
PROG#PYTHON

2

progpythonXP2 18/01/06 12:34 Page 2

PYTHON

3

progpythonXP2 18/01/06 12:34 Page 3

PROG#PYTHON

4

Python sous linux
Redhat :
Connectez vous en root .
[FaSm]# wget
http://python.org/ftp/python/2.4.2/rpms/fed
ora-4/python24-2.4.2-2.i386.rpm
[FaSm]# rpm -Uvh python24-2.4.2-
2.i386.rpm

Debian :
[FaSm]# apt-get install python
Jouons un peu avec Python

Vous pouvez maintenant lancer python en
ligne de commande .
[FaSm:/home/fasm]#python
Python 2.3.5 (#2, Sep 4 2005, 22:01:42)
[GCC 3.3.5 (Debian 1:3.3.5-13)] on linux2
Type "help", "copyright", "credits" or
"license" for more information.
>>>

On peut , en ligne de commandes, commen-
cer à découvrir certaines choses :
>>> 1 + 1

PYTHON, pour commencer
La première chose que vous devez
faire avant d'utiliser python est de
l'installer ;-) . Dans la plupart des
distributions Linux, il est installé
par défaut. A partir de Mac OS X
10.2, python en ligne de commande
est présent. Sous Windows, vous
devrez l'installer vous même, ah
Windows quand tu nous tiens ... :-(

Installation de Python sous windows
Installer activepython:
? downloader activePython :
http://www.activestate.com/Products/ActivePython/
? Si vous utilisez windows 95,98 ou Me, vous devrez
aussi télécharger et installer Windows Installer 2.0
depuis : http://download.microsoft.com/down-
load/WindowsInstaller/Install/2.0/W9XMe/EN-
US/InstMsiA.exe
? double cliquez sur ActivePython-X-win32-ix86.msi
? suivez les indications

Quand l'installation est terminée, fermez l'installeur
et allez sur :
démarrer -> Programmes -> ActiveState ActivePython
X -> PythonWin IDE .

Installer Python depuis Python.org :
http://www.python.org/ftp/python/2.4.2/python-
2.4.2-pdb.zip
? téléchargez la dernière version (.exe bien sur)
? décompressez python-2.4.2-pdb.zip
? double cliquez sur Python-2.4.2.exe
? suivez les indications
? si vous n'avez pas les droits administrateurs sur
votre machine, vous pouvez sélectionner dans
Advanced options la ligne « Non-Admin Install» .

Quand l'installation est terminée, fermez l'installeur
et allez surprises
démarrer -> Programmes -> Python-2.4.2 -> IDLE
(Python GUI)

progpythonXP2 18/01/06 12:34 Page 4

PYTHON

5

2
En mode console, on peut effectuer diffe-
rentes actions telles que des calculs. Vous
pouvez effectuer toutes les opérations (+, -
, *,/=).
Les espaces entre les nombres et les sym-
boles sont optionnels.
>>> 7+3*4
19
>>> (7+3)*4
40

Vous pouvez remarquer ici, que la priorité
des opérations est respectée.
>>> X = 1
>>> Y = 2
>>> X + Y
3

Dans les trois lignes précedentes, nous
avons affécté à X la valeur 1 et la valeur 2
à Y. Puis nous effectuons l'opération X + Y
qui donne 3.
Nous n'avons pas défini de type pour X et
Y comme dans les autres langages! Pas
besoin, python se debrouille seul.
>>> X=1
>>> type(X)
<type 'int'>

Si vous utilisez type() vous pouvez voir que
X est un int (entier) essayons d'affecter une
chaine de caractére à X :

>>> X ='bonjour le monde'
>>> print X
bonjour le monde
>>> type(X)
<type 'str'>

On peut donc affecter à X n'importe quel
type, python s'en arrange.
Nous venons d'effectuer par la même occa-
sion notre premier affichage en utilisant

ur commencer
Note :
ActiveState propose ActivePython qui comprend une version
compléte de python , une interface graphique et des exten-
sions pour Windows qui permettent un accés complet à des
services spécifiques , des API et à la base de registres.
ActivePython est gratuit sans pour autant être open
source.

progpythonXP2 18/01/06 12:35 Page 5

6

l'instruction print. Cette instruction n'affi-
che strictement que la valeur de la variable,
telle qu'elle a été encodée.
Essayons quelques autres lignes :

>>> X,Y,Z='tout le monde','bonjour', 1
>>> type(X)
<type 'str'>
>>> type(Y)
<type 'str'>
>>> type(Z)
<type 'int'>
>>> print "nous sommes le",Z,Y,X
nous sommes le 1 bonjour tout le monde

Nous venons d'affecter , sur la même ligne,
à X la valeur 'tout le monde, à Y la valeur
'bonjour' et à Z la valeur 1.
Vous pouvez remarquer que X,Y et Z n'ont
pas le même type.
A l'aide de la commande print, on peut affi-
cher ces variables dans l'ordre que l'on

veut et donc obtenir la phrase de la der-
niére ligne.
Nous savons maintenant déclarer des varia-
bles (il n'y a rien a faire ici ;-)) , calculer avec
python, afficher des phrases à l'écran.
Essayons de donner de l'importance à l'uti-
lisateur d'un programme en lui permettant
d'entrer des informations.

Parler à python
L'inter-activité d'un programme est impor-
tante.
Python nous offre deux instructions input()
et raw_input().Voyons un peu leur utilité.
Observez les lignes suivantes :
>>> x= input()
1
>>> print x
1

En écrivant x=input(), vous invitez l'utilisa-
teur à entrer une valeur au clavier.Sur la

progpythonXP2 18/01/06 12:35 Page 6

7

deuxiéme ligne vous voyez que j'ai entré 1.
je demande ensuite d'afficher la valeur de x.
On pourrait faire une demande en même
temps :
>>> x=input('entrez une valeur\n')
entrez une valeur 1
Dans les parenthéses, j'entre une phrase qui
indique ce que je veux comme valeur, le \n
me permet de faire un retour à la ligne
avant d'entrer une valeur.
La fonction input() renvoie une valeur dont
le type correspond à ce que l'utilisateur à
entré.
Cela peut poser des problémes si l'on ne
fait pas une vérification automatique du
type réel entré par rapport au type attendu.
C'est pour cette raison que je préfére utili-
ser l'instruction raw_input(), instruction qui
renvoie toujours une chaîne de caractére.
Vous pouvez ensuite convertir cette chaîne
en nombre à l'aide de int() ou float().

>>> x = raw_input('entrez une valeur :')
entrez une valeur :245
>>> y = 12
>>> z=int(x) * 12
>>> print 'vous avez entré la valeur',x
vous avez entré la valeur 245
>>> print 'la réponse est :', z
la réponse est : 2940

La chaîne de caractére entrée dans x est
transformée en int avant d'être multiplié
par 12.

Notre premier script en Python
Utilisons notre éditeur favori pour écrire le
script (j'utilise vim mais vous pouvez utili-
ser nano, kate ...).

Vous pouvez aussi tester eric. Ne vous
retournez pas sur votre copain eric en lui
faisant les yeux doux pour tenter de le tes-
ter, eric est un environnement graphique
de programmation. (apt-get install eric).

Note
#!/usr/bin/env python
print "Bonjour voici votre premier script
en python\n"
x=raw_input('entrez votre nom\n')
y=raw_input('entrez votre prenom\n')
z=raw_input('entrez votre age\n')
print 'bienvenue',y,' ',x,' vous avez ',z,' ans'

ecrivez ce script et enregistrez le sous
script.py par exemple.
Rendez le éxecutable (chmod u+x script.py
sous linux).
Vous pouvez maintenant lancer le script en
ligne de commande :
[FaSm:~]$./script.py

Vous pouvez le lancer de la sorte parce que
la ligne #!/usr/bin/env python est incluse
dans le script à la premiére ligne.
Si vous ne mettez pas cette ligne, vous
devrez taper :
[FaSm:~]$ python script.py

Conclusion :
Voilà, Les bases sont posées, nous savons
écrire un script, le lancer, écrire des messa-
ges à l'écran, demander et gérer des infor-
mations entrées au clavier. Mais nous n'en
sommes qu'aux balbutiements, beaucoup
de choses restent à apprendre.

By FaSm

progpythonXP2 18/01/06 12:35 Page 7

PROG#PYTHON

8

Pour ceux qui connaissent déjà un peu un
autre langage de programmation, rien de
bien nouveau, vous allez retrouver « vos
petits » , pour les autres, let's go.

Et si on y allait ?
Il nous faut souvent dans un programme
tester une condition. Par exemple, on
demande à l'utilisateur d'entrer un nombre
et si le nombre est 3, on affiche « tu as
gagné » aussi non, « tu as perdu ».
Essayons d'écrire le script suivant :

#!/usr/bin/env python
"""Test du if par FaSm"""
from random import *
msg=raw_input('entrez un nombre com-
pris entre 0 et 10\n')
a=randrange(0,10,1)
print 'le nombre tire aleatoirement est',a
if (int(msg)==a):

print "\nvous avez gagne"
else:

print "\nvous avez perdu"

Quelques notions nouvelles ici.
Une phrase est écrite entre """, celle ci ne
sera par prise en compte dans le pro-
gramme , elle nous sert pour écrire des
commentaires.
Dans le script, j'utilise l'instruction ran-
drange pour générer un nombre aléatoire
allant de 0 à 10 . Le premier argument de
cette fonction est le nombre de départ, le

deuxiéme argument, le nombre d' arrivée et
le dernier argument, le pas. On retouvera
donc dans la variable à un nombre aléatoire
compris entre 0 et 10 . Mais cette fonction
fait partie d'un module séparé de python, il
faut donc dire au démarrage du script les
modules dont nous allons avoir besoin.Ceci
se fait garce à :
from random import *
Cela signifie que nous importons tout du
module random.
Pour ne pas tout charger, nous aurions pu
utiliser :
from random import randrange

Nous arrivons maintenant au but de ce
paragraphe, le IF.
Dans les parenthéses, nous effectuons le
test , ici égalité (==). Il ne faut surtout pas
oublier les « : » aprés le if ainsi qu'aprés le
else.
Une chose trés importante, nous ne retrou-
vons pas dans le « bloc » if, de debut et fin
de bloc comme { et } en C. Ici l'indentation
est trés importante, c'est ce qui défini les
blocs.
On pourra aussi trouver des blocs if de la

PYTHON, Les boucles
Nous allons maintenant
nous intéresser aux tests
et boucles. Que serait un
programme sans répétitivi-
tés, sans tests ?

aSm

progpythonXP2 18/01/06 12:35 Page 8

9

PYTHON
es boucles

sorte :
if a!=2:
print 'perdu'

elif a==3:
print 'peut etre gagne'

else:
print 'gagne'

On pourra mettre ici autant de elif que
désiré.

Note
Les tests:
== égalité
!= différent
>=supérieur ou égal
<=inférieur ou égal
< strictement inférieur
> strictement supérieur

tant que Python...
l'instruction while est très fréquente en
python.
Essayez le script suivant:
#!/usr/bin/env python
"""Test du While par FaSm"""
msg=raw_input('entrez un nombre com-
pris entre 0 et 10\n')
i=0
while (i< int(msg)):

print "le nombre ",i,"est plus petit que
votre nombre",int(msg)

i=i+1
print "le programme est termine"

Nous retrouvons l'instruction while qui va
éffectuer les opérations qui le suivent (avec
l'indentation) tant que le nombre entré au
clavier est plus grand que i. i est incrémenté
de 1 à chaque passage dans la boucle.
Le test n'est pas obligé d'être seul, on peut
par exemple encadrer deux valeurs :
#!/usr/bin/env python
"""Test du While par FaSm"""
msg=raw_input('entrez un nombre com-
pris entre 0 et 10\n')
msg2=raw_input('entrez un autre nombre
compris entre 0 et 10\n')
i=5
j=5
while (int(msg)<j or i> int(msg2)):

print "le nombre ",i,"est plus grand
que votre nombre",int(msg)

print "le nombre ",j,"est plus petit que
votre nombre",int(msg2)

i=i+1
j=j-1

print "le programme est termine"

Nous voyons dans ce petit script modifié
que dans le while, il y a deux test, un sur j
et l'autre sur i. On retrouve un or (ou logi-
que) entre les deux c'est à dire que pour
aller dans la boucle il faut que int(msg)<j ou
bien que i> int(msg2).
Mini encadré : Note
Les opérateurs logiques:
~x NON bit à bit
x&y ET bit à bit

progpythonXP2 18/01/06 12:35 Page 9

PROG#PYTHON

10

x^y OU EXCLUSIF bit à bit
x|y OU bit à bit
not x NON booléen
x and y ET booléen
x or y OU booléen

pour le Python ?
La boucle for est assez simple en python,
pas besoin d'incrémenter un compteur
quelconque,regardez l'exemple suivant:
#!/usr/bin/env python
"""Test du for par FaSm"""
test=[3,4,5,6,7,8,9,10,11,12,13,14,15]
for nb in test:

print "le nombre est",nb
print "le programme est termine"

Nous reviendrons dans un prochain article
sur les listes, il suffit ici de savoir que dans
test, nous avons placé une liste de nom-
bres.
La boucle for de notre script va balayer
toute la liste et placer chaque nombre dans
la variable nb et cette boucle va se termi-
ner quand le balayage sera arrivé au der-
nier nombre de la liste.
Pas de grosses difficultés ici.
Dans l'exemple qui suit, nous n'utilisons
plus une liste mais une chaîne de caractére:
#!/usr/bin/env python
"""Test du for par FaSm"""
msg='Thehackademy '
for car in msg:

print car+'-',
print "\nle programme est termine"

vous obtenez le résultat suivant :

[FaSm:/home/fasm/articles/mag_python]#

./art2_4.py
T- h- e- h- a- c- k- a- d- e- m- y-
le programme est termine

Rien de bien différent pour la boucle for, une
nouveauté par contre pour le print, j'ai uti-
lisé ici la concaténation (+) et la « , »
pour que le mot s'écrive sur la même ligne .

Sortir des boucles
L'instruction break fait quitter la plus pro-
che boucle englobante while ou for en évi-
tant aussi l'instruction else associée, si elle
existe.

L'instruction continue permet de repasser
immédiatement au début d'une boucle
while ou for.

While y<6:
if y==4:

break
else:

print 'dans cette boucle y vaut ',y
y=y+1

while z<6:
z=z+1
if z==4:
continue

else:
print 'dans cette boucle z vaut',z

Grâce au break, on sort du while sans exé-
cuter le else.
Grâce au continue, on revient au départ et
on continue, le bloc else sera exécuté.
On peut aussi utiliser l'instruction pass qui

en du tout , mais
on ne peut avoir
ssion qui n'est pas
pass » peut servir
bler ce vide.

usion
vons maintenant
 programmes «
s » avec des tests
oucles. Il faudrait
 ces petits pro-
 que nous avons
ient réutilisables.
je vais vous mon-
le prochain article
 rendre ceux ci
es par d'autres

mes.

