Build Success
S O n aty p e for your Enterprise

Tim O'Brien (Sonatype, Inc.), John Casey (Sonatype, Inc.), Brian Fox (Sonatype, Inc.), Bruce
Snyder (Sonatype, Inc.), Jason Van Zyl (Sonatype, Inc.), Eric Redmond ()

Copyright © 2006-2008

COPYIIGNE e Xil

1. Creative COmmONS BY -ND-NCcccoiiiiiieneeieie e Xii
FOreword: 0.3 ...ttt Xiv
1= = o TSR XVi

1. How to UsethiSBOOKcoceiiiiiiieiie e XVi

2. YOUr FEEADACKcccuviiiiiiieieece e XVil

3. FONt CONVENLIONS ...ttt Xviii

4. Maven Writing CONVENLIONSoecveeiieeiieesreesieecee e see e see s Xvili

5. ACKNOWIEAEMENLSoooieciece e s XiX
1. Introducing APaChe MaVENcoeeieiiiiereree e 1

1.1 Maven... What iSIt? ...occeeiiiee e 1

1.2. Convention Over ConfiguIalioncceeeeereeereeseeenee e eseeeseeeneeens 2

1.3. A CommON INEEITACEeeieiiiiee e 3

1.4. Universal Reuse through Maven Pluginsccccccceevevin e ceecieene, 4

1.5. Conceptual Model of a"Project”ccoceevveeveeie e 5

1.6. IsMaven an alternative to XY Z?oooveveeieeiee e 6

1.7. Comparing Maven With ANtcocoe i 8

1.8, SUMIMAIY ..ottt neas 12
2. Installing and RUNNING MaVENccueveiiiiiec e 13

2.1. Verify your Javalnstallationcccccveveeviiiieecee e 13

2.2. DOWNI0ading MaVENccceeeiieiie e 14

2.3. INStAlliNg MaAVEN ..o 14

2.3.1. Installing Maven on Mac OSXccovevvvennireeesee e 14
2.3.2. Installing Maven on Microsoft Windowsccccceeceenennee. 16
2.3.3. Installing Maven on LINUXccccocceeiiieeciiee e siee e 16
2.3.4. Installing Maven on FreeBSD or OpenBSDccccceeveeee. 16
2.4. Testing aMaven Installationccccoccveieevie e 17
2.5. Maven Instalation Detallscccoceeceeiniiiece e 17
2.5.1. User-specific Configuration and Repositoryccccceeeveeenee. 18
2.5.2. Upgrading aMaven Installationccccccevereiennenniennennnne. 19
2.5.3. Upgrading from Maven 1.X to Maven 2.Xcccceccveeviveecinnnnns 20
2.6. UNINStalling Maven ..o 21
2.7. Getting Help With Maven ... cvccece e 21

Maven: The Definitive Guide

2.8. Usingthe Maven HElp Plugincccocovviieve e 22
2.8.1. Describing aMaven Pluginccoccoevecceenee e 23

2.9. About the Apache Software Licensecccvcveveeveeceesen e 25
[. Maven by EXaMPIe ..o 28
3. A SIMPIe MaVven PrOJECLccceveiiieiiee et 30
G700 N 1 911 {00 [0 Tox £ oo PP 30
3.1.1. Downloading this Chapter's Examplecccccevveveennee. 30

3.2. Creating aSImple PrOJECEcccevveeevie e 31

3.3. Building aSImple Projectcccovcveveniieeree e 33

3.4. Simple Project Object Modelcoooeviiiiineeee e 34

3.5. COre CONCEPLS ...oveivreeeeeirieeerieee e stee e srre et e e e e e snnee e e nnnees 35
3.5.1. Maven Pluginsand GOoalSccccuveveevieciieesie e 36

3.5.2. Maven LIfeCYClecooveeeee e 38

3.5.3. Maven Coordinalesccccoeuveveereeeieesie e see e 42

3.5.4. Maven REPOSITONESocceeveeeiierie e see e 45

3.5.5. Maven's Dependency Managementcccoeeeeeieenennnee. 47

3.5.6. Site Generation and Reportingccccevvveevieeevieecinennn, 50

G H G0 11011 0= Y PRSP 51

4. Customizing aMaven Projectcccevveieevie e see e 52
72 I 1 10 o 1 o o S 52
4.1.1. Downloading this Chapter's Examplecccccoevevennenne. 52

4.2. Defining the Simple Weather Project ... 52
4.2.1. Yahoo! Weather RSScccooiiniiinecee e 53

4.3. Creating the Simple Weather Projectccccoceevviciecincnee, 53

4.4. Customize Project INformationccceeceeveeeceesencieesee e 55

4.5. Add New DependenCiesccceuereereenenienie e 56
4.6. Simple Weather Source Codecccovevvveeniesieenen e 58

A.7. AJd RESDUICESooiiiiiieeciee ettt 64
4.8. Running the Simple Weather Programcccccceeeeviiievieeenen. 66
4.8.1. The Maven Exec PIugincccoooeviiiiie e, 67

4.8.2. Exploring Y our Project Dependenciesccceveeeunenne. 68

4.9. Writing UNit TESES .oovveieiecie e 70
4.10. Adding Test-scoped Dependenciesccocvvceeveencieenieeseenne 73

4.11. Adding Unit TeSt RESOUICEScccevereieenieeieeniee e 74

Maven: The Definitive Guide

4.12. EXecuting UNit TESESoocveviiievie e 76
4.12.1. Ignoring Test Falluresccccoveceeve e 77
4.12.2. SKIipping UnNit TESLSooveeeiieceecieeee e 78

4.13. Building a Packaged Command Line Application 79
4.13.1. Attaching the Assembly Goal to the Package Phase 81

5. A Simple Web AppliCationcccccuveveeiieeiie e 83

5.1, INErOAUCTION ...ttt 83
5.1.1. Downloading this Chapter's Exampleccccccvvvneeneens 83

5.2. Defining the Simple Web Applicationcccccevceviviieenenenee. 83

5.3. Creating the Simple Web Projectcccoveveeveiiieninceeveee 84

5.4. Configuring the Jetty PIUgincccoooiiiiie e, 85

55. AddingaSimple Servletcoovviiie i 87

5.6. Adding J2EE Dependenciescccevceeveeeiieeseesiieesee e e siee e 90

5.7. CONCIUSION ...t 91

6. A MUIti-mOdUIE ProjECEccueveieecie e e 92

B.1. INEFOAUCHION ..ot 92
6.1.1. Downloading this Chapter's Exampleccccccevennenne. 92

6.2. The Simple Parent Projectcccccevcvevee e 92

6.3. The Simple Weather Moduleccooevevicieieceece e %!

6.4. The Simple Web Application Moduleccccoeeieriiienennne 97

6.5. Building the Multimodule Projectccccocoevveienniecceevee e 99

6.6. Running the Web Applicationcc.ccoceiiiniennin e 101

7. Multi-module Enterprise Projectoovcevecieeiiiee e 102

4% R 1 g (0o ot o o PSR P 102
7.1.1. Downloading this Chapter's Examplecccccceeeunenne. 102
7.1.2. Multi-module Enterprise Projectcccocvveenerinnennne. 103
7.1.3. Technology Used inthisExamplecccccccoeeveiinnnnene. 106

7.2. The Simple Parent Projectcccoevviienvienieesee e 107

7.3. The Simple Model Modulecccoooeeiieiiieee e, 108

7.4. The Simple Weather Moduleccooeeeevieiciece e, 113

7.5. The Simple Persist Modulecccoevevieiecieece e, 118

7.6. The Simple Web Application Modulecccocevieiininnennee. 126

7.7. Running the Web Applicationcccccoceeieniennen e 138

7.8. The Simple Command Modulecccoeveviiinniniiienen e 139

Maven: The Definitive Guide

7.9. Running the Simple Commandccccceveviievee e, 146
48 (0 @0 g Tox 11 Lo o 0 149
7.10.1. Programming to Interface Projectscccoccveveeennenne. 150

8. Optimizing and Refactoring POMSccoocveieeniecieee e 152
8.1, INtrOUCLION ...t e 152
8.2. POM ClEANUP ..eevvieiiiie ittt 153
8.3. Optimizing Dependenciescccccveveeevieeiieeiee e 153
8.4. OptimiziNg PIUGINSc.veeiieeie e 159
8.5. Optimizing with the Maven Dependency Plugin 160
8.6. FINAl POMS ...t e 164
8.7. CONCIUSION .. e 173
[1. Maven REFEIENCEooeeeceeee s 174
9. The Project Object MOdelccoeveeiiicee e 175
LS00 I 1 01 0 L1 o o o P 175
S I 0= = © 1 175
0.2.1. The SUPEr POMoocoiiiicieeeeeiee e 178
9.2.2. The SIMpPIest POMccooiviiiieeee et 182
0.2.3. The Effective POMcccooviiiiiirieeeee e 183
0.2.4. REAl POMSooiiiiiiiiiiereeee et 183
SR = © 1V ISV 1 = 184
0.3.1. PrOJECt VEISIONSoveviiiiieieesiee e sieesee e 184
0.3.2. Property REfErenCesccoceeveevceenie e 187
9.4. Project DependenCiescccvevceeiiiee s 189
9.4.1. DependenCy SCOPEccovvvreereeiiieeseeeiieesee e see e 190
9.4.2. Optional Dependenciesccccecveveeeceeseecceesee e 192
9.4.3. Dependency Version Rangesccoccvvvcvveveeveeenensnene 193
9.4.4. Transitive Dependenciescccocceevereceenensieesen s 195
9.4.5. Conflict ReSOIULIONcceeviieiiiceee e 197
9.4.6. Dependency Managementcccceeceeevieeciieecsieeciieens 199

9.5. Project REIAiONSNIPScccvveiiieiie e 201
9.5.1. More on COoOrdiNatesccocereereenienieeneesee e 202
9.5.2. Multi-module Projectscocevrvieeniesiiesee e 203
9.5.3. Project INNEritanCeccccvvceeveevcieesee e 205

O0.6. POM BESE PraCliCESoeeeeeeeeeeeeeeeeeee et 208

Maven: The Definitive Guide

9.6.1. Grouping DependencCiesccecveveeeieeereescreesee e 209
9.6.2. Multi-module vs. Inheritancecccceceevevceevee e, 211

10. The Build LifecyCle ... 219
L0 2 g 0o 1 Tox 1 o o PR 219
10.1.1. Clean Lifecycle (clean)cccccocovevieeiiieeiiie e 219
10.1.2. Default Lifecycle (default)cccoeceeveeceeciiciee e, 223
10.1.3. Site Lifecycle (SIt€)ccveveeeveecieeiee e 225
10.2. Package-specific Lifecyclescoovvvvieviiiieece e 226
0 0 T T 226
O . Y 227
10.2.3. Maven PIUQINcoooieiccee e 227
1O.24. EJB ettt et s 228
1O.2.5. WAR oot s 229
10.2.6. EAR ..ottt 230
10.2.7. Other Packaging TYPEScceeveevieeiieiieenee e 230
10.3. Common Lifecycle Goalsccccoovevvieiiieniieee e 232
10.3.1. ProCceSS RESOUICEScceeerveierieeeniieesieeesieeesieeesnee s 232
10.3.2. COMPIIE oo 236
10.3.3. Process Test RESOUICEScccceeerveernieeeiieeesieeesneens 238
10.3.4. Test COMPIIE ...eooeeeieeeeeee e 238
0 G 1 T 1= 239
10.3.6. INStaAll ..c.veeeee e 240
10.3.7. DEPIOY ...ttt 240

11, BUIA Profil€S ..ot 242
11.1. What Are They FOr? ... 242
11.1.1. What is Build Portabilitycccccevveviieiniieiee e 242
11.1.2. Selecting an Appropriate Level of Portability 244
11.2. Portability through Maven Profilesccccocveviicvineninenne 245
11.2.1. Overriding a Project Object Modélccooeeeieennenns 248
11.3. Profil@ ACHVELIONcovveeieeieeiisiesieee e s 249
11.3.1. Activation Configurationcccceecvvereeereeseeesessneenns 251
11.3.2. Activation by the Absence of a Propertycc........ 252
11.4. Listing ACtiVE Profilesoooeeviieieeeeee e 253

11.5. TIPS @NA THICKS .o e 253

Maven: The Definitive Guide

11.5.1. Common ENVIiroNmMENtScccceverveneeneeneeniesee e 254
11.5.2. Protecting SECIEtSccoeveeeieeiie e e esee e esee e 256
11.5.3. Platform ClIassifiersccccvevieeniennieseeree e 258
12.6. SUMMEANY ..ottt ne e 260
12. Maven ASSEMDIIESooviiiiie e 262
12.2. INErOAUCTIONevviiieeiie et 262
12.2. AsSembBlY BaSICSccvviciieiiicee e 263
12.2.1. Predefined Assembly DesCriptorscccoceevervenreenne. 264
12.2.2. Building an Assemblycccovviiiinnieceeee e 265
12.2.3. Assemblies as Dependenciesccvveveevieenien e 268
12.2.4. Assembling Assemblies via Assembly Dependencies 269
12.3. Overview of the Assembly Descriptorccccocvvieeveevnenne. 273
12.4. The Assembly DesCriptorcccccveveesiieciie e 276
12.4.1. Property References in Assembly Descriptors 276
12.4.2. Required Assembly Informationccccceecvevenennne 276
12.5. Controlling the Contents of an Assemblycccoeveiirinnne 278
1251 Files SECHON ..ooiiiiiicieeeeeee e 278
12.5.2. Fil €Set's SECHON ...cc.eevveeeiiiinierieeee e 279
12.5.3. Default Exclusion Patternsfor fil eSets ...c.cccocvveenee. 282
12.5.4. dependencySet s SECHIONcccevveeeevirveeeecreee e, 283
12.5.5. nodul eSet's SECHIONSvvveeeeiiiiieieee e 297
12.5.6. REPOSITONieS SECHIONc.evveeveiierieeee e 305
12.5.7. Managing the Assembly’s Root Directory 306
12.5.8. conponent Descri pt ors and
cont ai ner Descri Pt or HANAI 'S .uvvvvvvvvuriiiiiiiiiiiiiie e e e eeeeeeeeens 307
12.6. BESE PraCliCeSccceeveieciee et ee st 308
12.6.1. Standard, Reusable Assembly Descriptors................... 308
12.6.2. Distribution (Aggregating) Assembliesccoe.e..... 312
12.7. SUMMENY .oeieeecciieee e cieee et e et sre e e e ssae e e sane e s s nsneeesennneeeeas 317
13. Properties and Resource FIlteringcccccoeevceevee e 318
13.2. INErOAUCTION ...t e 318
13.2. Maven Propertiescocoveeiineeieesieeie e 318
13.2.1. Maven Project Propertiescccccevvevceeneeviesien e 319
13.2.2. Maven SettingS Propertiescccveeveeereesiensiee e 321

vii

Maven: The Definitive Guide

13.2.3. Environment Variable Propertiesc.cccccevcveveecnnne. 322

13.2.4. Java System Propertiesccceveeverveneenieesiesee e 323

13.2.5. User-defined Propertiesccccveveeiecnen e enen s 324

13.3. Resource Flteringcocceveeceriiieee e 326

14. Maven and Eclipse: M2eclipSecccovviieeciiecciee e 330
15. SIt€ GENEIALIONcovveeiieiiiriiesiee et e e e 331
15.2. INErOAUCTIONevviieeiie et 331
15.2. Building a Project Sitewith Mavencccccccvvvvceecee v, 332
15.3. Customizing the Site DEeSCIiPLOrccccvevevrieeiiesieenee e 334
15.3.1. Customizing the Header Graphicsccccocveverrnnenne. 335

15.3.2. Customizing the Navigation Menucccccccueeenennne 336

15.4. Site DIrectory StrUCIUIeccceeieeevee e 338
15.5. Writing Project Documentationcccoccvevvveveesieeeseesnene 339
15.5.1. APT EXaMPI€ ...oooeiiiieieeeeee e 339

15.5.2. FML EXaMPI@ ..ccveeiiceeeeeece e 340

15.6. Deploying Y our Project WebSItecccovevvienieniiiinen e 341
15.6.1. Configuring Server Authenticationccccccceeenenns 342

15.6.2. Configuring File and Directory Modes 343

15.7. Customizing Site APPEAraNCEccceeceeevreerieeerreeseeeseeseeenns 344
15.7.1. Customizing the Site CSSccccevvevcveree e 344

15.7.2. Create a Custom Site Templatecccceevevvceeienrnenne. 345

15.7.3. Reusable Website SKinsccccevevininiieee e 350

15.7.4. Creating aCustom Theme CSSccocevievevieeciennns 352

15.7.5. Customizing Site Templatesina Skincccceu..... 353

15.8. TIPS @NA THCKS ..ocveeieie e e 355
15.8.1. Inject XHTML into HEADccoeeoveceveeiece e 355

15.8.2. Add Linksunder Your SIte LOgoccceevevvveriiersnenne 355

15.8.3. Add Breadcrumbsto Your Sitecccccevevvennensnenne 356

15.8.4. Add the Project Versionccccevceevieeevieecsiee s 357

15.8.5. Modify the Publication Date Format and Location 358

15.8.6. USINg DOXIaAMABECIOScccveeieeiieeiiiesie e 359

16. Repository Management with Nexuscccccevvevceeven e ccee s, 361
17. WHEING PIUGINS ..ot 363
740 I 1 0o [Tox 1 o o R 363

viii

Maven: The Definitive Guide

17.2. Programming MaVencccccceeveeeieesiieesee e esee e ses e 363
17.2.1. What is Inversion of Control?ccccceevvvcvevennnenne. 364
17.2.2. Introduction t0 PIEXUScovvveeviviiieiieeree e 365
17.2.3. WhHY PIEXUS? ...ttt 366
17.2.4. What iISaPIUQIN?oeeiiie e 367

17.3. PIugin DESCIPLON ...ccvveeiiecie ettt 368
17.3.1. Top-level Plugin Descriptor Elementsccceu.e..e. 370
17.3.2. M0OjO Configurationceeeeerueeneesieeeseeseeesses e 371
17.3.3. Plugin DependencCiescccceveeeneenieenen e enies s 375

17.4. Writing @ Custom PlUQINccceviviiienieerie e 375
17.4.1. Creating aPlugin Projectcccceeveeviieeciiee e 375
17.4.2. A SIMPle JaAVaMOJOcccccvveieecieecie e 376
17.4.3. Configuring a Plugin Prefix ..., 378
17.4.4. Logging fromaPluginccccceeveeveeninenie e 382
17.4.5. M0jO Class ANNOLELiONSccceveeereeeiieerin e 383
17.4.6. When aMojo FailScccooeviiieniiiieeee e 385

17.5. MOJO ParametersSccocueeiiie e ciee e cree et eee e 386
17.5.1. Supplying Vauesfor Mojo Parameters 386
17.5.2. Multi-valued Mojo Parametersccceveevcveeiencnenne. 389
17.5.3. Depending on Plexus Componentscccccceeereennens 391
17.5.4. Mojo Parameter ANNOLationscccoceevevviennenseenne 391

17.6. Plugins and the Maven Lifecyclecccoovviininiiinncninene 393
17.6.1. Executing a Parallel Lifecycleccccocovevieiieecnen, 393
17.6.2. Creating a Custom Lifecyclecccocevcvveveeicieciee e, 394
17.6.3. Overriding the Default Lifecyclecocovvvcveieecnnenne 396

18. Writing Pluginsin Alternative Languagescccocveveeveeenenseene 399

18.1. Writing PlUgINS N AN ..o 399

18.2. Creating an ANt PIUGINcceveieriiieieceeee e 399

18.3. Writing Pluginsin JRUBYcccoevieiiie e, 402
18.3.1. Creating a JRuby Plugincccceevievieeiee e, 403
18.3.2. Ruby Mojo Implementationsccccccveveevvecieesnenne 405
18.3.3. Logging from a Ruby MOJOccceeevvviveiiecieccee e 408
18.3.4. RaiSing aMOJOEITONcccvviiieeiiieieesieeee e 409
18.3.5. Referencing Plexus Components from JRuby 409

Maven: The Definitive Guide

18.4. Writing PlugINS iN GrOOVYccovvevieeiieeiee e esiee e 410
18.4.1. Creating a Groovy Pluginccccceeveeviieeren e 411

19. Using Maven ArChetypesccoveeier e 413
19.1. Introduction to Maven Archetypesccccccevveeieenceenen e 413
19.2. USING ATChELYPES ...t 414
19.2.1. Using an Archetype from the Command Line 414

19.2.2. Using the Interactive generate Godlcccceeveenenne. 415

19.2.3. Using an Archetype from m2eclipsecccooeevevneenee. 418

19.3. Available ArChELYPEScovceveieeceeee e 418
19.3.1. Common Maven Archetypescccccevceeereesieeniensnene 418

19.3.2. Notable Third-Party Archetypesccccocveeviieeviiennn, 420

19.4. Publishing Archetypescccvcveveeiiieesie e 423

20. Developing wWith FIEXMOJOScccevivivieiiiceese e 426
220 5 I 1 1 0o U Tox 1 o 1 1S 426
20.2. Configuring Build Environment for Flexmojos 426
20.2.1. Using Sonatype's Repository Directlycccoeceveneene. 427

20.2.2. Proxying Sonatype's Repository with Nexus 428

20.3. Creating a Flex MOjOS Projectccoccveveeeieevie e, 433
20.3.1. Creating aFlex Librarycccccoevieeieenieniceesee e, 434

20.3.2. Creating aFlex Applicationccccoocvviieineninneene. 439

20.3.3. Creating a Multi-module Project: Web Application with a

FIEX DEPENTENCYoooveiiieeieeeeeree e 441

20.4. Developing and Customizing Flexmojoscccccceevveeneen. 443
20.4.1. Get the Flexmojos Source Codeccccceevvcveeveeennnne. 443

A. Appendix: SettingS Detailscccccveiieiiieiie e 445
AL QUICK OVEIVIEBWeeeiiieeecee ettt 445
A.2. SEtiNgS DELaIlSccceeeeeee e 445
A.2.1. SIMPIEVEIUES ..o 446
AL2.2. SEIVENS oottt e 447
FN R TV T ¢ (0] £ SRR 448
N 10 (] === PSR 449
A.25. Profil€S e 450
A.2.6. ACHIVELION ..o 450

A2.7. PrOPEITIES ..ottt e 452

Maven: The Definitive Guide

A.2.8. REPOSITONIESoeeeeieeciecciee et 453
A.2.9. Plugin REPOSITONESccueeiiieiiiieerieeiesee e 455
A.2.10. ACtiVEPIOFIlES ... 456
B. Appendix: Sun Specification AIternativescccoooeviereeneenenie s 458

Xi

Copyright
Copyright 2008 Sonatype, Inc.

Online version published by Sonatype, Inc., 654 High Street, Suite 220, Palo Alto,
CA, 94301.

Print version published by O'Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are
registered trademarks of O'Reilly Media, Inc. The Developer's Notebook series
designations, the look of alaboratory notebook, and related trade dress are
trademarks of O'Reilly Media, Inc.

Java(TM) and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and other countries.
Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and Sonatype, Inc. was aware of atrademark claim, the designations have been
printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

1. Creative Commons BY-ND-NC

Thiswork islicensed under a Creative Commons Attribution-Noncommercial-No
Derivative Works 3.0 United States license. For more information about this
license, see http://creativecommons.org/licenses/by-nc-nd/3.0/us/. Y ou are freeto
share, copy, distribute, display, and perform the work under the following
conditions:

* You must attribute the work to Sonatype, Inc. with alink to
http://www.sonatype.com.

Xii

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://www.sonatype.com

Copyright

* You may not use thiswork for commercial purposes.

* You may not alter, transform, or build upon this work.
If you redistribute this work on a web page, you must include the following link
with the URL in the about attribute listed on a single line (remove the backslashes
and join all URL parameters):

<div xm ns:cc="http://creativecommons. or g/ ns#"
about ="http://creativecommons. org/license/resul ts-one?q_1=2&q_1=1\
& i el d_commerci al =n&fi el d_derivati ves=n&field_jurisdiction=us\
& ield_format=Stilllmge&field_worktitle=Maven¥3A+\ Cui de\
& ield attribute_to_nanme=Sonat ype%@2C+l nc. \
& ield_attribute_to_url=http¥BA%RF¥2Fww. sonat ype. com
&f i el d_sourceurl =htt p¥BAYRFY2Fwmw. sonat ype. con?@Fbook\
& ang=en_US&l anguage=en_US&n_questi ons=3" >
<a rel="cc:attributi onURL" property="cc:attributionNane"
href="http://ww. sonat ype. coni >Sonat ype, Inc. /
<a rel ="license"
href="http://creati vecommons. org/|l i censes/by-nc-nd/ 3. 0/ us/">
CC BY- NC-ND 3. 0</ a>
</ di v>

When downloaded or distributed in ajurisdiction other than the United States of
America, thiswork shall be covered by the appropriate ported version of Creative
Commons Attribution-Noncommercial-No Derivative Works 3.0 license for the
gpecific jurisdiction. If the Creative Commons Attribution-Noncommercial-No
Derivative Works version 3.0 license is not available for a specific jurisdiction, this
work shall be covered under the Creative Commons
Attribution-Noncommercial-No Derivate Works version 2.5 license for the
jurisdiction in which the work was downloaded or distributed. A comprehensive
list of jurisdictions for which a Creative Commons license is available can be
found on the Creative Commons I nternational web site at

http://creativecommons.org/international.

If no ported version of the Creative Commons license exists for a particular
jurisdiction, thiswork shall be covered by the generic, unported Creative
Commons Attribution-Noncommercial-No Derivative Works version 3.0 license
available from http://creativecommons.org/licenses/by-nc-nd/3.0/.

Xiii

http://creativecommons.org/international
http://creativecommons.org/licenses/by-nc-nd/3.0/

Foreword: 0.3

Q. Wait, the book was sent to the printers and ink was applied to dead trees, but the
book is still in Beta? What does this mean?

A. It means that we're in this for the long haul. If we've been working on this book
for the better part of the year and we're only on Beta 0.3, it means that we're still
working to realize our vision of an ideal book. Expect a steady stream of
Improvements and additions to the book over the coming months.

Q. Will we ever emerge from this book's Beta?

A. Maybe not. Remember, GMail is still in Beta. If this book moves out of Beta,
we're essentially saying that there is no more content to add and nothing is going to
change. I've always thought that good books evolve over time and that they live
beyond the confines of the chapters and sections that define them. A good book is
an ongoing conversation and a series of interactions not just between authors and
readers, but of lateral interactions between readers. That was a fancy way of saying
that the book is a community.

We've published a book with O'Reilly that will (to use acliche) "stand the test of
time". The printed version of this book contains information that will remain
relevant and accurate going forward, and we encourage everyone to go out and
purchase a book today. Even if you don't need it for yourself, you should go to
Amazon, purchase a copy and giveit to afriend who hasn't discovered Maven.

Q. What's new in this version?

WEéll, in this version, we separated the Nexus chapter into a stand-alone book. If
you go to the Repository Management chapter, you'll seethat it is a place-holder
page and alink to anew, full book on Sonatype Nexus entitled Repository

M anagement with Nexus.

We've had some great feedback so far, please keep it coming. Y our feedback is
greatly appreciated, send it to book @sonatype.com. To keep yourself informed of
updates, read the book blog at: http://blogs.sonatype.com/book. Everyone at
Sonatype has had a hand in this version of the book, so the author is officialy
"Sonatype”.

Xiv

http://books.sonatype.com/nexus-book/
http://books.sonatype.com/nexus-book/
mailto:book@sonatype.com
http://blogs.sonatype.com/book

Foreword: 0.3

Tim O'Brien (tobrien@sonatype.com)
Evanston, IL
January 16, 2008

PS: Did | mention that you really should purchase a copy of this book?

XV

http://www.amazon.com/Maven-Definitive-Guide-Sonatype-Company/dp/0596517335/ref=sr_1_1?ie=UTF8&s=books&qid=1223866448&sr=8-1

Preface

Maven isabuild tool, a project management tool, an abstract container for running
build tasks. It isatool that has shown itself indispensable for projects that graduate
beyond the simple and need to start finding consistent ways to manage and build
large collections of interdependent modules and libraries which make use of tens
or hundreds of third-party components. It isatool that has removed much of the
burden of 3rd party dependency management from the daily work schedul e of
millions of engineers, and it has enabled many organizations to evolve beyond the
toil and struggle of build management into a new phase where the effort required
to build and maintain software is no longer alimiting factor in software design.

Thiswork isthe first attempt at a comprehensive title on Maven. It builds upon the
combined experience and work of the authors of all previous Maven titles, and you
should view it not as a finished work but as the first edition in along line of
updates to follow. While Maven has been around for afew years, the authors of
this book believe that it has just begun to deliver on the audacious promises it
makes. The authors, and company behind this book, Sonatype, believe that the
publishing of this book marks the beginning of a new phase of innovation and
development surrounding Maven and the software ecosystem that surroundsiit.

1. How to Use this Book

Pick it up, read some of the text on the pages. Once you reach the end of a page,
you'll want to either click on alink if you are looking at the HTML version, or, if
you have the printed book, you'll lift up a corner of a page and turn it. If you are
sitting next to a computer, you can type in some of the examples and try to follow
along. Please don't throw a book this large at anyone in anger.

This book is divided into three parts. Introductory Material, Part I, “Maven by
Example”, and Part 11, “Maven Reference’. The introductory material consists of
two chapters: Chapter 1, Introducing Apache Maven and Chapter 2, Installing and
Running Maven. Part |, “Maven by Example” introduces Maven by developing
some real examples and walking you through the structure of those examples

XVi

http://www.sonatype.com

Preface

providing motivation and explanation along the way. If you are new to Maven,
start with Part |, “Maven by Example’. Part |1, “Maven Reference” isless
introduction than reference, each chapter in Part I, “Maven Reference” deals with
afocused topic and dives into as much detail as possible about each topic. For
example, the Chapter 17, Writing Plugins chapter in Part I, “Maven Reference’
deals with writing plugins by providing afew examples and a series of lists and
tables.

While both Part I, “Maven by Example” and Part 11, “Maven Reference” provide
explanation, each part takes a different strategy. Where Part |, “Maven by
Example’ focuses on the context of a Maven project, Part 11, “Maven Reference”
focuses on asingle topic. You can skip around in the book, Part |, “Maven by
Example” is by no means a prerequisite for Part 11, “Maven Reference’, but you'll
have a better appreciation for Part |1, “Maven Reference” if you read through
Part |, “Maven by Example’. Maven is best learned by example, but once you've
gone through the examples, you are going to need a good reference to start
customizing Maven for your own environment.

2. Your Feedback

We didn't write this book so we could send off a Word document to our publisher
and go to alaunch party to congratul ate ourselves on ajob well done. This book
isn't "done"; in fact, this book will never be completely "done". The subject it
coversis constantly changing and expanding, and we consider this work an
ongoing conversation with the community. Publishing the book means that the real
work has just begun, and you, as areader, play apivota roleto helping to maintain
and improve this book. If you see something in this book that is wrong: a spelling
mistake, some bad code, a blatant lie, then you should tell us, send us an email at:

book @sonatype.com.

The ongoing relevance of this book depends upon your feedback. We want to
know what works and what doesn't work. We want to know if thereis any
information you couldn't understand. We especially want to know if you think that
the book is awful. Positive or negative comments are all welcome. Of course, we
reserve the right to disagree, but al feedback will be rewarded with a gracious

XVii

mailto:tobrien@sonatype.com

Preface

response.

3. Font Conventions

This book follows certain conventions for font usage. Understanding these
conventions up-front makesit easier to use this book.

Italic
Used for filenames, file extensions, URLS, application names, emphasis, and
new terms when they are first introduced.

Constant wi dth
Used for Java class names, methods, variables, properties, data types, database
elements, and snippets of code that appear in text.

Constant w dth bold
Used for commands you enter at the command line and to highlight new code
inserted in arunning example.

Constant width italic
Used to annotate output.

4. Maven Writing Conventions

The book follows certain conventions for naming and font usage in relation to
Apache Maven. Understanding these conventions up-front makesit easier to read
this book.

Compiler plugin
Maven plugins are capitalized.

creat e goal
Maven goal names are displayed in a constant width font.

XViii

Preface

"plugin”

Maven revolves around the heavy use of plug-ins but you won't find plugin
defined in the dictionary. This book writes the term as "plugin” both because it
Iseasier to read and write and because it is a standard throughout the Maven
community.

Maven Lifecycle, Maven Standard Directory Layout, Maven Plugin, Project
Object Model

Core Maven concepts are capitalized whenever they are being referenced in the
text.

goal Par anet er
A Maven goal parameter is displayed in a constant width font.

conpi | e phase
Lifecycle phases are displayed in a constant width font.

5. Acknowledgements

Sonatype would like to thank the following contributors. The people listed below
have provided feedback which has helped improve the quality of this book. Thanks
to Raymond Toal, Steve Daly, Paul Strack, Paul Reinerfelt, Chad Gorshing,
Marcus Biel, Brian Dols, Mangalaganesh Balasubramanian, Marius Kruger, and
Mark Stewart. Special thanks to Joel Costigliolafor helping to debug and correct
the Spring web chapter. Stan Guillory was practically a contributing author given
the number of corrections he posted to the book's Get Satisfaction. Thank you Stan.
Specia thanks to Richard Coasby of Bamboo for acting as the provisional
grammar consultant.

Thanks to our contributing authors including Eric Redmond.

Thanks to the following contributors who reported errors either in an email or
using the Get Satisfaction site: Paco Soberén, Ray Krueger, Steinar Cook, Henning
Saul, Anders Hammar, "george 007", "ksangani”, Niko Mahle, Arun Kumar,
Harold Shinsato, "mimil", "-thrawn-", Matt Gumbley. If you see your Get

XiX

Preface

Satisfaction username in this list, and you would like it replaced with your real
name, send an email to book @sonatype.com.

XX

mailto:book@sonatype.com

Chapter 1. Introducing Apache Maven

Although there are a number of references for Maven online, thereis no single,
well-written narrative for introducing Maven that can serve as both an authoritative
reference and an introduction. What we' ve tried to do with this effort is provide
such a narrative coupled with useful reference material.

1.1. Maven... What is 1t?

The answer to this question depends on your own perspective. The great mgjority
of Maven users are going to call Maven a*“build tool”: atool used to build
deployable artifacts from source code. Build engineers and project managers might
refer to Maven as something more comprehensive: a project management tool.
What is the difference? A build tool such as Ant isfocused solely on
preprocessing, compilation, packaging, testing, and distribution. A project
management tool such as Maven provides a superset of features found in abuild
tool. In addition to providing build capabilities, Maven can aso run reports,
generate aweb site, and facilitate communication among members of a working
team.

A more formal definition of Apache Maven: Maven is a project management tool
which encompasses a project object model, a set of standards, a project lifecycle, a
dependency management system, and logic for executing plugin goals at defined
phasesin alifecycle. When you use Maven, you describe your project using a
well-defined project object model, Maven can then apply cross-cutting logic from
a set of shared (or custom) plugins.

Don't let the fact that Maven is a"project management” tool scare you away. If you
were just looking for a build tool, Maven will do the job. In fact, the first few
chapters of this book will deal with the most common use case: using Maven to
build and distribute your project.

http://maven.apache.org

Introducing Apache Maven

1.2. Convention Over Configuration

Convention over configuration is a simple concept. Systems, libraries, and
frameworks should assume reasonabl e defaults. Without requiring unnecessary
configuration, systems should "just work". Popular frameworks such as Ruby on
Rails and EJB3 have started to adhere to these principles in reaction to the
configuration complexity of frameworks such asthe initial EJB 2.1 specifications.
Anillustration of convention over configuration is something like EJB3
persistence: all you need to do to make a particular bean persistent is to annotate
that classwith @ntity. Theframework assumes table and column names based
on the name of the class and the names of the properties. Hooks are provided for
you to override these default, assumed names if the need arises, but, in most cases,
you will find that using the framework-supplied defaults results in a faster project
execution.

Maven incorporates this concept by providing sensible default behavior for
projects. Without customization, source code is assumed to bein

${basedi r}/src/ main/java and resources are assumed to bein

${ basedi r}/src/ main/resources. Testsare assumed to bein
${basedir}/src/test,and aproject isassumed to produce a JAR file. Maven
assumes that you want the compile byte code to ${ basedi r}/target/cl asses and
then create adistributable JAR filein ${ basedi r}/ t ar get . While this might seem
trivial, consider the fact that most Ant-based builds have to define the locations of
these directories. Ant doesn't ship with any built-in idea of where source code or
resources might be in a project; you have to supply thisinformation. Maven's
adoption of convention over configuration goes farther than just smple directory
locations, Maven's core plugins apply a common set of conventions for compiling
source code, packaging distributions, generating web sites, and many other
processes. Maven's strength comes from the fact that it is "opinionated”, it hasa
defined life-cycle and a set of common plugins that know how to build and
assemble software. If you follow the conventions, Maven will require almost zero
effort - just put your source in the correct directory, and Maven will take care of
the rest.

One side-effect of using systems that follow "convention over configuration” is

http://www.rubyonrails.org/
http://www.rubyonrails.org/

Introducing Apache Maven

that end-users might feel that they are forced to use a particular methodology or
approach. Whileit is certainly true that Maven has some core opinions that
shouldn't be challenged, most of the defaults can be customized. For example, the
location of a project's source code and resources can be customized, names of JAR
files can be customized, and through the development of custom plugins, almost
any behavior can betailored to your specific environment's requirements. If you
don't careto follow convention, Maven will allow you to customize defaultsin
order to adapt to your specific requirements.

1.3. A Common Interface

Before Maven provided a common interface for building software, every single
project had someone dedicated to managing fully customized build system.
Developers had to take time away from developing software to learn about the
idiosyncrasies of each new project they wanted to contribute to. In 2001, you'd
have a completely different approach to building a project like Turbine than you
would to building a project like Tomcat. If a new source code analysistool came
out that would perform static analysis on source code, or if someone developed a
new unit testing framework, everybody would have to drop what they were doing
and figure out how to fit it into each project's custom build environment. How do
you run unit tests? There were a thousand different answers. This environment was
characterized by a thousand endless arguments about tools and build procedures.
The age before Maven was an age of inefficiency, the age of the "Build Engineer".

Today, most open source developers have used or are currently using Maven to
manage new software projects. Thistransition isless about developers moving
from one build tool to another and more about devel opers starting to adopt a
common interface for project builds. As software systems have become more
modular, build systems have become more complex, and the number of projects
has sky-rocketed. Before Maven, when you wanted to check out a project like
Apache ActiveMQ or Apache ServiceMix from Subversion and build it from
source, you really had to set aside about an hour to figure out the build system for
each particular project. What does the project need to build? What librariesdo |
need to download? Where do | put them? What goals can | execute in the build? In

3

http://turbine.apache.org/
http://tomcat.apache.org
http://activemq.apache.org
http://servicemix.apache.org

Introducing Apache Maven

the best case, it took afew minutes to figure out a new project's build, and in the
worst cases (like the old Servlet APl implementation in the Jakarta Project), a
project's build was so difficult it would take multiple hours just to get to the point
where a new contributor could edit source and compile the project. These days,
you check it out from source, and you run mvn install.

While Maven provides an array of benefits including dependency management and
reuse of common build logic through plugins, the core reason why it has succeeded
Isthat it has defined a common interface for building software. When you see that
aproject like Apache Wicket uses Maven, you can assume that you'll be able to
check it out from source and build it with mvn install without much hassle. Y ou
know where the ignition keys goes, you know that the gas pedal is on the
right-side, and the brake is on the | eft.

1.4. Universal Reuse through Maven Plugins

The core of Maven is pretty dumb, it doesn't know how to do much beyond parsing
afew XML documents and keeping track of alifecycle and afew plugins. Maven
has been designed to delegate most responsibility to a set of Maven Plugins which
can affect the Maven Lifecycle and offer access to goals. Most of the actionin
Maven happens in plugin goals which take care of things like compiling source,
packaging bytecode, publishing sites, and any other task which need to happenin a
build. The Maven you download from Apache doesn't know much about packaging
aWAR file or running JUnit tests; most of the intelligence of Maven is
implemented in the plugins and the plugins are retrieved from the Maven
Repository. In fact, the first time you ran something like mvn install with a
brand-new Maven installation it retrieved most of the core Maven plugins from the
Central Maven Repository. Thisis more than just atrick to minimize the download
size of the Maven distribution, thisis behavior which alows you to upgrade a
plugin to add capability to your project's build. The fact that Maven retrieves both
dependencies and plugins from the remote repository allows for universal reuse of
build logic.

The Maven Surefire plugin isthe plugin that is responsible for running unit tests.
Somewhere between version 1.0 and the version that is in wide use today someone

4

http://wicket.apache.org

Introducing Apache Maven

decided to add support for the TestNG unit testing framework in addition to the
support for JUnit. This upgrade happened in away that didn't break backwards
compatibility. If you were using the Surefire plugin to compile and execute JUnit 3
unit tests, and you upgraded to the most recent version of the Surefire plugin, your
tests continued to execute without fail. But, you gained new functionality, if you
want to execute unit testsin TestNG you now have that ability. Y ou also gained
the ability to run annotated JUnit 4 unit tests. Y ou gained al of these capabilities
without having to upgrade your Maven installation or install new software. Most
importantly, nothing about your project had to change aside from a version number
for aplugin asingle Maven configuration file called the Project Object Model
(POM).

It is this mechanism that affects much more than the Surefire plugin, projects are
compiled with a Compiler plugin, projects are turned into JAR files with a Jar
plugin, there are plugins for running reports, plugins for executing JRuby and
Groovy code, as well as pluginsto publish sites to remote servers. Maven has
abstracted common build tasks into plugins which are maintained centrally and
shared universally. If the state-of-the-art changes in any area of the build, if some
new unit testing framework is released or if some new tool is made available, you
don't have to be the one to hack your project's custom build system to support it.
Y ou benefit from the fact that plugins are downloaded from a remote repository
and maintained centrally. Thisiswhat is meant by universal reuse through Maven
plugins.

1.5. Conceptual Model of a "Project"

Maven maintains a model of a project. Y ou are not just compiling source code into
bytecode, you are developing a description of a software project and assigning a
unique set of coordinatesto a project. Y ou are describing the attributes of the
project. What is the project's license? Who devel ops and contributes to the project?
What other projects does this project depend upon? Maven is more than just a
"build tool", it is more than just an improvement on tools like make and Ant, itisa
platform that encompasses a new semantics related to software projects and
software development. This definition of a model for every project enables such

Introducing Apache Maven

features as:

Dependency Management

Because a project is defined a unique coordinate which consists of a group
identifier, artifact identifier, and version, projects can now use these coordinates
to declare dependencies.

Remote Repositories
Related to dependency management, we can use the coordinates defined in the
Maven Project Object Model (POM) to create repositories of Maven artifacts.

Universal Reuse of Build Logic

Plugins are coded to work with the Project Object Model (POM); they are not
designed to operate upon specific filesin known locations. Everything is
abstracted into the Model, plugin configuration and customization happensin
the model.

Tool Portability / Integration

Tools like Eclipse, NetBeans, and IntelliJ now have a common place to find
information about a project. Before the advent of Maven, every IDE had a
different way to store what was essentially a custom Project Object Model
(POM). Maven has standardized this description, and while each IDE continues
to maintain custom project files, they can be easily generated from the model.

Easy Searching and Filtering of Project Artifacts
Tools like Nexus allow you to index and search the contents of arepository
using the information stored in the POM.
Maven has provided a foundation for the beginnings of a consistent semantic
description of a software project.

1.6. Is Maven an alternative to XYZ?

So, sure, Maven is an alternative to Ant, but Apache Ant continues to be a great,
widely-used toal. It has been the reigning champion of Java builds for years, and

http://ant.apache.org

Introducing Apache Maven

you can integrate Ant build scripts with your project's Maven build very easily.
Thisisacommon usage pattern for aMaven project. On the other hand, as more
and more open source projects move to Maven as a project management platform,
working developers are starting to realize that Maven not only simplifies the task
of build management, it is helping to encourage a common interface between
developers and software projects. Maven is more of a platform than atool, while
you could consider Maven an aternative to Ant, you are comparing apples to
oranges. "Maven" includes more than just a build tool.

Thisisthe central point that makes all of the Maven vs. Ant, Maven vs. Buildr,
Maven vs. Gradle argumentsirrelevant. Maven isn't totally defined by the
mechanics of your build system, it isn't about scripting the various tasks in your
build as much as it is about encouraging a set of standards, acommon interface, a
life-cycle, a standard repository format, a standard directory layout, etc. It certainly
isn't about what format the POM happensto bein (XML vs. YAML vs. Ruby).
Maven is much larger than that, and Maven refers to much more than the tool
itself. When this book talks of Maven, it isreferring to the constellation of
software, systems, and standards that support it. Buildr, Ivy, Gradle, al of these
tools interact with the repository format that Maven helped create, and you could
just as easily use atool like Nexus to support a build written entirely in Buildr.
Nexusisintroduced in Chapter 16, Repository Management with Nexus.

While Maven is an alternative to many of these tools, the community needs to
evolve beyond seeing technology as a zero-sum game between unfriendly
competitors in a competition for users and developers. This might be how large
corporations relate to one another, but it has very little relevance to the way that
open source communities work. The headline "Whao's winning? Ant or Maven?"
isn't very constructive. If you force usto answer this question, we're definitely
going to say that Maven is a superior alternative to Ant as afoundational
technology for abuild; at the same time, Maven's boundaries are constantly
shifting and the Maven community is constantly trying to seek out new ways to
become more ecumenical, more inter-operable, more cooperative. The core tenets
of Maven are declarative builds, dependency management, repository managers,
universal reuse through plugins, but the specific incarnation of these ideas at any
given moment is less important than the sense that the open source community is

Introducing Apache Maven

collaborating to reduce the inefficiency of "enterprise-scale builds".

1.7. Comparing Maven with Ant

While the previous section should convince you that the authors of this book have
no interest in creating a feud between Apache Ant and Apache Maven, we are
cognizant of the fact that most organizations have to make a decision between the
Apache Ant and Apache Maven. In this section, we compare and contrast the tools.

Ant excels at build process, it isabuild system modeled after make with targets
and dependencies. Each target consists of a set of instructions which are coded in
XML. Thereisacopy task and aj avac task aswell asaj ar task. When you use
Ant, you supply Ant with specific instructions for compiling and packaging your
output. Look at the following example of asimplebui | d. xmi file:

Example 1.1. A Simple Ant build.xml file

<proj ect nanme="nmny-project" default="dist" basedir=".">
<descri pti on>
sinmple exanple build file

</ descri pti on>
<I-- set global properties for this build -->
<property nanme="src" |ocation="src/min/java"/>
<property name="buil d" |ocation="target/cl asses"/>
<property nane="dist" |ocation="target"/>

<target nane="init">

<l-- Create the tine stanp -->
<t st amp/ >
<l-- Create the build directory structure used by conpile -->
<nkdir dir="${build}"/>
</target>

<target name="conpile" depends="init"
description="conpile the source " >
<I-- Conpile the java code from ${src} into ${build} -->
<javac srcdir="${src}" destdir="${build}"/>
</target>

<target name="dist" depends="conpile"
description="generate the distribution" >
<l-- Create the distribution directory -->
<nmkdir dir="${dist}/lib"/>

Introducing Apache Maven

<l-- Put everything in ${build} into the M/Project-${DSTAMP}.jar file -->
<jar jarfile="${dist}/Ilib/MProject-${DSTAMP}.|ar" basedir="${build}"/>
</target>

<target nanme="cl ean"
descri ption="cl ean up" >
<I-- Delete the ${build} and ${dist} directory trees -->
<del ete dir="${build}"/>
<del ete dir="${dist}"/>
</target>
</ proj ect >

In this simple Ant example, you can see how you have to tell Ant exactly what to
do. Thereisacompile goal which includesthej avac task that compiles the source
inthe src/ mai n/ j ava directory to thet ar get / cl asses directory. Y ou haveto tell
Ant exactly where your source is, where you want the resulting bytecode to be
stored, and how to package thisall into a JAR file. While there are some recent
developments that help make Ant less procedural, a devel oper's experience with
Ant isin coding a procedural language writtenin XML.

Contrast the previous Ant example with a Maven example. In Maven, to create a
JAR file from some Java source, all you need to do is create a ssmple pom xni ,
place your source codein ${ basedi r}/ src/ mai n/ j ava and then run mvn install
from the command line. The example Maven pom xni that achieves the same
results as the simple Ant file listed in Example 1.1, “A Simple Ant build.xml file”
Isshown in Example 1.2, “A Sample Maven pom.xml”.

Example 1.2. A Sample Maven pom.xml

<pr oj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>ny-project</artifactld>
<ver si on>1. 0</ ver si on>
</ proj ect >

That's all you need in your pom xni . Running mvn install from the command line
will process resources, compile source, execute unit tests, create a JAR, and install
the JAR in alocal repository for reuse in other projects. Without modification, you

Introducing Apache Maven

can run mvn site and then find ani ndex. ht i fileintarget/sit e that contains
links to JavaDoc and a few reports about your source code.

Admittedly, thisis the simplest possible example project. A project which only
contains source code and which produces a JAR. A project which follows Maven
conventions and doesn't require any dependencies or customization. If we wanted
to start customizing the behavior, our pom xni isgoing to grow in size, and in the
largest of projects you can see collections of very complex Maven POMs which
contain agreat deal of plugin customization and dependency declarations. But,
even when your project's POM files become more substantial, they hold an entirely
different kind of information from the build file of asimilarly sized project using
Ant. Maven POMs contain declarations: "Thisisa JAR project”, and "The source
codeisinsrc/ mai n/java". Ant build files contain explicit instructions: "Thisis
project”, "The sourceisin src/ mai n/ j ava", "Run javac against this directory”,
"Put theresultsint ar get/ cl assses", "Create aJAR from the", etc. Where Ant
had to be explicit about the process, there was something "built-in" to Maven that
just knew where the source code was and how it should be processed.

The differences between Ant and Maven in this example are:

Apache Ant

» Ant doesn't have formal conventions like a common project directory
structure, you have to tell Ant exactly where to find the source and where to
put the output. Informal conventions have emerged over time, but they
haven't been codified into the product.

* Antisprocedural, you have to tell Ant exactly what to do and when to do it.
You had to tell it to compile, then copy, then compress.

* Ant doesn't have alifecycle, you had to define goals and goal dependencies.
Y ou had to attach a sequence of tasks to each goal manually.

Apache Maven

* Maven has conventions, it aready knew where your source code was because

10

Introducing Apache Maven

you followed the convention. It put the bytecodeint ar get/ cl asses, and it
produced a JAR filein target.

* Mavenisdeclarative. All you had to do was create apom xm file and put
your source in the default directory. Maven took care of the rest.

* Maven has alifecycle, which you invoked when you executed mvn install.
This command told Maven to execute the a series of sequence steps until it
reached the lifecycle. As a side-effect of thisjourney through the lifecycle,
Maven executed a number of default plugin goals which did things like
compile and create a JAR.

Maven has built-in intelligence about common project tasks in the form of Maven
plugins. If you wanted to write and execute unit tests, all you would needto do is
write the tests place them in ${ basedi r}/src/test/ | ava, add atest-scoped
dependency on either TestNG or JUnit, and run mvn test. If you wanted to deploy
aweb application and not a JAR, all you would need to do is change you project
type to (war) and put your docroot in ${ basedi r}/ src/ mai n/ webapp. Sure, you
can do all of thiswith Ant, but you will be writing the instructions from scratch. In
Ant, you would first have to figure out where the JUnit JAR file should be, then
you would have to create a classpath that includes the JUnit JAR file, then you
would tell Ant where it should look for test source code, write a goal that compiles
the test source to bytecode, execute the unit tests with JUnit.

Without supporting technologies like antlibs and vy (even with these supporting
technologies), Ant has the feeling of a custom procedural build. An efficient set of
Maven POMs in a project which adheres to Maven's assumed conventions has
surprisingly little XML compared to the Ant alternative. Another benefit of Maven
Is the reliance on widely-shared Maven plugins. Everyone uses the Maven Surefire
plugin for unit testing, and if someone adds support for anew unit testing
framework, you can gain new capabilities in your own build by just incrementing
the version of a particular Maven plugin in your project's POM.

The decision to use Maven or Ant isn't abinary one, and Ant still hasaplaceina
complex build. If your current build contains some highly customized process, or if
you've written some Ant scripts to complete a specific process in a specific way

11

Introducing Apache Maven

that cannot be adapted to the Maven standards, you can still use these scripts with
Maven. Ant is made available as a core Maven plugin. Custom Maven plugins can
be implemented in Ant, and Maven projects can be configured to execute Ant
scripts within the Maven project lifecycle.

1.8. Summary

Thisintroduction has been kept purposefully short. We have covered abasic
outline of what Maven is, and how it stacks up to and improves upon other build
tools throughout time. The next chapter will dive into a simple project and show
how Maven can perform phenomenal tasks with the smallest amount of
configuration.

12

Chapter 2. Installing and Running Maven

This chapter contains very detailed instructions for installing Maven on a number
of different platforms. Instead of assuming alevel of familiarity with installing
software and setting environment variables, we've opted to be as thorough as
possible to minimize any problems that might arise do to a partial installation. The
only thing this chapter assumes is that you've already installed a suitable Java
Development Kit (JDK). If you are just interested in installation, you can move on
to the rest of the book after reading through Downloading Maven and Installing
Maven. If you are interested in the details of your Maven installation, this entire
chapter will give you an overview of what you've installed and the meaning of the
Apache Software License, Version 2.0.

2.1. Verify your Java Installation

While Maven can run on Java 1.4, this book assumes that you are running at least
Java 5. Go with the most recent stable Java Development Kit (JDK) available for
your operating system. Either Java 5 or Java 6 will work with all of the examples
in this book.

%j ava -version

java version "1.6.0_02"

Java(TM SE Runtime Environnent (build 1.6.0_02-b06)

Java Hot Spot (TM Cient VM (build 1.6.0_02-b06, mni xed node, sharing)

Maven works with all certified Java™ compatible development kits, and a few
non-certified implementations of Java. The examplesin this book were written and
tested against the official Java Development Kit releases downloaded from the Sun
Microsystems web site. If you're working with aLinux distribution, you may need
to download Sun’s JDK yourself and make sureit’s the version you' re invoking
(by running java -version). Now that Sun has open-sourced Java, this will
hopefully improve in the future, and we' Il get the Sun JRE and JDK by default
even in purist Linux distributions. Until that day, you may need to do some of your
own downloading.

13

Installing and Running Maven

2.2. Downloading Maven

Y ou can download Maven from the Apache Maven project website at
http://maven.apache.org/download.html.

When downloading Maven, make sure you choose the latest version of Apache
Maven from the Maven website. The latest version of Maven when this book was
written was Maven 2.0.10. If you are not familiar with the Apache Software
License, you should familiarize yourself with the terms of the license before you
start using the product. More information on the Apache Software License can be
found in Section 2.9, “About the Apache Software License”.

2.3. Installing Maven

There are wide differences between operating systems such as Mac OS X and
Microsoft Windows, and there are subtle differences between different versions of
Windows. Luckily, the process of installing Maven on all of these operating
systemsis relatively painless and straightforward. The following sections outline
the recommended best-practice for installing Maven on avariety of operating
systems.

2.3.1. Installing Maven on Mac OSX

Y ou can download a binary release of Maven from
http://maven.apache.org/download.html. Download the current release of Mavenin
aformat that is convenient for you to work with. Pick an appropriate place for it to
live, and expand the archive there. If you expanded the archive into the directory

/ usr/ 1 ocal / apache- maven- 2. 0. 10, you may want to create a symbolic link to
make it easier to work with and to avoid the need to change any environment
configuration when you upgrade to a newer version:

fusr/local %cd /usr/local

lusr/local %In -s apache-maven-2.0.10 nmaven
/usr/local % export M2_HOVE=/usr/| ocal / maven
/usr/local % export PATH=${M2_HOME}/ bi n: ${ PATH}

14

http://maven.apache.org/download.html
http://maven.apache.org/download.html

Installing and Running Maven

Once Maven isinstalled, you need to do a couple of things to make it work
correctly. You need to add its bi n directory in the distribution (in this example,
/ usr/1 ocal / maven/ bi n) to your command path. Y ou also need to set the
environment variable v2_HOVE to the top-level directory you installed (in this
example, / usr/ I ocal / maven).

Note

Installation instructions are the same for both OSX Tiger and OSX
Leopard. It has been reported that Maven 2.0.6 is shipping with a
preview release of XCode. If you have installed X Code, run mvn from
the command-line to check availability. XCode installs Maven in

/ usr/ shar e/ maven. We recommend installing the most recent version of
Maven 2.0.10 as there have been a number of critical bug fixes and
improvements since Maven 2.0.6 was rel eased.

You'll need to add both M2_HovE and PATH to a script that will run every time you
login. To do this, add the following linesto . bash_I ogi n.

export M2_HOVE=/usr/| ocal / maven
export PATH=${M2_HOVE}/ bi n: ${ PATH}

Once you've added these lines to your own environment, you will be able to run
Maven from the command line.

Note
These installation instructions assume that you are running bash.

2.3.1.1. Installing Maven on OSX using MacPorts
If you are using MacPorts, you can install the maven2 port by executing the
following command-line:

$ sudo port install maven2

Password: *****x

--> Fetching nmaven2

---> Attenpting to fetch apache-nmaven-2.0.10-bin.tar.bz2 from http://ww. apache. org/ di st/ m
--> Verifying checksun(s) for maven2

15

Installing and Running Maven

Extracti ng naven2

Confi guring maven2

Bui |l di ng maven2 with target all
St agi ng maven2 i nto destroot
Installing maven2 2.0.10_0
Activating maven2 2.0.10_0

d eani ng naven2

(R T T R R B |
VVVYVYVVYV

For more information about the maven2 port, see the maven2 portfi | e. FOor more
information about MacPorts and how to install it, see the MacPorts project page.

2.3.2. Installing Maven on Microsoft Windows

Installing Maven on Windows is very similar to installing Maven on Mac OSX, the
main differences being the installation location and the setting of an environment
variable. This book assumes a Maven installation directory of c: \ Program

Fi | es\ apache- maven- 2. 0. 10, but it won't make a difference if you install Maven
in another directory aslong as you configure the proper environment variables.
Once you've unpacked Maven to the installation directory, you will need to set two
environment variables—PATH and M2_ HOVE. To Set these environment variables
from the command-line, typein the following commands:

C \Users\tobrien > set M2_HOVE=c:\ Program Fi | es\ apache- naven-2. 0. 10
C \Users\tobrien > set PATH=%ATHY% %v2_HOVE% bi n

Setting these environment variables on the command-line will allow you to run
Maven in your current session, but unless you add them to the System environment
variables through the control panel, you'll have to execute these two lines every
time you log into your system. Y ou should modify both of these variables through
the Control Panel in Microsoft Windows.

2.3.3. Installing Maven on Linux

To install Maven on a Linux machine follow the exact procedure outlined in
Section 2.3.1, “Installing Maven on Mac OSX”.

2.3.4. Installing Maven on FreeBSD or OpenBSD

16

http://trac.macports.org/browser/trunk/dports/java/maven2/Portfile
http://www.macports.org/index.php

Installing and Running Maven

To install Maven on a FreeBSD or OpenBSD machine, follow the exact procedure
outlined in Section 2.3.1, “Installing Maven on Mac OSX”.

2.4. Testing a Maven Installation

Once Maven isinstalled, you can check the version by running mvn -v from the
command-line. If Maven has been installed, you should see something resembling
the following output.

$ nvn -v
Maven 2.0. 10

If you see this output, you know that Maven is available and ready to be used. If
you do not see this output, and your operating system cannot find the mvn
command, make sure that your PATH environment variable and v2_HOVE
environment variable have been properly set.

2.5. Maven Installation Detalils

Maven's download measuresin at roughly 1.5 Mi B3, it has attained such aslim
download size because the core of Maven has been designed to retrieve plugins
and dependencies from a remote repository on-demand. When you start using
Maven, it will start to download plugins to alocal repository described in
Section 2.5.1, “User-specific Configuration and Repository”. In case you are
curious, let's take a quick look at what isin Maven'sinstallation directory.>

/usr/local/maven $ Is -pl
LI CENSE. t xt

NOTI CE. t xt

README. t xt

bi n/

boot /

3Ever purchased a 200 GB hard drive only to realize that it showed up as less than 200 GiB when you
installed it? Computers understand Gibibytes, but retailers sell products using Gigabytes. MiB stands
for Mebibyte which is defined as 2%° or 1024, These binary prefix standards are endorsed by the | EEE,
CIPM, and and IEC. For more information about Kibibytes, Mebibytes, Gibibytes, and Tebibytes see
http://en.wikipedia.org/wiki/M ebibyte,

17

http://en.wikipedia.org/wiki/Mebibyte

Installing and Running Maven

conf/
lib/

LI CENSE. t xt contains the software license for Apache Maven. Thislicenseis
described in some detail later in the section Section 2.9, “ About the Apache
Software License”.” NOTI CE. t xt contains some notices and attributions required
by libraries that Maven depends on. README. t xt contains some installation
Instructions. bi n/ contains the nvn script that executes Maven. boot / contains a
JARfile (cl asswor ds- 1. 1. j ar) that isresponsible for creating the Class Loader in
which Maven executes. conf/ containsaglobal settings. xnl that can be used to
customize the behavior of your Maven installation. If you need to customize
Maven, it is customary to override any settingsin asettings. xm file stored in
~/.n2.1ib/ containsasingle JAR file (maven- core- 2. 0. 10- uber . j ar) that
contains the core of Maven.

Note

Unless you are working in a shared Unix environment, you should avoid
customizing the set ti ngs. xm in M2_HOVE/ conf . Altering the global
settings. xm fileinthe Maven installation itself isusually unnecessary
and it tends to complicate the upgrade procedure for Maven as you'll
have to remember to copy the customized set t i ngs. xni from the old
Maven installation to the new installation. If you need to customize
settings. xnl , you should be editing your own set ti ngs. xm in

~/ .2/ settings.xnl.

2.5.1. User-specific Configuration and Repository

Once you start using Maven extensively, you'll notice that Maven has created some
local user-specific configuration files and alocal repository in your home
directory. In~/ . ne there will be:

~/.m2/settings.xml
A file containing user-specific configuration for authentication, repositories,

18

Installing and Running Maven

and other information to customize the behavior of Maven.

~/.m2/repository/

This directory contains your local Maven repository. When you download a
dependency from aremote Maven repository, Maven stores a copy of the
dependency in your local repository.

Note

In Unix (and OSX), your home directory will be referred to using atilde
(i.e. ~/ bi n refersto / hone/ t obri en/ bi n). In Windows, we will also be
using ~ to refer to your home directory. In Windows XP, your home
directory isC:\ Docunents and Settings\tobrien,andinWindows
Vista, your home directory isC: \ User s\ t obr i en. From this point
forward, you should translate paths such as ~/ n2 to your operating
system's equivalent.

2.5.2. Upgrading a Maven Installation

If you'veinstalled Maven on aMac OSX or Unix machine according to the details
in Section 2.3.1, “Installing Maven on Mac OSX” and Section 2.3.3, “Installing
Maven on Linux”. It should be easy to upgrade to newer versions of Maven when
they become available. Simply install the newer version of Maven

(/usr/1 ocal / maven- 2. f ut ur e) next to the existing version of Maven

(/ usr/ 1 ocal / maven- 2. 0. 10). Then switch the symbolic link / usr /1 ocal / maven
from/usr/ 1 ocal / maven-2. 0. 10 t0/ usr/ | ocal / maven- 2. f ut ur e. SiNCe, you've
aready set your M2_HOVE variableto point to/ usr /1 ocal / maven, you won't need to
change any environment variables.

If you have installed Maven on a Windows machine, simply unpack Maven to
c:\ Program Fi | es\ maven- 2. f ut ur e and update your M2_HOVE variable.

Note
If you have any customizationsto the global settings. xni in
M2_HOVE/ conf , you will need to copy thisset ti ngs. xni to the conf

19

Installing and Running Maven

directory of the new Maven installation.

2.5.3. Upgrading from Maven 1.x to Maven 2.x

If you are upgrading from Maven 1 to Maven 2, you are going to be using an
entirely new POM and repository structure. If you have already created a custom
Maven 1 repository to hold custom artifacts, you can use the Nexus Repository
Manager to expose aMaven 1 repository in aformat that can be understood by
Maven 2 clients. For more information about the Nexus Repository Manager, see
Chapter 16, Repository Management with Nexus. In addition to tools like Nexus,
you can also configure references to repositories to use the | egacy layout format.
For more information about configuring a reference to alegacy repository, see
Section A.2.8, “Repositories’.

If you have a set of Maven 1 projects, you may want to know about the Maven
One Plugin. The Maven One Plugin was designed to help projects migrate from
Maven 1 to Maven 2. If you have aMaven 1 project, you can convert the project's
POM by running the one: convert goal asfollows:

$ cd ny-proj ect
$ nvn one: convert

one: convert Will read aproj ect.xn and produce apom xni that is compatible
with Maven 2. If you've customized a Maven 1 build using Jelly scriptin a

maven. xm file, you will need to investigate other options. While Maven 1
emphasized Jelly scripting for customizing builds, Maven 2 favors custom plugins
or customization through scripting Plugins or the Maven Antrun Plugin.

The most important thing to know about when upgrading from Maven 1 to Maven
2 isthat Maven 2 isa completely different build framework. Maven 2 introduces
the concept of the Maven Lifecycle and redefines the rel ationships between
plugins. If you upgrade from Maven 1 to Maven 2, you need to invest sometimein
learning about the differences between the two versions. Although it might seem
straightforward to start learning about the new POM structure, you should focus on
the Lifecyclefirst. If you understand the Maven Lifecycle, you will be able to use

20

Installing and Running Maven

Maven to its fullest potential.

2.6. Uninstalling Maven

Most of the installation instructions involve unpacking of the Maven distribution
archivein adirectory and setting of various environment variables. If you need to
remove Maven from your computer, all you need to do is delete your Maven
installation directory and remove the environment variables. Y ou will also want to
delete the ~/ . n2 directory asit contains your local repository.

2.7. Getting Help with Maven

While this book aims to be a comprehensive reference, there are going to be topics
we will miss and special situations and tips which are not covered. While the core
of Maven isvery ssimple, the real work in Maven happens in the plugins, and there
are too many plugins available to cover them all in one book. Y ou are going to
encounter problems and features which have not been covered in this book; in
these cases, we suggest searching for answers at the following locations:

http://maven.apache.org
Thiswill be thefirst place to ook, the Maven web site contains a wealth of

information and documentation. Every plugin has afew pages of documentation
and there are a series of "quick start" documents which will be helpful in
addition to the content of this book. While the Maven site contains a wealth of
information, it can also be afrustrating, confusing, and overwhelming. Thereis
a custom Google search box on the main Maven page that will search known
Maven sites for information. This provides better results than a generic Google
search.

Maven User Mailing List

The Maven User mailing list isthe place for usersto ask questions. Before you
ask aquestion on the user mailing list, you will want to search for any previous
discussion that might relate to your question. It is bad form to ask a question

21

http://maven.apache.org

Installing and Running Maven

that has already been asked without first checking to see if an answer already
existsin the archives. There are a number of useful mailing list archive
browsers, we've found Nabble to the be the most useful. Y ou can browse the
User mailing list archives here:
http://www.nabble.com/Maven---Users-f178.html. Y ou can join the user
mailing list by following the instructions available here
http://maven.apache.org/mail-lists.html.

http://www.sonatype.com
Sonatype maintains an online copy of this book and other tutorials related to

Apache Maven.

Note

Despite the best efforts of some very dedicated Maven contributors, the
Maven web site is poorly organized and full of incomplete (and
sometimes) misleading snippets of documentation. Throughout the
Maven community thereis alack of acommon standards for plugin
documentation, some plugins are heavily documented while others lack
even the most basic instructions for usage. Often your best bet isto
search for a solution in the archives of the user mailing list. If you realy
want to help submit a patch to the Maven site (or this book).

2.8. Using the Maven Help Plugin

Throughout the book, we will be introducing Maven plugins, talking about Maven
Project Object Model (POM) files, settings files, and profiles. There are going to
be times when you need atool to help you make sense of some of the models that
Maven is using and what goals are available on a specific plugin. The Maven Help
plugin allows you to list active Maven profiles, display an effective POM, print the
effective settings, or list the attributes of a Maven plugin.

Note
For a conceptual overview of the POM and plugins see Chapter 3, A

22

http://www.nabble.com/Maven---Users-f178.html
http://maven.apache.org/mail-lists.html
http://www.sonatype.com

Installing and Running Maven

Smple Maven Project.

The Maven Help plugin has four goals. The first three goals—act i ve- profil es,
ef fective-pom and ef f ecti ve- set t i ngs—describe a particular project and must
be run in the base directory of aproject. The last goal—descri be—is dlightly
more complex, showing you information about a plugin or aplugin goa. The
following commands provide some general information about the four goals:

help:active-profiles
Lists the profiles (project, user, global) which are active for the build.

hel p:effective-pom
Displays the effective POM for the current build, with the active profiles
factored in.

hel p:effective-settings
Prints out the calculated settings for the project, given any profile enhancement
and the inheritance of the global settingsinto the user-level settings.

help:describe

Describes the attributes of a plugin. This need not run under an existing project
directory. You must at least givethe groupl d and arti fact | d of the plugin you
wish to describe.

2.8.1. Describing a Maven Plugin

Once you start using Maven, you'll spend most of your time trying to get more
information about Maven Plugins. How do plugins work? What are the
configuration parameters? What are the goals? The hel p: descri be goal is
something you'll be using very frequently to retrieve this information. With the

pl ugi n parameter you can specify a plugin you wish to investigate, passing in
either the plugin prefix (e.g. maven- hel p- pl ugi n ashel p) or the

groupl d: artifact[:version],whereversionisoptional. For example, the
following command uses the Help plugin'sdescri be goal to print out information

23

Installing and Running Maven

about the Maven Help plugin.

$ nmvn hel p: descri be - Dpl ugi n=hel p

Group Id: org.apache. maven. pl ugi ns
Artifact 1d: maven-hel p-pl ugin

Ver si on: 2.0.1
Goal Prefix: help
Descri pti on:

The Maven Hel p plugin provides goals ainmed at hel ping to nake sense out of
the build environnent. It includes the ability to view the effective
POM and settings files, after inheritance and active profiles
have been applied, as well as a describe a particular plugin goal to give
usage i nfornmation.

Executing the descri be goal with the pl ugi n parameter printed out the Maven
coordinates for the plugin, the goal prefix, and a brief description of the plugin.
While thisinformation is helpful, you'll usually be looking for more detail than
this. If you want the Help plugin to print afull list of goals with parameters,
execute the hel p: descri be goal with the parameter f ul | asfollows:

$ mvn hel p: descri be -Dpl ugi n=hel p -Dful |

Goup Id: org.apache. maven. pl ugi ns
Artifact 1d: nmaven-hel p-pl ugin

Ver si on: 2.0.1
Goal Prefix: help
Descri pti on:

The Maven Hel p plugin provides goals ained at hel ping to nake sense out of
the build environment. It includes the ability to view the effective
POM and settings files, after inheritance and active profiles
have been applied, as well as a describe a particular plugin goal to
gi ve usage i nformation.

Mbj os:
CGoal : 'active-profiles'
Descri pti on:

Lists the profiles which are currently active for this build.

| npl enent ati on: org. apache. maven. pl ugi ns. hel p. Acti veProfil esMj o
Language: java

Par amret er s:

24

Installing and Running Maven

[0] Narme: out put

Type: java.io.File
Requi red: fal se
Directly editable: true
Descri pti on:

This is an optional paraneter for a file destination for the output of
this mojo...the listing of active profiles per project.

[1] Name: projects

Type: java.util.List
Requi red: true

Directly editable: false
Descri ption:

This is the list of projects currently slated to be built by Maven.

removed the other goals ...

Thisoption is great for discovering all of aplugin's goals aswell astheir
parameters. But sometimes thisis far more information than necessary. To get
information about a single goal, set the noj o parameter as well asthe pl ugi n
parameter. The following command lists all of the information about the Compiler
plugin's conpi | e goal.

$ mvn hel p: descri be - Dpl ugi n=conpi | er - Dmoj o=conpile -Dful |

Note
What? A Mojo? In Maven, aPlugin goal isknown asa"Mojo".

2.9. About the Apache Software License
Apache Maven isreleased under the Apache Software License, Version 2.0. If you

25

Installing and Running Maven

want to read thislicense, you can read ${ M2_HOVE} / LI CENSE. t xt or read this
license on the Open Source Initiative's web site here
http://www.opensource.org/licenses/apache?.0.php.

There's agood chance that, if you are reading this book, you are not alawyer. If
you are wondering what the Apache License, Version 2.0 means, the Apache
Software Foundation has assembled avery helpful Frequently Asked Questions
(FAQ) page about the license available here
http://www.apache.org/foundation/licence-FAQ.html. Here's is the answer to the
guestion "I am not alawyer. What doesit all mean?"

[Thislicense] allows you to:

 freely download and use Apache software, in whole or in part, for
personal, company internal, or commercial purposes;

 use Apache software in packages or distributions that you create.
It forbids you to:

* redistribute any piece of Apache-originated software without proper
attribution;

» use any marks owned by The Apache Software Foundation in any way
that might state or imply that the Foundation endorses your
distribution;

» use any marks owned by The Apache Software Foundation in any way
that might state or imply that you created the Apache softwarein
guestion.

It requires you to:

* include acopy of the license in any redistribution you may make that
includes Apache software;

 provide clear attribution to The Apache Software Foundation for any
distributions that include A pache software.

26

http://www.opensource.org/licenses/apache2.0.php
http://www.apache.org/foundation/licence-FAQ.html

Installing and Running Maven

It does not require you to:

« include the source of the Apache software itself, or of any
modifications you may have made to it, in any redistribution you may
assemble that includesiit;

» submit changes that you make to the software back to the Apache
Software Foundation (though such feedback is encouraged).

This ends the installation information. The next part of the book contains Maven
examples.

27

Part |. Maven by Example

Thefirst Maven book was Maven: A Developer’s Notebook (O’ Reilly). That book
introduced Maven in a series of steps via a conversation between you and a
colleague who already knew how to use Maven. The idea behind the (now-retired)
Developer’s Notebook series was that devel opers learn best when they are sitting
next to other devel opers and going through the same thought processes, learning to
code by doing and experimenting. Although the series was successful, the
Notebook format had limitations. Notebooks are, by design, “goal-focused” books
that take you through a series of steps to achieve very specific goals. By contrast,
larger reference books (such as O’ Reilly’ s animal books) provide comprehensive
reference material that cover the entirety of the topic.

If you read Maven: A Developer’s Notebook, you' Il learn how to create asimple
project or aproject that createsa WAR from a set of sourcefiles. But if you want
to find out the specifics for something like the Assembly plugin, you'll hit an
impasse. Because there is no well-written reference material for Maven, you have
to hunt through plugin documentation on the Maven web site or cull from a series
of mailing lists. Once you really dig into Maven, you end up reading through
thousands of HTML pages on the Maven site written by hundreds of different
developers, each with a different idea of what it means to document a plugin.
Despite the best efforts of well-meaning volunteers, reading through plugin
documentation on the Maven siteis, at best, frustrating, and at worst, a reason to
abandon Maven. Quite often, Maven users get stuck because they just can’t find an
answer.

This lack of an authoritative (or definitive) reference manual has held Maven back
for afew years, and it has been something of a dampening force on Maven
adoption. With Maven: The Definitive Guide, we intend to change that situation by
providing a comprehensive referencein Part I, “Maven Reference”. In Part I,
we're preserving the narrative progression of a Developer’s Notebook; it is
valuable material that helps people learn Maven by example. In this part, we
“introduce by doing,” and in Part |1, “Maven Reference”, we fill in the blanks and
dig into the details. Where Part 11, “Maven Reference’” might use areference table

28

and a program listing detached from an example project, Part 11 is motivated by
real examples.

After reading this part, you should have everything you need to start using Maven.
Y ou might need to refer to Part 11, “Maven Reference” only when you start
customizing Maven by writing custom plugins or when you want more detail about
specific plugins.

29

Chapter 3. A Simple Maven Project

3.1. Introduction

In this chapter, we introduce a simple project created from scratch using the Maven
Archetype plugin. This elementary application provides us with the opportunity to
discuss some core Maven concepts while you follow along with the devel opment
of the project.

Before you can start using Maven for complex, multimodul e builds, we have to
start with the basics. If you' ve used Maven before, you'll notice that it does a good
job of taking care of the details. Y our builds tend to “just work,” and you only
really need to dive into the details of Maven when you want to customize the
default behavior or write a custom plugin. However, when you do need to dive into
the details, a thorough understanding of the core conceptsis essential. This chapter
aims to introduce you to the ssimplest possible Maven project and then presents
some of the core concepts that make Maven a solid build platform. After reading it,
you'll have afundamental understanding of the build lifecycle, Maven repositories,
dependency management, and the Project Object Model (POM).

3.1.1. Downloading this Chapter's Example

This chapter develops a very ssmple example which will be used to explore core
concepts of Maven. If you follow the steps described in this chapter, you shouldn't
need to download the examples to recreate the code produced by the Maven. We
will be using the Maven Archetype plugin to create this simple project and this
chapter doesn't modify the project in any way. If you would prefer to read this
chapter with the final example source code, this chapter's example project may be
downloaded with the book's example code at
http://www.sonatype.com/book/mvn-examples-1.0.zip or
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz. Unzip thisarchive in any
directory, and then go to the cho3/ directory. Inthe cho3/ directory you will see a
directory named si npl e/ which contains the source code for this chapter. If you

30

http://www.sonatype.com/book/mvn-examples-1.0.zip
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz

A Simple Maven Project

wish to follow along with the example code in aweb browser, go to
http://www.sonatype.com/book/examples-1.0 and click on the cho3/ directory.

3.2. Creating a Simple Project

To start anew Maven project, use the Maven Archetype plugin from the command
line.

$ nmvn archetype: create -Dgroupl d=org. sonat ype. mavenbook. ch03 \
-Dartifactld=sinple \
- DpackageNane=or g. sonat ype. mavenbook
[INFQ Scanning for projects...
[INFQ Searching repository for plugin with prefix: 'archetype'.
[INFQ artifact org.apache. maven. pl ugi ns: maven- ar chet ype- pl ugi n: checki ng for
updates from central

[INFQ - - m s mm e oo oo oo oo
[NFQ Buil ding Maven Default Project

[I NFQ t ask- segnent: [archetype:create] (aggregator-style)

[INFQ - mm s mmm s e e e e o e e e oo

[INFQ [archetype:create]

[INFQ artifact org.apache. maven. ar chet ypes: maven- ar chet ype- qui ckstart: \
checki ng for updates from central

[INFQ Paraneter: groupld, Value: org.sonatype. mavenbook. ch03

[NFQ Paraneter: packageNane, Val ue: org.sonatype. navenbook

[NFQ Paraneter: basedir, Value: /Users/tobrien/svnw sonatype/exanpl es

[NFQ Paraneter: package, Val ue: org.sonatype. mavenbook

[INFQ Paraneter: version, Value: 1.0-SNAPSHOT

[INFQ Paraneter: artifactld, Value: sinple

[INFQ * End of debug info fromresources from generated POM *

[INFQ Archetype created in dir: /Users/tobrien/svnw sonatype/ exanpl es/sinpl e

mvn isthe Maven 2 command. ar chet ype: creat e is called aMaven goal. If you
are familiar with Apache Ant, aMaven goal is analogous to an Ant target; both
describe a unit of work to be completed in abuild. The - Dnane=val ue pairs are
arguments that are passed to the goal and take the form of - D properties, similar to
the system property options you might pass to the Java Virtual Machine viathe
command line. The purpose of the ar chet ype: creat e goal isto quickly create a
project from an archetype. In this context, an archetype is defined as “an original
model or type after which other similar things are patterned; a prototype.” 1A
number of archetypes are available in Maven for anything from a simple Swing

1The American Heritage Dictionary of the English Language.

31

http://www.sonatype.com/book/examples-1.0

A Simple Maven Project

application to a complex web application. In this chapter, we are going to use the
most basic archetype to create a simple skeleton starter project. The pluginisthe
prefix ar chet ype, and the goal iscreat e.

Once we've generated a project, take alook at the directory structure Maven
created under the simple directory:

sinmpl e/ O
si mpl e/ pom xm O
/src/
/src/ mai n/ O
/ mai n/java
[src/test/O
/test/java

This generated directory adheres to the Maven Standard Directory Layout. We'll
get into more details later in this chapter, but for now, let’sjust try to understand
these few basic directories:

[0 The Maven Archetype plugin creates a directory that matches the
artifact!|d. Simple. Thisisknown asthe project’ s base directory.

[0 Every Maven project has what is known as a Project Object Model (POM) in
afile named pom xni . Thisfile describes the project, configures plugins, and
declares dependencies.

[0 Our project's source code and resources are placed under sr ¢/ mai n. In the
case of our simple Java project thiswill consist of afew Java classes and
some propertiesfile. In another project, this could be the document root of a
web application or configuration files for an application server. In aJava
project, Java classes are placed in sr ¢/ mai n/ j ava and classpath resources are
placed in src/ mai n/ r esour ces.

[0 Our project'stest cases are located insrc/ t est . Under this directory, Java
classes such as JUnit or TestNG testsare placed insrc/test/j ava, and
classpath resources for tests are located insrc/ t est/ r esour ces.

The Maven Archetype plugin generated a single class

or g. sonat ype. mavenbook. App, Which is a 13-line Java class with a static main

function that prints out a message:

package org. sonat ype. mavenbook

32

A Simple Maven Project

/**

* Hello worl d!

*

*/

public class App

{
public static void main(String[] args)
{

Systemout.println("Hello World!'");

}

}

The simplest Maven archetype generates the simplest possible program: a program
which prints "Hello World!" to standard output.

3.3. Building a Simple Project

Once you have created the project with the Maven Archetype plugin by following
the directions from the previous section (Section 3.2, “Creating a Simple Project”)
you will want to build and package the application. To do so, run mvn install from
the directory that contains the pom xni :

$ nvn install
[NFQ Scanning for projects...

I O I e L
[INFQ Building sinple

[I NFQ task-segnent: [install]

N O I L R P

[INFQ [resources:resources]

[INFQ Using default encoding to copy filtered resources.

[INFQ [conpiler:conpile]

[INFQ Conpiling 1 source file to /sinplel/target/classes

[INFQ [resources:testResources]

[INFQ Using default encoding to copy filtered resources.

[INFQ [conpiler:testConpile]

[INFQ Compiling 1 source file to /sinple/target/test-classes
[INFQ [surefire:test]

[INFQ Surefire report directory: /sinple/target/surefire-reports

Runni ng org. sonat ype. navenbook. AppTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Tine el apsed: 0.105 sec

Resul ts :

33

A Simple Maven Project

Tests run: 1, Failures: 0, Errors: 0, Skipped: O

[INFQ [jar:jar]
[INFQ Building jar: /sinplel/target/sinple-1.0-SNAPSHOT. | ar
[INFQ [install:install]
[INFQ Installing /sinplel/target/sinple-1.0-SNAPSHOT.jar to \
~/ . m2/ reposi t ory/ com sonat ype/ maven/ ch03/ si npl e/ 1. 0- SNAPSHOT/ \
si npl e- 1. 0- SNAPSHOT. | ar

You've just created, compiled, tested, packaged, and installed the simplest possible
Maven project. To prove to yourself that this program works, run it from the
command line.

$ java -cp target/sinple-1.0-SNAPSHOT. j ar org. sonat ype. mavenbook. App
Hell o Worl d!

3.4. Simple Project Object Model

When Maven executes, it |00ks to the Project Object Model for information about
the project. The POM answers such questions as. What type of project isthis?
What is the project’s name? Are there any build customizations for this project?
Example 3.1, “Simple project'spom xmi file” showsthe default pom xmi file
created by the Maven Archetype plugin’s create goal.

Example 3.1. Simple project'spom xm file

<project xm ns="http:// maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
http://maven. apache. or g/ maven-v4_0_ 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook. ch03</ gr oupl d>
<artifactld>sinple</artifactld>
<packagi ng>j ar </ packagi ng>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<nane>si npl e</ name>
<url >http://maven. apache. or g</url >
<dependenci es>
<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<ver si on>3. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>

A Simple Maven Project

</ dependenci es>
</ proj ect >

Thispom xni fileisthe most basic POM you will ever deal with for aMaven
project, usually a POM fileis considerably more complex: defining multiple
dependencies and customizing plugin behavior. Thefirst few elements—gr oupl d,
artifactld, packagi ng, ver si on—are what is known as the Maven coordinates
which uniquely identify a project. name and ur | are descriptive el ements of the
POM providing a human readable name and associating the project with aweb
site. The dependenci es element defines a single, test-scoped dependency on a unit
testing framework called JUnit. These topics will be further introduced in

Section 3.5, “Core Concepts’, al you need to know, at this point, is that the

pom xn isthefile that makes Maven go.

Maven always executes against an effective POM, a combination of settings from
this project'spom xni , al parent POMs, a super-POM defined within Maven,
user-defined settings, and active profiles. All projects ultimately extend the
super-POM, which defines a set of sensible default configuration settings and
which isfully explained in Chapter 9, The Project Object Model. While your
project might have arelatively minimal pom xni , the contents of your project's
POM are interpolated with the contents of all parent POMs, user settings, and any
active profiles. To seethis"effective" POM, run the following command in the
simple project's base directory.

$ mvn hel p: ef fective-pom

When you run this, you should see a much larger POM which exposes the default
settings of Maven. This goal can comein handy if you are trying to debug a build
and want to see how all of the current project's ancestor POMs are contributing to
the effective POM. For more information about the Maven Help plugin, see
Section 2.8, “Using the Maven Help Plugin”.

3.5. Core Concepts

Having just run Maven for thefirst time, it is a good time to introduce afew of the

35

A Simple Maven Project

core concepts of Maven. In the previous example, you generated a project which
consisted of a POM and some code assembled in the Maven standard directory
layout. Y ou then execute Maven with alifecycle phase as an argument which
prompted Maven to execute a series of Maven plugin goals. Lastly, you installed a
Maven artifact into your local repository. Wait? What isa"lifecycle"? What isa
"local repository”? The following section defines some of Maven's central
concepts.

3.5.1. Maven Plugins and Goals

In the previous section, we ran Maven with two different types of command-line
arguments. The first command was a single plugin goal, the cr eat e goal of the
Archetype plugin. The second execution of Maven was alifecycle phase, i nstal | .
To execute a single Maven plugin goal, we used the syntax mvn

ar chetype: create, where ar chet ype isthe identifier of aplugin and cr eat e isthe
identifier of agoal. When Maven executes aplugin goal, it prints out the plugin
identifier and goal identifier to standard output:

$ mvn archetype: creat e -Dgroupl d=or g. sonat ype. mavenbook. ch03 \
-Dartifactld=sinple \
- DpackageNane=or g. sonat ype. navenbook

[INFQ [archetype:create]
[INFQ artifact org.apache. maven. archet ypes: maven- ar chet ype- qui ckstart: \
checking for updates from central

A Maven Plugin is a collection of one or more goals. Examples of Maven plugins
can be simple core plugins like the Jar plugin which contains goals for creating
JAR files, Compiler plugin which contains goals for compiling source code and
unit tests, or the Surefire plugin which contains goals for executing unit tests and
generating reports. Other, more specialized Maven plugins include plugins like the
Hibernate3 plugin for integration with the popular persistence library Hibernate,
the JRuby plugin which allows you to execute ruby as part of a Maven build or to
write Maven pluginsin Ruby. Maven also provides for the ability to define custom
plugins. A custom plugin can be written in Java, or a plugin can be written in any
number of languages including Ant, Groovy, beanshell, and, as previously

36

A Simple Maven Project

mentioned, Ruby.

goal goal goal

plugin

e ————————————

Figure 3.1. A Plugin Contains Goals

A goal is a specific task that may be executed as a standalone goal or along with
other goals as part of alarger build. A goal isa“unit of work” in Maven. Examples
of goalsinclude the conpi I e goa in the Compiler plugin, which compiles all of the
source code for aproject, or thet est goal of the Surefire plugin, which can
execute unit tests. Goals are configured via configuration properties that can be
used to customize behavior. For example, the conpi | e goal of the Compiler plugin
defines a set of configuration parameters that allow you to specify the target JDK
version or whether to use the compiler optimizations. In the previous example, we
passed in the configuration parameters gr oupl d and arti fact 1 d to thecr eat e goa
of the Archetype plugin viathe command-line parameters

-Dgroupl d=or g.sonatype.mavenbook.ch03 and -Dartifactl d=simple. We also
passed the packageNane parameter to the cr eat e goal as org.sonatype.mavenbook.
If we had omitted the packageNane parameter, the package name would have
defaulted to org.sonatype.mavenbook.ch03.

Note

When referring to a plugin goal, we frequently use the shorthand
notation: pl ugi nl d: goal | d. For example, when referring to thecreat e
goal in the Archetype plugin, we write ar chet ype: cr eat e.

Goals define parameters that can define sensible default values. In the

37

A Simple Maven Project

cr eat e example, we did not specify what kind of archetype the goal wasto create
on our command line; we simply passed inagroupl d and anartifact|d. Thisis
our first brush with convention over configuration. The convention, or default, for
thecreat e goal isto create a simple project called Quickstart. Thecr eat e goa
defines a configuration property ar chet ypeArti f act | d that has a default value of
maven- ar chet ype- qui ckst art . The Quickstart archetype generates aminimal
project shell that contains a POM and a single class. The Archetype plugin isfar
more powerful than this first example suggests, but it is a great way to get new
projects started fast. Later in this book, we'll show you how the Archetype plugin
can be used to generate more complex projects such as web applications, and how
you can use the Archetype plugin to define your own set of projects.

The core of Maven haslittle to do with the specific tasks involved in your project’s
build. By itself, Maven doesn’t know how to compile your code or even how to
make a JAR file. It delegates all of thiswork to Maven plugins like the Compiler
plugin and the Jar plugin, which are downloaded on an as-needed basis and
periodically updated from the central Maven repository. When you download
Maven, you are getting the core of Maven, which consists of avery basic shell that
knows only how to parse the command line, manage a classpath, parse a POM file,
and download Maven plugins as needed. By keeping the Compiler plugin separate
from Maven’s core and providing for an update mechanism, Maven makesit easier
for users to have accessto the latest options in the compiler. In thisway, Maven
plugins allow for universal reusability of common build logic. Y ou are not defining
the compile task in abuild file; you are using a Compiler plugin that is shared by
every user of Maven. If there is an improvement to the Compiler plugin, every
project that uses Maven can immediately benefit from this change. (And, if you
don’t like the Compiler plugin, you can override it with your own implementation.)

3.5.2. Maven Lifecycle

The second command we ran in the previous section was mvn install. This
command didn’t specify aplugin goal; instead, it specified a Maven lifecycle
phase. A phaseisastep in what Maven calls the “build lifecycle.” The build
lifecycleis an ordered sequence of phasesinvolved in building a project. Maven

38

A Simple Maven Project

can support a number of different lifecycles, but the one that’s most often used is
the default Maven lifecycle, which begins with a phase to validate the basic
integrity of the project and ends with a phase that involves deploying a project to
production. Lifecycle phases are intentionally vague, defined solely as validation,
testing, or deployment, and they may mean different things to different projects.
For example, the package phase in a project that produces a JAR, means “ package
thisproject into aJAR”; in aproject that produces a web application, the package
phase may produce aWAR file.

Plugin goals can be attached to alifecycle phase. As Maven moves through the
phasesin alifecycle, it will execute the goals attached to each particular phase.
Each phase may have zero or more goals bound to it. In the previous section, when
you ran mvn install, you might have noticed that more than one goa was
executed. Examine the output after running mvn install and take note of the
various goals that are executed. When this simple example reached the package
phase, it executed thej ar goal in the Jar plugin. Since our simple Quickstart
project has (by default) aj ar packaging type, thej ar:j ar goal isbound to the
package phase.

