou can also use more than one occurrence of the * character to narrow down the matches. For example, if the command
$Is CA*java

matches the following files
Cd.java C43 Get.java CA Post.java Cd Tester.java

and you want to list only the files that start with the characters CGlI, end with java, and contain the characters st, you can use the following
command:

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480056.htm (2 von 4) [06.05.2000 23:05:07]

Hour 8: Substitution: Filename Substitution (Globbing)
$ Is CA*st*java
Theoutput is
Cd Post.java CA Tester.java
Globbing is Case Sensitive

While using the * wildcard, it isimportant to specify the correct case for the prefix and suffix. For example,
the command $ Is ch1* produces the following list of files:

ch10-01 c¢ch10-02 ¢h10-03 chl11-01 <ch11-02 c¢ch11-03
whereas the command $ Is CH1* does not produce the same list of files.

Later in this chapter, | show you how to generate matches that are not case sensitive.

Using the ? Wildcard

One limitation of the * wildcard is that it matches one or more characters each time.

Asan example, consider a situation where you need to list al files that have names of the form chOX.doc, where X is a single number or letter. It
seems like the command

$ |'s chO*. doc

would produce the appropriate match, but the actual output might look like:

ch01l-1.doc ¢ch010. doc ch02. doc ch03-2.doc c¢ch04-1.doc ¢ch040. doc ch05. doc

ch06- 2. doc
ch01-2.doc c¢ch02-1.doc ¢h020. doc ch03. doc ch04-2.doc c¢ch05-1. doc ch050. doc

ch06. doc
ch01. doc ch02-2.doc ¢ch03-1.doc ¢ch030. doc ch04. doc ch05- 2. doc ch06- 1. doc

ch060. doc

In order to match only one character, the shell provides you with the ? wildcard. Y ou can rewrite the command using this wildcard:
$ I's ch0?. doc

Now you see that the output matches only those files you are interested in:
ch01. doc ch02.doc ch03.doc ch04.doc ch05.doc ch06. doc

Say that you now want to look for all files that have names of the form chXY, where X and Y are any number or character. Y ou can use the
command

$ |s ch??. doc

to accomplish this.

Matching Sets of Characters

Two potential problems with the ? and * wildcards are
o They match any character, including specia characters such as hyphens (-) or underlines ().
« You have no way to indicate that you want to match only letters or only numbers to these operators.

Sometimes you need more control over the exact characters that you match. Consider the situation where you want to match filenames of the form
ch0X, where X is a number between 0 and 9. Neither the * or the ? operator is cut out for this job.

Fortunately, the shell provides you with the capability to match sets of characters using the [wildcard. The syntax for using thiswildcard is
command [char act er s]

Here command is the name of acommand, such asls, and characters represents the characters you want to match. For example, the following
command fulfills the previous requirements:

$ I's ch0[0123456789] . doc
ch0l. doc ch02.doc <c¢ch03.doc chO4.doc chO5.doc ch06. doc

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480056.htm (3 von 4) [06.05.2000 23:05:07]

Hour 8: Substitution: Filename Substitution (Globbing)

One thing that you might have noticed is that you had to list al the characters that you wanted matched. The shell provides a mechanism to
shorten the list. For example, the command

$ I's chO[0-9].doc

produces the same list of files. Asyou can probably guess, thisis most useful when you're trying to match sets of letters. For example,
$1ls [a-z]*

lists all the files starting with alowercase |etter. To match al the files starting with uppercase letters use the following:

$1s [AZ]*

The [wildcard also enables you to combine sets by putting the sets together. For example,

$1s [a-zA-Z]*

matches all files that start with aletter, whereas the command

$ I's *[a-zA- Z0-9]

matches all files ending with aletter or a number.

Asyou can see from the previous examples, the maximum amount of flexibility in filename substitution occurs when you couple the [wildcard
with the other wildcards.

Negating a Set

Consider asituation where you need alist of all files except those that contain the letter a. Y ou have two approaches to solving this problem:
1. Specify all the characters you want afilename to contain.
2. Specify that the filename should not include the | etter a.

If you choose the first approach, you need to construct a set of all the characters that your filename can contain. Y ou can start with:

[b- zA- Z0- 9]

This set does not include the special characters that are allowed in filenames. Attempting to include all these characters creates a huge set that
requires complicated quoting. An approximation of thisset is

[b-zA-Z0-9\- N+ =NV A" V{V[V V]

Compared to this, the second approach is much better because you only need to specify the list of characters that you don't want.

The[wildcard provides you the capability to match all characters except those that are specified as the set. Thisis called negating the set, which
you can accomplish by specifying the ! operator as the first character in aset. The syntax is

command [! charact ers]

Here, command is the name of a command, such asls, and charactersis the set of characters that you do not want to be matched. For example, to
list al files except those that start with the letter a, you can use the command

$1s [la]*

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 8: Substitution — oPrevious Chapter__Next Chapten—

Sections in this Chapter:

Filename Substitution (Globbing) = Summary

Variable Substitution “"Questions

Command and Arithmetic Substitution™ oPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480056.htm (4 von 4) [06.05.2000 23:05:07]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 8: Substitution: Variable Substitution

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 8: Substitution — —Previous Chapter—_Next Chaptern

Sections in this Chapter:

Filename Substitution (Globbing) ~~Summary

Variable Substitution ““Questions

Command and Arithmetic Substitution™ oPrevious Section_Next Sectiono

Variable Substitution

Variable substitution enables the shell programmer to manipulate the value of a variable based on its state. Variable substitution fallsinto
two categories:

o Actions taken when avariable has avalue
o Actionstaken when avariable does not have avaue
The actions range from one time val ue substitution to aborting the script.

These categories are broken down into four forms of variable substitution. Y ou can use variable substitutions as shorthand forms of
expressions that would have to be written as explicit if-then-else statements, covered in Chapter 10, "Flow Control.” Table 8.2 provides a

summary of all variable substitution methods.

Table 8.2 Variable Substitution

|Form |Description

|${ parameter:-word} |If parameter is null or unset, word is substituted for parameter. The value of parameter does not change.

|${ parameter:=word} |If parameter is null or unset, parameter is set to the value of word.

|${ parameter: ?message} |If parameter is null or unset, message is printed to standard error. This checks that variables are set correctly.
|${ parameter:+word} |If parameter is set, word is substituted for parameter. The value of parameter does not change.

Substituting a Default Value

The first form enables a default value to be substituted when a variable is unset or null. Thisisformally described as
${ par anet er : - wor d}

Here parameter is the name of the variable, and word is the default value. A simple example of itsuseis
PS1=${ HOST: - | ocal host}"$ " ; export PSIl ;

Y ou could use thisin a user's .profile to make sure that the prompt is always set correctly. Thisform of variable substitution does not affect
the value of the variable. It performs substitution only when the variable is unset.

Assigning a Default Value

To set the value of avariable, the second form of variable substitution must be used. Thisform isformally described as:
${ par anet er : =wor d}

Here, parameter isthe name of the variable, and word is the default value to set the variable to if it is unset. Appending the previous
example, you have

PS1=${HOST: ="unane -n"}"$ " ; export PS1 HOST ;

After the execution of this statement, both HOST and PS1 are set. This example also demonstrates the fact that the default string to use does

not have to be afixed string but can be the output of a command. If this substitution did not exist in the shell, the same line would have to be
written as

if [-z "$HOST"] ; then HOST="unane -n" ; fi ; PS1="$HOST$ "; export PS1 HOST ;

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480057.htm (1 von 2) [06.05.2000 23:05:07]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 8: Substitution: Variable Substitution

Asyou can seeg, the variable substitution form is shorter and clearer than the explicit form.

Aborting Due to Variable Errors

Sometimes substituting default values can hide problems, thus sh supports a third form of variable substitution that enables a message to be
written to standard error when avariableis unset. Thisform isformally described as

${ par anet er : ?nessage}

A common use of thisisin shell scripts and shell functions requiring certain variables to be set for proper execution. For example, the
following command exits if the variable SHOME is unset:

${ HOMVE: ?" Your hone directory is undefined."}
In addition to using the variable substitution form described previously, you are also making use of the no-op (no-op asin no operation)
command, :, which simply evaluates the arguments passed to it. Here you are checking to see whether the variable HOME is defined. If itis
not defined, an error message prints.
The final form of variable substitution is used to substitute when avariable is set. Formally thisis described as
${ par anet er : +wor d}
Here parameter is the name of the variable, and word is the value to substitute if the variable is set. This form does not alter the value of the
variable; it alters only what is substituted. A frequent useisto indicate when a script is running in debug mode:
echo ${DEBUG +"Debug is active."}

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 8: Substitution — —Previous Chapter._Next Chaptemr

Sections in this Chapter:

Filename Substitution (Globbing) = Summary

Variable Substitution ““Questions

Command and Arithmetic Substitution™ oPrevious Section—_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480057.htm (2 von 2) [06.05.2000 23:05:07]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 8: Substitution: Command and Arithmetic Substitution

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 8: Substitution — —Previous Chapter—_Next Chapten

Sectionsin this Chapter:
Filename Substitution (Globbing) =TSummary

Variable Substitution ““Questions)))
Command and Arithmetic Substitution™ —Previous Section_Next Sectiono

Command and Arithmetic Substitution

Command Substituti O s
Arithmetic Substituti O

Two additional forms of substitution provided by the shell are
e Command substitution

e Arithmetic substitution

Command substitution enables you to capture the output of a command and substitute it in another command,
whereas arithmetic substitution enables you to perform simple integer mathematics using the shell.

Command Substitution

Command substitution is the mechanism by which the shell performs a given set of commands and then substitutes their
output in the place of the commands. Command substitution is performed when a command is given as

“commuand”

Here command, can be a simple command, a pipeline, or alist.

Caution - Make sure that you are using the backquote, not the single quote character, when performing
command substitution. Command substitution is performed by the shell only when the backquote, or
backtick, character, *, is given. Using the single quote instead of the back quote is acommon error in shell
scripts leading to many hard to find bugs.

Command substitution is generally used to assign the output of a command to a variable. Each of the following examples
demonstrate command substitution:

DATE="dat e’
USERS="who | wc -I~
UP="date ; uptine’

In the first example, the output of the date command becomes the value for the variable DATE. In the second example, the
output of the pipeline becomes the value of the variable USERS. In the last example, the output of the list becomes the
value of the variable UP.

Y ou can also use command substitution to provide arguments for other commands. For example,

grep “id -un” /etc/passwd

looks through the file /etc/passwd for the output of the command:
id -un

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480058.htm (1 von 2) [06.05.2000 23:05:07]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 8: Substitution: Command and Arithmetic Substitution

In my case, the command substitution results in the string ranga, and thus grep returns the entry in the passwd file for my
user name.

Arithmetic Substitution

In ksh and bash, the shell enables integer arithmetic to be performed. This avoids having to run an extra program such as
expr or bc to do math in ashell script. Thisfeature is not available in sh.

Arithmetic substitution is performed when the following form of command is given:
$((expression))

Expressions are evaluated according to standard mathematical conventions. Table 8.3 provides the available operators. The
operators are listed in order of precedence.

Table 8.3 Arithmetic Substitution Operators

|Operator |Description

I | The division operator. Divides two numbers and returns the result.

I* | The multiplication operator. Multiples two numbers and returns the result.

|— |The subtraction operator. Subtracts two numbers and returns the result.

[+ | The addition operator. Adds two numbers and returns the result.

0 | The parentheses clarify which expressions should be evaluated before others.

Y ou use the following command as an illustration of the operators and their precedence:
foo=$((((5 + 3*2) - 4) [/ 2))

After this command executes the value of foo to 3. Because thisisinteger arithmetic, the value is not 3.5, and because of
operator precedence the value is not 6.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 8: Substitution — oPrevious Chapter—_Next Chapten

Sections in this Chapter:
Filename Substitution (Globbing) = Summary

Variable Substitution “Questions)))
Command and Arithmetic Substitution™ Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480058.htm (2 von 2) [06.05.2000 23:05:08]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 8: Substitution: Summary

Sams Teach Yourself Shell Programmingin 24 Hours

Contents [ndex

Sectionsin this Chapter:
Filename Substitution (Globbing) = Summary

Variable Substitution Questions
Command and Arithmetic Substitution™

cPrevious Section__Next Sectiono

Summary

In this chapter, you have looked at the four main forms of substitution available in the shell:
o Filename substitution
o Variable substitution

e Command substitution

e Arithmetic substitution
Asyou write scripts and use the shell to solve problems, you find that these types of substitution help you extensively.

Sams Teach Yourself Shell Programmingin 24 Hours

Contents Index

Sections in this Chapter:
Filename Substitution (Globbing) = Summary

Variable Substitution ‘Questions
Command and Arithmetic Substitution™

—Previous Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480059.htm [06.05.2000 23:05:08]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 8: Substitution: Questions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
Filename Substitution (Globbing) =TSummary

Variable Substitution “Questions
Command and Arithmetic Substitution cPrevious Section__Next Sectionz
Questions
1. What combination of wildcards should you useto list al thefilesin the current directory that end in the form
hwXYZ.ABC?

Here X and Y can be any number; Z is a number between 2 and 6; and A, B, and C are any character.

2. What action is performed by the following line, if the variable MYPATH is unset:

${ MYPATH: =/ usr/ bi n: / usr/ sbi n:/usr/ uchb}
3. What is the difference between the actions performed by the command given in the previous problem and the
action performed by the following command:

${ MYPATH: -/ usr/ bi n: / usr/ shi n:/ usr/ uchb}

4. What is the result of the following arithmetic substitution:
$((3*2+(4-31/1 4)))
Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
Filename Substitution (Globbing) =Summary

Variable Substitution “Questions
Command and Arithmetic Substitution™ cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480060.htm [06.05.2000 23:05:08]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 9: Quoting: Quoting with Backslashes

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 9: Quoting —_ oPrevious Chapter._Next Chapten—s
Sectionsin this Chapter:

Quoting with Backslashes = Summary

Using Single Quotes “Questions

Using Double Quotes ~Terms

Quoting Rules and Situations ™ cPrevious Section__Next Sectiono

Hour 9
Quoting

By Frank Watson

In the preceding chapter, you looked at shell substitution, which occurs automatically whenever you enter acommand
containing awildcard character or a$ parameter. The way the shell interprets these and other special charactersis
generally useful, but sometimesit is necessary to turn off shell substitution and let each character stand for itself. Turning
off the special meaning of a character is called quoting, and it can be done three ways:

e Using the backslash ('\)
e Using the single quote ()
o Using the double quote (")

Quoting can be avery complex issue, even for experienced UNIX programmers. In this chapter you look at each of these
forms of quoting and how to use them. Y ou learn a series of simple rulesto help you understand when quoting is needed
and how to do it correctly.

Quoting with Backslashes

First, use the echo command to see what a specia character is. The echo command is covered in more detail in Chapter 13,
"Input/Output,” but it is a simple command that just displays the arguments it has been given on the command line. For
example,

echo Hello world

displays the following message on your screen:

Hell o worl d
Hereisalist of most of the shell special characters (also called metacharacters):
*201 " " \V$; &() | » < >newline space tab

Watch what happensif you add one of them to the echo command:
echo Hello; world

It now givesthiserror result:

Hel | o
sh: world: Conmmand not found

The semicolon (;) character tells the shell that it has reached the end of one command and what followsis a new

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480062.htm (1 von 2) [06.05.2000 23:05:08]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 9: Quoting: Quoting with Backslashes

command. This character enables multiple commands on one line. Because world is not avalid command, you get the
error shown.

Y ou can resolve the problem by putting a backslash (\)in front of the ; character to take away its specia meaning, enabling
you to display it asaliteral character:

echo Hello\; world

The backslash causes the ; character to be handled as any other normal character. The resulting output is
Hello; world

To display any shell special character reliably from echo, you must escape it, that is, precede it by a backslash. Using the
backslash quotes the character that follows it, using it as aliteral character. Each of the special shell characters previously
listed causes a different problem symptom if you try to echo it without quoting it. This need to quote special characters
occursin many other UNIX commands as you see | ater.

Notice in the previous example that the quoting character, the backslash, is not displayed in the output. The shell
preprocesses the command line, performing variable substitution, command substitution, and filename substitution, unless
the special character that would normally invoke substitution is quoted. The quoting character is then removed from the
command arguments, so the command being run never sees the quoting character. Here is a different example where
quoting is needed:

echo You owe $1250

This seems like a simple echo statement, but notice that the output is not what you wanted because $1 is a specia shell
variable:

You owe 250

The $ sign is one of the metacharacters, so it must be quoted to avoid special handling by the shell:
echo You owe \$1250

Now you get the desired output:
You owe $1250

Notice the\ quoting character is not present in the output.
Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 9: Quoting —_— cPrevious Chapter._Next Chapterm

Sections in this Chapter:
Quoting with Backslashes = Summary

Using Single Quotes ““Questions
Using Double Quotes erms

Quoting Rules and Situations

- Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480062.htm (2 von 2) [06.05.2000 23:05:08]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 9: Quoting: Using Single Quotes

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 9: Quoting —_ oPrevious Chapter._Next Chapten—s

Sectionsin this Chapter:
Quoting with Backslashes = Summary

Using Single Quotes “Questions
Using Double Quotes “Terms
Quoting Rules and Situations cPrevious Section__Next Sectiono

Using Single Quotes

Here is an echo command that must be modified because it contains many special shell characters:
echo <-$1250.**>; (update?) [y|n]

Putting a backslash in front of each specia character is tedious and makes the line difficult to read:
echo \ <-\$1250.**\>\; \(update\?\) \[y\|n\]

Thereis an easy way to quote alarge group of characters. Put asingle quote (') at the beginning and at the end of the
string:

echo ' <-$1250. **>; (update?) [y|n]'

Any characters within single quotes are quoted just as if abacksash isin front of each character. So now this echo
command displays properly.

Note - Quoting regular charactersis harmless. In the previous example, you put single quotes around a whole
string, quoting both the special characters and the regular letters and digits that need no quoting. It does not
hurt to quote regular characters because quoting takes away any special meaning from a character and does
not mind if that character had no special meaning to begin with. Thisistrue for the backslash, single quotes,
and double

If asingle quote appears within a string to be output, you should not put the whole string within single quotes:
echo '"It's Friday'

Thisfails and only outputs the following character, while the cursor waits for more input:
>

The >sign is the secondary shell prompt (as stored in the PS2 shell variable), and it indicates that you have entered a
multiple-line command--what you have typed so far isincomplete. Single quotes must be entered in pairs, and their effect
isto quote all characters that occur between them. In case you are wondering, you cannot get around this by putting a
backslash before an embedded single quote.

Y ou can correct the previous example by not using single quotes as the method of quoting. Use one of the other quoting
characters, such as the backslash:

echo It\'s Friday
Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 9: Quoting —_— cPrevious Chapter._Next Chapterm

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480063.htm (1 von 2) [06.05.2000 23:05:29]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 9: Quoting: Using Single Quotes

Sections in this Chapter:
Quoting with Backslashes ~Summary

Using Single Quotes “TQuestions
Using Double Quotes “Terms

Quoting Rules and Situations ™ —Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480063.htm (2 von 2) [06.05.2000 23:05:29]

Hour 9: Quoting: Using Double Quotes

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

—Previous Chapter._Next Chaptern

Hour 9: Quoting —_

Sections in this Chapter:
Quoting with Backslashes ~Summary

Using Single Quotes ““Questions
Using Double Quotes ~Terms
Quoting Rules and Situations ™ cPrevious SectionNext Sectiono

Using Double Quotes

Single quotes can sometimes take away too much of the shell's special conveniences. The following echo statement
contains many special characters that must be quoted in order to use them literally:

echo ' S$USER owes <-$1250.**>; [as of (“date +% %)]°
The output using single quotes is easy to predict--what you see is what you get:
$USER owes <-$1250.**>; [as of (“date +%m %l)]

However, thisis not exactly what you want in this case. Single quotes prevent variable substitution (covered in Chapter 8,
"Substitution"), so SUSER is not replaced by the specific user name stored in that variable. Single quotes also prevent
command substitution (covered in Chapter 8), so the attempt to insert the current month and day using the date command
within backquotes fails.

Double quotes are the answer to this situation.
Double quotes take away the special meaning of all characters except the following:
o $for parameter substitution.
e Backquotes for command substitution.
e \$toenableliteral dollar signs.
e \" toenableliteral backquotes.
e \" to enable embedded double quotes.
o \\ to enable embedded backslashes.
e All other \ characters are literal (not special).

Watch what happens if you use double quotes like this:

echo "$USER owes <-$1250.**>; [as of (“date +%n %)]"

Notice in the following output that the double quotes enable variable substitution to replace $USER and command
substitution to replace “date +%m/%d" :

Fred owes <-250.**>; [as of (12/21)]

Asyou can see in this example, double quotes permit you to display many special characters literally while still enabling $
and backquote substitutions. However, notice the amount of money owed isincorrect because $1 is substituted. To correct
this, always use aleading backslash to escape any $ within double quotes where substitution is not intended:

echo "$USER owes <-\$1250.**>; [as of ("date +%n %)]""

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480064.htm (1 von 2) [06.05.2000 23:05:30]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 9: Quoting: Using Double Quotes
The escaped dollar sign is no longer a special character, so the dollar amount appears correctly in the output now:
Fred owes <-$1250.**>; [as of (12/21)]

Now that you have seen all three forms of quoting, hereis a summary of their usage:

Table 9.1 Three Forms of Quoting

|Quoting character |Effect
|Si ngle quote |AII specia characters between these quotes lose their special meaning.
Double quote Most specia characters between these quotes |ose their special meaning with these exceptions:
e $
e \$
o \
o \"
o \\
|Backslash |Any character immediately following the backslash losesits special meaning.

This table also shows that double quotes or backslashes can be embedded in a double quoted string if they are escaped:
echo "The DOS directory is \"\\w ndows\\tenp\""

The output looks like this:
The DOS directory is "\w ndows\tenp"

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 9: Quoting —_ oPrevious Chapter._Next Chapten—

Sectionsin this Chapter:
Quoting with Backslashes ~Summary

Using Single Quotes “Questions
Using Double Quotes " Terms
Quoting Rules and Situations "~ Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480064.htm (2 von 2) [06.05.2000 23:05:30]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 9: Quoting: Quoting Rules and Situations

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 9: Quoting —_ oPrevious Chapter._Next Chapten—s

Sectionsin this Chapter:
Quoting with Backslashes = Summary

Using Single Quotes “Questions
Using Double Quotes ~Tems)))
Quoting Rules and Situations = oPrevious Section_Next Sectiono

Quoting Rules and Situations

Quoting Ignores Word Boundaries ==Quoting to Access Filenames Containing Special Characters
Combining Quoting in Commands ==Quoting Regular Expression Wildcards

Embedding Spacesin a Single Argument =Quoting the Backslash to Enable echo Escape Sequences
Quoting Newlines to Continue on the Next Line==Quote Wildcards for cpio and find

Now that you know the basics, you can learn some additional rulesto help you use quoting. Y ou can also look at various
UNIX commands and apply quoting to other situations.

Quoting Ignores Word Boundaries

In English, you are used to quoting whole words or sentences. In shell programming, the specia characters must be
quoted, but it does not matter whether the regular characters are quoted in the same word, as follows:

echo "Hell o; worl d"

Y ou can move the quotes off word boundaries as long as any special characters remain quoted. This command produces
the same output as the preceding one:

echo Hel"lo; world

Of course, it iseasier to read the line if the quotes are on word boundaries. | present this point here to help you understand
quoting and because you need this knowledge for more complex quoting situations.

Combining Quoting in Commands

Y ou can freely switch from one type of quoting to another within the same command. This example contains single
quotes, a backslash, and then double quotes:

echo The '$USER variable contains this value \> "| $USER| "

Here is the output of this command if fred is the current content of SUSER:
The $USER variable contains this value > |fred]

Embedding Spaces in a Single Argument

To the shell, one or more spaces or tabs form a single command line argument separator. For example,
echo Nanme Addr ess

displays as
Nane Address

Even though you put multiple spaces between Name and Address, the shell regards them as specia characters forming one

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480065.htm (1 von 5) [06.05.2000 23:05:30]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 9: Quoting: Quoting Rules and Situations

separator. The echo command simply displays the arguments it has received separated by a single space.

Y ou can quote the spaces to achieve the desired resullt:
echo "Nane Addr ess”

Now the multiple spaces are preserved in the output:
Nane Addr ess

Spaces must also be quoted to embed them in a single command line argument:
mail -s Meeting tonorrow fred jane < neeting.notice

The mail command enables you to send mail to alist of users. The -s option enables the following argument to be used as
the subject of the mail. The word tomorrow is supposed to be part of the subject, but it is taken as one of the users to
receive the message and causes an error. Y ou can solve this by quoting the embedded space within the subject using any of
the three types of quoting:

mail -s Meeting\ tonorrow fred jane < neeting.notice
mail -s '"Meeting tonorrow fred jane < neeting.notice
mail -s "Meeting tonorrow' fred jane < neeting.notice

Quoting Newlines to Continue on the Next Line

The newline character isfound at the end of each line of a UNIX shell script; it isaspecia character that tells the shell that
it has encountered the end of the command line. Y ou insert the newline character by pressing Enter to go to the next line
when inserting text in your shell script. Normally you can't see the newline character, but if you are in the vi editor, :set list
will mark each newline character with a dollar sign. Y ou can quote the newline character to enable along command to
extend to the next line:

$cp filel file2 file3 filed file5 file6 file7 \
> file8 file9 /tnp

Notice the last character in the first line is a backslash, which is quoting the newline character implied at the end of the
line. The shell recognizes this and displays > (the PS2 prompt) as confirmation that you are entering a continuation line or
multiple-line command.

Y ou must not enable any spaces after the final backslash for thisto work. A quoted newline is an argument separator just
like a space or tab. Here is another example:

$ echo 'Line 1
> Li ne 2

The newline is quoted because it is between a pair of single quotes found on two consecutive lines. Again, > is displayed
by the shell and is not something you enter. Here is the outpuit:

Line 1
Li ne 2

Quoting to Access Filenames Containing Special Characters

In the previous chapter, you learned that any word that contains the characters
*? []

is expanded to alist of files that match the wildcard pattern given. For example, the command
rmchl*

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480065.htm (2 von 5) [06.05.2000 23:05:30]

Hour 9: Quoting: Quoting Rules and Situations

removes al files whose names have the prefix of chl. In this case, the* character isa specia character. Most of the time,
thisis exactly what you want, but there is a case where you need to use quoting to remove the character's special meaning.
Assume you have these filesin a directory:

chl chl* chla ch15

Notice that the filename ch1* containsthe* character. Although thisis certainly not recommended, sometimes you
encounter files whose names contain strange characters (usually through some accident or mistake). If you only want to
delete the file ch1*, don't do so like this:

rmchl*
Thisdeletes all your chl files. Instead, quote the special character using single quotes, double quotes, or the backslash:
rm'chl*'

Quoting the special character takes away its wildcard meaning and enables you to delete the desired file.

Tip - Avoid using specia characters in filenames because you have to quote the special character each time
you access that file.

Here again isthe list of special characters:

*2[1'"\$; & ()| <>new-line space tab

Quoting Regular Expression Wildcards

In Chapter 16, "Filtering Text Using Regular Expressions,” you learn about another type of wildcard called regular

expression. Regular expressions use some of the same wildcard characters as filename substitution, as you can seein this
grep command (which is covered in Chapter 15, "Text Filters'):

grep '[0-9][0-9]*%" report2 report?

The quoted string [0-9][0-9]*$ is aregular expression (wildcard) pattern that grep searches for within the contents of files
report2 and report?7. Wildcards in the grep pattern must be quoted to prevent the shell from erroneously replacing that
pattern with alist of filenames that match the pattern.

Tip - You should always quote your regular expressions to protect them from shell filename expansion, but
sometimes they work even if you don't quote them. The shell only expands the pattern if it finds existing files
whose names match the pattern. If you happen to be in a directory where no matching files are found, the
pattern is left alone, and grep works fine. Move to another directory, though, and the exact same command
might fail.

Quoting the Backslash to Enable echo Escape Sequences

In Chapter 13, "Input/Ouput,” you see that echo enables some special characterslike \n:

echo -e "Line 1\ nLi ne 2"

This displays the following:

Line 1
Line 2

The -e option of echo enables it to interpret echo escape sequences as special, not literal, characters. Some versions of
UNIX object to -e asan illegal option to echo. In that case, simply omit -e from your echo command, asit is not required
on that system to enable these escape sequences.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480065.htm (3 von 5) [06.05.2000 23:05:30]

Hour 9: Quoting: Quoting Rules and Situations

The\n option is called an escape sequence because the preceding backslash causes the following n to be treated as a
specia character. How do the quoting rules apply here? If the backslash takes away the special meaning of its following
character, shouldn't you just see n in the output?

Review Table 9.1. It shows that a backslash within double quotesis only special if it precedes these four characters:
e $

o \

\n within double quotesis treated as two normal characters that are passed to the echo command as arguments. The echo
command enables its own set of special characters, which are indicated by a preceding backslash. \n passed to echo tells
echo to display anewline. In this example, the \n has to be quoted so that the backslash can be passed to echo and not
removed before echo can see it. Watch what happens if you don't quote the backslash:

echo Line 1\nLine 2

Thisdisplays:
Li ne 1nLi ne 2

The\n is not quoted, so the shell removed the backslash before echo sees the arguments. Because echo sees n, not \n, it
simply displays n, not a newline as desired.

Quote Wildcards for cpio and find

There are other commands like echo that have their own special characters that must be quoted for the shell to pass them
unaltered. cpio is acommand that saves and restoresfiles. It enables shell filename wildcards to select the files to restore.
These wildcards must be quoted to prevent shell expansion. This enables them to be passed to cpio for interpretation, asin
the following example:

cpio -icvdum'usr2/*" < [dev/rmO

-icvdum includes options to cpio to specify how it should restore files from the tape device /dev/rmt0. usr2/* saysto
restore all files from directory usr2 on tape. Again, this command sometimes works correctly even if the wildcards aren't
quoted because shell expansion doesn't occur if matching files aren't found in the current path (in this case, if thereis no
usr2 subdirectory in the current directory). It is best to quote these cpio wildcards so you can be sure the command works
properly every time.

The find command is covered in Chapter 18, "Miscellaneous Tools." It supports its own wildcards to look for partial
filenames:

find / -nanme 'ch*.doc' -print

ch*.doc isawildcard pattern that tells find to display all filenames that start with ch and end with a.doc suffix. Unlike
shell filename expansion, this find command checks all directories on the system for a match. However, the wildcard must
be quoted using single quotes, double quotes, or a backslash, so the wildcard is passed to find and not expanded by the
shell.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 9: Quoting —_— oPrevious Chapter._Next Chapters

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480065.htm (4 von 5) [06.05.2000 23:05:30]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 9: Quoting: Quoting Rules and Situations

Sections in this Chapter:
Quoting with Backslashes ~Summary

Using Single Quotes ““Questions
Using Double Quotes erms

Quoting Rules and Situations cPrevious Section_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480065.htm (5 von 5) [06.05.2000 23:05:30]

Hour 9: Quoting: Summary

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 9: Quoting —_ oPrevious Chapter._Next Chapten—s

Sectionsin this Chapter:
Quoting with Backslashes = Summary

Using Single Quotes “Questions
Using Double Quotes “Terms
Quoting Rules and Situations Previous Section__Next Sectiono

Summary

In this chapter, you looked at three types of quoting and when to use them:
e Backslash
e Single quote
e Double quote
Hereisasummary of the quoting rules you learned in this chapter in the order of presentation:
¢ A backdash takes away the special meaning of the character that followsit.
e The character doing the quoting is removed before command execution.
e Single quotes remove the special meaning of all enclosed characters.
e Quoting regular charactersis harmless.
e A single quote can not be inserted within single quotes.
o Double quotes remove the special meaning of most enclosed characters.
e Quoting can ignore word boundaries.
o Different types of quoting can be combined in one command.
¢ Quote spaces to embed them in a single argument.
¢ Quote the newline to continue acommand on the next line.
e Use quoting to access filenames that contain specia characters.
e Quote regular expression wildcards.
e Quote the backslash to enable echo escape sequences.

e Quote wildcards for cpio and find.

Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex

Hour 9: Quoting —_ oPrevious Chapter._Next Chapteno

Sections in this Chapter:
Quoting with Backslashes = Summary

Using Single Quotes ““Questions
Using Double Quotes “Terms
Quoting Rules and Situations ™ cPrevious Section_Next Section—

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480066.htm (1 von 2) [06.05.2000 23:05:30]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 9: Quoting: Summary

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480066.htm (2 von 2) [06.05.2000 23:05:30]

Hour 9: Quoting: Questions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
Quoting with Backslashes = Summary

Using Single Quotes “Questions
Using Double Quotes Terms
Quoting Rules and Situations .

cPrevious Section__Next Sectiono

Questions

1. Give an echo command to display this message:
It's <party> tine!

2. Give an echo command to display one line containing the following fields:
0 The contents of variable $USER
O A single space
0 Theword "owes'
0 Five spaces
0 A dollar sign (%)
0 The contents of the variable $DEBT (this variable contains only digits)

Sample output:
fred owes $25

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:
Quoting with Backslashes = Summary

Using Single Quotes “Questions
Using Double Quotes “Terms
Quoting Rules and Situations oPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480067.htm [06.05.2000 23:05:31]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 9: Quoting: Terms

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 9: Quoting —_ oPrevious Chapter._Next Chapten—s

Sectionsin this Chapter:
Quoting with Backslashes = Summary

Using Single Quotes “Questions
Using Double Quotes “Terms
Quoting Rules and Situations ™ cPrevious Section__Next Sectiono

Quoting Quoting literally encloses selected text within some type of quotation marks. When applied to shell commands,
quoting means to disable shell interpretation of special characters by enclosing the characters within single or double
quotes or by escaping the characters.

Escaping Escaping a character meansto put a backslash (\) just before that character. Escaping can either remove the
specia meaning of a character in a shell command, or it can add special meaning as we saw with \n in the echo command.
The character following the backslash is called an escaped character.

Special characters, metacharacters, wildcards All these terms indicate characters that are not taken at face value.
These characters have an extra meaning or cause some action to be taken by the shell or other UNIX commands.

Literal characters These characters have no specia meaning and cause no extra action to be taken. Quoting causes the
shell to treat awildcard as aliteral character.

Newline character Thisisliterally the linefeed character whose ASCII valueis 10. In general, the newline character isa
specia shell character that indicates a complete command line has been entered and can now be executed.

PS2 variable Thisshell variable's content is usually the > character. The content of the PS2 variable is displayed by the
shell as a secondary prompt that indicates the previous command was not complete and the current command lineisa
continuation of that command line.

Shell preprocessing This describes actions taken by the shell to manipulate the command line before executing it. Thisis
when filename, variable, command, and arithmetic substitution occur (as covered in Chapter 8).

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 9: Quoting —_ oPrevious Chapter._Next Chapteno

Sections in this Chapter:
Quoting with Backslashes = Summary

Using Single Quotes ““Questions
Using Double Quotes “Terms
Quoting Rules and Situations ™ cPrevious Section—Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480068.htm [06.05.2000 23:05:31]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 10: Flow Control: The if Statement

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 10: Flow Control — —Previous Chapter—_Next Chapten
Sectionsin this Chapter:

Theif Statement = Summary

The case Statement ~~Questions Previous Section__Next Sectiono

Hour 10
Flow Control

The order in which commands execute in ashell script is called the flow of the script. In the scripts that you have looked at
so far, the flow is aways the same because the same set of commands executes every time.

In most scripts, you need to change the commands that execute depending on some condition provided by the user or
detected by the script itself. When you change the commands that execute based on a condition, you change the flow of the
script. For this reason, the commands discussed in this chapter are called flow control commands . Y ou might also see
them referred to as conditional flow control commands because they change the flow of a script based on some condition.

Two powerful flow control mechanics are available in the shell:
e Theif statement
e The case statement

Theif statement is normally used for the conditional execution of commands, whereas the case statement enables any
number of command sequences to be executed depending on which one of several patterns matches a variable first.

In this chapter, | explain how to use flow control in your shell scripts.

The If Statement

An if Statement Exampl G
Using test —

Theif statement performs actions depending on whether a given condition is true or false. Because the return code of a
command indicates true (return code is zero) or false (return code is nonzero), one of the most common uses of the if
statement isin error checking. An example of thisis covered shortly.

The basic if statement syntax follows:
if listl
t hen
|ist2
elif list3
t hen
list4
el se
listh
fi

Both the elif and the else statements are optional. If you have an €lif statement, you don't need an else statement and vice

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480070.htm (1 von 11) [06.05.2000 23:05:32]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 10: Flow Control: The if Statement

versa. An if statement can be written with any number of €lif statements.
The flow control for the general if statement follows:
1. listl isevaluated.
2. If the exit code of list1is 0, indicating atrue condition, list2 is evaluated and the if statement exits.
3. Otherwise, list3 is executed and its exit code is checked.
4. If list3 returns 0, list4 executes and the if statement exits.
5. If list3 does not return O, list5 executes.

Because the shell considers an if statement to be alist, you can writeit all in one line as follows:
if listl ; thenlist2 ; elif list3 ; thenlist4 ; else list5 ; fi ;

Usually thisformis used only for short if statements.

An if Statement Example

A simple use of theif statement is

i f uuencode koal a.gif koala.gif > koala.uu ; then
echo "Encoded koala.gif to koal a. uu”

el se
echo "Error encoding koala.gif"

fi

Look at the flow of control through this statement:

1. First, the command
uuencode koal a.gif koala.gif > koal a. uu

executes. Thiscommand islistl in the general statement.

2. If this command is successful, the command
echo "Encoded koala.gif to koal a. uu"

executes and the if statement exits. Thiscommand islist2 in the general statement.

3. Otherwise the command
echo "Error encoding koala.gif"

executes, and the if statement exits. This command islist5 in the general statement.

Y ou might have noticed in this example that both the if and then statements appear on the same line. Most shell
programmers prefer to write if statements thisway in order to make the if statement more concise. The mgjority of shell

programmers claim that this form looks better.

Common Errors

Three common errors can occur when using the if statement:
o Omitting the semicolon (;) before the then statement in the single line form.

e Using elseif or elsif instead of €lif.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480070.htm (2 von 11) [06.05.2000 23:05:32]

Hour 10: Flow Control: The if Statement

e Omitting the then statement when an elif statement is used.
e Writing if instead of fi at the end of an if statement.

As an example of thefirst type of error, if you leave out the ; from the previous example

i f uuencode koal a.gif koala.gif > koal a.uu then
echo "Encoded koala.gif to koal a. uu”

el se
echo "Error encoding koala.gif"

fi

an error message appears:
chll-ex1l.sh[2]: Syntax error at line 5 : “else' is not expected.

If you see thistype of error, make sure that a semicolon precedes the then statement.

The second type of error can beillustrated using the following if statement:

i f uuencode koal a.gif koala.gif > koala.uu ; then
echo "Encoded koala.gif to koal a. uu”
elif rmkoala.uu ; then
echo "Encoding failed, tenporary files renoved."
el se
echo "An error occured.”
fi

Here you have an dlif statement that removes the intermediate file koala.uu, if the uuencode fails. If the elif is changed to
an elseif asfollows

i f uuencode koal a.gif koala.gif > koala.uu ; then
echo "Encoded koala.gif to koal a. uu”
else if rmkoala.uu ; then
echo "Encoding failed, tenporary files renoved."
el se
echo "An error occured."
fi

an error message similar to the following is generated:
./chll-ex1.sh: ./chll-ex1l.sh: line 8: syntax error: unexpected end of file

If the élif statement is changed to elsif asfollows

i f uuencode koal a.gif koala.gif > koala.uu ; then
echo "Encoded koala.gif to koal a. uu”
elsif rmkoala.uu ; then
echo "Encoding failed, tenporary files renoved."
el se
echo "An error occured."
fi

an error message similar to the following is generated:

./chl1l-1.sh: syntax error at line 4: "then' unexpected

If the then statement was omitted after the €lif statement as follows

i f uuencode koal a.gif koala.gif > koala.uu ; then
echo "Encoded koala.gif to koal a. uu”
elif rmkoal a. uu

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480070.htm (3 von 11) [06.05.2000 23:05:32]

Hour 10: Flow Control: The if Statement

echo "Encoding failed, tenporary files renoved."
el se

echo "An error occured.”
fi

an error message similar to the following is generated:
./chl1l-1.sh: syntax error at line 6: “else'" unexpected

Finally, if the fi statement iswritten asif, an error message such as the following is generated:
./chl1l-1.sh: syntax error at line 8 “end of file' unexpected

Thisindicates that the if statement was not closed with afi statement before the end of the script.

Using test

Most often, the list given to an if statement is one or more test commands, which are invoked by calling the test command
asfollows:

test expression

Here expression is constructed using one of the special options to the test command. The test command returns either a0
(true) or a1 (false) after evaluating an expression.

A shorthand for the test command is the [command:
[expression]

Here expression is any valid expression that the test command understands. This shorthand form is the most common form
of test that you can encounter.

The types of expressions understood by test can be broken into three types.
o Filetests
e String comparisons
e Numerical comparisons

You look at each of these typesin turn. Y ou also look at compound expressions, formed by combining two or more test
expressions.

Note - When using the [shorthand for test, the space after the open bracket ([) and the space before the close
bracket (]) are required.

Without these spaces, the shell cannot tell where the expression begins and ends.

File Tests

File test expressions test whether afile fits some particular criteria. The general syntax for afiletestis
test option file

or
[option file]

Here option is one of the options given in Table 10.1 and file isthe name of afile or directory.

Look at afew examples of if statements that use the test command to perform file tests.

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480070.htm (4 von 11) [06.05.2000 23:05:32]

Hour 10: Flow Control: The if Statement

Consider the following if statement:
$if [-d /home/ranga/bin] ; then PATH="$PATH:/hone/ ranga/ bin" ; fi

Here you are testing whether the directory /home/ranga/bin exists. If it does, append it to the variable PATH. Similar
statements are often encountered in shell initialization scripts such as .profile or .kshrc.

Say you want to execute commands stored in the file SHOME/.bash_dliai if it exists. Y ou can use the command
$if [-f $HOVE/ . bash_aliai] ; then . $HOW .bash_aliai ; fi

An improvement on this would be to test whether the file has any content and, if so, run the commands stored in it. You
can change the command to use the - s option instead of the - f option to achieve this result:

if [-s $HOW/ . bash_aliai] ; then . $HOWE .bash _aliai ; fi

Now the commands stored in the file SHOME/.bash_aliai execute if that file exists and has some content.

Table 10.1 File Test Options for the test Command

|Option |Description

|-bfile |Trueif file existsand is ablock special file.
|-cfile |Trueif file existsand is acharacter specia file.
|-dfile |Trueif file existsand is adirectory.

l-efile |Trueif file exists.

f file |Trueif fileexistsand isaregular file.

-gfile |Trueif file existsand hasits SGID bit set.
|-hfile |Trueif file exists and is asymbolic link.

|-k file |Trueif file exists and hasits "sticky" bit set.
|-pfile |Trueif file exists and is anamed pipe.

|-r file |Trueif file existsand is readable.

|-sfile |Trueif file exists and has a size greater than zero.
|-ufile |Trueif file existsand hasits SUID bit set.

|-w file |Trueif file exists and is writable.

|-x file |Trueif file exists and is executable.

|-Ofile |Trueif file exists and is owned by the effective user ID.

String Comparisons

The test command al so supports simple string comparisons. There are two main forms:
1. Checking whether a string is empty
2. Checking whether two strings are equal

A string cannot be compared to an expression using the test command. The case statement, covered later in this chapter,
has to be used instead.

The test options relating to string comparisons are given in Table 10.2.

Table 10.2 String Comparison Options for the test Command

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480070.htm (5 von 11) [06.05.2000 23:05:32]

Hour 10: Flow Control: The if Statement

|Option IDescription
|-z string | Trueif string has zero length.
|-n string | Trueif string has nonzero length.

|stringl = string2 |Trueif the strings are equal.
|string1 != string2 | True if the strings are not equal.

Checking Whether a String Is Empty

The syntax of the first formis
test option string

or
[option string]

Here option iseither - z or - nand string is any valid shell string. The - z (zas in zero) option checks whether the length of
astring is zero, whereas the - n (n asin nonzero) option is used to check whether the length of a string is nonzero.

For example, the following command

if [-z "$FRUI T_BASKET"] ; then
echo "Your fruit basket is enpty" ;
el se
echo "Your fruit basket has the following fruit: $FRU T_BASKET"
fi
produces the string
Your fruit basket is enpty

if the string contained in the variable $FRUIT_BASKET has zero length.

If you were to use the - n option instead of the - z option, the example would change as follows:

if [-n "$FRU T_BASKET"] ; then

echo "Your fruit basket has the following fruit: $FRU T_BASKET"
el se

echo "Your fruit basket is enpty" ;
fi

Notice that the variable $FRUIT_BASKET is quoted in this example. Thisisrequired in the event that the variable is
unset. If $FRUIT_BASKET is not quoted, an error message is displayed when it is unset:

test: argunment expected

This error message is presented because the shell does not quote the null value of $FRUIT_BASKET. The resulting test
looks like

[-z]

Because the string argument is missing, test complains that a required argument is missing. By quoting
$FRUIT_BASKET, thetest looks like

[-z "]
Here the required string argument is"".

Checking Whether Two Strings Are Equal The test command enables you to determine whether two strings are equal .

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480070.htm (6 von 11) [06.05.2000 23:05:32]

Hour 10: Flow Control: The if Statement
Two strings are considered equal if they contain exactly the same sequence of characters. For example, the strings
"There are nore things in heaven and earth"
"There are nore things in heaven and earth"
are equal, but the strings
"than are dreant of in your philosophy"
"Than are dreant of in your Philosophy"
are not equal because of the differencesin capitalization.

The basic syntax for checking whether two strings are equal is
test stringl = string2

or
[stringl = string2]

Here stringl and string2 are the two strings being compared.

A simple example of using string comparisons is the following:

if ["$FRU T" = apple] ; then

echo "An appl e a day keeps the doctor away."
el se

echo "You nust |ike doctors, your fruit $FRUT is not an apple.”
fi

If the operator != is used instead of =, test returnstrueif the two strings are not equal. Using the != operator, you can
rewrite the previous command as follows:

if ["SFRUT" !'= apple] ; then

echo "You must |ike doctors, your fruit $FRU T is not an apple."
el se

echo "An appl e a day keeps the doctor away."
fi

Numerical Comparisons

The test command enables you to compare two integers. The basic syntax is
test intl operator int2

or
[intl operator int2]

Hereintl and int2 can be any positive or negative integers and operator is one of the operators given in Table 10.3. If
either intl or int2 isastring, not an integer, it istreated as 0.

Among the most common tasks in a shell script are executing a program and checking its return status. By using the
numerical comparison operators, you can check the return or exit status of acommand and perform different actions when
acommand is successful and when a command is unsuccessful.

For example, consider the following command:

I n -s /hone/ rangal/ bi n/ bash /usr/contrib/bin

If you execute this command on the command line, you can see any error messages and intervene to fix the problem. In a

shell script, the error message is ignored and the script continues to execute. For this reason, it is necessary to check
whether a program exited successfully.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480070.htm (7 von 11) [06.05.2000 23:05:32]

Hour 10: Flow Control: The if Statement

Asyou saw with the test command, an exit status of 0 is successful, whereas nonzero values indicate some type of failure.
The exit status of the last command is stored in the variable $?, so you can check whether a command was successful as
follows:

if [$?2 -eq 0] ; then
echo "Conmand was successful ." ;
el se
echo "An error was encountered."
exit
fi

If the command exits with an exit code of 0, issue the "good" message; otherwise, issue an error message and then exit.
This can be ssimplified as follows:

if [$?2 -ne 0] ; then
echo "An error was encountered."
exit

fi

echo "Command was successful ."

Here you check to see whether the command failed. If so, you echo an error message and exit: otherwise, the if statement
completes and the "good" message isissued. Thisis dightly more efficient than using an else clause.

Table 10.3 Numerical Comparison Operators for the test Command

|Operator |Description

lintl -eq int2 | Trueif int1 equalsint2.

|int1 -neint2 |True if int1is not equal to int2.
|int1-|tint2 |Trueif intl isless than int2.

|int1 -leint2 |True if int1 islessthan or equal to int2.
lintl -gtint2 |Trueif intl is greater than int2.

|i ntl -geint2 |True if int1 is greater than or equal to int2.

Compound Expressions

New TERM C
So far you have seen individual expressions, but many times you need to combine expressionsin order to

satisfy a particular expression. When two or more expressions are combined, the result is called a compound expression.

Y ou can create compound expressions using the test command's built in operators, or you can use the conditional
execution operators, & & and ||.

Also you can create a compound expression that is the negation of another expression by using the ! operator.

Table 10.4 gives a summary of these operators.

Table 10.4 Operators for Creating Compound Expressions

|Operator |Description

|! expr |True if expr isfalse. The expr can be any valid test command.
|expr1 -aexpr2 |True if both exprl and expr2 are true.

|expr1 -0 expr2 |True if either exprl or expr2 istrue.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480070.htm (8 von 11) [06.05.2000 23:05:32]

Hour 10: Flow Control: The if Statement

Using the Built-in Operators The syntax for creating compound expressions using the built-in operatorsis
test exprl operator expr?2

or
[exprl operator expr2]

Here expr1 and expr2 are any valid test expression, and operator is either -a(aasinand) or -o (o asinor).

If the -a operator is used, both expr1 and expr2 must be true (evaluate to 0) in order for the compound expression to be
true.

If the -0 operator is used, either expr1 or expr2 must be true (evaluate to 0) in order for the compound expression to be
true.

Using the Conditional Operators The syntax for creating compound expressions using the conditional operatorsis
test exprl operator test exprl

or
[exprl] operator [expr2]

Here exprl and expr2 are any valid test expression, and operator is either && (and) or || (or).

If the & & operator is used, both exprl and expr2 must be true (evaluate to 0) in order for the compound expression to be
true.

If the || operator is used, either exprl or expr2 must be true (evaluate to 0) in order for the compound expression to be true.

A Compound Expression Example Here are two equivalent examples that demonstrate how to create a compound
expression:

if [-z "$DTHOVE"] && [-d /usr/dt] ; then DTHOVE=/usr/dt ; fi
if [-z "$DTHOVE" -a -d /usr/dt] ; then DTHOVE=/usr/dt ; fi

Thefirst version is executed as follows:

1. First the test
[-z "$DTHOME" |

is performed.

2. If thistest returns 0, the second test
[-d /usr/dt]

is performed. Otherwise the if statement finishes.

3. If the second test returns 0, the variable assignment
DTHOVE=/ usr / dt

is performed. Otherwise the if statement finishes.
Execution of the second version issimilar:

1. First the expression
-z " $DTHOWE"

is evaluated.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480070.htm (9 von 11) [06.05.2000 23:05:33]

Hour 10: Flow Control: The if Statement
2. If this expression evaluates to O, the expression
-d /usr/dt
is evaluated. Otherwise the if statement finishes.

3. If the second expression evaluates to 0, the variable assignment
DTHOVE=/ usr/ dt

is performed. Otherwise the if statement finishes.

Some programmers prefer the version that uses the conditional operators because the individual tests are isolated. Other
programmers prefer the second form because it invokes the test command only once and might be marginally more
efficient on older hardware or for large numbers of tests.

If you are interested in maximum portability to older systems, you should use conditional operators. On modern shells both
formswork equally well, thus you can use either one.

In this example you used only two expressions. Y ou are not limited to two. In fact any number of expressions can be
combined into one compound expression.

Negating an Expression

Thefina type of compound expression consists of negating an expression. Negation reverses the result of an expression.
True expressions are treated as false expressions and vice versa.

The basic syntax of the negation operator is
test ! expr

or
[! expr]
Here expr is any valid test expression.

A ssimple example is the following command:
$if [! -d $HOVE/ bin] ; then nkdir $HOVE bin ; fi

Here you make the directory $SHOME/bin if it does not exist. The execution is as follows:

1. First the test
-d $HOWE/ bi n

is performed.

2. Theresult of the test is negated because of the ! operator. If the directory $SHOME/bin exists, the return value of
the compound expression isfalse (1): otherwise, the return value is true (0).

3. If the result of the previous step istrue, the directory $HOME/bin is created: otherwise, the if statement finishes.

A shorter form of the same command is the following:
$ test ! -d $HOVE/ bi n && nkdir $HOVE/ bi n

This command achieves the same result because mkdir executes only if test returns true. test returns true only if the
directory $HOME/bin does not exist.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480070.htm (10 von 11) [06.05.2000 23:05:33]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 10: Flow Control: The if Statement

Sectionsin this Chapter:™

Theif Statement =Summary
The case Statement =Questions Previous Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480070.htm (11 von 11) [06.05.2000 23:05:33]

Hour 10: Flow Control: The case Statement

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 10: Flow Control —_ oPrevious Chapter—Next Chapter
Sectionsin this Chapter:

Theif Statement = Summary

The case Statement “Questions cPrevious Section__Next Section—

The case Statement

A case Statement Examp| G
Using Patterns —

The case statement is the other major form of flow control available in the shell. In this section | explain its usage.

The basic syntax is

case word in
patternl)
listl

pattern2)
list2

esac

Here the string word is compared against every pattern until amatch isfound. The list following the matching pattern
executes. If no matches are found, the case statement exits without performing any action. There is no maximum number
of patterns, but the minimum is one.

When alist executes, the command ;; indicates that program flow should jump to the end of the entire case statement. This
issimilar to break in the C programming language.

Some programmers prefer to use the form

case word in
patternl) listl ;;
pattern2) list2 ;;
esac

Thisform should be used only if the list of commands to be executed is short.

A case Statement Example

Consider the following variable declaration and case statement:

FRUI T=Ki wi

case "SFRUIT" in
apple) echo "Apple pie is quite tasty." ;;
banana) echo "I |ike banana nut bread." ;;
kiw) echo "New Zeal and is fanmous for kiw." ;;

esac

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480071.htm (1 von 3) [06.05.2000 23:05:33]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 10: Flow Control: The case Statement

The execution of the case statement is as follows:
1. The string contained in the variable FRUIT is expanded to kiwi.
2. The string kiwi is compared against the first pattern, apple. Because they don't match, you go to the next pattern.

3. The string kiwi is compared against the next pattern, banana. Because they don't match, you go to the next
pattern.

4. The string kiwi is compared against the final pattern, kiwi. Because they match, the following messageis
produced:

New Zeal and is fanous for kiw.

Using Patterns

In the previous example, you used fixed strings as the pattern. If used in this fashion the case statement degenerates into an
if statement. For example, the if statement
if ["$SFRUT" = apple] ; then
echo "Apple pie is quite tasty."
elif ["$FRU T" = banana] ; then
echo "I |ike banana nut bread."
elif ["S$FRUT" = kiwi] ; then
echo "New Zeal and is fanous for kiw."
fi
ismore verbose, but the real power of the case statement does not lie in simplifying if statements. The power liesin the
fact that it uses patterns to perform matching.

A pattern isastring that consists of regular characters and special wildcard characters. The pattern determines whether a
match is present.

The patterns can use the same special characters as patterns for pathname expansion covered in Chapter 8, " Substitution,”
along with the or operator, |. Some default actions can be performed by giving the * pattern, which matches anything.

An example of asimple case statement that uses patternsis
case "$TERM' in
*term
TERM=xterm ; ;
net wor k| di al up|] unknown| vt[0-9][0-9][0-9])
TERMEVE 100 ; ;
esac

Here the string contained in $TERM is compared against two patterns. If this string ends with the string term, $TERM is
assigned the value xterm. Otherwise , $TERM is compared against the strings network, dialup, unknown, and vtXXX,
where XXX is some three digit number, such as 102. If one of these strings matches, $TERM is set to vt100.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index
Hour 10: Flow Control —_— oPrevious Chapter—_Next Chaptena
Sectionsin this Chapter:

Theif Statement =—Summary

The case Statement ==Questions Previous Section__Next Sectiono

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480071.htm (2 von 3) [06.05.2000 23:05:33]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 10: Flow Control: The case Statement

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480071.htm (3 von 3) [06.05.2000 23:05:33]

Hour 10: Flow Control: Summary

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Theif Statement = Summary
The case Statement ~~Questions cPrevious Section__Next Sectiono
Summary

In this chapter, you covered the two main flow control mechanisms available in the shell. You looked at the following
topics related to the if statement:

e Performing file tests

e Performing string comparisons

e Performing numerical comparisons
e Using compound expressions

Y ou aso looked at the basic case statement and using pattern in conjunction with it.

Starting with the next chapter, you begin to see how you can use flow control while programming.

Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex

Sectionsin this Chapter:™

Theif Statement = Summary
The case Statement ~~Questions cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480072.htm [06.05.2000 23:05:33]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 10: Flow Control: Questions

Sams Teach Y our self Shell Programming in 24 Hours Contents |ndex

Sectionsin this Chapter:™

Theif Statement “=“Summary
The case Statement ~Questions oPrevious Section—Next Sectiono
Questions

1. What is the difference between the following commands?

if [-e /usr/local/bin/bash] ; then /usr/local/bin/bash ; fi
if [-x /usr/local/bin/bash] ; then /usr/local/bin/bash ; fi
2. Given the following variable declarations,

HOVE=/ honre/ r anga

Bl NDI R=/ hone/ r anga/ bi n

what is the output of the following if statement?

if [$HOW bin = $BINDIR] ; then
echo "Your binaries are stored in your hone directory."
fi

3. What test command should be used in order to test whether /ust/bin is adirectory or a symbolic link?

4. Given the following if statement, write an equivalent case statement:

if ["SANS' = "Yes" -0 "$ANS" = "yes" -0 "SANS' = "y" -0 "SANS' = "¥Y"] ; then
ANS="y"

el se
ANS="n"

fi

Sams Teach Y our self Shell Programming in 24 Hours Contents |ndex

Sectionsin this Chapter:™

Theif Statement ““Summary
The case Statement ““Questions oPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480073.htm [06.05.2000 23:05:33]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 11: Loops: The while Loop

Sams Teach Yourself Shell Programmingin 24 Hours Contents |ndex
Hour 11: Loops —_— oPrevious Chapter._Next Chapterm
Sectionsin this Chapter:

The while Loop =TSummary

Thefor and select Loops ““Questions

L oop Control ~Terms oPrevious Section—Next Sectiono

Hour 11
Loops

In this chapter, you'll learn how to set up and use loops in your shell scripts. Loops enable you to execute a series of commands
multiple times. Two main types of loops are

e Thewhileloop

e Theforloop

The while loop enables you to execute a set of commands repeatedly until some condition occurs. It is usually used when you
need to manipulate the value of a variable repeatedly.

The for loop enables you to execute a set of commands repeatedly for each item in alist. One of its most common usesisin
performing the same set of commands for alarge number of files.

In addition to these two types of loops, ksh and bash support an additional type of loop called the select loop. It frequently
presents a menu of choicesto a shell scripts user.

Thefirst section of this chapter explains the while loop and its uses. The second section of this chapter shows you how to use the
for and select loops.

The while Loop

Validating User [NpUt=
The until Loop —

The basic syntax of the whileloop is

whi | e command
do

i st
done

Here command is a single command to execute, whereas list is a set of one or more commands to execute. Although command
can be any valid UNIX command, it is usually atest expression of the type covered in the last chapter.

list is commonly referred to as the body of the while loop because it contains the heart or guts of the loop. The do and done
keywords are not considered part of the body of the loop because the shell uses them only for determining where the while loop
begins and ends.

The execution of awhile loop proceeds according to the following steps:
1. Execute command.
2. If the exit status of command is nonzero, exit from the while loop.

3. If the exit status of command is zero, execute list.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480075.htm (1 von 5) [06.05.2000 23:05:34]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 11: Loops: The while Loop

4. When list finishes executing, return to Step 1.

If both command and list are short, the while loop is written in asingle line as follows:
while command ; do list ; done

Here is asimple example that uses the while loop to display the numbers zero to nine:

x=0
while [$x -1t 10]
do
echo $x
x="echo "$x + 1" | bc’
done

Its output looks like this:

©Ooo~NoO U~ WNPEFO

Each time this |oop executes, the variable x is checked to see whether it has avalue that isless than 10. If the value of x isless
than 10, this test expression has an exit status of 0. In this case, the current value of x is displayed and then x isincremented by 1.

This example uses the bc command to increment x each time the loop executes. If you are not familiar with the bc command, it is
covered in detail in Chapter 18, "Miscellaneous Tools."

If x isequal to 10 or greater than 10, the test expression returns 1, causing the while loop to exit.
Nesting while Loops

It is possible to use awhile loop as part of the body of another while loop as follows:
while commandl ; # this is |oopl, the outer |oop

do
listl
while command2 ; # this is |oop2, the inner |oop
do
list2
done
list3
done

Here commandl and command?2 are single commands to execute, whereas list1, list2, and list3 are a set of one or more
commands to execute. Both list1 and list3 are optional .

MNew T . . .
FW S ERM Here you have two while loops, loopl and loop2. Usually loopl is referred to as the main loop or outer loop, and
loop2 is referred to as the inner loop.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480075.htm (2 von 5) [06.05.2000 23:05:34]

Hour 11: Loops: The while Loop

MNew T - . .

When describing the inner loop, loop2, many programmers say that it is nested one level deep. The term nested
refers to the fact that loop2 islocated in the body of loopl. If you had aloop3 located in the body of loop2, it would be nested
two levels deep. The level of nesting isrelative to the outermost loop.

There are no restrictions on how deeply nested |oops can be, but you should try to avoid nesting loops more deeply than four or
five levelsto avoid difficulties in finding and fixing problemsin your script.

Asan illustration of loop nesting, let's add another countdown loop inside the loop that you used to count to nine:
x=0
while ["$x" -It 10] ; # this is |oopl

do
y="$x"
while ["$y" -ge 0] ; # this is |oop2
do
echo "$y \c"
y="echo "$y - 1" | bc’
done
echo
x="echo "$x + 1" | bc’
done

The main change that | have introduced isthe variable y. Y ou set it to the value of x-1 before loop2 executes. Because of this,
each time loop2 executes you display all the numbers greater than 0 and less than x in reverse order. The output looks like the
following:

©CooO~NOOUITEWNPEFO
o~NO U WNEO
~N~Nooah~wWNEO
O WNEO

O~ wWNEFLO

A WNFEFO

wWwNEFLO

N~ O

0
10

Validating User Input

Say that you need to write a script that needs to ask the user for the name of adirectory. Y ou can use the following steps to get
information from the users:

1. Ask the user a question.

2. Read the user's response.

3. Check to see whether the user responded with the name of a directory.
What should you do when the user gives you aresponse that is not a directory?

The simplest choice would be to do nothing, but thisis not very user friendly. Y our script can be much more user friendly by
informing the user of the error and asking for the name of adirectory again.

The while loop is perfect for doing this. In fact, one of the most common uses for the while loop is to check whether user input

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480075.htm (3 von 5) [06.05.2000 23:05:34]

Hour 11: Loops: The while Loop
has been gathered correctly. Usually a strategy similar to the following is employed:

1. Set avariable'svalue to null.

2. Start awhile loop that exits when the variabl€'s value is not null.

3. Inthe while loop, ask the user a question and read in the users response.

4. Validate the response.

5. If theresponse isinvalid the variable's value is set to null. This enables the while loop to repeat.

6. If the responseisvalid, the variable's value is not changed. It continues to hold the user's response. Because the
variable's value is not null, the while loop exits.

In the following example, use the commands
e echotodisplay astring
o read toread in the user's response

I have not formally introduced these commands, but you might be familiar with them. For readers who are not familiar with
these commands, I'll cover them in Chapter 13, "Input/Output.”