By FaSm

progpythonXP2 18/01/06 12:35 Page 10

PYTHON

11

LA PLUS SIMPLE
Dans sa plus commune apparence, le
tableau est également appelé LISTE ou VEC-
TEUR. Son utilisation est très simple. Tout
d'abord, nous devons, à l'inverse de ce qui
n'est pas nécessaire dans d'autre type de
variables avec Python, initialiser une nou-
velle liste, ainsi :

ma_liste = []

Notez que, comme en C, le crochet est le
symbole désignant le tableau.Cette analogie
entre les deux langages se retrouvera sou-
vent, Python étant programmé en C.
Notre tableau est maintenant initialisé mais
ne contient rien. Pour constater cela, il
vous suffit de taper « print ma_liste » et

de constater le résultat : « [] ». Nous
allons devoir lui ajouter des valeurs. Pour
ce faire, et vous comprendrez la construc-
tion un peu plus loin dans ce manuel, nous
allons faire appel à ce qu'on appelle une
méthode de la classe LIST (voir l'article sur
les classes et objets). Cette méthode se
nomme « append » et on l'utilise simple-
ment ainsi : « ma_liste.append(3) » pour
ajouter la valeur numérique 3 dans la der-
nière case du tableau (en ajoutant une
case). En faisant cela, notre tableau fait
donc 1 case. « print ma_liste » nous affi-
che tout le vecteur. Pour n'afficher qu'un
élément, il faut accéder directement à
celui-ci, grâce à ce qu'on nomme son indice
(ou index, en anglais). Par exemple, pour
afficher la première case du tableau, il nous

PROG PYTHON :
LISTES, TUPLES
ET DICTIONNAIRES
Maintenant que nous avons un interpréteur Python fonctionnel et que
nous connaissons les principaux rouages de la programmation (les
boucles et conditions), nous pouvons commencer à traiter des infor-
mations. Et les traitements sont nombreux : tri dans un sens, dans un
autre, selon un critère ou selon plusieurs, ajout au milieu, au début ou
à la fin, ajout sans modification de l'ordre, ... Dans ces quelques cas
parmis les plus simples, vous conviendrez que les simples « types »
de variables que nous ne connaissons pour l'instant ne suffisent pas.
Et pour ordonner, insérer ou ôter des données, rien de tel qu'un
tableau. Voici quelques structures intéressantes.

progpythonXP2 18/01/06 12:36 Page 11

PROG#PYTHON

12

suffit de taper « print ma_liste[0] ». Point
important qu'il faudra retenir : la numéro-
tation des indices de tableaux débute à 0,
et non à 1. Pour avoir accès à la nième case,
il faudra donc toujours accéder à l'indice
numéro
n-1.

J'ai choisi ici d'insérer la valeur 3, une valeur
numérique. Plutôt que 3, j'aurais pu ajouter
« Python » comme ceci : «
ma_liste.append('Python') ». Mon tableau
serait alors un tableau de chaînes de carac-
tères plutôt qu'un tableau d'entiers.
Maintenant, et au risque de choquer les
habitués du C, le langage Python à l'intéres-
sante particularité de n'être que très faible-
ment typé; ce qui nous permet ici de faire
cela :

ma_liste.append(3)
ma_liste.append(« Python »)

Et d'avoir un tableau contenant des élé-
ments de types hétérogènes. Plus encore,
imaginez que vous pouvez avoir un tableau
de tableaux, ce qui nous permet de repré-
senter par exemple un tableau à plusieurs
dimensions. Par exemple :

tableau_2d = []
tableau_2d.append([« Colonne A : x »,
»Colonne B:x carré »)
tableau_2d.append([«1», »1 »)
tableau_2d.append([«2», »4 »)
tableau_2d.append([«3», »9 »)

Ce tableau est un vecteur de 2 colonnes, 4
lignes qui contient du texte (en-tête de

colonnes A et B) et des valeurs numériques
représentant un court échantillon de nom-
bres élevés au carré. Maintenant, puisqu'il
est question de traitements sur les don-
nées, il faut pouvoir les trier et les dénom-
brer. Partons de l'exemple :

tab = [1,2,10,9,2,35,24,32,17,28]
print len(tab)
>> 10
tab = [1,2,10,9,2,35] + [24,32,17,28]
print len(tab)
>> 10

Nous avons définit là un tableau, que nous
avons rempli à l'initialisation. Ce qui nous
évite d'avoir à taper de récurrents «
tab.append() », et allège le code par la
même occasion. Ce tableau, comme vous
pouvez vous-même le compter, contient 10
valeurs (accessibles aux indices allant de 0 à
9 donc). Pour ne pas avoir à faire cela nous
même, nous faisons appel à une fonction
générique de Python (dont l'existence ne
relève pas exclusivement des listes), la fonc-
tion « len » (pour l'anglais LENGHT, lon-
gueur), bien plus appréciée que la loi du
même nom. Elle renvoie la taille de l'objet
passé en paramètre. Dans le cas d'une liste,
c'est le nombre de cases qu'elle contient.
Attention cependant, dans le cas de vecteurs
contenant d'autres vecteurs (tableaux multi-
dimensionnels), vous n'aurez que le nombre
de cases du « super vecteur » (par exem-
ple, len(tableau_2d) ci-dessus devrait ren-
voyer 4, soit le nombre de lignes). A noter
que dans le cas d'une chaîne, cette même
fonction renvoie le nombre de caractères,
ce qui peut être utile.

progpythonXP2 18/01/06 12:36 Page 12

PYTHON

13

De plus, vous voyez ici la concaténation de
deux listes, qui se fait grâce à l'opérateur +,
et qui va simplement adjoindre les deux lis-
tes.

Autre fonction parfois utile, que nous abor-
dons dès maintenant tant que votre liste
n'est pas triée. La méthode reverse() va
vous permettre d'inverser la liste, c'est à
dire de faire passer la première case à la
place de la dernière, la seconde a celle de
l'avant dernière, ... etc.

tab.reverse()
print tab
>> [28, 17, 32, 24, 35, 2, 9, 10, 2, 1]

Rien de bien spécial, donc. Ensuite, nous
allons trier ce tableau. Pas à la main, ni en
créant une fonction qui va recopier les
valeurs dans un autre tableau temporaire,
non, tout cela a déjà été fait pour vous.
Nous allons, comme ci-dessus, faire appel à
une méthode, qui s'appelle « sort ».

tab.sort()
print tab
>> [1, 2, 2, 9, 10, 17, 24, 28, 32, 35]

Très simplement, en une ligne, Python peut
trier pour vous des tableaux très long selon
des méthodes de tri très rapides (dichoto-
mie ou quick Sort). Si par défaut l'ordre de
tri est l'ordre croissant, vous pouvez l'inver-
ser en ajoutant un paramètre à la méthode
sort().

Tab.sort(reverse=1)
print tab

>>[35, 32, 28, 24, 17, 10, 9, 2, 2, 1]
Cela aurait pu se faire par l'appel successif
à sort() puis à reverse(), mais la possibilité
de le faire en une fois supprime une ligne
de code, et les algorithmes de tris fonction-
nent aussi bien dans un ordre que dans
l'autre.

Si d'aventure j'avais besoin de savoir le
nombre d'occurrences d'un terme bien
précis dans mon tableau (par exemple
combien de fois apparaît la valeur 2), il
existe la encore une méthode qui me sim-
plifie la vie : la méthode count().

print tab.count(2)
>> 2
print tab.index(2)
>> 1

J'introduis aussi la méthode index(), qui
retourne l'index de la première occurrence
trouvée de l'argument. Il n'existe pas de
méthode déjà écrite pour trouver tous les
indexes des différentes occurrences d'un
même motif, mais cela est, à ce stade du
magazine, déjà réalisable :

//initialisation de mon tableau
tab = [1,2,10,9,2,35,24,32,17,28]
//je teste la présence de « 2 »
nb_occur = tab.count(2)

//tan qu'il y des deux
while nb_occur >= 0 :

premier_index = tab.index(2)
print 'occurrence trouvé à l'in-

dexe' premier_index
taille_tab = len(tab)

progpythonXP2 18/01/06 12:36 Page 13

PROG#PYTHON

14

tab =
tab[premier_index+1:taille_tab-1]

nb_occur = tab.count(2)

Tout d'abord, j'initialise mon tableau en le
remplissant. Puis, je vais aller chercher l'in-
dex de la première occurrence du nombre
2. Ensuite, et c'est le but de la construction
tab[x:y], je vais « rogner » mon tableau et
n'en garder qu'une partie, entre les index x
et y. Pour nous, x est l'index suivant la pre-
mière occurrence de 2, et y est la fin du
tableau (dernier index = nombre d'élé-
ments – 1). Et je recommence ainsi tant
que le rognage du tableau contient des
occurrences.
Veuillez noter que ce script marche dans
cet exemple précis. Pour être fonctionnel
avec tous les tableaux, vous devez, et je vous
en laisse le loisir, intégrer quelques tests
pour vérifier que vous ne tentez pas d'accé-
der à des index inexistants, ce qui pourrait
provoquer des erreurs (des erreurs de type
« out of range », que l'article sur la gestion
des exceptions vous apprendra a gérer).

Notre tableau contient deux fois la valeur
2. Or, j'aimerai que celle-ci n'apparaisse
qu'une fois. Je pourrais localiser une occur-
rence de 2, et remplacer dans le tableau par
un vide ou un autre nombre, ce qui apparaît
comme une première solution pour retirer
le doublon.Maintenant, expliquez aux statis-
ticiens que pour ces raisons, vous avez
inséré une valeur au hasard, et examinons
vos chances de survie ;-). De plus, cela ne
supprime pas la case du tableau, et en
mémoire, cela peut être considéré comme
important si l'on parle de plusieurs milliers

de suppressions. Pour retirer proprement
une valeur, on utilise remove(), qui supprime
la première occurrence d'une valeur, et qui
s'utilise ainsi :

tab.remove(2)
print tab
>> [1, 2, 9, 10, 17, 24, 28, 32, 35]

Passons maintenant dans des conditions de
production : un tableau de 9 cases, trié, qui,
mis en production, va atteindre sa taille de
croisière de plusieurs milliers de cases.
L'ordre, à l'intérieur de ce tableau, est
important. On pourrait, à chaque ajout de
valeur, se faire succéder les appels à
tab.append(valeur), puis à tab.sort(), ce qui
aurait pour effet d'insérer une valeur puis
de trier le tableau au complet ensuite. Pure
perte de temps sachant que toutes les
valeurs sont ordonnées, hors mise la der-
nière, sauf si elle est supérieure (respective-
ment inférieure) à toutes les valeurs d'un
tableau trié par ordre croissant (décrois-
sant). Travaillons sur un tableau trié par
ordre croissant.

tab = [1, 2, 9, 10, 17, 24, 28, 32, 35]

valeur_ajout = 15
taille_tab = len(tab)

for i in range(taille_tab-1) :
if tab[i] > valeur_ajout :

tab.insert(valeur_ajout,i)
break

Voici l'explication. J'ai mon tableau de 9
valeurs. Je vais le parcourir avec une boucle

progpythonXP2 18/01/06 12:36 Page 14

PYTHON

15

FOR, dont l'itérateur « i » est initialisé
comme faisant partie de l'intervalle allant de
0 à « taille du tableau - 1 » (pour couvrir
les indices du tableau).A chaque itération, je
teste la valeur du tableau à l'indexe i. Si cette
valeur est supérieure à la valeur que l'on
veut insérer, ça veut dire que je dois insérer
cette dernière avant cet index, pour conser-
ver l'ordre de tri. C'est ce que fait la fonc-
tion insert(), qui prend en premier paramè-
tre l'indexe AVANT lequel elle doit ajouter
la valeur, passée en second paramètre.
Pensez à inverser les choses si vous travail-
lez sur une liste triée par ordre décroissant.

Dernière note enfin, si vous comptez vous
servir de votre tableau comme d'une pile
(méthode LIFO, Last In First Out, pensez à
la pile d'assiettes dans la cuisine), la
méthode pop() vous sera utile. Elle vous
permet de dépiler le dernier élément de la
liste, c'est à dire, en une opération, de vous
envoyer sa valeur et de supprimer la case
correspondante.

tab = [2, 2, 2, 3, 3, 2]
tab.pop()
>> 2
print tab
>> [2, 2, 2, 3, 3]

LES TUPLES
Petit paragraphe sur les tuples qui n'ont pas
de traits particulièrement intéressants,
sinon que d'être plus léger que les listes en
termes de ressources. Néanmoins ils ne
permettent ni l'insertion ni la modification
d'éléments. On les dits immuables car leurs
tailles et leurs éléments sont fixes dès leurs

initialisations. On les utilise le plus souvent
à la volée, en paramètre à des fonctions qui
ne feront qu'utiliser les valeurs qu'ils
contiennent.
L'accès à ces valeurs se fait comme pour les
listes. Par exemple :

a = (1,2,3)
b = (7, (7,2), [3,4], ''Tuples'')
print a[1]
>> 2
print b[2:3]
>> ([3, 4], 'Tuples')

Les parenthèses remplacent les crochets, et les
méthodes des listes ne s'appliquent pas au
tuples.C'est tout ce qu'on peut en dire.Passons
à bien plus intéressant : les dictionnaires.

LES DICTIONNAIRES
Les dictionnaires sont ce qu'on appelle dans
d'autres langages des tableaux associatifs.
Dans un format de tableau conventionnel,
vous associez une valeur à un index.Dans le
cas des dictionnaires, c'est un peu différent
: vous associez une valeur (ou, comme dans
les autres tableaux, un tableau, une liste, ...)
à une clef, représentée par une chaîne de
caractère. Voyons un peu la construction
d'un dictionnaire qui associera au nom des
mois leur numéro correspondant ;

monthes = { 'Janvier' : 1, 'Février' : 2,
'Mars' : 3, 'Avril' : 4, 'Mai' : 5, 'Juin' : 6, 'Juillet'
: 7,

'Août' : 8, 'Septembre' :
9, 'Novembre' : 10, 'Décembre' : 11 }

Définir un dictionnaire vide (dans le but de

progpythonXP2 18/01/06 12:36 Page 15

PROG#PYTHON

16

le remplir après) se fait simplement : dico =
{}. Pour les dictionnaires, les accolades rem-
placent les crochets que l'on utilise pour les
tableaux. Mais l'initialisation en est aussi
simple : on liste les clefs et les valeurs asso-
ciées, que l'on sépare par deux points. Une
limite se fait sentir ici : on ne peut associer
qu'une chose à une clef.Mais il s'agit là d'une
limite facilement dépassable : pensez que
vous pouvez associer, à une clef, un nombre,
une chaîne de caractères, un tableau, un
objet (voir article correspondant).