Phases Goals

package jar:jar

Figure 3.2. A Goal Bindsto a Phase

We know that the package phase is going to create a JAR file for a project with

j ar packaging. But what of the goals preceding it, such as conpi | er: conpi | e and
surefire:test? These goals are executed as Maven steps through the phases
preceding package in the Maven lifecycle; executing a phase will first execute all
proceeding phases in order, ending with the phase specified on the command line.
Each phase corresponds to zero or more goals, and since we haven’t performed any
plugin configuration or customization, this example binds a set of standard plugin
goals to the default lifecycle. The following goals are executed in order when

39

A Simple Maven Project

Maven walks through the default lifecycle ending with package:

resources: resources

Ther esour ces goa of the Resources plugin is bound to the
process-resour ces phase. Thisgoal copiesall of the resources from
src/ mai n/ resour ces and any other configured resource directories to the
output directory.

conpi l er:conmpile

The conpi | e goa of the Compiler plugin is bound to the conpi | e phase. This
goal compiles all of the source code from sr ¢/ mai n/ j ava or any other
configured source directories to the output directory.

resources: t est Resources

Thet est Resour ces goa of the Resources plugin is bound to the
process-test-resources phase. Thisgoal copiesall of the resources from
src/ test/resources and any other configured test resource directories to atest
output directory.

conpi l er:test Conpile

Thet est Conpi | e goa of the Compiler plugin is bound to thet est - conpi | e
phase. Thisgoal compilestest casesfromsrc/test/java and any other
configured test source directories to atest output directory.

surefire:test

Thetest goa of the Surefire plugin is bound to thet est phase. This goal
executes all of the tests and creates output files that capture detailed results. By
default, thisgoal will terminate a build if thereisatest failure.

jar:jar
Thej ar goa of the Jar plugin is bound to the package phase. This goal
packages the output directory into aJAR file.

40

A Simple Maven Project

Phases Goals

.

process-resources resourcesreasources

compiler:compile

surefire:test

prepare-package

Y

package

Y
Mote: There are more phases than shown above, this is a partial list

41

A Simple Maven Project

Figure 3.3. Bound Goals are Run when Their Phases Execute

To summarize, when we executed mvn install, Maven executes al phasesup to
the install phase, and in the process of stepping through the life cycle phasesiit
executes all goals bound to each phase. Instead of executing a Maven lifecycle
goal you could achieve the same results by specifying a sequence of plugin goals
asfollows:

m/n resources: resources \
conpi l er: conpile \
resour ces: t est Resources \
conpi |l er: test Conpile \
surefire:test \
jar:jar \
install:install

It is much easier to execute lifecycle phases that it is to specify explicit goals on
the command line, and the common lifecycle alows every project that uses Maven
to adhere to awell-defined set of standards. The lifecycleiswhat allows a
developer to jump from one Maven project to another without having to know very
much about the details of each particular project's build. If you can build one
Maven project, you can build them all.

3.5.3. Maven Coordinates

The Archetype plugin created a project with afile named pom xni . Thisisthe
Project Object Model (POM), a declarative description of a project. When Maven
executes a goal, each goal has access to the information defined in a project’s
POM. When thej ar: j ar goal needsto create a JAR file, it looks to the POM to
find out what the JAR file's name is. When the conpi | er: conpi | e task compiles
Java source code into bytecode, it looks to the POM to see if there are any
parameters for the compile goal. Goals execute in the context of a POM. Goals are
actions we wish to take upon a project, and a project is defined by a POM. The
POM names the project, provides a set of unique identifiers (coordinates) for a
project, and defines the relationships between this project and others through
dependencies, parents, and prerequisites. A POM can also customize plugin

42

A Simple Maven Project

behavior and supply information about the community and developersinvolved in
a project.

Maven Coordinates define a set of identifiers which can be used to uniquely
identify a project, a dependency, or aplugininaMaven POM. Take alook at the
following POM.

<project xmlns="http://maven.apache.org/POMS/4.0.0"
xmlns:xsi="http://wvww.wi.org/2001/XMLESchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd"=>
wmodelversion=4.0.0</modelvVersion>
“groupldrmavenbook</groupIds>
<artifactId-my=-app</artifactId=
<packaging=jar</packaging-~
wyarsion>].=SHNAPSHOT</version>

coordinates

<url>http://maven.apache.org</url=
~dependencies>
<dependency=
<groupId=junit</groupId>
<artifactId»junit</artifactIid>
<yersion=3.8.1</version>

<sCcopertest</scopex
</dependency=
</dependencies>
</project>

Figure 3.4. A Maven Project's Coordinates

We've highlighted the Maven coordinates for this project: the gr oupl d,
artifactld, version and packagi ng. These combined identifiers make up a
project's coordi nates.2Just likein any other coordinate system, a Maven coordinate
Isan address for a specific point in "space": from general to specific. Maven
pinpoints a project viaits coordinates when one project relates to another, either as
a dependency, aplugin, or a parent project reference. Maven coordinates are often

’Thereis afifth, seldom-used coordinate named cl assi fi er which we will introduce later in the book.
Y ou can feel freeto ignore classifiers for now.

43

A Simple Maven Project

written using a colon as a delimiter in the following format:

groupl d: arti fact!d: packagi ng: ver si on. In the above pom xm filefor our
current project, its coordinate is represented as

mavenbook: my- app: j ar: 1. 0- SNAPSHOT. This notation also applies to project
dependencies, our project relies on JUnit version 3.8.1, it contains a dependency on
junit:junit:jar:3.8.1.

groupld

The group, company, team, organization, project, or other group. The
convention for group identifiersis that they begin with the reverse domain
name of the organization that creates the project. Projects from Sonatype would
have a gr oupl d that begins with com.sonatype, and projectsin the Apache
Software Foundation would have a gr oupl d that starts with org.apache.

artifactld
A unique identifier under gr oupl d that represents a single project.

ver sl on
A specific release of a project. Projects that have been released have afixed
version identifier that refers to a specific version of the project. Projects
undergoing active development can use a special identifier that marks aversion
as a SNAPSHOT.
The packaging format of a project is aso an important component in the Maven
coordinates, but it isn't a part of a project's unique identifier. A project's
groupl d: artifactld: versi on make that project unique; you can't have a project
with the samethree gr oupl d, arti fact 1 d, and ver si on identifiers.

packagi ng
The type of project, defaulting to j ar, describing the packaged output produced
by a project. A project with packaging j ar produces a JAR archive; a project
with packaging war produces aweb application.
These four elements become the key to locating and using one particular project in
the vast space of other “Mavenized” projects . Maven repositories (public, private,
and local) are organized according to these identifiers. When this project is

A Simple Maven Project

installed into the local Maven repository, it immediately becomes locally available
to any other project that wishesto useit. All you must do is add it as a dependency
of another project using the unique Maven coordinates for a specific artifact.

com.mycompany.webteam
killerapp

2.1-beta-1

war

Figure 3.5. Maven Spaceis a coordinate system of projects

3.5.4. Maven Repositories

When you run Maven for the first time, you will notice that Maven downloads a
number of files from aremote Maven repository. If the simple project was the first
time you ran Maven, the first thing it will do is download the latest release of the
Resources plugin when it triggersther esour ces: resour ce goal. In Maven,
artifacts and plugins are retrieved from a remote repository when they are needed.
One of the reasonstheinitial Maven download is so small (1.5 MiB) isdueto the
fact that Maven doesn't ship with much in the way of plugins. Maven ships with
the bare minimum and fetches from aremote repository when it needs to. Maven

ships with a default remote repository location (http://repol.maven.org/maven?)
which it uses to download the core Maven plugins and dependencies.

Often you will be writing a project which depends on libraries that are neither free
nor publicly distributed. In this case you will need to either setup a custom

45

http://repo1.maven.org/maven2

A Simple Maven Project

repository inside your organization's network or download and install the
dependencies manually. The default remote repositories can be replaced or
augmented with references to custom Maven repositories maintained by your
organization. There are multiple products available to allow organizations to
manage and maintain mirrors of the public Maven repositories.

What makes a Maven repository a Maven repository? The Maven repository is
defined by structure, arepository is acollection of project artifacts stored in a
structure and format which can be easily understood by Maven. In aMaven
repository everything is stored in a directory structure that closely matches a
project's Maven coordinates. Y ou can see this structure by opening up aweb
browser and browsing the central Maven repository at
http://repol.maven.org/maven?/. You will see that an artifact with the coordinates
or g. apache. conmons: commons- emai | : 1. 1 iSavailable under the directory

/ or g/ apache/ commons/ commons- emai | / 1. 1/ in afile named

comons-emai | -1. 1. j ar . The standard for a Maven repository isto store an
artifact in the following directory relative to the root of the repository:

/ <groupl d>/ <artifact|d>/ <versi on>/ <artifactld>- <ver si on>. <packagi ng>

Maven downloads artifacts and plugins from aremote repository to your local
machine and stores these artifacts in your local Maven repository. Once Maven has
downloaded an artifact from the remote Maven repository it never needs to
download that artifact again as Maven will always look for the artifact in the local
repository before looking elsewhere. On Windows XP, your local repository is
likely in C:\ Docunents and Setti ngs\ USERNAME\ . 2\ r eposi t ory, and on
Windows Vista, your local repository isin C: \ User s\ USERNAVE\ . n2\ r eposi tory.
On Unix systems, your local Maven repository isavailablein ~/ . ne/ repository.
When you build a project like the ssmple project you created in the previous
section, thei nst al | phase executes agoal which installs your project's artifactsin
your local Maven repository.

In your local repository, you should be able to see the artifact created by our
simple project. If you run the mvn install command, Maven will install our
project's artifact in your local repository. Try it.

$ nvn install

46

http://repo1.maven.org/maven2/

A Simple Maven Project

[INFQ [install:install]

[INFQ Installing .../sinple-1.0-SNAPSHOT.jar to \
~/ . m2/ r eposi t ory/ conl sonat ype/ maven/ si npl e/ 1. 0- SNAPSHOT/ \
si npl e- 1. 0- SNAPSHOT. | ar

Asyou can see from the output of this command, Maven installed our project's
JAR fileinto our local Maven repository. Maven uses the local repository to share
dependencies across local projects. If you develop two projects—project A and
project B—with project B depending on the artifact produced by project A. Maven
will retrieve project A's artifact from your local repository when it is building
project B. Maven repositories are both alocal cache of artifacts downloaded from a
remote repository and a mechanism for allowing your projects to depend on each
other.

3.5.5. Maven's Dependency Management

In this chapter's simple example, Maven resolved the coordinates of the JUnit
dependency—;j uni t: j uni t: 3. 8. 1—to a path in aMaven repository
/junit/junit/3.8.1/junit-3.8.1.jar. Theability tolocate an artifact in a
repository based on Maven coordinates gives us the ability to define dependencies
in aproject's POM. If you examine the simple project'spom xni file, you will see
that there is a section which deals with dependenci es, and that this section
contains a single dependency—JUnit.

A more complex project would contain more than one dependency, or it might
contain dependencies that depend on other artifacts. Support for transitive
dependenciesis one of Maven’s most powerful features. Let’s say your project
depends on alibrary that, in turn, depends on 5 or 10 other libraries (Spring or
Hibernate, for example). Instead of having to track down all of these dependencies
and list them in your pom xni explicitly, you can ssimply depend on the library you
are interested in and Maven will add the dependencies of thislibrary to your
project’ s dependencies implicitly. Maven will also take care of working out
conflicts between dependencies, and provides you with the ability to customize the
default behavior and exclude certain transitive dependencies.

47

A Simple Maven Project

Let's take alook at a dependency which was downloaded to your local repository
when you ran the previous example. Look in your local repository path under

~/ .2/ repository/junit/junit/3.8.1/.|f youhave been following this
chapter's examples, therewill beafilenamedjunit-3.8.1.jar anda
junit-3.8.1. pomfilein addition to afew checksum files which Maven usesto
verify the authenticity of a downloaded artifact. Note that Maven doesn't just
download the JUnit JAR file, Maven aso downloads a POM file for the JUnit
dependency. The fact that Maven downloads POM filesin addition to artifactsis
central to Maven's support for transitive dependencies.

When you install your project’ s artifact in the local repository, you will also notice
that Maven publishes a slightly modified version of the project’spom xm filein
the same directory asthe JAR file. Storing a POM file in the repository gives other
projects information about this project, most importantly what dependenciesit has.
If Project B depends on Project A, it also depends on Project A’ s dependencies.
When Maven resolves a dependency artifact from a set of Maven coordinates, it
also retrieves the POM and consults the dependencies POM to find any transitive
dependences. These transitive dependencies are then added as dependencies of the
current project.

A dependency in Mavenisn't just aJAR file; it'sa POM file that, in turn, may
declare dependencies on other artifacts. These dependencies of dependencies are
called transitive dependencies, and they are made possible by the fact that the
Maven repository stores more than just bytecode; it stores metadata about artifacts.

48

A Simple Maven Project

com.sonatype.maven
project-a
1.0-SNAPSHOT

/ dependencies \\

Eﬂl‘l‘l-ﬂﬂl‘lﬁl‘fp&-l‘ﬂﬂ'u‘li‘l‘l COm.sonaype.maven
projeci-b project-c
1.0-SNAPSHOT 1.0-SNAPSHOT

transitive dependencies

com.sonatype.maven
project-d
1.0-SNAPSHOT

com.sonatype.maven
project-e
1.0-SNAPSHOT

Figure 3.6. Maven Resolves Transitive Dependencies

In the previous figure, project A depends on projects B and C. Project B depends
on project D, and project C depends on project E. The full set of direct and
transitive dependencies for project A would be projects B, C, D, and E, but all
project A had to do was define a dependency on B and C. Transitive dependencies
can come in handy when your project relies on other projects with several small
dependencies (like Hibernate, Apache Struts, or the Spring Framework). Maven
also provides you with the ability to exclude transitive dependencies from being
included in a project's classpath.

Maven also provides for different dependency scopes. The simple project’s

pom xni contains asingle dependency—;j unit:junit:jar: 3. 8. 1—with ascope
of t est . When a dependency has a scope of t est , it will not be available to the
conpi | e goal of the Compiler plugin. It will be added to the classpath for only the
conpi | er: test Conpi |l e and surefire:test goals.

When you create a JAR for a project, dependencies are not bundled with the

49

A Simple Maven Project

generated artifact; they are used only for compilation. When you use Maven to
create aWAR or an EAR file, you can configure Maven to bundle dependencies
with the generated artifact, and you can aso configure it to exclude certain
dependencies from the WAR file using the pr ovi ded scope. The pr ovi ded Scope
tells Maven that a dependency is needed for compilation, but should not be
bundled with the output of abuild. This scope comes in handy when you are
developing aweb application. You'll need to compile your code against the Servlet
specification, but you don’t want to include the Servliet APl JAR in your web
application’SWeB- | NF/ | i b directory.

3.5.6. Site Generation and Reporting

Another important feature of Maven isits ability to generate documentation and
reports. In your simple project’ s directory, execute the following command:

$ nvn site

Thiswill execute thesi t e lifecycle phase. Unlike the default build lifecycle that
manages generation of code, manipulation of resources, compilation, packaging,
etc., thislifecycleis concerned solely with processing site content under the
src/ si t e directories and generating reports. After this command executes, you
should see aproject web siteinthet ar get/ si t e directory. Load
target/site/index. ht i andyou should see abasic shell of aproject site. This
shell contains some reports under “Project Reports’ in the lefthand navigation
menu, and it also contains information about the project, the dependencies, and
developers associated with it under “Project Information.” The ssimple project’s
web site is mostly empty, since the POM contains very little information about
itself beyond a coordinate, aname, a URL, and a single test dependency.

On this site, you'll notice that some default reports are available. A unit test report
communicates the success and failure of all unit testsin the project. Another report
generates Javadoc for the project’s API. Maven provides afull range of
configurable reports, such as the Clover report that examines unit test coverage, the
JXR report that generates cross-referenced HTML source code listings useful for
code reviews, the PMD report that analyzes source code for various coding

50

A Simple Maven Project

problems, and the JDepend report that analyzes the dependencies between
packages in a codebase. Y ou can customize site reports by configuring which
reports are included in abuild viathe pom xm file.

3.6. Summary

In this chapter, we have created a simple project, packaged the project into aJAR
file, installed that JAR into the Maven repository for use by other projects, and
generated a site with documentation. We accomplished this without writing a
single line of code or touching a single configuration file. We aso took some time
to develop definitions for some of the core concepts of Maven. In the next chapter,
we'll start customizing and modifying our project pom xm fileto add
dependencies and configure unit tests.

51

Chapter 4. Customizing a Maven Project

4.1. Introduction

This chapter expands on the information introduced in Chapter 3, A Smple Maven
Project. We're going to create a simple project generated with the Maven
Archetype plugin, add some dependencies, add some source code, and customize
the project to suit our needs. By the end of this chapter, you will know how to start
using Maven to create real projects.

4.1.1. Downloading this Chapter's Example

WE'll be developing a useful program that interacts with a'Y ahoo! Weather web
service. Although you should be able to follow along with this chapter without the
example source code, we recommend that you download a copy of the code to use
as areference. This chapter’s example project may be downloaded with the book’s
example code at http://www.sonatype.com/book/mvn-examples-1.0.zip or
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz. Unzip thisarchive in any
directory, and then go to the cho4/ directory. There you will see a directory named
si npl e- weat her/, which contains the Maven project developed in this chapter. If
you wish to follow along with the example code in aweb browser, go to

http://www.sonatype.com/book/examples-1.0 and click on the cho4/ directory.

4.2. Defining the Simple Weather Project

Before we start customizing this project, let’s take a step back and talk about the
simple weather project. What isit? It's a contrived example, created to
demonstrate some of the features of Maven. It isan application that is
representative of the kind you might need to build. The simple weather application
is a basic command-line-driven application that takes a zip code and retrieves some
datafrom the Y ahoo! Weather RSS feed. It then parses the result and prints the

52

http://www.sonatype.com/book/mvn-examples-1.0.zip
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz
http://www.sonatype.com/book/examples-1.0

Customizing a Maven Project

result to standard output.

We chose this example for a number of reasons. Firgt, it is straightforward. A user
supplies input viathe command line, the app takes that zip code, makes a request
to Yahoo! Weather, parses the result, and formats some simple data to the screen.
Thisexampleisasimple mai n() function and some supporting classes; thereisno
enterprise framework to introduce and explain, just XML parsing and some
logging statements. Second, it gives us a good excuse to introduce some interesting
libraries such as Velocity, Dom4J, and Log4J. Although this book is focused on
Maven, we won't shy away from an opportunity to introduce interesting utilities.
Lastly, it isan example that can be introduced, developed, and deployed in asingle
chapter.

4.2.1. Yahoo! Weather RSS

Before you build this application, you should know something about the Y ahoo!
Weather RSS feed. To start with, the service is made available under the following
terms:

The feeds are provided free of charge for use by individuals and
nonprofit organizations for personal, noncommercial uses. We ask
that you provide attribution to Y ahoo! Weather in connection with
your use of the feeds.

In other words, if you are thinking of integrating these feeds into your commercial
web site, think again—thisfeed isfor personal, noncommercial use. The use we're
encouraging in this chapter is personal educational use. For more information
about these terms of service, see the Yahoo Weather! APl documentation here:

http://devel oper.yahoo.com/weather/.

4.3. Creating the Simple Weather Project

First, let’s use the Maven Archetype plugin to create a basic skeleton for the smple
weather project. Execute the following command to create a new project:

53

http://developer.yahoo.com/weather/

Customizing a Maven Project

$ nvn archetype: create -Dgroupl d=or g. sonat ype. mavenbook. ch04 \
-Dartifactld=sinpl e-weat her \
- DpackageNane=or g. sonat ype. mavenbook \
- Dversion=1.0
[INFQ [archetype:create]
[INFQ artifact org.apache. maven. archet ypes: maven- ar chet ype- qui ckstart: \
checking for updates fromcentra
N O I
[INFQ Using follow ng paraneters for creating Archetype: \
maven- ar chet ype- qui ckst art : RELEASE
I O I
[INFQ Paraneter: groupld, Value: org.sonatype. mavenbook. ch04
[I NFQ Paraneter: packageNane, Val ue: org.sonatype. mavenbook
[INFQ Paraneter: basedir, Value: ~/exanples
[INFQ Paraneter: package, Val ue: org.sonatype. navenbook
[INFQ Paraneter: version, Value: 1.0
[INFQ Paraneter: artifactld, Value: sinple-weather
[INFQ *** End of debug info fromresources from generated POM ***
[INFQ Archetype created in dir: ~/exanpl es/sinple-weather

Once the Maven Archetype plugin creates the project, go into the si npl e- weat her
directory and take alook at the pom xm file. Y ou should see the XML document
that’ s shown in Example 4.1, “Initial POM for the simple-weather project”.

Example4.1. Initial POM for the smple-weather project

<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_ 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook. ch04</ gr oupl d>
<artifactld>sinpl e-weat her</artifactld>
<packagi ng>j ar </ packagi ng>
<ver si on>1. 0</ ver si on>
<nane>si npl e- weat her 2</ nane>
<url >http:// maven. apache. org</url >
<dependenci es>
<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<ver si on>3. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
</ dependenci es>

<bui | d>
<pl ugi ns>
<pl ugi n>

<artifactld>maven-conpil er-plugin</artifactld>
<confi gurati on>

Customizing a Maven Project

<sour ce>1. 5</ sour ce>
<t arget >1. 5</t ar get >
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

Notice that we passed in the ver si on parameter to the ar chet ype: cr eat e goal.
This overrides the default value of 1. 0- SNAPSHOT. In this project, we're developing
the 1. 0 version of the si npl e- weat her project asyou can seein the pom xm

ver si on €lement.

4.4. Customize Project Information

Before we start writing code, let’ s customize the project information a bit. We
want to add some information about the project’s license, the organization, and a
few of the developers associated with the project. Thisis al standard information
you would expect to see in most projects. Example 4.2, “ Adding Organizational,
Legal, and Developer Information to the pom.xml” shows the XML that supplies
the organizational information, the licensing information, and the devel oper
information.

Example 4.2. Adding Organizational, L egal, and Developer Infor mation to the
pom.xml

<project xm ns="http:// maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
http://mven. apache. or g/ maven-v4_0_ 0. xsd" >

<nane>si npl e- weat her </ nanme>
<url >htt p://ww. sonat ype. conx/ url >

<l i censes>
<l i cense>
<nane>Apache 2</nane>
<url >http://ww. apache. org/licenses/ LI CENSE-2.0.txt</url >
<di stri bution>repo</distribution>
<coment s>A busi ness-friendly OSS |icense</conment s>

55

Customizing a Maven Project

</license>
</licenses>

<or gani zati on>

<nanme>Sonat ype</ nane>

<url >http://ww. sonat ype. conx/ ur| >
</ or gani zati on>

<devel oper s>
<devel oper >
<i d>j ason</i d>
<nanme>Jason Van Zyl </ nane>
<enai | >j ason@raven. or g</ enai | >
<url >http://ww. sonat ype. conx/ url >
<or gani zat i on>Sonat ype</ or gani zat i on>
<or gani zati onUr| >htt p: // ww. sonat ype. conx/ or gani zati onUr | >
<rol es>
<r ol e>devel oper</rol e>
</rol es>
<ti nmezone>-6</ti mezone>
</ devel oper >
</ devel oper s>

</ proj ect >

The ellipsesin Example 4.2, “ Adding Organizational, Legal, and Developer
Information to the pom.xml” are shorthand for an abbreviated listing. When you
seeapom xm with"..." and"..." directly after the pr oj ect element's start tag and
directly before the pr oj ect element's end tag, thisimplies that we are not showing
the entirepom xm file. Inthiscasethel i censes, or gani zati on, and devel opers
element were all added before the dependenci es element.

4.5. Add New Dependencies

The simple weather application is going to have to compl ete the following three
tasks: retrieve XML datafrom Y ahoo! Weather, parse the XML from Y ahoo, and
then print formatted output to standard output. To accomplish these tasks, we have
to introduce some new dependencies to our project's pom xmi . To parse the XML
response from Y ahoo!, we're going to be using Dom4J and Jaxen, to format the
output of this command-line program we are going to be using Velocity, and we
will also need to add a dependency for Log4J which we will be using for logging.

56

Customizing a Maven Project

After we add these dependencies, our dependenci es element will look like the
following example.

Example 4.3. Adding Dom4J, Jaxen, Velocity, and L og4J as Dependencies

<pr oj ect >
[...]
<dependenci es>
<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<versi on>1. 2. 14</ ver si on>
</ dependency>
<dependency>
<gr oupl d>dom4j </ gr oupl d>
<artifactld>domdj </artifactld>
<versi on>1. 6. 1</ ver si on>
</ dependency>
<dependency>
<gr oupl d>j axen</ gr oupl d>
<artifactld>j axen</artifactld>
<versi on>1. 1. 1</ ver si on>
</ dependency>
<dependency>
<gr oupl d>vel oci t y</ gr oupl d>
<artifactld>vel ocity</artifactld>
<ver si on>1. 5</ ver si on>
</ dependency>
<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<ver si on>3. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
</ dependenci es>
[...]

</ pr oj ect >

As you can see above, we've added four more dependency elementsin addition to
the existing element which was referencing thet est scoped dependency on JUnit.
If you add these dependencies to the project's pom xni file and then run mvn
install, you will see Maven downloading all of these dependencies and other
transitive dependencies to your local Maven repository.

How did we find these dependencies? Did we just "know" the appropriate gr oupl d
andartifact!dvaues? Some of the dependencies are so widely used (like Log4J)

57

Customizing a Maven Project

that you'll just remember what the groupl d and arti f act 1 d are every time you
need to use them. Velocity, Dom4J, and Jaxen were all located using the helpful
web site http://www.mvnrepository.com. This Site provides a search interface to
the Maven repository, you can use it to search for dependencies. To test thisfor
yourself, load http://www.mvnrepository.com and search for some commonly used
libraries such as Hibernate or the Spring Framework. When you search for an
artifact on this site, it will show you anartifact | d and al of the versions known
to the central Maven repository. Clicking on the details for a specific version will
load a page that contains the dependency element you'll need to copy and paste
into your own project's pom xni . If you need to find a dependency, you'll want to
check out mvnrepository.com, as you'll often find that certain libraries have more
than one gr oup! d. With thistool, you can make sense of the Maven repository.

4.6. Simple Weather Source Code

The Simple Weather command-line application consists of five Java classes.

or g. sonat ype. navenbook. weat her . Mai n
The mai n class contains a static mai n() function, and isthe entry point for this
system.

or g. sonat ype. mnavenbook. weat her . Weat her
The weat her classisastraightforward Java bean that holds the location of our
weather report and some key facts, such as the temperature and humidity.

or g. sonat ype. mavenbook. weat her. YahooRet ri ever
The YahooRet ri ever class connectsto Yahoo! Weather and returns an
| nput St r eamof the datafrom the feed.

or g. sonat ype. mavenbook. weat her . YahooPar ser
The YahooPar ser class parses the XML from Y ahoo! Weather, and returns a
Weat her object.

or g. sonat ype. mavenbook. weat her . Weat her For mat t er

58

http://www.mvnrepository.com
http://www.mvnrepository.com
http://www.mvnrepository.com

Customizing a Maven Project

The weat her For mat t er class takes a\at her object, creates a

Vel oci t yCont ext , and evaluates a Vel ocity template.
Although we won't dwell on the code here, we will provide al the necessary code
for you to get the example working. We assume that most readers have
downloaded the examples that accompany this book, but we're also mindful of
those who may wish to follow the example in this chapter step-by-step. The
sections that follow list classesin the si npl e- weat her project. Each of these
classes should be placed in the same package: org.sonatype.mavenbook.weather.

Let's remove the App and the AppTest classes created by ar chet ype: creat e and
add our new package. In aMaven project, al of aproject's source code is stored in
src/ mai n/ j ava. From the base directory of the new project, execute the following
commands:

cd src/test/javal org/ sonat ype/ mavenbook
rm AppTest.j ava

cd ../.. .. [..[..]..

cd src/ main/javal or g/ sonat ype/ mavenbook
rm App. j ava

nmkdi r weat her

cd weat her

RS o T R e R

This creates a new package named org.sonatype.mavenbook.weather. Now we
need to put some classesin this directory. Using your favorite text editor, create a
new file named weat her . j ava with the contents shown in Example 4.4, “Simple
Weather's Weather Model Object”.

Example 4.4. Simple Weather's Weather M odel Object

package org. sonat ype. mavenbook. weat her ;

public class Wat her {
private String city;
private String region;
private String country;
private String condition;
private String tenp;
private String chill;
private String hum dity;

public Wather() {}

public String getGity() { return city; }

59

Customizing a Maven Project

public void setGity(String city) { this.city = city; }

public String getRegion() { return region; }
public void setRegion(String region) { this.region = region; }

public String getCountry() { return country; }
public void setCountry(String country) { this.country = country;

public String getCondition() { return condition; }
public String getTenp() { return tenp; }
public void setTenp(String tenp) { this.tenp = tenp; }

public String getChill() { return chill; }
public void setChill(String chill) { this.chill = chill; }

public String getHumdity() { return humdity; }

}

public void setCondition(String condition) { this.condition = condition;

public void setHum dity(String humidity) { this.humdity = humdity; }

}

The weat her class defines asimple bean that is used to hold the weather

information parsed from the Y ahoo! Weather feed. Thisfeed provides a wealth of
information, from the sunrise and sunset times to the speed and direction of the
wind. To keep this example as simple as possible, the weat her model object keeps
track of only the temperature, chill, humidity, and atextual description of current

conditions.

Now, in the same directory, create afile named Mai n. j ava. ThisMai n classwill

hold the static mai n() function—the entry point for this example.

Example 4.5. Simple Weather'sMain Class

package org. sonatype. mavenbook. weat her ;
i mport java.io.lnputStream

i mport org.apache. | og4j . PropertyConfi gurator;

public class Min {

public static void main(String[] args) throws Exception {
[/ Configure Log4J
Propert yConfi gurat or. confi gure(Main. cl ass. get assLoader ()

. get Resource("l og4j . properties"));

60

Customizing a Maven Project

/!l Read the Zip Code fromthe Command-line (if none supplied, use 60202)
String zi pcode = "60202";

try {
zi pcode = args[0]);
} catch(Exception e) {}

[/ Start the program
new Mai n(zi pcode).start();

}
private String zip;

public Main(String zip) {
this.zip = zip;
}

public void start() throws Exception {
/1 Retrieve Data
| nput St ream dat al n = new YahooRetriever().retrieve(zip);

/| Parse Data
Weat her weat her = new YahooParser (). parse(dataln);

[/l Format (Print) Data
System out. print(new Weat her Formatter().format(weather));

Themai n() function shown above configures Log4J by retrieving a resource from
the classpath, it then triesto read a zip code from the command-line. If an
exception isthrown whileit istrying to read the zip code, the program will default
to azip code of 60202. Once it has azip code, it instantiates an instance of Mai n
and callsthe st art () method on an instance of mai n. Thestart () method calls
out to the YahooRet ri ever to retrieve the weather XML. The YahooRet ri ever
returns an | nput St r eamwhich is then passed to the YahooPar ser . The

YahooPar ser parsesthe Y ahoo! Weather XML and returns a weat her object.
Finally, the weat her For mat t er takesawat her object and spits out a formatted
st ri ng whichis printed to standard outpui.

Create afile named YahooRet ri ever . j ava in the same directory with the contents
shown in Example 4.6, “ Simple Weather's Y ahooRetriever Class’.

Example 4.6. Simple Weather's YahooRetriever Class

61

Customizing a Maven Project

package org. sonatype. mavenbook. weat her ;

i mport java.io.lnputStream
i nport j ava. net. URL;
i mport j ava. net. URLConnecti on;

i mport org.apache. | og4j . Logger;
public class YahooRetriever {
private static Logger |og = Logger. getLogger (YahooRetriever. cl ass);
public InputStreamretrieve(int zipcode) throws Exception {
log.info("Retrieving Wather Data");
String url = "http://weather.yahooapis. conl forecastrss?p=" + zi pcode;

URLConnection conn = new URL(url).openConnection();
return conn. getl nput Stream() ;

This simple class opens a URLConnect i on to the Yahoo! Weather API and returns
an | nput St ream TO create something to parse thisfeed, we'll need to create the
YahooPar ser . j ava filein the same directory.

Example4.7. Simple Weather's YahooPar ser Class

package org. sonat ype. mavenbook. weat her ;

i mport java.io.|nputStream
i mport java.util.HashMap;
i mport java.util. Map;

i mport org.apache. | og4j . Logger;

i mport org.domdj . Docunent ;

i mport org.domdj . Docunent Fact ory;
i nport org.domdj . i o. SAXReader ;
public class YahooParser {

private static Logger |og = Logger. getLogger (YahooParser. cl ass);

publ i c Weat her parse(l nput Stream i nputStrean) throws Exception {
Weat her weat her = new Weat her () ;

| og.info("Creating XML Reader");
SAXReader xm Reader = createXm Reader () ;
Docunent doc = xml Reader.read(inputStream);

| og.info("Parsing XM. Response");

62

Customizing a Maven Project

weat her.set City(doc.val ueX ("/rss/channel /y:location/ @ity"));

weat her . set Regi on(doc. val ueC ("/rss/channel /y: 1 ocati on/ @egi on"));

weat her. set Country(doc. val ue ("/rss/channel/y: | ocation/ @ountry"));

weat her . set Condi ti on(doc. val ueO ("/rss/channel/itemy:condition/ @ext"));
weat her . set Tenp(doc. val uek ("/rss/channel /item y: condition/ @enp"));

weat her . setChil | (doc.val ued ("/rss/channel/y:wi nd/ @hill"));

weat her. set Hunmi di ty(doc. val ueX ("/rss/channel /y: at nosphere/ @um dity"));

return weat her;

}

private SAXReader createXm Reader() {
Map<String, String> uris = new HashMap<String, String>();
uris.put("y", "http://xm .weather.yahoo.conlns/rss/1.0");

Docunent Factory factory = new Docunent Fact ory();
factory. set XPat hNanespaceURI s(uris);

SAXReader xm Reader = new SAXReader () ;
xm Reader . set Docunment Factory(factory);
return xm Reader;

The YahooPar ser isthe most complex class in this example. We're not going to
dive into the details of Domd4J or Jaxen here, but the class deserves some
explanation. YahooPar ser’Spar se() method takes an | nput St reamand returns a
Weat her object. To do this, it needs to parse an XML document with Dom4J. Since
we're interested in elements under the Y ahoo! Weather XML namespace, we need
to create a namespace-aware SAXReader inthecr eat exm Reader () method. Once
we create this reader and parse the document, we get an or g. dom#j . Docunent
object back. Instead of iterating through child elements, we simply address each
piece of information we need using an X Path expression. Dom4J provides the
XML parsing in this example, and Jaxen provides the X Path capabilities.

Once we' ve created aveat her object, we need to format our output for human
consumption. Create afile named weat her For mat t er . j ava in the same directory
as the other classes.

Example 4.8. Simple Weather's Weather For matter Class

package org. sonat ype. mavenbook. weat her ;

63

Customizing a Maven Project

i mport java.io. | nputStreanReader;
i mport java.i o. Reader;
i mport java.io.StringWiter;

i mport org.apache. | og4j . Logger;
i nport org. apache. vel ocity. Vel oci t yCont ext ;
i mport org.apache. vel ocity. app. Vel oci ty;

public class Weat her Formatter {
private static Logger |og = Logger. getLogger (Wat her Formatter.cl ass);

public String format(Wather weather) throws Exception {
log.info("Formatting Weat her Data");
Reader reader =
new | nput St r eanrReader (get Cl ass() . get G assLoader ()
. get Resour ceAsStrean(" out put.vni'));
Vel oci t yCont ext context = new Vel ocityContext();
cont ext. put ("weat her", weather);
StringWiter witer = new StringWiter();
Vel ocity. eval uate(context, witer, "", reader);
return witer.toString();

The weat her For mat t er uses Velocity to render atemplate. Thef or mat () method
takes aveat her bean and spits out aformatted st ri ng. Thefirst thing the

f ormat () method doesisload aVelocity template from the classpath named

out put . vm We then create a Vel oci t yCont ext Which is populated with asingle
Weat her object named weat her. A StringWiter iscreated to hold the results of
the template merge. The template is evaluated with acall to Vel oci ty. eval uat e()
and theresults arereturned asa st ri ng.

Before we can run this example, we'll need to add some resources to our classpath.

4.7. Add Resources

This project depends on two classpath resources: the mai n class that configures

L og4J with a classpath resource named | og4j . properti es, and the

Weat her For mat t er that references a Velocity template from the classpath named
out put . vm Both of these resources need to be in the default package (or the root of
the classpath).

64

Customizing a Maven Project

To add these resources, we' |l need to create a new directory from the base
directory of the project: src/ mai n/ r esour ces. Since this directory was not created
by the ar chet ype: cr eat e task, we need to create it by executing the following
commands from the project’ s base directory:

$ cd src/main
$ nkdir resources
$ cd resources

Once the resources directory is created, we can add the two resources. First, add

thel og4j . properties fileintheresour ces directory, as shown in Example 4.9,
“Simple Weather's Log4J Configuration File”.

Example 4.9. Smple Weather's L og4J Configuration File

Set root category priority to INFO and its only appender to CONSOLE.
| 0g4j . r oot Cat egor y=I NFO, CONSOLE

CONSOLE is set to be a Consol eAppender using a PatternLayout.

| og4j . appender . CONSCOLE=o0r g. apache. | og4j . Consol eAppender

| 0og4j . appender . CONSCOLE. Thr eshol d=I NFO

| og4j . appender. CONSOLE. | ayout =or g. apache. | og4j . Pat t er nLayout

| og4j . appender . CONSCLE. | ayout . Conver si onPattern=% 4r % 5p %{1} % - %M

Thisl og4j . properti es file smply configures Log4J to print all log messages to
standard output using a Pat t er nLayout . Lastly, we need to create the out put . vm
which isthe Velocity template used to render the output of this command-line
program. Create out put . vminther esour ces/ directory.

Example 4.10. Simple Weather's Output Velocity Template

EIE R R I R R R I R R R R R R O

Current Weat her Conditions for:
${weat her.city}, ${weather.region}, ${weather.country}

Tenperature: ${weat her.tenp}
Condi tion: ${weat her. condition}
Humi dity: ${weat her. humi dity}
Wnd Chill: ${weather.chill}

khkkkhkhhkddkdhdkdhrkdhrxdrkdrxdrdrdxdxhxkhxk

65

Customizing a Maven Project

This template contains a number of references to a variable named weat her , which
Isthe weat her bean that was passed to the Weat her For mat t er . The

${ weat her . t enp} Syntax is shorthand for retrieving and displaying the value of the
t erp bean property. Now that we have al of our project’s code in the right place,
we can use Maven to run the example.

4.8. Running the Simple Weather Program

Using the Exec plugin from the Codehaus M ojo project, we can execute this
program. To execute the mai n class, run the following command from the project’s
base directory:

$ nvn install
/'$ mvn exec:java -Dexec. nmai nCl ass=or g. sonat ype. navenbook. weat her. Mai n

[INFQ [exec:]aval
0 I NFO YahooRetriever - Retrieving Wather Data
134 |INFO YahooParser - Creating XM. Reader
333 |INFO YahooParser - Parsing XM. Response
420 |INFO WatherFormatter - Formatting Weat her Data
EE I SR I R S I I S R R S I R I R I O I O
Current Weat her Conditions for:
Evanston, IL, US

Tenperature: 45
Condi tion: C oudy

Hum dity: 76

Wnd Chill: 38

khkkhkhkkhkhkhhhhhhdhhhdhhkhhdhrrrhkhdrhxkx

We didn’t supply a command-line argument to the mai n class, so we ended up with
the default zip code, 60202. To supply a zip code, we would use the - Dexec. ar gs
argument and pass in a zip code:

$ nvn exec:java - Dexec. mai nCl ass=or g. sonat ype. mnavenbook. weat her. Mai n - Dexec. ar gs="70112"

[INFQ [exec:]aval

0 I NFO YahooRetriever - Retrieving Wather Data
134 |INFO YahooParser - Creating XM. Reader

333 |INFO YahooParser - Parsing XM. Response

420 |INFO WatherFormatter - Formatting Weat her Data

khkkhkkhkkhhkhrhrkdrdrdrhrdrhrhrhxhxdxk

Current \Weat her Conditions for:

66

http://mojo.codehaus.org

Customizing a Maven Project

New O | eans, LA, US

Tenperature: 82
Condition: Fair

Hum dity: 71

Wnd Chill: 82

KRk R R Sk O R Rk S kO o

[INFQ Finished at: Sun Aug 31 09:33:34 CDT 2008

Asyou can see, we' ve successfully executed the simple weather command-line
tool, retrieved some data from Y ahoo! Weather, parsed the result, and formatted
the resulting data with Velocity. We achieved all of this without doing much more
than writing our project’s source code and adding some minimal configuration to
the pom xmi . Notice that no “build process’ was involved. We didn’'t need to
define how or where the Java compiler compiles our source to bytecode, and we
didn’t need to instruct the build system how to locate the bytecode when we
executed the example application. All we needed to do to include afew
dependencies was locate the appropriate Maven coordinates.

4.8.1. The Maven Exec Plugin

The Exec plugin allows you to execute Java classes and other scripts. Itisnot a
core Maven plugin, but it is available from the Mojo project hosted by Codehaus.
For afull description of the Exec plugin, run:

$ mvn hel p: descri be - Dpl ugi n=exec -Df ul |

Thiswill list al of the goals that are available in the Maven Exec plugin. The Help
plugin will also list al of the valid parameters for the Exec plugin. If you would
like to customize the behavior of the Exec plugin you should use the
documentation provided by hel p: descri be asaguide. Although the Exec plugin
isuseful, you shouldn’'t rely on it as away to execute your application outside of
running tests during development. For a more robust solution, use the Maven
Assembly plugin that is demonstrated in the section Section 4.13, “Building a
Packaged Command Line Application”,” later in this chapter.

67

http://mojo.codehaus.org
http://www.codehaus.org

Customizing a Maven Project

4.8.2. Exploring Your Project Dependencies

The Exec plugin makes it possible for us to run the simplest weather program
without having to load the appropriate dependencies into the classpath. In any
other build system, we would have to copy al of the program dependencies into
some sort of 1i b/ directory containing a collection of JAR files. Then, we would
have to write a simple script that includes our program’ s bytecode and all of our
dependenciesin aclasspath. Only then could we run java

or g.sonatype.mavenbook.weather .M ain. The Exec plugin leverages the fact that
Maven aready knows how to create and manage your classpath and dependencies.

Thisis convenient, but it's also nice to know exactly what is being included in
your project’s classpath. Although the project depends on afew libraries such as
Dom4J, Log4J, Jaxen, and Velocity, it also relies on afew transitive dependencies.
If you need to find out what is on the classpath, you can use the Maven
Dependency plugin to print out alist of resolved dependencies. To print out this
list for the simple weather project, execute the dependency: r esol ve goal:

$ nmvn dependency: resol ve

[NFQ [dependency:resol ve]

[1 NFQ

[INFQ The following files have been resol ved:

[I NFQ comibmicu:icudj:jar:2.6.1 (scope = conpile)

[I NFQ commons-col | ecti ons: commons-col | ections:jar:3.1 (scope = conpil e)
[I NFQ commons- | ang: conmons- | ang: jar: 2.1 (scope = conpile)
[I NFQ domdj : domdj:jar:1.6.1 (scope = conpile)

[I NFQ jaxen:jaxen:jar:1.1.1 (scope = conpile)

[I NFQ jdomjdomjar:1.0 (scope = conpile)

[I NFO junit:junit:jar:3.8.1 (scope = test)

[I NFQ | og4j:log4dj:jar:1.2.14 (scope = conpile)

[NFQ oro:oro:jar:2.0.8 (scope = conpile)

[I NFQ vel ocity:velocity:jar:1.5 (scope = conpile)

[I NFQ xal an: xal an:jar: 2.6.0 (scope = conpile)

[I NFQ xerces: xerceslnmpl:jar:2.6.2 (scope = conpile)

[I NFQ xerces: xm ParserAPls:jar:2.6.2 (scope = conpile)
[I NFO xm -api s: xm -apis:jar:1.0. b2 (scope = conpile)
[I NFQ xom xomjar:1.0 (scope = conpile)

Asyou can see, our project has avery large set of dependencies. While we only
included direct dependencies on four libraries, we appear to be depending on 15
dependenciesin total. Dom4J depends on Xerces and the XML Parser APIs, Jaxen

68

Customizing a Maven Project

depends on Xalan being available in the classpath. The Dependency pluginis
going to print out the final combination of dependencies under which your project
is being compiled. If you would like to know about the entire dependency tree of
your project, you can run the dependency: t r ee goal

[I NFQ
[I NFO
[I NFO
[I NFO
[I NFO
[I NFQ
[I NFO
[I NFQ
[I NFO
[I NFO
[I NFO
[I NFO
[I NFQ
[I NFO
[I NFQ
[I NFO
[I NFO
[I NFO

$ mvn dependency:tree

[dependency: tr ee]
or g. sonat ype. mavenbook. ch04: si npl e-weat her:jar: 1.0
+- log4j:log4j:jar:1.2.14: conpile
+- domdj:domdj:jar:1.6.1:conpile
\- xnl -apis:xm -apis:jar: 1. 0.b2: conpil e
jaxen:jaxen:jar:1.1.1:conpile
+- jdomjdomjar:1.0:conpile
+- Xerces: xerceslnpl:jar:2.6.2:conpile
\- xom xomjar:1.0:conpile

+- xerces: xm Parser APl s:jar:2.6.2:conpile

+- xal an: xal an:jar: 2.6.0: conpil e

\- comibmicu:icudj:jar:2.6.1:conpile
velocity:velocity:jar:1.5:conpile
+- commons- col | ecti ons: conmons-col | ections:jar:3.1:conpile
+- comons-| ang: conmons- 1 ang:jar: 2. 1: conpil e
\- oro:oro:jar:2.0.8:conpile
or g. apache. cormons: commons-i o: jar: 1. 3.2:test
junit:junit:jar:3.8.1:test

—_ 4 —
]

s e

If you're truly adventurous or want to see the full dependency trail, including
artifacts that were regjected due to conflicts and other reasons, run Maven with the

debug flag.

$ nvn install -X

[DEBUGF org. sonat ype. mavenbook. ch04: si npl e-weat her:jar: 1.0 (selected for null)
[DEBUG l og4j:log4j:jar:1.2. 14:conpile (selected for conpile)

[DEBUG domdj : domdj :jar:1.6. 1:conpile (selected for compile)

[DEBUG xm -api s: xm -apis:jar: 1. 0. b2: conpile (selected for conpile)

[DEBUG jaxen:jaxen:jar:1.1. 1:conpile (selected for conpile)

[DEBUG j axen:jaxen:jar:1l.1-beta-6:conpile (renoved -)

[DEBUG j axen: jaxen:jar:1.0-FCS: conpile (renoved -)

[DEBUG jdomjdomjar:1.0:conmpile (selected for conpile)

[DEBUG xm - api s: xm -apis:jar:1.3.02: conpile (removed - nearer: 1.0.b2)

[DEBUG xerces: xerceslnpl:jar:2.6.2:conpile (selected for conpile)

[DEBUG xom xom jar:1.0:conpile (selected for compile)

[DEBUG xerces: xm ParserAPls:jar: 2.6.2:conpile (selected for conpile)

[DEBUG xal an: xal an:jar:2.6.0: conpile (selected for conpile)

[DEBUG xm - api s: xm -api s: 1. 0. b2.

[DEBUG comibmicu:icud4j:jar:2.6.1:conpile (selected for conpile)

[DEBUG velocity:velocity:jar:1.5:conpile (selected for conpile)

[DEBUG conmmons- col | ecti ons: conmons-col | ections:jar: 3. 1:conpile (selected for conpile)

69

Customizing a Maven Project

[DEBUG conmmons- | ang: conmons- | ang: jar: 2. 1: conpil e (selected for conpile)
[DEBUG oro:oro:jar:2.0.8:compile (selected for conpile)
[DEBUG junit:junit:jar:3.8.1l:test (selected for test)

In the debug output, we see some of the guts of the dependency management
system at work. What you see hereis the tree of dependencies for this project.
Maven is printing out the full Maven coordinates for all of your project’s
dependencies and the dependencies of your dependencies (and the dependencies of
your dependencies dependencies). You can see that si npl e- weat her depends on

j axen, which depends on xom which in turn depends oni cu4j . You can also see
that Maven is creating a graph of dependencies, eliminating duplicates, and
resolving any conflicts between different versions. If you are having problems with
dependencies, it is often helpful to dig alittle deeper than the list generated by
dependency: r esol ve. Turning on the debug output alows you to see Maven's
dependency mechanism at work.

4.9. Writing Unit Tests

Maven has built-in support for unit tests, and testing is a part of the default Maven
lifecycle. Let’s add some unit tests to our simple weather project. First, let’s create
the org.sonatype.mavenbook.weather package under src/ t est/j ava:

$ cd src/test/java

$ cd or g/ sonat ype/ mavenbook
$ nkdir -p weat her/yahoo

$ cd weat her/yahoo

At this point, we will create two unit tests. The first will test the YahooPar ser, and
the second will test the weat her For mat t er . In the weat her package, create afile
named YahooPar ser Test . j ava With the contents shown in the next example.

Example 4.11. Simple Weather's Y ahooPar ser Test Unit Test

package org. sonatype. mavenbook. weat her . yahoo;
i mport java.io.lnputStream

i mport junit.framework. Test Case;

70

Customizing a Maven Project

i nport org. sonatype. mavenbook. weat her . \Weat her ;
i mport org.sonatype. mavenbook. weat her. YahooPar ser ;

public class YahooParser Test extends TestCase ({

publ i ¢ YahooParser Test (String nane) ({
super (nane) ;

}

public void testParser() throws Exception {

I nput St ream nyData =
get O ass(). get d assLoader (). get Resour ceAsStr ean(" ny- weat her. xm ") ;

Weat her weat her = new YahooParser (). parse(nyData);
assert Equal s("New York", weather.getGCity());
assert Equal s("NY", weather.get Region());
assert Equal s("US", weather.get Country());
assert Equal s("39", weather.getTemp());
assert Equal s("Fair", weather.getCondition());
assert Equal s("39", weather.getChill ());
assert Equal s("67", weather.getHum dity());

This YahooPar ser Test extends the Test Case class defined by JUnit. It follows the
usual pattern for a JUnit test: a constructor that takes asingle st ri ng argument that
calls the constructor of the superclass, and a series of public methods that begin
with “t est ” that are invoked as unit tests. We define a single test method,

t est Par ser , which tests the YahooPar ser by parsing an XML document with
known values. The test XML document is named ny- weat her . xm and is loaded
from the classpath. We'll add test resourcesin Section 4.11, “ Adding Unit Test
Resources’.” In our Maven project’ s directory layout, the ny- weat her. xn fileis
found in the directory that contains test

resources—s${ basedi r}/src/test/resources under

or g/ sonat ype/ mavenbook/ weat her/ yahoo/ ny- weat her . xni . Thefileisread asan
| nput St r eamand passed to the par se() method on YahooPar ser . The par se()
method returns awat her object, which is then tested with a series of callsto
assert Equal s(), amethod defined by Test Case.

In the same directory, create afile named Weat her For mat t er Test . j ava.

Example 4.12. Smple Weather's Weather For matter Test Unit Test

71

Customizing a Maven Project

package org. sonatype. mavenbook. weat her . yahoo;
i mport java.io.lnputStream
i mport org.apache. commons.io. | OUils;

i mport org.sonatype. mavenbook. weat her . Weat her ;
i nport org. sonatype. mavenbook. weat her . \\eat her For mat t er ;
i mport org.sonatype. mavenbook. weat her. YahooPar ser ;

i mport junit.franmework. Test Case;
public class Weat her Formatter Test extends Test Case {

publ i c Weat her Formatter Test (String nanme) {
super (nane) ;

}

public void testFormat() throws Exception {

I nput St ream nyDat a =

get O ass() . get d assLoader (). get Resour ceAsSt r ean(" ny- weat her. xm ") ;
Weat her weat her = new YahooParser (). parse(nyData);
String formattedResult = new Wat her Formatter().format(weat her);
| nput St ream expected =

get Cl ass() . get C assLoader (). get Resour ceAsStream("f or mat - expect ed. dat ") ;
assertEqual s(I1OUtils.toString(expected).trinm(),

formattedResult.trim());

The second unit test in this ssmple project tests the weat her For mat t er . Like the
YahooPar ser Test , the Weat her For mat t er Test also extends JUnit's Test Case
class. The single test function reads the same test resource from
${basedir}/src/test/resources under the

or g/ sonat ype/ mavenbook/ weat her / yahoo directory viathis unit test's classpath.
We'll add test resources in Section 4.11, “Adding Unit Test Resources”.

Weat her For mat t er Test runs this sample input file through the YahooPar ser which
spits out aweat her object, and this object is then formatted with the

Weat her For mat t er . Since the Weat her For mat t er printsout ast ri ng, we need to
test it against some expected input. Our expected input has been captured in atext
filenamed f or mat - expect ed. dat which isin the same directory as

ny- weat her . xn . To compare the test's output to the expected output, we read this
expected output in asan I nput St r eamand use Commons |O's1 outi | s classto

72

Customizing a Maven Project

convert thisfiletoastring. Thisst ri ng isthen compared to the test output using
assert Equal s() .

4.10. Adding Test-scoped Dependencies

In Weat her For mat t er Test , we used a utility from Apache Commons |O—the
louils class. 1outils providesanumber of helpful static functions that take
most of the work out of input/output operations. In this particular unit test, we used
| OUtils.toString() tocopy theformat - expect ed. dat classpath resourceto a

st ri ng. We could have done this without using Commons | O, but it would have
required an extra six or seven lines of code to deal with the various

| nput St reanrReader and St ri ngW i t er objects. The main reason we used
Commons IO was to give us an excuse to add at est -scoped dependency on
Commons 1O.

A t est -scoped dependency is a dependency that is available on the classpath only
during test compilation and test execution. If your project haswar or ear
packaging, at est -scoped dependency would not be included in the project’s
output archive. To add at est -scoped dependency, add the dependency element to
your project’sdependenci es Section, as shown in the following example:

Example 4.13. Adding a Test-scoped Dependency

<pr oj ect >
<dependenci es>

<dependency>
<gr oupl d>or g. apache. conmons</ gr oupl d>
<artifactld>comons-io</artifactld>
<ver si on>1. 3. 2</ ver si on>
<scope>t est </ scope>

</ dependency>

</ dependenci es>
</ proj ect >

After you add this dependency to the pom xmi , run mvn dependency:resolve and

73

Customizing a Maven Project

you should see that commons-i o isnow listed as a dependency with scopet est .
We need to do one more thing before we are ready to run this project's unit tests.
We need to create the classpath resources these unit tests depend on. Dependency
scopes are explained in detail in Section 9.4.1, “Dependency Scope”.

4.11. Adding Unit Test Resources

A unit test has access to a set of resources which are specific to tests. Often you'll
store files containing expected results and files containing dummy input in the test
classpath. In this project, we're storing atest XML document for YahooPar ser Test
named ny- weat her . xm and afile containing expected output from the

Weat her For matt er iNf or mat - expect ed. dat .

To add test resources, you'll need to createthe src/ test/resour ces directory.
Thisisthe default directory in which Maven looks for unit test resources. To create
this directory execute the following commands from your project's base directory.

$ cd src/test
$ nkdir resources
$ cd resources

Once you've create the resources directory, create afile named
f or mat - expect ed. dat intheresour ces directory.

Example 4.14. Smple Weather's Weather For matter Test Expected Output

ERE R R R R R R R R R R R R R R R R R R E R R R R R R R

Current \Weat her Conditions for:
New Yor k, NY, US

Tenperature: 39
Condition: Fair

Hum dity: 67

Wnd Chill: 39

EIE R R I S S S R R S R R R R S

Thisfile should look familiar. It is the same output that was generated previously
when you ran the simple weather project with the Maven Exec plugin. The second

74

Customizing a Maven Project

fileyou’'ll need to add to the resources directory is ny- weat her . xni .

Example 4.15. Smple Weather's YahooParser Test XML I nput

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<rss version="2.0" xm ns:yweat her="http://xm . weat her. yahoo. com ns/rss/ 1. 0"
xm ns: geo="http://ww. w3. or g/ 2003/ 01/ geo/ wgs84_pos#" >

<channel >

<titl e>Yahoo! Wather - New York, NY</title>

<l ink>http://us.rd.yahoo. conf dai |l ynews/rss/weat her/ New_Yor k__NY/ </ | i nk>

<descri pti on>Yahoo! Wather for New York, NY</description>

<l anguage>en- us</ | anguage>

<| ast Bui | dDat e>Sat, 10 Nov 2007 8:51 pm EDT</| ast Bui | dDat e>

<ttl>60</ttl>

<yweat her: |l ocation city="New York" regi on="NY" country="US" />

<yweat her:units tenperature="F" distance="m " pressure="in" speed="nph" />

<yweat her:wi nd chill="39" direction="0" speed="0" />

<yweat her: at nosphere hum di ty="67" visibility="1609" pressure="30.18"
rising="1" />

<yweat her: ast ronony sunrise="6:36 anl' sunset="4:43 pni' />

<i mage>

<titl e>Yahoo! Wather</title>

<wi dt h>142</w dt h>

<hei ght >18</ hei ght >

<li nk>http://weat her.yahoo. con </ |i nk>
<url>http://I|.ying.comus.ying.coni/us/nws/th/min_142b. gif</url >
</i mage>

<itenp

<title>Conditions for New York, NY at 8:51 pm EDI</title>

<geo: | at >40. 67</ geo: | at >
<geo: | ong>- 73. 94</ geo: | ong>
<l i nk>http://us.rd. yahoo. coni dai | ynews/rss/ weat her/ New_York__NY/\</|i nk>
<pubDat e>Sat, 10 Nov 2007 8:51 pm EDT</ pubDat e>
<yweat her:condition text="Fair" code="33" tenp="39"
date="Sat, 10 Nov 2007 8:51 pm EDT" />
<descri pti on><! [CDATA[

Current Conditions: </ b>

Fair, 39 F

For ecast : </ b>

Sat - Partly O oudy. High: 45 Low 32

Sun - Sunny. High: 50 Low. 38

]]></ descri pti on>
<yweat her: forecast day="Sat" date="10 Nov 2007" |ow="32" hi gh="45"
text="Partly d oudy" code="29" />

<yweat her: f orecast day="Sun" date="11 Nov 2007" | ow="38" hi gh="50"
t ext =" Sunny" code="32" />

75

Customizing a Maven Project

<gui d i sPermaLi nk="fal se">10002_2007_11 10 20_51 EDT</ gui d>
</itenpr
</ channel >
</rss>

Thisfile contains atest XML document for the YahooPar ser Test . We store this
file so that we can test the YahooPar ser without having to retrieve and XML
response from Y ahoo! Weather.

4.12. Executing Unit Tests

Now that your project has unit tests, let’s run them. Y ou don’t have to do anything
special to run aunit test; thet est phaseisanormal part of the Maven lifecycle.

Y ou run Maven tests whenever you run mvn package or mvn install. If you
would like to run all the lifecycle phases up to and including the t est phase, run
mvn test:

$ nmvn test

[INFO [surefire:test]
[INFQ Surefire report directory: ~/exanples/sinple-weather/target/\
surefire-reports

Runni ng or g. sonat ype. mavenbook. weat her . yahoo. Weat her For nat t er Test

0 I NFO YahooParser - Creating XM. Reader

177 |1 NFO YahooParser - Parsing XM. Response

239 |INFO WatherFormatter - Formatting Weat her Data

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Tine elapsed: 0.547 sec
Runni ng or g. sonat ype. mavenbook. weat her . yahoo. YahooPar ser Test

475 | NFO YahooParser - Creating XM. Reader

483 | NFO YahooParser - Parsing XM. Response

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Tine elapsed: 0.018 sec

Resul ts

Tests run: 2, Failures: 0, Errors: 0, Skipped: O

Executing mvn test from the command line caused Maven to execute al lifecycle
phases up to thet est phase. The Maven Surefire plugin hasat est goa whichis

76

Customizing a Maven Project

bound to thet est phase. Thist est goa executes all of the unit tests this project
can find under src/ t est /j ava with filenames matching **/ Test *. j ava,
**[*Test . java and **/ * Test Case. j ava. In the case of this project, you can see
that the Surefire plugin'st est goal executed Weat her For mat t er Test and
YahooPar ser Test . When the Maven Surefire plugin runs the JUnit tests, it al'so
generates XML and text reportsin the ${ basedir}/target/surefire-reports
directory. If your tests are failing, you should look in this directory for details like
stack traces and error messages generated by your unit tests.

4.12.1. Ignoring Test Failures

Y ou will often find yourself developing on a system that has failing unit tests. If
you are practicing Test-Driven Development (TDD), you might use test failure as a
measure of how close your project isto completeness. If you have failing unit tests,
and you would still like to produce build output, you are going to have to tell
Maven to ignore build failures. When Maven encounters a build failure, its default
behavior is to stop the current build. To continue building a project even when the
Surefire plugin encounters failed test cases, you' [l need to set the

t est Fai | ur el gnor e configuration property of the Surefire plugintot r ue.

Example 4.16. Ignoring Unit Test Failures

<pr oj ect >
[...]
<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<confi gurati on>
<t est Fai | ur el gnore>true</testFail urel gnore>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
[...]

</ proj ect >

The plugin documents

77

Customizing a Maven Project

http://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html) show that
this parameter declares an expression:

Example 4.17. Plugin Parameter Expressions

testFailurelgnore Set this to true to ignore a failure during \
testing. Its use is NOT RECOWENDED, but quite \
conveni ent on occasi on.

* Type: bool ean
* Requi red: No
* Expression: ${maven.test.failure.ignore}

This expression can be set from the command line using the - D parameter:

$ n/n test -Dnaven.test.failure.ignore=true

4.12.2. SKipping Unit Tests

Y ou may want to configure Maven to skip unit tests altogether. Maybe you have a
very large system where the unit tests take minutes to complete and you don't want
to wait for unit tests to complete before producing output. Y ou might be working
with alegacy system that has a series of failing unit tests, and instead of fixing the
unit tests, you might just want to produce a JAR. Maven provides for the ability to
skip unit tests using the ski p parameter of the Surefire plugin. To skip tests from
the command-line, smply add the naven. t est . ski p property to any goal:

$ nmvn install -Dmaven.test.skip=true

[INFQ [conpiler:testConpile]
[INFO Not conpiling test sources
[INFQ [surefire:test]

[INFO Tests are ski pped.

When the Surefire plugin reachesthet est goal, it will skip the unit tests if the
maven. t est . ski p propertiesis set tot r ue. Another way to configure Maven to
skip unit testsis to add this configuration to your project's pom xni . To do this, you

78

http://maven.apache.org/plugins/maven-surefire-plugin/test-mojo.html

Customizing a Maven Project

would add apl ugi n element to your bui | d configuration.

Example 4.18. Skipping Unit Tests

<pr oj ect >
[...]
<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<confi guration>
<ski p>t r ue</ ski p>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
[...]

</ proj ect >

4.13. Building a Packaged Command Line
Application

In the Section 4.8, “Running the Simple Weather Program”” section earlier in this
chapter, we executed our application using the Maven Exec plugin. Although that
plugin executed the program and produced some output, you shouldn’t look to
Maven as an execution container for your applications. If you are distributing this
command-line application to others, you will probably want to distribute a JAR or
an archiveasaZIP or TAR' d GZIPfile. This section outlines a process for using a
predefined assembly descriptor in the Maven Assembly plugin to produce a
distributable JAR file, which contains the project’ s bytecode and al of the
dependencies.

The Maven Assembly plugin is aplugin you can use to create arbitrary
distributions for your applications. Y ou can use the Maven Assembly plugin to
assemble the output of your project in any format you desire by defining a custom
assembly descriptor. In alater chapter we will show you how to create a custom
assembly descriptor which produces a more complex archive for the Simple

79

Customizing a Maven Project

Weather application. In this chapter, we're going to use the predefined

j ar-wi t h-dependenci es format. To configure the Maven Assembly Plugin, we
need to add the following pl ugi n configuration to our existing build configuration
inthe pom xm .

Example 4.19. Configuring the Maven Assembly Descriptor

<pr oj ect >
[...]
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-assenbl y- pl ugi n</artifactld>
<confi gurati on>
<descri pt or Ref s>
<descri pt or Ref >j ar - wi t h- dependenci es</ descri pt or Ref >
</ descri pt or Ref s>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
[...]

</ proj ect >

Once you' ve added this configuration, you can build the assembly by running the
assenbl y: assenbl y goal. In the following screen listing, the assenbl y: assenbl y
goal is executed after the Maven build reachesthei nst al | lifecycle phase:

$ nvn install assenbly: assenbly

[INFQ [jar:jar]
[INFQ Building jar: ~/exanpl es/sinple-weather/target/sinple-weather-1.0.jar
[INFQ [assenbly: assenbl y]
[NFQ Processing DependencySet (output=)
[NFO Expanding: \
.m2/ repository/ domdj/domdj/1.6.1/domdj-1.6.1.jar into \
[tnp/ archived-file-set.1437961776.tnp
[NFQ Expandi ng: .n2/repository/conmons-|ang/ comons-|ang/ 2. 1/\
commons-| ang-2. 1. j ar
into /tnp/archived-file-set.305257225.tnp
. (Maven Expands all dependencies into a tenporary directory)
[INFO Building jar: \
~/ exanpl es/ si npl e- weat her/target/\
si nmpl e-weat her-1. 0-j ar-wi t h- dependenci es. j ar

Once our assembly isassembled in

80

Customizing a Maven Project

dependenci es. j ar, we can run the Mai n class again from the command line. To
run the simple weather application’s mai n class, execute the following commands
from your project’s base directory:

$ cd target
$ java -cp sinple-weather-1.0-jar-wth-dependencies.jar \
or g. sonat ype. mavenbook. weat her . Mai n 10002

0 I NFO YahooRetriever - Retrieving Wather Data
221 |INFO YahooParser - Creating XM. Reader
399 |INFO YahooParser - Parsing XM. Response
474 |INFO WeatherFormatter - Formatting Weat her Data
khkkhkkkhkkkhkkhhkkhhkkhhkkhhkkhhkkhkkdkkdkkdkkhkxkk xkx*%

Current Weat her Conditions for:

New Yor k, NY, US

Tenperature: 44
Condition: Fair
Hum dity: 40

Wnd Chill: 40

EIE R R S R R R I R R R R I S

Thej ar-wi t h-dependenci es format creates asingle JAR file that includes all of
the bytecode from the si npl e- weat her project aswell as the unpacked bytecode
from al of the dependencies. This somewhat unconventional format produces a9
MiB JAR file containing approximately 5,290 classes, but it does provide for an
easy distribution format for applications you' ve developed with Maven. Later in
this book, we'll show you how to create a custom assembly descriptor to produce a
more standard distribution.

4.13.1. Attaching the Assembly Goal to the Package

Phase

In Maven 1, a build was customized by stringing together a series of plugin goals.
Each plugin goal had prerequisites and defined a relationship to other plugin goals.
With the release of Maven 2, alifecycle was introduced and plugin goals are now
associated with a series of phasesin adefault Maven build lifecycle. The lifecycle
provides a solid foundation that makes it easier to predict and manage the plugin
goals which will be executed in agiven build. In Maven 1, plugin goalsrelated to
one another directly; in Maven 2, plugin goals relate to a set of common lifecycle
stages. Whileit is certainly valid to execute a plugin goal directly from the

81

Customizing a Maven Project

command-line as we just demonstrated, it is more consistent with the design of
Maven to configure the Assembly plugin to execute the assenbl y: assenbl y goal
during a phase in the Maven lifecycle.

The following plugin configuration configures the Maven Assembly plugin to
execute the at t ached goal during the package phase of the Maven default build
lifecycle. The at t ached goal doesthe same thing asthe assenbl y goal. To bind to
assenbl y: at t ached goal to the package phase we use the execut i ons element
under pl ugi n inthe bui | d section of the project's POM.

Example 4.20. Configuring attached Goal Execution during the package
Lifecycle Phase

<pr oj ect >
[...]
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-assenbl y- pl ugi n</artifactld>
<confi gurati on>
<descri pt or Ref s>
<descri pt or Ref >j ar - wi t h- dependenci es</ descri pt or Ref >
</ descri pt or Ref s>
</ configuration>
</ pl ugi n>
<execut i ons>
<execut i on>
<i d>si npl e- command</i d>
<phase>package</ phase>
<goal s>
<goal >at t ached</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi ns>
</ bui | d>
[...]

</ proj ect >

Once you have this configuration in your POM, all you need to do to generate the
assembly is run mvn package. The execution configuration will make sure that the
assenbl y: at t ached goal is executed when the Maven lifecycle transitions to the
package phase of the lifecycle.

82

Chapter 5. A Simple Web Application

5.1. Introduction

In this chapter, we create a simple web application with the Maven Archetype
plugin. We'll run this web application in a Servlet container named Jetty, add some
dependencies, write asimple Servlet, and generate aWAR file. At the end of this
chapter, you will be able to start using Maven to accel erate the development of
web applications.

5.1.1. Downloading this Chapter's Example

The example in this chapter is generated with the Maven Archetype plugin. While
you should be able to follow the development of this chapter without the example
source code, we recommend downloading a copy of the example codeto use asa
reference. This chapter's example project may be downloaded with the book's
example code at http://www.sonatype.com/book/mvn-examples-1.0.zip or
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz. Unzip thisarchive in any
directory, and then go to the chos/ directory. Inthe chos/ directory you will see a
directory named si npl e- webapp/ which contains the Maven project developed in
this chapter. If you wish to follow along with the example code in aweb browser,

go to http://www.sonatype.com/book/examples-1.0 and click on the chos/
directory.

5.2. Defining the Simple Web Application

We've purposefully kept this chapter focused on Plain-Old Web Applications
(POWA)—a servlet and a JavaServer Pages (JSP) page. We're not going to tell
you how to develop your Struts 2, Tapestry, Wicket, Java Server Faces (JSF), or
Waffle application in the next 20-odd pages, and we're not going to get into
integrating an Inversion of Control (10C) container such as Plexus, Guice, or the

83

http://www.sonatype.com/book/mvn-examples-1.0.zip
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz
http://www.sonatype.com/book/examples-1.0

A Simple Web Application

Spring Framework. The goal of this chapter isto show you the basic facilities that
Maven provides for developing web applications—no more, no less. Later in this
book, we're going to take alook at devel oping two web applications. one which
that Hibernate, Velocity, and the Spring Framework; and the other that uses
Plexus.

5.3. Creating the Simple Web Project

To create your web application project, run mvn ar chetype: create with an
artifact!dandagroupl d. Specify thear chet ypeArtifactldas

maven- ar chet ype- webapp. Running this will create the appropriate directory
structure and Maven POM:

~/ exanpl es$ mvn ar chetype: creat e - Dgr oupl d=or g. sonat ype. mavenbook. ch05 \
-Dartifactld=sinpl e-webapp \
- DpackageNane=or g. sonat ype. navenbook \
- Darchet ypeArti fact| d=naven- ar chet ype- webapp
[INFQ [archetype:create]
I O I I
[INFQ Using paraneters for creating Archetype: nmaven-archetype-webapp: RELEASE
I O I I e
[INFQ Paraneter: groupld, Value: org.sonatype. mavenbook. ch05
[NFQ Paraneter: packageNane, Val ue: org.sonatype. navenbook
[INFQ Paraneter: basedir, Value: ~/exanples
[NFQ Paraneter: package, Val ue: org.sonatype. mavenbook
[INFQ Paraneter: version, Value: 1.0-SNAPSHOT
[INFO Paraneter: artifactld, Value: sinple-webapp
[INFQ *****x*xx*xx*xxx* Fnd of debug info fromresources from generated POM **
[INFO Archetype created in dir: ~/exanpl es/sinple-webapp

Once the Maven Archetype plugin creates the project, change directories into the
si mpl e- web directory and take alook at the pom xm . Y ou should see the XML
document shown in the following example:

Example 5.1. Initial POM for the ssimple-web project

<project xm ns="http:// maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook. ch05</ gr oupl d>

A Simple Web Application

<artifactld>si npl e-webapp</artifactld>
<packagi ng>war </ packagi ng>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<nanme>si npl e- webapp Maven Webapp</ name>
<url >http:// maven. apache. org</url >
<dependenci es>
<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<ver si on>3. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
</ dependenci es>
<bui | d>
<f i nal Name>si npl e- webapp</ fi nal Name>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-conpil er-plugin</artifactld>
<confi gurati on>
<sour ce>1. 5</ sour ce>
<t arget >1. 5</t ar get >
</ configurati on>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

Notice the packagi ng element contains the value war . This packaging type is what
configures Maven to produce a web application archivein aWAR file. A project
with war packaging is going to create aWAR fileinthet ar get/ directory. The
default name of thisfileiss${artifact!d}-${version}.war. Inthisproject, the
default WAR would be generated int ar get / si npl e- webapp- 1. 0- SNAPSHOT. war .
In the si npl e- webapp project, we' ve customized the name of the generated WAR
fileby adding af i nal Nane element inside of this project’s build configuration.
With afi nal Nane Of si npl e- webapp, the package phase producesa WAR filein

t arget/ si npl e- webapp. war .

5.4. Configuring the Jetty Plugin

Once you' ve compiled, tested, and packaged your web application, you'll likely
want to deploy it to a servlet container and test the i ndex. j sp that was created by
the Maven Archetype plugin. Normally, this would involve downloading

85

A Simple Web Application

something like Jetty or Apache Tomcat, unpacking a distribution, copying your
application'sWAR file to awebapps/ directory, and then starting your container.
Although you can still do such athing, there is no need. Instead, you can use the
Maven Jetty plugin to run your web application within Maven. To do this, we'll
need to configure the Maven Jetty plugin in our project’s pom xm . Add the pl ugi n
element shown in the following example to your project’s build configuration.

Example 5.2. Configuring the Jetty Plugin

<pr oj ect >
[...]
<bui | d>
<fi nal Narme>si npl e- webapp</ fi nal Nane>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. nort bay. j etty</ groupl d>
<artifactld>maven-jetty-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
[...]

</ proj ect >

Once you've configured the Maven Jetty Plugin in your project's pom xni , you can
then invoke the Run goal of the Jetty plugin to start your web application in the
Jetty Servlet container. Run mvn jetty:run asfollows:

~/ exanpl es$ nmvn jetty:run

[INFQ [jetty:run]
[INFQ Configuring Jetty for project: sinple-webapp Maven Webapp
[NFQ Wbapp source directory =\
~/ svnw/ sonat ype/ exanpl es/ si npl e- webapp/ sr c/ mai n/ webapp
[INFO web.xm file =\
~/ svnw sonat ype/ exanpl es/ si npl e- webapp/ sr ¢/ mai n/ webapp/ VEEB- | NF/ web. xn
[INFQ d asses = ~/svnw sonat ype/ exanpl es/ si npl e- webapp/t arget/ cl asses
2007-11-17 22:11:50.532::INFO Logging to STDERR via org. nortbay. | og. St dErrLog
[INFQ Context path = /sinple-webapp
[INFQ Tnp directory = determned at runtine
[INFO Web defaults = org/nortbay/jetty/webapp/ webdef aul t. xn
[INFO Web overrides = none
[INFQ Webapp directory =\
~/ svnw sonat ype/ exanpl es/ si npl e- webapp/ sr ¢/ mai n/ webapp
[INFQ Starting jetty 6.1.6rcl ..
2007-11-17 22:11:50.673::INFO jetty-6.1.6rcl
2007-11-17 22:11:50.846::1NFO No Transacti on manager found

86

A Simple Web Application

2007-11-17 22:11:51.057::INFO Started Sel ect Channel Connect or @. 0. 0. 0: 8080
[INFQ Started Jetty Server

After Maven starts the Jetty Servlet container, load the URL
http://localhost:8080/simple-webapp/ in aweb browser. The simplei ndex. j sp
generated by the Archetype istrivia,; it contains a second-level heading with the
text "Hello World!". Maven expects the document root of the web application to be
stored in src/ mai n/ webapp. It isin this directory where you will find the

i ndex. j sp file shown in Example 5.3, “Contents of src/main/webapp/index.jsp”.

Example 5.3. Contents of src/main/webapp/index.jsp

<htm >
<body>
<h2>Hel | o Wor | d! </ h2>
</ body>
</htm >

In src/ mai n/ webapp/ VEB- | NF, we will find the smallest possible web application
descriptor inweb. xn , shown in this next example:

Example 5.4. Contents of src/main/webapp/WEB-INF/web.xml

<! DOCTYPE web-app PUBLIC
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN
"http://java. sun. coni dt d/ web-app_2_3.dtd" >

<web- app>
<di spl ay- name>Ar chet ype Created Wb Appli cati on</di spl ay- nanme>
</ web- app>

5.5. Adding a Simple Servlet

A web application with a single JSP page and no configured servletsis next to
useless. Let’s add a simple servlet to this application and make some changes to
the pom xm and web. xm to support this change. First, we'll need to create a new
package under sr ¢/ mai n/ j ava named org.sonatype.mavenbook.web:

87

http://localhost:8080/simple-webapp/

A Simple Web Application

$ nkdir -p src/nmain/javal org/ sonatype/ mavenbook/ web
$ cd src/ main/javal or g/ sonat ype/ mavenbook/ web

Once you' ve created this package, change to the

src/ mai n/ j ava/ or g/ sonat ype/ mavenbook/ web directory and create a class named
Si npl eSer vl et iNSi npl eSer vl et . j ava, Which contains the code shown in the

Si npl eSer vl et class:

Example 5.5. SimpleServiet Class

package org. sonat ype. navenbook. web;

i mport java.io.*;
i mport javax.servlet.*;
i mport javax.servlet.http.*;

public class SinpleServlet extends HitpServlet {
public void doGet(HttpServl et Request request,
Ht t pSer vl et Response response)
t hrows Servl et Exception, | OException {

PrintWiter out = response.getWiter();
out.println("SinpleServlet Executed");
out. flush();
out . cl ose();

Our si npl eSer vl et classisjust that: a servlet that prints a simple message to the
response’swit er. To add this servlet to your web application and map it to a
request path, add the ser vl et and ser vl et - mappi ng €lements shown in the
following web. xm to your project’sweb. xm file. Theweb. xn file can be found in
src/ mai n/ webapp/ V\EB- | NF.

Example 5.6. Mapping the Simple Servlet

<! DOCTYPE web-app PUBLIC
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN
"http://java. sun. conl dt d/ web-app_2_3.dtd" >

<web- app>
<di spl ay- nane>Ar chet ype Created Wb Application</di spl ay- nane>
<servl et >
<servl et - nane>si npl e</ servl et - nane>

88

A Simple Web Application

<servl et - cl ass>or g. sonat ype. mavenbook. web. Si npl eSer vl et </ servl et - cl ass>
</servlet>
<servl et - mappi ng>
<servl et - nane>si npl e</ servl et - nane>
<url -pattern>/sinple</url-pattern>
</ servl et - mappi ng>
</ web- app>

Everything isin place to test this servlet; the classisin src/ mai n/ j ava and the
web. xnl has been updated. Before we launch the Jetty plugin, compile your project
by running mvn compile:

~/ exanpl es$ nvn conpil e

[INFQ [conpiler:conpile]
[INFQ Conmpiling 1 source file to ~/exanpl es/ch05/si npl e-webapp/target/classes

TN FE] 0 o I e 5 I 8 5 3 8 3 1 5 5 5 5 1 4 8 4 8 8) 1 5 5 e e e
[ERROR] BUI LD FAI LURE

RN R I R
[INFQ Conpilation failure

/ src/ mai n/ j aval or g/ sonat ype/ mavenbook/ web/ Si npl eSer vl et . java:[4,0] \
package javax.servlet does not exi st

/ src/ mai n/j aval or g/ sonat ype/ mavenbook/ web/ Si npl eServl et.java:[5,0] \
package javax.servlet.http does not exi st

/ src/ mai n/ j aval or g/ sonat ype/ mavenbook/ web/ Si npl eServl et.java: [7, 35] \
cannot find synbol
synmbol : class HttpServl et
public class SinpleServlet extends HttpServlet {

/ src/ mai n/ j aval or g/ sonat ype/ mavenbook/ web/ Si npl eSer vl et . j ava: [8, 22] \
cannot find synbol
synmbol : class HttpServl et Request
| ocation: class org.sonatype. mavenbook. web. Si npl eSer vl et

/ src/ mai n/ j aval or g/ sonat ype/ mavenbook/ web/ Si npl eServl et. java: [9, 22] \
cannot find synbol
synbol : class HttpServl et Response
| ocation: class org.sonatype. mavenbook. web. Si npl eSer vl et

/ src/ mai n/ j aval or g/ sonat ype/ mavenbook/ web/ Si npl eSer vl et . java: [10, 15] \
cannot find synbol
synbol : class Servl et Exception
| ocation: class org.sonatype. mavenbook. web. Si npl eSer vl et

The compilation fails because your Maven project doesn't have a dependency on

89

A Simple Web Application

the Servlet API. In the next section, we'll add the Servlet API to this project's
POM.

5.6. Adding J2EE Dependencies

To write aservlet, we'll need to add the Servlet API as a project dependency. To
add the Servlet specification API as a dependency to your project’s POM, add the
dependency element as shown in this next example:

Example 5.7. Add the Servlet 2.4 Specification as a Dependency

<pr oj ect >
[...]
<dependenci es>
[...]
<dependency>
<gr oupl d>j avax. servl et </ gr oupl d>
<artifactld>servlet-api</artifactld>
<ver si on>2. 4</ ver si on>
<scope>pr ovi ded</ scope>
</ dependency>
</ dependenci es>

[-..]

</ proj ect >

It is also worth pointing out that we have used the pr ovi ded scope for this
dependency. Thistells Maven that the jar is"provided" by the container and thus
should not be included in the war. If you were interested in writing a custom JSP
tag for this simple web application, you would need to add a dependency on the
JSP 2.0 spec. Use the configuration shown in this example:

Example 5.8. Adding the JSP 2.0 Specification as a Dependency

<pr oj ect >
[...]
<dependenci es>
[...]
<dependency>
<gr oupl d>j avax. servl et . j sp</ groupl d>
<artifactld>jsp-api</artifactld>
<ver si on>2. 0</ ver si on>

90

A Simple Web Application

<scope>pr ovi ded</ scope>
</ dependency>
</ dependenci es>

[...]

</ proj ect >

Once you've added the Servlet specification as a dependency, run mvn clean
install followed by mvn jetty:run.

[tobrien@1 sinple-webapp]$ nmvn clean install

hbbrien@l si npl e-webapp]$ mvn jetty:run
[INFQ [jetty:run]

2007-12-14 16:18:31.305:: INFO jetty-6.1.6rcl

2007-12-14 16:18:31.453::INFO No Transacti on manager found

2007-12-14 16:18:32.745:: INFO Started Sel ect Channel Connect or @. 0. 0. 0: 8080
[INFQ Started Jetty Server

At this point, you should be able to retrieve the output of the Si npl eSer vl et . From
the command line, you can use curl to print the output of this servlet to standard
output:

~/ exanpl es$ curl http://|ocal host: 8080/ si npl e- webapp/ si npl e
Si mpl eSer vl et Execut ed

5.7. Conclusion

After reading this chapter, you should be able to bootstrap a simple web
application. This chapter didn't dwell on the million different waysto create a
complete web application, other chapters provide a more comprehensive overview
of projects that involve some of the more popular web frameworks and
technologies.

91

Chapter 6. A Multi-module Project

6.1. Introduction

In this chapter, we create a multimodul e project that combines the examples from
the two previous chapters. The si npl e- weat her code developed in Chapter 4,
Customizing a Maven Project will be combined with the si npl e- webapp project
defined in Chapter 5, A Smple Web Application to create a web application that
retrieves and displays weather forecast information on aweb page. At the end of
this chapter, you will be able to use Maven to develop complex, multimodule
projects.

6.1.1. Downloading this Chapter's Example

The multimodul e project developed in this example consists of modified versions
of the projects developed in Chapters 4 and 5, and we are not using the Maven
Archetype plugin to generate this multimodul e project. We strongly recommend
downloading a copy of the example code to use as a supplemental reference while
reading the content in this chapter. This chapter’ s example project may be
downloaded with the book’ s example code at

http://www.sonatype.com/book/mvn-examples-1.0.zip or

http://www.sonatype.com/book/mvn-examples-1.0.tar.gz. Unzip thisarchive in any
directory, and then go to the choeé/ directory. There you will see a directory named

si npl e- par ent / , which contains the multimodule Maven project developed in this
chapter. In this directory, you will see apom xni and the two submodule
directories, si npl e- weat her/ and si npl e- webapp/ . If you wish to follow along
with the example code in aweb browser, go to

http://www.sonatype.com/book/examples-1.0 and click on the choe/ directory.

6.2. The Simple Parent Project

92

http://www.sonatype.com/book/mvn-examples-1.0.zip
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz
http://www.sonatype.com/book/examples-1.0

A Multi-module Project

A multimodule project is defined by a parent POM referencing one or more
submodules. In the si npl e- parent / directory, you will find the parent POM (also
called the top-level POM) insi npl e- par ent / pom xm . See Example 6.1,
“simple-parent Project POM™.

Example 6.1. smple-parent Project POM

<project xm ns="http:// maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>or g. sonat ype. mavenbook. ch06</ gr oupl d>
<artifactld>sinple-parent</artifactld>
<packagi ng>ponx/ packagi ng>

<ver si on>1. 0</ ver si on>

<nanme>Chapter 6 Sinple Parent Project</nanme>

<nmodul es>
<rmodul e>si npl e- weat her </ nodul e>
<nodul e>si npl e- webapp</ nodul e>
</ nodul es>

<bui | d>
<pl ugi nManagenent >
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-conpil er-plugin</artifactld>
<confi gurati on>
<sour ce>1. 5</ sour ce>
<t arget >1. 5</t arget >
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ pl ugi nManagenent >
</ bui | d>

<dependenci es>
<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<ver si on>3. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
</ dependenci es>
</ proj ect >

93

A Multi-module Project

Notice that the parent defines a set of Maven coordinates. the gr oupl d is

or g. sonat ype. mavenbook. ch06, theartifact|d iSsi npl e- par ent, and the

versi on iS1. 0. The parent project doesn’'t create a JAR or aWAR like our
previous projects; instead, it issimply a POM that refers to other Maven projects.
The appropriate packaging for a project like si npl e- par ent that Simply provides a
Project Object Model ispom The next section in the pom xm liststhe project’s
submodules. These modules are defined in the nodul es element, and each nodul e
element corresponds to a subdirectory of the si npl e- parent/ directory. Maven
knows to look in these directories for pom xm files, and it will add submodulesto
the list of Maven projectsincluded in a build.

Lastly, we define some settings which will be inherited by all submodules. The

si npl e- par ent build configuration configures the target for all Java compilation to
be the Java5 JVM. Since the compiler plugin is bound to the lifecycle by default,
we can use the pl ugi nManagenent section do to this. We will discuss

pl ugi nManagenent in more detail in later chapters, but the separation between
providing configuration to default plugins and actually binding pluginsis much
easier to see when they are separated this way. The dependencies element adds
JUnit 3.8.1 as agloba dependency. Both the build configuration and the
dependencies are inherited by all submodules. Using POM inheritance allows you
to add common dependencies for universal dependencies like JUnit or Log4J.

6.3. The Simple Weather Module

The first submodule we' re going to look at isthe si npl e- weat her submodule. This
submodule contains all of the classes that take care of interacting with and parsing
the Y ahoo! Weather feeds.

Example 6.2. smple-weather Module POM

<project xm ns="http:// maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_ 0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<gr oupl d>or g. sonat ype. mavenbook. ch06</ gr oupl d>

94

A Multi-module Project

<artifactld>sinple-parent</artifactld>
<ver si on>1. 0</ ver si on>
</ par ent >
<artifactld>si npl e-weat her</artifactld>
<packagi ng>j ar </ packagi ng>

<name>Chapter 6 Sinple Wather API </ nanme>

<bui | d>
<pl ugi nManagenent >
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<confi gurati on>
<t est Fai | ur el gnore>true</testFail urel gnor e>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ pl ugi nManagenent >
</ bui | d>

<dependenci es>

<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<versi on>1. 2. 14</ ver si on>

</ dependency>

<dependency>
<gr oupl d>dom4j </ gr oupl d>
<artifactld>domdj </artifactld>
<versi on>1. 6. 1</ ver si on>

</ dependency>

<dependency>
<gr oupl d>j axen</ gr oupl d>
<artifactld>j axen</artifactld>
<version>1. 1. 1</ ver si on>

</ dependency>

<dependency>
<gr oupl d>vel oci t y</ gr oupl d>
<artifactld>velocity</artifactld>
<ver si on>1. 5</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. apache. conmons</ gr oupl d>
<artifactld>comons-io</artifactld>
<ver si on>1. 3. 2</ ver si on>
<scope>t est </ scope>

</ dependency>

</ dependenci es>
</ proj ect >

95

A Multi-module Project

In si mpl e- weat her 'Spom xni file, we see this module referencing a parent POM
using a set of Maven coordinates. The parent POM for si npl e- weat her IS
identified by agr oupl d Of or g. sonat ype. mavenbook. ch06, anarti fact|d of

si mpl e- parent , and aver si on of 1. 0. See Example 6.3, “The WeatherService
class'.

Example 6.3. The Weather Service class

package org. sonat ype. mavenbook. weat her ;
i mport java.io.|nputStream
public class Weat her Servi ce {
publ i c Weat her Servi ce() {}
public String retrieveForecast(String zip) throws Exception {
I/ Retrieve Data

| nput Stream dataln = new YahooRetriever().retrieve(zip);

/] Parse Data
Weat her weat her = new YahooParser (). parse(dataln);

/[l Format (Print) Data
return new Weat her Formatter().format(weat her);

The Wweat her Ser vi ce classisdefined in

src/ mai n/ j aval or g/ sonat ype/ mavenbook/ weat her , and it ssmply calls out to the
three objects defined in Chapter 4, Customizing a Maven Project. In this chapter’s
example, we're creating a separate project that contains service objects that are
referenced in the web application project. Thisisacommon model in enterprise
Java devel opment; often a complex application consists of more than just asingle,
simple web application. Y ou might have an enterprise application that consists of
multiple web applications and some command-line applications. Often, you' [l want
to refactor common logic to a service class that can be reused across a number of
projects. Thisisthe justification for creating aweat her Ser vi ce class; by doing so,
you can see how the si npl e- webapp project references a service object defined in
si npl e- weat her.

96

A Multi-module Project

TheretrieveForecast () method takesastri ng containing azip code. Thiszip
code parameter is then passed to the YahooRet ri ever'Sretri eve() method, which
getsthe XML from Y ahoo! Weather. The XML returned from YahooRet ri ever IS
then passed to the par se() method on YahooPar ser which returns aweat her
object. Thisweat her object isthen formatted into a presentable st ri ng by the

Weat her Format ter.

6.4. The Simple Web Application Module

The si npl e- webapp module is the second submodul e referenced in the

si npl e- par ent project. Thisweb application project depends upon the

si npl e- weat her module, and it contains some simple servlets that present the
results of the Y ahoo! weather service query.

Example 6.4. smple-webapp M odule POM

<project xm ns="http:// maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_ 0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >

<gr oupl d>or g. sonat ype. mavenbook. ch06</ gr oupl d>

<artifactld>sinple-parent</artifactld>

<ver si on>1. 0</ ver si on>
</ par ent >

<artifactld>sinpl e-webapp</artifactld>
<packagi ng>war </ packagi ng>
<nane>si npl e- webapp Maven Webapp</ name>
<dependenci es>
<dependency>
<gr oupl d>j avax. ser vl et </ gr oupl d>
<artifactld>servlet-api</artifactld>
<ver si on>2. 4</ ver si on>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<gr oupl d>or g. sonat ype. mavenbook. ch06</ gr oupl d>
<artifactl|d>si npl e-weat her</artifactld>
<ver si on>1. 0</ ver si on>
</ dependency>
</ dependenci es>
<bui | d>

97

A Multi-module Project

<f i nal Nanme>si npl e- webapp</ f i nal Nane>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. nort bay. j ett y</ groupl d>
<artifactld>maven-jetty-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

Thissi npl e- webapp module defines avery ssimple servlet that reads a zip code
from an HTTP request, calls the weat her Ser vi ce shown in Example 6.3, “The
WeatherService class’, and prints the results to the response’swii ter.