A while loop follows that solves your problem:

RESPONSE=
while [-z "$RESPONSE" | ;
do

echo "Enter the nane of a directory where your files are |located:\c
read RESPONSE
if [! -d "$RESPONSE"] ; then
echo "ERROR Pl ease enter a directory pathnane."
RESPONSE=
fi
done

Here you store the user's response in the variable RESPONSE. Initially this variableis set to null, enabling the while loop to
begin executing.

When the while loop first executes, the user is prompted as follows:

Enter the nane of a directory where your files are | ocated:

The user can type the name of adirectory at this prompt. When the user finishes typing and presses Enter, the read command
puts the user's input into the variable RESPONSE. Y ou then check to make sure the input isadirectory. If the input is not a
directory, issue an error message and the loop repeats. The error message is produced so that the user knows what was wrong
with the input.

If the user does not enter any value, the variable RESPONSE is still set to null. In this case the value stored in the variable
RESPONSE is not a directory, thus the error message is produced.

The until Loop

The while loop is perfect for a situation where you need to execute a set of commands while some condition is true. Sometimes
you need to execute a set of commands until a condition istrue.

A variation on the while loop available only in ksh and bash, the until loop provides this functionality. Its basic syntax is:
until command

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480075.htm (4 von 5) [06.05.2000 23:05:34]

Hour 11: Loops: The while Loop

do
|1 st
done

Here command is a single command to execute, whereas list is a set of one or more commands to execute. Although command
can be any valid UNIX command, it is usually atest expression of the type covered in the last chapter.

The execution of an until loop isidentical to that of the while loop and proceeds according to the following steps:
1. Execute command.
2. If the exit status of command is nonzero, exit from the until loop.
3. If the exit status of command is zero, execute list.
4. When list finishes executing, return to Step 1.

If both command and list are short, the until loop can be written on asingle line as follows:
until command ; do list ; done

In most cases the until loop isidentical to awhile loop with listl negated using the ! operator. For example, the following while
loop

x=1
while [! $x -ge 10]
do
echo $x
x="echo "$x + 1" | bc’
done

is equivalent to the following until loop:

x=1;
until [$x -ge 10]
do
echo $x
x="echo "$x + 1" | bc’
done

The until loop offers no advantages over the equivalent while loop. Because it isn't supported by all versions of the Bourne shell,
programmers do not favor it. | have covered it here because you might run across it occasionally.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 11: Loops —_ oPrevious Chapter__Next Chapten
Sections in this Chapter:

The while Loop “TSummary

The for and select L oops “Questions

L oop Control ~Terms oPrevious Section—_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480075.htm (5 von 5) [06.05.2000 23:05:34]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 11: Loops: The for and select Loops

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 11: Loops —_ oPrevious Chapter._Next Chapten—s
Sectionsin this Chapter:

The while L oop = Summary

The for and select L oops “Questions

Loop Control ~Terms cPrevious Section_Next Section—

The for and select Loops

Thefor LOOD we
The select Loo

Unlike the while loop, which exits when a certain condition is false, both the for and select |oops operate on lists of items.
The for loop repeats a set of commands for every itemin alist, whereas the select |oop enables the user to select an item
from alist.

The for Loop

The basic syntax is

for nane in wordl word2 ... wordN
do

| i st
done

Here name is the name of a variable and word1 to wordN are sequences of characters separated by spaces (words). Each
time the for loop executes, the value of the variable name is set to the next word in the list of words, word1 to wordN. The
first time, nameis set to wordl; the second time, it's set to word2; and so on.

This means that the number of times afor loop executes depends on the number of words that are specified. For example,
if the following words were specified to afor loop

there cones a tine
the loop would execute four times.
In each iteration of the for loop, the commands specified in list are executed.

Y ou can aso write the entire loop on asingle line as follows:
for name in wordl word2 ... wordN ; do list ; done

If list and the number of words are short, the single line form is often chosen; otherwise, the multiple-line formis
preferred.
A simple for loop exampleis

for i in012345673829
do

echo $i
done

This loop countsto nine as follows:

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480076.htm (1 von 5) [06.05.2000 23:05:34]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 11: Loops: The for and select Loops

©Oo~NOOITh~WNEO

Note that although the output isidentical to the while loop, the for loop does something altogether different. In each
iteration, $i is set to the next item in the list. When the list is finished, the loop exits.

In this example | chose the list to be the numbers from 0 to 9. In the while loop, the next number to display was being
computed, and it was not part of a predetermined list.

If you change the list dlightly, notice how the output changes:

for i in0124358729
do

echo $i
one

O~NoOOTWwWwh~NPEFPOQ

Manipulating a Set of Files

Say that you need to copy abunch of files from one directory to another and change the permissions on the copy. You
could do this by copying each file and changing the permissions manually.

A better solution would be to determine the commands you need to execute in order to copy afile and change its
permissions and then have the computer do thisfor every file you were interested in. In fact this is one of the most
common uses of the for loop-- iterating over a set of file names and performing some operations on those files.

The procedure to do this follows:

1. Create afor loop with a variable named file or FILE. Other favored namesincludei, j, and k. Usually the name
of the variableis singular.

2. Create alist of filesto manipulate. Thisis frequently accomplished using the filename substitution technique |
discussed in Chapter 8, "Substitution."

3. Manipulate the filesin the body of the loop.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480076.htm (2 von 5) [06.05.2000 23:05:34]

Hour 11: Loops: The for and select Loops
An example of thisisthe following for loop:
for FILE in $HOVE . bash*
do
cp $FI LE ${HOVE}/ public_htn
chnod a+r ${HOVE}/ public_htm /${FlI LE}
done

Inthisloop | use filename substitution to obtain alist of filesin my home directory that start with .bash*. In the body of
the loop, | copy each of these filesto my public_html directory, and then | make them readable by everyone. This way
people stopping by my Web page can see the scripts.

Notice that you are using the name FILE for the variable. Thisis because each time you are dealing with asingle file from
alist of files. The rationale behind making the for loop's variable singular, such as FILE instead of FILES, is that you are
dealing with only one item from a set of items each time the loop executes.

The select Loop

The select loop provides an easy way to create a numbered menu from which users can select options. It is useful when
you need to ask the user to choose one or more items from alist of choices.

Thisloop was introduced in ksh and has been adapted into bash. It is not availablein sh.

The basic syntax of the select loop is

sel ect nane in wordl word2 ... wordN
do

| i st
done

Here name is the name of a variable and word1 to wordN are sequences of characters separated by spaces (words). The set
of commands to execute after the user has made a selection is specified by list.

The execution process for a select loop is as follows:
1. Eachitemin listl is displayed along with a number.
2. A prompt, usually #?, is displayed.
3. When the user enters avalue, $REPLY is set to that value.

4. If REPLY contains a number of adisplayed item, the variable specified by name is set to theitem in list1 that
was selected. Otherwise, theitemsin list1 are displayed again.

5. When avalid selection is made, list2 executes.

6. If list2 does not exit from the select loop using one of the loop control mechanisms such as break, the process
startsover at step 1.

If the user enters more than one valid value, $REPLY contains all the user's choices. In this case, the variable specified by
nameis not set.

An Example of the select Loop

One common use of the select loop isin scripts that configure software. The following example is asimplified version of
one such script. The actual configuration commands have been omitted because they are not relevant in this discussion.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480076.htm (3 von 5) [06.05.2000 23:05:34]

Hour 11: Loops: The for and select Loops

sel ect COVMPONENT in conpl conp2 conp3 all none
do
case $COVPONENT in
conmpl| conp2| conp3) ConpConf $COVPONENT ; ;
all) ConmpConf conpl
ConmpConf conp2
CompConf conp3
none) break ;;
*) echo "ERROR: Invalid selection, $REPLY." ;;
esac
done

The menu presented by the select loop looks like the following:
1) conpl

2) conp2

3) conp3

4) all

5) none

#?

Here you see that each of the itemsin thelist
conpl conp2 conp3 all none

are displayed with a number preceding them. The user can enter one of these numbersto select a particular component.

If avalid selection is made, the select loop executes a case statement contained in its body. This case statement performs
the correct action based on the user's input. Here the correct action is either calling a command named CompConf, exiting
the loop, or displaying an error message.

Changing the Prompt

Y ou can change the prompt displayed by the select loop by altering the variable PS3. If PS3is not set, the default prompt,
#?, isdisplayed. Otherwise the value of PS3 is used as the prompt to display. For example, the commands

$ PS3="Pl ease nake a selection => " ; export PS3

change the menu displayed in the previous example to the following:
1) conpl

2) conp2

3) conp3

4) all

5) none

Pl ease make a sel ection =>

Notice that the value of PS3 that you used has a space asits last character so that user input does not run into the prompt.
Y ou do thisin order to make the menu user-friendly.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 11: Loops —_ oPrevious Chapter._Next Chapten—s

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480076.htm (4 von 5) [06.05.2000 23:05:34]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 11: Loops: The for and select Loops

Sections in this Chapter:
The while L oop = Summary

The for and select Loops “TQuestions
Loop Control ~Terms —Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480076.htm (5 von 5) [06.05.2000 23:05:34]

Hour 11: Loops: Loop Control

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 11: Loops —_ oPrevious Chapter._Next Chapten—s
Sectionsin this Chapter:

The while L oop = Summary

Thefor and select L oops “Questions

Loop Control ~Terms cPrevious Section_Next Section—

Loop Control

Infinite Loops and the break Commante
The continue Command —

So far you have looked at creating loops and working with loops to accomplish different tasks. Sometimes you need to
stop aloop or skip iterations of the loop. In this section you'll ook at the commands used to control loops.

e break

e continue

Infinite Loops and the break Command

When you looked at the while loop earlier in this chapter, it terminated when a particular condition was met. This
happened when the task of the while loop completed.

If you make a mistake in specifying the termination condition of awhile loop, it can continue forever. For example, say
you forgot to specify the $ before the x in the test expression:

x=0
while [x -1t 10]
do
echo $x
x="echo "$x + 1" | bc’
done

This loop would continue to display numbers forever. A loop that executes forever without terminating
executes an infinite number of times. For this reason, such loops are called infinite loops.

In most cases infinite looping is not desired and stems from programming errors, but in certain instances they can be
useful. For example, say that you need to wait for a particular event, such as someone logging on to a system, to occur.

Y ou can use an infinite loop to check every few seconds whether the event has occurred. Because you don't know how
many times you need to execute the loop, when the event occurs, you can exit the infinite loop using the break command.

In sh, you can create infinite loops using the while loop. Because a while loop executes list while command is true,
specifying command as either : or /bin/true causes the loop to execute forever.

The basic syntax of the infinite whileloop is
whi | e
do
li st
done

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480077.htm (1 von 3) [06.05.2000 23:05:35]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 11: Loops: Loop Control

In most infinite loops, the while loop usually exits from within list via the break command, which enables you to exit any
loop immediately.

Consider the following interactive script that reads and executes commands:

whil e :
do
read CMVD
case $CMVD in
[aQ [[aQ [uU[il][tT]) break ;;
*) process $C\VD ;;
esac
done

In this loop you read a command at the beginning of each iteration. If that command is either q or Quit, the loop exits;
otherwise, the loop tries to process the command.

Breaking Out of Nested Loops

The break command also accepts as an argument an integer, greater or equal to 1, indicating the number of levelsto break
out of. Thisfeatureis useful when nested loops are being used. Consider the following nested for loops:

for i in12345

do
nmkdir -p / mt/backup/ docs/ ch0%${i}
if [$?2 -eq O] ; then
for j in doc ¢ h mpl sh
do
cp $HOVE/ docs/ chO${i}/*.${j} / mmt/backup/docs/ch0${i}
if [$?2 -ne 0] ; then break 2 ; fi
done
el se
echo "Coul d not nake backup directory.”
fi
done

In thisloop, I'm making a backup of several important files from my home directory to the backup directory. The outer
loop takes care of creating the backup directory, whereas the inner loop copies the important files based on the extension.

In the inner loop, you have a break command with the argument 2. Thisindicates that if an error occurs while copying you
should break out of both loops, and not just the inner loop.

The continue Command

The continue command is similar to the break command, except that it causes the current iteration of the loop to exit,
rather than the entire loop. This command is useful when an error has occurred but you want to try to execute the next
iteration of the loop.

As an example, the following loop doesn't exit if one of the input filesis bad:
for FILE in $FILES ;

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480077.htm (2 von 3) [06.05.2000 23:05:35]

Hour 11: Loops: Loop Control

do
if [! -f "SFILE"] ; then
echo "ERROR. $FILE is not a file."
conti nue
fi
process the file
done

If one of the filenamesin $FILES is not afile, thisloop skipsit, rather than exiting.
Sams Teach Yourself Shell Programming in 24 Hours Contents Index

Sectionsin this Chapter:™

The while L oop =Summary
Thefor and select Loops ““Questions
Loop Control =Terms cPrevious Section_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480077.htm (3 von 3) [06.05.2000 23:05:35]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 11: Loops: Summary

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The while Loop = Summary
The for and select L oops “Questions
Loop Control ~Terms cPrevious Section__Next Sectiono

Loops are a powerful programming tool that enable you to execute a set of commands repeatedly. In this chapter, you have
examined the following types of loops available to shell programmers:

e while
e until

o for

e Sdlect

Y ou have also examined the concept of nested loops, infinite loops, and loop control. In the next chapter, I'll introduce the
concept of parameters. Here you'll see one of the most common applications of 1oops.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The while Loop = Summary
The for and select L oops “Questions
L oop Control ~Terms Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480078.htm [06.05.2000 23:05:35]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 11: Loops: Questions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The while L oop = Summary
The for and select L oops “TQuestions
L oop Control ~Terms cPrevious Section__Next Section
Questions
1. What changes are required to the following while loop
x=0
while [$x -1t 10]
do

echo "$x \c"
y=$(($x-1))

X=3$(($x+1))

while [$y -ge 0] ; do

y=$((3$y-1))
echo "$y \c"
done
echo

done

so that the output looks like the following:

DD DMD
o1 o1 01 01
(2o R e)]

-
7 8
456789

cNeololoNeoNeoloNoNeoNa
PR RPRRRRRR

[EEY
NPNNDNNDNDNDN

WWwWwwWwwww

2. Write a select loop that lists each file in the current directory and enables the user to view the file by selecting its
number. In addition to listing each file, use the string Exit Program as the key to exit the loop. If the user selects an
item that is not aregular file, the program should identify the problem. If no input is given, the menu should be
redisplayed.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The while L oop Summary
Thefor and select L oops “Questions
L oop Control ~Terms cPrevious Section_Next Sectiono

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480079.htm (1 von 2) [06.05.2000 23:05:35]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 11: Loops: Questions

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480079.htm (2 von 2) [06.05.2000 23:05:35]

Hour 11: Loops: Terms

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The while Loop = Summary
Thefor and select Loops “Questions
Loop Control ~Terms cPrevious Section__Next Sectiono

L oops Loops enable you to execute a series of commands multiple times. Two main types of 1oops are the while and for
loops.

Body The set of commands executed by aloop.
Iteration A single execution of the body of aloop.
Nested Loops When aloop islocated inside the body of another loop it is said to be nested within another loop.

Infinite Loops Loopsthat execute forever without terminating.

Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex

Sectionsin this Chapter:™

The while L oop = Summary
The for and select Loops “Questions
Loop Control ~Terms Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480080.htm [06.05.2000 23:05:36]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 12: Parameters: Special Variables

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 12: Parameters —_ oPrevious Chapter—Next Chapter
Sectionsin this Chapter:

Special Variables ~Conclusion

Options and Arguments “Questions

Option Parsing in Shell Scripts ™ cPrevious Section_Next Section—

Hour 12
Parameters

Asyou saw in previous chapters, the general format for the invocation of programsin UNIX is
command options files

Here command is the command name, options is any option that you need to specify, and filesis an optional list of fileson
which the command should operate. Consider the following example:

$1s -1 *. doc
Herelsisthe command, -l isthe only option, and *.doc isthe list of files for Isto operate on.

Because most UNIX users are familiar with thisinterface, you should adhere to this format in shell scripts. This means that
scripts that can have options specified must be able to read and interpret them correctly.

Y ou have two common methods for the handling options passed to a shell script:
o Handle options manually using a case statement
o Handle options using the getopts command

For scripts that support only one or two options, the first method is easy to implement and works quite well, but many
scripts allow any combination of several options to be given. For such scripts, the getopts command is very useful because
it affords the maximum flexibility in parsing options.

This chapter looks at both methods but it first covers the topic of specia shell variables.

Special Variables

The shell defines several special variables that are relevant to option parsing. In addition to these, afew variables give the
status of commands that the script executes. Table 12.1 describes al of the special variables defined by the shell.

In this section you construct a simple yet useful shell script that illustrates the use of these variables.

Table 12.1 Special Shell Variables

|Variable|Description
|$O |The name of the command being executed. For shell scripts, thisis the path with which it was invoked.

$n These variables correspond to the arguments with which a script was invoked. Here nis a positive decimal
number corresponding to the position of an argument (the first argument is $1, the second argument is $2, and
SO on).

|$# |The number of arguments supplied to a script.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480082.htm (1 von 3) [06.05.2000 23:05:36]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 12: Parameters: Special Variables

i$* iAI | the arguments are double quoted. If a script receives two arguments, $* is equivalent to $1 $2.

$@ All the arguments are individually double quoted. If a script receives two arguments, $@ is equivalent to $1
$2.

|$? |The exit status of the last command executed.

$$ The process number of the current shell. For shell scripts, thisis the process ID under which they are
executing.

|$! |The process number of the last background command.

Using $0

Start by looking at $0. This variable is commonly used to determine the behavior of scripts that can be invoked with more
than one name. Consider the following script:

#! / bi n/ sh
case $0 in
*listtar) TARGS="-tvf $1" ;;
*maket ar) TARGS="-cvf $1.tar $1" ;;
esac
tar $TARGS

Y ou can use this script to list the contents of atar file (t asin tape and ar as in archive, acommon format for distributing
filesin UNIX) or to create atar file based on the name with which the script isinvoked. Thetar fileto read or createis
specified as the first argument, $1.

| called this script mytar and made two symbolic linksto it called listtar and maketar as follows:

$In-s nytar listtar
$In-s nytar maketar

If the script isinvoked with the name maketar and is given adirectory or filename, atar fileis created. If you had a
directory called fruits with the following contents

$Is fruits

appl e banana mango peach pear

you can invoke the script as maketar to obtain atar file called fruit.tar containing this directory, by issuing the following
command:

$./maketar fruits

If you want to list the contents of this tar file, you can invoke the script as follows:
$./listtar fruits.tar

This gives us the following output:

rwxr-xr-x 500/100
rw-r--r-- 500/100
rwr--r-- 500/100
rwr--r-- 500/100
rwr--r-- 500/100
rwr--r-- 500/100

Nov 17 08:48 1998 fruits/

Nov 17 08:48 1998 fruits/apple
Nov 17 08:48 1998 fruits/banana
Nov 17 08:48 1998 fruits/ mngo
Nov 17 08:48 1998 fruits/pear
Nov 17 08:48 1998 fruits/peach

ecNoloNoNoNe

For this example, the output that you encounter depends on the version of tar that isinstalled on your machine. Some

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480082.htm (2 von 3) [06.05.2000 23:05:36]

Hour 12: Parameters: Special Variables

versionsinclude more detail in the output than are shown here.

Usage Statements

New T :
Another common use for $0 isin the usage statement for a script, which is a short message informing the user
how to invoke the script properly. All scripts used by more than one user should include such a message.

In general, the usage statement is something like the following:

echo "Usage: $0 [options][files]”

Simplifying Script Maintenance

Using $0 as I'veillustrated is encountered in the install and the uninstall scripts of some software packages.

Because these scripts share many of the same routines and global variables, it is desirable, for ease of
maintenance, to merge them into a single script having different behavior depending on the name with which
itisinvoked.

If you are writing scripts that need to share main routines, consider using such a scheme to simplify
mai ntenance.

If you consider the mytar script given previously, a usage statement would be a helpful addition, in case the script was
called with some name other than the two names it knows about. To implement this, change the case statement as follows:

case $0 in
*listtar) TARGS="-tvf $1" ;;
*maket ar) TARGS="-cvf $l.tar $1" ;;
*) echo "Usage: $0 [file|directory]”
exit O

esac

Thus, if the script isinvoked as just mytar, you see following message:
Usage: nytar [file|directory]

Although this message describes the usage of the script correctly, it does not inform us that the script's name was given
incorrectly. There are two possible methods for rectifying this:

e Hard coding the valid namesin the "usage statement"

e Changing the script to use its arguments to decide in which mode it should run

To demonstrate the use of options, the next section uses the latter method.

Sams Teach Yourself Shell Programming in 24 Hours Contents [ndex
Hour 12; Parameters —_— oPrevious Chapter—_Next Chaptena
Sections in this Chapter:

Special Variables ~Conclusion

Options and Arguments “Questions

Option Parsing in Shell Scripts ™ Previous Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480082.htm (3 von 3) [06.05.2000 23:05:36]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 12: Parameters: Options and Arguments

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 12: Parameters —_ oPrevious Chapter—Next Chapter
Sectionsin this Chapter:

Special Variables “"Conclusion

Options and Arguments “Questions

Option Parsing in Shell Scripts ™ cPrevious Section__Next Section—

Options and Arguments

Dealing with Arguments, an Example==Common Argument Handling Problems
Using basename —

Options are given on the command line to change the behavior of a script or program. For example, the -a option of the s
command changes the behavior of the Is command from listing all visible filesto listing all files. This section shows you
how to use options to change the behavior of scripts.

New TERM

- Often you will see or hear options called arguments. The difference between the two is subtle. A command's
arguments are all of the separate strings or words that appear on the command line after the command name, whereas
options are only those arguments that change the behavior of the command.

For example, in the following
$I1s -aF fruit

the command is s, and its arguments are -aF and fruit. The options to the Is command are -aF.

Dealing with Arguments, an Example

To illustrate the use of options, change the mytar script to use its first argument, $1, as the mode argument and $2 as the
tar fileto read or create.

To implement this, change the case statement as follows:
USACGE="Usage: $0 [-c|-t] [file|ldirectory]"
case "$1" in
-t) TARGS="-tvf $2" ;;
-c) TARGS="-cvf $2.tar $2" ;;
*) echo "$USAGE"
exit O

esac

The three major changes are
o All referencesto $1 have been changed to $2 because the second argument is now the filename.
o listtar has been replaced by -t.
o maketar has been replaced by -c.

Now running mytar produces the correct output:

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480083.htm (1 von 5) [06.05.2000 23:05:36]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 12: Parameters: Options and Arguments
Usage: ./nytar [-c|-t] [file|]directory]

To create atar file of the directory fruits with this version, use the command
$./nytar -c fruits

To list the contents of the resulting tar file, fruits.tar, use the command
$./nytar -t fruits

Using basename

Currently, the message displays the entire path with which the shell script wasinvoked, but what isreally required is the
name of the shell script. You can correct this by using the basename command.

The basename command takes an absolute or relative path and returns the file or directory name. Its basic syntax is
basenane file

For example,
$ basenane /usr/bin/sh

prints the following:
sh

Using basename, you can change the variable $USAGE in the mytar script as follows:
USAGE="Usage: “~basenane $0° [-c|-t] [file|directory]"”

This produces the following output:

Usage: nytar [-c|-t] [file|directory]

Y ou could also have used the basename command in the first version of the mytar script to avoid using the * wildcard
character in the case statement as follows:

#! / bi n/ sh
case ~basenane $0° in
listtar) TARGS="-tvf $1" ;;
maket ar) TARGS="-cvf $1.tar $1" ;;
esac
tar $TARGS

In this version, the basename command allows us to match the exact names with which scripts can be called. This
simplifies the possible user interactions and is preferred for that reason.

Asan illustration of a potential problem with the original version, you can seethat if the script is called
$./nmakelisttar

the original version would use the first case statement, even though it was incorrect, but the new version would fall
through and report an error.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480083.htm (2 von 5) [06.05.2000 23:05:36]

Hour 12: Parameters: Options and Arguments

Common Argument Handling Problems

Now that the mytar script uses options to set the mode in which the script runs, you have another problem to solve.
Namely, what should it do if the second argument, $2, is not provided?

Y ou don't have to worry about what happens if the first argument, $1, is not provided because the case statement deals
with this situation via the default case, *.

The simplest method for checking the necessary number of arguments is to see whether the number of given arguments,
$#, matches the number of required arguments. Add this check to the script:

#!/ bi n/ sh
USACGE="Usage: “basenane $0° [-c|-t] [file|ldirectory]"

if [$# -1t 2] ; then
echo " $USAGE"
exit 1

fi

case "$1" in
-t) TARGS="-tvf $2" ;;
-c) TARGS="-cvf $2.tar $2" ;;
*) echo "$USAGE"
exit O

esac

tar $TARGS

Handling Additional Files

This mytar script is mostly finished, but you can still make a few improvements. For example, it only deals with the first
file that is given as an argument, and it does not check to see whether the file argument isreally afile.

Y ou can add the processing of all file arguments by using the special shell variable $@. Start with the -t (list contents)
option. The case statement now becomes

case "$1" in
-t) TARGS="-tvf"
for i in"$@ ; do
if [-f "$i"] ; then tar $TARGS "S$i" ; fi ;
done

-c) TARGS="-cvf $2.tar $2" ;
tar $TARGS

*) echo "$USAGE" ;
exit O

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480083.htm (3 von 5) [06.05.2000 23:05:36]

Hour 12: Parameters: Options and Arguments

esac

The main change is that the -t case now includes afor loop that cycles through the arguments and checks to see whether
each oneisafile. If an argument isafile, tar isinvoked on that file.

Caution - When examining the arguments passed to a script, two specia variables are available for
inspection, $* and $@.

The main difference between these two is how they expand arguments. When $* is used, it ssmply expands
each argument without preserving quoting. This can sometimes cause a problem. If your script is given a
filename containing spaces as an argument,

nytar -t "ny tar file.tar"

using $* would mean that the for loop would call tar three times for files named my, tar, and file.tar, instead
of once for the file you requested: my tar file.tar.

By using $@, you avoid this problem because it expands each argument as it was quoted on the command
line.

Some Minor Issues

Y ou should deal with afew more minor issues. Looking closely, you see that al the arguments given to the script,
including the first argument, $1, are considered as files. Because you are using the first argument as the flag to indicate the
mode in which the script runs, you should not consider it.

Not only does this reduce the number of times the for loop runs, but it also prevents the script from accidentally trying to
run tar on afile with the name -t. To remove the first argument from the list of arguments, use the shift command. A
similar change to the make mode of the script is also required.

Another issue is what the script should do when an operation fails. In the case of the listing operation, if the tar cannot list
the contents of afile, skipping the file and printing an error would be a reasonabl e operation. Because the shell setsthe
variable $? to the exit status of the most recent command, you can use that to determine whether atar operation failed.

Resolving the previous issues, your script is as follows:
#!/ bin/sh

USACE="Usage: “basenane $0° [-c|-t] [files|directories]"”

if [$# -1t 2] ; then
echo "$USAGE" ;
exit 1 ;

fi

case "$1" in
-t) shift ; TARGS="-tvf" ;
for i in"$@ ; do
if [-f "$i"] ; then

FILES="tar $TARGS "$i" 2>/dev/null’

if [$?2 -eq O] ; then
echo ; echo "$i" ; echo "$FI LES"

el se
echo "ERROR: $i not a tar file."

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480083.htm (4 von 5) [06.05.2000 23:05:36]

Hour 12: Parameters: Options and Arguments
fi
el se
echo "ERROR $i not a file."
fi
done

-C) ’s’hift ; TARGS="-cvf" ;
tar $TARGS archive.tar "$@

*) echo " $USAGE"
exit O
esac
exit $?

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Specia Variables “"Conclusion
Options and Arguments “Questions
Option Parsing in Shell Scripts — oPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480083.htm (5 von 5) [06.05.2000 23:05:36]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 12: Parameters: Option Parsing in Shell Scripts

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 12: Parameters —_ cPrevious Chapter—_Next Chapter—m
Sectionsin this Chapter:

Special Variables “"Conclusion

Options and Arguments “Questions . . .
Option Parsing in Shell Scripts ™~ oPrevious Section_Next Sectiono

Option Parsing in Shell Scripts

Using getopts

Y ou have two common ways to handle the parsing of options passed to a shell script. In the first method, you can manually
deal with the options using a case statement. This method was used in the mytar script presented earlier in the chapter. The
second method, discussed in this section, is to use the getopts command.

The syntax of the getopts command is
getopts option-string variable

Here option-string is a string consisting of all the single character options getopts should consider, and variable is the
name of the variable that the option should be set to. Usually the variable used is named OPTION.

The process by which getopts parses the options given on the command lineis

1. The getopts option examines all the command line arguments, looking for arguments starting with the -
character.

2. When an argument starting with the - character is found, it compares the characters following the - to the
characters given in the option-string.

3. If amatch isfound, the specified variable is set to the option: otherwise, variableis set to the ? character.
4. Steps 1 through 3 are repeated until all the options have been considered.

5. When parsing has finished, getopts returns a nonzero exit code. Thisallowsit to be easily used in loops. Also,
when getopts has finished, it sets the variable OPTIND to the index of the last argument.

Another feature of getopts is the capability to indicate options requiring an additional parameter. Y ou can accomplish this
by following the option with a: character in the option-string. In this case, after an option is parsed, the additional
parameter is set to the value of the variable named OPTARG.

Using getopts

To get afedling for how getopts works and how to deal with options, write a script that simplifies the task of uuencoding a
file

For readers who are not familiar with uuencode, it is a program that was originally used to encode binary files (executable
files) into ASCII text so that they could be emailed or transferred via FTP. Today, MIME encoding has taken the place of
uuencoding for email attachments, but it is still used for posting binaries to newsgroups and transferring them via modem.

You'l first examine the interface of this script, which makesit easier to understand the implementation.
This script should be able to accept the following options:

o -f toindicate the input filename

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480084.htm (1 von 4) [06.05.2000 23:05:37]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 12: Parameters: Option Parsing in Shell Scripts

e -Otoindicate the output filename
¢ -V toindicate the script should be verbose

The getopts command to implement these requirementsis
getopts e:o:v OPTI ON

Thisindicates that al the options expect for -v to require an additional parameter. The variables you require in order to
support this are

e VERBOSE, which stores the value of the verbose flag. By default thisisfalse.
e INFILE, which stores the name of the input file.

e OUTFILE, which stores the name of the output filename. If this value is unset, uudecode uses the name supplied in
the input file, and uuencode uses the name of the supplied input file and append to it the .uu extension.

The loop to implement the preceding requirementsis as follows:

VERBCSE=f al se
while getopts f:o:v OPTION ;
do
case "$OPTION' in
f) | NFI LE="$OPTARG' ;;
0) QOUTFI LE="$OPTARG' ;;
v) VERBOSE=true ;;
\'?) echo "$USAGE" ;
exit 1
esac
done

Now that you have dealt with option parsing, you need to deal with still other error conditions. For example, what should
your script do if the input fileis not specified?

The simplest answer would be to exit with an error, but with alittle more work, you can make the script much more
user-friendly. If you use the fact that getopts sets the variable OPTIND to the value of the last option that it scanned, you
can have the script assume that the first argument after thisis the input filename. If no additional arguments remain, you
should exit. Your error checking consists of the following lines:

shift “echo "$OPTIND - 1" | bc’

if [-z "$1" -a -z "SINFILE"] ; then
echo "ERROR: Input file was not specified.”
exit 1

fi

if [-z "$INFILE"] ; then INFILE="$1" ; fi

Here you use the shift command to discard the arguments given to the script by one minus the last argument processed by
getopts. The exact number of arguments to shift is calculated by the bc command, which is acommand line calculator. Its
usage isexplained in detail in Chapter 18, "Miscellaneous Tools."

Strictly speaking, you do not have to shift the arguments. It simplifiesthe if statement.

After shifting the arguments, check whether the new $1 contains some value. If it does not, print and exit. Otherwise, set
INFILE to the filename specified by $1.

Y ou aso need to set the output filename, in case the -0 option was not specified. Y ou can use variable substitution to
accomplish this:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480084.htm (2 von 4) [06.05.2000 23:05:37]

Hour 12: Parameters: Option Parsing in Shell Scripts

${ QUTFI LE: =${ | NFI LE} . uu}

Here the name of the output fileis set to the input file plus the .uu extension, if an output file is not given. Note that you
use the : command to prevent the shell from trying to execute the result of the variable substitution.

When you have made sure that all the inputs are correct, the actual work is quite ssmple. The uuencode command that you
useis:

uuencode $I NFI LE $I NFI LE > $OUTFI LE ;

Y ou should a'so check whether the input file is really afile before doing this command, so the actual body is
if [-f "S$INFILE"] ; then uuencode $I NFILE $I NFI LE > $QUTFI LE ; fi

At this point the script is fully functional, but you still need to add the verbose reporting. This changes the preceding if
statement to the following:

if [-f "$INFILE'] ; then

if ["$VERBOSE" = "true"] ; then
echo "uuencodi ng $INFILE to $OQUTFILE... \c"

fi
uuencode $I NFI LE $I NFI LE > $QUTFI LE ; RET=$%$? ;
if ["$VERBOSE" = "true"] ; then
MBG="Fai | ed" ;
if [$RET -eq 0] ; then MSG="Done." ; fi
echo $M5G
fi

fi

Y ou could simplify the verbose reporting to print a statement after the uuencode compl etes, but issuing two statements,
one before the operation starts and one after the operation completes, is much more user-friendly. This method clearly
indicates that the operation is being performed.

The complete script is as follows:
#! / bi n/ sh

USAGE="Usage: “basenane $0° [-v] [-f] [filenanme] [-o0] [filename]";
VERBOSE=f al se

whil e getopts f:o:v OPTION ; do
case "$OPTION' in
f) I NFI LE="$OPTARG' ;;
0) QUTFI LE="$OPTARG' ;;
v) VERBOSE=true ;
\'?) echo "3$USAGE" ;
exit 1
esac
done

shift “echo "$OPTIND - 1" | bc’

if [-z "$1" -a -z "SINFILE"] ; then
echo "ERROR: Input file was not specified.”
exit 1

fi

if [-z "$INFILE"] ; then I NFILE="$1" ; fi

: ${QUTFI LE: =${| NFI LE} . uu}

if [-f "S$INFILE"] ; then

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480084.htm (3 von 4) [06.05.2000 23:05:37]

Hour 12: Parameters: Option Parsing in Shell Scripts

if ["$VERBOSE' = "true"] ; then
echo "uuencoding $INFILE to $OQUTFILE. .. \c"

fi
uuencode $I NFI LE $I NFI LE > $OUTFI LE ; RET=$7?
if ["$VERBOSE" = "true"] ; then
MSG="Failed" ; if [$RET -eq O] ; then MSG="Done." ; fi
echo $MsG
fi
fi
exit O

With this script you can uuencode filesin al of the following ways (assuming the script is called uu):

uu chll. doc
uu -f chll. doc
uu -f chll.doc -0 chll.uu

In each of the preceding examples, file ch11.doc is uuencoded. The last one places the result into the file ch11.uu instead
of the default ch11.doc.uu, which might be required if the document needs to be used on a DOS or Windows system.

Because this script uses getopts any of the commands given previously can run in verbose mode by simply specifying the
-v option.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 12; Parameters —_ oPrevious Chapter__Next Chapters
Sectionsin this Chapter:

Specia Variables “Conclusion

Options and Arguments “Questions)))
Option Parsing in Shell Scripts ™~ cPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480084.htm (4 von 4) [06.05.2000 23:05:37]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 12: Parameters: Conclusion

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Special Variables “"Conclusion
Options and Arguments “Questions
Option Parsing in Shell Scripts ™ oPrevious Section._Next Sectiono

Conclusion

In this chapter you examined how to deal with arguments and options in shell script. Specifically you looked at the
following methods:

e Manually handling arguments and options using a case statement
e Handling options using getopts

Y ou worked through two examples that illustrate the implementation and rationale behind each method. In addition, you
saw several special variables that pertain to arguments and command execution.

Asyou will seein later chapters, using options greatly increases the flexibility and the reusability of your shell scripts.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Special Variables “Conclusion
Options and Arguments “Questions
Option Parsing in Shell Scripts ™ oPrevious Section._Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480085.htm [06.05.2000 23:05:37]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 12: Parameters: Questions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
Special Variables “"Conclusion

Options and Arguments “Questions
Option Parsing in Shell Scripts ™ oPrevious Section__Next Sectiono

Questions

1. Add tar file extraction to the mytar script.

Assume that the -x option indicates that the user wants to extract tar files and that the correct value of TARGS for
extracting tar filesis -xvf.

2. Add the extract option to the uu script. Assume that the -x option indicates that the file should be extracted, and
that the command

uudecode $I NFI LE

Is used to extract a uuencoded file.
Sams Teach Yourself Shell Programming in 24 Hours Contents Index

Sectionsin this Chapter:™

Special Variables ~Conclusion
Options and Arguments “~Questions
Option Parsing in Shell Scripts = oPrevious Section._Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480086.htm [06.05.2000 23:05:37]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 13: Input/Output: Output

Sams Teach Y ourself Shell Programmingin 24 Hours Contents |ndex
Hour 13: Input/Output —_ oPrevious Chapter—_Next Chapters
Sectionsin this Chapter:—

Output =Summary

Input “Questions

File Descriptors ~Terms oPrevious Section__Next Sectiono

Hour 13
Input/Output

Until now you have been looking at commands that print out messages. When a command prints a message, the message is
called output. In this chapter, you will look at the different types of output available to shell scripts. This chapter also
introduces the mechanisms used to obtain input from users.

Specifically, the areas that you will cover are
¢ Output to the screen
e Output to afile
e Input from afile

e Input from users

Output

Output to the Termi Nalum
Output Redirection e

Asyou have seen in previous chapters, most commands produce output. For example, the command
$ date

produces the current date in the terminal window:
Thu Nov 12 16:32: 35 PST 1998

When a command produces output that iswritten to the terminal, we say that the program has printed its output
to the Sandard Output , or STDOUT. When you run the date command, it prints the date to STDOUT.
Y ou might have also seen commands produce error messages, such as:

$ In -s chOl.doc chO1-01. doc
| n: cannot create chOl-1.doc: File Exists

New T : . . .

Error messages are not written to STDOUT, but instead they are written to a special type of output called
Sandard Error or STDERR, which isreserved for error messages. Most commands use STDERR for error messages and
STDOUT for informational messages.

You will look at STDERR later in this chapter. In this section you will ook at how shell scripts can use STDOUT to output
messages to each of the following:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480088.htm (1 von 10) [06.05.2000 23:05:38]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 13: Input/Output: Output
e Thetermina (STDOUT)

e Afile

e Thetermina and afile

Output to the Terminal

Two common commands print messages to the terminal (STDOUT):
e echo
o printf

The echo command is mostly used for printing strings that require simple formatting. The printf command is the shell
version of the C language function printf. It provides a high degree of flexibility in formatting output.

You first look at echo and then printf.

echo

The most common command used to output messages to the terminal is the echo command. Its syntax is
echo string

Here string is the string you want printed. For example, the command
$ echo Hi

produces the following output:
H
Y ou can aso embed spaces in the output as follows:

$ echo Safeway has fresh fruit
Saf eway has fresh fruit

In addition to spaces, you can embed each of the following in the string:
¢ Punctuation marks
o Variable substitutions

e Formatting escape sequences
Embedding Punctuation Marks

Punctuation marks are used when you need to ask the user a question, complete a sentence, or issue awarning. For example
the following echo statement might be the prompt in an install script:

echo Do you want to install?

Usually, significant error messages are terminated with the exclamation point. For example, the echo command
echo ERROR Could not find required libraries! Exiting.

might be found in a script that configures a program for execution.

Y ou can aso use any combination of the punctuation marks. For example, the following command uses the comma. (,),

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480088.htm (2 von 10) [06.05.2000 23:05:38]

Hour 13: Input/Output: Output
guestion mark (?), and exclamation point(!) punctuation marks:

$ echo Eliza, where the devil are ny slippers?!?
Eliza, where the devil are ny slippers?!?

Embedding Variable Substitution
Chapters 7, "Variables," and 8, "Substitution,” cover variable substitution, which is the process that the shell usesto

substitute in the value of avariable where that variable's name occurs. Often variable substitution is embedded in an echo
command, where part or all of the text of the message that is displayed depends on the value of avariable.

A common use of thistechniqueisin the display of pathnames:

echo Your hone directory is $HOVE
Your home directory is /hone/ranga

In this example, you used the simplest form of variable substitution, the $ character, but you can use any form of variable
substitution.

Formatting with Escape Sequences

In the previous examples, the output consisted of single lines with words separated by spaces. Frequently,
output needs to be formatted into columns or multiple lines. By using escape sequences you can format the output of echo.
An escape sequence is a special sequence of characters that represents another character. When the shell encounters an
escape sequence, it substitutes the escape sequence with a different character. The echo command understands several
formatting escape sequences, the most common of which are given in Table 13.1.

Table 13.1 Escape Sequences for the echo Command

|Escape Sequence [Description

|\n |Pri nts a newline character

|\t |Pri nts a tab character

\c |Prints a string without a default trailing newline

The \n escape sequence is usually used when you need to generate more than one line of output using a single echo
command. Y ou usually use this when you need to print alist preceded by a description of the list. For example, the
command

$ FRUI T_BASKET="appl e orange pear"

$ echo "Your fruit basket contains:\n$FRU T_BASKET"
Your fruit basket contains:

appl e orange pear

generates alist of fruit preceded by a description of thelist.
This example illustrates two important aspects of using escape sequences.
e Theentirestring is quoted.
e The escape sequence appears in the middle of the string and is not separated by spaces.

Whenever an escape sequence is used in the input string of an echo command, the string must be quoted to prevent the shell
from expanding the escape sequence on the command line.

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480088.htm (3 von 10) [06.05.2000 23:05:38]

Hour 13: Input/Output: Output

Also, whenever an escape sequence is used in the input string of an echo command, the string is a specification of how the
output should look. Spaces should not be used to separate the escape sequences unless that is how the output needsto be
formatted.

Y ou can always rewrite any echo command that uses the \n escape sequence as several echo commands. For example, you
can generate the same output as in the previous example using the echo command:

$ echo "Your fruit basket contains:"
$ echo $FRU T_BASKET

Another commonly used escape sequence is the \t sequence, which generates atab in the output. Usually it is used when
you need to make a small table or generate tabular output that is only afew lineslong. As an example, the following echo
command generates a small table of two users and their usernames:

$ echo "Nane \tUser Nane\nSriranga\tranga\nSrivathsaltvat hsa"
Nanme User Nane

Sriranga ranga

Srivat hsa vat hsa

Asyou can see, the heading User Name is not centered over its column. Y ou can change this by adding another tab:

$ echo "Nane\t\tUser Nane\nSriranga\tranga\nSrivathsa\tvathsa"
Nane User Nane

Sriranga ranga

Srivat hsa vat hsa

For generating large tables, the printf command, covered in the next section, is preferred because it provides a greater
degree of control over the size of each column in the table.

Another commonly used escape sequence is the \c sequence, which is frequently used in shell scripts that need to generate
user prompts or diagnostic output.

Asyou have seen in the previous example, the default behavior of echo isto add a newline at the end of its output. When
you are generating a prompt, thisis not the most user-friendly behavior. When the \c escape sequence is used, echo does not
output a newline when it finishes printing its input string.

As an example of its use, this excerpt from a shell script

echo "Making directories, please wait...\t\c"

for i ${DIRS TO MAKE} ; do nkdir -p $I ; done

echo "Done."

produces diagnostic output that 1ooks like the following:

Making directories, please wait... Done.

Without the \c escape at the end of the first echo statement, the output |ooks like the following:

Maki ng directories, please wait...
Done.

Asyou can see, the previous version of the output is more user-friendly, especially if you have several such linesin
sequence.
Another possible use is shown in the following example:

echo "Copying files, please wait\t\c"
for i in ${FILES} ; do cp $i $DEST && echo ".\c" ; done
echo "\tDone."

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480088.htm (4 von 10) [06.05.2000 23:05:38]

Hour 13: Input/Output: Output

The output is similar to the following:
Copying files, please wait Done

Hereasingle. is printed for each file that is copied.

Note - Some newer versions of sh, ksh, and bash include a version of echo as a built-in command that does
not understand the \c escape sequence. On these shells, you might see output like the following:

$ echo "Please enter your nane \c"

echo Pl ease enter your nanme \c
$

Because these versions of echo print a newline after printing the \c escape sequence literally, they defeat the
purpose of using this escape sequence. If you are using such a version of echo, you can switch to using either
/bin/echo or /usr/bin/echo, which handle the \c escape sequence correctly.

printf

The printf command is similar to the echo command, in that it enables you to print messages to STDOUT. In its most basic
form, its usage isidentical to echo. For example, the following echo command:

$ echo "Is that a mango?"

isidentical to the printf command:
$ printf "lIs that a mango?\n"

The only major difference is that the string specified to printf explicitly requires the \n escape sequence at the end of a
string, in order for a newline to print. The echo command prints the newline automatically.

Note - The printf command is located in the directory /usr/bin on Linux, Solaris, and HP-UX machines. In

addition, the printf command is a built-in command in bash.
The power of printf comes from its capability to perform complicated formatting by using format specifications. The basic
syntax for thisis

printf format argunents

Here, format is a string that contains one or more of the formatting sequences, and arguments are strings that
correspond to the formatting sequences specified in format. For those who are familiar with the C language printf function,
the formatting sequences supported by the printf command are identical.

The formatting sequences have the form:
% -] m nx

Here % starts the formatting sequence and x identifies the formatting sequences type. Table 13.2 gives possible values of x.

Table 13.2 Formatting Sequence Types

|Letter [Description

B |String

c |Character

|d |Deci mal (integer) number

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480088.htm (5 von 10) [06.05.2000 23:05:38]

Hour 13: Input/Output: Output

Ix |Hexadecimal number

o |Octal number

le |Exponential floating-point number
If |Fixed floating-point number

[|Compact floating-point number

Depending on the value of x, the integers m and n are interpreted differently. Usually misthe minimum length of afield,
and n is the maximum length of afield. If you specify areal number format, nis treated as the precision that should be
used.

The hyphen (-) left justifies afield. By default, all fields are right justified.
Look at afew examplesto see how to use printf in practice.

Consider the following shell script written with only echo commands:
#!/ bi n/sh

echo "File Nanme\t Type"

for i in *;
do
echo "$i\t\c"
if [-d $i]; then
echo "directory"
elif [-h &]; then
echo "synbolic |ink"
elif [-f $i]; then
echo "file"
el se
echo "unknown"
fi
done

This script produces atable that lists al the visible filesin the current directory along with their file type. The output looks
similar to the following:

Fil e Nane Type
RCS di rectory
dev di rectory

hunor di rectory
I mges directory

I ndex. htm file
install directory
j ava di rectory

Asyou can see, the items in the table's rows are not lined up with the table headings. Y ou could fix this using spaces and
tabs in conjunction with the echo command, but using the printf command makes the task extremely easy.

First, you must determine the format sequence to use. Because the filenames and the column headings are both strings, you
need the %s format sequence for formatting. Then you need to pick a maximum size for the filenames. If you pick 32 asthe

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480088.htm (6 von 10) [06.05.2000 23:05:38]

Hour 13: Input/Output: Output

maximum size of your format sequence, the first column becomes %32s. Because you don't really care about the size of the
second column, you can stick with %s for that column. With these changes your script becomes

#!'/ bi n/ sh
printf "9%82s %\n" "File Name" "File Type"

for i in *;
do
printf "982s " "$i"
if [-d"$i"]; then
echo "directory"
elif [-h "$i"]; then
echo "synbolic |ink"
elif [-f "$i"]; then
echo "file"
el se
echo "unknown"
fi;
done

The output now changes as follows:

File Nane File Type
RCS directory
dev directory

hunor directory
| mages directory

i ndex. html file
install directory
java directory

Asyou can see, the columns line up but the justification of the first column isincorrect. By adding the - character to the
first format sequence, you get the correct sequence %-32s. The script now looks like:

#!/ bi n/sh
printf "% 32s %\n" "File Nanme" "File Type"

for i in *;
do
printf "%32s " "$i"
if [-d"$i"]; then
echo "directory"
elif [-h "$i"], then
echo "synbolic |ink"
elif [-f "$i"]; then
echo "file"
el se
echo "unknown"

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480088.htm (7 von 10) [06.05.2000 23:05:38]

Hour 13: Input/Output: Output
fi:
done

The output is now formatted nicely:

Fil e Nane File Type
RCS di rectory
dev di rectory
hunor di rectory
I mages di rectory
I ndex. ht n file

I nstal | di rectory
j ava di rectory

One thing that you might have noticed about this script isthat it uses both printf and echo. Because the printf statements
used in this example do not explicitly specify the \n escape sequence, these commands do not produce a newline. To print
the newline at the end of each output line, you use echo.

To format numbers, specify a number formatting sequence, such as %f, %e, or %g, instead of the string formatting
sequence, %s. One of the questions at the end of this chapter familiarizes you with using number formats.

Output Redirection

In the process of developing a shell script, you often need to capture the output of acommand and store it in afile. When
the output isin afile, you can edit and modify it easily.

New Tem . S oo . .
- In UNIX, the process of capturing the output of acommand and storing it in afileis called output redirection
because it redirects the output of acommand into afileinstead of the screen. To redirect the output of acommand or a
script to afile, instead of STDOUT, use the output redirection operator, >, as follows.

command > file
list > file

The first form redirects the output of the specified command to a specified file, whereas the second redirects the output of a
specified list to a specified file. If file exists, its contents are overwritten; if file does not exigt, it is created.

For example, the command
date > now

redirects the output of the date command into the file now. The output does not appear on the terminal, but it is placed into
thefileinstead. If you view the file now, you find the output of the date command:

$ cat now
Sat Nov 14 11:14:01 PST 1998

Y ou can also redirect the output of lists as follows:
{ date; uptine; who ; } > nylog

Here the output of the commands date, uptime, and who is redirected into the file mylog.

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480088.htm (8 von 10) [06.05.2000 23:05:38]

Hour 13: Input/Output: Output

Caution - When you redirect output to afile using the output redirection operator, the shell overwrites the
datain that file with the output of the command you specified. For example, the command

$ date > now

overwrites all the datain the file now with the output of the date command. For this reason, you should take
extra care and make sure the file you specified does not contain important information.

Appending to a File

Overwriting afile smply by redirecting output to it is often undesirable. Fortunately, the shell provides a second form of
output redirection with the >> operator, which appends output to afile. The basic syntax is

command >> file

list >> file

In these forms, output is appended to the end of the specified file, or the specified fileis created if it does not exist. For
example, you can prevent the loss of data from the file mylog each time a date is added, by using the following command:

{ date; uptine; who ; } >> nylog

If you view the contents of mylog, now you find that it contains the output of both lists:

11: 15am wup 79 days, 14:48, 5 users, |oad average: 0.00, 0.00, 0.00
ranga ttyl Aug 26 14:12
ranga ttyp2 Aug 26 14:13 (:0.0)
ranga ttypO OCct 27 19:42 (:0.0)
amma ttyp3 Cct 30 08:20 (I ocal host)
ranga ttyp4d Nov 14 11:13 (rishi.bosl and. u)
Sat Nov 14 11:15:54 PST 1998
11:16am up 79 days, 14:48, 5 users, |oad average: 0.00, 0.00, 0.00
ranga ttyl Aug 26 14:12
ranga ttyp2 Aug 26 14:13 (:0.0)
ranga ttypO Cct 27 19:42 (:0.0)
anma ttyp3 Cct 30 08:20 (I ocal host)
ranga ttyp4 Nov 14 11:13 (rishi.bosland. u)

Redirecting Output to a File and the Screen

In certain instances, you need to direct the output of a script to afile and onto the terminal. An example of thisis shell
scripts that are required to produce alog file of their activities. For interactive scripts, the log file cannot just contain the
script's output redirected to afile.

To redirect output to afile and the screen, use the tee command. The basic syntax is as follows:
command | tee file

Here command is the name of a command, such asls, and fileis the name of the file where you want the output written. For
example, the command

$ date | tee now

produces the following output on the terminal:
Sat Nov 14 19:50:16 PST 1998

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480088.htm (9 von 10) [06.05.2000 23:05:38]

Hour 13: Input/Output: Output
The same output is written to the file now.

For shell scriptsthat require all their output to be logged, the following if statement is often used:

If ["SLOGEA NG' !'= "true"] ; then
LOGA NG="true" ; export LOGE NG ;
exec $0 | tee $LOGHI LE

fi

Here you check to see whether avariable, SLOGGING, indicates that logging is turned on. If it is, the script continues;
otherwise, the script reruns, and tee sends the output to alog file. To record all the output from a script, thisif statement is
usually one of the first commandsin a script.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index
Hour 13: Input/Output —_ oPrevious Chapter__Next Chapters
Sectionsin this Chapter:—

Output = Summary

Input “Questions

File Descriptors =Terms cPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480088.htm (10 von 10) [06.05.2000 23:05:38]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 13: Input/Output: Input

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 13: Input/Output —_ oPrevious Chapter._Next Chapten—s
Sectionsin this Chapter:

Output = Summary

Input “Questions

File Descriptors ~Terms cPrevious Section__Next Sectiono

Input

Input Redirection ===PFipelines
Reading User [NPUt—

Many UNIX programs are interactive and read input from the user. To use such programs in shell scripts, you need to
provide them with input in a noninteractive manner. Also, scripts often need to ask the user for input in order to execute
commands correctly.

To provide input to interactive programs or to read input from the user, you need to use input redirection. In this section,
you will look at the following two methods in detail:

e Input redirection from files
¢ Reading input from a user

o Redirecting the output of one command to the input of another

Input Redirection

When you need to use an interactive command such as mail in a script, you need to provide the command with input. One
method for doing thisisto store the input of the command in afile and then tell the command to read input from that file.
Y ou accomplish this using input redirection.

The input can be redirected in a manner similar to output redirection. In general, input redirection is

command < file

Here the contents of file become the input for command. For example, the following would be an excellent use of
redirection:

Mai | ranga@oda. ber kel ey. edu < Fi nal _Exam Answer s

Here the input to the Mail command, which becomes the body of the mail message, isthe file Final_Exam_Answers. In

this particular example, a professor might perform this function, and the file might contain the answersto a current final
exam.

Here Documents

An additional use of input redirection isin the creation of here documents. A common use of here documents
isin the generation of email messages within scripts and in the generation of files containing the values of all the variables
in the script. Also, here documents store temporary information. Say you need to send alist of phone numbers or URLSsto
the printer. By using a here document, you can enter the information that you want to send to the printer into the here
document and then send that here document to the printer. Thisis much simpler than using atemporary file, which needs
to be created and then del eted.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480089.htm (1 von 4) [06.05.2000 23:05:39]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 13: Input/Output: Input
The general form for a here document is
command << delimter

docunent
delimter

Here the shell interprets the << operator as an instruction to read input until it finds a line containing the
specified delimiter. All the input lines up to the line containing the delimiter are then fed into the standard input of the
command.

The delimiter tells the shell that the here document has completed. Without it, the shell continues to read input forever.
The delimiter must be a single word that does not contain spaces or tabs.

For example, to print aquick list of URLS, you could use the following here document:

| pr << MYURLS
http://ww. csua. ber kel ey. edu/ ~r anga/
http://ww. ci sco.com
http://ww. mar at hon. or g/ st ory/
http://ww. gnu. or g/

MYURLS

To strip the tabs in this example, you can give the << operator a - option.

Y ou can aso combine here documents with output redirection as follows:

command > file << delimter
docunent
delimter

If used in this form, the output of command is redirected to the specified file, and the input of command becomes the here
document.
For example, you can use the following command to create a file with the short list of URLSs given previoudly:

cat > urls << MYURLS

http://ww. csua. ber kel ey. edu/ ~r anga/
http://ww. ci sco.com
http://ww. mar at hon. or g/ story/
http://ww. gnu. or g/

MYURLS

Reading User Input

A common task in shell scriptsisto prompt users for input and then read their responses. To do this, use the read
command to set the value of a variable and then evaluate the value of the variable with a case statement.

The read command works as follows:
read nane

It reads the entire line of user input until the user presses return and makes that line the value of the variable specified by
name.

An example of thisis

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480089.htm (2 von 4) [06.05.2000 23:05:39]

Hour 13: Input/Output: Input

YNEyes
printf "Do you want to play a gane [$YN? "
read YN
${ YN: =yes}
case $YN in
[yYI|[yY][eE][sS]) exec xblast ;;
*) echo "Maybe later." ;;
esac

Here you prompt the user and provide a default response. Then you read and evaluate the user's answer using a case
Statement.

A common use of input redirection in conjunction with the read command is the reading of afile one line at atime using
the while loop. The basic syntax is

whil e read LI NE
do

mani pul ate file here
done < file

In the body of the while loop, you can manipulate each line of the specified file. A ssimple example of thisis
whil e read LI NE
do
case $SLINE in
root) echo $LINE ;;
esac
done < /etc/passwd

Here only the lines that contain the string root in the file /etc/passwd are displayed. On my system, the output looks like:
root: x: 0:1: Super-User:/:/sbin/sh

In Chapters 16, "Filtering Text Using Regular Expressions,” 17, "Filtering Text with awk," and 18, "Miscellaneous Tools,"

I will show you how to use more powerful filtersin place of the case statement used here.

Pipelines

Most commandsin UNIX that are designed to work with files can also read input from STDIN. This enables you to use
one program to filter the output of another. Thisis one of the most common tasks in shell scripting: having one program
mani pul ate the output of another program.

Y ou can redirect the output of one command to the input of another command using a pipeline, which connects several
commands together with pipes as follows:

commandl | conmand2 |

The pipe character, |, connects the standard output of commandl to the standard input of command2, and so on. The
commands can be as ssimple or complex as are required.

Here are some examples of pipeline commands:
tail -f /var/adm nessages | nore

ps -ael | grep "$U D' | nore

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480089.htm (3 von 4) [06.05.2000 23:05:39]

Hour 13: Input/Output: Input

In the first example, the standard output of the tail command is piped into the standard input of the more command, which
enables the output to be viewed one screen at atime.

In the second example, the standard output of psis connected to the standard input of grep, and the standard output of grep
is connected to the standard input of more, so that the output of grep can be viewed one screen at atime. For now, simply
be aware of thistechnique of redirection. | show you how to useit to filter text in Chapters 16, 17, and 18.

Caution - One important thing about pipelinesis that each command is executed as a separate process, and
the exit status of a pipeline is the exit status of the last command.

It isvital to remember this fact when writing scripts that must do error handling.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 13: Input/Output —_ oPrevious Chapter._Next Chapten—o
Sectionsin this Chapter:™

Output = Summary

Input “TQuestions

File Descriptors ~Terms cPrevious Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480089.htm (4 von 4) [06.05.2000 23:05:39]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 13: Input/Output: File Descriptors

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 13: Input/Output —_ oPrevious Chapter._Next Chapten—s
Sectionsin this Chapter:

Output = Summary

Input “Questions

File Descriptors ~Terms cPrevious Section_Next Section—

File Descriptors

Associating Files with a File Descri ptOrm
General Input/Output Redirection —

When you issue any command, three files are opened and associated with that command. In the shell, each of
these filesis represented by a small integer called afile descriptor. A file descriptor is a mechanism by which you can
associate a number with afilename and then use that number to read and write from the file. Sometimes file descriptors are
called file handles.

The three files opened for each command along with their corresponding file descriptors are
e Standard Input (STDIN), O
e Standard Output (STDOUT), 1
e Standard Error (STDERR), 2

The integer following each of these filesisitsfile descriptor. Usually, these files are associated with the user's terminal,
but they can be redirected into other files.

In the previous examples in this chapter, you have used input and output redirection using the default file descriptors. This
section introduces the general form of input and output redirection.

First you examine associating files with afile descriptor.

Associating Files with a File Descriptor

By default, the shell provides you with three standard file descriptors for every command. With it, you can also associate
any file with file descriptors using the exec command.

Associating afile with afile description is useful when you need to redirect output or input to afile many times but you
don't want to repeat the filename severa times.

To open afile for writing, use one of the following forms:

exec n>file
exec n>file

Here nisaninteger, and file is the name of the file you want to open for writing. The first form overwrites the specified
fileif it exists. The second form appends to the specified file. For example, the following command

$ exec 4>fd4. out
associates the file fd4.out with the file descriptor 4.

To open afilefor reading, you use the following form:

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480090.htm (1 von 5) [06.05.2000 23:05:40]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 13: Input/Output: File Descriptors
exec n<file

Here nisaninteger, and file is the name of the file you want to open for reading.

General Input/Output Redirection

Y ou can perform general output redirection by combining afile descriptor and an output redirection operator. The general
formsare

command n> file
command n>> file

Here command is the name of a command, such asls, nisafile descriptor (integer), and file is the name of the file. The
first form redirects the output of command to the specified file, whereas the second form appends the output of command
to the specified file.

For example, you can write the standard output redirection formsin the general form as
command 1> file

command 1>> file

Herethe 1 explicitly statesthat STDOUT is being redirected into the given file.

Genera input redirection is similar to general output redirection. It is performed as follows:
command n<file

Here command is the name of a command, such asls, nisafile descriptor (integer), and fileis the name of thefile. For
example, the standard input redirection forms can be written in the general form as

command O<fil e

Redirecting STDOUT and STDERR to Separate Files

One of the most common uses of file descriptorsisto redirect STDOUT and STDERR to separate files. The basic syntax is
command 1> filel 2> file2

Here the STDOUT of the specified command is redirected to filel, and the STDERR (error messages) is redirected to file2.

Often the STDOUT file descriptor, 1, is not written, so a shorter form of the basic syntax is
command > filel 2> file2

Y ou can also use the append operator in place of either standard redirect operator:

command >> filel 2> file2
command > filel 2>> file2
command >> filel 2>> file2

The first form appends STDOUT to filel and redirects STDERR to file2. The second form redirects STDOUT to filel and
appends STDERR to file2. The third form appends STDOUT to filel and appends STDERR to file2.
In the following example, | will illustrate using forml because you are interested in only the output of the command:

for FILE in $FILES
do
In -s $FILE ./docs >> /tnp/In.log 2> /dev/null

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480090.htm (2 von 5) [06.05.2000 23:05:40]

Hour 13: Input/Output: File Descriptors

done

Herethe STDOUT of In is appended to the file /tmp/In.log, and the STDERR is redirected to the file /dev/null, in order to
discard it.

Tip - Thefile/dev/null is a specia file available on all UNIX systems used to discard output. It is sometimes
referred to as the bit bucket .

If you redirect the output of acommand into /dev/null, it is discarded. Y ou seeit used for this purpose often.
For example, the command

rmfile > /dev/nul
discards the output of the rm command.

If you use cat to display the contents of /dev/null to afile, the file's contents are erased:
$ cat /dev/null > file

After this command, thefile still exists, but its size is zero.

Redirecting STDOUT and STDERR to the Same File

Y ou looked at how to use file descriptorsto redirect STDOUT and STDERR to different files, but sometimes you need to
redirect both to the samefile. In general, you do this by

command > file 2>&1

list > file 2>&1

Here STDOUT (file description 1) and STDERR (file descriptor 2) are redirected into the specified file.

Hereisasituation whereit is necessary to redirect both the standard output and the standard error:

rm-rf /tnp/ny _tnp dir > /dev/null 2>&1 ; nkdir /tnp/ny_tnp dir

Here, you are not interested in the error message or the informational message printed by the rm command. Y ou only want
to remove the directory, thus its output or any error message it prints are redirected to /dev/null.