Pour accéder à la valeur, on utilise la
construction tableau['clef']. Ici, pour savoir
quel est le numéro du mois d'août, on pro-
cède ainsi :

print monthes['août']
>> 8

La construction est la même pour l'ajout
ou le réglage d'une valeur. Par exemple,
vous l'aurez peut-être constaté, deux
erreurs se sont glissées dans le tableau ci-
dessus : j'ai oublié le mois d'octobre, et par
conséquent, je n'ai pas pris garde et ai mal
réglé les numéros de novembre et de
décembre.Voici « le patch »:

monthes['Novembre'] = 11
monthes['Décembre'] = 12
monthes['Octobre'] = 10
print monthes
>> {'Avril': 4, 'Août': 8, 'Novembre': 11,
'Juillet': 7, 'Octobre': 10, 'Janvier': 1,
'Février': 2, 'Décembre': 12, 'Juin': 6, 'Mars':
3, 'Mai': 5, 'Septembre': 9}
Vous constaterez peut-être des caractères

étranges au moment de l'affichage de la der-
nière ligne. Ceci me permet de vous mettre
en garde en ce qui concerne l'utilisation des
accents : Python est un langage disponible
sur plusieurs OS (Windows, Linux et
autres). Or, tous ces OS ne gèrent pas les
caractères de la même manière, et parfois
même un OS fait des conversions implicites
au moment de la saisie de données, mais
n'intervient pas au moment de l'affichage, ce
qui peut provoquer l'affichage de caractères
exotiques (ou de codes de table ASCII par
exemple). Les accents sont à manipuler avec
précaution donc (surtout dans le cas de
programme destiné à plusieurs OS sans
retouche, ce que gère particulièrement bien
Python, à l'instar de Java).
Pour notre dictionnaire, vous constatez que
de la même manière que je modifie la valeur
associée à une clef, j'ajoute un couple (clef,
valeur) correspondant au mois d'Octobre.
Python interprète la tentative de mise à
jour d'une clef inexistante comme un ajout.
Mais comment fait donc Python pour savoir
si la clef existe? Et bien, nous disposons
d'une fonction bien sympathique qui est
has_key() et que l'on utilise ainsi :

dico = { 'Lundi' : 1, 'Mardi' : 2, 'Mercredi' :
3, 'Jeudi' : 4, 'Vendredi' : 5, 'Samedi' : 6,
'Dimanche' : 7 }
print dico.has_key('Jeudi')
>> True
if dico.has_key('Mardi') :

print dico.get('Mardi',None)
>> 2
if dico.has_key('Novembre') :

print dico.get('Novembre',None)
>> (RIEN)

progpythonXP2 18/01/06 12:37 Page 16

PYTHON

17

Nous testons donc très simplement la pré-
sence d'une clef, et si tel est le cas, nous pou-
vons en récupérer la valeur associée.Pour ce
faire, nous utilisons la méthode get(), avec
deux paramètres : la clef dont on veut la
valeur, et ce qu'il faut retourner, ici rien (c'est
l'utilisation la plus courante de get()). Notez
que le test est dans ce cas inutile, car get() se
charge de faire le test et de ne rien retour-
ner dans le cas où la clef n'existerai pas.

Pour récupérer tout ou partie du diction-
naire, nous disposons ensuite d'outils :

dico = { 'Lundi' : 1, 'Mardi' : 2, 'Mercredi' :
3, 'Jeudi' : 4, 'Vendredi' : 5, 'Samedi' : 6,
'Dimanche' : 7 }
print dico.items()
>>[('Mardi', 2), ('Samedi', 6), ('Vendredi', 5),
('Jeudi', 4), ('Lundi', 1), ('Dimanche', 7),
('Mercredi', 3)]
print dico.keys()
>> ['Mardi', 'Samedi', 'Vendredi', 'Jeudi',
'Lundi', 'Dimanche', 'Mercredi']
print dico.values()
>> [2, 6, 5, 4, 1, 7, 3]

La première, items(), nous renvoie un
TABLEAU contenant les TUPLES
clef/valeurs.
La seconde, keys(), nous renvoie un vecteur
contenant les clefs du dictionnaire.
La troisième, values, renvoie un vecteur
contenant les valeurs du dictionnaire.

Pour supprimer un élément, nous pouvons
utiliser pop(), qui comme pour les listes, va
dépiler un élément. Avec les dictionnaires,
nous dépilons un élément en fonction de sa

clef.Vous l'aurez constaté, les dictionnaires
n'intègrent pas de notion d'ordre compré-
hensible par l'homme : les éléments sont
classés de telle manière à optimiser les
manipulations de données et les accès à
celles-ci. Inutile donc de vouloir dépiler le
dernier élément.

print dico.pop('Mardi',None)
>> 2

Pour une simple suppression, il suffit de ne
pas traiter la valeur de retour de pop. Et
dans l'élan, tentez donc de faire appel à
dico.clear()....

Conclusion
Voilà, vous avez tout ce qu'il faut pour bien
débuter en Python : un interpréteur, des élé-
ments de contrôle et des structures pour vos
données. Il existe d'autres choses à connaître
sur les types basiques que sont les tuples, lis-
tes et dictionnaires. Il s'agit en effet d'un sujet
vaste et qui surtout, pour des raisons de per-
formance, et encore ouvert à l'évolution.
Dans votre interpréteur, je vous invite à taper
help(list), help(tuple) et help(dict) pour avoir
un bref aperçu de ce que sont, en plus, capa-
bles de faire ces différents outils (et vous
découvrirez beaucoup d'autres méthodes
dont on dit qu'elles sont héritées).Vous voilà
capable de créer un dictionnaire qui a un
matricule associe un tableau contenant le
nom, le prénom, l'adresse et le numéro de
téléphone d'une personne,et de vous éblouir
devant votre premier répertoire électroni-
que dont vous êtes l'auteur.

by KORETH

progpythonXP2 18/01/06 12:37 Page 17

PROG#PYTHON

18

Introduction aux expressions
régulières
De l'origine des expressions régulières
Comprendre les mots et jongler avec ceux-
ci est une chose impossible pour nos ordi-
nateurs. Paradoxal, me direz-vous, quand
on saît que ces derniers sont à l'origine
faits pour traiter des informations. Pour
remédier à cela, il a fallu penser un outil
aussi puissant que les traitements sont
complexes, pour comprendre des objets
comme des mots et effectuer dessus des
traitements : les regex sont nées.

Dit, c'est quoi une regex ?
Une expression régulière, ou regex (pour
Regular Expressions) pour les intimes est
une description symbolique d'une chaîne
de caractères. Par exemple, on pourra pen-
ser à l'ADN : le représenter par l'écriture
ressemblerait à une suite de A, de G, de T
et de C (pour représenter les bases azo-
tées que sont l'Adénine, la Guanine, la
Thymine et la Cytosine).Ainsi, pour vérifier
qu'une chaîne de caractère correspond à la
description d'un brin d'ADN, il faut que la
chaîne vérifie la proposition « chaque
caractère de cette chaine appartient exclu-
sivement au groupe composé des lettres
A,C,G,T ». C'est un exemple très simple
d'expression régulière.
En « regexologie », on utilise des termes
précis pour définir qui est quoi. On parle

d'abord de chaîne de caractères, ce qui se
passe de commentaires, sinon celui que de se
rappeller qu'une chaîne de caractère peut
être une suite de chiffre, ou une chaine
contenant uniquement des symboles – ceci
pour préciser que le mot « caractère »
englobe bien plus que les lettres de l'alphabet.
Ensuite, on dira d'une chaîne de caractère
qu'elle correspond ou non à une expression
régulière : « ATCGCT » correspond à notre
expression régulière « la chaîne de caractère
ne contient que des A, des T, des G et des U
», alors que «ATBDKL» ne lui correspond
pas.On peut également parler de correspon-
dance d'une expression régulière à une
chaîne de caractère. Cela s'exprime par le
verbe « to match », en anglais. Bien sûr, le
cas où la chaîne entière correspond à l'ex-
pression régulière n'est pas toujours vrai,
mais une sous-chaîne correspond : on parle
alors de correspondance d'une partie de la
chaîne à la regex.

PYTHON et les expressions regulieres
Les expressions régulières
sont certainement l'outil le
plus puissant dont dispose un
programmeur qui souhaite
traiter des informations géné-
riques (ce qui, de mémoire,
doit être l'origine de l'infor-
matique). Voyons un peu l'uti-
lisation des regex en Python.

progpythonXP2 18/01/06 12:37 Page 18

19

PYTHON
expressions regulieres

A quoi ça sert, une regex?
Une expression régulière peut avoir, gros-
sièrement, trois fonctions : tester la pré-
sence d'une chaîne correspondant à une
expression, récuperer une chaîne corres-
pondant à une expression et remplacer du
texte correspondant à une expression.

Les expressions régulières
dans Python
Quelle en est la syntaxe ?
Une expression régulière, comme on l'a vu,
est une description symbolique qui permet
de recherche une chaîne.Voici quelques sym-
boles qui permettent d'écrire une regex :
(un point) : pour désigner n'importe quel
caractère (de la table ASCII)
[0-9] : pour désigner un chiffre (0,1,2, ...)
[a-z] : pour désigner une minuscule
[A-Z] : pour désigner une majuscule
[A-Za-z] : pour désigner une minuscule ou
une majuscule
R : pour désigner l'unique caractère R
[1-4] : pour désigner un chiffre compris
entre 1 et 4 (inclus)
[ABCD] : pour designer soit A, soit B, soit
C, soit D
\ est le caractère d'échappement
Par exemple, pour notre ADN vu précé-
demment, nous écririons que chaque carac-
tère du brin d'ADN correspond à l'expres-
sion régulière "[ACGT]".Notez que je parle
de correspondance d'un caractère à une
regex, ce qui s'explique par le fait qu'un

caractère soit un sorte particulière de
sous-chaîne.
Pour dire que le brin d'ADN contient entre
une fois et une infinité de fois l'un des carac-
tères précédents, nous utiliserons ce qui se
nomme un quantificateur, « + », en l'occu-
rence. "[ACGT]+" correspond à une suite
de une ou plusieurs lettres du groupe
[ACGT]. Cela définit donc bien notre ADN.
On traduit le quantificateur « + » par l'ex-
pression « Au moins une fois ».
Un autre quantificateur est le « * », qui res-
semble au « + » a ceci près qu'il indique
une répétition pouvant aller de zéro à l'infini
de fois le groupe (ou caractère) qu'il suit.
L'expression régulière « .* » désigne donc
une suite de caractère de la table ASCII,
suite qui comporte de 0 à une infinité de
caractère («PROGRAMMEZ en PYTHON
en 2005» correspond à cette expression
régulière). On traduit le quantificateur « *
» par l'expression « Zéro ou plus ».
Dernier quantificateur, plus simple : « ? ». Il
s'agit du quantificateur qui indique la répéti-
tion de zéro à une fois de l'expression qu'il
suit. Par exemple, [0-4]? correspond à zéro
ou une fois un chiffre compris entre 0 et 4
(inclus). On traduit le quantificateur « ? »
par l'expression « Une fois au plus ».
Deux autres symboles importants sont « ^
» et « $ ». Ils désignent respectivement le
début et la fin d'une chaîne (à ne pas confon-
dre avec le début et la fin d'une phrase).
Enfin, le caractère d'échappement « \ »

progpythonXP2 18/01/06 12:37 Page 19

PROG#PYTHON

20

permet d'inclure dans l'expression régu-
lière un caractère spécial, comme l'astéris-
que par exemple. Pour rechercher la pré-
sence de l'ensemble des réels dans un
énoncé de mathématiques, nous utiliserons
ainsi l'expression « R* », puisque « R* »
aurait correspondu a une recherche de
zéro ou plusieurs fois le caractère R.

Le module « re »:
En python, les manipulations d'expressions
régulières se font grâce au module re
(regular expressions). Nous commencons
donc par l'importer, via la commande qui
doit maintenant vous être familière :
import re
Créer une expression régulière en Python,
cela s'obtient par l'appel à re.compile(). On
passe à cette fonction l'expression régu-
lière. Petite note au niveau de la chaîne pas-
sée : elle doit être au format brut, c'est à
dire que plutôt que de l'encadrer de guille-
mets, il faudra qu'elle débute par « r" », le
r désignant raw (brut, en anglais).Ceci pour
éviter que Python interprète le \ comme
caractère d'échappement, et plus générale-
ment, pour éviter que Python ne tente de
traitement interne sur la chaîne. Il utilise
donc la chaîne brute "telle quelle".
my_first_regex = re.compile(r"[ACGT]+")
est la définition en python de notre expres-
sion régulière permettant de définir une par-
tie de brin d'ADN (suite de A, C,G ou T),

Test de présence :
Premier cas d'utilité des regex : tester la
présence d'une expression correspondant
à une regex dans une chaîne.Voici la façon
de proceder en Python.

Soit PHRASE la chaîne suivante : « Le brin
d'acide désoxyribonucléïque extrait est
composé ainsi : GCTATCGUTAC »
Nous allons tester la présence d'une chaîne
de caractères correspondant a notre regex
des ADN sur la chaine PHRASE.
import re
PHRASE = "Le brin d'acide désoxyribonu-
cléique extrait est composé ainsi :
GCTATCGTAC"
my_first_regex = re.compile(r"[ACGT]+")
if my_first_regex.search(PHRASE) :
print "Une partie d'ADN à été trouvée"

Après avoir créé notre regex par re.com-
pile(), nous lui demandons de tester, grâce
à l'appel à search(), la présence de chaine
lui correspondant. Si tel est le cas, search()
renvoie un objet qui n'est pas nul, donc le
test IF est validé et nous affichons un petit
message.

Récupération :
Vient ensuite l'envie de récuperer la ou les
chaines correspondantes à l'expression
régulière. Prenons un cas simple :
PHRASE = "Le brin d'acide désoxyribonu-
cléique extrait est composé ainsi :
GCTATCGTAC. Il diffère du brin préce-
demment identifié (AGTCTGATCCAG)"
A vue d'oeil, au moins deux correspondan-
ces à notre regex sur l'ADN se trouvent
dans cette chaîne. Dans un premier temps,
tâchons de récupérer la première occur-
rence, ce qui se fait ainsi :
import re
PHRASE = "Le brin d'acide désoxyribonu-
cléique extrait est composé ainsi :
GCTATCGTAC. Il diffère du brin précé-

progpythonXP2 18/01/06 12:37 Page 20

PYTHON

21

demment identifié (AGTCTGATCCAG)"
my_first_regex = re.compile(r"[ACGT]+")
occurence =
my_first_regex.search(PHRASE)
print occurence.group(0)

Mais d'où vient cet appel à group() ?
Simplement, et vous l'apprendrez si vous
continuez dans les expressions régulières, il
est possible avec une seule regex d'extraire
plusieurs groupes. Il s'agit d'inclure des
parenthèses dans la regex, et les groupes
sont ensuite numérotés dans l'ordre d'appa-
rence des parenthèses ouvrantes dans l'ex-
pression régulière. Présentement, nous
récupérons le groupe 0, qui correspond à
l'intégralité de la chaîne extraite grâce à
search(). Or, search() s'arrêtant à la pre-
mière correspondance trouvée, nous obte-
nons donc le résultat escompté. Le résultat
de l'opération devrait être l'affichage de la
chaîne GCTATCGUTAC.

Pour extraire d'autres correspondances,
deux méthodes existent : l'utilisateur d'un
itérateur, ou la création d'une liste conte-
nant l'ensemble des correspondances. Un
article de ce manuel vous expliquant ce
qu'est une liste, nous opterons donc pour
cette sseconde méthode.Voici le code :

import re
PHRASE = "Le brin d'acide désoxyribonu-
cléique extrait est composé ainsi :
GCTATCGTAC. Il diffère du brin précé-
demment identifié (AGTCTGATCCAG)"
my_first_regex = re.compile(r"[ACGT]+")
occurences =
my_first_regex.findall(PHRASE)

print "Nombre d'occurences trouvées :
",len(occurences)
print "La liste des occurences est :",occu-
rences

Si tout se passe bien, le script devrait trou-
ver deux occurrences : GCTATCGTAC et
AGTCTGATCCAG. La dernière ligne affi-
che la liste, ce qui devrait produire un
résultat ressemblant à « La liste des occu-
rences est : ['GCTATCGTAC', 'AGTCT-
GATCCAG'] ». Pour ensuite accéder à
telle ou telle occurence, on utilisera la syn-
taxe occurences[n] où n est le rang de l'oc-
curence visée (sachant que les rangs com-
mencent à 0, et non pas 1). L'utilisation de
la fonction len() sur la liste "occurences"
nous permet de connaitre le nombres
d'objets contenus dans la liste, donc le
nombre de correspondaces trouvées dans
notre cas.