Example 6.5. ssmple-webapp Weather Servlet

package org. sonatype. mavenbook. web;

i mport org. sonatype. mavenbook. weat her . \Weat her Ser vi ce;
i mport java.io.*;

i mport javax.servlet.*;

i nport javax.servlet.http.*;

public class Weat her Servl et extends HttpServlet {
public void doCet(HttpServl et Request request,
Ht t pSer vl et Response response)

t hrows Servl et Exception, | OException {
String zip = request.getParaneter("zip");
Weat her Servi ce weat her Servi ce = new Wat her Servi ce();
PrintWiter out = response.getWiter();
try {

out.println(weatherService.retrieveForecast(zip));
} catch(Exception e) {

out.println("Error Retrieving Forecast: " + e.getMessage())
}
out. flush();
out . cl ose();

In Weat her Ser vl et , we instantiate an instance of the Weat her Ser vi ce class
defined in si npl e- weat her . The zip code supplied in the request parameter is
passed to ther et ri eveFor ecast () method and the resulting test is printed to the
response'swi ter.

A Multi-module Project

Finally, totie all of thistogether istheweb. xm for si npl e- webapp in

src/ mai n/ webapp/ WEB- | NF. Theservl et and ser vl et - mappi ng elementsin the
web. xm shown in Example 6.6, “simple-webapp web.xml” map the request path
/ weat her to the Weat her Ser vl et .

Example 6.6. smple-webapp web.xml

<! DOCTYPE web-app PUBLIC
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN
"http://java. sun. conl dt d/ web-app_2_3.dtd" >

<web- app>
<di spl ay- name>Ar chet ype Created Wb Applicati on</di spl ay- nane>
<servl et >
<servl et - nane>si npl e</ servl et - nane>
<servl et - cl ass>or g. sonat ype. mavenbook. web. Si npl eSer vl et </ servl et - cl ass>
</servlet>
<servl et >
<ser vl et - name>weat her </ ser vl et - nane>
<servl et - cl ass>or g. sonat ype. mavenbook. web. \Weat her Ser vl et </ servl et - cl ass>
</servlet>
<servl et - mappi ng>
<servl et - nane>si npl e</ servl et - nane>
<url - pattern>/sinple</url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<ser vl et - name>weat her </ ser vl et - nane>
<url - pattern>/weat her</url -pattern>
</ servl et - mappi ng>
</ web- app>

6.5. Building the Multimodule Project

With the si npl e- weat her project containing all the general code for interacting
with the Y ahoo! Weather service and the si npl e- webapp project containing a
simple servlet, it istime to compile and package the application into aWAR file.
To do this, you will want to compile and install both projects in the appropriate
order; sincesi npl e- webapp depends on si npl e- weat her , the si npl e- weat her
JAR needsto be created before the si npl e- webapp project can compile. To do this,
you will run mvn clean install command from the si npl e- par ent project:

99

A Multi-module Project

[I NFO
[I NFO
[I NFO
[I NFO
[I NFO
[I NFO
[I NFO
[I NFO

~/ exanpl es/ ch06/ si npl e-parent$ nmvn cl ean install

Scanni ng for projects...
React or build order:
Si npl e Parent Project
si npl e- weat her
si mpl e- webapp Maven Webapp
Bui | di ng si npl e- weat her
t ask-segnent: [clean, install]

[install:install]
Installing sinple-weather-1.0.jar to sinple-weather-1.0.jar

Bui | di ng si npl e- webapp Maven Webapp
t ask-segnent: [clean, install]

[install:install]
Installing sinple-webapp.war to sinple-webapp-1.0.war

Sinple Parent Project SUCCESS [3. 041s]
sinmple-weather SUCCESS [4. 802s]
si mpl e-webapp Maven Webapp SUCCESS [3. 065s]

When Maven is executed against a project with submodules, Maven first |loads the
parent POM and locates all of the submodule POMs. Maven then puts all of these
project POMs into something called the Maven Reactor which analyzes the
dependencies between modules. The Reactor takes care of ordering components to
ensure that interdependent modules are compiled and installed in the proper order.

Note

The Reactor preserves the order of modules as defined in the POM unless
changes need to be made. A helpful mental model for thisisto picture
that modules with dependencies on sibling projects are "pushed down"
the list until the dependency ordering is satisfied. On rare occasions, it
may be handy to rearrange the module order of your build -- for example
If you want a frequently unstable module towards the beginning of the
build.

100

A Multi-module Project

Once the Reactor figures out the order in which projects must be built, Maven then
executes the specified goals for every module in a multi-module build. In this
example, you can see that Maven builds si npl e- weat her before si npl e- webapp
effectively executing mvn clean install for each submodule.

Note

When you run Maven from the command line you'll frequently want to
specify the cl ean lifecycle phase before any other lifecycle stages. When
you specify cl ean, you make sure that Maven is going to remove old
output before it compiles and packages an application. Running cl ean
Isn't necessary, but it isauseful precaution to make sure that you are
performing a"clean build".

6.6. Running the Web Application

Once the multimodule project has been installed with mvn clean install from the
parent project, si npl e- pr oj ect , you can then change directories into the
si npl e- webapp project and run the Run goal of the Jetty plugin:

~/ exanpl es/ ch06/ si npl e- par ent/ si npl e-webapp $ nvn jetty:run

[INFQ] - - - mmmm e e oo oo
[NFQ Buil di ng sinple-webapp Maven Webapp
[I NFQ task-segnent: [jetty:run]

NFQ [jetty:run]
NFQ Configuring Jetty for project: sinple-webapp Maven Webapp

I NFO Webapp directory = ~/ exanpl es/ ch06/ si npl e- parent/\
si mpl e- webapp/ src/ mai n/ webapp
[INFOQ Starting jetty 6.1.6rcl ...
2007-11-18 1:58:26.980::INFO jetty-6.1.6rcl
2007-11-18 1:58:26.125::INFG No Transacti on manager found
2007-11-18 1:58:27.633::INFO Started Sel ect Channel Connect or @. 0. 0. 0: 8080
[INFQ Started Jetty Server

Once Jetty has started, load

http://local host:8080/si mpl e-webapp/weather?zip=01201 in a browser and you
should see the formatted weather output.

101

http://localhost:8080/simple-webapp/weather?zip=01201

Chapter 7. Multi-module Enterprise Project

7.1. Introduction

In this chapter, we create a multimodul e project that evolves the examples from
Chapter 6, A Multi-module Project and Chapter 5, A Smple Web Application into a
project that uses the Spring Framework and Hibernate to create both a simple web
application and a command-line utility to read data from the Y ahoo! Weather feed.
Thesi npl e- weat her code developed in Chapter 4, Customizing a Maven Project
will be combined with the si npl e- webapp project defined in Chapter 5, A Smple
Web Application. In the process of creating this multimodule project, we'll explore
Maven and discuss the different ways it can be used to create modular projects that
encourage reuse.

7.1.1. Downloading this Chapter's Example

The multi-module project developed in this example consists of modified versions
of the projects developed in Chapter 4, Customizing a Maven Project and

Chapter 5, A Smple Web Application, and we are not using the Maven Archetype
plug-in to generate this multi-module project. We strongly recommend
downloading a copy of the example code to use as a supplemental reference while
reading the content in this chapter. Without the examples, you won't be able to
recreate this chapter's example code. This chapter's example project may be
downloaded with the book's example code at

http://www.sonatype.com/book/mvn-examples-1.0.zip or

http://www.sonatype.com/book/mvn-examples-1.0.tar.gz. Unzip thisarchive in any
directory, and then go to the cho7/ directory. Inthe cho7/ directory you will see a

directory named si npl e- par ent / which contains the multi-module Maven project
developed in this chapter. In the si npl e- par ent / project directory you will seea
pom xm and the five submodule directories si npl e- nodel /, si npl e- persi st/

si npl e- command/ , si npl e- weat her/ and si npl e- webapp/ . If you wish to follow
along with the example code in aweb browser, go to

102

http://www.sonatype.com/book/mvn-examples-1.0.zip
http://www.sonatype.com/book/mvn-examples-1.0.tar.gz

Multi-module Enterprise Project

http://www.sonatype.com/book/examples-1.0 and click on the cho7/ directory.

7.1.2. Multi-module Enterprise Project

Presenting the complexity of a massive Enterprise-level project far exceeds the
scope of thisbook. Such projects are characterized by multiple databases,
integration with external systems, and subprojects which may be divided by
departments. These projects usually span thousands of lines of code, and involve
the effort of tens or hundreds of software developers. While such a complete
example is outside the scope of this book, we can provide you with a sample
project that suggests the complexity of alarger Enterprise application. In the
conclusion we suggest some possibilities for modularity beyond that presented in
this chapter.

In this chapter, we're going to look at a multi-module Maven project that will
produce two applications. a command-line query tool for the Y ahoo! Weather feed
and aweb application which queries the Y ahoo! Weather feed. Both of these
applications will store the results of queriesin an embedded database. Each will
allow the user to retrieve historical weather data from this embedded database.
Both applications will reuse application logic and share a persistence library. This
chapter's exampl e builds upon the Y ahoo! Weather parsing code introduced in
Chapter 4, Customizing a Maven Project. This project isdivided into five
submodules shown in Figure 7.1, “Multi-modul e Enterprise Application Module
Relationships”.

103

http://www.sonatype.com/book/examples-1.0

Multi-module Enterprise Project

Super POM

—— = [ependency
— — = = Transitive Dependency T

= = Module of [com.sonatype.maven |
— = [nherils Tr% simple-project \

com.sonatype.maven com.sonatype.maven }

simple-webapp - simple-model
1.0

simple-command
1.0

simple-weather
1.0

[mm.&n natype. maven 1 [mm.m natype.maven]

com.sonatype. maven
simple-persist

1.0

Figure 7.1. Multi-module Enter prise Application M odule Relationships

In Figure 7.1, “Multi-module Enterprise Application Module Relationships’, you
can see that there are five submodules of simple-parent, they are:

simple-model

This module defines a simple object model which models the data returned
from the Y ahoo! Weather feed. This object model contains the weat her ,
Condi ti on, At mospher e, Locat i on, and W nd objects. When our application
parses the Y ahoo! Weather feed, the parsers defined in si npl e- weat her will
parse the XML and create Wat her objects which are then used by the
application. This project contains model objects annotated with Hibernate 3
Annotations which are used by the logic in ssmple-persist to map each model
object to a corresponding table in arelational database.

simple-weather
This module contains al of the logic required to retrieve data from the Y ahoo!
Westher feed and parse the resulting XML. The XML returned from thisfeed is

104

Multi-module Enterprise Project

converted into the model objects defined in si npl e- nodel . si npl e- weat her
has a dependency on si npl e- nodel . si npl e- weat her definesa

Weat her Ser vi ce object which is referenced by both the si npl e- command and
si npl e- webapp projects.

simple-persist

This module contains some Data A ccess Objects (DAO) which are configured
to store Weat her objects in an embedded database. Both of the applications
defined in this multi-module project will use the DAOs defined in

si npl e- per si st to store datain an embedded database. The DAOs defined in
this project understand and return the model objects defined in si npl e- nodel .
si npl e- per si st hasadirect dependency on si npl e- nodel and it depends upon
the Hibernate Annotations present on the model objects.

simple-webapp

The web application project contains two Spring MV C Controller
Implementations which use the weat her Ser vi ce defined in si npl e- weat her
and the DAOs defined in si npl e- per si st . si npl e- webapp has a direct
dependency on si npl e- weat her and si npl e- per si st ; it hasatransitive
dependency on si npl e- model .

simple-command

This module contains a simple command-line tool which can be used to query
the Yahoo! Weather feed. This project contains a class with a static mai n()
function and interacts with the Weat her Ser vi ce defined in si npl e- weat her and
the DAOs defined in si npl e- per si st . si npl e- command has a direct
dependency on si npl e- weat her and si npl e- per si st ; ishasatransitive
dependency on si npl e- model .

This chapter contains a contrived example simple enough to introduce in a book,
yet complex enough to justify a set of five submodules. Our contrived example has
amodel project with five classes, a persistence library with two service classes,
and aweather parsing library with five or six classes, but areal-world system
might have a model project with a hundred objects, several persistence libraries,
and service libraries spanning multiple departments. Although we' ve tried to make
sure that the code contained in this example is straightforward enough to

105

Multi-module Enterprise Project

comprehend in asingle sitting, we' ve also gone out of our way to build a modular
project. Y ou might be tempted to ook at the examples in this chapter and walk
away with the idea that Maven encourages too much complexity given that our
model project has only five classes. Although using Maven does suggest a certain
level of modularity, do realize that we' ve gone out of our way to complicate our
simple example projects for the purpose of demonstrating Maven’s multimodule
features.

7.1.3. Technology Used in this Example

This chapter's example involves some technology which, while popular, is not
directly related to Maven. These technol ogies are the Spring Framework and
Hibernate. The Spring Framework is an Inversion of Control (10C) container and a
set of frameworks that aim to ssimplify interaction with various J2EE libraries.
Using the Spring Framework as a foundational framework for application
development gives you access to a number of helpful abstractions that can take
much of the meddlesome busywork out of dealing with persistence frameworks
like Hibernate or iBatis or enterprise APIslike JDBC, JNDI, and IMS. The Spring
Framework has grown in popularity over the past few years as a replacement for
the heavy weight enterprise standards coming out of Sun Microsystems. Hibernate
Isawidely used Object-Relational Mapping framework which allows you to
interact with arelational database asiif it were a collection of Java objects. This
example focuses on building a simple web application and a command-line
application that uses the Spring Framework to expose a set of reusable components
to applications and which also uses Hibernate to persist weather datain an
embedded database.

We' ve decided to include references to these frameworks to demonstrate how one
would construct projects using these technol ogies when using Maven. Although we
make brief efforts to introduce these technol ogies throughout this chapter, we will
not go out of our way to fully explain these technologies. For more information
about the Spring Framework, please see the project’ sweb site at
http://www.springframework.org/. For more information about Hibernate and
Hibernate Annotations, please see the project’ sweb site at

106

http://www.springframework.org/

Multi-module Enterprise Project

http://www.hibernate.org. This chapter uses Hyper-threaded Structured Query
L anguage Database (HSQL DB) as an embedded database; for more information
about this database, see the project’ s web site at http://hsgldb.org/.

7.2. The Simple Parent Project

Thissi npl e- parent project hasapom xni that references five submodules:

si npl e- command, si npl e- nodel , si npl e- weat her, si npl e- per si st , and

si npl e- webapp. The top-level pom xm isshown in Example 7.1, “ simple-parent
Project POM”.

Example 7.1. smple-parent Project POM

<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_ 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>or g. sonat ype. mavenbook. ch07</ gr oupl d>
<artifactld>sinple-parent</artifactld>
<packagi ng>ponx/ packagi ng>

<ver si on>1. 0</ ver si on>

<nanme>Chapter 7 Sinple Parent Project</nanme>

<nmodul es>
<nodul e>si npl e- conmmand</ nodul e>
<nodul e>si npl e- nodel </ nodul e>
<nodul e>si npl e- weat her </ nodul e>
<nodul e>si npl e- per si st </ nodul e>
<nodul e>si mpl e- webapp</ nodul e>
</ nodul es>

<bui | d>
<pl ugi nManagenent >
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-conpil er-plugin</artifactld>
<confi gurati on>
<sour ce>1. 5</ sour ce>
<target>1. 5</target>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ pl ugi nManagenent >

107

http://www.hibernate.org
http://hsqldb.org/

Multi-module Enterprise Project

</ bui | d>

<dependenci es>
<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld> unit</artifactld>
<ver si on>3. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
</ dependenci es>
</ proj ect >

Note

If you are already familiar with Maven POMs, you might notice that this
top-level POM does not define adependencyManagenent element. The
dependencyManagenent element allows you to define dependency
versionsin asingle, top-level POM, and it isintroduced in Chapter 8,
Optimizing and Refactoring POMs.

Note the similarities of this parent POM to the parent POM defined in

Example 6.1, “simple-parent Project POM”. The only real difference between
these two POMs isthelist of submodules. Where that example only listed two
submodules, this parent POM lists five submodules. The next few sections explore
each of these five submodules in some detail. Because our example uses Java
annotations, we've configured the compiler to target the Java5 JVM.

7.3. The Simple Model Module

The first thing most enterprise projects need is an object model. An object model
captures the core set of domain objectsin any system. A banking system might
have an object model which consists of an Account , Cust oner, and Tr ansact i on
object, or a system to capture and communicate sports scores might have aTeam
and a Gane object. Whatever it is, there's agood chance that you've modeled the
conceptsin your system in an object model. It isacommon practice in Maven
projects to separate this project into a separate project which is widely referenced.

108

Multi-module Enterprise Project

In this system we are capturing each query to the Y ahoo! Weather feed with a

Weat her object which references four other objects. Wind direction, chill, and
speed are stored in aw nd object. Location data including the zip code, city, region,
and country are stored in aLocat i on class. Atmospheric conditions such as the
humidity, maximum visibility, barometric pressure, and whether the pressureis
rising or falling is stored in an At nospher e class. A textual description of
conditions, the temperature, and the date of the observation is stored in a

Condi ti on class.

Weather
id
location
Wind condition Location
id — | wind e
chill atmosphere Gity
direction region
speed country
Atmosphere Condition
i id
humidity text
visibility code
pressure temp
rising date

Figure 7.2. Smple Object Model for Weather Data

Thepom xn filefor this ssmple model object contains one dependency that bears
some explanation. Our object model is annotated with Hibernate Annotations. We
use these annotations to map the model objects in this model to tablesin a
relational database. The dependency is

or g. hi ber nat e: hi ber nat e- annot ati ons: 3. 3. 0. ga. Take alook at the pom xm
shown in Example 7.2, “simple-model pom.xml”, and then look at the next few
examples for some illustrations of these annotations.

109

Multi-module Enterprise Project

Example 7.2. smple-model pom.xml

<project xm ns="http:// maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="htt p:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0 0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >

<gr oupl d>or g. sonat ype. mavenbook. ch07</ gr oupl d>

<artifactld>sinple-parent</artifactld>

<ver si on>1. 0</ ver si on>
</ par ent >
<artifactld>si npl e-nodel </artifactld>
<packagi ng>j ar </ packagi ng>

<nanme>Si npl e Cbj ect Model </ nane>

<dependenci es>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactl d>hi bernate-annotations</artifactld>
<ver si on>3. 3. 0. ga</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactl d>hi bernnat e-conmons- annot ati ons</artifactld>
<ver si on>3. 3. 0. ga</ ver si on>
</ dependency>
</ dependenci es>
</ proj ect >

In'src/ main/javal or g/ sonat ype/ mavenbook/ weat her / nodel , we have

Weat her . j ava, which contains the annotated Weat her model object. The weat her
object is a simple Java bean. This means that we have private member variables
likei d, | ocati on, condi ti on, wi nd, at nospher e, and dat e exposed with public
getter and setter methods that adhere to the following pattern: if a property is
named nane, there will be a public no-arg getter method named get Nane() , and
there will be a one-argument setter named set Nane(St ri ng nane) . Although we
show the getter and setter method for thei d property, we' ve omitted most of the
getters and setters for most of the other propertiesto save afew trees. See
Example 7.3, “Annotated Weather Model Object”.

Example 7.3. Annotated Weather M odel Object

110

Multi-module Enterprise Project

package org. sonatype. mavenbook. weat her . nodel ;
i mport | avax. persi stence. *;
i mport java.util.Date;

@ntity
@NanedQueri es({
@\anmedQuer y(name="\Weat her . byLocat i on",
query="from Weat her w where w. |l ocation = :|ocation")
})

public class Wat her {
@d
@ener at edVal ue(st rat egy=CGener ati onType. | DENTI TY)

private Integer id;

@manyToOne(cascade=CascadeType. ALL)
private Location |ocation;

@neToOne(mappedBy="weat her", cascade=CascadeType. ALL)
private Condition condition;

@neToOne(mappedBy="weat her", cascade=CascadeType. ALL)
private Wnd w nd;

@neToOne(mappedBy="weat her", cascade=CascadeType. ALL)
private Atnosphere atnosphere;

private Date date;
public Weather() {}

public Integer getld() { return id; }
public void setld(Integer id) { this.id =id; }

/1l Al getter and setter nethods omtted...

In the veat her class, we are using Hibernate annotations to provide guidance to the
si npl e- per si st project. These annotations are used by Hibernate to map an object
to atablein arelational database. Although afull explanation of Hibernate
annotations is beyond the scope of this chapter, here is a brief explanation for the
curious. The @nt i t y annotation marks this class as a persistent entity. We've
omitted the @rabl e annotation on this class, so Hibernate is going to use the name
of the class as the name of the table to map Weat her to. The @lamedQueri es
annotation defines a query that is used by the weat her DAOIN si npl e- per si st. The

111

Multi-module Enterprise Project

guery language in the @lanedQuer y annotation iswritten in something called
Hibernate Query Language (HQL). Each member variable is annotated with
annotations that define the type of column and any relationships implied by that
column:

I d

Thei d property is annotated with @ d. Thismarksthei d property as the
property that contains the primary key in a database table. The

@=ener at edVal ue controls how new primary key values are generated. In the
caseof i d, we're using the | DENTI TY Gener at i onType, which will use the
underlying database' s identity generation facilities.

Locati on

Each weat her object instance correspondsto alLocat i on object. A Locat i on
object represents a zip code, and the @any Toone makes sure that Weat her
objects that point to the same Locat i on object reference the same instance. The
cascade attribute of the @manyToone makes sure that we persist aLocat i on
object every time we persist aWat her object.

Condi ti on, W nd, At nosphere

Each of these objects is mapped as a @neTone with the CascadeType Of ALL.
This means that every time we save aWeat her object, we'll be inserting arow
into the weat her table, the Condi ti on table, the w nd table, and the At nospher e
table.

Dat e

Dat e IS not annotated. This means that Hibernate is going to use al of the
column defaults to define this mapping. The column name is going to be dat e,
and the column type is going to be the appropriate time to match the Dat e
object.

Note
If you have a property you wish to omit from atable mapping, you
would annotate that property with @ ansi ent .

112

Multi-module Enterprise Project

Next, take alook at one of the secondary model objects, Condi ti on, shownin
Example 7.4, “simple-model's Condition model object.”. Thisclassalso residesin
src/ mai n/ j aval or g/ sonat ype/ mavenbook/ weat her/ nodel .

Example 7.4. smple-model's Condition model object.

package org. sonat ype. mavenbook. weat her . nodel ;
i mport | avax. persi stence. *;

@ntity

public class Condition {

@d
@ener at edVal ue(st rat egy=CGener ati onType. | DENTI TY)
private Integer id;

private String text;
private String code;
private String tenp;
private String date;

@neToOne(cascade=CascadeType. ALL)

@oi nCol um(name="weat her _i d*, nul | abl e=f al se)
private Weat her weat her;

public Condition() {}

public Integer getld() { return id; }
public void setld(Integer id) { this.id =1id; }

/1 Al getter and setter nethods omtted...

The Condi ti on class resembles the weat her class. It isannotated asan @ntity,
and it has similar annotations on thei d property. Thet ext, code, t enp, and dat e
properties are all left with the default column settings, and the weat her property is
annotated with a @neTone annotation and another annotation that references the
associated Weat her object with aforeign key column named weat her _i d.

7.4. The Simple Weather Module

The next module we' re going to examine could be considered something of a

113

Multi-module Enterprise Project

“service.” The Simple Weather module is the module that contains all of the logic
necessary to retrieve and parse the data from the Y ahoo! Weather RSS feed.
Although Simple Weather contains three Java classes and one JUnit test, it is going
to present a single component, Weat her Ser vi ce, to both the Simple Web
Application and the Simple Command-line Utility. Very often an enterprise project
will contain several APl modules that contain critical business logic or logic that
Interacts with external systems. A banking system might have a module that
retrieves and parses data from athird-party data provider, and a system to display
sports scores might interact with an XML feed that presents real-time scores for
basketball or soccer. In Example 7.5, “simple-weather Module POM”, this module
encapsulates all of the network activity and XML parsing that isinvolved in the
interaction with Y ahoo! Weather. Other modules can depend on this module and
simply call out to theret ri eveFor ecast () method on Weat her Ser vi ce, which
takes a zip code as an argument and which returns a wat her object.

Example 7.5. smple-weather Module POM

<project xm ns="http:// maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >

<gr oupl d>or g. sonat ype. mavenbook. ch07</ gr oupl d>

<artifactld>sinpl e-parent</artifactld>

<ver si on>1. 0</ ver si on>
</ par ent >
<artifactld>si npl e-weat her</artifactld>
<packagi ng>j ar </ packagi ng>

<nane>Si npl e Weat her API </ name>

<dependenci es>

<dependency>
<gr oupl d>or g. sonat ype. mavenbook. ch07</ gr oupl d>
<artifactld>sinpl e-nodel </artifactld>
<ver si on>1. 0</ ver si on>

</ dependency>

<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<ver si on>1. 2. 14</ ver si on>

</ dependency>

<dependency>

114

Multi-module Enterprise Project

<gr oupl d>don#j </ gr oupl d>
<artifactld>domdj </artifactld>
<versi on>1. 6. 1</ ver si on>

</ dependency>

<dependency>
<gr oupl d>j axen</ gr oupl d>
<artifactld>j axen</artifactld>
<versi on>1. 1. 1</ versi on>

</ dependency>

<dependency>
<gr oupl d>or g. apache. conmons</ gr oupl d>
<artifactld>comons-io</artifactld>
<versi on>1. 3. 2</ ver si on>
<scope>t est </ scope>

</ dependency>

</ dependenci es>
</ proj ect >

Thesi npl e- weat her POM extends the si npl e- par ent POM, sets the packaging
toj ar, and then adds the following dependencies:

or g. sonat ype. mavenbook. ch07: si npl e- nodel : 1. 0
si npl e- weat her parsesthe Yahoo! Weather RSS feed into aweat her object. It
has a direct dependency on si npl e- nodel .

| og4j:1o0g4j:1. 2. 14
si npl e- weat her usesthe Log4J library to print log messages.

domdj:domdj:1.6.1 and jaxen:jaxen:1.1.1

Both of these dependencies are used to parse the XML returned from Y ahoo!
Weather.

or g. apache. commons: conmons-i 0: 1. 3. 2 (scope=t est)

Thist est -scoped dependency is used by the YahooPar ser Test .
Next isthe weat her Ser vi ce class, shown in Example 7.6, “The WeatherService
class’. Thisclassisgoing to look very similar to the Weat her Ser vi ce classfrom
Example 6.3, “The WeatherService class’. Although the weat her Ser vi ce isthe
same, there are some subtle differences in this chapter’ s example. Thisversion’s
retrieveForecast () method returns awat her object, and the formatting is going

115

Multi-module Enterprise Project

to be left to the applications that call Weat her Ser vi ce. The other mgor changeis
that the YahooRet ri ever and YahooPar ser are both bean properties of the
Weat her Ser vi ce bean.

Example 7.6. The Weather Service class

package org. sonat ype. mavenbook. weat her ;

i mport java.io.lnputStream

i mport org.sonatype. mavenbook. weat her . nodel . Weat her ;
public class Weat her Servi ce {

private YahooRetriever yahooRetriever;
privat e YahooParser yahooParser;

publ i c Weat her Servi ce() {}

public Weat her retrieveForecast(String zip) throws Exception {
/] Retrieve Data
| nput St ream dat al n = yahooRetriever.retrieve(zip);

/| Parse DataS
Weat her weat her = yahooParser. parse(zi p, dataln);

return weat her;

}

publ i c YahooRetri ever getYahooRetriever() {
return yahooRetri ever;

}

public void setYahooRetriever(YahooRetriever yahooRetriever) {
t hi s. yahooRetri ever = yahooRetri ever;

}

publ i ¢ YahooPar ser get YahooParser() {
return yahooPar ser;

}

public voi d set YahooPar ser (YahooPar ser yahooParser) {
t hi s. yahooPar ser = yahooPar ser;

}
}

Finally, in this project we have an XML file that is used by the Spring Framework
to create something called an Appl i cat i onCont ext . First, some explanation: both

116

Multi-module Enterprise Project

of our applications, the web application and the command-line utility, need to
interact with the weat her Ser vi ce class, and they both do so by retrieving an
instance of this class from a Spring Appl i cat i onCont ext using the name

weat her Ser vi ce. Our web application uses a Spring MV C controller that is
associated with an instance of Weat her Ser vi ce, and our command-line utility
loads the weat her Ser vi ce from an Appl i cati onCont ext inastatic mai n()
function. To encourage reuse, we' ve included an

appl i cati onCont ext - weat her. xm fileinsrc/ mai n/ resour ces, whichis
available on the classpath. Modules that depend on the si npl e- weat her module
can load this application context using the d asspat hXm Appl i cati onCont ext in
the Spring Framework. They can then reference a named instance of the

Weat her Ser vi ce named weat her Ser vi ce.

Example 7.7. Spring Application Context for the simple-weather Module

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. spri ngframework. or g/ schenma/ beans
http://ww. spri ngframewor k. or g/ schena/ beans/ spri ng- beans- 2. 0. xsd
defaul t-lazy-init="true">

<bean i d="weat her Servi ce"
cl ass="or g. sonat ype. mavenbook. weat her . Weat her Ser vi ce" >
<property nanme="yahooRetri ever" ref="yahooRetriever"/>
<property nane="yahooParser" ref="yahooParser"/>
</ bean>

<bean i d="yahooRetri ever"
cl ass="org. sonat ype. mavenbook. weat her. YahooRet ri ever"/ >

<bean i d="yahooPar ser"
cl ass="org. sonat ype. mnavenbook. weat her. YahooPar ser "/ >
</ beans>

This document defines three beans: yahooPar ser , yahooRet ri ever, and

weat her Ser vi ce. Theweat her Ser vi ce bean is an instance of Weat her Ser vi ce,
and this XML document populates the yahooPar ser and yahooRet ri ever
properties with references to the named instances of the corresponding classes.
Think of thisappl i cati onCont ext - weat her . xm file as defining the architecture

117

Multi-module Enterprise Project

of a subsystem in this multi-module project. Projects like si npl e- webapp and

si npl e- command can reference this context and retrieve an instance of

Weat her Ser vi ce which aready has relationships to instances of YahooRet ri ever
and YahooPar ser .

7.5. The Simple Persist Module

This module defines two very simple Data Access Objects (DAOs). A DAOisan
object that provides an interface for persistence operations. In an application that
makes use of an Object-Relational Mapping (ORM) framework such as Hibernate,
DAQs are usually defined around objects. In this project, we are defining two
DAO objects: weat her DAOand Locat i onDAO. The Weat her DAO class allows usto
save a\eat her object to a database and retrieve aweat her object by i d, and to
retrieve Weat her objects that match a specific Locat i on. The Locat i onDAOhas a
method that allows usto retrieve aLocat i on object by zip code. First, let’ stake a
look at the si npl e- per si st POM in Example 7.8, “simple-persist POM”.

Example 7.8. smple-persist POM

<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_ 0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >

<gr oupl d>or g. sonat ype. mavenbook. ch07</ gr oupl d>

<artifactld>sinple-parent</artifactld>

<ver si on>1. 0</ ver si on>
</ par ent >
<artifactld>sinple-persist</artifactld>
<packagi ng>j ar </ packagi ng>

<nanme>Si npl e Per si st ence API </ nane>

<dependenci es>

<dependency>
<gr oupl d>or g. sonat ype. mavenbook. ch07</ gr oupl d>
<artifactld>sinpl e-nodel </artifactld>
<ver si on>1. 0</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>

118

Multi-module Enterprise Project

<artifactld>hi bernate</artifactld>
<versi on>3. 2. 5. ga</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>j avax. t ransacti on</ gr oupl d>
<artifactld>ta</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactl d>hi bernate-annotations</artifactld>
<ver si on>3. 3. 0. ga</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactl d>hi bernnat e-conmons- annot ati ons</artifactld>
<ver si on>3. 3. 0. ga</ ver si on>
</ dependency>
<dependency>
<gr oupl d>j avax. servl et </ gr oupl d>
<artifactld>servlet-api</artifactld>
<ver si on>2. 4</ ver si on>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<gr oupl d>or g. spri ngf ranewor k</ gr oupl d>
<artifactld>spring</artifactld>
<ver si on>2. 0. 7</ ver si on>
</ dependency>
</ dependenci es>
</ proj ect >

This POM file references si npl e- par ent asaparent POM, and it defines afew
dependencies. The dependencieslisted in si npl e- per si st 's POM are:

or g. sonat ype. mavenbook. ch07: si npl e- nodel : 1. 0
Just like the si npl e- weat her module, this persistence module references the
core model objects defined in si npl e- nodel .

org. hi bernat e: hi bernate: 3. 2. 5. ga

We define a dependency on Hibernate version 3.2.5.ga, but notice that we're
excluding a dependency of Hibernate. We're doing this because the

j avax. transacti on: j avax dependency is not available in the public Maven
repository. This dependency happens to be one of those Sun dependencies that

119

Multi-module Enterprise Project

has not yet made it into the free central Maven repository. To avoid an
annoying message telling us to go download these nonfree dependencies, we
simple exclude this dependency from Hibernate and add a dependency on...

javax.servlet:servlet-api:2.4
Since this project contains a Servlet, we need to include the Serviet API version
2.4.

org. springfranmework: spring:2.0.7
Thisincludes the entire Spring Framework as a dependency.

Note

It is generally agood practice to depend on only the components of
Spring you happen to be using. The Spring Framework project has
been nice enough to create focused artifacts such as

spri ng- hi ber nat e3.

Why depend on Spring? When it comes to Hibernate integration, Spring allows us
to leverage helper classes such as Hi ber nat eDaoSupport . For an example of what
Is possible with the help of Hi ber nat eDaoSupport , take alook at the code for the

Weat her DAOIN Example 7.9, “simple-persist's WeatherDAO Class’.

Example 7.9. smple-persist's Weather DAO Class

package org. sonat ype. mavenbook. weat her . per si st ;

i mport java.util.ArraylList;
i mport java.util.List;

i mport org. hi bernate. Query;

i mport org. hi bernate. Sessi on;

i mport org.springframework. orm hi ber nat e3. Hi ber nat eCal | back;

i mport org.springfranmework. orm hi ber nat e3. support . Hi ber nat eDaoSupport ;

i mport org.sonatype. mavenbook. weat her. nodel . Locat i on;
i nport org.sonatype. mavenbook. weat her . nodel . Weat her ;

public class Weat her DAO ext ends Hi ber nat eDaoSupport# {

publ i c Weat her DAQ() {}

120

Multi-module Enterprise Project

public void save(Wat her weather) {#
get Hi ber nat eTenpl ate() . save(weat her);

}

public Wat her |oad(Integer id) {#
return (Weat her) getHi bernateTenpl ate().l|oad(Wather.class, id);
}

@uppr essWar ni ngs("unchecked")
publ i c List<Wather> recent ForLocation(final Location |ocation) {
return (List<Wather>) getHi bernateTenpl at e() . execut e(
new Hi ber nat eCal | back() {#
public Obj ect dol nHi bernate(Sessi on session) {
Query query = get Sessi on().get NanedQuer y(" Wat her. byLocati on");
query. set Paraneter ("l ocation", |ocation);
return new Arrayli st <Weat her>(query.list());
}
¥
}

That'sit. No really, you are done writing a class that can insert new rows, select by
primary key, and find all rowsin Weather that join to an id in the Location table.
Clearly, we can't stop this book and insert the five hundred pages it would take to
get you up to speed on the intricacies of Hibernate, but we can do some very quick
explanation:

[0 Thisclass extends Hi ber nat eDaoSuppor t . What this meansisthat the classis
going to be associated with a Hibernate Sessi onFact ory which it is going to
use to create Hibernate Sessi on objects. In Hibernate, every operation goes
through a Sessi on object, a Sessi on mediates access to the underlying
database and takes care of managing the connection to the JDBC
Dat aSour ce. Extending Hi ber nat eDaoSupport aso means that we can access
the Hi ber nat eTenpl at e USING get Hi ber nat eTenpl at e() . For an example of
what can be done with the Hi ber nat eTenpl at e...

[0 Thesave() method takes an instance of Weat her and callsthe save()
method on aHi ber nat eTenpl at e. The Hi ber nat eTenpl at e Simplifies callsto
common Hibernate operations and converts any database specific exceptions
to runtime exceptions. Here we call out to save() which inserts a new record
into the weat her table. Alternativesto save() areupdat e() which updates an

121

Multi-module Enterprise Project

existing row, or saveOr Updat e() which would either save or update
depending on the presence of anon-null i d property in Weather.

[0 Theload() method, once again, isaone-liner that just calls amethod on an
instance of Hi ber nat eTenpl at e. | oad() ON Hi ber nat eTenpl at e takes a
Cl ass object and aSeri al i zabl e object. In thiscase, the Seri al i zabl e

corresponds to thei d value of the weat her object to load.

[0 Thislast method r ecent For Locati on() calsout to aNanedQuery defined in
the vweat her model object. If you can think back that far, the weat her model
object defined a named query " Weat her . byLocat i on" with aquery of "from

= :location". Wereloading this

Weat her w where w. | ocati on

NanedQuer y using areference to a Hibernate Sessi on object inside a

Hi ber nat eCal | back which is executed by the execut e() method on

Hi ber nat eTenpl at e. You can see in this method that we're populating the
named parameter location with the parameter passed in to the

recent For Locati on()

method.

Now isagood time for some clarification. Hi ber nat eDaoSupport and

Hi ber nat eTenpl at e are classes from the Spring Framework. They were created by
the Spring Framework to make writing Hibernate DAO objects painless. To
support this DAO, we'll need to do some configuration in the si npl e- per si st
Spring Appl i cat i onCont ext definition. The XML document shown in

Example 7.10, “ Spring Application Context for simple-persist” is stored in

src/ mai n/ resour ces inafile named appl i cati onCont ext - persi st. xm .

Example 7.10. Spring Application Context for simple-persist

<beans xm ns="http://ww. spri ngframewor k. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemalLocati on="http://ww. spri ngframework. or g/ schenma/ beans
http://ww. spri ngfranmewor k. or g/ schenma/ beans/ spri ng- beans- 2. 0. xsd"

defaul t-lazy-init="true">

<bean i d="sessi onFact ory"
cl ass="org. spri ngf ramewor k. or m hi ber nat e3. annot ati on. Annot at i onSessi onFact or yBean"
<property nane="annot at edCl asses" >

<list>
<val ue>org.
<val ue>org.
<val ue>org.
<val ue>org.
<val ue>org.

sonat ype.
sonat ype.
sonat ype.
sonat ype.
sonat ype.

mavenbook.
mavenbook.
mavenbook.
mavenbook.
mavenbook.

weat her.
weat her.
weat her.
weat her.
weat her.

nodel
nodel

nodel
nodel

. At nospher e</ val ue>
. Condi ti on</val ue>
nodel .
. Weat her </ val ue>
. W nd</ val ue>

Locati on</ val ue>

122

Multi-module Enterprise Project

</list>
</ property>
<property nane="hi bernat eProperties">
<pr ops>
<prop key="hi bernat e. show _sql ">f al se</ prop>
<prop key="hi bernate.formt_sql">true</prop>
<prop key="hi bernate.transaction.factory_cl ass">
or g. hi bernate. transacti on. JDBCTr ansact i onFact ory
</ pr op>
<prop key="hi bernate. di al ect">
org. hi bernat e. di al ect. HSQLDi al ect
</ prop>
<prop key="hi bernate. connecti on. pool _si ze">0</ prop>
<prop key="hi bernnate. connection.driver_class">
org. hsql db. j dbcDri ver
</ pr op>
<prop key="hi bernnate. connection.url">
j dbc: hsql db: dat a/ weat her ; shut down=t r ue
</ pr op>
<prop key="hi ber nate. connecti on. user name" >sa</ pr op>
<prop key="hi ber nat e. connecti on. passwor d" ></ pr op>
<prop key="hi ber nat e. connecti on. aut oconmi t ">t rue</ pr op>
<prop key="hi bernate.jdbc. batch_size">0</prop>
</ props>
</ property>
</ bean>

<bean i d="| ocat i onDAO'
cl ass="or g. sonat ype. mavenbook. weat her . per si st. Locat i onDAO"' >
<property nanme="sessi onFactory" ref="sessionFactory"/>
</ bean>

<bean i d="weat her DAO'
cl ass="or g. sonat ype. navenbook. weat her . per si st . Weat her DAO' >
<property nanme="sessi onFactory" ref="sessionFactory"/>
</ bean>
</ beans>

In this application context, we're accomplishing afew things. The sessi onFact ory
bean is the bean from which the DA Os retrieve Hibernate Sessi on objects. This
bean is an instance of Annot at i onSessi onFact or yBean and is supplied with alist
of annot at edC asses. Note that the list of annotated classesisthelist of classes
defined in our si npl e- model module. Next, the sessi onFact ory is configured
with a set of Hibernate configuration properties (hi ber nat ePr oper ti es). Inthis
example, our Hibernate properties define a number of settings:

123

Multi-module Enterprise Project

hi ber nat e. di al ect

This setting controls how SQL isto be generated for our database. Since we are
using the HSQL DB database, our database dialect is set to

or g. hi ber nat e. di al ect. HSQLDI al ect . Hibernate has dialects for all major
databases such as Oracle, MySQL, Postgres, and SQL Server.

hi ber nat e. connection. *
In this example, we' re configuring the JDBC connection properties from the
Spring configuration. Our applications are configured to run against aHSQLDB
Inthe./ dat a/ weat her directory. In areal enterprise application, it is more
likely you would use something like INDI to externalize database configuration
from your application’s code.
Lastly, in this bean definition file, both of the si npl e- per si st DAO objects are
created and given areference to the sessi onFact ory bean just defined. Just like
the Spring application context in si npl e- weat her , this
appl i cati onCont ext - persi st. xm file defines the architecture of a submodulein
alarger enterprise design. If you were working with alarger collection of
persistence classes, you might find it useful to capture them in an application
context which is separate from your application.

There' sone last piece of the puzzle in si npl e- per si st . Later in this chapter,

We' re going to see how we can use the Maven Hibernate3 plugin to generate our
database schema from the annotated model objects. For thisto work properly, the
Maven Hibernate3 plugin needs to read the JDBC connection configuration
parameters, the list of annotated classes, and other Hibernate configuration from a
file named hi ber nat e. cf g. xm iNnsrc/ mai n/ resour ces. The purpose of thisfile
(which duplicates some of the configuration in

appl i cati onCont ext - per si st. xm) isto allow usto leverage the Maven
Hibernate3 plugin to generate Data Definition Language (DDL) from nothing more
than our annotations. See Example 7.11, “simple-persist hibernate.cfg.xml”.

Example 7.11. simple-persist hibernate.cfg.xml

<! DOCTYPE hi ber nat e- confi gurati on PUBLIC
"-// Hi bernate/ H bernate Configuration DTD 3. 0//EN'

124

Multi-module Enterprise Project

“http://hibernate. sourceforge. net/hi bernate-configuration-3.0.dtd">

<hi ber nat e- confi gur ati on>
<sessi on-factory>

<I-- SQL dialect -->
<property nanme="di al ect">org. hi bernat e. di al ect. HSQLDi al ect </ pr operty>

<l -- Dat abase connection settings -->

<property nanme="connection. driver_cl ass">org. hsql db. j dbcDri ver </ property>
<property nane="connection. url">j dbc: hsql db: dat a/ weat her </ pr operty>
<property name="connecti on. usernanme" >sa</ property>

<property nane="connecti on. passwor d"></ property>

<property nanme="connecti on. shut down" >t rue</ property>

<l-- JDBC connection pool (use the built-in one) -->
<property nanme="connecti on. pool _size">1</property>

<l-- Enable Hibernate's automati c sessi on context nanagenent -->
<property name="current_sessi on_context_cl ass">t hr ead</ pr operty>

<!-- Disable the second-|evel cache -->

<property nanme="cache. provi der _cl ass">
or g. hi ber nat e. cache. NoCachePr ovi der

</ property>

<l-- Echo all executed SQ to stdout -->
<property nanme="show_sql ">true</ property>

<!-- disable batching so HSQLDB wi || propagate errors correctly. -->
<property name="j dbc. bat ch_si ze" >0</ pr operty>

<I-- List all the mappi ng docunments we're using -->

<mappi ng cl ass="org. sonat ype. mavenbook. weat her. nodel . At nosphere"/ >
<mappi ng cl ass="or g. sonat ype. mavenbook. weat her. nodel . Condi ti on"/ >
<mappi hg cl ass="org. sonat ype. mavenbook. weat her . nodel . Locati on"/ >
<mappi ng cl ass="org. sonat ype. mavenbook. weat her . nodel . Weat her "/ >
<mappi ng cl ass="or g. sonat ype. mavenbook. weat her . nodel . W nd"/ >

</ sessi on-factory>
</ hi ber nat e- confi gurati on>

The contents of Example 7.10, “ Spring Application Context for ssmple-persist”
and Example 7.1, “simple-parent Project POM” are redundant. While the Spring
Application Context XML is going to be used by the web application and the
command-line application, the hi ber nat e. cf g. xm exists only to support the
Maven Hibernate3 plugin. Later in this chapter, we'll see how to use this

hi ber nat e. cf g. xni and the Maven Hibernate3 plugin to generate a database

125

Multi-module Enterprise Project

schema based on the annotated object model defined in si npl e- nodel . This
hi ber nat e. cf g. xn fileisthefilethat will configure the JDBC connection
properties and enumerate the list of annotated model classes for the Maven
Hibernate3 plugin.

7.6. The Simple Web Application Module

The web application is defined in asi npl e- webapp project. This simple web
application project is going to define two Spring MV C Controllers:

Weat her Control | er and Hi st oryCont r ol | er . Both of these controllers are going
to reference components defined in si npl e- weat her and si npl e- persi st. The
Spring container is configured in this application’ sweb. xnt , which references the
appl i cati onCont ext - weat her. xm fileinsi npl e- weat her and the

appl i cati onCont ext - persi st. xm fileinsi npl e- per si st.. The component
architecture of this simple web application is shown in Figure 7.3, “ Spring MV C
Controllers Referencing Components in simple-weather and simple-persist.”.

simple-webapp simple-weather
weather-serviet.xmi applicationContext-weather.xml
weatherController | weatherService

historyController =

simple-persist
applicationContext-persist.xmi

—e = Dependency '
weatherDAD
|
— -
locationDAO

126

Multi-module Enterprise Project

Figure 7.3. Spring MV C Controllers Referencing Componentsin
simple-weather and ssimple-persist.

The POM for si npl e- webapp is shown in Example 7.12, “POM for
simple-webapp”.

Example 7.12. POM for simple-webapp

<proj ect xm ns="http:// maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0 0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >

<gr oupl d>or g. sonat ype. mavenbook. ch07</ gr oupl d>

<artifactld>sinple-parent</artifactld>

<ver si on>1. 0</ ver si on>
</ par ent >

<artifactld>si npl e-webapp</artifactld>
<packagi ng>war </ packagi ng>
<nane>Si npl e Wb Appl i cati on</ nanme>
<dependenci es>
<dependency> #
<gr oupl d>j avax. servl et </ gr oupl d>
<artifactld>servlet-api</artifactld>
<ver si on>2. 4</ ver si on>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<gr oupl d>or g. sonat ype. mavenbook. ch07</ gr oupl d>
<artifactl|d>si npl e-weat her</artifactld>
<ver si on>1. 0</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. sonat ype. mavenbook. ch07</ gr oupl d>
<artifactld>sinple-persist</artifactld>
<ver si on>1. 0</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. spri ngf r anmewor k</ gr oupl d>
<artifactld>spring</artifactld>
<ver si on>2. 0. 7</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. apache. vel oci t y</ gr oupl d>
<artifactld>vel ocity</artifactld>
<versi on>1. 5</ ver si on>
</ dependency>

127

Multi-module Enterprise Project

</ dependenci es>
<bui | d>
<f i nal Nanme>si npl e- webapp</ f i nal Nane>
<pl ugi ns>
<pl ugi n> #
<gr oupl d>or g. nort bay. j etty</ groupl d>
<artifactld>maven-jetty-plugin</artifactld>
<dependenci es>#
<dependency>
<gr oupl d>hsql db</ gr oupl d>
<artifactld>hsql db</artifactld>
<versi on>1. 8. 0. 7</ ver si on>
</ dependency>
</ dependenci es>
</ pl ugi n>
<pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d> #
<artifactld>hi ber nat e3- maven- pl ugi n</artifactl d>
<ver si on>2. 0</ ver si on>
<confi gurati on>
<conponent s>
<conponent >
<nane>hbnddl </ name>
<i mpl enent ati on>annot ati onconfi gurati on</i npl enmentati on> #
</ conponent >
</ conponent s>
</ confi guration>
<dependenci es>
<dependency>
<gr oupl d>hsql db</ gr oupl d>
<artifactld>hsql db</artifactld>
<versi on>1. 8. 0. 7</ ver si on>
</ dependency>
</ dependenci es>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

As this book progresses and the examples become more and more substantial,
you' |l notice that the pom xm begins to take on some weight. In this POM, we're
configuring four dependencies and two plugins. Let’s go through this POM in
detail and dwell on some of the important configuration points:

[J Thissi npl e- webapp project defines four dependencies. the Serviet 2.4
specification, the simple-weather service library, the simple-persist
persistence library, and the entire Spring Framework 2.0.7.

128

Multi-module Enterprise Project

The Maven Jetty plugin couldn’t be easier to add to this project; we smply
add apl ugi n element that references the appropriate gr oupl d and
artifactld. Thefact that thispluginisso trivial to configure means that the
plugin developers did a good job of providing adequate defaults that don’t
need to be overridden in most cases. If you did need to override the
configuration of the Jetty plugin, you would do so by providing a

confi gurati on element.

In our build configuration, we're going to be configuring the Maven
Hibernate3 Plugin to hit an embedded HSQL DB instance. For the Maven
Hibernate 3 plugin to successfully connect to this database using JDBC, the
plugin will need reference the HSQLDB JDBC driver on the classpath. To
make a dependency available for aplugin, we add a dependency declaration
right inside pl ugi n declaration. In this case, we're referencing
hsgldb:hsgldb:1.8.0.7. The Hibernate plugin also needs the JIDBC driver to
create the database, so we have also added this dependency to its
configuration.

The Maven Hibernate plugin is when this POM starts to get interesting. In the
next section, we' re going to run the honddl goal to generate aHSQLDB
database. In thispom xm , we'reincluding areference to version 2.0 of the

hi ber nat e3- maven- pl ugi n hosted by the Codehaus Mojo plugin.

The Maven Hibernate3 plugin has different ways to obtain Hibernate
mapping information that are appropriate for different usage scenarios of the
Hibernate3 plugin. If you were using Hibernate Mapping XML (. hbm xni)
files, and you wanted to generate model classes using the hbn2j ava goal, you
would set your implementation to configuration. If you were using the
Hibernate3 plugin to reverse engineer a database to produce . hom xni files
and model classes from an existing database, you would use an
implementation of j dbcconfi gurati on. Inthiscase, we' re simply using an
existing annotated object model to generate a database. In other words, we
have our Hibernate mapping, but we don’'t yet have a database. In this usage
scenario, the appropriate implementation valueis

annot at i onconfi gur ati on. The Maven Hibernate3 plugin is discussed in
more detail in the later section Section 7.7, “Running the Web Application”.”

129

Multi-module Enterprise Project

Note

A common mistake is to use the ext ensi ons configuration to add
dependencies required by aplugin. Thisis strongly discouraged as the
extensions can cause classpath pollution across your project, among other
nasty side-effects. Additionally, the extensions behavior is being
reworked in 2.1 and you'll eventually need to change it anway. The only
normal use for ext ensi ons isto define new wagon implementations

Next, we turn our attention to the two Spring MV C controllers that will handle all
of the requests. Both of these controllers reference the beans defined in

si npl e- weat her and si npl e- persi st .

Example 7.13. simple-webapp Weather Controller

package org. sonatype. mavenbook. web;

i mport org.sonatype. navenbook. weat her . nodel . Weat her ;

i mport org.sonatype. mavenbook. weat her. per si st. Weat her DAG,
i mport org.sonatype. mavenbook. weat her . \Weat her Ser vi ce;

i mport javax.servlet.http.*;

i mport org.springframework. web. servl et. Model AndVi ew;

i mport org.springframewor k. web. servl et.nvc. Controller;

public class WatherController inplements Controller {

privat e Weat her Servi ce weat her Servi ce;
private Weat her DAO weat her DAO,

publ i ¢ Mbdel AndVi ew handl eRequest (Htt pSer vl et Request request,
Ht t pSer vl et Response response) throws Exception {

String zip = request.getParameter("zip");

Weat her weat her = weat her Servi ce.retri eveForecast (zip);
weat her DAO. save(weat her) ;

return new Model AndVi ew("weat her”, "weather", weather);

}

publ i c Weat her Servi ce get Weat her Servi ce() {
return weat her Servi ce;

}

public voi d set\Wat her Servi ce(\Wat her Servi ce weat her Servi ce) {
t hi s. weat her Servi ce = weat her Servi ce;

}

130

Multi-module Enterprise Project

publ i c Weat her DAO get Weat her DAQ() {
return weat her DAQ
}

public voi d set\Wat her DAQ(Weat her DAO weat her DAO) {
t hi s. weat her DAO = weat her DAQ,
}
}

Weat her Cont rol | er implements the Spring MV C Controller interface that
mandates the presence of ahandl eRequest () method with the signature shown in
the example. If you look at the meat of this method, you' |l see that it invokes the
retri eveForecast () method on the weat her Ser vi ce instance variable. Unlike the
previous chapter, which had a Servlet that instantiated the Weat her Ser vi ce class,
the weat her Control | er iSabean with aweat her Ser vi ce property. The Spring
|oC container is responsible for wiring the controller to the weat her Ser vi ce
component. Also notice that we're not using the Weat her For mat t er in this Spring
controller implementation; instead, we' re passing the Weat her object returned by
retri eveFor ecast () tothe constructor of Model AndVi ew. This Mbdel AndVi ew
classis going to be used to render aVelocity template, and this template will have
referencesto a ${ weat her} variable. Theweat her . vmtemplate is stored in

src/ mai n/ webapp/ VEB- | NF/ vmand is shown in ??2?.

In the weat her Cont r ol | er, before we render the output of the forecast, we pass the
Weat her object returned by the weat her Ser vi ce to thesave() method on

Weat her DAO. Here we are saving this wat her object—using Hibernate—to an
HSQLDB database. Later, in Hi st oryCont rol | er, we will see how we can retrieve
a history of weather forecasts that were saved by the Weat her Cont rol | er.

Example 7.14. weather .vm template rendered by Weather Controller

Current Weather Conditions for:
${weat her.l ocation.city}, ${weather.|ocation.region},
${weat her .| ocati on. count ry} </ b>

Tenperature: ${weather.condition.tenp}
Condition: ${weather.condition.text}
Hum dity: ${weather.atnosphere. humdity}</Ili>
Wnd Chill: ${weather.wind.chill}</Ii>
Date: ${weather.date}

131

Multi-module Enterprise Project

</ ul >

The syntax for this Velocity template is straightforward, variables are referenced
using ${} notation. The expression between the curly braces references a property,
or aproperty of aproperty on theweat her variable which was passed to this
template by the weat her Control I er.

TheHi storyControl | er iSused to retrieve recent forecasts that have been
requested by the weat her Cont r ol | er . Whenever we retrieve aforecast from the
Weat her Cont rol | er, that controller saves the Wweat her object to the database via
the veat her DAO. Weat her DAO then uses Hibernate to dissect the weat her object into
aseriesof rowsin aset of related database tables. The Hi st oryControl | er IS
shown in Example 7.15, “simple-web HistoryController”.

Example 7.15. smple-web HistoryController

package org. sonat ype. mavenbook. web;

i mport java.util.*;

i mport javax.servlet.http.*;

i mport org.springfranmework. web. servl et. Model AndVi ew,

i mport org.springfranmework. web. servl et. mvc. Controller;
i nport org. sonatype. mavenbook. weat her . nodel . *;

i mport org.sonatype. mavenbook. weat her. persi st. *;

public class Hi storyController inplements Controller {

private Locati onDAO | ocati onDAG,
privat e Weat her DAO weat her DAG,

publ i c Model AndVi ew handl eRequest (Htt pSer vl et Request request,
Ht t pSer vl et Response response) throws Exception {
String zip = request.getParameter("zip");
Location location = | ocati onDAQ. fi ndByZi p(zip);
Li st <Weat her > weat hers = weat her DAQ. r ecent For Locati on(| ocation);

Map<String, Obj ect > nodel = new HashMap<Stri ng, Qbj ect >();
nodel . put ("l ocation", |ocation);
nodel . put ("weat hers", weathers);

return new Model AndVi ew(" hi story", nodel);
}

publ i c Weat her DAO get Weat her DAQ() {
return weat her DAQ

132

Multi-module Enterprise Project

}

public voi d set\Wat her DAQ(Weat her DAO weat her DAO) {
t hi s. weat her DAO = weat her DAQ,

}

public Locati onDAO get Locati onDAQ() ({
return | ocati onDAG

}

public void setLocati onDAQ(Locati onDAO | ocati onDAO {
this.locati onDAO = | ocati onDAQ,
}
}

TheHi storyControl | er iswired to two DAO objects defined in si npl e- per si st .
The DAOs are bean properties of the Hi st oryCont rol | er : Weat her DAO and

Locat i onDAO. The goal of the Hi st oryControl | er iSto retrieveali st of Wat her
objects which correspond to the zi p parameter. When the weat her DAO saves the
Weat her object to the database, it doesn't just store the zip code, it storesa

Locat i on object which isrelated to the weat her object in the si npl e- model . TO
retrieve alLi st Of Weat her objects, the Hi st oryControl I er first retrievesthe
Locat i on object that correspondsto the zi p parameter. It does this by invoking the
findByzi p() method on Locat i onDAQ.

Oncethe Locat i on object has been retrieved, the Hi st or yCont rol | er will then
attempt to retrieve recent Weat her objects that match the given Locat i on. Once the
Li st <Weat her > has been retrieved, aHashMap 1S created to hold two variables for
the hi st ory. vmVelocity template shown in 7?2,

Example 7.16. history.vm rendered by the HistoryController

Weat her History for: ${location.city}, ${location.region}, ${location.country}
</ b>

#f oreach($weat her in $weathers)

<l i >Tenperature: $weather.condition.tenmp
<l i >Condi tion: $weather.condition.text
Hum di ty: $weat her. at nosphere. hum dity
Wnd Chill: $weather.wind.chill

133

Multi-module Enterprise Project

<l i>Date: $weather.date</|i>
</ ul >
#end

Thehi st ory. vmtemplate in sr ¢/ mai n/ webapp/ WEB- | NF/ vmreferences the

| ocat i on variableto print out information about the location of the forecasts
retrieved from the weat her DAO. This template then uses a Velocity control
structure, #f or each, to loop through each element in the weat her s variable. Each
element in weat her s isassigned to avariable named weat her and the template
between #f or each and #end is rendered for each forecast.

Y ou've seen these Cont r ol | er implementations, and you've seen that they
reference other beans defined in si npl e- weat her and si npl e- per si st , they
respond to HT TP requests, and they yield control to some mysterious templating
system that knows how to render Velocity templates. All of thismagicis
configured in a Spring application context in

src/ mai n/ webapp/ EB- | NF/ weat her - ser vl et . xm . This XML configures the
controllers and references other Spring-managed beans, it isloaded by a

Ser vl et Cont ext Li st ener which isalso configured to load the

appl i cati onCont ext - weat her. xmi and appl i cat i onCont ext - persi st.xm from
the classpath. Let's take a closer look at the weat her - servl et . xm shown in 77?2,

Example 7.17. Spring Controller configuration weather -servlet.xml

<beans>
<bean i d="weat herController" #
cl ass="org. sonat ype. mavenbook. web. Weat her Control | er ">
<property nane="weat her Servi ce" ref="weat her Service"/>
<property name="weat her DAO' ref="weat her DAO'/ >
</ bean>

<bean id="historyController"
cl ass="org. sonat ype. mavenbook. web. H st oryControl |l er">
<property nane="weat her DAO' ref ="weat her DAO'/ >
<property nane="| ocati onDAO' ref="1Iocati onDAO'/ >
</ bean>

<l-- you can have nore than one handl er defined -->
<bean i d="ur| Mappi ng"
cl ass="org. spri ngfranmewor k. web. servl et . handl er. Si npl eUr | Handl er Mappi ng" >
<property name="url Map">
<map>

134

Multi-module Enterprise Project

<entry key="/weather.x"> #
<ref bean="weat herController" />
</entry>
<entry key="/history.x">
<ref bean="historyController" />
</entry>
</ map>
</ property>
</ bean>

<bean id="vel ocityConfig" #
cl ass="org. spri ngfranmewor k. web. servl et. vi ew. vel oci ty. Vel oci t yConfi gurer">
<property nane="resour ceLoader Pat h" val ue="/WEB- | NF/ vm "/ >
</ bean>

<bean i d="vi ewResol ver" #
cl ass="org. spri ngframewor k. web. servl et. vi ew. vel oci ty. Vel oci t yVi ewResol ver" >

<property nane="cache" val ue="true"/>
<property name="prefix" value=""/>
<property nane="suffix" value=".vnl'/>
<property name="exposeSpri ngMacr oHel pers" val ue="true"/>

</ bean>

</ beans>

[0 Theweat her-servlet.xn definesthe two controllers as Spring-managed
beans. weat her Cont r ol | er has two properties which are references to
weat her Ser vi ce and weat her DAO. hi st oryControl | er referencesthe beans
weat her DAOand | ocat i onDAO. When this Appl i cat i onCont ext IS created, it
Is created in an environment that has access to the Appl i cat i onCont ext S
defined in both si npl e- per si st and si npl e- weat her . In ??? you will see
how Spring is configured to merge components from multiple Spring
configuration files.

[0 Theurl Mappi ng bean defines the URL patterns which invoke the
Weat her Control | er and the Hi st oryCont rol | er. Inthisexample, we are
using the Si npl eUr | Handl er Mappi ng and mapping / weat her . x t0
Weat her Control | er and/ hi story. x tOHi storyController.

[0 Sincewe are using the Velocity templating engine, we will need to passin
some configuration options. In thevel oci t yConf i g bean, we are telling
Velocity to look for all templates in the / WVeB- | NF/ vmdirectory.

[0 Ladt, thevi ewResol ver isconfigured with the class Vel oci t yVi ewResol ver ..

135

Multi-module Enterprise Project

There are anumber of Vi ewResol ver implementationsin Spring from a
standard ViewResolver to render JSP or JSTL pages to a resolver which can
render Freemarker templates. In this example, we're configuring the Velocity
templating engine and setting the default prefix and suffix which will be
automatically appended to the names of the template passed to
Model AndVi ew.
Finally, the si npl e- webapp project was aweb. xm which provides the basic
configuration for the web application. Theweb. xn fileis shown in ???2.

Example 7.18. web.xml for ssimple-webapp

<web- app i d="si npl e-webapp" version="2.4"
xm ns="http://java. sun. com xm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://java. sun.com xm / ns/j 2ee
http://java. sun. comi xm / ns/j 2ee/ web-app_2_4. xsd" >
<di spl ay- nane>Si npl e Wb Applicati on</di spl ay- nanme>

<cont ext - par ane> #
<par am nane>cont ext Conf i gLocat i on</ par am nanme>
<par am val ue>
cl asspat h: appl i cati onCont ext - weat her . xml
cl asspat h: appl i cat i onCont ext - persi st . xm
</ par am val ue>
</ cont ext - par an®

<cont ext - par an> #

<par am nane>| og4j Confi gLocat i on</ par am nane>

<par am val ue>/ V\EB- | NF/ | 0og4j . properti es</ param val ue>
</ cont ext - par an®

<listener> #
<l istener-class>
org. springframewor k. web. util.Log4j Confi gLi st ener
</listener-cl ass>
</listener>

<l i st ener>
<li stener-class> #
or g. spri ngframewor k. web. cont ext . Cont ext Loader Li st ener
</listener-class>

</listener>

<servlet> #
<ser vl et - nane>weat her </ ser vl et - nane>
<servl et -cl ass>
or g. spri ngfranmewor k. web. servl et. Di spat cher Servl et
</servl et-cl ass>

136

Multi-module Enterprise Project

<l oad- on- st art up>1</| oad- on- st art up>
</servlet>

<servl et - mappi ng> #
<ser vl et - name>weat her </ ser vl et - nane>
<url -pattern>*.x</url -pattern>
</ servl et - mappi ng>
</ web- app>

[0 Here'sabhit of magic which allows usto reuse the
appl i cati onCont ext - weat her . xm and appl i cati onCont ext - per si st . xni
in this project. The cont ext Conf i gLocat i on isused by the
Cont ext Loader Li st ener tO create an Appl i cati onCont ext . When the
weather servlet is created, the weat her - servl et . xm from ???is going to be
evaluated with the Appl i cat i onCont ext created from this
cont ext Confi gLocat i on. In thisway, you can define a set of beansin
another project and you can reference these beans via the classpath. Since the
si npl e- persi st and si npl e- weat her JARs are going to bein WeB- I NF/ 1 i b,
all wedoisusethecl asspat h: prefix to reference these files. (Another
option would have been to copy these filesto / VEB- | NF and reference them
with something like/ VEB- | NF/ appl i cat i onCont ext - per si st. xni).

[0 Thel og4j ConfigLocati on isused to tell the Log4JConfi gLi st ener whereto
look for Log4J logging configuration. In this example, we tell Log4J to look
iN/WEB- | NF/ | og4j . properties.

[0 This makes sure that the L og4J system is configured when the web
application starts. It isimportant to put this Log4JConf i gLi st ener before the
Cont ext Loader Li st ener ; otherwise, you may miss important logging
messages which point to a problem preventing application startup. If you
have a particularly large set of beans managed by Spring, and one of them
happens to blow up on application startup, your application will fail. If you
have logging initialized before Spring starts, you might have a chance to
catch awarning or an error. If you don't have logging initialized before
Spring starts up, you'll have no idea why your application refuses to start.

[0 TheCont ext Loader Li st ener isessentially the Spring container. When the
application starts, this listener will build an Appl i cat i onCont ext from the

137

Multi-module Enterprise Project

cont ext Confi gLocat i on parameter.

[0 WedefineaSpring MV C Di spat cher Servl et with aname of weat her. This
will cause Spring to look for a Spring configuration filein
/ VEB- | NF/ weat her - ser vl et . xni . You can have as many
Di spat cher Ser vl et Sasyou need, aDi spat cher Ser vl et can contain one or
more Spring MV C Cont rol | er implementations.

[0 All requestsending in. x will be routed to the weat her servlet. Note that the
. x extension has no particular meaning, it is an arbitrary choice and you can
use whatever URL pattern you like.

7.7. Running the Web Application

To run the web application, you'll first need to build the database using the
Hibernate3 plugin. To do this, run the following from the si npl e- webapp project
directory:

$ mvn hi ber nat e3: hbn2ddl

[INFQ Scanning for projects...

[INFQ Searching repository for plugin with prefix: 'hibernate3'.

[I NFQ org. codehaus. moj o: checking for updates from central

I O I T i
[INFQ Building Chapter 7 Sinple Wb Application

[I NFQ t ask- segnent : [hi ber nat e3: hbnRddl]

I O I L L T
[NFQ Preparing hibernate3: hbn2ddl

10: 24: 56, 151 | NFO org. hi bernat e. t ool . hbn2ddl . SchemaExport - export conplete

T 21
[INFO BU LD SUCCESSFUL

[INFQ] = - - = m s mm ot ot oo il

Once you've done this, there should be a${ basedi r}/ dat a directory which will
contain the HSQL DB database. Y ou can then start the web application with:

$ nvn jetty:run
[INFQ Scanning for projects...
[INFQ Searching repository for plugin with prefix: "jetty'.

N O T I
[INFQ Building Chapter 7 Sinple Wb Application

[I NFQ task-segment: [jetty:run]

I O I i

[INFO Preparing jetty:run

138

Multi-module Enterprise Project

[INFQ [jetty:run]
[INFQ Configuring Jetty for project: Chapter 7 Sinple Wb Application

[INFQ Context path = /sinple-webapp

[INFQ Tnp directory = determned at runtine

[INFQ Web defaults = org/nortbay/jetty/ webapp/webdefaul t. xm
[INFOQ Wb overrides = none

[INFQ Starting jetty 6.1.7 ...

2008- 03-25 10:28:03.639::INFO jetty-6.1.7

2147 I NFO DispatcherServlet - FrameworkServlet 'weather': \
initialization conpleted in 1654 ns

2008-03-25 10: 28: 06.341:: INFO Started Sel ect Channel Connect or @. 0. 0. 0: 8080

[INFQ Started Jetty Server

Once Jetty is started, you can load

http://local host:8080/si mpl e-webapp/weather.x?zip=60202 and you should see the
weather for Evanston, IL in your web browser. Change the ZIP code and you

should be able to get your own weather report.

Current Weat her Conditions for: Evanston, IL, US

Tenperature: 42

Condi tion: Partly d oudy

Hum dity: 55

Wnd Chill: 34

Date: Tue Mar 25 10:29:45 CDT 2008

* Ok X X %

7.8. The Simple Command Module

Thesi npl e- command project is acommand-line version of the si npl e- webapp. It
Isautility that relies on the same dependencies: si npl e- per si st and

si npl e- weat her . Instead of interacting with this application via a web browser,
you would run the si npl e- command utility from the command-line.

139

http://localhost:8080/simple-webapp/weather.x?zip=60202

Multi-module Enterprise Project

simple-command
Main.java

Main

—— = Dependency

Figure 7.4. Command line application referencing smple-weather and

simple-persist

simple-weather
applicationContext-weather.xml

» weatherService

simple-persist
applicationContext-persist.xmi

—
weatherDAD

lacationDAO

Example 7.19. POM for simple-command

<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="htt p:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0 0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<par ent >

<gr oupl d>or g. sonat ype. mavenbook. ch07</ gr oupl d>
<artifactld>sinple-parent</artifactld>

<ver si on>1. 0</ ver si on>
</ par ent >

<artifactld>si npl e-command</artifactld>

<packagi ng>j ar </ packagi ng>
<nanme>Si npl e Command Li ne Tool </ name>

<bui | d>

<final Name>${proj ect.artifactld}</final Nane>

140

Multi-module Enterprise Project

<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-conpil er-plugin</artifactld>
<confi gurati on>
<sour ce>1. 5</ sour ce>
<t arget >1. 5</t ar get >
</ confi guration>
</ pl ugi n>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<confi gurati on>
<t est Fai | ur el gnore>true</testFail urel gnor e>
</ confi gurati on>
</ pl ugi n>
<pl ugi n>
<artifactld>maven-assenbl y- pl ugi n</artifactld>
<confi gurati on>
<descri pt or Ref s>
<descri pt or Ref >j ar - wi t h- dependenci es</ descri pt or Ref >
</ descri pt or Ref s>
</ confi guration>
</ pl ugi n>
<pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifactl d>hi bernat e3- maven- pl ugi n</artifactld>
<ver si on>2. 1</ ver si on>
<confi gurati on>
<conponent s>
<conponent >
<nane>hbndd| </ name>
<i mpl enent at i on>annot ati onconfi gurati on</i npl enent ati on>
</ conponent >
</ conponent s>
</ configuration>
<dependenci es>
<dependency>
<gr oupl d>hsql db</ gr oupl d>
<artifactld>hsql db</artifactld>
<versi on>1. 8. 0. 7</ ver si on>
</ dependency>
</ dependenci es>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

<dependenci es>
<dependency>
<gr oupl d>or g. sonat ype. mavenbook. ch07</ gr oupl d>
<artifactl|d>si npl e-weat her</artifactld>
<ver si on>1. 0</ ver si on>
</ dependency>

141

Multi-module Enterprise Project

<dependency>
<gr oupl d>or g. sonat ype. mavenbook. ch07</ gr oupl d>
<artifactld>sinple-persist</artifactld>
<ver si on>1. 0</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring</artifactld>
<ver si on>2. 0. 7</ ver si on>

</ dependency>

<dependency>
<gr oupl d>hsql db</ gr oupl d>
<artifactld>hsql db</artifactld>
<versi on>1. 8. 0. 7</ ver si on>

</ dependency>

</ dependenci es>
</ proj ect >

This POM creates an JAR file which will contain the

or g. sonat ype. mavenbook. weat her . Mai n class shown in Example 7.20, “The
Main class for ssimple-command”. In this POM we configure the Maven Assembly
plugin to use a built-in assembly descriptor named j ar - wi t h- dependenci es which
creates asingle JAR file containing all the bytecode a project needs to execute
including the bytecode from the project you are building and all the dependency
bytecode.

Example 7.20. The Main class for ssmple-command

package org. sonat ype. navenbook. weat her ;
i mport java.util.List;

i mport org.apache. | og4j . PropertyConfi gurator;
i mport org. springframewor k. cont ext. Appl i cati onCont ext ;
i mport org.springframework. cont ext.support.d assPat hXm Appl i cati onCont ext ;

i nport org.sonat ype. mavenbook. weat her . nodel . Locat i on;

i mport org.sonatype. mavenbook. weat her . nodel . Weat her ;

i mport org. sonat ype. mavenbook. weat her. per si st. Locat i onDAG
i mport org.sonatype. mavenbook. weat her . per si st. Weat her DAG

public class Main {
private Weat her Servi ce weat her Servi ce

privat e Weat her DAO weat her DAG
private Locati onDAO | ocati onDAG

142

Multi-module Enterprise Project

public static void main(String[] args) throws Exception {
/1 Configure Log4J
PropertyConfi gurator. configure(Min.cl ass. get Cl assLoader (). get Resour ce(
"l og4j . properties"));

/!l Read the Zip Code fromthe Comand-line (if none supplied, use 60202)
String zi pcode = "60202";
try {
zi pcode = args[O0];
} catch (Exception e) {
}

/'l Read the Operation fromthe Command-line (if none supplied use weat her)
String operation = "weather";
try {
operation = args[1];
} catch (Exception e) {
}

/[l Start the program
Main mai n = new Mai n(zi pcode) ;

Appl i cati onCont ext context =

new C assPat hXm Appl i cat i onCont ext (

new String[] { "cl asspath: appl i cati onCont ext - weat her. xm ",
"cl asspat h: appl i cati onCont ext -persi st.xm" });

mai n. weat her Servi ce = (Wat her Servi ce) cont ext. get Bean("weat her Servi ce");
mai n. | ocati onDAO = (Locati onDAO) cont ext. get Bean("| ocati onDAQ') ;
mai n. weat her DAO = (Weat her DAO) cont ext . get Bean(" weat her DAO") ;
i f(operation.equal s("weather")) {

mai n. get Weat her () ;
} else {

mai n. get Hi story();
}

}

private String zip;

public Main(String zip) {
this.zip = zip;
}

public void getWather() throws Exception {
Weat her weat her = weat her Servi ce.retri eveForecast (zip);
weat her DAO. save(weat her);
System out . pri nt (new Wat her Formatter (). f or rat Weat her (weat her)) ;

}

public void getH story() throws Exception {
Location | ocation = | ocati onDAQO. fi ndByZi p(zip);
Li st <Weat her > weat hers = weat her DAO. r ecent For Locati on(| ocati on) ;
System out . print (new Weat her Formatter (). format H story(l ocati on, weathers));

143

Multi-module Enterprise Project

The mai n class has areference to Weat her DAO, Locat i onDAO, and Weat her Ser vi ce.
The static mai n() method in this class:

» Readsthe Zip Code from the first command line argument

» Reads the Operation from the second command line argument. If the
operation is "weather", the latest weather will be retrieved from the web
service. If the operation is "history", the program will fetch historical
weather records from the local database.

» LoadsaSpring Appl i cati onCont ext using two XML files |oaded from
si npl e- persi st and si npl e- weat her

e Creates an instance of Mai n

» Populatesthe weat her Ser vi ce, weat her DAO, and | ocat i onDAOWith beans
from the Spring Appl i cat i onCont ext

* Runs the appropriate method get Weat her () Or get Hi st ory() depending on
the specified operation.

In the web application we use Spring Vel oci t yVi ewResol ver to render aVelocity
template. In the stand-alone implementation, we need to write a simple class which
renders our weather data with aVelocity template. Example 7.21,
“WeatherFormatter renders weather data using a Velocity template” is alisting of
the veat her For mat t er , a class with two methods that render the weather report
and the weather history.

Example 7.21. Weather For matter renders weather data using a Velocity
template

package org. sonatype. mavenbook. weat her ;

i mport java.io.lnputStreanReader;
i nport java.i o. Reader;

144

Multi-module Enterprise Project

i nport java.io.StringWiter;
i mport java.util.List;

i mport org.apache. | og4j . Logger;
i mport org.apache. vel ocity. Vel oci t yCont ext ;
i nport org.apache. vel ocity. app. Vel oci ty;

i nport org.sonatype. mavenbook. weat her . nodel . Locat i on;
i mport org.sonatype. mavenbook. weat her . nodel . Weat her ;

public class Weat her Formatter {
private static Logger |og = Logger. getLogger (Wat her Formatter. cl ass);

public String formatWather(Wather weather) throws Exception {
log.info("Formatting Wat her Data");
Reader reader =
new | nput St r eanrReader (get Cl ass() . get Cl assLoader ().
get Resour ceAsSt r ean(" weat her.vnt')) ;
Vel oci t yCont ext context = new Vel ocityContext();
cont ext. put ("weat her", weather);
StringWiter witer = new StringWiter();
Vel ocity. eval uate(context, witer, "", reader);
return witer.toString();

}

public String formatHi story(Location |ocation, List<Wather> weathers)
t hrows Exception {
log.info("Formatting History Data");
Reader reader =
new | nput St reanReader (get Cl ass() . get C assLoader ().
get Resour ceAsStrean(" hi story. vnt'));
Vel oci t yCont ext context = new Vel oci t yCont ext () ;
context.put("location", |ocation);
cont ext . put ("weat hers", weathers);
StringWiter witer = new StringWiter();
Vel ocity. eval uate(context, witer, "", reader);
return witer.toString();

Theweat her . vmtemplate ssmply prints the zip code's city, country, and region as
well asthe current temperature. The hi st ory. vmtemplate prints the location and
then iterates through the weather forecast records stored in the local database. Both
of these templates are in ${ basedi r}/ src/ mai n/ r esour ces.

Example 7.22. The weather .vm Velocity template

145

Multi-module Enterprise Project

R R I R R R R R R R R R R S R S

Current Weat her Conditions for:
${weat her. | ocation. city},
${weat her. | ocati on. regi on},
${weat her. | ocati on. count ry}

L R R R R R R S

Tenperature: ${weather. condition.tenp}
Condi tion: ${weather.condition.text}

Hum dity: ${weat her. at rosphere. hum dity}
Wnd Chill: ${weather.w nd.chill}

Dat e: ${weat her. dat e}

* OF * X *

Example 7.23. The history.vm Velocity template

Weat her History for:
${1 ocation.city},

${| ocati on. regi on},
${l ocati on. count ry}

#f oreach($weat her in $weat hers)

IR I b b I S b b S S b I I b I I b b I I b b b I O b R S b
* Tenperature: $weather.condition.tenp
* Condition: $weat her.condition.text
* Humi dity: $weat her. atnmosphere. hum dity

* Wnd Chill: $weather.wi nd. chil
* Date: $weat her. date
#end

7.9. Running the Simple Command

The si npl e- command project is configured to create a single JAR containing the
bytecode of the project and all of the bytecode from the dependencies. To create
this assembly, run the assenbl y goal of the Maven Assembly plugin from the

si npl e- command project directory:

$ nmvn assenbl y: assenbl y

I O T
[INFQ Building Chapter 7 Sinple Conmand Line Too

[I NFQ t ask- segnent: [assenbl y: assenbly] (aggregator-style)

I O I e

Multi-module Enterprise Project

[resources: resources]

Usi ng default encoding to copy filtered resources.
[conpi | er: conpil €]

Not hing to conmpile - all classes are up to date
[resources:test Resour ces]

Usi ng default encoding to copy filtered resources.
[compi | er:testConpil e]

Not hing to conpile - all classes are up to date
[surefire:test]

[jar:jar]

Building jar: .../sinple-parent/sinple-conmand/target/sinple-comand.|jar
[assenbl y: assenbl y]

Pr ocessi ng DependencySet (out put =)

Expanding: .../.nR/repository/.../sinple-weather-1-SNAPSHOT.jar into \
/tnp/ archived-fil e-set.
Expanding: .../.n2/repository/.../sinple-nodel-1-SNAPSHOT. jar into \
[tnp/archived-fil e-set.
Expanding: .../.n2/repository/../hibernate-3.2.5.ga.jar into \

/tnp/archived-file-set.

i ppi ng 25 |ines of dependency unpacking ...

Expanding: .../.nR/repository/.../velocity-1.5.jar into /tnp/archived-f
Expanding: .../.nmR/repository/.../commons-lang-2.1.jar into \

/tnp/ archived-fil e-set.
Expanding: .../.nR/repository/.../oro-2.0.8.jar into /tnp/archived-file-
Building jar: .../sinple-parent/sinple-conmand/target/sinple-comand-jar

93251505. t np
2012480870. t |
1296516202. t |
| e-set. 37948
1329200163. t |

set. 19931553
- Wi t h- depend

The build progresses through the lifecycle compiling bytecode, running tests, and
finaly building a JAR for the project. Then the assenbl y: assenbl y goal creates a
JAR with dependencies by unpacking all of the dependencies to temporary
directories and then collecting all of the bytecodeinto asingle JAR int ar get /

named si npl e- conmand-j ar - wi t h- dependenci es. j ar. This"uber" JAR weighsin

at 15 MB.

Before you run the command-line tool, you will need to invoke the hbn2ddl goal
of the Hibernate3 plugin to create the HSQL DB database. Do this by running the
following command from the si npl e- conmand directory:

$ nvn hi ber nat e3: hbnddl

[I NFO
[I NFO
[I NFO
[I NFO
[I NFO
[I NFO
[I NFO
[I NFO

Scanni ng for projects...
Searching repository for plugin with prefix: 'hibernate3
or g. codehaus. noj o: checki ng for updates from centra
Bui | di ng Chapter 7 Sinple Command Line Tool

t ask- segnent : [hi ber nat e3: hbnRddl]

Preparing hi bernat e3: hbn2dd

147

Multi-module Enterprise Project

10: 24: 56, 151 | NFO or g. hi bernat e. t ool . hbnRddl . SchenmaExport - export conpl ete

I =1 e
[INFO BU LD SUCCESSFUL

1= e

Once you run this, you should see adat a/ directory under si npl e- conmand. This
dat a/ directory holds the HSQL DB database. To run the command-line weather
forecaster, run the following from the si npl e- conmand/ project directory:

$ java -cp target/sinple-conmand-jar-w t h-dependenci es.jar \
or g. sonat ype. mavenbook. weat her . Mai n 60202

2321 I NFO YahooRetriever - Retrieving Wather Data
2489 | NFO YahooParser - Creating XM. Reader
2581 I NFO YahooParser - Parsing XM. Response
2875 I NFO WeatherFormatter - Formatti ng Weat her Data
ER I I S I R I R I S S IR S S I R R I R I S
Current Weat her Conditions for:

Evanst on,

IL,

us

khkkhkkhrkhkxdhxdhrkdhddhrdhrhrhrhrdrdrdrdrdrdxdxdx

Tenperature: 75

Condi tion: Partly d oudy

Hum dity: 64

Wnd Chill: 75

Date: Wed Aug 06 09: 35:30 CDT 2008

* F * X *

To run ahistory query, execute the following command:

$ java -cp target/sinple-conmand-jar-w th-dependencies.jar \
or g. sonat ype. mavenbook. weat her. Mai n 60202 hi story

2470 I NFO WeatherFormatter - Formatting History Data

Weat her History for:

Evanston, IL, US

EIE R R R R R R R R R R R R R R R R R S

* Tenperature: 39

* Condition: Heavy Rain

* Humdity: 93

* Wnd Chill: 36

* Date: 2007-12-02 13:45:27.187
R R R S R R R R I I

* Tenperature: 75

* Condition: Partly C oudy

* Humidity: 64

* Wnd Chill: 75

* Date: 2008-08-06 09:24:11. 725

EE R I R R R R I R I R R I S

* Tenperature: 75

148

Multi-module Enterprise Project

Condition: Partly d oudy

Hum dity: 64

Wnd Chill: 75

Dat e: 2008-08-06 09: 27: 28. 475

* Ok k%

7.10. Conclusion

We've spent agreat deal of time on topics not directly related Maven to get this far.
We've done this to present a complete and meaningful example project which you
can use to implement real-world systems. We didn't take any short-cuts to produce
dlick, canned results quickly, and we're not going to dazzle you with some Ruby on
Rails-esque wizardry and lead you to believe that you can create afinished Java
Enterprise application in "10 easy minutes!" There's too much of thisin the market,
there are too many people trying to sell you the easiest framework that requires
zero investment of time or attention. What we're trying to do in this chapter is
present the entire picture, the entire ecosystem of a multi-module build. What
we've done is present Maven in the context of a application which resembles
something you could see in the wild—not the fast-food, 10 minute screen-cast that
slings mud at Apache Ant and tries to convince you to adopt Apache Maven.

If you walk away from this chapter wondering what it has to do with Maven, we've
succeeded. We present a complex set of projects, using popular frameworks, and
we tie them together using declarative builds. The fact that more than 60% of this
chapter was spent explaining Spring and Hibernate should tell you that Maven, for
the most part, stepped out of the way. It worked. It allowed us to focus on the
application itself, not on the build process. Instead of spending time discussing
Maven, and the work you would have to do to "build abuild" that integrated with
Spring and Hibernate, we talked almost exclusively about the technologies used in
this contrived project. If you start to use Maven, and you take the time to learn it,
you really do start to benefit from the fact that you don't have to spend time coding
up some procedural build script. Y ou don't have to spend your time worrying about
mundane aspects of your build.

Y ou can use the skeleton project introduced in this chapter as the foundation for
your own, and chances are that when you do, you'll find yourself creating more and

149

Multi-module Enterprise Project

more modules as you need them. For example, the project on which this chapter
was based has two distinct model projects, two persistence projects which persist

to dramatically different databases, severa web applications, and a Java mobile
application. In total, the real world system | based this on contains at least 15
interrelated modules. The point is that, you've seen the most complex multi-module
example we're going to include in this book, but you should also know that this
example just scratches the surface of what is possible with Maven.

7.10.1. Programming to Interface Projects

This chapter explored a multi-module project which was more complex than the

simple example presented in Chapter 6, A Multi-module Project, yet it was still a
simplification of areal-world project. In alarger project, you might find yourself
building a system resembling Figure 7.5, “Programming to Interface Projects’.

Super POM
—= = Dependency

——P= = |nherits from

(com.sonatype | /

big-webapp
1.0

COMm.sonatype
big-parent
1.0

com.sonatype
weather-model
1.0

(com.sonatype |
big-command

1.0
—

com.sonatype
parse-api
1.0

com.sonatype
persist-api
1.0

com.sonatype com.sonatype com.sonatype com.sonatype
persist-xmidb persist-jdbe parse-noaa parse-yahoo
1.0

150

Multi-module Enterprise Project

Figure 7.5. Programming to I nterface Projects

When we use the term interface project we are referring to a Maven project which
contains interfaces and constants only. In Figure 7.5, “Programming to Interface
Projects’ the interface projects would be per si st - api and par se- api . If

bi g- command and bi g- webapp are written to the interfaces defined in per si st - api ,
then it is very easy to just swap in another implementation of the persistence
library. This particular diagram shows two implementations of the per si st - api
project, one which stores datain an XML database, and the other which stores data
in arelational database. If you use some of the concepts in this chapter, you can
see how you could just passin aflag to the program that swapsin adifferent
Spring application context XML file to swap out data sources of persistence
implementations. Just like the OO design of the application itself, it is often wiseto
separate the interfaces of an API from the implementation of the API into separate
Maven projects.

151

Chapter 8. Optimizing and Refactoring
POMSs

8.1. Introduction

In Chapter 7, Multi-module Enterprise Project, we showed how many pieces of
Maven come together to produce afully functional multimodule build. Although
the example from that chapter suggests areal application—one that interacts with a
database, aweb service, and that itself presents two interfaces. onein aweb
application, and one on the command line—that example project is still contrived.
To present the complexity of areal project would require abook far larger than the
one you are now reading. Real-life applications evolve over years and are often
maintained by large, diverse groups of developers, each with adifferent focus. Ina
real-world project, you are often evaluating decisions and designs made and
created by others. In this chapter, we take a step back from the examples you' ve
seenin Part I, “Maven by Example”, and we ask ourselves if there are any
optimizations that might make more sense given what we now know about Maven.
Maven isavery capable tool that can be as simple or as complex as you need it to
be. Because of this, there are often amillion ways to accomplish the same task, and
there is often no one “right” way to configure your Maven project.

Don't misinterpret that last sentence as alicense to go off and ask Maven to do
something it wasn't designed for. While Maven allows for adiversity of approach,
thereiscertainly "A Maven Way", and you'll be more productive using Maven asiit
was designed to be used. All this chapter istrying to do is communicate some of
the optimizations you can perform on an existing Maven project. Why didn't we
just introduce an optimized POM in the first place? Designing POMs for pedagogy
isavery different requirement from designing POMs for efficiency. Whileit is
certainly much easier to define a certain setting in your ~/ . n2/ set ti ngs. xni than
to declare aprofilein apom xm , writing a book, and reading a book is mostly
about pacing and making sure we're not introducing concepts before you are ready.
In Part |, “Maven by Example’, we've made an effort not to overwhelm the reader

152

Optimizing and Refactoring POMs

with too much information, and, in doing so, we've skipped some core concepts
like the dependencyManagenent element introduced in this chapter.

There are many instancesin Part |, “Maven by Example” when the authors of this
book took a shortcut or glossed over an important detail to shuffle you along to the
main point of a specific chapter. Y ou learned how to create a Maven project, and
you compiled and installed it without having to wade through hundreds of pages
introducing every last switch and dial available to you. We' ve done this because
we believe it isimportant to deliver the new Maven user to aresult faster rather
than meandering our way through avery long, seemingly interminable story. Once
you' ve started to use Maven, you should know how to analyze your own projects
and POMs. In this chapter, we take a step back and look at what we are left with
after the example from Chapter 7, Multi-module Enterprise Project.

8.2. POM Cleanup

Optimizing a multimodule project’s POM is best done in several passes, asthere
are many areas to focus on. In general, we are looking for repetition within a POM
and across the sibling POMs. When you are starting out, or when a project is still
evolving rapidly, it is acceptable to duplicate some dependencies and plugin
configurations here and there, but as the project matures and as the number of
modules increases, you will want to take some time to refactor common
dependencies and configuration points. Making your POMs more efficient will go
along way to helping you manage complexity as your project grows. Whenever
there is duplication of some piece of information, there is usually a better way.

8.3. Optimizing Dependencies

If you look through the various POMs created in Chapter 7, Multi-module
Enterprise Project, note several patterns of replication. The first pattern we can see
Is that some dependencies such asspri ng and hi ber nat e- annot at i ons are
declared in several modules. The hi ber nat e dependency also has the exclusion on
javax.transaction replicated in each definition. The second pattern of duplication to

153

Optimizing and Refactoring POMs

note is that sometimes several dependencies are related and share the same version.
Thisis often the case when a project’ s release consists of several closely coupled
components. For example, look at the dependencies on hi ber nat e- annot at i ons
and hi ber nat e- cormons- annot at i ons. Both arelisted asversion 3. 3. 0. ga, and
we can expect the versions of both these dependencies to change together going
forward. Both the hi ber nat e- annot at i ons and hi ber nat e- conmons- annot at i ons
are components of the same project released by JBoss, and so when thereis anew
project release, both of these dependencies will change. The third and last pattern
of duplication is the duplication of sibling module dependencies and sibling
module versions. Maven provides simple mechanisms that let you factor all of this
duplication into a parent POM.