If you had one command that should append its standard error and standard output to afile, you use the following form:

command >> file 2>&1
list >> file 2>&1

An example of acommand that might require thisis
rdate -s ntp.nasa.gov >> /var/log/rdate.log 2>&l1

Here you are using the rdate command to synchronize the time of the local machine to an Internet time server and you
want to keep alog of all the messages.

Printing a Message to STDOUT

Y ou can aso use this form of output redirection to output error messages on STDERR. The basic syntax is

echo string 1>&2
printf format args 1>&2

Y ou might also see these commands with the STDOUT file descriptor, 1, omitted:
echo string >&2

file:///D]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480090.htm (3 von 5) [06.05.2000 23:05:40]

Hour 13: Input/Output: File Descriptors

printf format args >&2

As an example, say that you need to display an error message if adirectory is given instead of afile. You can use the
following if statement:

if [! -f SFILE] ; then echo "ERROR $FILE is not a file" >&2 ; fi

Redirecting Two File Descriptors

You can redirect STDOUT and STDERR to asingle file by using the general form for redirecting the output of onefile
descriptor to another:

n>&m

Here n and m are file descriptors (integers). If you let n=2 and m=1, you see that STDERR is redirected to STDOUT. By
redirecting STDOUT to afile, you also redirect STDERR.

If misahyphen (-) instead of a number, the file corresponding to the file descriptor n is closed. When afile descriptor is
closed, trying to read or write from it resultsin an error.

Reading Files, Another Look

One of the most common uses of thisform of redirection is for reading files one line at atime. Y ou already looked at using
awhile loop to perform this task:

whil e read LINE

do

: # manipulate file here

done < file

The main problem with thisloop isthat it is executed in a subshell, thus changes to the script environment, such as
exporting variables and changing the current working directory, does not apply to the script after the while loop changes.
As an example, consider the following script:

#! / bi n/ sh
if [-f "$1"] ; then
I =0
while read LINE
do
i="echo "$i + 1" | bc’
done < "$1"
echo $i
fi

This script tries to count the number of linesin the file specified to it as an argument. Executing this script on the file
$ cat dirs.txt

/tnp
/usr/| ocal
/ opt/ bin
[var

produces the following output:
0

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480090.htm (4 von 5) [06.05.2000 23:05:40]

Hour 13: Input/Output: File Descriptors
Although you are incrementing the value of $i using the command
i=echo "$i + 1" | bc’

when the while loop exits, the value of $i is not preserved. In this case, you need to change a variable's value inside the
while loop and then use that value outside the loop. Y ou can accomplish this by redirecting the STDIN prior to entering
the loop and then restoring STDIN to the terminal after the while loop. The basic syntax is
exec n<&0 < file
whil e read LI NE
do
mani pul ate file here
done
exec 0<&n n<é&-

Here nisaninteger greater than 2, and file is the name of the file you want to read. Usually n is chosen as a small number
suchas3, 4, or 5.

As an example, you can construct a shell version of the cat command:

#! [/ bi n/ sh
if [$# -ge 1] ; then
for FILE in $@
do
exec 5<&0 < "$i "
while read LINE ; do echo $LINE ; done
exec 0<&5 5<&-
done

Sams Teach Yourself Shell Programming in 24 Hours Contents Index
Hour 13: Input/Output —_ oPrevious Chapter._Next Chapten—

Sectionsin this Chapter:™

Output =Summary

Input ““Questions

File Descriptors =Terms cPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480090.htm (5 von 5) [06.05.2000 23:05:40]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 13: Input/Output: Summary

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Output = Summary

Input “Questions

File Descriptors ~Terms cPrevious Section_Next Section—
Summary

In this chapter, | formally introduced the concept of input and output. | covered the echo and printf commands that are
used to produce messages from within shell scripts.

| also introduced output redirection, covering the methods of redirecting and appending the output of a command to afile.
In addition, | discussed reading input for the first time. | also covered reading in files and reading input from users.

Finally, | introduced the concept of afile descriptor and showed several aspects of its use, including opening files for
reading and writing, closing files, and redirecting the output of two file descriptors to one source.

In the subsequent chapters, | will expand on the material covered here, and you will see many more applications of both
input and output redirection along with the use of file descriptors.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Output =Summary
Input ““Questions
File Descriptors =Terms Previous Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480091.htm [06.05.2000 23:05:40]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 13: Input/Output: Questions

Sams Teach Yourself Shell Programming in 24 Hours Contents Index

Sectionsin this Chapter:™

Output “TSummary

Input ““Questions

File Descriptors ~Terms cPrevious Section_Next Section
Questions

1. Complete the script using the appropriate printf commands to perform the specified numeric conversions. Assume that
the input is aways a number:
#!/ bi n/ sh
if [$# -1t 2] ; then
echo "ERROR Insufficient argunents.” ;
exit 1 ;
fi
case "$1" in
-0) : # convert the nunber stored in "$2" into octal

-X) : # convert the nunber stored in "$2" into hexadeci na
-e) : # convert the nunber stored in "$2" into scientific notation

*) echo "ERROR Unknown conversion, $1!'" ;;
esac

2. Rewrite the error messages in the previous script to redirect their output to STDERR instead of STDOUT.
Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Output “TSummary
Input “Questions
File Descriptors ~Terms cPrevious Section_Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480092.htm [06.05.2000 23:05:40]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 13: Input/Output: Terms

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Output = Summary
Input “Questions
File Descriptors ~Terms cPrevious Section__Next Sectiono

File Descriptor Aninteger that is associated with afile. Enables you to read and write from afile using the integer
instead of the file's name.

STDIN Standard Input. User input is read from STDIN. The file descriptor for STDIN isO.

STDOUT Standard Output. The output of scriptsis usually to STDOUT. The file descriptor for STDOUT is 1.
STDERR Standard Error. A specia type of output used for error messages. The file descriptor for STDERR is 2.
Escape Sequence An escape sequence is special sequence of characters that represents another character.

Output Redirection In UNIX, the process of capturing the output of a command and storing it in afileis called output
redirection because it redirects the output of acommand into afileinstead of the screen.

Input Redirection In UNIX the process of sending input to acommand from afileis called input redirection.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Output Mmm
Input “Questions
File Descriptors ~Terms cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480093.htm [06.05.2000 23:05:40]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 14: Functions: Creating and Using Functions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 14: Functions —_ cPrevious Chapter—_Next Chapter—m
Sectionsin this Chapter:

Creating and Using Functions ~Conclusion

Sharing Data Between Functions, an Example™ Questions Previous Section__Next Sectiono

Hour 14
Functions

Shell functions provide away of mapping anameto alist of commands. Shell functions are similar to subroutines,
procedures, and functions in other programming languages.

Think of them as miniature shell scripts that enable a name to be associated with a set of commands. The main difference
isthat a new instance of the shell beginsin order to run ashell script, whereas functions run in the current shell.

Creating and Using Functions

Invoking a Function=
Function Examples ==

The formal definition of a shell function is as follows:
name () { list ; }

A function binds a name to the list of commands that composes the body of the function. The (and) characters are
required at the function definition.

The following examplesillustrate valid and invalid function definitions:

sl () { Is -l ; } # valid

sl { Is -1 ; } # invalid

In this example, the first definition is valid but the second one is not because it omits the parentheses after the string Il.

This example also demonstrates a common use of functions. Because the original shell, sh, did not have the alias keyword
common to more recent shells, all aliases were defined in terms of shell functions. A frequently encountered example of
this is the source command. The sh equivalent isthe . command. Many converts from csh use the following function to

simulate the source command:

source() { . "$@ ; }

As this example shows, shell functions have a separate set of arguments than the shell script to which they belong. Y ou
explore this feature later in the chapter.

Tip - An important feature of shell functionsisthat you can use them to replace binaries or shell built-ins of
the same name.

An example of thisis

cd () { chdir ${1:-$HOVE} ; PS1=""pwd $ " ; export PS1 ; }

This function replaces the cd command with a function which changes directories but also sets the primary
shell prompt, $PS1, to include the current directory.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480095.htm (1 von 5) [06.05.2000 23:05:41]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 14: Functions: Creating and Using Functions

Invoking a Function

To invoke afunction, only its name is required, thus typing

$ Isl
on the command line executes the Il () function, but typing
$ 1sl()

does not work because sh interprets this as a redefinition of the function by the nameldl. In most versions of the shell,
typing Isl() resultsin a prompt similar to the following:

>

Thisisaprompt produced by the shell when it expects you to provide more input. Here the input it expectsis the body of
the function Idl.

Function Examples

In this section you will look at two examples of how functions are used to gain a better understanding of their role in shell
scripting.

Listing Your Path

A simpletask that is well-suited to afunction is listing the current value of your PATH, with each directory listed on a
singleline. The basic shell codeis

OLDI FS="$I FS"

| FS=:
for DDRin $PATH ; do echo $D R ; done
| FS="$0OLDI FS"

Here you save the value of IFS in the variable OLDIFS and then set IFSto :. Because IFSisthe Internal Field Separator
for the shell, you can use the for loop to cycle through the individual entriesin PATH. When you are finished, restore the
value of IFS.

Note - The shell uses the value of the variable IFS to split up a string into separate words. Normally it is set
to the space and tab character, enabling the shell to figure out that the following string

this is a string

contains four words. The shell uses the value of 1FS to determine how many options are supplied to a
command, script, or shell function and how many items are specified to afor loop.

In the previous example, you set the value of IFS to be the colon character. This means that the shell sees
four words in the following string:

this:is:a:string

To wrap this up in afunction, insert the function name and the brackets as follows:

| spat h() {
OLDI FS="$I FS"
| FS=:

for DDRin $PATH ; do echo $DIR ; done

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480095.htm (2 von 5) [06.05.2000 23:05:41]

Hour 14: Functions: Creating and Using Functions

| FS="$QOLDI FS"
}

Now you can run the function as follows:

$ I spath

On my system the output is

/ sbin

/ bi n

[usr/ bin

[usr/sbin

/ opt/ bin

[usr/uchb
/usr/ccs/bin

/ usr/ openwi n/ bin

One of the main uses of thisfunction isto check whether a particular directory isin your PATH. For example, to check
whether /usr/dt/bin isin my path, | can do the following:

$ Ispath | grep "/usr/dt/bin"

Tailoring Your Path

At many companies and schools, a user's home directory is accessible from many machines running different versions of
UNIX. A problem that | face every day isusing my shell initialization script, .profile, on Linux, Solaris, FreeBSD, and
HP-UX machines.

Although many issues arise involving cross-platform initialization scripts, one of the largest issues is getting your PATH
variable set correctly. Because each different UNIX platform stores commands in different directories, your initialization
script must be able to tailor the value of the variable PATH. This problem has four possible solutions:

e Maintain UNIX version-specific initialization files.
e Maintain UNIX version-specific sectionsin your initialization files.

e Usethesame PATH on al versions of UNIX, by having it include all possible directories of interest on all
versions. This solution relies on the fact that the shell ignores directories in the path that do not exist.

o Set adifferent PATH depending on the existence of individual directories.

Thefirst two solutions are difficult to maintain. Each change or new UNIX version that you have to work with means that
you have to create either a new initialization file or a new section on your initialization file. The complexity of your shell
initialization process increases drastically with either of these approaches.

The third option is easy to implement and maintain, but it resultsin a PATH that is extremely long and hard to restructure.
If you have more than one or two machines, PATH can grow to contain dozens of entries.

The fourth option is the easiest to maintain and extend, so how do you implement it?

The simplest way isto have afor loop that checks each directory and includesit if it exists:

PATH=
for DDRin /bin /sbin /usr/bin /usr/sbin /usr/ccs/bin /usr/uchbh ;
do

if [-d "$DIR"] ; PATH="$PATH $DIR"' ; fi

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480095.htm (3 von 5) [06.05.2000 23:05:41]

Hour 14: Functions: Creating and Using Functions

done
export PATH

At this point you might wonder why | am discussing this problem in this chapter and not in a previous chapter. The reason
is that the complete problem is more than simply tailoring PATH on a per-UNIX-version basis. The complete problem
requires you to tailor PATH for both interactive shells and for different user 1Ds.

Y ou can solve these problems by including several case statements with different for loops in them, or you can write one
function and reuse it. Because this chapter covers functions, | will show you how to do the latter.

The function that you need is quite simple. Rewrite the for loop to use the functions arguments rather than alist of
directories:
Set Pat h() {

for DRin "$@

do
if [-d"$ DIR"] ; then PATH="$PATH':"$ DIR" ; fi
done
export PATH
unset DIR

}

This function has three important points:

e Thisfunction exportsthe PATH variable beforeit finishes. Thisis required to ensure that the child process
started by the shell can access the value of the variable.

e Thisfunction unsetsitsinternal variable DIR. It isagood habit to unset all variables that should not be
exported. In some languages, thisis not an issue because local variables disappear after execution leaves the scope
of the function. In other languages, variables can be marked for local scope only, but in shell al variables are of
global scope. This means that the programmer must take care in managing variables.

e Thelocal variable, DIR, startswith the underscore character. You do thisto avoid name conflicts with
variables set by other functions. It is not required, but it is good practice to name your local function variables
differently than global variables.

There is only one additional thing to add to this function, and that is to check to see whether PATH is set. Without this
check, you can potentially end up with a PATH set to
PATH=: /usr/bin:/usr/sbin:/usr/local/bin

The problem hereis that the first entry in the variable PATH appears to be a null string. Some versions of the shell cannot
deal with this entry, so you need to prevent this from happening.

Y ou can do this check using variable substitution. The complete function is

Set Pat h() {
PATHES${ PATH: ="/ sbi n: / bi n"};
for DRin "$@

do
if [-d "$DIR"] ; then PATH="$PATH':"$DIR' ; fi
done
export PATH
unset DIR

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480095.htm (4 von 5) [06.05.2000 23:05:41]

Hour 14: Functions: Creating and Using Functions

Here you set PATH to /sbin:/bin if it isunset. Y ou can invoke this function as follows:
SetPath /sbin /usr/sbin /bin /usr/bin /usr/ccs/bin

It checks to see whether each of its argumentsisadirectory, and if adirectory exists, it is added to PATH.
Sams Teach Yourself Shell Programmingin 24 Hours

Contents [ndex

Sectionsin this Chapter:

Creating and Using Functions ~"Conclusion
Sharing Data Between Functions, an Examplé Questions cPrevious Section_Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480095.htm (5 von 5) [06.05.2000 23:05:41]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 14: Functions: Sharing Data Between Functions, an Example

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 14: Functions —_ cPrevious Chapter._Next Chaptern
Sectionsin this Chapter:

Creating and Using Functions ~Conclusion

Sharing Data Between Functions, an Examplé Questions cPrevious Section_Next Section—

Sharing Data Between Functions, an Example

Moving Around the File Systeme=| mplementing pushd
Implementing dirs ===l Mplementing popd

The functions seen thus far operate independently of one another, but in most shell scripts functions either depend on or
share data with other functions.

In this section you will look at an example where three functions work together and share data.

Moving Around the File System

The C shell, csh, provides three commands for quickly moving around in the UNIX file system:
e popd
e pushd
o dirs

These commands maintain a stack of directoriesinternally and enable the user to add and remove directories from the
stack and list the contents of the stack.

For those readers who are not familiar with the programming concept of a stack, you can think of it as a stack of plates:
you can add or remove a plate only at the top of the stack. Y ou can access only the top plate, not any of the middle plates
in the stack. A stack in programming termsis similar. Y ou can add or remove an item only at the top of the stack.

In csh, the stack is maintained within the shell, but in your shell function-based implementation you have to maintain the
stack as an exported environment variable so that all three functions have accessto it.

Usethevariable DIR_STACK to store the directory stack. Each entry in the stack is separated by the : character smilar
to the PATH variable. By using this character rather than a space or tab, you increase the flexibility of the directory names
that you can handle.

Implementing dirs

Now you'll look at the simplest of the three functions, the dirs() function, which lists the directory stack:

dirs() {

save |FS, then set it to : to access the
the itens in _DIR STACK i ndividually.

OLDI FS="$I FS"
| FS=:

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480096.htm (1 von 5) [06.05.2000 23:05:41]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 14: Functions: Sharing Data Between Functions, an Example

print each directory foll owed by a space

for i in $ D R STACK
do

echo "$i \c"
done

add a new line after all entries in D R STACK
have been printed

echo
restore | FS

| FS="$QOLDI FS"
}

Here you use the same trick as you used in the Ispath() function: save IFS and then set it to :, enabling you to list each of
theitemsindividually. The final echo isrequired to add a new line after all the entries are printed. Finally you restore IFS.

Implementing pushd

The pushd function is slightly more complicated than the dirs function. It needs to change to arequested directory and then
add that directory to the top of the stack.

Y our implementation is as follows:

pushd() {

set the requested directory, $REQ to the first argunent
If no argunent is given, set REQto .

REQ="$1":
if [-z "$SREQ' | ; then REQ=. ; fi

if $REQis a directory, cd to the directory
if the cd is successful update $ DI R STACK
otherw se issue the appropriate error nessages

if [-d "$REQ'] ; then

cd "SREQ' > /dev/null 2>&1

if [$?2 -eq 0] ; then
_DIR_STACK=""pwd" : $_DI R_STACK" : export _DI R STACK ;
dirs

el se
echo "ERROR: Cannot change to directory $REQ " >&2

fi

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480096.htm (2 von 5) [06.05.2000 23:05:41]

Hour 14: Functions: Sharing Data Between Functions, an Example

el se
echo "ERROR $REQ is not a directory." >&2
fi

unset REQ

}

First check to see whether an argument was given by setting REQ to the value of $1. If no argument was given, assume
that the user means the current directory.

Then check to see whether the requested directory isreally adirectory. If it is, change to that directory and then update the
directory stack with the full path of the new directory. Y ou cannot use the value in $REQ because it could be arelative
path.

Finally print the contents of the stack by calling the dirs function. By doing this, this function does not have to know how
to print the stack. Y ou have to know that dirs prints the stack.

This enables you to change the implementation of afunction, such as dirs, without affecting the other functions. The one
thing to keep in mind isthat if you change the arguments that a function, such as dirs, expects to receive, you must change
al the other functions that use it. Otherwise, you might encounter strange errors and bugs.

The three important points here are
e Setting adefault value if an expected argument is not given.
¢ Using other functionsto perform your tasks.

e Producing error messages when something goes wrong. If your script does not tell users what went wrong, they
will be extremely confused and might not use your script again.

Implementing popd

The popd() function is far more complicated than the other two. First look at the operations that it performs:
1. Removesthe first entry from the directory stack variable
2. Updates the directory stack to reflect the removal
3. Changes to the directory indicated by the entry that was removed from the stack
4. Displaysthe full path of the current directory

In order to make the first and second operations easy, implement a helper function for popd() called _popd_helper(). This
function performs al the work; popd() is simply awrapper around it. Frequently, you need to write functionsin this
manner: one function that simplifies the interface and one that performs the work.

The Helper Function

Look at _popd_helper first to see how the directory stack is manipulated:
_popd_hel per() {

set the directory to pop to the first argunent, if
this directory is enpty, issue an error and return 1

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480096.htm (3 von 5) [06.05.2000 23:05:41]

Hour 14: Functions: Sharing Data Between Functions, an Example

otherw se get rid of POPD fromthe argunents

POPD="$1"

if [-z "$POPD"] ; then
echo "ERROR: The directory stack is enpty." >&2
return 1

fi

shift

if any nore argunents remain, reinitalize the directory
stack, and then update it wth the remaining itens,
otherw se set the directory stack to nul

if [-n "$1"] ; then
_DIR_STACK="3%1" ;

shift ;

for i in $@; do DR STACK="$ DI R STACK: $i" ; done
el se

_ DI R_STACK=
fi

#if POPDis a directory cd to it, otherw se issue
an error nessage

if [-d "$POPD"] ; then

cd "$POPD' > /dev/null 2>&1

if [$?2 -ne 0] ; then

echo "ERROR Could not cd to $POPD." >&2

fi

pwd
el se

echo "ERROR $POPD is not a directory." >&2
fi

export _DI R STACK
unset POPD

}

This function expects the directory stack to be given to it as arguments, so the first thing that it checks is whether $1, the
first argument, has any value. Do this by setting the variable POPD equal to $1 and then checking the contents of POPD.

If the directory stack is empty, issue an error message; otherwise, shorten the stack by using shift. At this point, you have
taken care of the first operation.

Now, you have to check to see whether the directory stack is empty. Because the individual items in the stack are
arguments to this function, you need to check whether $1, the new first argument, has any content. If it does, reinitialize
the directory stack with this value and proceed to add all the remaining values back onto the stack. At this point, you have
taken care of the second operation.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480096.htm (4 von 5) [06.05.2000 23:05:41]

Hour 14: Functions: Sharing Data Between Functions, an Example

The last two operations are fairly trivial, and the last if statement takes care of them.
The Wrapper Function

Now that you know that the helper function expects al the directories on the stack to be given to it as arguments, you can
write the wrapper function that translates the value of _DIR_STACK into separate arguments.

This processisfairly easy, thanks to the IFS trick. The popd() function is the following:
popd() {

OLDI FS="$I FS"

| FS=:

_popd_hel per $ DI R STACK

| FS="$OLDI FS"

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:

Creating and Using Functions “Conclusion
Sharing Data Between Functions, an Example™ Questions cPrevious Section_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480096.htm (5 von 5) [06.05.2000 23:05:41]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 14: Functions: Conclusion

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Creating and Using Functions “Conclusion
Sharing Data Between Functions, an Examplé™ Questions cPrevious Section__Next Sectiono
Conclusion

In this chapter you looked at creating and calling functions. Some of the major topics that you covered are
e Creating afunction
e Using functions to replace built-in commands
e Using IFSto ssimplify parsing
e Using arguments with functions
¢ Sharing data between functions

e Calling afunction from within another function

Part 111 introduces the concept of function libraries and presents a set of functions that you can use in your scripts.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:
Creating and Using Functions “Conclusion
Sharing Data Between Functions, an Examplé™ Questions —Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480097.htm [06.05.2000 23:05:51]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 14: Functions: Questions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Creating and Using Functions ~Conclusion
Sharing Data Between Functions, an Example ™ Questions

cPrevious Section__Next Sectiono

Questions

1. Write afunction to make a directory (and al its parents) change to that directory and then print the full path of
that directory. Please include error checking at all levels. Make sure that all error messages are generated by your
script, not the commands that you execute.

2. Chapter 13, "Input/Output,” introduced the concept of prompting the user from a shell script. Write afunction

that can be used to prompt the user for aresponse. This function should take a single argument that is the prompt,
and it should place the user's response in the variable RESPONSE. Please include error checking at all levels.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:
Creating and Using Functions “"Conclusion
Sharing Data Between Functions, an Example Questions

—Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480098.htm [06.05.2000 23:05:52]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 15: Text Filters: The head and tail Commands

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 15: Text Filters — —Previous Chapter—_Next Chapten

Sectionsin this Chapter:
The head and tail Commands = Summary

Using grep “Questions
Counting Words - Previous Section__Next Sectiono

Hour 15
Text Filters

Shell scripts are often called on to manipulate and reformat the output from commands that they execute. Sometimes this
task is as ssmple as displaying only part of the output by filtering out certain lines. In most instances, the processing
required is much more sophisticated.

In this chapter, you will look at several commands that are used heavily as text filtersin shell scripts. These commands
include

e head
o tail
e grep
e SOIt
e UNiQ
o tr

I will also show you how to combine these commands to filter text in extremely powerful ways.

The head and tail Commands

The head Commante
Thetal Command e

In Chapter 3, "Working with Files," you looked at viewing the contents of afile using the cat command. This command

enables you to view an entire file, but often you need more control over lines that are displayed. The head and tail
commands provide some of this control.

The head Command
The basic syntax for the head command is
head [-n lines] files

Herefilesisthelist of the files you want the head command to process. Without the -n lines option, the head command
shows thefirst 10 lines of its standard input. This option shows the specified number of lines instead.

Although this command is useful for viewing the tops of large README files, itsreal power happensin daily
applications. Consider the following problem. | need to generate alist of the five most recently accessed filesin my public

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480100.htm (1 von 3) [06.05.2000 23:05:52]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 15: Text Filters: The head and tail Commands

HTML files directory. What is the easiest solution?

It's easy to devise a solution by breaking the problem down. First, | generate alist of my public HTML files using the
following command:

$ Is -1 /hone/ ranga/ public_htn

In my case, this generates the following list of files and directories:

RCS
cgi-bin
downl oads
hunor

| mages

| ndex. ht ni
m sc

proj ects
school

Next, | need to sort the list by the date of the last access. | can do this by specifying the -ut (sort by last accessed time)
option to the Is command:

$ |Is -1ut /hone/rangal/ public_htn

The output now changes as follows:

RCS

hunor

m sc
downl oads
| mages
resume
proj ects
school
cgi-bin

i ndex. ht m

To retrieve alist of the five most recently accessed files, | can pipe the output of the Is command into a head command:
| s -1ut /home/rangal/public_htm | head -5

This produces the following list:

I ndex. ht ni
RCS

hunor

m sc

downl oads

The tail Command

The basic syntax for the tail command is similar to that of the head command:
tail [-n lines] files

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480100.htm (2 von 3) [06.05.2000 23:05:52]

Hour 15: Text Filters: The head and tail Commands
Herefilesisthelist of the filesthe tail command should process. Without the -n lines option, the tail command shows the
last 10 lines of its standard input. With this option it shows the specified number of lines instead.

To illustrate the use of the tail command, consider the problem of generating alist of the five oldest mail spools on my
system.

| can start with Is-1 command again, but thistime I'll use the -t (sort by last modified time) option instead:
$ |Is -1t /var/spool / mai

To get the bottom five, I'll usetail instead of head:
$1s -1t /var/spool/mil | tail -5

On my system the following list is generated:

anna
r oot
anmma

vat hsa
ranga

Inthislist, thefiles are listed from newest to oldest. To reverse the order, | can also specify the -r option to thels
command:

|s -1rt /var/spool/mil | tail -5

On my system, | get thislist:

ranga
vat hsa
anma

r oot
anna

The follow Option

An extremely useful feature of the tail command isthe -f (f asin follow) option:

tail -f file

Specifying the -f option enables you to examine the specified file while programs are writing to it.

Often | have to look at the log files generated by programs that | am debugging, but | don't want to wait for the program to
finish, so | can start the program and then use tail -f for the log file.

Some Web administrators use a command such as the following to watch the HT TP requests made for their system:
$ tail -f /var/log/httpd/ access_ | og

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 15: Text Filters — oPrevious Chapter—_Next Chaptena

Sectionsin this Chapter:
The head and tail Commands = Summary

Using grep ““Questions
Counting Words = Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480100.htm (3 von 3) [06.05.2000 23:05:52]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 15: Text Filters: Using grep
Sams Teach Y ourself Shell Programmingin 24 Hours Contents [ndex

Hour 15: Text Filters -_— oPrevious Chapter_Next Chaptemr

Sections in this Chapter:
The head and tail Commands = Summary

Using grep “Questions
Counting Words - oPrevious Section__Next Section

Using grep

Looking for Words ==l ine Numbers
Reading From STDI Nessl_isting Filenames Only

The grep command lets you locate the linesin afile that contain a particular word or a phrase. The word grep stands for globally regular
expression print. The command is derived from afeature of the original UNIX text editor, ed. To find aword in ed, the following command was
used:

g/ word/ p

Hereword is aregular expression. For those readers who are not familiar with regular expressions, Chapter 16, "Filtering Text Using Regular
Expressions,” discusses them in detail.

This particular ed command was used widely in shell scripts, thus it was factored into its own command called grep. In this section, you will
look at the grep command and some of its most commonly used options.

Looking for Words

The basic syntax of the grep command is
grep word file

Herefileisthe name of afilein which you want to search for word. The grep command displays every linein file that contains word. When you
specify more than onefile, grep precedes each of the output lines with the name of the file that contains that line.

As an example, the following command locates all the occurrences of the word pipein file ch15.doc (this chapter):

$ grep pipe chil5. doc

|'ve broken the command into two lines, with the pipe character as the
the right thing and use the next line as the command to pipe to. It's
The first fewlines look like (ten actually, | piped the output to

If | specify more than one file the output changes as follows:

$ grep pipe chl5.doc chl5-01. doc

chl1l5. doc:I've broken the conmmand into two lines, with the pipe character as the
chl5. doc:the right thing and use the next line as the command to pipe to. It's

chl5. doc: The first fewlines look |like (ten actually, | piped the output to
ch15-01. doc:1've broken the command into two lines, with the pipe character as the
ch15-01. doc:the right thing and use the next line as the conmand to pipe to. It's

ch15-01. doc: The first fewlines |look |ike (ten actually, | piped the output to
Asyou can see, the name of the file precedes each line that contains the word pipe.

If grep cannot find aline in any of the specified files that contains the requested word, no output is produced. For example,
$ grep utilities chl6. doc

produces no output because the word utilities does not appear in the file ch16.doc.

Case Independent Matching

One of the features of grep isthat it matches the specified word according to the case that you specify. In grep, the word Appleis different than
the word apple.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480101.htm (1 von 4) [06.05.2000 23:05:53]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 15: Text Filters: Using grep
Sometimes you want to match words regardless of the case that you specify. To do this, use the -i option. For example, the command
$ grep unix chl6. doc

produces the outpuit:

all unix users. The GNU versions of these conmands support all the
uni x has several additional pieces of information associated with it.

uni X counterparts, but inplenment a few nice options which nmakes their
unix files names, but they are, and handling themcorrectly is

On the other hand, the command
$ grep UNI X chl6. doc

produces different output:

G\U stands for GNU s not Unix and is the name of a Uni x-conpatible
Project utilities are the GNU i npl enentation of fam liar Unix prograns

By using the -i option, you get the sum of both of these commands:

$ grep -i unix chl6. doc

G\U stands for GNU s not Unix and is the name of a Uni x-conpatible
Project utilities are the GNU i npl enentation of fam liar Unix prograns
all unix users. The GNU versions of these commands support all the
uni X has several additional pieces of information associated with it.

uni X counterparts, but inplenent a few nice options which nakes their
unix files nanes, but they are, and handling themcorrectly is

Reading From STDIN

When no files are specified, grep looks for matches on the lines that are entered on STDIN. This makesit perfect for attaching to pipes.

For example, the following command looks for all users named rangain the output of the who command:

$ who | grep ranga
ranga ttyl Aug 26 14:12
ranga ttyp2 Nov 23 14:15 (rishi.bosland. u)

The -v Option

Most of the time you use grep to search through afile looking for a particular word, but sometimes you want to acquire alist of all the lines that
do not match a particular word.

Using grep, thisis simple --specify the -v option. For example, the following command produces alist of all the linesin /etc/passwd that do not
contain the word home:

$ grep -v hone /etc/passwd

On my system, the output looks like the following:

root:*:0:3::/:/sbin/sh

daenon: *: 1:5::/:/sbin/sh

bin:*:2:2::/usr/bin:/sbin/sh

sys:*:3:3::/:

adm *: 4: 4::/var/adm/sbin/sh

uucp: *:5: 3::/var/ spool /uucppublic:/usr/I bin/uucp/ uuci co
| p:*:9:7::/var/spool /| p:/sbin/sh

nobody: *:-2:-2::/:

One common use of the -v option isto parse the output of the ps command. For example, if | were looking for all instances of bash that were
running on a system, | could use the following command:

$ /bin/ps -ef | grep bash

Sometimes the output |ooks like the following:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480101.htm (2 von 4) [06.05.2000 23:05:53]

Hour 15: Text Filters: Using grep

ranga 3277 3276 2 13:41:45 pts/tO0 0: 02 -bash
ranga 3463 3277 4 18:38:26 pts/tO0 0: 00 grep bash
The second processin thislist isthe grep that | just ran. Because it is not really an instance of bash, | can get rid of it asfollows:

$ /bin/ps -ef | grep bash | grep -v grep

This removes the extraneous output:
ranga 3277 3276 0 13:41:45 pts/tO0 0: 02 -bash

Line Numbers

As grep looks through afile for agiven word, it keeps track of the line numbersthat it has examined. Y ou can have grep list the line numbers
aong with the matching lines by specifying the -n option. With this option the output format is

file:line nunber:line

Herefileis the name of the file in which the match occurs, line number is the line number in the file on which the matching line occurs, and line
isthe complete line that contains the specified word. For example, the command

$ grep -n pipe chl5. doc ch15-01. doc

produces the following output:

chl5. doc: 969:1've broken the conmand into two lines, with the pipe character as the
chl1l5.doc: 971:the right thing and use the next |line as the command to pipe to. It's
ch15. doc: 1014: The first few lines look like (ten actually, | piped the output to
ch15-01. doc: 964:1've broken the command into two lines, with the pipe character as
t he

ch15-01. doc: 966:the right thing and use the next line as the command to pipe to.
It's

ch15-01. doc: 1009: The first few lines |look |ike (ten actually, | piped the output to

Asyou can see, the lines might be the same in both files, but the line numbers are different.

Listing Filenames Only

Sometimes you don't really care about the actual linesin afile that match a particular word. Y ou want alist of al the filesthat contain that word.

For example, the following command looks for the word delete in al the filesin my projects directory:
$ grep del ete /hone/ rangal/ docs/ proj ects

In my case, it produces the following outpult:

pgops.c:/* Function to delete a node fromthe heap. Adapted from I ntroduction
pgops. c: voi d heap_del ete(binary _heap *a,int i) {

pgops. c node del et ed;

pgops.c: /* return with an error if the input is invalid, ie trying to delete
pgops. C: sprintf(nmessages, "heap_delete(): %, no such elenment.",i);

pgqops. c /* switch the itemto be deleted with the last item and then

pgqops. C del eted = a->elenents[i];

pgqops.c: [/* (conpare_priority(a->elenents[i],deleted)) ? heap_up(a,i)
heap_down(a,i); */

pgops. h: extern void heap_del et e(bi nary_heap *a,int i);
schedul er. c: /* if the requested id is in the heap, delete it */
schedul er. c: heap_del et e(&1y _heap, node_num ;

Asyou look at the output, you see that only three files -- pgops.c, pqops.h, and scheduler.c --contain the word delete.

Here you had to generate alist of matching lines and then manually look at the filenames in which those lines were contained. By using the -
option of the grep command, you reach this conclusion much faster. For example, the following command

$ grep -1 delete *

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480101.htm (3 von 4) [06.05.2000 23:05:53]

Hour 15: Text Filters: Using grep

pgops.
pgops. h

schedul er. c

produces the list you wanted.
Sams Teach Yourself Shell Programmingin 24 Hours

Contents [ndex

Sectionsin this Chapter:™

The head and tail Commands = Summary
Using grep uestions
Counting Words -

© Copyright Macmillan Computer Publishing. All rights reserved.

oPrevious Section__Next Section

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480101.htm (4 von 4) [06.05.2000 23:05:53]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 15: Text Filters: Counting Words

Sams Teach Y ourself Shell Programmingin 24 Hours Contents |ndex

Hour 15: Text Filters — oPrevious Chapter_Next Chapterm

Sections in this Chapter:
The head and tail Commands = Summary

Using grep Questions _ _ _
Counting Words - cPrevious Section__Next Sectiono

Counting Words

Thetr Command ==Sorting Numbers
The sort Command ===Using Character Classes with tr
The uniq Commante

Counting words is an essential capability in shell scripts. There are many ways to do it, with the easiest being the wc
command. Unfortunately, it displays only the number of characters, words, or lines.

What about when you need to count the number of occurrences of word in afile? The wec command falls short. In this
section, you will solve this problem using the following commands:

o 1Ir
e SOrt
e UniQ

Thetr command (tr for trandliterate) changes all the charactersin one set into charactersin a second set. Sometimes it
deletes sets of characters.

The sort command sortsthe linesin aninput file. If you don't specify an input file, it sorts the lines given on STDIN.

The uniq command (uniq for unique) prints al the unique linesin afile. If aline occurs multiple times, only one copy of
thelineis printed out. It can also list the number of times a particular line was duplicated.

I will use the text of this chapter, ch15.doc, as the input file for this example.

The tr Command

First, you need to eliminate all the punctuation and delimiters in the input file because the word end. and the word end are
the same. Y ou accomplish this task using the tr command. Its basic syntax is

tr 'setl' 'set?2'

Here tr takes al the charactersin setl and trandliterates them to the charactersin set2. Usually, the characters themselves
are used, but the standard C language escape sequences also work.

To accomplish my first task, | used the following command:
$tr "2 \N[\V]{}(O),." " ' < [home/rangal/ docs/ch15. doc

Here | specified set2 as the space character because words separated by the charactersin setl need to remain separate after
the punctuation is removed.

Notice that the characters[and] are given as\[and \]. Asyou will see later in this chapter, these two characters have a
special meaning in tr and need to be escaped using the backslash character (\) in order to be handled correctly.

At this point most of the words are separated by spaces, but some of the words are separated by tabs and newlines. To get

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480102.htm (1 von 7) [06.05.2000 23:05:53]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 15: Text Filters: Counting Words
an accurate count, all the words should be separated by spaces, so you need to covert all tabs and newlines to spaces:
$tr 12" N[V]{}(O),.\t\n" " ' < [hone/ranga/ docs/ chl5. doc

The next step isto trandliterate al capitalized versions of words to alowercase version because the words To and to, The
and the, and Files and files are really the same word. To do this, you tell tr to change all the capital characters'A-Z' into
lowercase characters 'a-z' asfollows:

$tr 12 \N[V]{}(O),.\t\n" " " < [hone/ranga/ docs/ chl5. doc |
tr "A-Z 'a-z'

| broke the command into two lines, with the pipe character as the last character in the first line so that the shell does the
right thing and uses the next line as the command to pipe to. This makesit easier to read and cut and paste, al so.

Note - Differences between tr versions

In this example, you are using a single space for set2. Most versions of tr interpret this to mean trandliterating
all the charactersin setl to a space. Some versions of tr do not do this.

Y ou can determine whether your tr works in this manner using the test code:
$ echo "Hello, my dear!™ [tr'!"""

Most versions of tr produce the following output:

Hello my dear

Some versions produce the following output instead:

Hello my dear!

To obtain the desired behavior from these versions of tr, make sure that setl and set2 have the same number
of characters. In this case, set2 needs to contain two spaces:

$ echo "Hello, my dear!" [tr',!I"""'

In the case of the sample problem, set2 would need to contain 15 spaces.

Squeezing Out Spaces

At this point, several of the lines have multiple spaces separating the words. Y ou need to reduce or squeeze these multiple
spaces into single spaces to avoid problems with counting later in this example. To do this, you need to usethe-s(sasin
squeeze) option to the tr command. The basic syntax is

tr -s '"setl'

When tr encounters multiple consecutive occurrences of a character in setl, it replaces these with only one occurrence of
the character. For example,

$ echo "feed me" | tr -s "¢
produces the output
fed ne

Herethe two €'sin feed were reduced to asinglee.

If you specify more than one character in setl, the replacement is character specific. For example:
$ echo "Shell Programmng" | tr -s 'Im

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480102.htm (2 von 7) [06.05.2000 23:05:53]

Hour 15: Text Filters: Counting Words
produces the following output:
Shel Program ng

Asyou can see the two I'sin Shell were reduced to asingle . Also, the two m's in Programming were reduced to asingle m.

Now you can squeeze multiple spaces in the output into single spaces using the command:

$tr 12" N[V]{}(O),.\t\n" " ' < [hone/rangal/ docs/ chl5. doc |
tr '"A-Z ‘a-z' | tr -s ' '

The sort Command

To get acount of how many times each word is used, you need to sort the file using the sort command. In its simplest form,
the sort command sorts each of itsinput lines. Thus you need to have only one word per line. Y ou can do this changing all
the spaces into new lines as follows:

$tr "2 N[V {}(),.\t\n" " ' < [hone/rangal/ docs/ chl5. doc |
tr "A-Z" ‘a-z' | tr -s ' " | tr " " "\n'

Now you can sort the output, by adding the sort command:

$tr "2 N[V {}(),.\t\n" " ' < [hone/rangal/ docs/ chl5. doc |
tr "A-Z 'a-z' | tr -s " " | tr " " '\n" | sort

The unig Command

At this point, you can eliminate all the repeated words by using the -u ('u asin unique) option of the sort command.
Because you need a count of the number of times aword is repeated, you should use the unig command.

By default, the unig command discards all but one of the repeated lines. For example, the commands

$ echo
peach
peach
peach
appl e
appl e
or ange
"> /fruits.txt
$ uniqg fruits.txt

produce the output

peach

appl e

or ange

Asyou can see, uniq discarded all but one of the repeated lines.

The uniq command produces alist of the uniq itemsin afile by comparing consecutive lines. To function properly, itsinput
needs to be a sorted file. For example, if you change fruits.txt as follows

$ echo
peach
peach

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480102.htm (3 von 7) [06.05.2000 23:05:53]

Hour 15: Text Filters: Counting Words

or ange

appl e

appl e

peach

"> /fruits.txt
$ unig fruits.txt

the output isincorrect for your purposes:

peach
or ange
appl e

peach
Returning to the original problem, you need uniq to print not only alist of the unique words in this chapter but also the
number of times aword occurs. Y ou can do this by specifying the -c (¢ asin count) option to the uniq command:

$tr 12" N[V]{}(O),.\t\n" " ' < [hone/ranga/ docs/chl5. doc |
tr "A-Z 'a-z' | tr -s " " | tr " " '\n" | sort | uniq -c

Sorting Numbers

At this point the output is sorted al phabetically. Although this output is useful, it is much easier to determine the most
frequently used words if the list is sorted by the number of times aword occurs.

To obtain such alist, you need sort to sort by numeric value instead of string comparison. It would also be niceif the largest
number was printed first. By default, sort prints the largest number last. To satisfy both of these requirements, you specify
the-n (nasinnumeric) and -r (r asin reverse) options to the sort command:

$tr "2 N[V {}(),.\t\n" " ' < [hone/rangal/ docs/ chl5. doc |
tr '"A-Z ‘'a-z' | tr -s " " | tr " " "\n" | sort | uniq -c
sort -rn

By piping the output to head, you can get an idea of what the ten most repeated words are:

$tr 12" N[V]{}(O),.\t\n" " " < [hone/ranga/ docs/chl5. doc |
tr "A-Z ‘'a-z' | tr -s " " | tr " " "\n" | sort | uniq -c
sort -rn | head

389 the

164 to

127 of

115 is

115 and

111 a

80 files

70 file

69 in

65 °

Sorting Numbers in a Different Column

In the preceding output, you used the sort -rn command to sort the output by numbers because the numbers occurred in the
first column instead of the second column. If the numbers occurred in any other column, this would not be possible.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480102.htm (4 von 7) [06.05.2000 23:05:53]

Hour 15: Text Filters: Counting Words

Suppose the output looked like the following:

$ cat switched. txt
files 80

file 70

is 115

and 115

a 111

in 69

' 65

t he 389

to 164
of 127

Now you need to tell sort to sort on the second column, and you cannot simply use the -r and -n options. Y ou need to use
the -k (k asin key) option also.

The sort command constructs a key for each linein the file, and then it arranges these keys into sorted order. By default, the
key spans the entire line. The -k option gives you the flexibility of telling sort where the key should begin and where it
should end, in terms of columns.

The number of columnsin alineisthe number of individual words on that line. For example, the following line contains
three columns:

files 80 100

The basic syntax of the -k option is
sort -k start,end files

Here start is the starting column for the key, and end is the ending column for the key. The first columnis 1, the second
columnis 2, and so on.

For the switched.txt file, start and end are both 2 because there are only two columns and you want to sort on the second
one. The command you useis

$ sort -rn -k 2,2 switched.txt
the 389

to 164

of 127

Is 115

and 115

a 111

files 80

file 70

in 69

' 65

Because there are only two columns, you can omit the ending column as follows:
$ sort -rn -k 2 switched.txt

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480102.htm (5 von 7) [06.05.2000 23:05:53]

Hour 15: Text Filters: Counting Words

Using Character Classes with tr

Take alook at the output of the command:

$tr "2 N[V {}(),.\t\n" " ' < [hone/rangal/ docs/ chl5. doc |
tr "A-Z ‘'a-z' | tr -s " " | tr " " '"\n" | sort | uniqg -c
sort -rn | head

389 the

164 to

127 of

115 is

115 and

111 a

80 files

70 file

69 in

65 '

Y ou might have noticed that the tenth most common word in this chapter is the single quote character. Y ou might be
wondering what's going on because | said you took care of the punctuation with the very first tr command.

Well, | lied (sort of). Y ou took care of all the characters that would fit between quotes, and a single quote won't fit.
So why not backslash escape that sucker? Well, not all versions of the shell handle that properly.
So what's the solution?

The solution isto use the predefined character setsin tr. The tr command knows several character classes, and the
punctuation classis one of them. Table 15.1 gives a complete list of the character class names.

TABLE 15.1 CHARACTER CLASSES UNDERSTOOD BY THE TR COMMAND

Class |Description

|alnum |Letters and digits

|alpha |Letters

blank |Horizontal whitespace

entrl - |Control characters

|digit |Digits

|graph |Printable characters, not including spaces
llower |Lowercase lefters

|print | Printable characters, including spaces
lpunct |Punctuation

|space |Horizontal or vertical whitespace
lupper |Uppercase letters

|xdigit |Hexadecimal digits

The way to invoke tr with one of these character classesis
tr '[:classnane:]' 'set?2'

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480102.htm (6 von 7) [06.05.2000 23:05:53]

Hour 15: Text Filters: Counting Words

Here classname is the name of one of the classes given in Table 15.1, and set2 is the set of characters you want the
charactersin classname to be tranditerated to.

For example, to get rid of punctuation and spaces, you use the punct and space classes.

$tr "[:punct:]" ' ' < /hone/rangal/docs/chl5.doc | tr '[:space:]' '
tr "A-Z ‘a-z' | tr -s " " | tr " " '"\n" | sort | uniq -c
sort -rn | head

Here's some of the new output:

405 t he
170 to
136 a

134 of
122 and
119 is

80 files
74 file
72 in

67 or

The numbers are different for some of the words because | ran the commands and wrote the chapter at the same time.

| could also have replaced 'A-Z' and 'a-z' with the upper and lower classes, but there is no real advantage to using the
classes. In most cases the ranges are much more illustrative of your intentions.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 15: Text Filters — oPrevious Chapter._Next Chaptern

Sections in this Chapter:
The head and tail Commands = Summary

Using grep “"Questions)))
Counting Words - oPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480102.htm (7 von 7) [06.05.2000 23:05:53]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 15: Text Filters: Summary

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
The head and tail Commands = Summary

Using grep Questions
Counting Words - cPrevious Section__Next Sectiono

Summary

In this chapter you looked at some of the commands that are heavily used for filtering text in scripts. These commands
include:

e head
o talil

e grep
e SOIt
e Uuniq

o tr

| also covered how to combine these commands together to solve problems such as counting the number of times aword
was repeated in atext file. In Chapter 16 | will introduce two more text filtering commands, awk and sed, that give you

much more control over editing lines and printing specific columns of your output.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:
The head and tail Commands = Summary

Using grep “Questions
Counting Words - —Previous Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480103.htm [06.05.2000 23:05:54]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 15: Text Filters: Questions

Sams Teach Yourself Shell Programmingin 24 Hours Contents |ndex

Hour 15: Text Filters — oPrevious Chapter__Next Chaptero

Sectionsin this Chapter:™—

The head and tail Commands = Summary

Using grep “Questions

Counting Words - oPrevious Section—Next Sectiono

Questions

1. Given the following shell function
| spids() { /bin/ps -ef | grep "$1"| grep -v grep ; }

make the necessary changes so that when the function is executed as follows
$ Ispid -h ssh

the output looks like this:

u D PID PPID C STIME TTY TI ME COMVAND

root 2121 1 0 Nov 16 *? 0: 14 /opt/ bin/sshd
Also, when the function executes as

$ Ispid ssh

the output looks like this:

root 2121 1 0 Nov 16 ~? 0: 14 /opt/ bi n/ sshd

Here you are using ssh as the word specified to grep, but your function should be able to use any word as an
argument.

Also, validate that you have enough arguments before executing the ps command.

If you are using a Linux or FreeBSD-based system, please use the following version of the function Ispidsas a
starting point instead of the version given previously:

| spids() { /bin/ps -auwx 2> /dev/null | grep "$1"| grep -v grep ; }
(HINT: The header that you are using is the first line in the output from the /bin/ps -ef command.)

2. Take the function you wrote in question 1 and add a -s option that sorts the output of the ps command by process
ID. The process IDs, or pids, do not have to be arranged from largest to smallest.

If you areusing aLinux or FreeBSD system, you need to sort on column 1. On other systems you need to sort on
column 2.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 15: Text Filters — oPrevious Chapter__Next Chaptero

Sectionsin this Chapter:™

The head and tail Commands = Summary

Using grep “Questions

Counting Words = cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480104.htm [06.05.2000 23:05:54]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 16: Filtering Text Using Regular Expressions: The Basics of awk and sed

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 16: Filtering Text Using Regular Expressions —_ oPrevious Chapter._Next Chapten—s

Sectionsin this Chapter:
The Basics of awk and sed = Summary
Using sed ~~Questions Previous Section__Next Sectiono

Hour 16
Filtering Text Using Regular Expressions

MNew T o . . .

The most powerful text filtering tools in the UNIX environment are a pair of oddly named programs, awk and
sed. They let shell programmers easily edit text files and filter the output of other commands using regular expressions. A
regular expression is a string that can be used to describe several sequences of characters.

sed (which stands for stream editor) was created as an editor exclusively for executing scripts. Asits nameimplies, sed is
stream oriented, thus all the input you feed into it passes through and goesto STDOUT. It does not change the input file.
In this chapter | will show you how to use sed in shell scripts.

| will cover awk programming in Chapter 17, "Filtering Text with awk," but I'll discuss some of the many similarities
between awk and sed at the beginning of this chapter.

The Basics of awk and sed

Invocation Syntax===Regular Expressions
Basic Operation e

There are many similarities between awk and sed:
e They have similar invocation syntax.
e They enable you to specify instructions that execute for every linein an input file.
e They useregular expressions for matching patterns .

For those readers who are not familiar with patterns and regular expressions, | will explain them shortly.

Invocation Syntax

The invocation syntax for awk and sed is as follows:
command 'script' fil enanes

Here command is either awk or sed, script isalist of commands understood by awk or sed, and filenamesisalist of files
that the command acts on.

The single quotes around script are required to prevent the shell from accidentally performing substitution. The actual
contents of script differ greatly between awk and sed. The commands understood by awk and sed are covered in separate
sections later in this chapter.

If filenames are not given, both awk and sed read input from STDIN. This enables them to be used as output filters on
other commands.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480106.htm (1 von 7) [06.05.2000 23:05:55]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 16: Filtering Text Using Regular Expressions: The Basics of awk and sed

Basic Operation

When an awk or sed command runs, it performs the following operations:
1. Reads aline from an input file
2. Makes a copy of thisline
3. Executes the given script on thisline
4. Repeats step 1 for the next line
These operationsiillustrate the main feature of awk and sed--they provide a method of acting on every record or linein a

file using a single script. When every record has been read, the input fileis closed. If the input fileisthe last file specified
in filenames, the command exits.

Script Structure and Execution
The script specified to awk or sed consists of one or more lines of the following form:
/ pattern/ action

Here pattern is aregular expression, and action is the action that either awk or sed should take when the pattern is
encountered. Regular expressions will be covered shortly. The slash characters (/) that surround the pattern are required
because they are used as delimiters.

When awk or sed is executing a script, it uses the following procedure on each record:
1. Sequentially searches each pattern until a match is found.
2. When amatch is found, the corresponding action is performed on the input line.
3. When the action is completed, it goes to the next pattern and repeats step 1.
4. When all patterns have been exhausted, it reads in the next line.
Just before step 4 is performed, sed displays the modified record. In awk you must manually display the record.

The actions taken in awk and sed are quite different. In sed, the actions consist of commands that edit single letters,
whereasin awk the action is usually a set of programming statements.

Regular Expressions

The basic building blocks of aregular expression are

e Ordinary characters
o Metacharacters

Ordinary characters are
e Uppercase and lowercase letters such as A or b
e Numeralssuchaslor 2

o Characters such as a space or an underscore

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480106.htm (2 von 7) [06.05.2000 23:05:55]

Hour 16: Filtering Text Using Regular Expressions: The Basics of awk and sed

Metacharacters are characters that have a special meaning inside aregular expression: They are expanded to
match ordinary characters. By using metacharacters, you need not explicitly specify all the different combinations of
ordinary characters that you want to match. The basic set of metacharacters understood by both sed and awk is given in
Table 16.1.

New TeErM . . .
- Frequently regular expressions are referred to as patterns. In Chapter 8, "Substitution,” | described the shell
feature know as filename substitution, which uses a subset of regular expressions to produce lists of files.

Note - In the context of filename substitution, | referred to metacharacters as wildcards. Y ou might see these
two terms used interchangeably in books and reference materials.

Table 16.1 Metacharacters Used in Regular Expressions

|Character |Description

|- |Matches any single character except anewline.

|* |M atches zero or more occurrences of the character immediately preceding it.

[chars] Matches any one of the characters given in chars, where chars is a sequence of characters. Y ou can use the -
character to indicate arange of characters. If the ~ character isthe first character in chars, one occurrence of
any character that is not specified by charsis matched.

B |Matches the beginning of aline.
|$ [Matches the end of aline.
Treats the character that immediately followsthe\ literally. Thisis used to specify patterns that contain one

’\

of the preceding wildcards.

Regular Expression Examples

As| stated before, aregular expression is astring that can represent many sequences of characters. Thus the simplest
regular expression is one that exactly represents the sequence of characters that you need to match. For example, the
following expression

/ peach/

matches the string peach exactly. If this expression was used in awk or sed, any line that contains the string peach is
selected by this expression. Thisincludes lines such as the following:

We have a peach tree in the backyard
| prefer peaches to pluns

Matching Characters

Look at afew more expressions to demonstrate the use of the metacharacters. For example, the following pattern
/a.cl

matches lines that contain strings such as atc, a-c, abc, match, and a3c, whereas the pattern
| a*c/

matches the same strings along with strings such as ace, yacc, and arctic. It also matches the following line:
cl ose the w ndow

Notice that thereis no letter a in this sentence. The * metacharacter matches zero or more occurrences of the character

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480106.htm (3 von 7) [06.05.2000 23:05:55]

Hour 16: Filtering Text Using Regular Expressions: The Basics of awk and sed

immediately preceding it. In this case it matched zero occurrences of the letter a.

Another important thing to note about the * isthat it tries to make the longest possible match. For example, consider the
pattern

[a*al

and the following line
able was |, ere | saw el ba

Here you have asked to match lines that contain a string that starts with the letter a and ends with the letter a. In the sample
line, there are several possibilities:

abl e wa
able was |, ere | sa
able was |, ere | saw el ba

Because you used the * metacharacter, the last possibility is selected.

Y ou can combine the . and the * metacharacters to obtain behavior equivalent to the * filename expansion wildcard. For
example, the following expression

/ ch. *doc/

matches the strings ch01.doc, ch02.doc, and chdoc. The shell's* wildcard matches files by the same names.
Specifying Sets of Characters

One of the major limitations with the . operator isthat it does not enable you to specify which characters you want to
match. It matches al characters. To specify a particular set of charactersin aregular expression, use the bracket characters,
([and]), asfollows:

/[chars]/

Here a single character in the set given by charsis matched. The use of setsin regular expression is almost identical to the
shell's use of setsin filename substitution.

Hereis an example of using sets. The following expression matches the string The and the:

/[t T] hel

Table 16.2 shows some frequently used sets of characters.

Table 16.2 Common chars Sets

|Set |Description

[&2] |Matches asingle lowercase | etter
[A-Z] |Matches a single uppercase | etter
[&zA-Z] |Maichesasingle letter

[0-9] |Matches a single number
|[a-zA-Z0-9] [Matches asingle letter or number

Sometimesit is hard to determine the exact set of characters that you need to match. Say that you needed to match every
character except the letter T. In this case, constructing a set of characters that includes every character except the letter T is
error prone. Y ou might forget a space or a punctuation character while trying to construct the set.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480106.htm (4 von 7) [06.05.2000 23:05:55]

Hour 16: Filtering Text Using Regular Expressions: The Basics of awk and sed
Fortunately, you can specify a set that is the negation of the set that matches T as follows:
[~T]

Here the ” character precedes the letter T. When the » character isthe first character in the set, any character not givenin
the set is matched. Thisis called reversing or negating a set. Any set, including those given in Table 16.2, can be reversed
or negated if you give " asthefirst character. For example, the following pattern

/ ch[~0-9]/
matches the beginnings of the strings chapter and chocolate, but not the strings ch01 or ch02.

Y ou can combine the sets with the * character to extend their functionality. For example, the following expression

/ chO[0- 9] *doc/

matches the strings chO1.doc and ch02.doc but not the strings chdoc or changedoc.
Anchoring Patterns

Now say that you are looking for lines that start with the word the, such as the following:
the plains were rich wth crops

If you use the following pattern
/t he/

it matches the line given previously along with the following lines:

there were many orchards of fruit tree
in the dark it was |ike sumer |ightning

The two main problems are
¢ Only the word the should be matched. Lines starting with words such as there should not be matched.
e Thestring the should be at the beginning of the line.

To solve the first problem, add a space as follows:

[the [/

New T . I .

To solve the second problem you need the * metacharacter, which matches the beginning of aline. In aregular
expression, it anchors the expression to the beginning of the line. By anchor, | mean that an expression matches aline only
if that line starts with this expression. Normally, any line that contains an expression is matched.

By adding the metacharacter as follows
["t he [/

you cause this expression to match only those lines that start with the word the. Some examples are

the forest of oak trees on the nountain
the hillside where the chestnut forest grew

Y ou can aso anchor expressions to the end of the line using the $ metacharacter. For example, the following expression

[friend$/

matches thisline:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480106.htm (5 von 7) [06.05.2000 23:05:55]

Hour 16: Filtering Text Using Regular Expressions: The Basics of awk and sed

| have been and always will be your friend

But it doesn't match thisline;
VWhat are friends for

Y ou can combine the * and the $ metacharacters along with sets of characters and the other metacharacters to match lines
according to an expression. For example, the following expression

/| "Chapter [1-9]*[0-9]9%/

matches lines such as

Chapter 1
Chapter 20

but it does not match lines such as

Chapter 00 I ntroduction
Chapter 101

Because the * and $ metacharacters anchor the expression to the beginning and end of aline, you match empty lines as
follows:

I "$/
Escaping Metacharacters

Many times you need to match strings such as

Peaches $0.89/1 bs
Q1 $15.10/ barrel

This string contains three characters with special meaningsin regular expressions:
e Thedollar character, $
e Thedecimal point character, .
e The per character, /

If you use an ordinary expression such as the following
/ $[0-9].[0-9][0-9]/[a-zA-Z] */
you are unable to match any string because the expression is garbled. The two main problems are:

e Thefirst character in this expression isthe $ character. Because the $ matches the end of the line, this expression
triesto look for characters after the end of the line. Thisis an impossible pattern to match.

e Therearethree slashes. Thefirst two slashes are used as the delimiters for the pattern. The [a-zA-Z]*/ that occurs
after this pattern confuses awk and sed.

The third problem is related to the .. Because this metacharacter matches a single occurrence of any one character, it can
match the following strings in addition to the strings you want:

0x00
12345

Y ou can solve all these problems using the backslash metacharacter (\). The character immediately following

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480106.htm (6 von 7) [06.05.2000 23:05:55]

Hour 16: Filtering Text Using Regular Expressions: The Basics of awk and sed

the backslash is aways treated literally. When an ordinary character is preceded by a backslash, it has no effect. For
example, \aand a are both treated as alowercase a. When the backslash precedes a metacharacter, the special meaning of
that metacharacter is "deactivated.”

The process of using the backslash to deactivate a metacharacter is called escaping it. For example,
$

matches the end of aline, but

\'$
matches the dollar sign ($) literally.

By using escaping, you can use the following expression to solve your problems:
I\$[0-9]*\.[0-9][0-9]\/[a-zA- Z] */

If you need to match the\ literally, you can match it by escaping itself, \\.
Sometimes the process of escaping a metacharacter with the backslash is called backslash escaping.

Useful Regular Expressions Table 16.3 provides some useful regular expressions.

Table 16.3 Some Useful Regular Expressions

|String Type |Expression

|Blank lines "l

|An entireline [~ gl

|One or more spaces 1

IHTML (or XML) Tags |[<[*>][">]*>/

[Valid URLs TazA-Z][azA-Z]* W[azA-Z0-9][a-zA-Z0-0\]* *]
|Formatted dollar amounts|/\$[0—9]*\.[O—9][O—9]/

Sams Teach Yourself Shell Programming in 24 Hours Contents [ndex

Hour 16: Filtering Text Using Regular Expressions —_ oPrevious Chapter._Next Chapten—

Sections in this Chapter:
The Basics of awk and sed = Summary

Using sed ~Questions —Previous Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480106.htm (7 von 7) [06.05.2000 23:05:55]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 16: Filtering Text Using Regular Expressions: Using sed

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 16: Filtering Text Using Regular Expressions —_— oPrevious Chapter_Next Chapter—
Sectionsin this Chapter:™

The Basics of awk and sed ~Summary
Using sed “~Questions oPrevious Section__Next Sectionz

Using sed

Printing Lines ==Jsing Multiple sed Commands
Deleting Lines ==lJsing sed in a Pipeline

Performing Substitutions

sed is a stream editor that you can use as afilter. It reads each line of input and then performs a set of requested actions. The basic syntax of a sed
command is

sed "script' files
Herefilesisalist of one or more files, and script is one or more commands of the form:
/ pattern/ action

Here, pattern isaregular expression, and action is one of the commands given in Table 16.4. If pattern is omitted, action is performed for every line.

Table 16.4 Some of the Actions Available in sed

|Action |Description
p |Printsthe line
d |Deletesthe line

|s/patternl/pattern2/ | Substitutes the first occurrence of patternl with pattern2.

Printing Lines
Start with the simplest feature available in sed--printing a line that matches a pattern.

Consider the pricelist for asmall fruit market. Thelist is stored in the file fruit_prices.txt:
$ cat fruit_prices.txt

Fruit Pricel/l bs
Banana 0. 89
Paech 0.79
Ki wi 1.50
Pi neappl e 1.29
Appl e 0. 99
Mango 2.20

Here you list the name of afruit and its price per pound.

Say you want to print out alist of those fruits that cost less than $1 per pound. Y ou need to use the sed command p (p asin print):
/pattern/p

Here pattern is aregular expression.

Try the following sed command:
$ sed "/O\.[0-9][0-9]%/p" fruit_prices.txt

Here you tell sed to print all the lines that match the pattern:
/O\.[0-9][0-9] %/

This means that lines that end in prices such as 0.89 and 0.99 should be printed. Y ou don't want lines that end in prices such as 2.20 to be printed.

Now, look at the outpuit:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480107.htm (1 von 5) [06.05.2000 23:05:56]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 16: Filtering Text Using Regular Expressions: Using sed

Fruit Pricel/l bs
Banana 0. 89
Banana 0. 89
Paech 0.79
Paech 0.79
Ki wi 1.50
Pi neappl e 1.29
Appl e 0.99
Appl e 0. 99
Mango 2.20

Y ou find that the lines for fruit with prices less than adollar are printed twice, whereas lines for fruit with prices greater than adollar are printed
only once.

This demonstrates the default behavior of sed--it prints every input line to the output. To avoid this behavior, you can specify the -n option to sed as
follows:

$ sed -n "/O\.[0-9][0-9]%/p" fruit_prices.txt

This changes the output as follows:

Banana 0. 89
Paech 0.79
Appl e 0. 99

Deleting Lines

Say that you run out of mangos and you need to delete them from the list. To accomplish thistask, you need to use the sed command d (d asin
delete):

/pattern/d
Here pattern is aregular expression.