Remplacement :
Troisième cas d'utilisation d'une regex :
remplacer toute chaine qui correspond à
une regex par une autre chaine. Voici la
manière de proceder :
import re
PHRASE = "Le brin d'acide désoxyribonu-
cléique extrait est composé ainsi :
GCTATCGTAC"
my_first_regex = re.compile(r"[ACGT]+")
my_frist_regex.sub("extrait d'ADN confi-
dentiel",PHRASE)

Ce petit bout de code aura pour effet de
substituer tout extrait d'ADN par le joli
message « extrait d'ADN confidentiel »
(loi 1978 ;-)). L'appel à sub() va remplacer,

progpythonXP2 18/01/06 12:38 Page 21

PROG#PYTHON

22

dans la chaine passée en second argument,
toute chaine correspondant à l'expression
régulière par le premier argument (ici,
notre message).

Pour aller plus loin avec
les groupes
Nous vous parlons dans cet article de
groupes. L'exemple suivant vous permettra
d'en comprendre mieux l'utilité :

import re
PHRASE = "koreth@thehackademy.net"
my_first_regex =
re.compile(r"(\w)@(\w\.[a-zA-Z]{2,3})")
groupes = my_first_regex =
re.search(PHRASE)
print "User : ",groupes[0]
print "Domain : ",groupes[1]

Dans cet exemple, nous observons des
parenthèses qui, a priori ne servent à rien.
Faux : elles vont permettre de récupérer
dans un premier groupe le « \w » qui dési-
gne le nom d'utilisateur (koreth), puis le
groupe « \w\.(a-zA-Z]{2,3} » qui repré-
sente le domaine (des caractères alphanu-
mériques, suivi d'un point, suivi de deux ou
trois lettres). Attention au « \ » devant le
point du domaine : rappellez-vous que dans
une regex, le point correspond à « n'im-
porte quel caractère », et il faut donc
l'échapper pour en obtenir qu'il soit
reconnu comme un vrai point.
Notez que les parenthèses ont alors deux
utilités dans le monde des regex : grouper
des symboles et permettre l'extraction de
morceau d'expression. Pour autant, il
n'existe aucun problème, puisque les deux
fonctions ne sont pas incompatibles (il faut
juste penser à faire attention dans le
décompte pour identifier les groupes)

by KORETH

Pour aller plus loin
D'autres symboles permettent d'écrire des expres-
sions régulières, notamment en Python. Voici quel-
ques exemples :
• \d représente un chiffre
• \w représente un chiffre OU une lettre OU un
"_" (soulignement)
• \s représente un espace (espace ou tabulation,
plus d'autres suivant la plate forme)
• \D représente TOUT SAUF UN CHIFFRE (contraire de \d)
• \W représente TOUT SAUF UNE UN CHIFFRE OU
UNE LETTRE OU UN "_" (contraire de \w)
•\S représente TOUT SAUF UN ESPACE (contraire de \s)
• \w+, \s* et \d? Correspondent donc à « un ou
plusieurs caractère alphanumériques », « zéro ou
plusieurs espaces » et « zéro ou un chiffre »
• Alors que [ACGT] représente « un A ou un C ou
un G ou un T », [^ACGT] représente son contraire
(« tout SAUF un A ou un C ou un G ou un T »)
• Pour préciser plus spécifiquement le nombre
d'occurrences, plutôt que d'utiliser ?,+ ou *, on
peut aussi utiliser la syntaxe {2,4}, {14}, {15,} ou
{,47} qui représentent respectivement les expres-
sions « entre deux et quatre fois », « quatorze
fois précisément », « quinze fois au moins » et «
quarante-sept fois au plus ».
• Pour grouper des symboles, on utilise les paren-
thèses. Par exemple, pour exprimer qu'une suite de
symbole se repète au plus une fois, on pourra écrire
l'expression régulière "([a-z]\d.)?", ce qui permet
de regler la portée du « ? » à toute la parenthèse
(et c'est donc le groupe [a-z]\d. qui se répète zéro
ou une fois).

 St-Brou-lez-Jacques, en
en Python permettrait de
raient entre parenthèses?
actères ont une significa-
stion bonus (de cet enca-
nte une mauvaise expres-
 bonus (de cet encadré)
hehackademy.net) », qui
nces.

progpythonXP2 18/01/06 12:38 Page 22

PYTHON

23

Fonction kesako ?
Quand on veut créer une application, on
part d'un cahier des charges qui décrit le
fonctionnement du futur programme. On
décompose donc ce cahier des charges en
plusieurs sous-problémes qui peuvent être
étudiés séparement et donc développés
séparemment. Ces « petits bouts » du
projets peuvent devenir des sous program-
mes ou fonctions. Pourquoi ainsi décompo-
ser ? Parce que ces fonctions pourront être
réutilisées pour d 'autres programmes ou
être utilisées plusieurs fois dans le pro-
gramme.

Note :
Structure générale d'une fonction :

def nom_fonction(parametres à transmet-
tres):

ligne du programme
ligne du programme
...

On peut utiliser les fonctions de différentes
maniéres : sans transmettre de paramètres,
avec transmission de paramètres, sans rien
retourner ou en retournant une ou des
valeurs.

Les fonction en détail.
Fonctions sans paramêtres:
Nous voulons réaliser un décompteur de
10 à 0 et qui nous indique « fini » une fois
arrivé à 0.
Nous n'aurons donc pas de paramètres à
transmettre et aucune valeur de retour.Afin
de voir le décomptage, nous importons le
module time afin d'utiliser la commande
sleep pour faire une pause entre deux affi-
chages.
Pour connaitre toutes les fonctions du
module import, nous pouvons donc faire
dir(time) et help(time.sleep) pour le détail
de chaque fonction (ici sleep).

Note :
import time
def decompte():

PYTHON ,
les fonctions

Une fonction est comme un
petit programme que vous
pouvez utiliser pour effectuer
une action spécifique.Python
a une multitude de fonctions
pour effectuer des choses
magnifiques. Mais vous pou-
vez créer vos propres fonc-
tion. C'est ce que nous allons
aborder dans cet article.

By FaSm

progpythonXP2 18/01/06 12:38 Page 23

PROG#PYTHON

24

i=10
while (i>0):

print "\n",i
i=i-1
time.sleep(1.0)

print "fini"

decompte()

Vous voyez ici que pour appeler une fonc-
tion, il suffit de donner son nom. N'oubliez
surtout pas les « : » derriére la définition
et bien sur l'indentation qui détermine les
lignes appartenant à la fonction.
Et si on pouvait décompter à partir de
n'importe quel nombre ? Voyons la suite.
Fonctions avec paramètres:
On peut donc essayer de transmettre des
paramètres à la fonction précédente.

Dans la fonction decompte(), on affecte a,
donc la valeur donnée à par l'utilisateur, à la
variable i. Le reste du programme est iden-
tique au paragraphe précédent.
On peut bien sur transmettre plusieurs
paramètres à une fonction. On voudrait
maintenant pouvoir choisir le nombre de
départ, d'arrivée et le pas de décomptage.
Il nous faut donc transmettre trois paramè-
tres. La méthode est la même que la précé-
dente pour un paramètre . Chaque valeur
transmise sera séparée par une virgule.

Note :
#!/usr/bin/env python
import time
def decompte(a):

i=a
while (i>0):

print "\n",i
i=i-1
time.sleep(1.0)

print "fini"

a=input("donnez le nombre de
depart\n")
decompte(a)

Note :
#!/usr/bin/env python
import time
def decompte(a,b,c):

i=a
j=b
z=c
while (i>j):

print "\n",i
i=i-z
time.sleep(1.0)

print "fini"
a=input("donnez le nombre de
depart\n")
b=input("donnez le nombre de fin\n")
c=input("donnez le pas de decomp-
tage\n")
decompte(a,b,c)

On remarque ici que l'on demande à l'utilisa-
teur de donner un nombre de départ grâce à
input. Cette valeur est affectée à la variable à
qui est transmise à la fonction decompte().

On peut aussi définir des valeurs par défaut
de chaque variables transmises.
Si une seule variable est transmise (au lieu
de trois), les deux autres auront les valeurs
définient par défaut.

progpythonXP2 18/01/06 12:38 Page 24

PYTHON

25

Pour le premier appel à la fonction (
decompte(a,b,c)), on aura a définir les trois
variables. Pour le deuxiéme appel, seul la
variable a, préalablement entrée sera prise
en compte. Les variables b et c seront cel-
les par défaut.

Conclusion :
Savoir programmer des fonctions est très
important surtout dans de gros projets. En
effet, nous verrons dans l'article suivant
comment créer des classes. Les classes sont
une succession de fonctions que nous ver-
rons dans l'article suivant.

Note

#!/usr/bin/env python
import time
def decompte(a,b=0,c=1):

i=a
j=b
z=c
while (i>j):

print "\n",i
i=i-z
time.sleep(1.0)

print "fini"
a=input("donnez le nombre de
depart\n")
b=input("donnez le nombre de fin\n")
c=input("donnez le pas de decomp-
tage\n")
decompte(a,b,c)
decompte(a)

progpythonXP2 18/01/06 12:38 Page 25

PROG#PYTHON

26

Les classes : la base
Utilité des classes et définition
Les classes sont les principaux outils de la
programmation orientée objet (Object
Oriented Programming ou OOP) qui per-
mettent de structurer les logiciels com-
plexes en les organisant comme des
ensembles d'objets qui interagissent, entre
eux et avec le monde extérieur.
Le premier bénéfice de cette approche de
la programmation consiste dans le fait que
les différents objets utilisés peuvent être
construits indépendamment les uns des
autres sans qu'il n'y ait de risque d'interfé-
rence. Ce résultat est obtenu grâce au
concept d'encapsulation : la fonctionnalité

interne de l'objet et les variables qu'il utilise
pour effectuer son travail, sont en quelque
sorte « enfermés » dans l'objet. Les autres
objets et le monde extérieur ne peuvent y
avoir accès qu'à travers des procédures
bien définies.
La programmation orientée objet est
optionnelle sous Python.Vous pouvez donc
mener à bien de nombreux projets sans l'uti-
liser, avec des outils plus simples tels que les
fonctions. Sachez cependant que les classes
constituent des outils pratiques et puissants.

Pour créer une nouvelle classe d'objets
Python, on utilise l'instruction class.
Les définitions de classes peuvent être

PYTHON : La Classe !!
Tout le monde connait bien la licence GPL, il existe quelque chose
de similiare la FDL (GNU Free Documentation License ou Licence
de documentation libre GNU). L'objet de cette Licence est de ren-
dre tout manuel, livre ou autre document écrit « libre » au sens de
la liberté d'utilisation, à savoir : assurer à chacun la liberté effec-
tive de le copier ou de le redistribuer, avec ou sans modifications,
commercialement ou non. En outre, cette Licence garantit à l'au-
teur et à l'éditeur la reconnaissance de leur travail, sans qu'ils
soient pour autant considérés comme responsables des modifica-
tions réalisées par des tiers.
Cette Licence est une sorte de « copyleft », ce qui signifie que les
travaux dérivés du document d'origine sont eux-mêmes « libres »
selon les mêmes termes. Elle complète la Licence Publique
Générale GNU, qui est également une Licence copyleft, conçue
pour les logiciels libres.
Cet article est donc tiré du livre FDL de Gérard Swinnen
(http://www.framasoft.net/article1971.html) .

progpythonXP2 18/01/06 12:39 Page 26

PYTHON

27

situées n'importe où dans un programme,
mais on les placera en général au début (ou
bien dans un module à importer).
l L'instruction class est un nouvel exemple
d'instruction composée. N'oubliez pas le
double point obligatoire à la fin de la ligne,
et l'indentation du bloc d'instructions qui
suit. Ce bloc doit contenir au moins une
ligne.
l l'instruction class est une chaîne de carac-
tères, celle-ci sera considérée comme un
commentaire et incorporée automatique-
ment dans un dispositif de documentation des
classes qui fait partie intégrante de Python.

Attention : comme les fonctions, les
classes auxquelles on fait appel dans une
instruction doivent toujours être accompa-
gnées de parenthèses (même si aucun argu-
ment n'est transmis). Nous verrons un peu
plus loin que les classes peuvent être appe-
lées avec des arguments.

Cette premiére classe peut déjà être utilisée :
>>> moi = Personne()
>>> moi.Init('FaSm')
>>>moi.parle()
bonjour, je suis FaSm

Nous avons ici créé un objet (moi) par
instanciation. Nous pouvons dés à présent
créer des composants à cet objet par sim-
ple assignation en utilisant le systéme de
qualification des noms par points. Dans
l'exemple précédent, nous demandons
donc d'aller chercher la méthode parle de
l'objet moi (donc Personne).

Classes,métodes,héritage
Il nous faut à présent doter les classes d'une
fonctionnalité. L'idée de base de la program-
mation orientée objet consiste en effet à
regrouper dans un même ensemble (l'objet)
à la fois un certain nombre de données (ce
sont les attributs d'instance) et les algorith-
mes destinés à effectuer divers traitements
sur ces données (ce sont les méthodes,
c'est-à-dire des fonctions encapsulées).
Objet = [attributs + méthodes]
Cette façon d'associer dans une même «
capsule » les propriétés d'un objet et les
fonctions qui permettent d'agir sur elles,
correspond chez les concepteurs de pro-
grammes à une volonté de construire des
entités informatiques dont le comporte-
ment se rapproche du comportement des
objets du monde réel qui nous entoure.

La Classe !!

Exemple de classe
class Personne:

def Init(self,nom):
self.nom=nom

def getNom(self):
return self.nom

def parle(self):
print ''bonjour, je suis

%s''%self.nom

progpythonXP2 18/01/06 12:39 Page 27

PROG#PYTHON

28

Considérons par exemple un widget «
bouton ». Il nous paraît raisonnable de sou-
haiter que l'objet informatique que nous
appelons ainsi ait un comportement qui
ressemble à celui d'un bouton d'appareil
quelconque dans le monde réel. Or la fonc-
tionnalité d'un bouton réel (sa capacité de
fermer ou d'ouvrir un circuit électrique) est
bien intégrée dans l'objet lui-même (au
même titre que d'autres propriétés telles
que sa taille, sa couleur, etc.) De la même
manière, nous souhaiterons que les diffé-
rentes caractéristiques de notre bouton
logiciel (sa taille, son emplacement, sa cou-
leur, le texte qu'il supporte), mais aussi la
définition de ce qui se passe lorsque l'on
effectue différentes actions de la souris sur
ce bouton, soient regroupés dans une entité
bien précise à l'intérieur du programme, de
manière telle qu'il n'y ait pas de confusion
avec un autre bouton ou d'autres entités.