Just as in your project’ s source code, any time you have duplication in your POMs,
you open the door a bit for trouble down the road. Duplicated dependency
declarations make it difficult to ensure consistent versions across a large project.
When you only have two or three modules, this might not be a primary issue, but
when your organization is using alarge, multimodule Maven build to manage
hundreds of components across multiple departments, one single mismatch
between dependencies can cause chaos and confusion. A simple version mismatch
in aproject’ s dependency on a bytecode manipulation package called ASM three
levels deep in the project hierarchy could throw awrench into aweb application
maintained by a completely different group of developers who depend on that
particular module. Unit tests could pass because they are being run with one
version of a dependency, but they could fail disastrously in production where the
bundle (WAR, in this case) was packaged up with a different version. If you have
tens of projects using something like Hibernate Annotations, each repeating and
duplicating the dependencies and exclusions, the mean time between someone
screwing up abuild is going to be very short. Asyour Maven projects become
more complex, your dependency lists are going to grow, and you are going to want
to consolidate versions and dependency declarations in parent POMSs.

The duplication of the sibling module versions can introduce a particularly nasty
problem that is not directly caused by Maven and is learned only after you’ ve been
bitten by this bug afew times. If you use the Maven Release plugin to perform
your releases, all these sibling dependency versions will be updated automatically

154

Optimizing and Refactoring POMs

for you, so maintaining them is not the concern. If si npl e- web version

1. 3- SNAPSHOT depends on si npl e- per si st version 1. 3- SNAPSHOT, and if you are
performing arelease of the 1.3 version of both projects, the Maven Release plugin
Is smart enough to change the versions throughout your multimodule project’s
POM s automatically. Running the release with the Release plugin will
automatically increment al of the versionsin your build to 1. 4- sSNAPSHOT, and the
release plugin will commit the code change to the repository. Releasing a huge
multimodule project couldn’t be easier, until...

Problems occur when devel opers merge changes to the POM and interfere with a
release that isin progress. Often a developer merges and occasionally mishandles
the conflict on the sibling dependency, inadvertently reverting that version to a
previous release. Since the consecutive versions of the dependency are often
compatible, it does not show up when the developer builds, and won’t show up in
any continuous integration build system as afailed build. Imagine a very complex
build where the trunk is full of components at 1. 4- SNaPsSHOT, and now imagine that
Developer A has updated Component A deep within the project’ s hierarchy to
depend on version 1. 3- sNAPsHOT of Component B. Even though most developers
have 1. 4- sNapsHaT, the build succeeds if version 1. 3- SNAPSHOT and

1. 4- SNAPSHoT of Component B are compatible. Maven continues to build the
project using the 1. 3- SNAPSHOT version of Component B from the developer’s
local repositories. Everything seems to be going quite smoothly—the project
builds, the continuous integration build works fine, and so on. Someone might
have a mystifying bug related to Component B, but she chalks it up to malevolent
gremlins and moves on. Meanwhile, a pump in the reactor room is steadily
building up pressure, until something blows....

Someone, let's call them Mr. Inadvertent, had a merge conflict in component A,
and mistakenly pegged component A's dependency on component B to

1. 3- SNAPsSHOT while the rest of the project marches on. A bunch of developers
have been trying to fix abug in component B all this time and they've been
mystified as to why they can't seem to fix the bug in production. Eventually
someone looks at component A and realizes that the dependency is pointing to the
wrong version. Hopefully, the bug wasn't large enough to cost money or lives, but
Mr. Inadvertent feels stupid and people tend to trust him alittle less than they did

155

Optimizing and Refactoring POMs

before the whole sibling dependency screw-up. (Hopefully, Mr. Inadvertent
realizes that this was user error and not Maven's fault, but more than likely he
starts an awful blog and complains about Maven endlessly to make himself feel
better.)

Fortunately, dependency duplication and sibling dependency mismatch are easily
preventable if you make some small changes. Thefirst thing we'regoing to do is
find all the dependencies used in more than one project and move them up to the
parent POM’ s dependencyManagenent section. We'll leave out the sibling
dependencies for now. Thesi npl e- par ent pom now contains the following:

<pr oj ect >

<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring</artifactld>
<ver si on>2. 0. 7</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. apache. vel oci t y</ gr oupl d>
<artifactld>vel ocity</artifactld>
<ver si on>1. 5</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-annotati ons</artifactld>
<versi on>3. 3. 0. ga</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactl d>hi bernat e-commons- annot ati ons</artifactld>
<ver si on>3. 3. 0. ga</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate</artifactld>
<version>3. 2. 5. ga</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>j avax. t ransacti on</ gr oupl d>
<artifactld>jta</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

156

Optimizing and Refactoring POMs

</ proj ect >

Once these are moved up, we need to remove the versions for these dependencies
from each of the POMs; otherwise, they will override the dependencyManagenent
defined in the parent project. Let’slook at only si npl e- nodel for brevity’s sake:

<pr oj ect >

<dependenci es>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-annotati ons</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate</artifactld>
</ dependency>
</ dependenci es>

</ proj ect >

The next thing we should do isfix the replication of the hi ber nat e- annot at i ons
and hi ber nat e- conmons- annot at i ons version since these should match. We'll do
this by creating a property caled hi ber nat e- annot at i ons- ver si on. The resulting
si npl e- par ent Section lookslike this:

<pr oj ect >

<properties>
<hi ber nat e. annot at i ons. ver si on>3. 3. 0. ga</ hi ber nat e. annot at i ons. ver si on>
</ properties>

<dependencyManagenent >

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernat e-annotati ons</artifactld>
<ver si on>${ hi ber nat e. annot at i ons. ver si on} </ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi ber nat e- commons- annot ati ons</artifactld>
<ver si on>${ hi ber nat e. annot at i ons. ver si on} </ ver si on>

</ dependency>

</aébendencywhnagenEnt>

</ pr oj ect

157

Optimizing and Refactoring POMs

The last issue we have to resolve is with the sibling dependencies. One technique
we could use is to move these up to the dependencyManagenent Section, just like
al the others, and define the versions of sibling projectsin the top-level parent
project. Thisis certainly avalid approach, but we can also solve the version
problem just by using two built-in properties—s{ pr oj ect . gr oupl d} and

${ pr oj ect . ver si on}. Since they are sibling dependencies, there is not much value
to be gained by enumerating them in the parent, so we'll rely on the built-in

${ pr oj ect . ver si on} property. Because they all share the same group, we can
further future-proof these declarations by referring to the current POM’ s group
using the built-in ${ pr oj ect . gr oupl d} property. Thesi npl e- command dependency
section now looks like this:

<pr oj ect >
<dependenci es>

<dependency>
<gr oupl d>%${ pr oj ect . gr oupl d} </ gr oupl d>
<artifactld>sinpl e-weat her</artifactld>
<versi on>${ pr oj ect . ver si on} </ ver si on>
</ dependency>
<dependency>
<gr oupl d>${ pr oj ect . gr oupl d} </ gr oupl d>
<artifactld>sinple-persist</artifactld>
<ver si on>${ proj ect . ver si on} </ ver si on>
</ dependency>

</ dependenci es>

</ proj ect >

Here's a summary of the two optimizations we completed that reduce duplication
of dependencies:

Pull-up common dependencies to dependencyManagenent

If more than one project depends on a specific dependency, you can list the
dependency in dependencyManagenent . The parent POM can contain a version
and a set of exclusions; all the child POM needs to do to reference this
dependency isusethegroupl d and arti f act 1 d. Child projects can omit the
version and exclusions if the dependency islisted in dependencyManagenent .

158

Optimizing and Refactoring POMs

Use built-in project ver si on and gr oupl d for sibling projects

Use ${ pr oj ect . ver si on} and ${ pr oj ect . gr oupl d} when referring to asibling
project. Sibling projects almost always share the same gr oupl d, and they almost
aways share the same release version. Using ${ pr oj ect . ver si on} will help
you avoid the sibling version mismatch problem discussed previoudly.

8.4. Optimizing Plugins

If wetake alook at the various plugin configurations, we can see the HSQLDB
dependencies duplicated in several places. Unfortunately, dependencyManagenent
doesn’t apply to plugin dependencies, but we can still use a property to consolidate
the versions. Most complex Maven multimodul e projects tend to define all
versionsin the top-level POM. This top-level POM then becomes afocal point for
changes that affect the entire project. Think of version numbers as string literalsin
aJavaclass; if you are constantly repeating aliteral, you'll likely want to makeit a
variable so that when it needs to be changed, you have to change it in only one
place. Rolling up the version of HSQL DB into a property in the top-level POM
yields the following pr operti es element:

<pr oj ect >

<properties>
<hi ber nat e. annot at i ons. ver si on>3. 3. 0. ga</ hi ber nat e. annot at i ons. ver si on>
<hsql db. ver si on>1. 8. 0. 7</ hsql db. ver si on>

</ properties>

</ proj ect >

The next thing we notice is that the hi ber nat e3- maven- pl ugi n configuration is
duplicated in the si npl e- webapp and si npl e- command modules. We can manage
the plugin configuration in the top-level POM just as we managed the
dependenciesin the top-level POM with the dependencyManagenent section. To do
this, we use the pl ugi nManagenent element in the top-level POM’s build element:

<pr oj ect >
<bui | d>
<pl ugi nManagenent >
<pl ugi ns>

159

Optimizing and Refactoring POMs

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-conpil er-plugi n</artifactld>
<confi gurati on>
<sour ce>1. 5</ sour ce>
<t arget >1. 5</t ar get >
</ configuration>
</ pl ugi n>
<pl ugi n>
<gr oupl d>or g. codehaus. npj o</ gr oupl d>
<artifactl|d>hi ber nat e3- maven- pl ugi n</artifactl d>
<ver si on>2. 1</ ver si on>
<confi gurati on>
<conponent s>
<conponent >
<nane>hbnddl| </ name>
<i npl enent at i on>annot at i onconfi gurati on</i npl enent ati on>
</ conponent >
</ conponent s>
</ configuration>
<dependenci es>
<dependency>
<gr oupl d>hsql db</ gr oupl d>
<artifactld>hsql db</artifactld>
<ver si on>${ hsql db. ver si on} </ ver si on>
</ dependency>
</ dependenci es>
</ pl ugi n>
</ pl ugi ns>
</ pl ugi nManagenent >
</ bui | d>

</ proj ect >

8.5. Optimizing with the Maven Dependency
Plugin

On larger projects, additional dependencies often tend to creep into a POM as the
number of dependencies grow. As dependencies change, you are often left with
dependencies that are not being used, and just as often, you may forget to declare
explicit dependencies for libraries you require. Because Maven 2.x includes
transitive dependencies in the compile scope, your project may compile properly
but fail to run in production. Consider a case where a project uses classes from a
widely used project such as Jakarta Commons BeanUtils. Instead of declaring an

160

Optimizing and Refactoring POMs

explicit dependency on BeanUtils, your project smply relies on a project like
Hibernate that references BeanUltils as a transitive dependency. Y our project may
compile successfully and run just fine, but if you upgrade to a new version of
Hibernate that doesn’t depend on BeanUtils, you'll start to get compile and runtime
errors, and it won't be immediately obvious why your project stopped compiling.
Also, because you haven't explicitly listed a dependency version, Maven cannot
resolve any version conflicts that may arise.

A good rule of thumb in Maven isto always declare explicit dependencies for
classes referenced in your code. If you are going to be importing Commons
BeanUltils classes, you should also be declaring a direct dependency on Commons
BeanUltils. Fortunately, via bytecode analysis, the Maven Dependency pluginis
able to assist you in uncovering direct references to dependencies. Using the
updated POMs we previously optimized, let’slook to seeif any errors pop up:

$ nvn dependency: anal yze

[INFQ Scanning for projects...

[INFOQ Reactor build order:

[I NFQ Chapt er Si npl e Parent Project

[I NFQ Chapt er Si npl e Obj ect Model

[I NFO Chapt er Si npl e Weat her AP

[I NFQ Chapt er Si npl e Persi stence API
[I NFQ Chapt er Si npl e Command Li ne Tool
[I NFQ Chapt er Si npl e Web Appl i cation

[I NFQ Chapt er Par ent Proj ect

[INFQ Searching repository for plugin with prefix: 'dependency’.

— 00 00 00 0O 00O 0O 0O

I NFQ Buil ding Chapter 8 Sinple Object Mdel
I NFO t ask- segnent: [dependency: anal yze]

[

[

[

[

[INFQ Preparing dependency: anal yze

[INFQ [resources:resources]

[INFQ Using default encoding to copy filtered resources.
[INFQ [conpiler:conpile]

[INFO Nothing to conpile - all classes are up to date
[INFQ [resources:testResources]

[INFO Using default encoding to copy filtered resources.
[INFQ [conpiler:testConpile]

[INFO Nothing to conpile - all classes are up to date
[NFQ [dependency: anal yze]

[WARNI NG Used undecl ared dependenci es found:

[WVARNI NG j avax. per si st ence: persi stence-api:jar:1.0:conpile
[WARNI NG Unused decl ared dependenci es found:
[WARNI NG or g. hi ber nat e: hi ber nat e-annotations:jar:3.3.0.ga: conpile

161

Optimizing and Refactoring POMs

[WARNI NG or g. hi bernate: hi bernate:jar:3.2.5.ga:conpile
[WVARNI NG junit:junit:jar:3.8.1l:test

I NFO Building Chapter 8 Sinple Wb Application
I NFQ t ask- segnment: [dependency: anal yze]

[

[

[

[

[INFQ Preparing dependency: anal yze

[NFQ [resources:resources]

[INFQ Using default encoding to copy filtered resources.
[INFQ [conpiler:conpile]

[INFQ Nothing to conpile - all classes are up to date
[INFQ [resources:testResources]

[INFQ Using default encoding to copy filtered resources.
[INFQ [conpiler:testConpile]

[INFO No sources to conpile

[NFQ [dependency: anal yze]

[WARNI NG Used undecl ared dependenci es found:

[WVARNI NG or g. sonat ype. mavenbook. ch08: si npl e- nodel : jar: 1. 0: conpi l e
[WARNI NG Unused decl ared dependenci es found:

[VARNI NG org. apache. vel ocity:velocity:jar:1.5: conpile
[WVARNI NG javax.servlet:jstl:jar:1.1.2:conpile

[WVARNI NG taglibs:standard:jar:1.1.2:conpile

[VARNI NG junit:junit:jar:3.8.1l:test

In the truncated output just shown, you can see the output of the

dependency: anal yze goal. Thisgoal analyzes the project to see whether there are
any indirect dependencies, or dependencies that are being referenced but are not
directly declared. In the si npl e- nodel project, the Dependency plugin indicates a
“used undeclared dependency” onj avax. per si st ence: per si st ence-api . TO
investigate further, go to the si npl e- model directory and run the dependency: tree
goal, which will list all of the project’ s direct and transitive dependencies:

$ mvn dependency:tree

[INFQ Scanning for projects...

[INFQ Searching repository for plugin with prefix: 'dependency'.

RN R L
[INFQ Building Chapter 8 Sinple oject Mdel

[I NFQ t ask- segnent: [dependency:tree]

I RO I e L T
[NFQ [dependency:tree]

[NFQ org. sonatype. mavenbook. ch08: si npl e-nmodel :jar: 1.0

[INFQ +- org. hibernate: hi bernate-annotations:jar:3.3.0.ga:conpile

[INFQ | \- javax.persistence: persistence-api:jar:1.0:conpile
[INFO +- org. hibernate: hibernate:jar:3.2.5.ga:conpile

[INFQ | +- net.sf.ehcache: ehcache:jar:1.2.3:conpile

[INFQ | +- commons-| oggi ng: conmons-| oggi ng:jar:1.0.4: conpile

162

Optimizing and Refactoring POMs

[INFQ | +- asmasmattrs:jar:1.5.3:conpile

[INFQ | +- don¥j:domdj:jar:1.6.1:conpile

[INFO | +- antlr:antlr:jar:2.7.6:conpile

[INFQ | +- cglib:cglib:jar:2.1 3:conpile

[INFO | +- asmasmjar:1.5.3:conpile

[INFQ | \- commons-collections:conmons-collections:jar:2.1.1:conpile
[INFQ \- junit:junit:jar:3.8.1:test

I S i
[INFQ BU LD SUCCESSFUL

I O I T e

From this output, we can see that the per si st ence- api dependency is coming
from hi ber nat e. A cursory scan of the source in this module will reveal many

j avax. per si st ence import statements confirming that we are, indeed, directly
referencing this dependency. The simple fix isto add a direct reference to the
dependency. In this example, we put the dependency version in si npl e- parent’s
dependencyManagenent Section because the dependency is linked to Hibernate, and
the Hibernate version is declared here. Eventually you are going to want to
upgrade your project’s version of Hibernate. Listing the per si st ence- api
dependency version near the Hibernate dependency version will make it more
obvious later when your team modifies the parent POM to upgrade the Hibernate
version.

If you look at the dependency: anal yze output from the si npl e- web module, you
will seethat we also need to add a direct reference to the si npl e- nodel
dependency. The codein si npl e- webapp directly references the model objectsin
si npl e- nodel , and the si npl e- nodel isexposed to si npl e- webapp as atransitive
dependency viasi npl e- per si st . Since thisis a sibling dependency that shares
both the ver si on and gr oupl d, the dependency can be defined in si npl e- webapp’s
pom xm using the ${ pr oj ect . gr oupl d} and ${ pr oj ect . versi on}.

How did the Maven Dependency plugin uncover these issues? How does
dependency: anal yze know which classes and dependencies are directly referenced
by your project’s bytecode? The Dependency plugin uses the ObjectWeb ASM
(http://asm.objectweb.org/) toolkit to analyze the raw bytecode. The Dependency
plugin uses ASM to walk through all the classes in the current project, and it builds
alist of every other class referenced. It then walks through all the dependencies,
direct and transitive, and marks off the classes discovered in the direct
dependencies. Any classes not located in the direct dependencies are discovered in

163

http://asm.objectweb.org/

Optimizing and Refactoring POMs

the transitive dependencies, and the list of “used, undeclared dependencies’ is
produced.

In contrast, the list of unused, declared dependenciesis alittle trickier to validate,
and less useful than the “used, undeclared dependencies.” For one, some
dependencies are used only at runtime or for tests, and they won't be found in the
bytecode. These are pretty obvious when you see them in the output; for example,
JUnit appearsin thislist, but thisis expected because it is used only for unit tests.
You'll also notice that the Velocity and Serviet APl dependencies arelisted in this
list for the si npl e- web module. Thisis also expected because, although the project
doesn’t have any direct references to the classes of these artifacts, they are il
essential during runtime.

Be careful when removing any unused, declared dependencies unless you have
very good test coverage, or you might introduce aruntime error. A more sinister
Issue pops up with bytecode optimization. For example, it islegal for acompiler to
substitute the value of a constant and optimize away the reference. Removing this
dependency will cause the compileto fail, yet the tool shows it as unused. Future
versions of the Maven Dependency plugin will provide better techniques for
detecting and/or ignoring these types of issues.

Y ou should use the dependency: anal yze tool periodically to detect these common
errorsin your projects. It can be configured to fail the build if certain conditions
arefound, and it is also available as areport.

8.6. Final POMs

Asan overview, the final POM files are listed as areference for this chapter.
Example 8.1, “Final POM for simple-parent” shows the top-level POM for

si npl e- parent.

Example 8.1. Final POM for simple-parent

<project xm ns="http:// maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schemalLocati on="htt p:// maven. apache. or g/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_ 0. xsd" >

164

Optimizing and Refactoring POMs

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>or g. sonat ype. mavenbook. ch08</ gr oupl d>
<artifactld>sinple-parent</artifactld>
<packagi ng>ponx/ packagi ng>

<ver si on>1. 0</ ver si on>

<nanme>Chapter 8 Sinple Parent Project</nanme>

<nmodul es>
<nodul e>si npl e- conmand</ nodul e>
<nodul e>si npl e- nodel </ nodul e>
<nodul e>si npl e- weat her </ nodul e>
<nodul e>si mpl e- per si st </ nodul e>
<nodul e>si npl e- webapp</ nodul e>
</ nodul es>

<bui | d>
<pl ugi nManagenent >
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactl d>maven- conpil er-plugin</artifactld>
<confi gurati on>
<sour ce>1. 5</ sour ce>
<t arget >1. 5</t ar get >
</ configuration>
</ pl ugi n>
<pl ugi n>

<gr oupl d>or g. codehaus. noj o</ gr oupl d>

<artifactl|d>hi ber nat e3- maven- pl ugi n</artifactl d>

<ver si on>2. 1</ ver si on>
<confi gurati on>
<conponent s>
<conponent >
<nane>hbn2ddl </ nane>

<i npl enent ati on>annot ati onconfi gurati on</i npl enent ati on>

</ conponent >
</ conponent s>
</ configuration>
<dependenci es>
<dependency>
<gr oupl d>hsql db</ gr oupl d>
<artifactld>hsql db</artifactld>
<ver si on>${ hsql db. ver si on} </ ver si on>
</ dependency>
</ dependenci es>
</ pl ugi n>
</ pl ugi ns>
</ pl ugi nManagenent >
</ bui | d>

<properties>

<hi ber nat e. annot at i ons. ver si on>3. 3. 0. ga</ hi ber nat e. annot at i ons. ver si on>

165

Optimizing and Refactoring POMs

<hsql db. ver si on>1. 8. 0. 7</ hsql db. ver si on>
</ properties>
<dependencyManagenent >
<dependenci es>

<dependency>
<gr oupl d>or g. spri ngf r anmewor k</ gr oupl d>
<artifactld>spring</artifactld>
<ver si on>2. 0. 7</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. apache. vel oci t y</ gr oupl d>
<artifactld>velocity</artifactld>
<versi on>1. 5</ ver si on>

</ dependency>

<dependency>
<gr oupl d>j avax. per si st ence</ gr oupl d>
<artifactld>persistence-api</artifactld>
<versi on>1. 0</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>

<artifactld>hi bernat e-annotati ons</artifactld>
<ver si on>${ hi ber nat e. annot at i ons. ver si on} </ ver si on>

</ dependency>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>

<artifactl d>hi bernat e-conmons- annot ati ons</artifactld>
<ver si on>${ hi ber nat e. annot at i ons. ver si on} </ ver si on>

</ dependency>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate</artifactld>
<versi on>3. 2. 5. ga</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>j avax. t ransact i on</ gr oupl d>
<artifactld>ta</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

<dependenci es>
<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<ver si on>3. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
</ dependenci es>
</ proj ect >

166

Optimizing and Refactoring POMs

The POM shown in Example 8.2, “Final POM for simple-command” captures the
POM for si npl e- cormand, the command-line version of the tool.

Example 8.2. Final POM for simple-command

<project xm ns="http:// maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0. 0
http: // maven. apache. or g/ maven- v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<gr oupl d>or g. sonat ype. mavenbook. ch08</ gr oupl d>
<artifactld>sinpl e-parent</artifactld>
<versi on>1. 0</ ver si on>
</ par ent >

<artifactld>si npl e-command</artifactld>
<packagi ng>j ar </ packagi ng>
<nane>Chapter 8 Sinple Command Li ne Tool </ name>

<bui | d>
<pl ugi nManagenent >
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-jar-plugin</artifactld>
<confi gurati on>
<ar chi ve>
<mani f est >
<mai nCl ass>or g. sonat ype. mavenbook. weat her . Mai n</ mai nCl ass>
<addd asspat h>t r ue</ addC asspat h>
</ mani f est >
</ ar chi ve>
</ configuration>
</ pl ugi n>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<confi gurati on>
<t est Fai | ur el gnor e>t rue</test Fai | urel gnore>
</ configuration>
</ pl ugi n>
<pl ugi n>
<artifact|d>maven- assenbl y- pl ugi n</artifactld>
<confi gurati on>
<descri pt or Ref s>
<descri pt or Ref >j ar - wi t h- dependenci es</ descri pt or Ref >
</ descri pt or Ref s>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>

167

Optimizing and Refactoring POMs

</ pl ugi nManagenent >
</ bui | d>

<dependenci es>

<dependency>
<gr oupl d>${ pr oj ect . gr oupl d} </ gr oupl d>
<artifactld>si npl e-weat her</artifactld>
<versi on>${ pr oj ect . ver si on} </ ver si on>

</ dependency>

<dependency>
<gr oupl d>%${ pr oj ect . gr oupl d} </ gr oupl d>
<artifactld>sinple-persist</artifactld>
<versi on>${ pr oj ect . ver si on} </ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring</artifactld>

</ dependency>

<dependency>
<gr oupl d>or g. apache. vel oci t y</ gr oupl d>
<artifactld>vel ocity</artifactld>

</ dependency>

</ dependenci es>
</ pr oj ect >

The POM shown in Example 8.3, “Final POM for smple-model” is the

si npl e- nodel project’s POM. Thesi npl e- nodel project contains all of the model

objects used throughout the application.

Example 8.3. Final POM for simple-model

<project xm ns="http:// maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
Xsi : schemalLocati on="htt p:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<gr oupl d>or g. sonat ype. mavenbook. ch08</ gr oupl d>
<artifactld>sinpl e-parent</artifactld>
<ver si on>1. 0</ ver si on>
</ par ent >
<artifactld>sinpl e-nodel </artifactld>
<packagi ng>j ar </ packagi ng>

<name>Chapter 8 Sinple Object Mdel </ name>
<dependenci es>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>

168

Optimizing and Refactoring POMs

<artifactld>hi bernate-annotations</artifactld>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate</artifactld>

</ dependency>

<dependency>
<gr oupl d>j avax. per si st ence</ gr oupl d>
<artifactld>persistence-api</artifactld>

</ dependency>

</ dependenci es>
</ proj ect >

The POM shown in Example 8.4, “Final POM for simple-persist” isthe
si npl e- persi st project’s POM. Thesi npl e- per si st project contains al of the
persistence logic that isimplemented using Hibernate.

Example 8.4. Final POM for simple-persist

<proj ect xm ns="http:// maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schemalLocati on="htt p:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<gr oupl d>or g. sonat ype. mavenbook. ch08</ gr oupl d>
<artifactld>sinple-parent</artifactld>
<ver si on>1. 0</ ver si on>
</ par ent >
<artifactld>sinple-persist</artifactld>
<packagi ng>j ar </ packagi ng>

<name>Chapter 8 Si npl e Persistence API</nane>

<dependenci es>

<dependency>
<gr oupl d>${ pr oj ect . gr oupl d} </ gr oupl d>
<artifactl d>sinpl e-nodel </ artifactld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate</artifactld>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactl d>hi bernate-annotations</artifactld>

</ dependency>

<dependency>

169

Optimizing and Refactoring POMs

<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactl d>hi bernat e-commons-annot ati ons</artifactld>

</ dependency>

<dependency>
<gr oupl d>j avax. servl et </ gr oupl d>
<artifactld>servlet-api</artifactld>
<ver si on>2. 4</ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf r anmewor k</ gr oupl d>
<artifactld>spring</artifactld>

</ dependency>

</ dependenci es>
</ proj ect >

The POM shown in Example 8.5, “Final POM for simple-weather” isthe

si npl e- weat her project’s POM. Thesi npl e- weat her project isthe project that
contains al of the logic to parse the Y ahoo! Weather RSS feed. This project
depends on the si npl e- nodel project.

Example 8.5. Final POM for simple-weather

<proj ect xm ns="http:// maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance"
Xsi : schemalLocati on="htt p:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_ 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<gr oupl d>or g. sonat ype. mavenbook. ch08</ gr oupl d>
<artifactld>sinple-parent</artifactld>
<ver si on>1. 0</ ver si on>
</ par ent >
<artifactld>si npl e-weat her</artifactld>
<packagi ng>j ar </ packagi ng>

<name>Chapter 8 Sinple Wat her API </ nane>

<dependenci es>

<dependency>
<gr oupl d>${ pr oj ect . gr oupl d} </ gr oupl d>
<artifactld>si npl e-nodel </artifactld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>

</ dependency>

<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<versi on>1. 2. 14</ ver si on>

170

Optimizing and Refactoring POMs

</ dependency>

<dependency>
<gr oupl d>dom4j </ gr oupl d>
<artifactld>domdj </artifactld>
<ver si on>1. 6. 1</ ver si on>

</ dependency>

<dependency>
<gr oupl d>j axen</ gr oupl d>
<artifactld>j axen</artifactld>
<versi on>1. 1. 1</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. apache. conmons</ gr oupl d>
<artifactld>commons-io</artifactld>
<versi on>1. 3. 2</ ver si on>
<scope>t est </ scope>

</ dependency>

</ dependenci es>
</ proj ect >

Finaly, the POM shown in Example 8.6, “Final POM for simple-webapp” is the

si npl e- webapp project’s POM. Thesi npl e- webapp project contains a web
application that stores retrieved weather forecasts in an HSQL DB database and that
also interacts with the libraries generated by the si npl e- weat her project.

Example 8.6. Final POM for simple-webapp

<project xm ns="http:// maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="htt p:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_ 0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<gr oupl d>or g. sonat ype. mavenbook. ch08</ gr oupl d>
<artifactld>sinple-parent</artifactld>
<ver si on>1. 0</ ver si on>
</ parent >

<artifactl d>si npl e-webapp</artifactld>
<packagi ng>war </ packagi ng>
<name>Chapter 8 Sinple Wb Applicati on</nane>
<dependenci es>
<dependency>
<gr oupl d>j avax. ser vl et </ gr oupl d>
<artifactld>servlet-api</artifactld>
<ver si on>2. 4</ ver si on>
<scope>pr ovi ded</ scope>
</ dependency>

171

Optimizing and Refactoring POMs

<dependency>
<gr oupl d>${ pr oj ect . gr oupl d} </ gr oupl d>
<artifactld>si npl e-nodel </artifactld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>
</ dependency>
<dependency>
<gr oupl d>${ pr oj ect . gr oupl d} </ gr oupl d>
<artifactld>si npl e-weat her</artifactld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>
</ dependency>
<dependency>
<gr oupl d>${ pr oj ect . gr oupl d} </ gr oupl d>
<artifactld>sinple-persist</artifactld>
<versi on>${ pr oj ect . ver si on} </ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. spri ngf r anewor k</ gr oupl d>
<artifactld>spring</artifactld>
</ dependency>
<dependency>
<gr oupl d>j avax. servl et </ gr oupl d>
<artifactld>jstl</artifactld>
<versi on>1. 1. 2</ ver si on>
</ dependency>
<dependency>
<gr oupl d>t agl i bs</ gr oupl d>
<artifactld>standard</artifactld>
<versi on>1. 1. 2</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. apache. vel oci t y</ gr oupl d>
<artifactld>vel ocity</artifactld>
</ dependency>
</ dependenci es>
<bui | d>
<f i nal Name>si npl e- webapp</ fi nal Name>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. nort bay. j ett y</ groupl d>
<artifactld>maven-jetty-plugin</artifactld>
<ver si on>6. 1. 9</ ver si on>
<dependenci es>
<dependency>
<gr oupl d>hsql db</ gr oupl d>
<artifactld>hsql db</artifactld>
<ver si on>${ hsql db. ver si on} </ ver si on>
</ dependency>
</ dependenci es>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

172

Optimizing and Refactoring POMs

8.7. Conclusion

This chapter has shown you several techniques for improving the control of your
dependencies and plugins to ease future maintenance of your builds. We
recommend periodically reviewing your buildsin thisway to ensure that
duplication and thus potential trouble spots are minimized. As a project matures,
new dependencies are inevitably introduced, and you may find that a dependency
previously used in 1 place is now used in 10 and should be moved up. The used
and unused dependencies list changes over time and can easily be cleaned up with
the Maven Dependency plugin.

173

Part Il. Maven Reference

174

Chapter 9. The Project Object Model

9.1. Introduction

This chapter covers the central concept of Maven—the Project Object Model. The
POM iswhere a project’ sidentity and structure are declared, builds are configured,
and projects are related to one another. The presence of apom xn file defines a
Maven project.

9.2. The POM

Maven projects, dependencies, builds, artifacts: al of these are objectsto be
modeled and described. These objects are described by an XML file called a
Project Object Model. The POM tells Maven what sort of project it isdealing with
and how to modify default behavior to generate output from source. In the same
way aJavaweb application hasaweb. xm that describes, configures, and
customi zes the application, a Maven project is defined by the presence of a

pom xm . It isadescriptive declaration of a project for Maven; it isthe figurative
“map” that Maven needs to understand what it islooking at when it builds your
project.

Y ou could also think of the pom xn as analogous to a Makef i | e or an Ant

bui | d. xm . When you are using GNU make to build something like MySQL,

you' |l usually have afile named mvakef i | e that contains explicit instructions for
building a binary from source. When you are using Apache Ant, you likely have a
filenamed bui | d. xm that contains explicit instructions for cleaning, compiling,
packaging, and deploying an application. make, Ant, and Maven are similar in that
they rely on the presence of a commonly named file such as Makefi | e, bui | d. xni
or pom xni , but that iswhere the similarities end. If you look at a Maven pom xni ,
the majority of the POM is going to deal with descriptions: Where is the source
code? Where are the resources? What is the packaging? If you look at an Ant

bui I d. xm file, you'll see something entirely different. You'll see explicit

175

The Project Object Model

instructions for tasks such as compiling a set of Java classes. The Maven POM is
declarative, and although you can certainly choose to include some procedural
customizations via the Maven Ant plugin, for the most part you will not need to get
into the gritty procedural details of your project’s build.

The POM is also not specific to building Java projects. While most of the examples
in this book are geared towards Java applications, there is nothing Java-specific in
the definition of aMaven Project Object Model. While Maven's default plugins are
targeted at building JAR artifacts from a set of source, tests, and resources, thereis
nothing preventing you from defining a POM for a project that contains C# sources
and produces some proprietary Microsoft binary using Microsoft tools. Similarly,
there is nothing stopping you from defining a POM for atechnical book. In fact,
the source for this book and this book's examplesis captured in a multi-module
Maven project which uses one of the many Maven Docbook plugins to apply the
standard Docbook X SL to a series of chapter XML files. Others have created
Maven plugins to build Adobe Flex code into SWCs and SWFs, and yet others
have used Maven to build projects written in C.

We've established that the POM describes and declares, it is unlike Ant or Make in
that it doesn't provide explicit instructions, and we've noted that POM concepts are
not specific to Java. Diving into more specifics, take alook at Figure 9.1, “The
Project Object Model” for asurvey of the contents of a POM.

176

The Project Object Model

F POM ""‘
' POM Relationships Y4 Build Settings A
Coordinate ouiig
groupid (directaries)
anifactid
Version (extansions)
(. Muiti-Module (s)
{ Inheritance) (plugins)
Dependancies repartin
(4 pe J)LC parting)
i General Project Information AYd Build Environment h
{ General) | | Environment Information)
q: C“untrlt:umrs:) Wawern Envirenment
(Licenses) (Prafiles)
N W A

—

Figure 9.1. The Project Object Model

The POM contains four categories of description and configuration:

General project information

Thisincludes a project’s name, the URL for a project, the sponsoring
organization, and alist of developers and contributors along with the license for
aproject.

Build settings

In this section, we customize the behavior of the default Maven build. We can
change the location of source and tests, we can add new plugins, we can attach
plugin goalsto the lifecycle, and we can customize the site generation
parameters.

Build environment

The build environment consists of profiles that can be activated for usein
different environments. For example, during development you may want to
deploy to a development server, whereas in production you want to deploy to a

177

The Project Object Model

production server. The build environment customizes the build settings for
specific environments and is often supplemented by acustom setti ngs. xm in
~/ . 2. This settings file is discussed in Chapter 11, Build Profiles and in the
section Section A.2, “ Settings Details”.

POM relationships

A project rarely stands alone; it depends on other projects, inherits POM
settings from parent projects, defines its own coordinates, and may include
submodules.

9.2.1. The Super POM

Before we dive into some examples of POMs, let's take a quick look at the Super
POM. All Maven project POMs extend the Super POM which defines a set of
defaults shared by all projects. This Super POM is a part of the Maven installation,
and can be found in the maven- 2. 0. 10- uber . j ar filein ${M_HOVE}/ | i b. If you
look in this JAR file, you will find afile named pom 4. 0. 0. xri under the
org.apache.maven.project package. The Super POM for Maven is shown in
Example 9.1, “The Super POM” .

Example 9.1. The Super POM

<pr oj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<nanme>Maven Default Project</nane>

<repositories>
<reposi tory>
<id>central </id> #
<nane>Maven Repository Sw t chboar d</ nane>
<l ayout >def aul t </ | ayout >
<url >http://repol. maven. or g/ maven2</ url >
<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
</repository>
</repositories>

<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<id>central </id> #
<name>Maven Pl ugi n Repository</ name>

178

The Project Object Model

<url >http://repol. maven. or g/ maven2</url >
<| ayout >def aul t </ | ayout >
<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
<r el eases>
<updat ePol i cy>never </ updat ePol i cy>
</rel eases>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tories>

<bui | d> #
<di rect ory>t arget </ di rect ory>
<out put Di rect ory>t arget/ cl asses</ out put Di r ect ory>
<f i nal Name>${pom artifact!d}-${pom version}</final Name>
<t est Qut put Di rect ory>t arget/test-cl asses</test Qut put Di rect ory>
<sour ceDi rect ory>src/ mai n/ j ava</ sour ceDi r ect ory>
<scri pt Sour ceDi r ect ory>src/ mai n/ scri pt s</ scri pt Sour ceDi r ect ory>
<t est Sour ceDi rect ory>src/test/java</test SourceDi rect ory>
<r esour ces>
<r esour ce>
<di rect ory>src/ mai n/ resour ces</di rectory>
</resource>
</ resources>
<t est Resour ces>
<t est Resour ce>
<directory>src/test/resources</directory>
</t est Resour ce>
</t est Resour ces>
</ bui | d>

<pl ugi nManagenent >#
<pl ugi ns>

<pl ugi n>
<artifactld>maven-antrun-plugi n</artifactld>
<versi on>1. 1</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifactld>maven-assenbl y- pl ugi n</artifactld>
<ver si on>2. 2- bet a- 1</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifactld>maven-cl ean-pl ugi n</artifactl d>
<ver si on>2. 2</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifactld>maven-conpil er-pl ugi n</artifactld>
<ver si on>2. 0. 2</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifact|d>nmaven- dependency- pl ugi n</artifactl|d>
<ver si on>2. 0</ ver si on>

</ pl ugi n>

179

The Project Object Model

<pl ugi n>
<artifactl|d>maven-depl oy- pl ugi n</artifactld>
<ver si on>2. 3</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifactld>maven-ear-plugi n</artifactld>
<ver si on>2. 3. 1</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifactld>maven-ej b-pl ugi n</artifactld>
<ver si on>2. 1</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifactld>maven-install-plugin</artifactld>
<ver si on>2. 2</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifactld>maven-j ar-plugin</artifactld>
<ver si on>2. 2</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifact!d>maven-j avadoc- pl ugi n</artifactl d>
<ver si on>2. 4</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifactld>maven-pl ugi n-pl ugi n</artifactld>
<versi on>2. 3</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifactld>maven-rar-plugin</artifactld>
<ver si on>2. 2</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifactld>maven-rel ease-plugi n</artifactld>
<ver si on>2. 0- bet a- 7</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifactld>naven-resources-plugin</artifactld>
<ver si on>2. 2</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifactld>maven-site-plugin</artifactld>
<ver si on>2. 0- bet a- 6</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifactld>maven-source-plugin</artifactld>
<ver si on>2. 0. 4</ ver si on>

</ pl ugi n>

<pl ugi n>
<artifactld>maven-surefire-plugin</artifactld>
<ver si on>2. 4. 2</ ver si on>

</ pl ugi n>

<pl ugi n>

180

The Project Object Model

<artifact!|d>maven-war - pl ugi n</artifactld>
<ver si on>2. 1- al pha- 1</ ver si on>
</ pl ugi n>
</ pl ugi ns>
</ pl ugi nManagenent >

<reporting>

<out put Di rect ory>t arget/site</out put Di rectory>

</reporting>
</ proj ect >

The Super POM defines some standard configuration variables that are inherited
by all projects. Those values are captured in the annotated sections:

[

The default Super POM defines a single remote Maven repository with an 1D
of central . Thisisthe central Maven repository that all Maven clients are
configured to read from by default. This setting can be overridden by a
customset tings. xm file. Note that the default Super POM has disabled
snapshot artifacts on the central Maven repository. If you need to use a
snapshot repository, you will need to customize repository settingsin your
pom xni Or inyour set tings. xm . Settings and profiles are covered in
Chapter 11, Build Profilesand in Section A.2, “ Settings Details’.

The central Maven repository also contains Maven plugins. The default
plugin repository isthe central Maven repository. Snapshots are disabled, and
the update policy is set to “never,” which means that Maven will never
automatically update a plugin if anew version isreleased.

Thebui | d element sets the default values for directoriesin the Maven
Standard Directory layout.

Starting in Maven 2.0.9, default versions of core plugins have been provided
in the Super POM. This was done to provide some stability for usersthat are
not specifying versionsin their POMs.

181

The Project Object Model

Super POM

com.mycomany
— = |nherts from killerapp
1.0-SNAPSHOT

COm.mycomany com.mycomany com.mycomany
killerapp-stores killerapp-api killerapp-model
1.0-SNAPSHOT 1.0-SNAPSHOT 1.0-SNAPSHOT

Figure 9.2. The Super POM is always the base Parent

9.2.2. The Simplest POM

All Maven POMs inherit defaults from the Super POM (introduced earlier in the
section Section 9.2.1, “The Super POM””). If you are just writing a simple project
that produces a JAR from some source in sr c/ mai n/ j ava, want to run your JUnit
testsinsrc/test/java, and want to build a project site using mvn site, you don’t
have to customize anything. All you would need, in this case, is the simplest
possible POM shown in Example 9.2, “The Simplest POM”. This POM defines a
groupl d,artifact!d,andversion: the three required coordinates for every

proj ect.

Example 9.2. The Simplest POM

<proj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook. ch08</ gr oupl d>
<artifactld>sinplest-project</artifactld>
<versi on>1</ver si on>

</ proj ect >

182

The Project Object Model

Such a simple POM would be more than adequate for a simple project—e.g., a
Javalibrary that produces a JAR file. It isn’t related to any other projects, it has no
dependencies, and it lacks basic information such asaname and a URL. If you
were to create this file and then create the subdirectory sr c/ mai n/ j ava with some
source code, running mvn package would producea JAR in
target/sinple-project-1.jar.

9.2.3. The Effective POM

This ssmplest POM brings us to the concept of the “effective POM.” Since POMs
can inherit configuration from other POMs, you must always think of a Maven
POM in terms of the combination of the Super POM, plus any parent POMs, and
finally the current project’s POM. Maven starts with the Super POM and then
overrides default configuration with one or more parent POMs. Then it overrides
the resulting configuration with the current project’s POM. Y ou end up with an
effective POM that is a mixture of various POMs. If you want to see a project’s
effective POM, you'll need to runthe ef f ect i ve- pomgoal in the Maven Help
plugin, which was introduced earlier in the section Section 2.8, “Using the Maven
Help Plugin”.” Toruntheeffecti ve- pomgoal, execute the following in a
directory with apom xni file:

$ nvn hel p: ef fecti ve- pom

Executing the ef f ect i ve- pomgoal should print out an XML document capturing
the merge between the Super POM and the POM from Example 9.2, “The Simplest
POM”.

9.2.4. Real POMs

Instead of typing up a contrived set of POMs to walk you through step-by-step,
you should take alook at the examplesin Part I, “Maven by Example”. Maven is
something of a chameleon; you can pick and choose the features you want to take
advantage of. Some open source projects may value the ability to list developers
and contributors, generate clean project documentation, and manage releases
automatically using the Maven Release plugin. On the other hand, someone

183

The Project Object Model

working in a corporate environment on a small team might not be interested in the
distribution management capabilities of Maven nor the ability to list developers.
The remainder of this chapter is going to discuss features of the POM in isolation.
Instead of bombarding you with a 10-page listing of a set of related POMs, we're
going to focus on creating a good reference for specific sections of the POM. In
this chapter, we discuss relationships between POMs, but we don’t illustrate such a
project here. If you are looking for such an illustration, refer to Chapter 7,
Multi-module Enterprise Project.

9.3. POM Syntax

The POM isawaysin afile named pom xni in the base directory of a Maven
project. This XML document can start with the XML declaration, or you can
choose to omit it. All valuesin a POM are captured as XML elements.

9.3.1. Project Versions

A Maven project’sver si on encodes arelease version number that is used to group
and order releases. Maven versions contain the following parts. major version,
minor version, incremental version, and qualifier. In aversion, these parts
correspond to the following format:

<maj or version>. <pi nor version>. <i ncremental version>-<qualifier>

For example, the version "1.3.5" hasamajor version of 1, aminor version of 3,
and an incremental version of 5. The version "5" has a major version of 5 and no
minor or incremental version. The qualifier exists to capture milestone builds:
apha and beta releases, and the qualifier is separated from the major, minor, and
incremental versions by a hyphen. For example, the version "1.3-beta-01" has a
major version of 1, aminor version of 3, and a qualifier of "beta-01".

Keeping your version numbers aligned with this standard will become very
important when you want to start using version ranges in your POMs. Version
ranges, introduced in Section 9.4.3, “Dependency Version Ranges’, allow you to
specify adependency on arange of versions, and they are only supported because

184

The Project Object Model

Maven has the ability to sort versions based on the version release number format
introduced in this section.

If your version release number matches the format

<maj or >. <mi nor >. <i ncr ement al >- <qual i fi er > then your versions will be
compared properly; "1.2.3" will be evaluated as a more recent build than *1.0.2",
and the comparison will be made using the numeric values of the magjor, minor,
and incremental versions. If your version release number does not fit the standard
introduced in this section, then your versions will be compared as strings; "1.0.1b"
will be compared to "1.2.0b" using a String comparison.

9.3.1.1. Version Build Numbers

One gotchafor release version numbers is the ordering of the qualifiers. Take the
version release numbers “1.2.3-alpha-2" and “1.2.3-alpha-10,” where the “apha-2”
build corresponds to the 2nd alpha build, and the “apha-10" build corresponds to
the 10th alpha build. Even though “a pha-10" should be considered more recent
than “apha-2,” Maven is going to sort “apha-10" before “apha-2" dueto aknown
issue in the way Maven handles version numbers.

Maven is supposed to treat the number after the qualifier as a build number. In
other words, the qualifier should be "alpha’, and the build number should be 2.
Even though Maven has been designed to separate the build number from the
gualifier, this parsing is currently broken. Asaresult, "apha-2" and "apha-10" are
compared using a String comparison, and "a pha-10" comes before "alpha-2"
alphabetically. To get around this limitation, you will need to left-pad your
qualified build numbers. If you use "apha-02" and "alpha-10" this problem will go
away, and it will continue to work once Maven properly parses the version build
number.

9.3.1.2. SNAPSHOT Versions

Maven versions can contain a string literal to signify that a project is currently
under active development. If aversion contains the string “SNAPSHOT,” then
Maven will expand this token to a date and time value converted to UTC
(Coordinated Universal Time) when you install or release this component. For

185

The Project Object Model

example, if your project has aversion of “1.0-SNAPSHOT” and you deploy this
project’s artifacts to a Maven repository, Maven would expand this version to
“1.0-20080207-230803-1" if you were to deploy arelease at 11:08 PM on
February 7th, 2008 UTC. In other words, when you deploy a snapshot, you are not
making a release of a software component; you are releasing a snapshot of a
component at a specific time.

Why would you use this? SNAPSHOT versions are used for projects under active
development. If your project depends on a software component that is under active
development, you can depend on a SNAPSHOT release, and Maven will
periodically attempt to download the latest snapshot from a repository when you
run abuild. Similarly, if the next release of your system is going to have aversion
"1.4", your project would have aversion "1.4-SNAPSHOT" version until it was
formally released.

As adefault setting, Maven will not check for SNAPSHOT releases on remote
repositories, to depend on SNAPSHOT releases, users must explicitly enable the
ability to download snapshots using ar eposi t ory Or pl ugi nReposi t ory element
in the POM.

When releasing a project you should resolve all dependencies on SNAPSHOT
versions to dependencies on released versions. If a project depends on a
SNAPSHOT, it is not stable as the dependencies may change over time. Artifacts
published to non-snapshot Maven repositories such as
http://repol.maven.org/maven2 cannot depend on SNAPSHOT versions, as
Maven's Super POM has snapshot's disabled from the Central repository.
SNAPSHOT versions are for development only.

9.3.1.3. LATEST and RELEASE Versions

When you depend on a plugin or a dependency, you can use the aversion value of
LATEST or RELEASE. LATEST refersto the latest released or snapshot version
of aparticular artifact, the most recently deployed artifact in a particular

repository. RELEASE refersto the last non-snapshot release in the repository. In
general, it isnot a best practice to design software which depends on a non-specific
version of an artifact. If you are developing software, you might want to use

186

http://repo1.maven.org/maven2

The Project Object Model

RELEASE or LATEST as a convenience so that you don't have to update version
numbers when a new release of athird-party library isreleased. When you release
software, you should always make sure that your project depends on specific
versions to reduce the chances of your build or your project being affected by a
software release not under your control. Use LATEST and RELEASE with
caution, if at all.

Starting with Maven 2.0.9, Maven locks down the version numbers of common
and core Maven pluginsin the super POM to standardize a core set of Maven
plugins for a particular version of Maven. This change was introduced to Maven
2.0.9 to bring stability and reproducibility to Maven builds. Before Maven 2.0.9,
Maven would automatically update core Maven plugins using the LATEST
version. This behavior led to a number of surprises when bugs was introduced into
core plugins or functionality changed in a core plugin which subsequently broke a
build. When Maven automatically updated core plugins, it was noted that there was
little guarantee that a build would be reproducible as plugins could be updated
whenever anew version was pushed to the central repository. Starting with Maven
2.0.9, Maven, essentially, ships with a core set of locked down plugin versions.
Non-core plugins, or plugins without versions assigned in the Super POM will still
use the LATEST version to retrieve a plugin artifact from the repository. It isfor
this reason that you should assign explicit version numbers to any custom or
non-core plugins used in your build.

9.3.2. Property References

A POM can include references to properties preceded by a dollar sign and
surrounded by two curly braces. For example, consider the following POM:

<pr oj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>project-a</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>j ar </ packagi ng>
<bui | d>
<fi nal Name>${ proj ect. groupl d}-${project.artifactld}</final Name>
</ bui | d>
</ pr oj ect >

187

The Project Object Model

If you put this XML inapom xm and run mvn help:effective-pom, you will see
that the output contains the line:

<fi nal Name>or g. sonat ype. mavenbook- pr oj ect - a</ f i nal Name>

When Maven reads a POM, it replaces references to properties when it loads the
POM XML. Maven properties occur frequently in advanced Maven usage, and are
similar to properties in other systems such as Ant or Velocity. They are ssmply
variables delimited by ${. . . } . Maven provides three implicit variables which can
be used to access environment variables, POM information, and Maven Settings:

env

The env variable exposes environment variables exposed by your operating
system or shell. For example, areference to ${ env. PATH} in a Maven POM
would be replaced by the ${ PATH environment variable (or ¥%PATH%IN
Windows).

project

Theproj ect variable exposes the POM. Y ou can use a dot-notated (.) path to
reference the value of a POM element. For example, in this section we used the
groupld andartifact!d to setthefinal Nane € ement in the build
configuration. The syntax for this property reference was:

${ proj ect.groupld}-${project.artifactld}.

settings

Thesettings variable exposes Maven settings information. Y ou can use a
dot-notated (.) path to reference the value of an element in asetti ngs. xn file.
For example, ${ set ti ngs. of f 1 i ne} would reference the value of the of f I i ne
elementin~/ . n2/ settings. xn .

Note

Y ou may see older builds that use ${ pom xxx} or just ${ xxx} to reference
POM properties. These methods have been deprecated and only

${ proj ect . xxx} should be used.

188

The Project Object Model

In addition to the three implicit variables, you can reference system properties and
any custom properties set in the Maven POM or in abuild profile:

Java System Properties

All properties accessible viaget Properties() Onjava. | ang. Systemare
exposed as POM properties. Some examples of system properties are:

${user. name}, ${user. hone}, ${j ava. hone}, and ${ os. nane} . A full list of
system properties can be found in the Javadoc for thej ava. | ang. Syst emclass.

X
Arbitrary properties can be set with aproperti es element in apom xni or
settings. xnl, Or properties can be loaded from externa files. If you set a
property named f ooBar in your pom xni , that same property is referenced with
${ f ooBar } . Custom properties come in handy when you are building a system
that filters resources and targets different deployment platforms. Here isthe
syntax for setting ${ f oo} =bar in a POM:

<properties>
<f oo>bar </ f 00>
</ properties>

For amore comprehensive list of available properties, see Chapter 13, Properties
and Resource Filtering.

9.4. Project Dependencies

Maven can manage both internal and external dependencies. An external
dependency for a Java project might be a library such as Plexus, the Spring
Framework, or Log4J. An internal dependency isillustrated by aweb application
project depending on another project that contains service classes, model objects,
or persistence logic. Example 9.3, “Project Dependencies’ shows some examples
of project dependencies.

Example 9.3. Project Dependencies

<pr oj ect >

189

The Project Object Model

<dependenci es>
<dependency>
<gr oupl d>or g. codehaus. xfi r e</ gr oupl d>
<artifactld>xfire-javab</artifactld>
<versi on>1. 2. 5</ ver si on>
</ dependency>
<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<versi on>3. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
<dependency>
<gr oupl d>j avax. ser vl et </ gr oupl d>
<artifactld>servlet-api</artifactld>
<ver si on>2. 4</ ver si on>
<scope>pr ovi ded</ scope>
</ dependency>
</ dependenci es>

</ proj ect >

Thefirst dependency is a compile dependency on the XFire SOAP library from
Codehaus. Y ou would use this type of dependency if your project depended on this
library for compilation, testing, and during execution. The second dependency isa
t est -scoped dependency on JUnit. You would use at est -scoped dependency
when you need to reference thislibrary only during testing. The last dependency in
Example 9.3, “Project Dependencies’ is adependency on the Servilet 2.4 API. The
last dependency is scoped as a provided dependency. Y ou would use a provided
scope when the application you are devel oping needs alibrary for compilation and
testing, but thislibrary is supplied by a container at runtime.

9.4.1. Dependency Scope

Example 9.3, “Project Dependencies’ briefly introduced three of the five
dependency scopes. conpi | e, t est, and pr ovi ded. Scope controls which
dependencies are available in which classpath, and which dependencies are
included with an application. Let’s explore each scope in detail:

190

The Project Object Model

compile

conpi | e isthe default scope; all dependencies are conpi | e-scoped if ascopeis
not supplied. conpi | e dependencies are available in al classpaths, and they are
packaged.

provided

provi ded dependencies are used when you expect the JDK or a container to
provide them. For example, if you were developing aweb application, you
would need the Servlet API available on the compile classpath to compile a
servlet, but you wouldn’t want to include the Servlet API in the packaged
WAR; the Servlet APl JAR is supplied by your application server or servlet
container. pr ovi ded dependencies are available on the compilation classpath
(not runtime). They are not transitive, nor are they packaged.

runtime

runt i me dependencies are required to execute and test the system, but they are
not required for compilation. For example, you may need aJDBC APl JAR at
compile time and the JDBC driver implementation only at runtime.

test

t est -scoped dependencies are not required during the normal operation of an
application, and they are available only during test compilation and execution
phases. Thet est scope was previously introduced in Section 4.10, “ Adding
Test-scoped Dependencies’.”

system

The syst emscopeis similar to provi ded except that you have to provide an
explicit path to the JAR on the local file system. Thisisintended to allow
compilation against native objects that may be part of the system libraries. The
artifact is assumed to always be available and is not looked up in arepository. If
you declare the scope to be syst em you must also provide the syst enPat h
element. Note that this scope is not recommended (you should alwaystry to
reference dependencies in a public or custom Maven repository).

191

The Project Object Model

9.4.2. Optional Dependencies

Assume that you are working on alibrary that provides caching behavior. Instead
of writing a caching system from scratch, you want to use some of the existing
libraries that provide caching on the file system and distributed caches. Also
assume that you want to give the end user an option to cache on the file system or
to use an in-memory distributed cache. To cache on the file system, you' [l want to
use afreely available library called EHCache (http://ehcache.sourceforge.net/), and
to cache in a distributed in-memory cache, you want to use another freely available
caching library named SwarmCache (http://swarmcache.sourceforge.net/). You'll
code an interface and create a library that can be configured to use either EHCache
or SwarmCache, but you want to avoid adding a dependency on both caching
libraries to any project that depends on your library.

In other words, you need both libraries to compile this library project, but you don't
want both libraries to show up as transitive runtime dependencies for the project
that uses your library. Y ou can accomplish this by using optional dependencies as
shown in Example 9.4, “Declaring Optional Dependencies’.

Example 9.4. Declaring Optional Dependencies

<pr oj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>ny-project</artifactld>
<ver si on>1. 0. 0</ ver si on>
<dependenci es>
<dependency>
<gr oupl d>net . sf . ehcache</ gr oupl d>
<artifactld>ehcache</artifactld>
<versi on>1. 4. 1</ ver si on>
<opti onal >t rue</ opti onal >
</ dependency>
<dependency>
<gr oupl d>swar ncache</ gr oupl d>
<artifactld>swarncache</artifactld>
<versi on>1. ORC2</ ver si on>
<opti onal >t rue</ opti onal >
</ dependency>
<dependency>
<gr oupl d>l og4j </ gr oupl d>
<artifactld>l og4j</artifactld>
<versi on>1. 2. 13</ ver si on>

192

http://ehcache.sourceforge.net/
http://swarmcache.sourceforge.net/

The Project Object Model

</ dependency>
</ dependenci es>
</ proj ect >

Once you've declared these dependencies as optional, you are required to include
them explicitly in the project that depends on ny- pr oj ect . For example, if you
were writing an application which depended on ny- proj ect and wanted to use the
EHCache implementation, you would need to add the following dependency
element to your project.

<pr oj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>ny-application</artifactld>
<ver si on>1. 0. 0</ ver si on>
<dependenci es>
<dependency>
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>ny-project</artifactld>
<ver si on>1. 0. 0</ ver si on>
</ dependency>
<dependency>
<gr oupl d>net . sf . ehcache</ gr oupl d>
<artifactld>swarncache</artifactld>
<ver si on>1. 4. 1</ ver si on>
</ dependency>
</ dependenci es>
</ proj ect >

In anideal world, you wouldn’t have to use optional dependencies. Instead of
having one large project with a series of optional dependencies, you would
separate the EHCache-specific code to any- pr oj ect - ehcache submodule and the
SwarmCache-specific code to any- pr oj ect - swar ntache submodule. Thisway,
instead of requiring projects that reference ny- pr oj ect to specifically add a
dependency, projects can just reference a particular implementation project and
benefit from the transitive dependency.

9.4.3. Dependency Version Ranges

You don’t just have to depend on a specific version of a dependency; you can
specify arange of versions that would satisfy a given dependency. For example,

193

The Project Object Model

you can specify that your project depends on version 3.8 or greater of JUnit, or
anything between versions 1.2.10 and 1.2.14 of JUnit. Y ou do this by surrounding
one or more version numbers with the following characters:

()

Exclusive quantifiers

[]

Inclusive quantifiers
For example, if you wished to access any Juni t version greater than or equal to 3.8
but less than 4.0, your dependency would be as shown in Example 9.5, “ Specifying
a Dependency Range: JUnit 3.8 - JUnit 4.0”.

Example 9.5. Specifying a Dependency Range: JUnit 3.8 - JUnit 4.0

<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<versi on>[3. 8, 4. 0) </ ver si on>
<scope>t est </ scope>

</ dependency>

If you want to depend on any version of JUnit no higher than 3.8.1, you would
specify only an upper inclusive boundary, as shown in Example 9.6, “ Specifying a
Dependency Range: JUnit <= 3.8.1".

Example 9.6. Specifying a Dependency Range: JUnit <=3.8.1

<dependency>
<groupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<versi on>[, 3. 8. 1] </ ver si on>ex- de
<scope>t est </ scope>

</ dependency>

A version before or after the commalis not required, and means +/- infinity. For
example, "[4.0,)" means any version greater than or equal to 4.0. "(,2.0)" isany

194

The Project Object Model

version lessthan 2.0. "[1.2]" means only version 1.2, and nothing else.

Note

When declaring a"normal” version such as 3.8.2 for Junit, internally this
is represented as "allow anything, but prefer 3.8.2." This means that when
aconflict is detected, Maven is alowed to use the conflict algorithms to
choose the best version. If you specify [3.8.2], it means that only 3.8.2
will be used and nothing else. If somewhere else there is a dependency
that specifies[3.8.1], you would get a build failure telling you of the
conflict. We point this out to make you aware of the option, but use it
sparingly and only when really needed. The preferred way to resolve this
ISviadependencyManagenent .

9.4.4. Transitive Dependencies

A transitive dependency is a dependency of adependency. If proj ect - a depends
on proj ect - b, which in turn depends on pr oj ect - ¢, then pr oj ect - ¢ isconsidered
atransitive dependency of pr oj ect - a. If proj ect - ¢ depended on pr oj ect - d, then
pr oj ect - d would also be considered a transitive dependency of pr oj ect - a. Part of
Maven's appeal isthat it can manage transitive dependencies and shield the
developer from having to keep track of all of the dependencies required to compile
and run an application. Y ou can just depend on something like the Spring
Framework and not have to worry about tracking down every last dependency of
the Spring Framework.

Maven accomplishes this by building a graph of dependencies and dealing with
any conflicts and overlaps that might occur. For example, if Maven sees that two
projects depend on the same groupl d and ar ti fact I d, it will sort out which
dependency to use automatically, always favoring the more recent version of a
dependency. Although this sounds convenient, there are some edge cases where
transitive dependencies can cause some configuration issues. For these scenarios,
you can use a dependency exclusion.

195

The Project Object Model

9.4.4.1. Transitive Dependencies and Scope

Each of the scopes outlined earlier in the section Section 9.4.1, “ Dependency
Scope’” affects not just the scope of the dependency in the declaring project, but
also how it acts as atransitive dependency. The easiest way to convey this
information isthrough atable, asin Table 9.1, “How Scope Affects Transitive
Dependencies’. Scopesin the top row represent the scope of atransitive
dependency. Scopes in the leftmost column represent the scope of a direct
dependency. The intersection of the row and column is the scope that is assigned to
atransitive dependency. A blank cell in this table means that the transitive
dependency will be omitted.

Table 9.1. How Scope Affects Transitive Dependencies

Direct Scope Transitive

Scope

compile provided runtime test
compile compile - runtime -
provided provided provided provided -
runtime runtime - runtime -
test test - test -

To illustrate the relationship of transitive dependency scope to direct dependency
scope, consider the following example. If proj ect - a contains a test scoped
dependency on pr oj ect - b which contains a compile scoped dependency on

proj ect - c. proj ect - ¢ would be a test-scoped transitive dependency of pr oj ect - a.

Y ou can think of this as a transitive boundary which acts as afilter on dependency
scope. Transitive dependencies which are provided and test scope usually do not
affect a project. The exception to thisruleisthat a provided scoped transitive
dependency to a provided scope direct dependency is still a provided dependency
of a project. Transitive dependencies which are compile and runtime scoped

196

The Project Object Model

usually affect a project regardless of the scope of a direct dependency. Transitive
dependencies which are compile scoped will have the same scope regardless of the
scope of the direct dependency. Transitive dependencies which are runtime scoped
will generally have the same scope of the direct dependency except when the direct
dependency has a scope of compile. When a transitive dependency is runtime
scoped and adirect is compile scoped the direct dependency the transitive
dependency will have an effective scope of runtime.

9.4.5. Conflict Resolution

There will be times when you need to exclude a transitive dependency, such as
when you are depending on a project that depends on another project, but you
would like to either exclude the dependency altogether or replace the transitive
dependency with another dependency that provides the same functionality.
Example 9.7, “Excluding a Transitive Dependency” shows an example of a
dependency element that adds a dependency on pr oj ect - a, but excludes the
transitive dependency pr oj ect - b.

Example 9.7. Excluding a Transitive Dependency

<dependency>
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>project-a</artifactld>
<ver si on>1. 0</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>project-b</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>

Often, you will want to replace a transitive dependency with another
implementation. For example, if you are depending on alibrary that depends on the
Sun JTA API, you may want to replace the declared transitive dependency.
Hibernate is one example. Hibernate depends on the Sun JTA APl JAR, which is
not available in the central Maven repository because it cannot be freely

197

The Project Object Model

redistributed. Fortunately, the Apache Geronimo project has created an
Independent implementation of this library that can be freely redistributed. To
replace a transitive dependency with another dependency, you would exclude the
transitive dependency and declare a dependency on the project you wanted instead.
Example 9.8, “Excluding and Replacing a Transitive Dependency” shows an
example of a such replacement.

Example 9.8. Excluding and Replacing a Transitive Dependency

<dependenci es>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate</artifactld>
<versi on>3. 2. 5. ga</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>j avax. t ransact i on</ gr oupl d>
<artifactld>jta</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<gr oupl d>or g. apache. ger oni no. specs</ gr oupl d>
<artifactld>geronino-jta_1.1_spec</artifactld>
<ver si on>1. 1</ ver si on>
</ dependency>
</ dependenci es>

In Example 9.8, “Excluding and Replacing a Transitive Dependency”, thereis
nothing marking the dependency on ger oni mo-jta_1.1_spec asareplacement, it
just happens to be alibrary which provides the same API asthe original JTA
dependency. Here are some other reasons you might want to exclude or replace
transitive dependencies:

1. Thegroupldorartifact!d of theartifact has changed, where the current
project requires an aternately named version from a dependency's version -
resulting in 2 copies of the same project in the classpath. Normally Maven
would capture this conflict and use a single version of the project, but when
groupl d orartifact!d aredifferent, Maven will consider thisto be two
different libraries.

198

The Project Object Model

2. An artifact is not used in your project and the transitive dependency has not
been marked as an optional dependency. In this case, you might want to
exclude a dependency because it isn't something your system needs and you
are trying to cut down on the number of libraries distributed with an
application.

3. Anartifact which is provided by your runtime container thus should not be
included with your build. An example of thisisif a dependency depends on
something like the Servlet APl and you want to make sure that the
dependency is not included in aweb application's WEB- | NF/ | i b directory.

4. To exclude a dependency which might be an API with multiple
implementations. Thisisthe situation illustrated by Example 9.8,
“Excluding and Replacing a Transitive Dependency”; thereisa Sun API
which requires click-wrap licensing and a time-consuming manual install
into a custom repository (Sun's JTA JAR) versus afreely distributed version
of the same API available in the central Maven repository (Geronimao's JTA
implementation).

9.4.6. Dependency Management

Once you've adopted Maven at your super complex enterprise and you have two
hundred and twenty inter-related Maven projects, you are going to start wondering
If there is a better way to get a handle on dependency versions. If every single
project that uses a dependency like the MySQL Java connector needs to
independently list the version number of the dependency, you are going to run into
problems when you need to upgrade to a new version. Because the version
numbers are distributed throughout your project tree, you are going to have to
manually edit each of the pom xm filesthat reference a dependency to make sure
that you are changing the version number everywhere. Even with find, xargs, and
awk, you are still running the risk of missing a single POM.

Luckily, Maven provides away for you to consolidate dependency version
numbers in the dependencyManagenent element. You'll usually see the

199

The Project Object Model

dependencyManagenment element in atop-level parent POM for an organization or
project. Using the dependencyManagement element in apom xm alowsyou to
reference a dependency in achild project without having to explicitly list the
version. Maven will walk up the parent-child hierarchy until it finds a project with
adependencyManagenent element, it will then use the version specified in this
dependencyManagenent €ement.

For example, if you have alarge set of projects which make use of the MySQL
Java connector version 5.1.2, you could define the following
dependencyManagenent element in your multi-module project's top-level POM.

Example 9.9. Defining Dependency Versionsin a Top-level POM

<pr oj ect >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>a-parent</artifactld>
<versi on>1. 0. 0</ ver si on>

<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>nysql </ gr oupl d>
<artifactld>nysqgl - connector-java</artifactld>
<ver si on>5. 1. 2</ ver si on>
</ dependency>

<dependenci es>
</ dependencyManagenent >

Then, in achild project, you can add a dependency to the MySQL Java Connector
using the following dependency XML.:

<pr oj ect >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<par ent >
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>a-parent</artifactld>
<ver si on>1. 0. 0</ ver si on>

</ par ent >

<artifactld>project-a</artifactld>

<dependenci es>
<dependency>
<gr oupl d>nysql </ gr oupl d>
<artifactld>nmysql - connector-java</artifactld>

200

The Project Object Model

</ dependency>
</ dependenci es>
</ proj ect >

Y ou should notice that the child project did not have to explicitly list the version of
the nysql - connect or - j ava dependency. Because this dependency was defined in
the top-level POM's dependencyManagenent € ement, the version number is going
to propagate to the child project's dependency on nysql - connect or - j ava. Note
that if thischild project did define aversion, it would override the version listed in
the top-level POM's dependencyManagerent section. That is, the
dependencyManagenent version isonly used when the child does not declare a
version directly.

Dependency management in atop-level POM is different from just defining a
dependency on awidely shared parent POM. For starters, all dependencies are
inherited. If nysql - connect or - j ava were listed as a dependency of the top-level
parent project, every single project in the hierarchy would have areference to this
dependency. Instead of adding in unnecessary dependencies, using
dependencyManagenent allows you to consolidate and centralize the management
of dependency versions without adding dependencies which are inherited by all
children. In other words, the dependencyManagenent element is equivalent to an
environment variable which allows you to declare a dependency anywhere below a
project without specifying a version number.

9.5. Project Relationships

One of the compelling reasons to use Maven is that it makes the process of
tracking down dependencies (and dependencies of dependencies) very easy. When
a project depends on an artifact produced by another project we say that this
artifact is a dependency. In the case of a Java project, thiscan beassimpleas a
project depending on an external dependency like Log4J or JUnit. While
dependencies can model external dependencies, they can aso manage the
dependencies between a set of related projects, if proj ect - a depends on

pr oj ect - b, Maven is smart enough to know that pr oj ect - b must be built before

201

The Project Object Model

proj ect - a.

Relationships are not only about dependencies and figuring out what one project
needs to be able to build an artifact. Maven can model the relationship of a project
to a parent, and the relationship of a project to submodules. This section gives an
overview of the various relationships between projects and how such relationships
are configured.

9.5.1. More on Coordinates

Coordinates define a unique location for a project, they were first introduced in
Chapter 3, A Smple Maven Project. Projects are related to one another using
Maven Coordinates. project-a doesn't just depend on project-b; a project with a
groupld, artifactld, and version depends on another project with a groupld,
artifactld, and version. To review, a Maven Coordinate is made up of three
components:

groupld

A groupl d groups a set of related artifacts. Group identifiers generally resemble
a Java package name. For example, the gr oupl d or g. apache. maven isthe base
groupld for al artifacts produced by the Apache Maven project. Group
identifiers are trandlated into paths in the Maven Repository; for example, the
org.apache.maven groupld can be found in/ maven2/ or g/ apache/ maven on

repol.maven.org.

artifactld

Theartifact!disthe project's main identifier. When you generate an artifact,
this artifact is going to be named with thearti f act 1 d. When you refer to a
project, you are going to refer toit using theartifact1d. Theartifactld,

gr oupl d combination must be unique. In other words, you can't have two
separate projects with the samearti fact1d and groupl d; arti factl dsare
unique within a particular gr oupl d.

Note
While'.'s are commonly used in gr oupl ds, you should try to avoid

202

http://repo1.maven.org/maven2/org/apache/maven

The Project Object Model

using theminartif act 1 dS. This can cause issues when trying to
parse afully qualified name down into the subcomponents.

version
When an artifact is released, it is released with a version number. This version
number is a numeric identifier suchas"1.0", "1.1.1", or "1.1.2-apha-01". Y ou
can also use what is known as a snapshot version. A snapshot versionisa
version for acomponent which is under devel opment, snapshot version
numbers always end in SNAPSHOT; for example, "1.0-SNAPSHOT",
"1.1.1-SNAPSHOT", and "1-SNAPSHOT". Section 9.3.1.1, “Version Build
Numbers” introduces versions and version ranges.

Thereisafourth, less-used qualifier:

classifier
Y ou would use aclassifier if you were releasing the same code but needed to
produce two separate artifacts for technical reasons. For example, if you wanted
to build two separate artifacts of a JAR, one compiled with the Java 1.4
compiler and another compiled with the Java 6 compiler, you might use the
classifier to produce two separate JAR artifacts under the same
groupld:artifactld:version combination. If your project uses native extensions,
you might use the classifier to produce an artifact for each target platform.
Classifiers are commonly used to package up an artifact's sources, JavaDocs or
binary assemblies.
When we talk of dependenciesin this book, we often use the following shorthand
notation to describe a dependency: groupl d:arti fact | d:ver si on. To refer to the
2.5 release of the Spring Framework, we would refer to it as
or g. spri ngf ramewor k: spri ng: 2. 5. When you ask Maven to print out alist of
dependencies with the Maven Dependency plugin, you will also see that Maven
tends to print out log messages with this shorthand dependency notation.

9.5.2. Multi-module Projects

203

The Project Object Model

Multi-module projects are projects which contain alist of modulesto build. A
multi-module project always has a packaging of pom, and rarely produces an
artifact. A multi-module project exists only to group projects together in a build.
Figure 9.3, “Multi-module Project Relationships’ shows a project hierarchy which

Includes two parent projects with packaging of pom and three projects with
packaging of j ar .

com.sonatype.maven
top-group
ackaqging: pom

com.sonatype.maven COm.sonaype.maven

sub-group project-c
ckaging: pom ckaging: jar
com. sonatype.maven com.sonatype.maven
project-a project-b
ckaging: jar ckaging: jar

Figure 9.3. Multi-module Project Relationships

The directory structure on the file system would also mirror the module
relationships. A set of projectsillustrated by Figure 9.3, “Multi-module Project
Relationships’ would have the following directory structure:

t op- group/ pom xm

t op- gr oup/ sub- gr oup/ pom xni

t op- gr oup/ sub- gr oup/ proj ect - a/ pom xmi
t op- gr oup/ sub- gr oup/ proj ect - b/ pom xni
t op- gr oup/ proj ect - c/ pom xm

The projects are related to one another because t op- gr oup and sub- gr oup are
referencing sub- modul es ina POM. For example, the

or g. sonat ype. mavenbook: t op- gr oup project isamulti-module project with

204

The Project Object Model

packaging of type pom t op- gr oup's pom xm would include the following modules
element:

Example 9.10. top-group modules element

<pr oj ect >
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>top-group</artifactld>

<nmodul es>
<nmodul e>sub- gr oup</ nodul e>
<nodul e>pr oj ect - c</ nodul e>
</ modul es>

</ proj ect >

When Maven isreading t op- gr oup POM it will ook at the modules element and
see that t op- gr oup references the projects sub- gr oup and pr oj ect - c. Maven will
then look for apom xni in each of these subdirectories. Maven repeats this process
for each of the submodules: it will read the sub- gr oup/ pom xni and see that the
sub- gr oup project references two projects with the following modules element:

Example 9.11. sub-group modules element

<pr oj ect >

<nodul es>
<nodul e>pr oj ect - a</ nodul e>
<nodul e>pr oj ect - b</ nodul e>
</ modul es>

</ proj ect >

Note that we call the projects under the multi-module projects "modules” and not
"children” or "child projects’. Thisis purposeful, so as not to confuse projects

grouped by multi-module projects with projects that inherit POM information from
each other.

9.5.3. Project Inheritance

205

The Project Object Model

There are going to be times when you want a project to inherit values from a parent
POM. Y ou might be building alarge system, and you don't want to have to repeat
the same dependency elements over and over again. Y ou can avoid repeating
yourself if your projects make use of inheritance via the parent element. When a
project specifies a parent, it inherits the information in the parent project's POM. It
can then override and add to the values specified in this parent POM.

All Maven POMs inherit values from a parent POM. If a POM does not specify a
direct parent using the par ent element, that POM will inherit values from the
Super POM. Example 9.12, “Project Inheritance” shows the par ent element of

pr oj ect - a Which inherits the POM defined by the a- par ent project.

Example 9.12. Project Inheritance

<pr oj ect >
<par ent >
<gr oupl d>com trai ni ng. ki | | er app</ gr oupl d>
<artifactld>a-parent</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
</ par ent >
<artifactld>project-a</artifactld>

</ proj ect >

Running mvn help:effective-pom in pr oj ect - a would show a POM that is the
result of merging the Super POM with the POM defined by a- par ent and the
POM defined in proj ect - a. The implicit and explicit inheritance relationships for
pr oj ect - a are shown in Figure 9.4, “Project Inheritance for a-parent and
project-a’.

206

The Project Object Model

Super POM

(implicit) a-parent inherits from the Super POM

com.sonatype.maven
a-parent
1.0-SNAPSHOT

(explicit) project-a inherits from a-parent

com.sonatype.maven
project-a
1.0-SNAPSHOT

Figure 9.4. Project Inheritance for a-parent and project-a

When a project specifies a parent project, Maven uses that parent POM as a
starting point before it reads the current project's POM. It inherits everything,
including the gr oupl d and ver si on number. Y ou'll notice that pr oj ect - a does not
specify either, both gr oupl d and ver si on are inherited from a- par ent . With a
parent element, all a POM really needsto defineisanartifact|d. Thisisn't
mandatory, pr oj ect - a could have adifferent gr oupl d and ver si on, but by not
providing values, Maven will use the values specified in the parent POM. If you
start using Maven to manage and build large multi-modul e projects, you will often
be creating many projects which share a common gr oupl d and ver si on.

When you inherit a POM, you can choose to live with the inherited POM
information or to selectively override it. The following isalist of itemsa Maven
POM inherits from its parent POM:

o identifiers (at least one of groupl d or arti f act | d must be overridden.)

* dependencies

207

The Project Object Model

developers and contributors

plugin lists

reports lists

plugin executions (executions with matching ids are merged)

 plugin configuration
When Maven inherits dependencies, it will add dependencies of child projects to
the dependencies defined in parent projects. Y ou can use this feature of Maven to
specify widely used dependencies across all projects which inherit from atop-level
POM. For example, if your system makes universal use of the Log4Jlogging
framework, you can list this dependency in your top-level POM. Any projects
which inherit POM information from this project will automatically have Log4J as
adependency. Similarly, if you need to make sure that every project is using the
same version of a Maven plugin, you can list this Maven plugin version explicitly
in atop-level parent POM's pl ugi nManagenent Section.

Maven assumes that the parent POM is available from the local repository, or
available in the parent directory (. ./ pom xni) of the current project. If neither
location is valid this default behavior may be overridden viatherel ati vePat h
element. For example, some organizations prefer aflat project structure where a
parent project's pom xni isn't in the parent directory of achild project. It might be
in asibling directory to the project. If your child project were in adirectory

./ proj ect - a and the parent project were in adirectory named . / a- par ent , you
could specify the relative location of par ent - a's POM with the following
configuration:

<pr oj ect >
<par ent >
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>a-parent</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<rel ativePat h>../a-parent/pom xm </rel ati vePat h>
</ par ent >
<artifactld>project-a</artifactld>
</ proj ect >

208

The Project Object Model

9.6. POM Best Practices

Maven can be used to manage everything from simple, single-project systemsto
builds that involve hundreds of inter-related submodules. Part of the learning
process with Maven isn't just figuring out the syntax for configuring Maven, it is
learning the "Maven Way"—the current set of best practices for organizing and
building projects using Maven. This section attemptsto distill some of this
knowledge to help you adopt best practices from the start without having to wade
through years of discussions on the Maven mailing lists.

9.6.1. Grouping Dependencies

If you have a set of dependencies which are logically grouped together. Y ou can
create a project with pom packaging that groups dependencies together. For
example, let's assume that your application uses Hibernate, a popular
Object-Relational mapping framework. Every project which uses Hibernate might
also have a dependency on the Spring Framework and a MySQL JDBC driver.
Instead of having to include these dependenciesin every project that uses
Hibernate, Spring, and MySQL you could create a special POM that does nothing
more than declare a set of common dependencies. Y ou could create a project called
per si st ence- deps (short for Persistence Dependencies), and have every project
that needs to do persistence depend on this convenience project:

Example 9.13. Consolidating Dependenciesin a Single POM Pr oject

<pr oj ect >
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>persistence-deps</artifactld>
<versi on>1. 0</ ver si on>
<packagi ng>ponx/ packagi ng>
<dependenci es>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate</artifactld>
<ver si on>${ hi ber nat eVer si on} </ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-annotati ons</artifactld>

209

The Project Object Model

<ver si on>${ hi ber nat eAnnot at i onsVer si on} </ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. spri ngf r anmewor k</ gr oupl d>
<artifactld>spring-hibernate3</artifactld>
<ver si on>${ spri ngVer si on} </ ver si on>
</ dependency>
<dependency>
<gr oupl d>nysql </ gr oupl d>
<artifactld>nysqgl -connector-java</artifactld>
<ver si on>${ mysql Ver si on} </ ver si on>
</ dependency>
</ dependenci es>
<properties>
<nysql Ver si on>(5. 1,) </ nysql Ver si on>
<spri ngVersi on>(2.0.6,)</springVersi on>
<hi ber nat eVer si on>3. 2. 5. ga</ hi ber nat eVer si on>
<hi ber nat eAnnot at i onsVer si on>3. 3. 0. ga</ hi ber nat eAnnot at i onsVer si on>
</ properties>
</ proj ect >

If you create this project in adirectory named per si st ence- deps, al you need to
doiscreate thispom xm and run mvn install. Since the packaging type is pom this
POM isinstaled in your local repository. Y ou can now add this project as a
dependency and all of its dependencies will be added to your project. When you
declare a dependency on this persistence-deps project, don't forget to specify the
dependency type as pom.

Example 9.14. Declaring a Dependency on a POM

<pr oj ect >
<description>This is a project requiring JDBC</description>

<dependenci es>

<dependency>
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>persistence-deps</artifactld>
<ver si on>1. 0</ ver si on>
<t ype>ponx/type>

</ dependency>

</ dependenci es>
</ proj ect >

210

The Project Object Model

If you later decide to switch to adifferent JIDBC driver (for example, JTDS), just
replace the dependenciesin the per si st ence- deps project to use

net . sourceforge.jtds:jtds instead of nysql : nysql -j ava- connect or and
update the version number. All projects depending on per si st ence- deps Will use
JTDS if they decide to update to the newer version. Consolidating related
dependenciesis a good way to cut down on the length of pom xni filesthat start
having to depend on alarge number of dependencies. If you need to share alarge
number of dependencies between projects, you could also just establish
parent-child relationships between projects and refactor all common dependencies
to the parent project, but the disadvantage of the parent-child approach isthat a
project can have only one parent. Sometimes it makes more sense to group similar
dependencies together and reference a pomdependency. Thisway, your project can
reference as many of these consolidated dependency POMs as it needs.

Note

Maven uses the depth of a dependency in the tree when resolving
conflicts using a nearest-wins approach. Using the dependency grouping
technique above pushes those dependencies one level down in the tree.
Keep thisin mind when choosing between grouping in a pom or using
dependenct Managenent in a parent POM

9.6.2. Multi-module vs. Inheritance

Thereis adifference between inheriting from a parent project and being managed
by a multimodule project. A parent project is one that passes its values to its
children. A multimodule project ssmply manages a group of other subprojects or
modules. The multimodule relationship is defined from the topmost level
downwards. When setting up a multimodul e project, you are smply telling a
project that its build should include the specified modules. Multimodule builds are
to be used to group modules together in asingle build. The parent-child

relationship is defined from the leaf node upwards. The parent-child relationship
deals more with the definition of a particular project. When you associate a child
with its parent, you are telling Maven that a project’s POM is derived from

211

The Project Object Model

another.

To illustrate the decision process that goes into choosing a design that uses
inheritance vs. multi-module or both approaches consider the following two
examples. the Maven project used to generate this book and a hypothetical project
that contains a number of logically grouped modules.

9.6.2.1. Simple Project
Firgt, let'stake alook at the maven-book project. The inheritance and multi-module
relationships are shown in Figure 9.5, “maven-book Multi-module vs. Inheritance”.

—p= Submodule Relaticnship

Super POM

-#—— Parent/Child Relationship

com.sonatype.maven

book-examples
1.0-SNAPSHOT

com.sonatype.maven
maven-book
1.0-SNAPSHOT

com.sonatype.maven

book-chapters
1.0-SMAPSHOT

Figure 9.5. maven-book Multi-modulevs. Inheritance

When we build this Maven book you are reading, we run mvn packagein a
multi-modul e project named maven- book. This multi-module project includes two
submodules: book- exanpl es and book- chapt er s. Neither of these projects share
the same parent, they are related only in that they are modules in the maven- book

212

The Project Object Model

project. book- exanpl es buildsthe ZIP and TGZ archives you downloaded to get
this book's example. When we run the book- exanpl es build from book- exanpl es/
directory with mvn package, it has no knowledge that it is a part of the larger
maven- book Project. book- exanpl es doesn't really care about maven- book, all it
knowsin lifeisthat its parent is the top-most sonat ype POM and that it creates an
archive of examples. In this case, the maven- book project existsonly asa
convenience and as a aggregator of modules.

The book projects do all define a parent. Each of the three projects. maven- book,
book- exanpl es, and book- chapt ers all list ashared "corporate” parent —

sonat ype. Thisisacommon practice in organizations which have adopted Maven,
instead of having every project extend the Super POM by default, some
organizations define atop-level corporate POM that serves as the default parent
when a project doesn't have any good reason to depend on another. In this book
example, there is no compelling reason to have book- exanpl es and

book- chapt er s share the same parent POM, they are entirely different projects
which have a different set of dependencies, a different build configuration, and use
drastically different plugins to create the content you are now reading. The

sonat ype POM gives the organization a change to customize the default behavior
of Maven and supply some organization-specific information to configure
deployment settings and build profiles.

9.6.2.2. Multi-module Enterprise Project

Let'stake alook at an example that provides a more accurate picture of a
real-world project where inheritance and multi-module rel ationships exist side by
side. Figure 9.6, “ Enterprise Multi-module vs. Inheritance” shows a collection of
projects that resemble atypical set of projectsin an enterprise application. Thereis
atop-level POM for the corporation with anarti f act 1 d of sonatype. Thereisa
multi-module project named bi g- syst emwhich references sub-modules
server-side andclient-side.

213

The Project Object Model

Super POM — Submodule Relationship
-—— Parent/Child Relationship

com.sonatype.maven |
client-web
1.0-SNAPSHOT

[com.sonatype.maven

sonatype
1.0-SNAPSHOT

com.sonatype.maven
web-apps
1.0-SNAPSHOT

com.sonatype.maven |
admin-web
1.0-SMAPSHOT

com.sonatype.maven
sarver-side
1.0-SNAPSHOT

com.sonatype.maven
senver-lib
1.0-SMNAPSHOT

com.sonatype.maven
big-system
1.0-SMNAPSHOT

com.sonatype.maven)
trading-client
1.0-SNAPSHOT

com.sonatype.maven

swing-app
1.0-SNAPSHOT

com.sonatype.maven)
streaming-client
1.0-SNAPSHOT

com.sonatype.maven
client-side
1.0-SMAPSHOT

com.sonatype.maven
client-lib
1.0-SMAPSHOT

Figure 9.6. Enterprise Multi-module vs. Inheritance

What's going on here? Let's try to deconstruct this confusing set of arrows. First,
let's take alook at bi g- syst em Thebi g- syst emmight be the project that you
would run mvn package on to build and test the entire system. bi g- syst em
references submodulescl i ent - si de and ser ver - si de. Each of these projects
effectively rolls up al of the code that runs on either the server or on the client.
Let'sfocus on theser ver - si de project. Under the ser ver - si de project we have a
project called ser ver - 1i b and a multi-module project named web- apps. Under
web- apps we have two Javaweb applications: cl i ent - web and adni n- web.

Let's start with the parent/child relationships from cl i ent - web and adni n- web to
web- apps. Since both of the web applications are implemented in the same web

214

The Project Object Model

application framework (let's say Wicket), both projects would share the same set of
core dependencies. The dependencies on the Servlet API, the ISP API, and Wicket
would al be captured in the web- apps project. Both ¢l i ent - web and admi n- web
also need to depend on ser ver - 1i b, this dependency would be defined as a
dependency between web- apps and server-1i b. Becausecl i ent - web and

adnmi n-web share so much configuration by inheriting from web- apps, both

cl i ent-web and adni n-web will have very small POMs containing little more than
identifiers, a parent declaration, and afinal build name.

Next we focus on the parent/child relationship from web- apps and server-1ib to
server -si de. Inthis case, let's just assume that there is a separate working group
of developers which work on the server-side code and another group of developers
that work on the client-side code. The list of developers would be configured in the
server - si de POM and inherited by all of the child projects underneath it:

web- apps, server-1ib,client-web, and admi n-web. We could also imagine that
the server - si de project might have different build and deployment settings which
are unique to the development for the server side. Theser ver - si de project might
define a build profile that only makes sense for all of the ser ver - si de projects.
This build profile might contain the database host and credentials, or the

server - si de project's POM might configure a specific version of the Maven Jetty
plugin which should be universal across al projects that inherit the ser ver - si de
POM.

In this example, the main reason to use parent/child relationships is shared
dependencies and common configuration for a group of projects which are
logically related. All of the projects below bi g- syst emare related to one another
as submodules, but not al submodules are configured to point back to parent
project that included it as a submodule. Everything is a submodule for reasons of
convenience, to build the entire system just go to the bi g- syst emproject directory
and run mvn package. Look more closely at the figure and you'll see that thereis
no parent/child relationship between ser ver - si de and bi g- syst em Why isthis?
POM inheritance is very powerful, but it can be overused. When it makes sense to
share dependencies and build configuration, a parent/child relationship should be
used. When it doesn't make sense is when there are distinct differences between
two projects. Take, for example, theserver -si de and cl i ent - si de projects. It is

215

The Project Object Model

possible to create a system wherecl i ent - si de and ser ver - si de inherited a
common POM from bi g- syst em but as soon as a significant divergence between
the two child projects devel ops, you then have to figure out creative ways to factor
out common build configuration to bi g- syst emwithout affecting all of the
children. Even though cl i ent - si de and ser ver - si de might both depend on
Log4J, they also might have distinct plugin configurations.

There's a certain point defined more by style and experience where you decide that
minimal duplication of configuration isasmall priceto pay for allowing projects
likecl i ent-si de and server - si de to remain completely independent. Designing
a huge set of thirty plus projects which all inherit five levels of POM configuration
Isn't always the best idea. In such a setup, you might not have to duplicate your

L og4J dependency more than once, but you'll al'so end up having to wade through
five levels of POM just figure out how Maven calculated your effective POM. All
of this complexity to avoid duplicating five lines of dependency declaration. In
Maven, thereisa"Maven Way", but there are also many ways to accomplish the
same thing. It al boils down to preference and style. For the most part, you won't
go wrong if al of your submodules turn out to define back-references to the same
project as a parent, but your use of Maven may evolve over time.

9.6.2.3. Prototype Parent Projects

Take the following example shown in Figure 9.7, “Using parent projects as
"prototypes’ for specialized projects’ as another hypothetical and creative way to
use inheritance and multi-modules builds to reuse dependencies.

216

The Project Object Model

== Submodule Relationship
Super POM

-#— Parent/Child Relationship

com.sonatype)
sonatype
1.0-SNAPSHOT

com.sonatype
swing-proto
1.0-SNAPSHOT

com.sonatype
struts-proto
1.0-SNAPSHOT

com.sonatype
system-a
1.0-SNAPSHOT

com.sonatype
system-b
1.0-SNAPSHOT

com.sonatype com.sonatype com.sonatype com.sonatype
a-lib a-swing p-struts b-liby
1.0-SNAFPSHOT 1.0-SMNAPSHOT 1.0-SNAPSHOT 1.0-SNAPSHOT

Figure 9.7. Using parent projectsas” prototypes' for specialized projects

Figure 9.7, “Using parent projects as "prototypes’ for specialized projects’ isyet
another way to think about inheritance and multi-module projects. In this example,
you have two distinct systems. syst em a and syst em b each define independent
applications. syst em a definestwo modules a- | i b and a- swi ng. syst em a and

a- | i b both define the top-level sonat ype POM as a parent project, but the a- swi ng
project defines swi ng- pr ot o as a parent project. In this system, swi ng- prot o
supplies afoundational POM for Swing applications and the st r ut s- pr ot o project
provides afoundational POM for Struts 2 web applications. While the sonat ype
POM provides high level information such as the gr oupl d, organization
information, and build profiles, st rut s- pr ot o defines all of the dependencies that
you need to create a struts application. This approach would work well if your

217

The Project Object Model

development is characterized by many independent applications which each have
to follow the same set of rules. If you are creating alot of struts applications but
they are not really related to one another, you might just define everything you
need in st rut s- pr ot 0. The downside to this approach is that you won't be able to
use parent/child relationships within the syst em a and syst em b project
hierarchies to share information like devel opers and other build configuration. A
project can only have one parent.