In this case you can use the following sed command:
$ sed '/~ Mjango/d" fruit_prices.txt

Here you request all lines that start with the words mango or Mango to be deleted. The output is as follows:

Fruit Pricel/l bs
Banana 0. 89
Paech 0.79
Ki wi 1.50
Pi neappl e 1.29
Appl e 0.99

Notice that in this case you did not have to specify the -n option to sed to get the correct output. The p command tells sed to produce additional
output, whereas the d command tells sed to modify the regular output.

Now that you have modified the output, you need to update the file. Y ou can do this with the help of the shell:

$ mv fruit_prices.txt fruit_prices.txt.$$
$ sed '/ Mijango/d fruit _prices.txt.$$ > fruit_prices.txt
$ cat fruit_prices.txt

First, you rename the file fruit_prices.txt to fruit_prices.txt.$$. The value of the variable $$ is the process ID of the current shell. Appending this
value to the end of afileisacommon practice for creating temporary files.

Next, you use sed to delete the lines starting with Mango or mango from the temporary file. The output of the sed command is redirected into the
filefruit_prices.txt.

Thefinal cat command shows us that the update was successful:

Fruit Pricel/l bs
Banana 0. 89
Paech 0.79

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480107.htm (2 von 5) [06.05.2000 23:05:56]

Hour 16: Filtering Text Using Regular Expressions: Using sed

Ki wi 1.50
Pi neappl e 1.29
Appl e 0. 99

At this point you can remove the temporary file as follows:
$ rmfruit_prices.txt.$$

Performing Substitutions

By now you might have noticed that Peach is misspelled as Paech in the file fruit_prices.txt. Y ou can fix this misspelling by substituting Paech
with the correct spelling Peach. To do this, use the sed command s (s asin substitute):

[pattern/s/patternl/ pattern2/
Here pattern, patternl, and pattern2 are regular expressions. In the s command patternl is replaced with pattern2 on any line that matches pattern.

Frequently pattern is omitted, so you see the s command used as follows:
s/ patternl/ pattern2/

Here the s command executes for every input line.

To fix the spelling of Paech, you can use the following sed command:
$ sed 's/Paech/ Peach/' fruit_prices.txt

The output looks like the following:

Fruit Pricel/l bs
Banana 0. 89
Peach 0.79
Ki wi 1.50
Pi neappl e 1.29
Appl e 0. 99

Notice that in this case you did not have to specify the -n option to sed to get the correct output. The s command is similar to the d command in that
it tells sed to modify the regular output.

Common Errors

A common error with the s command is forgetting one or more of the / characters. For example, say you were to issue the command
$ sed 's/Paech/ Peach' fruit_prices.txt

An error message similar to the following is produced:
sed: conmmand gar bl ed: s/ Paech/ Peach

Thisisthe standard style of sed error messages.
sed: command gar bl ed: conmand

Here sed could not understand the command. No additional error messages or information are produced. Y ou have to determine what went wrong
yourself.

Performing Global Substitutions

Consider the following line:

$ cat nash.txt
things that are eqal to the same thing are eqal to each other

Here the word equal is misspelled as eqal. Try to fix this using the s command as follows:
$ sed 's/eqal/equal /' nash.txt

This produces the output:
things that are equal to the sane thing are eqal to each other

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480107.htm (3 von 5) [06.05.2000 23:05:56]

Hour 16: Filtering Text Using Regular Expressions: Using sed

Asyou can see, the first misspelling was fixed, but the second one was not. Thisis the default behavior of the s command: it only performs one
substitution on aline. To perform more than one substitution, you need to use the g (g asin global) operator as follows:

s/ patternl/ pattern2/g
Here patternl and pattern2 are regular expressions. The g operator tells the s command to substitute every occurrence of patternl with pattern2.

In this case, you use it as follows:
$ sed 's/eqal/equal/g" nash.txt

This produces the correct output:
things that are equal to the sanme thing are equal to each other

Reusing an Expressions Value

Now say that you want to change the list to reflect that the prices are in dollars by appending the $ character in front of each of the prices. You
know that by using the following expression, you can match all the lines that end with a price:

/ *[0-9][0-9]*\.[0-9][0-9]$%/

The problem, though, is replacing the existing price with aprice that is preceded by the $ character. Apparently, you would need to write a separate
scommand for each fruit in thefile.

Fortunately, the s command provides us with the & operator, which enables us to reuse the string that matched patternl in pattern2. In this case you
need to reuse the price that was matched:

$ sed "s/ *[0-9][0-9]*\.[0-9][0-9]$/\$& " fruit_prices.txt

Fruit Pricel/l bs
Banana $0. 89
Paech $0. 79
Ki wi $1. 50
Pi neappl e $1. 29
Appl e $0. 99

Using Multiple sed Commands

Asyou can see from the last example, you were able to update the prices, but Paech is still misspelled. Say that you need to update fruit_prices.txt
with both changes. This means that you have to perform more than one sed command on thefile. Y ou can do thisin two ways:

o Perform the first change and then update the file. Perform the second change command and then update the file.
o Perform both changes using a single sed command and then update the file once.

Asyou can guess, the second method is much more efficient and less prone to error because the file is updated only once. Y ou can perform both
changes using a single sed command as follows:

sed -e 'commandl’ -e 'command2' ... -e 'commandN files

Here commandl through commandN are sed commands of the type discussed previously. These commands are applied to each of the linesin the
list of files given by files.

In this case you can perform both updates using either of the following commands:

$ sed -e 's/Paech/Peach/' -e '"s/ *[0-9][0-9]*\.[0-9][0-9]%/\$&"' fruit _prices.txt
Frui t Pricel/l bs

Banana $0. 89
Peach $0. 79
Ki wi $1. 50
Pi neappl e $1. 29
Appl e $0. 99

To update the file you use the same procedure as before:

$nmv fruit _pieces.txt fruit_pieces.txt.$$
$ sed -e 's/Paech/Peach/' -e 's/ *[0-9][0-9]*\.[0-9][0-9]$/\$& "' fruit_prices.txt.$$
> fruit_pieces.txt

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480107.htm (4 von 5) [06.05.2000 23:05:56]

Hour 16: Filtering Text Using Regular Expressions: Using sed

$ cat fruit_pieces.txt

Fruit Pricel/l bs
Banana $0. 89
Peach $0. 79
Ki wi $1. 50
Pi neappl e $1. 29
Appl e $0. 99

Using sed in a Pipeline

As | have mentioned before, if sed does not receive alist of files, it acts on its STDIN. This enables us to useit in pipelines.
I will demonstrate sed's usage in this manner by using it to solve the problem of determining the user's numeric user ID (uid).

On al UNIX systems the /usr/bin/id command prints the current users uid and gid information. In my case, the output of id looks like the following:
$ /usr/bin/id

ui d=500(ranga) gi d=100(users)

Asyou can tell from the output, my numeric uid is 500. Y ou need to modify this output so that only this number is printed. Using sed makes this
task quite easy.

First you need to eliminate everything following the first parenthesis. Y ou can do that as follows:

$ /usr/bin/id | sed "s/(.*$//"

Now the output looks like the following:

ui d=500

If you eliminate the uid= portion at the beginning of the line, you are finished. Y ou can do this as follows:
$ /usr/bin/id | sed -e "s/(.*$//" -e "s/ruid=/]"

Now the output is

500

Thisiswhat you want. Notice that when you added the second s command, you changed from the single command form for sed to the multiple
command form that uses the -e option.

Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex

Hour 16: Filtering Text Using Regular Expressions —_— cPrevious Chapter._Next Chapter—

Sections in this Chapter:
The Basics of awk and sed ~Summary
Using sed ““Questions cPrevious Section.Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480107.htm (5 von 5) [06.05.2000 23:05:56]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 16: Filtering Text Using Regular Expressions: Summary

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
The Basics of awk and sed = Summary

Using sed ~~Questions cPrevious Section__Next Sectiono
Summary

In this chapter you looked at filtering text using regular expressions. Some of the major topics that you covered are
e Matching characters
e Specifying sets of characters
e Anchoring patterns
o Escaping metacharacters

Y ou aso covered the similarities between the two most powerful text filtering programs available on UNIX systems, awk
and sed. Finally, you looked at using the sed command. Some of the uses that you covered are

e Printing lines
e Deleting lines

e Performing substitution

In the next chapter | will introduce the awk command and its programming language. Using the material covered in this
chapter, you will be able to use awk to easily perform difficult text manipulations.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
The Basics of awk and sed = Summary
Using sed “Questions cPrevious Section_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480108.htm [06.05.2000 23:05:56]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 16: Filtering Text Using Regular Expressions: Questions

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 16: Filtering Text Using Regular Expressions —_ oPrevious Chapter._Next Chapten—s

Sectionsin this Chapter:
The Basics of awk and sed ~Summary
Using sed ~~Questions —Previous Section__Next Sectiono

Questions

1. Using sed, write a shell function that searches for aword or simple expressionin alist of files, printing out alist
of matches. Thisis similar to the grep program.

Y ou do not have to support all possible sed expressions. Y our function should take the word to ook for asitsfirst
argument. It should treat its other arguments as alist of files.

HINT: Use double quotes (") instead of single quotes (*) to surround your sed script.

2. Write a sed command that takes as its input the output of the uptime command and prints only the last three load
averages. The uptime command's output looks like the following:

$ uptine
6: 3dpm up 2 day(s), 49 mn(s), 1 user, |oad average:
0.00, 0.00, 0.02

Y our output should look like the following:
| oad average: 0.05, 0.01, 0.03

3. Write a sed command that takes as its input the output of the command df -k and prints only those lines that start
with a/. The output of the df -k command looks like the following:

Fil esystem kbyt es used avail capacity Munted on
/ dev/ dsk/ cOt 3d0s0 739262 455143 224979 67% /

/ proc 0 0 0 0% / proc

fd 0 0 0 0% / dev/fd

/ dev/ dsk/ cOt 3d0s1 123455 4813 106297 5% / var

/ dev/ dsk/ cOt 3d0s5 842150 133819 649381 18% / opt

swap 366052 15708 350344 5% /tnp
kanchi : / hore 1190014 660165 468363 59% [users

On HP-UX use the command df -b instead of df -k .

4. Write a sed command that takes as itsinput the output of the Is -I command and prints the permissions and the
filename for regular files. Directories, links, and special files should not appear in the output. The output of Is -I
should look similar to the following:

-rwr--r-- 1 ranga users 85 Nov 27 15:34 fruit_prices.txt

-rwr--r-- 1 ranga users 80 Nov 27 13:53 fruit_prices.txt. 7880
| rwxrwxrwx 1 ranga users 8 Nov 27 19:01 nash -> nash.txt
-rwr--r-- 1 ranga users 62 Nov 27 16:06 nash.txt

| rwxrwxrwx 1 ranga users 8 Nov 27 19:01 urls -> urls.txt
-rwr--r-- 1 ranga users 180 Nov 27 12:34 urls.txt

Y our output should look like:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480109.htm (1 von 2) [06.05.2000 23:05:56]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 16: Filtering Text Using Regular Expressions: Questions

-rwr--r-- fruit_prices.txt
-rwr--r-- fruit_prices.txt.7880
-rwr--r-- nash.txt

-rWr--r-- urls.txt

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:
The Basics of awk and sed =Summary

Using sed “Questions Previous Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480109.htm (2 von 2) [06.05.2000 23:05:56]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 17: Filtering Text with awk: What is awk?

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 17: Filtering Text with awk —_ oPrevious Chapter._Next Chapten—s
Sectionsin this Chapter:

What is awvk? “Questions

Using awk Features ~Terms

Summary - cPrevious Section__Next Sectiono

Hour 17
Filtering Text with awk

In Chapter 16, "Filtering Text Using Regular Expressions,” you looked at the sed command and used regular expressions
to filter text. In this chapter you will look at another powerful text filtering command called awk.

The awk command is a complete programming language that enables you to search many files for patterns and
conditionally modify files without having to worry about opening files, reading lines, or closing files. It's found on all
UNIX systems and is quite fast, easy to learn, and extremely flexible.

This chapter concentrates on the awk elements that are most commonly used in shell scripts. Specifically these features are
o Field editing
e Variables

e Flow control statements

What is awk?

Basic Syntax ==COmparison Operators
Field Editing ==Using STDIN as |nput

Taking Pattern-Specific A Cti ONSe=

The awk command is a programming language that enables you to search through files and modify records with these files
based on patterns. The name awk comes from the last names of its creators Alfred Aho, Peter Weinberger, and Brian
Kernighan. It has been apart of UNIX since 1978, when it was added to UNIX Version 7.

Currently three main versions are available:
e Theorigina awk
e A newer version nawk
e The POSIX/GNU version gawk

The original awk has remained amost the same since its first introduction to UNIX in 1978. Originally it was intended to
be a small programming language for filtering text and producing reports.

By the mid-1980s, people were using awk for large programs, so in 1985 its authors decided to extend it. Thisversion,
called nawk (asin new awk), was released to the public in 1987 and became a part of SUnOS 4.1. x. Its developers
intended for nawk to replace awk eventually. This has yet to happen. Most commercial UNIX versions such as HP-UX and
Solaris still ship with both awk and nawk.

In 1992 the Institute of Electrical and Electronics Engineers (IEEE) standardized awk as part of its Portable Operating

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480111.htm (1 von 7) [06.05.2000 23:05:57]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 17: Filtering Text with awk: What is awk?

Systems Interface standard (POSIX). gawk, the GNU version of awk, is based on this standard. All Linux systems ship
with gawk.

The examplesin this chapter work with any version of awk.

Basic Syntax

The basic syntax of an awk command is

awk 'script' files

Herefilesisalist of one or morefiles, and script is one or more commands of the form:
/[pattern/ { actions }

Here pattern is aregular expression, and actionsis one or more of the commands that are covered later in this chapter. If
pattern is omitted, awk performs the specified actions for each input line.

Look at the simplest task in awk, displaying all the input lines from afile. In this case you use a modified version of the
file fruit_prices.txt from the previous chapter:

$ ank '{ print ; }' fruit_prices.txt

Fruit Pricel/l bs Quantity
Banana $0. 89 100
Peach $0. 79 65

Ki w $1. 50 22

Pi neappl e $1. 29 35

Appl e $0. 99 78

Here you use the awk command print to print each line of the input. When the print command is given without arguments,
it prints the input line exactly asit was read.

Notice that thereisa semicolon (;) after the print command. This semicolon is required to let awk know that the command
has concluded. Strictly speaking, some older versions of awk do not require this, but it is good practice to include it

anyway.

Field Editing

One of the nicest features available in awk isthat it automatically dividesinput linesinto fields. A field is a set
of charactersthat are separated by one or more field separator characters. The default field separator characters are tab and
Space.

When alineisread, awk placesthefields that it has parsed into the variable 1 for the first field, 2 for the second field, and
so on. To access afield, use the field operator, $. Thus, the first field is $1.

Caution - The use of the $ in awk is dightly different than in the shell. The $isrequired only when
accessing the value of afield variable; it is not required when accessing the values of other variables. | will
explain creating and using variablesin awk in depth later in this chapter.

As an example of using fields, you can print only the name of afruit and its quantity using the following awk command:
$ ank '{ print $1 $3 ; }' fruit_prices.txt

Here you use awk to print two fields from every input line:

e Thefirst field, which contains the fruit name

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480111.htm (2 von 7) [06.05.2000 23:05:57]

Hour 17: Filtering Text with awk: What is awk?

e Thethird field, which contains the quantity

The output looks like the following:
FruitQuantity
BananalOO

Peach65

Kiw 22

Pi neappl e35

Appl e78

Notice that in the output there is no separation between the fields. Thisis the default behavior of the print command. To
print a space between each field you need to use the , operator as follows:

$ anwk '{ print $1 , $3 ; }' fruit_prices.txt

Fruit Quantity

Banana 100

Peach 65

Kiw 22

Pi neappl e 35

Appl e 78

Y ou can format the output by using the awk printf command instead of the print command as follows:
$ ank '{ printf "% 15s %s\n" , $1 , $3 ; }' fruit_prices.txt

Fruit Quantity
Banana 100
Peach 65

Ki wi 22

Pi neappl e 35

Appl e 78

All the features of the printf command discussed in Chapter 13, "Input/Output,” are available in the awk command printf.

Taking Pattern-Specific Actions

Say that you want to highlight those fruits that cost more than a dollar by putting a* at the end of the line for those fruits.
This means that you need to perform different actions depending on the pattern that was matched for the price.

Start with the following script:

#!'/ bi n/ sh

awk
[*\$[1-9][0-9]1*\.[0-9][0-9] */ { print $1,$2,$3,"*"; }
[*\$0\.[0-9][0-9] */ { print ; }

fruit_prices.txt

Here you have two patterns: The first one looks for fruit priced higher than a dollar, and the second one looks for fruit
priced lower than adollar. When afruit priced higher than a dollar is encountered, the three fields are output with a* at the
end of the line. For all other fruit, the lineis printed exactly asit was read. The output looks like the following:

Banana $0. 89 100

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480111.htm (3 von 7) [06.05.2000 23:05:57]

Hour 17: Filtering Text with awk: What is awk?

Peach $0. 79 65
Kiwi $1.50 22 *

Pi neappl e $1.29 35 *

Appl e $0. 99 78

The main problem hereis that the lines you wanted to flag with the * in are no longer formatted in the same manner as the
other lines. Y ou could solve this using printf, but a much nicer and ssimpler solution isto use the $0 field. The variable O is
used by awk to store the entire input line as it was read. Change the script as follows:
#!/bi n/ sh
awk '

/ *\$[1-9][0-9]*\.[0-9][0-9] */ { print $0,"*"; }

/ *\'$0\.[0-9][0-9] */ { print ; }
fruit_prices.txt

This changes the output so that all the lines are formatted identically:

Banana $0. 89 100
Peach $0. 79 65
Ki wi $1.50 22 *
Pi neappl e $1. 29 35 *
Appl e $0. 99 78

Comparison Operators

Say that you haveto flag all the fruit whose quantity is less than 75 for reorder by appending the string REORDER to the
end of their line. In this case you have to check whether the third field, which holds the quantity, is less than or equal to 75.

To solve this problem, you need to use a comparison operator. In awk, comparison operators compare the values of
numbers and strings. Their behavior is similar to operators found in the C language or the shell.

When you use a comparison operator, the syntax of an awk command changes to the following:
expression { actions; }

Here expression is constructed using one of the comparison operators givenin Table 17.1

Table 17.1 Comparison Operators in awk

|Operator Description

|< |Less than

|> |Greater than

|<: |Lessthan or equal to

|>: |Greater than or equal to

== |Equal to

|'= INot equal to

|value ~ / pattern/ |Trueif value matches pattern

|value !~/ pattern/ | True if value does not match pattern

Y ou can solve your problem using the following script:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480111.htm (4 von 7) [06.05.2000 23:05:57]

Hour 17: Filtering Text with awk: What is awk?

#!'/ bi n/ sh

awk '
$3 <= 75 { printf "%\t %\ n", $0, " REORDER" ; }
$3 > 75 { print $0 ; }

fruit_prices.txt

Here you check to see whether the third field contains avalue less than or equal to 75. If it does, you print out the input
line followed by the string REORDER. Next you check to see whether the third field contains a value greater than 75 and,
if it does, you print the input line unchanged.

The output from this scripts looks like the following:

Fruit Pricel/l bs Quantity

Banana $0. 89 100

Peach $0. 79 65 REORDER
Ki wi $1. 50 22 REORDER
Pi neappl e $1. 29 35 REORDER
Appl e $0. 99 78

Compound Expressions

New T . . . - .
Often you need to combine two or more expressions to check for a particular condition. When you combine
two or more expressions, the result is called a compound expression .

Compound expressions are constructed by using either the & & (and) or the || (or) compound operators. The syntax is
(exprl) && (expr?2)

(expr2) || (expr?2)

Here expr1 and expr2 are expressions constructed using the conditional operators given in Table 17.1. The parentheses
surrounding expr1 and expr2 are required.

When the & & operator is used, both expr1 and expr2 must be true for the compound expression to be true. When the ||
operator is used, the compound expression istrueif either exprl or expr2 istrue.

As an example of using a compound expression, you can use the compound operators to obtain alist of all the fruit that
cost more than adollar and of which there are less than 75:
awk '
($2 ~ /M $[1-9][0-9]*\.[0-9][0-9]$/) && ($3 < 75) {
printf "%\t%\t%\n", $0,"*", " REORDER" ;
}

fruit_prices.txt ;

The output looks like the following

Ki wi $1.50 22 * REORDER
Pi neappl e $1. 29 35 * REORDER

The Compound Expression Operators

Y ou might hear the & & operator called the and-and operator because it consists of two ampersands (and
characters). Similarly, the || operator might be referred to as the or-or operator.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480111.htm (5 von 7) [06.05.2000 23:05:57]

Hour 17: Filtering Text with awk: What is awk?

The next Command

Consider the following script:

#!'/ bi n/ sh

awk '
$3 <= 75 { printf "%\t %\ n", $0, " REORDER" ; }
$3 > 75 { print $0 ; }

fruit_prices.txt

Clearly it is performing more work than it needs to. For example, when the input lineis
Ki w $1.50 22

the execution of the script is as follows:

1. Check whether the value of the third column, 22, isless than 75. Because the valueis less than 75, the script
proceeds to step 2.

2. Prints the input line followed by REORDER.

3. Checks whether the value of the third column, 22, is greater than 75. Because the value is not greater than 75, the
script reads the next line.

Asyou can see, you have no real need to execute step 3 because step 2 has aready printed aline. To prevent step 3 from
executing, you can use the next command. The next command tells awk to skip all the remaining patterns and expressions
and instead read the next input line and start from the first pattern or expression.

Change your script to useiit:

#! / bi n/ sh

awk
$3 <= 75 { printf "9%\t%\n", $0, "REORDER"' ; next ; }
$3 > 75 { print $0 ; }

fruit_prices.txt ;

Now the execution of the script is asfollows:

1. Checks whether the value of the third column, 22, isless than 75. Because the value is less than 75, the script
proceeds to step 2.

2. Prints the input line followed by REORDER.
3. Reads the next input line and starts over with the first pattern.

Asyou can see, the second comparison ($3 > 75) is never performed for thisinput line.

Using STDIN as Input
Recall that the basic form of an awk command is
awk 'script' files

If files, the list of files, is omitted, awk readsitsinput from STDIN. This enables usto useit to filter the output of other
commands. For example, the command

$1s -1l

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480111.htm (6 von 7) [06.05.2000 23:05:57]

Hour 17: Filtering Text with awk: What is awk?

produces output formatted similar to the following:

total 64

-TWr--1-- 1 ranga users 635 Nov 29 11:10 awkfruit.sh
-TWr--r-- 1 ranga users 115 Nov 28 14:07 fruit_prices.txt
SFTWr--1-- 1 ranga users 80 Nov 27 13:53 fruit_prices.txt. 7880
[rwxr wxr wx 1 ranga users 8 Nov 27 19:01 nash -> nash.txt
STWT--1-- 1 ranga users 62 Nov 27 16: 06 nash.t xt

STWTr--1-- 1 ranga users 11 Nov 29 10: 38 nuns. txt

[rwxr wxr wx 1 ranga users 8 Nov 27 19:01 urls -> urls.txt
-TWTI--1-- 1 ranga users 180 Nov 27 12:34 urls.txt

Y ou can use awk to manipulate the output of the Is -1 command so that only the name of afile and its size are printed.
Here, the name of thefileisinfield 9, and the sizeisin field 5. The following command prints the name of each file along
withitssize:

$ /binfls -1 | awk "$1 !~ /total/ { printf "% 32s %\n",$9,%$5 ; }'

The output looks like the following:

awkfruit.sh 635

fruit_prices.txt 115

fruit_prices.txt. 7880 80

nash 8

nash. t xt 62

nuns. t xt 11

urls 8

urls. txt 180

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index
Hour 17: Filtering Text with awk —_— cPrevious Chapter._Next Chapten—
Sectionsin this Chapter:™

What is awk? ““Questions

Using awk Features “Terms

Summary = cPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480111.htm (7 von 7) [06.05.2000 23:05:57]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 17: Filtering Text with awk: Using awk Features

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 17: Filtering Text with awk —_— oPrevious Chapter._Next Chapten—
Sectionsin this Chapter:™

What is awk? “Questions

Using awk Features " Terms

Summary - cPrevious Section__Next Sectiono

Using awk Features

Variables e
Flow Controlee

Y ou have seen some of the basics of using awk, and you'll now look at some of the more powerful features that it provides.
The main topics are

e Variables
e Flow control
e Loops

These features let you fully exploit the power of awk.

Variables

Variablesin awk are similar to variablesin the shell: They are words that refer to avalue. The basic syntax of defining a
variableis

nane=val ue

Here name is the name of the variable, and value is the value of that variable. For example, the following awk command

fruit="peach"

creates the variable fruit and assigns it the value peach. Thereis no need to initialize avariable: the first time you useiit, it
isinitialized.

Like the shell, the name of avariable can contain only letters, numbers, and underscores. A variable's name cannot start
with a number.

Y ou can assign both numeric and string values to a variable in the same script. For example, consider the following awk
commands:

fruit="peach"

fruit=100

The first command assigns the value peach to the variable fruit. The second command assigns the value 100 to the variable
fruit.

The value that you assign a variable can also be the value of another variable or afield. For example, the following awk
commands

frui t=peach
fruity=fruit

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480112.htm (1 von 11) [06.05.2000 23:05:58]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 17: Filtering Text with awk: Using awk Features

set the value of the variables fruit and fruity to peach.

In order to set the value of avariable to one of the fields parsed by awk, you need to use the standard field access operator.
For example, the following awk command

fruit=%1

sets the value of the variable fruit to the first field of the input line.

Using Numeric Expressions

Y ou can also assign a variable the value of a numeric expression. Numeric expressions are commands used to
add, subtract, multiply, and divide two numbers. Numeric expressions are constructed using the numeric operators given in
Table 17.2. The numeric expressions are of the form

nunil operat or nunf

Here numl and num2 can be constants, such as 1 or 2, or variable names. A numeric expression performs the action
specified by operator on numl and num2 and returns the answer. For example, the following awk commands

a=1
b=a+1

assign the value 2 to the variable b.

Table 17.2 Numeric Operators in awk

|Operator |Description

|+ |Add

- | Subtract

I* IMultiply

I IDivide

|% IModulo (Remainder)
B |Exponentiation

As an example of using numeric expressions, look at the following script that counts the number of blank linesin afile:
#!'/bi n/ sh

for i in $@:;
do
if [-f $i] ; then
echo $i
awk ' /™ *$/ { x=x+1 ; print x ; }' $i
el se
echo "ERROR: $i not a file." >&2
fi
done

In the awk command, you increment the variable x and print it each time ablank line is encountered. Because a new
instance of the awk command runs for each file, the count is unique of each file.

Consider the file urls.txt, which contains four blank lines:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480112.htm (2 von 11) [06.05.2000 23:05:58]

Hour 17: Filtering Text with awk: Using awk Features

$ cat urls.txt
http://ww. cusa. ber kel ey. edu/ ~r anga

http://ww. ci sco. com

ftp://prep.ai.mt.edu/ pub/gnu/
ftp://ftp.redhat.com

http://ww. yahoo. com i ndex. ht n
ranga@xanchi : / honme/ r anga/ pub

ranga@oda: / hone/ r anga/ docs/ book/ ch01. doc

For urls.txt, the output of this script looks like the following:

urls. txt
1
2
3
4

There are two important things to keep in mind about numeric expressions:

e If either numl or num2 is the name of avariable whose value is a string rather than a number, awk uses the value 0
rather than the string.

e If you useavariable that has not yet been created in a numeric expression, awk creates the variable and assignsit a
value of 0.

The Assignment Operators

In the previous example, the awk command:
awk ' /N *$/ { x=x+1 ; print x ; }' Si

Uses the assignment:
X=x+1

In awk this can be written in a more concise fashion using the addition assignment operator:
X +=1

In general the assignment operators have the syntax
nanme operator= num

Here name is the name of avariable, operator is one of the operators specified in Table 17.2, and num s either the name of
avariable or anumeric constant such as 1 or 2. A list of the assignment operatorsisgivenin Table 17.3.

Table 17.3 Assignment Operators in awk

|Operator [Description
[+= |Add

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480112.htm (3 von 11) [06.05.2000 23:05:58]

Hour 17: Filtering Text with awk: Using awk Features

|-= |Subtract

[*= IMultiply

|/: |Divi de

|%: |M odulo (Remainder)
"= |Exponentiation

Using an assignment operator is shorthand for writing a numeric expression of the form:

nane=nane operator num

Many programmers prefer using the assignment operators because they are slightly more concise than a regular numeric
expression.

In the case of

X +=1

the assignment operator += takes the value of X, adds 1 to it, and then assigns the result to x.

The Special Patterns: BEGIN and END

In the awk command
awk " /N *$/ { x=x+1 ; print x ; }' $i
you print out the value of x each time it isincremented. Thus the output looks like this:

urls. txt
1
2
3
4

It would be much nicer if you could print the total number of empty lines. Y ou can do this by using the special patterns
BEGIN and END.

As| stated before, the general syntax of acommand in an awk script is
/pattern/ { actions }

Usually patternis aregular expression, but pattern can aso be one of the two special patterns BEGIN and END. When
these patterns are used, the general form of an awk command becomes

awk '
BEGA N { actions }
/[pattern/ { actions }
/| pattern/ { actions }
END { actions }

" files

The BEGIN pattern must be the first pattern that is specified, and the END pattern must be the last pattern that is specified.
Between the BEGIN and END patterns you can have any number of the following pairs:

/pattern/ { action ; }
Both the BEGIN and the END pattern are optional, so

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480112.htm (4 von 11) [06.05.2000 23:05:58]

Hour 17: Filtering Text with awk: Using awk Features
e When the BEGIN pattern is specified, awk executes its actions before reading any input.
o When the END pattern is specified, awk executes its actions before it exits.
If aprogram consists of only aBEGIN pattern, awk does not read any lines before exiting.
When these patterns are given the execution of an awk, the script is as follows:
1. If aBEGIN pattern is present, the script executes the actions it specifies
2. Reads an input line and parsesit into fields

3. Compares each of the specified patterns against the input line, until it finds a match. When it does find a match,
the script executes the actions specified for that pattern. This step is repeated for all available patterns.

4. Repeats steps 2 and 3 while input lines are present

5. After the script reads all the input lines, if the END pattern is present, it executes the actions that the pattern
specifies.

To solve your problem, you can use the END pattern to print out the value of x. The modified script is as follows:

#!/ bi n/ sh
for i in $@;
do
if [-f "$i"] ; then
echo "$i\c"
awk
I~ *$ { x+=1; }
END { printf " 9%\n",x; }
1 n $| n
el se
echo "ERROR: $i not a file." >&2
fi
done

Now the output looks like
urls.txt 4

Built-in Variables

In addition to the variables that you can define, awk predefines severa variables that are available for your use. The
complete list of these variablesis given in Table 17.4. Unless otherwise noted, you can safely change the values of any of
these variables.

Table 17.4 Built-in Variables in awk

|Variables |Description
|FI LENAME |The name of the current input file. Y ou should not change the value of this variable.

NR The number of the current input line or record in the input file. Y ou should not change the value of this
variable.
|NF |The number of fieldsin the current line or record. Y ou should not change the value of this variable.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480112.htm (5 von 11) [06.05.2000 23:05:58]

Hour 17: Filtering Text with awk: Using awk Features

|OFS |The output field separator (defavilt is space).

|FS |Theinput field separator (default is space and tab).
|ORS | The output record separator (defavilt is newline).
IRS |The input record separator (default is newline).

Using FILENAME and NR

In the previous example you used the shell to print the name of the input file. By using the variable FILENAME in
conjunction with the BEGIN statement, you can do thisall in awk.

Whileyou're at it, change the previous script to print the percentage of linesin the file that were blank. To accomplish this,
you need to use the following expression in the END pattern:

100* (x/ NR)

Because awk does all its numeric computation in floating point, you get a correct answer. Here you are using the variable
NR, which stores the current record or line number.

In the END pattern, the value of NR is the line number of the last line that was processed, which is the same as the total
number of lines processed.

With these changes, the script is

#!/ bi n/ sh
for i in $@;
do

if [-f "$i"] ; then
awk 'BEGA N { printf "9%\t", FI LENAME ; }
/N xS/ { X+=1 ; }
END { ave=100*(x/NR) ; printf " 9%\t93. 1f\n", x, ave; }
1 |l$i n
el se
echo "ERROR $i not a file." >&2
fi
done
The new output looks like

url s. txt 4 36.4

Changing the Input Field Separator

The input field separator, FS, controls how awk breaks up fieldsin an input line. The default value for FSis space and tab.
Because most commands, such as Is or ps, use spaces or tabs to separate columns, this default value enables you to easily
manipulate their output using awk.

Y ou can manually set FSto any other charactersin order to influence how awk breaks up an input line. Usually, this
character is changed when you look through system databases, such as/etc/passwd. The two mechanisms available for
changing FS are

e Manually resetting FSin aBEGIN pattern

e Specifying the -F option to awk

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480112.htm (6 von 11) [06.05.2000 23:05:58]

Hour 17: Filtering Text with awk: Using awk Features
Asan example, set FSto acolon (:). You can use the following BEGIN pattern
BEAN{ FS=":" ; }

or the following awk invocation:

awk -F: "{ ...}

The major difference between the two is that the -F option enables you to use a shell variable to specify the field separator
dynamically asfollows

$ MYFS=: ; export MYFS ; awk -F${MWFS} '{ ... }'

whereas the BEGIN block forces you to hard code the value of the field separator.

A simple example that demonstrates the use of changing FSis the following:
$ ank "BEAN{ FS=":" ; } { print $1 , $6 ; }' /etc/passwd

This command prints each user's username and home directory. It can also be written as follows:
$ ank -F: "{ print $1, $6 ; }' /etc/passwd

A short excerpt of the output on my system is as follows:

root /

daenon /

bin /usr/bin

sys /

adm / var/ adm
ranga / hone/ ranga

Allowing awk to Use Shell Variables

Most versions of awk have no direct way of accessing the values of environment variables that are set in the shell. In order
for awk to use these variables, you have to convert them to awk variables on the command line.

The basic syntax for setting variables on the command lineis
awk 'script' awkvarl=val ue awkvar2=value ... files

Here, script isthe awk script that you want to execute. The variables awkvar 1, awkvar2, and so on are the names of awk
variables that you want to set. Asusual, filesisalist of files.

Say that you want to generate alist of all the fruit in fruit_prices.txt that are less than or equal to some number x, where x
is supplied by the user. In order to make this possible, you need to forward to awk the value of x that the user gives your
script.

Assuming that the user-supplied value for x is given to your script as $1, you can make the following changes:

#! / bi n/ sh
NUVFRUI T="$1"
if [-z "$NUMFRUI T"] ; then NUMFRU T=75 ; fi

awk '

$3 <= nunfruit { print ; }
“nunfruit="$NUMFRU T" fruit_prices.txt

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480112.htm (7 von 11) [06.05.2000 23:05:58]

Hour 17: Filtering Text with awk: Using awk Features

Here, you only print those lines that have less than the specified number of fruit.

Assuming this script is called reorder.sh, executing the script as follows
$./reorder.sh 25

produces the output
Ki wi $1. 50 22

Flow Control

There are three main forms for flow control in awk:
e Theif statement
e Thewhile statement
e Thefor statement

Theif and while statements are similar to the versions in the shell, whereas the for statement is much closer to the version
found in the C language version.

You will look at each of these statementsin turn.

The if Statement

Theif statement enables you to make tests before executing some awk command.

The pattern matching and expressions that you have used in the previous examples are essentialy if statements that affect
the overall execution of the awk program. The if statement should be used within an action rather than in the main input
processing loop.

The basic syntax of theif statement is

I f (expressionl) {

actionl

} else if (expression2) {
action2

} else {
action3

}

Here expressionl and expression2 are expressions created using the conditional operators. They are identical to
expressions you looked at earlier in the chapter. The parentheses surrounding expressionl and expression2 are required.

The actions-- actionl, action2, and action3--can be any sequence of valid awk commands. The braces surrounding these
actions are required only when an action contains more than one statement, but | recommend that you always use them for
the sake of clarity and maintainability.

Both the else if and the el se statements are optional. There isno limit on the number of else if statements that can be given.
The execution is as follows:
1. Evaluate expressionl (if).

2. If expressionl istrue, execute actionl and exit the if statement.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480112.htm (8 von 11) [06.05.2000 23:05:59]

Hour 17: Filtering Text with awk: Using awk Features
3. If expressionl isfalse, evaluate expression2 (elseif).
4. If expression2 is true, execute action2 and exit the if statement.
5. If expression2 isfalse, execute action3 and exit the if statement (else).
Asasimple example, write a script that prints alist of fruit in fruit_prices.txt highlighting the following facts:
e Whether an item costs more than a dollar
e Whether you need to reorder the item

Fruit that costs more than adollar is highlighted with the * character. Fruit that needs to be reordered because its quantity
islessthan 75 is highlighted with the string REORDER.

Using theif statement, the script becomes
#!'/bi n/ sh

awk ' {
printf "os\t", $0;

if ($2 ~ /\$[1-9][0-9]*\.[0-9][0-9]/) {
printf " * ";

it ($3 <= 75) {
printf "REORDER\ n" ;

} else {
printf "\n" ;
}
} else {

if ($3 < 75) {

printf " REORDER\ n" :
} else {

printf "\n" ;
}

}

}' fruit_prices.txt ;

The output looks like the following

Fruit Pricel/l bs Quantity

Banana $0. 89 100

Peach $0. 79 65 REORDER
Ki wi $1.50 22 * REORDER
Pi neappl e $1. 29 35 * REORDER
Appl e $0. 99 78

This example also shows you how to nest if statements.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480112.htm (9 von 11) [06.05.2000 23:05:59]

Hour 17: Filtering Text with awk: Using awk Features

The while Statement

The while statement executes awk commands while an expression istrue. The basic syntax is

whil e (expression) {
actions
}

Here expression is an expression created using the conditional operators. It isidentical to expressions you looked at earlier
in the chapter. The parentheses surrounding expression are required.

The actions that should be performed, actions, are any sequence of valid awk commands. The braces surrounding the
actions are required only for actions containing more than one statement, but | recommend that you always use them for
the sake of clarity and maintainability.

Here is a simple example of the while loop that counts from one to five:
$ awk 'BEAN x=0 ; while (x <5) { x+=1 ; print x ; } }'

The output looks like the following:

abrwdNE

Thedo Statement A variation on the while statement is the do statement. It also performs some actions while an
expression istrue.

The basic syntax is
do {
actions
} while (expression)

Here expression is an expression created using the conditional operators. It isidentical to expressions you looked at earlier
in the chapter. The parentheses surrounding expression are required.

The actions that should be performed, actions, are any sequence of valid awk commands. The braces surrounding the
actions are required only for actions containing more than one statement, but | recommend that you always use them for
the sake of clarity and maintainability.

The main difference is that the do statement executes at |east once, whereas the while statement might not execute at all.
For example, you can write the while loop in the previous example as the following do |oop:

$ ank '"BEAN{ "BEAN x=0 ; do { x+=1 ; print x ; } while (x <5) }'

There are dight variations between nawk, gawk, and awk with regard to this do statement. If you want to use the
statement, you should stick to nawk or gawk because older versions of awk might have trouble with it. If you are
concerned with portability to older versions of UNIX, you should avoid using the do statement.

The for Statement

The for statement enables you to repeat commands a certain number of times. The for loop in awk is similar to the for loop
in the C language.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480112.htm (10 von 11) [06.05.2000 23:05:59]

Hour 17: Filtering Text with awk: Using awk Features

The idea behind the for loop is that you keep a counter and that you test in each iteration of the loop. Every time the loop
executes, the counter isincremented. Thisis quite different from the for loop in the shell, which executes a set of
commands for each item in alist.

The basic syntax of thefor loop is

for (initialize counter; test_counter; increnent_counter) {
action
}

Hereinitialize_counter initializes the counter variable, test_counter is an expression that tests the counter variable's value,
and increment_counter increments the value of the counter. The parentheses surrounding the expression used by the for
loop are required.

The actions that should be performed, action, are any sequence of valid awk commands. The braces surrounding the action
arerequired only for actions containing more than one statement, but | recommend that you always use them for the sake
of clarity and maintainability.

A common use of the for loop is to iterate through the fields in arecord and output them, possibly modifying each record
in the process. The following for loop prints each field in arecord separated by two spaces:
#!'/ bi n/ sh
awk ' {
for (x=1; x<=NF; x+=1) {
printf "% ", $x ;
}

printf "\n" ;
}' fruit_prices.txt

Here you use NF to access the number of fields in the current record. Y ou also use the field access operator, $, in
conjunction with the variable x to access the value stored at a particular field.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index
Hour 17: Filtering Text with awk —_— cPrevious Chapter._Next Chapten—
Sectionsin this Chapter:™

What is awk? ““Questions

Using awk Features “Terms

Summary - cPrevious Section—_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480112.htm (11 von 11) [06.05.2000 23:05:59]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 17: Filtering Text with awk: Summary

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

What is awk? “Questions

Using awk Festures “Terms . . .
Summary - oPrevious Section_Next Sectiono
Summary

In this chapter | have introduced programming in awk. It is one of the most powerful text filtering tools available in UNIX.
By using awk, you can often modify and transform text in ways that are difficult or impossible using only the shell.

Some of the important topics that | have covered are
o Field editing
o Pattern specific actions
e Using STDIN asinput
e Variables
e Numeric and assignment expressions
e Using flow control

In addition to these topics, awk offers features such as multiple line editing, arrays, and functions. If you are interested in
learning more about these topics, consult one of the following sources:

The UNIX Programming Environment by Brian Kernighan and Rob Pike (Prentice-Hall, 1984)
The AWK Programming Language by Alfred Aho, Peter Weinberger, and Brian Kernighan (Addison-Wesley, 1984)

The GNU Awk User's Guide by Arnold Robbins (SCC, 1996)
Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

What is awk? ““Questions
Using awk Features “Terms)))
Summary - oPrevious Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480113.htm [06.05.2000 23:05:59]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 17: Filtering Text with awk: Questions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 17: Filtering Text with awk —_— oPrevious Chapter._Next Chapten—
Sectionsin this Chapter:™

What is awk? “Questions

Using awk Features ~Terms

Summary - cPrevious Section__Next Sectiono
Questions

1. Write an awk script that prints each of the fieldsin arecord in reverse order. The output for thefile
fruit_prices.txt should look like the following:

Quantity Price/lbs Fruit
100 $0.89 Banana

65 $0.79 Peach

22 $1.50 Kiw

35 $1.29 Pi neappl e

78 $0.99 Apple

(HINT: Usethe for statement and NF)

2. Write an awk script that balances a checking account. Y our program needs to print the balance in the account
every time the user makes a transaction.

The transactions are stored in afile. Each line or record in the file has the following format:
command: dat e: comrent : anount

Here date is the date on which the transaction was made, comment is a string (including embedded spaces)
describing the transaction, and amount is the amount of the transaction. The command determines what should be
done to the balance with amount. The valid commands are

0 B, indicates balance. When this command is encountered, the balance in the account should be set to the
transaction amount.

0 D, indicates adeposit. When this command is encountered, the transaction amount should be added to the
balance.

0 C, indicates acheck. When this command is encountered, the transaction amount should be subtracted from
the balance.

0 W, indicates awithdrawal. When this command is encountered, the transaction amount should be
subtracted from the balance.

The main difference between the C (check) and the W (withdrawal) commands is that the C (check) command adds
an extrafield to its records:

command: dat e: comment : check nunber : anbunt

In addition, the B (balance) command uses only two fields:
B: anount

Here amount is the balance amount in the account.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480114.htm (1 von 3) [06.05.2000 23:05:59]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 17: Filtering Text with awk: Questions

For the purposes of this problem, you need to be concerned with the first field, which contains the command; the
second field, which contains the transaction date; and the last field, which contains the transaction amount.

The sample input file looks like the following:

$ cat account.txt

account . t xt

B: 0

D: 10/ 24/ 97:inital deposit: 1000
C. 10/ 25/ 97:credit card: 101: 100
W 10/ 30/ 97: gas: 21. 43

W 10/ 30/ 97: 1 unch: 11. 34

C. 11/ 02/ 97:toner: 41. 45

C. 11/ 04/ 97: car paynent: 347. 23
D: 11/ 06/ 97: di vi dend: 687. 34

W 11/ 10/ 97: ener gency cash: 200

Y our output should look like the following:
10/ 24/ 97 1000. 00

10/ 25/ 97 900. 00
10/ 30/ 97 878.57
10/ 30/ 97 867. 23
11/ 02/ 97 825. 78
11/ 04/ 97 478. 55
11/ 06/ 97 1165. 89
11/ 10/ 97 965. 89

3. Modify the program you wrote for question 2 to print the ending (total) balance after al input records have been
considered. Y our output should now look like the following:

10/ 24/ 97 1000. 00

10/ 25/ 97 900. 00
10/ 30/ 97 878. 57
10/ 30/ 97 867. 23
11/ 02/ 97 825. 78
11/ 04/ 97 478. 55
11/ 06/ 97 1165. 89
11/ 10/ 97 965. 89
Tot al 965. 89

(HINT: Usethe END pattern)
4. Modify the program you wrote in question 3 to support a new command:

0 M, indicates the minimum balance. When the balance drops below this minimum balance, a warning should
be printed at the end of the output line.

The M (minimum balance) command uses only two fields:
M anount

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480114.htm (2 von 3) [06.05.2000 23:05:59]

Hour 17: Filtering Text with awk: Questions

Here amount is the balance amount in the account.

The input file changes as follows:

$ cat account.txt h

B: 0O

M 500

D: 10/ 24/ 97:inital deposit: 1000
C. 10/ 25/ 97:credit card: 101: 100
W 10/ 30/ 97: gas: 21. 43

W 10/ 30/ 97: | unch: 11. 34

C. 11/ 02/ 97:toner: 41. 45

C. 11/ 04/ 97: car paynent: 347. 23
D: 11/ 06/ 97: di vi dend: 687. 34

W 11/ 10/ 97: emer gency cash: 200

Y our output should be similar to the following:
10/ 24/ 97 1000. 00

10/ 25/ 97 900. 00

10/ 30/ 97 878. 57

10/ 30/ 97 867. 23

11/ 02/ 97 825.78

11/ 04/ 97 478.55 * Bel ow M n. Bal ance

11/ 06/ 97 1165. 89

11/ 10/ 97 965. 89

Tot al 965. 89
Sams Teach Yourself Shell Programming in 24 Hours Contents Index
Hour 17: Filtering Text with awk —_— cPrevious Chapter._Next Chapten—
Sectionsin this Chapter:™
What is awk? “~Questions
Using awk Features “Terms
Summary = cPrevious Section—_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480114.htm (3 von 3) [06.05.2000 23:05:59]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 17: Filtering Text with awk: Terms

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

What is awk? “Questions
Using awk Festures “Terms
Summary - cPrevious Section_Next Sectionz

Field A set of charactersthat are separated by one or more field separator characters. The default field separator
characters are tab and space.

Numeric expressions Commands used to add, subtract, multiply, and divide two numbers. Numeric expressions are
constructed using the numeric operators + (add), - (subtract), * (multiply), and / (divide).

Field separator The field separator controls the manner in which an input line is broken into fields. In the shell, the field
separator is stored in the variable IFS. In awk, the field separator is stored in the awk variable FS. Both the shell and awk
use the default value of space and tab for the field separator.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

What is awk? ““Questions
Using awk Features = Terms
Summary - cPrevious Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480115.htm [06.05.2000 23:06:00]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: The eval Command

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 18: Miscellaneous Tools — —Previous Chapter—_Next Chapten
Sectionsin this Chapter:

The eval Command " The expr Command

The : Command ~"The bc Command

The type Command ““remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

xargs ~Terms Previous Section__Next Sectiono

Hour 18
Miscellaneous Tools

by Frank Watson

New T
In this chapter, you will look at several miscellaneous UNIX commands that you often encounter in shell
scripts and can use in your own programs. The first of these tools includes built-in shell commands, which means that the

shell can execute them without reading a separate utility from disk:
o evd
o type
Then you will cover several external commands that exist as binary programs on disk:
o Sleep
o find and xargs
e bc and expr
e remsh (sometimes called rsh, rcmd, or remote)

Built-in tools run slightly more efficiently than external programs because they do not need to be read from the disk.
Unless you are looping thousands of times, you usually do not need to be concerned if the tool you useis built in or
external.

The eval Command

The eval command can be used when you want the shell to reprocess the command line a second time. The basic syntax is
eval any- UNI X- conmand

Insert the eval command at the start of any UNIX shell command. Thisis needed when shell special characters are inserted
viavariable substitution or command substitution (refer to Chapter 8, " Substitution™). For example,

QUTPUT="> out . fil e"
echo hell o $OQUTPUT

The OUTPUT variable contains the > sign to redirect standard output to afile called out.file. However, when you try to

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480117.htm (1 von 2) [06.05.2000 23:06:00]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: The eval Command

use the OUTPUT variable in the echo statement, you find there is a problem. This is what appears on the screen when you
run this code:

hello > out.file
The output went to the screen, but not to the file because the > sign was not present when the shell first looked for

redirection signsin the original command line. Y ou can fix this problem by inserting the eval command at the start of the
echo command:

QUTPUT="> out.fil e"
eval echo hell o $OQUTPUT

Now when you run this code, it smply returnsto the shell prompt without displaying any text on the screen. It does create
afile called out.file that contains the word hello and thisis the desired result. Y ou might ask: Why is this useful? The
answer isthat later you can change theinitial definition of OUTPUT, and it affects all later lines that start with eval and
end with SOUTPUT. For example,

QUTPUT=" >> out.file"
appends to out.file instead of overwriting it.

OUTPUT= causes output to go to the screen instead of to afile.

The eval command is not used frequently in script writing. It is useful for those occasions where you want to compose a
shell command line using shell special characters that are contained in variables or produced by command substitution.
(Shell special characters were discussed in Chapter 9, "Quoting.")

Sams Teach Yourself Shell Programming in 24 Hours Contents Index
Hour 18: Miscellaneous Tools —_— cPrevious Chapter__Next Chapter—
Sectionsin this Chapter:

The eval Command = The expr Command

The : Command = The bc Command

The type Command = remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command =—Summary

The find Command ““Questions

xargs =Terms —Previous Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480117.htm (2 von 2) [06.05.2000 23:06:00]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: The : Command

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 18: Miscellaneous Tools —_— oPrevious Chapter—Next Chapter
Sectionsin this Chapter:

The eval Command " The expr Command

The : Command " The bc Command

The type Command ““remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

xargs ~Terms cPrevious Section__Next Sectiono

The : Command

The : character is actually a complete shell command that does nothing but return a zero completion code,
which indicates the command has completed successfully. It can be used as a no-op, which isa command that does nothing
and thus can be safely inserted anywhere a command is needed for purely syntactical reasons:
if [-x $CVD]
then :
el se

echo Error: $CMD i s not executable >&2
fi

In this example, assume you are not quite ready to write the code to follow the then statement. The shell flags a syntax
error if you leave that code out completely, so you insert the : command as a temporary no-op command that can be
replaced by the desired code later.

Because the : always returns a successful result, it is sometimes used to create an infinite loop:

whi | e
do
echo "Enter sone input: \c"
read | NPUT
["SI NPUT" = stop] && break
done

Because the : always returns a successful or true result, the while loop will continue forever or until a break is executed
within the loop. Sometimes you might find that while true used in place of while : but using the : is more efficient because
itisashell built-in command, whereas true is a command that must be read from adisk file, if you are in the Bourne shell.

Y ou might sometimes find the : used as the first line of a shell script. Y ou sometimes find thisin older scripts written when
programmers used the C shell but wrote scripts for the Bourne shell. If you start a script from the C shell and the first
character of the script isa# sign, it assumes that this script uses C shell syntax, not Bourne shell syntax. Thusit was
important to start Bourne shell scripts with something other than a# sign, and the : no-op was often used.

Another use of the : command takes advantage of the fact that the shell evaluates argumentsto it. Thisis a useful way to
invoke variable substitution as covered in Chapter 8:

${ LI NES: =24} ${ TERM ?" TERM not set"}

The : isano-op, but the shell still evaluatesits arguments. Thus LINES is set to 24 if LINES is empty or undefined. If
TERM isempty or undefined, the whole script aborts with the error message "TERM not set”.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480118.htm (1 von 2) [06.05.2000 23:06:00]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: The : Command

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The eval Command " The expr Command

The : Command " The bc Command

The type Command ~remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

Xargs ~Terms cPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480118.htm (2 von 2) [06.05.2000 23:06:00]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: The type Command

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 18: Miscellaneous Tools — —Previous Chapter—_Next Chapten
Sectionsin this Chapter:

The eval Command " The expr Command

The : Command " The bc Command

The type Command " remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

xargs ~Terms —Previous Section__Next Sectiono

The type Command

The type command tells you the full pathname of a given UNIX command.

The basic syntax is
type commandl command?2

If the command given is not a utility that exists as a separate disk file, type tells you whether it is one of the following:
e A shell built-in command
o A shell keyword or reserved word
e Andlas

If the given command is an alias for another command, type also gives the command that is actually invoked when you run
the dlias.

For example,

$ type true vi case ulimt history
true is /bin/true

vi is /usr/bin/vi

case is a keyword

ulimt is a shell builtin

history is an exported alias for fc -|
$

Different types of UNIX systems can implement the same command in different ways. For example, trueis a shell
included on some UNIX systems and in some UNIX shells and therefore is as efficient to use as the : command. Y ou can
check whether trueis built into your system by using the type command.

Sams Teach Yourself Shell Programming in 24 Hours Contents Index
Hour 18: Miscellaneous Tools —_ cPrevious Chapter._Next Chapterm
Sections in this Chapter:

The eval Command " The expr Command

The : Command " The bc Command

The type Command ~remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

xargs ~Terms cPrevious Section_Next Section—

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480119.htm (1 von 2) [06.05.2000 23:06:01]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: The type Command

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480119.htm (2 von 2) [06.05.2000 23:06:01]

Hour 18: Miscellaneous Tools: The sleep Command

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 18: Miscellaneous Tools — —Previous Chapter—_Next Chapten
Sectionsin this Chapter:

The eval Command " The expr Command

The : Command ~"The bc Command

The type Command ““remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

xargs ~Terms —Previous Section__Next Sectiono

The sleep Command

The sleep command pauses for a given number of seconds. The basic syntax is
sleep n

where n is the number of seconds to sleep or pause. Some types of UNIX enable other time units to be specified. It is
usually recommended that n not exceed 65,534.

sleep can be used to give a user time to read an output message before clearing the screen. It can also be used when you
want to give a series of beeps:

echo -e "A val ue nust be input!\a”

sleep 1

echo -ne
sleep 1

echo -ne "\a"

\ a

\a causes echo to output an audible beep. -eis required on some UNIX systems for \ato sound a beep. -n suppresses the
newline that echo normally prints. The sleep command is used in the previous example to give a sequence of beeps, spaced
one second apart.

sleep can be used in aloop to repeat ajob periodically:
whi | e
do
dat e
who
sl eep 300
done >> logfile

This code enables alist of who islogged into the system to be appended to logfile every 5 minutes (300 seconds).

Note - If you want to leave this code running all the time, you must clear logfile periodically so that it does
not eat up al your disk space.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 18: Miscellaneous Tools — —Previous Chapter—_Next Chapten—a

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480120.htm (1 von 2) [06.05.2000 23:06:01]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: The sleep Command

Sectionsin this Chapter:™

The eval Command “"The expr Command

The : Command “"The bc Command

The type Command “remsh/rsh/rcmd/remote (Remote Shell)
The sleep Command = Summary

The find Command ““Questions

xargs ~ Terms

© Copyright Macmillan Computer Publishing. All rights reserved.

—Previous Section_Next Sectiono

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480120.htm (2 von 2) [06.05.2000 23:06:01]

Hour 18: Miscellaneous Tools: The find Command

Sams Teach Yoursdf Shell Programmingin 24 Hours Contents [ndex
Hour 18: Miscellaneous Tools —_ cPrevious Chapter—_Next Chapter
Sectionsin this Chapter:

The eval Command “"The expr Command

The : Command “"The bc Command

The type Command “remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command ““Summary

The find Command ““Questions

Xargs ~Terms oPrevious SectionNext Sectiono

The find Command

find: Starting Directory ==find: Combining Options

find: -name Option == 1Nd: Negating Options
find: -type Option find: -print Action

find: -mtime, -atime, -ctime find: -exec Action

find: -size Option

The find command is avery powerful, very flexible way to create alist of files that match given criteria. The basic syntax is
find start-dir options actions

Hereisasimplefind example:
find / -nanme al pha -print
This example looks for al files named alpha and displays the full pathname to the screen (standard output). It is a useful

command to know about when you are sure you have afile named alpha but can't remember what directory it isin or want to
know whether it exists in more than one directory. Here is some possible output from that command:

/ reports/ 1998/ al pha
/ reports/ 1998/ regi on2/ al pha
[t np/ al pha

I will shortly cover the elements of the find command in detail. Files can be selected not only by name but also by size, last
modification date, last access date, and so on. First let me give you a more complex example with a brief explanation of each
part of the example, so you get a sense of what options and actions look like:

find /reports/ 1998 -nane al pha -type f -print -exec Ip {} \;
Table 18.1 provides a breakdown of these elements.

Table 18.1 A Sample find Command

|Command Element |Description

/reports/1998 The starting directory. find looks only in this directory and its subdirectories for files that match the
following criteria.
-name apha An option that says you are looking only for files whose name is al pha--/reports/1998/region2/al pha, for

example. find does not check any words in the directory portion of afilename for alpha. It checks only
the filename itself, which is also called the file basename.

-typef An option that says you are looking only for files of type f, which means regular or normal files, and not
directories, devicefiles, and so on. Any files selected must match both conditions: they must have the
name alpha and they must be aregular file.

-print An action that says to display to standard output the pathname for any files that match the criteria given
by the options.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480121.htm (1 von 6) [06.05.2000 23:06:02]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: The find Command

'-exec Ip{}\; 'An action that saysto use the Ip command to print a hard copy of any files that match the criteria.
Multiple actions can be specified.

find: Starting Directory

A UNIX system can contain a huge number of files, often so many that find can take several minutes or more to complete. For
this reason, find enables specifying a starting directory to narrow down the number of filesit hasto search. Only filesin this
directory and al its subdirectories are checked. find enables either an absolute or relative pathname for the starting directory. If
you specify an absolute pathname such as /reports,

find /reports -nane al pha -print

then all the files found are specified as absol ute pathnames, as in this sample output:
/ reports/ 1998/ al pha

/ reports/ 1998/ regi on2/ al pha

If you specify arelative pathname to find,

cd /reports

find ./1998 -nane al pha -print

al thefiles are displayed relative to the starting directory. For example,

.1 1998/ al pha

.1 1998/ r egi on2/ al pha

To search the whole system, specify / asthe starting directory. Thisindicates the system root directory that includes all other
filesand directories:

find / -nane al pha -print

To search the entire system and still display al found files as relative pathnames, use the following:

cd /
find . -nane al pha -print

Sample output:

./ reports/ 1998/ al pha
./ reports/ 1998/ regi on2/ al pha

This point about relative versus absolute pathnames is important if you are using find to generate alist of files to be backed up.
It is better to back up using relative pathnames that enable the files to be restored to atemporary directory.

Some versions of UNIX let you search multiple directories with one find command:
find dirl dir2 -nanme al pha -print

Refer to the man page about find on your UNIX system to see whether it enables multiple directories.

find: -name Option

The -name option enables us to specify either an exact or partial filename for find to match. find checks for a match only in the
filename and not in the directory portion of the pathname.

find / -nanme al pha -print

/tmp/al pha has a matching filename and would be displayed by this command. /reports/alpha/file2 would not be displayed
because find ignores the directory portion of the pathname.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480121.htm (2 von 6) [06.05.2000 23:06:02]

Hour 18: Miscellaneous Tools: The find Command

To specify apartial pathname, use filename substitution wildcards (refer to Chapter 8). For instance,
find / -nanme '*al pha*' -print

Thisdisplays al filesthat contain alpha anywhere within the filename. Here is some sample output:

/ reports/ 1998/ al pha

/ reports/ 1998/ al pha2

/ reports/ 1998/ ol d- al pha

/ reports/ 1998/ regi on2/ al pha
[t np/ al pha

[usr/fredp/ral phadans

All the wildcards covered in Chapter 8 can be used:
* ? [characters] [!characters]

Y ou must enclose the filename containing these wildcards within single quotes (see Chapter 9); otherwise, your find command
does not always give you the desired results.

find: -type Option

The -type option enables us to specify the type of file to search for, asin this example:
find / -type d -print

-type d indicates directories, so only filesthat are directories are displayed. In this example, al directoriesin the whole system
are displayed. Notice that no -name option has been given, so you display all directories regardless of their names. Table 18.2
lists other typesthat are available.

Table 18.2 Types Available for the find Command

|Type|Description

|f |Regular or normal file

|d |Direct0ry

|b |Block special devicefile

|c |Character special devicefile (raw)
|I |5ymboliclink

|p |Named pipe

find: -mtime, -atime, -ctime
The find -mtime option enables us to locate files that were last modified recently or have not been modified in along time:
find / -mime -5 -print

-mtime takes an integer argument that is measured in days. Thisfind command locates files that were last modified fewer than
five days ago. Thisisauseful option when you are sure you modified afile recently but can't remember its name or directory.

Following -mtime you must specify an integer value:
+n Find only files last modified more than n days ago

n Find only files last modified exactly n days ago

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480121.htm (3 von 6) [06.05.2000 23:06:02]

Hour 18: Miscellaneous Tools: The find Command

-n Find only files last modified fewer than n days ago

To find files that have not been modified in the last n days, look for files that were last modified more than n days ago:
find / -mime +90 -print
This shows al files that were last modified more than 90 days ago: that is, files that have not been modified in the last 90 days.

There are three forms of date checking and each takes +n, n, or -n as an argument:

-mtime Findsfileslast modified more than, exactly, or fewer than n days ago
-atime Findsfileslast accessed more than, exactly, or fewer than n days ago
-ctime Finds files whose inode was last changed more than, exactly, or fewer than n days ago. An inode

isan entry in adisk table that contains information about a file such asits owner, size, and last
access date. The inode is changed when the file isfirst created and also later if the owner, group,
or permissions are changed.

-atime | s Often Defeated by Nightly Backups

In theory, find's -atime option is useful if you are short of disk space and want to find files that have not been
accessed in along time so that you can archive them and delete them. However some backup programs, such
astar, prevent -atime from being useful because al files are accessed nightly during the system backup. cpio
provides an -a option that remembers each fil€'s last access date and time and restores it after the file has
been backed up so that find's -atime option is still useful.

find: -size Option
The find -size option enables us to locate files based on the number of blocksin thefile:
find / -size +2000 -print

Thisfind command prints the names of all files that contain more than 2,000 blocks. It is useful when you want to find the
largest files that are consuming disk space.