Définition d'une méthode
Pour illustrer notre propos, nous allons
définir une nouvelle classe Time, qui nous
permettra d'effectuer toute une série
d'opérations sur des instants, des durées,
etc. :
>>> class Time:

"Définition d'une classe temporelle"

Créons à présent un objet de ce type, et
ajoutons-lui des variables d'instance pour
mémoriser les heures,minutes et secondes :
>>> instant = Time()
>>> instant.heure = 11
>>> instant.minute = 34
>>> instant.seconde = 25
A titre d'exercice, écrivez maintenant vous-

même une fonction affiche_heure() , qui
serve à visualiser le contenu d'un objet de
classe Time() sous la forme conventionnelle
« heure:minute:seconde ».
Appliquée à l'objet instant créé ci-dessus,
cette fonction devrait donc afficher
11:34:25 :
>>> print affiche_heure(instant)
11:34:25

Votre fonction ressemblera probablement
à ceci :
>>> def affiche_heure(t):

print str(t.heure) + ":" +
str(t.minute) + ":" + str(t.seconde)

(Notez au passage l'utilisation de la fonc-
tion str() pour convertir les données
numériques en chaînes de caractères). Si
par la suite vous utilisez fréquemment des
objets de la classe Time(), il y a gros à
parier que cette fonction d'affichage vous
sera fréquemment utile.
Il serait donc probablement fort judicieux
d'encapsuler cette fonction affiche_heure()
dans la classe Time() elle-même, de
manière à s'assurer qu'elle soit toujours
automatiquement disponible chaque fois
que l'on doit manipuler des objets de la
classe Time().
Une fonction qui est ainsi encapsulée dans
une classe s'appelle une méthode.
Vous avez déjà rencontré des méthodes à
de nombreuses reprises (et vous savez
donc déjà qu'une méthode est bien une
fonction associée à une classe d'objets).

Définition concrète d'une méthode :
On définit une méthode comme on définit

progpythonXP2 18/01/06 12:39 Page 28

PYTHON

29

une fonction,avec cependant deux différences :
l La définition d'une méthode est toujours
placée à l'intérieur de la définition d'une
classe, de manière à ce que la relation qui lie
la méthode à la classe soit clairement éta-
blie.
l Le premier paramètre utilisé par une
méthode doit toujours être une référence
d'instance.
Vous pourriez en principe utiliser un nom
de variable quelconque pour ce paramètre,
mais il est vivement conseillé de respecter
la convention qui consiste à toujours lui
donner le nom : self.
Le paramètre self désigne donc l'instance à
laquelle la méthode sera associée, dans les
instructions faisant partie de la définition.
(De ce fait, la définition d'une méthode
comporte toujours au moins un paramètre,
alors que la définition d'une fonction peut
n'en comporter aucun).
Voyons comment cela se passe en pratique :
Pour ré-écrire la fonction affiche_heure()
comme une méthode de la classe Time(), il
nous suffit de déplacer sa définition à l'inté-
rieur de celle de la classe, et de changer le
nom de son paramètre :
>>> class Time:

"Nouvelle classe temporelle"
def affiche_heure(self):

print str(self.heure) + ":" +
str(self.minute) \

+ ":" + str(self.seconde)

La définition de la méthode fait maintenant
partie du bloc d'instructions indentées
après l'instruction class. Notez bien l'utili-
sation du mot réservé self , qui se réfère
donc à toute instance susceptible d'être

créée à partir de cette classe.
(Note : Le code \ permet de continuer une
instruction trop longue sur la ligne sui-
vante).
Essai de la méthode dans une instance
Nous pouvons dès à présent instancier un
objet de notre nouvelle classe Time() :
>>> maintenant = Time()

Si nous essayons d'utiliser un peu trop vite
notre nouvelle méthode, ça ne marche pas :
>>> maintenant.affiche_heure()
AttributeError: 'Time' instance has no
attribute 'heure'

C'est normal : nous n'avons pas encore
créé les attributs d'instance. Il faudrait faire
par exemple :
>>> maintenant.heure = 13
>>> maintenant.minute = 34
>>> maintenant.seconde = 21
>>> maintenant.affiche_heure()
13:34:21

Nous avons cependant déjà signalé à plu-
sieurs reprises qu'il n'est pas recommanda-
ble de créer ainsi les attributs d'instance en
dehors de l'objet lui-même, ce qui conduit
(entre autres désagréments) à des erreurs
comme celle que nous venons de rencon-
trer, par exemple.
Voyons donc à présent comment nous
pouvons mieux faire.
La méthode « constructeur »
L'erreur que nous avons rencontrée au
paragraphe précédent est-elle évitable ?.
Elle ne se produirait effectivement pas, si
nous nous étions arrangés pour que la
méthode affiche_heure() puisse toujours

progpythonXP2 18/01/06 12:39 Page 29

PROG#PYTHON

30

s classes. Il reste
es à dire mais ce
Il existe énorme-
nternet qui vous
 les classes. Mais
 vous permettra
grammation en

rd Swinnen,
u par FaSm

afficher quelque chose, sans qu'il ne soit
nécessaire d'effectuer au préalable aucune
manipulation sur l'objet nouvellement créé.
En d'autres termes, il serait judicieux que
les variables d'instance soient prédéfinies
elles aussi à l'intérieur de la classe, avec
pour chacune d'elles une valeur « par
défaut ».
Pour obtenir cela, nous allons faire appel à
une méthode particulière, que l'on appelle
un constructeur. Une méthode construc-
teur est une méthode qui est exécutée
automatiquement lorsque l'on instancie un
nouvel objet à partir de la classe. On peut
y placer tout ce qui semble nécessaire pour
initialiser automatiquement l'objet que l'on
crée. Sous Python, la méthode construc-
teur doit obligatoirement s'appeler
__init__ (deux caractères « souligné », le
mot init, puis encore deux caractères «
souligné »).
Exemple :
>>> class Time:

"Encore une nouvelle classe tempo-
relle"

def __init__(self):
self.heure =0
self.minute =0
self.seconde =0

def affiche_heure(self):
print str(self.heure) + ":" +

str(self.minute) \
+ ":" + str(self.seconde)

>>> tstart = Time()
>>> tstart.affiche_heure()
0:0:0

L'intérêt de cette technique apparaîtra plus
clairement si nous ajoutons encore quel-
que chose. Comme toute méthode qui se
respecte, la méthode __init__() peut être
dotée de paramètres. Ceux-ci vont jouer
un rôle important, parce qu'ils vont per-
mettre d'instancier un objet et d'initialiser
certaines de ses variables d'instance, en
une seule opération.Dans l'exemple ci-des-
sus, veuillez donc modifier la définition de
la méthode __init__() comme suit :

def __init__(self, hh =0, mm =0, ss
=0):

self.heure = hh
self.minute = mm
self.seconde = ss

La méthode __init__() comporte à présent
3 paramètres, avec pour chacun une valeur
par défaut. Pour lui transmettre les argu-
ments correspondants, il suffit de placer
ceux-ci dans les parenthèses qui accompa-
gnent le nom de la classe, lorsque l'on écrit
l'instruction d'instanciation du nouvel
objet.
Voici par exemple la création et l'initialisa-
tion simultanées d'un nouvel objet Time() :
>>> recreation = Time(10, 15, 18)
>>> recreation.affiche_heure()
10:15:18
Puisque les variables d'instance possèdent
maintenant des valeurs par défaut, nous
pouvons aussi bien créer de tels objets
Time() en omettant un ou plusieurs argu-
ments :
>>> rentree = Time(10, 30)
>>> rentree.affiche_heure()
10:30:0

progpythonXP2 18/01/06 12:40 Page 30

PYTHON

31

Dans de nombreux cas, il est possible de
prévoir à l'avance certaines des erreurs qui
risquent de se produire à tel ou tel endroit
du programme, et d'inclure à cet endroit
des instructions particulières, qui seront
activées seulement si ces erreurs se pro-
duisent. Dans les langages de niveau élevé
comme Python, il est également possible

Les exceptions
Les exceptions sont les opérations qu'ef-
fectue un interpréteur ou un compilateur
lorsqu'une erreur est détectée au cours de
l'exécution d'un programme. En règle géné-
rale, l'exécution du programme est alors
interrompue, et un message d'erreur plus
ou moins explicite est affiché.
Exemple :

>>> print 55/0
ZeroDivisionError: integer division or
modulo

(D'autres informations complémentaires
sont affichées, qui indiquent notamment à
quel endroit du script l'erreur a été détec-
tée, mais nous ne les reproduisons pas ici).
Le message d'erreur proprement dit com-
porte deux parties séparées par un double
point : d'abord le type d'erreur, et ensuite
une information spécifique de cette erreur.

PYTHON : Gestion
des exceptions.
Quoi de plus embêtant d'utiliser un programme qui pour une raison ou
une autre, lors d'un fonctionnement supposé normal, nous envoi des
tas d'injures sur l'écran du style « ZeroDivisionError : integer division
or modulo by zero », alors que, prévoyant, nous aurions pu anticiper
cette erreur et la gérer ?
Les exceptions sont faites pour cela et la simplicité d'utilisation en est trou-
blante ;-) ...
Cet article est donc tiré du livre FDL de Gérard Swinnen
(http://www.framasoft.net/article1971.html) .

progpythonXP2 18/01/06 12:40 Page 31

PROG#PYTHON

32

d'associer un mécanisme de surveillance à
tout un ensemble d'instructions, et donc de
simplifier le traitement des erreurs qui peu-
vent se produire dans n'importe laquelle de
ces instructions.
Un mécanisme de ce type s'appelle en géné-
ral mécanisme de traitement des excep-
tions. Celui de Python utilise l'ensemble
d'instructions try - except – else , qui per-
mettent d'intercepter une erreur et d'exé-
cuter une portion de script spécifique de
cette erreur. Il fonctionne comme suit :
Le bloc d'instructions qui suit directement
une instruction try est exécuté par Python
sous réserve. Si une erreur survient pen-
dant l'exécution de l'une de ces instruc-
tions, alors Python annule cette instruction
fautive et exécute à sa place le code inclus
dans le bloc qui suit l'instruction except. Si
aucune erreur ne s'est produite dans les
instructions qui suivent try, alors c'est le
bloc qui suit l'instruction else qui est exé-
cuté (si cette instruction est présente).
Dans tous les cas, l'exécution du pro-
gramme peut se poursuivre ensuite avec les
instructions ultérieures.

Considérons par exemple un script qui
demande à l'utilisateur d'entrer un nom de
fichier, lequel fichier étant destiné à être
ouvert en lecture. Si le fichier n'existe pas,
nous ne voulons pas que le programme se
« plante ». Nous voulons qu'un avertisse-
ment soit affiché, et éventuellement que
l'utilisateur puisse essayer d'entrer un autre
nom.
filename = raw_input("Veuillez entrer un
nom de fichier : ")
try:

f = open(filename, "r")
except:

print "Le fichier", filename, "est introu-
vable"

Si nous estimons que ce genre de test est
susceptible de rendre service à plusieurs
endroits d'un programme, nous pouvons
aussi l'inclure dans une fonction :
def existe(fname):

try:
f = open(fname,'r')
f.close()
return 1

progpythonXP2 18/01/06 12:40 Page 32

PYTHON

33

except:
return 0

filename = raw_input("Veuillez entrer le
nom du fichier : ")
if existe(filename):

print "Ce fichier existe bel et bien."
else:

print "Le fichier", filename, "est introu-
vable."

Il est également possible de faire suivre
l'instruction try de plusieurs blocs except,
chacun d'entre eux traitant un type d'erreur
spécifique, mais nous ne développerons pas
ces compléments ici. Veuillez consulter un
ouvrage de référence sur Python si néces-
saire.

La simplicité des exceptions
Utiliser les exceptions n'est pas trés com-
pliqué. Si vous savez qu'une certaine partie
de votre programme risque de générer des
exceptions et que vous ne voulez pas voir
apparaitre des messages d'erreurs intem-
pestifs, vous allez utiliser nécessairement
try/except ou try/finally.
Des choses qui normalement s'ecrirait avec
un if/else peuvent être des fois, mieux
implémentées en utilisant un try/except.
Regardons cela avec un petit exemple.
def decrit_personne(personne):

print 'Description de',
personne['nom']

print 'Age:',personne['age']
if 'hobby' in person:

print 'son hobby':,person['hobby']

si vous utilisez cette fonction avec un dictionnaire

contenant le nom CodeJ et l'âge 88 ans (
vous ne saviez pas qu'il était si vieux !! ;-))
mais sans hobby, vous obtiendrez l'affichage
suivant :

Description de CodeJ
Age: 88

Si vous ajouter comme hobby ' chasseur
d'escargots', vous obtenez :
Description de CodeJ
Age: 88
son hobby : chasseur d'escargots

le code est intuitif mais non efficace : le
code doit aller verifier deux fois la clé
'hobby', une fois pour voir si la clé
existe et une fois pour aller chercher la
valeur.
L'alternative est d'utiliser try/except :

def decrit_personne(personne):
print 'Description de',

personne['nom']
print 'Age:',personne['age']
try: print 'son hobby :',person['hobby']
except KeyError: pass

Conclusion :
Voila, nous avons fait un tour des possibil-
tés de Python.A ce stade, j'espére que vous
êtes convaincus de la simplicité d'utilisa-
tion, de la rapidité et de l'intuitivité de ce
langage. Nous allons maintenant essayer de
trouver un moyen pour interragir avec l'en-
vironnement, c'est à dire essayer de se
transmettre des données pour analyser les
erreurs par exemple. Quoi de plus simple
que d'utiliser les fichiers ?

progpythonXP2 18/01/06 12:41 Page 33

PROG#PYTHON

34

Ouvrir un fichier
Vous pouvez ouvrir un fichier avec la fonc-
tion open .
La fonction open() attend deux arguments
qui doivent être des chaînes de caractéres.
Le premier argument doit être le nom du
fichier à ouvrir et le second est le mode
d'ouverture.

Fermer le fichier.
Vous devez vous rappeler de fermer votre
fichier en appelant la fonction close().
Normalement, l'objet fichier sera fermé
automatiquement quand vous quitterez le
programme et ne pas fermer le fichier dans
lequel vous avez lu n'est pas réellement
important. Mais vous devez impérativement
fermer le fichier quand vous avez écrit
dedans. En effet Python bufferise les données
que vous voulez écrire et si votre pro-
gramme plante pour une raison quelconque,
vous pouvez perdre vos données. Si vous
voulez être certain que votre fichier est
fermé , vous pouvez utiliser le duo try / finally
comme vu dans l'article sur les exceptions.

PYTHON, les fichiers
il est souvent utile dans un pro-
gramme d'utiliser des données se
trouvant dans un fichier , d'écrire
le résultat d'opérations dans le
fichier. C'est aussi parfois un
moyen d'échange entre pro-
gramme . Quoi qu'il en soit, savoir
manipuler les fichiers s'avére
nécessaire, alors let's go !

open()
>>>f=open('/home/fasm/passwd.txt','r')

Si le fichier n'existe pas vous aurez l'in-
jure suivante :

Traceback (most recent call last):
File "<stdin>", line 1, in ?