The other downside of this approach is that as soon as you have one project that
"breaks the mold" you'll either have to override the prototype parent POM or find a
way to factor customizations into the shared parent without those customizations
affecting all the children. In general, using POMs as prototypes for specialized
project "types' isn't arecommended practice.

218

Chapter 10. The Build Lifecycle

10.1. Introduction

Maven models projects as nouns which are described by a POM. The POM
captures the identity of a project: What does a project contain? What type of
packaging a project needs? Does the project have a parent? What are the
dependencies? We've explored the idea of describing a project in the previous
chapters, but we haven't introduced the mechanism that allows Maven to act upon
these objects. In Maven the "verbs' are goals packaged in Maven plugins which
aretied to aphasesin abuild lifecycle. A Maven lifecycle consists of a sequence
of named phases: prepare-resources, compile, package, and install among other.
Thereis phase that captures compilation and a phase that captures packaging.
There are pre- and post- phases which can be used to register goals which must run
prior to compilation, or tasks which must be run after a particular phase. When you
tell Maven to build a project, you are telling Maven to step through a defined
sequence of phases and execute any goals which may have been registered with
each phase.

A build lifecycle is an organized sequence of phases that exist to give order to a set
of goals. Those goals are chosen and bound by the packaging type of the project
being acted upon. There are three standard lifecyclesin Maven: clean, default
(sometimes called build) and site. In this chapter, you are going to learn how
Maven ties goals to lifecycle phases and how the lifecycle can be customized. Y ou
will aso learn about the default lifecycle phases.

10.1.1. Clean Lifecycle (clean)

Thefirst lifecycle you'll be interested in isthe ssmplest lifecycle in Maven.
Running mvn clean invokes the clean lifecycle which consists of three lifecycle
phases:

219

The Build Lifecycle

®* pre-clean
* clean

®* post-clean
The interesting phase in the clean lifecycleisthe cl ean phase. The Clean plugin's
clean goadl (cI ean: cl ean) isbound to the cl ean phasein thecl ean lifecycle. The
cl ean: cl ean goa deletes the output of abuild by deleting the build directory. If
you haven't customized the location of the build directory it will be the
${basedir}/target directory asdefined by the Super POM. When you execute
thecl ean: cl ean goa you do not do so by executing the goal directly with mvn
clean:clean, you do so by executing the cl ean phase of the clean lifecycle.
Executing the cl ean phase gives Maven an opportunity to execute any other goals
which may be bound to the pr e- cl ean phase.

For example, suppose you wanted to trigger an ant r un: r un goal task to echo a
notification on pr e- cl ean, or to make an archive of a project's build directory
beforeit isdeleted. Simply running the cl ean: cl ean goal will not execute the
lifecycle at all, but specifying the cl ean phase will use thecl ean lifecycle and
advance through the three lifecycle phases until it reaches the cl ean phase.
Example 10.1, “Triggering a Goal on pre-clean” shows an example of build
configuration which binds the ant r un: r un goal to the pr e- ¢l ean phase to echo an
alert that the project artifact is about to be deleted. In this example, theant run: run
goal is being used to execute some arbitrary Ant commands to check for an
existing project artifact. If the project's artifact is about to be deleted it will print
this to the screen

Example 10.1. Triggering a Goal on pre-clean

<pr oj ect >
<bui | d>
<pl ugi ns>. .. <pl ugi n>
<artifact!| d>maven- antrun-pl ugi n</artifactl d>
<execut i ons>
<execut i on>
<id>fil e-exists</id>
<phase>pr e- cl ean</ phase>

220

The Build Lifecycle

<goal s>
<goal >r un</ goal >
</ goal s>
<confi gurati on>
<t asks>
<!-- adds the ant-contrib tasks (if/then/el se used bel ow) -->
<t askdef resource="net/sf/antcontrib/antcontrib. properties" />
<avai | abl e
file="${project.build. directory}/${project.build.final Name}. ${pro
property="file.exists" value="true" />

<if>
<not >
<i sset property="file.exists" />
</ not >
<t hen>
<echo>No
${ proj ect. buil d. final Nane}. ${ proj ect. packagi ng} to
del et e</ echo>
</t hen>
<el se>
<echo>Del eti ng
${project.build.final Name}. ${proj ect . packagi ng} </ echo>
</ el se>
</[if>
</ tasks>
</ confi guration>
</ executi on>
</ executions>
<dependenci es>
<dependency>
<gr oupl d>ant - cont ri b</ gr oupl d>
<artifactld>ant-contrib</artifactld>
<ver si on>1. 0b2</ ver si on>
</ dependency>
</ dependenci es>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

j ect. packagi |

Running mvn clean on a project with this build configuration will produce output
similar to the following:

[INFQ Scanning for projects...

N O I L L
[NFQ Building Your Project

[I NFQ t ask- segnent: [cl ean]

N O I e L T P

[INFQ [antrun:run {execution: file-exists}]
[NFO Executing tasks

The Build Lifecycle

[echo] Del eting your-project-1.0- SNAPSHOT. j ar
I NFO Executed tasks
I NFQ [cl ean: cl ean]
INFO Deleting directory ~/corp/your-project/target
INFO Deleting directory ~/corp/your-project/target/cl asses
INFO| Deleting directory ~/corp/your-project/target/test-classes

INFO Total tinme: 1 second
INFQ Finished at: Wed Nov 08 11:46:26 CST 2006
I NFOQ Final Menory: 2M5M

In addition to configuring Maven to run agoal during the pre- cl ean phase, you
can also customize the Clean plugin to delete files in addition to the build output
directory. Y ou can configure the plugin to remove specific filesinafil eSet . The
example below configures clean to remove dl . cl ass filesin adirectory named

t ar get - ot her/ using standard Ant file wildcards. * and **.

Example 10.2. Customizing Behavior of the Clean Plugin

<pr oj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-cl ean-pl ugi n</artifactl|d>
<confi gurati on>
<fil esets>
<fileset>
<di rect ory>t arget - ot her </ di rect ory>
<i ncl udes>
<i ncl ude>*. cl ass</i ncl ude>
</i ncl udes>
</fileset>
</[fil esets>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

222

The Build Lifecycle

10.1.2. Default Lifecycle (default)

Most Maven users will be familiar with the default lifecycle. It is a general model
of abuild process for a software application. The first phaseisval i dat e and the
last phase is depl oy. The phases in the default Maven lifecycle are shown in
Table 10.1, “Maven Lifecycle Phases’.

Table 10.1. Maven Lifecycle Phases

Lifecycle Phase Description

validate Validate the project is correct and all
necessary information is available to
complete abuild

generate-sources Generate any source code for inclusion in
compilation

process-sources Process the source code, for example to
filter any values

generate-resources Generate resources for inclusion in the
package

Jprocess-resources Copy and process the resources into the
destination directory, ready for packaging

compile Compile the source code of the project

process-classes Post-process the generated files from

compilation, for example to do bytecode
enhancement on Java classes

generate-test-sources Generate any test source code for
inclusion in compilation

process-test-sources Process the test source code, for example
to filter any values

generate-test-resources Create resources for testing

223

The Build Lifecycle

Lifecycle Phase Description

process-test-resources Copy and process the resources into the
test destination directory

test-compile Compile the test source code into the test
destination directory

test Run tests using a suitable unit testing
framework. These tests should not require
the code be packaged or deployed

prepare-package Perform any operations necessary to
prepare a package before the actual
packaging. This often resultsin an
unpacked, processed version of the
package (coming in Maven 2.1+)

package Take the compiled code and packageit in
its distributable format, such asa JAR,
WAR, or EAR

pre-integration-test Perform actions required before

Integration tests are executed. This may
involve things such as setting up the
required environment

Integration-test Process and deploy the package if
necessary into an environment where
Integration tests can be run

post-integration-test Perform actions required after integration
tests have been executed. This may
include cleaning up the environment

verify Run any checksto verify the packageis
valid and meets quality criteria

install Install the package into the local

224

The Build Lifecycle

Lifecycle Phase Description

repository, for use as a dependency in
other projectslocally

deploy Copiesthefinal package to the remote
repository for sharing with other
developers and projects (usually only
relevant during aformal release)

10.1.3. Site Lifecycle (site)

Maven does more than build software artifacts from project, it can also generate
project documentation and reports about the project, or a collection of projects.
Project documentation and site generation have a dedicated lifecycle which
contains four phases:

1. pre-site
2. dte
3. post-site

4. site-deploy
The default goals bound to the site lifecycleis:

1. site- Ste:site

2. Site-deploy -site:deploy
The packaging type does not usually ater thislifecycle since packaging types are
concerned primarily with artifact creation, not with the type of site generated. The
Site plugin kicks off the execution of Doxia document generation and other report
generation plugins. You can generate a site from a Maven project by running the
following command:

$ nvn site

225

http://maven.apache.org/doxia/

The Build Lifecycle

For more information about Maven Site generation, see Chapter 15, Ste
Generation.

10.2. Package-specific Lifecycles

The specific goals bound to each phase default to a set of goals specific to a
project's packaging. A project with packaging j ar has adifferent set of default
goals from a project with a packaging of war . The packagi ng element affects the
steps required to build a project. For an example of how the packaging affects the
build, consider two projects. one with pompackaging and the other with j ar
packaging. The project with pompackaging will runthesi t e: at t ach- descri pt or
goa during the package phase, and the project with j ar packaging will run the
jar:jar goal instead.

The following sections describe the lifecycle for al built-in packaging typesin
Maven. Use these sections to find out what default goals are mapped to default
lifecycle phases.

10.2.1. JAR

JAR isthe default packaging type, the most common, and thus the most commonly
encountered lifecycle configuration. The default goals for the JAR lifecycle are
shown in Table 10.2, “Default Goals for JAR Packaging”.

Table 10.2. Default Goalsfor JAR Packaging

Lifecycle Phase Goal

process-resources resources:resources
compile compiler:compile
process-test-resources resources:testResources
test-compile compiler:testCompile

226

The Build Lifecycle

Lifecycle Phase Goal

test surefire:test
package jar:jar

install install:install
deploy deploy:deploy
10.2.2. POM

POM isthe simplest packaging type. The artifact that it generatesisitself only,
rather than a JAR, SAR, or EAR. Thereis no code to test or compile, and there are
no resources the process. The default goals for projects with POM packaging are
shown in Table 10.3, “Default Goals for POM Packaging”.

Table 10.3. Default Goalsfor POM Packaging

Lifecycle Phase Goal

package Site:attach-descriptor
install install:install

deploy deploy:deploy

10.2.3. Maven Plugin

This packaging typeis similar to JAR packaging type with three additions:

pl ugi n: descri ptor, pl ugi n: addPl ugi nArti f act Met adat a, and

pl ugi n: updat eRegi st ry. These goals generate a descriptor file and perform some
modifications to the repository data. The default goals for projects with plugin
packaging are shown in Table 10.4, “ Default Goals for Plugin Packaging”.

Table 10.4. Default Goalsfor Plugin Packaging

227

The Build Lifecycle

Lifecycle Phase
generate-resources
process-resources
compile
process-test-resources
test-compile

test

package

install

deploy

10.2.4. EJB

Goal

plugin:descriptor

resources:resources

compiler:compile
resources:testResources
compiler:testCompile

surefire:test

jar:jar, plugin:addPluginArtifactM etadata
install:install, plugin:updateRegistry
deploy:deploy

EJBs, or Enterprise Java Beans, are acommon data access mechanism for
model-driven development in Enterprise Java. Maven provides support for EJB 2
and 3. Though you must configure the EJB plugin to specifically package for
EJB3, else the plugin defaults to 2.1 and looks for the presence of certain EJB
configuration files. The default goals for projects with EJB packaging are shown in
Table 10.5, “Default Goals for EJB Packaging”.

Table 10.5. Default Goalsfor EJB Packaging

Lifecycle Phase
process-resources
compile
process-test-resources

test-compile

Goal
resources.resources
compiler.compile
resources.testResources

compiler:testCompile

228

The Build Lifecycle

Lifecycle Phase Goal

test surefire:test
package gb:gb

install install:install
deploy deploy:deploy
10.2.5. WAR

The WAR packaging type is similar to the JAR and EJB types. The exception
being the package goal of war : war . Note that the war : war plugin requires a

web. xm configuration in your sr c/ mai n/ webapp/ WEB- | NF directory. The default
goalsfor projects with WAR packaging are shown in Table 10.6, “ Default Goals
for WAR Packaging”.

Table 10.6. Default Goalsfor WAR Packaging

Lifecycle Phase Goal

process-resources resourCces.resources
compile compiler:compile
process-test-resources resources.testResources
test-compile compiler:testCompile
test surefire:test

package war:war

install install:install

deploy deploy:deploy

229

The Build Lifecycle

10.2.6. EAR

EARs are probably the ssimplest Java EE constructs, consisting primarily of the
deployment descriptor appl i cati on. xni file, some resources and some modules.
The EAR plugin has agoal hamed gener at e- appl i cati on-xm which generates
theappl i cati on. xm based upon the configuration in the EAR project's POM. The
default goals for projects with EAR packaging are shown in Table 10.7, “Default
Goalsfor EAR Packaging’.

Table 10.7. Default Goalsfor EAR Packaging

Lifecycle Phase Goal

generate-resources ear:generate-application-xml
Process-resources resources:resources
package ear:ear

install install:install

deploy deploy:deploy

10.2.7. Other Packaging Types

Thisis not an exhaustive list of every packaging type available for Maven. There
are anumber of packaging formats available through external projects and plugins:
the NAR (native archive) packaging type, the SWF and SWC packaging types for
projects that produce Adobe Flash and Flex content, and many others. Y ou can
also define a custom packaging type and customize the default lifecycle goalsto
suit your own project packaging requirements.

To use one of these custom packaging types, you need two things: a plugin which
defines the lifecycle for a custom packaging type and arepository which contains
this plugin. Some custom packaging types are defined in plugins available from the
central Maven repository. Here is an example of a project which references the
Israfil Flex plugin and uses a custom packaging type of SWF to produce output

230

The Build Lifecycle

from Adobe Flex source.

Example 10.3. Custom Packaging Type for Adobe Flex (SWF)

<pr oj ect >
<packagi ng>swf </ packagi ng>
<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>net . israfil.nojo</groupl d>
<artifactld>maven-fl ex2-plugi n</artifactld>
<versi on>1. 4- SNAPSHOT</ ver si on>
<ext ensi ons>t r ue</ ext ensi ons>
<confi guration>
<debug>t r ue</ debug>
<fl exHone>${f | ex. honme} </ f | exHonme>
<useNet wor k>t r ue</ useNet wor k>
<mai n>or g/ sonat ype/ mavenbook/ Mai n. nxm </ mai n>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

</ proj ect >

In Section 17.6, “Plugins and the Maven Lifecycle’, we show you how to create
your own packaging type with a customized lifecycle. This example should give
you an idea of what you'll need to do to reference a custom packaging type. All
you need to do is reference the plugin which supplies the custom packaging type.
The lsrafil Flex plugin is athird-party Maven plugin hosted at Google Code, for
more information about this plugin and how to use Maven to compile Adobe Flex
go to http://code.google.com/plisrafil-mojo. This plugin supplies the following
lifecycle for the SWF packaging type:

Table 10.8. Default Lifecycle for SWF Packaging

Lifecycle Phase Goal
compile flex2:compile-swc
install install

231

http://code.google.com/p/israfil-mojo

The Build Lifecycle

Lifecycle Phase Goal

deploy deploy

10.3. Common Lifecycle Goals

Many of the packaging lifecycles have similar goals. If you look at the goals bound
to the WAR and JAR lifecycles, you'll seethat they differ only in the package
phase. The package phase of the WAR lifecycle callswar : war and the package
phase of the JAR lifecycle calsj ar: j ar. Most of the lifecycles you will come into
contact share some common lifecycle goals for managing resources, running tests,
and compiling source code. In this section, we'll explore some of these common
lifecycle goalsin detail.

10.3.1. Process Resources

Most lifecycles bind ther esour ces: resour ces goal to the process-resour ces
phase. The pr ocess- r esour ces phase "processes’ resources and copies them to
the output directory. If you haven't customized the default directory locations
defined in the Super POM, this means that Maven will copy the files from
${basedi r}/src/ min/resources t0 ${ basedir}/target/cl asses or the
directory defined in ${ pr oj ect . bui | d. out put Di rect ory} . In addition to copying
the resources to the output directory, Maven can also apply afilter to the resources
that allows you to replace tokens within resource file. Just like variables are
referenced inaPOM using ${ . . . } notation, you can reference variablesin your
project's resources using the same syntax. Coupled with build profiles, such a
facility can be used to produce build artifacts which target different deployment
platforms. This is something that is common in environments which need to
produce output for development, testing, staging, and production platforms from
the same project. For more information about build profiles, see Chapter 11, Build
Profiles.

To illustrate resource filtering, assume that you have a project with an XML filein

232

The Build Lifecycle

src/ mai n/ resour ces/ META- | NF/ servi ce. xm . You want to externalize some
configuration variablesto a propertiesfile. In other words, you might want to
reference aJDBC URL, username, and password for your database, and you don't
want to put these values directly into the ser vi ce. xm file. Instead, you would like
to use aproperties file to capture all of the configuration points for your program.
Doing thiswill allow you to consolidate al configuration into a single properties
file and make it easier to change configuration values when you need to target a
new deployment environment. First, take alook at the contents of ser vi ce. xni in
src/ mai n/ resour ces/ META- | NF.

Example 10.4. Using Propertiesin Project Resour ces

<servi ce>
<l-- This URL was set by project version ${project.version} -->
<url >${jdbc.url}</url >
<user >${j dbc. user nane} </ user >
<passwor d>${j dbc. passwor d} </ passwor d>
</ service>

This XML file uses the same property reference syntax you can use in the POM. In
fact, the first variable referenced isthe pr oj ect variable which is also an implicit
variable made available in the POM. The pr oj ect variable provides access to
POM information. The next three variable references arej dbc. url

j dbc. user nane, and j dbc. passwor d. These custom variables are defined in a
propertiesfilesrc/main/filters/defaul t.properties.

Example 10.5. default.propertiesin src/main/filters

j dbc. url =j dbc: hsql db: rem nydb
j dbc. user nane=sa
j dbc. passwor d=

To configure resource filtering with this def aul t . properti es file, we need to
specify two thingsin aproject's POM: alist of propertiesfilesinthefilters
element of the build configuration, and a flag to Maven that the resources directory
isto befiltered. The default Maven behavior isto skip filtering and just copy the

233

The Build Lifecycle

resources to the output directory; you'll need to explicitly configure resource filter,
or Maven will skip the step altogether. This default ensures that Maven's resource
filtering feature doesn't surprise you out of nowhere and clobbering any ${. . .}
references you didn't want it to replace.

Example 10.6. Filter Resour ces (Replacing Properties)

<bui | d>
<filters>
<filter>src/main/filters/default.properties</filter>
</filters>
<r esour ces>
<r esour ce>
<di rect ory>src/ mai n/ resour ces</di rectory>
<filtering>true</filtering>
</ resource>
</resources>
</ bui | d>

Aswith all directoriesin Maven, the resources directory does not need to bein
src/ mai n/ resour ces. Thisisjust the default value defined in the Super POM. You
should also note that you don't need to consolidate all of your resourcesinto a
single directory. Y ou can always separate resources into separate directories under
sr ¢/ mai n. Assume that you have project which contains hundreds of XML
documents and hundreds of images. Instead of mixing the resourcesin the

src/ mai n/ resour ces directory, you might want to create two directories

src/ mai n/ xm and src/ mai n/ i mages to hold this content. To add directories to the
list of resource directories, you would add the following r esour ce elementsto
your build configuration.

Example 10.7. Configuring Additional Resour ce Directories

<bui | d>

<r esour ces>
<r esour ce>
<di rect ory>src/ mai n/ resour ces</di rect ory>
</resource>
<r esour ce>
<di rectory>src/ mai n/ xm </ di rect ory>
</ resource>

234

The Build Lifecycle

<r esour ce>
<di rect ory>src/ mai n/ i mages</directory>

</ resour ce>

</resour ces>

</ bui | d>

When you are building a project that produces a console application or a
command-line tool, you'll often find yourself writing simple shell scripts that need
to reference the JAR produced by a build. When you are using the assembly plugin
to produce a distribution for an application asa ZIP or TAR, you might place all of
you scriptsin adirectory like sr ¢/ mai n/ conmand. In the following POM resource
configuration, you'll see how we can use resource filtering and a reference to the
project variable to capture the final output name of the JAR. For more information
about the Maven Assembly plugin, see Chapter 12, Maven Assemblies.

Example 10.8. Filtering Script Resour ces

<bui | d>
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>sinple-cnmd</artifactld>
<versi on>2. 3. 1</ ver si on>

<r esour ces>
<r esour ce>
<filtering>true</filtering>
<di rect ory>${basedi r}/ src/ mai n/ command</ di r ect or y>
<i ncl udes>
<i ncl ude>r un. bat </ i ncl ude>
<i ncl ude>run. sh</i ncl ude>
</i ncl udes>
<t ar get Pat h>${ basedi r} </t ar get Pat h>
</resource>
<r esour ce>
<di rect ory>${basedir}/src/ main/resources</directory>
</resour ce>
</resources>

</ bui | d>

If you runnvn process-resources inthisproject, you will end up with two files,
run. sh and run. bat, in ${basedi r} . We've singled out these two filesina

235

The Build Lifecycle

resour ce element, configuring filtering, and set the t ar get Pat h to be ${ basedi r}.
In asecond r esour ce element, we've configured the default resources path to be
copied to the default output directory without any filtering. Example 10.8,
“Filtering Script Resources’ shows you how to declare two resource directories
and supply them with different filtering and target directory preferences. The
project from Example 10.8, “Filtering Script Resources’ would contain ar un. bat
filein src/ mai n/ command with the following content:

@cho of f
java -jar ${project.build.final Nane}.jar %

After running mvn process-resour ces, afile named r un. bat would appear in
${ basedi r} with the following content:

@cho of f
java -jar sinple-cnmd-2.3.1.jar %

The ability to customize filtering for specific subsets of resources is another reason
why complex projects with many different kinds of resources often find it
advantageous to separate resources into multiple directories. The alternative to
storing different kinds of resources with different filtering requirementsin different
directoriesisto use amore complex set of include and exclude patterns to match
all resource files which match a certain pattern.

10.3.2. Compile

Most lifecycles bind the Compiler plugin's conpi | e goal to the conpi | e phase.
This phase calls out to conpi | e: conpi | e which is configured to compile al of the
source code and copy the bytecode to the build output directory. If you haven't
customized the values defined in the Super POM, conpi | e: conpi | e iISgoing to
compile everything from src/ mai n/ j ava to t ar get / cl asses. The Compiler plugin
callsout toj avac and uses default source and target settings of 1.3 and 1.1. In
other words, the compiler plugin assumes that your Java source conforms to Java
1.3 and that you are targeting aJava 1.1 VM. If you would like to change these
settings, you'll need to supply the target and source configuration to the Compiler
plugin in your project's POM as shown in Example 10.9, “ Setting the Source and

236

The Build Lifecycle

Target Versions for the Compiler Plugin”.

Example 10.9. Setting the Source and Target Versionsfor the Compiler
Plugin

<pr oj ect >
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-conpil er-plugin</artifactld>
<confi gurati on>
<sour ce>1. 5</ sour ce>
<t arget >1. 5</t arget >
</ configuration>
</ pl ugi n>
</ pl ugi ns>

</ bui | d>

</ proj ect >

Notice we are configuring the Compiler plugin, and not the specific

conpi | e: conpi | e goal. If we were going to configure the source and target for just
the conpi | e: conpi | e goal, we would place the conf i gur ati on element below an
execut i on element for the conpi | e: conpi | e goal. We've configured the target and
source for the plugin because conpi | e: conpi | e isn't the only goal we're interested
in configuring. The Compiler plugin is reused when Maven compiles tests using
the conpi | e: t est Conpi | e goal, and configuring target and source at the plugin
level alows usto defineit once for al goalsin aplugin.

If you need to customize the location of the source code, you can do so by
changing the build configuration. If you wanted to store your project's source code
Insrc/javainstead of src/ mai n/j ava and if you wanted build output to go to

cl asses instead of t ar get / cl asses, you could always override the default

sour ceDi rect ory defined by the Super POM.

Example 10.10. Overriding the Default Sour ce Directory

<bui | d>

237

The Build Lifecycle

<sourceDi rectory>src/java</ sourceDirectory>
<out put Di rect or y>cl asses</ out put Di r ect or y>

</ bui | d>

Warning

While it might seem necessary to bend Maven to your own idea of
project directory structure, we can't emphasize enough that you should
sacrifice your own ideas of directory structure in favor of the Maven
defaults. Thisisn't because we're trying to brainwash you into accepting
the Maven Way, but it will be easier for people to understand your
project if it adheres to the most basic conventions. Just forget about this.
Don't do it.

10.3.3. Process Test Resources

Theprocess-test-resour ces phaseisamost indistinguishable from the
process-resour ces phase. There are some trivial differencesin the POM, but
most everything the same. Y ou can filter test resourcesjust as you filter regular
resources. The default location for test resourcesis defined in the Super POM as
src/ test/resour ces, and the default output directory for test resourcesis
target/test-classes asdefined in ${proj ect. bui | d. t est Qut put Di rect ory}.

10.3.4. Test Compile

Thet est - conpi | e phaseis amost identical to the conpi | e phase. The only
differenceisthat t est - conpi | e isgoing to invoke conpi | e: t est Conpi | e tO
compile source from the test source directory to the test build output directory. If
you haven't customized the default directories from the Super POM,

conpi | e: t est Conpi | e iISgoing to compile the sourceinsrc/ test/java tothe
target/test-classes directory.

As with the source code directory, if you want to customize the location of the test

238

The Build Lifecycle

source code and the output of test compilation, you can do so by overriding the

t est Sour ceDi r ect ory and the testOutputDirectory. If you wanted to store test
sourceinsrc-test/ instead of src/test/java and you wanted to save test
bytecodeto cl asses-test/ instead of t ar get / t est - cl asses, you would use the
following configuration.

Example 10.11. Overriding the L ocation of Test Source and Output

<bui | d>

<t est Sour ceDi rect ory>src-test</test SourceDi rectory>
<t est Qut put Di rect ory>cl asses-test </t est Qut put Di rect ory>

</ bui | d>

10.3.5. Test

Most lifecycles bind the test goal of the Surefire plugin to the test phase. The
Surefire plugin is Maven's unit testing plugin, the default behavior of Surefireisto
look for all classes ending in * Test in the test source directory and to run them as
JUnit tests. The Surefire plugin can aso be configured to run TestNG unit tests.

After running mvn test, you should also notice that the Surefire produces a number
of reportsintarget/ surefire-reports. Thisreports directory will have two files
for each test executed by the Surefire plugin: an XML document containing
execution information for the test, and a text file containing the output of the unit
test. If there is a problem during the test phase and a unit test has failed, you can
use the output of Maven and the contents of this directory to track down the cause
of atest failure. Thissurefire-reports/ directory isaso used during site
generation to create an easy to read summary of all the unit tests in a project.

If you are working on a project that has some failing unit tests, but you want the
project to produce output, you'll need to configure the Surefire plugin to continue a
build even if it encounters afailure. The default behavior isto stop a build
whenever aunit test failure is encountered. To override this behavior, you'll need
to set thet est Fai | ur el gnor e configuration property on the Surefire plugin to true.

239

http://www.junit.org
http://www.testng.org

The Build Lifecycle

Example 10.12. Configuring Surefireto Ignore Test Failures

<bui | d>
<pl ugi ns>

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<confi gurati on>

<t est Fai | ur el gnore>true</testFail urel gnore>

</ confi guration>

</ pl ugi n>

</biﬁgins>
</ bui | d>

If you would like to skip tests altogether, you can do so by executing the following
command:

$ mvn install -Dmaven.test.skip=true

Themaven. t est . ski p variable controls both the Compiler and the Surefire plugin,
If you passin maven. t est . ski p you've told Maven to ignore tests atogether.

10.3.6. Install

Theinstal | goa of the Install pluginisamost always bound to thei nst al |

lifecycle phase. Thisi nstal | :install goa ssimply installs a project's main artifact

to the local repository. If you have a project with agr oupl d of

org.sonatype.mavenbook, anartifact|d of si npl e-test, and aversi on of 1.0.2,
theinstall:install goal isgoing to copy the JAR file from
target/sinple-test-1.0.2.jar {0

~/ . m2/ reposi t ory/ or g/ sonat ype/ mavenbook/ si npl e-test/ 1. 0. 2/sinple-test-1.0.2.]ar.
If the project has POM packaging, this goal will copy the POM to the local

repository.

10.3.7. Deploy
The depl oy goal of the Deploy plugin is usually bound to the depl oy lifecycle

240

The Build Lifecycle

phase. This phase is used to deploy an artifact to aremote Maven repository, thisis
usually required to update a remote repository when you are performing arelease.
The deployment procedure can be as simple as copying afile to another directory
or as complex as transferring afile over SCP using a public key. Deployment
settings usually involve credentials to aremote repository, and, as such,
deployment settings are usually not stored in apom xm . Instead, deployment
settings are more frequently found in an individual user's~/ . n2/ settings. xm .
For now, all you need to know isthat the depl oy: depl oy goal isbound to the
depl oy phase and it takes care of transporting an artifact to a published repository
and updating any repository information which might be affected by such a
deployment.

241

Chapter 11. Build Profiles

11.1. What Are They For?

Profiles alow for the ability to customize a particular build for a particular
environment; profiles enable portability between different build environments.

What do we mean by different build environments? Two example build
environments are production and development. When you are working in a
development environment, your system might be configured to read from a
development database instance running on your local machine while in production,
your system is configured to read from the production database. Maven allows you
to define any number of build environments (build profiles) which can override
any of the settingsin the pom xn . You could configure your application to read
from your local, development instance of a database in your "development” profile,
and you can configure it to read from the production database in the "production”
profile. Profiles can also be activated by the environment and platform, you can
customize a build to run differently depending the Operating System or the
installed JDK version. Before we talk about using and configuring Maven profiles,
we need to define the concept of Build Portability.

11.1.1. What is Build Portability

A build's "portability” is a measure of how easy it isto take a particular project and
build it in different environments. A build which works without any custom
configuration or customization of propertiesfilesis more portable than a build
which requires agreat deal of work to build from scratch. The most portable

proj ects tend to be widely used open source projects like Apache Commons of
Apache Vel ocity which ship with Maven builds which require little or no
customization. Put simply, the most portable project builds tend to just work, out
of the box, and the least portable builds require you to jump through hoops and
configure platform specific paths to locate build tools. Before we show you how to
achieve build portability, let's survey the different kinds of portability we are

242

Build Profiles

talking about.

11.1.1.1. Non-Portable Builds

The lack of portability is exactly what all build tools are made to prevent -
however, any tool can be configured to be non-portable (even Maven). A
non-portable project is buildable only under a specific set of circumstances and
criteria(e.g., your local machine). Unless you are working by yourself and you
have no plans on ever deploying your application to another machine, it is best to
avoid non-portability entirely. A non-portable build only runs on a single machine,
itisa"one-off". Maven is designed to discourage non-portable builds by offering
the ability to customize builds using profiles.

When a new developer gets the source for a non-portable project, they will not be
able to build the project without rewriting large portions of abuild script.

11.1.1.2. Environment Portability

A build exhibits environment portability if it has a mechanism for customizing
behavior and configuration when targeting different environments. A project that
contains areference to atest database in a test environment, for example, and a
production database in a production environment, is environmentally portable. It is
likely that this build has a different set of properties for each environment. When
you move to a different environment, one that is not defined and has no profile
created for it, the project will not work. Hence, it is only portable between defined
environments.

When a new developer gets the source for an environmentally portable project,
they will have to run the build within a defined environment or they will have to
create a custom environment to successfully build the project.

11.1.1.3. Organizational (In-House) Portability

The center of thislevel of portability isa project's requirement that only a select
few may access internal resources such as source control or an
internally-maintained Maven repository. A project at alarge corporation may
depend on a database available only to in-house developers, or an open source

243

Build Profiles

project might require a specific level of credentials to publish aweb site and
deploy the products of abuild to a public repository.

If you attempt to build an in-house project from scratch outside of the in-house
network (for example, outside of a corporate firewall), the build will fail. It may
fail because certain required custom plugins are unavailable, or project
dependencies cannot be found because you don't have the appropriate credentials
to retrieve dependencies from a custom remote repository. Such aproject is
portable only across environments in a single organization.

11.1.1.4. Wide (Universal) Portability

Anyone may download awidely portable project's source, compile, and install it
without customizing a build for a specific environment. Thisisthe highest level of
portability; anything less requires extrawork for those who wish to build your
project. Thislevel of portability is especially important for open source projects,
which depend on the ability for would-be contributors to easily download and
build from source.

Any developer could download the source for awidely portable project.

11.1.2. Selecting an Appropriate Level of Portability

Clearly, you'll want to avoid creating the worst-case scenario: the non-portable
build. Y ou may have had the misfortune to work or study at an organization that
had critical applications with non-portable builds. In such organizations, you
cannot deploy an application without the help of a specific individual on a specific
machine. In such an organization, it is also very difficult to introduce new project
dependencies or changes without coordinating the change with the single person
who maintains such a non-portable build. Non-portable builds tend to grow in
highly political environments when one individual or group needs to exert control
over how and when a project is built and deployed. "How do we build the system?
Oh, we've got to call Jack and ask him to build it for us, no one else deploys to
production.” That is a dangerous situation which is more common that you would
think. If you work for this organization, Maven and Maven profiles provide away
out of this mess.

244

Build Profiles

On the opposite end of the portability spectrum are widely portable builds. Widely
portable builds are generally the most difficult build systems to attain. These builds
restrict your dependencies to those projects and tools that may be freely distributed
and are publicly available. Many commercial software packages might be excluded
from the most-portable builds because they cannot be downloaded before you have
accepted a certain license. Wide portability also restricts dependencies to those
pieces of software that may be distributed as Maven artifacts. For example, if you
depend upon Oracle JIDBC drivers, your users will have to download and install
them manually; thisis not widely portable as you will have to distribute a set of
environment setup instructions for people interested in building your application.
On the other hand, you could use a JDBC driver which is available from the public
Maven repositories like MySQL or HSQLDB.

As stated previously, open source projects benefit from having the most widely
portable build possible. Widely portable builds reduce the inefficiencies associated
with contributing to a project. In an open source project (such as Maven) there are
two distinct groups. end-users and devel opers. When an end-user uses a project
like Maven and decides to contribute a patch to Maven, they have to make the
transition from using the output of abuild to running a build. They have to first
become a developer, and if it isdifficult to learn how to build a project, this
end-user has adisincentive to take the time to contribute to a project. In awidely
portable project, an end-user doesn't have to follow a set or arcane build
Instructions to start becoming a devel oper, they can download the source, modify
the source, build, and submit a contribution without asking someone to help them
set up a build environment. When the cost of contributing source back to an
open-source project is lower, you'll see an increase in source code contributions,
especially casual contributions which can make the difference between a project's
success and a project's failure. One side-effect of Maven's adoption across awide
group of open source projectsisthat it has made it easier for developersto
contribute code to various open source projects.

11.2. Portability through Maven Profiles

A profilein Maven is an alternative set of configuration values which set or

245

Build Profiles

override default values. Using a profile, you can customize a build for different
environments. Profiles are configured in the pom xm and are given an identifier.
Then you can run Maven with a command-line flag that tells Maven to execute
goalsin aspecific profile. The following pom xm usesapr oducti on profileto
override the default settings of the Compiler plugin.

Example 11.1. Using a Maven Profileto Override Production Compiler
Settings

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_ 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>sinple</artifactld>
<packagi ng>j ar </ packagi ng>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<nane>si npl e</ name>
<url >http:// maven. apache. org</url >
<dependenci es>
<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<ver si on>3. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
</ dependenci es>
<profil es>#
<profil e>
<i d>producti on</i d>#
<bui | d>#
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-conpil er-plugi n</artifactld>
<confi gurati on>
<debug>f al se</ debug>#
<optim ze>true</optim ze>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</profil e>
</profil es>
</ proj ect >

246

Build Profiles

In this example, we've added a profile named pr oduct i on that overrides the default
configuration of the Maven Compiler plugin, let's examine the syntax of this
profile in detail.

[

Theprofil es elementisinthe pom xn , it contains one or moreprofil e
elements. Since profiles override the default settingsin apom xni , the
profiles element isusualy listed asthe last element in apom xni .

Each profile hasto have ani d element. Thisi d element contains the name
which is used to invoke this profile from the command-line. A profileis
invoked by passing the -P<pr ofile_id> command-line argument to Maven.
A profil e element can contain many of the elements which can appear under
the pr oj ect element of aPOM XML Document. In this example, we're
overriding the behavior of the Compiler plugin and we have to override the
plugin configuration which is normally enclosed in abui I d and apl ugi ns
element.

We're overriding the configuration of the Maven Compiler plugin. We're
making sure that the bytecode produced by the production profile doesn't
contain debug information and that the bytecode has gone through the
compiler's optimization routines.

To execute mvn install under the pr oduct i on profile, you need to pass the
-Pproduction argument on the command-line. To verify that the pr oduct i on
profile overrides the default Compiler plugin configuration, execute Maven with
debug output enabled (-X) as follows:

~/ exanpl es/profile $ nvn clean install -Pproduction -X
. (omtting debugging output) ...

[DEBUG Configuring nbjo 'o.a.mplugins: maven-conpil er-pl ugi n: 2. 0. 2: t est Conpi | €

[DEBUG (f) basedir = ~\exanples\profile

[DEBUG (f) buildbDirectory = ~\exanpl es\profile\target

[DEBUG (f) compilerld = javac
[DEBUG (f) debug = fal se

[DEBUG (f) failOnError = true
[DEBUG (f) fork = fal se

[DEBUG (f) optimize = true

[DEBUG (f) outputDirectory =\

[DEBUG (f) outputFileNane = sinple-1. 0- SNAPSHOT
[DEBUG (f) showbDeprecation = fal se

[DEBUG (f) showMarnings = fal se

[DEBUG (f) staleMlIlis =0

~\ svnw\ sonat ype\ exanpl es\profil e\target\test-classes

247

Build Profiles

[DEBUG (f) verbose = fal se
[DEBUG -- end configuration --
. (omtting debugging output) ...

This excerpt from the debug output of Maven shows the configuration of the
Compiler plugin under the production profile. As shown in the output, debug is set
to falseand opti i ze iS Set to true.

11.2.1. Overriding a Project Object Model

While the previous example showed you how to override the default configuration
properties of asingle Maven plugin, you still don't know exactly what aMaven
profileis allowed to override. The short-answer to that question is that a Maven
profile can override amost everything that you would have in apom xm . The
Maven POM contains an element under project called profi | es containing a
project's aternate configurations, and under this element are profile elements
which define each profile. Each profile must have ani d, and other than that, it can
contain almost any of the elements one would expect to see under project. The
following XML document shows all of the elements, a profile is allowed to
override.

Example 11.2. Elements Allowed in a Profile

<pr oj ect >
<profil es>
<profil e>
<bui | d>
<def aul t Goal >. . . </ def aul t Coal >
<fi nal Name>. . . </ fi nal Name>
<resources>...</resources>
<t est Resour ces>. .. </t est Resources>
<pl ugi ns>. . . </ pl ugi ns>
</ bui | d>
<reporting>...</reporting>
<nmodul es>. . . </ nodul es>
<dependenci es>. . . </ dependenci es>
<dependencyManagenent >. . . </ dependencyManagenent >
<di stri buti onManagenent >. .. </ di stri buti onManagenent >
<repositories>. ..</repositories>
<pl ugi nReposi tories>. .. </plugi nReposi tori es>
<properties>...</properties>
</profile>

248

Build Profiles

</profil es>
</ proj ect >

A profile can override an element shown with ellipses. A profile can override the
final name of a project's artifact in a profile, the dependencies, and the behavior of
aproject's build via plugin configuration. A profile can also override the
configuration of distribution settings depending on the profile; for example, if you
need to publish an artifact to a staging server in a staging profile, you would create
astaging profile which overridesthe di st ri but i onManagenent elementin a
profile.

11.3. Profile Activation

In the previous section we showed you how to create a profile that overrides
default behavior for a specific target environment. In the previous build the default
build was designed for development and the pr oduct i on profile exists to provide
configuration for a production environment. What happens when you need to
provide customizations based on variables like operating systems or JDK version?
Maven provides away to "activate" a profile for different environmental
parameters, thisis called profile activation.

Take the following example, assume that we have a Javalibrary that has a specific
feature only available in the Java 6 release: the Scripting Engine as defined in
JSR-223. Y ou've separated the portion of the library that deals with the scripting
library into a separate Maven project, and you want people running Java 5 to be
able to build the project without attempting to build the Java 6 specific library
extension. Y ou can do this by using a Maven profile that adds the script extension
module to the build only when the build is running within a Java 6 JDK. First, let's
take alook at our project's directory layout and how we want devel opers to build
the system.

When someone runs mvn install with a Java 6 JDK, you want the build to include
thesi npl e-scri pt project's build, when they are running in Java 5, you would like
to skip the si npl e-scri pt project build. If you failed to skip the si npl e- scri pt

249

http://jcp.org/en/jsr/detail?id=223

Build Profiles

project build in Java 5, your build would fail because Java 5 does not have the
Scri pt Engi ne on the classpath. Let's take alook at the library project's pom xm :

Example 11.3. Dynamic Inclusion of Submodules Using Profile Activation

<project xm ns="http:// maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0. 0
http: // maven. apache. or g/ maven- v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>
<artifactld>sinple</artifactld>
<packagi ng>j ar </ packagi ng>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<name>si npl e</ nanme>
<url >http://maven. apache. or g</url >
<dependenci es>
<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<ver si on>3. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
</ dependenci es>
<profil es>
<profil e>
<i d>j dk16</i d>
<activati on>#
<j dk>1. 6</j dk>
</activation>
<nmodul es>#
<nodul e>si npl e- scri pt </ nodul e>
</ nodul es>
</profil e>
</profil es>
</ proj ect >

If you run mvn install under Java 1.6, you will see Maven descending into the

si mpl e-scri pt subdirectory to build the si npl e-scri pt project. If you are
running mvn install in Java 1.5, the build will not try to build the si npl e- scri pt
submodule. Exploring this activation configuration in more detail:

[0 Theactivation element lists the conditions for profile activation. In this
example, we've specified that this profile will be activated by Java versions
that begin with "1.6". Thiswould include"1.6.0_03", "1.6.0_02", or any

250

Build Profiles

other string that began with "1.6". Activation parameters are not limited to
Javaversion, for afull list of activation parameters, see Activation
Configuration.

[0 Inthisprofile we are adding the module si npl e- scri pt . Adding this module
will cause Maven to look in the si npl e-scri pt/ subdirectory for apom xni .

11.3.1. Activation Configuration

Activations can contain one of more selectorsincluding JDK versions, Operating
System parameters, files, and properties. A profile is activated when all activation
criteria has been satisfied. For example, a profile could list an Operating System
family of Windows, and a JDK version of 1.4, this profile will only be activated
when the build is executed on a Windows machine running Java 1.4. If the profile
is active then all elements override the corresponding project-level elements asiif
the profile were included with the -P command-line argument. The following
example, lists a profile which is activated by a very specific combination of
operating system parameters, properties, and a JDK version.

Example 11.4. Profile Activation Parameters. JDK Version, OS Parameters,
and Properties

<pr oj ect >

<profil es>
<profil e>
<i d>dev</i d>
<activation>
<acti veByDef aul t >f al se</ acti veByDef aul t >#
<j dk>1. 5</j dk>#
<0s>
<nanme>W ndows XP</ name>#
<fam | y>W ndows</ fam | y>
<ar ch>x86</ ar ch>
<versi on>5. 1. 2600</ ver si on>
</ os>
<property>
<name>mavenVer si on</ nane>#
<val ue>2. 0. 5</ val ue>
</ property>
<file>
<exi sts>fil e2. properties</exists>#
<m ssi ng>fil el. properties</m ssing>
</file>

251

Build Profiles

</ activati on>

</profil e>
</profiles>
</ proj ect >

This previous example defines a very narrow set of activation parameters. Let's
examine each activation criterion in detail:

[0 TheactiveByDef aul t element controls whether this profile is considered
active by default.

[0 Thisprofilewill only be active for JDK versions that begin with "1.5". This
includes"1.5.0 01", "1.5.1".

[0 Thisprofiletargets a very specific version of Windows XP, version 5.1.2600
on a 32-bit platform. If your project uses the native pluginto build aC
program, you might find yourself writing projects for specific platforms.

[0 Theproperty element tells Maven to activate this profile if the property
mavenVer si on IS Set to the value 2. 0. 5. mavenVer si on isan implicit property
that is available to all Maven builds.

[0 Thefil e element allows usto activate a profile based on the presence (or
absence) of files. The dev profile will be activated if afile named
file2. properties existsin the base directory of the project. The dev profile
will only be activated if thereisno filenamedfil el. properti es fileinthe
base directory of the project.

11.3.2. Activation by the Absence of a Property

Y ou can activate a profile based on the value of a property like envi r onnent . t ype.
Y ou can activate adevel opnent profileif envi ronnent . t ype equalsdev, or a
product i on profileif envi ronment . t ype equals pr od. Y ou can also activate a
profile in the absence of a property. The following configuration activates a profile
if the property envi ronnment . t ype is not present during Maven execution.

Example 11.5. Activating Profilesin the Absence of a Property

252

Build Profiles

<proj ect >

<profil es>
<profil e>
<i d>devel opnent </ i d>
<activati on>
<property>
<name>! envi ronnent . t ype</ nanme>
</ property>
</ activation>
</profile>
</profil es>
</ proj ect >

Note the exclamation point prefixing the property name. The exclamation point is
often referred to as the "bang" character and signifies "not". This profileis
activated when no ${ envi ronnent . t ype} property is set.

11.4. Listing Active Profiles

Maven profiles can be defined in either pom xm , profiles. xn

~/ . n2/ settings.xm , Or ${ M2_HOVE}/ conf/ set ti ngs. xm . With these four levels,
there's no good way of keeping track of profiles available to a particular project
without remembering which profiles are defined in these four files. To make it
easier to keep track of which profiles are available, and where they have been
defined, the Maven Help plugin definesagoal, acti ve- profi | es, which lists all
the active profiles and where they have been defined. Y ou can run the
active-profiles goal, asfollows:

$ mvn hel p: active-profiles
Active Profiles for Project 'My Project':

The following profiles are active:
- my-settings-profile (source: settings.xm)

- ny-external -profile (source: profiles.xn)
- my-internal -profile (source: pom xm)

253

Build Profiles

11.5. Tips and Tricks

Profiles can encourage build portability. If your build needs subtle customizations
to work on different platforms or if you need your build to produce different results
for different target platforms, project profiles increase build portability. Settings
profiles generally decrease build portability by adding extra-project information
that must be communicated from developer to developer. The following sections
provide some guidelines and some ideas for applying Maven profiles to your
project.

11.5.1. Common Environments

One of the core motivations for Maven project profiles was to provide for
environment-specific configuration settings. In a development environment, you
might want to produce bytecode with debug information and you might want to
configure your system to use a development database instance. In a production
environment you might want to produce asigned JAR and configure the system to
use a production database. In this chapter, we defined a number of environments
with identifierslike dev and pr od. A simpler way to do this would be to define
profiles that are activated by environment properties and to use these common
environment properties across al of your projects. For example, if every project
had adevel opnent profile activated by a property named envi r onnent . t ype
having avalue of dev, and if those same projects had apr oduct i on profile
activated by a property named envi r onnent . t ype having avalue of pr od, you
could create adefault profilein your set ti ngs. xm that always set

envi ronment . t ype t0 dev on your development machine. This way, each project
definesadev profile activated by the same environment variable. Let's see how
thisisdone, thefollowing set ti ngs. xm definesaprofilein~/ . n2/ setti ngs. xm
which setsthe envi r onnent . t ype property to dev.

Example 11.6. ~/.m2/settings.xml defines a default profile setting
environment.type

<settings>

254

Build Profiles

<profil es>
<profile>
<activati on>
<acti veByDef aul t >t rue</ acti veByDef aul t >
</ activation>
<properties>
<envi ronment . t ype>dev</ envi ronnent . t ype>
</ properties>
</profil e>
</profil es>
</settings>

This means that every time you run Maven on your machine, this profile will be

activated and the property envi r onnent . t ype will have the value dev. Y ou can

then use this property to activate profiles defined in a project's pom xm asfollows.

Let'stake alook at how aproject'spom xm would define a profile activated by
envi ronment . t ype having the value dev.

Example 11.7. Project Profile Activated by environment.type equalling 'dev’

<pr oj ect >

<profil es>
<profil e>
<i d>devel opnent </ i d>
<activation>
<property>
<name>envi r onnment . t ype</ name>
<val ue>dev</ val ue>
</ property>
</activation>
<properties>

<dat abase. dri ver d assNane>com nysql . j dbc. Dri ver </ dat abase. dri ver d assNa

<dat abase. url >
j dbc: mysqgl ://1 ocal host: 3306/ app_dev
</ dat abase. ur| >
<dat abase. user >devel opnent _user </ dat abase. user >
<dat abase. passwor d>devel oprment _passwor d</ dat abase. passwor d>
</ properties>
</profil e>
<profil e>
<i d>pr oducti on</i d>
<activati on>
<property>
<nanme>envi r onnent . t ype</ nanme>
<val ue>pr od</ val ue>
</ property>

ne>

255

Build Profiles

</activation>
<properties>
<dat abase. dri ver d assNane>com nysql . j dbc. Dri ver </ dat abase. dri ver Cl assNane>
<dat abase. url >j dbc: nysqgl : / / mast er 01: 3306, sl ave0l: 3306/ app_pr od</ dat abase. url >
<dat abase. user >pr od_user </ dat abase. user >
</ properties>
</[profil e>
</profil es>
</ proj ect >

This project defines some properties like dat abase. url and dat abase. user which
might be used to configure another Maven plugin configured in the pom xm . There
are plugins available that can manipulate the database, run SQL, and plugins like
the Maven Hibernate3 plugin which can generate annotated model objects for use
In persistence frameworks. A few of these plugins, can be configured in apom xni
using these properties. These properties could also be used to filter resources. In
this example, because we've defined a profilein~/ . n2/ set ti ngs. xmi which sets
envi ronment . t ype to dev, the development profile will always be activated when
we run Maven on our development machine. Alternatively, if we wanted to
override this default, we could set a property on the command-line. If we need to
activate the production profile, we could always run Maven with:

~/ exanpl es/ profiles $ nvn install -Denvironnent.type=prod

Setting a property on the command-line would override the default property set in
~/ . m2/ settings. xm . We could have just defined a profile with ani d of "dev" and
invoked it directly with the -P command-line argument, but using this

envi ronnment . t ype property allows usto code other project pom xm filesto this
standard. Every project in your codebase could have a profile which is activated by
the same envi ronnent . t ype property set in every user's~/ . n/ settings. xm . In
thisway, developers can share common configuration for development without
defining this configuration in non-portable set ti ngs. xn files.

11.5.2. Protecting Secrets

This best practice builds upon the previous section. In Project Profile Activated by
environment.type equalling 'dev', the production profile does not contain the

256

Build Profiles

dat abase. passwor d property. I've done this on purpose to illustrate the concept of
putting secrets in you user-specific set ti ngs. xni . If you were developing an
application at a large organization which values security, it islikely that the
majority of the development group will not know the password to the production
database. In an organization that draws a bold line between the development group
and the operations group, thiswill be the norm. Developers may have accessto a
development and a staging environment, but they might not have (or want to have)
access to the production database. There are a number of reasons why this makes
sense, particularly if an organization is dealing with extremely sensitive financial,
intelligence, or medical information. In this scenario, the production environment
build may only be carried out by alead developer or by a member of the
production operations group. When they run this build using the pr od

envi ronnent . t ype, they will need to define thisvariablein their set ti ngs. xm as
follows:

Example 11.8. Storing Secretsin a User-specific Settings Profile

<settings>
<profil es>
<profil e>
<acti veByDef aul t >t rue</ act i veByDef aul t >
<properties>
<envi ronnment . t ype>pr od</ envi r onnment . t ype>
<dat abase. passwor d>nllss10ni npOss1bl 3</ dat abase. passwor d>
</ properties>
</profile>
</profil es>
</settings>

This user has defined a default profile which setsthe envi r onnent . t ype to prod
and which also sets the production password. When the project is executed, the
production profileis activated by the envi r onnent . t ype property and the

dat abase. passwor d property is populated. Thisway, you can put all of the
production-specific configuration into a project'spom xm and leave out only the
single secret necessary to access the production database.

Note

257

Build Profiles

Secrets usually conflict with wide portability, but this makes sense. Y ou
wouldn't want to share your secrets openly.

11.5.3. Platform Classifiers

Let's assume that you have alibrary or a project that produces platform-specific
customizations. Even though Javais platform-neutral, there are times when you
might need to write some code that invokes platform-specific native code. Another
possibility isthat you've written some C code which is compiled by the Maven
Native plugin and you want to produce a qualified artifact depending on the build
platform. Y ou can set a classifier with the Maven Assembly plugin or with the
Maven Jar plugin. The following pom xm produces a qualified artifact using
profiles which are activated by Operation System parameters. For more
information about the Maven Assembly plugin, see Chapter 12, Maven Assemblies.

Example 11.9. Qualifying Artifacts with Platform Activated Project Profiles

<pr oj ect >

<profil es>
<profil e>
<i d>wi ndows</i d>
<activati on>
<0S>
<fam | y>wi ndows</fam | y>
</ os>
</activation>
<bui | d>
<pl ugi ns>
<pl ugi n
<artifactld>maven-jar-plugin</artifactld>
<confi gurati on>
<cl assi fier>w n</cl assifier>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</profil e>
<profile>
<i d>l i nux</i d>
<activati on>
<0S>

258

Build Profiles

<fam | y>uni x</fam | y>
</ os>
</activation>
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-jar-plugin</artifactld>
<confi gurati on>
<cl assi fi er>linux</cl assifier>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</profil e>
</profil es>
</ proj ect >

If the Operating System isin the Windows family, thispom xm qualifiesthe JAR
artifact with "-win". If the Operating System isin the Unix family, the artifact is
gualified with "-linux". Thispom xm successfully adds the qualifiersto the
artifacts, but it is more verbose than it need to be due to the redundant
configuration of the Maven Jar plugin in both profiles. This example could be
rewritten to use variable substitution to minimize redundancy as follows:

Example 11.10. Qualifying Artifacts with Platform Activated Project Profiles
and Variable Substitution

<pr oj ect >
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-jar-plugin</artifactld>
<confi guration>
<cl assifier>${envC assifier}</classifier>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

<profil es>
<profil e>
<i d>wi ndows</i d>
<activation>
<0S>
<fam | y>wi ndows</f ami | y>

259

Build Profiles

</ os>
</activation>
<properties>
<envd assi fi er>w n</envd assifier>
</ properties>
</profile>
<profil e>
<i d>l i nux</id>
<activati on>
<o0s>
<fam | y>uni x</fam | y>
</ 0os>
</activation>
<properties>
<envd assi fi er>l i nux</envd assifier>
</ properties>
</profil e>
</profiles>
</ proj ect >

Inthispom xm , each profile doesn't need to include abui | d element to configure
the Jar plugin. Instead, each profile is activated by the Operating System family
and setsthe envd assi fi er property to either wi n or 1'i nux. Thisenvd assi fi er
isthen referenced in the default pom xm bui | d element to add a classifier to the
project's JAR artifact. The JAR artifact will be named

${final Namre}-${envC assifier}.jar andincluded as adependency using the
following dependency syntax:

Example 11.11. Depending on a Qualified Artifact

<dependency>
<gr oupl d>com myconpany</ gr oupl d>
<artifactld>ny-project</artifactld>
<ver si on>1. 0</ ver si on>
<cl assi fier>linux</classifier>
</ dependency>

11.6. Summary

When used judiciously, profiles can make it very easy to customize a build for

260

Build Profiles

different platforms. If something in your build needs to define a platform-specific
path for something like an application server, you can put these configuration
pointsin aprofile which is activated by an operating system parameter. If you have
a project which needs to produce different artifacts for different environments, you
can customize the build behavior for different environments and platforms via
profile-specific plugin behavior. Using profiles, builds can become portable, there
IS no need to rewrite your build logic to support a new environment, just override
the configuration that needs to change and share the configuration points which
can be shared.

261

Chapter 12. Maven Assemblies

12.1. Introduction

Maven provides plugins that are used to create the most common archive types,
most of which are consumable as dependencies of other projects. Some examples
include the JAR, WAR, EJB, and EAR plugins. As discussed in Chapter 10, The
Build Lifecycle these plugins correspond to different project packaging types each
with adlightly different build process. While Maven has plugins and customized
lifecycles to support standard packaging types, there are times when you'll need to
create an archive or directory with a custom layout. Such custom archives are
called Maven Assemblies.

There are any number of reasons why you may want to build custom archives for
your project. Perhaps the most common is the project distribution. The word
‘distribution’ means many different things to different people (and projects),
depending on how the project is meant to be used. Essentially, these are archives
that provide a convenient way for usersto install or otherwise make use of the
project’s releases. In some cases, this may mean bundling a web application with
an application server like Jetty. In others, it could mean bundling API
documentation alongside source and compiled binaries like jar files. Assemblies
usually come in handy when you are building the final distribution of a product.
For example, products like Nexus introduced in Chapter 16, Repository
Management with Nexus, are the product of large multi-module Maven products,
and the final archive you download from Sonatype was created using a Maven
Assembly.

In most cases, the Assembly pluginisideally suited to the process of building
project distributions. However, assemblies don’t have to be distribution archives,
assemblies are intended to provide Maven users with the flexibility they need to
produce customized archives of all kinds. Essentially, assemblies are intended to
fill the gaps between the standard archive formats provided by project package
types. Of course, you could write an entire Maven plugin simply to generate your

262

Maven Assemblies

own custom archive format, along with a new lifecycle mapping and
artifact-handling configuration to tell Maven how to deploy it. But the Assembly
plugin makes this unnecessary in most cases by providing generalized support for
creating your own archive recipe without spending so much time writing Maven
code.

12.2. Assembly Basics

Before we go any further, it’ s best to take a minute and talk about the two main
goalsin the Assembly plugin: assenbl y: assenbl y, and the si ngl e mojo. | list
these two goalsin different ways because it reflects the difference in how they’re
used. Theassenbl y: assenbl y goal is designed to be invoked directly from the
command line, and should never be bound to abuild lifecycle phase. In contrast,
the si ngl e mojo is designed to be a part of your everyday build, and should be
bound to a phase in your project’ s build lifecycle.

The main reason for this difference is that the assenbl y: assenbl y goal iswhat
Maven terms an aggregator mojo; that is, a mojo which is designed to run at most
oncein abuild, regardless of how many projects are being built. It draws its
configuration from the root project - usualy the top-level POM or the command
line. When bound to alifecycle, an aggregator mojo can have some nasty
side-effects. It can force the execution of the package lifecycle phase to execute
ahead of time, and can result in builds which end up executing the package phase
twice.

Because the assenbl y: assenbl y goal iS an aggregator mojo, it raises some issues
in multi-module Maven builds, and it should only be called as a stand-alone mojo
from the command-line. Never bind an assenbl y: assenbl y execution to a
lifecycle phase. assenbl y: assenbl y was the original goal in the Assembly plugin,
and was never designed to be part of the standard build process for a project. Asit
became clear that assembly archives were alegitimate requirement for projects to
produce, the si ngl e mojo was devel oped. This mojo assumes that it has been
bound to the correct part of the build process, so that it will have access to the
project files and artifacts it needs to execute within the lifecycle of alarge
multi-module Maven project. In a multi-module environment, it will execute as

263

Maven Assemblies

many times asit is bound to the different module POMs. Unlike
assenbl y: assenbl y, si ngl e will never force the execution of another lifecycle
phase ahead of itself.

The Assembly plugin provides several other goals in addition to these two.
However, discussion of these other mojosis beyond the scope of this chapter,
because they serve exotic or obsolete use cases, and because they are almost never
needed. Whenever possible, you should definitely stick to using

assenbl y: assenbl y for assemblies generated from the command line, and to

si ngl e for assemblies bound to lifecycle phases.

12.2.1. Predefined Assembly Descriptors

While many people opt to create their own archive recipes - called assembly
descriptors - thisisn't strictly necessary. The Assembly plugin provides built-in
descriptors for several common archive types that you can use immediately
without writing aline of configuration. The following assembly descriptors are
predefined in the Maven Assembly plugin:

bi n

The bi n descriptor is used to bundle project LI CENSE, READVE, and NOTI CE files
with the project’ s main artifact, assuming this project builds ajar asitsmain
artifact. Think of this as the smallest possible binary distribution for completely
self-contained projects.

jar-w th-dependenci es

Thej ar - wi t h- dependenci es descriptor builds a JAR archive with the contents
of the main project jar along with the unpacked contents of all the project’s
runtime dependencies. Coupled with an appropriate Mai n- d ass Manifest entry
(discussed in “Plugin Configuration” below), this descriptor can produce a
self-contained, executable jar for your project, even if the project has
dependencies.

pr oj ect
Theproj ect descriptor ssmply archives the project directory structure asit

264

Maven Assemblies

existsin your file-system and, most likely, in your version control system. Of
course, the target directory is omitted, as are any version-control metadata files
likethe cvs and . svn directorieswe're all used to seeing. Basically, the point of
this descriptor isto create a project archive that, when unpacked, can be built
using Maven.

Src

The sr ¢ descriptor produces an archive of your project source and pom xmi
files, along with any LI CENSE, README, and NOTI CE files that are in the project’s
root directory. This precursor to the project descriptor produces an archive that
can be built by Maven in most cases. However, because of its assumption that
all source files and resources reside in the standard sr ¢ directory, it hasthe
potential to leave out non-standard directories and files that are nonetheless
critical to some builds.

12.2.2. Building an Assembly

The Assembly plugin can be executed in two ways: you can invoke it directly from
the command line, or you can configure it as part of your standard build process by
binding it to a phase of your project’s build lifecycle. Direct invocation hasits
uses, particularly for one-off assemblies that are not considered part of your
project’s core deliverables. In most cases, you'll probably want to generate the
assemblies for your project as part of its standard build process. Doing this has the
effect of including your custom assemblies whenever the project isinstalled or
deployed into Maven’ s repositories, so they are aways available to your users.

As an example of the direct invocation of the Assembly plugin, imagine that you
wanted to ship off a copy of your project which people could build from source.
Instead of just deploying the end-product of the build, you wanted to include the
source as well. Y ou won’'t need to do this often, so it doesn’t make sense to add the
configuration to your POM Instead, you can use the following command:

$ nvn -Ddescriptorld=project assenbly:single

[I NFq [assenbl y: si ngl €]

[INFQ Building tar : /Users/~/nvn-exanpl es-1.0/assenblies/direct-invocation/\
target/direct-invocation-1.0- SNAPSHOT- proj ect.tar. gz
[INFQ Building tar : /Users/~/ nvn-exanpl es-1.0/assenblies/direct-invocation/\

265

Maven Assemblies

target/direct-invocation-1. 0- SNAPSHOT- proj ect.tar. bz2
[INFQ Building zip: /Users/~/nvn-exanpl es-1.0/assenblies/direct-invocation/\
target/direct-invocation-1.0- SNAPSHOT- proj ect. zi p

Imagine you want to produce an executable JAR from your project. If your project
istotally self-contained with no dependencies, this can be achieved with the main
project artifact using the archive configuration of the JAR plugin. However, most
projects have dependencies, and those dependencies must be incorporated in any
executable JAR. In this case, you want to make sure that every time the main
project JAR isinstalled or deployed, your executable JAR goes along with it.

Assuming the main class for the project isor g. sonat ype. mavenbook. App, the
following POM configuration will create an executable JAR:

Example 12.1. Assembly Descriptor for Executable JAR

<project xm ns="http:// maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
http://mven. apache. or g/ maven-v4_0_0. xsd" >

<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook. assenbl i es</ gr oupl d>
<artifactld>executable-jar</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>j ar </ packagi ng>
<nane>Assenbl i es Execut abl e Jar Exanpl e</ name>
<url >http://sonatype. com book</ url >
<dependenci es>
<dependency>
<gr oupl d>comons- | ang</ gr oupl d>
<artifactld>commons-|ang</artifactld>
<ver si on>2. 4</ ver si on>
</ dependency>
</ dependenci es>
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-assenbl y-pl ugi n</artifactld>
<ver si on>2. 2- bet a- 2</ ver si on>
<execut i ons>
<executi on>
<i d>cr eat e- execut abl e-j ar</i d>
<phase>package</ phase>
<goal s>
<goal >si ngl e</ goal >

266

Maven Assemblies

</ goal s>
<confi guration>
<descri pt or Ref s>
<descri pt or Ref >
j ar-wi t h- dependenci es
</ descri pt or Ref >
</ descri pt or Ref s>
<ar chi ve>
<mani f est >
<mai nCl ass>or g. sonat ype. mavenbook. App</ mai nCl ass>
</ mani f est >
</ ar chi ve>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

There are two things to notice about the configuration above. First, we' re using the
descri pt or Ref s configuration section instead of the descri pt or I d parameter we
used last time. This allows multiple assembly typesto be built from the same
Assembly plugin execution, while still supporting our use case with relatively little
extra configuration. Second, the archive el enent under conf i gur at i on Setsthe

Mai n- O ass manifest attribute in the generated JAR. This section is commonly
availablein pluginsthat create JAR files, such as the JAR plugin used for the
default project package type.

Now, you can produce the executable JAR simply by executing mvn package.
Afterward, we'll also get adirectory listing for the target directory, just to verify
that the executable JAR was generated. Finally, just to prove that we actually do
have an executable JAR, we'll try executing it:

$ nvn package
(output omtted) ...
[INFQ [jar:jar]
[INFQ Building jar: ~/nvn-exanpl es-1.0/assenblies/executable-jar/target/\
execut abl e-j ar-1. 0- SNAPSHOT. j ar
[INFQ [assenbly:single {execution: create-executable-jar}]
[NFQ Processing DependencySet (output=)
[INFQ Building jar: ~/mn-exanpl es-1.0/assenblies/executable-jar/target/\
execut abl e-j ar-1. 0- SNAPSHOT- j ar - Wi t h- dependenci es. j ar
(output omtted) ...
$Is -1 target

267

Maven Assemblies

. (output omtted) ...
execut abl e-j ar- 1. 0- SNAPSHOT-j ar - wi t h- dependenci es. j ar
execut abl e-j ar- 1. 0- SNAPSHOT. j ar
. (output omtted) ...
$ java -jar \
t ar get/ execut abl e-j ar- 1. 0- SNAPSHOT-j ar - wi t h- dependenci es. j ar
Hel |l o, World!

From the output shown above, you can see that the normal project build now
produces a new artifact in addition to the main JAR file. The new one hasa
classifier of j ar - wi t h- dependenci es. Finally, we verified that the new JAR
actually is executable, and that executing the JAR produced the desired output of
“Hello, World!”

12.2.3. Assemblies as Dependencies

When you generate assemblies as part of your normal build process, those
assembly archives will be attached to your main project’ s artifact. This means they
will beinstalled and deployed alongside the main artifact, and are then resolvable
in much the same way. Each assembly artifact is given the same basic coordinate
(groupl d, artifactld,andversion) asthe main project. However, these artifacts
are attachments, which in Maven means they are derivative works based on some
aspect of the main project build. To provide a couple of examples, sour ce
assemblies contain the raw inputs for the project build, and

jar-wi t h- dependenci es assemblies contain the project’s classes plusits
dependencies. Attached artifacts are allowed to circumvent the Maven requirement
of one project, one artifact precisely because of this derivative quality.

Since assemblies are (normally) attached artifacts, each must have a classifier to
distinguish it from the main artifact, in addition to the normal artifact coordinate.
By default, the classifier is the same as the assembly descriptor’ s identifier. When
using the built-in assembly descriptors, as above, the assembly descriptor’s
identifier is generally also the same as the identifier used in the descri pt or Ref for
that type of assembly.

Once you’ ve deployed an assembly alongside your main project artifact, how can
you use that assembly as a dependency in another project? The answer isfairly
straightforward. Recall the discussionsin Section 3.5.3, “Maven Coordinates’ and

268

Maven Assemblies

Section 9.5.1, “More on Coordinates’ about project dependenciesin Maven,

proj ects depend on other projects using a combination of four basic elements,
referred to as a project’ s coordinates: groupl d, arti factd, versi on, and

packagi ng. In Section 11.5.3, “Platform Classifiers’, multiple platform-specific
variants of a project’s artifact and available, and the project specifiesacl assi fi er
element with avalue of either wi n or I i nux to select the appropriate dependency
artifact for the target platform. Assembly artifacts can be used as dependencies
using the required coordinates of a project plus the classifier under which the
assembly was installed or deployed. If the assembly isnot a JAR archive, we also
need to declare its type.

12.2.4. Assembling Assemblies via Assembly

Dependencies

How's that for a confusing section title? Let'stry to set up a scenario which would
explain the idea of assembling assemblies. Imagine you want to create an archive
which itself contains some project assemblies. Assume that you have a
multi-module build and you want to deploy an assembly which contains a set of
related project assemblies. In this section’'s example, we create a bundle of
"buildable" project directories for a set of projects that are commonly used
together. For ssmplicity, we'll reuse the two built-in assembly descriptors
discussed above - proj ect andj ar - wi t h- dependenci es. In this particular
example, it is assumed that each project creates the pr oj ect assembly in addition
to its main JAR artifact. Assume that every project in a multi-module build binds
the si ngl e goal to the package phase and usesthe proj ect descri pt or Ref . Every
project in amulti-module will inherit the configuration from atop-level pom xm
whose pl ugi nManagenent element is shown in Example 12.2, “Configuring the
project assembly in top-level POM” .

Example 12.2. Configuring the project assembly in top-level POM

<pr oj ect >
<bui | d>
<pl ugi nManagenent >
<pl ugi ns>

269

Maven Assemblies

<pl ugi n>
<artifactld>maven-assenbl y- pl ugi n</artifactld>
<ver si on>2. 2- bet a- 2</ ver si on>
<executions>
<execut i on>
<i d>cr eat e- pr oj ect - bundl e</i d>
<phase>package</ phase>
<goal s>
<goal >si ngl e</ goal >
</ goal s>
<confi gurati on>
<descri pt or Ref s>
<descri pt or Ref >pr oj ect </ descri pt or Ref >
</ descri pt or Ref s>
</ confi gurati on>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ pl ugi nManagenent >
</ bui | d>

</ proj ect >

Each project POM references the managed plugin configuration from

Example 12.2, “ Configuring the project assembly in top-level POM” using a
minimal plugin declaration in its build section shown in Example 12.3, “Activating
the Assembly Plugin Configuration in Child Projects’.

Example 12.3. Activating the Assembly Plugin Configuration in Child
Projects

<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven- assenbl y-pl ugi n</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

To produce the set of project assemblies, run mvn install from the top-level
directory. Y ou should see Maven installing artifacts with classifiersin your local

repository.

270

Maven Assemblies

$ nvn instal

Installing ~/nvn-exanpl es-1. 0/ assenbl i es/ as- dependenci es/ pr oj ect - parent/\
second- proj ect/target/second- proj ect-1. 0- SNAPSHOT- project.tar.gz to

second- pr oj ect - 1. 0- SNAPSHOT- pr oj ect . tar. gz

Installing ~/nmvn-exanpl es-1. 0/ assenbl i es/ as- dependenci es/ proj ect - parent/\
second- proj ect/tar get/second- proj ect - 1. 0- SNAPSHOT- proj ect.tar. bz2 to

second- proj ect - 1. 0- SNAPSHOT- pr oj ect . tar . bz2

Instal ling ~/nvn-exanpl es-1. 0/ assenbl i es/ as- dependenci es/ pr oj ect - parent /\
second- proj ect/target/second- proj ect-1. 0- SNAPSHOT- project.zip to

second- proj ect - 1. 0- SNAPSHOT- pr oj ect . zi p

When you run install, Maven will copy the each project's main artifact and each
assembly to your local Maven repository. All of these artifacts are now available
for reference as dependenciesin other projectslocally. If your ultimate goal isto
create a bundle which includes assemblies from multiple project, you can do so by
creating another project which will include other project's assemblies as
dependencies. This bundling project (aptly named project-bundle) is responsible
for creating the bundled assembly. The POM for the bundling project would
resemble the XML document listed in Example 12.4, “POM for the Assembly
Bundling Project”.

Example 12.4. POM for the Assembly Bundling Proj ect

<project xm ns="http:// maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="htt p:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_ 0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook. assenbl i es</ gr oupl d>
<artifactld>project-bundle</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>ponx/ packagi ng>
<nane>Assenbl i es- as- Dependenci es Exanpl e Proj ect Bundl e</ hane>
<url >http://sonatype. com book</url >
<dependenci es>
<dependency>
<gr oupl d>or g. sonat ype. mavenbook. assenbl i es</ gr oupl d>
<artifactld>first-project</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>

271

~/ . m2/ reposi t ory/ or g/ sonat ype/ mavenbook/ assenbl i es/ second- pr oj ect/ 1. 0- SNAPSHQOT/ \

~/ . m2/ r eposi t ory/ or g/ sonat ype/ mavenbook/ assenbl i es/ second- pr oj ect/ 1. 0- SNAPSHOT/ \

~/ . m2/ reposi t ory/ or g/ sonat ype/ mavenbook/ assenbl i es/ second- pr oj ect/ 1. 0- SNAPSHQOT/ \ \

Maven Assemblies

<cl assi fier>project</classifier>
<type>zi p</type>
</ dependency>
<dependency>
<gr oupl d>or g. sonat ype. mavenbook. assenbl i es</ gr oupl d>
<artifactld>second-project</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<cl assi fier>project</classifier>
<type>zi p</type>
</ dependency>
</ dependenci es>
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactl d>maven- assenbl y- pl ugi n</artifactl d>
<ver si on>2. 2- bet a- 2</ ver si on>
<execut i ons>
<executi on>
<i d>bundl e- pr oj ect - sources</i d>
<phase>package</ phase>
<goal s>
<goal >si ngl e</ goal >
</ goal s>
<confi gurati on>
<descri pt or Ref s>
<descri pt or Ref >
jar-w t h-dependenci es
</ descri pt or Ref >
</ descri pt or Ref s>
</ confi guration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ pr oj ect >

This bundling project's POM references the two assembliesfromfi r st - pr oj ect
and second- pr oj ect . Instead of referencing the main artifact of each project, the
bundling project's POM specifies a classifier of proj ect and atype of zi p. This
tells Maven to resolve the ZIP archive which was created by the pr oj ect

assembly. Note that the bundling project generates aj ar - wi t h- dependenci es
assembly. j ar - wi t h- dependenci es does not create a particularly elegant bundle, it
simply creates a JAR file with the unpacked contents of al of the dependencies.

j ar-wi t h-dependenci es isreally just telling Maven to take all of the
dependencies, unpack them, and then create a single archive which includes the

272

Maven Assemblies

output of the current project. In this project, it has the effect of creating asingle
JAR filethat puts the two project assembliesfromfi r st - proj ect and
second- pr oj ect Side-by-side.

This exampleillustrates how the basic capabilities of the Maven Assembly plugin
can be combined without the need for a custom assembly descriptor. It achieves
the purpose of creating a single archive that contains the project directories for
multiple projects side-by-side. Thistime, thej ar - wi t h- dependenci es iSjust a
storage format, so we don’t need to specify amai n- C ass manifest attribute. To
build the bundle, we just build the pr oj ect - bundl e project normally:

$ nmvn package

[INFQ [assenbly:single {execution: bundl e-project-sources}]

[NFQ Processing DependencySet (output=)

[INFQ Building jar: ~/downl oads/nvn-exanpl es-1.0/assenblies/as-dependencies/\
proj ect - bundl e/ t ar get / pr oj ect - bundl e- 1. 0- SNAPSHOT- j ar - wi t h- dependenci es. j ar

To verify that the project-bundle assembly contains the unpacked contents of the
assembly dependencies, run jar tf:

$jar tf \
target/ proj ect - bundl e- 1. 0- SNAPSHOT- j ar - wi t h- dependenci es. j ar

first-project-1. 0- SNAPSHOT/ pom xni
first-project-1.0- SNAPSHOT/ src/ mai n/ j aval/ or g/ sonat ype/ mavenbook/ App. j ava
first-project-1.0- SNAPSHOT/ src/test/]aval org/ sonat ype/ mvenbook/ AppTest . j ava

second- proj ect - 1. 0- SNAPSHOT/ pom xni
second- proj ect - 1. 0- SNAPSHOT/ sr ¢/ mai n/ j aval or g/ sonat ype/ mavenbook/ App. j ava
second- proj ect - 1. 0- SNAPSHOT/ src/ t est/ j ava/ or g/ sonat ype/ mavenbook/ AppTest . j ava

After reading this section, the title should make more sense. Y ou've assembled
assemblies from two projects into an assembly using a bundling project which has
a dependency on each of the assemblies.

12.3. Overview of the Assembly Descriptor

When the standard assembly descriptors introduced in Section 12.2, “ Assembly
Basics’ are not adequate, you will need to define your own assembly descriptor.
The assembly descriptor isan XML document which defines the structure and

273

Maven Assemblies

contents of an assembly.

Base Configuration Repository Information

Figure 12.1. Assembly Descriptor Picture

The assembly descriptor contains five main configuration sections, plus two
additional sections: one for specifying standard assembly-descriptor fragments,
called component descriptors, and another for specifying custom file processor
classes to help manage the assembly-production process.

Base Configuration

This section contains the information required by all assemblies, plus some
additional configuration options related to the format of the entire archive, such
as the base path to use for al archive entries. For the assembly descriptor to be
valid, you must at least specify the assembly id, at least one format, and at |east

274

Maven Assemblies

one of the other sections shown above.

File Information
The configurations in this segment of the assembly descriptor apply to specific
files on the file system within the project’ s directory structure. This segment
contains two main sections: files andfil eSets. Youusefiles andfil eSets
to control the permissions of filesin an assembly and to include or exclude files
from an assembly.

Dependency Information

Almost al projects of any size depend on other projects. When creating
distribution archives, project dependencies are usually included in the
end-product of an assembly. This section manages the way dependencies are
included in the resulting archive. This section allows you to specify whether
dependencies are unpacked, added directly to thel i b/ directory, or mapped to
new file names. This section also allows you to control the permissions of
dependenciesin the assembly, and which dependencies are included in an
assembly.

Repository Information

At times, it’s useful to isolate the sum total of all artifacts necessary to build a
project, whether they’ re dependency artifacts, POMs of dependency artifacts, or
even aproject’s own POM ancestry (your parent POM, its parent, and so on).
This section allows you to include one or more artifact-repository directory
structures inside your assembly, with various configuration options. The
Assembly plugin does not have the ability to include plugin artifacts in these
repositories yet.

Module Information

This section of the assembly descriptor allows you to take advantage of these
parent-child relationships when assembling your custom archive, to include
source files, artifacts, and dependencies from your project’s modules. Thisis
the most complex section of the assembly descriptor, because it allows you to
work with modules and sub-modulesin two ways. asaseriesof fil eSets (via
the sour ces section) or asa series of dependencySet s (viathebi nari es

275

Maven Assemblies

section).

12.4. The Assembly Descriptor

This section isatour of the assembly descriptor which contains some guidelines
for developing a custom assembly descriptor. The Assembly plugin is one of the
largest pluginsin the Maven ensemble, and one of the most flexible,

12.4.1. Property References in Assembly Descriptors

Any property discussed in Section 13.2, “Maven Properties’ can be referenced in
an assembly descriptor. Before any assembly descriptor is used by Maven, it is
interpolated using information from the POM and the current build environment.
All properties supported for interpolation within the POM itself are valid for usein
assembly descriptors, including POM properties, POM element values, system
properties, user-defined properties, and operating-system environment variables.

The only exceptions to this interpolation step are elements in various sections of
the descriptor named out put Di r ect ory, out put Di r ect or yMappi ng, OF

out put Fi | eNaneMappi ng. The reason these are held back in their raw form isto
allow artifact- or module-specific information to be applied when resolving
expressionsin these values, on a per-item basis.

12.4.2. Required Assembly Information

There are two essential pieces of information that are required for every assembly:
thei d, and the list of archive formats to produce. In practice, at least one other
section of the descriptor isrequired - since most archive format components will
choke if they don’t have at least onefile to include - but without at least one
format and ani d, thereisno archiveto create. Thei d isused both in the archive's
file name, and as part of the archive' s artifact classifier in the Maven repository.
The format string also controls the archiver-component instance that will create the
final assembly archive. All assembly descriptors must contain ani d and at least
onef or mat .

276

Maven Assemblies

Example 12.5. Required Assembly Descriptor Elements

<assenbl y>
<i d>bundl e</i d>
<f or mat s>
<f or mat >zi p</f or mat >
</format s>

</ assenbl y>

The assembly i d can be any string that does not contain spaces. The standard
practice is to use dashes when you must separate words within the assembly i d. If
you were creating an assembly to create an interesting unique package structure,
you would give your ani d of something likei nt er est i ng- uni que- package. It

al so supports multiple formats within a single assembly descriptor, allowing you to
create the familiar . zi p, . tar. gz, and . tar. bz2 distribution archive set with ease.
If you don't find the archive format you need, you can also create a custom format.
Custom formats are discussed in Section 12.5.8, “conponent Descri pt ors and

cont ai ner Descri pt or Handl ers”. The Assembly plugin supports several archive
formats natively, including:

* jar

* zZip

* tar

* bzip2
* gzip

* tar.gz
* tar.bz2

* rar

277

Maven Assemblies

®* war
¢ ear
¢ sar

e dir
Thei d and f or mat are essential because they will become a part of the coordinates
for the assembled archive. The example from Example 12.5, “Required Assembly
Descriptor Elements” will create an assembly artifact of type zi p with aclassifier
of bundl e.

12.5. Controlling the Contents of an Assembly

Intheory, i d and f or mat are the only absolute requirements for a valid assembly
descriptor; however, many assembly archivers will fail if they do not have at least
one file to include in the output archive. The task of defining the filesto be
included in the assembly is handled by the five main sections of the assembly
descriptor: files,fil eSets, dependencySets, repositories, andmodul eSets. TO
explore these sections most effectively, we'll start by discussing the most
elemental section: fi | es. Then, we'll move on to the two most commonly used
sections, fi | eSet s and dependencySet s. Once you understand the workings of

fil eSets and dependencySet s, it'Seasier to understand r eposi t ori es and

nodul eSet s.

12.5.1. Fil es Section

Theftiles section isthe smplest part of the assembly descriptor, it is designed for
filesthat have a definite location relative to your project’ s directory. Using this
section, you have absolute control over the exact set of files that are included in
your assembly, exactly what they are named, and where they will reside in the
archive.

278

Maven Assemblies

Example 12.6. Including a JAR filein an Assembly usingfiles

<assenbl y>

<files>
<file>
<sour ce>t arget/ nmy-app- 1. 0. j ar </ sour ce>
<out put Di rect ory>l i b</ out put Di r ect or y>
<dest Nane>my- app. j ar </ dest Nanme>
<fil eMbde>0644</fil eMode>
</file>
</files>

</ assenbl y>

Assuming you were building a project called ny- app with aversion of 1. 0,
Example 12.6, “Including a JAR filein an Assembly using fi | es” would include
your project's JAR in the assembly’s1i b/ directory, trimming the version from the
file name in the process so the final file nameissimply ny- app. j ar. It would then
make the JAR readable by everyone and writable by the user that ownsit (thisis
what the mode 0644 means for files, using Unix four-digit Octal permission
notation). For more information about the format of the valueinfi | emode, please
see the Wikipedia's explanation of four-digit Octal notation.

Y ou could build avery complex assembly using file entries, if you knew the full
list of filesto be included. Even if you didn’t know the full list before the build
started, you could probably use a custom Maven plugin to discover that list and
generate the assembly descriptor using references like the one above. While the
files section gives you fine-grained control over the permission, location, and hame
of each filein the assembly archive, listing afi | e element for every filein alarge
archive would be atedious exercise. For the most part, you will be operating on
groups of files and dependenciesusing fi | eSet s. The remaining four
file-inclusion sections are designed to help you include entire sets of files that
match a particular criteria.

12.5.2. Fil eSet s Section
Similar tothefil es section, fi |l eSet s are intended for files that have a definite

279

http://en.wikipedia.org/wiki/File_system_permissions#Octal_notation_and_additional_permissions

Maven Assemblies

location relative to your project’ s directory structure. However, unlike thefi | es
section, fi | eSet s describe sets of files, defined by file and path patterns they
match (or don’t match), and the general directory structure in which they are
located. The simplest fi | eSet just specifiesthe directory where the files are
located:

<assenbl y>

<fil eSet s>
<fil eSet >
<di rect ory>src/ mai n/ j ava</di rect ory>
</[fil eSet>
</fil eSets>

</ assenbl y>

Thisfile set ssimply includes the contents of the sr c/ mai n/ j ava directory from our
project. It takes advantage of many default settings in the section, so let’s discuss
those briefly.

First, you' I notice that we haven't told the file set where within the assembly
matching files should be located. By default, the destination directory (specified
with out put Di rect or y) is the same as the source directory (in our case,

src/ mai n/ j ava). Additionally, we haven't specified any inclusion or exclusion file
patterns. When these are empty, the file set assumes that all files within the source
directory are included, with some important exceptions. The exceptions to thisrule
pertain mainly to source-control metadata files and directories, and are controlled
by the useDef aul t Excl udes flag, which is defaulted to t r ue. When active,

useDef aul t Excl udes Will keep directorieslike . svn/ and cvs/ from being added
to the assembly archive. Section 12.5.3, “ Default Exclusion Patternsfor fi | eSet s”
provides a detailed list of the default exclusion patterns.

If we want more control over thisfile set, we can specify it more explicitly.
Example 12.7, “Including Fileswith fi | eSet ” showsafil eSet element with all
of the default elements specified.

Example 12.7. Including Fileswith fi | eSet

<assenbl y>

<fil eSet s>

280

Maven Assemblies

<fil eSet >
<di rect ory>src/ mai n/java</direct ory>
<out put Di rect ory>src/ mai n/ j ava</ out put Di r ect ory>
<i ncl udes>
<i ncl ude>**</i ncl ude>
</i ncl udes>
<useDef aul t Excl udes>t r ue</ useDef aul t Excl udes>
<fil eMbde>0644</fil eMode>
<di rect or yMode>0755</ di r ect or yMode>
</[fileSet>
</fil eSets>

</ assenbl y>

Thei ncl udes section uses alist of i ncl ude elements, which contain path patterns.
These patterns may contain wildcards such as‘**’ which matches one or more
directoriesor ‘*’ which matches part of afile name, and *? which matches asingle
character in afile name. Example 12.7, “Including Fileswith fi | eSet” usesa

fil eMode entry to specify that filesin this set should be readable by all, but only
writable by the owner. Sincethefi | eSet includes directories, we also have the
option of specifying adi r ect or yMvde that works in much the same way as the

fil eMode. Since adirectories’ execute permission iswhat allows usersto list their
contents, we want to make sure directories are executable in addition to being
readable. Like files, only the owner can write to directoriesin this set.

Thefil eset entry offers some other options aswell. First, it allows for an

excl udes section with aform identical to thei ncl udes section. These exclusion
patterns allow you to exclude specific file patternsfrom afi | eSet . Include
patterns take precedence over exclude patterns. Additionally, you can set the
filtering flagtotrueif you want to substitute property values for expressions
within the included files. Expressions can be delimited either by ${ and} (standard
Maven expressions like ${ pr oj ect . gr oupl d}) or by @and @(standard Ant
expressions like @r oj ect . gr oupl d@. You can adjust the line ending of your files
using thel i neEndi ng element; valid valuesfor | i neEndi ng are:

keep
Preserve line endings from original files. (Thisisthe default value.)

281

Maven Assemblies

unix
Unix-style line endings

If
Only aLine Feed Character

dos
MS-DOS-style line endings

crif

Carriage-return followed by a Line Feed
Finally, if you want to ensure that al file-matching patterns are used, you can use
theuseStrictFilteri ng element with avalue of t rue (the default isf al se). This
can be especially useful if unused patterns may signal missing filesin an
intermediary output directory. When useStrictFilteringissettotrue, the
Assembly plugin will fail if an include pattern is not satisfied. In other words, if
you have an include pattern which includes afile from a build, and that file is not
present, setting useStri ct Fil tering totrue will cause afailureif Maven cannot
find the file to be included.

12.5.3. Default Exclusion Patterns for fil eSets

When you use the default exclusion patterns, the Maven Assembly plugin is going
to be ignoring more than just SVN and CV S information. By default the exclusion
patterns are defined by the DirectoryScanner classin the plexus-utils project hosted
at Codehaus. The array of exclude patternsis defined as a static, final Stri ng array
named DEFAULTEXCLUDES in Di r ect or yScanner . The contents of thisvariable are
shown in Example 12.8, “Definition of Default Exclusion Patterns from Plexus
Utils”.

Example 12.8. Definition of Default Exclusion Patter ns from Plexus Utils

public static final String[] DEFAULTEXCLUDES = {

/1 M scel | aneous typical tenporary files
"**/*~"

By

282

http://svn.codehaus.org/plexus/plexus-utils/trunk/src/main/java/org/codehaus/plexus/util/DirectoryScanner.java
http://plexus.codehaus.org/plexus-utils/

Maven Assemblies

nEE[LR
"EE[OF 0,

n**/ * 1

/1 CVS
"EE [CVS",
"**/CVS/**",
"*x[cvsignhore",

/] SCCS
"**[SCCS",
"**[SCCS/ **",

// Visual SourceSafe
"**[yssver.scc",

/'l Subversi on
"*x[svn",
"xx[svyn/**",

[/l Arch
"*x[arch-ids",
"*x[arch-ids/**",

/ | Bazaar
"*x[bzr",
"Ex[bzr/**",

[/ Sur r oundSCM
"x* [MySCMser ver | nf 0",

/1 Mac
"**/ DS _Store"

This default array of patterns excludes temporary files from editors like GNU
Emacs, and other common temporary files from Macs and afew common source
control systems (although Visual SourceSafe is more of a curse than a source
control system). If you need to override these default exclusion patterns you set
useDef aul t Excl udes to false and then define a set of exclusion patternsin your
own assembly descriptor.

12.5.4. dependencySet s Section
One of the most common requirements for assembliesistheinclusion of a

283

http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/

Maven Assemblies

project’ s dependencies in an assembly archive. Wherefil es andfil eSets ded
with filesin your project, dependency files don't have alocation in your project.
The artifacts your project depends on have to be resolved by Maven during the
build. Dependency artifacts are abstract, they lack a definite location, and are
resolved using a symbolic set of Maven coordinates. While Sincefil e and

fil eSet specifications require aconcrete source path, dependencies are included
or excluded from an assembly using a combination of Maven coordinates and
dependency scopes.

The simplest dependencySet isan empty element:

<assenbl y>
<dependencySet s>
<dependencySet/ >
</ dependencySet s>

</ assenbl y>

The dependencySet above will match al runtime dependencies of your project
(runtime scope includes the compile scope implicitly), and it will add these
dependencies to the root directory of your assembly archive. It will also copy the
current project’s main artifact into the root of the assembly archive, if it exists.