Following -size, you must specify an integer number:

+n Finds only filesthat contain more than n blocks
n Finds only filesthat contain exactly n blocks
-n Finds only filesthat contain fewer than n blocks

Tip - Itisavery rare occasion when you need to search for files that contain an exact number of blocks.
Usually you look for files that contain more than n blocks or fewer than n blocks. UNIX neophytes often

forget the plus or minus sign for these types of find options and then wonder why find did not locate the
expected files.

find: Combining Options

If you specify more than one option, the file must match all options to be displayed:
find / -nanme al pha -size +50 -ntinme -3 -print

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480121.htm (4 von 6) [06.05.2000 23:06:02]

Hour 18: Miscellaneous Tools: The find Command

Here find displays files only when all the following are true:
e Thenameisalpha
e Thesizeisgreater than 50 blocks
e Thefilewaslast modified fewer than 3 days ago
Y ou can specify alogica "or" condition using -0:
find / \(-size +50 -0 -nmtinme -3 \) -print

Notice the use of the escaped parentheses to group the "either” and "or" options. Thisfinds files that either have size greater
than 50 blocks or were last modified fewer than 3 days ago.

find: Negating Options

You can usethe! sign to select files that do not match the given option:
find /dev ! \(-type b -0 -type ¢c -o type d \) -print
Thislocates dl filesin the /dev directory and its subdirectories that are not block special device files, character specia device

files, or directories. Thisis auseful command to locate device names that users have misspelled, which leaves aregular file in
/dev that can waste alarge amount of disk space.

find: -print Action

-print is an action that tells find to display the pathnames of al files that match the options given before -print. If you put the
-print action before other optionsin the command line, those options are not used in the selection process.

find / -size -20 -print -ntinme +30

This command prints all files that contain fewer than 20 blocks. The -mtime option isignored because it comes after the -print
action on the command line.

If no action is specified on the command line, -print is usually done by default. On older versions of UNIX, however, you must
remember to include - print specifically, or no output is generated.

find: -exec Action

-exec is an action that lets you specify a UNIX command to run on each of the files that match the options given:
find / -nane al pha -exec chnod a+r {} \;

Following -exec, you should specify a complete UNIX command and put {} where the filename will beinserted. Add \; at the
end of the command to complete the required syntax. In the previous example, chmod runs on every file named alpha so that
everyone can read the file.

find / -nane core -exec rm-f {} \;

This example finds al files on the system named core and executes the rm command to delete them. The -f optiontormiis
specified so that rm does not ask for confirmation if you don't own the file and don't have write permission to thefile. Thisisa
useful command for root to run periodically because, if a process aborts, it might leave a debugging file named core in the
current directory. After awhile, these core files, which are not small, can collectively consume an unreasonable amount of disk
space. This find command restores that disk space by finding and deleting those core files.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480121.htm (5 von 6) [06.05.2000 23:06:02]

Hour 18: Miscellaneous Tools: The find Command

Note - If you have thousands of files to process, xargs (covered in the next section) is more efficient than
-exec. For example,

find / -nanme core -print | xargs rm-f

This command also deletes all core files much more quickly and with less overhead than the -exec option,
which callsrm once for each file.

Sams Teach Yourself Shell Programming in 24 Hours Contents Index

Sectionsin this Chapter:™

The eval Command “"The expr Command

The : Command “"The bc Command

The type Command ““remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command =Summary

The find Command “"Questions

xargs ~Terms cPrevious Section_.Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480121.htm (6 von 6) [06.05.2000 23:06:02]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: xargs

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 18: Miscellaneous Tools —_— oPrevious Chapter—Next Chapter
Sectionsin this Chapter:

The eval Command " The expr Command

The : Command " The bc Command

The type Command ““remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

xargs ~Terms cPrevious Section_Next Section—
Xargs

xargsisacommand that accepts alist of words from standard input and provides those words as arguments to a given
command:

cat filelist | xargs rm

Y ou cannot pipe the output of cat directly to rm because rm does not look for filenames on standard input. xargs reads the
files being passed by cat and builds up a command line beginning with rm and ending with the filenames. If there are a
large number of files, xargs runs the rm command multiple times, deleting some of the files each time. Y ou can specify
how many arguments from standard input to build up on the command line with the -n option:

cat filelist | xargs -n 20 rm

-n 20 saysto put only 20 arguments on each command line, so you delete only 20 files at atime. Here is a different
example to give you more insight into how xargs works:

$1s

acne

report16

report3

report 34

report527

$1s | xargs -n 2 echo ===
=== acne reportl6

=== report3 report34

=== report527

$

The first Iscommand shows us that there are only five files in the current directory. (These five can be regular files or

directories; it does not matter for this example.) Next you pipe the output of Isto xargs, which composes and executes this
command (the first of several):

echo === acne report 16

The command begins with echo === because these are the arguments given to the xargs command. The command then
contains two filenames read from standard input. -n 2 tells xargs to add only two words from standard input to each echo
command. | added === asthe first echo argument so you can visually find the output from each separate echo command.
Y ou can see that xargs called echo three times to process al the standard input.

xargs can be used to solve this problem:

$ rm abc*
rm arg list too |ong

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480122.htm (1 von 2) [06.05.2000 23:06:03]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: xargs

The current directory contained too many filenames starting with abc, and the command buffer overflowed, so an error
message was printed, and none of the files were deleted. xargs can solve this buffer overflow problem:

s | grep '~abc' | xargs -n 20 rm

Here you use grep (covered in Chapter 15, "Text Filters") and regular expressions (covered in Chapter 16, "Filtering Text
Using Regular Expressions’) to filter the output of Is passing only filenames that begin with abc. xargs allows rm to

operate on those files and delete them, no matter how many there are.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 18: Miscellaneous Tools —_ cPrevious Chapter—_Next Chapter
Sections in this Chapter:

The eval Command " The expr Command

The : Command " The bc Command

The type Command “remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command ““Questions

xargs ~Terms cPrevious Section_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480122.htm (2 von 2) [06.05.2000 23:06:03]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: The expr Command

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 18: Miscellaneous Tools — —Previous Chapter—_Next Chapten
Sectionsin this Chapter:

The eval Command " The expr Command

The : Command " The bc Command

The type Command ““remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

xargs ~Terms —Previous Section__Next Sectiono

The expr Command

The expr command performs simple integer arithmetic:

$ expr 8/ 3
2
$

Notice that any fractional result isignored. The general syntax is
expr integerl operand integer?2

Possible operands are given in Table 18.3.

Table 18.3 expr Operands

|Operand |Description

[+ /Addition

- |Subtraction

* IMultiplication

I |Integer division (any fraction in the result is dropped)

% Remainder from a division operation (also called the modulus function)
Notice that the * sign must be quoted to prevent shell expansion (see Chapter 9), but the spaces around the * sign must not
be quoted:

$ expr 3 * 5
15
$

New TERM . . . oL .
- The remainder or modulus function is what remains after a division operation:

$ expr 19 %7
5
$

In this operation, 7 goes into 19 two times with aremainder of 5. The modulus function is often called mod for short. Y ou
can say that 19 mod 7 equals 5.

expr requires separate arguments, each separated by a space, or you will not see the calculated result:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480123.htm (1 von 2) [06.05.2000 23:06:03]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: The expr Command

$ expr 3+2
3+2
$

expr is often used within backquotes in shell programming to increment avariable:

CNT="expr $CNT + 1’

expr adds one to the current value in variable CNT, and the backquotes use command substitution to allow the new value
to be assigned back to the variable CNT. (See the section "Command and Arithmetic Substitution” in Chapter 8.)

expr can also return the number of characters matched by aregular expression (see Chapter 16):

$ expr $ABC : '.*'
7
$

* isaregular expression pattern indicating all characters, so all characters of variable $ABC are counted. In this case, expr
shows that it contains 7 characters.

$ expr $ABC : '[0-9]*'

4

$

[0-9]* isaregular expression pattern that matches any group of digits. In this example, expr counts the number of the
digitsthat occur at the start of the string. Looking at the previous example, you know that there are four digits at the start
of variable ABC. Because you knew that there were seven characterstotal in ABC, you now know that the fifth character
isnot adigit.

If part of the regular expression pattern is grouped in escaped parentheses, expr returns the portion of the pattern indicated
by the parentheses:

$ expr abcdef : "..\(..\).."
cd
$

Each period is aregular expression wildcard that represents one character of the given string. The middle two periods are
enclosed in escaped parentheses, so those two characters, cd, are output. This example also illustrates that the string
following expr can be aliteral string of characters, but it is more common in scripts for the string to be generated by
variable or command substitution (see Chapter 8).

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 18: Miscellaneous Tools —_ cPrevious Chapter—_Next Chapter
Sections in this Chapter:

The eval Command " The expr Command

The : Command " The bc Command

The type Command “remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

Xargs ~Terms cPrevious Section_Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480123.htm (2 von 2) [06.05.2000 23:06:03]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: The bc Command

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 18: Miscellaneous Tools — —Previous Chapter—_Next Chapten
Sectionsin this Chapter:

The eval Command " The expr Command

The : Command ~"The bc Command

The type Command ““remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

xargs ~Terms —Previous Section__Next Sectiono

The bc Command

bc is an arithmetic utility not limited to integers:

$ bc

scal e=4

8/ 3

2.6666

2.5 * 4.1/6.9
1. 4855

qui t

$

In this example, you invoke bc and set scale to 4, meaning that you want it to calculate any fraction to four decimal places.
You ask it to calculate 8/3, which gives 2.6666 and then a more complex calculation. Note that spaces are optional. Finally
you enter quit to return to the shell prompt. bc can handle addition (+), subtraction (-), multiplication (*), division (/),
remainder or modulo (%), and integer exponentiation (). bc can accurately compute numbers of any size:
9238472938742937 * 29384729347298472

271470026887302339647844620892264

bc can be used in shell variable assignment to assign calculated values to variables:
AVERAGE="echo "scal e=4; $PRICE/ $UNITS" | bc’

The echo command is used here to print directives that are piped to bc. The first directive sets the scale to 4; the second
directive isadivision operation. These directives are piped to bc, which does the calculations and returns the result. The
backquotes allow the result from bc to be stored in the variable AVERAGE.

bc allows conversion between different number bases:

$ bc
obase=16
i base=8
400

100

77

3f

10*3

18

qui t

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480124.htm (1 von 2) [06.05.2000 23:06:04]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: The bc Command

$

obase=16 sets the output base to hexadecimal; ibase=8 sets the input base to octal. It isimportant to set the output base
first. Y ou enter 400. It shows an octal 400 isahex 100. Y ou enter 77. It shows an octal 77 isahex 3f. Then you multiply
10 and 3, which equals 24 because 10 octal is 8 and 8* 3 is 24. However, because the output base is hex, bc converts 24 to
hex, which gives 18 as the reported result.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The eval Command " The expr Command

The : Command = The bc Command

The type Command ~remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

Xargs ~Terms cPrevious Section_Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480124.htm (2 von 2) [06.05.2000 23:06:04]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: remsh/rsh/rcmd/remote (Remote Shell)

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 18: Miscellaneous Tools — —Previous Chapter—_Next Chapten
Sectionsin this Chapter:

The eval Command " The expr Command

The : Command " The bc Command

The type Command “remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

xargs ~Terms —Previous Section__Next Sectiono

remsh/rsh/rcmd/remote (Remote Shell)

If you have several UNIX systems connected over a network, it is possible to invoke a remote shell to run acommand on
the remote system and return the output of that command to your screen:

renmsh acron who

This shows us who is logged into the remote system called acron. The basic syntax is:
rensh renote-sys uni x- conmand

remote-sys is the name of the remote system where the given unix-command runs. Y ou can pipe text to remsh, whichis
passed to the unix-command being run on the remote system. Any standard output from unix-command on the remote
system is passed to standard output on your system where it can be redirected if desired.

Different types of UNIX systems have different names for this command including: remsh, rsh, rcmd, or remote.

Check the man pages on your system to see which command is correct. Be careful to avoid confusion with the restricted
shell command rsh, which is sometimes invoked as /usr/lib/rsh if rsh invokes the remote shell.

Using the remote shell requires setting up /etc/hosts.equiv, which indicates a trust rel ationship between the two systems.
The simplest most trusting setup isto put each system name in the other system'’s host.equiv file. Usually the same user
account is added to both systems. Then a remote command run by that user on one system runs with the same access
permissions for that user on the other system. To use thisfacility for root, /.rhosts must be set up to contain the other

system name.

Here is amore complex example that enables us to copy a whole directory tree to the remote system:
cd /sourcedir
find . -print | cpio -ocva |

rensh renote sys \(cd /destdir \; cpio -icdum)\)

The find command passes alist of filesto cpio, which copies them to standard output. Thisis passed by the remote shell
command to the remote system where the files are restored to the desired destination directory. Notice that many of the
specia characters must be escaped--that is, preceded by a backslash--so they are interpreted on the remote system and not

on the local system.
Sams Teach Y ourself Shell Programmingin 24 Hours Contents |ndex

Hour 18: Miscellaneous Tools —_ oPrevious Chapter—_Next Chapten—

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480125.htm (1 von 2) [06.05.2000 23:06:04]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: remsh/rsh/rcmd/remote (Remote Shell)

Sectionsin this Chapter:™

The eval Command “"The expr Command

The : Command “"The bc Command

The type Command ~remsh/rsh/rcmd/remote (Remote Shell)
The sleep Command = Summary

The find Command ““Questions

xargs ~ Terms

© Copyright Macmillan Computer Publishing. All rights reserved.

—Previous Section_Next Sectiono

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480125.htm (2 von 2) [06.05.2000 23:06:04]

Hour 18: Miscellaneous Tools: Summary

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The eval Command “"The expr Command
The : Command “"The bc Command
The type Command ““remsh/rsh/rcmd/remote (Remote Shell)
The sleep Command = Summary
The find Command “Questions
xargs ~Terms Previous Section__Next Sectiono
In this chapter you have looked at several miscellaneous tools:
e evd
[)
e type
o Sleep
e find
e Xargs
e EXpr
e bc
e remsh/rsh/rcmd/remote

A large part of this chapter was spent on the basics of the find command. Peruse the man page on find, and you can see
other useful find options for your scriptsthat | did not cover.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The eval Command " The expr Command

The : Command = The bc Command

The type Command ~remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

Xargs ~Terms cPrevious Section_Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480126.htm [06.05.2000 23:06:04]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: Questions

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The eval Command " The expr Command

The : Command " The bc Command

The type Command ~remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

Xargs ~Terms cPrevious Section__Next Section—
Questions

1. You are about to run a custom command called process2, but you would first like to determine where that
command resides. Give a UNIX command to do this.

2. How can you determine all directories under /data that contain afile called process2, allowing any possible
prefix or suffix to also be displayed (for example, you want to find names such as process2-doc).

3. How can you increase the numeric value in variable PRICE to be 3.5 timesits current amount? Allow two digits
to the right of the decimal point.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

The eval Command " The expr Command

The : Command " The bc Command

The type Command ~remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

xargs ~Terms —Previous Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480127.htm [06.05.2000 23:06:04]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 18: Miscellaneous Tools: Terms

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 18: Miscellaneous Tools — —Previous Chapter—_Next Chapten
Sectionsin this Chapter:

The eval Command " The expr Command

The : Command ~"The bc Command

The type Command ““remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “Questions

Xargs ~Terms cPrevious Section_Next Sectionz

no-op A command that does nothing and thus can be used as a dummy command or placeholder where syntax requires a
command.

built-in A command whose code is part of the shell as opposed to a utility which exists in a separate disk file which must
be read into memory before it is executed.

reserved word A nonquoted word that is used in grouping commands or selectively executing them, such as: if, then,
else, elif, fi, case, esac, for, while, until, do, or done.

modulus function See remainder function.

remainder function The remainder of a division operation, which isthe amount that isleft over when the amounts are
not evenly divisible.

inode A table entry within afile system that contains file information such as the owner, group, permissions, last
modification date or time, last access date or time, and the block list of the actual file data. There is one inode for each file.
The inodes are numbered sequentially. The inode does not contain the filename. A directory is atable that maps filenames

to inode numbers.

Sams Teach Yourself Shell Programming in 24 Hours Contents Index
Hour 18: Miscellaneous Tools —_ cPrevious Chapter__Next Chapterm
Sections in this Chapter:

The eval Command " The expr Command

The : Command " The bc Command

The type Command ““remsh/rsh/rcmd/remote (Remote Shell)

The sleep Command = Summary

The find Command “"Questions

xargs ~Terms cPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480128.htm [06.05.2000 23:06:05]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 19: Dealing with Signals: How Are Signal Represented?

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 19: Dealing with Signals —_ oPrevious Chapter._Next Chapten—s
Sectionsin this Chapter:™

How Are Signal Represented? ~ Conclusion
Dealing with Signals ~Questions cPrevious Section__Next Sectiono

Hour 19
Dealing with Signals

Sgnals are software interrupts sent to a program to indicate that an important event has occurred. The events
can vary from user requests to illegal memory access errors. Some signals, such as the interrupt signal, indicate that a user
has asked the program to do something that is not in the usual flow of control.

Because signals can arrive at any time during the execution of a script, they add an extralevel of complexity to shell
scripts. Scripts must account for this fact and include extra code that can determine how to respond appropriately to a
signal regardless of what the script was doing when the signal was received.

In this chapter you will look at the following topics:
e Thedifferent types of signals encountered in shell programming
e How to deliver signals using the kill command
e Handling signals

e How to use signals within your script

How Are Signal Represented?

Getting aList of Signals==D¢€livering Signals
Default Actions -

Each type of event is represented by a separate signal. Each signal is only a small positive integer. The signals most
commonly encountered in shell script programming are given in Table 19.1. All the listed signals are available on all
versions of UNIX.

Table 19.1 Important Signals for Shell Scripts

|Name |Value|Description

|SIGHUP 11 |Hang up detected on controlling terminal or death of controlling process
|SIGI NT |2 |Interrupt from keyboard

|SI GQUIT |3 |Quit from keyboard

|SIGKILL |9 |Ki|| signd

|SI GALRM (14 |Alarm Clock signal (used for timers)

|SI GTERM (15 |Termination signal

In addition to the signals listed in Table 19.1, you might occasionally see areferenceto signal 0, which is more of a shell

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480130.htm (1 von 4) [06.05.2000 23:06:05]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 19: Dealing with Signals: How Are Signal Represented?

convention than areal signal. When a shell script exits either by using the exit command or by executing the last command
in the script, the shell in which the script was running sends itself asignal 0 to indicate that it should terminate.

Getting a List of Signals

All the signals understood by your system are listed in the C language header file signal.h. The location of thisfile varies
between UNIX flavors. Some common locations are

e Solarisand HPUX: /usr/include/sys/signal.h
e Linux: /usr/include/asm/signal.h
Some vendors provide a man page for this file which you can view with one of the following commands:
e InLinux: man 7 signa
e In Solaris: man-s5 signal
e InHP-UX: man 5 signal

Another way that your system can understand alist of signalsisto use the - option of the kill command. For example on a
Solaris system the output is:

$ kill -1

1) SI GHUP 2) SIG NT 3) SIGQUIT 4) SIGLL

5) S| GTRAP 6) S| GABRT 7) Sl GEMT 8) S| GFPE

9) SIGKILL 10) SI GBUS 11) SI GSEGV 12) SI GSYS
13) SI GPl PE 14) S| GALRM 15) S| GTERM 16) S| GUSRL
17) Sl GUSR2 18) SI GCHLD 19) SI GPVR 20) SI GW NCH
21) Sl GURG 22) SIG O 23) S| GSTOP 24) S| GTSTP
25) S| GCONT 26) SIGTTIN 27) S| GTTOU 28) S| GVTALRM
29) S| GPROF 30) S| GXCPU 31) S| GXFSZ 32) S| GMI TI NG
33) SIGLWP 34) SIGFREEZE 35) S| GTHAW 36) S| GCANCEL
37) SI GLOST

The actual list of signals varies between Solaris, HP-UX, and Linux.

Default Actions

Every signal, including those listed in Table 19.1, has a default action associated with it. The default action for asignal is
the action that a script or program performs when it receives asignal.

Some of the possible default actions are
e Terminate the process.
e Ignorethesignal.
e Dump core. This creates afile called core containing the memory image of the process when it received the signal.
e Stop the process.
o Continue a stopped process.

The default action for the signals that you should be concerned about is to terminate the process. Later in this chapter you

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480130.htm (2 von 4) [06.05.2000 23:06:05]

Hour 19: Dealing with Signals: How Are Signal Represented?

will look at how you can change the default action performed by a script with asignal handler .

Delivering Signals

There are several methods of delivering signals to a program or script. One of the most common isfor a user to type
CONTROL-C or the INTERRUPT key while ascript is executing. In this case a SIGINT is sent to the script and it
terminates.

The other common method for delivering signalsisto use the kill command as follows:
kill -signal pid

Here signal is either the number or name of the signal to deliver and pid is the process ID that the signal should be sent to.
TERM

In previous chapters you looked at the kill command without the signal argument. By default the kill command sends a
TERM or terminates a signal to the program running with the specified pid. Recall from Chapter 6, "Processes,” that a PID

isthe process ID given by UNIX to aprogram whileit is executing. Thus the commands

kill pid
kill -s SIGTERM pi d
are equivalent.

Now look at afew examples of using the kill command to deliver other signals.

HUP

The following command
$ kill -s SIGHUP 1001

sends the HUP or hang-up signal to the program that is running with process ID 1001. Y ou can aso use the numeric value
of the signal asfollows:

$ kill -1 1001
This command also sends the hang-up signal to the program that is running with process ID 1001. Although the default
action for thissignal calls for the process to terminate, many UNIX programs use the HUP signal as an indication that they

should reinitialize themselves. For this reason, you should use a different signal if you are trying to terminate or kill a
process.

QUIT and INT

If the default kill command cannot terminate a process, you can try to send the process either aQUIT or an INT (interrupt)
signal asfollows:

$ kill -s SIGQUIT 1001
or
$ kill -s SIANT 1001

One of these signals should terminate a process, either by asking it to quit (the QUIT signal) or by asking it to interrupt its
processing (the INT signal).

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480130.htm (3 von 4) [06.05.2000 23:06:05]

Hour 19: Dealing with Signals: How Are Signal Represented?

kill

NEW T ERM Some programs and shell scripts have special functions called signal handlers that can ignore or discard these

signals. To terminate such a program, use the kill signal:
$ kill -9 1001

Here you are sending the kill signal to the program running with process ID 1001. In this case you are using the numeric
value of the signal, instead of the name of the signal. By convention, the numeric value of the kill signal, 9, is always used
for it.

Thekill signal has the special property that it cannot be caught, thus any process receiving this signal terminates
immediately "with extreme prejudice.” This means that a process cannot cleanly exit and might leave datait wasusing in a
corrupted state. Y ou should only use this signal to terminate a process when all the other signalsfail to do so.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 19: Dealing with Signals —_ oPrevious Chapter._Next Chapteno
Sectionsin this Chapter:™

How Are Signal Represented? ~ Conclusion _ _ _
Dealing with Signals ~"Questions cPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480130.htm (4 von 4) [06.05.2000 23:06:05]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 19: Dealing with Signals: Dealing with Signals

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 19: Dealing with Signals —_ oPrevious Chapter._Next Chapten—s
Sectionsin this Chapter:™

How Are Signal Represented? ™ Conclusion
Dealing with Signals ““Questions oPrevious Section._Next Sectiono

Dealing with Signals

The trap Command ===l gnoring Signals
Cleaning Up Temporary Files==Setting Up a Timer

A program or script can handle asignal in three different ways:
e Do nothing and let the default action occur. Thisisthe simplest method for a script to deal with asignal.

e Ignorethe signal and continue executing. This method is not the same as doing nothing, because ignoring asignal
requires the script to have some code that explicitly ignores signals.

e Catch the signal and perform some signal-specific commands. In this method the script has a special routine that
executes when asignal isreceived. Thisisthe most complex and powerful method of dealing with signals.

The first method for dealing with asignal requires no additional code in your shell script. Thisis the default behavior for
all shell scriptsthat do not explicitly handle signals. All the scripts that you have looked at so far handle signals using this
method.

In this section you will look at the second and third methods of dealing with signals.

The trap Command
The trap command sets and unsets the actions taken when a signal isreceived. Its syntax is
trap nane signals

Here nameisalist of commands or the name of a shell function to execute when asignal in thelist of specified signalsis
received. If nameis not given, trap resets the action for the given signals to be the default action.

There are three common uses for trap in shell scripts:
e Clean up temporary files
e Alwaysignoresignals
e Ignore signals only during critical operations

You will look at afourth use, setting up atimer, later in this chapter.

Cleaning Up Temporary Files

Most shell scripts that create temporary files use atrap command similar to the following:
trap "rm-f $TMPF; exit 2" 1 2 3 15

Here you remove the file stored in $TM PF and then exit with areturn code of 2 indicating that exit was abnormal, when
either aHUP, INT, QUIT, or TERM signal is received. Usually when a script exits normally its exit code is 0. If anything

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480131.htm (1 von 7) [06.05.2000 23:08:25]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 19: Dealing with Signals: Dealing with Signals
abnormal happens, the exit code should be nonzero.

Sometimes when more complicated clean up is required, a shell function can be used. In order to make the uu script
(described in Chapter 12, "Parameters") signal safe, you would add something similar to the following at the beginning of

the script:

C eanUp() {
if [-f "$QUTFILE"] ; then
printf "Cleaning Up... ";
rm-f "$OUTFI LE" 2> /dev/null ;

echo "Done." ;

fi

}
trap CleanUp 1 2 3 15

Here the function CleanUp is invoked whenever the script receivesaHUP, INT, QUIT, or TERM signal. Thisfunction
removes the output file of the script, if that file exists. By cleaning up when asignal isreceived, partially encoded files are
not left around to confuse users.

Note - The main reason to use functions to handle signalsisthat it is nicer to have a shell function invoked
when asignal isreceived rather than write in the appropriate code inline.

Also, the commands that should be executed when a signal is received might be different depending on
which point in the script the signal was received. In many cases it is difficult to capture that logic in afew
commands, thusis it necessary to use a shell function as the signal handling routine.

In the previous examples, asingle signal handler has been used for all signals. Thisis not required, and frequently different
signals have different handlers. As an example, the following trap commands are completely valid:

trap CeanUp 2 15
trap Init 1

Here the script calls a clean up routine when an INT or TERM signal isreceived and calsitsinitialization routine when a
SIGHUP is received. Declarations such as these are common in scripts that run as daemons.

For example, the following script, which is used to keep a process "alive," behaves differently depending on the signal that
it receives:
#!/ bi n/ sh

if [$# -1t 1] ; then
echo "USAGE: “~basenane $0° command. "
Exit O

fi

Init() {
printf "INFO Initializing...

check if the | ast backgrounded pid is valid, if it is
try an kill it.

kill -0 $! 2> /dev/null;
if [$?2 -eq 0] ; then

file://ID]/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480131.htm (2 von 7) [06.05.2000 23:08:25]

Hour 19: Dealing with Signals: Dealing with Signals

kKill $!' > /dev/null 2>&1
if [$?2 -ne 0] ; then
echo "ERROR: Already running as pid $'. Exiting."
exit 1
fi
fi

start a new programin the background

$PROG &
printf "Done.\n"

}

d eanUp() {
kill -9 $! ; exit 2 ;
}

main()

trap CeanUp 2 3 15
trap Init 1

PROG=%$1
[nit

while : ;
do
wait $!
$PROG &
done

Here you have two important functions, Init and CleanUp. The Init function is responsible for stopping any running
instances of the program and then starting it again. The CleanUp function is responsible for killing the running program
and then exiting.

All this script does is launch a program in the background and wait for it to finish. If the program finishes, it is launched
again. The script exitswhen it receivesan INT, QUIT, or TERM signal.

lgnoring Signals

Sometimes there is no intelligent or easy way to clean up if asignal isreceived. In these cases, it is better to ignore signals
than to deal with them. There are two methods of ignoring signals:

trap '' signals
trap : signals

Here signalsisalist of signalsto ignore. The only difference between these two forms is that the first form passes a
specia argument, " or null, to the trap command and the second uses the : command. The form to use islargely based on
programmer style because both forms produce the same resullt.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480131.htm (3 von 7) [06.05.2000 23:08:25]

Hour 19: Dealing with Signals: Dealing with Signals

If you simply wanted the uu script from Chapter 12 to ignore all signals, instead of cleaning up when it received asignal,
you could add the following to the beginning of the script:

trap '' 1 2 3 15

Ignoring Signals During Critical Operations

When this command is given in ascript, the script ignores all signals until it exits. From a programmer's perspective, this
might be agood idea, but from a user's perspective, it isnot. A better ideaisto have only the critical sections of a script
ignore traps. Thisis achieved by unsetting the signal handler when a section of critical code has finished executing.

Asanillustration, say you have a shell script with a shell function called DolmportantStuff(). This routine should not be
interrupted. In order to ensure this, you can install the signal handler before the function is called and reset it after the call
finishes:

trap "' 1 2 3 15

Dol npor t ant St uf f

trap 1 2 3 15

The second call to trap has only signal arguments. This causes trap to reset the handler for each of the signalsto the
default. By doing this, you enable the user to still terminate the script and ensure that critical operations are performed
without interruption.

Setting Up a Timer

In many scripts, there are critical sections where commands that require alarge amount of time to complete are executed.
On rare occasions, these commands might not finish processing. In order to deal with this situation, you need to set up a
timer within the script. When the timer expires, you should terminate the program and inform the user about the abnormal
exit.

In this section you will walk through a simple script that demonstrates the major aspects of setting up atimer using the
ALARM signa and asignal handler.

The main body of this script needs to perform the following actions:
1. Set ahandler for the ALARM signal.
2. Set the timer.
3. Execute the program.
4. Wait for the program to finish executing.
5. Unset the timer.

If the timer expires before the program finishes executing, the handler for the ALARM signal needs to terminate the
program.

The main body looks like the following:
mai n()

trap Al arnHandl er 14

Set Ti mer 15

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480131.htm (4 von 7) [06.05.2000 23:08:25]

Hour 19: Dealing with Signals: Dealing with Signals

$PROG &
CHPROCI DS=" $CHPROCI DS $! "
wait $!

Unset Ti ner

echo "All Done.™"
exit O

The only thing in the main body that was not explicitly mentioned previously isthe CHPROCIDS variable. Thisvariableis
required to maintain alist of all the child processes of the script, because the possible child process are

e Thetimer

e The program
AlarmHandler

The first thing that you do isto install ahandler for the ALARM signal. This handler is the function AlarmHandler:

Al arnmHandl er () {
echo "CGot SI GALARM cnd took too | ong.”
Ki I | SubProcs
exit 14

}

Thisisasimple function that prints a message to the screen, calls the function Kill SubProcs, and then exits with an exit
code of 14 to indicate that the alarm was triggered.

The KillSubProcs function is a simple function that kills all the child processes of the script as stored in the variable
CHPROCIDS:
Ki | | SubProcs() {

kill ${CHPRCCIDS: - $!}

if [$?2 -eq 0] ; then

echo " Sub-processes killed." ;

fi

}

SetTimer

The next task that you perform isto set the timer using the SetTimer function:

SetTinmer() {
DEF_TOUT=${1: - 10};
if [$DEF_TQUT -ne 0] ; then
sl eep $DEF_TOUT && kill -s 14 $%$ &
CHPROCI DS=" $CHPROCI DS $! "
Tl MERPROC=$!
fi

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480131.htm (5 von 7) [06.05.2000 23:08:25]

Hour 19: Dealing with Signals: Dealing with Signals

This function takes a single argument that indicates the number of sections that it should set atimer for. The default is 10
seconds.

Asyou can see, setting the timer isfairly trivial. All you do isissue a sleep command with atimeout and then use the kill
command to send the shell's process ID (stored in $$) an ALARM signal. In order to continue processing, you place this
timer command in the background.

Because the timer is a background process, you need to update the list of child processeswithitsID. You also save the
process ID of the timer in the variable TIMERPROC so that you can later unset the timer.

UnsetTimer

The last function is the UnsetTimer function that unsets the timer set by the SetTimer function. Unsetting the timer
basically meanskilling its process:
Unset Tinmer () {
kill $TI MERPROC
}

The Complete Timer Script

The complete timer script follows:
#!' / bin/sh

Al arnmHandl er () {
echo "Got SI GALARM cnd took too | ong."
Ki | | SubProcs
exit 14

}

Ki || SubProcs() {
kill ${CHPROCIDS: - $!}

if [$?2 -eq 0] ; then echo "Sub-processes killed." ; fi
}
SetTinmer() {
DEF_TOUT=${1: - 10};
if [$DEF_TQUT -ne 0] ; then
sl eep $DEF_TQUT && kill -s 14 3 &
CHPROCI DS=" $CHPROCI DS $! "
TI MERPROC=$!
fi
}

Unset Ti mer () {
kKill $TI MERPROC
}

mai n()

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480131.htm (6 von 7) [06.05.2000 23:08:25]

Hour 19: Dealing with Signals: Dealing with Signals

trap Al arnHandl er 14

Set Ti mer 15

$PROG &

CHPRCOCI DS=" $CHPRCCI DS $!' "
wait $!

Unset Ti ner

echo "Al'l Done."

exit O

Sams Teach Yourself Shell Programming in 24 Hours

Contents Index

Sections in this Chapter:
How Are Signal Represented? = Conclusion
Dealing with Signals ““Questions

© Copyright Macmillan Computer Publishing. All rights reserved.

Previous Section__Next Section

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480131.htm (7 von 7) [06.05.2000 23:08:25]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 19: Dealing with Signals: Conclusion

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
How Are Signal Represented? ~— Conclusion

Dedling with Signals ~~Questions cPrevious Section__Next Sectiono

Conclusion

In this chapter, | introduced the concept of signals. Signals inform a program or script that an important event has
occurred.

Y ou learned about the most common signals encountered in shell programming. | also listed several methods of obtaining
acomplete list of all the signals understood by your system. In this section you also covered the concept of delivering
signals and the default actions associated with asignal.

In the second section of this chapter | introduced the three main methods of handling asignal in a script. Now you know
how to catch signals and handle them using signal handlers. Y ou aso know how to ignore signals. Finally | showed you
how to use signals to set up atimer inside your scripts.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:
How Are Signal Represented? ™ Conclusion

Dedling with Signals ~~Questions cPrevious Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480132.htm [06.05.2000 23:08:25]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 19: Dealing with Signals: Questions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
How Are Signal Represented? ™ Conclusion
Dealing with Signals ~~Questions cPrevious Section__Next Sectiono

Questions

1. Thefollowing is the main body of the "alive" script presented earlier in this chapter. Please change it so that
receiving a SIGQUIT causes it to exit when the wait command returns.
mai n()
trap CleanUp 2 3 15
trap Init 1
PROG=%1
I nit
while : ;
do
wait $!
$PROG &
done

2. Add asignal handler to the timer script to handle the INT signal.
Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
How Are Signal Represented? ™ Conclusion
Dealing with Signals ~Questions cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480133.htm [06.05.2000 23:08:26]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 20: Debugging: Enabling Debugging

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 20: Debugging —_ oPrevious Chapter._Next Chapten—s
Sectionsin this Chapter:™

Enabling Debugging = Summary

Syntax Checking “Questions

Shell Tracing - cPrevious Section__Next Sectiono

Hour 20
Debugging
In this book you have looked at scripts that are quite short. Thus, the issue of debugging them has boiled down to looking

at their output and making sure it is correct.

For larger shell scripts, especialy the kind that change system configurations, trying to deduce the source of a problem
from a script's output is insufficient. Often, by the time you get the output, it is too |ate--the script will have made incorrect
modifications or changes. Another common scenario is adding features to alarge script that someone else developed. In
such cases you need to make sure your changes don't affect the rest of the script. Fortunately, the shell provides several
built-in commands for enabling different modes of debugging support.

In this chapter you learn how to enable debugging, and then you will look at how to use the following debugging modes:
e Syntax checking
e Shell tracing

Enabling Debugging

By now, you are quite familiar with the basic syntax for executing a shell script:
$ script argl arg2 ... argN

Here script is the name of the script, and argl through argN are the arguments to the script. A frequently used alternative
method to execute a shell script is

$ /bin/sh script argl arg2 ... argN

Here you explicitly specify the shell, in this case /bin/sh, that you used to execute the script. The advantage of this method
isthat you can enable a debugging mode by supplying arguments to the shell.

Using this method of script invocation, the basic syntax for enabling a debugging mode is
$ /bin/sh option script argl arg2 ... argN

Here option is one of the debugging options covered in Table 20.1.

A third way of enabling debugging isto change the first line of the script. Usualy, thefirst line of ascriptis
#!/ bin/sh

UNIX uses thisline to determine the shell you can use to execute a script. Thisindicates that the shell /bin/sh should be
used to execute the script. Modify this line to specify a debugging option as follows:

#!'/ bi n/ sh option

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480135.htm (1 von 3) [06.05.2000 23:08:26]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 20: Debugging: Enabling Debugging
Here option is one of the debugging optionslisted in Table 20.1.

Because the previously mentioned methods for enabling debugging modes take effect when a script isinvoked, they are
sometimes referred to as invocation activated debugging modes.

Table 20.1 Debugging Options for Shell Scripts

|Option |Description
|-n |Reads all commands, but does not execute them.
v Displaysall lines asthey are read.

-Displays al commands and their arguments as they execute. This option is often referred to as the shell tracing
option.

-X

Using the set command

In one of the invocation activated debugging modes, the default behavior isfor that debugging mode to take effect at the
first line of your script and remain in effect until the last line. Sometimes you just need to debug a particular function or
section of your script. In these cases, enabling debugging for the entire script is overkill.

Asyou see later in this chapter, the debugging output is quite extensive, and it is often hard to sort out the real errors from
the noise. Address this problem with the set command to enable the debugging modes.

By using the set command, you can enable and disable debugging at any point in your shell script.
Enabling Debugging Using set

The basic syntax follows:

set option

Here option is one of the options given in Table 20.1.

Y ou can use the set command anywhere in your shell script, and many scripts use it to change the debugging flags as part
of the normal execution of the script. Because these debugging modes are activated only when the shell script programmer
uses the set command, they are sometimes referred to as "programmer activated” modes.

Consider the following excerpt from a shell script (the line numbers are provided for your reference):

1 #!/bin/sh

2 set -X

3 if [-z "$1"] ; then

4 echo "ERROR Insufficient Args."
5 exit 1

6 fi

Here the shell programmer is requesting that shell tracing (the -x option) be activated with the command from line 2:
set -X
Because this command occurs before the if statement (lines 3 through 6), shell tracing will be active while the if statement

executes. Unlessit isexplicitly disabled later in the script, shell tracing remainsin effect until the script exits. Y ou will
learn about the effect that shell tracing has on the output of a script in the "Shell Tracing" section of this chapter.

Disabling Debugging Using set

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480135.htm (2 von 3) [06.05.2000 23:08:26]

Hour 20: Debugging: Enabling Debugging
In addition to enabling debugging modes, you can use the set command to disable debugging modes as follows:
set +option

Here option is the letter corresponding to one of the options given in Table 20.1. For example, the command
$ set +x

disables the shell tracing debugging mode.

All the debugging modes that are enabled for a script can be deactivated using the following command:
$ set -

Enabling Debugging for a Single Function

One of the most common uses of the set command is to enable a particular debugging mode before a function executes and
then disable debugging when the function finishes.

For example, if you have afunction called BuggyFunction() and you only want to enable the shell tracing debugging mode
while that function executes, use the following command:

set -x ; BuggyFunction; set +x ;

Here the debugging mode is enabled just before the function is called and is disabled when the function completes. This
method is favored over explicitly using the set command inside a function to enable debugging because it enables the
implementation of the function to remain unchanged.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 20: Debugging —_ oPrevious Chapter._Next Chapteno
Sectionsin this Chapter:™

Enabling Debugging = Summary

Syntax Checking “Questions

Shell Tracing - cPrevious Section—Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480135.htm (3 von 3) [06.05.2000 23:08:26]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 20: Debugging: Syntax Checking

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 20: Debugging —_ —Previous Chapter._Next Chapters
Sectionsin this Chapter:™

Enabling Debuggin = Summary

Syntax Checking ““Questions

Shell Tracing - cPrevious Section__Next Sectionz

Syntax Checking

Why Y ou Should Use Syntax Checki NCe
Using Verbose Mode —

When dealing with any shell script, check the syntax of the script before trying to execute it. This enables you to fix most problems.

To enable syntax checking, use the -n option as follows:
/bin/sh -n script argl arg2 ... argN

Here script isthe name of ascript and argl through argN are the arguments for that script. This command generates output only if errors
occur in the specified script.

Check the syntax of the following script (the line numbers are included for your reference):

1 #!/bin/sh

2

3 YNey

4 if [$YN = "yes"]
5 echo "yes"

6 fi

Can you spot the error?

If this script is stored in the file buggy1.sh, check its syntax as follows:
$ /bin/sh -n ./buggyl. sh

The output looks like the following:
./ buggyl. sh: syntax error at line 7: 'fi' unexpected

Thistells you that when the shell tried to read line 7, it found that the fi statement on line 6 was unexpected. By now you have probably
figured out that the reason the shell was trying read line 7 is that the if statement on line 4

if [$YN = "y"]
is not terminated with a then statement. This line should read as follows:
if [$YN = "y"] ; then

Making this change, you find that the syntax of the script is okay because the command
$ /bin/sh -n buggyl. sh

produces no output.

Why You Should Use Syntax Checking

After looking at the shell script in the previous example, you might be wondering why you couldn't simply execute the shell script to
determine the problem. After all, the command

$ /bin/sh ./buggyl. sh

produces the output

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480136.htm (1 von 4) [06.05.2000 23:08:27]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 20: Debugging: Syntax Checking
buggyl. sh: syntax error at line 7: 'fi' unexpected

This output isidentical to the output of the following command:

$ /bin/sh -n ./buggyl. sh

For this script, it does not matter whether you use the syntax checking mode, but thisis not always the case. As an example, consider the
following script (the line numbers are included for your reference):

1 #!/bin/sh

2

3 Failed() {

4 if [$1 -ne 0] ; then

5 echo "Failed. Exiting." ; exit 1 ;

6 fi

7 echo "Done."

8 }

9

10 echo "Deleting old backups, please wait... \c"

11 rm-r backup > /dev/null 2>&1
12 Failed $?

14 echo "Make backup (y/n)? \c"
15 read RESPONSE
16 case $RESPONSE in

17 [yYII[Yy][Ee][Ss]|*)

18 echo "Maki ng backup, please wait... \c"
19 cp -r docs backup

20 Fai | ed

21 [nN] | [Nn] [Oo])

22 echo "Backup Ski pped." ;;

23 esac

There are at least three errorsin this script. Seeif you can find them.

If this script isin afile called buggy2.sh, executing it produces the following output:

Del eting ol d backups, please wait... Done.
Make backup (y/n)?

Entering y at the prompt produces the following error:
./ buggy3.sh: syntax error at line 21: ')' unexpected

Due to a bug in the script, you can't make a backup, and you have aready lost your previous backup. As you can imagine, thisisavery
bad situation.

The reason the script gets that far before detecting an error is that the shell reads and executes each line of a shell script individually, just
like it does on the command line. Here the shell reads and executes lines until it encounters a problem.

By using the -n option, the script does not execute. Instead, each line is checked to make sure that it has the correct syntax. This helps you
avoid the situation encountered by running the buggy2.sh script because only the error is reported:

./ buggy2.sh: syntax error at line 21: ')' unexpected

Using Verbose Mode

Now that you know why syntax checking should be employed, you can track down the source of the problem.

Looking at line 21 of buggy2.sh

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480136.htm (2 von 4) [06.05.2000 23:08:27]

Hour 20: Debugging: Syntax Checking
21 [nN] | [Nn] [Oo])

it is hard to see why the shell thinks the parenthesis) is unexpected. Sometimes knowing where a syntax error occurs is not enough--you
have to know the context in which the error occurs.

The shell provides you with the -v (v asin verbose) debugging mode in order to check the context in which a syntax error occurs. When
this option is specified, the shell prints each line of ascript asit isread.

If you issue the -v option by itself, every linein the script will execute. Because you want to check the syntax, you combine the -n and -v
options as follows:

$ /bin/sh -nv script argl arg2 ... argN

If you execute buggy2.sh with the debugging options
$ /bin/sh -nv ./buggy2.sh

the output looks like the following (the line numbers are provided for your reference):

1 #!/bin/sh

2

3 Failed() {

4 if [$1 -ne 0] ; then

5 echo "Failed. Exiting." ; exit 1 ;

6 fi

7 echo "Done."

8 }

9

10 echo "Deleting old backups, please wait... \c"

11 rm-r backup > /dev/null 2>&1
12 Failed $?

14 echo "Make backup (y/n)? \c"
15 read RESPONSE
16 case $RESPONSE in

17 [yYII[Yyl[Ee][Ss])

18 echo "Maki ng backup, please wait... \c"

19 cp -r docs backup

20 Fai | ed

21 [AN]|[Nn][Oo]) ./buggy2.sh: syntax error at line 21: ')' unexpected

From this output, the reason that the shell issues an error is apparent. The problem is on line 20; the first pattern of the case statement is
not terminated with the ;;. Make the change

Fail ed ;;
or

Fai | ed

to fix this script. After making this change, the command

$ /bin/sh -n buggy2.sh
does not produce an error message. Asyou will seein the next section, this does not necessarily mean that the script is free from bugs.

However, thisis not to say that you should not use these modes. Y ou should always make sure that these commands do not complain
about syntax errors. It ismuch easier to concentrate on the real bugs, either in logic or program flow, when you know that major syntax
errors are not present in your script.

For readers familiar with the C programming language, syntax checking your shell scripts using sh -n or sh -nv is equivalent to checking

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480136.htm (3 von 4) [06.05.2000 23:08:27]

Hour 20: Debugging: Syntax Checking

your source fileswith lint.
Sams Teach Yourself Shell Programmingin 24 Hours

Contents Index

Sectionsin this Chapter:™

Enabling Debugaing = Summary
Syntax Checking ““Questions
Shell Tracing -

© Copyright Macmillan Computer Publishing. All rights reserved.

oPrevious Section—_Next Section

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480136.htm (4 von 4) [06.05.2000 23:08:27]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 20: Debugging: Shell Tracing

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 20: Debugging —_ oPrevious Chapter._Next Chapten—s
Sectionsin this Chapter:™

Enabling Debugging :SJmmgry

%;tﬁrgﬁ: . e cPrevious Section_Next Section—

Shell Tracing

Finding Syntax Bugs Using Shell Tracing ===Using Debugging Hooks
Finding Logical Bugs Using Shell Traci NG

There are many instances when syntax checking gives your script a clean bill of health, but bugs are still lurking in your
script. Running syntax checking on a shell script is similar to running a spelling checker on atext document--it might find
most of the misspellings, but it can't fix problems like spelling read as red.

For text documents, you need to proofread them in order to find and fix al misspellings. To find and fix these types of
problems in shell scripts, you need to use shell tracing.

In shell tracing mode the shell prints each command in the exact form in which it executes. For this reason, you sometimes
see the shell tracing mode referred to as the execution tracing mode.

The shell tracing or execution tracing mode is enabled by using the -x option (x as in execution). For a complete script, it
is enabled asfollows:

$ /bin/sh -x script argl arg2 ... argN

Aswas mentioned before, it can aso be enabled using the set command:
set -X

To get an idea of what the output of shell tracing looks like, try the following command:
$ set -x ; Is *.sh ; set +x

The output is similar to the following:

+ |'s buggy.sh buggyl. sh buggy?2.sh buggy3.sh buggy4. sh
buggy. sh buggyl.sh buggy2.sh buggy3.sh buggy4. sh
+ set +X

In the output, the lines preceded by the plus (+) character are the commands that the shell executes. The other lines are the
output from those commands. As you can see from the output, the shell prints the exact |s command it executes. Thisis
extremely useful in debugging because it enables you to determine whether al the substitutions were performed correctly.

Finding Syntax Bugs Using Shell Tracing

In the preceding example, you used the script buggy2.sh. One of the problems with this script isthat it deleted the old
backup before asking whether you wanted to make a new backup. To solve this problem, the script is rewritten as follows:

#!/bi n/ sh
Failed() {
if [$1 -ne 0] ; then

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480137.htm (1 von 7) [06.05.2000 23:08:27]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 20: Debugging: Shell Tracing
echo "Failed. Exiting." ; exit 1 ;

fi ’
echo " Done. "

}

YesNo() {
echo "$1 (y/n)? \c"
read RESPONSE
case $RESPONSE i n
[yY]I|[Yy][Ee][Ss]) RESPONSE=y ;;
[NN]| [Nn] [O0]) RESPONSE=n ; ;
esac

}

YesNo " Make backup”
if [$RESPONSE = "y"] ; then

echo "Deleting old backups, please wait... \c"
rm-fr backup > /dev/null 2>&1

Fail ed $?

echo "Maki ng new backups, please wait... \c"
cp -r docs backup

Fai |l ed

fi
There are at |east three syntax bugs in this script and at |east one logical oversight. Seeif you can find them.

Assuming that the script is called buggy3.sh, first check its syntax as follows:
$ /bin/sh -n ./buggy3. sh

Because there is no output, execute it:

$ /bin/sh ./buggy3. sh

The script first prompts you as follows:
Make backup (y/n)?

Answering y to this prompt produces output similar to the following:
Del eti ng ol d backups, please wait... Done.
Maki ng new backups, please wait... buggy3.sh: test: argunent expected

On Linux systems, the output might vary slightly. In any case, an error message is generated. Because this doesn't state
which line of the script the error occurs on, you need to track it down manually.

From the output you know that the old backup was deleted successfully; therefore, the error is probably in the following
part of the script:

echo "Maki ng new backups, please wait... \c"

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480137.htm (2 von 7) [06.05.2000 23:08:27]

Hour 20: Debugging: Shell Tracing

cp -r docs backup
Fai | ed

Enable shell tracing for this section as follows:

set -X

echo "Maki ng new backups, please wait... \c
cp -r docs backup

Fai | ed

set +x

The output changes as follows (assuming you answer y to the question):
Make backup (y/n)? vy

Del eti ng ol d backups, please wait... Done.

+ echo Maki ng new backups, please wait... \c

Maki ng new backups, please wait... + cp -r docs backup
+ Fail ed

+ [-ne 0]
buggy3.sh: test: argunent expected

The execution trace varies slightly on Linux systems.

From this output you can see that the problem occurred in the following statement:
[-ne 0]

From Chapter 10, "Flow Control", you know that the form of anumerical test command is

[numl operator nunR]

Hereit looks like numl does not exist. Also from the trace you can tell that this error occurred after executing the Failed
function. Looking at the function

Failed() {
if [$1 -ne 0] ; then
echo "Failed. Exiting." ; exit 1 ;
fi

echo "Done. "

}

you find that there is only one numerical test. This test compares $1, the first argument to the function, to see whether it is
equal to 0. Now the problem should be obvious. When you invoked the Failed function

echo "Maki ng new backups, please wait... \c"
cp -r docs backup
Fai | ed

you forgot to give it an argument, thus the numeric test failed. There are two possible fixes to this bug. Thefirst isto fix
the code that calls the function:

echo "Maki ng new backups, please wait... \c"
cp -r docs backup
Fai l ed $?

The second isto fix the function itself by quoting the first argument, "$1":

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480137.htm (3 von 7) [06.05.2000 23:08:27]

Hour 20: Debugging: Shell Tracing

Failed() {
if ["$1" -ne 0] ; then
echo "Failed. Exiting." ; exit 1 ;
fi
echo "Done."

}

By quoting the first argument, "$1", the shell uses the null or empty string when the function is called without any
arguments. In this case the numeric test will not fail because both numl and num2 have a value.

The best ideais to perform both fixes. After these fixes are applied, the shell tracing output is similar to the following:
Make backup (y/n)? vy

Del eting ol d backups, please wait... Done.

+ echo Maki ng new backups, please wait... \c

Maki ng new backups, please wait... + cp -r docs backup
+ Fail ed

+ [-ne 0]
+ echo Done.
Done.

+ set +X

Finding Logical Bugs Using Shell Tracing

As mentioned before, there is at least one logical bug in this script. With the help of shell tracing, you can locate and fix
this bug.

Consider the prompt produced by this script:
Make backup (y/n)?

If you do not type aresponse and press Enter, the script reports an error similar to the following:
./ buggy3.sh: [: = unary operator expected

To determine where this error occurs, it is best to run the entire script in shell tracing mode:

$ /bin/sh -x ./buggy3. sh

The output is similar to the following:

+ YesNo Make backup

+ echo Make backup (y/n)? \c

+ /bin/echo Make backup (y/n)? \c
Make backup (y/n)? + read RESPONSE

[=y]
./ buggy3.sh: [: = unary operator expected

Here the blank line is the result of pressing Enter instead of typing aresponse to the prompt, as you can see from the next
line that the shell executes:

[=y]
Thisispart of the if statement:

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480137.htm (4 von 7) [06.05.2000 23:08:27]

Hour 20: Debugging: Shell Tracing

if [$RESPONSE = "y"] : then

Although this can be fixed by changing the if statement
if ["$RESPONSE" = "y"] ; then

the correct fix for this problem is to track down the reason why the variable RESPONSE is not set. Thisvariable is set by
the function Y esNo:

YesNo() {
echo "$1 (y/n)? \c"
read RESPONSE
case $RESPONSE in
[yYI|[Yy][Ee][Ss]) RESPONSE=y ;;
[NN] | [Nn] [O0]) RESPONSE=n ; ;
esac

}

There are two problems with this script. The first is that the read command
read RESPONSE

does not set a value for RESPONSE if the user presses Enter without typing some input. Because you cannot change the
read command, you need to look for some other method of solving this problem.

Thisleads you to alogical problem--the case statement is not validating the user input. A simple fix is the following:

YesNo() {
echo "$1 (y/n)? \c"
read RESPONSE
case "$RESPONSE" in
[YYII[Yy][Ee][Ss]) RESPONSE=y ;;
*) RESPONSE=n ; ;
esac

}

Here you treat all responses other than "yes' responses as negative responses, including no response at all.

Using Debugging Hooks

In the previous examples, you were able to deduce the location of a bug by using shell tracing for either the entire script or
for part of the script. In the case of enabling tracing for a part of a script, you had to edit the script to insert the debug
command:

set -X
In larger scripts, amore common practice is to embed debugging hooks . Debugging hooks are functions that
enable shell tracing during functions or critical code sections. They are activated in one of two ways.
e Thescript isrun with a particular command line option (commonly -d or -x).
e The script isrun with an environment variable set to true (commonly DEBUG=true or TRACE=true).

Hereisafunction that enables you to activate and deactivate debugging at will if the variable DEBUG is set to true:

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480137.htm (5 von 7) [06.05.2000 23:08:27]

Hour 20: Debugging: Shell Tracing

Debug() {
if ["$DEBUG' = "true"] ; then
i f [n $1|l - n Onll _ 0 n $1|l - n ml] ; t hen
set -X
el se
set +Xx
fi
fi
}
To activate debugging, use the following:
Debug on
To deactivate debugging, use either of the following:
Debug
Debug off

Actualy, any argument passed to this function other than on or ON deactivates debugging.

As an example of using this function, modify the functions in the script buggy3.sh to have debugging automatically
enabled if the variable DEBUG is set. The modifications are as follows:

#!/ bi n/ sh
Debug() {
if ["$DEBUG' = "true"] ; then
if ["$1" = "on" -0 "$1" = "ON'] ; then
set -Xx
el se
set +Xx
fi
fi
}
Failed() {
Debug on
if ["$1" -ne 0] ; then
echo "Failed. Exiting." ; exit 1 ;
fi
echo "Done."
Debug of f
}
YesNo() {
Debug on

echo "$1 (y/n)? \c"
read RESPONSE
case "$RESPONSE" in

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480137.htm (6 von 7) [06.05.2000 23:08:27]

Hour 20: Debugging: Shell Tracing

[YYI[[Yy][Ee][Ss]) RESPONSE=y ;;
*) RESPONSE=n ; ;

esac
Debug of f

}

YesNo " Make backup”

if ["SRESPONSE" = "y"] ; then
echo "Del eting old backups, please wait... \c"
rm-r backup > /dev/null 2>&1
Fail ed $?
echo "Maki ng new backups, please wait... \c"
cp -r docs backup
Fail ed $?

fi

The output will be normal if the script executesin either of the following methods:

$ /bin/sh ./buggy3. sh
$./buggy3. sh

The output includes shell tracing if the same script executes in either of the following methods:

$ DEBUG=true /bin/sh ./buggy3.sh
$ DEBUG=t rue ./ buggy3. sh

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 20: Debugging —_ oPrevious Chapter._Next Chapten—s
Sectionsin this Chapter:™

Enabling Debugging :SJM(

w e cPrevious Section_Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480137.htm (7 von 7) [06.05.2000 23:08:27]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 20: Debugging: Summary

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Enabling Debugging = Summary
Syntax Checking “Questions
Shell Tracing - cPrevious Section__Next Section

In the process of developing or maintaining large shell scripts, you need to find and fix bugs that occur in them. In this
chapter you looked at the tools provided by the shell to ease the task of debugging shell scripts. Some of the topics you
covered are

o Enabling debugging

e Syntax checking using sh -n and sh -nv

e Using shell tracing to find syntax and logic bugs
o Embedding debugging hooks in your shell scripts

By learning the techniques used in debugging shell scripts, you can fix your own scripts as well as maintain scripts written
by other programmers.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Enabling Debugging = Summary
Syntax Checking “Questions
Shell Tracing - cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480138.htm [06.05.2000 23:08:28]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 20: Debugging: Questions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Enabling Debugging = Summary

Syntax Checking “Questions

Shell Tracing - cPrevious Section_Next Sectionz
Questions

1. What are the three main forms of enabling debugging in a shell script?

2. Enhance the Debug() function given in this chapter so that the programmer has to press Enter after deactivating
the debugging mode.

When you debug scripts that have several dozen functions, this feature enables you to study the debugging output
of aparticular function in detail before the script proceeds to the next function.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Enabling Debugging = Summary
Syntax Checking “Questions
Shell Tracing - cPrevious Section_Next Sectionz

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480139.htm [06.05.2000 23:08:28]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 21: Problem Solving with Functions: Creating a Library of Functions

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 21: Problem Solving with Functions —_ oPrevious Chapter._Next Chapten—s

Sectionsin this Chapter:™

Creating a Library of Functions = Questions

Useful Functions “Terms

Summary - cPrevious Section__Next Sectiono

Hour 21
Problem Solving with Functions

In previous chapters you looked at writing short shell scripts that perform a specific task. In each shell script, you needed
to perform a set of common tasks. Some examples of the required tasks are

¢ Displaying , ERROR, WARNING, and USAGE messages
e Prompting the user for input

In some cases you needed to repeat these tasks, so you used shell functions. Y ou were able to tailor the output of these
functions to suit your needs by using arguments. Many of your scripts reused functions devel oped for other shell scripts.

In this chapter, | will present alibrary of shell functions that you can use in your shell scripts to perform some common
UNIX task. By using and improving on these implementations, you can avoid having to reinvent the wheel when faced
with a particular problem.

Creating a Library of Functions

Creating the Library ==Naming Conventions
Including Functions from a Librarym

In previous chapters, when you wrote shell scripts that required the use of afunction, you added that function to the shell
scriptsfile. In that model, whenever you wanted to use a function in a script, you had to copy it from a different file.

When you have two or three scripts, thisisfine, but as the number of scripts you write increases, so do the number of
copies of the functions. Say you locate a bug in one of your functions. Imagine how hard it would be to fix every copy of
that function if the function is used in ten or more shell scripts.

New TeErM o : S
- o reduce the complexity involved in maintaining shell functions, it would be ideal to create a central repository
of functions that you could access from your shell script. In other programming languages, a central repository of functions
iscaled alibrary.

Creating the Library

Creating alibrary of shell functionsis exactly like creating a shell script. The main difference between the two is that a
library contains only functions, whereas a script contains both functions and main code.

New TERM I .
- Main code consists of al the commandsin ashell script that are not contained within afunction. In the
following shell script, lines 1, 2, and 4 are considered main code:

1 #!/bin/sh

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480141.htm (1 von 3) [06.05.2000 23:08:28]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 21: Problem Solving with Functions: Creating a Library of Functions

2 MSG"hell 0"
3 echo error() { echo "ERROR " $@>&2 ; }
4 echo_error $MSG

Line 3, which contains a function definition, is not considered main code.

In comparison, alibrary of shell functions does not contain any main code. It contains only functions. For example, the
following would be considered alibrary:

#!'/ bi n/ sh

echo error() { echo "ERROR " $@>&2 ; }

echo warning() { echo "WARNING " $@>&2 ; }

Notice that this file contains only function definitions.

Strictly speaking, nothing is preventing alibrary from containing main code. The distinction between a script and alibrary
is purely a conceptual one. To make it simpler for maintenance purposes, you should avoid having anything other than
function definitionsin alibrary script.

Including Functions from a Library

To use a set of functions defined in alibrary, you need to be able to include or require these functions in shell scripts. You
can do this by using the . command. Its syntax is as follows:

file

Here file is the name of afile that contains shell commands. If the shell functions given in the previous example were
stored in afile called messages.sh, the command

nmessages. sh

can be used to include the functions echo_error and echo_warning into a shell script. As an example, you can rewrite the
script

#!/ bin/sh

MSG=" hel | 0"

echo_error() { echo "ERROR " $@>&2 ; }

echo_error $MSG

A OWN PR

to use messages.sh as follows:
1 #!/bin/sh
2 . $HOVE/li b/ sh/ nessages. sh
3 MSG="hell 0"
4 echo_error $MSG

Here you are assuming that the file messages.sh is stored in the directory $SHOME/lib/sh. If this directory did not contain
messages.sh, an error message similar to the following would be displayed:

sh: /hone/rangal/lib/sh/ messages. sh: No such file or directory

In most versions of the shell, the shell script exits at this point without executing any other commands. For this reason,
most shell scriptsinclude all their function libraries before executing any commands.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480141.htm (2 von 3) [06.05.2000 23:08:28]

Hour 21: Problem Solving with Functions: Creating a Library of Functions

Naming Conventions

Unlike other languages, there are no widespread naming conventions for shell libraries or shell functions. Many
programmers feel that descriptive names are best for both functions and libraries, whereas others feel that some structure
such as that found in the C programming language should be used. In reality, both are good ideas.

Library Naming
For the purposes of this chapter, | assume that the shell functions that are covered are stored in the file
$HOVE/ | i b/ sh/ i bTYSP. sh
This naming scheme provides double redundancy and can be explained as follows:
e ThelibinlibTYSP.shindicatesthat thisfileisalibrary. Thisis similar to the convention used in the C language.
e The.shinlibTY SP.shindicates that this file contains Bourne shell code.
e Thedirectory $SHOMFE/lib indicates that thisfileisalibrary becauseit residesin thelib (lib asin library) directory.

e Thedirectory $HOMFE/lib/sh indicates that thisfile isaBourne Shell library because it resides in the sh directory
under the lib directory.

To use thislibrary in your scripts, you need to include it as follows:

$HOVE/ | i b/ sh/ 11 bTYSP. sh

If you put the library in adifferent directory, say /usr/local/lib/sh/libTY SP.sh, your scripts need to access it as follows:
/usr/local/lib/sh/libTYSP.sh

Function Naming

For functions, use the following naming scheme:
e printString for functions that display a message. Here String describes the type of message that is displayed.

e promptString for functions that prompt the user for input. Here String is the name of a variable set by the function
after reading input from the user.

e QgetSring for functions that retrieve some type of data. Here String describes the information that is retrieved.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 21: Problem Solving with Functions —_ oPrevious Chapter._Next Chapten

Sectionsin this Chapter:™

Creating a Library of Functions = Questions

Useful Functions “Terms

Summary - cPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480141.htm (3 von 3) [06.05.2000 23:08:28]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 21: Problem Solving with Functions: Useful Functions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 21: Problem Solving with Functions —_— —Previous Chapter._Next Chapten—

Sections in this Chapter:
Creating a Library of Functions ™ Questions

Useful Functions Terms
Summary = oPrevious Section_Next Sectiono

Useful Functions

Displaying M essages===Obtaining the Process ID by Name
Asking aQuestion ===Getting a User's Numeric User ID
Checking Disk Spaca===The Complete Library

Now that | have covered the background knowledge needed to create and use alibrary of shell functions, look at a shell library that provides
you with the capability to perform common scripting tasks easily. A complete listing of the library is available at the end of this chapter.