IOError: [Errno 2] No such file or direc-
tory: '/home/fasm/passwd.txt'

mode
'r' mode lecture
'w' mode ecriture
'a' mode ajout
'b' mode binaire
'+' lecture/ecriture close()

f=open('/home/fasm/passwd.txt','w')
try:

#vous ecrivez ici dans le fichier
finally:

f.close()

Une fois le fichier ouvert, on peut ecrire,
lire (suivant le mode d'ouverture) , il faudra
aussi, bien sur, fermer le fichier en fin d'uti-
lisation.

progpythonXP2 18/01/06 12:41 Page 34

35

PYTHON
es fichiers

Lire et ecrire dans un fichier.
On peut écrire dans un fichier avec la
méthode f.write (si votre objet fichier s'ap-
pelle f) et lire dans le fichier grâce à la
méthode f.read.
A chaque fois que vous allez appeler la
méthode f.write(phrase), la chaîne de carac-
tére va s'inscrire dans le fichier à la suite de
ce que vous avez écrit précedemment.

En premier nous avons spécifié que nous
voulions lire 4 caractéres et ensuite nous
avons demandé de lire le reste.
Nous avons donc vu que l'on peut lire ou
écrire caractére par caractére mais on peut
aussi lire ligne par ligne grâce à la méthode
f.readline.

Avec cette méthode on peut imaginer
compter les lignes d'un fichier par exemple.

Accés aléatoire.
Dans les explications précédentes, on ne
pouvait qu'écrire au début d'un fichier ou à

readline()
>>>f=open('/home/fasm/passwd.txt','r')
>>>f.readline()
'bonjour'
>>>f.readline()
'the hackademy maubeuge'

read()
>>>f=open('/home/fasm/passwd.txt','r')
>>>f.read(4)
'bonj'
>>>f.read()
'our the hackademy maubeuge'

readline()

>>>f=open('/home/fasm/passwd.txt','r')
>>>f.readline()
'bonjour'
>>>f.readline()
'the hackademy maubeuge'

write()
>>>f=open('/home/fasm/passwd.txt','w')
>>>f.write('bonjour')
>>>f.write('the hackademy maubeuge')
>>>f.close()

maintenant on peut aller vérifier ce que
contient le fichier :

[FaSm]$ more passwd.txt
bonjour
the hackademy maubeuge

La lecture dans un fichier est aussi simple
que l'écriture, vous pouvez juste ajouter le
nombre d'octets que vous désirez lire.

progpythonXP2 18/01/06 12:41 Page 35

PROG#PYTHON

36

la suite d'autres lignes. Il peut être intéres-
sant de pouvoir écrire aléatoirement dans
un fichier.
Nous verrons donc ici une autre méthode
appelée seek(offset[,whence]). Cette
méthode change la position courante par
une position décrite par offset et whence.
Offset est un nombre d'octets (donc de
caractéres) et whence qui est à 0 par
défaut (offset par rapport au début du
fichier) peut être à 1 (offset par rapport à
la position courante).

Dans l'exemple de l'encadré, j'ai utilisé print
pour écrire dans le fichier, chaque ligne
ajoutée l'est à la suite.
Ensuite, toutes les lignes sont mises dans
trois variables (premiere, deuxieme et troi-
sieme), ce qui peut être utile quand on ne
connait pas le nombre de ligne (sinon, on
aurait du créer une variable par ligne).
Et pour finir on ferme le fichier pour être
sûr que les données soient bien enregis-
trées dans le fichier.

Conclusion :
Vous savez maintenant comment interagir
avec l'environnement au travers de fichiers.
Pour finir cette premiére partie du mag,
nous allons essayer d'aborder une notion
importante mais parfois difficile à com-
prendre : les threads. Alors retroussez vos
manches, allez chercher une tasse de café et
apprétez vous à vous faire bouillir le cer-
veau ;-)

Seek()
>>>f=open('/home/fasm/passwd.txt','w')
>>>f.write('01234567890123456789')
>>>f.seek(5)
>>>f.write('hackademy')
>>>f.close()
>>>f=open('/home/fasm/passwd.txt','r')
>>>f.read()
'01234hackademy456789'

Il existe aussi la méthode f.tell() qui
retourne la position courante.

Exemple
>>>f=open('/home/fasm/passwd.txt','w')
>>>print >> f, 'la premiere ligne'
>>>print >> f, 'la deuxieme ligne'
>>>print >> f, 'la troisieme ligne'
>>>f.close()
>>>premiere,deuxieme,troisieme=open
('/home/fasm/passwd.txt')
>>>premiere
'la premiere ligne\n'
>>>deuxieme
'la deuxieme ligne\n'
>>>troisieme
'la troisieme ligne\n'

Les itérateurs et les fichiers.
Depuis la version 2.2 de python , on peut
utiliser directement les fichiers dans les
boucles for .On peut donc utiliser les itera-
tors pour parcourir les lignes d'un fichier.

fichier et for
f=open('/home/fasm/passwd.txt','w')
for ligne in f:

#suite du programme

Voyons une autre méthode dans l'encadré
nommé exemple.

progpythonXP2 18/01/06 12:41 Page 36

PYTHON

37

variable = "Fils"
print "Je meurt. -- Signé : le fils"

else :
wait()
print "La valeur de VARIABLE

est",variable
print "J'étais père mais mon fils

est mort. Goodbye"

Partons dans l'explication de ce code.Tout
d'abord, j'importe les modules os et time,
qui vont respectivement me permettre de
manier mes processus et le temps. Jusque
là rien de bien méchant.

Ensuite, je fait appel à la fonction os.fork(),
donc la fonction fork() du module os. Elle
va, à partir de mon programme, créer un
autre programme : on appelle le créateur

Les threads
en Python

Les threads sont un sujet important dans
bon nombre de langage. Bien que leur
importance et leur existence sur Python
soit un peu limitée, il en existe une implé-
mentation totalement fonctionnelle pour
ce langage. Voyons d'abord ce qu'est un
thread, pour ne perdre personne en route,
pour ensuite passer sur des exemples
concrets.

PREMIERE APPROCHE DES
PROCESSUS
Aborder les threads sans comprendre ce
qu'est un processus semble impossible: on
va construire la définition d'un thread sur
les différences qu'il va posséder avec un
processus. Un processus est une tâche qui
s'exécute, avec un espace mémoire, une
pile, des données, des marqueurs comme le
registre compteur (EIP, pour les connais-
seurs) ou la liste des fichiers ouvert. Tout
programme qui tourne est un processus.
Voici comment on peut s'amuser simple-
ment avec les processus :
import os
import time

variable = "PROCESSUS"

pid = os.fork()

if pid == 0 :
print "Je suis le fils. Je vais vivre

deux secondes puis mourir"
time.sleep(2)
print "La variable VARIABLE avait

pour valeur",variable
print "La variable VARIABLE

prend FILS pour valeur"

progpythonXP2 18/01/06 12:42 Page 37

PROG#PYTHON

38

"le père", et le programme ainsi créé est
appelé "le fils". Ces deux programmes ne
partagent rien sauf le code source : c'est à
dire que le fils et le père, si je ne fait rien,
vont exécuter la même chose. Il s'agit d'un
mécanisme interne semblable à une copie
de programme : arrivé à un certains
moment du code source, je lance une
deuxième copie de mon programme. Les
variables initialisées par le père sont reco-
piées au sens strict du terme : si le fils
modifie une valeur, le père ne le voit pas (ce
n'est donc pas un partage de variables).
C'est pour démontrer cela que vous trou-
vez VARIABLE dans le code ci-dessus : on
l'initialise, puis le fils la modifie et le père
l'affiche. Mais, me direz-vous, comme défi-
nit-on qui est le père, qui est le fils?

Suite à l'appel à fork(), je reçois une valeur
dans ma variable PID. Le PID, pour Process
ID, est un numéro que porte chaque pro-
cessus. Parmi tous les processus lancés sur
votre système, chacun possède un numéro,
unique, qui change à chaque lancement,
mais qui reste le même tout au long de
l'exécution du processus. Ce qui nous per-
met d'identifier chaque processus par ce
numéro. Fork() renvoie ce numéro de pro-
cessus dans la variable pid. Le mécanisme
sympathique est celui qui fait que fork()
débute dans LE programme principal, mais
se termine à la fois dans le fils, et dans le
père. Ce qui fait que le fils et le père ont
chacun leur variable pid : dans le cas du fils,
la valeur de cette variable sera égale à
zéro, et chez le père, cette variable sera
égale au pid du fils ainsi créé. Ce qui va
nous permettre, grâce à notre clause IF, de

différencier le code exécuté par le père de
celui exécuté par le fils. En effet, tous deux
partagent le code du programme, et tous
deux vont pratiquer le test sur la variable
PID, mais seule la partie qui les intéresse
(selon la valeur de PID) va être exécutée.
Le fils affiche un petit message, attend 2
secondes (grâce à la fonction time.sleep()
avec le nombre de seconde d'attente en
argument), modifie la valeur de VARIABLE.
Là, et puisqu'il a terminé sa liste de tâches,
il se termine, comme tout programme qui
serait dans le même cas. On dit alors qu'il
meurt. Le père, pendant ce temps, à
attendu la mort de son fils : grâce à wait(),
le père attend la terminaison de tous les fils
qu'il à créé.Quand ce moment arrive, il affi-
che VARIABLE (pour vérifier que quoi
qu'en veuille le fils, la valeur n'a pas été
changée), et nous dit au revoir.

Deux fonction à ajouter à votre connais-
sance : os.getpid() et os.waitpid(), qui, res-
pectivement, nous permettent de récupé-
rer la valeur du pid du processus, et d'at-
tendre un processus précis, référencé par
son numéro de processus (ex. : os.wait-
pid(1968)). Sous Linux, vous pourriez obte-
nir la liste de vos processus et de leur pid
en tapant "ps aux" sur votre shell. Sous
Windows XP Professionnel, il existe la
commande TASKLIST, téléchargeable à
cette adresse :
http://www.computerhope.com/down-
load/winxp.htm, pour ceux d'entre vous qui
utilisent Windows XP Home. Enfin, sachez
qu'il existe aussi des ID pour les utilisateurs
(permettant notamment de gérer les
droits) et aussi, plus intéressant encore, un

progpythonXP2 18/01/06 12:42 Page 38

PYTHON

39

numéro que le nomme PPID, pour Parent PID,
qui correspond au processus créateur d'un
autre processus (voir os.getppid() sous Python).

Voici pour l'introduction aux processus. A
retenir, on crée très facilement en Python un
processus fils qui exécutera sa partie de code,
ce qui peut débuter les recherches sur un pro-
gramme de gestion d'un compte dont les don-
nées sont stockées en base de données : le
père gère les dépôt, le fils gère les retraits.

LES THREADS
Threads, nous voici. Un Thread (tâche en
anglais), est en fait une sorte de processus.
Mais là où les processus créés ont leur pro-
pres ressources, les threads vivent et
dépendent de celui ou ceux qui les ont
créés.Ceci se traduit par exemple par le fait
que tous les thread créé par un programme
se terminent en même temps que le pro-
gramme lui-même. On utilise particulière-
ment les threads dans le cas où un même
programme doit faire des accès concur-
rents à une même ressource (fichier, base
de donnée, périphérique...) car il permet-
tent la mise en place de verrous (nous
allons revenir sur cette notions plus loin).

Pour bien comprendre la différence entre
thread et processus, l'usage et de penser à
votre shell Python et votre navigateur Web.
Quand dans votre shell Python vous tapez
une commande, vous allez attendre la fin de
celle-ci (quand bien même elle est quasi ins-
tantanée) pour taper la suivante. C'est
l'usage habituel des processus fils (dont on
attend qu'ils se terminent pour continuer).
Votre navigateur Web, en revanche, quand il

s'agit d'afficher une page, va télécharger, en
même temps, et en parallèle, les images, le
texte, les streams vidéoVoyons mainte-
nant comment on créé un simple thread :

import thread
import time

def affiche_heure(timing):
while 1:

time.sleep(timing)
print

time.ctime(time.time())

mon_thread =
thread.start_new_thread(affiche_heure,(1,
))

i=1
while i<=3 :

time.sleep(5)
print 5*i," seconde écoulées"
i=i+1

Si vous lancez ce petit script, vous allez
avoir un résultat constitué de l'affichage de
l'heure toutes les secondes, avec toutes les
5 lignes, un affichage du nombre de
seconde écoulées.Vous trouverez aisément
de l'aide sur le module time (en faisant
help(time) après avoir importé le module
time) pour vous expliquer plus en détail
son fonctionnement. La commande "print
time.ctime(time.time())" affiche la date
actuelle (y compris l'heure) après conver-
sion, pour la faire passer du format universel
(nombre de seconde écoulées depuis le
01/01/1970) en format lisible par l'homme.

progpythonXP2 18/01/06 12:42 Page 39

PROG#PYTHON

40

Vous pouvez voir que nous lançons le
thread grâce à thread.start_new_thread().
Maintenant que vous connaissez tous sur
les classes et les objets, cette construction
n'a plus de secret pour vous. Pour exécuter
cette méthode, je doit lui passer deux argu-
ments : la fonction représentant ce que
doit faire le thread en arrière plan, et les
argument que cette fonction attend. Ce
deuxième paramètre DOIT être un tuple,
et comme ma fonction n'attend qu'un seul
paramètre, je lui passe un tuple contenant
deux éléments : mon argument, et un argu-
ment vide (ceci est nécessaire car on ne
peut construire un tuple vide).
La fonction qui représente le thread est
assez simple et ne nécessite pas qu'on
revienne dessus. Après avoir lancé mon
thread, je continue la suite de mon pro-
gramme. Comprenez bien qu'à ce stade, je
n'attend plus que mon thread soit terminé
: après thread.start_new_thread(), je passe
sans attendre à la ligne suivante. Et la suite
est une simple boucle qui affiche, toutes les
5 secondes, le temps écoulé depuis le lan-
cement du programme.
A l'exécution, vous constatez que le thread
continue d'afficher l'heure toutes les
secondes, quand bien même le reste du
programme (que l'on appellera BRANCHE
PRINCIPALE) est en pause. Ce qui achè-
vera je l'espère de vous convaincre de l'in-
dépendance de l'exécution (et de celle-ci
uniquement) des threads par rapport à leur
créateur.

La terminaison des threads est assez
dépendante du système. En général, les
threads se terminent proprement à la fin

de la branche principale. Pourtant, il est
parfois des cas où tous n'est pas si rose
(notamment sur certains OS). De plus, il
convient de prendre soin à votre espace
mémoire : n'oubliez pas que vos threads
utilisent la mémoire de votre programme,
et donc peuvent augmenter l'espace requis
par celui-ci, ou bien tenter des accès non
autorisés. Une petite recherche sur les
problèmes de type RACE CONDITIONS
vous permettra aussi d'en savoir plus sur ce
genre de bugs qu'il faut éviter pour des rai-
sons de sécurité.

Les threads en Python sont disponibles sur
les plateformes Linux, Solaris,Windows et
en général tout système d'exploitation sup-
portant la norme POSIX. Ce qui, à l'instar
une fois encore de Java, vous offre une por-
tabilité accrue. Pourtant, il faut savoir que
comme votre code est interprété par un
shell, l'exécution de vos threads en simul-
tané (notamment sur les systèmes multi-
processeurs) peut-être limitée par ceci.