Note

Wait? | thought dependencySet was about including my project's
dependencies, not my project's main archive? This counterintuitive
side-effect was awidely-used bug in the 2.1 version of the Assembly
plugin, and, because Maven puts an emphasis on backward compatibility,
this counterintuitive and incorrect behavior needed to be preserved
between a2.1 and 2.2 release. Y ou can control this behavior by changing
theuseProjectArtifact flagtofal se.

While the default dependency set can be quite useful with no configuration
whatsoever, this section of the assembly descriptor also supports awide array of
configuration options, allowing your to tailor its behavior to your specific
requirements. For example, the first thing you might do to the dependency set

284

Maven Assemblies

above is exclude the current project artifact, by setting the usePr oj ect Arti f act
flagtof al se (again, its default valueist r ue for legacy reasons). Thiswill allow
you to manage the current project’ s build output separately from its dependency
files. Alternatively, you might choose to unpack the dependency artifacts using by
setting the unpack flag to t rue (thisisf al se by default). When unpack is set to
true, the Assembly plugin will combine the unpacked contents of all matching
dependenciesinside the archive’ s root directory.

From this point, there are several things you might choose to do with this
dependency set. The next sections discuss how to define the output location for
dependency sets and how include and exclude dependencies by scope. Finally,
we'll expand on the unpacking functionality of the dependency set by exploring
some advanced options for unpacking dependencies.

12.5.4.1. Customizing Dependency Output Location

There are two configuration options that are used in concert to define the location
for a dependency file within the assembly archive: out put Di rect ory and

out put Fi | eNameMappi ng. Y ou may want to customize the location of
dependenciesin your assembly using properties of the dependency artifacts
themselves. Let's say you want to put all the dependenciesin directories that match
the dependency artifact's gr oupl d. In this case, you would use the

out put Di rect ory element of the dependencySet , and you would supply
something like:

<assenbl y>

<dependencySet s>
<dependencySet >
<out put Di rect ory>${artifact.groupl d} </ out putDi rect ory>
</ dependencySet >
</ dependencySet s>

</ assenbl y>

Thiswould have the effect of placing every single dependency in a subdirectory
that matched the name of each dependency artifact's gr oupl d.

If you wanted to perform afurther customization and remove the version numbers
from al dependencies. Y ou could customize the the output file name for each

285

Maven Assemblies

dependency using the out put Fi | eNameMappi ng element as follows:

<assenbl y>

<dependencySet s>
<dependencySet >
<out put Di rectory>${artifact.groupl d} </ out put Di rect ory>
<out put Fi | eNaneMappi ng>
${artifact.artifactld}.${artifact.extension}
</ out put Fi | eNaneMappi ng>
</ dependencySet >
</ dependencySet s>

</ assenbl y>

In the previous example, a dependency on cormons: commons- codec version 1.3,
would end up in the file commons/ conmons- codec. j ar.

12.5.4.2. Interpolation of Properties in Dependency Output Location
As mentioned in the Assembly Interpolation section above, neither of these
elements are interpolated with the rest of the assembly descriptor, because their
raw values have to be interpreted using additional, artifact-specific expression
resolvers,

The artifact expressions available for these two elements vary only dlightly. In both
cases, al of the ${proj ect. *}, ${ pom *}, and ${*} expressionsthat are available
in the POM and the rest of the assembly descriptor are also available here. For the
out put Fi | eNameMappi ng element, the following processis applied to resolve
expressions.

1. If the expression matchesthe pattern ${artifact. *}:

a. Match against the dependency’s Arti f act instance (resolves: gr oupl d,
artifactld,version,baseVérsion,scope,classifier,andfiIe.*)

b. Match against the dependency’sArti f act Handl er instance (resolves:
expr essi on)

c. Match against the project instance associated with the dependency’s
Artifact (resolves: mainly POM properties)

286

Maven Assemblies

2. If the expression matches the patterns ${ pom *} or ${ pr oj ect . *} .
a. Match against the project instance (MavenPr oj ect) of the current build.

3. If the expression matches the pattern ${ dashd assi fi er ?} and the Artifact
instance contains a non-null classifier, resolve to the classifier preceded by a
dash (-classifier). Otherwise, resolve to an empty string.

4. Attempt to resolve the expression against the project instance of the current
build.

5. Attempt to resolve the expression against the POM properties of the current
build.

6. Attempt to resolve the expression against the available system properties.

7. Attempt to resolve the expression against the available operating-system
environment variables.
The out put Di rect ory valueisinterpolated in much the same way, with the
difference being that thereisno available ${arti f act. *} information, only the
${ proj ect . *} instance for the particular artifact. Therefore, the expressions listed
above associated with those classes (1a, 1b, and 3 in the process listing above) are
unavailable.

How do you know when to use out put Di r ect ory and out put Fi | eNameMappi ng?
When dependencies are unpacked only the out put Di rect ory is used to calculate
the output location. When dependencies are managed as whole files (not
unpacked), both out put Di r ect ory and out put Fi | eNanmeMappi ng can be used
together. When used together, the result is the equivalent of:

<ar chi ve-root - di r >/ <out put Di r ect or y>/ <out put Fi | eNaneMappi ng>

When out put Di rect ory iISmissing, it isnot used. When out put Fi | eNameMappi ng
Ismissing, its default valueis:
${artifact.artifactld}-${artifact.version}${dashC assifier?}.${artifact.extensiol

287

Maven Assemblies

12.5.4.3. Including and Excluding Dependencies by Scope

In Section 9.4, “Project Dependencies’, it was noted that all project dependencies
have one scope or another. Scope determines when in the build process that
dependency normally would be used. For instance, test-scoped dependencies are
not included in the classpath during compilation of the main project sources; but
they are included in the classpath when compiling unit test sources. Thisis because
your project’s main source code should not contain any code specific to testing,
since testing is not afunction of the project (it’s a function of the project’s build
process). Similarly, provided-scoped dependencies are assumed to be present in the
environment of any eventual deployment. However, if a project depends on a
particular provided dependency, it islikely to require that dependency in order to
compile. Therefore, provided-scoped dependencies are present in the compilation
classpath, but not in the dependency set that should be bundled with the project’s
artifact or assembly.

Also from Section 9.4, “Project Dependencies’, recall that some dependency
scopes imply others. For instance, the r unt i me dependency scope impliesthe
conpi | e scope, since al compile-time dependencies (except for those in the

provi ded scope) will be required for the code to execute. There are a number of
complex relationships between the various dependency scopes which control how
the scope of adirect dependency affects the scope of atransitive dependency. In a
Maven Assembly descriptor, we can use scopes to apply different settings to
different sets of dependencies accordingly.

For instance, if we plan to bundle a web application with Jetty to create a
completely self-contained application, we'll need to include all provided-scope
dependencies somewhere in the jetty directory structure we're including. This
ensures those provided dependencies actually are present in the runtime
environment. Non-provided, runtime dependencies will still land in the
WEB-INF/lib directory, so these two dependency sets must be processed
separately. These dependency sets might look similar to the following XML.

Example 12.9. Defining Dependency Sets Using Scope

<assenbl y>

288

http://www.mortbay.org/jetty-6/

Maven Assemblies

<dependencySet s>
<dependencySet >
<scope>pr ovi ded</ scope>
<out put Di rectory>l i b/ ${project.artifactld}</outputDirectory>
</ dependencySet >
<dependencySet >
<scope>runt i me</ scope>
<out put Di rect ory>
webapps/ ${ webCont ext Nane}/WEB- | NF/ | i b
</ out put Di r ect ory>
</ dependencySet >
</ dependencySet s>

</ assenbl y>

Provided-scoped dependencies are added to the i b/ directory in the assembly
root, which is assumed to be a libraries directory that will be included in the Jetty
global runtime classpath. We're using a subdirectory named for the project’s
artifactldinorder to makeit easier to track the origin of a particular library.
Runtime dependencies are included in the WeB- | NF/ 1'i b path of the web
application, which islocated within a subdirectory of the standard Jetty webapps!/
directory that is named using a custom POM property called webCont ext Nane.
What we've done in the previous example is separate application-specific
dependencies from dependencies which will be present in a Servlet contains global

classpath.

However, smply separating according to scope may not be enough, particularly in
the case of aweb application. It's conceivable that one or more runtime
dependencies will actually be bundles of standardized, non-compiled resources for
use in the web application. For example, consider a set of web application which
reuse a common set of Javascript, CSS, SWF, and image resources. To make these
resources easy to standardize, it's a common practice to bundle them up in an
archive and deploy them to the Maven repository. At that point, they can be
referenced as standard Maven dependencies - possibly with a dependency type of
zi p - that are normally specified with a runtime scope. Remember, these are
resources, not binary dependencies of the application code itself; therefore, it' s not
appropriate to blindly include them in the VeB- | NF/ 1 i b directory. Instead, these
resource archives should be separated from binary runtime dependencies, and

289

Maven Assemblies

unpacked into the web application document root somewhere. In order to achieve
this kind of separation, we'll need to use inclusion and exclusion patterns that
apply to the coordinates of a specific dependency.

In other words, say you have three or four web application which reuse the same
resources and you want to create an assembly that puts provided dependenciesinto
l'i b/, runtime dependencies into webapps/ <cont ext Name>/ WEB- | NF/ | i b, and then
unpacks a specific runtime dependency into your web application's document root.
Y ou can do this because the Assembly allows you to define multiple include and
exclude patterns for agiven dependencySet element. Read the next section for
more development of thisidea.

12.5.4.4. Fine Tuning: Dependency Includes and Excludes

A resource dependency might be as ssimple as a set of resources (CSS, Javascript,
and Images) in a project that has an assembly which creates a ZIP archive.
Depending on the particulars of our web application, we might be able to
distinguish resource dependencies from binary dependencies solely according to
type. Most web applications are going to depend on other dependencies of type
jar, and it ispossible that we can state with certainty that all dependencies of type
zi p are resource dependencies. Or, we might have a situation where resources are
stored inj ar format, but have a classifier of something liker esour ces. In either
case, we can specify an inclusion pattern to target these resource dependencies and
apply different logic than that used for binary dependencies. We'll specify these
tuning patterns using thei ncl udes and excl udes sections of the dependencySet .

Both includes and excludes are list sections, meaning they accept the sub-elements
i ncl ude and excl ude respectively. Eachi ncl ude or excl ude element contains a
string value, which can contain wildcards. Each string value can match
dependenciesin afew different ways. Generally speaking, three identity pattern
formats are supported:

groupld: artifact!d-version-less key
Y ou would use this pattern to match a dependency by only the groupld and the
artifactld

290

Maven Assemblies

groupld:artifactld:type[:classifier] -conflictid
The pattern allows you to specify awider set of coordinates to create amore
specific include/exclude pattern.

groupld:artifactld:type[:classifier]:version -full artifact identity

If you need to get really specific, you can specify all the coordinates.
All of these pattern formats support the wildcard character **’, which can match
any subsection of the identity and is not limited to matching single identity parts
(sections between “:’ characters). Also, note that the classifier section aboveis
optional, in that patterns matching dependencies that don’t have classifiers do not
need to account for the classifier section in the pattern.

In the example given above, where the key distinction is the artifact type zip, and
none of the dependencies have classifiers, the following pattern would match
resource dependencies assuming that they were of type zi p:

*:zip

The pattern above makes use of the second dependency identity: the dependency’s
conflict id. Now that we have a pattern that distinguishes resource dependencies
from binary dependencies, we can modify our dependency sets to handle resource
archives differently:

Example 12.10. Using Dependency Excludes and Includesin dependencySet s

<assenbl y>

<dependencySet s>
<dependencySet >
<scope>pr ovi ded</ scope>
<out put Di rectory>l i b/ ${project.artifactld}</outputDirectory>
</ dependencySet >
<dependencySet >
<scope>runti ne</ scope>
<out put Di rect ory>
webapps/ ${ webCont ext Narme}/ VEB- | NF/ | i b
</ out put Di r ect ory>
<excl udes>
<excl ude>*: zi p</ excl ude>
</ excl udes>
</ dependencySet >

291

Maven Assemblies

<dependencySet >
<scope>runti ne</ scope>
<out put Di rect ory>
webapps/ ${ webCont ext Nane}/ r esour ces
</ out put Di r ect ory>
<i ncl udes>
<i ncl ude>*: zi p</i ncl ude>
</incl udes>
<unpack>t r ue</ unpack>
</ dependencySet >
</ dependencySet s>

</ assenbl y>

In Example 12.10, “Using Dependency Excludes and Includesin

dependencySet s”, the runtime-scoped dependency set from our last example has
been updated to exclude resource dependencies. Only binary dependencies
(non-zip dependencies) should be added to the WeB- | NF/ 1'i b directory of the web
application. Resource dependencies now have their own dependency set, which is
configured to include these dependencies in the resources directory of the web
application. Thei ncl udes section in the last dependencySet reversesthe exclusion
from the previous dependencySet , S0 that resource dependencies are included
using the same identity pattern (i.e. *: zi p). Thelast dependencySet refersto the
shared resource dependency and it is configured to unpack the shared resource
dependency in the document root of the web application.

Example 12.10, “Using Dependency Excludes and Includesin dependencySet s”
was based upon the assumption that our shared resources project dependency had a
type which differed from all of the other dependencies. What if the share resource
dependency had the same type as al of the other dependencies? How could you
differentiate the dependency? In this case if the shared resource dependency had
been bundled as a JAR with the classifier r esour ces, you can change to the
Identity pattern and match those dependencies instead:

*:jar:resources

Instead of matching on artifacts with atype of zi p and no classifier, we're
matching on artifacts with a classifier of resources and atypeof j ar .

Just likethefil eSet s section, dependencySet s support theuseStrictFil tering

292

Maven Assemblies

flag. When enabled, any specified patterns that don’t match one or more
dependencies will cause the assembly - and consequently, the build - to fail. This
can be particularly useful as a safety valve, to make sure your project dependencies
and assembly descriptors are synchronized and interacting as you expect them to.
By default, thisflag is set to f al se for the purposes of backward compatibility.

12.5.4.5. Transitive Dependencies, Project Attachments, and Project
Artifacts

The dependencySet section supports two more general mechanisms for tuning the
subset of matching artifacts: transitive selection options, and options for working
with project artifacts. Both of these features are a product of the need to support
legacy configurations that applied a somewhat more liberal definition of the word
“dependency” . As aprime example, consider the project’s own main artifact.
Typicaly, thiswould not be considered a dependency; yet older versions of the
Assembly plugin included the project artifact in calculations of dependency sets.
To provide backward compatibility with this “feature”, the 2.2 releases (currently
at 2.2-beta-2) of the Assembly plugin support aflag in the dependencySet called
useProj ect Arti f act, whose default value ist r ue. By default, dependency sets
will attempt to include the project artifact itself in calculations about which
dependency artifacts match and which don’t. If you'd rather deal with the project
artifact separately, set thisflagtof al se.

Tip
The authors of this book recommend that you aways set
useProjectArtifact tofal se.

As anatural extension to the inclusion of the project artifact, the project’ s attached
artifacts can also be managed within adependencySet using the

usePr oj ect At t achment s flag (whose default valueisf al se). Enabling thisflag
allows patterns that specify classifiers and types to match on artifacts that are
“attached” to the main project artifact; that is, they share the same basic

groupl d/arti fact | d/versi on identity, but differ intype andcl assi fi er fromthe
main artifact. This could be useful for including JavaDoc or source jarsin an

293

Maven Assemblies

assembly.

Aside from dealing with the project’ s own artifacts, it’s aso possible to fine-tune
the dependency set using two transitive-resolution flags. Thefirst, called
useTransi ti veDependenci es (and set to t r ue by default) ssimply specifies whether
the dependency set should consider transitive dependencies at all when
determining the matching artifact set to be included. As an example of how this
could be used, consider what happens when your POM has a dependency on
another assembly. That assembly (most likely) will have a classifier that separates
it from the main project artifact, making it an attachment. However, one quirk of
the Maven dependency-resolution process is that the transitive-dependency
information for the main artifact is still used when resolving the assembly artifact.
If the assembly bundles its project dependenciesinside itself, using transitive
dependency resolution here would effectively duplicate those dependencies. To
avoid this, we simply set useTr ansi ti veDependenci es tof al se for the
dependency set that handles that assembly dependency.

The other transitive-resolution flag is far more subtle. It's called

useTransi tiveFil tering, and has adefault value of f al se. To understand what
thisflag does, we first need to understand what information is available for any
given artifact during the resolution process. When an artifact is a dependency of a
dependency (that is, removed at least one level from your own POM), it has what
Maven calls a"dependency trail", which is maintained as alist of strings that
correspond to the full artifact identities

(groupl d: artifactld:type:[classifier:]version) of al dependencies between
your POM and the artifact that owns that dependency trail. If you remember the
three types of artifact identities available for pattern matching in a dependency set,
you'll notice that the entriesin the dependency trail - the full artifact identity -
correspond to the third type. When useTransi ti veFiltering issettotrue, the
entriesin an artifact’ s dependency trail can cause the artifact to be included or
excluded in the same way its own identity can.

If you're considering using transitive filtering, be careful! A given artifact can be
included from multiple places in the transitive-dependency graph, but as of Maven
2.0.9, only thefirst inclusion’strail will be tracked for this type of matching. This
can lead to subtle problems when collecting the dependencies for your project.

294

Maven Assemblies

Warning

Most assemblies don’t really need thislevel of control over dependency
sets; consider carefully whether yours truly does. Hint: It probably
doesn't.

12.5.4.6. Advanced Unpacking Options

As we discussed previously, some project dependencies may need to be unpacked
in order to create a working assembly archive. In the examples above, the decision
to unpack or not was simple. It didn’t take into account what needed to be
unpacked, or more importantly, what should not be unpacked. To gain more
control over the dependency unpacking process, we can configure the

unpackOpt i ons element of the dependencysSet . Using this section, we have the
ability to choose which file patterns to include or exclude from the assembly, and
whether included files should be filtered to resolve expressions using current POM
information. In fact, the options available for unpacking dependency sets are fairly
similar to those available for including files from the project directory structure,
using the file sets descriptor section.

To continue our web-application example, suppose some of the resource
dependencies have been bundled with afile that details their distribution license. In
the case of our web application, we'll handle third-party license notices by way of
anori ces fileincluded in our own bundle, so we don’t want to include the license
file from the resource dependency. To exclude thisfile, we simply add it to the
unpack options inside the dependency set that handles resource artifacts:

Example 12.11. Excluding Files from a Dependency Unpack

<asenbl y>

<dependencySet s>
<dependencySet >
<scope>runti ne</ scope>
<out put Di rect ory>
webapps/ ${ webCont ext Nane}/r esour ces
</ out put Di r ect ory>
<i ncl udes>
<i ncl ude>*: zi p</i ncl ude>

295

Maven Assemblies

</incl udes>
<unpack>t r ue</ unpack>
<unpackOpt i ons>
<excl udes>
<excl ude>**/ LI CENSE* </ excl ude>
</ excl udes>
</ unpackOpti ons>
</ dependencySet >
</ dependencySet s>

</ assenbl y>

Notice that the excl ude we're using looks very similar to thoseused infi | eSet
declarations. Here, we're blocking any file starting with the word LI CENSE in any
directory within our resource artifacts. Y ou can think of the unpack options section
asalightweight fi| eset applied to each dependency matched within that
dependency set. In other words, itisafil eSet by way of an unpacked
dependency. Just as we specified an exclusion pattern for files within resource
dependenciesin order to block certain files, you can also choose which restricted
set of filesto include using the includes section. The same code that processes
inclusions and exclusionsonfi | eSet s has been reused for processing

unpackOpt i ons.

In addition to file inclusion and exclusion, the unpack options on a dependency set
aso providesafil tering flag, whose default valueist al se. Again, this should
be familiar from our discussion of file sets above. In both cases, expressions using
either the Maven syntax of ${ property} or the Ant syntax of @r operty@are
supported. Filtering is a particularly nice feature to have for dependency sets,
though, since it effectively alows you to create standardized, versioned resource
templates that are then customized to each assembly as they are included. Once
you start mastering the use of filtered, unpacked dependencies which store shared
resources, you will be able to start abstracting repeated resources into common
resource projects.

12.5.4.7. Summarizing Dependency Sets

Finaly, it's worth mentioning that dependency sets support the samefi | embde and
di rect or yMbde configuration options that file sets do, though you should

296

Maven Assemblies

remember that the di r ect or yMode setting will only be used when dependencies are
unpacked.

12.5.5. nodul eSet s Sections

Multi-modul e builds are generally stitched together using the parent and modules
sections of interrelated POMs. Typically, parent POMs specify their childrenin a
nodul es section, which under normal circumstances causes the child POMsto be
included in the build process of the parent. Exactly how thisrelationship is
constructed can have important implications for the ways in which the Assembly
plugin can participate in this process, but we'll discuss that more later. For now,
it's enough to keep in mind this parent-modul e relationship as we discuss the
modul eSet s Section.

Projects are stitched together into multi-modul e builds because they are part of a
larger system. These projects are designed to be used together, and single module
in alarger build has little practical value on its own. In thisway, the structure of
the project’s build is related to the way we expect the project (and its modules) to
be used. If consider the project from the user's perspective, it makes sense that the
ideal end goal of that build would be asingle, distributable file that the user can
consume directly with minimum installation hassle. Since Maven multi-module
builds typically follow atop-down structure, where dependency information,
plugin configurations, and other information trickles down from parent to child, it
seems natural that the task of rolling all of these modulesinto a single distribution
file should fall to the topmost project. Thisiswhere the nodul eSet comes into the
picture.

Module sets allow the inclusion of resources that belong to each module in the
project structure into the final assembly archive. Just like you can select a group of
filestoincludein an assembly using afi | eSet and adependencySet, you can
include a set of files and resources using anodul eSet to refer to modulesin a
multi-module build. They achieve this by enabling two basic types of
module-specific inclusion: file-based, and artifact-based. Before we get into the
specifics and differences between file-based and artifact-based inclusion of module
resources into an assembly, let’ stalk alittle about selecting which modules to

297

Maven Assemblies

Process.

12.5.5.1. Module Selection

By now, you should be familiar with i ncl udes/excl udes patterns as they are used
throughout the assembly descriptor to filter files and dependencies. When you are
referring to modules in an assembly descriptor, you will also use the

i ncl udes/excl udes patternsto define rules which apply to different sets of
modules. The difference in modul eSet i ncl udes and excl udes isthat these rules
do not alow for wildcard patterns. (As of the 2.2-beta-2 release, this feature has
not really seen much demand, so it hasn’'t been implemented.) Instead, each
include or exclude value is simply the gr oupl d and ar ti f act I d for the module,
separated by a colon, like this:

groupld:artifactld

In addition toi ncl udes and excl udes, the nodul eSet aso supports an additional
selection tool: thei ncl udeSubModul es flag (whose default valueistrue). The
parent-child relationship in any multi-module build structure is not strictly limited
to two tiers of projects. In fact, you can include any number of tiers, or layers, in
your build. Any project that is a module of amodule of the current project is
considered a sub-module. In some cases, you may want to deal with each
individual module in the build separately (including sub-modules). For example,
thisis often simplest when dealing with artifact-based contributions from these
modules. To do this, you would simply leave the useSubModul es flag set to the
default of t r ue.

When you' re trying to include files from each modul €' s directory structure, you
may wish to process that modul€’ s directory structure only once. If your project
directory structure mirrors that of the parent-module rel ationships that are included
in the POMss, this approach would allow file patterns like ** /src/main/javato apply
not only to that direct modul€’ s project directory, but also to the directories of its
own modules as well. In this case you don’t want to process sub-modules directly
(they will be processed as subdirectories within your own project’s modules
instead), you should set the useSubModul es flagtof al se.

Once we' ve determined how module selection should proceed for the module set

298

Maven Assemblies

In question, we're ready to choose what to include from each module. As
mentioned above, this can include files or artifacts from the module project.

12.5.5.2. Sources Section

Suppose you want to include the source of all modulesin your project's assembly,
but you would like to exclude a particular module. Maybe you have a project
named secr et - sauce Which contains secret and sensitive code that you don't want
to distribute with your project. The simplest way to accomplish thisisto use a
nmodul eSet which includes each project's directory in ${ nodul e. basedi r. nane}
and which excludes the secr et - sauce module from the assembly.

Example 12.12. Includes and Excluding M odules with a nodul eSet

<assenbl y>

<nodul eSet s>
<nodul eSet >
<i ncl udeSubModul es>f al se</i ncl udeSubMdul es>
<excl udes>
<excl ude>
com nyconpany. appl i cati on: secret - sauce
</ excl ude>
</ excl udes>
<sour ces>
<out put Di r ect or yMappi ng>
${ nodul e. basedi r. nane}
</ out put Di r ect or yMappi ng>
<excl udeSubModul eDi rect ori es>
fal se
</ excl udeSubMdul eDi rect ori es>
<fil eSet s>
<fil eSet >
<di rectory>/</directory>
<excl udes>
<excl ude>**/t ar get </ excl ude>
</ excl udes>
</fileSet>
</fil eSets>
</ sour ces>
</ modul eSet >
</ modul eSet s>

</ assenbl y>

299

Maven Assemblies

In Example 12.12, “Includes and Excluding Modules with a nodul eSet 7, since
we're dealing with each modul€’ s sourcesit’s ssimpler to deal only with direct
modules of the current project, handling sub-modules using file-path wildcard
patternsin the file set. We set thei ncl udeSubMdul es element to f al se SOwe
don't have to worry about submodules showing up in the root directory of the
assembly archive. The excl ude element will take care of excluding the

secr et - sauce module. We're not going to include the project sources for the
secret-sauce module; they’re, well, secret.

Normally, module sources are included in the assembly under a subdirectory
named after the module’sarti f act 1 d. However, since Maven allows modul es that
are not in directories named after the module project’sarti f act 1 d, it's often better
to use the expression ${ nodul e. basedi r. name} to preserve the module directory’s
actual name (${ modul e. basedi r. nane} isthe same as calling

MavenPr oj ect . get Basedi r (). get Nane()). It iscritical to remember that modules
are not required to be subdirectories of the project that declares them. If your
project has a particularly strange directory structure, you may need to resort to
gpecial modul eSet declarations that include specific project and account for your
own project's idiosyncracies.

Warning

Try to minimize your own project's idiosyncracies, while Maven is
flexible, if you find yourself doing too much configuration there is likely
an easier way.

Continuing through Example 12.12, “Includes and Excluding Modules with a
nodul eSet ”, Since We' re not processing sub-modules explicitly in this module set,
we need to make sure sub-module directories are not excluded from the source
directories we consider for each direct module. By setting the

excl udeSubModul eDi rectori es flagtof al se, thisalows usto apply the samefile
pattern to directory structures within a sub-module of the one we're processing.
Finally in Example 12.12, “Includes and Excluding Modules with anodul eSet ",
we're not interested in any output of the build process for this module set. We
exclude the target/ directory from all modules.

300

Maven Assemblies

It's also worth mentioning that the sour ces section supportsfi | eSet -like elements
directly withinitself, in addition to supporting nested f i | eSet s. These
configuration elements are used to provide backward compatibility to previous
versions of the Assembly plugin (versions 2.1 and under) that didn’t support
multiple distinct file sets for the same module without creating a separate module
set declaration. They are deprecated, and should not be used.

12.5.5.3. Interpolation of out put Di r ect or yMappi ng iN nodul eSet s

In Section 12.5.4.1, “ Customizing Dependency Output Location”, we used the
element out put Di r ect or yMappi ng to change the name of the directory under
which each modul €' s sources would be included. The expressions contained in this
element are resolved in exactly the same way as the out put Fi | eNaneMappi ng, used
in dependency sets (see the explanation of this algorithm in Section 12.5.4,
“dependencySet s Section”).

In Example 12.12, “Includes and Excluding Modules with anodul eSet ”, we used
the expression ${ nodul e. basedi r. name} . You might notice that the root of that
expression, nodul e, is not listed in the mapping-resolution algorithm from the
dependency sets section; this object root is specific to configurations within

nodul eSet s. It works in exactly the sameway asthe ${artifact.*} references
availablein the out put Fi | eNaneMappi ng element, except it is applied to the
modul€’' S MavenProj ect, Artifact, and Arti f act Handl er instances instead of
those from a dependency artifact.

12.5.5.4. Binaries section

Just asthe sour ces section is primarily concerned with including amodulein its
source form, the bi nari es section is primarily concerned with including the
modul€’ s build output, or its artifacts. Though this section functions primarily asa
way of specifying dependencySet s that apply to each module in the set, there are a
few additional features unigue to module artifacts that are worth exploring:
attachment d assi fi er andi ncl udeDependenci es. In addition, the bi nari es
section contains options similar to the dependencySet section, that relate to the
handling of the module artifact itself. These are: unpack, out put Fi | eNameMappi ng,
out put Di rect ory, di rect oryMde, and fi | embde. Finally, module binaries can

301

Maven Assemblies

contain adependencySet s section, to specify how each modul€' s dependencies
should be included in the assembly archive. Firgt, let’ stake alook at how the
options mentioned here can be used to manage the module' s own artifacts.

Suppose we want to include the javadoc jars for each of our modulesinside our
assembly. In this case, we don't care about including the module dependencies, we
just want the javadoc jar. However, since this particular jar is always going to be
present as an attachment to the main project artifact, we need to specify which
classifier to useto retrieve it. For ssimplicity, we won'’t cover unpacking the module
javadoc jars, since this configuration is exactly the same as what we used for
dependency sets earlier in this chapter. The resulting module set might look similar
to Example 12.13, “Including JavaDoc from Modules in an Assembly”.

Example 12.13. Including JavaDoc from M odulesin an Assembly

<assenbl y>

<nmodul eSet s>
<nodul eSet >
<bi nari es>
<attachnent C assi fi er > avadoc</ att achnent C assi fi er>
<i ncl udeDependenci es>f al se</i ncl udeDependenci es>
<out put Di r ect or y>api doc-j ar s</ out put Di r ect or y>
</ bi nari es>
</ modul eSet >
</ modul eSet s>

</ assenbl y>

In Example 12.13, “Including JavaDoc from Modules in an Assembly”, we don’t
explicitly set thei ncl udeSubModul es flag, sinceit’st r ue by default. However, we
definitely want to process all modules - even sub-modules - using this module set,
since we' re not using any sort of file pattern that could match on sub-module
directory structures within. Theat t achnent C assi fi er grabsthe attached artifact
with the javadoc classifier for each module processed. Thei ncl udeDependenci es
element tells the Assembly plugin that we're not interested in any of the module's
dependencies, just the javadoc attachment. Finally, the out put Di r ect ory element
tells the Assembly plugin to put al of the javadoc jarsinto a directory named

api doc-j ars/ Off of the assembly root directory.

302

Maven Assemblies

Although we' re not doing anything too complicated in this example, it's important
to understand that the same changes to the expression-resolution algorithm
discussed for the out put Di r ect or yMappi ng €lement of the sources section also
applies here. That is, whatever was available as ${artifact.*} insdea
dependencySet 'Sout put Fi | eNaneMappi ng configuration is also available here as
${ nodul e. *} . The same appliesfor out put Fi | eNameMappi ng When used directly
within abi nari es section.

Finally, let’s examine an example where we simply want to process the module’'s
artifact and its runtime dependencies. In this case, we want to separate the artifact
set for each module into separate directory structures, according to the module's
artifactldandversion. Theresulting module set is surprisingly ssmply, and it
looks like the listing in Example 12.14, “Including Module Artifacts and
Dependenciesin an Assembly”:

Example 12.14. Including Module Artifacts and Dependenciesin an Assembly

<assenbl y>

<nmodul eSet s>
<nmodul eSet >
<bi nari es>
<out put Di rect ory>
${odul e. arti fact ! d}-${nodul e. versi on}
</ out put Di r ect ory>
<dependencySet s>
<dependencySet/ >
</ dependencySet s>
</ bi nari es>
</ nodul eSet >
</ nodul eSet s>

</ assenbl y>

In Example 12.14, “Including Module Artifacts and Dependenciesin an
Assembly”, we're using the empty dependencySet element here, since that should
include al runtime dependencies by default, with no configuration. With the

out put Di rect ory Specified at the binaries level, all dependencies should be
included alongside the modul€e’ s own artifact in the same directory, so we don't
even need to specify that in our dependency set.

303

Maven Assemblies

For the most part, module binaries are fairly straightforward. In both parts - the
main part, concerned with handling the module artifact itself, and the dependency
sets, concerned with the module' s dependencies - the configuration options are
very similar to those in a dependency set. Of course, the binaries section also
provides options for controlling whether dependencies are included, and which
main-project artifact you want to use.

Like the sources section, the binaries section contains a couple of configuration
options that are provided solely for backward compatibility, and should be
considered deprecated. These include the includes and excludes sub-sections.

12.5.5.5. nodul eSet s, Parent POMs and the bi nari es Section

Finally, we close the discussion about module handling with a strong warning.
There are subtle interactions between Maven'sinternal design asit relatesto
parent-modul e relationships and the execution of a module-set’ s binaries section.
When a POM declares a parent, that parent must be resolved in some way or other
before the POM in question can be built. If the parent isin the Maven repository,
there is no problem. However, as of Maven 2.0.9 this can cause big problems if
that parent is a higher-level POM in the same build, particularly if that parent POM
expects to build an assembly using its modules' binaries.

Maven 2.0.9 sorts projects in a multi-module build according to their
dependencies, with agiven project’ s dependencies being built ahead of itself. The
problem is the parent element is considered a dependency, which means the parent
project’ s build must complete before the child project isbuilt. If part of that
parent’ s build process includes the creation of an assembly that uses module
binaries, those binaries will not exist yet, and therefore cannot be included, causing
the assembly to fail. Thisis acomplex and subtle issue, which severely limitsthe
usefulness of the module binaries section of the assembly descriptor. In fact, it has
been filed in the bug tracker for the Assembly plugin at:
http://jira.codehaus.org/browse/MASSEMBL Y -97. Hopefully, future versions of
Maven will find away to restore this functionality, since the parent-first
requirement may not be completely necessary.

304

http://jira.codehaus.org/browse/MASSEMBLY-97

Maven Assemblies

12.5.6. Repositories Section

The repositories section represents a dightly more exotic feature in the assembly
descriptor, since few applications other than Maven can take full advantage of a
Maven-repository directory structure. For this reason, and because many of its
features closely resemble those in the dependency Set s section, we won’t spend too
much time on the repositories section of the assembly descriptor. In most cases,
users who understand dependency sets should have no trouble constructing
repositories viathe Assembly plugin. We're not going to motivate the

reposi t ori es Section; we're not going to go through a the business of setting up a
use case and walking you through the process. We're just going to bring up afew
caveats for those of you who find the need to use ther eposti ori es section.

Having said that, there are atwo features particular to the repositories section that
deserve some mention. Thefirst isthei ncl udeMet adat a flag. When set tot r ue it
includes metadata such as the list of real versions that correspond to - SNAPSHOT
virtual versions, and by default it's set to f al se. At present, the only metadata
included when thisflag ist r ue is the information downloaded from Maven's
central repository.

The second featureis called gr oupVer si onAl i gnnent s. Again, thissectionisalist
of individual gr oupVer si onAl i gnment configurations, whose purpose isto
normalize all included artifacts for a particular gr oupl d to use asingle ver si on.
Each alignment entry consists of two mandatory elements - i d and ver si on - dong
with an optional section called excl udes that suppliesalist of arti f act | d string
values which are to be excluded from this realignment. Unfortunately, this
realignment doesn’t seem to modify the POMs involved in the repository, neither
those related to realigned artifacts nor those that depend on realigned artifacts, so
i’ s difficult to imagine what the practical application for this sort of realignment
would be.

In generd, it’s simplest to apply the same principles you would use in dependency
sets to repositories when adding them to your assembly descriptor. While the
repositories section does support the above extra options, they are mainly provided
for backward compatibility, and will probably be deprecated in future releases.

305

Maven Assemblies

12.5.7. Managing the Assembly’s Root Directory

Now that we' ve made it through the main body of the assembly descriptor, we can
close the discussion of content-related descriptor sections with something lighter:
root-directory naming and site-directory handling.

Some may consider it a stylistic concern, but it’s often important to have control
over the name of the root directory for your assembly, or whether the root directory
isthere at al. Fortunately, two configuration optionsin the root of the assembly
descriptor make managing the archive root directory ssimple:

i ncl udeBaseDi rect ory and baseDi rect ory. In cases like executable jar files, you
probably don’t want aroot directory at al. To skip it, smply set the

i ncl udeBaseDirectory flagtofal se (it'strue by default). Thiswill resultin an
archive that, when unpacked, may create more than one directory in the unpack
target directory. While thisis considered bad form for archives that are meant to be
unpacked before use, it's not so bad for archives that are consumable as-is.

In other cases, you may want to guarantee the name of the archive root directory
regardless of the POM’ s version or other information. By default, the

baseDi r ect ory element has avalue equal to
${project.artifactld}-${project.version}. However, we can easily set this
element to any value that consists of literal strings and expressions which can be
interpolated from the current POM, such as
${project.groupld}-${project.artifactld}. Thiscould bevery good news for
your documentation team! (We all have those, right?)

Another configuration availableisthei ncl udeSi t eDi r ect or y flag, whose default
valueisfal se. If your project build has also constructed a website document root
using the site lifecycle or the Site plugin goals, that output can be included by
setting thisflag to t r ue. However, this feature is a bit limited, sinceit only
includes the out put Di r ect or y from the reporting section of the current POM (by
default, t ar get / si t e) and doesn’'t take into consideration any site directories that
may be available in module projects. Useit if you want, but agood fi | eSet
specification or nodul eSet specification with sources configured could serve
equally well, if not better. Thisis yet another example of legacy configuration
currently supported by the Assembly plugin for the purpose of backward

306

Maven Assemblies

compatibility. Your mileage may vary. If you really want to include asite that is
aggregated from many modules, you'll want to consider using afil eSet or
nodul eSet instead of setting i ncl udeSiteDirectory tOtrue.

12.5.8. conmponent Descri ptors and

cont ai ner Descri pt or Handl er s

To round out our exploration of the assembly descriptor, we should touch briefly
on two other sections: cont ai ner Descr i pt or Handl er s and

conponent Descri ptors. Thecont ai ner Descri pt or Handl er s Section refersto
custom components that you use to extend the capabilities of the Assembly plugin.
Specifically, these custom components allow you to define and handle special files
which may need to be merged from the multiple constituents used to create your
assembly. A good example of this might be a custom container-descriptor handler
that merged web. xm files from constituent war or war-fragment files included in
your assembly, in order to create the single web-application descriptor required for
you to use the resulting assembly archive asawar file.

The conponent Descri pt or s section allows you to reference external
assembly-descriptor fragments and include them in the current descriptor.
Component references can be any of the following:

1. Relativefile paths: src/ mai n/ assenbl y/ conponent . xm
2. Artifact references: groupl d: artifactld: version[:type[:classifier]]
3. Classpath resources. / assenbl i es/ conponent . xni

4. URLSs: http://www.sonatype.com/component.xml
Incidentally, when resolving a component descriptor, the Assembly plugin tries
those different strategies in that exact order. The first one to succeed is used.

Comyponent descriptors can contain many of the same content-oriented sections
available in the assembly descriptor itself, with the exception of nodul eSet s,
which is considered so specific to each project that it's not a good candidate for

307

http://www.sonatype.com/component.xml

Maven Assemblies

reuse. Also included in a component descriptor isthe

cont ai ner Descr i pt or Handl er s section, which we briefly discussed above.
Component descriptors cannot contain formats, assembly id’s, or any configuration
related to the base directory of the assembly archive, al of which are also
considered unique to a particular assembly descriptor. While it may make sense to
allow sharing of the formats section, this has not been implemented as of the
2.2-beta-2 Assembly-plugin release.

12.6. Best Practices

The Assembly plugin provides enough flexibility to solve many problemsin a
number of different ways. If you have a unique requirement for your project,
there's a good chance that you can use the methods documented in this chapter to
achieve aimost any assembly structure. This section of the chapter details some
common best practices which, if adhered to, will make your experiences with the
assembly plugin more productive and less painful.

12.6.1. Standard, Reusable Assembly Descriptors

Up to now, we' ve been talking mainly about one-off solutions for building a
particular type of assembly. But what do you do if you have dozens of projects that
al need a particular type of assembly? In short, how can we reuse the effort we' ve
invested to get our assemblies just the way we like them across more than one
project without copying and pasting our assembly descriptor?

The simplest answer is to create a standardized, versioned artifact out of the
assembly descriptor, and deploy it. Once that’ s done, you can specify that the
Assembly plugin section of your project’s POM include the assembly-descriptor
artifact as a plugin-level dependency, which will prompt Maven to resolve and
include that artifact in the plugin’s classpath. At that point, you can use the
assembly descriptor viathe descri pt or Ref s configuration section in the Assembly
plugin declaration. To illustrate, consider this example assembly descriptor:

<assenbl y>
<i d>war - f ragnment </ i d>
<f or mat s>

308

Maven Assemblies

<f or mat >zi p</ f or mat >
</ f or mat s>
<i ncl udeBaseDi r ect or y>f al se</i ncl udeBaseDi r ect or y>
<dependencySet s>
<dependencySet >
<out put Di r ect or y>WEB- | NF/ | i b</ out put Di r ect or y>
</ dependencySet >
</ dependencySet s>
<fil eSet s>
<fil eSet >
<di r ect or y>sr ¢/ mai n/ webapp</ di r ect ory>
<out put Di rect ory>/ </ out put Di r ect or y>
<excl udes>
<excl ude>**/web. xm </ excl ude>
</ excl udes>
</fileSet>
</fil eSets>
</ assenbl y>

Included in your project, this descriptor would be a useful way to bundle the
project contents so that it could be unpacked directly into an existing web
application in order to add to it (for adding an extending feature, say). However, if
your team builds more than one of these web-fragment projects, it will likely want
to reuse this descriptor rather than duplicating it. To deploy this descriptor asits
own artifact, we're going to put it in its own project, under the

src/ mai n/ resour ces/ assenbl i es directory.

The project structure for this assembly-descriptor artifact will look similar to the
following:

| -- pom xm
T-- src
-- main
“-- resources
“-- assenblies
“-- web-fragnent. xm

Notice the path of our web- f ragnent descriptor file. By default, Maven includes
thefilesfrom the src/ mai n/ r esour ces directory structure in the final jar, which
means our assembly descriptor will be included with no extra configuration on our
part. Also, noticethe assenbl i es/ path prefix, the Assembly plugin expects this
path prefix on all descriptors provided in the plugin classpath. It's important that
we put our descriptor in the appropriate relative location, so it will be picked up by
the Assembly plugin as it executes.

309

Maven Assemblies

Remember, this project is separate from your actual web- f r agment project now;
the assembly descriptor has become its own artifact with its own version and,
possibly, its own release cycle. Once you install this new project using Maven,
you' |l be able to reference it in your web- f r agment projects. For clarity, the build
process should look something like this:

$ nvn instal
(...)
[INFGQ [install:install]
[INFQ Installing (...)/web-fragment-descriptor/target/\
web- f ragnent - descri pt or - 1. 0- SNAPSHOT. j ar
to /Users/~/.nR2/repository/org/sonatype/ mavenbook/ assenbl i es/\
web- f ragnent - descri pt or/ 1. 0- SNAPSHOT/ \
web- f ragnent - descri pt or- 1. 0- SNAPSHOT. j ar

INFQ Total tine: 5 seconds

Since there are no sources for the web- f r agment - descri pt or project, the resulting
jar artifact will include nothing but our web- f r agment assembly descriptor. Now,
let’ s use this new descriptor artifact:

<pr oj ect >
(...)
<artifactld>ny-web-fragnment</artifactld>
(...)
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-assenbl y-pl ugi n</artifactld>
<ver si on>2. 2- bet a- 2</ ver si on>
<dependenci es>
<dependency>
<gr oupl d>or g. sonat ype. mavenbook. assenbl i es</ gr oupl d>
<artifactld>web-fragnment-descriptor</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
</ dependency>
</ dependenci es>
<executions>
<execut i on>
<i d>assenbl e</i d>
<phase>package</ phase>
<goal s>
<goal >si ngl e</ goal >
</ goal s>
<confi gurati on>
<descri pt or Ref s>

310

Maven Assemblies

<descri pt or Ref >web- f ragnent </ descri pt or Ref >
</ descri pt or Ref s>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
(...)
</ pl ugi ns>
</ bui | d>
(...)

</ proj ect >

Two things are special about this Assembly plugin configuration:

» We haveto include a plugin-level dependency declaration on our new
web- f ragnment - descri pt or artifact in order to have access to the assembly
descriptor viathe plugin’s classpath.

» Since we're using a classpath reference instead of afilein thelocal project
directory structure, we must use the descri pt or Ref s section instead of the
descri pt or section. Also, notice that, while the assembly descriptor is
actually inthe assenbl i es/ web- f ragnent . xmi location within the plugin’s
classpath, we reference it without the assenbl i es/ prefix. Thisis because
the Assembly plugin assumes that built-in assembly descriptors will always
reside in the classpath under this path prefix.

Now, you're free to reuse the POM configuration above in as many projects as you
like, with the assurance that all of their web-fragment assemblies will turn out the
same. As you need to make adjustments to the assembly format - maybe to include
other resources, or to fine-tune the dependency and file sets - you can simply
increment the version of the assembly descriptor’s project, and release it again.
POMss referencing the assembly-descriptor artifact can then adopt this new version
of the descriptor asthey are able.

Onefinal point about assembly-descriptor reuse: you may want to consider sharing
the plugin configuration itself as well as publishing the descriptor as an artifact.
Thisisafairly smple step; you simply add the configuration listed above to the

pl ugi nManagenent Section of your parent POM, then reference the managed plugin
configuration from your module POM like this:

(...)

311

Maven Assemblies

<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-assenbl y- pl ugi n</artifactld>
</ pl ugi n>

(...)

If you've added the rest of the plugin’s configuration - listed in the previous
example - to the pl ugi nManagenent section of the project’s parent POM, then each
project inheriting from that parent POM can add a minimal entry like the one
above and take advantage of an advanced assembly format in their own builds.

12.6.2. Distribution (Aggregating) Assemblies

As mentioned above, the Assembly plugin provides multiple ways of creating
many archive formats. Distribution archives are typically very good examples of
this, since they often combine modules from a multi-module build, along with their
dependencies and possibly, other files and artifacts besides these. The distribution
aimsto include all these different sources into a single archive that the user can
download, unpack, and run with convenience. However, we also examined some of
the potential drawbacks of using the nodul eSet s section of the assembly descriptor
- namely, that the parent-child relationships between POMs in abuild can prevent
the availability of module artifacts in some cases.

Specifically, if module POMs reference as their parent the POM that contains the
Assembly-plugin configuration, that parent project will be built ahead of the
module projects when the multi-module build executes. The parent’s assembly
expectsto find artifacts in place for its modules, but these module projects are
waiting on the parent itself to finish building, agridlock situation is reached and
the parent build cannot succeed (since it’ s unable to find artifacts for its module
projects). In other words, the child project depends on the parent project whichin
turn depends on the child project.

As an example, consider the assembly descriptor below, designed to be used from
the top-level project of a multi-module hierarchy:

<assenbl y>
<i d>di stri bution</id>
<f or mat s>

312

Maven Assemblies

<f or mat >zi p</ f or mat >

<f or mat >t ar. gz</f or mat >

<f ormat >t ar. bz2</f or mat >
</ format s>

<nmodul eSet s>
<nmodul eSet >
<i ncl udes>
<i ncl ude>*-web</ i ncl ude>
</incl udes>
<bi nari es>
<out put Di rect ory>/ </ out put Di r ect ory>
<unpack>t r ue</ unpack>
<i ncl udeDependenci es>t r ue</ i ncl udeDependenci es>
<dependencySet s>
<dependencySet >
<out put Di rect ory>/ VEB- | NF/ | i b</ out put Di r ect ory>
</ dependencySet >
</ dependencySet s>
</ bi nari es>
</ nodul eSet >
<rmodul eSet >
<i ncl udes>
<i ncl ude>*- addons</ i ncl ude>
</incl udes>
<bi nari es>
<out put Di rect ory>/ WEB- | NF/ | i b</ out put Di r ect or y>
<i ncl udeDependenci es>t r ue</ i ncl udeDependenci es>
<dependencySet s>
<dependencySet / >
</ dependencySet s>
</ bi nari es>
</ nodul eSet >
</ modul eSet s>
</ assenbl y>

Given a parent project - called app-parent - with three modules called app- cor e,
app- web, and app- addons, hotice what happens when we try to execute this
multi-module build:

$ nvn package

[INFQ Reactor build order:

[I NFQ app- parent <----- PARENT BUI LDS FI RST
[I NFQ app- core

[I NFQ app- web

[NFQ app- addons

[INFQ] - - - m s s m i m o e oo e o e oo
[NFQ Buil di ng app- par ent

[I NFQ t ask- segnent : [package]

I O B e L T

[INFQ [site:attach-descriptor]

313

Maven Assemblies

[INFQ [assenbly:single {execution: distro}]

[NFQ Readi ng assenbly descriptor: src/main/assenbly/distro.xm

T o T

[ERROR] BUI LD ERROR

JINEG] ccoo-scccnacnacooocmccaooococacacoooooccaooocooacaeooooocaaoooc oo

[INFOQ Failed to create assenbly: Artifact:

or g. sonat ype. mavenbook. assenbl i es: app-web: j ar: 1. 0- SNAPSHOT (i ncl uded by nodul e)
does not have an artifact with a file. Please ensure the package phase is

run before the assenbly is generated.

The parent project - app- par ent - buildsfirst. Thisis because each of the other
projects lists that POM as its parent, which causes it to be forced to the front of the
build order. The app- web module, which is the first module to be processed in the
assembly descriptor, hasn’t been built yet. Therefore, it has no artifact associated
with it, and the assembly cannot succeed.

One workaround for thisis to remove the executions section of the
Assembly-plugin declaration, that binds the plugin to the package lifecycle phase
in the parent POM, keeping the configuration section intact. Then, execute Maven
with two command-line tasks: the first, package, to build the multi-module project
graph, and a second, assenbl y: assenbl y, as adirect invocation of the assembly
plugin to consume the artifacts built on the previous run, and create the distribution
assembly. The command line for such a build might look like this:

$ nmvn package assenbl y: assenbly

However, this approach has several drawbacks. First, it makes the
distribution-assembly process more of a manual task that can increase the
complexity and potential for error in the overall build process significantly.
Additionally, it could mean that attached artifacts - which are associated in
memory as the project build executes - are not reachable on the second pass
without resorting to file-system references.

Instead of using anodul eSet to collect the artifacts from your multi-module build,
it often makes more sense to employ alow-tech approach: using a dedicated
distribution project module and inter-project dependencies. In this approach, you
create anew module in your build whose sole purpose is to assemble the
distribution. This module POM contains dependency referencesto al the other
modules in the project hierarchy, and it configures the Assembly plugin to be

314

Maven Assemblies

bound the package phase of its build lifecycle. The assembly descriptor itself uses
the dependencySet s section instead of the nodul eSet s section to collect module
artifacts and determine where to include them in the resulting assembly archive.
This approach escapes the pitfalls associated with the parent-child relationship
discussed above, and has the additional advantage of using a simpler configuration
section within the assembly descriptor itself to do the job.

To do this, we can create a new project structure that’s very similar to the one used
for the module-set approach above, with the addition of anew distribution project,
we might end up with five POMs in total: app- par ent , app- cor e, app- web,

app- addons, and app- di st ri buti on. The new app- di stri buti on POM looks
similar to the following:

<pr oj ect >
<par ent >
<artifact| d>app-parent</artifactld>
<gr oupl d>or g. sonat ype. mavenbook. assenbl i es</ gr oupl d>
<ver si on>1. 0- SNAPSHOT</ ver si on>
</ par ent >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<artifactld>app-distribution</artifactld>
<name>app-di stri buti on</ name>

<dependenci es>

<dependency>
<artifactld>app-web</artifactld>
<gr oupl d>or g. sonat ype. mavenbook. assenbl i es</ gr oupl d>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<t ype>war </t ype>

</ dependency>

<dependency>
<artifactld>app-addons</artifactld>
<gr oupl d>or g. sonat ype. mavenbook. assenbl i es</ gr oupl d>
<versi on>1. 0- SNAPSHOT</ ver si on>

</ dependency>

<I-- Not necessary since it's brought in via app-web.

<dependency> [2]
<artifactld>app-core</artifactld>
<gr oupl d>or g. sonat ype. mavenbook. assenbl i es</ gr oupl d>
<ver si on>1. 0- SNAPSHOT</ ver si on>

</ dependency>

- >

</ dependenci es>
</ pr oj ect >

Notice that we have to include dependencies for the other modules in the project

315

Maven Assemblies

structure, since we don’t have a modules section to rely on in this POM. Also,
notice that we' re not using an explicit dependency on app- core. Sinceit’'saso a
dependency of app- web, we don’t need to processit (or, avoid processing it) twice.

Next, when we move the di st ro. xmi assembly descriptor into the
app- di st ri buti on project, we must also change it to use adependencySet s
section, like this:

<assenbl y>

<dependencySet s>
<dependencySet >
<i ncl udes>
<i ncl ude>*-web</i ncl ude>
</i ncl udes>
<useTransi ti veDependenci es>f al se</ useTr ansi ti veDependenci es>
<out put Di rect ory>/ </ out put Di r ect or y>
<unpack>t r ue</ unpack>
</ dependencySet >
<dependencySet >
<excl udes>
<excl ude>* - web</ excl ude>
</ excl udes>
<useProject Artifact>fal se</useProjectArtifact>
<out put Di rect ory>/ VEB- | NF/ | i b</ out put Di r ect ory>
</ dependencySet >
</ dependencySet s>

</ assenbl y>

Thistime, if we run the build from the top-level project directory, we get better
News.

$

(

[

{

[INFO nodul e-set-distro-parent SUCCESS [3. 070s]
[INFO app-COreu.iii e SUCCESS [2. 970s]
[INFO app-web SUCCESS [1. 424s]
[INFQ app-addons0uiiun.. SUCCESS [0. 543s]
[INFQ app-distribution SUCCESS [2. 603s]
[
[
[
[
[
[

INFQ Total time: 10 seconds
I NFO Finished at: Thu May 01 18:00: 09 EDT 2008

316

Maven Assemblies

[INFQ Final Menory: 16M 29M
[INFQ - - - - m s m o m e oo oo

Asyou can see, the dependency-set approach is much more stable and - at least
until Maven’ sinternal project-sorting logic catches up with the Assembly plugin's
capabilities, - involves less opportunity to get things wrong when running a build.

12.7. Summary

Aswe' ve seen in this chapter, the Maven Assembly plugin offers quite abit of
potential for creating custom archive formats. While the details of these assembly
archives can be complex, they certainly don’t have to bein all cases - as we saw
with built-in assembly descriptors. Even if your aim isto include your project’s
dependencies and selected project filesin some unique, archived directory
structure, writing a custom assembly descriptor doesn’'t have to be an arduous task.

Assemblies are useful for awide array of applications, but are most commonly
used as application distributions of various sorts. And, while there are many
different ways to use the Assembly plugin, using standardized assembly-descriptor
artifacts and avoiding nodul eSet s when creating distributions containing binaries
are two sure ways to avoid problems,

317

Chapter 13. Properties and Resource
Filtering

13.1. Introduction

Throughout this book, you will notice references to properties which can be used
in a POM file. Sibling dependenciesin a multi-project build can be referenced
using the ${ pr oj ect . gr oupl d} and ${pr oj ect. ver si on} properties and any part
of the POM can be referenced by prefixing the variable name with "project.”.
Environment variables and Java System properties can be referenced, as well as
values from your ~/ . n2/ settings. xm file. What you haven't seen yet isan
enumeration of the possible property values and some discussion about how they
can be used to help you create portable builds. This chapter provides such an
enumeration.

If you've been using property referencesin your POM, you should also know that
Maven has afeature called Resource Filtering which allows you to replace
property references in any resource files stored under sr ¢/ mai n/ r esour ces. By
default this feature is disabled to prevent accidental replacement of property
references. This feature can be used to target builds toward a specific platform and
to externalize important build variables to properties files, POMs, or profiles. This
chapter introduces the resource filtering feature and provides a brief discussion of
how it can be used to create portable enterprise builds.

13.2. Maven Properties

Y ou can use Maven propertiesin apom xnm file or in any resource that is being
processed by the Maven Resource plugin's filtering features. A property is always
surrounded by ${ and}. For example, to reference the pr oj ect . ver si on property,
one would write:

${ proj ect . ver si on}

318

Properties and Resource Filtering

There some implicit properties available in any Maven project, these implicit
properties are:

proj ect.*
Maven Project Object Model (POM). Y ou can use the pr oj ect . * prefix to
reference valuesin a Maven POM.

settings.*
Maven Settings. You usetheset ti ngs. * prefix to reference values from your
Maven Settingsin ~/ . n2/ settings. xni .

env. *
Environment variables like PATH and M2_HOVE can be referenced using the
env. * prefix.

System Properties

Any property which can be retrieved from the Syst em get Property() method

can be referenced as a Maven property.
In addition to the implicit properties listed above, a Maven POM, Maven Settings,
or aMaven Profile can define a set of arbitrary, user-defined properties. The
following sections provide so detail on the various properties available in aMaven
project.

13.2.1. Maven Project Properties

When aMaven Project Property is referenced, the property nameisreferencing a
property of the Maven Project Object Model (POM). Specifically, you are
referencing a property of the or g. apache. maven. nodel . Model classwhichisbeng
exposed as the implicit variable project. When you reference a property using this
implicit variable, you are using simple dot notation to reference a bean property of
the Mbdel object. For example, when you reference ${ pr oj ect . ver si on}, you are
really invoking the get Ver si on() method on the instance of Mdel that isbeing
exposed as project.

The POM is also represented in the pom xm document present in al Maven

319

Properties and Resource Filtering

projects. Anything in aMaven POM can be referenced with a property. A complete
reference for the POM structure is available at
http://maven.apache.org/ref/2.0.10/maven-model/maven.html. The following list
shows some common property references from the Maven project.

proj ect. groupl d and proj ect . versi on

Projectsin alarge, multi-module build often share the same gr oupl d and

ver si on identifiers. When you are declaring interdependencies between two
modules which share the same gr oupl d and ver si on, itisagood ideato use a
property reference for both:

<dependenci es>
<dependency>
<gr oupl d>${ pr oj ect . gr oupl d} </ gr oupl d>
<artifactld>sibling-project</artifactld>
<ver si on>${ pr oj ect . ver si on} </ ver si on>
</ dependency>
</ dependenci es>

project.artifactld

A project's artifactld is often used as the name of a deliverable. For example, in
aproject with WAR packaging, you will want to generate aa WAR file without
the version identifiers. To do this, you would reference the
project.artifact!dinyour POM filelikethis:

<bui | d>
<final Name>${proj ect.artifactld}</final Name>
</ bui | d>

proj ect. name and proj ect . descri ption

The name and project description can often be useful properties to reference
from documentation. Instead of having to worry that all of your site documents
maintain the same short descriptions, you can just reference these properties.

project.build. *

If you are ever trying to reference output directoriesin Maven, you should
never use aliteral valueliket ar get / cl asses. Instead you should use property
references to refer to these directories.

320

http://maven.apache.org/ref/2.0.10/maven-model/maven.html

Properties and Resource Filtering

®* project.build.sourceDirectory

®* project.build. scriptSourcebDirectory
® project.build.testSourcebDirectory

®* project.build.outputDirectory

* project.build.testQutputDirectory

®* project.build.directory

sourceDirectory, scri pt SourceDirectory, andt est SourceDi rectory
provide access to the source directories for the project. out put Di r ect ory and
t est Qut put Di r ect ory provide access to the directories where Maven is going
to put bytecode or other build output. di r ect or y refers to the directory which
contains al of these output directories.

Other Project Property references
There are hundreds of propertiesto referencein a POM. A complete reference
for the POM structure is available at
http://maven.apache.org/ref/2.0.10/maven-model/maven.html.
For afull list of properties available on the Maven Mdel object, take alook at the
JavaDoc for the naven- nodel project here
http://maven.apache.org/ref/2.0.10/maven-model/apidocs/index.html. Once you
load this JavaDoc, take alook at the Mbdel class. From this Mbdel class JavaDoc,
you should be able to navigate to the POM property you wish to reference. If you
needed to reference the output directory of the build, you can use the Maven Model
JavaDoc to see that the output directory is referenced via
nmodel . get Bui | d(). get Qut put Di rect ory() ; thismethod call would be translated
to the Maven property reference ${ pr oj ect . bui | d. out put Di r ect or y}.

For more information about the Maven Model module, the module which defines
the structure of the POM, see the Maven Model project page at
http://maven.apache.ora/ref/2.0.10/maven-mode!.

321

http://maven.apache.org/ref/2.0.10/maven-model/maven.html
http://maven.apache.org/ref/2.0.10/maven-model/apidocs/index.html
http://maven.apache.org/ref/2.0.10/maven-model

Properties and Resource Filtering

13.2.2. Maven Settings Properties

Y ou can also reference any propertiesin the Maven Local Settings filewhichis
usually stored in~/ . n/ set ti ngs. xmi . Thisfile contains user-specific
configuration such as the location of the local repository and any servers, profiles,
and mirrors configured by a specific user.

A full reference for the Local Settings file and corresponding propertiesis
available here http://maven.apache.org/ref/2.0.10/maven-settings/settings.html.

13.2.3. Environment Variable Properties

Environment variables can be referenced with the env.* prefix. Some interesting
environment variables are listed in the following list:

env. PATH
Contains the current PATH in which Maven is running. The PATH contains a list
of directories used to locate executable scripts and programs.

env. HOVE
(On *nix systems) this variable points to a user's home directory. Instead of
referencing this, you should use the ${ user.nhome}

env. JAVA HOVE

Contains the Java installation directory. This can point to either a Java
Development Kit (JDK) installation or a Java Runtime Environment (JRE).
Instead of using this, you should consider referencing the ${ java.home}

property.

env. M2_HOVE

Contains the Maven 2 installation directory.
While they are available, you should always use the Java System properties if you
have the choice. If you need a user's home directory use ${ user . hone} instead of
${ env. HOVE} . If you do this, you'll end up with a more portable build that is more
likely to adhere to the Write-One-Run-Anywhere (WORA) promise of the Java

322

http://maven.apache.org/ref/2.0.10/maven-settings/settings.html

Properties and Resource Filtering

platform.

13.2.4. Java System Properties

Maven exposes all propertiesfromj ava. | ang. Syst em Anything you can retrieve
from Syst em get Property() you can reference in a Maven property. The
following table lists available properties:

Table 13.1. Java System Properties

System Property Description

j ava. ver si on Java Runtime Environment version

j ava. vendor Java Runtime Environment vendor

java.vendor.url Javavendor URL

j ava. honme Javainstallation directory

j ava. vm speci fication. version Java Virtual Machine specification
version

j ava. vm speci fi cati on. vendor Java Virtual Machine specification vendor

j ava. vm speci fi cati on. name Java Virtual Machine specification name

j ava. vm ver si on Java Virtual Machine implementation
version

j ava. vm vendor Java Virtua Machine implementation
vendor

j ava. vm name Java Virtual Machine implementation
name

j ava. speci fication. version Java Runtime Environment specification
version

j ava. speci ficati on. vendor Java Runtime Environment specification
vendor

323

Properties and Resource Filtering

System Property Description

j ava. speci fi cati on. nane Java Runtime Environment specification
name

j ava. cl ass. version Java class format version number

j ava. cl ass. path Java class path

java.ext.dirs Path of extension directory or directories

0S. narme Operating system name

0s. arch Operating system architecture

0S. ver sion Operating system version

file.separator File separator (/" on UNIX, "\" on
Windows)

pat h. separ at or Path separator (":" on UNIX, ";" on
Windows)

| i ne. separ at or Line separator ("\n" on UNIX and
Windows)

user. name User's account name

user . home User's home directory

user.dir User's current working

13.2.5. User-defined Properties

In addition to the implicit properties provided by the POM, Maven Settings,
environment variables, and the Java System properties, you have the ability to
define your own arbitrary properties. Properties can be defined inaPOM or ina
Profile. The properties set in aPOM or in a Maven Profile can be referenced just
like any other property available throughout Maven. User-defined properties can
be referenced in a POM, or they can be used to filter resources viathe Maven

324

Properties and Resource Filtering

Resource plugin. Here's an example of defining some arbitrary propertiesin a
Maven POM.

Example 13.1. User-defined Propertiesin a POM

<pr oj ect >

<properties>
<arbitrary.property.a>This is some text</arbitrary. property. a>
<hi ber nat e. ver si on>3. 3. 0. ga</ hi ber nat e. ver si on>

</ properties>

<dependenci es>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate</artifactld>
<ver si on>${ hi ber nat e. ver si on} </ ver si on>
</ dependency>
</ dependenci es>

</ proj ect >

The previous example defines two properties: arbi trary. property. a and
hi ber nat e. ver si on. The hi ber nat e. ver si on isreferenced in a dependency
declaration. Using the period character as a separator in property namesisa

standard practice throughout Maven POMs and Profiles. There is nothing special
about using a period as a separator; to Maven "hibernate.version” isjust akey used

to retrieve the property value "3.3.0.ga". The next example shows you how to
define a property in a profile from aMaven POM.

Example 13.2. User-defined Propertiesin a Profilein a POM

<pr oj ect >

<profil es>
<profil e>
<i d>sone-profile</id>
<properties>
<arbitrary.property>This is sone text</arbitrary. property>
</ properties>
</profil e>
</profil es>

</ proj ect >

325

Properties and Resource Filtering

The previous example demonstrates the process of defining a user-defined property
in aprofile from aMaven POM. For more information about user-defined
properties and profiles, see Chapter 11, Build Profiles.

13.3. Resource Filtering

Y ou can use Maven to perform variable replacement on project resources. When
resource filtering is activated, Maven will scan resources for references to Maven
property references surrounded by ${ and } . When it finds these references it will
replace them with the appropriate value in much the same way the properties
defined in the previous section can be referenced from a POM. Thisfeatureis
especially helpful when you need to parameterize a build with different
configuration values depending on the target deployment platform.

Oftena. properti es fileor an XML document in src/ mai n/ r esour ces Will
contain a reference to an external resource such as a database or a network location
which needs to be configured differently depending on the target deployment
environment. For example, a system which reads data from a database has an XML
document which contains the JDBC URL along with credentials for the database.

If you need to use a different database in development and a different database in
production. Y ou can either use atechnology like JNDI to externalize the
configuration from the application in an application server, or you can create a
build which knows how to replace variables with different values depending on the
target platform.

Using Maven resource filtering you can reference Maven properties and then use
Maven profiles to define different configuration values for different target
deployment environments. To illustrate this feature, assume that you have a project
which uses a the Spring Framework to configure aBasi cDat aSour ce from the
Commons DBCP project. Y our project may contain afileinsrc/ mai n/ resour ces
named appl i cati onCont act . xmi which containsthe XML listed in Example 13.3,
“Referencing Maven Properties from a Resource’.

Example 13.3. Referencing Maven Propertiesfrom a Resour ce

326

http://commons.apache.org/dbcp

Properties and Resource Filtering

<beans xm ns="htt p://ww. spri ngframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schenma/ beans
http://ww. spri ngframewor k. or g/ schenma/ beans/ spri ng- beans- 2. 5. xsd" >

<bean i d="soneDao" cl ass="com exanpl e. SoneDao" >
<property nane="dat aSour ce" ref="dataSource"/>
</ bean>

<bean i d="dat aSour ce" destroy-net hod="cl ose"
cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" >

<property name="driverd assNane" val ue="${j dbc. dri verd assNane}"/ >
<property name="url" val ue="${jdbc.url}"/>
<property nane="user nane" val ue="${j dbc. user nane}"/ >
<property nanme="password" val ue="${j dbc. password}"/>

</ bean>

</ beans>

Y our program would read thisfile at runtime, and your build is going to replace
the references to propertieslikej dbc. url andj dbc. user name with the values you
defined in your pom.xml. Resource filtering is disabled by default to prevent any
unintentional resource filtering. To turn on resource filter, you need to use the
resources child element of the build element in aPOM. Example 13.4, “Defining
Variables and Activating Resource Filtering” shows a POM which defines the
variables referenced in Example 13.3, “Referencing Maven Properties from a
Resource” and which activates resource filtering for every resource under

src/ mai n/ resour ces.

Example 13.4. Defining Variables and Activating Resour ce Filtering

<pr oj ect >

<properties>
<j dbc. dri ver Cl assNane>
com nysql . jdbc. Driver</jdbc.driverd assNane>
<j dbc. url >j dbc: mysql : //1 ocal host : 3306/ devel opnent _db</j dbc. url >
<j dbc. user name>dev_user </ j dbc. user name>
<j dbc. passwor d>s3cr 3t wOr d</ j dbc. passwor d>
</ properties>
<bui | d>
<r esour ces>
<r esour ce>sr c/ mai n/ r esour ces</resour ce>
<filtering>true</filtering>
</resources>

327

Properties and Resource Filtering

</ bui | d>

<profil es>
<profil e>
<i d>pr oducti on</i d>
<properties>

<j dbc. url >j dbc: oracl e: t hi n: @r oddb01: 1521: PROD</ j dbc. ur| >
<j dbc. user nane>pr od_user </ j dbc. user nane>
<j dbc. passwor d>s00p3r s3cr 3t </ j dbc. passwor d>
</ properties>
</profil e>
</profiles>
</ proj ect >

<j dbc. dri ver Cl assNane>or acl e. j dbc. driver. Oracl eDriver</jdbc. driverd ass

Nane>

The four variables are defined in the pr oper t i es element, and resource filtering is

activated for resources under sr c/ mai n/ r esour ces. Resource filtering is

deactivated by default, and to activate it you must explicitly setfilteringtotrue

for the resources stored in your project. Filtering is deactivated by default to
prevent accidental, unintentional filtering during your build. If you build a project
with the resource from Example 13.3, “Referencing Maven Properties from a
Resource” and the POM from Example 13.4, “Defining Variables and Activating
Resource Filtering” and if you list the contents of the resource in target/classes,
you should see that it contains the filtered resource:

$ nvn instal
$ cat target/classes/applicationContext.xmn

<bean i d="dat aSour ce" destroy-net hod="cl ose"
cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" >
<property nanme="driverd assNane" val ue="com nysql .jdbc. Driver"/>

<property nanme="usernane" val ue="dev_user"/>
<property name="password" val ue="s3cr3tword"/>
</ bean>

<property name="url" val ue="jdbc: mysql://I| ocal host: 3306/ devel opnent _db"

The POM in Example 13.4, “Defining Variables and Activating Resource
Filtering” also defines apr oduct i on profile under the profil es/ profil e element
which overrides the default properties with values that would be appropriate for a

production environment. In this particular POM, the default values for the database

connection are for alocal MySQL database installed on a devel oper's machine.

328

Properties and Resource Filtering

When the project is built with the production profile activated, Maven will
configure the system to connect to a production Oracle database using a different
driver class, URL, username, and password. If you build a project with the
resource from Example 13.3, “Referencing Maven Properties from a Resource”
and the POM from Example 13.4, “Defining Variables and Activating Resource
Filtering” with the pr oduct i on profile activated and if you list the contents of the
resource in target/classes, you should see that it contains the filtered resource with
production values:

$ nmvn -Pproduction instal
$ cat target/classes/applicationContext.xm

<bean i d="dat aSour ce" destroy-net hod="cl ose"
cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" >
<property name="driver Cl assNane"
val ue="oracl e. jdbc. driver. Oracl eDriver"/>
<property nanme="url" val ue="j dbc: oracl e: thi n: @roddb01: 1521: PROD"/ >
<property nanme="user nane" val ue="prod_user"/>
<property nanme="password" val ue="s00p3rs3cr3t"/>
</ bean>

329

Chapter 14. Maven and Eclipse: m2eclipse

This chapter is deprecated. While the original version of Maven: The Definitive
Guide had an entire chapter dedicated to m2eclipse, Sonatype found that the
content was growing fast enough to deserve its own dedicate title. We've decided

to spin off the content in the Eclipse chapter into a new book called Developing
with Eclipse and Maven.

Click here to read Developing with Eclipse and Maven.

330

http://books.sonatype.com/m2eclipse-book/
http://books.sonatype.com/m2eclipse-book/
http://books.sonatype.com/m2eclipse-book/

Chapter 15. Site Generation

15.1. Introduction

Successful software applications are rarely produced by ateam of one. When we're
talking about any software worth writing, we're usually dealing teams of
collaborating devel opers ranging anywhere in size from a handful of programmers
working in asmall team to hundreds or thousands of programmers working in
large distributed environment. Most open source projects (such as Maven) succeed
or fail based on the presence or absence of well written documentation for a
widely-distributed, ad-hoc collection of users and developers. In all environments
it isimportant for projects to have an easy way to publish and maintain online
documentation. Software development is primarily an exercise in collaboration and
communication, and publishing a Maven site is one way to make sure that your
project is communicating with your end-users.

A web site for an open source project is often the foundation for both the end-user
and developer communities alike. End-users ook to a project's web site for
tutorials, user guides, APl documentation, and mailing list archives, and
developers look to a project's web site for design documents, code reports, issue
tracking, and release plans. Large open-sources projects may be integrated with
wikis, issue trackers, and continuous integration systems which help to augment a
project's online documentation with material that reflects the current status of
ongoing development. If a new open source project has an inadequate web site
which fails to convey basic information to prospective users, if often isasign that
the project in question will fail to be adopted. In other words, for an open source
project, the site and the documentation are as important to the formation of a
community as the code itself.

Maven can be used to create a project web site to capture information which is
relevant to both the end-user and the developer audience. Out of the box, Maven
can generate reports on everything from unit test failures to package coupling to
reports on code quality. Maven provides you with the ability to write ssmple web

331

Site Generation

pages and render those pages against a consistent project template. Maven can

publish site content in multiple formats including XHTML and PDF. Maven can be

used to generate APl document and can also be used to embedded Javadoc and
source code in your project's binary release archive. Once you've used Maven to
generate all of your project's end-user and developer documentation, you can then
use Maven to publish your web site to aremote server.

15.2. Building a Project Site with Maven

To illustrate the process of building a project website, create a sample Maven
project with the archetype plugin:

$ mvn archetype: create -Dgroupl d=or g. sonat ype. mavenbook -Dartifact|d=sanpl e-proj

This creates the simplest possible Maven project with aone Javaclassin

src/ mai n/ j ava and asimple POM. Y ou can then build a Maven site by simply
running mvn site. To build the site and preview the result in a browser, you can run
mvn site:run, thiswill build the site and start an embedded instance of Jetty.

$ cd sanpl e- proj ect
$ nvn site:run

[I NFO
[I NFO
[I NFO
[I NFO
[I NFO
[I NFO
[I NFO

[I NFO
[I NFO
[I NFO
[I NFO

2008-04-26 11:52:26.981::INFO Logging to STDERR via org. nortbay. | og. St dErrLog

[I NFO

2008-04-26 11:52:26.046::INFO jetty-6.1.5
2008- 04- 26 11:52:26.156::1NFO NO JSP Support for /, did not find

2008-04-26 11:52:26.244::INFO. Started Sel ect Channel Connect or @. 0. 0. 0: 8080

Scanni ng for projects...
Searching repository for plugin with prefix: 'site'.
Bui | di ng sanpl e- proj ect
t ask-segnent: [site:run] (aggregator-style)
Setting property: classpath.resource.|oader.class =>
' or g. codehaus. pl exus. vel oci ty. Cont ext O assLoader Resour ceLoader ' .
Setting property: vel oci macro. nessages.on => 'fal se'
Setting property: resource.|loader => 'classpath’
Setting property: resource.nanager.| ogwhenfound => 'fal se'
[site:run]

Starting Jetty on http://Iocal host: 8080/

or g. apache. j asper. servl et. JspSer vl et

Once Jetty starts and is listening to port 8080, you can see the project's site when
you go to http://localhost:8080/ in aweb browser. Y ou can see the resultsin

332

ect

http://localhost:8080/

Site Generation

Figure 15.1, “ Simple Generated Maven Site”.

sample-project - About —]
3 hip://localhost:8080/ Y|
L]
sample-project
Last Published: 2008-04-26 sam ple-project

Project Documentation

aject Infol an -
M~ e About sample-project

Continuous Integration

Dependencles

ﬁ;"‘l"‘ng-rfd;“‘g There is currently no description associated with
1 ISLS R B
Project License this project.

Project Summary
Project Team
Source Repository

Bulll by
maven

Figure 15.1. Simple Generated Maven Site

If you click around on this simple site, you'll seethat it isn't very helpful asareal
project site. There's just nothing there (and it doesn't ook very good). Since the
sanpl e- proj ect hasn't configured any developers, mailing lists, issue tracking
providers, or source code repositories, all of these pages on the project site will
have no information. Even the index page of the site states, "Thereis currently no
description associated with this project”. To customize the site, you'll have to start
add content to the project and to the project's POM.

If you are going to use the Maven Site plugin to build your project's site, you'll
want to customize it. Y ou will want to populate some of the important fieldsin the
POM that tell Maven about the people participating in the project, and you'll want
to customize the left-hand navigation menu and the links visible in the header of
the page. To customize the contents of the site and affect the contents of the
left-hand navigation menu, you will need to edit the site descriptor.

333

Site Generation

15.3. Customizing the Site Descriptor

When you add content to the site, you are going to want to modify the left-hand
navigation menu that is generated with your site. The following site descriptor
customizes the logo in the upper left-hand corner of the site. In addition to
customizing the header of the site, this descriptor adds a menu section to the
left-hand navigation menu under the heading " Sample Project”. This menu
contains asingle link to an overview page.

Example 15.1. An Initial Site Descriptor

<proj ect nanme="Sanpl e Project">
<banner Lef t >
<name>Sonat ype</ nane>
<src>i mages/ | ogo. png</ sr c>
<hr ef >ht t p: / / ww. sonat ype. conx/ hr ef >
</ banner Left >
<body>
<nenu nane="Sanpl e Project">
<i tem nanme="Overvi ew' href="index. htm"/>
</ menu>
<menu ref="reports"/>
</ body>
</ proj ect >

This site descriptor references one image. This| ogo. png image should be placed
INn${basedir}/src/sitel/resources/images. In addition to the change to the site
descriptor, you'll want to create asimplei ndex. apt pagein

${basedi r}/src/ sitelapt.Put thefollowing content ini ndex. apt , it will be
transformed to the i ndex. ht M and serve as the first page a user sees when they
come to your project's Maven-generated web site.

Wel cone to the Sanple Project, we hope you enjoy your tine
on this project site. W've tried to assenble sone

great user docunentation and devel oper information, and
we're really excited that you've taken the tinme to visit
this site.

VWhat is Sanpl e Project

Vell, it's easy enough to expl ain. This sanple project is

334

Site Generation

a sanple of a project with a Maven-generated site from
Maven: The Definitive Cuide. A dedi cated team of volunteers
help maintain this sanple site, and so on and so forth.

To preview the the site, run mvn clean site followed by mvn site:run:

$ nvn clean site
$ nvn site:run

Once you do this, load the page in a browser by going to http://localhost:8080. Y ou
should see something similar to the screenshot in Figure 15.2, “ Customized
Sample Project Web Site”.

S

Sample Project - =

3 http:/ /localhost: 8080,

v | |
SO n at e Blfild Success
y p for your Enterprise
Last Published: 2008-04-26
sample Project Welcome to the Sample Project, we hope you enjoy you time on
Overview this project site. We've tried to assemble some great user
L“F;;VELEE documentation and developer information, and we're really
= I . n o X i
Project Documentation excited that you've taken the time to visit this site.
» Project Information
Built bry: ..
maven

What is Sample Project

Well, it's easy enough to explain. This sample project is a
sample of a project with a Maven-generated site from Mawven:
The Definitive Guide. A dedicated team of volunteers help
maintain this sample site, and so on and so forth.

© 2008

Figure 15.2. Customized Sample Project Web Site

15.3.1. Customizing the Header Graphics
To customize the graphics which appear in the upper left-hand and right-hand

335

http://localhost:8080

Site Generation

corners of the page, you can use the banner Lef t and banner Ri ght elementsin a
site descriptor.

Example 15.2. Adding a Banner Left and Banner Right to Site Descriptor

<proj ect nanme="Sanpl e Project">

<banner Lef t >
<name>Left Banner </ nane>
<sr c>i mages/ banner -1 eft. png</ src>
<hr ef >ht t p: / / ww. googl e. conx/ hr ef >
</ banner Left >

<banner Ri ght >
<name>Ri ght Banner </ nane>
<sr c>i mages/ banner -ri ght. png</src>
<hr ef >ht t p: / / ww. yahoo. conx/ hr ef >
</ banner Ri ght >

</ proj ect >

Both the banner Lef t and banner Ri ght €lementstake nane, src, and href child
elements. In the site descriptor shown above, the Maven Site plugin will generate a
sitewith banner - I ef t . png in the left-hand corner of the page and banner-right in
the right-hand corner of the page. Maven isgoing to look in
${basedir}/src/sitel resources/i mages for these images.

15.3.2. Customizing the Navigation Menu

To customize the contents of the navigation menu, use the nenu element withi t em
child elements. The menu element adds a section to the left-hand navigation menu.
Each item isrendered as alink in that menu.

Example 15.3. Creating Menu Itemsin a Site Descriptor

<proj ect nanme="Sanpl e Project">
<body>
<nmenu nanme="Sanpl e Project">
<i tem name="Introducti on" href="index. htm"/>

336

Site Generation

<i tem nanme="News" href="news.htm "/>
<item nane="Features" href="features.htm"/>
<itemnane="Installation" href="installation.htm"/>
<i tem name="Confi guration" href="configuration.htm"/>
<i tem name="FAQ' href="faq.htm"/>
</ menu>
</ body>
</ proj ect >

Menu items can also be nested. If you nest items, you will be creating a collapsible
menu in the left-hand navigation menu. The following example adds alink
"Developer Resources' which linksto/ devel oper /i ndex. ht M . When auser is
looking at the Developer Resources page, the menu items below the Devel oper
Resources menu item will be expanded.

Example 15.4. Adding a Link to the Site Menu

<pr oj ect nanme="Sanpl e Project">
<body>
<nmenu nanme="Sanpl e Project">

<i tem nanme="Devel oper Resources" href="/devel oper/index.htm"
col | apse="true">
<i tem nanme="System Archi tecture" href="/devel oper/architecture. htm "/>
<i t em nanme="Enbedder's Gui de" href="/devel oper/enbeddi ng. htm "/ >
</itenp
</ menu>
</ body>
</ proj ect >

When an item has the col | apse attribute set to t r ue, Maven will collapse the item
until auser is viewing that specific page. In the previous example, when the user is
not looking at the Developer Resources page, Maven will not display the System
Architecture and Embedder's Guide links; instead, it will display an arrow pointing
to the Developer Resources link. When the user is viewing the Developer
Resources page it will show these links with an arrow pointing down.

337

Site Generation

15.4. Site Directory Structure

Maven places al site document under sr c/ si t e. Documents of similar format are
placed in subdirectories of src/ si te. All APT documents should bein

src/sitel/ apt, al FML documentsshould beinsrc/site/fm , and XDoc
documents should beinsrc/ si t e/ xdoc. The site descriptor should bein
src/sitel/site. xm , and al resources should be stored under

src/ sitel resour ces. When the Maven Site plugin builds aweb site, it will copy
everything in the resources directory to the root of the site. If you store animagein
src/ sitel resources/ i mages/test. png, they you would refer to the image from
your site documentation using the relative path i nages/ t est . png.

The following examples shows the location of al filesin a project which contains
APT, FML, HTML, XHTML, and some XDoc. Note that the XHTML content is
simply stored in the resources directory. The architecture.ntml file will not be
processed by Doxia, it will simply be copied to the output directory. Y ou can use
this approach if you want to include unprocessed HTML content and you don't
want to take advantage of the templating and formatting capabilities of Doxia and
the Maven Site plugin.

sanpl e- proj ect

+- src/
+- sitel

+- apt/
| +- index.apt
| +- about. apt
|
| +- devel oper/
I +- enbeddi ng. apt
|
+ fml/
| + faq.fm
I
+- resources/
| +- images/
| | +- banner-left.png
| | +- banner-right.png
|
| +- architecture.htn
| +- jira-roadmap-export-2007-03-26. htn
I
+- xdoc/
I

+- xm - exanpl e. xm

338

Site Generation

+- site.xm

Note that the developer documentation is stored in

src/ sitel apt/ devel oper/ enbeddi ng. apt . Thisextradirectory below the apt
directory will be reflected in the location of the resulting HTML page on the site.
When the Site plugin renders the contents of the src/ si t e/ apt directory it will
produce HTML output in directories relative to the site root. If afileisin the apt
directory it will bein the root directory of the generated web site. If afileisinthe
apt / devel oper directory it will be generated in the devel oper/ directory of the
web site.

15.5. Writing Project Documentation

Maven uses a documentation-processing engine called Doxia which reads multiple
source formats into a common document model. Doxia can then manipulate
documents and render the result into several output formats, such as PDF or
XHTML. To write document for your project, you will need to write your content
in aformat which can be parsed by Doxia. Doxia currently has support for Almost
Plain Text (APT), XDoc (a Maven 1.x documentation format), XHTML, and FML
(useful for FAQ documents) formats.

This chapter has a cursory introduction to the APT format. For a deeper understand
of the APT format, or for an in-depth introduction to XDoc or FML, please see the
following resources.

» APT Reference: http://maven.apache.org/doxia/format.html

» XDoc Reference: http://jakarta.apache.oro/site/jakarta-site2.html

« FML Reference: http://maven.apache.ora/doxialreferences/fml-format.htmil

15.5.1. APT Example

Example 15.5, “APT Document” shows a simple APT document with an

339

http://maven.apache.org/doxia/format.html
http://jakarta.apache.org/site/jakarta-site2.html
http://maven.apache.org/doxia/references/fml-format.html

Site Generation

introductory paragraph and asimple list. Note that the list is terminated by the
psuedo-element "[]".

Example 15.5. APT Document

Introduction to Sanpl e Project
Brian Fox

26- Mar - 2008

Wl cone to Sanpl e Project
This is a sanple project, welcomne! We're excited that you' ve decided to
read the i ndex page of this Sanple Project. W hope you enjoy the sinple
sanpl e project we've assenbl ed for you.
Here are sone useful links to get you started:

* {{{news. ht m } News}}

* {{{features. ht } Features}}
* {{{faq. ht M } FAQ }

[]

If the APT document from Example 15.5, “APT Document” were placed in
src/ sitel apt/index. apt, the Maven Site plugin will parse the APT using Doxia
and produce XHTML contentini ndex. htm .

15.5.2. FML Example

Many projects maintain a Frequently Asked Questions (FAQ) page. Example 15.6,
“FAQ Markup Language Document” shows an example of an FML document.

Example 15.6. FAQ Markup L anguage Document

<?xm version="1.0" encodi ng="UTF- 8" ?>
<faqgs title="Frequently Asked Questions">
<part id="Ceneral ">
<faq i d="sanpl e- proj ect - sucks">

340

Site Generation

<questi on>Sanpl e project doesn't work. Wy does sanple
proj ect suck?</question>

<answer >
<p>
We resent that question. Sanple wasn't designed to work, it was
desi gned to show you how to use Maven. If you really think
this project sucks, then keep it to yourself. W' re not
interested in your pestering questions.
</ p>
</ answer >
</ fag>

<faq i d="sanpl e- proj ect - source" >
<question>l want to put sonme code in Sanple Project,
how do | do this?</question>

<answer >
<p>
If you want to add code to this project, just start putting
Java source in src/main/java. If you want to put sone source
code in this FAQ use the source el enment:
</ p>
<sour ce>
for(int i =0; i < 1234; i++) {
/1 do sonething brilliant
}
</ sour ce>
</ answer >
</faqg>
</ part>
</faqs>

15.6. Deploying Your Project Website

Once your project's documentation has been written and you've creates a site to be
proud of, you will want to deploy it aserver. To deploy your site you'll use the
Maven Site plugin which can take care of deploying your project's site to a remote
server using a number of methods including FTP, SCP, and DAV. To deploy the
siteusing DAV, configure the site entry of the di st ri but i onManagenent Section
in the POM, like this:

Example 15.7. Configuring Site Deployment

<pr oj ect >

341

Site Generation

<di stri buti onManagenent >
<site>
<i d>sanpl e- proj ect . websi te</i d>
<url >dav: htt ps://dav. sanpl e. coni si t es/ sanpl e- proj ect </ url >
</site>
</ di stri buti onManagenent >

</ proj ect >

Theur ! indistribution management has aleading indicator dav which tells the
Maven Site plugin to deploy the site to a URL that is able to understand WebDAYV.
Once you have added the di st ri but i onManagement Section to our

sanpl e- proj ect POM, we can try deploying the site:

$ mvn cl ean site-depl oy

If you have a server configured properly that can understand WebDAV, Maven
will deploy your project's web site to the remote server. If you are deploying this
project to asite and server visible to the public, you are going to want to configure
your web server to access for credentials. If your web server asks for a username
and password (or other credentials, you can configure this values in your

~/ . n2/ settings.xm).

15.6.1. Configuring Server Authentication

To configure a username/password combination for use during the site
deployment, we'll include the following in $HOVE/ . n2/ set ti ngs. xm :

Example 15.8. Storing Server Authentication in User-specific Settings

<settings>
<server s>
<server>
<i d>sanpl e- proj ect . websi te</i d>
<user nane>j dcasey</ user nane>

<passwor d>b@p@swor d</ passwor d>
</ server >

</ server s>

342

Site Generation

</settings>

The server authentication section can contain a number of authentication elements.
In the event you're using SCP for deployment, you may wish to use public-key
authentication. To do this, specify the publ i ckey and passphr ase elements,
instead of the password element. Y ou may still want to configure the username
element, depending on your server's configuration.

15.6.2. Configuring File and Directory Modes

If you are working in alarge group of developers, you'll want to make sure that
your web site's files end up with the proper user and group permissions after they
are published to the remote server. To configure specific file and directory modes
for use during the site deployment, include the following in

$HOWE/ . n2/ set tings. xm :

Example 15.9. Configuring File and Directory Modes on Remote Servers

<settings>
<server s>
<server>
<i d>hel | o-wor | d. websi te</i d>
<di rect or yPer m ssi ons>0775</ di r ect or yPer mi ssi ons>
<fil ePerm ssi ons>0664</fil ePernm ssi ons>
</ server >

</ server s>

</settings>

The above settings will make any directories readable and writable by either the
owner or members of the owner's primary group; the anonymous users will only
have access to read and list the directory. Similarly, the owner or members of the
owner's primary group will have access to read and write any files, with the rest of
the world restricted to read-only access.

343

Site Generation

15.7. Customizing Site Appearance

The default Maven template |leaves much to be desired. If you wish to customize
your project's website beyond simply adding content, navigational elements, and
custom logos. Maven offers several mechanisms for customizing your website that
offer successively deeper access to content decoration and website structure. For
small, per-project tweaks, providing acustomsi t e. css is often enough. However,
If you want your customizations to be reusable across multiple projects, or if your
customizations involve changing the XHTML that Maven generates, you should
consider creating your own Maven website skin.

15.7.1. Customizing the Site CSS

The easiest way to affect the look and feel of your project's web site is through the
project'ssite. css. Just like any images or XHTML content you provide for the
website, thesi te. css filegoesinthesrc/ sit e/ resour ces directory. Maven
expectsthisfiletobeinthesrc/site/ resources/ css subdirectory. With CSSitis
possible to change text styling properties, layout properties, and even add
background images and custom bullet graphics. For example, if we decided that to
make the menu heading stand out a little more, we might try the following stylein
src/sitel/resources/css/site. css:

#navcol um h5 {
font-size: smaller;
border: 1px solid #aaaaaa;
backgr ound- col or: #bbb;
mar gi n-top: 7px;
mar gi n- bottom 2px;
paddi ng-t op: 2px;
paddi ng-1 eft: 2px;
col or: #000;

}

When you regenerate the website, the menu headers should be framed by a gray
background and separated from the rest of the menu by some extra margin space.
Using thisfile, any structure in the Maven-generated website can be decorated with
custom CSS. When you changesi t e. css in a specific Maven project, the changes

344

Site Generation

will apply to that specific project. If you are interested in making changes that will
apply to more than one Maven project, you can create a custom skin for the Maven
Site plugin.

Tip

Thereisno good reference for the structure of the default Maven site
template. If you are attempting to customize the style of your Maven
project, you should use a Firefox extension like Firebug as atool to
explore the DOM for your project's pages.