Some of the functions you will look at are
e printERROR
e printWARNING
e printUSAGE
e promptY ESNO
e promptRESPONSE
e QetSpaceFree
e QetSpaceUsed
e QetPID
e QetUID
In addition, you will be asked to develop four additional functions as part of the "Questions" section in this chapter:

toUpper
o toLower
e isSpaceAvailable
¢ isUserRoot
By developing these functions, you can gain experience in working with alibrary of shell functions.

In the following sections, | will first present a brief description of each function or group of functions, followed by the implementation of the
functions. At the end of each section is a discussion of the function's implementation along with caveats regarding its use.

Some of these functions need to be modified to work properly on al versions of UNIX. In this chapter, | will note the differences. In Chapter
23, "Scripting for Portability," | will show you how to modify these functions to account for the differences between different versions of

UNIX.

Displaying Messages

Most of the messages that shell scripts display do not need special handling, such as prefixing the message with a description or having the
output redirected to STDERR. The exceptions are error, warning, and usage messages. These messages require some extra handling. The
following functions take care of this handling for you:

HHHHHHHH I H BB R B HHHHH R R R R

Name: print ERROR

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (1 von 15) [06.05.2000 23:08:30]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 21: Problem Solving with Functions: Useful Functions

Desc: prints an nessage to STDERR
Args: $@-> nessage to print
ARHHEH R H R AR AR S N AR AR AR AR R RR AR R R

print ERROR() {
echo "ERROR " $@ >&2
}

HHHBHAHHBHBHBHHHHBHBHBHHBHBH BB AR R
Name: print WARNI NG

Desc: prints an nessage to STDERR

Args: $@-> nessage to print
HHHBHHHHBHBHBHHHHBHBH BB HBH BB AR R

pri nt WARNI N&) {
echo "WARNING " $@ >&2
}

HHH B AR R R R AR R R AR R R R
Name: print USAGE

Desc: prints a USAGE nessage and then exits

Args: $@-> nessage to print

HEHAH RS HHH A AR AR R R R AR R R R

print USAGE() {
echo "USAGE:" $@
exit

}

All these commands work by calling the echo command and passing it two arguments:
¢ The message prefix, either ERROR, WARNING, or USAGE.

o The arguments are specified to these functions by the user. The arguments are stored in $@, as explained in Chapter 12,
"Parameters.”

The first two functions, printERROR and printWARNING, display error and warning messages. Both messages indicate to a user that
something has gone wrong. Thus they redirect the output to STDERR, which is reserved for error reporting.

Usually an error indicates the occurrence of something unexpected that is difficult to recover from, such as acommand failure. A warning
message usually indicates that something unexpected occurred, but the script was able to recover from this.

The advantage of using these functionsis that they provide a standard output format for errors and warning throughout you script. As an
example, the following error message

echo "ERROR File $MYFI LE was not found." >&

can be written
print ERROR "Fil e $MYFI LE was not found."

Because the function printERROR aways prefixes the message you want to display with the word ERROR and redirects the output to
STDERR, you don't have to worry about forgetting these things when displaying an error message.

The third function, printUSAGE, displays a usage message and then exits. It informs the user that the script was invoked incorrectly. This
type of message was discussed in depth in Chapter 12 .

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (2 von 15) [06.05.2000 23:08:30]

Hour 21: Problem Solving with Functions: Useful Functions

Asking a Question

In interactive shell scripts, you need to obtain input from the user. Sometimes this involves asking simple yes or no questions. In other
instances, you need to ask the user a question that requires a more complicated response. For example, many scripts need to retrieve the
name of afile on which to operate.

In this section, | present two functions that help you to prompt the user and get a response:;
e promptY ESNO
o promptRESPONSE

Asking a Yes or No Question

One of the most common types of questions asked by shell scriptsis ayes or no question. For example, this shell script
Make backup (y/n)?

asks whether you want to make a backup.

The function, promptY ESNO, provides you with a reusable method of asking a yes or no question and getting aresponse. The user's
response, y indicating yes or n indicating no, is stored in the variable Y ESNO after the function completes.

HHHHHHHHHH BB BB HHHHH R H TR R R

Nanme: pronpt YESNO

Desc: ask a yes/no question

Args: $1 -> The pronpt

$2 -> The default answer (optional)
Vars: YESNO -> set to the users response
y for yes, n for no

HUH R R HH B AT R RH R R RH SRR R A AR R RS R R RS R

pronpt YESNO() {

if [$# -1t 1] ; then
print ERROR "I nsufficient Argunents.”
return 1

fi

DEF_ARG=""
YESNO=""

case "$2" in

[yYII[yYI[eE[[sS])

DEF_ARG=y ; ;
[nN][[nN] [0Q)
DEF_ARG=n ;;
esac
whil e :
do

printf "$1 (y/n)? "
if [-n "$DEF_ARG'] ; then

printf "[$DEF_ARG "
fi

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (3 von 15) [06.05.2000 23:08:30]

Hour 21: Problem Solving with Functions: Useful Functions

read YESNO

if [-z "$YESNO'] ; then
YESNO=" $DEF_ARG"
fi

case "$YESNO' in

[yYI[[yYI[eEl[sS])
YESNC=y ; break ;;

[nN] | [nN] [0Q))
YESNO=n ; break ;;
*)

esac

YESNG="" ;;

done

export YESNO
unset DEF_ARG
return O

}

Before you look at an example of this function in use, examine how it works.

Asindicated by the comments, this function can handle up to two arguments. It treats the first argument as the prompt and the second
argument as the default answer to the prompt. First, this function checks that at least one argument is given. If no arguments are given, you
return from the function with the error message

ERROR | nsufficient Argunents.

Next, set the variables DEF_ARG and YESNO to null, in order to avoid using the values stored in them from a previous call to this function.
After this, try to set DEF_ARG, the default answer, by looking at the value of the second argument to the function, $2. If thisargument is
some form (regardless of case) of the words YES or NO, you set DEF_ARG; otherwise, you leave it as null.

At this point, you enter the body of an infinite while loop. Y ou call the break command from inside the while loop after the user has entered a
valid answer (some form of the words YES or NO).

The first thing the loop does is output a prompt using the printf command. Y ou use the printf command to avoid problems with the echo
command between different versions of UNIX. If avalid default answer was specified, you display it.

After the prompt is displayed, call the read command and read the user's response into the variable Y ESNO. If the user simply presses Enter,
YESNO isset to null. In this case, you set it equal to the default answer stored in DEF_ARG. If the default argument was not given, this
assignment is redundant.

The last step in the while loop is to check the value of YESNO and make sure that it contains some form of the words YES or NO. If it does,
you call the break command to terminate the while loop.

If YESNO contains an invalid response, the loop repeats. This means that if the user simply types Enter in a case where no default was
supplied, or if the user enters a response that the function does not understand, the same prompt is displayed again.

Before the function exits, it exports the variable Y ESNO to the environment to make sure that this variable is available to commands
executed after the function exits.

Now that you know how this function works, look at an example of its use, asillustrated here:

pr onpt YESNO " Make backup”

if ["$YESNO' = "y"] ; then
cp -r docs backup

fi

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (4 von 15) [06.05.2000 23:08:30]

Hour 21: Problem Solving with Functions: Useful Functions
This generates a prompt similar to the following:
Make Backup (y/n)?

If you enter some form of the words YES or NO, the function sets the variable YESNO to either y or n. The if statement in this example
evaluates this response and performs the appropriate action. Here you execute a cp command. If the user does not enter avalid response, the
prompt repeats.

Y ou can use a default argument as follows:

pronpt YESNO " Make backup” "y"

if ["S$YESNO' = "y"] ; then
cp -r docs backup

fi

Now the prompt looks like the following:
Make Backup (y/n)? [vy]

This lets the user simply press Enter and have the backup made. It also lets the user type aresponse.

Prompting for a Response

In many shell scripts, you need to gather more information from the user than ayes or no response. For example, installation scripts
frequently have to ask for the name of a directory, the location of afile, or other system information.

The promptY ESNO function cannot handle these types of questions. Y ou need a different kind of prompting function, which you present as
the promptRESPONSE function. This function displays a prompt, reads the user's response, and storesit in the variable RESPONSE.
Validation of the user's response needs to be handled outside of the function.

HHHHHHHIHH IR BB HHHHHHH R R R R R R

Nane: pronpt RESPONSE

Desc: ask a question

Args: $1 -> The pronpt

$2 -> The default answer (optional)

Vars: RESPONSE -> set to the users response

HHRHHHHHHH BB R B HHHHH AR HHHH R AR

pr onpt RESPONSE() {

if [$# -1t 1] ; then
print ERROR "I nsufficient Argunents.”
return 1

fi

RESPONSE=""
DEF_ARG=" $2"

while :
do
printf "$1 ? "
if [-n "$DEF_ARG'] ; then
printf "[$DEF_ARG "
fi

read RESPONSE
if [-n "$RESPONSE"] ; then

br eak

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (5 von 15) [06.05.2000 23:08:30]

Hour 21: Problem Solving with Functions: Useful Functions

elif [-z "$RESPONSE" -a -n "$DEF_ARG'] ; then
RESPONSE=" $DEF ARG'
br eak
fi
done

export RESPONSE
unset DEF_ARG
return O

}

Before you look at some examples of this function in use, examine how it works. This function is quite similar to the promptY ESNO
function.

Asindicated by the comments, promptRESPONSE can handle up to two arguments. It treats the first argument as the prompt and the second
argument as the default answer to the prompt. The first thing this function checksfor isthat at least one argument is given. If no arguments
are given, you return from the function with the following error message:

ERRCOR | nsufficient Argunents.

Next you set the variable RESPONSE to null to avoid using a value stored in it from a previous call to this function. After this, you set
DEF_ARG, the default answer, to the value of the second argument of the function, $2. If the second argument is not given, DEF_ARG is set
to null, because of variable substitution.

At this point, you enter the body of an infinite while loop. Y ou call the break command from inside the while loop after the user has entered a
valid answer.

Thefirst thing the loop does is display a prompt using the printf command. Y ou use the printf command to avoid problems with the echo
command between different versions of UNIX. If avalid default answer was specified, you display it out.

After the prompt is displayed, you call the read command and read the user's response into the variable RESPONSE. If the user entered a
value, you call the break command to exit the while loop. If the user simply presses Enter, RESPONSE is set to null. In this case, you check
to see whether DEF_ARG contains a default answer. If it does, you set RESPONSE to this value and call the break command to exit the
while loop. This behavior is similar to the promptY ESNO function.

If the default argument was not given and the user presses Enter, the prompt is displayed again.

After avalid response is given, the while loop terminates. When this happens, the function exports the variable RESPONSE to the
environment and returns by calling the return command.

Now that you know how this function works, look at an example of its use. The following set of commands could be used in an install script:

pronpt RESPONSE "I n which directory do you want to install"”
if [! -d "$RESPONSE"] ; then
echo "The directory $RESPONSE does not exist."
pronpt YESNO "Create it" "y"
if ["$YESNO' = "y"] ; then
nkdi r " $RESPONSE"
el se
exit
fi
fi

At first you are prompted as follows:

In which directory do you want to install ?

If you enter the name of avalid directory, no further prompts are generated; otherwise, you are asked whether the directory should be
created:

The directory nmydir does not exist.
Create it (y/n)? [vy]

Here the default is to create the directory. Y ou can modify the example slightly to provide a default directory as follows:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (6 von 15) [06.05.2000 23:08:30]

Hour 21: Problem Solving with Functions: Useful Functions

pronpt RESPONSE "I n which directory do you want to install" "$HOWE"

The prompt changes to look like the following:
In which directory do you want to install ? [/home/ranga]

Checking Disk Space

Shell scripts are commonly used to keep system administrators up to date about the amount of free space available in certain directories. For
example, you don't want the incoming mail directory to fill up. An auxiliary task isto determine how much space a directory uses. For
example, you don't want asingle user to hog up all the disk space for extended periods.

The information about disk usage is aso important to installation scripts because they need to warn a user when an installation is attempted
in adirectory that does not contain enough space.

In this section, | will present two functions that can help you determine disk space usage:
e QetSpaceFree
. getSpaceUsed

Determining Free Space

To determine the free space in a directory, you use the df -k (k asin KB) command. Its output looks like the following:

$ df -k

Fil esystem 1024- bl ocks Used Avail abl e Capacity Munted on
/ dev/ hdal 1190014 664661 463867 59% /

/ dev/ hdd1 4128240 1578837 2335788 40% /internal

/ dev/ hdbl 1521567 682186 760759 47% /store

/ dev/ hda3 320086 72521 231034 24% /tnp

When run on a single directory or file, the output looks like the following:

$ df -k /hone/ranga
Fi |l esystem 1024- bl ocks Used Avail abl e Capacity Munted on
/ dev/ hdal 1190014 664661 463867 59% /

The output consists of a header line and information about the hard drive or hard drive partition that the directory or file you specified is
located on. In this output, the amount of free space is stored in the fourth column. Y our function uses awk to get at this value.
HHHHHHHHH BB R HBHHHH R R AR R R

Name: get SpaceFree

Desc: output the space avail for a directory

Args: $1 -> The directory to check

HHRHHHHHH BB HHHH R R R AR R

get SpaceFree() {

if [$# -1t 1] ; then
print ERROR "I nsufficient Argunents.”
return 1

fi

df -k "$1" | awk '"NR!=1 { print $4 ; }'
}

Asyou can see, the function is quite simple. It first checks to see whether it was given an argument. If no argument was given, it displays an
error message and returns. Otherwise, it runs the df -k command and displays the number stored in the fourth column. Y ou use the awk
expression

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (7 von 15) [06.05.2000 23:08:30]

Hour 21: Problem Solving with Functions: Useful Functions

NR!=1

to skip thefirst line that contains the header. For more information on awk, please look at Chapter 17, "Filtering Text with awk."

As an example of using this function, the command
get SpaceFree /usr/l oca

displaysthe following value on my system:
2335788

The number returned is in kilobytes, which means | have about 2.3GB free in the directory /usr/local.

Frequently you might want to compare the output of this function to some value. For example, the following if statement checks to see
whether more than 20,000K B are available in the directory /usr/local:
if [" getSpaceFree /usr/local " -gt 20000] ; then
echo "Enough space”
fi

Determining Space Used

Y ou have looked at determining the amount of disk space available in a directory, but sometimes you need to know how much disk space a
directory uses. For example, you might have a public directory that needs to be cleaned out when it exceeds a certain size.

To perform thistask, you need to use the du (du asin disk usage) command. Because you want the output for an entire directory and its
contents, you need to specify the -s (sasin sum) option to du. Y ou also need to specify the -k (k asin kilobyte) option for a consistent
output on al versions of UNIX.

The output of the du -sk command looks like the following:

$ du -sk /hone/rangal/ pub
4922 / honme/ r anga/ pub

The size of the directory in kilobytesislisted in the first column. Y our function uses awk to obtain this number.

HEH B S H R A AR AR R R R AR R R R
Nane: get SpaceUsed

Desc: output the space used for a directory

Args: $1 -> The directory to check

HEH A R R R R R R R R R R

get SpaceUsed() {

if [$# -1t 1] ; then
print ERROR "I nsufficient Argunents.”
return 1

fi

if [! -d"$1"] ; then
printERROR "$1 is not a directory."”
return 1

fi

du -sk "$1" | awk '{ print $1 ; }'
}

Thisfunction is almost as simple as getSpaceFree. It first checks whether it was given an argument. If no argument was given, it displays an
error message and returns. Otherwise, it checks to see whether the first argument is adirectory. If it is not, an error message is displayed and
the function returns.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (8 von 15) [06.05.2000 23:08:30]

Hour 21: Problem Solving with Functions: Useful Functions

Otherwise, the function executes the du -sk command and displays the number stored in the first column.

As an example of using this function, the command
get SpaceUsed /usr/ | ocal

displays the following value on my system:
15164

The number returned is in kilobytes, which means that the directory /usr/local uses about 15.1MB.

Frequently, you'll want to compare the output of this function to some value. For example, the following if statement checks to see whether
more than 10,000K B are used by the directory /home/ranga/pub:

if [" getSpaceSpace /hone/ranga/ pub”" -gt 10000] ; then
pri nt WARNI NG "You're using to nuch space!"”
fi

Obtaining the Process ID by Name

One of the difficulties with the ps command is that it is hard to obtain the process ID of acommand by specifying only its name. In shell
scripts that have to start and stop processes, the capability to look through the output of ps and retrieve alist of process IDs based on a
command's name is essential.

In this section, | will present afunction that displays alist of process IDs (pids) based on a string supplied by the user.

HHRHHHHHHH BB R B H AR B H AR R HHH R R R R
Name: getPID

Desc: outputs a list of process id matching $1
Args: $1 -> the command nane to | ook for
HHRHHHHHIHH BB R B H AR B H AR R R R R

get PID() {

if [$# -1t 1] ; then
print ERROR "I nsufficient Argunents.”
return 1

fi

PSOPTS="- ef "

/bin/ps $PSOPTS | grep "$1" | grep -v grep | awk '{ print $2; }'
}

Asyou can seg, thisfunction is a set of filters on top of the command /bin/ps -ef. The first grep command looks for al lines that match the
first argument. As an example, executing this on the command line produces output similar to the following:

$ /bin/ps -ef | grep sshd

Here you are looking for all the lines that contain the word sshd. The output should look similar to the following:

root 1449 1 8 12:23:06 ? 0: 02 /opt/bin/sshd
ranga 1451 944 5 12:23:08 pts/t0 0: 00 grep sshd

Asyou can seeg, the output contains two lines. The first one contains the process ID of the commands that you are looking for, but the second
contains the process ID of the grep command that just executed. In order to get rid of such lines, add the grep -v grep to the pipeline.

Because the process ID is stored in the second column, use awk to extract it.
If more than one line matches, this function displays each process ID.

For example, the following command

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (9 von 15) [06.05.2000 23:08:30]

Hour 21: Problem Solving with Functions: Useful Functions

getPID httpd

returns the following list of process IDs on my system:

330
331
332
333
334
335
336
323

Readers who are using Linux or FreeBSD-based systems have to change this function dightly for it to function properly. The value of the
variable PSOPTS should be -auwx on these systems. In Chapter 23, | will show you how to incorporate these changes into the function so

that it runs on all versions of UNIX.

Getting a User's Numeric User ID

Some shell scripts need to determine whether a user has sufficient permissions to execute commands. For example, an install script might
need to run as root (UID 0) to modify system files correctly. In other instances, a script might need to detect whether a user has too many
privileges.

To check the user's ID, you can use the id command, which can be run in two forms. The first form specifies a username whose ID should be
returned. For example, the command

$ id vathsa

ui d=501(vat hsa) gi d=100(users) groups=100(users)

returns the UID for the user vathsa. The second form omitsthe user ID. In this form, the current user's information is returned.
$id
ui d=500(ranga) gi d=100(users) groups=100(users), 101(ft padm n)

Y our function supports both.

HHRHHHHHHH BB R B HRHBHHH R R R R
Name: get U D

Desc: outputs a nuneric user id

Args: $1 -> a user nane (optional)

HHRHHHHHHH BB R B H R B H AR R PR R R R

get U D() {
id $1 | sed -e "s/(.*$//" -e 's/”ruid=/]"
}

This function executes the id command and then uses a sed filter to delete all the unimportant information. When the function is called by

itself
get U D

the output looks like the following:
500

When the function is called with a username
get U D vat hsa

the output looks like the following:
500

Usually you need to compare this output to some known UID as follows:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (10 von 15) [06.05.2000 23:08:30]

Hour 21: Problem Solving with Functions: Useful Functions

if [""getU D" -gt 100] ; then
pri nt ERROR "You do not have sufficient privileges."”
exit 1

fi

Here the output of the getUID function is checked to see whether it is greater than 100.

The Complete Library

Listing 21.1 contains a complete listing of the shell library, libTY SP.sh, discussed in this chapter. The line numbers are present for your
reference and should not be entered into a script library file that you plan to use.

Listing 21.1--Complete Listing of the Shell Library libTYSP.sh

1 #!/ bi n/ sh

2

3 BH BRI G o 0 R i e R R R R R
4 # Nane: print ERROR

5 # Desc: prints an nessage to STDERR

6 # Args: $@-> nessage to print

7 BH BRI G 0 R i R H R R R R
8
9

print ERROR() {

10 echo "ERROR " 3$@ >&2

11 }

12

13 HEHBH A AR TR AR TR AR AR AR R AR R R
14 # Name: print WARNI NG

15 # Desc: prints an nessage to STDERR

16 # Args: $@-> nessage to print

17 HEHBH A AR R AR R A R AR R AR R R
18

19 print WARNI N&) {

20 echo "WARNING " $@ >&2

21 }

22

23 HEHHH R R R R R R R R R
24 # Nanme: print USAGE

25 # Desc: prints a USAGE nessage and then exits

26 # Args: $@-> nessage to print

27 HEHRH R R R R R R R R R R
28

29 print USAGE() {

30 echo "USAGE:" $@

31 exit

32 }

33

34 HEHHH A AR A RS R R R R R R R
35 # Name: pronpt YESNO

36 # Desc: ask a yes/no question

37 # Args: $1 -> The pronpt

38 # $2 -> The default answer (optional)

39 # Vars: YESNO -> set to the users response

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (11 von 15) [06.05.2000 23:08:30]

Hour 21: Problem Solving with Functions: Useful Functions

40 # y for yes, n for no
41 HEHBH A AR TR AR TR AR AR AR R AR R R
42

43 pronpt YESNQ() {

44

45 if [$# -1t 1] ; then

46 print ERROR "I nsufficient Argunents.”
47 return 1

48 fi

49

50 DEF_ARG=""

51 YESNO=""

52

53 case "$2" in

54 [yYII[yYlI[eE][sS])

55 DEF_ARG=y ;;

56 [nNI|[nN [0Q])

57 DEF_ARG=n ;;

58 esac

59

60 while :

61 do

62

63 printf "$1 (y/n)? "

64

65 if [-n "$DEF_ARG'] ; then
66 printf "[$DEF_ARG "
67 fi

68

69 read YESNO

70

71 if [-z "$YESNO'] ; then
72 YESNC=" $DEF_ARG'

73 fi

74

75 case "$YESNO' in

76 [yYII[yYI[eEl[sS])

77 YESNC=y ; break ;;
78 [AN] | [nN] [0Q))

79 YESNO=n ; break ;;
80 *)

81 YESNO="" ; ;

82 esac

83

84 done

85

86 export YESNO

87 unset DEF_ARG

88 return O

89 }

90

91 FHAH I AT A R T A T I A A

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (12 von 15) [06.05.2000 23:08:30]

Hour 21: Problem Solving with Functions: Useful Functions

92 # Nanme: pronpt RESPONSE

93 # Desc: ask a question

94 # Args: $1 -> The pronpt

95 # $2 -> The default answer (optional)
96 # Vars: RESPONSE -> set to the users response
97 HEHBH A AR TR AR R AR AR AR R AR R R 7
98

99 pr onmpt RESPONSE() {

100

101 if [$# -1t 1] ; then

102 print ERROR "I nsufficient Argunents.”

103 return 1

104 fi

105

106 RESPONSE=""

107 DEF_ARG="$2"

108

109 while :

110 do

111 printf "$1 ? "

112 if [-n "$DEF_ARG'] ; then

113 printf "[$DEF_ARG "

114 fi

115

116 read RESPONSE

117

118 if [-n "$RESPONSE"] ; then

119 br eak

120 elif [-z "$RESPONSE" -a -n "$DEF_ARG'] ; then
121 RESPONSE=" $DEF_ARG'

122 br eak

123 fi

124 done

125

126 export RESPONSE

127 unset DEF_ARG

128 return O

129 }

130

131 HHHHHHHHHHHH R R R BB R R R R H R R
132 # Nanme: get SpaceFree

133 # Desc: output the space avail for a directory
134 # Args: $1 -> The directory to check

135 HHAH I AT TR R R T T R A A R R i
136

137 get SpaceFree() {

138

139 if [$# -1t 1] ; then

140 print ERROR "I nsufficient Argunents.”

141 return 1

142 fi

143

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (13 von 15) [06.05.2000 23:08:30]

Hour 21: Problem Solving with Functions: Useful Functions

144 df -k "$1" | awk '"NR!=1{ print $4 ; }'
145 }

146

147 HEHBH A R RS R R R R R R R
148 # Nanme: get SpaceUsed

149 # Desc: output the space used for a directory
150 # Args: $1 -> The directory to check

151 HEHBH A R RS R R R R R R R
152

153 get SpaceUsed() {

154

155 if [$# -1t 1] ; then

156 print ERROR "I nsufficient Argunents.”

157 return 1

158 fi

159

160 if [! -d"$1"] ; then

161 printERROR "$1 is not a directory."

162 return 1

163 fi

164

165 du -sk "$1" | awk '{ print $1 ; }'

166 }

167

168 HHAH AT AR R AR T A i AR R R
169 # Nane: getPID

170 # Desc: outputs a list of process id matching $1
171 # Args: $1 -> the command nane to | ook for

172 HHIH AT AR R AR T A R AR TR R
173

174 get PID() {

175

176 if [$# -1t 1] ; then

177 print ERROR "I nsufficient Argunents.”

178 return 1

179 fi

180

181 PSOPTS="-ef "

182

183 /bin/ps $PSOPTS | grep "$1" | grep -v grep | awk '{ print $2; }'
184 }

185

186 HEHHH R R R R R R R R R R
187 # Name: getU D

188 # Desc: outputs a nuneric user id

189 # Args: $1 -> a user nane (optional)

190 HEHBH A R RS R R R R R R R
191

192 get U D() {

193 id $1 | sed -e "s/(.*$//' -e "s/ruid=/]"

194 }

195

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (14 von 15) [06.05.2000 23:08:30]

Hour 21: Problem Solving with Functions: Useful Functions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Creating a Library of Functions = Questions

Useful Functions “Terms

Summary - cPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480142.htm (15 von 15) [06.05.2000 23:08:30]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 21: Problem Solving with Functions: Summary

Sams Teach Yourself Shell Programmingin 24 Hours

Contents Index

Sectionsin this Chapter:
Creating a Library of Functions ™ Questions

Useful Functions “Terms)))
Summary - cPrevious Section—_Next Sectiono

Summary

In this chapter, | presented alibrary of shell functions that can be used in your shell scripts to handle many common tasks.
By using and improving these implementations, you can avoid having to reinvent the wheel when faced with a particular

problem.
Some of the problemsthat | addressed are
o Displaying standardized error, warning, and usage messages
e Prompting for ayes or no response
e Prompting for ageneral response
e Checking disk space
e Getting the process ID of acommand using its name

e Getting the numeric user ID of auser

In addition to these tasks, | have covered many other useful functions throughout this book. By using these functions, you
can concentrate on developing scripts to solve complicated problems without worrying about the basics.

Contents Index

Sams Teach Yourself Shell Programmingin 24 Hours

Sectionsin this Chapter:
Creating a Library of Functions = Questions

Useful Functions “Terms)))
Summary - cPrevious Section_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480143.htm [06.05.2000 23:08:31]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 21: Problem Solving with Functions: Questions

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 21: Problem Solving with Functions —_ oPrevious Chapter._Next Chapten—s

Sectionsin this Chapter:™

Creating a Library of Functions = Questions

Useful Functions “Terms

Summary - cPrevious Section__Next Sectiono

Questions

1. Write afunction called toLower that convertsits arguments to all lowercase and displays the converted string to
STDOUT. Y ou don't have to worry about checking the number of arguments.

(HINT: Use the tr command.)

2. Write afunction called toUpper that converts its arguments to al uppercase and displays the converted string to
STDOUT. Y ou don't have to worry about checking the number of arguments.

(HINT: Use the tr command.)
3. Write afunction called isSpaceAvailable to check whether a directory contains a certain amount of disk space.

Y our function should accept two arguments. The first one indicates the directory to check, and the second one
indicates the amount of space to check. An error should be reported if both arguments are not given. Y our function
should validate that the first argument is a directory.

If sufficient space is present, your function should return O; otherwise, it should return 1. This enables usto use it
asfollows:

i f isSpaceAvail able /usr/local 20000 ; then
perform sone action
fi

(HINT: Use the function getSpaceFree.)

4. Modify your isSpaceAvailable function to accept an optional third argument that specifies the units of the
amount space to check.

The default should remain in kilobytes, but you should support m or mb indicating megabytes and g or gb
indicating gigabytes. If some other units are given, assume that the user meant kil obytes.

The following conversion factors apply to this problem: 1IMB equals 1024KB, and 1GB equals to 1024MB.
(HINT: Use the bc command.)

5. Write afunction called isUserRoot that checks to see whether the ID of auser isequal to O. If no user isgiven, it
should check to see whether the ID of the current user is root.

(HINT: Usethe getUID function.)

Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex

Hour 21: Problem Solving with Functions —_ oPrevious Chapter._Next Chapteno

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480144.htm (1 von 2) [06.05.2000 23:08:32]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 21: Problem Solving with Functions: Questions

Sections in this Chapter:
Creating a Library of Functions ™ Questions
Useful Functions “Terms

Summary —Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480144.htm (2 von 2) [06.05.2000 23:08:32]

Hour 21: Problem Solving with Functions: Terms

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
Creating a Library of Functions ™ Questions
Useful Functions “Terms

Summary cPrevious Section__Next Sectiono

Terms

Library--A file that contains only functionsis called alibrary. Usually libraries contain no main code.

Main Code --Main code consists of all the commands in a shell script that are not contained within functions.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:
Creating a Library of Functions ™ Questions
Useful Functions “Terms

Summary —Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480145.htm [06.05.2000 23:08:32]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 22: Problem Solving with Shell Scripts: Moving Directories

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 22: Problem Solving with Shell Scripts —_— oPrevious Chapter_Next Chapter—

Sectionsin this Chapter:™

Moving Directories “Questions

Maintaining an Address Book = Terms

Summary = cPrevious SectionNext Sectiono

Hour 22
Problem Solving with Shell Scripts

In Chapter 21, "Problem Solving with Functions," | showed you several useful functions that you can use in your shell scripts. In this chapter, | will
present two shell scripts that demonstrate how you can use shell scriptsto solve everyday problems.

These scriptsillustrate using the tools | covered in previous chapters to create new tools that you can reuse. For each script | will first describe the
motivations for its development, followed by some design issues. Then | will present the script in full. I will conclude the discussion of scripts by
highlighting the script's flow and error checking.

The two tasks that | will look at are
e Moving directories

¢ Maintaining an Address Book

Moving Directories

Using tar==A Walkthrough of mvdir.sh
mvdir.she=Examples

MNew T
In Chapter 4, "Working with Directories,” | noted that the mv command could not be used to move directories across file systems. A
file system can be thought of as a hard drive or hard drive partition.

The mv command works fine when you want to move a directory between different locations on the same file system (hard drive), but it doesn't
work well when you want to move afile across file systems. Depending on your version of mv, an error message could be generated when you try
to do this.

For example, consider this directory:

$1s -F /tnp/ch22

ch22-01. doc ch22. doc@

If you use the mv command to move this directory in the directory /home/ranga on a different file system, an error message similar to the following
is generated:

mv: cannot nove 'ch22' across filesystens: Not a regular file

Some UNIX versions implement aworkaround inside mv that executes the following commands:

$ rm-rf destination
$ cp -r source destination
$rm-rf source

Here source and destination are directories.

The main problem with this strategy is that links in the source directory are not always copied correctly. Most of the time, the file that the link
pointsto is copied instead of the link itself. In the case of the directory /tmp/ch22, you would end up with two copies of the file ch22-01.doc, which
isnot desirable.

In addition to this, there are two other minor problems with using cp:

e Some versions of the cp command do not copy afile's owner and group. With these versions of cp, the copied file has a different owner and
group than the original.

e Some versions of cp do not copy afile's permissions correctly. With such aversion of cp, the copied file might have different permissions

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480147.htm (1 von 6) [06.05.2000 23:08:33]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 22: Problem Solving with Shell Scripts: Moving Directories

than the original.

Using tar

The workaround for these problemsisto use the tar (tar asin tape archive) command to copy directories. This command creates an
archive or tar file that contains files and directories. A tar fileis similar to azip file, except that its contents are not compressed. In addition, atar
file stores the file permission along with group and owner information for the files it contains. Thus by using tar, your copies automatically end up
with the correct file attributes.

By using tar you can move directories using the following procedure;
1. Make atar file of the source directory.
2. Change to the destination directory.
3. Extract the source directory in the destination directory.

4. Remove the source directory. Notice that your procedure does not include deleting the tar file of the source directory. Normally when you
use the tar command, atar file is created on your hard drive. If you use this behavior in your script, you need to worry about cleaning up the
tar file whenever an error occurs. This adds a large amount of complexity to your script. To avoid all that unnecessary complexity, you can
use a special feature of the tar command to avoid creating atar file.

The tar command can create archives and write them to STDOUT instead of afile. It can aso read archives from STDIN instead of from afile. By
using a pipe character (|), you can connect atar command that creates atar file with one that extracts atar file, thus avoiding the creation of an
intermediate tar file.

To create atar file, use the following command:
tar -cpf - source

Here source is the pathname of a directory. The options specified to tar tell it to create atar file, whereas the - indicates that the tar file it creates
should be written to STDOUT.

To extract atar file from STDIN, use the command:
tar -xpf -

Here the options specified to tar indicate that it should extract atar file, whereas the - indicates that the tar file should be read from STDIN.

Because you need to extract the tar file in the correct directory, the final command you useis
tar -cpf - source | (cd destination ; tar -xpf -)

Here source and destination are directories. This single command takes care of the first three steps involved in moving a directory. The rest of your
script performs error checking and ensures that sensible values for source and destination are used.

mvdir.sh
The script mvdir.shisgivenin Listing 22.1 (the line numbers are provided for your reference).

Listing 22.1 Complete Listing of the mvdir.sh Script

1 #!'/bin/sh

2 # Nane: nmvdir

3 # Desc: Mwve directories across file systens
4 # Args: $1 -> src dir

5 # $2 -> dest dir

6

7 PATH=/bin:/usr/bin ; export PATH

8

9 # function to print errors and exit

10

11 printERROR() { echo "ERROR $@" >&2 ; exit 1; }
12

13 # function to print usage nessage and exit

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480147.htm (2 von 6) [06.05.2000 23:08:33]

Hour 22: Problem Solving with Shell Scripts: Moving Directories

14

15 printUSAGE() { echo "USAGE: “/bin/basenane $0° $@" >& ; exit 1; }
16

17 # check whether sufficient args are given

18

19 if [$# -1t 2] ; then printUSAGE "[src] [dest]" ; fi

20

21 # check whether the source directory exists

22

23 if [! -d "$1"] ; then

24 print ERROR "The source $1 is not a directory, or does not exist"
25 fi

26

27 # split up the source dir into its nanme and its parent's
28 # nane for easier processing |later on

29

30 SRCDI R_PARENT=""/usr/bin/dirnane $1""

31 SRCDI R CHI LD=""/Dbin/basenane $1""

32

33 # if dirname returns a relative dir we will be confused
34 # after cd'ing later on. So reset it to the full path.
35

36 SRCDI R_PARENT=""(cd $SRCDI R_PARENT ; pwd ;)"

37

38 # check whether the destination exits

39

40 if [-d "$2"] ; then

41

42 DESTDIR="(cd "$2" ; pwd ;)~

43

44 el se

45

46 # if the destination doesn't exist then assune the
47 # destination is the new nane for the directory

48

49 DESTDI R=""/usr/ bi n/ di rname $2""

50 NEVWNAMVE=""/ bi n/ basenane $2""

51

52 # if dirname returns a relative dir we will be confused
53 # after cd'ing later on. So reset it to the full path.
54

55 DESTDI R="(cd $DESTDIR ; pwd ;)~

56

57 # if the parent of the destination doesn't exist,

58 # we're in trouble. Tell the user and exit.

59

60 if [! -d "$DESTDIR"] ; then

61 print ERROR "A parent of the destination directory $2 does not exist"
62 fi

63

64 fi

65

66 # try and cd to the parent src directory

67

68 cd "$SRCDI R_PARENT" > /dev/null 2>&1

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480147.htm (3 von 6) [06.05.2000 23:08:33]

Hour 22: Problem Solving with Shell Scripts: Moving Directories

69 if [$? -ne 0] ; then

70 print ERROR "Coul d not cd to $SRCDI R_PARENT"

71 fi

72

73 # use tar to copy the source dir to the destination
74

75 [/bin/tar -cpf - "$SRCDIR CHILD' | (cd "$DESTDIR' ; /bin/tar -xpf
76

77 if [$? -ne 0] ; then

78 print ERROR "Unabl e to successfully nove $1 to $2"
79 fi

80

81 # if a renane of the copy is requested

82

83 if [-n "SNEWNAME"] ; then

84

85 # try and change to the destination directory
86

87 cd "$DESTDIR' > /dev/null 2>&1

88 if [$2 -ne 0] ; then

89 print ERROR "Coul d not cd to $DESTD R

90 fi

91

92 # try and renane the copy

93

94 /bin/mv "$SRCDI R CHI LD" "$NEWNAMVE" > /dev/null 2>&1
95 if [$2 -ne 0] ; then

96 print ERROR "Coul d not renane $1 to $2"

97 fi

98

99 # return to the original directory

100

101 cd "$SRCDI R PARENT" > /dev/null 2>&1

102 if [$2 -ne 0] ; then

103 print ERROR "Could not cd to $SRCDI R_PARENT"
104 fi

105 fi

106

107 # try and renove the original

108

109 if [-d "$SRCDIR CHI LD"] ; then

110 /binfrm-r "$SRCDIR CH LD" > /dev/null 2>&1
111 if [$2 -ne 0] ; then

112 print ERROR "Coul d not renobve $1"

113 fi

114 fi

115

116 exit O

A Walkthrough of mvdir.sh

1
o

I'll walk through the script and highlight some of the important points.

The first thing this script does is set the PATH variable (line 7). You do thisto ensure that all the commands you use come from one of the two
directories that you specified. When you write a script that can be run by many users, you have to take into account that some users might have
modified their PATH such that the commands you are using are inaccessible or replaced by other versions. By setting the PATH variable explicitly,

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480147.htm (4 von 6) [06.05.2000 23:08:33]

Hour 22: Problem Solving with Shell Scripts: Moving Directories

you avoid this problem.

Next the script defines afew utility functions (lines 11 and 15) used to print error usage messages. Y ou can easily modify the script to replace these
functions with the versions | gave you in Chapter 21.

After thisthe script validates its arguments as follows:
o It makes sure at least two arguments corresponding to source and destination directories are given (line 19).
o It makes sure the source is adirectory (lines 23-25).

If at least two arguments are not given, you cannot be sure what the user wanted to move. Thus a usage message is printed and the script exits. If the
sourceis not adirectory or doesn't exist, there is nothing to move, thus the script prints an error message and exits.

The next two lines (lines 30 and 31) are used to access the different parts of the pathname for the source. If the user specifies adirectory asfollows
$ nmvdir.sh /tnp/ nydir /hone/ranga

there are two pieces of information you need:
o Thename of the directory that the user wants moved, in this case mydir. Thisvalueis stored in the variable SRCDIR_CHILD (line 31).
e Thename of the directory that this directory islocated in, in this case /tmp. Thisvalue is stored in the variable SRCDIR_PARENT (line 30).

When you issue the mv or cp command, each performs this separation internally. Because thisis ashell script, you have to do it explicitly using the
dirname and basename commands.

One problem you run into is when the user specifies arelative path. When acd command is used, the relative path required to access the source and
destination directories changes; thus you need to determine the absolute path to the SRCDIR_PARENT. By using a subshell, you can make this
determination in one line (line 36).

After you have dealt with the source directory, you examine the destination directory, which requires specia treatment because it can mean two
different things:

o |f the destination directory exists (line 40), the user wants the source directory moved into the destination directory.

o |f the destination directory does not exist (line 44), the user wants the sour ce directory moved and renamed in the parent directory of the
specified destination directory.

In thefirst case you need to determine the absolute path to the destination directory (line 42). In the second case you need to obtain the following
information:

o The name of the destination directory's parent directory. Thisvalueis stored in DESTDIR (line 49).
e The new name the user wants for the source directory. Thisvalueis stored in NEWNAME (line 50).

After you convert the value of DESTDIR to an absolute path, you check to make sure that it exists. If it doesn't, the script reports an error to the user
and exits.

In the next few lines (lines 68-79), you try to move the files from the source to the destination using the values you determined for the source and
destination directories. If something goes wrong during this process, you report an error and exit.

After acopy has been successfully made using tar, you check to see whether a rename has been requested (line 83). If it has been, you try to change
the name of the copy from its original name to the new name (line 94). If this process fails, the script issues an error and exits.

Finally, if all the other operations are successful, you delete the original directory (line 110). Any error in this operation is reported.

Examples

Now look at two examples of using this script to move a directory between file systems.

In the first example, you want to move a source directory into a destination directory on a different file system:

$1s /tnp

ch22 ps_dat a sdt dbcache _: 0
$./nvdir.sh /tnp/ch22 /hone/ rangal/ docs/ book
$ Is /tnp / hone/ rangal/ docs/ book

/tnp:

ps_dat a sdt dbcache : 0

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480147.htm (5 von 6) [06.05.2000 23:08:33]

Hour 22: Problem Solving with Shell Scripts: Moving Directories

/ horme/ r angal/ docs/ book
ch20 ch21 ch22 ch23

Asyou can see, the directory ch22 was moved from /tmp to the directory /home/ranga/docs/book.

In the second example, you move the same directory, but you also rename it:

$ |I's /hone/ rangal/ docs/ book

ch20 ch21 ch22 ch23

$./nvdir /home/rangal/ docs/ book/ ch22 /tnp/ ch22-work
$ |I's /hone/rangal/ docs/ book /tnp

/ home/ r angal/ docs/ book:

ch20 ch21 ch23
/tnmp:
ch22-wor k ps_dat a sdt dbcache_: 0

Here the directory was moved and renamed.

Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex
Hour 22: Problem Solving with Shell Scripts —_— oPrevious Chapter_Next Chapter
Sectionsin this Chapter:™

Moving Directories “Questions

Maintaining an AddressBook ™ Terms

Summary - oPrevious Section..Next Sectiona

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480147.htm (6 von 6) [06.05.2000 23:08:33]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 22: Problem Solving with Shell Scripts: Maintaining an Address Book

Sams Teach Yourself Shell Programmingin 24 Hours Contents |ndex

Hour 22: Problem Solving with Shell Scripts —_ oPrevious Chapter._Next Chapteno

Sectionsin this Chapter:™

Moving Directories ““Questions

Maintaining an Address Book "~ Terms

Summary - oPrevious Section..Next Sectiona

Maintaining an Address Book

Showing People===Deleting a Person
Adding a Person

| often get business cards or email messages from people | need to keep in touch with. Sometimes | lose these email messages or business cards,
leading to problems when | need to contact someone important.

A nice solution to this problem would be to store al the contact information on my computer so that | could access and manipulate it easily. In this
section, | will look at developing a set of scripts that work together to maintain a simple address book.

The address book will store the following information:
¢ Name
o Email address
o Postal address
o Phone number

Each of these pieces of information can contain almost any character including spaces or other special characters such as the dash (-), period, (.),
or single quote (*). Thus you need to hold the information in aformat that allows for these characters. A commonly used format is to separate each
piece of information using the colon (:) character. For example, the following information:

Sriranga Veeraraghavan

ranga@oda. ber kel ey. edu

1136 Winderlich Dr. San Jose CA 95129
408- 444- 4444

can be stored as:

Sriranga Veeraraghavan: ranga@oda. ber kel ey. edu: 1136 Winderlich Dr. San Jose CA
95129: 408- 444- 4444

Here any specia character, except the colon, can be used. Also this format enables you to make any field optional. For example,
: vat hsa@anchi . bosl and. us: : 408- 444- 4444

could indicate that only the email address and phone number were known for a particular person.
To maintain your address book, you need afew scripts:

« showperson to show information about one or more people in the address book

o addperson to add a person to the address book

o delperson to delete a person from the address book

The following scripts assume that the address book is stored in the file $HOM E/addressbook.

Showing People

One of the main tasks any address book must perform islooking up a person. Y ou will develop a script called showperson to accomplish this.

To find information about a person, you can use grep command. For example,
$ grep vathsa addressbook

lists all the lines that contain the word vathsa in the file addressbook. For your address book, the output might look like the following:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480148.htm (1 von 9) [06.05.2000 23:08:34]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 22: Problem Solving with Shell Scripts: Maintaining an Address Book

:vat hsa@xanchi . bosl and. us: : 408- 444- 4444

Asyou imagine, your showperson script should format the results of the grep command. A nice format would be to list the name, email address,
postal address, and phone number on separate lines. Y ou can do this using an awk command:

awk -F:. '{ printf "Nanme: %\nEmail: %\nAddress: %\nPhone: %\n\n", $1, $2, $3, %4 ; }'

By putting these commands together, you construct the showperson script given in Listing 22.2 (the line numbers are provided for your reference).

Listing 22.2 Listing of the showperson Script

1 #!/bin/sh

2 # Name: showperson

3 # Desc: show matching records in addressbook
4 # Args: $1 -> string to |look for in addressbook
5

6 PATH=/bin:/usr/bin

7

8 # check that a string is given

9

10 if [$# -1t 1] ; then

11 echo "USAGE: “basenane $0° nane"

12 exit 1

13 fi

14

15 # check that the address book exists

16

17 MYADDRESSBOCOK="$HOVE/ addr essbook"

18 if [! -f "$MYADDRESSBOOK"] ; then

19 echo "ERROR: $MYADDESSBOOK does not exist, or is not a file." >&
20 exit 1

21 fi

22

23 # get all matches and format them

24

25 grep "$1" "$MYADDRESSBOXK" |

26 awk -F. " {

27 printf "% 10s %\ n% 10s %\ n% 10s %\ n% 10s %\ n\n",\

28 "Nane:", $1,"Emai |l : ", $2, "Address: ", $3, "Phone:", $4 ;
29 }

30

31 exit $?

There are three main parts to the script:
1. Verify the number of arguments.
2. Check to see whether the address book exists.
3. Find all matches and print them.

In thefirst part (lines 10-13) you check to see whether at |east one argument is given. If so, the script continues; otherwise, it prints a usage
message and exits.

In the second part, you check to see whether the address book exits. If it does not, the script prints an error and then exits; otherwise, it continues.

In the last part of the script, you use grep to obtain alist of matches and awk to format thislist. To ensure even spacing of the output, the awk
command uses formatting for both the information and its description. As an example,

$./showperson ranga

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480148.htm (2 von 9) [06.05.2000 23:08:34]

Hour 22: Problem Solving with Shell Scripts: Maintaining an Address Book

produces output similar to the following:

Nane: Sriranga Veeraraghavan

Emai | : ranga@oda. ber kel ey. edu

Address: 1136 Winderlich Dr. San Jose CA
Phone: 408- 444- 4444

Notice how all the information in the second column is correctly aligned.

Y ou can also use showperson to look for matches of a particular string. For example,
$./showperson va

produces two matches:

Nane: Sriranga Veeraraghavan

Emai | : ranga@oda. ber kel ey. edu

Address: 1136 Winderlich Dr. San Jose CA
Phone: 408- 444- 4444

Narre: N A

Emai | : vat hsa@osl and. us

Address: NA

Phone: 408- 444- 4444

Adding a Person

One of the most important things about any address book is the capability to add information to it easily. If you need to edit the address book
manually to add information, you're bound to make errors such as forgetting to add a colon to separate fields. By using a script, you can avoid
such errors.

In this section | will look at a script, addperson, that enables you to add entries into the address book in two ways:
o |Interactively
o Using command line options

The script enters interactive mode when no options are given. If the noninteractive mode is being used, it triesto obtain information from the
command line options.

In both modes you put the user-provided information into the following variables:
+ NAME, storesthe name given by the user
o EMAIL, storesthe email address given by the user
o ADDR, storesthe postal address given by the user
o PHONE, stores the phone number given by the user

In interactive mode, you can prompt for the information in each record as follows:

printf "% 10s " "Nanme:" ; read NAME
printf "%10s " "Email :" ;. read EMAI L
printf "% 10s " "Address:" ; read ADDR
printf "% 10s " "Phone:" ; read PHONE

After each prompt, you read and store the user's input, including spaces and special characters inside the appropriate variable.

In noninteractive mode, you can use getopts to scan the options:
while getopts n:e:a:p: OPTION
do
case $OPTION in
n) NAMVE="$OPTARG' ;;
e) EMAI L="$OPTARG' ;;

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480148.htm (3 von 9) [06.05.2000 23:08:34]

Hour 22: Problem Solving with Shell Scripts: Maintaining an Address Book

a) ADDR="$OPTARG' ;;
p) PHONE="$OPTARG' ;
\'?) echo "USAGE: SUSACGE" >&2 ; exit 1 ;;
esac
done

Asyou can see, the options understood by the script in noninteractive mode are
o -nfor the name (sets NAME)
o -efor the email address (sets EMAIL)
o -afor the postal address (sets ADDR)
o -p for the phone number (sets PHONE)

After you have obtained the required information, you can update the file by appending a formatted record to the end of the addressbook file as
follows:

echo "$NAME: $EMAI L: $ADDR: $PHONE" >> " $MYADDRESSBOCK"
Here you are assuming that the variable MY ADDRESSBOOK contains the pathname to the address book file.

The complete addperson script is given in Listing 22.3 (the line numbers are provided for your reference).

Listing 22.3 Complete Listing of the addperson Script

1 #!/bin/sh

2 # Name: addperson

3 # Desc: add a person addressbook
4 # Args: -n <nane>

5 # -e <email >

6 # -a <postal address>

7 # -p <phone nunber>

8

9 # initialize the variables

10

11 PATH=/bin:/usr/bin
12 MYADDRESSBOOK=$HOVE/ addr essbook

13 NAW:II n

14 EMAI L=""

15 ADDR=""

16 PHONE=""

17

18 # create a function to renove the : from user input
19

20 renove_colon() { echo "$@ | tr ":" " ' ; }
21

22 if [$# -1t 1] ; then

23

24 # this is interactive node

25

26 # enabl e erasing i nput

27

28 stty erase '"?

29

30 # pronpt for the info

31

32 printf "% 10s " "Nane:" ; read NAME

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480148.htm (4 von 9) [06.05.2000 23:08:34]

Hour 22: Problem Solving with Shell Scripts: Maintaining an Address Book

33 printf "% 10s " "Email :" ; read EMAIL

34 printf "% 10s " "Address:" ; read ADDR

35 printf "% 10s " "Phone:" ; read PHONE

36

37 else

38

39 # this is noninteractive node

40

41 # initialize a variable for the usage statenent
42

43 USAGE=""basenane $0° [-n nane] [-e email] [-a address] [-p phone]"
44

45 # scan the argunents to get the info

46

47 whil e getopts n:e:a:p:h OPTION

48 do

49 case $OPTION in

50 n) NAMVE="$OPTARG' ;;

51 e) EMAI L="$OPTARG' ;;

52 a) ADDR="$OPTARG' ;;

53 p) PHONE="$OPTARG' ;;

54 \'?| h) echo "USAGE: $USAGE" >&2 ; exit 1 ;
55 esac

56 done

57 fi

58

59 NAME=""renove_col on $NAMVE "
60 EMAI L=""renove_col on $EMAIL""
61 ADDR=""renpve_col on $ADDR "
62 PHONE=""renpbve_col on $PHONE "

63

64 echo "$NAVE: $SEMAI L: $ADDR: $PHONE" >> " $MYADDRESSBOOK"
65

66 exit $?

This script first initializes its variables (lines 11-16). Y ou set the internal variables that store the user information to null in order to avoid conflicts
with exported variables in the user's environment.

The next step isto create the following function (line 20):
remove_colon() { echo "$@ | tr ":" ' ' ; }

Y ou use this function to make sure that the user's input doesn't contain any colons.

Y ou then check to see whether any arguments are given (line 22). If thisis so, you enter interactive mode (lines 23-36); otherwise, you enter
noninteractive mode (lines 38-56).

In interactive mode, you prompt for each piece of information and read it in. Before you produce the first prompt, you issue a stty command (line
28) to make sure the user can erase any mistakes made during input.

In noninteractive mode, you use getopts to obtain the information provided on the command line. In this section you also initialize the variable
USAGE to contain the usage statement for this command.

After the information has been obtained, you call the remove_colon function for each variable (lines 59-62). Because the user can potentialy
specify information that contains colons, skipping this step could corrupt the address book and confuse the showperson script.

Finally you update the address book and exit.

An example of using the script in interactive mode is
$./ addperson

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480148.htm (5 von 9) [06.05.2000 23:08:34]

Hour 22: Problem Solving with Shell Scripts: Maintaining an Address Book

Nane: James Kirk

Emai | : jim@nterprise-a.starfleet.ml

Addr ess: 1701 Main Street Janes Town | owa UFP
Phone:

Here you provided only the name, email address, and postal address for Jim Kirk . When you look up James Kirk in the address book, you find
that thisfield is empty:

$./ showperson

Nane: James Kirk

Emai | : jima@nterprise-a.starfleet.ml

Addr ess: 1701 Main Street James Town | owa UFP
Phone:

Y ou can do the same addition using the noninteractive form:

$./addperson -n "Janes Kirk" -e jim@nterprise-a.starfleet.ml| \
-a "1701 Main Street Janes Town | owa UPF"

Notice that on the command line you need to quote the entries that contain spaces.

Deleting a Person

Occasionaly, you need to delete a person from the address book. In this section, | will look at a script called del person that deletes people from
the address book.

Deleting a person from the address book is a harder task because you have to make sure that those people you realy want to delete are deleted.
The two main tasks you need to perform are

1. Make alist of the linesin the address book that match the specified name.
2. Based on user feedback, delete the appropriate entries from the address book.

Because the delete operation can potentially remove information from the address book, you have to be extra careful about making backups and
working on copies of the origina address book.

To simplify prompting and printing error messages, this script uses the shell function library libTY SP.sh that was introduced in Chapter 21.

The basic flow of the script is
1. Make a copy of the address book and use the copy for all modifications.
2. Get alist of al matching lines from this copy and store them in adeletion file.
3. For each linein the deletion file, print it out formatted and ask the user whether the line should be deleted.
4. If the user wants the line deleted, remove the line from the copy of the address book.
5. After dl the deletions are performed, make a backup of the original address book.
6. Make the edited copy the address book.
7. Clean up temporary files and exit.
For each of these steps, you use a function to make sure that the operations performed succeeded.

The complete delperson script is given in Listing 22.4 (the line numbers are provided for your reference).
Listing 22.4 Complete Listing of the delperson Script

#!/ bin/sh

Nane: del person

Desc: del a person addressbook

Args: $1 -> nane of person to delete

OO WNPE

get the hel per functions

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480148.htm (6 von 9) [06.05.2000 23:08:34]

Hour 22: Problem Solving with Shell Scripts: Maintaining an Address Book

7
8 . $HOWE/ lib/sh/libTYSP. sh

9

10 PATH=/bin:/usr/bin

11

12 # check that a nane is given

13

14 if [$# -1t 1] ; then

15 pri nt USAGE " basenane $0° nane"
16 exit 1

17 fi

18

19 # check that the address book exists
20

21 MYADDRESSBOOK="$HOVE/ addr essbook"
22 if [! -f "$MYADDRESSBOOK" | ; then

23 pri nt ERROR " $MYADDESSBOOK does not exists, or is not a file."
24 exit 1

25 fi

26

27 # initialize the variables holding the | ocation of the
28 # tenporary files

29 TMPF1=/t np/ apupdat e. $$

30 TMPF2=/t np/ abdel ets. $$

31

32 # function to clean up tenporary files

33

34 dod eanUp() { rm"$TMPF1" "$TMPFLl. new' "$TMPF2" 2> /dev/null ; }
35

36 # function to exit if update failed
37 Failed() {

38 if ["$1" -ne 0] ; then
39 shift

40 pri nt ERROR $@

41 dod eanUp

42 exit 1

43 fi

44)

45

46 # nmake a copy of the address book for updating,

47 # proceed only if sucessful

48

49 cp "$MYADDRESSBOCK" "$TMPF1" 2> /dev/ nul

50 Failed $? "Could not nmake a backup of the address book."
51

52 # get a list of all matching lines fromthe address book copy
53 # continue if one or nore matches were found

54

55 grep "$1" "$TWMPF1" > "$TMPF2" 2> /dev/ nul

56 Failed $? "No mat ches found."

57

58 # pronpt the user for each entry that was found

59

60 exec 5< "$TMPF2"

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480148.htm (7 von 9) [06.05.2000 23:08:34]

Hour 22: Problem Solving with Shell Scripts: Maintaining an Address Book

61 while read LINE <&5

62 do

63

64 # display each line formatted

65

66 echo "$SLINE" | awk -F: '{

67 printf "% 10s %\ n% 10s %\ n% 10s %\ n% 10s %\ n\n",\
68 “Nane: ", $1,"Email: ", $2, "Address: ", $3, "Phone: ", $4 ;
69 }

70

71 # pronpt for each line, if yes try to renove the |ine
72

73 pronpt YESNO "Del ete this entry" "n"

74 if ["$YESNO' = "y"] ; then

75

76 # try to renove the line, store the updated version
77 #1in anewfile

78

79 grep -v "$LINE" "$TMPF1" > "$TMPF1l. new' 2> /dev/ nul
80 Fail ed $? "Unabl e to update the address book"

81

82 # replace the old version with the updated version
83

84 mv "$TMPFLl. new' "$TMPF1" 2> /dev/ nul

85 Fail ed $? "Unabl e to update the address book"

86

87 fi

88 done

89 exec 5<&-

90

91 # save the original version

92

93 mv "$MYADDRESSBOCK" " $MYADDRESSBOOK". bak 2> /dev/ nul |

94 Failed $? "Unable to update the address book"

95

96 # replace the original with the edited version

97

98 nv "$TMPF1l" " $MYADDRESSBOOK" 2> /dev/null

99 Failed $? "Unable to update the address book"

100
101 # clean up
102
103 dod eanUp
104

105 exit $?
In thefirst part of the script (lines 8-30), you perform some initialization. Specifically, you perform the following actions:
1. Retrieve the helper functions from libTY SP.sh (line 8).
2. Check to make sure aname to delete is given (lines 14-17).
3. Check to make sure that the address book exits (lines 21-25).
4. Initiadize the variables for the temporary files (lines 29 and 30) and the PATH (line 10).

After initialization, you create a few additiona helper functions:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480148.htm (8 von 9) [06.05.2000 23:08:34]

Hour 22: Problem Solving with Shell Scripts: Maintaining an Address Book
¢ doCleanUp, to remove the temporary files (line 34)
o Failed, to issue an error message, remove the temporary files and exit if a critical command fails (lines 37-44)
Thefirst main step in the script isto make a copy of the address book (line 49). If this step fails, you exit (line 50). If this step is successful, you
renx?![«(al ia:] Iels; 6c;f al thelinesin the address book that match the name specified by the user (line 55). If you cannot successfully make thisfile, you

Next you enter the delete loop (lines 60-89). For each line that matches the name provided by the user you print a formatted version of the line
(lines 66-69). Notice that you are using the same awk statement from the showperson script.

For each matching line, you ask the user whether the entry should be deleted (line 73). If the user agrees (line 74), you do the following:
1. Try to delete the line from the copy of the address book. Store the modified version in adifferent file (line 79).
2. Replace the copy of the address book with the modified copy (line 84).

If either of these operations fail, you exit (lines 80 and 85).

After the deletes are finished, you make a backup of the original address book (line 93). Then you replace the address book with the fully edited
version (line 98). Again you exit if either operation fails (lines 94 and 99).

Finally you clean up and exit.

Hereis an example of this script in action:
$./del person Sriranga

Nane: Sriranga Veeraraghavan

Emai | : ranga@oda. ber kel ey. edu

Addr ess: 1136 Winderlich Dr. San Jose CA
Phone: 408- 444- 4444

Delete this entry (y/n)? [n] vy

Here replied yes to the question. Y ou can confirm that the delete worked as follows:

$./showperson Sriranga
$

Because there is no output from showperson, this entry has been deleted.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 22: Problem Solving with Shell Scripts —_— oPrevious Chapter_Next Chapternm

Sections in this Chapter:—
Moving Directories “Questions
Maintaining an AddressBook "~ Terms
Summary =

oPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480148.htm (9 von 9) [06.05.2000 23:08:34]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 22: Problem Solving with Shell Scripts: Summary

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 22: Problem Solving with Shell Scripts —_ oPrevious Chapter._Next Chapten—s

Sectionsin this Chapter:
Moving Directories “Questions

Maintaining an AddressBook "~ Terms)))
Summary - oPrevious Section_Next Sectiono

Summary

In this chapter | covered using shell scripts to solve two problems:
e Moving directories
e Maintaining an address book

In the first example, | showed you how to move a directory between file systems using the tar command. This example
also showed you how to use the basename and dirname commands to extract parts of a path for your use.

In the second example, you devel oped three scripts that you used to modify and view the contents of an address book.
Some of the highlights of these scripts are:

e The showperson script showed you how the grep and awk commands can be used to format inpuit.
o The addperson script showed you how a single script can be used in both interactive and noninteractive modes.
e The delperson script showed you how to use the grep command and file descriptors to update afile accurately.

The examplesin this chapter demonstrate how you can apply the tools that you have covered in previous chapters to solve
real problems. Using these scripts as examples, you can see some of the techniques used to solve everyday problems.

In the next chapter | will show you how to make sure the scripts you write are portable between different versions of
UNIX.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 22: Problem Solving with Shell Scripts —_ oPrevious Chapter._Next Chapten—s

Sectionsin this Chapter:
Moving Directories “Questions

Maintaining an AddressBook ~ Terms)))
Summary - oPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480149.htm [06.05.2000 23:08:34]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 22: Problem Solving with Shell Scripts: Questions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 22: Problem Solving with Shell Scripts —_— oPrevious Chapter—Next Chapterm

Sectionsin this Chapter:™

Moving Directories “"Questions
Maintaining an Address Book = Terms
Summary - oPrevious Section__Next Sectiono

Questions

1. How might you simplify the following portion of the mvdir script? Specifically, how could you rewrite the main if statement, such that the else
clause was unnecessary?

40 if [-d "$2"] ; then

41

42 DESTDIR="(cd "$2" ; pwd ;)’

43

44 el se

45

46 # if the destination doesn't exist then
47 # assune the destination is the new nane
48 # for the directory

49 DESTDI R=""/usr/ bi n/ di rname $2°"

50 NEWNAMVE=""/ bi n/ basenane $2°"

51

52 # 1f dirnane returns a relative dir we wll
53 # be confused after cd' ing |ater on. So
54 # reset it to the full path.

55 DESTDI R="(cd $DESTDIR ; pwd ;)~

56

57 # if the parent of the destination doesn't
58 # exist, we're in trouble. Tell the user
59 # and exit.

60 if [! -d "$DESTDIR"] ; then

61 print ERROR "A parent of the destination directory $2 does not exist"
62 fi

63

64 fi

65

2. The showperson script lists all matching entriesin the address book based on a name provided by the user. The matches produced are case
sensitive. How can you change the matches so they aren't case sensitive?