Les thread, liés à leur programme principal,
sont incapables de gérer les signaux. Ceci
parce que l'implémentation de celles-ci uti-
lise les pid, et le programme recevant un
signal ne saura quel thread est sensé gérer
ce signal. Donc, et à l'unique exception des
interruption clavier (Ctrl+C par exemple),
les thread et les signaux sont étrangers. Par
contre, un thread peut, de la même
manière que tout autre script, accéder à un
fichier. Avez-vous terminé l'exercice sur le
compte bancaire, du paragraphe précé-
dent?

progpythonXP2 18/01/06 12:42 Page 40

PYTHON

41

import thread
import time
import random

#solde initial du compte
solde = 1000
#un verrou
lk = thread.allocate_lock()

#thread d'ajout sur le compte
def T_renflouer(som_max) :

global solde
while 1:

timing = random.randint(0,10)
time.sleep(timing)
somme = random.randint(0,500)
print "dépôt de ",somme," euros sur

le compte"
solde=solde+somme

#thread pour madame
def T_depense(som_max):

global solde
while 1 :

timing = random.randint(0,10)
time.sleep(timing)
somme = random.randint(0,1000)
print "Retrait de",somme," euros

sur le compte"
lk.acquire()
solde=solde-somme
lk.release()

thread.start_new_thread(T_ren-
flouer,(500,))
c'est bien connu, l'argent sort plus vite
qu'il ne rentre
thread.start_new_thread(T_depense,(1000

,))

while 1:
time.sleep(5)
print "Solde Actuel :",solde

Beaucoup de commentaires sur ce code, et
de nouvelles notions également. Après
l'avoir lu, vous voyez que le programme
lance deux processus : chacun va attendre
un nombre aléatoire de secondes avant
d'ajouter ou de retirer de l'argent sur le
compte. Pendant l'exécution de ces proces-
sus, le programme continue et affiche, tou-
tes les 5 secondes, le solde du compte.

Première note, la variable solde. Pour,
depuis les thread, pouvoir écrire et modi-
fier la variable solde (initialisée à 1000 au
départ), je doit, dans les fonction, la redé-
clarer avec le mot clef "global" pour per-
mettre à la fonction de savoir qu'il s'agit
d'une variable du programme complet. La
fonction de génération de nombres aléatoi-
res est une fonction du module random.
Elle prend ici deux arguments : les bornes
de l'intervalle dans lequel je génère les
entiers. Dans votre interpréteur, help(ran-
dom) et help(random.randint) vous don-
nerons plus d'informations.
Enfin, j'attire votre attention sur le verrou
lk. En effet, si par malchance, exactement au
même moment, les deux thread mettaient
à jour la variable solde, nous perdrions
l'une des deux information (soit le retrait,
soit le dépôt). Et le banquier d'être soit
content, soit en rage contre son dévelop-
peur.Donc nous mettons en place un verrou
simple : on déclare ce verrou (variable lk) qui

progpythonXP2 18/01/06 12:43 Page 41

PROG#PYTHON

42

par défaut est déverrouillé.Dès qu'un thread
s'apprête à modifier la variable solde, il ver-
rouille le verrou. Et une fois qu'il a terminé,
il le déverrouille. Si le verrou est déjà ver-
rouillé, alors le thread se met en pause et

attend un changement, puis il poursuit. Et le
banquier est content.
Nous n'avons pas malheureusement la place
pour discuter des verrous, qui pourraient
constituer un manuel a eux seuls. Sachez qu'il
existe des méthodes plus évoluées encore,
comme les sémaphores qui permettent de
verrouiller l'accès à plusieurs thread en
même temps (par exemple, pour empêcher
les accès simultanés à une base de donnée à
5 thread afin de contrôler le trafic), ou les
queues, qui permettent de garder l'ordre de
tentative d'accès des thread (file d'attente).Le
module threading vous permettra de gérer
de maniere plus simple et orientée objet des
threads et des verrous comme les séma-
phore (import threading puis help(threading)
et help(threading.semaphores)).

Conclusion
Pour finir, sachez que si les threads sont
bien implémentés en Python, et que vous
pouvez écrire des applications utilisant des
dizaines (des centaines?) de threads, vous
pourriez ne pas obtenir le parallélisme
d'execution attendu, notamment sur les
systèmes multiprocesseurs. Leur force en
Python réside surtout sur la possibilité de
créer et d'utiliser très simplement des ver-
rous, et notamment quand, plus loin, vous
aborderez la programmation réseau et, plus
tard encore, quand vous tenterez de gérer
des connexions multiples à votre applica-
tion. Le tout, et contrairement à beaucoup
d'autres langage, très simplement et en seu-
lement quelques lignes de code.

By Koreth

POUR CONTINUER
Vous avez déjà vu les fichiers en python (leur accès
et modification), mais sachez que vous pouvez
aussi exécuter des commandes système, comme si
vus disposiez d'une ligne de commande. Ceci se fait
souvent dans les processus et les threads. Je vous
invite à consulter l'aide sur les fonctions popen(),
popen2(), popen3() et system() du module os et le
module commands, particulièrement utile lui aussi.

progpythonXP2 18/01/06 12:43 Page 42

PYTHON

43

Ma première fenêtre :
Ne perdons pas de temps. Pour bien débu-
ter, nous allons apprendre à créer une fenê-
tre, et voir avec quelle simplicité cela se fait.

from Tkinter import *
ma_fenêtre = Tk()
ma_fenetre.title(« Ma première fenêtre »)
ma_fenetre.mainloop()

Premièrement, chose qui doit maintenant
vous être familière, nous importons un
module,Tkinter.Nous avons créé ici un objet
fenêtre grâce à la fonction Tk() puis avons fait
appel à la fonction mainloop(). En effet, créer
la fenêtre ne suffit pas : il faut ordonner au
programme d'afficher la fenêtre et de se
mettre en attente d'action de l'utilisateur.
Cette fonction se termine par exemple
quand on clique sur le bouton “X” dans la
barre de titre pour fermer l'application.

L'appel à ma_fenetre.title() permet de
régler le nom qui apparaîtra dans la barre
du haut de votre fenêtre.

En programmation graphique, un terme
récurrent est celui de conteneur. On
appelle ainsi tous les composants suscepti-
bles de contenir d'autres composants. Le
premier et le plus connu des conteneurs
est la fenêtre : elle peut contenir des com-
posants divers et variés, comme des bou-
tons, des zones de texte....

Mon premier bouton
(non, pas d'acné ...) :
Notre fenêtre, elle, se sent bien seule.
Nous allons donc lui ajouter un petit
bouton QUITTER. Cela se fait presque
aussi simplement que la création d'une
fenêtre :

Les interfaces
graphiques
sous python
L'interface graphique est au programme informatique ce que les let-
tres imprimées sont au clavier : les habitués sauraient s'en passer,
mais elles permettent la simplicité et un peu plus d'esthétisme. Et
Python nous permet de réaliser simplement ce genre d'interfaces.
En voici l'exemple, par la programmation d'une calculatrice.

progpythonXP2 18/01/06 12:43 Page 43

PROG#PYTHON

44

from Tkinter import *
ma_fenêtre = Tk()

bouton_quitter =
Button(ma_fenêtre,text='Quitter',com-
mand=ma_fenêtre.quit)
bouton_quitter.pack()

ma_fenêtre.mainloop()

Pour créer ce bouton, nous avons fait appel
à la fonction Button, avec quelques paramè-
tres : le nom du conteneur auquel le bou-
ton va se rattacher, puis le texte qui appa-
raîtra sur le bouton, et enfin l'action
qu'exécutera le bouton. Le conteneur, c'est
simplement notre fenêtre. On définit le
texte grâce à l'argument libellé “text”.
Enfin, dès qu'on appuiera sur ce bouton, on
exécutera la commande ma_fenetre.quit()
qui met fin à la fonction mainloop(), et donc
qui termine le programme (car on ne
trouve rien après l'appel à
ma_fenetre.mainloop()).

Enfin, bouton_quitter.pack() commande au
conteneur de bouton_quitter (ici,
ma_fenêtre) d'ajuster sa taille autour des
composants : la fenêtre ne va ainsi plus
mesurer que la taille minimale, nécessaire
pour faire apparaître tous les composants.
Une autre méthode possible pour réaliser
cela consiste à utiliser la méthode .grid(),
qui créé un tableau de rangement des com-
posants, et qui peut prendre en argument
le numéro de colonne et le numéro de
ligne. Ainsi,
bouton_quitter.grid(column=1,row=1) va
demander a notre fenêtre de placer notre

bouton QUITTER a la colonne 1 de la ligne
1.Notez que Python supprime automatique-
ment les lignes et les colonnes vides, donc
vous pouvez commencer la numérotation à
17543 si tel est votre bon plaisir ;-)

Ma première zone de saisie :
Passons à plus sympathique : une zone d'en-
trée de texte.Toujours aussi simple.

from Tkinter import *
ma_fenêtre = Tk()

mon_entree =
Entry(ma_fenêtre,bg='white')
mon_entree.pack()

bouton_quitter =
Button(ma_fenêtre,text='Quitter',com-
mand=ma_fenêtre.quit)
bouton_quitter.pack()

ma_fenêtre.mainloop()

Deux lignes, très semblables a celles de
création de notre bouton de tout à l'heure,
suffisent à définir une zone d'entrée.
L'attribut “bg” permet de régler la couleur
de fond du composant (c'est un attribut que
partagent beaucoup de composants graphi-
ques).

Pour récupérer les informations tapée par
l'utilisateur dans cette zone de texte, nous
utiliserons la méthode get().Ainsi :

def print_entree():
global mon_entree
print mon_entree.get()

progpythonXP2 18/01/06 12:43 Page 44

PYTHON

45

nous permet de définir une petite fonction
qui affiche le contenu de notre composant
'mon_entree'. Vous voyez que le nom du
composant, 'mon_entree', est utilisé pour
récupérer la valeur du champ. Or, le plus
souvent, les composants seront placés, et ce
sera tout. Ceci pour dire qu'il ne sert sou-
vent à rien de réserver un nom de variable
pour certains composants (comme les bou-
tons), car on ne se servira jamais du nom
réservé. La création et le placement du
composant se font alors en une action :

Button(ma_fenêtre,text='Quitter',com-
mand=ma_fenêtre.quit).pack()

Ceci remplace les deux lignes de définition
de 'bouton_quitter'.

Un label est une étiquette de texte non
modifiable. Utile, pour indiquer à l'utilisa-
teur ce qu'on attend en entrée de notre
zone de texte, n'est-ce pas? Mais vous l'au-
rez remarqué, quand nous faisons des appel
à pack(), la fenêtre met les composants les
uns au dessous des autres : nous voudrions
garder ce comportement mais pouvoir
mettre notre label devant notre zone d'en-
trée. Nous créerons donc un conteneur
spécial, qu'on appelle un cadre, qui contien-
dra la zone d'entrée et le label; ce conte-
neur sera rattaché a la fenêtre.

from Tkinter import *
ma_fenêtre = Tk()

mon_cadre = Frame(ma_fenêtre)
mon cadre.pack()

Label(mon_cadre,text='Saisie').grid(row=0
,column=0)

mon_entree =
Entry(mon_cadre,bg='white')
mon_entree.grid(row=0,column=1)

Button(ma_fenêtre,text='Quitter',com-
mand=ma_fenêtre.quit).pack()

ma_fenêtre.mainloop()

Vous voilà avec une fenêtre qui vous per-
met de saisir un calcul, et de cliquer sur un
bouton pour fermer l'application. Nous
allons maintenant ajouter un cadre qui va
contenir des boutons qui vont nous per-
mettre de saisir le calcul a réaliser.Voici le
code pour ces boutons :

cadre_boutons =
Frame(ma_fenetre,padx=10,pady=5)
cadre_boutons.pack()

#ligne 0
Button(cadre_boutons,text='+',height=3,
width=3,
command=adda).grid(row=0,column=0)
Button(cadre_boutons,text='-',height=3,
width=3,
command=adds).grid(row=0,column=1)
Button(cadre_boutons,text='*',height=3,
width=3,
command=addm).grid(row=0,column=2)
Button(cadre_boutons,text='/',height=3,
width=3,
command=addq).grid(row=0,column=3)
#ligne 1
Button(cadre_boutons,text='7',height=3,

progpythonXP2 18/01/06 12:44 Page 45

PROG#PYTHON

46

width=3,
command=add7).grid(row=1,column=0)
Button(cadre_boutons,text='8',height=3,
width=3,
command=add8).grid(row=1,column=1)
Button(cadre_boutons,text='9',height=3,
width=3,
command=add9).grid(row=1,column=2)
Button(cadre_boutons,text='Ok',height=1
2,
width=3,command=Exec).grid(row=1,colu
mn=3,rowspan=3)
#ligne 2
Button(cadre_boutons,text='4',height=3,
width=3,
command=add4).grid(row=2,column=0)
Button(cadre_boutons,text='5',height=3,
width=3,
command=add5).grid(row=2,column=1)
Button(cadre_boutons,text='6',height=3,
width=3,
command=add6).grid(row=2,column=2)
#ligne 3
Button(cadre_boutons,text='1',height=3,
width=3,
command=add1).grid(row=3,column=0)
Button(cadre_boutons,text='2',height=3,
width=3,
command=add2).grid(row=3,column=1)
Button(cadre_boutons,text='3',height=3,
width=3,
command=add3).grid(row=3,column=2)
#ligne 4
Button(cadre_boutons,text='0',height=3,
width=8,
command=add0).grid(row=4,column=0,col
umnspan=2)
Button(cadre_boutons,text='.',height=3,
width=3,

command=addp).grid(row=4,column=2)
Button(cadre_boutons,text='CE',height=3,
width=3,
command=CE).grid(row=4,column=3)

Vous voyez que chaque bouton possède sa
petite fonction, que l'on appelle grâce à au
paramètre-étiquette « command ». Les
fonctions des boutons d'opérateurs et de
chiffres sont semblables a celle-ci :

def add3():
CARACTERE = '3'

global mon_entree
valeur_actuelle =

mon_entree.get()
nouvelle_valeur = valeur_actuelle

+ CARACTERE

mon_entree.delete(0,len(valeur_actuelle))

mon_entree.insert(mon_entree.index(0),n
ouvelle_valeur)

Il suffit alors de modifier le nom de la fonc-
tion (add3 pour add1, add2, ...) et la valeur
du cataère a afficher. Pour l'explication, la
petite fonction récupère le texte de la zone
de saisie, lui colle le caractère, efface la zone
de saisie, et recopie le collage dedans.

Ensuite, il faut définir la fonction Exec, pour
le bouton Ok (symbolisant la fin du calcul).
Même méthode : on évalue (mot impor-
tant) l'expression à calculer, puis on efface la
zone de saisie pour y mettre le résultat.