15.7.2. Create a Custom Site Template

If the default Maven Site structure just doesn't do it for you, you can always
customize the Maven site template. Customizing the Maven Site template gives
you complete control over the ultimate output of the Maven plugin, and it is
possible to customize your project's site template to the point where it hardly
resembles the structure of a default Maven site template.

The Site plugin uses a rendering engine called Doxia, which in turn uses aVelocity
template to render the XHTML for each page. To change the page structure that is
rendered by default, we can configure the site plugin in our POM to use a custom
page template. The site template is fairly complex, and you'll need to have a good
starting point for your customization. Start by copying the default Velocity
template from Doxia's Subversion repository default-site.vm to

src/ sitelsite.vm Thistemplate iswritten in atemplating language called
Velocity. Veocity is asimple templating language which supports simple macro
definition and allows you to access an object's methods and properties using smple
notation. A full introduction is beyond the scope of this book, for more information
about Velocity and afull introduction please go to the Velocity project site at

http://vel ocity.apache.org.
Thedefaul t-site. xm templateisfairly involved, but the change required to

customi ze the left-hand menu is relatively straightforward. If you are trying to
change the appearance of amenul t em locate the menul t emmacro. It residesin a

345

http://svn.apache.org/viewvc/maven/doxia/doxia-sitetools/trunk/doxia-site-renderer/src/main/resources/org/apache/maven/doxia/siterenderer/resources/default-site.vm?revision=595592
http://velocity.apache.org

Site Generation

section that looks like this:

#macro (nmenultem $item)

#end

If you replace the macro definition with the macro definition listed below, you will
Injects Javascript references into each menu item which will allow the reader to

expand or collapse the menu tree without suffering through afull page reload:

#macro (nenultem $item $li st Count)
#set ($col | apse = "none")
#set (Scurrentltentref $Pat hTool . cal cul at eLi nk($i t em href,
$relativePath))
#set ($currentltenHref = $currentltentref.replaceAll("\\", "/"))

#if (Sitem & Sitemitens && Sitemitens.size() > 0)

#if ($itemcoll apse == fal se)

#set ($col |l apse = "col | apsed")
#el se

By default coll apsed

#set ($col |l apse = "col |l apsed")
#end

#set ($display = fal se)
#di spl ayTree($di splay $item)

#if ($alignedFil eName == $currentltentref || $display)
#set ($col |l apse = "expanded")
#end
#end
<li class="$coll apse">
#if ($iteming)
#if (! ($iteming.toLowerCase().startsWth("http") |
$iteming. toLower Case().startsWth("https")))
#set ($src = $Pat hTool . cal cul ateLink($iteming, $relativePath))
#tset ($src = Siteming.replaceA |l ("\\", "“/"))

#el se
<ing src="$iteming" align="absbotton style="border-wi dth: 0"/>
#end
#end
#if (%alignedFil eName == $currentltentref)
$i t em nane</ strong>
#el se
#if (Sitem & Sitemitens & Sitemitens.size() > 0)
<a onclick="expand('list$listCount')"
styl e="cursor: poi nt er">3$i t em nane</ a>
#el se

346

Site Generation

%i tem nane</ a>

#end
#end
#if (Sitem & Sitemitens && Sitemitens.size() > 0)
#if ($coll apse == "expanded")
<ul id="list$listCount" style="display: bl ock">
#el se
<ul id="list$listCount" style="display: none">
#end

#f oreach($subitemin Sitemitens)
#set ($listCounter = $listCounter + 1)
#menul t em($subitem $l i st Counter)
#end
</ ul >
#end

#end

This change adds a new parameter to the menul t emmacro. For the new
functionality to work, you will need to change references to this macro, or the
resulting template may produce unwanted or internally inconsistent XHTML. To
finish changing these references, make a similar replacement in the mai nMenu

macro. Find this macro by looking for something similar to the following template
Snippet:

#macro (mai nMenu $nenus)

#end

Replace the mainMenu macro with the following implementation:

#macro (mai nMenu $nenus)
#set ($counter = 0)
#set ($listCounter = 0)
#f oreach($menu in $menus)
#if ($menu. nane)
<h5 oncl i ck="expand(' nenu$count er')" >$nmenu. nane</ h5>
#end
<ul id="nmenu$counter" styl e="displ ay: bl ock">
#f oreach($itemin $nmenu.itens)
#menul tem($item $li st Counter)
#set ($listCounter = $listCounter + 1)
#end
</ ul >
#set ($counter = $counter + 1)
#end
#end

347

Site Generation

This new mai nMenu macro is compatible with the new nenul t emmacro above, and
also provides support for a Javascript-enabled top-level menu. Clicking on a
top-level menu item with children will expand the menu and allow users to see the
entire tree without waiting for a page to load.

The change to the nenul t emmacro introduced an expand() Javascript function.
This method needs to be added to the main XHTML template at the bottom of this
template file. Find the section that looks similar to the following:

<head>

<neta http-equiv="=Content- Type"
content="text/htm ; charset=%{out put Encodi ng}" />

</ head>

and replace it with this;

<head>

<neta http-equi v="=Content- Type"
content="text/htm ; charset=%{output Encodi ng}" />
<script type="text/javascript">
function expand(item) {
var expandlt = docunent.getEl ementByld(item);

i f(expandlt.style.display == "bl ock") {
expandl t.style.display = "none";
expandl t . par ent Node. cl assNane = "col | apsed”;
} else {
expandlt.style.display = "bl ock";
expandl t . par ent Node. cl assNane = "expanded";
}
}
</script>

#i f ($decoration. body. head)
#f oreach($itemin $decoration. body. head. get Children())

#if ($itemname == "script")
$i tem t oUnescapedStri ng()
#el se
$itemtoString()
#end
#end
#end
</ head>

After modifying the default site template, you'll need to configure your project's
POM to reference this new site template. To customize the site template, you'll

348

Site Generation

need to use thet enpl at eDi r ect or y and template configuration properties of the
Maven Site plugin.

Example 15.10. Customizing the Page Templatein a Project's POM

<pr oj ect >
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-site-plugin</artifactld>

<confi gurati on>
<t enpl at eDi rect ory>src/site</tenpl at eDi rectory>

<tenpl at e>si te. vix/ t enpl at e>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

</ proj ect >

Now, you should be able to regenerate your project website. When you do so you
may notice that the resources and CSS for the maven site are missing. When a
Maven project customizes the site template, the Site plugin expects the project to
supply all of the default images and CSS. To seed your project's resources, you
may want to copy the resources from the default Doxia site renderer project to your
own project's resources directory by executing the following commands:

$ svn co \
http://svn. apache. or g/ repos/ asf/ maven/ doxi a/ doxi a- si t et ool s/\

t runk/ doxi a- si t e-render er

$rm\
doxi a-si te-renderer/src/ mai n/resources/ or g/ apache/ maven/\

doxi a/ si t erender er/resources/ css/ maven-t hene. css
$cp -rf \
doxi a-si te-renderer/src/ min/resources/org/ apache/ maven/\

doxi a/ si terenderer/resources/* \
sanpl e- proj ect/src/sitel/resources

Check out the doxi a- si t e-render er project, remove the default maven-t hene. css
file and then copy all the resourcesto your project'ssrc/ sit e/ resour ces
directory.

349

Site Generation

When you regenerate the site, you'll notice that afew menu items look like regular
unstyled text. Thisis caused by a quirky interaction between the site's CSS and our
new custom page template. It can be fixed by modifying our si t e. css to restore
the proper link color for these menus. Simply add this:

l'i.collapsed, |i.expanded, a:link {
col or: #36a;
}

After regenerating the site, the menu's link color should be corrected. If you
applied the new site template to the same sample-project from this chapter, you'll
notice that the menu now consists of atree. Clicking on "Developer Resources' no
longer takes you to the "Developer Resources' page; in stead, it expands the
sub-menu. Since you've turned the Developer Resources menu-item into a
dynamically-folding sub-menu, you have lost the ability to reach the

devel oper/i ndex. apt page. To address this change, you should add an Overview
link to the sub-menu which references the same page:

Example 15.11. Addinga Menu Item to a Site Descriptor

<proj ect nanme="Hello World">
<nmenu name="Mai n Menu">

<i t em name="Devel oper Resources" col |l apse="true">
<i tem nanme="Overvi ew' href="/devel oper/index. htm"/>
<i tem name="System Archi tecture" href="/devel oper/architecture. htm "/>
<i t em nanme="Enbedder's Gui de" href="/devel oper/enbeddi ng. htm "/ >
<litenp
</ menu>

</ proj ect >

15.7.3. Reusable Website Skins

If your organization is created many Maven project sites, you will likely want to
reuse site template and CSS customi zations throughout an organization. If you
want thirty projects to share the same CSS and site template, you can use Maven's

350

Site Generation

support for skinning. Maven Site skins allow you to package up resources and
templates which can be reused by other projectsin lieu of duplicating your site
template for each project which needs to be customized.

While you can define your own skin, you may want to consider using one of
Maven's alternate skins. Y ou can choose from several skins. These each provide
their own layout for navigation, content, logos, and templ ates:

 Maven Classic Skin - or g. apache. maven. ski ns: maven- cl assi c-skin: 1. 0
e Maven Default Skin - or g. apache. maven. ski ns: maven- def aul t - skin: 1. 0

» Maven Stylus Skin - org.apache.maven.skins.maven-stylus-skin:1.0.1
Y ou can find an up-to-date and comprehensive listing in the Maven repository:

http://repol.maven.org/maven2/org/apache/maven/sking.

Creating a custom skin is a simple matter of wrapping your customized

maven- t hene. css in aMaven project, so that it can be referenced by gr oupl d,
artifactld,andversion. It can aso include resources such asimages, and a
replacement website template (written in Velocity) that can generate a completely
different XHTML page structure. In most cases, custom CSS can manage the
changes you desire. To demonstrate, let's create a designer skin for the
sample-project project, starting with a custom nmaven- t hene. css.

Before we can start writing our custom CSS, we need to create a separate Maven
project to allow the sanpl e- pr oj ect Site descriptor to referenceit. First, use
Maven's archetype plugin to create a basic project. | ssue the following command
from the directory above the sanpl e- pr oj ect project'sroot directory:

$ nvn archetype:create -Dartifactld=sanpl e-site-skin
- Dgr oupl d=or g. sonat ype. mavenbook

Thiswill create a project (and a directory) caled sanpl e- si t e- ski n. Change
directories to the new sanpl e- si t e- ski n directory, remove all of the source code
and tests, and create a directory to store your skin's resources:

$ cd sanple-site-skin
$rm-rf src/main/java src/test
$ nkdir src/main/resources

351

http://repo1.maven.org/maven2/org/apache/maven/skins/

Site Generation

15.7.4. Creating a Custom Theme CSS

Next, write a custom CSS for the custom skin. A A filein a Maven site skin should
be placed in sr ¢/ mai n/ resour ces/ css/ maven-t hene. css. Unlikethesite. css
file, which goesin the site-specific source directory for a project, the

maven- t hene. css Will be bundled in a JAR artifact in your local Maven repository.
In order for the maven-theme.cssfile to be included in the skin's JAR file, it must
reside in the main project-resources directory, src/ mai n/ r esour ces.

Aswith the default the default site template, you will want to start customizing
your new skin's CSS from a good starting point. Copy the CSS file used by the
default Maven skin to your project's maven-t herre. css. TO get a copy of thistheme
file, save the contents of maven-theme.css from the maven- def aul t - ski n project
tO src/ mai n/ resour ces/ css/ maven-t heme. css in our new skin project.

Now that we have the base theme file in place, customize it using the CSS from
our old site.cssfile. Replace the #navcol uim h5 CSS block with the following:

#navcol umm h5 {
font-size: smaller;
border: 1px solid #aaaaaa;
background-col or: #bbb;
mar gi n-top: 7px;
mar gi n-bottom 2px;
paddi ng-top: 2px;
paddi ng-1 eft: 2px;
col or: #000;

}

Once you've customized the maven- t hene. css, build and install the
sanpl e- si t e- ski n JAR artifact to your local Maven repository by running:

$ nvn clean install

Once the installation is complete, switch back to the sanpl e- proj ect project
directory, if you already customized thesi t e. css earlier in this chapter, move
site.css tOsite. css. bak S0 it no longer affects the output of the Maven Site
plugin:

$ mv src/sitel/resources/css/site.css src/sitel/resources/css/site.css. bak

352

http://svn.apache.org/viewvc/maven/skins/trunk/maven-default-skin/src/main/resources/css/maven-theme.css?view=co

Site Generation

To usethesanpl e-si t e- ski n inthe sanpl e- proj ect Site, you'll need to add a
reference to the sanpl e- si t e- ski n artifact in the sanpl e- pr oj ect 's Site descriptor.
A sitereferences a skin in the site descriptor using the skin element:

Example 15.12. Configuring a Custom Site Skin in Site Descriptor

<proj ect name="Sanpl e Project">
<ski n>
<gr oupl d>or g. sonat ype. mavenbook</ gr oupl d>

<artifactld>sanpl e-site-skin</artifactld>
</ ski n>

</ proj ect >

Y ou can think of a Maven Site skin as a site dependency. Site skins are referenced
as artifacts with agroupld and an artifactld. Using asite skin allows you to
consolidate site customizations to a single project, and makes reusing custom CSS
and site templates as easy as reusing build logic through a custom Maven plugin.

15.7.5. Customizing Site Templates in a Skin

Just as you can customize athe site CSSin a Maven Site skin, you can also
customize the site template. Doxia's site-rendering tools will expect to find afile
called META- | NF/ maven/ si t e. vminside the skin JAR. To incorporate a custom
page template, copy the template file into the correct location within the

sanpl e- si t e- ski n. Copy the custom site template devel oped earlier in the chapter
to src/ mai n/ r esour ces/ META- | NF/ maven insanpl e- si t e- ski n:

$ nmv sanpl e-project/src/site/site.vm\
sanpl e-si t e-ski n/ src/ mai n/ resour ces/ META- | NF/ maven

If you already customized the site template in sanpl e- pr oj ect , remove the Site
plugin configuration which pointed to this site template. The Site plugin will
render the site using the site template referenced in the site skin.

<pl ugi n>
<artifactld>maven-site-plugin</artifactld>
<confi gurati on>

353

Site Generation

<tenpl ateDi rect ory>src/site</tenpl at eDi rect ory>
<t enpl at e>si t e. virx/ t enpl at e>
</ configuration>
</ pl ugi n>

A Maven Site skin is expected to include all of the resources it depends on. This
includes CSS, images, and logos. If you already customized the site template
earlier in the chapter, you've already copied the default doxi a- si t e-renderer
resources to the sanpl e- proj ect 'Ssrc/ sit e/ resour ces directory. You'll need to
move those files out of the sanpl e- proj ect project and into the new

sanpl e- si t e- ski n project by executing the following commands:

$ cd ..
$ nkdir -p sanpl e-site-skin/src/min/resources/css
$ mv sanpl e-project/src/sitel/resources/css/ maven- base. css \
sanpl e-si t e-ski n/ src/ mai n/ resour ces/ css
$ nkdir -p sanpl e-site-skin/src/min/resources/images
$ nv sanpl e-project/src/site/resources/imges/| ogos \
sanpl e-si t e-ski n/ src/ mai n/ resour ces/ i nages
$ nv sanpl e-project/src/site/resources/imges/expanded. gi f \
sanpl e-si t e-ski n/ src/ mai n/ resour ces/ i nages
$ nv sanpl e/ src/site/resources/inmges/coll apsed.gif \
sanpl e-si t e-ski n/ src/ mai n/ resour ces/ i nages

Y ou've changed the sanpl e- si t e- ski n, SO you'll need to install this skin into your
local Maven repository. Once you install the skin locally and rebuild the

sanpl e- proj ect web site. You'll see that the skin's custom site template was
applied to the sanpl e- pr oj ect 'sweb site. You'll notice that the color of the menu
items may be alittle off because you haven't added the necessary CSSto the
collapsed and expanded menu items. To do this, modify

src/ mai n/ resour ces/ css/ maven-t hene. css. Change:

a:link {

\ e

to this:

l'i.collapsed, |i.expanded, a:link {

} e

Rebuild the skin, then regenerate the website, and you'll see that the menu items

354

Site Generation

have returned to normal. Y ou've successfully created a Maven theme which can be
used to apply CSS and templates to a set of projects.

15.8. Tips and Tricks

This section lists some useful tips and tricks you can use when creating a Maven
Site.

15.8.1. Inject XHTML into HEAD

Toinject XHTML into the HEAD element, add a head element to the body
element in your project’'s Site descriptor. The following example adds afeed link to
every page in the sanpl e- proj ect web site.

Example 15.13. Injecting HTML into the HEAD element

<proj ect name="Hell o World">
<body>
<head>
<l'ink href="http://sanple.consites/sanpl e-project/feeds/bl og"
t ype="appl i cati on/ at omtxm "
i d="aut o- di scovery"
rel ="al t ernat e"
titl e="Sanpl e Project Blog" />
</ head>
</ body>
</ proj ect >

15.8.2. Add Links under Your Site Logo

If you are working on a project which is being developed by an organization, you
may want to add links under your project's logo. Assume that your project is a part
of the Apache Software Foundation, you might want to add alink to the Apache
Software Foundation web site right below your logo, and you might want to add a

355

Site Generation

link to a parent project aswell. To add links below your site logo, just add alinks
element to the body element in the Site descriptor. Each item element in the links
element will be rendered asalink in abar directly below your project'slogo. The
following example would add a link to the Apache Software Foundation followed
by alink to the Apache Maven project.

Example 15.14. Adding Links Under Your Site Logo

<proj ect name="Hello World">
<body>
<li nks>
<i t em name="Apache" href="http://ww. apache. org"/ >
<i tem nanme="Maven" href="http://nmaven. apache. org"/>
</links>
</ body>
</ proj ect >

15.8.3. Add Breadcrumbs to Your Site

If your hierarchy exists within alogical hierarchy, you may want to place a series
of breadcrumbs to give the user a sense of context and give them away to navigate
up the tree to projects which might contain the current project as a subproject. To
configure breadcrumbs, add abr eadcr unbs element to the body element in the site
descriptor. Eachi t emelement will render alink, and the itemsin the br eadcr unbs
element will be rendered in order. The breadcrumb items should be listed from
highest level to lowest level. In the following site descriptor, the Codehaus item
would be seen to contain the Mojo item.

Example 15.15. Configuring the Site's Breadcrumbs

<pr oj ect name="Sanpl e Project">
<body>
<br eadcr unbs>
<i t em name="Codehaus" href="http://ww. codehaus. org"/>

356

Site Generation

<i tem name="Mj 0" href="http://njo.codehaus. org"/>
</ br eadcr unbs>
</ body>
</ proj ect >

15.8.4. Add the Project Version

When you are documenting a project that has multiple versions, it is often very
helpful to list the project's version number on every page. To display your project's
version on the website, smply add the ver si on element to your site descriptor:

Example 15.16. Positioning the Version Information

<proj ect name="Sanpl e Project">

<version position="left"/>

</ pr oj ect >

Thiswill position the version (in the case of the sample-project project, it will say
"Version: 1.0-SNAPSHOT") in the upper left-hand corner of the site, right next to
the default "Last Published" date. Valid positions for the project version are:

left
L eft side of the bar just below the site logo

right
Right side of the bar just below the site logo

navigation-top
Top of the menu

navigation-bottom
Bottom of the menu

357

Site Generation

none
Suppress the version entirely

15.8.5. Modify the Publication Date Format and Location

In some cases, you may wish to reformat or reposition the "Last Published" date
for your project website. Just like the project version tip above, you can specify the
position of the publication date by using one of the following:

left
L eft side of the bar just below the site logo

right
Right side of the bar just below the site logo

navigation-top
Top of the menu

navigation-bottom
Bottom of the menu

none
Suppress the publication entirely

Example 15.17. Positioning the Publish Date

<proj ect name="Sanpl e Project">
<publ i shDat e positi on="navi gati on-bottom'/>

</ proj ect >

By default, the publication date will be formatted using the date format string

MM dd/ yyyy. Y ou can change this format by using the standard notation found in
the JavaDocsfor j ava. t ext . Si npl eDat eFor mat (See JavaDoc for
SimpleDateFormat for more information). To reformat the date using yyyy- M dd,

358

http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html

Site Generation

use the following publ i shDat e element.

Example 15.18. Configuring the Publish Date For mat

<proj ect nane="Sanpl e Project">
<publ i shDat e position="navi gati on-botton' format="yyyy-vM dd"/>

</ proj ect >

15.8.6. Using Doxia Macros

In addition to its advanced document rendering features, Doxia also provides a
macro engine that allows each input format to trigger injection of dynamic content.
An excellent example of thisis the snippet macro, which allows a document to pull
a code snippet out of asource file that's available viaHTTP. Using this macro, a
small fragment of APT can be rendered into XHTML. The following APT code
calls out to the snippet macro. Please note that this code should be on asingle
continuous line, the black slash character isinserted to denote aline break so that
this code will fit on the printed page.

% sni ppet | i d=nodel | o- nodel | url =htt p://svn. apache. or g/ r epos/ asf/ maven/\
ar chet ype/ t runk/ maven- ar chet ype/ maven- ar chet ype- nodel / src/ mai n/ \
ndo/ ar chet ype. ndo}

Example 15.19. Output of the Snippet Macroin XHTML

<di v cl ass="sour ce"><pre>

<nodel >
<i d>ar chet ype</i d>
<nanme>Ar chet ype</ nane>
<descri pti on><! [CDATA] Maven's nodel for the archetype descri ptor
1] ></descri ption>
<def aul t s>
<def aul t >
<key>package</ key>
<val ue>or g. apache. maven. ar chet ype. nodel </ val ue>
</ def aul t >
</ def aul t s>
<cl asses>

359

Site Generation

<cl ass root El enent ="true" xmnl.tagName="archetype">
<name>Ar chet ypeModel </ name>
<descri pti on>Descri bes the assenbly |ayout and packagi ng. </ descri pti on>
<versi on>1. 0. 0</ ver si on>
<fiel ds>
<field>
<nane>i d</ name>
<ver si on>1. 0. 0</ ver si on>
<requi red>t rue</requi red>
<type>String</type>
</field>

</fields>
</ cl ass>

</ cl asses>
</ nodel >

</ pre></di v>

Warning
Doxiamacros MUST NOT be indented in APT source documents. Doing
so will result in the APT parser skipping the macro atogether.

For more information about defining snippets in your code for reference by the
snippet macro, see the Guide to the Snippet Macro on the Maven website, at
http://maven.apache.org/guides/mini/quide-snippet-macro.html.

360

http://maven.apache.org/guides/mini/guide-snippet-macro.html

Chapter 16. Repository Management with

Nexus

This chapter is deprecated. While the original version of Maven: The Definitive
Guide had an entire chapter dedicated to the Nexus Repository Manager, Sonatype
found that the content was growing fast enough to deserve its own dedicate title.
We've decided to spin off the content in the Repository Management chapter into a
new book called Repository Management with Nexus. This new book covers both
Nexus Open Source and Nexus Professional, it guides you through the process of
downloading and installing a repository manager, and it provides a detailed survey
of all of the configuration options.

Click here to read Repository Management with Nexus.

Note

In the past, abook was a very static object, it was written, edited,
proofread, and printed. After printing there was little time to reconsider
the structure or content of abook. While the Internet has offered an
opportunity for the real-time, constantly evolving on-demand book, the
publishing industry has yet to come to terms with the idea of a book that
is"alive" - abook that can change the day after it was sent to the print,
and a book that can split into two and continue to grow. We decided to
make this break because it makes sense, if one of our chapters starts to
grow into a hundred-page beast, we're not just going to throw more pages
at an aready "thick" reference book. (But then again, this book isn't
"thick" if you are reading it in aweb browser, it isall about perspective.)

What's true about software development is also true about writing. If you
start out a project with a single, monolithic project, there is going to
come atime when it makes good sense to refactor a package or collection
of classes into a separate module. That is exactly what we are doing by
spinning the Repository Management chapter into Repository
Management with Nexus. We're "refactoring” the book into two.

361

http://books.sonatype.com/nexus-book/
http://nexus.sonatype.org
http://www.sonatype.com/products/nexus
http://books.sonatype.com/nexus-book

Repository Management with Nexus

Consider this editor's note to be a deprecation warning. Eventualy, we're
going to remove this marker chapter from the book entirely. On the web
it will beaHTTP redirect to the new book, and in the PDF it might be a
place-holder page that references the Nexus book.

362

Chapter 17. Writing Plugins

17.1. Introduction

While this chapter covers an advanced topic, don't et the idea of writing a Maven
plugin intimidate. For al of the theory and complexity of thistool, the fundamental
concepts are easy to understand and the mechanics of writing a plugin are
straightforward. After you read this chapter, you will have a better grasp of what is
involved in creating a Maven plugin.

17.2. Programming Maven

Most of this book has dealt with using Maven, and for a book on Maven, you
haven't seen too many code examples dealing with Maven customization. In fact,
you haven't yet seen any. Thisis by design, 99 out of 100 Maven users will never
need to write a custom plugin to customize Maven; there is an abundance of
configurable plugins, and unless your project has particularly unigue requirements,
you will have to work to find areason to write a new plugin. An even smaller
percentage of people who end up writing custom plugins will ever need to crack
open the source code for Maven and customize a core Maven component. If you
really need to customize the behavior of Maven, then you would write a plugin.
Modifying the core Maven code is as far out of scope for most developers as
modifying the TCP/IP stack on an operating system, it is that abstract for most
Maven users.

On the other hand, if you are going to start writing a custom plugin, you are going
to have to learn a bit about the internals of Maven: How does it manage software
components? What is a Plugin? How can | customize the lifecycle? This section
answers some of those questions, and it introduces afew concepts at the core of
Maven's design. Learning how to write a custom Maven plugin is the gateway to
customizing Maven itself. If you were wondering how to start understanding the
code behind Maven, you've found the proper starting line.

363

Writing Plugins

17.2.1. What is Inversion of Control?

At the heart of Maven is an Inversion of Control (IoC) container named Plexus.
What does it do? It isa system for managing and relating components. While there
isacanonical essay about 10C written by Martin Fowler, the concept and term
have been so heavily overloaded in the past few yearsit is tough to find a good
definition of the concept that isn't a self-reference (or just alazy reference to the
aforementioned essay). Instead of resorting to a Wikipedia quote, we'll summarize
Inversion of Control and Dependency I njection with an analogy.

Assume that you have a series of components which need to be wired together.
When you think about components, think stereo components not software
components. Imagine several stereo components hooked up to a Playstation 3 and a
Tivo that have to interface with both an Apple TV box and a 50" flat panel LCD
TV. You bring everything home from the electronics store and you purchase a
series of cables that you are going to use to connect everything to everything else.
Y ou unpack all of these components, put them in the right place and then get to the
job of hooking up fifty thousand coaxial cables and stereo jacks to fifty thousand
digital inputs and network cables. Step back from your home entertainment center
andturn onthe TV, you've just performed dependency injection, and you've just
been an inversion of control container.

So what did that have to do with anything? Y our Playstation 3 and a Java Bean
both provide an interface. The Playstation 3 has two inputs: power and network,
and one output to the TV. Y our JavaBean has three properties: power , net wor k,
and t vaut put . When you open the box of your Playstation 3, it didn't provide you
with detailed pictures and instructions for how to connect it to every different kind
of TV that might be in every different kind of house, and when you look at your
Java Bean it just provides a set of properties, not an explicit recipe for creating and
managing an entire system of components. In an 10C container like Plexus, you are
responsible for declaring the relationships between a set of components which
simply provide an interface of inputs and outputs. Y ou don't instantiate objects,
Plexus does; your application's code isn't responsible for managing the state of
components, Plexus is. Even though it sounds very cheesy, when you start up
Maven, it is starting Plexus and managing a system of related components just like

364

Writing Plugins

your stereo system.

What are the advantages of using an |oC container? What is the advantage of
buying discrete stereo components? If one component breaks, you can drop in a
replacement for your Playstation 3 without having to spend $20,000 on the entire
system. If you are unhappy with your TV, you can swap it out without affecting
your CD player. Most important to you, your stereo components cost less and are
more capable and reliable because manufacturers can build to a set of known
inputs and outputs and focus on building individual components. Inversion of
Control containers and Dependency Injection encourage Disaggregation and the
emergence of standards. The software industry likes to imagine itself as the font of
al new ideas, but dependency injection and inversion of control are really just new
words for the concepts of Disaggregation and interchangeable machinery. If you
really want to know about DI and 10C, learn about the Model T, the Cotton Gin,
and the emergence of arailroad standard in the late 19th century.

17.2.2. Introduction to Plexus

The most important feature of an 10C container implemented in Javaisa
mechanism called dependency injection. The basic idea of 10C isthat the control of
creating and managing objects is removed from the code itself and placed into the
hands of an 1oC framework. Using dependency injection in an application that has
been programmed to interfaces, you can create components which are not bound to
specific implementations of these interfaces. Instead, you program to interfaces
and then configure Plexus to connect the appropriate implementation to the
appropriate component. While your code deals with interfaces, you can capture the
dependencies between classes and components in an XML file that defines
components, implementation classes, and the rel ationships between your
components. In other words, you can write isolated components, then you can wire
them together using an XML file that defines how the components are wired
together. In the case of Plexus, system components are defined with an XML
document that isfound in META- | NF/ pl exus/ conponent s. xni .

In aJavaloC container, there are several methods for injecting dependencies
values into a component object: constructor, setter, or field injections. Although

365

Writing Plugins

Plexusis capable of all three dependency injection techniques, Maven only uses

two types: field and setter injection.

Constructor Injection

Constructor injection is populating an object's values through its constructor

when an instance of the object is created. For example, if you had an object of

type Per son which had a constructor Person(String nanme, Job job), you

could pass in values for both name and thej ob viathis constructor.

Setter Injection
Setter injection is using the setter method of a property on a Java bean to

populate object dependencies. For example, if you were working with a Per son

object with the properties nane and j ob, an 10C container which uses setter

injection, would create an instance of Per son using a no-arg constructor. Once

it had an instance of Per son, it would proceed to call the set Nane() and
set Job() methods.

Field Injection

Both Constructor and Setter injection rely on a call to a public method. Using

Field injection, an 10C container populates a component's dependencies by
setting an object's fields directly. For example, if you were working with a
Per son object that had two fields name and j ob, your 10C container would

populate these dependencies by setting these fields directly (i.e. per son. name =

"Thomas"; person.job = job;)

17.2.3. Why Plexus?

Spring does happen to be the most popular 10C container at the moment, and

there's a good argument to be made that it has affected the Java "ecosystem™ for the
better forcing companies like Sun Microsystems to yield more control to the open

source community and helping to open up standards by providing a pluggable,

component-oriented "bus'. But, Spring isn't the only 10C container in open source.

There are many 10C containers (like PicoContainer).

Y ears and years ago, when Maven was created, Spring wasn't a mature option. The

366

http://www.picocontainer.org/

Writing Plugins

initial team of committers on Maven were more familiar with Plexus because they
invented it, so they decided to use it as an |0C container. While it might not be as
popular as the Spring Framework, it is no less capable. And, the fact that it was
created by the same person who created Maven makes it a perfect fit. After reading
this chapter you've have an idea of how Plexus works. If you already use an 10C
container you'll notice similarities and differences between Plexus and the
container you currently use.

Note
Just because Maven is based on Plexus doesn't mean that the Maven

community is"anti-Spring" (we've included awhole chapter with a
Spring example in this book, portions of the Spring project are moving to
Maven as a build platform). The question, "Why didn't you use Spring?"
comes up often enough it did make sense to address it here. We know it,
Spring isarock star, we don't deny it, and it is on our continuing to-do
list to introduce people to (and document) Plexus: choice in the software
industry is always a good thing.

17.2.4. What is a Plugin?

A Maven PluginisaMaven artifact which contains a plugin descriptor and one or
more Mojos. A Mojo can be thought of asagoal in Maven, and every goal
corresponds to aMojo. The conpi | er: conpi | e goal corresponds to the

Conpi | er Moj o classin the Maven Compiler Plugin, and thej ar: j ar goa
corresponds to the Jar Mvj o classin the Maven Jar Plugin. When you write your
own plugin, you are ssmply grouping together a set of related Mojos (or goals) ina
single plugin artifact.

Note
Mojo? What isaMojo? The word mojo2 is defined as "amagic charm or

2"mojo." The American Heritage® Dictionary of the English Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 02 Mar. 2008. http://www.answers.com/topic/mojo-1

367

http://www.answers.com/topic/mojo-1

Writing Plugins

spell”, "an amulet, often in asmall flannel bag containing one or more
magic items", and "personal magnetism; charm™. Maven uses the term
Mojo because it is aplay on the word Pojo (Plain-old Java Object).

A Mojo is much more than just agoal in Maven, it is a component managed by
Plexus that can include references to other Plexus components.

17.3. Plugin Descriptor

A Maven plugin contains a road-map for Maven that tells Maven about the various
Mojos and plugin configuration. This plugin descriptor is present in the plugin JAR
filein META- I NF/ maven/ pl ugi n. xni . When Maven loads aplugin, it reads this

XML file, instantiates and configures plugin objects to make the Mojos contained
in aplugin available to Maven.

When you are writing custom Maven plugins, you will almost never need to think
about writing a plugin descriptor. In Chapter 10, The Build Lifecycle, the lifecycle
goals bound to the maven- pl ugi n packaging type show that the

pl ugi n: descri pt or goal isbound to the gener at e- r esour ces phase. This goal
generates a plugin descriptor off of the annotations present in a plugin's source
code. Later in this chapter, you will see how Mojos are annotated, and you will
also see how the values in these annotations end up in the

META- | NF/ maven/ pl ugi n. xm file.

Example 17.1, “Plugin Descriptor” shows a plugin descriptor for the Maven Zip
Plugin. This plugin is acontrived plugin that ssmply zips up the output directory
and produces an archive. Normally, you wouldn't need to write a custom plugin to
create an archive from Maven, you could simply use the Maven Assembly Plugin
which is capable of producing a distribution archive in multiple formats. Read
through the following plugin descriptor to get an idea of the content it contains.

Example 17.1. Plugin Descriptor

<pl ugi n>
<descri pti on></descri pti on>

368

Writing Plugins

<gr oupl d>com trai ni ng. pl ugi ns</ groupl d>
<artifactld>maven-zi p- pl ugi n</artifactld>
<ver si on>1- SNAPSHOT</ ver si on>
<goal Prefi x>zi p</ goal Prefi x>
<i sol at edReal n>f al se</i sol at edReal >
<i nherit edByDef aul t >t rue</i nheri t edByDef aul t >
<nDj 0S>
<noj 0>
<goal >zi p</ goal >
<descri pti on>Zi ps up the output directory.</description>
<requi resDirectlnvocati on>fal se</requiresbirectlnvocation>
<requi r esProj ect >t rue</ requi r esProj ect >
<r equi r esReport s>f al se</requi r esReport s>
<aggr egat or >f al se</ aggr egat or >
<requi resOnl i ne>f al se</requi resOnl i ne>
<i nherit edByDef aul t >t rue</i nherit edByDef aul t >
<phase>package</ phase>
<i npl enent ati on>com trai ni ng. pl ugi ns. Zi pMj o</ i npl ement ati on>
<l anguage>j ava</ | anguage>
<instanti ationStrategy>per-I|ookup</instantiationStrategy>
<executi onStrat egy>once- per - sessi on</ executi onStr at egy>
<par anet er s>
<par anet er >
<nanme>baseDi r ect or y</ nane>
<type>j ava.i 0. Fi | e</ type>
<requi r ed>f al se</required>
<edi t abl e>t rue</ edi t abl e>
<descri pti on>Base directory of the project.</description>
</ par anet er >
<par anet er >
<nane>bui | dDi r ect or y</ name>
<type>j ava.io. Fi | e</type>
<requi r ed>f al se</required>
<edi t abl e>t rue</ edi t abl e>
<description>Directory containing the build files.</description>
</ par anet er >
</ par anet er s>
<confi gurati on>
<bui | dDi rectory inpl ementation="java.io.File">
${project.build.directory}</buildDirectory>
<baseDirectory inpl enentati on="java.io.File">
${ basedi r} </ baseDi r ect ory>
</ confi guration>
<requi r ement s>
<requi rement >
<r ol e>or g. codehaus. pl exus. ar chi ver . Archi ver </ rol e>
<r ol e- hi nt >zi p</rol e- hi nt >
<fi el d- name>zi pAr chi ver </ fi el d- name>
</requi r enent >
</requi r enent s>
</ nmoj o>
</ nmoj os>
<dependenci es>

369

Writing Plugins

<gr oupl d>or g. apache. commons</ gr oupl d>
<artifactld>commons-io</artifactld>
<versi on>1. 3. 2</ ver si on>
</ dependenci es>
</ pl ugi n>

There are three parts to a plugin descriptor: the top-level configuration of the
plugin which contains elements like gr oupl d and ar ti f act I d, the declaration of
mojos, and the declaration of dependencies. Let's examine each of these sectionsin
more detail.

17.3.1. Top-level Plugin Descriptor Elements
The top-level configuration values in the pl ugi n element are:

description
This element contains a short description of the plugin. In the case of the Zip
plugin, this description is empty.

groupld, artifactld, version

Just like everything else in Maven, plugins need to have a unique coordinate.
The groupld, artifactld, and version are used to locate the plugin artifact in a
Maven repository.

goal Prefix

This element controls the prefix used to reference goasin a particular plugin. If
you were to look at the Compiler plugin's descriptor you would see that

goal Prefix hasavalue of conpi | e, and if you look at the descriptor for the Jar
plugin, it would have agoal Prefi x Of j ar. It isimportant that you choose a
distinct goal prefix for your custom plugin.

isolatedRealm (deprecated)
Thisisalegacy property which isno longer used by Maven. Itis still present in
the system to provide for backwards compatibility with older plugins. Earlier
versions of Maven used to provide a mechanism to load a plugin's dependencies

370

Writing Plugins

in an isolated A assLoader . Maven makes extensive use of a project called
ClassWorlds from the Codehaus community to create hierarchies of

Cl assLoader objects which are modeled by ac assReal mobject. Feel freeto
ignore this property and always set it to f al se.

inheritedByDefault

If inheritedByDefault is set to true, any mojo in this plugin which is configured
in aparent project will be configured in achild project. If you configure a mojo
to execute during a specific phase in a parent project and the Plugin has
inheritedByDefault set to true, this execution will be inherited by the child
project. If inheritedByDefault is not set to true, then an goal execution defined
in a parent project will not be inherited by a child project.

17.3.2. Mojo Configuration

Next is the declaration of the each Mojo. The plugin element contains an element
named mojos which contains a mojo element for each mojo present in the Plugin.
Each mojo element contains the following configuration elements:

goal

Thisisthe name of the goal. If you were running the conpi | er : conpi | e goal,
then conpi | er isthe plugin'sgoal Prefi x and conpi | e would be the name of
the goal.

description
This contains a short description of the goal to display to the use when they use
the Help plugin to generate plugin documentation.

requiresDirectlnvocation

If you set thistot r ue, the goal can only be executed if it is explicitly executed
from the command-line by the user. If someone tries to bind this goal to a
lifecycle phase in a POM, Maven will print an error message. The default for
thiselement isf al se.

requiresProject

371

http://classworlds.codehaus.org/
http://www.codehaus.org

Writing Plugins

Specifies that a given goal cannot be executed outside of a project. The goal
requires a project with a POM. The default value for thisr equi resProj ect is
true.

requiresReports

If you were creating a plugin that relies on the presence of reports, you would
need to set r equi resReport s tot rue. For example, if you were writing a
plugin to aggregate information from a number of reports, you would set
requi resReports totrue. Thedefault for thiselement isf al se.

aggregator
A Mojo descriptor with aggr egat or Settot r ue IS supposed to only run once

during the execution of Maven, it was created to give plugin developers the
ability to summarize the output of a series of builds; for example, to create a
plugin that summarizes areport across al projectsincluded in abuild. A goal
with aggr egat or Set tot r ue should only be run against the top-level project in
aMaven build. The default value of aggr egat or iSfal se. Aggregator is sated
for deprecation in afuture release of Maven.

requiresOnline

Specifies that a given goal cannot be executed if Maven is running in offline
mode (- o command-line option). If agoal depends on a network resource, you
would specify avalue of t r ue for this element and Maven would print an error
if the goal was executed in offline mode. The default for r equi resnl i ne is
fal se.

inheritedByDefault

If i nheritedByDefault iSsettotrue, amojowhichisconfigured in a parent
project will be configured in a child project. If you configure a mojo to execute
during a specific phase in a parent project and the Mojo descriptor has

i nheritedByDef aul t Settotrue, thisexecution will be inherited by the child
project. If i nherit edByDef aul t isnot set totrue, then agoal execution defined
in a parent project will not be inherited by a child project.

phase

372

Writing Plugins

If you don't bind this goal to a specific phase, this element defines the default
phase for this mojo. If you do not specify a phase element, Maven will require
the user to explicitly specify a phase in a POM.

implementation
This element tells Maven which classto instantiate for thisMojo. Thisisa
Plexus component property (defined in Plexus Conponent Descri pt or).

language

The default language for aMaven Mojo isj ava. This controls the Plexus
Conponent Fact or y used to create instances of this Mojo component. This
chapter focuses on writing Maven pluginsin Java, but you can also write
Maven in anumber of alternative languages such as Groovy, Beanshell, and
Ruby. If you were writing a plugin in one of these languages you would use a
language element value other than j ava.

instantiationStrategy

This property is a Plexus component configuration property, it tells Plexus how
to create and manage instances of the component. In Maven, all mojos are
going to be configured with ani nst anti ati onSt r at egy Of per -1 ookup; anew
instance of the component (mojo) is created every time it isretrieved from
Plexus.

executionStrategy

The execution strategy tells Maven when and how to execute aMojo. Thevalid
values are once- per - sessi on and al ways. Honestly, the valid values are
anything, this particular property doesn't do athing, it isahold over from an
early design of Maven. This property is slated for deprecation in afuture release
of Maven.

parameters

This element describes al of the parameters for this Mojo. What's the name of
the parameter What is the type of parameter? Isit required? Each parameter has
the following elements:

373

Writing Plugins

name
Is the name of the parameter (i.e. baseDi rectory)

type
Thisisthe type (Java class) of the parameters(i.e.j ava. i o. Fi | e)

required
Is the parameter required? If t r ue, the parameter must be non-null when the
goadl is executed.

editable

If aparameter is not editable (if edi t abl e iISset to f al se), then the value of the
parameter cannot be set in the POM. For example, if the plugin descriptor
defines the value of bui | dDi rect ory to be ${ basedi r} inthe descriptor, a
POM cannot override this value to be another value in a POM.

description
A short description to use when generating plugin documentation (using the
Help Plugin)

configuration

This element provides default values for all of the Mojo's parameters using
Maven property notation. This example provides a default value for the
baseDi r M0jo parameter and the bui | dDi r ect ory Mojo parameter. In the
parameter element, the implementation specifies the type of the parameter (in
thiscasej ava. i o. Fi | e), the value in the parameter element contains either a
hard-coded default or aMaven property reference.

requirements
Thisiswhere the descriptor gets interesting. A Mojo is acomponent that is
managed by Plexus, and, because of this, it has the opportunity to reference
other components managed by Plexus. This element allows you to define
dependencies on other componentsin Plexus.

While you should know how to read a Plugin Descriptor, you will almost never

374

Writing Plugins

need to write one of these descriptor files by hand. Plugin Descriptor files are
generated automatically off of a set of annotationsin the source for a Mojo.

17.3.3. Plugin Dependencies

L astly, the plugin descriptor declares a set of dependenciesjust like a Maven
project. When Maven uses a plugin, it will download any required dependencies
before it attempts to execute a goal from this plugin. In this example, the plugin
depends on Jakarta Commons 10 version 1.3.2.

17.4. Writing a Custom Plugin

When you write a custom plugin, you are going to be writing a series of Mojos
(goals). Every Mojo isasingle Java class which contains a series of annotations
that tell Maven how to generate the Plugin descriptor described in the previous
section. Before you can start writing Mojo classes, you will need to create Maven
project with the appropriate packaging and POM.

17.4.1. Creating a Plugin Project

To create a plugin project, you should use the Maven Archetype plugin. The
following command-line will create a plugin with agr oupl d of
or g. sonat ype. mavenbook. pl ugi ns andtheartifact!d of first-maven-pl ugin:

$ nmvn archetype: create \
- Dgr oupl d=or g. sonat ype. mavenbook. pl ugi ns \
-Dartifactld=first-nmven-plugin \
- Dar chet ypeG oupl d=or g. apache. maven. ar chet ypes \
- Darchet ypeArti fact| d=maven- ar chet ype- noj o

The Archetype plugin is going to create a directory named my-first-plugin which
contains the following POM.

Example 17.2. A Plugin Project's POM

<?xm version="1.0" encodi ng="UTF- 8" ?><pr oj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

375

Writing Plugins

<gr oupl d>or g. sonat ype. mavenbook. pl ugi ns</ gr oupl d>
<artifactld>first-maven-plugin</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>maven- pl ugi n</ packagi ng>
<nanme>fi r st - maven- pl ugi n Maven M)j o</ nane>
<url >http:// maven. apache. org</url >
<dependenci es>
<dependency>
<gr oupl d>or g. apache. maven</ gr oupl d>
<artifactld>maven-pl ugi n-api </artifactld>
<ver si on>2. 0</ ver si on>
</ dependency>
<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<ver si on>3. 8. 1</ ver si on>
<scope>t est </ scope>
</ dependency>
</ dependenci es>
</ proj ect >

The most import element in a plugin project's POM is the packaging element
which has avalue of naven- pl ugi n. This packaging element customizes the
Maven lifecycle to include the necessary goals to create a plugin descriptor. The
plugin lifecycle was introduce in Section 10.2.3, “Maven Plugin”, it issimilar to
the Jar lifecycle with three exceptions: pl ugi n: descri pt or iSbound to the
gener at e- r esour ces phase, pl ugi n: addPl ugi nArti f act Met adat a IS added to the
package phase, and pl ugi n: updat eRegi st ry isadded to thei nstal | phase.

The other important piece of a plugin project's POM is the dependency on the
Maven Plugin API. This project depends on version 2.0 of the maven- pl ugi n- api
and it also adds in JUnit as a test-scoped dependency.

17.4.2. A Simple Java Mojo

In this chapter, we're going to introduce a Maven Mojo written in Java. Each Mojo
in your project is going to implement the or g. apache. maven. pl ugi n. Mvj o
interface, the Moj o implementation shown in the following example implements
the Mojo interface by extending the or g. apache. naven. pl ugi n. Abst r act Mj o
class. Before we dive into the code for this Mojo, let's take some time to explore
the methods on the Mojo interface. Mojo provides the following methods:

376

Writing Plugins

voi d setLog(org.apache. maven. nonitor.| oggi ng.Log |og)

Every Mj o implementation has to provide away for the plugin to communicate
the progress of a particular goal. Did the goal succeed? Or, was there a problem
during goal execution? When Maven loads and executes aMojo, it isgoing to
call theset Log() method and supply the Mojo instance with a suitable logging
destination to be used in your custom plugin.

protected Log getLog()

Maven isgoing to call set Log() before your Mj o is executed, and your Mj o
can retrieve the logging object by calling get Log() . Instead of printing out
status to Standard Output or the console, your Mj o is going to invoke methods
on the Log object.

voi d execute() throws

or g. apache. naven. pl ugi n. Moj oExecut i onExcepti on

This method is called by Maven when it is time to execute your goal.
The Mbj o interface is concerned with two things: logging the results of goal
execution and executing agoal. When you are writing a custom plugin, you'll be
extending Abst r act Mj o. Abst r act Moj o takes care of handling the set Log() and
get Log() implementations and contains an abstract execut e() method. When you
extend Abst r act Moj o, al you need to do isimplement the execut e() method.
Example 17.3, “A Simple EchoMojo” shows atrivial Mj o implement which
simply prints out a message to the console.

Example 17.3. A Smple EchoM ojo

package org. sonat ype. mavenbook. pl ugi ns;

i mport org.apache. maven. pl ugi n. Abst ract Moj o;
i mport org.apache. maven. pl ugi n. Moj oExecut i onExcepti on;
i mport org.apache. maven. pl ugi n. Moj oFai | ur eExcept i on;

/**
* Echos an object string to the output screen.
* @oal echo
* @equiresProject fal se
*/
public class EchoMbj o extends Abstract Mj o
{

377

Writing Plugins

/**

* Any Object to print out.

* @ar anet er expressi on="%${echo. nessage}" default-value="Hello Wrld..."
*/

private bject nessage;

public void execute()
t hrows Moj oExecuti onException, Mj oFai | ureExcepti on

{
}

get Log().info(nessage.toString());

If you create thisMojo in ${ basedi r} under src/ mai n/j ava in

or g/ sonat ype/ mavenbook/ noj o/ EchoMj o. j ava in the project created in the
previous section and run mvn install, you should be able to invoke this goal
directly from the command-line with:

$ nmvn org. sonat ype. navenbook. pl ugi ns: first-nmaven- pl ugi n: 1. 0- SNAPSHOT: echo

That large command-line is mvn followed by the

groupl d: artifact!d: version: goal . When you run this command-line you
should see output that contains the output of the echo goal with the default
message: "Hello Maven World...". If you want to customize the message, you can
pass the value of the message parameter with the following command-line:

$ nmvn org. sonat ype. navenbook. pl ugi ns: fi rst-nmaven- pl ugi n: 1. 0- SNAPSHOT: echo \
- Decho. message="The Eagl e has Landed"

The previous command-line is going to execute the EchoMj o and print out the
message "The Eagle has Landed".

17.4.3. Configuring a Plugin Prefix

Specifying the gr oupl d, arti fact 1 d, ver si on, and goal on the command-lineis
cumbersome. To address this, Maven assigns a plugin a prefix. Instead of typing:

‘$ mvn or g. apache. maven. pl ugi ns: maven-j ar - pl ugi n: 2. 2: j ar

Y ou can use the plugin prefix j ar and turn that command-line into mvn jar:jar.

378

Writing Plugins

How does Maven resolve something likej ar: j ar to

org. apache. mven. pl ugi ns: naven-j ar: 2. 3?7 Maven looks at afilein the Maven
repository to obtain alist of plugins for a specific gr oupl d. By default, Maven is
configured to look for pluginsin two groups: or g. apache. maven. pl ugi ns and

or g. codehaus. noj o. When you specify a new plugin prefix like mvn

hiber nate3:hbm2ddl, Maven is going to scan the repository metadata for the
appropriate plugin prefix. First, Maven is going to scan the

or g. apache. maven. pl ugi ns group for the plugin prefix hi ber nat e3. If it doesn't
find the plugin prefix hi ber nat e3 in the or g. apache. maven. pl ugi ns group it will
scan the metadata for the or g. codehaus. moj o group.

When Maven scans the metadata for a particular gr oupl d, it isretrieving an XML
file from the Maven repository which captures metadata about the artifacts
contained in agroup. This XML fileis specific for each repository referenced, if
you are not using a custom Maven repository, you will be able to see the Maven
metadata for the or g. apache. maven. pl ugi ns group in your local Maven
repository (~/ . m2/ r eposi t ory) under

or g/ apache/ maven/ pl ugi ns/ maven- et adat a- cent ral . xni . Example 17.4,
“Maven Metadata for the Maven Plugin Group” shows a snippet of the

maven- net adat a- central . xn file from the or g. apache. maven. pl ugi n group.

Example 17.4. Maven Metadata for the Maven Plugin Group

<?xm version="1.0" encodi hg="UTF- 8" ?>
<met adat a>
<pl ugi ns>
<pl ugi n>
<name>Maven Cl ean Pl ugi n</ nanme>
<pr ef i x>cl ean</ prefi x>
<artifactld>maven-cl ean-pl ugi n</artifactl|d>
</ pl ugi n>
<pl ugi n>
<nanme>Maven Conpi |l er Pl ugi n</ nane>
<prefix>conpil er </ prefix>
<artifactld>maven-conpil er-plugin</artifactld>
</ pl ugi n>
<pl ugi n>
<nane>Maven Surefire Pl ugi n</ name>
<prefix>surefire</prefix>
<artifactld>maven-surefire-plugin</artifactld>
</ pl ugi n>

379

Writing Plugins

</ pl ugi ns>
</ met adat a>

Asyou can seein Example 17.4, “Maven Metadata for the Maven Plugin Group”,
thismaven- net adat a- central . xni filein your local repository is what makes it
possible for your to execute mvn sur efir e:test. Maven scans

or g. apache. maven. pl ugi ns and or g. codehaus. noj o: plugins from

or g. apache. maven. pl ugi ns are considered core Maven plugins and plugins from
or g. codehaus. noj o are considered extra plugins. The Apache Maven project
manages the or g. apache. maven. pl ugi ns group, and a separate independent open
source community manages the Codehaus Mojo project. If you would like to start
publishing pluginsto your own gr oupl d, and you would like Maven to
automatically scan your own gr oupl d for plugin prefixes, you can customize the
groups that Maven scans for pluginsin your Maven Settings.

If you wanted to be able to run thef i r st - maven- pl ugi n's echo goal by running
first:echo, addtheorg. sonat ype. mavenbook. pl ugi ns groupld to your

~/ . n2/ settings. xm asshown in Example 17.5, “ Customizing the Plugin Groups
in Maven Settings’. Thiswill prepend the or g. sonat ype. mavenbook. pl ugi ns to
thelist of groups which Maven scans for Maven plugins.

Example 17.5. Customizing the Plugin Groupsin Maven Settings

<settings>

<pl ugi nG oups>
<pl ugi nG oup>or g. sonat ype. mavenbook. pl ugi ns</ pl ugi nG oup>
</ pl ugi nGr oups>
</settings>

Y ou can now run mvn fir st:echo from any directory and see that Maven will
properly resolve the goal prefix to the appropriate plugin identifiers. This worked
because our project adhered to a naming convention for Maven plugins. If your
plugin project hasanarti f act 1 d which follows the pattern maven-first - pl ugi n
or first-maven- pl ugi n. Maven will automatically assign a plugin goal prefix of
first toyour plugin. In other words, when the Maven Plugin Plugin is generating

380

Writing Plugins

the Plugin descriptor for your plugin and you have not explicitly set the
goal Prefix inyour project, the pl ugi n: descri pt or goal will extract the prefix
from your plugin'sarti f act I d when it matches the following patterns:

e ${prefix}-maven-pl ugi n, OR

e maven-${prefix}-plugin
If you would like to set an explicit plugin prefix, you'll need to configure the
Maven Plugin Plugin. The Maven Plugin Plugin isaplugin that is responsible for
building the Plugin descriptor and performing plugin specific tasks during the
package and load phases. The Maven Plugin Plugin can be configured just like any
other plugin in the build element. To set the plugin prefix for your plugin, add the
following build element to thef i r st - maven- pl ugi n project'spom xmn .

Example 17.6. Configuring a Plugin Prefix

<?xm version="1.0" encodi ng="UTF- 8" ?><pr oj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook. pl ugi ns</ gr oupl d>
<artifactld>first-maven-plugin</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>maven- pl ugi n</ packagi ng>
<name>fi r st - maven- pl ugi n Maven M)j o</ nane>
<url >http://maven. apache. or g</url >
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven- pl ugi n-pl ugi n</artifactld>
<ver si on>2. 3</ ver si on>
<confi gurati on>
<goal Prefi x>bl ah</ goal Prefi x>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
<dependenci es>
<dependency>
<gr oupl d>or g. apache. maven</ gr oupl d>
<artifactld>maven- pl ugi n-api </artifactld>
<ver si on>2. 0</ ver si on>
</ dependency>
<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>unit</artifactld>
<ver si on>3. 8. 1</ ver si on>

381

Writing Plugins

<scope>t est </ scope>
</ dependency>
</ dependenci es>
</ proj ect >

Example 17.6, “Configuring a Plugin Prefix” sets the plugin prefix to bl ah. If
you've added the or g. sonat ype. mavenbook. pl ugi ns to the pl ugi nG oups in your
~/ . 2/ settings. xm , you should be able to execute the EchoMj o by running mvn

echo:blah from any directory.

17.4.4. Logging from a Plugin

Maven takes care of connecting your Mojo to alogging provider by calling

set Log() prior to the execution of your Mojo. It supplies an implementation of

or g. apache. maven. moni t or . | oggi ng. Log. This class exposes methods that you
can use to communicate information back to the user. This Log class provides
multiple levels of logging similar to that API provided by Log4J. Those levels are
captured by a series of methods available for each level: debug, info, error and
warn. To save trees, we've only listed the methods for asingle logging level:
debug.

voi d debug(Char Sequence mnessage)

Prints a message to the debug logging level.

voi d debug(Char Sequence nmessage, Throwable t)
Prints a message to the debug logging level which includes the stack trace from
the Thr owabl e (either Excepti on Or Error)

voi d debug(Throwable t)

Prints out the stack trace of the Thr owabl e (either Excepti on Or Error)
Each of the four levels exposes the same three methods. The four logging levels
serve different purposes. The debug level exists for debugging purposes and for
people who want to see avery detailed picture of the execution of aMojo. You
should use the debug logging level to provide as much detail on the execution of a
Mojo, but you should never assume that a user is going to see the debug level. The

382

http://logging.apache.org/

Writing Plugins

info level isfor general informational messages that should be printed as a normal
course of operation. If you were building a plugin that compiled code using a
compiler, you might want to print the output of the compiler to the screen.

Thewarn logging level is used for messages about unexpected events and errors
that your Mojo can cope with. If you were trying to run a plugin that compiled
Ruby source code, and there was no Ruby source code available, you might want
to just print awarning message and move on. Warnings are not fatal, but errors are
usually build-stopping conditions. For the completely unexpected error condition,
thereisthe error logging level. Y ou would use error if you couldn't continue
executing aMojo. If you were writing a Mojo to compile some Java code and the
compiler wasn't available, you'd print a message to the error level and possibly
pass along an Exception that Maven could print out for the user. Y ou should
assume that a user is going to see most of the messagesin info and all of the
messages in error.

17.4.5. Mojo Class Annotations

Infirst-maven-pl ugi n, you didn't write the plugin descriptor yourself, you relied
on Maven to generate the plugin descriptor from your source code. The descriptor
was generated using your plugin project's POM information and a set of
annotations on your EchoMj o class. EchoMbj o only specifies the @oal annotation,
hereisalist of other annotations you can place on your Mj o implementation.

@goal <goalName>
Thisisthe only required annotation which gives a name to this goal unique to
this plugin.

@requiresDependencyResol ution <requireScope>

Flags this mojo as requiring the dependencies in the specified scope (or an
implied scope) to be resolved before it can execute. Supports compile, runtime,
and test. If this annotation had avalue of t est , it would tell Maven that the
Mojo cannot be executed until the dependencies in the test scope had been
resolved.

383

Writing Plugins

@requiresProject (truelfalse)
Marks that this goal must be run inside of a project, default ist rue. Thisis
opposed to plugins like archetypes, which do not.

@requiresReports (truejfalse)

If you were creating a plugin that relies on the presence of reports, you would
need to Set r equi resReport s to t rue. The default value of this annotation is
false.

@aggregator (truejfalse)
A Mojo with aggr egat or settotrue issupposed to only run once during the
execution of Maven, it was created to give plugin developers the ability to
summarize the output of a series of builds; for example, to create a plugin that
summarizes areport across all projectsincluded in abuild. A goal with

aggr egat or Set totrue should only be run against the top-level projectina
Maven build. The default value of aggr egat or iSfal se.

@requiresOnline (truelfalse)

When set to t r ue, Maven must not be running in offline mode when this goal is
executed. Maven will throw an error if one attempts to execute this goal offline.
Default: f al se.

@requiresDirectlnvocation
When set to t r ue, the goal can only be executed if it is explicitly executed from
the command-line by the user. Maven will throw an error if someone triesto
bind this goal to alifecycle phase. The default for this annotation isf al se.

@phase <phaseName>

This annotation specifies the default phase for this goal. If you add an execution
for thisgoal to apom xm and do not specify the phase, Maven will bind the
goal to the phase specified in this annotation by default.

@execute [goal =goal Name|phase=phaseName [lifecycle=lifecycleld]]
This annotation can be used in a number of ways. If a phase is supplied, Maven

384

Writing Plugins

will execute a parallél lifecycle ending in the specified phase. The results of this
separate execution will be made available in the Maven property

${ execut edPr operty}.

The second way of using this annotation is to specify an explicit goal using the
prefi x: goal notation. When you specify just agoal, Maven will execute this
goal in aparale environment that will not affect the current Maven build.

The third way of using this annotation would be to specify a phasein an
aternate lifecycle using the identifier of alifecycle.

@xecut e phase="package" |ifecycle="zip"
@xecut e phase="conpile"
@xecut e goal ="zi p: zi p"

If you look at the source for EchoMj o, you'll notice that Maven is not using the
standard annotations available in Java 5. Instead, it is using Commons Attributes.
Commons Attributes provided away for Java programmers to use annotations
before annotations were a part of the Java language specification. Why doesn't
Maven use Java 5 annotations? Maven doesn't use Java 5 annotations because it is
designed to target pre-Java 5 JVMs. Because Maven has to support older versions
of Java, it cannot use any of the newer features available in Java 5.

17.4.6. When a Mojo Fails

The execut e() method in Mojo throws two exceptions Mvj oExecut i onExcept i on
and Mj oFai | ur eExcept i on. The difference between these two exception is both
subtle and important, and it relates to what happens when a goal execution "fails".
A Mbj oExecut i onExcept i on isafatal exception, something unrecoverable
happened. Y ou would throw aMj oExecut i onExcept i on if something happens
that warrants a complete stop in abuild; you re trying to write to disk, but thereis
no space left, or you were trying to publish to aremote repository, but you can't
connect to it. Throw a Mj oExecut i onExcepti on if thereis no chance of a build
continuing; something terrible has happened and you want the build to stop and the
user to seea"BUILD ERROR" message.

A Moj oFai | ur eExcept i on IS something less catastrophic, agoal can fail, but it

385

http://commons.apache.org/attributes/

Writing Plugins

might not be the end of the world for your Maven build. A unit test can fail, or a
MD5 checksum can fail; both of these are potential problems, but you don't want to
return an exception that is going to kill the entire build. In this situation you would
throw a Moj oFai | ur eExcept i on. Maven provides for different "resiliency” settings
when it comes to project failure. Which are described below.

When you run aMaven build, it could involve a series of projects each of which
can succeed or fail. Y ou have the option of running Maven in three failure modes:

mvn -ff
Fail-fast mode: Maven will fail (stop) at the first build failure.

mvn -fae

Fail-at-end: Maven will fail at the end of the build. If aproject in the Maven
reactor fails, Maven will continue to build the rest of the builds and report a
failure at the end of the build.

mvn -fn

Fail never: Maven won't stop for afailure and it won't report afailure.
Y ou might want to ignore failure if you are running a continuous integration build
and you want to attempt a build regardless of the success of failure of an individual
project build. As aplugin developer, you'll have to make acall asto whether a
particular failure condition is aMj oExecut i onExcepti on Or a
Mbj oFai | ur eExecepti on.

17.5. Mojo Parameters

Just as important as the execut e() method and the Mojo annotations, aMojo is
configured via parameters. This section deals with some configuration and topics
surrounding Mojo parameters.

17.5.1. Supplying Values for Mojo Parameters

In EchoMojo we declared the message parameter with the following annotations:

386

Writing Plugins

/**

* Any Object to print out.

* @ar anet er

* expressi on="$%{ echo. message} "

* def aul t - val ue="Hel | o Maven Worl d"
*/

private Object nessage;

The default expression for this parameter is ${ echo. nessage} , this means that
Maven will try to use the value of the echo. nessage property to set the value for
message. If the value of the echo. message property is null, the default-value
attribute of the @ar anet er annotation will be used instead. Instead of using the
echo. message property, we can configure avalue for the message parameter of the
EchoMojo directly in aproject's POM.

There are afew ways to populate the message parameter in the EchoMj o. First we
can pass in avalue from the command-line like this (assuming that you've added
or g. sonat ype. mavenbook. pl ugi ns t0 your pl ugi nGr oups):

$ nvn first:echo -Decho. message="Hel |l o Everybody"

We could also specify the value of this message parameter, by setting a property in
our POM or inour set ti ngs. xni .

<pr oj ect >

<properties>
<echo. nessage>Hel | o Everybody</ echo. nessage>
</ properties>
</ proj ect >

This parameter could also be configured directly as a configuration value for the
plugin. If we wanted to customize the message parameter directly, we could use
the following build configuration. The following configuration bypasses the
echo.message property and popul ates the Mojo parameter in plugin configuration.

<pr oj ect >
<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. sonat ype. mavenbook. pl ugi ns</ gr oupl d>

<artifactld>first-mven-plugin</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>

387

Writing Plugins

<confi gurati on>
<nessage>Hel | o Everybody! </ nessage>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

If we wanted to run the EchoMj o twice at difference phasesin alifecycle, and we
wanted to customize the message parameter for each execution separately, we
could configure the parameter value at the execution level in a POM like this:

<bui | d>
<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. sonat ype. mavenbook. pl ugi ns</ gr oupl d>
<artifactld>first-mven-plugin</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<execut i ons>
<executi on>
<id>first-execution</id>
<phase>gener at e- r esour ces</ phase>
<goal s>
<goal >echo</ goal >
</ goal s>
<confi gurati on>
<nessage>The Eagl e has Landed! </ nessage>
</ configuration>
</ executi on>
<executi on>
<i d>second- executi on</i d>
<phase>val i dat e</ phase>
<goal s>
<goal >echo</ goal >
</ goal s>
<confi gurati on>
<nmessage>${ pr oj ect . ver si on} </ nessage>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ bui | d>

While thislast configuration example seems very verbose, it illustrates the
flexibility of Maven. In the previous configuration example, you've bound the
EchoMj o to both the val i dat e and gener at e- r esour ces phasesin the default

388

Writing Plugins

Maven lifecycle. The first execution is bound to gener at e- r esour ces, it supplies a
string value to the message parameter of "The Eagle has Landed!". The second
execution isbound to the val i dat e phase, it supplies a property reference to

${ pr oj ect . ver si on}. When you run mvn install for his project, you'll see that the
first:echo goa executestwice and prints out two different messages.

17.5.2. Multi-valued Mojo Parameters

Plugins can have parameters which accept more than one value. Take alook at the
Zi pMoj o shown in Example 17.7, “A Plugin with Multi-valued Parameters’. Both
thei ncl udes and excl udes parameters are multivalued st ri ng arrays which
specify the inclusion and exclusion patterns for a component that creates a ZIP file.

Example 17.7. A Plugin with Multi-valued Parameters

package org. sonat ype. mavenbook. pl ugi ns

/**

* Zips up the output directory.

* @oal zip

* @hase package

*/

public class Zi pMjo extends Abstract Mjo
{

/**

* The Zip archiver.
* @araneter \
expressi on="${conponent . or g. codehaus. pl exus. ar chi ver. Archi ver #zi p}"

*/
private Zi pArchiver zipArchiver;

/**
* Directory containing the build files.
* @ar anet er expression="${project.build.directory}"
*/

private File buildDirectory;

/**

* Base directory of the project.

* @aranet er expression="${basedir}"
*/

private File baseDirectory;

/**

* Aset of file patterns to include in the zinp.

389

Writing Plugins

* @araneter alias="includes"
*/
private String[] m ncludes;

/**

* Aset of file patterns to exclude fromthe zip
* @araneter alias="excl udes"

*/

private String[] nExcludes;

excl udes; }

public void set Excludes(String[] excludes) { nExcl udes

public void setlncludes(String[] includes) { m ncludes i ncl udes; }

public void execute()
t hrows Moj oExecut i onExcepti on

{
try {
Zi pArchi ver. addDi rectory(buil dDirectory, includes, excludes);
zi pArchi ver.setDestFile(new File(baseDirectory, "output.zip"));
Zi pArchi ver. creat eArchive();
} catch(Exception e) {
t hr ow new Mbj oExecuti onException("Could not zip", e);
}
}

}

To configure a multi-valued Mojo parameter, you use a series of elements for each
value. If the name of the multi-valued parameter isi ncl udes, you would use an
element i ncl udes with child elementsi ncl ude. If the multi-valued parameter is
excl udes, you would use an element excl udes with child elementsexcl ude. To
configure the zi pwbj o to ignore al filesending in . t xt and al filesendingin a
tilde, you would use the following plugin configuration.

<pr oj ect >
<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. sonat ype. mavenbook. pl ugi ns</ gr oupl d>
<artifactld>zi p- maven-pl ugi n</artifactld>
<confi gurati on>
<excl udes>
<excl ude>**/*_ txt </ excl ude>
<excl ude>**/*~</ excl ude>
</ excl udes>
</ confi guration>
</ pl ugi n>

390

Writing Plugins

</ pl ugi ns>
</ bui | d>
</ proj ect >

17.5.3. Depending on Plexus Components

A Mojo is acomponent managed by an 10C container called Plexus. A Mojo can
depend on other components managed by Plexus by declaring a M ojo parameter
and using the @ar anet er or the @onponent annotation. Example 17.7, “A Plugin
with Multi-valued Parameters’ shows a zi pwj o which depends on a Plexus
component using the @ar anet er annotation, this dependency could be declared
using the @onponent annotation.

Example 17.8. Depending on a Plexus Component

/**
* The Zip archiver.
* @onponent rol e="org.codehaus. pl exus. archi ver. Archiver" rol eH nt="zi p"
*/

private Zi pArchiver zipArchiver;

When Maven instantiates this Mojo, it will then attempt to retrieve the Plexus
component with the specified role and role hint. In this example, the Mojo will be
related to a ZipArchiver component which will alow the zi pwj o to create a ZIP
file.

17.5.4. Mojo Parameter Annotations

Unless you insist on writing your Plugin descriptors by hand, you'll never have to
write that XML. Instead, the Maven Plugin Plugin has apl ugi n: descri pt or goal
bound to the generate-resources phase. This goa generates the plugin descriptor
from annotations on your Mojo. To configure a Mojo parameter, you should use
the following annotations on either the private member variables for each of your
Mojo's parameters. Y ou can also use these annotations on public setter methods,
but the most common convention for Maven plugins is to annotate private member

391

Writing Plugins

variables directly.

@parameter [alias="someAlias"] [expression="${ someExpression} "]
[default-value="value"]

Marks aprivate field (or a setter method) as a parameter. The al i as provides
the name of the parameter. If al i as is omitted, Maven will use the name of the
variable as the parameter name. The expr essi on isan expression that Maven
will evaluate to obtain avalue. Usually the expression is a property reference
like ${ echo. nessage} . def aul t - val ue iSthe value that this Mojo will useif no
value can be derived from the expression or if avalue was not explicitly
supplied via plugin configuration in a POM.

@required

If this annotation is present, avalid value for this parameter is required prior to
Mojo execution. If Maven tries to execute this Mojo and the parameter has a
null value, Maven will throw and error when it tries to execute this goal.

@readonly

If this annotation is present, the user cannot directly configuration this
parameter in the POM. Y ou would use this annotation with the expression
attribute of the parameter annotation. For example, if you wanted to make sure
that a particular parameter always had the value of thef i nal Name POM
property, you would list an expression of ${ bui | d. fi nal Nane} and then add the
@ eadOnl y annotation. If this were the case, the user could only change the
value of this parameter by changing the value of i nal Nane in the POM.

@component
Tells Maven to populate a field with a Plexus Component. A valid value for the
@onponent annotation would be:

@onponent rol e="org. codehaus. pl exus. archi ver. Archi ver" rol eH nt="zi p"

Thiswould have the effect of retrieving the zi pAr chi ver from Plexus. The

Zi pAr chi ver isthe Archiver which correspondsto the role hint zi p. Instead of
component, you could also use the @parameter annotation with an expression
attribute of :

392

Writing Plugins

@ar anet er expressi on="${ conponent . or g. codehaus. pl exus. ar chi ver. Ar chi ver #zi p}"

While the two annotations are effectively the same, the @onponent annotation
Isthe preferred way to configure dependencies on Plexus components.

@deprecated
The parameter will be deprecated. Users can continue configuring this
parameter, but a warning message will be displayed.

17.6. Plugins and the Maven Lifecycle

In the Chapter 10, The Build Lifecycle chapter, you learned that lifecycles can be
customized by packaging types. A plugin can both introduce a new packaging type
and customize the lifecycle. In this section, you are going to learn how you can
customize the lifecycle from a custom Maven plugin. Y ou are also some to see
how you can tell a Mojo to execute a paralléel lifecycle.

17.6.1. Executing a Parallel Lifecycle

L et's assume you write some goal that depends on the output from a previous build.
Maybe the zi pmj o goal can only run if there is output to include in an archive.

Y ou can specify something like a prerequisite goal by using the @xecut e
annotation on aMojo class. This annotation will cause Maven to spawn a parallel
build and execute agoal or alifecyclein aparallel instance of Maven that isn't
going to affect the current build. Maybe you wrote some Mojo that you can to run
once aday that runs mvn install and then packages up all of the output in some
sort of customized distribution format. Y our Mojo descriptor could tell Maven that
before you execute your Cust om\bj o, you'd like it to execute the default lifecycle
up to the install phase and then expose the results of that project to your Mojo as
the property ${ execut edPr oj ect }. Y ou could then reference properties in that
project to before some sort of post processing.

Another possibility isthat you have a goal that does something completely
unrelated to the default lifecycle. Let's consider something completely unexpected,

393

Writing Plugins

maybe you have a goal that turnsaWAYV file into an MP3 using something like
LAME, but before you do that, you want to step through alifecycle that turnsa
MIDI fileto aWAV. (You can use Maven for anything, thisisn't that "far out".)
You've created a "midi-sound"” lifecycle, and you want to include the output of the
m di - sound lifecycle'si nst al I phase in your web application project which has a
war packaging type. Since your project isrunning in thewar packaging lifecycle,
you'll need to have goal that effectively forks off an isolated build and runs through
the ni di - sour ce lifecycle. You would do this by annotating your mojo with
@xecute |ifecycle="mdi-source" phase="install".

@execute goal="<goal >"
Thiswill execute the given goal before execution of this one. The goal nameis

specified using the pr ef i x: goal notation.

@execute phase="<phase>"

Thiswill fork an aternate build lifecycle up to the specified phase before
continuing to execute the current one. If no lifecycleis specified, Maven will
use the lifecycle of the current build.

@execute lifecycle="<lifecycle>" phase="<phase>"
Thiswill execute the given alternate lifecycle. A custom lifecycle can be
defined in META- | NF/ maven/ | i fecycl e. xni .

17.6.2. Creating a Custom Lifecycle

A custom lifecycle must be packaged in the plugin under the

META- | NF/ maven/ | i fecycl e. xni file. You can include alifecycle under

src/ mai n/ resour ces iN META- | NF/ maven/ | i fecycl e. xm . The following

l'i fecycl e. xn declaresalifecycle named zi pcycl e that contains only the zi p
goal in apackage phase.

Example 17.9. Define a Custom Lifecyclein lifecycle.xml

<lifecycl es>
<lifecycl e>
<i d>zi pcycl e</i d>

394

Writing Plugins

<phases>
<phase>
<i d>package</i d>
<executions>
<executi on>
<goal s>
<goal >zi p</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ phase>
</ phases>
</lifecycl e>
</lifecycl es>

If you wanted to execute the zi pcycl e phase within another build, you could then
create a zi pFor kMbj o which uses the @xecut e annotation to tell Maven to step
through the zi pcycl e phase to package when the zi pFor kMj o is executed.

Example 17.10. Forking a Customer Lifecyclefrom aMojo

/**

* Forks a zip lifecycle.

* @oal zip-fork

* @xecute |lifecycl e="zipcycle" phase="package"
*/

public class Zi pForkMj o extends Abstract Mojo

{

public void execute()
t hrows Moj oExecut i onExcepti on
{

getLog().info("doing nothing here");

Running the zi pFor kMbj o will fork the lifecycle. If you've configured your plugin
to execute with the goal prefix zi p, running zi p- f or k should produce something
similar to the following output.

$ nvn zip:zip-fork

[I NFQ Scanning for projects..

[INFQ Searching repository for plugin with prefix: 'zip'.

A O B T P
[INFQ Building Maven Zi p Forked Lifecycle Test

Writing Plugins

I NFQ t ask-segnment : [zi p: zi p-fork]

INFQ] [site:attach-descriptor]
I NFQ [zi p: zi p]
INFQ Building zip: \
~/ maven- zi p- pl ugi n/ src/ proj ects/ zi p-1ifecycle-test/target/output.zip
I NFQ [zip: zi p-fork]
I NFQ doi ng not hi ng here

[
[
[INFQ Preparing zip:zip-fork
[
[
[

INFQ Total tinme: 1 second
I NFO Finished at: Sun Apr 29 16:10: 06 CDT 2007
INFQ Final Menory: 3M 7M

Calling zi p- f or k Spawned another lifecycle, Maven executed the zi pcycl e
lifecycle then it printed out the message from zi pFor mvbj o's execute method.

17.6.3. Overriding the Default Lifecycle

Once you've created your own lifecycle and spawned it from a Mojo. The next
guestion you might have is how do you override the default lifecycle. How do you
create custom lifecycles and attach them to projects? In Chapter 10, The Build
Lifecycle, we saw that the packaging of a project defines the lifecycle of a project.
There's something different about almost every packaging type; war attached
different goals to package, custom lifecycleslike swi from the Israfil Flex 3 plugin
attach different goals to the compile phase. When you create a custom lifecycle,
you can attach that lifecycle to a packaging type by supplying some Plexus
configuration in your plugin's archive.

To define anew lifecycle for anew packaging type, you'll need to configure a

Li f ecycl eMappi ng component in Plexus. In your plugin project, create a

META- | NF/ pl exus/ conponent s. xm under sr¢/main/resources. In components.xml
add the content from Example 17.11, “Overriding the Default Lifecycle’. Set the
name of the packaging type under r ol e- hi nt, and the set of phases containing the
coordinates of the goals to bind (omit the version). Multiple goals can be
associated with a phase using acomma delimited list.

396

Writing Plugins

Example 17.11. Overriding the Default Lifecycle

<conponent - set >
<conponent s>
<conponent >
<rol e>or g. apache. maven. | i f ecycl e. mappi ng. Li f ecycl eMappi ng</r ol e>
<rol e- hi nt >zi p</rol e- hi nt >
<i npl enent ati on>
org. apache. maven. | i f ecycl e. mappi ng. Def aul t Li f ecycl eMappi ng
</i npl enent ati on>
<confi gurati on>
<phases>
<pr ocess-resour ces>
or g. apache. maven. pl ugi ns: maven- r esour ces- pl ugi n: r esour ces
</ process-resour ces>
<conpi | e>
or g. apache. maven. pl ugi ns: maven- conpi | er - pl ugi n: conpi | e
</ conpi | e>
<package>or g. sonat ype. mavenbook. pl ugi ns: maven- zi p- pl ugi n: zi p</ package
</ phases>
</ configuration>
</ conponent >
</ conponent s>
</ conponent - set >

Vv

If you create a plugin which defines a new packaging type and a customized
lifecycle, Maven won't know anything it until you add the plugin to your project's
POM and set the extensions element to true. Once you do this, Maven will scan
your plugin for more than just Mojos to execute, it will look for the

conponent s. xm under META- | NF/ pl exus, and it will make the packaging type
available to your project.

Example 17.12. Configuring a Plugin as an Extension

<pr oj ect >
<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>com trai ni ng. pl ugi ns</ gr oupl d>
<artifactld>maven-zi p-pl ugi n</artifactld>
<ext ensi ons>t r ue</ ext ensi ons>

</ pl ugi n>
</ pl ugi ns>

397

Writing Plugins

</ bui | d>
</ proj ect >

Once you add the plugin with the extensions element set to true, you can use the
custom packaging type and your project will be able to execute the custom
lifecycle associated with that packaging type.

398

Chapter 18. Writing Plugins in Alternative
Languages

Y ou can write aMojo in Java, or you can write aMojo in an aternative language.
Maven has support for a number of implementation languages, and this chapter is
going to show you how to create plugins in three languages: Groovy, Ant, and
Ruby plugins.

18.1. Writing Plugins in Ant

Ant isn't alanguage as much asit isabuild tool which allows you to describe a
build as a set of tasks grouped into build targets. Ant then allows you to declare
dependencies between build targets; for example, in Ant you are essentially
creating your own lifecycle. An Ant bui | d. xni might have an install target which
depends on atest target which depends on a compile target. Ant is something of a
ancestor to Maven, it was the ubiquitous procedural build tool that almost every
project used before Maven introduced the concept of wide-scale reusability of
common build plugins and the concept of auniversal lifecycle.

While Maven is an improvement on Ant, Ant can still be useful when describing
parts of the build process. Ant provides a set of tasks which can come in handy
when you need to perform file operations or XSLT transformations or any other
operation you could think of. Thereisalarge library of available Ant tasks for
everything from running JUnit tests to transforming XML to copying filesto a
remote server using SCP. An overview of available Ant tasks can be found online
in the Apache Ant Manual. You can use these tasks as alow-level build
customization language, and you can also write a Maven plugin where, instead of a
Mojo written in Java, you can pass parameters to aMojo which isan Ant build
target.

18.2. Creating an Ant Plugin

399

http://ant.apache.org/manual/tasksoverview.html

Writing Pluginsin Alternative Languages

To create aMaven plugin using Ant, you will need to have apom xm and asingle
Mojo implemented in Ant. To get started, create a project directory named
firstant-maven-plugin. Place the following pom xni in this directory.

Example 18.1. POM for an Ant Maven Plugin

<pr oj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook. pl ugi ns</ gr oupl d>
<artifactld>firstant-maven-plugi n</artifactld>
<nane>Exanpl e Ant Mj o - firstant-nmaven-pl ugi n</ nane>
<packagi ng>maven- pl ugi n</ packagi ng>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<dependenci es>
<dependency>
<gr oupl d>or g. apache. maven</ gr oupl d>
<artifactld>maven-script-ant</artifactld>
<versi on>2. 0. 10</ ver si on>
</ dependency>
</ dependenci es>
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-pl ugi n-pl ugi n</artifactld>
<ver si on>2. 4</ ver si on>
<dependenci es>
<dependency>
<gr oupl d>or g. apache. maven. pl ugi n-t ool s</ gr oupl d>
<artifact!|d>maven- pl ugi n-tool s-ant</artifactld>
<ver si on>2. 4</ ver si on>
</ dependency>
</ dependenci es>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ pr oj ect >

Next, you will need to create your Ant Mojo. An Ant mojo consists of two parts:
the Ant tasksin an XML file, and afile which supplies Mojo descriptor
information. The Ant plugin tools are going to look for both of thesefilesin
${basedir}/src/ min/scripts. Onefilewill be named echo. bui | d. xm and it
will contain the Ant XML.

Example 18.2. Echo Ant Mojo

400

Writing Pluginsin Alternative Languages

<proj ect >
<t arget name="echot arget">
<echo>${ nessage} </ echo>
</target>
</ proj ect >

The other file will describe the Echo Ant Mojo and will bein the echo. moj os. xm
filealsoin ${basedir}/src/ main/scripts.

Example 18.3. Echo Ant Mojo Descriptor

<pl ugi nMet adat a>
<noj 0s>
<noj 0>
<goal >echo</ goal >
<cal | >echot ar get </ cal | >
<descri pti on>Echos a Message</ descri ption>
<par anet er s>
<par anet er >
<name>nessage</ nane>
<property>nessage</ property>
<r equi r ed>f al se</required>
<expr essi on>${ nessage} </ expr essi on>
<t ype>j ava. | ang. Obj ect </t ype>
<def aul t Val ue>Hel | o Maven Wor| d</ def aul t Val ue>
<description>Prints a nessage</description>
</ par anet er >
</ par anet er s>
</ noj o>
</ moj os>
</ pl ugi nMet adat a>

Thisecho. noj os. xm file configures the Mojo descriptor for this plugin. It
supplies the goal name "echo", and it tells Maven what Ant task to call in the call
element. In addition to configuring the description, this XML file configures the

message parameter to use the expression ${ nessage} and to have a default value of
"Hello Maven World."

If you've configured your plugin groupsin ~/ . n2/ setti ngs. xni to include
or g. sonat ype. mavenbook. pl ugi ns, you can install this Ant plugin by executing
the following command at the command-line:

$ nvn instal

[INFE] oocmoameeo s 0om o am e 6o & 00m 5 55 6 65 5 5 516 5 55 6 65 5 5 516 5 556 65 5 5 616 5 56 6 6 5 5 616 6 566 6 o s

Writing Pluginsin Alternative Languages

I NFO Buil ding Exanple Ant Mpjo - firstant-maven-pl ugin
I NFO task-segnent: [install]

[
[
[
[NFQ [pl ugin: descri ptor]

[INFQ Using 3 extractors.

[INFQ Applying extractor for |anguage: java

[INFQ Extractor for |anguage: java found O nojo descriptors.
[INFO Applying extractor for |anguage: bsh

[INFQ Extractor for |anguage: bsh found O npjo descriptors.
[INFQ Applying extractor for |anguage: ant

[INFQ Extractor for |anguage: ant found 1 npjo descriptors.

Note that the pl ugi n: descri pt or goal found a single Ant mojo descriptor. To run
this goal, you would execute the following command-line:

$ nvn firstant:echo
[INFQ [firstant:echo]

echot ar get :
[echo] Hello Maven World

N e S0 o e S i 5 I e e 5 3 s 5 8 9 5 5 4 8 5 3 5 1 5 S e S
[INFQ BU LD SUCCESSFUL

[IINFE] oocmoomemo s oom o oo oo & 00m 5 55 6 65 5 5 516 5 55 6 65 5 5 516 5 556 65 5 5 616 5 56 6 6 5 5 66 6 666 6 o s

The echo goal executed and printed out the default value of the nessage parameter.
If you are used to Apache Ant build scripts, you will notice that Ant prints out the
name of the target executed and then adds a logging prefix to the output of the
echo Ant task.

18.3. Writing Plugins in JRuby

Ruby is an object-oriented scripting language which provides arich set of facilities
for meta-programming and reflection. Ruby's reliance on closures and blocks make
for a programming style that is both compact and powerful. Although Ruby has
been around since 1993, most people came to know Ruby after it was made
popular by a Ruby-based web framework known as Ruby on Rails. JRuby isa
Ruby interpreter written in Java. For more information about the Ruby language,

402

Writing Pluginsin Alternative Languages

see: http://www.ruby-lang.org/, and for more information about JRuby, see:
http://jruby.codehaus.org/.

18.3.1. Creating a JRuby Plugin

To create a Maven plugin using JRuby, you will need to have apom xm and a
single Mojo implemented in Ruby. To get started, create a project directory named
firstruby-maven- pl ugi n. Place the following pom xm inthisdirectory.

Example 18.4. POM for a JRuby Maven Plugin

<pr oj ect >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook. pl ugi ns</ gr oupl d>
<artifactld>firstruby-maven-pl ugin</artifactld>
<nane>Exanpl e Ruby Mdjo - firstruby-maven-pl ugi n</ name>
<packagi ng>maven- pl ugi n</ packagi ng>
<versi on>1. 0- SNAPSHOT</ ver si on>
<dependenci es>
<dependency>
<gr oupl d>or g. codehaus. npj o</ gr oupl d>
<artifactld>jruby-maven-pl ugi n</artifactld>
<ver si on>1. 0- bet a- 4</ ver si on>
<scope>runti ne</ scope>
</ dependency>
</ dependenci es>
<bui | d>
<pl ugi ns>
<pl ugi n>
<artifact!|d>maven- pl ugi n- pl ugi n</artifactld>
<ver si on>2. 4</ ver si on>
<dependenci es>
<dependency>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifactld>jruby-maven-pl ugi n</artifactl|d>
<ver si on>1. 0- bet a- 4</ ver si on>
</ dependency>
</ dependenci es>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ pr oj ect >

Next, you will need to create aMojo implemented in Ruby. Maven is going to look
for aRuby Mojo in ${ basedi r}/src/ mai n/ scri pt s. Put the following Ruby class

403

http://www.ruby-lang.org/
http://jruby.codehaus.org/

Writing Pluginsin Alternative Languages

IN ${basedi r}/src/ main/ scripts/echo.rb.

Example 18.5. The Echo Ruby Mojo

Prints a nessage
@oal "echo”

@hase "val i date"
cl ass Echo < Myjo

@araneter type="java.lang. String" default-value="Hello Maven World" \
expr essi on="${ nessage}"

def nessage

end

def execute
i nfo $nessage
end

end

run_nmoj o Echo

The Echo class must extend Mj o, and it must override the execut e() method. At
the end of the echo. rb file, you will need to run the mojo with "r un_noj o Echo".
To ingtall this plugin, run mvn install:

$ nvn install
[INFQ Scanning for projects...

N O I I
[INFQ Buil ding Exanpl e Ruby Mjo - firstruby-maven-pl ugin

[I NFQ task-segment: [install]

N O I e

[I NFO] [pl ugi n: descri ptor]

[NFQ Applying extractor for |anguage: jruby
[INFQ Ruby Mdjo File: /echo.rb
[INFQ Extractor for |anguage: jruby found 1 nojo descriptors.

T 21
[INFO BU LD SUCCESSFUL

[INFC] o ocmoame e 0oo o mm e o & 006 5 55 65 5 5 516 556 6 5 5 516 5 566 65 5 5 616 6 566 655 5 616 6 666 6 o s

During the build, you should see that the Maven Plugin Plugin's descriptor goal
applies the JRuby extractor to create apl ugi n. xm which captures the annotations
in the Echo class. If you've configured your default plugin groups to include

404

Writing Pluginsin Alternative Languages

or g. sonat ype. mavenbook. pl ugi ns, you should be able to run this echo goal with
the following command-line:

$ nmvn firstruby: echo

[INFQ [firstruby:echo]
[INFO Hello Maven World

18.3.2. Ruby Mojo Implementations

Ruby Mojos are annotated using comments in Ruby source files. A single
annotation like @ar anet er takes anumber of attributes, and each of these
attributes must be specified on the same line. There can be no line-breaks between
an annotations attribute in the Ruby source. Both classes and parameters are
annotated. Parameters are annotated with four annotations. @ar anet er

@ equi red, @ eadonl y, and @lepr ecat ed. The @ar anet er attribute takes the
following attributes:

alias
An dliasfor the parameter. An alternate name which can be used to populate the
same parameter.

default-value

Provides a default value to the parameter if the supplied value or the parameter
expression produces a null result. In echo. r b, we specify the default as"Hello
Maven World".

expression
Contains an expression which can resolve to a Maven property or a System
property.

type
The fully qualified Javatype of the parameter. If the typeis not specified it will
default toj ava. | ang. Stri ng.

In addition to the @ar anmet er annotation, a parameter can take the following

405

Writing Pluginsin Alternative Languages

annotations;

@required "<truelfal se>"
Marks the parameter as being required. The default value isfalse.

@readonly "<truelfal se>"

Marks the parameter as read-only. If thisistrue, you may not override the

default value or the value from the expression from the command line. The
default valueisfalse.

@deprecated " <truelfalse>"
Marks the parameter as deprecated. The default valueisfalse.

Putting this altogether, a fully annotated message parameter from echo. r b would
look like the following code:

@araneter type="java.lang. String" default-value="Hello Maven Wrl d" \
expr essi on="${ nessage} "

@eadonly true

@equired false

@leprecated fal se

def nessage

end

Ruby Mojo classes are annotated with the following attributes:

@goal
Specifies the name of the goal.

@phase
The default phase to bind this goal to.

@requiresDependencyResolution
Trueif the Mojo requires that dependencies be resolved before execution.

@aggregator
Marks this mojo as an aggregator.

@execute

406

Writing Pluginsin Alternative Languages

Provides the opportunity to execute agoal or lifecycle phase before executing
this Mojo. The @execute annotation takes the following attributes:

goal
Name of the goal to execute

phase
Name of the lifecycle phase to execute

lifecycle
Name of the lifecycle (if other than default)
For an example of an annotated Mojo class, consider the following code example:

Conpl etes sonme build task

@oal custom goal

@hase install

@ equi resDependencyResol ution fal se
@xecute phase=conpile

cl ass Customvbjo < Mjo

end

Mojo parameters can reference Java classes and Maven properties. The following
example shows you how to get access to the Maven Project object from a Ruby
Mojo.