3. Both the showperson and del person scripts reproduce exactly the following pieces of code

PATH=/ bi n: /usr/bin

check that a name is given

if [$# -1t 1] ; then
print USAGE " basenane $0° nane
exit 1

fi
check that the address book exists
MYADDRESSBOOK="$HQOVE/ addr essbook"
if [! -f "$MYADDRESSBOOK"] ; then
pri nt ERROR " $MYADDESSBOOK does not exists, or is not a file."

exit 1
fi
and
awk -F: '{

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480150.htm (1 von 2) [06.05.2000 23:08:35]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 22: Problem Solving with Shell Scripts: Questions

printf "% 10s %\ n% 10s %\ n% 10s %\ n% 10s %\n\n",\
“Nane: ", $1, "Enmi |l : ", $2, "Address: ", $3, "Phone: ", $4 ;

} 1
How might you rewrite these script fragments so that they can be shared between these scripts instead of being replicated in both?
4. The delperson script uses the grep command to generate a list of matching entries. This might confuse the user in the following instance:
$./del person.01 to

Name: James T. Kirk

Emai | : jimanterprise. ml

Addr ess: 1701 Main Street Anytown | owa
Phone: 555- 555- 5555

Delete this entry (y/n)? [n]
Here the to in Anytown was matched.

What changes should be made to the del person script so that only those entries whose names match the user-specified name are selected for
deletion?

(HINT: Use the sed command instead of grep).
5. If the delperson script getsasignal whileit is processing deletes, all the intermediate files are left behind. What can be done to prevent this?

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Hour 22: Problem Solving with Shell Scripts — cPrevious Chapter_Next Chapten
Sections in this Chapter:

Moving Directories ““Questions

Maintaining an AddressBook = Terms

Summary - oPrevious Section..Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480150.htm (2 von 2) [06.05.2000 23:08:35]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 22: Problem Solving with Shell Scripts: Terms

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Moving Directories “Questions
Maintaining an AddressBook ™ Terms
Summary - cPrevious Section_Next Sectionz

File System A file system isused by UNIX to store files and directories. Usually afile system correspondsto a hard
drive or hard drive partition.

Tar File A tapearchivefile created by the tar command. A tar file can contain both files and directories, making it
similar to azip file.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Moving Directories uestions
Maintaining an AddressBook ™ Terms
Summary - cPrevious Section_Next Sectionz

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480151.htm [06.05.2000 23:08:35]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 23: Scripting for Portability: Determining UNIX Versions

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 23: Scripting for Portability —_ oPrevious Chapter._Next Chapten—s
Sectionsin this Chapter:

Determining UNIX Versions “TQuestions

Techniques for Increasing Portability™ Terms

Summary - cPrevious Section__Next Sectiono

Hour 23
Scripting for Portability

Shell programming is an important part of UNIX because shell scripts are portable between different versions of UNIX. In
many cases, no changes are required for a shell script to function correctly on multiple systems.

The easiest way to ensure that your shell scripts are completely portableisto restrict yourself to using only those
commands and features that are available on al versions of UNIX. Sometimes, you have to implement workarounds to
deal with the limitations of a particular version of UNIX.

In this chapter, you will first learn how to determine which version of UNIX isrunning. Then you will learn how to adapt
your shell scriptsto different versions of UNIX by examining some of the problems encountered when porting scripts
between the versions.

Determining UNIX Versions

BSD Versus System V==Determining the UNIX Version Using a Function
Using uname -

Before you can begin adjusting shell scripts to be portable, you need to know what the different types of UNIX are and
how to tell them apart.

The two magjor types of UNIX are
o BSD (Berkeley Software Distribution)
o SystemV

The locations of commands and the options supported by certain commands are different between these two types of
UNIX. This chapter highlights the major differences and commands in particular.

BSD Versus System V

BSD UNIX was developed by the Computer Systems Research Group at the University of Californiaat Berkeley. In the
early 1980s, the University of California acquired the source code to UNIX from AT& T Bell Labs and significantly
modified it to produce BSD UNIX.

Although the University of California has stopped distributing BSD UNIX, current versions of it are available from many
sources. The most common versions of BSD are OpenBSD, NetBSD, and FreeBSD. Some older machines from Sun
Microsystems run amodified version of BSD called SunOS.

System V (sometimes abbreviated as SysV) isthe latest version of UNIX released by AT& T Bell Labs. It is based on the
original version of UNIX developed in the early 1970s. System V UNIX isthe standard for commercia versions of UNIX.
Both Solaris (the newest version of SUnOS) and HP-UX are based on System V UNIX.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480153.htm (1 von 5) [06.05.2000 23:08:35]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 23: Scripting for Portability: Determining UNIX Versions

The main difference between BSD UNIX and System V UNIX isin system administration and networking. System V
UNIX is newer than BSD UNIX and provides many standardized tools for configuring a system, installing prepackaged
software, and network programming.

Also, the layout of the file system in System VV UNIX has changed to some extent. Table 23.1 lists the BSD directories and
their System V equivalents.

Table 23.1 System V Equivalents of BSD Directories

[BSD [SystemV

|/bin /usr/bin

/sbin |fusr/sbin

|/usr/adm |/var/adm

|/usr/mail |/var/mail or /var/spool/mail
\/usr/tmp |ivar/tmp

The directories /bin and /sbin still exist on some System V-based UNIX versions. On Solaris, these directories are links to
/usr/bin and /usr/sbin, respectively. On HP-UX, these directories still contain some commands essential at boot time. The
commands stored in these directories are not the same commands asin BSD. Most vendors who have switched from BSD
to System V still provide BSD versions in the directory /usr/uch.

In addition to these changes, many System V-based UNIX versions have introduced the directory /opt in an attempt to
standardize the installation locations of prepackaged software products. On older systems, many different locations,
including /usr, /usr/contrib, and /usr/local, were used to install optional software packages.

Linux is hard to classify becauseit is not based on either BSD or System V source code. It was written from scratch by
Linus Torvalds at the University of Helsinki in Finland and is considered by some to be athird type of UNIX that
incorporates the best features found in both System V and BSD. The commands and the networking layer in Linux are
both based on BSD, whereas the standardized tools for system configuration and installation of prepackaged software are
similar to System V. Some of the major vendors of Linux are Caldera and Red Hat.

Using uname

The first step in writing portable shell scriptsisto determine which version of UNIX is executing your shell script. You
can determine this using the uname command:

uname options

Here, options is one or more of the options given in Table 23.2.

Table 23.2 Options for the uname Command

|Option |Description

-a |Prints &l information

|-m |Pri nts the current hardware type

|-n |Pri nts the hostname of the system

|-r |Pri nts the operating system release level

|-s |Pri nts the name of the operating system (default)

By default, the uname command prints the name of the operating system. The output looks like the following:

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480153.htm (2 von 5) [06.05.2000 23:08:35]

Hour 23: Scripting for Portability: Determining UNIX Versions

$ unane
Li nux

Here, the output indicates that the operating system name of the machineis Linux. Usually, thisis enough to determine the
UNIX version. For example, on FreeBSD systems, the output is FreeBSD and on HP-UX systems the output is HP-UX.
The major exception to thisis SunOS.

Using the Operating System Release Level

As previously mentioned, SunOS is the name of the UNIX operating system developed by Sun Microsystems. SUunOS was
originaly based on BSD UNIX but has since changed to be based on System V UNIX. Although Sun Microsystems
changed the marketing name of the new version to Solaris, both versions produce the output SUnOS when uname s run.

To use the correct versions of commands, shell scripts that have to run on both Solaris and the old SunOS must be able to
detect the difference between these two versions.

To determine whether a system is running Solaris or SUnOS, you need to determine the version of the operating system.
SunOS versions 5 and higher are Solaris (System V-based); SunOS versions 4 and lower are SunOS (BSD-based).

To determine the version of the operating system, use the -r option of uname:

$ unanme -r
5 5.1

This indicates that the version of the operating system is 5.5.1. If you want to add the operating system's name to this
output, use the -r and the -s options:

$ unanme -rs
SunCS 5.5.1

This indicates the machine is running Solaris. A machine running the BSD-based SunOS displays the following output:
SunCs 4.1.3

Determining the Hardware Type

Sometimes a shell script iswritten as awrapper around a hardware-specific program. For example, install scripts are
usually the same for different hardware platforms supported by a particular operating system. Although the install script
might be the same for every hardware platform, the files that are installed are usually different.

To determine the hardware type, use the -m option of the uname command:

$ unane -m
sun4dm

Some common return values and their hardware types are given in Table 23.3.

Table 23.3 Hardware Types Returned by the uname Command

|Har dwar e|Description
|9000/xxx |Hew| ett-Packard 9000 series workstation. Some common values of xxx are 700, 712, 715, and 750.
|i386 |I ntel 386-, 486-, Pentium-, or Pentium |1-based workstation.

sun4dx A Sun Microsystems workstation. Some common values of x are ¢ (SparcStation 1 and 2), m (SparcStation
10 and 20), and u (UltraSparc).

|al pha |A workstation based on the Digital Electronics Corporation ALPHA microprocessor.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480153.htm (3 von 5) [06.05.2000 23:08:35]

Hour 23: Scripting for Portability: Determining UNIX Versions

Determining the hostname of a System

Many shell scripts need to check the hostname of a system. The traditional method of doing this on BSD systemsisto use
the hosthame command, as in the following example:

$ host nane

soda. CSUA. Ber kel ey. EDU

In System V, the hosthame command is not always available. The uname -n command is used instead:
$ unane -n

kashi

Because the uname -n command is available on both System V and BSD UNI X, it is preferred for use in portable shell
scripts.

Determining the UNIX Version Using a Function

Now that you have looked at using the uname command to gather information about the version of UNIX that is being
used, you need a method for using thisinformation in ashell script. Asyou saw in Chapter 21, "Problem Solving With

Functions," creating a shell function that determines the version of UNIX gives the greatest flexibility.

A shell function that returns the operating system typeis as follows:

get OSNane() {
case “uname -S° in

* BSD)
echo bsd ;;

SunQs)
case “unanme -r” in

5.*) echo solaris ;;
*) echo sunos ;;

esac
Li nux)

echo |inux ;;
HP- UX)

echo hpux ;;
Al X)

echo aix ;;

*) echo unknown ;;
esac

}

Asyou can see, thisfunction is not very complicated. It checks the output of uname -s and looks for a match. In the case of
SunOs, it also checks the output of uname -r to determine whether the operating system is Solaris or SunOS.

In many cases, you need to tailor the options of a command, such as ps or df, so that the command can generate the desired
output. In such cases, you need the capability to "ask" whether the operating system is of a certain type. A shell function
that performs this task follows:

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480153.htm (4 von 5) [06.05.2000 23:08:35]

Hour 23: Scripting for Portability: Determining UNIX Versions

1 sOS() {
if [$# -1t 1] ; then
echo "ERROR: I nsufficient Arunents." >&2

return 1
fi
REQ="echo $1 | tr '"[A-Z]' '[a-z]"'"~
if ["PREQ'" = ""getOSNane”"] ; then return 0 ; fi
return 1

}

This function compares its first argument to the output of the function getOSName and returns O (true) if they are the
same; otherwise, it returns 1 (false). Using this function, you write if statements of the following type:
if isOS hpux ; then
. # HP-UX specific commands here

elif isOS solaris ; then

Sol aris specific comands here
el se

generic uni x conmands here
fi
The reason that you do not directly check the value of $1 but instead use the variable REQ, is that this enables a greater
flexibility on the part of the function's user. For example, you can use either of the following to check whether a system is
Linux:
i sOS LI NUX
I sOS |'i nux

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 23: Scripting for Portability —_— cPrevious Chapter._Next Chapten—

Sectionsin this Chapter:

Determining UNIX Versions “Questions

Techniques for Increasing Portability™ Terms

Summary - cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480153.htm (5 von 5) [06.05.2000 23:08:35]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 23: Scripting for Portability: Techniques for Increasing Portability

Sams Teach Yourself Shell Programming in 24 Hours Contents [ndex
Hour 23: Scripting for Portability —_— oPrevious Chapter._Next Chaptens
Sectionsin this Chapter:

Determining UNIX Versions “Questions

Techniques for Increasing Portability™ Terms

Summary - oPrevious Section_Next Sectiono

Techniques for Increasing Portability

Conditional EXECULi O
Abstraction —

Shell scripts that run on multiple versions of UNIX often include code that is version-specific. For example, you might need to use a different
command on Linux than Solaris to obtain some system information.

There are two common techniques to increase the portability of a shell script between different versions of UNIX:
o Conditional execution
e Abstraction

Conditional execution alters the execution of a script based on the system type, whereas abstraction retains the same basic flow of the script by
placing the conditional statements within functions.

Conditional Execution

A script that uses conditional execution for portability contains an if statement at the beginning. The if statement sets several variables
indicating the set of commands to use on a particular platform.

In this section, you look at two common cases of conditional execution:
o Determining the remote shell command
o Determining the proper method of using the echo command in prompts

Thefirst case illustrates setting a variable based on the operating system type. The second case illustrates setting variables based on the
behavior of acommand (echo) on a particular system.

Executing Remote Commands

A common use of conditional execution isin scripts that need to execute commands on remote systems. On most versions of UNIX, you can
use the rsh (remote shell) command to execute commands on a remote system. Unfortunately, you cannot use this command on al versions of
UNIX.

On HP-UX, rshisavailable, but it is not the remote shell program--it is the restricted shell program. On HP-UX, you need to use the command
remsh to execute commands on a remote system.

A script that needs to execute commands on aremote system might have an if statement of the following form at its beginning:

if System S HPUX ; then
RCVD=r ensh

el se
RCVD=r sh

fi

After the variable SJRCMD is set, remote commands can execute as follows:
"$RCVMD' host command

Here, host is the hostname of the remote system, and command is the command to execute.

Problems with the echo Command in Prompts

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480154.htm (1 von 4) [06.05.2000 23:08:36]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 23: Scripting for Portability: Techniques for Increasing Portability

Most programs that need to prompt the user need to be able to print a prompt that is not terminated by a newline. In Chapter 13,
"Input/Output,” there were several problems with using the \c escape sequence of the echo command to do this. The workaround was to use the
/bin/echo command.

Although this works for UNIX versions based on System V, on some BSD-based systems this does not work. Y ou need to specify the -n
option to echo instead. By using the following shell script, you can create a shell function, echo_prompt, to display a prompt reliably across al
versions of echo:

_ECHO=/ bi n/ echo

NE
Cc="\c"
ECHOOUT="$_ECHO "hello $_C'~
if ["SECHOOUT" = "hello \c"] ; then
NE"-n"
C=
fi

export ECHO N C

echo prompt() { $ ECHO $ N$@$ C; }

This script fragment implements the /bin/echo workaround by using it as the base from which to construct the correct echo command. It then
checks the output of an echo command to see whether the \c sequence istreated correctly. If it is not, you need to use the -n option.

After this has been determined, the function echo_prompt is created using the correct variables. This function enables us to reliably output
prompts, as in the following example:

$ echo_pronpt "Do you want to play a gane?" ; read response
Do you want to play a gane?

Abstraction

mdli Abstraction is a techni gue used to hide the differences between the versions of UNIX inside shell functions. By doing this, the

overall flow of ashell script is not affected. When afunction is called, it makes a decision as to what commands to execute.
In this section you look at two different examples of abstraction:

o Adapting the getFreeSpace function to run on HP-UX

o Adapting the getPID function to run on BSD and System V

Y ou make use of the functions getOSName and isOS given earlier in this chapter in order to adapt these functions.
Adapting getFreeSpace for HP-UX

Recall the getFreeSpace function introduced in Chapter 21.

get FreeSpace() {

if [$# -1t 1] ; then
echo "ERROR: Insufficient Argunents.” >&2
return 1

fi

D R="$1"

if [! -d"$DIR"] ; then
DI R="/usr/bin/dirnane $DI R

fi

df -k "$DIR" | awk "NR !'=1 { print $4 ; }'

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480154.htm (2 von 4) [06.05.2000 23:08:36]

Hour 23: Scripting for Portability: Techniques for Increasing Portability

This function prints the amount of free space in adirectory in kilobytes. Y ou use this function's output in the isSpaceAvailable function to

determine whether there is enough space in a particular directory.

Although this works for most systems (Solaris, Linux, BSD), the output of df -k on HP-UX is much different. For example,

$ df
[usr

-k /usr/sbin
(/ dev/vg00/1 vol 8) 737344
368296
369048

50

To get asingle output line, you need to use the command df -b instead:

$ df -b /usr/sbin

[usr (/ dev/vg00/1vol 8)

total allocated Kb
free allocated Kb
used al l ocated Kb
% al | ocati on used

392808 Kbytes free

In order to useisSpaceAvailable on all systems, including HP-UX, you need to change the function getFreeSpace to take these factorsinto

account. The modified version looks like the following:

get FreeSpace() {

if [$# -1t 1] ; then

echo "ERROR Insufficient Argunents." >&2
return 1
fi
DI R="3$1"
if [! -d"$DIR"] ; then
DI R="/usr/bin/dirnane $DI R
fi
if isCS HPUX ; then
df -b "$DIR" | awk '{ print $5 ; }'
el se
df -k "$DIR" | awk '"NR!=1 { print $4 ; }'
fi

}

Here, you are calling the isOS function given earlier in this chapter to determine which commands to execute.

Adapting getPID for BSD UNIX

Recall the getPID function introduced in Chapter 21:

get PID() {
if [$# -1t 1] ; then
echo "ERROR: Insufficient Argunents.” >&2
return 1
fi
PSOPTS="-ef"
/ bin/ps $PSOPTS | grep "$1" | grep -v grep |

}

Remember that it works correctly only on systems where the command
ps -ef

awk '{ print $2; }'

produces alisting of all running processes. Thisis not the case on Linux and BSD systems. On BSD systems, we need to use the command

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480154.htm (3 von 4) [06.05.2000 23:08:36]

Hour 23: Scripting for Portability: Techniques for Increasing Portability
ps -auwx
to get the correct output. This works on older Linux systems, but on newer Linux systems an error message similar to the following is
generated:
war ning: '-' deprecated; use 'ps auwx', not 'ps -auwx'

By using the getOSName function given earlier in this chapter, we can adapt the getPID function to work with both the BSD and System V
versions of ps. The modified version of getPID is as follows:

get PID() {

if [$# -1t 1] ; then
echo "ERROR: Insufficient Argunents.” >&2
return 1

fi

case ~get OSNane” in

bsd| sunos]| | i nux)
PSOPTS=" - auwx" ;;
*)

esac

PSOPTS="-ef" ;;

/ bi n/ ps $PSOPTS 2> /dev/null | grep "$1" | grep -v grep | awk '{ print $2; }'
}

The two main changes are
o A case statement sets the variable PSOPTS based on the operating system name.

e The STDERR of psisredirected to /dev/null in order to discard the warning message generated on newer versions of Linux.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Hour 23: Scripting for Portability —_— oPrevious Chapter._Next Chapten
Sectionsin this Chapter:

Determining UNIX Versions ““Questions

Techniques for Increasing Portability™ Terms

Summary - cPrevious Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480154.htm (4 von 4) [06.05.2000 23:08:36]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 23: Scripting for Portability: Summary

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Determining UNIX Versions “Questions
Techniques for Increasing Portability™ Terms)))
Summary - cPrevious Section—_Next Sectiono

In this chapter, you learned how to determine which version of UNIX you are running by using the uname command. In
addition, you developed the getOSName and isOS functions to help you adapt your shell scripts to multiple versions of
UNIX.

Y ou also looked at the following techniques for improving the portability of shell scripts:
o Conditional execution
e Abstraction

In conditional execution, you modify the flow of your script depending on the version of UNIX being used. In abstraction,
you change the implementation of your functions to account for the differences between the versions of UNIX. Here, the
flow of your script remains the same.

Using the techniques and tips in this chapter, you can port your shell script across different versions of UNIX.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Determining UNIX Versions “Questions
Techniques for Increasing Portability™ Terms)))
Summary - cPrevious Section—_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480155.htm [06.05.2000 23:08:36]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 23: Scripting for Portability: Questions

Sams Teach Yourself Shell Programmingin 24 Hours

Contents [ndex

Sectionsin this Chapter:

Determining UNIX Versions “Questions
Techniques for Increasing Portability™ Terms
Summary - cPrevious Section_Next Section—

1. Write afunction called getCharCount that prints the number of charactersin afile. Use wc to obtain the
character count.

On Linux, FreeBSD, and SunOS (not Solaris), use the -c option for wc,. On other versions of UNIX, use the-m
option instead. Y ou can use the function getOSName to get the name of the operating system.

Sams Teach Yourself Shell Programmingin 24 Hours

Contents [ndex

Sectionsin this Chapter:

Determining UNIX Versions “Questions
Techniques for Increasing Portability™ Terms
Summary - cPrevious Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480156.htm [06.05.2000 23:08:36]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 23: Scripting for Portability: Terms

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Determining UNIX Versions “Questions
Techniques for Increasing Portability™ Terms
Summary - cPrevious Section_Next Sectionz

Conditional Execution Conditional execution alters the execution of a script based on the system type. A script that uses
conditional execution usually contains an if statement at the beginning that sets variables to indicate the commands to use
on aparticular platform.

Abstraction Scripts that use abstraction retain the same basic flow by placing the conditional execution statements within
functions. When afunction is called, it makes a decision as to what commands execute for a given platform.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Determining UNIX Versions “Questions
Techniques for Increasing Portability™ Terms
Summary - oPrevious Section._Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480157.htm [06.05.2000 23:08:37]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 24: Shell Programming FAQs: Shell and Command Questions

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 24: Shell Programming FAQs —_ oPrevious Chapter._Next Chapten—s

Sectionsin this Chapter:
Shell and Command Questions "~ File and Directory Questions
Variable and Argument Questions™ Summary cPrevious Section__Next Sectiono

Hour 24
Shell Programming FAQs

Each of the previous chapters has focused on an individual topic in shell programming, such as variables, loops, or
debugging. As you progressed through the book, you worked on problems that required knowledge from previous
chapters. In this chapter, I'm taking a slightly different approach. | will try to answer some common shell programming
questions that frequently arise. Specifically | will cover questions from three main areas of shell programming:

e Theshell and commands
o Variablesand arguments
e Filesand directories

Each section includes several common questions (along with answers) that occur in shell programming. These questions
are designed to help you solve or avoid problems while programming using the shell.

Some of the questions provide deeper background information about UNIX, whereas others illustrate concepts covered in
previous chapters.

Shell and Command Questions

In this section | will cover some of the common questions that arise in regard to the shell itself. Also included are afew
guestions regarding the execution of commands.

Why does #!/bin/sh have to be the first line of my scripts?

In Chapter 2, "Script Basics," | stated that #!/bin/sh must be the first line in your script to ensure that the correct shell is
used to execute your script. Thisline must be thefirst linein your shell script because of the underlying mechanism used
by a shell to execute commands.

When you ask a shell to execute the command $ date, the shell uses the system call exec to ask the UNIX
kernel to execute the command you requested. For those readers who are not familiar with the term system call, a system
call isaC language function built in to the UNIX kernel that enables you to access features of the kernel.

The shell passes the name of the command that should be executed to the exec system call. This system call reads the first
two charactersin afile to determine how to execute the command. In the case of shell scripts, the first two characters are
#, indicating that the script needsto be interpreted by another program instead of executed directly. Therest of thelineis
treated as the name of the interpreter to use.

Usually the interpreter is/bin/sh, but you can also specify options to the shell on this line. Sometimes options such as -x or
-nv are specified to enable debugging. This also enables you to write scripts tuned for a particular shell such as ksh or bash
by using /bin/ksh or /bin/bash instead of /bin/sh.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480159.htm (1 von 4) [06.05.2000 23:08:37]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 24: Shell Programming FAQs: Shell and Command Questions

How can | access the name of the current shell in my initialization scripts?

In your shell initialization scripts, the name of the current shell is stored in the variable $0.

Userswho have asingle .profile that is shared by sh, ksh, and bash use this variable in conjunction with a case statement
near the end of thisfile to execute additional shell specific startup.

For example, | use the following case statement near the end of my .profile to set up the prompt, PS1, differently
depending on the shell | am using:

case "$0" in
*bash) PS1="\t \h \#$ " ;;
*ksh) PS1=""unane -n" !'$ " ;;
*sh) PS1=""unane -n"$ " ;;

esac

export PS1

I have specified the shells as * bash, *ksh, and * sh, because some versions of UNIX place the - character in front of login
shells, but not in front of other shells.

How do | tell whether the current shell is interactive or noninteractive?

Some scripts will need the capability to determine whether they are running in an interactive shell or noninteractive shell.

Usually thisisrestricted to your shell initialization scripts because you don't want to perform a full-blown initialization
every time these scripts execute. Some other examples include scripts that can run from the at or cron commands.

Two common methods can determine whether ashell isinteractive;
o test-tor[-t]
° tty -S

Both commands exit with zero statusif STDIN is connected to aterminal. For example, the commands
$if [-t] ; then echo interactive ; fi

and
$if tty -s ; then echo interactive ; fi

produce the same result if the current shell isinteractive:
I nteractive

On modern versions of UNIX both forms work equally well. On some older versions of UNIX the test -t command was not
available, so the tty -s command had to be used.

How do | discard the output of a command?

Sometimes you will need to execute a command, but you don't want the output displayed to the screen. In these cases you
can discard the output by redirecting it to the file /dev/null:

command > /dev/ nul |

Here command is the name of the command you want to execute. Thefileis a special file (called the bit bucket) that
automatically discards all itsinput.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480159.htm (2 von 4) [06.05.2000 23:08:37]

Hour 24: Shell Programming FAQs: Shell and Command Questions
To discard both output of acommand and its error output, use standard redirection to redirect STDERR to STDOUT:
command > /dev/null 2>&1

How can | display messages on STDERR?

Y ou can display a message on to STDERR by redirecting STDIN into STDERR as follows:
echo nessage 1>&2

Here message is the message you want to display.

If you are interested in shell functions that perform additional formatting please consult Chapter 21, "Problem Solving
with Functions,” which covers several shell functions that display messages on to STDERR.

How can | check whether a command was successful?

A command is successful if it exits with a status of zero. A nonzero exit code indicates that an error has occurred.

To check the exit code of the most recent command you executed, use the variable $?. For example:

grep root /etc/passwd > /dev/null 2>&1
if [$2 -ne 0] ; then echo "No one is in charge!" ; fi

Here you execute a grep command and then check the exit status of this command using the value stored in $?.
How do | determine whether the shell can find a particular command?

Y ou can check to make sure that the shell can find a command or shell function by using the type command covered in
Chapter 18, "Miscellaneous Tools':

type name > /dev/null 2>&1 ; if [$? -ne 0] ; then list ; fi

Here name is the name of the command you want check for, and list isthe list of commands to execute if the shell does not
know about name. Usually list is used to determine afallback command.

The type command is a builtin in sh and bash. In ksh, it isusually an alias, whence -v.

How do | determine whether job control is available in the shell?

Job control, covered in Chapter 6, "Processes,” is the shell feature that enables you to control background processes based
onajob ID. Thisfeatureis not available in the Bourne shell, sh. It isavailable in ksh and bash.

A common method used to check whether job control is enabled is to check whether the jobs command is defined:

i f type jobs > /dev/null 2>&1 ; then
echo "We have job control™
fi

This check is effective in most cases because the jobs command is not available in most versions of the Bourne shell.

Unfortunately, some versions of UNIX such as Sun Solaris, include aversion of the Bourne shell that has a built-in
command called jobs. On these systems when the shell isinvoked as /bin/sh, the jobs command exists but does nothing. If
the shell isinvoked as /bin/jsh (asinjob control shell), the jobs command behaves normally.

Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480159.htm (3 von 4) [06.05.2000 23:08:37]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 24: Shell Programming FAQs: Shell and Command Questions

Sections in this Chapter:
Shell and Command Questions = File and Directory Questions
Variable and Argument Questions™ Summary cPrevious Section—_Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480159.htm (4 von 4) [06.05.2000 23:08:37]

Hour 24: Shell Programming FAQs: Variable and Argument Questions

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 24: Shell Programming FAQs —_ oPrevious Chapter._Next Chapten—s

Sectionsin this Chapter:
Shell and Command Questions "~ File and Directory Questions

Variable and Argument Questions™ Summary cPrevious Section_Next Section—

Variable and Argument Questions

In this section | will examine some questions related to variables and their use in shell scripts. | will aso cover some
guestions related to command line arguments.

How can |l include functions and variable definitions from one file into another file?

To include functions and variable definitions defined in one file into another file you need to use the . command as
follows:

file

Herefile is the name of the file you want to include. | covered thistopic in Chapter 22, "Problem Solving with Shell
Scripts.”

Is it possible to consider each argument to a shell script one at a time?

Y ou can do thisusing afor loop:
for arg in "$@
do
| i st
done

Here the variable arg will be set to each argument in turn. The specified list of commands, list, will be executed for each
argument.

You use $@ in this example for the arguments instead of $*, because $@ preserves the quoting used when the command
was issued. The difference between $@ and $* was discussed in Chapter 12, "Parameters.”

How can | forward all the arguments given to my script to another command?

A common task for shell programmersiswriting awrapper script for command. A wrapper script might need to define a
set of variables or change the environment in some way before a particular command starts executing.

When writing wrapper scripts, you will need to forward all the arguments given to your script to acommand. Usually the
following is sufficient:

command "$@
Here command is the name of the command you want to execute.

The one problem with thisis that if no arguments were specified to your script, some versions of the shell will expand
"$@" to "". If no arguments were specified, you want to execute command, not command "".To avoid this problem, use the
form:

conmand ${ @ +"$@}

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480160.htm (1 von 2) [06.05.2000 23:08:38]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 24: Shell Programming FAQs: Variable and Argument Questions

Here you are using one of the forms of variable substitution discussed in Chapter 8, " Substitution.” In this case you check

to see whether the variable $@ has avalue. If it does, you substitute the value "$@" for it. If your script was not given any
command line arguments, $@ will be null; thus no value will be substituted.

How do | use the value of a shell variable in a sed command?

The simplest method to use variablesin a sed command is to enclose your sed command in double quotes (") instead of
single quotes (). Because the shell performs variable substitution on double-quoted strings, the shell will substitute the
value of any variables you specify before sed executes.

For example, the command
sed "/$DEL/d" filel > file2

deletes all thelinesin filel that contain the value stored in the variable $DEL.

How do | check to see whether a variable has a value?

There are several methods for determining this. The ssimplest istheif statement:
if [-z "$VAR"] ; then list ; fi

Here VAR isthe name of the variable, and list is the command to execute if VAR does not contain avalue. Usualy list
initializes VAR to some default value.

Y ou can initialize variables more succinctly using variable substitution. For example, the previousif statement can be
written as

${ VAR: =def aul t }
Here default is the default that should be assigned to VAR, if VAR does not have avalue.

If you need execute a set of commands to obtain a default value, use command substitution with the backquote ()
operator to obtain the value that should be substituted:
${ VAR =" defaul t "}

Here default isalist of commandsto execute. If VAR does not have a value, the output of these commands will be
assigned to it.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 24: Shell Programming FAQs —_— cPrevious Chapter._Next Chapten—

Sections in this Chapter:
Shell and Command Questions = File and Directory Questions
Variable and Argument Questions™Summary cPrevious Section_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480160.htm (2 von 2) [06.05.2000 23:08:38]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 24: Shell Programming FAQs: File and Directory Questions

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 24: Shell Programming FAQs —_ oPrevious Chapter._Next Chapten—s

Sectionsin this Chapter:
Shell and Command Questions "~ File and Directory Questions
Variable and Argument Questions™ Summary cPrevious Section_Next Section—

File and Directory Questions

In this section, | will look at some questions about files and directories. These questions include issues with specific
commands and examples that illustrate the usage of commands to solve particular problems.

How do | determine the full pathname of a directory?

Shell scripts that work with directories often need to determine the full pathname of a directory to perform the correct
operations on these directories.

Y ou can determine the full pathname of a directory by using the cd and pwd commands:
FULLPATH=" (cd dir ; pwd)’

Here dir isthe name of adirectory. This command changes directories to the specified directory, dir, and then displays the
full pathname of the directory using the pwd command. Because command substitution is used, the full pathnameis
assigned to the variable FULLPATH.

Because the cd command changes the working directory of the current shell, you execute it in a subshell. Thus the working
directory of the shell script is unchanged.

How do | determine the full pathname of a file?

Determining the full pathname of afileis dlightly harder than determining the full pathname of a directory. Y ou need to
use the dirname and basename commands in conjunction with the cd and pwd commands to determine the full pathname

of afile:

CURDI R=" pwd’

cd “dirnanme file’
FULLPATH=""pwd” /" basenane file "
cd $CURDI R

Herefile is the name of afile whose full pathname you want to determine. First you save the current path of the current
directory in the variable CURDIR. Next you change to the directory containing the specified file, file.

Then you join the output of the pwd command and the name of the file determined using the basename command to get the
full pathname. This value gets stored in the variable FULLPATH. Finally you change back to the original directory.

How can locate a particular file?

The structure of the UNIX directory tree sometimes makes locating files and commands difficult. To locate afile, often
you need to search through a directory and all its subdirectories. The easiest way to do thisisto use the find command:

find dir -nane file -print

Here dir isthe name of a directory where find should start its search, and file is the name of thefile it should look for.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480161.htm (1 von 4) [06.05.2000 23:08:38]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 24: Shell Programming FAQs: File and Directory Questions

The name option of the find command also works with the standard filename substitution operators covered in Chapter 8.
For example, the command

find dir -name "*txt" -print

displaysalist of all thefilesin the directory dir and all its subdirectories that end with the string txt.
How can | grep for a string in every file in a directory?

When you work on alarge project involving many files, remembering the contents of the individual files becomes
difficult. It ismuch easier to look through al the files for a particular piece of information.

Y ou can use the find command in conjunction with the xargs command to look for a particular string in every file
contained within adirectory and all its subdirectories:

find dir -type f -print | xargs grep "string"

Here dir isthe name of adirectory in which to start searching, and string is the string to look for. Here you specify the
-type option to the find command so that only regular files are searched for the string.

How do | remove all the files in a directory matching a particular name?

Some editors and programs create large numbers of temporary files. Often you need to clean up after these programs, to
prevent your hard drive from filling up.

To generate the list of filesto delete, you can use the find command. Most of the time you can combine the find command
with the xargs command, but in this case the filenames can contain one or more spaces. Spaces can confuse the xargs
command, so you need to use afor loop instead:

OLDI FS="$I FS"
| Fs="

for FILE in "find . -type f -name "*string*" -print’
do
rm " $FI LE"
done
| FS="$0LDI FS"

Here string is a string that should be part of the name of each file you want to delete. So that the for loop is set to the
correct value of FILE in each iteration, IFS needs to be set to the newline character.

If you do not change IFS, filenames that contain spaces will be interpreted as multiple files instead of as asinglefile.
What command can | use to rename all the *.aaa files to *.bbb files?

In DOS and Windows, you can rename all the *.aaa filesin a directory to *.bbb by using the rename command as follows:
renane *.aaa *. bbb

In UNIX you can use the mv command to rename files, but you cannot use it to rename more than one file at the same
time. To do this, you need to use afor loop:

OLDSUFFI X=aaa

NEWSUFFI X=bbb

for FILE in *."$OLDSUFF| X"
do

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480161.htm (2 von 4) [06.05.2000 23:08:38]

Hour 24: Shell Programming FAQs: File and Directory Questions

NEWNAME="echo "$FILE" | sed -e "s/${OLDSUFFI X}\ $/ SNEWSUFFI X/ "~
mv/ " $FI LE" " SNEVWNAME"
done

Here you generate alist of al the filesin the current directory that end with the value of the variable OLDSUFFIX. Then
you use sed to modify the name of each file by removing the value of OLDSUFFIX from the filename and replacing it
with the value of NEWSUFFIX. Y ou use the $ character in your sed expression to anchor the suffix in OLDSUFFIX to the
end of the line. Y ou do this to make sure the pattern that is replaced is really afilename suffix.

After you have a new name, you rename the file from its original name, stored in FILE, to the new name stored, stored in
NEWNAME.

To prevent apotential loss of data, you might need to modify this loop to specify the -i option to the mv command. For
example, if the files 1.aaa and 1.bbb exist prior to executing this loop, after the loops exits, the original version of 1.aaa
will be overwritten when 1.bbb isrenamed as 1.aaa. If mv -i is used, you will be prompted before 1.bbb is renamed:

nm/: overwite 1.aaa (yes/no)?

Y ou can answer no to avoid losing the information in thisfile. The actual prompt produced by mv might be different on
your version of UNIX.

What command can | use to rename all the aaa* files to bbb* files?

The technique used in the last question can be used to solve this problem as well. In this case you will use the variables
OLDPREFIX to hold the prefix afile currently has and NEWPREFI X to hold the prefix you want the file to have.

As an example, you can use the following for loop to rename all files that start with aaa to start with bbb instead:

OLDPREFI X=aaa

NEWPREFI X=bbb

for FILE in "$OLDPREFI X"*

do
NEWNAME="echo "$FILE" | sed -e "s/”${OLDPREFI X}/ $SNEWPREFI X/ "~
mv "$FI LE" " $NEVWNANE"

done

How can | set my filenames to lowercase?

When you transfer afile from a Windows or DOS system to a UNIX system, the filename ends up in al capital |etters.
Y ou can rename these files to lowercase using the following command:

for FILE in *
do

v -i "$FILE" “echo "$FILE" | tr '[A-Z]' '[a-z]' 2> /dev/null
done

Y ou are using the mv -i command here in order to avoid overwriting files. For example, if the files APPLE and apple both
exist in adirectory you do not want to rename the file APPLE.

How do | eliminate carriage returns (M) in my files?

If you transfer text files from a DOS machine to a UNIX machine, you might see a”M before the end of each line. This
character corresponds to a carriage return.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480161.htm (3 von 4) [06.05.2000 23:08:38]

Hour 24: Shell Programming FAQs: File and Directory Questions
In DOS anewlineis represented by the character sequence \r\n, where \r is the carriage return and \n is newline. In UNIX a
newline is represented by \n. When text files created on a DOS system are viewed on UNIX, the \r is displayed as *M.
Y ou can strip these carriage returns out by using the tr command as follows:
tr -d '\015' < file > newfile

Here fileis the name of the file that contains the carriage returns, and newfile is the name you want to give the file after the
carriage returns have been deleted.

Here you are using the octal representation \O15 for carriage return, because the escape sequence \r will not be correctly
interpreted by all versions of tr.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Hour 24: Shell Programming FAQs —_ oPrevious Chapter._Next Chapteno

Sections in this Chapter:
Shell and Command Questions = File and Directory Questions
Variable and Argument Questions™ Summary cPrevious Section_Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480161.htm (4 von 4) [06.05.2000 23:08:38]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Hour 24: Shell Programming FAQs: Summary

Sams Teach Yourself Shell Programmingin 24 Hours

Contents [ndex

Sectionsin this Chapter:
Shell and Command Questions "~ File and Directory Questions

Variable and Argument Questions ™ Summary

cPrevious Section__Next Sectiono

Summary

In this chapter | have looked at some common questions encountered in shell programming. These questions and their
answers will help you write bigger and better scripts.

Now that you have finished all 24 chapters, you have learned about using both the basics of the shell and its advanced
features. Asyou continue to program, use this book as areference to help you remember the intricacies of shell
programming.

| hope that you learned not only to program efficiently using the shell but also to enjoy shell programming.
Sams Teach Yourself Shell Programmingin 24 Hours

Contents Index

Sectionsin this Chapter:
Shell and Command Questions "~ File and Directory Questions

Variable and Argument Questions ™ Summary

Previous Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480162.htm [06.05.2000 23:08:38]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Reserved Words and Built-in Shell Commands

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Appendix A: Command Quick Reference —_— oPrevious Chapter._Next Chapten—

Sectionsin this Chapter:
Reserved Words and Built-in Shell Commands™ 1/0

Conditional Expressions “Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “Questions

Pattern Matching - cPrevious Section__Next Section

Appendix A
Command Quick Reference

by Frank Watson
This appendix summarizes and reviews the script elements you have covered:
e Reserved words and built-in shell commands
o Conditional expressions
o Arithmetic expressions (available Korn/Bash only)
e Parameters and variables
e Parameter substitution
o Pattern matching
e 1/O
e Miscellaneous command summaries
e Regular expression wildcards

Y ou can aso find details not discussed earlier that are included here for completeness.

Reserved Words and Built-in Shell Commands

. (period) executes the following command in the current shell instead of as a child process.
: (colon) no-op command. Its arguments are processed for variable substitution.

I (Bash) re-executes the previous command.

alias (only Korn/Bash) creates a short name for the command.

bg (Korn/Bash) starts a suspended job running in background.

break exits from current for, while, or until loop.

case executes commands given for first pattern that match expr. Patterns can contain filename expansion wildcards.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480164.htm (1 von 4) [06.05.2000 23:08:39]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Reserved Words and Built-in Shell Commands

case expr in
patternl) conmands ;;
pattern2) conmands ;;
esac

cd changes the directory.

continue skips the rest of the commandsin aloop and starts the next iteration of aloop.
do indicates the start of a block of code, for example, in afor, while, or until loop.
doneindicates the end of a block of code, for example, in afor, while, or until loop.

echo displaysits arguments to standard output. Sometimes thisis a built-in shell command replacing the external echo
command.

esac denotes the end of a case statement.

eval causes the shell to reinterpret the command that follows.

exec executes the following command which replaces the current process instead of running it as a child process.
exit n ends the shell script with status code n.

export marks the following variables, flagging them to be passed to any child processes and called programs. Korn/Bash
enable assignment within the export command:

export VARl=val ue VAR2=val ue

false (Korn/Bash builtin) command that always returns an unsuccessful or logical false result.
fc (Korn/Bash) displays or edits acommand in history list.

fg (Korn/Bash) brings a background or suspended job to the foreground.

fi denotes the end of an if statement.

for executes a block of code multiple times.

for variable [in |ist]
do

comands
done

function (Korn/Bash) keyword to define afunction enabling local variables.
getopts afunction called repeatedly in aloop to process the command line arguments.
history (Korn/Bash) shows the most recent commands run by this user.

if allows conditional execution.

I f test-comuand
t hen commands
[elif commands]
[el se commands]
fi

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480164.htm (2 von 4) [06.05.2000 23:08:39]

Appendix A: Command Quick Reference: Reserved Words and Built-in Shell Commands

integer (Korn/Bash) specifies an integer variable.

jobs (Korn/Bash) lists the background and suspended jobs.

Kill sendsasignal to a process; often used to terminate a process or to reinitialize a daemon background process.
let (Korn/Bash) performs integer arithmetic.

newgrp (Korn) changes your primary group, affecting the group of all new files and directories that you create.
print (Korn) an aternative to echo.

pwd prints the present working or current directory.

r (Korn) re-executes the previous command.

read waits for one line of standard input and saves each word in the following variables. If there are more words than
variables, it saves the remaining words in the last variable.

readonly marks the following variables to give error if an attempt to assign a new value is made.
return returns from afunction.

select (Korn/Bash) presents a menu and enables user selection.

set displays or changes shell options.

shift discards $1 and shifts al the positional parameters up one to take its place.

test (Korn/Bash builtin) provides many options to check files, strings, and numeric values. Often denoted by [(left
bracket).

trap designates code to execute if a specific signal isreceived, such as:

0 exit fromscript

1 hangup/ di sconnect

2 intr key pressed (Cirl-C or DEL)
3 quit key pressed

15 request to term nate process

type displays the pathname of the following command or indicates whether it is built-in or an alias.
typeset (Korn/Bash) sets the type of variable and optionally itsinitial value.

ulimit displays or setsthe largest file or resource limit.

umask displays or sets amask to affect permissions of any new file or directory you create.
unalias (Korn/Bash) removes an dlias.

unset undefines the variables that follow.

until (Korn/Bash) loops until the test command is true (successful).

until test-command
do

commands
done

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480164.htm (3 von 4) [06.05.2000 23:08:39]

Appendix A: Command Quick Reference: Reserved Words and Built-in Shell Commands

wait pauses until al background jobs are compl ete.
whence (Korn) similar to the type command.

while loops while atest command is true (successful).
whi l e test-comuand
do
comrands
done

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:
Reserved Words and Built-in Shell Commands 1/0

Conditional Expressions “Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables =Summary

Parameter Substitution “~Questions

Pattern Matching = cPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480164.htm (4 von 4) [06.05.2000 23:08:39]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Conditional Expressions

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Appendix A: Command Quick Reference —_— oPrevious Chapter._Next Chapten—

Sectionsin this Chapter:
Reserved Words and Built-in Shell Commands 1/0

Conditional Expressions ~Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “TQuestions

Pattern Matching - cPrevious Section__Next Section

Conditional Expressions

File Tests ===lnteger Comparisons
String TeSt S

These can be used with

if [test-expression]
while [test-expression]
until [test-expression]

File Tests
-afile trueif thefile exists (Korn/Bash)
-b file trueif thefileisablock special device
-cfile trueif thefileisacharacter special device
-d file trueif thefileisadirectory
-f file trueif thefileisaregular file
-gfile trueif thefile has the SGID permission bit set
-G file trueif the file's group matches the user's group
-k file trueif the file has the sticky bit set
-L file trueif thefileisasymbolic link
-Ofile trueif the user running this command owns this file (Korn/Bash)
-p file trueif thefileisanamed pipe or fifo
-r file trueif thefileisreadable
-sfile trueif thefile has a size greater than zero
-Sfile trueif thefileis a socket
-t filedes trueif file descriptor is associated with aterminal device
-u file trueif thefile hasits SUID permission bit set

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480165.htm (1 von 3) [06.05.2000 23:09:15]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Conditional Expressions

-w file

-x file

String Tests

-z string
-n string
sl=g2
sl!=gs2
sl
sl<s2
sl>gs2

trueif thefileiswritable

trueif thefileis executable

trueif the string is empty

trueif the string has nonzero size

trueif string sl equals s2

trueif the strings are not equal

trueif string sl is not empty

trueif s1 comes before s2 in ASCII order (Korn [[]])
trueif sl comes after s2 in ASCII order (Korn[[]])

Integer Comparisons

Comparisons stop on first non-digit.

nl-eq n2
nl-nen2
nl-gt n2
nl-gen2
nl-lt n2
nl-len2
I expr

-a

&&

trueif nlisequal invalueto n2.
trueif nlisnot equal to n2

trueif nlisgreater than n2

trueif nlisgreater than or equal to n2
trueif nlislessthan n2

trueif nlislessthan or equal to n2
trueif expr isfalse (logical NOT)
logical AND (Bourne)

logical AND (Bash/Korn [[]])
logical OR (Bourne)

logical OR (Bash/Korn[[1])

Sams Teach Yourself Shell Programmingin 24 Hours

Contents Index

Appendix A: Command Quick Reference

—Previous Chapter._Next Chapten

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480165.htm (2 von 3) [06.05.2000 23:09:15]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Conditional Expressions

Sections in this Chapter:
Reserved Words and Built-in Shell Commands ™ 1/0

Conditional Expressions ~Miscellaneous Command Summaries
Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards
Parameters and Variables = Summary

Parameter Substitution “Questions

Pattern Matching -

© Copyright Macmillan Computer Publishing. All rights reserved.

—Previous Section_Next Sectiono

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480165.htm (3 von 3) [06.05.2000 23:09:15]

Appendix A: Command Quick Reference: Arithmetic Expressions (Korn/Bash Only)

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Appendix A: Command Quick Reference —_— oPrevious Chapter._Next Chapten—

Sectionsin this Chapter:
Reserved Words and Built-in Shell Commands 1/0

Conditional Expressions ~Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) = Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “TQuestions

Pattern Matching - cPrevious Section__Next Section

Arithmetic Expressions (Korn/Bash Only)

Operators Allowed in Korn/Bash Integer Expressions

Follow the general format for variable assignment:
| et " VARI ABLE=i nt eger _expresson”

To embed integer calculations within a command
$((i nteger_expression))

Operators Allowed in Korn/Bash Integer Expressions

e Logical operatorsreturn 1 for true and O for false
e Thislistisfrom highest to lowest operator precedence
- unary minus (negates the following value)
I~ logical NOT, binary one's complement
* | % multiply, divide, modulus (remainder operation)
+- add, subtract

>> << right, left shift, for example:
$((32>> 2))

gives 8 (right shift 32 by 2 bitsis the same as division by 4)
<=>= less than or equal to, greater than or equal to
> < greater than, less than
=== equal to, not equal to

& bitwise AND operation, for example:
$((5& 3)

converts 5 to binary 101 and 3 to binary 011 and ANDs the bitsto give 1 asthe result
A bitwise exclusive OR operation

bitwise regular OR operation

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480166.htm (1 von 2) [06.05.2000 23:09:16]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Arithmetic Expressions (Korn/Bash Only)

&&
|

*= [= Op=

= 4=-=
>>= L=

=N= |:

logical AND
logical OR

C programming type assignment, for example,
$((a*=2)

means multiply variable a* 2, save result in a, and substitute result
more C programming type assignments
more C programming type assignments using shift right, shift left

more C programming type assignments using AND, exclusive OR, regular OR

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:

Reserved Words and Built-in Shell Commands™ 1/0

Conditional Expressions

“Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ™ Regular Expression Wildcards

Parameters and Variables
Parameter Substitution

Pattern Matching

= Summary
“Questions
- —Previous Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480166.htm (2 von 2) [06.05.2000 23:09:16]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Parameters and Variables

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Appendix A: Command Quick Reference —_— oPrevious Chapter._Next Chapten—

Sectionsin this Chapter:
Reserved Words and Built-in Shell Commands 1/0

Conditional Expressions “Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “Questions

Pattern Matching - cPrevious Section__Next Section

Parameters and Variables

User-Defined Variables == WO Types of Variables
Built-in Shell Variables —=Shell Variables
Built-in Commands that Directly Affect Variabl €Se

User-Defined Variables

USERVAR=value sets the contents of USERVARto value
SUSERVAR substitutes the contents of USERVAR
${ USERVAR} also substitutes the contents of USERV AR. The braces are optional if thereisno
ambiguity.
User-defined variable names
o Must start with letter or _
e Can contain only letters, digits, or _

o Areoftenin capital lettersto differentiate from UNIX commands

Korn/Bash 2.x Support Arrays

USERVAR[index]=value sets avalue for array element denoted by index

${ USERVAR]index]} substitutes a value into the command line

${ USERVAR[*]} substitutes all array elements

${ USERVAR[@]} substitutes all array elements asif individually double quoted

Note index must be an integer.

Korn array initialization
set -A USERVAR val uel val ue2 val ue3

Bash array initialization
USERVAR=(val uel val ue2 val ue3 ...)

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480167.htm (1 von 3) [06.05.2000 23:09:16]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Parameters and Variables

Built-in Shell Variables

$0 name of the command or script being executed

$n positional parameters, that is, arguments given on the command line numbered 1 through 9
$H number of positional parameters given on command line

& alist of al the command line arguments

$@ alist of al command line arguments individually double quoted

$? The numeric exit status (that is, return code) of last command executed

$$ PID (process ID) number of current shell

$! PID (process ID) number of last background command

Built-in Commands that Directly Affect Variables

getopts, export, read, readonly, unset

Two Types of Variables

e Environment variables are passed to any child processes.

e Local variables are not passed to any child processes.

Shell Variables

CDPATH contains colon-separated list of directoriesto facilitate cd command

HOME Y our home directory

IFS Internal field separator characters

OPTARG Thelast cmd line arg processed by getopts (Korn/Bash)

OPTIND The index of the last cmd line arg processed by getopts (K orn/Bash)

PATH Contains a colon-separated list of directories to search for commands that are given without any slash
PS1 The primary shell prompt string

PS2 The secondary shell prompt string for continuation lines

PWD The current directory

RANDOM Returns a different random number (from 0 to 32,767) each timeit isinvoked
REPLY Thelast input line from read via select command (Korn/Bash)

SECONDS The numbers of seconds since shell invocation

SHLVL The number of shells currently nested

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480167.htm (2 von 3) [06.05.2000 23:09:16]

Appendix A: Command Quick Reference: Parameters and Variables

UID The numeric user ID number
Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:
Reserved Words and Built-in Shell Commands™ 1/0

Conditional Expressions “Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “Questions

Pattern Matching - cPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480167.htm (3 von 3) [06.05.2000 23:09:16]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Parameter Substitution

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Appendix A: Command Quick Reference —_— oPrevious Chapter._Next Chapten—

Sectionsin this Chapter:
Reserved Words and Built-in Shell Commands 1/0

Conditional Expressions “Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “Questions

Pattern Matching - cPrevious Section__Next Section

Parameter Substitution

Parameter Substitution in Bourne/K orn/Bashee
Parameter Substitution Only in Korn/Bash e

Parameter Substitution in Bourne/Korn/Bash

${parameter} substitutes the contents of the parameter, which can be a variable name or digit indicating a positional
parameter.

${parameter:-word} substitutes the contents of the parameter but if it is empty or undefined, it substitutes the word, which
might contain unguoted spaces.

${parameter:=word} substitutes the contents of the parameter but if it is empty or undefined, it sets parameter equal to the
word and substitutes word.

${parameter: ?message} substitutes the contents of the parameter, but if it is empty or undefined, aborts the script and
gives the message as afinal error. Message might contain ungquoted spaces.

${parameter:+word} if parameter is not empty, it substitutes the word; otherwise it substitutes nothing.

Parameter Substitution Only in Korn/Bash

${#parameter} substitutes the number of charactersin the contents of parameter.

${#array[*]} substitutes the number of elementsin array.

${ parameter#pattern} if the regular expression pattern given isfound at start of the contents of parameter, it deletes the
matching characters and substitutes the remainder. The smallest possible match is deleted.

${ parameter##pattern} same as above but deletes the largest possible match at the start of parameter.

${ parameter%opattern} same as above but deletes the smallest match at the end of parameter.

${ parameter %%pattern} same as above but deletes the largest match at the end of parameter.
Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Appendix A: Command Quick Reference —_— cPrevious Chapter._Next Chapten—

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480168.htm (1 von 2) [06.05.2000 23:09:16]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Parameter Substitution

Sections in this Chapter:
Reserved Words and Built-in Shell Commands ™ 1/0

Conditional Expressions “Miscellaneous Command Summaries
Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards
Parameters and Variables = Summary

Parameter Substitution “Questions

Pattern Matching -

© Copyright Macmillan Computer Publishing. All rights reserved.

—Previous Section_Next Sectiono

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480168.htm (2 von 2) [06.05.2000 23:09:16]

Appendix A: Command Quick Reference: Pattern Matching

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Appendix A: Command Quick Reference —_— oPrevious Chapter._Next Chapten—

Sectionsin this Chapter:
Reserved Words and Built-in Shell Commands 1/0

Conditional Expressions ~Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “TQuestions

Pattern Matching - oPrevious Section_Next Sectiono

Pattern Matching

Pattern Wildcards Available in Bourne/K orn/Bashe=
Pattern Wildcards Available Only in Korn —

Rules for filename expansion:

¢ Any word on the command line containing awildcard is expanded to alist of files which match the pattern word.
¢ If no filename matches are found, the pattern word is not substituted.

e Wildcards cannot match aleading period or a slash.

Pattern Wildcards Available in Bourne/Korn/Bash

* matches O or more of any character

? matches exactly 1 of any character

[list] matches exactly 1 of any character in list
[Mist] matches exactly 1 of any character not in list

Pattern Wildcards Available Only in Korn

?(patternl|pattern2...) matches any of the patterns
* (patternl|pattern2...) matches zero or more occurrences of the patterns
+(patternl|pattern2...) matches one or more occurrences of the patterns

@(patternl|pattern2...) matches only one of the patterns

I (patternl|pattern2...) matches anything except one of the patterns
Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Appendix A: Command Quick Reference —_— cPrevious Chapter._Next Chapten—

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480169.htm (1 von 2) [06.05.2000 23:09:17]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Pattern Matching

Sections in this Chapter:
Reserved Words and Built-in Shell Commands ™ 1/0

Conditional Expressions “Miscellaneous Command Summaries
Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards
Parameters and Variables = Summary

Parameter Substitution “Questions

Pattern Matching -

© Copyright Macmillan Computer Publishing. All rights reserved.

Previous Section__Next Section

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480169.htm (2 von 2) [06.05.2000 23:09:17]

Appendix A: Command Quick Reference: 1/0

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Appendix A: Command Quick Reference —_— oPrevious Chapter._Next Chapten—

Sectionsin this Chapter:
Reserved Words and Built-in Shell Commands— 1/0

Conditional Expressions “Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “Questions

Pattern Matching - cPrevious Section__Next Section

/0

Table A.1 Summary of Standard UNIX I/O

|Abbreviation |I/O description |Fi|e Descriptor
|STDIN |Standard input |0
|ST DOUT |Standard output |1
|ST DERR |Standard error |2

cmd > file save STDOUT from UNIX command infile

cmd 1> file same as above

cmd >> file append STDOUT from UNIX command to file

cmd 1>> file same as above

cmd 2> file save STDERR from UNIX command in file

cmd 2>> file append STDERR from UNIX command in file

cmd < file provide STDIN to UNIX command from fileinstead of keyboard
cmd O< file same as above

here Document

Provides STDIN to UNIX command from lines that follow until delimiter isfound at start of line:

cnd << delimter
one or nore text |ines
delimter

cmdl|cmd2 pipe STDOUT of cmdl as STDIN to cmd2
cmd | teefile save STDOUT of UNIX command in file but also pass same text as STDOUT

exec n>file redirect output of file descriptor n to (overwrite) file. This applies to subsequent UNIX
commands.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480170.htm (1 von 2) [06.05.2000 23:09:17]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: 1/0
exec n>> file same as above but append to file instead of overwriting

cmd 2>& 1 redirect STDERR from UNIX command to wherever STDOUT is currently going. Thisis
useful when you want to save both output and errors in afile or pipe them together to
another command, for example: cmd > file 2>& 1 This saves both STDERR and STDOUT
infile. 2>& 1 must come after > file.

cmd >& 2 redirect STDOUT as STDERR. This should be done when echo displays an error message.
cmd 1>& 2 same as above

cmdn>&m redirect file descriptor n to wherever file descriptor mis currently going . Thisisa
generalization of the above examples. Vaues of n and m above 2 can be used to save an I/O
destination and retrieve it | ater.

exec n>& - closefile descriptor n

Sams Teach Yourself Shell Programming in 24 Hours Contents Index

Appendix A: Command Quick Reference —_— cPrevious Chapter._Next Chapterm

Sectionsin this Chapter:
Reserved Words and Built-in Shell Commands_1/0

Conditional Expressions “Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables =—Summary

Parameter Substitution ““Questions

Pattern Matching = cPrevious Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480170.htm (2 von 2) [06.05.2000 23:09:17]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Miscellaneous Command Summaries

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Appendix A: Command Quick Reference —_— oPrevious Chapter._Next Chapten—

Sectionsin this Chapter:
Reserved Words and Built-in Shell Commands 1/0

Conditional Expressions “Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “Questions

Pattern Matching - cPrevious Section__Next Section

Miscellaneous Command Summaries

Here is some helpful information about several commands often used in shell programming.

echo--display arguments to standard output

\b Backspace

\c Suppress trailing newline

\f Formfeed

\n Newline

\r Carriage return

\t Tab

\ Backslash

\Onn Character whose ASCII valueis octal nn

grep--display lines that contain the given pattern
- ignore upper versus lower case
-l list only filenames that contain a match, not the matching lines
-n include the file line number with each matching line displayed
-v reversethetest, which meansignore lines that contain the pattern
printf--display formatted text output, for example:
printf "text %-]mnx" argunents
- Leftjustify (optional)
m Minimum field length
n -Maximum field length for string; number of characters to the right of decimal for floating point.

X Type of argument

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480171.htm (1 von 2) [06.05.2000 23:09:18]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Miscellaneous Command Summaries

(7]

string

c character value

d decima integer value

X hexadecimal value

o octa value

e exponentia floating point value
f fixed floating point value

g genera floating point value

sort--display lines in sorted order

-b ignore leading blanks

-d ignore leading punctuation

-f fold upper- and lowercase together
-n sort leading numbers by magnitude
-r sort in reverse order

+n ignore the first n fields when sorting

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Appendix A: Command Quick Reference —_ oPrevious Chapter._Next Chapters

Sections in this Chapter:
Reserved Words and Built-in Shell Commands™ 1/0

Conditional Expressions “Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “Questions

Pattern Matching - cPrevious Section—_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480171.htm (2 von 2) [06.05.2000 23:09:18]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Regular Expression Wildcards

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Appendix A: Command Quick Reference —_— oPrevious Chapter._Next Chapten—

Sectionsin this Chapter:
Reserved Words and Built-in Shell Commands 1/0

Conditional Expressions ~Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “TQuestions

Pattern Matching - cPrevious Section__Next Section

Regular Expression Wildcards

Limited Regular Expression Wildcards e
Extended Regular Expression WildcardSe=

grep, fgrep, egrep, sed, vi, perl, and awk allow regular expression wildcards in search patterns.

Limited Regular Expression Wildcards

All regular expression patterns can include these wildcards:
Apattern only matchesif pattern isat start of line
pattern$ only matchesif patternisat end of line

matches exactly 1 of any character

[list] matches exactly 1 of any character in list

[MMist] matches exactly 1 of any character not in list

* matches 0 or more repetitions of previous element (char or expression)
X matches 0 or more of any characters

Extended Regular Expression Wildcards

These are additional regular expression wildcards that are only supported in some commands:

\{n\} matches n repetitions of previous element

\{n\} matches n or more repetitions of previous element

\{n,m\} matches at least n but not more than m reps of previous element
? matches 0 or 1 occurrences of previous element

+ matches 1 or more occurrences of previous element

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480172.htm (1 von 2) [06.05.2000 23:09:18]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Regular Expression Wildcards

Sections in this Chapter:
Reserved Words and Built-in Shell Commands 1/0

Conditional Expressions “Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) = Regular Expression Wildcards

Parameters and Variables =Summary

Parameter Substitution uestions

Pattern Matching = oPrevious Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480172.htm (2 von 2) [06.05.2000 23:09:18]

Appendix A: Command Quick Reference: Summary

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
Reserved Words and Built-in Shell Commands 1/0

Conditional Expressions ~Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “TQuestions

Pattern Matching - cPrevious Section__Next Section
Summary

This appendix provides a quick reference for shell commands and features:
e Reserved words and built-in shell commands
o Conditional expressions
e Arithmetic expressions (Korn/Bash only)
e Parameters and variables
o Parameter substitution
e Pattern matching
e 1/O
e Miscellaneous command summaries
e Regular expression wildcards

Asyou write scripts and become familiar with the concepts, you might find this summary helps you to locate a symbol, a
command name, or the correct syntax.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
Reserved Words and Built-in Shell Commands ™ 1/0

Conditional Expressions ~Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “Questions

Pattern Matching - cPrevious Section_Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480173.htm [06.05.2000 23:09:18]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix A: Command Quick Reference: Questions

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
Reserved Words and Built-in Shell Commands 1/0

Conditional Expressions “Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) ““Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “Questions

Pattern Matching - cPrevious Section__Next Sectiono
Questions

1. What section of this summary describes how to append output to afile?
2. What section of this summary describes how to end a case statement?

3. What section of this summary enables you to determine whether the jobs command is supported in the Bourne
shell?

4. What section of this summary enables you to determine whether the + sign is a generally supported regular
expression wildcard?

5. What section of this summary enables you to determine which shell variable gives the numeric result code of the
last command executed?

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:
Reserved Words and Built-in Shell Commands 1/0

Conditional Expressions ~Miscellaneous Command Summaries

Arithmetic Expressions (Korn/Bash Only) = Regular Expression Wildcards

Parameters and Variables = Summary

Parameter Substitution “Questions

Pattern Matching - cPrevious Section__Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480174.htm [06.05.2000 23:09:18]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix B: Glossary

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Appendix B: Glossary —_ oPrevious Chapter._Next Chapten—s

Appendix B
Glossary

absolute path The complete pathname to afile starting at the root directory /.

abstraction Scriptsthat use abstraction retain the same basic flow by placing the conditional execution statements within
functions. When afunction is called, it makes a decision as to what commands execute for a given platform.

anchoring expression Normally any part of aline will be matched by aregular expression. To match expressions that
either begin or end aline, you need to anchor the regular expression. The " character anchors regular expressions to the
beginning of aline, whereas the $ character anchors regular expressions to the end of aline.

argument Command modifiers that change the behavior of a command. In the shell, they are specified after acommand's
name.

array variable A mechanism available in bash and ksh for grouping scalar variables together. The scalar variables stored
in an array are accessed using a single name in conjunction with a number. This number is referred to as an index.

awk The awk command is a power pattern matching language that allows you to modify input lines by manipulating the
fields they contain.

background Processes usually running at alower priority and with their input disconnected from the interactive session.
Any input and output are usually directed to afile or other process.

background process An autonomous process that runs under UNIX without requiring user interaction.

bash Standsfor GNU Bourne Again shell and is based on the Bourne shell, sh, the original command interpreter.

block special file Provides a mechanism for communicating with device drivers viathe file system. These files are called
block devices because they transfer large blocks of dataat atime. Thistype of file typically represents hard drives and
removable media.

body The set of commands executed by aloop is called the body of the loop.

Bourne shell The original standard user interface to UNIX that supported limited programming capability.

BSD Berkeley Software Distribution.

BSD UNIX Version of UNIX developed by Berkeley Software Distribution and written at the University of California,
Berkeley.

built in A command whose code is part of the shell as opposed to a utility that existsin a separate disk file, which must
be read into memory before executing the command.

C shell A user interface for UNIX written by Bill Joy at Berkeley. It features C- programming-like syntax.
cat The command used to view the contents of afile.
cd The command used to change directories.

character special file Character special files provide a mechanism for communicating with a device one character at a
time.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480175.htm (1 von 6) [06.05.2000 23:09:19]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix B: Glossary

child process See subprocess.
child shell See subshell.
chown The command used to change the owner of afile or directory.

command The name of aprogram and any arguments you specify to that program to cause its behavior to change. Y ou
might see the term command used instead of the term utility for simple commands, where only the program name to
execute is given.

command separator Indicates where one command ends and another begins. The most common command separator is
the semicolon character, ;.

command substitution The process by which the shell executes a command and substitutes in the output of the
command.

comment A statement that is embedded in a shell script but should not be executed by the shell.
complex command A command that consists of acommand name and alist of arguments.

compound command A list of simple and complex commands separated by the semicolon character, ;.
compound expression Consists of one or more expressions.

conditional execution Altersthe execution of a script, based on the system type. A script that uses conditional execution
usually consists of an if statement at the beginning that sets variables to indicate the commands that should be used on a
particular platform.

cp The command used to copy files.

daemon A system-related background process that often runs with the permissions of root and services requests from
other processes.

debugging hook A function or set of commands that executes only when a shell script executes with a special argument.
Debugging hooks provide a convenient method for tracing the execution of a script in order to fix problems.

default behavior The output that is generated when a command runs as a simple command is called the default behavior
of that command.

directory A type of file used to store other files. For users familiar with Windows or Mac OS, UNIX directories are
equivalent to folders.

directory tree UNIX usesahierarchical structure for organizing files and directories. This structure is often referred to
asadirectory tree . The tree has a single root node, the slash character (/), and all other directories are contained below it.

environment variable A variablethat isavailable to any program that is started by the shell.
escape sequence A specia sequence of characters that represents another character.

escaping Escaping a character means to put a backslash (\) just before that character. Escaping can either remove the
special meaning of a character in a shell command or it can add special meaning as we saw with \n in the echo command.
The character following the backslash is called an escaped character.

execute permission In UNIX, only those files that have execute permission enabled can run.
exporting A variableis placed in the environment by exporting it using the export command.

expression A piece of code that are evaluated to produce a numeric result, such as 0 or 1. Some expressions that involve
mathematical operations can produce other results.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480175.htm (2 von 6) [06.05.2000 23:09:19]

Appendix B: Glossary

field A set of characters that are separated by one or more field separator characters. The default field separator characters
are Tab and Space.

field separator Controls the manner in which an input lineis broken into fields. In the shell, the field separator is stored
inthe variable IFS. In awk the field separator is stored in the awk variable FS. Both the shell and awk use the default value
of Space and Tab for the field separator.

filedescriptor Aninteger that is associated with afile. Allows you to read and write from afile using the integer instead
of the filename.

filesystem A directory structure contained within adisk drive or disk area. The total available disk space can be composed
of one or more filesystems. A filesystem must be mounted before it can be accessed. To mount a filesystem, you must
specify adirectory to act as the mount point. Once mounted, any access to the mount point directory or its subdirectories
will access the separate filesystem.

hard link A directory entry which maps a filename to an inode number. A file may have multiple names or hard links.
The link count gives the number of names by which afile is accessible. Hard links do not allow multiple names for
directories and do not allow multiple names in different filesystems.

homedirectory Your home directory isthe directory that you start out in after you log in.
infiniteloop A loop that executes forever without terminating.

inode A table entry within afilesystem that contains file information such as the owner, group, permissions, last
modification date/time, last access date/time, and the block list of the actua file data. There is one inode for each file. The
inodes are numbered sequentially. The inode does not contain the filename. A directory is atable that maps filenames to
inode numbers.

input redirection In UNIX, the process of sending input to acommand from afile.

interactive mode Ininteractive mode, the shell reads input from you and executes the commands that you specify. This
mode is called interactive because the shell isinteracting with a user.

invisible or hidden file A file whose name starts with the . character. By default the Is command does not list thesefiles.
Y ou can list them by specifying the -aoptionto s.

iteration A single execution of the body of aloop.

kernel The heart of the UNIX system. It provides utilities with a means of accessing a machine's hardware. It also handles
the scheduling and execution of commands.

Korn shell A user interface for UNIX with extensive scripting (programming) support. Written by David G. Korn. The
shell features command-line editing and will also accept scripts written for the Bourne shell.

library A filethat contains only functions. Usually libraries contain no main code.

literal character A character with no special meaning and which causes no extra action to be taken. Quoting causes the
shell to treat awildcard as aliteral character.

local variable A variable that is present within the current instance of the shell. It is not available to programs that are
started by the shell.

loop Enables you to execute a series of commands multiple times. Two main types of loops are the while and for loops.
Is The command used to list the filesin adirectory.

main code Consists of all the commands in a shell script that are not contained within functions.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480175.htm (3 von 6) [06.05.2000 23:09:19]

Appendix B: Glossary
major number UNIX usesthisto associate a block special file or a character special file with adevice driver.

man page Every version of UNIX comes with an extensive collection of online help pages called man pages (short for
manual pages). The man pages are the authoritative source about your UNIX system. They contain complete information
about both the kernel and al the utilities.

metacharacter Inaregular expressions, a metacharacter is a special character that is expanded to match patterns.
minor number UNIX usesthisto associate a block special file or acharacter specia file with adevice driver.
modulusfunction Seeremainder function .

mv The command used to rename files.

nested loop When aloop islocated inside the body of another loop it is said to be nested within another loop.

newline character Literaly the linefeed character whose ASCII value is 10. In general, the newline character is a special
shell character that indicates a complete command line has been entered and it may now be executed.

no-op A command that does nothing and thus can be used as a dummy command or placeholder where syntax requires a
command.

noninter active mode In noninteractive mode, the shell does not interact with you, rather it reads commands stored in a
file and executes them. When it reaches the end of the file, the shell exits.

numeric expression A command used to add, subtract, multiply, and divide two numbers. Numeric expressions are
constructed using the numeric operators-- + (add), - (subtract), * (multiply), and / (divide).

ordinary file A file on the system that contains data, text, or program instructions.

output redirection In UNIX the process of capturing the output of acommand and storing it in afileis called output
redirection , because it redirects the output of acommand into afile instead of the screen.

parent process Process that controls another often referred to as the child process or subprocess. See process.

parent processidentifier Shown in the heading of the ps command as PPID. The process identifier of the parent process.
See also parent process.

parent shell Shell (typicaly the login shell) that controls another, often referred to as the child shell or subshell. See
shell.

piping The process used to redirect the output of one command into the input of another command. Piping is
accomplished with the pipe character, |.

process A discrete running program under UNIX. The user'sinteractive session is aprocess. A process can invoke (run)
and control another program that is then referred to as a subprocess. Ultimately, everything a user doesis a subprocess of
the operating system.

processidentifier Shown in the heading of the ps command as pid. The unique number assigned to every process
running in the system.

prompt When you see a prompt, you can type the name of a command and press Enter. In this book, we will use the $
character to indicate the prompt.

PS2 variable A shell variable whose content is usually the > character. The contents of the PS2 variableis displayed by
the shell as a secondary prompt that indicates the previous command was not complete and the current command lineisa
continuation of that command line.

pwd The pwd command prints the absolute path of the current directory.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480175.htm (4 von 6) [06.05.2000 23:09:19]

Appendix B: Glossary

qguoting Literaly, to enclose selected text within some type of quotation marks. When applied to shell commands, quoting
means to disable shell interpretation of special characters by enclosing the character within single or double quotes or by
escaping the character.

read permission Theread permission of afile or directory determines which users can view the contents of that file or
directory.

regular expression A string that can describe several sequences of characters.

regular file The most common type of files you will encounter. These files store any kind of data. This data may be
stored in plain text, an application-specific format, or a special binary format that the system can execute.

relative path Relative pathnames let you access files and directories by specifying a path to that file or directory relative
to your current directory.

remainder function The remainder of a division operation, which isthe amount that isleft over and thus not evenly
divisible.

reserved word A nonquoted word that is used in grouping commands or selectively executing them, such as: if, then,
else, dlif, fi, case, esac, for, while, until, do, or done.

rm The command used to remove files.
scalar variable A scalar variable can hold only one value at atime.
sed The sed command is a stream editor that allows you to modify input lines using regular expressions.

set group ID (SGID) The SGID permission causes a script to run with its group set to the group of the script, rather than
the group of the user who started it.

set user ID (SUID) The SUID permission causes a script to run as the user who is the owner of the script, rather than the
user who started it.

shell Providesyou with an interface to the UNIX system. It gathers input from you and executes programs based on that
input. After a program has finished executing, the shell displays that program's output. The shell is sometimes called a
command interpreter. See also bash, Bourne shell , C shell , Korn shell , and tcsh.

shell initialization After ashell is started it undergoes a phase called initialization to set up some important parameters.
Thisisusually atwo step process that involves the shell reading the files /etc/profile and .profile.

shell or command prompt The single character or set of characters that the UNIX shell displays for which auser can
enter acommand or set of commands.

shell preprocessing This describes actions taken by the shell to manipulate the command line before executing it. Thisis
when filename, variable, command, and arithmetic substitution occur (as covered in Chapter 8, "Substitution").

shell script A program written using a shell programming language like those supported by Bourne, Korn, or C shells. In
general, a script contains alist of commands that are executed noninteractively by the shell.

shell variable A special variablethat is set by the shell and is required by the shell in order function correctly.

signal Software interrupts sent to a program to indicate that an important event has occurred. The events can vary from
user requests to illegal memory access errors. Some signals, like the interrupt signal, indicate that a user has asked the
program to do something that is not in the usual flow of control.

signal handler A function that executes when a signal is received by a shell script. Usually signal handlers clean up
temporary files and then exit.

simplecommand A simple command is a command that you can execute by just giving its name at the prompt.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480175.htm (5 von 6) [06.05.2000 23:09:19]

Appendix B: Glossary
socket file A special file for interacting with the network viathe UNIX file system.

STDERR Standard error. A special type of output used for error messages. The file descriptor for STDERR is 2.
STDIN Standard input. User input is read from STDIN. The file descriptor for STDIN isO.

STDOUT Standard output. The output of scriptsisusualy to STDOUT. The file descriptor for STDOUT is 1.
subdirectory A directory that is contained within another directory.

subprocess Process running under the control of another, often referred to as the parent process. See process.

subshell Shell running under the control of another, often referred to as the parent shell (typically the login shell). See
shell.

symbolic link or soft link A special filetype which isasmall pointer file allowing multiple names for the samefile.
Unlike hard links, symbolic links can be made for directories and can be made across filesystems. Commands that access
the file being pointed to are said to follow the symbolic link. Commands that access the link itself do not follow the
symbolic link.

system call A C language function that is used to request services from the UNIX kernel.
tcsh A C shell-like user interface featuring command-line editing.

uninitialized shell When ashell is started it is uninitialized. This means that important parameters required by the shell
to function correctly are not defined.

usage statement A statement issued by a shell script when one or more of its arguments are improperly specified.
utility Utilities are programs, such aswho and date, you can run or execute.

variable substitution The process used by the shell to substitute the value of avariable, when the variable's nameis
specified.

wc The command used to count the words, lines and charactersin afile.

word An unbroken set of characters. The shell uses spaces and tabs to separate words.

write permission Controls the users who can modify afile.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Appendix B: Glossary —_ oPrevious Chapter._Next Chapten—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480175.htm (6 von 6) [06.05.2000 23:09:19]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 1

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Sectionsin this - -

Chapter:

Chapter 1 ~Chapter 9 ™ Chapter 17

Chapter 2 ~Chapter 10 ~Chapter 18

Chapter 3 ~Chapter 11 " Chapter 19

Chapter 4 = Chapter 12 ™ Chapter 20

Chapter 5 = Chapter 13 ™ Chapter 21

Chapter 6 = Chapter 14 ™ Chapter 22

Chapter 7 ~Chapter 15 ~Chapter 23

Chapter 8 ~Chapter 16 ~ Appendix A cPrevious Section_Next Section—

Appendix C
Quiz Answers

Chapter 1

1. Thefirst isasimple command. The second is a compound command constructed from two simple commands.
The last two are complex commands.

2. Thereis no effect. The output will be the same for both commands.

3. Thetwo types are Bourne (sh, ksh, or bash) and C (csh, tcsh).
Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “"Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “Chapter 13~ Chapter 21
Chapter 6 “Chapter 14~ Chapter 22
Chapter 7 “Chapter 15 Chapter 23
Chapter 8 ~Chapter 16 Appendix A cPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480177.htm [06.05.2000 23:09:20]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 2

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “Chapter 13~ Chapter 21
Chapter 6 “Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16 Appendix A cPrevious Section__Next Section

Chapter 2

1. Thefiles are/etc/profile and .profile.

2. 1f PATH isnot set, the shell cannot find the commands you want to execute. If MANPATH is not set, the shell
cannot locate the online help.

3. It specifies that the shell /bin/sh should be used to execute the script.

4. The man command.

Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex

Sectionsin this Chapter:

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 “"Chapter 127 Chapter 20
Chapter 5 “Chapter 13~ Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16— Appendix A cPrevious Section_Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480178.htm [06.05.2000 23:09:20]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 3

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Chapter 1 “Chapter 9 = Chapter 17
Chapter 2 “Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “Chapter 13~ Chapter 21
Chapter 6 “Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16 Appendix A cPrevious Section__Next Section

Chapter 3

1. Invisiblefiles are files whose names start with the . character. Y ou can list them by specifying the -a option to Is.
2. No. Each of these commands will produce the same results.

3. On Solaris and HPUX use the command
$ we -Im

On Linux use the command
$w -lc

4. (b) and (c) will generate error messages indicating that homework is a directory.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:

Chapter 1 “Chapter 9 = Chapter 17
Chapter 2 “"Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 =—Chapter 12~ Chapter 20
Chapter 5 “Chapter 13~ Chapter 21
Chapter 6 ="Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15 Chapter 23
Chapter 8 =Chapter 16— Appendix A oPrevious Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480179.htm [06.05.2000 23:09:20]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 4

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Chapter 1 “Chapter 9 = Chapter 17
Chapter 2 “"Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “Chapter 13~ Chapter 21
Chapter 6 “Chapter 14~ Chapter 22
Chapter 7 “Chapter 15 Chapter 23
Chapter 8 ~Chapter 16 Appendix A cPrevious Section__Next Section

Chapter 4

1. (a) and (d) are absolute pathnames. (b) and (c) are relative pathnames.

2. The pwd command will output the full path to your home directory. In my case the path is
/ home/ r anga

3. The following command will work:
cp -r /usr/local /opt/pgns

4. The following commands will work:
cp -r /usr/local /opt/pgns ; rm-r /usr/local

5. No, you cannot use the rmdir command, because the directory is not empty. Y ou can use the following
command:

$ rm-r backup

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Chapter 1 ~Chapter 9 ™ Chapter 17
Chapter 2 ~Chapter 10" Chapter 18
Chapter 3 ~Chapter 11~ Chapter 19
Chapter 4 ~Chapter 127 Chapter 20
Chapter 5 ~Chapter 13 Chapter 21
Chapter 6 ~Chapter 14~ Chapter 22
Chapter 7 ~Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16— Appendix A cPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480180.htm [06.05.2000 23:09:21]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 5

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Appendix C: Quiz Answers —_— oPrevious Chapter._Next Chaptenm
Sectionsin this Chapter:

Chapter 1 “"Chapter 9 = Chapter 17

Chapter 2 " Chapter 10~ Chapter 18

Chapter 3 " Chapter 11~ Chapter 19

Chapter 4 " Chapter 127 Chapter 20

Chapter 5 “"Chapter 13~ Chapter 21

Chapter 6 “"Chapter 14~ Chapter 22

Chapter 7 “Chapter 15~ Chapter 23

Chapter 8 ~Chapter 16— Appendix A cPrevious Section__Next Sectiono

Chapter 5

1. Thefiletypes of thesefiles are

/dev/rdsk/c0t1d0 character special file
/etc/passwd regular file
/usr/local directory
Jusr/sbin/ping regular file

2. The owner and groups of thesefilesare

/dev/rdsk/c0t1dO owner bin group sys
/etc/passwd owner root group sys
/usr/local owner bin group bin
Jusr/shin/ping owner root group bin

3. The permissions of thesefilesare

/dev/rdsk/c0t1d0 owner read and write
group read
other none

/etc/passwd owner read
group read
other read

lusr/local owner read, write, and execute
group read, write, and execute

other read, write, and execute

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480181.htm (1 von 2) [06.05.2000 23:09:21]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 5
Jusr/shin/ping owner read and SUID execute
group read and execute

other read and execute

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Chapter 1 ~Chapter 9 ™ Chapter 17
Chapter 2 ~Chapter 10" Chapter 18
Chapter 3 ~Chapter 11~ Chapter 19
Chapter 4 ~Chapter 127 Chapter 20
Chapter 5 ~Chapter 13 Chapter 21
Chapter 6 ~Chapter 14~ Chapter 22
Chapter 7 ~Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16— Appendix A cPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480181.htm (2 von 2) [06.05.2000 23:09:21]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 6

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Chapter 1 “Chapter 9 = Chapter 17
Chapter 2 “Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “Chapter 13~ Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16 Appendix A cPrevious Section__Next Section

Chapter 6

1. By putting an ampersand at the end of the command line.
2. With the ps command.

3. Use the suspend key (usually Ctrl-Z) to stop the foreground process and then use the bg command to resumeit in
the background.

Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex

Sectionsin this Chapter:

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 “"Chapter 127 Chapter 20
Chapter 5 “Chapter 13~ Chapter 21
Chapter 6 “Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16— Appendix A cPrevious Section_Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480182.htm [06.05.2000 23:09:21]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 7

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Appendix C: Quiz Answers —_— oPrevious Chapter._Next Chaptenm
Sectionsin this Chapter:

Chapter 1 “Chapter 9 = Chapter 17

Chapter 2 “"Chapter 10~ Chapter 18

Chapter 3 “Chapter 11~ Chapter 19

Chapter 4 “Chapter 127 Chapter 20

Chapter 5 “Chapter 13~ Chapter 21

Chapter 6 “Chapter 14~ Chapter 22

Chapter 7 “"Chapter 15~ Chapter 23

Chapter 8 ~Chapter 16 Appendix A cPrevious Section__Next Section

Chapter 7

1. (a) and (d) are valid variable names. (b) starts with a number thusit isinvalid. (c) contains the & character,
which is not avalid character for variable names.

2. These assignments are valid in ksh and bash, but not in sh. The shell, sh, only supports scalar variables.

3. To access the array item at index 5 use the following:
${adans[5] }

To access every item in the array use the following:

${adans[@}

4. An environment variable's value can be accessed by child processes of ashell. A local variable isrestricted to a
particular shell; it cannot be used by child processes of a shell.

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index
Appendix C: Quiz Answers —_ oPrevious Chapter._Next Chapteno
Sections in this Chapter:

Chapter 1 “"Chapter 9 = Chapter 17

Chapter 2 “Chapter 10~ Chapter 18

Chapter 3 “"Chapter 11~ Chapter 19

Chapter 4 “Chapter 127 Chapter 20

Chapter 5 “"Chapter 13 Chapter 21

Chapter 6 “"Chapter 14~ Chapter 22

Chapter 7 “"Chapter 15~ Chapter 23

Chapter 8 ="Chapter 16~ Appendix A cPrevious Section—Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480183.htm [06.05.2000 23:09:22]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 8

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 = Chapter 127 Chapter 20
Chapter 5 “"Chapter 13~ Chapter 21
Chapter 6 “Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16— Appendix A cPrevious Section_Next Section—

Chapter 8

1. The following command will accomplish this task:
$1s *hwf0-9][0-9][2-6].7?2?7?

2. 1f MYPATH isunset, it is set to the given value, which is then substituted.
3. If MYPATH is unset, the given value is substituted for it. MYPATH remains unset.
4.10

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 " Chapter 127 Chapter 20
Chapter 5 “"Chapter 13~ Chapter 21
Chapter 6 “Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16— Appendix A cPrevious Section_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480184.htm [06.05.2000 23:09:23]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 9

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Chapter 1 “Chapter 9 = Chapter 17
Chapter 2 “Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “Chapter 13~ Chapter 21
Chapter 6 “Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16 Appendix A cPrevious Section__Next Section

Chapter 9

1. Double quotes accomplish this easily but not single quotes:
$ echo "It's <party> tine!"

2. The following command will accomplish this task:
$ echo "$USER owes \ $$DEBT"

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sections in this Chapter:

Chapter 1 ““Chapter 9 = Chapter 17
Chapter 2 “—Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 =—Chapter 12~ Chapter 20
Chapter 5 “Chapter 13~ Chapter 21
Chapter 6 ="Chapter 14~ Chapter 22
Chapter 7 ““Chapter 15 Chapter 23
Chapter 8 =Chapter 16— Appendix A oPrevious Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480185.htm [06.05.2000 23:09:23]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 10

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Appendix C: Quiz Answers —_— oPrevious Chapter._Next Chaptenm
Sectionsin this Chapter:

Chapter 1 “"Chapter 9 = Chapter 17

Chapter 2 “"Chapter 10~ Chapter 18

Chapter 3 " Chapter 11~ Chapter 19

Chapter 4 " Chapter 127 Chapter 20

Chapter 5 " Chapter 13~ Chapter 21

Chapter 6 “"Chapter 14~ Chapter 22

Chapter 7 “Chapter 15~ Chapter 23

Chapter 8 ~Chapter 16— Appendix A cPrevious Section__Next Sectiono

Chapter 10

1. The difference is that the first command will try to run the command without checking if it is executable. Thus if
thefile exists but is not executable, the command will fail. The second command takes this into account and
attempts to run the command only if it is executable.

2. The output is"Y our binaries are stored in your home directory.”

3. Any of the following commands are valid:

$ test -d /usr/bin || test -h /usr/bin
$[-d/usr/bin] || [-h /usr/bin]
$ test -d /usr/bin -0 -h /usr/bin

$[-d/usr/bin -0 -h /usr/bin]

4. The following case statement covers the given combinations and several more:

case "$ANS" in
[YY]I[[Yy][Ee][Ss]) ANS="y" ;;

*) ANS="n" ;;
esac

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Appendix C: Quiz Answers —_ oPrevious Chapter._Next Chapteno
Sections in this Chapter:

Chapter 1 “"Chapter 9 = Chapter 17

Chapter 2 “"Chapter 10~ Chapter 18

Chapter 3 “"Chapter 11~ Chapter 19

Chapter 4 “"Chapter 127 Chapter 20

Chapter 5 “"Chapter 13 Chapter 21

Chapter 6 “"Chapter 14~ Chapter 22

Chapter 7 “"Chapter 15~ Chapter 23

Chapter 8 ="Chapter 16~ Appendix A —Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480186.htm [06.05.2000 23:09:24]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 11

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:

Chapter 1 “Chapter 9 = Chapter 17
Chapter 2 “Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “Chapter 13~ Chapter 21
Chapter 6 “Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16 Appendix A cPrevious Section__Next Section

Chapter 11

1. Hereis one possible implementation:

x=0
while [$x -1t 10]
do
x=$(($x+1))
y=0
while [8y -1t $x] ; do
echo "$y \c"
y=3(($y+1))
done
echo
done

2. Here is one possible implementation:

#!/ bi n/ bash
select FILEin * "Exit Progrant
do

if [-z "$FILE"] ; then continue ; fi
if ["$FILE" = "Exit Program] ; then break ; fi
if [! -f "$FILE"] ; then
echo "$FILE is not a regular file."
conti nue
fi

echo $FI LE
cat $FI LE
done

Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480187.htm (1 von 2) [06.05.2000 23:09:24]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 11

Sections in this Chapter:

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “"Chapter 10~ Chapter 18
Chapter 3 “"Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “Chapter 13 Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16— Appendix A cPrevious Section_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480187.htm (2 von 2) [06.05.2000 23:09:24]

Appendix C: Quiz Answers: Chapter 12

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Appendix C: Quiz Answers —_— oPrevious Chapter._Next Chaptenm
Sectionsin this Chapter:™ -

Chapter 1 " Chapter 9 = Chapter 17

Chapter 2 " Chapter 10~ Chapter 18

Chapter 3 " Chapter 11~ Chapter 19

Chapter 4 " Chapter 127 Chapter 20

Chapter 5 " Chapter 13~ Chapter 21

Chapter 6 “"Chapter 14~ Chapter 22

Chapter 7 " Chapter 15~ Chapter 23

Chapter 8 ~Chapter 16— Appendix A cPrevious Section__Next Sectiono

Chapter 12

1. One correct implementation is as follows:
#!/bi n/ sh

USAGE="Usage: “~basenanme $0° [-c|-t] [files|directories]"”

if [$# -1t 2] ; then
echo "$USAGE" ;
exit 1 ;

fi

case "$1" in
-t]-x) TARGS=${1}vf ; shift
for i in"$@ ; do
if [-f "$i"] ; then
FILES="tar $TARGS "$i" 2>/dev/null’
if [$2 -eq 0] ; then
echo ; echo "$i" ; echo "$FI LES"
el se
echo "ERROR. $i not a tar file."
fi
el se
echo "ERROR: $i not a file."
fi
done
_c) shift ; TARGS="-cvf" :
tar $TARGS archive.tar "$@
*) echo " $USACE"
exit O

esac

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480188.htm (1 von 3) [06.05.2000 23:09:25]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 12
exit $?

2. One possible implementation is as follows:

#! / bi n/ sh

USACE="Usage: “basenane $0° [-v] [-x] [-f] [filenane] [-0]
[fil enane]";

VERBGOSE=f al se
EXTRACT=f al se

while getopts f:o:x:v OPTION ; do
case "SOPTION' in
f) I NFI LE="$OPTARG' ;;
0) QUTFI LE="$OPTARG' ;;
v) VERBCSE=true ;;
X) EXTRACT=true ;;
\'?) echo "$USAGE" ;
exit 1
esac
done

shift “echo "$OPTIND - 1" | bc’
if [-z "$1" -a -z "$INFILE"] ; then
echo "ERROR Input file was not specified.”
exit 1
fi
if [-z "S$INFILE"] ; then INFILE="$1" ; fi
${ QUTFI LE: =${ | NFI LE} . uu}

if [-f "SINFILE"] ; then

if ["$EXTRACT" = "true"] ; then
if ["$VERBOSE" = "true"] ; then
echo "uudecoding $INFILE. .. \c"
fi
uudecode "SI NFI LE" ; RET=$%$?
el se
if ["$VERBOSE" = "true"] ; then
echo "uuencoding $INFILE to $QUTFILE... \c"
fi
uuencode "$I NFI LE" "$I NFI LE" > "$OUTFI LE" ; RET=$?
fi
if ["$VERBOSE" = "true"] ; then

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480188.htm (2 von 3) [06.05.2000 23:09:25]

Appendix C: Quiz Answers: Chapter 12

MSG="Failed" ; if [$RET -eq O] ; then MSG="Done." ; fi
echo $MSG
fi
el se
echo "ERROR: $INFILE is not a file."
fi
exit $RET

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Chapter 1 ="Chapter 9 = Chapter 17
Chapter 2 “—Chapter 10~ Chapter 18
Chapter 3 “—Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “—Chapter 13~ Chapter 21
Chapter 6 “=Chapter 14~ Chapter 22
Chapter 7 “—Chapter 15 Chapter 23
Chapter 8 =Chapter 16— Appendix A cPrevious Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480188.htm (3 von 3) [06.05.2000 23:09:25]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 13

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “"Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “Chapter 13~ Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16 Appendix A cPrevious Section__Next Section

Chapter 13

1. The smplest possible answer is as follows:
#! / bi n/ sh

if [$# -1t 2] ; then
echo "ERROR Insufficient argunments.” ;
exit 1 ;
fi
case "$1" in
-0) printf "%\n" "$2" ;;
-X) printf "9%\n" "$2" ;;
-e) printf "%\n" "$2" ;;
*) echo "ERROR Unknown conversion, $1!" ;;
esac

2. Therewritten script isas follows:
#!/ bi n/ sh

if [$# -1t 2] ; then
echo "ERROR Insufficient argunents."” >&2
exit 1 ;

fi

case "$1" in

-0) printf "%\n" "$2" ;;

-X) printf "o\n" "$2" ;;

-e) printf "% \n" "$2" ;;

*) echo "ERROR: Unknown conversion, $1!" >&2 ;;
esac

Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480189.htm (1 von 2) [06.05.2000 23:09:25]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 13

Sectionsin this Chapter:™

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “"Chapter 10~ Chapter 18
Chapter 3 “"Chapter 11~ Chapter 19
Chapter 4 “"Chapter 127 Chapter 20
Chapter 5 ~Chapter 13™Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16— Appendix A cPrevious Section_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480189.htm (2 von 2) [06.05.2000 23:09:25]

Appendix C: Quiz Answers: Chapter 14

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Appendix C: Quiz Answers —_— oPrevious Chapter._Next Chaptenm
Sectionsin this Chapter:™ -

Chapter 1 " Chapter 9 = Chapter 17

Chapter 2 " Chapter 10~ Chapter 18

Chapter 3 " Chapter 11~ Chapter 19

Chapter 4 " Chapter 127 Chapter 20

Chapter 5 " Chapter 13~ Chapter 21

Chapter 6 “Chapter 14~ Chapter 22

Chapter 7 " Chapter 15~ Chapter 23

Chapter 8 ~Chapter 16— Appendix A cPrevious Section__Next Sectiono

Chapter 14

1. A possible implementation is

nymkdir() {

if [$# -1t 1] ; then
echo "ERROR Insufficient argunents." >&2
return 1

fi

nkdir -p "$1" > /dev/null 2>&1
if [$?2 -eq 0] ; then
cd "$1" > /dev/null 2>&1
if [$?2 -eq 0] ; then
pwd ;
el se
echo "ERROR Could not cd to $1." >&2
fi
el se
echo "ERROR Could not nkdir $1." >&2
fi
}

2. A possible implementation is
Pronpt RESPONSE() {

if [$# -1t 1] ; then
echo "ERROR: Insufficient argunents." >&2

return 1
fi
RESPONSE=
while [-z "$SRESPONSE"]
do

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480190.htm (1 von 2) [06.05.2000 23:09:26]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 14

echo "$1 \c "
read RESPONSE
done

export RESPONSE

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “"Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “Chapter 13~ Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16™"Appendix A cPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480190.htm (2 von 2) [06.05.2000 23:09:26]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 15

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Appendix C: Quiz Answers —_— oPrevious Chapter._Next Chaptenm
Sectionsin this Chapter:™ -

Chapter 1 " Chapter 9 = Chapter 17

Chapter 2 " Chapter 10~ Chapter 18

Chapter 3 " Chapter 11~ Chapter 19

Chapter 4 " Chapter 127 Chapter 20

Chapter 5 " Chapter 13~ Chapter 21

Chapter 6 “"Chapter 14~ Chapter 22

Chapter 7 “Chapter 15~ Chapter 23

Chapter 8 ~Chapter 16— Appendix A cPrevious Section__Next Sectiono

Chapter 15

1. A sample implementation is

| spi ds() {

USAGE="Usage: |spids [-h] process”
HEADER=f al se
PSCVD="/ bi n/ ps -ef"

case "$1" in
-h) HEADER=true ; shift ;;
esac

if [-z "$1"] ; then

echo $USACE ;
return 1 ;
fi
if ["$HEADER' = "true"] ; then
$PSCVD 2> /dev/null | head -n 1 ;
fi
$PSCVD 2> /dev/null | grep "$1"| grep -v grep

}

For Linux or FreeBSD, change the variable PSCMD from
PSCVD="/ bi n/ ps -ef"

fo

PSCMD="/ bi n/ ps - auwx"

2. Thefollowing is one possible implementation:

[spids ()

{

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480191.htm (1 von 3) [06.05.2000 23:09:26]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 15

USAGE="Usage: Ispids [-h|-s] process";
HEADER=f al se;
SORT=f al se;
PSCMD="/ bi n/ ps -ef";
SORTCMD="sort -rn -k 2,2";
for OPT in $@
do
case "$OPT" in
-h)
HEADER=t r ue;
shift
_S)
SORT=t r ue;
shift
_*)
echo $USAGE;
return 1
esac;
done;
if [-z "$1"]; then
echo $USAGE;
return 1;
fi;
if ["$HEADER' = "true"]; then
$PSCMD | head -1;
fi;
if ["$SORT" = "true"]; then
$PSCVD 2> /dev/null | grep "$1" | grep -v grep | $SORTCMVD;
el se
$PSCVD 2> /dev/null | grep "$1" | grep -v grep;
fi
}

For LINUX and FreeBSD, change the variable SORTCMD to
SORTCVD="sort -rn"

instead of
SORTCMD="sort -rn -k 2, 2"

Y ou will also need to change the variable PSCMD from
PSCVD="/ bi n/ ps -ef"

to
PSCMD="/ bi n/ ps - auwx"

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480191.htm (2 von 3) [06.05.2000 23:09:26]

Appendix C: Quiz Answers: Chapter 15

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “"Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “"Chapter 13~ Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 “Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16 Appendix A cPrevious Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480191.htm (3 von 3) [06.05.2000 23:09:26]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 16

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “"Chapter 10~ Chapter 18
Chapter 3 “"Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “"Chapter 13~ Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16~ Appendix A cPrevious Section__Next Section—

Chapter 16

1. One possible implementation is
sgrep() {
if [$# -1t 2] ; then
echo "USAGE: sgrep pattern files" >&2
exit 1
fi

PAT="$1" ; shift ;

for i in $@;
do
if [-f "$i"] ; then
sed -n "/ $PAT/ p" $i
el se
echo "ERROR $i not a file." >&
fi
done

return O
}
2. The following command does the job:
$ uptinme | sed 's/.* load/load/"

3. There are two possible solutions:
$df -k | sed -n "/”™\/]p
$ df -k | sed '/A[A\/]/d

4. The following command will solve this problem:

/bin/ls -al | sed -e "/*"™M-]/d" -e "s/ *[0-9].* [/'
Sams Teach Yourself Shell Programmingin 24 Hours Contents [ndex

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480192.htm (1 von 2) [06.05.2000 23:09:27]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 16

Sectionsin this Chapter:™ -

Chapter 1 =“Chapter 9 = Chapter 17
Chapter 2 “—Chapter 10~ Chapter 18
Chapter 3 “—Chapter 11~ Chapter 19
Chapter 4 ==Chapter 12~ Chapter 20
Chapter 5 “—Chapter 13~ Chapter 21
Chapter 6 “=Chapter 14~ Chapter 22
Chapter 7 “—Chapter 15 Chapter 23
Chapter 8 ==Chapter 16— Appendix A cPrevious Section_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480192.htm (2 von 2) [06.05.2000 23:09:27]

Appendix C: Quiz Answers: Chapter 17

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Appendix C: Quiz Answers —_— oPrevious Chapter._Next Chaptenm
Sectionsin this Chapter:™ -

Chapter 1 " Chapter 9 = Chapter 17

Chapter 2 " Chapter 10~ Chapter 18

Chapter 3 " Chapter 11~ Chapter 19

Chapter 4 " Chapter 127 Chapter 20

Chapter 5 " Chapter 13~ Chapter 21

Chapter 6 “"Chapter 14~ Chapter 22

Chapter 7 " Chapter 15~ Chapter 23

Chapter 8 ~Chapter 16— Appendix A cPrevious Section__Next Sectiono

Chapter 17

1. A possible implementation is as follows:
#!/ bi n/ sh

if [$# -1t 1] ; then
echo "USAGE: “basenane $0° fil es"

exit 1
fi
awk ' {
for (i=NF;i>=1;i--) {
printf("% ",$i) ;
}
printf("\n") ;
' @
2. A possible solutionis
#!/ bi n/ sh
awk 'BEGA N { FS=":" ; }
$1 == "B" {
BAL=$NF ; next ;
}
$1 == "D" {
BAL += $NF ;
}
($1 == "C") || ($1 == "W) {
BAL- =$NF ;
}

($1 == "C") [| ($1 == "W) [| ($1 =="D") {
printf "9d0-s 98.2f\n", $2, BAL ;
}

account.txt ;

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480193.htm (1 von 3) [06.05.2000 23:09:27]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 17
Alternatively, you can use the -F option:

#! / bi n/ sh
awk -F: '
$1 == "B" {
BAL=$NF ; next ;
}
$1 == "D {
BAL += $NF ;
}
(31 == "C") || (%1 =="W) {
BAL- =$NF
}

($1 == "C") [| ($1 == "W) [| ($1 =="D") {
printf "9d0-s 98.2f\n", $2, BAL ;
}

account.txt ;

3. Thefollowing is a possible implementation:

#! / bi n/ sh
awk -F: '
$1 == "B" {
BAL=$NF
next ;
}
$1 == "D {
BAL += $NF
}
($1 == "C') || ($1 == "W) {
BAL- =$NF ;
}

($1 == "C') || ($1 == "W) || ($1 == "D') {
printf "9d0-s 98.2f\n", $2, BAL ;

}
END {

printf "-\n%d0-s 98.2f\n","Total ", BAL ;
}

account . txt ;

4. A possible implementation is

#! / bi n/ sh
awk -F: '
$1 == "B" {
BAL=$NF
next
}
$1 == "M {

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480193.htm (2 von 3) [06.05.2000 23:09:27]

Appendix C: Quiz Answers: Chapter 17

M N=$NF ;
next ;
}
$1 == "D {
BAL += $NF ;
}
($1 == "C") || ($1 == "W) {
BAL- =$NF ;
}

($1 == "C") || ($1 =="W) || (31 =="D") {
printf "9%d0-s 98.2f", $2, BAL ;
if (BAL<MN) { printf " * Below Mn. Bal ance" }

printf "\n" ;
}
END {

printf "-\n%d0-s 98.2f\n","Total ", BAL ;
}

account.txt ;

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “"Chapter 10~ Chapter 18
Chapter 3 “"Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “Chapter 13~ Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 “Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16™"Appendix A cPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480193.htm (3 von 3) [06.05.2000 23:09:27]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 18

Sams Teach Y ourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 " Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “"Chapter 13~ Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16 Appendix A cPrevious Section__Next Section

Chapter 18

1. The following command will accomplish this task:
$ type process?2

2. The following command will accomplish this task:
$ find /data -nanme ' *process2*' -print

3. The following command will accomplish this task:
PRI CE=" echo "scale=2; 3.5 * $PRICE" | bc’

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Chapter 1 " Chapter 9 Chapter 17
Chapter 2 “"Chapter 10— Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 ““Chapter 13~ Chapter 21
Chapter 6 ““Chapter 14~ Chapter 22
Chapter 7 ““Chapter 15~ Chapter 23
Chapter 8 ~“Chapter 16— Appendix A cPrevious Section__Next Section—

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480194.htm [06.05.2000 23:09:27]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 19

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Appendix C: Quiz Answers —_— oPrevious Chapter._Next Chaptenm
Sectionsin this Chapter:™ -

Chapter 1 " Chapter 9 = Chapter 17

Chapter 2 " Chapter 10~ Chapter 18

Chapter 3 " Chapter 11~ Chapter 19

Chapter 4 " Chapter 127 Chapter 20

Chapter 5 " Chapter 13~ Chapter 21

Chapter 6 “"Chapter 14~ Chapter 22

Chapter 7 " Chapter 15~ Chapter 23

Chapter 8 ~Chapter 16— Appendix A cPrevious Section__Next Sectiono

Chapter 19

1. Hereis apossible implementation:

trap GeanUp 2 15
trap Init 1

trap "quit=true" 3
PROG="$1"

I nit

while : ;

do
wait $!
if ["$quit" =true] ; then exit 0 ; fi
$PROG &

done

2. Here is a possible implementation:

#! |/ bi n/ sh

Al arnmHandl er () {
echo "Got SI GALARM cnd took too | ong."
Ki I | SubProcs
exit 14

}

I nt Handl er () {
echo "CGot SI A NT, user interrupt.”
Ki I | SubProcs
exit 2

}

Ki || SubProcs() {
kill ${CHPROCIDS: - $!}
if [$?2 -eq 0] ; then echo "Sub-processes killed." ; fi

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480195.htm (1 von 2) [06.05.2000 23:09:28]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 19

}
SetTinmer() {
DEF_TOUT=${ 1: - 10} ;
if [$DEF_TOUT -ne 0] ; then
sl eep $DEF_TQUT && kill -s 14 $%$ &
CHPROCI DS=" $CHPROCI DS $!"
Tl MERPROC=$!
fi
}

Unset Tinmer () {
kill $TI MERPROC
}

main()

trap Al arnHandl er 14
trap IntHandler 2

Set Ti ner 15
$PROG &
CHPROCI DS=" $CHPROCI DS $! "
wait $!
Unset Ti ner
echo "Al'l Done."
exit O
Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Appendix C: Quiz Answers —_ oPrevious Chapter._Next Chapteno
Sections in this Chapter: -
Chapter 1 " Chapter 9 Chapter 17
Chapter 2 “"Chapter 10— Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 ““Chapter 177 Chapter 20
Chapter 5 “"Chapter 13 Chapter 21
Chapter 6 ““Chapter 14 Chapter 22
Chapter 7 ““Chapter 15— Chapter 23
Chapter 8 ~“Chapter 16~ Appendix A —Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480195.htm (2 von 2) [06.05.2000 23:09:28]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 20

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Sectionsin this Chapter:™

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “"Chapter 10~ Chapter 18
Chapter 3 “Chapter 11~ Chapter 19
Chapter 4 " Chapter 127 Chapter 20
Chapter 5 “"Chapter 13~ Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16 Appendix A cPrevious Section__Next Section

Chapter 20

1. The three main methods are

0 Issuethe script in the following fashion:
$ /bin/sh option script argl arg2 arg3

0 Change thefirst line of the script to
#!/ bi n/ sh option

0 Usethe set command as follows:
set option

Here option is the debugging option you want to enable.

2. Here is one possible implementation:

Debug() {
if ["$DEBUG' = "true"] ; then
if ["$1" = "on" -0 "$1" = "ON'] ; then
set -Xx
el se
set +x
echo " >Press Enter To Continue< \c"
read press_enter _to _continue
fi
fi

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480196.htm (1 von 2) [06.05.2000 23:09:28]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 20

Sectionsin this Chapter:™

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “"Chapter 10~ Chapter 18
Chapter 3 “"Chapter 11~ Chapter 19
Chapter 4 “Chapter 127 Chapter 20
Chapter 5 “"Chapter 13 Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~Chapter 16— Appendix A cPrevious Section_Next Sectionm

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480196.htm (2 von 2) [06.05.2000 23:09:28]

Appendix C: Quiz Answers: Chapter 21

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Appendix C: Quiz Answers —_— oPrevious Chapter._Next Chaptenm
Sectionsin this Chapter:™ -

Chapter 1 " Chapter 9 = Chapter 17

Chapter 2 " Chapter 10~ Chapter 18

Chapter 3 " Chapter 11~ Chapter 19

Chapter 4 " Chapter 127 Chapter 20

Chapter 5 " Chapter 13~ Chapter 21

Chapter 6 “"Chapter 14~ Chapter 22

Chapter 7 " Chapter 15~ Chapter 23

Chapter 8 ~Chapter 16— Appendix A cPrevious Section__Next Sectiono

Chapter 21

1. One possible implementation is

HUHH BB H SRR R R R R
Nanme: tolLower

Desc:. changes an input string to | ower case

Args: $@-> string to change

HH AR HH TR R AR T A R R R AR A R R R R

toLower () {
echo $@| tr '[A-Z]"' '[a-2]"' ;
}

2. One possible implementation is

HUBHHHHH R HH R HH R R R R R R R R
Nane: toUpper

Desc:. changes an input string to upper case

Args: $@-> string to change

HUHHHHHH R HH R R R

t oUpper () {
echo $@| tr '[a-z]' '[A-Z]'
}

3. One possible solution is

HUHH R TR H B R R R R R R
Nanme: isSpaceAvail able

Desc: returns true (0) if space avail able

Args: $1 -> The directory to check

$2 -> The anount of space to check for
HUHHBHBH B R BB R R R R

i sSpaceAvai | abl e() {
if [$# -1t 2] ; then

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480197.htm (1 von 3) [06.05.2000 23:09:28]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 21

pri nt ERROR "I nsufficient Argunents.”
return 1

fi

if [! -d"$1"] ; then
printERROR "$1 is not a directory.”
return 1

fi

if [“~getSpaceFree "$1"" -gt "$2"] ; then
return O

fi

return 1

}

4. One possible solution is

HESHGHAERE ARG H GRS R ARG RE AR S H A AR AR A R AR O H A
Nanme: isSpaceAvail abl e

Desc: returns true (0) if space avail able

Args: $1 -> The directory to check

$2 -> The amount of space to check for

$3 -> The units for $2 (optional)

k for kil obytes

m f or negabyt es

g for gigabytes

TR AR A R R AR T TR A R i A R

| sSpaceAvai |l abl e() {
if [$# -1t 2] ; then
print ERROR "I nsufficient Argunents.”
return 1
fi

if [! -d "$1"] ; then
printERROR "$1 is not a directory.”
return 1

fi

SPACE_M N="$2"

case "$3" in
[mM | [M [bB])
SPACE M N="echo "$SPACE M N * 1024" | bc™ ;;
M r{bB])
SPACE M N="echo "$SPACE M N * 1024 * 1024"
esac

if [“getSpaceFree "$1"" -gt "$SPACE M N'] ; then

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480197.htm (2 von 3) [06.05.2000 23:09:28]

bc’

Appendix C: Quiz Answers: Chapter 21

return O
fi

return 1

}

5. One possible solution is

HUHH R TR H SRR R R R R R
Nanme: i sUser Root

Desc: returns true (0) if the users U D=0

Args: $1 -> a user nane (optional)

HHH BB R R R R R

i sUser Root () {
if [""getUD$1"" -eq 0] ; then

return O

fi

return 1
Sams Teach Yourself Shell Programming in 24 Hours Contents Index
Appendix C: Quiz Answers —_ oPrevious Chapter._Next Chapteno
Sections in this Chapter:
Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “"Chapter 10~ Chapter 18
Chapter 3 “"Chapter 11~ Chapter 19
Chapter 4 “"Chapter 127 Chapter 20
Chapter 5 “"Chapter 13 Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 ~"Chapter 16~ Appendix A —Previous Section_Next Sectiono

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480197.htm (3 von 3) [06.05.2000 23:09:28]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 22

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Appendix C: Quiz Answers —_— oPrevious Chapter._Next Chaptero
Sectionsin this Chapter:™ -

Chapter 1 Chapter 9 ™ Chapter 17

Chapter 2 “"Chapter 10~ Chapter 18

Chapter 3 ““Chapter 11~ Chapter 19

Chapter 4 “"Chapter 127 Chapter 20

Chapter 5 =Chapter 13™"Chapter 21

Chapter 6 ““Chapter 14~ Chapter 22

Chapter 7 ““Chapter 15~ Chapter 23

Chapter 8 ~Chapter 16~ Appendix A oPrevious Section—_Next Sectionm

Chapter 22

1. One possible simplification is
initalize the destination directory

DESTDI R="$2";
check if the destination exits
if [! -d "$DESTDIR"] ; then

if the destination doesn't exist then assune the destination is
the new nane for the directory

DESTDI R=""/usr/ bi n/ di rname $2°"
NEWNAMVE=""/ bi n/ basenane $2" "

fi

if dirnane returns a relative dir we will be confused after cd'ing
latter on. So reset it to the full path.

DESTDI R=" (cd $DESTDIR ; pwd ;)~

if the parent of the destination doesn't exist,
were in trouble. Tell the user and exit.

if [! -d "$DESTDIR"] ; then
print ERROR "A parent of the destination directory $2 does not exist"
fi

2. Use grep -i instead of grep.
3. They can be rewritten as functions and stored in a shell library that both scripts can access.

4. We can change the lines

55 grep "$1" "S$TMPFL" > "$TMPF2" 2> /dev/ nul |
56 Failed $? "No matches found."

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480198.htm (1 von 2) [06.05.2000 23:09:29]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 22
to

55 sed -n "/A$1[A:]*:/p" "$STMPFL" > "$TMPF2" 2> /dev/ nul |
56 test -s "$TMPF2" > /dev/null
57 Failed $? "No matches found."

We can aso change the line
79 grep -v "$LINE" "$TMPF1" > "$TMPF1l. new' 2> /dev/null

to
sed -e "s/ASLINES$//" "S$STMPFL" > "$TMPFLl. new' 2> /dev/null

5. Add asignal handler. A simple one might be
trap 'echo "Cleaning Up." ; doCleanUp ; exit 2; ' 2 3 15

Y ou should add this to the script before the line:
cp " $MYADDRESSBOOK" "S$TMPF1" 2> /dev/null

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index

Appendix C: Quiz Answers —_— cPrevious Chapter._Next Chapterm
Sectionsin this Chapter:™ -

Chapter 1 ““Chapter 9 = Chapter 17

Chapter 2 ““Chapter 10~ Chapter 18

Chapter 3 ““Chapter 11~ Chapter 19

Chapter 4 ~=Chapter 12™"Chapter 20

Chapter 5 ““Chapter 13~ Chapter 21

Chapter 6 “"Chapter 14~ Chapter 22

Chapter 7 “=Chapter 15 Chapter 23

Chapter 8 ~Chapter 16~ Appendix A oPrevious Section__Next Section

© Copyright Macmillan Computer Publishing. All rights reserved.

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480198.htm (2 von 2) [06.05.2000 23:09:29]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Chapter 23

Sams Teach Yourself Shell Programmingin 24 Hours

Contents [ndex

Sectionsin this Chapter:™

Chapter 1 “"Chapter 9 = Chapter 17
Chapter 2 “"Chapter 10~ Chapter 18
Chapter 3 “"Chapter 11~ Chapter 19
Chapter 4 “"Chapter 127 Chapter 20
Chapter 5 “"Chapter 13~ Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 " Chapter 15~ Chapter 23
Chapter 8 “"Chapter 16~ Appendix A

Chapter 23

1. A possible implementation is

get Char Count () {
case “get OSNarme” in
bsd| sunos| | i nux)
WCOPT="-¢" ;;
*)

esac
we $WCOPT $@

VWCOPT="-m" ;;

Sams Teach Yourself Shell Programming in 24 Hours

cPrevious Section__Next Sectiono

Contents Index

Sectionsin this Chapter:™

Chapter 1 =—Chapter 9 = Chapter 17
Chapter 2 “Chapter 10~ Chapter 18
Chapter 3 “—Chapter 11~ Chapter 19
Chapter 4 ==Chapter 12~ Chapter 20
Chapter 5 “—Chapter 13~ Chapter 21
Chapter 6 “"Chapter 14~ Chapter 22
Chapter 7 “"Chapter 15~ Chapter 23
Chapter 8 “Chapter 16~ Appendix A

© Copyright Macmillan Computer Publishing. All rights reserved.

Previous Section__Next Section

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480199.htm [06.05.2000 23:09:29]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

Appendix C: Quiz Answers: Appendix A

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Appendix C: Quiz Answers —_— oPrevious Chapter._Next Chaptenm
Sectionsin this Chapter:™ -

Chapter 1 " Chapter 9 = Chapter 17

Chapter 2 " Chapter 10~ Chapter 18

Chapter 3 " Chapter 11~ Chapter 19

Chapter 4 " Chapter 127 Chapter 20

Chapter 5 " Chapter 13~ Chapter 21

Chapter 6 “"Chapter 14~ Chapter 22

Chapter 7 " Chapter 15~ Chapter 23

Chapter 8 ~“Chapter 16~ Appendix A cPrevious Section__Next Sectiono

Appendix A

1. The"1/Q" section; use >> to append.

2. In the section "Reserved Words and Built-in Shell Commands,” find the case statement, which shows the word
esac must come at the end.

3. In the section "Reserved Words and Built-in Shell Commands,” find the jobs command. Note that (Korn/Bash) is
indicated. This command is available in the Korn shell and Bash shell but not the Bourne shell.

4. In the section "Regular Expression Wildcards," note the + signis not listed under "Limited Regular Expression
Wildcards," which are aways supported. It isin the next section, "Extended Regular Expression Wildcards," which

are supported only on some commands. Check the man pagesto seeif a particular command supports this
wildcard.

5. In the section "Parameters and Variables," subsection "Built-in Shell Variables," $? is what you are looking for.

Sams Teach Yourself Shell Programmingin 24 Hours Contents Index
Appendix C: Quiz Answers —_— —Previous Chapter._Next Chapten—
Sectionsin this Chapter:™ -

Chapter 1 “"Chapter 9 = Chapter 17

Chapter 2 “Chapter 10~ Chapter 18

Chapter 3 “"Chapter 11~ Chapter 19

Chapter 4 “Chapter 127 Chapter 20

Chapter 5 “"Chapter 13~ Chapter 21

Chapter 6 “"Chapter 14~ Chapter 22

Chapter 7 “"Chapter 15~ Chapter 23

Chapter 8 ~Chapter 16 Appendix A cPrevious Section_Next Sectionz

© Copyright Macmillan Computer Publishing. All rights reserved.

file://ID|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/31480200.htm [06.05.2000 23:09:29]

file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm
file:///D|/Cool Stuff/old/ftp/teach-yourself-shell-programming-in-24-hour/index.htm

	Teach yourself Shell Programming in 24 hours
	Scroll down to the Underground
	Table Of Contents
	Copyright
	Introduction: How This Book Is Organized
	Introduction: Conventions Used in This Book
	Introduction: About the Author
	Introduction: Dedication
	Introduction: Acknowledgments
	Hour 1: Shell Basics: What Is a Command?
	Hour 1: Shell Basics: What Is the Shell?
	Hour 1: Shell Basics: Summary
	Hour 1: Shell Basics: Questions
	Hour 1: Shell Basics: Terms
	Hour 2: Script Basics: The UNIX System
	Hour 2: Script Basics: Shell Initialization
	Hour 2: Script Basics: Getting Help
	Hour 2: Script Basics: Summary
	Hour 2: Script Basics: Questions
	Hour 2: Script Basics: Terms
	Hour 3: Working with Files: Listing Files
	Hour 3: Working with Files: Viewing the Content of a File
	Hour 3: Working with Files: Manipulating Files
	Hour 3: Working with Files: Summary
	Hour 3: Working with Files: Questions
	Hour 3: Working with Files: Terms
	Hour 4: Working With Directories: The Directory Tree
	Hour 4: Working With Directories: Switching Directories
	Hour 4: Working With Directories: Listing Files and Directories
	Hour 4: Working With Directories: Manipulating Directories
	Hour 4: Working With Directories: Summary
	Hour 4: Working With Directories: Questions
	Hour 5: Manipulating File Attributes: File Types
	Hour 5: Manipulating File Attributes: Owners, Groups, and Permissions
	Hour 5: Manipulating File Attributes: Summary
	Hour 5: Manipulating File Attributes: Questions
	Hour 6: Processes: Starting a Process
	Hour 6: Processes: Listing Running Processes
	Hour 6: Processes: Killing a Process (kill Command)
	Hour 6: Processes: Parent and Child Processes
	Hour 6: Processes: Summary
	Hour 6: Processes: Questions
	Hour 6: Processes: Terms
	Hour 7: Variables: Defining Variables
	Hour 7: Variables: Unsetting Variables
	Hour 7: Variables: Environment Variables
	Hour 7: Variables: Summary
	Hour 7: Variables: Questions
	Hour 7: Variables: Terms
	Hour 8: Substitution: Filename Substitution (Globbing)
	Hour 8: Substitution: Variable Substitution
	Hour 8: Substitution: Command and Arithmetic Substitution
	Hour 8: Substitution: Summary
	Hour 8: Substitution: Questions
	Hour 9: Quoting: Quoting with Backslashes
	Hour 9: Quoting: Using Single Quotes
	Hour 9: Quoting: Using Double Quotes
	Hour 9: Quoting: Quoting Rules and Situations
	Hour 9: Quoting: Summary
	Hour 9: Quoting: Questions
	Hour 9: Quoting: Terms
	Hour 10: Flow Control: The if Statement
	Hour 10: Flow Control: The case Statement
	Hour 10: Flow Control: Summary
	Hour 10: Flow Control: Questions
	Hour 11: Loops: The while Loop
	Hour 11: Loops: The for and select Loops
	Hour 11: Loops: Loop Control
	Hour 11: Loops: Summary
	Hour 11: Loops: Questions
	Hour 11: Loops: Terms
	Hour 12: Parameters: Special Variables
	Hour 12: Parameters: Options and Arguments
	Hour 12: Parameters: Option Parsing in Shell Scripts
	Hour 12: Parameters: Conclusion
	Hour 12: Parameters: Questions
	Hour 13: Input/Output: Output
	Hour 13: Input/Output: Input
	Hour 13: Input/Output: File Descriptors
	Hour 13: Input/Output: Summary
	Hour 13: Input/Output: Questions
	Hour 13: Input/Output: Terms
	Hour 14: Functions: Creating and Using Functions
	Hour 14: Functions: Sharing Data Between Functions, an Example
	Hour 14: Functions: Conclusion
	Hour 14: Functions: Questions
	Hour 15: Text Filters: The head and tail Commands
	Hour 15: Text Filters: Using grep
	Hour 15: Text Filters: Counting Words
	Hour 15: Text Filters: Summary
	Hour 15: Text Filters: Questions
	Hour 16: Filtering Text Using Regular Expressions: The Basics of awk and sed
	Hour 16: Filtering Text Using Regular Expressions: Using sed
	Hour 16: Filtering Text Using Regular Expressions: Summary
	Hour 16: Filtering Text Using Regular Expressions: Questions
	Hour 17: Filtering Text with awk: What is awk?
	Hour 17: Filtering Text with awk: Using awk Features
	Hour 17: Filtering Text with awk: Summary
	Hour 17: Filtering Text with awk: Questions
	Hour 17: Filtering Text with awk: Terms
	Hour 18: Miscellaneous Tools: The eval Command
	Hour 18: Miscellaneous Tools: The : Command
	Hour 18: Miscellaneous Tools: The type Command
	Hour 18: Miscellaneous Tools: The sleep Command
	Hour 18: Miscellaneous Tools: The find Command
	Hour 18: Miscellaneous Tools: xargs
	Hour 18: Miscellaneous Tools: The expr Command
	Hour 18: Miscellaneous Tools: The bc Command
	Hour 18: Miscellaneous Tools: remsh/rsh/rcmd/remote (Remote Shell)
	Hour 18: Miscellaneous Tools: Summary
	Hour 18: Miscellaneous Tools: Questions
	Hour 18: Miscellaneous Tools: Terms
	Hour 19: Dealing with Signals: How Are Signal Represented?
	Hour 19: Dealing with Signals: Dealing with Signals
	Hour 19: Dealing with Signals: Conclusion
	Hour 19: Dealing with Signals: Questions
	Hour 20: Debugging: Enabling Debugging
	Hour 20: Debugging: Syntax Checking
	Hour 20: Debugging: Shell Tracing
	Hour 20: Debugging: Summary
	Hour 20: Debugging: Questions
	Hour 21: Problem Solving with Functions: Creating a Library of Functions
	Hour 21: Problem Solving with Functions: Useful Functions
	Hour 21: Problem Solving with Functions: Summary
	Hour 21: Problem Solving with Functions: Questions
	Hour 21: Problem Solving with Functions: Terms
	Hour 22: Problem Solving with Shell Scripts: Moving Directories
	Hour 22: Problem Solving with Shell Scripts: Maintaining an Address Book
	Hour 22: Problem Solving with Shell Scripts: Summary
	Hour 22: Problem Solving with Shell Scripts: Questions
	Hour 22: Problem Solving with Shell Scripts: Terms
	Hour 23: Scripting for Portability: Determining UNIX Versions
	Hour 23: Scripting for Portability: Techniques for Increasing Portability
	Hour 23: Scripting for Portability: Summary
	Hour 23: Scripting for Portability: Questions
	Hour 23: Scripting for Portability: Terms
	Hour 24: Shell Programming FAQs: Shell and Command Questions
	Hour 24: Shell Programming FAQs: Variable and Argument Questions
	Hour 24: Shell Programming FAQs: File and Directory Questions
	Hour 24: Shell Programming FAQs: Summary
	Appendix A: Command Quick Reference: Reserved Words and Built-in Shell Commands
	Appendix A: Command Quick Reference: Conditional Expressions
	Appendix A: Command Quick Reference: Arithmetic Expressions (Korn/Bash Only)
	Appendix A: Command Quick Reference: Parameters and Variables
	Appendix A: Command Quick Reference: Parameter Substitution
	Appendix A: Command Quick Reference: Pattern Matching
	Appendix A: Command Quick Reference: I/O
	Appendix A: Command Quick Reference: Miscellaneous Command Summaries
	Appendix A: Command Quick Reference: Regular Expression Wildcards
	Appendix A: Command Quick Reference: Summary
	Appendix A: Command Quick Reference: Questions
	Appendix B: Glossary
	Appendix C: Quiz Answers: Chapter 1
	Appendix C: Quiz Answers: Chapter 2
	Appendix C: Quiz Answers: Chapter 3
	Appendix C: Quiz Answers: Chapter 4
	Appendix C: Quiz Answers: Chapter 5
	Appendix C: Quiz Answers: Chapter 6
	Appendix C: Quiz Answers: Chapter 7
	Appendix C: Quiz Answers: Chapter 8
	Appendix C: Quiz Answers: Chapter 9
	Appendix C: Quiz Answers: Chapter 10
	Appendix C: Quiz Answers: Chapter 11
	Appendix C: Quiz Answers: Chapter 12
	Appendix C: Quiz Answers: Chapter 13
	Appendix C: Quiz Answers: Chapter 14
	Appendix C: Quiz Answers: Chapter 15
	Appendix C: Quiz Answers: Chapter 16
	Appendix C: Quiz Answers: Chapter 17
	Appendix C: Quiz Answers: Chapter 18
	Appendix C: Quiz Answers: Chapter 19
	Appendix C: Quiz Answers: Chapter 20
	Appendix C: Quiz Answers: Chapter 21
	Appendix C: Quiz Answers: Chapter 22
	Appendix C: Quiz Answers: Chapter 23
	Appendix C: Quiz Answers: Appendix A
	Index