Example 18.6. Referencing a Maven Project from a Ruby Mojo

This is a nmoj o description

@oal test

@hase validate

cl ass Test < Mjo
@araneter type="java.lang. String" default-val ue="nothing" alias="a_string"
def prop
end

@aranmeter type="org.apache. maven. proj ect. MavenProj ect™ \
expressi on="${ proj ect}"

@equired true

def project

end

def execute
info "The followi ng String was passed to prop: '#{$prop}'"
info "My project artifact is: #{$project.artifactld}"

407

Writing Pluginsin Alternative Languages

end
end

run_noj o Test

In the previous example, we can access properties on the Pr oj ect classusing
standard Ruby syntax. If you puttest.rbinfirstruby- maven- pl ugin's

src/ mai n/ scri pts directory, install the plugin, and then run it, you will see the
following output:

$ nvn install

[I NFQ [pl ugin: descri ptor]
[INFQ Using 3 extractors.
[INFQ Applying extractor for |anguage: java

[INFO Applying extractor for |anguage: jruby

[INFQ Ruby Mdjo File: /echo.rb

[INFOQ Ruby Mojo File: /test.rb

[INFQ Extractor for |anguage: jruby found 2 nojo descriptors.

$ nvn firstruby:test
[INFO [firstruby:test]

[INFQ The following String was passed to prop: 'nothing'
[INFOQ M project artifact is: firstruby-mven-pl ugin

18.3.3. Logging from a Ruby Mojo
To log from a Ruby Mojo, call thei nfo(), debug(), and error () methodswith a
message.

Tests Loggi ng

@oal | ogtest

@hase validate

cl ass LogTest < Mjo

def execute
info "Prints an | NFO nessage"
error "Prints an ERROR nessage"
debug "Prints to the Consol e"
end

end

run_noj o LogTest

408

Writing Pluginsin Alternative Languages

18.3.4. Raising a MojoError

If there is an unrecoverable error in a Ruby Mojo, you will need to raise a
Mbj oEr ror . Example 18.7, “Raising a MojoError from a Ruby Mojo” shows you

how to raise aMj oEr r or . This example mojo prints out a message and then raises
aMj oError.

Example 18.7. Raising a MojoError from a Ruby Mojo

Prints a Message
@oal error

@hase validate
class Error < Mjo

@araneter type="java.lang. String" default-value="Hello Maven Worl d" \
expr essi on="${ nessage}"

@equired true

@eadonly false

@leprecated fal se

def message

end

def execute
i nfo $nessage
rai se MojoError.new "This Myjo Raised a MjoError")

end

end

run_noj o Error

Running this Mojo, produces the following outpult:

$ nvn firstruby:error

INFQ [firstruby:error]
[INFQ Hello Maven World
[ERROR] This Mojo Raised a Mj oError

18.3.5. Referencing Plexus Components from JRuby

409

Writing Pluginsin Alternative Languages

A Ruby Mojo can depend on a Plexus component. To do this, you would use the
expr essi on attribute of the @ar anet er annotation to specify arole and a hint for

Plexus. The following example Ruby Mojo, depends upon an Archiver component
which Maven will retrieve from Plexus.

Example 18.8. Depending on a Plexus Component from a Ruby Mojo

This nmojo tests plexus integration
@oal testplexus

@hase validate

cl ass Test Pl exus < Mjo

@araneter type="org.codehaus. pl exus. archi ver. Archi ver" \

expr essi on="${conponent . or g. codehaus. pl exus. archi ver. Archi ver #zi p}"
def archiver

end

def execute
i nfo $archi ver
end
end

run_noj o Test Pl exus

Please note that the attributes for an annotation in a Ruby Mojo cannot span

multiple lines. If you were to run this goal, you would see Maven attempt to
retrieve a component from Plexus with arole of

or g. codehaus. pl exus. ar hi ver. Archi ver and ahint of zi p.

18.4. Writing Plugins in Groovy

Groovy is adynamic language based on the Java Virtual Machine which compiles
to Java bytecode. Groovy is a project in the Codehaus community. If you are fluent
in Java, Groovy will seem like a natural choice for a scripting language. Groovy
takes the features of Java, pares down the syntax a bit, and adds features like
closures, duck-typing, and regular expressions. For more information about
Groovy, please see the Groovy web site at http://groovy.codehaus.org.

410

http://groovy.codehaus.org

Writing Pluginsin Alternative Languages

18.4.1. Creating a Groovy Plugin

To create a Maven Plugin using Groovy, you only need two files: apom xm and a
single Mojo implemented in Groovy. To get started, create a project directory
named f i r st gr oovy- maven- pl ugi n. Place the following pom xm in this directory.

Example 18.9. POM for a Groovy Maven Plugin

<?xm version="1.0" encodi ng="UTF- 8" ?>
<pr oj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. sonat ype. mavenbook. pl ugi ns</ gr oupl d>
<artifactld>firstgroovy-maven-plugin</artifactld>
<nane>Exanpl e G oovy Mjo - firstgroovy-maven-pl ugi n</ name>
<packagi ng>maven- pl ugi n</ packagi ng>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<dependenci es>
<dependency>
<gr oupl d>or g. codehaus. noj 0. gr oovy</ gr oupl d>
<artifact!| d>groovy-noj o-support</artifactld>
<ver si on>1. 0- bet a- 3</ ver si on>
</ dependency>
</ dependenci es>

<bui | d>
<pl ugi ns>
<pl ugi n>

<artifact!|d>maven- pl ugi n- pl ugi n</artifactld>
<ver si on>2. 4</ ver si on>
</ pl ugi n>
<pl ugi n>
<gr oupl d>or g. codehaus. noj 0. gr oovy</ gr oupl d>
<artifactl d>groovy-maven- pl ugi n</artifactl d>
<ver si on>1. 0- bet a- 3</ ver si on>
<ext ensi ons>t r ue</ ext ensi ons>
<executions>
<execut i on>
<goal s>
<goal >gener at eSt ubs</ goal >
<goal >conpi | e</ goal >
<goal >gener at eTest St ubs</ goal >
<goal >t est Conpi | e</ goal >
</ goal s>
</ execut i on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ pr oj ect >

411

Writing Pluginsin Alternative Languages

What's going on in this POM? First, notice that the packaging of the POM is

maven- pl ugi n because we are creating a project that will package a Maven plugin.

Next, note that the project depends on the gr oovy- noj o- support artifact in the

or g. codehaus. noj o. gr oovy group.

Then under sr ¢/ mai n/ gr oovy in adirectory or g/ sonat ype/ mavenbook/ pl ugi ns,

create afile named EchoMj o. gr oovy which contains the EchoMojo class.

Example 18.10.

package org. sonat ype. mavenbook. pl ugi ns

i mport org. codehaus. moj 0. gr oovy. G oovyMj o

/**

* Exanpl e goal which echos a nmessage

*

* @oal echo

*/

cl ass EchoMbj o extends G oovyMj o {

/**

* Message to print

*

* @aranet er expression="${echo. message}"

ks def aul t-val ue="Hell o Maven Wor | d"

*/
String nessage

voi d execute() {
| og.info(nessage)

}

412

Chapter 19. Using Maven Archetypes

Warning

This chapter hasn't reached Draft status yet, it isin apre-alpha stage. I'm
publishing worksin progress because | believe that transparency in
writing benefits both the author and the community. A book is much
more than the pages (or web pages) it is printed on, and the true meaning
of abook is captured in both the content and conversation it provokes.

Asthisisapre-alpharelease of achapter, don't worry about reporting
typos. Expect them until a quality beta version of this chapter is released.
If you do care to provide any feedback, tell me what you want to read. If,
after reading this pre-alpha chapter you are longing to know how to X, Y,
or Z. Go over to our Get Satisfaction page and file a suggestion or an
idea. We're very interested in the feedback.

Don't expect this chapter to be in pre-alphafor weeks and weeks, one
thing I'm particularly disinterested in isleaving readers with cliffhanger
endings - sections that provide 95% of the essential information only to
leave them with atable that hasn't been completed or a section that was
written in ahurry. Thisisanew practice of "Agile Writing", and I've
taken care to publish complete sections. While the enumeration of
third-party pluginsisn't complete and this chapter lacks a section on
generating artifacts, the paragraphs and third-level sections that have
been published are in this version because | didn't want to sit on the
content for weeks and weeks.

Xpect ah lott of tiposinh this chapther(, but don't report ‘em yet).
Monday, October 13, 2008 - Tim O'Brien

19.1. Introduction to Maven Archetypes
An archetypeis atemplate for a Maven project which is used by the Maven

413

Using Maven Archetypes

Archetype plugin to create new projects. Archetypes are useful for open source
projects such as Apache Wicket or Apache Cocoon which want to present
end-users with a set of baseline projects that can be used as a foundation for new
applications. Archetypes can also be useful within an organization that wants to
encourage standards across a series of similar and related projects. If you work in
an organization with alarge team of developers who all need to create projects
which follow a similar structure, you can publish an archetype that can be used by
all other members of the development team. Y ou can create a new product from an
archetype using the Maven Archetype plugin from the command line or by using
the project creation wizard in the m2eclipse plugin introduced in Chapter 14,
Maven and Eclipse: m2eclipse.

19.2. Using Archetypes

Y ou can use an archetype by invoking the generate goal of the Archetype plugin
viathe command-line or with m2eclipse.

19.2.1. Using an Archetype from the Command Line

The following command line can be used to generate a project from the quickstart
archetype.

mvn ar chet ype: generate \
- Dgr oupl d=or g. sonat ype. mavenbook \
-Dartifactld=qui ckstart \
- Dver si on=1. 0- SNAPSHOT \
- DpackageNane=or g. sonat ype. navenbook \
- Dar chet ypeG oupl d=or g. apache. maven. ar chet ypes \
- Darchet ypeArti fact | d=naven- ar chet ype- qui ckstart \
- Dar chet ypeVer si on=1. 0 \
-Di nt eracti veMode=f al se

The generate goal accepts the following parameters:

groupld
The gr oupl d for the project you are creating.

414

Using Maven Archetypes

artifactld
Theartifact!d for the project you are creating.

Ver si on

Thever si on for the project you are creating (defaultsto 1.0-SNAPSHOT).

packageNane
The default package for the project you are creating (defaults to gr oupl d).

ar chet ypeG oupl d
The gr oupl d of the archetype you wish to use for project generation.

archetypeArtifactld
Theartifact!d of the archetype you wish to use for project generation.

ar chet ypeVer si on
Thever si on of the archetype you wish to use for project generation.

i nteracti veMode

When the gener at e goal is executed in interactive mode, it will prompt the user
for all the previously listed parameters. When i nt er act i veMode isfalse, the
gener at e goa will use the values passed in from the command line.

Once you run the gener at e goal using the previoudly listed command line, you
will have a directory named quickstart which contains a new Maven project. The
command line you had to suffer through in this section is difficult to manage. In
the next section we generate the same project running the generate goal in an
Interactive mode.

19.2.2. Using the Interactive generate Goal

The ssimplest way to use the Maven Archetype plugin to generate a new Maven
project from an archetype isto run the ar chet ype: gener at e goal in interactive
mode. Wheni nt er acti veMbde iSSet to t r ue, the gener at e goal will present you
with alist of archetypes and prompt you to select an archetype and supply the

415

Using Maven Archetypes

necessary identifiers. Since the default value of the parameter i nt er act i veMode IS
t rue, al you have to do to generate a new Maven project isrun mvn
ar chetype:gener ate.

$ nmvn ar chetype: gener at e

I O I I R R R
[INFQ Building Maven Default Project

[NFQ t ask- segnent: [archetype: generate] (aggregator-style)
[INFQ [archetype: generat e]

[INFQ GCenerating project in Interactive node
[INFO No archetype defined. Using maven-archetype- qui ckstart
Choose archet ype:

1: internal -> appfuse-basic-jsf

2: internal -> appfuse-basic-spring

3: internal -> appfuse-basic-struts

4: internal -> appfuse-basic-tapestry

5: internal -> appfuse-core

6: internal -> appfuse-nodul ar-j sf

7: internal -> appfuse-nodul ar-spring

8: internal -> appfuse-nmodul ar-struts

9: internal -> appfuse-nodul ar-tapestry

10: internal -> maven-archetype-j2ee-sinple

11: internal -> maven-archetype- marnal ade- noj o
12: internal -> maven-archetype-nojo

13: internal -> maven-archetype-portl et

14: internal -> maven-archetype-profiles

15: internal -> maven-archetype-quickstart

16: internal -> maven-archetype-site-sinple

17: internal -> maven-archetype-site

18: internal -> maven-archetype-webapp

19: internal -> jini-service-archetype

20: internal -> softeu-archetype-seam

21: internal -> softeu-archetype-seamsinple
22: internal -> softeu-archetype-jsf

23: internal -> jpa-nmaven-archetype

24: internal -> spring-osgi-bundl e-archetype
25: internal -> confl uence-pl ugi n-archetype

26: internal -> jira-plugin-archetype

27: internal -> maven-archetype- har

28: internal -> maven-archetype-sar

29: internal -> wi cket-archetype-quickstart

30: internal -> scal a-archetype-sinple

31: internal -> lift-archetype-bl ank

32: internal -> lift-archetype-basic

33. internal -> cocoon-22-archetype-bl ock-plain
34: internal -> cocoon-22-archetype-bl ock

35: internal -> cocoon-22-archetype-webapp

36: internal -> nyfaces-archetype-helloworld
37: internal -> nyfaces-archetype-hell oworld-facel ets
38: internal -> nyfaces-archetype-trini dad

39: internal -> nyfaces-archetype-jsfconponents
40: internal -> gmaven-archetype-basic

416

Using Maven Archetypes

41: internal -> gnmaven-archetype-nojo
Choose a nunber: 15

Thefirst thing that the ar chet ype: gener at e goal does in interactive mode isto
print out alist of archetypesthat it is aware of. The Maven Archetype plugin ships
with an archetype catalog which includes areference to all of the standard, smple
Maven archetypes (10-18). The plugin's archetype catalog also contains a number
of references to compelling third party archetypes such as archetypes which can be
used to create AppFuse projects, Confluence and JIRA plugins, Wicket
applications, Scala applications, and Groovy projects. For a brief overview of these
third-party archetypes, see Section 19.3.2, “Notable Third-Party Archetypes”.

Once you select an archetype, the Maven Archetype plugin downloads the
archetype, and then asks you to supply the following values for your new project:

groupld
e artifactld
®* version

* package

[INFQ artifact org.apache. maven. archet ypes: maven- ar chet ype- qui ckstart: checki ng for updat e:
Downl oadi ng: http://repol. maven. or g/ maven2/ or g/ apache/ maven/ ar chet ypes/ maven- ar chet ype- qui cl
4K downl oaded

Defi ne value for groupld: : org.sonatype. mavenbook

Define value for artifactld: : quickstart

Defi ne value for version: 1.0-SNAPSHOT: : 1. 0- SNAPSHOT

Defi ne val ue for package: org.sonatype. mavenbook: : org.sonatype. mavenbook

Confirm properties configuration
groupl d: org. sonat ype. mavenbook
artifactld: quickstart

version: 1. 0- SNAPSHOT

package: org.sonatype. mavenbook
Y: Y

Once this interactive portion of the ar chet ype: gener at e goal execution is
finished, the Maven Archetype plugin will generate the project in adirectory
named after theartifact1d you supplied.

I R I i e R T
[INFQ Using followi ng paraneters for creating O dArchetype: maven-archetype-qui ckstart: REL

417

Using Maven Archetypes

I NFOl Paraneter: groupld, Value: org.sonatype. navenbook

I NFO| Par aneter: packageNanme, Val ue: org. sonatype. mavenbook
I NFQ Paraneter: basedir, Value: /Users/tobrien/tnp

I NFOl Par aneter: package, Val ue: org.sonatype. navenbook

I NFQ Paraneter: version, Value: 1.0-SNAPSHOT

I NFO Paraneter: artifactld, Value: quickstart

INFO O dArchetype created in dir: /Users/tobrien/tnp/quickstart

INFQ Total tine: 1 minute 57 seconds
INFO Finished at: Sun Cct 12 15:39: 14 CDT 2008
INFOQ Final Menory: 8M 15M

[
[
[
[
[
[
[
[NFQ ****x*x*xxxxxxxsxxxxxxx Fnd of debug info fromresources from generated POM *****xx%%xx:
[
[
[
[
[
[
[
[

19.2.3. Using an Archetype from m2eclipse

m2eclipse makes creating a new Maven project from a Maven Archetype very easy

by providing an intuitive wizard for searching for, selecting, and configuring a

Maven Archetype. For more information about generating a Maven project form a

Maven Archetype using m2eclipse, see 772.

19.3. Available Archetypes

As more and more projects adopt Maven, more and more artifacts are being
published by projects as away to provide users with a quick way of creating

projects from existing templates. This section discusses some of the ssmple core

archetypes from the Apache Maven as well as providing a survey of some
interesting third-party archetypes.

19.3.1. Common Maven Archetypes

Some of the most straightforward Maven archetypes are contained in the
org.apache.maven.archetypes groupld. Most of the basic archetypes under

org.apache.maven.archetypes are very basic templates that include few options.

Y ou'll use them only to provide the most basic features that distinguish aMaven

418

Using Maven Archetypes

project from a non-Maven project. For example, the webapp archetype plugin
described in this section just includes a stub of aweb. xn filein

${ basedi r}/src/ mai n/ webapp/ VEB- | NF, and it doesn't even go asfar as providing
a Servlet for you to customize. In Section 19.3.2, “Notable Third-Party
Archetypes’ you'll see a quick survey of some of the more notable third-party
archetype such as the AppFuse and Cocoon artifacts.

The following archetypes can be found in the groupld
or g. apache. maven. ar chet ypes:

19.3.1.1. maven-archetype-quickstart

The quickstart archetype is a simple project with JAR packaging and asingle
dependency on JUnit. After generating a project with the quickstart archetype, you
will have a single class named App in the default package with anmai n() method
that prints "Hello World!" to standard output. Y ou will also have asingle JUnit test
class named AppTest with at est App() method with atrivial unit test.

19.3.1.2. maven-archetype-webapp

This archetype creates a ssimple project with WAR packaging and asingle
dependency on JUnit. ${ basedi r}/ src/ mai n/ webapp contains asimple shell of a
web application: ani ndex. j sp page and the simplest possible web. xni file. Even
though the archetype includes a dependency on JUnit, this archetype does not
create any unit tests. If you were looking for afunctional web application, this
archetype is going to disappoint you. For more relevant web archetypes, see
Section 19.3.2, “Notable Third-Party Archetypes’.

19.3.1.3. maven-archetype-mojo

This archetype creates a simple project with maven- pl ugi n packaging and asingle
mojo class named MyMj o in the project’'s default package. The myMj o class
contains at ouch goa which is bound to the pr ocess- r esour ces phase, it creates a
filenamedt ouch. t xt inthetarget/ directory of the new project whenitis
executed. The new project will have a dependency on maven-plugin-api and JUnit.

419

Using Maven Archetypes

19.3.2. Notable Third-Party Archetypes

This section is going to give you a brief overview of some of the archetypes
available from third-parties not associated with the Apache Maven project. If you
are looking for amore comprehensive list of available archetypes, take alook at
the list of archetypes in m2eclipse. m2eclipse allows you to create a new Maven
project from an ever growing list of approximately 80 archetypes which span an
amazing number of projects and technologies. ??? contains alist of archetypes
which are immediately available to you when you use m2eclipse. The archetypes
listed in this section are available on the default list of archetypes generated by the
interactive execution of the gener at e goal.

19.3.2.1. AppFuse

AppFuse is an application framework developed by Matt Raible. Y ou can think of
AppFuse as something of a Rosetta Stone for afew very popular Java technologies
like the Spring Framework, Hibernate, and iBatis. Using AppFuse you can very
quickly create an end-to-end multi-tiered application that can plugin into several
front-end web frameworks like Java Server Faces, Struts, and Tapestry. Starting
with AppFuse 2.0, Matt Raible has been transitioning the framework to Maven 2 to
take advantage of the dependency management and archetype capabilities.
AppFuse 2 provides the following archetypes al in the groupld

or g. appf use. ar chet ypes:

appf use- basi c-j sf and appf use- nodul ar - j sf
End-to-end application using Java Server Faces in the presentation layer

appf use- basi c- spri ng and appf use- nodul ar - spri ng
End-to-end application using Spring MV C in the presentation layer

appf use- basi c- strut s and appf use- nodul ar-struts
End-to-end application using Struts 2 in the presentation layer

appf use- basi c-t apest ry and appf use- nodul ar -t apestry
End-to-end application using Tapestry in the presentation layer

420

Using Maven Archetypes

appfuse-core

Persistence and object model without the presentation layer
Archetypes following the appf use- basi c- * pattern are entire end-to-end
applicationsin asingle Maven project, and archetypes following the
appf use- nodul ar - * pattern are end-to-end applications in a multimodule Maven
project which separates the core model objects and persistence logic from the web
front-end. Here's an example from generating a project to running aweb
application for the modular Spring MV C application:

$ nmvn archetype: generate \
- Darchet ypeArti fact | d=appf use- nmodul ar-spring \
- Dar chet ypeG oupl d=or g. appf use. ar chet ypes \
- Dgr oupl d=or g. sonat ype. mavenbook \
-Dartifactld=nod-spring \
- Dver si on=1. 0- SNAPSHOT \
-Di nteracti veMde=fal se[| NFO Scanni ng for projects...

[INFQ [archetype: generat €]

[INFQ GCenerating project in Batch node

[INFQ Archetype [org. appfuse. archet ypes: appf use-nodul ar-spri ng: RELEASE] found in catalog i
A O B i F---

[INFQ Using followi ng paraneters for creating O dArchetype: appfuse-nodul ar-spri ng: RELEASE
A RO I e F---

[INFQ Paraneter: groupld, Value: org.sonatype. navenbook

[NFQ Paraneter: packageNane, Val ue: org.sonatype. navenbook
[NFQ Paraneter: basedir, Value: /Users/tobrien/tnp

[NFQ Paraneter: package, Val ue: org.sonatype. mavenbook
[INFQ Paraneter: version, Value: 1.0-SNAPSHOT

[INFQ Paraneter: artifactld, Value: nod-spring

[INFO d dArchetype created in dir: /Users/tobrien/tnp/nod-spring
LN R I R
[INFO BUI LD SUCCESSFUL
$ cd nod-spring
$ nmvn
. (an overwhel m ng ambunt of activity ~5 m nutes)
$ cd web
$ nvn jetty:run-war
(Maven Jetty plugin starts a Servlet Container on port 8080)

From generating a project with the AppFuse archetype to running aweb
application with a authentication and user-management system takes all of 5
minutes. Thisisthe real power of using a Maven Archetype as afoundation for a
new application. We oversimplified the AppFuse installation process a bit and |eft

421

Using Maven Archetypes

out the important part where you download and install a MySQL database, but
that's easy enough to figure out by reading the AppFuse Quickstart Documentation.

19.3.2.2. Confluence and JIRA plugins

Atlassian has created some archetypes for people interested in developing plugins
for both Confluence and JJRA. Confluence and JIRA are, respectively, aWiki and
an issue tracker both of which have gained alarge open source user base through
granting free licenses for open source projects. Both thej i r a- pl ugi n- ar chet ype
and the conf | uence- maven- ar chet ype artifacts are under the
com.atlassian.maven.archetypes groupld. When you generate a Confluence plugin,
the archetype will generate a pom.xml which contains the necessary referencesto
the Atlassian repositories and a dependency on the confluence artifact. The
resulting Confluence plugin project will have a single example macro class and an
atlassian-plugin.xml descriptor. Generating a project from the Jira archetype
creates a project with asingle, blank MyPI ugi n class and an atlassian-plugin.xml
descriptor in ${ basedi r}/ src/ mai n/ r esour ces.

fr more information about developing Confluence plugins with Maven 2, see
Developing Confluence Plugins with Maven 2 on the Confluence project's Wiki.

For more information about developing Jira plugins with Maven 2, see How to
Build and Atlassian Plugin on the Atlassian Developer Network.

19.3.2.3. Wicket

Apache Wicket is a component-oriented web framework which focused on
managing the server-side state of a number of components written in Javaand
simple HTML. Where aframework like Spring MV C or Ruby on Rails focuses on
merging objects within arequest with a series of page templates, Wicket is very
strongly focused on capturing interactions and page structure in a series of POJO
Java classes. In an age where hype-driven tech media outlets are proclaiming the
"Death of Java', Wicket is a contrarian approach to the design and assembly of
web applications. To generate a Wicket project with the Maven Archetype plugin:

$ nmvn archet ype: gener at e

. (supply a groupld, artifactld,

. (select the "wi cket-archetype-quickstart" artifact fromthe interactive nen

. (assuming the artifactld is "ex-w cket") ...

versi on, package) ...

422

http://appfuse.org/display/APF/AppFuse+QuickStart
http://confluence.atlassian.com/display/DISC/Developing+Confluence+Plugins+with+Maven+2
http://confluence.atlassian.com/display/DEVNET/How+to+Build+an+Atlassian+Plugin
http://confluence.atlassian.com/display/DEVNET/How+to+Build+an+Atlassian+Plugin

Using Maven Archetypes

$ cd ex-wi cket
$ nmvn install
. (a lot of Maven activity) ...
$ nvn jetty:run
. (Jetty will start listening on port 8080) ...

Just like the AppFuse archetype, this archetype creates a shell web application
which can be immediately executed with the Maven Jetty plugin. If you hit
http://local host:8080/ex-wicket, you be able to see the newly created web
application in a servlet container.

Note

Think about the power of Maven Archetypes versus the copy and paste
approach that has characterized the last few years of web development.
Six years ago, without the benefit of something like the Maven
Archetype plugin, you would have had to slog through a book about
AppFuse or abook about Wicket and followed circuitous pedagogy about
the framework before you could actually fire it up in servlet container. It
was either that or just copying an existing project and customizing it for
your needs. With the Maven Archetype plugin, framework developers
can now give you aworking, customized shell for an applicationin a
matter of minutes. Thisis a sea change that has yet to hit the enterprise
development space, and you can expect that this handful of available
third-party artifacts will balloon to hundreds within the next few years.

19.4. Publishing Archetypes

Once you've generated a good set of artifacts, you will probably want to share them
with the world. To do this, you'll need to create something called an Archetype
catalog. An Archetype catalog isan XML file which the Maven Archetype plugin
can consult to locate archetypesin arepository. Example 19.1, “ Archetype Catal og
for the Apache Cocoon Project” shows the contents of the Archetype catalog for
the Apache Cocoon project which can be found at

http://cocoon.apache.org/archetype-catal og.xmil.

423

http://localhost:8080/ex-wicket
http://cocoon.apache.org/archetype-catalog.xml

Using Maven Archetypes

Example 19.1. Archetype Catalog for the Apache Cocoon Pr oj ect

<ar chet ype- cat al og>
<ar chet ypes>
<ar chet ype>
<gr oupl d>or g. apache. cocoon</ gr oupl d>
<artifactld>cocoon-22-archetype-bl ock-pl ain</artifactld>
<ver si on>1. 0. 0</ ver si on>
<descri pti on>Creates an enpty Cocoon bl ock; useful if you want to add ano

</ archet ype>
<ar chet ype>

<gr oupl d>or g. apache. cocoon</ gr oupl d>

<artifactld>cocoon-22-archetype-bl ock</artifactld>

<ver si on>1. 0. 0</ ver si on>

<descri pti on>Creates a Cocoon bl ock containing some snmall sanpl es</descri
</ ar chet ype>

<ar chet ype>
<gr oupl d>or g. apache. cocoon</ gr oupl d>
<artifactld>cocoon-22-archet ype- webapp</artifactld>
<versi on>1. 0. 0</ ver si on>
<descri pti on>Creates a web application configured to host Cocoon bl ocks.
</ ar chet ype>
</ archet ypes>

</ archet ype- cat al og>

t her bl ock t«

ption>

Just add the

To generate such a catalog, you'll need crawl a Maven repository and generate this
catalog XML file. The Archetype plugin has agoa named craw! which does just
this, and it assumes that it has access to the file system that hosts arepository. If
you run archetype:crawl from the command line with no arguments, the Archetype
plugin will crawl your local repository searching for Archetypes and it will create
an archetype-catalog.xml in ~/.m2/repository.

[tobri en@ACBOXK repository]$ nmvn archetype: craw

[INFQ Scanning for projects...

[INFO Searching repository for plugin with prefix: 'archetype'

I L T T L e
[NFQ Buil ding Maven Default Project

[I NFQ t ask-segnent: [archetype:crawl] (aggregator-style)

o I T e e e T
[INFQ [archetype:craw]

repository /Users/tobrien/.nR2/repository

cat al ogFi | e nul

[NFQ Scanning /Users/tobrien/.n2/repository/ant/ant/1.5/ant-1.5.]ar

[INFQ Scanning /Users/tobrien/.nR/repository/ant/ant/1.5.1/ant-1.5.1.jar

[NFQ Scanning /Users/tobrien/.n2/repository/ant/ant/1.6/ant-1.6.jar

424

Using Maven Archetypes

[INFQ Scanning /Users/tobrien/.nR2/repository/ant/ant/1.6.5/ant-1.6.5.]ar

I NFO Scanni ng /Users/tobrien/.n2/repository/xmrpc/xmrpc/1l.2-bl/xmrpc-1.2-bl.jar
I NFO Scanni ng / Users/tobrien/.n2/repository/xom xom 1.0/ xom 1.0.jar

I NFO Scanni ng / Users/tobrien/.n2/repository/xom xonm 1. 0b3/xom 1. 0b3. j ar
I NFOQ Scanni ng /Users/tobrien/.n2/repository/ xpp3/xpp3_mn/1l.1.3.4.0xpp3_nn-1.1.3.4.0.jal

INFOQ Total tinme: 31 seconds
INFQ Finished at: Sun Cct 12 16:06: 07 CDT 2008
INFO Final Menory: 6M 12M

If you are interested in creating an Archetype catalog it is usually because you are
an open source project or organization which has a set of archetypesto share.
These archetypes are likely already available in arepository, and you need to crawl
this repository and generate a catalog in afile system. In other words, you'll
probably want to scan a directory on an existing Maven repository and generate an
Archetype plugin at the root of the repository. To do this, you'll need to passin the
catalog and repository parameters to the ar chet ype: crawl goal.

The following command line assumes that you are trying to generate a catalog file
in /var/www/html/archetype-catalog.xml for arepository hosted in
Ivar/www/html/maven2.

$ nvn archetype: craw -Dcatal og=/var/ww/ ht ml / ar chet ype- cat al og. xm \
[INFQ Scanning for projects...
[INFQ Searching repository for plugin with prefix: 'archetype'.

[INFQ - mm s mmm oo m oo e oo
[INFQ Buildi ng Maven Default Project

[I NFQ t ask-segnent: [archetype:crawl] (aggregator-style)

I O I e R R R

[INFQ [archetype: craw]

repository /Users/tobrien/tnp/mven2
catal ogFi | e /Users/tobrien/tnp/blah. xn
[NFQ Scanning /Users/tobrien/tnp/ mven2/ com di scursive/cas/ extend/ cas-extend-client-java/:
[NFQ Scanni ng / Users/tobrien/tnp/ mven2/ conl di scursive/ cas/ ext end/ cas-extend-client-java/:
- Dreposi t ory=/var/ww ht m / mraven2

425

Chapter 20. Developing with Flexmojos

20.1. Introduction

This chapter provides an overview of the Flexmojos project for people interested in
hel ping to develop and customize the plugin.

20.2. Configuring Build Environment for

Flexmojos

The Flexmojos build uses Maven, but before you attempt to compile with Maven,
you will need to configure you Maven settings to reference a repository which
contains the latest dependencies. To setup your Maven environment, you have two
options. You can install asimple ~/ . n2/ set ti ng. xm file which references the
Sonatype public repository directly, or you can install Nexus and add the Sonatype
public repository as a proxy repository in your own repository manager. While the
most straightfoward option isto just drop the XML shown in section

Section 20.2.1, “Using Sonatype's Repository Directly” into a

~/ . 2/ settings. xm file, downloading and installing Nexus will give you the
control and flexibility you need to cache and manage artifacts generated by your
own build. If you are just interested in getting up and running with Flexmojos, read
section Section 20.2.1, “Using Sonatype's Repository Directly” next. If you are
interested in along-term solution which can be deployed to support a development
team, continue to section Section 20.2.2, “ Proxying Sonatype's Repository with
Nexus’.

If your organization is already using Sonatype Nexus to proxy remote repositories,
you probably already have a customized ~/ . n2/ set ti ngs. xmi file which pointsto
asingle Nexus group. If thisisyour situation, you should add a Proxy repository
for the Sonatype public repository group at

http://repository.sonatype.com/content/groups/public. Adding a proxy repository

426

http://repository.sonatype.com/content/groups/public

Developing with Flexmojos

for this remote group and then adding this group to your Nexus installation's public
repository group will give clients of your Nexus instance access to the artifacts
from the Sonatype repository.sonatype.com Nexus instance.

20.2.1. Using Sonatype's Repository Directly

Before you run Maven against Flexmojos, you need to configure you
~/ . m2/ settings. xm to contain the following XML:

Example 20.1. Settings XML for Sonatype Repository

<settings>
<m rrors>
<m rror>
<I--This sends everything else to /public -->
<i d>nexus</i d>
<m rrorOf>*</mrrorCf >
<url >http://repository. sonatype. org/ content/groups/public</url>
</mrror>
</mrrors>
<profil es>
<profile>
<i d>nexus</i d>
<! —Enabl e snapshots for the built in central repo to direct -->
<l--all requests to nexus via the mrror -->
<repositories>
<reposi tory>
<id>central </id>
<url>http://central </url >
<r el eases><enabl ed>t r ue</ enabl ed></r el eases>
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<id>central </id>
<url>http://central </url >
<r el eases><enabl ed>t r ue</ enabl ed></r el eases>
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>
</profile>
</profil es>
<activeProfil es>
<!—make the profile active all the tine -->
<activeProfil e>nexus</activeProfil e>
</activeProfil es>
</settings>

427

Developing with Flexmojos

Note

We suggest that you place the contents of Example 20.1, “ Settings XML
for Sonatype Repository” inyou ~/ . n2/ set ti ngs. xn becauseitisthe
default location for Maven Settings. But, if you have already customized
your ~/ . n2/ set ti ngs. xm you can also put the the contents of thisfilein
another settings file such as~/ . n2/ sonat ype- set ti ngs. xn . If you do
this, you just have to rememebr to specify the location of the settingsfile
on every Maven command line. For example, mvn install would become
mvn -s ~/.m2/sonatype-settings.xml install.

The XML shown in Example 20.1, “ Settings XML for Sonatype Repository”, will
configure Maven to retrieve all artifacts from the Sonatype Nexus installation
which is available at http://repository.sonatype.org. This Nexus installation
provides a public group which combines a number of different repositoriesinto a
single repository group. Instead of configuring your clientsto retrieve artifacts
from several different repositories, the Sonatype Nexus repository manager alows
you centralizing clients to one point-of-contact: a single Nexus repository group.
Builds with use the Flexmojos plugin rely on Flex artifacts which are not yet
available from standard repositories like the Central Maven Repository. Pointing
your build at the Sonatype repository allows you to retrieve the necessary libraries,
SWFs, and SWCs which are required when building Flex applications.

20.2.2. Proxying Sonatype's Repository with Nexus

Instead of pointing directly at the Sonatype public repository, Sonatype
recommends that you install arepository manager and proxy the Sonatye public
repository. When you proxy aremote repository with a repository manager such as
Nexus, you gain alevel of control and stability not possible when your build relies
directly on external resources. In addition to this control and stability, a repository
manager also provides you with an deployment target for binary artifacts generated
by your own builds. For instructions on downloading, installing, and configuring

428

http://repository.sonatype.org

Developing with Flexmojos

Nexus, refer to the Installation chapter in Repository Management with Nexus.
Once Nexus isinstalled and started, complete the following steps to add a proxy
repository for the Sonatype public repository.

To add anew proxy repository, click on the Repositories link under
Views/Repositoriesin the Nexus menu on the | eft-hand side of the Nexus user
interface. Clicking on Repositories will load the Repositories panel. In the
Repositories panel, click on the Add.. button and select Proxy Repository as shown
in Figure 20.1, “Adding a Proxy Repository to Sonatype Nexus'.

Sonatype Nexus™ Professional Edition
Sonatype™ Servers b Welcome Repositories
Nexus “Z Refresh | (@) Add...v @ Delete [Trash...» [~ User Managed Repositories+
Artifact Search - M Repository Hosted Repository Format Policy Repository Status
0 Public Rep Proxy Repository ﬂi? oD mavenz Releases, Snapshof
Advanced Search Public Sna Virtual Repository +] maven2 Apache Snapshots,
3rd party qd maven? release In Service
Views/Repositories = Apache Sng ey (s ¥ mavend snapshot In Service
Repositories
System Feeds Select a record to view the details.
Logs and Config Files
Enterprise -
Artifact Procurement

Figure 20.1. Adding a Proxy Repository to Sonatype Nexus

Once you've created a new Proxy repository, you will need to configure it to point
to the Sonatype public repository. Select the new repository, and then select the
Configuration tab in the lower half of the window. Populate the following field
with the values shown in Figure 20.2, “ Configuring the Sonatype Public Proxy
Repository”.

* Repository ID is "sonatype-public”

* Repository Name is " Sonatype Public Proxy"

429

http://www.sonatype.com/books/nexus-book/reference/install.html

Developing with Flexmojos

» The Remore Storage Location is
http://repository.sonatype.org/content/groups/public

Welcome Repositories

5 Refresh (@) Add...~ (@ Delete [5F Trash...» [User Managed Repositories~

Repository . Type Format Policy Repository Status Repository P...
New Proxy Repository proxy undefined ("]
Public Repositories group mavenz Releases, Snapshots, 3rd party, Ma... httpiJ/ilocalho. .. u
Public Snapshot Repositories group maven2 Apache Snapshots, Codehaus Snap... hittpiilocalho. .. .
3rd party hosted mavenZ release In Service hittp:Mecalho... :
Mew Proxy Repository

Repository ID sonatype-public (%] M
Repository Mame Sonatype Public Proxy L2

Repository Type (2]

Provider Mawven2 Repository v L2

Format (2]

Repository Policy Release v L2

Default Local .Kcorage Location L2
Owerride Local Storage Location L2

4 | Remote Repository Access

Remote Storage Location http://repository.sonatype.org/content/groups/ public L2
Download Remote Indexes True o L2]
Checksum Policy Warn ™ L2] i'
’
M omeat o xt_ar__ar__m
Save] Cancel]

Figure 20.2. Configuring the Sonatype Public Proxy Repository

Once you have populated the fields shown in Figure 20.2, “ Configuring the
Sonatype Public Proxy Repository” click the Save button to save the proxy
repository and start proxying the Sonatype public repository. Nexus ships with a
public repository group, which combines several repositoriesinto asingle
point-of-contact for Maven clients. To complete our setup of the new proxy

430

http://repository.sonatype.org/content/groups/public

Developing with Flexmojos

repository, you should add this new proxy repository to the Nexus public group. To
do this, return to the list of repositories which should now be visible in the upper
half of the Repositories panel as shown in Figure 20.2, “ Configuring the Sonatype
Public Proxy Repository”. Click on the Public Repositories group and then click on
the Configuration tab in the lower half of the Repository panel. Clicking the
Configuration tab will expose the Group configuration form shown in Figure 20.3,
“ Adding the Sonatype Public Proxy to the Public Repositories Group”.

Welcome Repositories

2 Refresh (&) Add..~ (@ Delete 5§ Trash...= [User Managed Repositories

Repository . Type Format Policy Repository Status Repository P...
Public Repositories group mavenz Releases, Snapshots, 3rd party, Ma... http/Vlocalho... m
Public Snapshot Repositories group mavenz Apache Snapshots, Codehaus Snap... httpiilocalho...
3rd party hosted maven? release In Service hitp:/lecalho. . .
Apache Snapshots proxy mavenZ snapshot In Service http:flocalho...

Public Repositories

Browse Configuration

Group ID 2] ™
Group Name Public Repaositaries L2
Provider
Format
Ordered Group Repositories Available Repositories
=] Releases =] Apache Snapshots U
.
=] Snapshots =] Codehaus Snapshots
=] 3rd party =] Sonatype Public Proxy
=] Maven Central

L;

& =] Sonatype Public Proxy

F=/=

Figure 20.3. Adding the Sonatype Public Proxy to the Public Repositories
Group

431

Developing with Flexmojos

To add the Sonatype Public Proxy to the Public Repositories group simply drag
and drop the Sonatype Public Proxy repository from the Available Repositories list
to the Ordered Group Repositories list. Click Save, and you have successfully
added a proxy of the Sonatype public repository to your Nexus installation.
Whenever aclient requests an artifact from this repository group, if Nexus has not
already cached a matching artifact, it will query the Sonatype public repository at
http://repository.sonatype.org/content/groups/public. Y our Nexus installation will
maintain alocal cache of al artifacts retrieved from the Sonatype repository. This
local cache gives you more control and contributes to a more stable build
environment. If you are setting up agroup of developers to rely upon artifacts from
the Sonatype public repository, you'll have a completely self-contained build
environment that won't be subject to the availability of the Sonatype repository.

Thefina step to connecting your Maven installation to the Nexus instance you just
configured is to update your Maven Settings to use your Nexus repository group as
amirror for al repositories. To do this, you need to put the following XML in your
~/ . n2/ settings.xm file.

Example 20.2. Settings XML for Local Nexus I nstance

<settings>
<mrrors>
<m rror>
<I--This sends everything else to /public -->
<i d>nexus</i d>
<mrrorOF>*</mrrorCOf >
<url >http://| ocal host: 8081/ nexus/ cont ent/groups/ public</url >
</mrror>
</mrrors>
<profil es>
<profil e>
<i d>nexus</i d>
<l —Enabl e snapshots for the built in central repo to direct -->
<l--all requests to nexus via the mrror -->
<repositories>
<reposi tory>
<id>central </id>
<url>http://central </url >
<r el eases><enabl ed>t r ue</ enabl ed></r el eases>
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi t ory>

432

http://repository.sonatype.org/content/groups/public

Developing with Flexmojos

<id>central </id>
<url>http://central </url >
<r el eases><enabl ed>t r ue</ enabl ed></r el eases>
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</ pl ugi nReposi tory>
</ pl ugi nReposi tori es>
</profil e>
</profil es>
<activeProfil es>
<I—nake the profile active all the tinme -->
<acti veProfil e>nexus</activeProfil e>
</activeProfil es>
</settings>

This XML file configures Maven to consult asingle public repository group for all
configured repositories and plugin repositories. It is asimple way to guarantee that
every request for an artifact is made through your Nexus installation.

Note

The only difference between Example 20.2, “ Settings XML for Local
Nexus Instance” and Example 20.1, “ Settings XML for Sonatype
Repository” is the settings/mirrors/mirror/url element. The first example
addresses the Sonatype public repository directly which the second
example references a public group on a Nexus instance you maintain.

Y ou use Nexus because it alows you to control the repositories and
artifacts that are used in your build system. Y ou can think of Nexus as
something of afirewall or a centralized point-of-contact between your
builds and the external environment.

20.3. Creating a Flex Mojos Project

Flexmojos has a set of archetypes which can be used to quickly create a new Flex
project. The following archetypes are all in the org.sonatype.flexmojos group with
aversion of 3. 1. 0:

flexmojos-archetypes-library

433

Developing with Flexmojos

Creates asimple Flex Library project which produces a SWC

flexmojos-archetypes-application
Creates asimple Flex Application with produces a SWF

flexmojos-archety pes-modul ar-webapp

Creates a Multimodule project which consists of a project that produces a SWC
which is consumed by a project which produces a SWF that is ultimately
presented in a project that generates aWAR

20.3.1. Creating a Flex Library

To create a Flex Library Project, execute the following command at the
command-line:

$ mvn archetype: generate \
- Dar chet ypeReposi tory=http://repository. sonatype. org/ cont ent/groups/public \
- Dar chet ypeG oupl d=or g. sonat ype. f| exnoj os \
- Darchet ypeArti fact| d=f| exmpj os- archetypes-1library \
- Dar chet ypeVersi on=3. 1.0

[INFQ Scanning for projects...

[INFQ Searching repository for plugin with prefix: 'archetype'.

[NFQ com sonatype. maven. pl ugi ns: checking for updates from central

[INFQ [archetype: generat €]
[INFQ GCenerating project in Interactive node
[INFQ Archetype defined by properties

Defi ne value for groupld: : org.sonatype.test

Define value for artifactld: : sanple-library

Define value for version: 1.0-SNAPSHOT: : 1. 0- SNAPSHOT

Defi ne value for package: org.sonatype.test: : org.sonatype.test

Confirm properties configuration:
groupl d: org. sonatype.test
artifactld: sanple-library
version: 1. 0- SNAPSHOT
package: org.sonatype.test

Y: Y
A O B e -
[INFQ Using follow ng paraneters for creating O dArchetype: flexnpjos-archetypes-Ilibrary:3.
A O B i -
[NFQ Paraneter: groupld, Value: org.sonatype.test
[NFQ Paraneter: packageNane, Val ue: org.sonatype.test
[INFQ Paraneter: basedir, Value: /Users/Tim
[NFQ Paraneter: package, Value: org.sonatype.test
[NFO Paraneter: version, Value: 1.0-SNAPSHOT
[INFQ Paraneter: artifactld, Value: sanple-library

434

Developing with Flexmojos

TN e o0 e G 5 8 5 5 5 8 5 1 5 1 5 8 5 5 4 5 5 8 5 1 5 S e S
[INFQ BU LD SUCCESSFUL

If you look in the directory sample-library/ you will see that the project consists of
the directory structure shown in Figure 20.4, “Flexmojo Library Archetype File
Structure”.

v I:I sample-library
D pom.xml
v [l src
v |l main
v [flex
v |l org
v [sonatype
v |l test
App.as
v |l test
v [flex
v |l org
v [sonatype
v |l test

TestApp.as

Figure 20.4. Flexmojo Library Archetype File Structure

The product of the ssmple Flex library archetype only contains three files: a POM,
one source, and a unit test. Let's examine each of thesefiles. First, the Project
Object Model (POM).

Example 20.3. Project Object Model for Flex Library Archetype

<?xm version="1.0" encodi ng="UTF-8"?>
<project xm ns="http:// maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ maven-v4_0_0. xsd" >

435

Developing with Flexmojos

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<par ent >
<gr oupl d>or g. sonat ype. f | exmoj os</ gr oupl d>
<artifactld>fl exnoj os-fl ex-super-ponx/artifactld>
<versi on>3. 1. 0</ ver si on>

</ par ent >

<gr oupl d>or g. sonat ype. t est </ gr oupl d>
<artifactld>sanple-library</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>swc</ packagi ng>
<nanme>sanpl e-li brary Fl ex</ nane>

<bui | d>

<l-- this is a workaround due to archetype plugin problens. Can be renoved! --

<sour ceDi rect ory>src/ mai n/ f| ex</ sour ceDi r ect ory>
<t est Sour ceDi rect ory>src/test/fl ex</test SourceDi rect ory>
</ bui | d>

</ proj ect >

Example 20.3, “Project Object Model for Flex Library Archetype’ isvery simple,
but this simplicity masks the complexity that Maven manages by allowing this
POM to inherit dependencies and plugin definitions from the parent POM. If you
look at the parent element in Example 20.3, “Project Object Model for Flex
Library Archetype”, you will notice that it references flexmojos-flex-super-pom,
this parent POm adds the dependencies on the flex framework and the flexmojos
unit testing support components. If you are interested in seeing some of these
dependencies, run mvn help:effective-pom. Running this command will ask Maven
to merge this POM with every parent POM it inherits to show you the effective
end-product of that merge between parent and child.

In Example 20.3, “Project Object Model for Flex Library Archetype’, the parent
element is critical and the packaging is very critical. A POMs packaging type
controls the lifecycle it uses to produce build output. The value swc in the
packaging element is Maven's cue to look for the Flex-specific lifecycle
customizations which are provided by the flexmojos-maven-plugin. The other
important part of this POM is the build element which specifies the location of the
Flex source code and the Flex unit tests. Next, let's take a quick ook at

Example 20.4, “Flex Library Archetype's Sample App Cliass’ which contains the

436

Developing with Flexmojos

sample Actionscript which was created by this archetype.

Example 20.4. Flex Library Archetype's Sample App Cliass

package org.sonatype.test {
public class App {
public static function greeting(nanme:String):String {
return "Hello, " + nane;
}
}

}

While this code is underwhelming, it does provide you with aquick model and a
quick pointer: "Place More Code Here". While it might seem silly to test code this
simple, a sample test named Test App. as isprovidesinthesrc/test/fl ex

directory. Thistest is shown in Example 20.5, “Unit Test for Library Archetype's
App Class’.

Example 20.5. Unit Test for Library Archetype's App Class

package org. sonatype.test {
i mport fl exunit.framework. Test Case;

public class Test App ext ends Test Case {
/**
* Tests our greeting() nethod
*/
public function testGeeting():void {
var name: String = "Buck Rogers";
var expectedGeeting: String = "Hell o, Buck Rogers";

var result:String = App.greeting(nane);
assertEqual s("Greeting is incorrect", expectedGeeting, result);
}
}

}

To run this build, go to the sample-library project directory and run mvn install.

$ nvn install
[INFQ Scanning for projects...
A O I e

Developing with Flexmojos

[INFQ Building sanmple-library Flex

[I NFQ task-segnent: [install]

I O I L L R T
[INFQ [resources:resources]

[INFQ [fl exnpjos:conpil e-swc]

[INFO flexmojos 3.1.0 - GNU GPL License (NO WARRANTY) - See COPYRIGHT file

[WARNI NG Not hi ng expecified to include. Assum ng source and resources fol ders|
[INFO Flex conpiler configurations:

-conpi | er. headl ess-server=fal se

-conpi | er. keep-al | -type-sel ect ors=fal se
-conpi | er. keep- gener at ed- acti onscri pt =f al se
-conpiler.library-path ~/.nR/repository/com adobe/fl ex/framework/fl ex/3.2.0. 3958

-conpil er.optim ze=true
-conpi |l er. source-path src/ main/flex

[INFQ [resources:testResources]

[INFQ skip non existing resourceDirectory src/test/resources

[INFQ [flexnpjos:test-conpile]

[INFQ flexnmpjos 3.1.0 - GNU GPL License (NO WARRANTY) - See COPYRIGHT file
[INFO Flex conpiler configurations:

-conpi | er. keep- gener at ed- acti onscri pt =fal se

-conpi |l er.optim ze=true

-conpi | er. source-path src/main/flex target/test-classes src/test/flex
-conpiler.strict=true

-target-player 9.0.0

- use- net wor k=t r ue

-verify-di gests=true -|oad-config=

[INFO Already trust on target/test-classes/ Test Runner.sw

[INFQ [flexnpjos:test-run]

[INFO flexmjos 3.1.0 - GNU GPL License (NO WARRANTY) - See COPYRIGHT file
[INFQ flexunit setup args: null

I L LT e T E T LT T
[INFQ Tests run: 1, Failures: 0, Errors: O, Tine Elpased: 0 sec

[INFQ [install:install]

When you ran mvn install on this project, you should notice in the output that
Maven and Flexmojos plugin is take care of managing all of the libraries and the
dependencies for the Flex compiler. Much like Maven excels at helping Java

devel opers manage the contents of a Java classpath, Maven can help Flex

devel opers manage the complex of compile paths. Y ou also might have been
shocked when the Flexmojos project started a web browser or the Flash Player and
used it to execute the TestApp.as class against the project's source code.

438

[WARNI NG Usi ng pl atform encodi ng (MacRoman actually) to copy filtered resources,

i.e.

-conpi | er. nanespaces. nanmespace http://ww. adobe. coml 2006/ nxm target/cl asses/ confi gs/ mxm - m

bui |

-conpil er.include-libraries ~/.nR/repository/org/sonatypel/flexnmojos/flexnmojos-unittest-suppt

-conpiler.library-path ~/.nR2/repository/com adobe/fl ex/framework/flex/3.2.0.3958/fl ex-3.2.0.

Developing with Flexmojos

20.3.2. Creating a Flex Application

To create a Flex application from a Maven archetype, execute the following
command:

$ nmvn archet ype: generate \
- Dar chet ypeReposi tory=http://repository. sonatype. conf cont ent/ groups/ public \
- Dar chet ypeG oupl d=or g. sonat ype. f | exnoj os \
- DarchetypeArti fact!| d=f| exnoj os- ar chet ypes- application \
- Dar chet ypeVer si on=3. 1. 0

[INFQ Scanning for projects...

[INFO Searching repository for plugin with prefix: 'archetype'.

[NFQ com sonatype. maven. pl ugi ns: checking for updates from central

[INFQ [archetype: generat e]
[INFQ GCenerating project in Interactive node
[INFQ Archetype defined by properties

Defi ne value for groupld: : org.sonatype.test

Define value for artifactld: : sanpl e-application

Define value for version: 1.0-SNAPSHOT: : 1. 0- SNAPSHOT

Defi ne val ue for package: org.sonatype.test: : org.sonatype.test

Confirm properties configuration:
groupl d: org.sonatype.test
artifactld: sanple-library
versi on: 1.0- SNAPSHOT
package: org.sonatype.test

Y: ¢ Y

I O L
[INFQ Using followi ng paraneters for creating O dArchetype: flexnpjos-archetypes-applicati

A O B L -
[NFQ Paraneter: groupld, Value: org.sonatype.test

[NFQ Paraneter: packageNane, Val ue: org.sonatype.test
[INFQ Paraneter: basedir, Value: /Users/Timflex-sanple
[NFQ Paraneter: package, Value: org.sonatype.test

[NFQ Paraneter: version, Value: 1.0-SNAPSHOT

[INFQ Paraneter: artifactld, Value: sanpl e-application
[NFO BU LD SUCCESSFUL

If you look in the directory sample-application/ you will see the filesystem shown
in Figure 20.5, “Directory Structure for Flex Application Archetype’.

439

Developing with Flexmojos

v [sample-application
|:| pom.xml
v [l src
v [l main
v [flex
|:| Main.mxml
v | resources
v [l test
v [flex
v f:l org
v [sonatype

hd f:l test

TestApp.as

Figure 20.5. Directory Structurefor Flex Application Archetype

Building an application from the A pplication archetype produces the following
POM.

Example 20.6. POM for Flex Application Archetype

<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p:// maven. apache. or g/ maven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<par ent >
<gr oupl d>or g. sonat ype. f | exnoj os</ gr oupl d>
<artifactld>fl exnmoj os-fl ex-super-ponx/artifactld>
<ver si on>3. 1. 0</ ver si on>

</ par ent >

<gr oupl d>or g. sonat ype. t est </ gr oupl d>
<artifactld>sanpl e-application</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>swf </ packagi ng>

<nanme>sanpl e- appl i cati on Fl ex</ name>

440

Developing with Flexmojos

<bui | d>

<sourceDi rect ory>src/ mai n/ f| ex</ sour ceDi rect ory>
<t est Sour ceDi rect ory>src/test/fl ex</test SourceDi rect ory>
</ bui | d>

</ proj ect >

<l-- this is a workaround due to archetype plugin problenms. Can be renoved

The sample Mai n. mxni applicationisinsrc/ mai n/ f1 ex.

Example 20.7. Sample Application Main.mxml

<nx: Appl i cation xm ns: nx="http://ww. adobe. com 2006/ nxm " | ayout =" absol ute">
<nx: Text text="Hello World!"/>
</ mx: Appl i cati on>

And, the sample unittestisinsrc/test/fl ex/ org/ sonatype/ t est .

Example 20.8. Unit Test for Main.mxml

package org. sonat ype.test
{
i mport flexunit.franmework. Test Case;
i mport Main;
public class Test App extends Test Case
{
public function testNothing():void
{
[/ TODO un i npl ement ed
trace("Hello test");
}
}
}

20.3.3. Creating a Multi-module Project: Web
Application with a Flex Dependency

441

Developing with Flexmojos

To create a multi-module project consisting of a Flex Library project referenced by
aFlex Application, referenced by aWeb Application.

$ mvn archetype: generate \
- Dar chet ypeReposi tory=http://repository. sonat ype. org/ cont ent/ groups/ public \
- Dar chet ypeG oupl d=or g. sonat ype. f | exnmoj os \
- Darchet ypeArti fact | d=f| exnoj os- ar chet ypes- nodul ar - webapp \
- Dar chet ypeVersi on=3. 1. 0
[INFQ Scanning for projects...
[INFQ Searching repository for plugin with prefix: 'archetype'.
[NFQ com sonatype. maven. pl ugi ns: checking for updates from central

[NFQ [archetype: generat €]
[INFO GCenerating project in Interactive node
[INFQ Archetype defined by properties

Defi ne value for groupld: : org.sonatype.test

Define value for artifactld: : sanple-nultinodule

Define value for version: 1.0-SNAPSHOT: : 1. 0- SNAPSHOT

Def i ne val ue for package: org.sonatype.test: : org.sonatype.test

Confirm properties configuration:
groupl d: org.sonatype.test
artifactld: sanple-library
version: 1.0- SNAPSHOT
package: org.sonatype.test

Y: ¢ Y
AR e e e F---
[INFO Using followi ng paraneters for creating O dArchetype: flexnojos-archetypes-nodul ar-w
A O e L R -
[NFQ Paraneter: groupld, Value: org.sonatype.test
[NFQ Paraneter: packageNane, Val ue: org.sonatype.test
[NFQ Paraneter: basedir, Value: /Users/Tim
[INFQ Paraneter: package, Val ue: org.sonatype.test
[INFQ Paraneter: version, Value: 1.0-SNAPSHOT
[INFQ Paraneter: artifactld, Value: sanple-multinodul e

[INFO BU LD SUCCESSFUL

If you look in the sample-multimodul e/ directory, you will see a directory structure
which contains three projects swc, swf, and war.

442

Developing with Flexmojos

¥ o sample-multimodule
pom.xml
T L SWC

pom.xml
> SIC

pom.xml
- SIC

pom.xml
Y SrC
¥ B main
¥ .. webapp
¥ L WEB-IMNF
web.xml

Figure 20.6. Directory Structurefor Flex Multimodule Archetype

20.4. Developing and Customizing Flexmojos

The following sections guide you through some of first steps toward customizing
or contributing to the Flexmojos project. Flexmojos is more than just atool for
people who are interested in compiling Actionscript into SWF and SWC artifacts,
it isacommunity of developers. This section isn't for everyone, but, if you have an
itch to scratch and you wish to participate, comeon in.

20.4.1. Get the Flexmojos Source Code

Flexmojos is an open source project hosted on the Sonatype Forge, and the source
code for Flexmojosis stored in the Sonatype Forge Subversion repository. Y ou can
browse the contents of the Flexmojos Subversion repository by opening

443

Developing with Flexmojos

http://svn.sonatype.org/flexmojos/trunk in aweb browser.

e®00 flexmojos - Revision 1255 /trunk

o [EJ [EJ u] F_:*http:,-f,-'svn.50nawpe.urgfﬂexmojos,-’trunk.-’ “va Google D
flexmojos - Revision 1255: /trunk

COPYRIGHT A
flexmojos-archetvpes/
flexmojos-maven-plugin/
flexmojos-parent/
flexmojos-sandbox/
flexmojos-super-porms/
flexmojos-testing/
flexmojos-touchstone/

pom.xml
src/

" ® & & 8 8 8 8 8 B B0

Powered by Subversion version 1.5.5 (r34562).

Figure 20.7. Flexmojos Subversion Repository

If you are interested in participating in the Flexmojos project, you will likely want
to checkout the current Flexmojos source code to your local machine. To checkout
the Flexmojos source using Subversion, execute the followings command at the
command line:

$ svn co http://svn.sonatype.org/fl exnpjos/trunk flexnojos
A fl exnoj os

$1Is

COPYRI GHT f | exmoj os- sandbox pom xm
f | exnmoj os- ar chet ypes f | exnmoj os- super - pons src

fl exnoj os- maven- pl ugin fl exnoj os-testing

f | exnmoj os- par ent f | exmoj os-t ouchst one

http://svn.sonatype.org/flexmojos/trunk

Appendix A. Appendix: Settings Details

A.l. Quick Overview

The settings element inthe set ti ngs. xm file contains elements used to define
values which configure Maven execution. Settings in this file are settings which
apply to many projects and which should not be bundied to any specific project, or
distributed to an audience. These include values such as the local repository
location, alternate remote repository servers, and authentication information. There
aretwo locationswhereasetti ngs. xn file may live:

» Maven Installation Directory: $M2_HOVE/ conf / set ti ngs. xmi

o User-specific Settings File: ~/ . n2/ set ti ngs. xm
Hereis an overview of the top elements under settings:

Example A.1. Overview of top-level elementsin settings.xml

<settings xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
http:// maven. apache. or g/ xsd/ setti ngs-1. 0. 0. xsd">
<l ocal Repository/>
<i nteracti veMde/ >
<usePl ugi nRegi stry/ >
<of fline/>
<pl ugi nG oups/ >
<servers/>
<m rrors/>
<pr oxi es/ >
<profiles/>
<activeProfiles/>
</settings>

A.2. Settings Details

445

Appendix: Settings Details

A.2.1. Simple Values

Half of the top-level settings elements are simple values, representing a range of
values which configure the core behavior of Maven:

Example A.2. Simpletop-level elementsin settings.xml

<settings xm ns="http://mven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ xsd/ setti ngs-1. 0. 0. xsd" >
<l ocal Reposi tory>${user.dir}/.nR2/repository</l|ocal Repository>
<i nteracti veMode>true</interactiveMbde>
<usePl ugi nRegi st ry>f al se</ usePl ugi nRegi stry>
<of fI i ne>fal se</of fline>
<pl ugi nG oups>
<pl ugi nG oup>or g. codehaus. nmoj o</ pl ugi nG oup>
</ pl ugi nGr oups>

</settings>

The simple top-level elements are:

localRepository
Thisvalue isthe path of thisbuild system'slocal repository. The default value
IS${user.dir}/.n2/ repository.

interactiveM ode
t rue if Maven should attempt to interact with the user for input, f al se if not.
Defaultsto t r ue.

usePluginRegistry
true if Maven should usethe ${user.dir}/.n2/ plugi n-regi stry. xm fileto
manage plugin versions, defaultsto f al se.

offline

t rue if this build system should operate in offline mode, defaultsto f al se. This
element is useful for build servers which cannot connect to aremote repository,

446

Appendix: Settings Details

either because of network setup or security reasons

pluginGroups

This element contains alist of pl ugi nG oup elements, each contains agr oupl d.
Thelist is searched when a plugin is used and the gr oupl d isnot provided in the
command line. Thislist containsor g. apache. maven. pl ugi ns by default.

A.2.2. Servers

Thedi st ri buti onManagerment element of the POM defines the repositories for
deployment. However, certain settings such as security credentials should not be
distributed along with the pom xm . Thistype of information should exist on the
build server inthesettings. xn .

Example A.3. Server configuration in settings.xml

<settings xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
http:// maven. apache. or g/ xsd/ setti ngs-1. 0. 0. xsd">
<servers>
<server >
<i d>server 001</i d>
<user nanme>my_| ogi n</ user nanme>
<passwor d>my_passwor d</ passwor d>
<privat eKey>${user. hone}/.ssh/id_dsa</privat eKey>
<passphr ase>sone_passphr ase</ passphr ase>
<fil ePerm ssi ons>664</fi | ePerm ssi ons>
<di rect or yPer nm ssi ons>775</ di r ect or yPer m ssi ons>
<confi gurati on></confi gurati on>
</ server >
</ servers>

</settings>

The e ements under server are:

id
Thisisthei d of the server (not of the user to login as) that matches the

447

Appendix: Settings Details

di stri buti onManagenent repository element'si d.

username, password
These elements appear as a pair denoting the login and password required to
authenticate to this server.

privateK ey, passphrase

Like the previous two elements, this pair specifies a path to a private key
(default is${user. hone}/ . ssh/i d_dsa) and a passphrase, if required. The
passphrase and password elements may be externalized in the future, but for
now they must be set plain-text intheset ti ngs. xni file.

filePermissions, directoryPermissions

When arepository file or directory is created on deployment, these are the
permissions to use. The legal values of each is athree digit number
corresponding to *nix file permissions, i.e. 664, or 775.

A.2.3. Mirrors

Example A.4. Mirror configuration in settings.xml

<settings xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
http:// maven. apache. or g/ xsd/ setti ngs-1. 0. 0. xsd">

<m rrors>
<mrror>
<i d>pl anetm rror.conx/id>
<nane>Pl anet M rror Austral i a</ name>
<url >htt p://downl oads. pl anet m rror.com pub/ maven2</url >
<mrrorOf>central </ mrrorCO >
</mrror>
</mrrors>

</settings>

id, name

Appendix: Settings Details

The unique identifier of thismirror. Theid is used to differentiate between
mirror elements.

url
The base URL of this mirror. The build system will use prepend this URL to
connect to arepository rather than the default server URL.

mirrorOf

Theid of the server that thisisamirror of. For example, to point to amirror of
the Maven central server (http://repol.maven.org/maven?), set this element to
central. This must not match the mirror id.

A.2.4. Proxies

Example A.5. Proxy configuration in settings.xml

<settings xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ xsd/ setti ngs-1. 0. 0. xsd" >

<pr oxi es>
<pr oxy>
<i d>mypr oxy</id>
<active>true</active>
<pr ot ocol >ht t p</ pr ot ocol >
<host >pr oxy. sonewher e. conx/ host >
<por t >8080</ port >
<user nane>pr oxyuser </ user nane>
<passwor d>sonepasswor d</ passwor d>
<nonPr oxyHost s>*. googl e. conj i bi bl i 0. or g</ nonPr oxyHost s>
</ pr oxy>
</ pr oxi es>

</settings>

id
The unique identifier for this proxy. Thisis used to differentiate between proxy
elements.

449

http://repo1.maven.org/maven2

Appendix: Settings Details

active
t rue If thisproxy isactive. Thisis useful for declaring a set of proxies, but only
one may be active at atime.

protocol, host, port
Theprotocol : // host : port Of the proxy, separated into discrete el ements.

username, password
These elements appear as a pair denoting the login and password required to
authenticate to this proxy server.

nonProxyHosts
Thisisalist of hosts which should not be proxied. The delimiter of thelist is
the expected type of the proxy server; the example above is pipe delimited -
comma delimited is also common.

A.2.5. Profiles

Theprofile elementinthesettings. xnl isatruncated version of the pom xm
profile element. It consists of theacti vati on, reposi tori es,

pl ugi nReposi tori es and properti es elements. The profile elements only include
these four elements because they concern themselves with the build system as a
whole (which istherole of theset ti ngs. xnl file), not about individual project
object model settings.

If aprofileisactive from settings, its values will override any equivalent profiles
which matching identifiersin aPOM or profil es. xn file.

A.2.6. Activation

Activations are the key of a profile. Like the POM's profiles, the power of a profile
comes from its ability to modify some values only under certain circumstances,
those circumstances are specified via an activation element.

450

Appendix: Settings Details

Example A.6. Defining Activation Parametersin settings.xml

<settings xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="htt p:// maven. apache. org/ POM 4. 0. 0
http://maven. apache. or g/ xsd/ setti ngs-1. 0. 0. xsd">

<profil es>
<profil e>
<id>test</id>
<activation>
<acti veByDef aul t >f al se</ acti veByDef aul t >
<j dk>1. 5</j dk>
<0s>
<name>W ndows XP</ name>
<fam | y>W ndows</ fam | y>
<ar ch>x86</ ar ch>
<versi on>5. 1. 2600</ ver si on>
</ 0os>
<property>
<name>mavenVer si on</ nane>
<val ue>2. 0. 3</ val ue>
</ property>
<file>
<exi sts>${basedir}/fil e2. properti es</exi sts>
<m ssi ng>${basedir}/fil el. properti es</ m ssi ng>
</[file>
</activation>

</profil e>
</profil es>

</settings>

Activation occurs when all specified criteria have been met, though not all are
required at once.

jdk

activation has a built in, Java-centric check in the jdk element. Thiswill activate
iIf the test isrun under ajdk version number that matches the prefix given. In the
above example, 1.5.0_06 will match.

0S
The os element can define some operating system specific properties shown

451

Appendix: Settings Details

above.

property

The profile will activate if Maven detects a property (avalue which can be
dereferenced within the POM by ${ name}) of the corresponding name=value
pair.

file

Finaly, a given filename may activate the profile by the existence of afile, or if

it ismissing.
Theacti vati on element is not the only way that a profile may be activated. The
settings.xn fil€sactiveProfile element may contain the profile'sid. They
may also be activated explicitly through the command line via a comma separated
list after the P flag (e.g. - P test).

To see which profile will activate in a certain build, use the maven-hel p-plugin.

mvn hel p: acti ve-profiles

A.2.7. Properties

Maven properties are value placeholder, like propertiesin Ant. Their values are
accessible anywhere within a POM by using the notation ${ X} , where X isthe
property. They come in five different styles, all accessible from the settings.xml
file:

env. X

Prefixing avariable with env. will return the shell’ s environment variable. For
example, ${ env. PATH} containsthe $pat h environment variable. (“WATH®%IN
Windows.)

proj ect . x
A dot-notated (.) path in the POM will contain the corresponding elements
value.

settings. x

452

Appendix: Settings Details

A dot-notated (.) path inthe setti ngs. xm will contain the corresponding
elements value.

Java system properties
All properties accessible viaj ava. | ang. Syst em get Properti es() are
available as POM properties, such as ${j ava. hone} .

X

Set within aproperti es element or an external file, the value may be used as
${ sonmeVar}.

Example A.7. Setting the ${user.install} property in settings.xml

<settings xm ns="http://mven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ xsd/ setti ngs-1. 0. 0. xsd" >

<profil es>
<profil e>
<properties>
<user.install>${user.dir}/our-project</user.install>
</ properties>
</profil e>
</profil es>

</settings>

The property ${user.instal | } isaccessible from aPOM if this profileis active.

A.2.8. Repositories

Repositories are remote collections of projects from which Maven uses to populate
the local repository of the build system. It isfrom thislocal repository that Maven
callsit plugins and dependencies. Different remote repositories may contain
different projects, and under the active profile they may be searched for amatching
release or snapshot artifact.

453

Appendix: Settings Details

Example A.8. Repository Configuration in settings.xml

<settings xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="htt p:// maven. apache. org/ POM 4. 0. 0
http://maven. apache. or g/ xsd/ setti ngs-1. 0. 0. xsd">

<profil es>
<profil e>

<repositories>
<r eposi t ory>
<i d>codehausSnapshot s</i d>
<nanme>Codehaus Snapshot s</ name>
<r el eases>
<enabl ed>f al se</ enabl ed>
<updat ePol i cy>al ways</ updat ePol i cy>
<checksumnPol i cy>war n</ checksunPol i cy>
</rel eases>
<snapshot s>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>fai | </ checksunPol i cy>
</ snapshot s>
<url >htt p://snapshots. maven. codehaus. or g/ maven2</ ur| >
<l ayout >def aul t </ | ayout >
</repository>
</repositories>
<pl ugi nReposi tori es>

</ pl ugi nReposi tori es>

</profil e>
</profiles>

</settings>

rel eases, snapshots

These are the policies for each type of artifact, Release or snapshot. With these
two sets, a POM has the power to alter the policies for each type independent of
the other within asingle repository. For example, one may decide to enable
only snapshot downloads, possibly for development purposes.

enabled

454

Appendix: Settings Details

true Of f al se for whether thisrepository is enabled for the respective type
(releases or snapshots).

updatePolicy

This element specifies how often updates should attempt to occur. Maven will
compare the local POMs timestamp to the remote. The choices are: al ways,
dai |y (default), i nt erval : X (where X is an integer in minutes) or never .

checksumPolicy

When Maven deploysfiles to the repository, it also deploys corresponding
checksum files. Y our optionsaretoi gnore, fail , Or war n ON Missing or
incorrect checksums.

layout

In the above description of repositories, it was mentioned that they all follow a
common layout. Thisis mostly correct. Maven 2 has adefault layout for its
repositories; however, Maven 1.x had a different layout. Use this element to
specify which if it is default or legacy. If you are upgrading from Maven 1 to
Maven 2, and you want to use the same repository which was used in your
Maven 1 build, list the layout as1 egacy.

A.2.9. Plugin Repositories

The structure of the pl ugi nReposi t ori es element block is similar to the

reposi tori es element. The pl ugi nReposi t ory elements each specify aremote
location of where Maven can find plugins artifacts.

Example A.9. Plugin Repositoriesin settings.xml

<settings xm ns="http://mven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
htt p: // maven. apache. or g/ xsd/ setti ngs-1. 0. 0. xsd" >

<profil es>
<profil e>

<repositories>

455

Appendix: Settings Details

</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<i d>codehausSnapshot s</i d>
<nanme>Codehaus Snapshot s</ nanme>
<r el eases>
<enabl ed>f al se</ enabl ed>
<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>war n</ checksunPol i cy>
</rel eases>
<snapshot s>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>f ai | </ checksunPol i cy>
</ snapshot s>
<url >htt p://snapshots. maven. codehaus. or g/ maven2</ ur| >
<l ayout >def aul t </ | ayout >
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>

</profil e>
</profil es>

</settings>

A.2.10. Active Profiles

Example A.10. Setting active profilesin settings.xml

<settings xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0
http:// maven. apache. or g/ xsd/ setti ngs-1. 0. 0. xsd">

<activeProfil es>
<activeProfil e>env-test</activeProfil e>
</ activeProfil es>
</settings>

Thefina piece of thesettings. xm puzzleistheactiveProfil es element. This
containsa set of acti veProfi | e elements, which each have avalue of aprofileid.
Any profileid defined asan act i veProf i | e will be active, regardless of any
environment settings. If no matching profile isfound nothing will happen. For

456

Appendix: Settings Details

example, if env-test iSanactiveProfile,aprofileinapomxm (or
profile.xm withacorresponding id it will be active. If no such profileisfound
then execution will continue as normal.

457

Appendix B. Appendix: Sun Specification
Alternatives

The Apache Geronimo project maintains implementations of various enterprise
Java specifications. Table B.1, “ Alternate Spec |mplementations Artifacts’ liststhe
artifactld and artifact version for all of the specifications implemented by the
Geronimo project. To use one of these dependencies, use a groupld of

or g. apache. ger oni no. specs, locate the version of the Specification you want to
use and reference the dependency with the Artifact Id and Artifact Version listed in
Table B.1, “ Alternate Spec Implementations Artifacts’.

Note

All artifactsin Table B.1, “ Alternate Spec |mplementations Artifacts’,
have a groupld of or g. apache. ger oni no. specs.

Table B.1. Alternate Spec | mplementations Artifacts

Specification Spec Artifact Id Artifact
Version Version

Activation 1.0.2 geronimo-activation 1.0.2_spec 1.2

Activation 1.1 geronimo-activation_1.1 spec 101

Activation 1.0 geronimo-activation_1.0_spec 11

CommonJ 1.1 geronimo-commonj_1.1 spec 1.0

Corba 2.3 geronimo-corba 2.3 _spec 1.1

Corba 3.0 geronimo-corba 3.0 _spec 1.2

EJB 2.1 geronimo-gb 2.1 spec 11

EJB 3.0 geronimo-gjb_3.0 _spec 1.0

EL 1.0 geronimo-el_1.0_spec 1.0

458

Appendix: Sun Specification Alternatives

Specification

| nterceptor

J2EE Connector
J2EE Deployment
J2EE JACC

J2EE Management
J2EE Management
J2EE

JACC

JEE Deployment
JavaMail

JavaMail

JAXR

JAXRPC

JMS

JPA

JSP

JSP

JTA

JTA

QName

SAAJ

Servlet

Spec Artifact Id

Version

3.0 geronimo-interceptor_3.0_spec

1.5 geronimo-j2ee-connector_1.5 spec
1.1 geronimo-j2ee-deployment_1.1 spec
1.0 geronimo-j2ee-jacc_1.0_spec

1.0 geronimo-j2ee-management_1.0_spec
1.1 geronimo-j2ee-management_1.1_spec
1.4 geronimo-j2ee 1.4 spec

1.1 geronimo-jacc_1.1 spec

1.1MR3geronimo-javaee-deployment_1.1IMR3_spec

131
1.4
1.0
1.1
1.1
3.0
2.0
2.1
1.0.1B
1.1
1.1
1.1
24

geronimo-javamail_1.3.1 spec
geronimo-javamail_1.4 spec
geronimo-jaxr_1.0_spec
geronimo-jaxrpc_1.1 spec
geronimo-jms_1.1 spec
geronimo-jpa_3.0_spec
geronimo-jsp_2.0_spec
geronimo-jsp 2.1 spec
geronimo-jta_1.0.1B_spec
geronimo-jta 1.1 spec
geronimo-gname_1.1 spec
geronimo-sagj_1.1 spec

geronimo-serviet_2.4 spec

Artifact
Version

1.0
111
11
111
11
1.0
11
1.0
1.0
13
12
11
11
11
11
11
1.0
111
11
11
11
111

459

Appendix: Sun Specification Alternatives

Specification Spec Artifact Id Artifact
Version Version
Servlet 2.5 geronimo-serviet 2.5 spec 111
STaX AP 1.0 geronimo-stax-api_1.0_spec 101
WS Metadata 2.0 geronimo-ws-metadata 2.0_spec 111
Note

The version numbersin the Artifact Version column may be out of date
by the time you read this book. To check on the version number, visit
http://repol.maven.org/maven?/org/apache/geronimo/specs/ in aweb
browser, and click on the artifactld you want to add. Choose the highest
version of the spec you want to depend upon.

To illustrate how one would use Table B.1, “ Alternate Spec | mplementations
Artifacts’, if we wanted to write some code in our project which interacted with
the JTA 1.0.1B specification, we would need to add the following dependency to
our project:

Example B.1. Adding JTA 1.0.1B to a Maven Project

<dependency>
<gr oupl d>or g. apache. ger oni no. specs</ gr oupl d>
<artifactld>geronino-jta 1.0.1B spec</artifactld>
<version>1. 1. 1</ ver si on>

</ dependency>

Notice how the version of the artifact isn't going to line up with the version of the
specification—the previous dependency configuration adds version 1.0.1B of the
JTA specification using the artifact version of 1.1.1. Be aware of thiswhen
depending on the alternate Geronimo implementations, and always double check
that you are using the latest artifact version number for your specifications.

460

http://repo1.maven.org/maven2/org/apache/geronimo/specs/

	Maven: The Definitive Guide
	Table of Contents
	Copyright
	1. Creative Commons BY-ND-NC

	Foreword: 0.3
	Preface
	1. How to Use this Book
	2. Your Feedback
	3. Font Conventions
	4. Maven Writing Conventions
	5. Acknowledgements

	Chapter 1. Introducing Apache Maven
	1.1. Maven... What is it?
	1.2. Convention Over Configuration
	1.3. A Common Interface
	1.4. Universal Reuse through Maven Plugins
	1.5. Conceptual Model of a "Project"
	1.6. Is Maven an alternative to XYZ?
	1.7. Comparing Maven with Ant
	1.8. Summary

	Chapter 2. Installing and Running Maven
	2.1. Verify your Java Installation
	2.2. Downloading Maven
	2.3. Installing Maven
	2.3.1. Installing Maven on Mac OSX
	2.3.1.1. Installing Maven on OSX using MacPorts

	2.3.2. Installing Maven on Microsoft Windows
	2.3.3. Installing Maven on Linux
	2.3.4. Installing Maven on FreeBSD or OpenBSD

	2.4. Testing a Maven Installation
	2.5. Maven Installation Details
	2.5.1. User-specific Configuration and Repository
	2.5.2. Upgrading a Maven Installation
	2.5.3. Upgrading from Maven 1.x to Maven 2.x

	2.6. Uninstalling Maven
	2.7. Getting Help with Maven
	2.8. Using the Maven Help Plugin
	2.8.1. Describing a Maven Plugin

	2.9. About the Apache Software License

	Part I. Maven by Example
	Chapter 3. A Simple Maven Project
	3.1. Introduction
	3.1.1. Downloading this Chapter's Example

	3.2. Creating a Simple Project
	3.3. Building a Simple Project
	3.4. Simple Project Object Model
	3.5. Core Concepts
	3.5.1. Maven Plugins and Goals
	3.5.2. Maven Lifecycle
	3.5.3. Maven Coordinates
	3.5.4. Maven Repositories
	3.5.5. Maven's Dependency Management
	3.5.6. Site Generation and Reporting

	3.6. Summary

	Chapter 4. Customizing a Maven Project
	4.1. Introduction
	4.1.1. Downloading this Chapter's Example

	4.2. Defining the Simple Weather Project
	4.2.1. Yahoo! Weather RSS

	4.3. Creating the Simple Weather Project
	4.4. Customize Project Information
	4.5. Add New Dependencies
	4.6. Simple Weather Source Code
	4.7. Add Resources
	4.8. Running the Simple Weather Program
	4.8.1. The Maven Exec Plugin
	4.8.2. Exploring Your Project Dependencies

	4.9. Writing Unit Tests
	4.10. Adding Test-scoped Dependencies
	4.11. Adding Unit Test Resources
	4.12. Executing Unit Tests
	4.12.1. Ignoring Test Failures
	4.12.2. Skipping Unit Tests

	4.13. Building a Packaged Command Line Application
	4.13.1. Attaching the Assembly Goal to the Package Phase

	Chapter 5. A Simple Web Application
	5.1. Introduction
	5.1.1. Downloading this Chapter's Example

	5.2. Defining the Simple Web Application
	5.3. Creating the Simple Web Project
	5.4. Configuring the Jetty Plugin
	5.5. Adding a Simple Servlet
	5.6. Adding J2EE Dependencies
	5.7. Conclusion

	Chapter 6. A Multi-module Project
	6.1. Introduction
	6.1.1. Downloading this Chapter's Example

	6.2. The Simple Parent Project
	6.3. The Simple Weather Module
	6.4. The Simple Web Application Module
	6.5. Building the Multimodule Project
	6.6. Running the Web Application

	Chapter 7. Multi-module Enterprise Project
	7.1. Introduction
	7.1.1. Downloading this Chapter's Example
	7.1.2. Multi-module Enterprise Project
	7.1.3. Technology Used in this Example

	7.2. The Simple Parent Project
	7.3. The Simple Model Module
	7.4. The Simple Weather Module
	7.5. The Simple Persist Module
	7.6. The Simple Web Application Module
	7.7. Running the Web Application
	7.8. The Simple Command Module
	7.9. Running the Simple Command
	7.10. Conclusion
	7.10.1. Programming to Interface Projects

	Chapter 8. Optimizing and Refactoring POMs
	8.1. Introduction
	8.2. POM Cleanup
	8.3. Optimizing Dependencies
	8.4. Optimizing Plugins
	8.5. Optimizing with the Maven Dependency Plugin
	8.6. Final POMs
	8.7. Conclusion

	Part II. Maven Reference
	Chapter 9. The Project Object Model
	9.1. Introduction
	9.2. The POM
	9.2.1. The Super POM
	9.2.2. The Simplest POM
	9.2.3. The Effective POM
	9.2.4. Real POMs

	9.3. POM Syntax
	9.3.1. Project Versions
	9.3.1.1. Version Build Numbers
	9.3.1.2. SNAPSHOT Versions
	9.3.1.3. LATEST and RELEASE Versions

	9.3.2. Property References

	9.4. Project Dependencies
	9.4.1. Dependency Scope
	9.4.2. Optional Dependencies
	9.4.3. Dependency Version Ranges
	9.4.4. Transitive Dependencies
	9.4.4.1. Transitive Dependencies and Scope

	9.4.5. Conflict Resolution
	9.4.6. Dependency Management

	9.5. Project Relationships
	9.5.1. More on Coordinates
	9.5.2. Multi-module Projects
	9.5.3. Project Inheritance

	9.6. POM Best Practices
	9.6.1. Grouping Dependencies
	9.6.2. Multi-module vs. Inheritance
	9.6.2.1. Simple Project
	9.6.2.2. Multi-module Enterprise Project
	9.6.2.3. Prototype Parent Projects

	Chapter 10. The Build Lifecycle
	10.1. Introduction
	10.1.1. Clean Lifecycle (clean)
	10.1.2. Default Lifecycle (default)
	10.1.3. Site Lifecycle (site)

	10.2. Package-specific Lifecycles
	10.2.1. JAR
	10.2.2. POM
	10.2.3. Maven Plugin
	10.2.4. EJB
	10.2.5. WAR
	10.2.6. EAR
	10.2.7. Other Packaging Types

	10.3. Common Lifecycle Goals
	10.3.1. Process Resources
	10.3.2. Compile
	10.3.3. Process Test Resources
	10.3.4. Test Compile
	10.3.5. Test
	10.3.6. Install
	10.3.7. Deploy

	Chapter 11. Build Profiles
	11.1. What Are They For?
	11.1.1. What is Build Portability
	11.1.1.1. Non-Portable Builds
	11.1.1.2. Environment Portability
	11.1.1.3. Organizational (In-House) Portability
	11.1.1.4. Wide (Universal) Portability

	11.1.2. Selecting an Appropriate Level of Portability

	11.2. Portability through Maven Profiles
	11.2.1. Overriding a Project Object Model

	11.3. Profile Activation
	11.3.1. Activation Configuration
	11.3.2. Activation by the Absence of a Property

	11.4. Listing Active Profiles
	11.5. Tips and Tricks
	11.5.1. Common Environments
	11.5.2. Protecting Secrets
	11.5.3. Platform Classifiers

	11.6. Summary

	Chapter 12. Maven Assemblies
	12.1. Introduction
	12.2. Assembly Basics
	12.2.1. Predefined Assembly Descriptors
	12.2.2. Building an Assembly
	12.2.3. Assemblies as Dependencies
	12.2.4. Assembling Assemblies via Assembly Dependencies

	12.3. Overview of the Assembly Descriptor
	12.4. The Assembly Descriptor
	12.4.1. Property References in Assembly Descriptors
	12.4.2. Required Assembly Information

	12.5. Controlling the Contents of an Assembly
	12.5.1. Files Section
	12.5.2. FileSets Section
	12.5.3. Default Exclusion Patterns for fileSets
	12.5.4. dependencySets Section
	12.5.4.1. Customizing Dependency Output Location
	12.5.4.2. Interpolation of Properties in Dependency Output Location
	12.5.4.3. Including and Excluding Dependencies by Scope
	12.5.4.4. Fine Tuning: Dependency Includes and Excludes
	12.5.4.5. Transitive Dependencies, Project Attachments, and Project Artifacts
	12.5.4.6. Advanced Unpacking Options
	12.5.4.7. Summarizing Dependency Sets

	12.5.5. moduleSets Sections
	12.5.5.1. Module Selection
	12.5.5.2. Sources Section
	12.5.5.3. Interpolation of outputDirectoryMapping in moduleSets
	12.5.5.4. Binaries section
	12.5.5.5. moduleSets, Parent POMs and the binaries Section

	12.5.6. Repositories Section
	12.5.7. Managing the Assembly’s Root Directory
	12.5.8. componentDescriptors and containerDescriptorHandlers

	12.6. Best Practices
	12.6.1. Standard, Reusable Assembly Descriptors
	12.6.2. Distribution (Aggregating) Assemblies

	12.7. Summary

	Chapter 13. Properties and Resource Filtering
	13.1. Introduction
	13.2. Maven Properties
	13.2.1. Maven Project Properties
	13.2.2. Maven Settings Properties
	13.2.3. Environment Variable Properties
	13.2.4. Java System Properties
	13.2.5. User-defined Properties

	13.3. Resource Filtering

	Chapter 14. Maven and Eclipse: m2eclipse
	Chapter 15. Site Generation
	15.1. Introduction
	15.2. Building a Project Site with Maven
	15.3. Customizing the Site Descriptor
	15.3.1. Customizing the Header Graphics
	15.3.2. Customizing the Navigation Menu

	15.4. Site Directory Structure
	15.5. Writing Project Documentation
	15.5.1. APT Example
	15.5.2. FML Example

	15.6. Deploying Your Project Website
	15.6.1. Configuring Server Authentication
	15.6.2. Configuring File and Directory Modes

	15.7. Customizing Site Appearance
	15.7.1. Customizing the Site CSS
	15.7.2. Create a Custom Site Template
	15.7.3. Reusable Website Skins
	15.7.4. Creating a Custom Theme CSS
	15.7.5. Customizing Site Templates in a Skin

	15.8. Tips and Tricks
	15.8.1. Inject XHTML into HEAD
	15.8.2. Add Links under Your Site Logo
	15.8.3. Add Breadcrumbs to Your Site
	15.8.4. Add the Project Version
	15.8.5. Modify the Publication Date Format and Location
	15.8.6. Using Doxia Macros

	Chapter 16. Repository Management with Nexus
	Chapter 17. Writing Plugins
	17.1. Introduction
	17.2. Programming Maven
	17.2.1. What is Inversion of Control?
	17.2.2. Introduction to Plexus
	17.2.3. Why Plexus?
	17.2.4. What is a Plugin?

	17.3. Plugin Descriptor
	17.3.1. Top-level Plugin Descriptor Elements
	17.3.2. Mojo Configuration
	17.3.3. Plugin Dependencies

	17.4. Writing a Custom Plugin
	17.4.1. Creating a Plugin Project
	17.4.2. A Simple Java Mojo
	17.4.3. Configuring a Plugin Prefix
	17.4.4. Logging from a Plugin
	17.4.5. Mojo Class Annotations
	17.4.6. When a Mojo Fails

	17.5. Mojo Parameters
	17.5.1. Supplying Values for Mojo Parameters
	17.5.2. Multi-valued Mojo Parameters
	17.5.3. Depending on Plexus Components
	17.5.4. Mojo Parameter Annotations

	17.6. Plugins and the Maven Lifecycle
	17.6.1. Executing a Parallel Lifecycle
	17.6.2. Creating a Custom Lifecycle
	17.6.3. Overriding the Default Lifecycle

	Chapter 18. Writing Plugins in Alternative Languages
	18.1. Writing Plugins in Ant
	18.2. Creating an Ant Plugin
	18.3. Writing Plugins in JRuby
	18.3.1. Creating a JRuby Plugin
	18.3.2. Ruby Mojo Implementations
	18.3.3. Logging from a Ruby Mojo
	18.3.4. Raising a MojoError
	18.3.5. Referencing Plexus Components from JRuby

	18.4. Writing Plugins in Groovy
	18.4.1. Creating a Groovy Plugin

	Chapter 19. Using Maven Archetypes
	19.1. Introduction to Maven Archetypes
	19.2. Using Archetypes
	19.2.1. Using an Archetype from the Command Line
	19.2.2. Using the Interactive generate Goal
	19.2.3. Using an Archetype from m2eclipse

	19.3. Available Archetypes
	19.3.1. Common Maven Archetypes
	19.3.1.1. maven-archetype-quickstart
	19.3.1.2. maven-archetype-webapp
	19.3.1.3. maven-archetype-mojo

	19.3.2. Notable Third-Party Archetypes
	19.3.2.1. AppFuse
	19.3.2.2. Confluence and JIRA plugins
	19.3.2.3. Wicket

	19.4. Publishing Archetypes

	Chapter 20. Developing with Flexmojos
	20.1. Introduction
	20.2. Configuring Build Environment for Flexmojos
	20.2.1. Using Sonatype's Repository Directly
	20.2.2. Proxying Sonatype's Repository with Nexus

	20.3. Creating a Flex Mojos Project
	20.3.1. Creating a Flex Library
	20.3.2. Creating a Flex Application
	20.3.3. Creating a Multi-module Project: Web Application with a Flex Dependency

	20.4. Developing and Customizing Flexmojos
	20.4.1. Get the Flexmojos Source Code

	Appendix A. Appendix: Settings Details
	A.1. Quick Overview
	A.2. Settings Details
	A.2.1. Simple Values
	A.2.2. Servers
	A.2.3. Mirrors
	A.2.4. Proxies
	A.2.5. Profiles
	A.2.6. Activation
	A.2.7. Properties
	A.2.8. Repositories
	A.2.9. Plugin Repositories
	A.2.10. Active Profiles

	Appendix B. Appendix: Sun Specification Alternatives