Def Exec():
global mon_entree

progpythonXP2 18/01/06 12:44 Page 46

PYTHON

47

calcul=mon_entree.get()
result = eval(calcul)
mon_entree.delete(0,len(calcul))
mon_entree.insert(0,result)

Petite particularité de Python : on peut faire
évaluer directement notre chaîne de carac-
tère en tant que commande Python. Or,
Python permet de faire des calculs mathé-
matique très rapidement en ligne de com-
mande (les habitués m'en sont témoins,
Python remplace la calculatrice sur de nom-
breux ordinateurs), et donc nous renvoi
très directement le résultat de notre calcul.
Dernier point enfin, pour la route : le bou-
ton CE qui va nous permettre de mettre à
zéro le champ de saisie.Voici la fonction qui
correspond:

def CE():
global mon_entree

mon_entree.delete(0,len(mon_entree.get()
))

On pourrait utiliser cette fonction dans les
fonctions addX et Exec pour effacer le
champ. Il s'agit simplement avec cette fonc-
tion d'effacer les caractères de la zone de
texte compris entre l'index 0 (le début de la
zone) et le dernier caractère, dont on déduit
l'index par le calcul de la longueur de la
chaine présente dans la zone de saisie.
Remarquez aussi les attributs nouveaux que
sont « colspan » et « rowspan », pour le
bouton Ok et le bouton « 0 » : il permet-
tent d'étaler ces boutons, en hauteur et en
largeur. On utilise aussi les arguments «
height » et « width » pour définir respecti-

vement la hauteur et la largeur des boutons.
Voilà, la plus petite calculatrice jamais créée
vient de sortir tout droit de votre ordina-
teur, et vous en êtes l'auteur. Vous savez
maintenant comment fabriquer une fenêtre
qui vous permettra de faire de la saisie d'in-
formations et que vous traiterez grâce à
Python. Bien que d'autres composants gra-
phiques soient à votre disposition, vous
avez abordé dans cet article les grandes
lignes des interfaces graphiques, et si vous
décidez d'approfondir, vous vous aperce-
vrez que le reste n'est question que de
vocabulaire (connaître le nom des compo-
sants et ceux des attributs les plus couram-

faudrait alors un mag complet sur l'inter-
face graphique.
Google est votre ami et vous aidera à en
savoir un peu plus la dessus. Mais qu'en est
il des bases de données sous python ? Est
ce possible ? Bien sur que oui !
Article suivant monseigneur

mode
La documentation de Tkinter est accessible directe-
ment sous Python, en tapant simplement
help(Tkinter), apres avoir importé le module
Tkinter

mode
Pour vous amuser, d'autres composants sont dispo-
nibles sous Python grâce au module Tkinter,
comme les Radiobutton, les Checkbutton, les
Canvas, les Menu, les Text, ...

ment utilisés).
Conclusion :
Nous ne prétendons pas en un seul article
vous montrer toutes les possibilités de l'in-
terface graphique. Les exemples ci dessus
ont utilisée Tkinter que vous pouver aller
rechercher sur le net ou en apt-get. Nous
aurions pu aussi utiliser wxpython. Mais il

progpythonXP2 18/01/06 12:44 Page 47

PROG#PYTHON

48

insérer quelques données pour pouvoir
continuer.

CREATE DATABASE IF NOT EXISTS
python_db;
USE python_db;
CREATE TABLE IF NOT EXISTS USER(id
int auto_increment PRIMARY KEY, pseudo
text);
INSERT INTO USER (pseudo) VALUES
('FaSm');
INSERT INTO USER (pseudo) VALUES
('dvrasp');
INSERT INTO USER (pseudo) VALUES
('Koreth');
INSERT INTO USER (pseudo) VALUES
('Nono2357');

Nous voilà avec une petite base et un petite
table. Pour les neophyte, une base est desti-
née à contenir une ou plusieurs tables.
Notre table contient deux colonnes

Pour bien débuter, nous allons nous procu-
rer le module MySQLdb, disponible à cette
adresse :
http://sourceforge.net/projects/mysql-
python. Suivant le système d'exploitation
dont vous disposez, il vous suffit de télé-
charger et d'installer le module (avec une
étape de compilation sous Linux, ou un exé-
cutable à lancer sous Windows). Ensuite,
l'utilisation nécessite l'inclusion du module
MySQLdb (attention aux majuscules).

Commençont par
le commencement ;-)
Pour bien suivre cet article, et les quelques
exemples qu'il contient, vous devez dispo-
ser d'un serveur MySQL, que vous pouvez
installer facilement chez vous (sous
Windows, l'opération peut se faire en quel-
ques minutes seulement, par exemple en
installant EasyPHP ou en téléchargeant l'ins-
tallateur sur www.Mysql.org). Nous allons

Notions de BDD
L'utilisation de Python en mode Web, avec Plone, vous mettra face
au quotidien de sites dynamiques : la communication avec des
bases de données. C'est le cas également dans des applications
plus courantes et non orientée web, et le lien entre le Python et une
base de données est une bonne chose à connaître. Plutôt que d'uti-
liser le module interne de Python (le module dbm, qui permet d'ac-
céder à des bases de type dbm), nous verrons l'utilisation de Python
avec la base de donnée relationnelle la plus populaire (et accessoi-
rement la moins onéreuse), MySQL.

progpythonXP2 18/01/06 12:44 Page 48

PYTHON

49

(ATTRIBUTS, dans le jargon). La première
est un entier qui s'incrémente automatique-
ment à chaque insertion; la seconde
contient le pseudonyme de l'utilisateur.
Nous insérons quatres valeurs (les id's vont
s'incrémenter de 1 à 4). Chaque ligne de
cette table est appellée un tuple. Les princi-
pales action que l'on peut faire sur une base
de données sont les suivantes :
– S'y Connecter
– Lister les éléments d'une table
(clause SELECT)
– Ajouter un élément dans une
table (clause INSERT)
– Mettre à jour un tuple (clause
UPDATE)
– Mettre à jour une structure
(clause ALTER)
– Détruire des données ou des
tables (clauses DROP, DELETE)

Vous avez à peu de choses le plan de cet
article.

AU COMMENCEMENT,
IL Y EU LA CONNEXION
import MySQLdb

lien_db = MySQLdb.connect(host="local-
host",user="root",passwd="",db="test")

C'est ainsi que se passe la connexion.
Chose que vous avez déjà vu maintes fois,
on importe le module puis on appelle
l'une de ses fonctions, avec des paramè-
tres labélisés (ce qui permet de les passer
sans ordre précis). Je me connecte donc à
une base de donnée située sur la machine
localhost, qui correspond à ma machine
(localhost est un nom générique pour
désigner votre machine, au même titre
que 127.0.0.1, qui la désigne également et
que nous aurions pu utiliser ici). Donc, je
me connecte en tant que root, avec un
mot de passe vide, et à la base de donnée
TEST. Celle-ci n'est pas la base créée plus
haut mais un exemple de ce à quoi il faut
faire attention :par défaut, MySQL ne met
pas de mot de passe au compte root et
laisse une base vide, appellée "test".
Pensez (c'est fortement recommandé, et
d'ailleur inclut dans l'installateur
Windows) à régler ce mot de passe; sup-
primer la base de test est moins impor-
tant.

Vous voilà connecté a votre serveur
MySQL. Pensez à eventuellement adapter
"localhost", "root" et le mot de passe
vide ainsi que la base si votre serveur est
déjà configuré. Pour la suite, nous allons
simplement lister lecontenu de la table
USER.

 de BDD

progpythonXP2 18/01/06 12:45 Page 49

PROG#PYTHON

50

import MySQLdb
lien_db = MySQLdb.connect(host="local-
host",user="root",passwd="python",db="p
ython_db")

lien_db.query("SELECT * FROM user")
resultat = lien_db.store_result()

nb_tuple = resultat.num_rows();
while nb_tuple>0 :

ligne = resultat.fetch_row()
print ligne
nb_tuple = nb_tuple - 1

L'explication de ce code est assez simple.
D'abord, on se connecte, en créant un lien
avec la base de donnée : lien_db.Ce lien est
en fait un objet (dérivé d'une classe, donc)
duquel nous allons nous servir des métho-
des pour manipuler la base de données.
Tout d'abord, avec la méthode query().
Acceptant une chaîne de caractère en
paramètre, elle va simplement envoyer la
requête (query en anglais) au serveur, sans
se soucier du retour d'une quelconque
réponse (sauf des erreurs). Nous passons
ici la reqûete qui va selectionner tous les
tuples de la table user. A ce stade donc,
nous ne recevons pas nos données.
L'étape suivante est ladite récepton. En fait,
le serveur MySQL garde ces données
jusqu'a ce que nous les lui demandions. Ce
que nous faisons grâce à l'appel à
store_result(), qui renvoie un objet de type
"Ressource MySQL". Et nos données se
trouvent alors dans la variable résultat.
Petite astuce, quand vous fonctionnez par
tatônnement, faite un "print variable" :
Python vous affichera le type de la variable

si celle-ci n'est pas une variable que l'on
peut afficher (c'est le cas dans l'exemple de
"resultat"). Donc, nous voilà avec une res-
source mysql. Qu'en fait-on? Les utilisateurs
de PHP se retrouverons : il existe des
méthodes de l'objet "resultat" qui vont nous
permettre de ressortir les données.
fetch_row() nous renvoie un TUPLE (revoir
l'article correspondant, si nécessaire).Dans
ce tuple, se trouvent d'autres tuples : le pre-
mier contient vos données, le second est un
tuple vide. Sans paramètre, fetch_row()
nous renvoie donc une seule ligne. Pour
récuperer l'ensemble du résultat de notre
reqûete, nous faisons une simple boucle,
avec comme intervalle le resultat d'une
autre méthode de "resultat" : num_rows(). Il
s'agit de la méthode qui vous dit combien de
lignes contient le résultat de votre reqûete.
Maintenant, fetch_row() à ceci d'arrangeant
qu'elle peut préformater sa sortie : si
jusqu'ici nous avons reçu un tuple de tuples
;-) nous pouvons lui demander de récupé-
rer non plus une mais toutes les lignes à la
fois, et de nous les renvoyer sous un format
plus arrangeant : un tuple de dictionnaires.
En voici le code :

Il existe une autre méthode que store_result(). En
effet, quand store_result() rapatrie depuis le ser-
veur TOUS les tuples résultants de votre requête,
use_result() ne les rapatrie qu'un par un. Alors,
dans le cas de requêtes qui renverrons beaucoup de
tuples, store_result() mettra un certains temps à
tous récupérer mais permettra des accès plus rapi-
des par la suite. use_result() permettra un rapatrie-
ment rapide mais un accès ralenti par le devoir de
contacter le serveur à chaque accès de tuple.

progpythonXP2 18/01/06 12:45 Page 50

PYTHON

51

import MySQLdb
lien_db = MySQLdb.connect(host="local-
host",user="root",passwd="python",db="py
thon_db")
lien_db.query("SELECT * FROM user")
resultat = lien_db.store_result()
nb_tuple = resultat.num_rows();
ligne =
resultat.fetch_row(maxrows=nb_tuple,ho
w=1)

print ligne

Certes, la sortie n'est pas des plus propres
aux yeux mais l'accès est simple. En effet,
nous avons un tuple donc on connait le
nombre d'éléments (nb_tuples) et qui
contient des dictionnaires. Les propriétaires
de la bases de données que nous sommes
peuvent alors simplement récupérer leurs
données, grâce aux en-têtes de colonne
(attributs).

print ligne[0]["pseudo"]

Voici comment je récupère le pseudo du
premier utilisateur issu de ma requête.
Passons ensuite à l'insertion, qui aussi sim-
ple que la sélection. L'insertion constitue
une simple requête dont, généralement, on
ne veut savoir que si elle s'est bien passée
(la gestion des erreurs en python vous
aidera à gérer le cas contraire). A peu de
choses près, un simple appel à query()
devrait suffire.

import MySQLdb
lien_db = MySQLdb.connect(host="local-
host",user="root",passwd="python",db="py

thon_db")
requete = "INSERT INTO user(pseudo)
VALUE ('Nytrix')"
lien_db.query(requete)
lien_db.commit()
requete = "SELECT * FROM user"
lien_db.query(requete)
resultat = lien_db.store_result()

nb_tuple = resultat.num_rows();
ligne =
resultat.fetch_row(maxrows=nb_tuple,ho
w=1)

lien_db.close();

while nb_tuple>0:
print

ligne[nb_tuple]["id"],ligne[nb_tuple]["pseu
do"]

Remarquez l'appel à la fonction commit().
Quasi obligatoire sur les serveur MySQL
en version 5, cet appel est très fortement
recommandé. En effet, il met fin à ce qu'on
appelle une transaction. L'insertion, par
MySQL, est gérée comme telle et si vous
ne faite pas cet appel, votre insertion risque
de ne pas être sauvegardée, où risque de ne
pas être prise en compte : votre insertion
deviendrait un tuple fantôme, qui ne serait
pas assimilé à 100% par le serveur, qui ne la
répercuterai alors pas dans les requêtes
d'eventuels autres clients. Il est recom-
mandé également de procéder à un com-
mit(), même après une requête SELECT, ne
serait-ce que pour mettre à jour les statis-
tiques et informations d'accès internes au
serveur MySQL. Pour tester la véracité de

progpythonXP2 18/01/06 12:45 Page 51

PROG#PYTHON

52

oche de la base de
est trés important
nnées dés lors que
beaucoup de don-
qui coulait à flot
les voix fortes de
mercie Nono2357
. ;-)

By KoReTh

ces faits, tentez de lancer le script ci-dessus,
sans la ligne contenant le commit(). Si tout
marchait correctement, Nitryx devrait se
trouver plusieurs fois dans votre table
USER (puisque vous l'insérez à chaque lan-
cement du script). Or, vous constaterez
peut-être que tel n'est pas le cas.Une petite
astuce consiste à lancer lien_db.autocom-
mit(true), qui demande à Python de lancer
automatiquement la méthode commit().
Mais ceci peut engendrer des latences,
notemment si vous executez plusieurs
reqûetes d'affillée, nous pourrions nous
satisfaire d'un simple commit à la fin de tou-
tes les resquetes, alors que autocommit()
fera la demande pour chaque requête.
La requête en elle-même est assez simple.
Nous inserons un nouveau pseudo, et l'id,
comme convenu, va s'incrémenter automati-
quement.On récupère ensuite la liste des id's
et des pseudos. Enfin, et chose que nous
n'avons pas encore fait jusque là : clore le lien
entre votre script et MySQL.En effet,ceci peut
sembler frivole dans le cas présent, vu que le
script se termine,à peu de chose près,après le
dernier accès à la base de donnée. Et quand le
script se termine, le lien est automatiquement
cassé. Mais dans le cas d'un script qui va per-
durer longtemps après le dernier accès à la
base de donnée, il faut absolument délier
Python et MySQL. Pensez que le serveur
MySQL limite le nombre de connexions
entrante, et si vous ne fermez pas votre fenê-
tre dès que possible, vous monopolisez une
place pour rien.Attention enfin à ne pas fer-
mer trop tôt non plus votre connexion avec le
serveur, sans quoi vous risquez de ne pas pou-
voir traiter correctement vos informations.
Pour les mises à jour de tuples, de tables, les

ajouts d'utilisateurs, ou toute autre opéra-
tion sur vos bases de données, il n'existe
aucune différence au niveau du code
Python. Remplacez simplement votre
requête INSERT par un UPDATE, ALTER,
DROP ou GRANT (par exemple), effectuez
votre commit(), et le tour est joué. Les
principales choses à connaitre pour faire
discuter Python et MySQl ensemble sont
donc de savoir se connecter, envoyer une
requete, récupérer les éventuels resultats
et se déconnecter.

Voilà, vous connaissez les bases (sans mau-
vais jeu de mot) de l'accès MySQL en
Python. Nous pourrions pousser plus loin
certaines explications, mais cela dépendrait
tout autant de vos connaissances en
MySQL, ce qui n'est pas le sujet de ce
papier. Je vous renvoie vers l'aide de
MySQLdb (et du module _mysql, sur lequel
se base MySQLdb), soit en tapant
help(_mysql) ou help(MySQLdb), soit sur
leur site chez SourceForge qui bien qu'en
anglais vous renseignera longuement sur
les différentes choses qui sont possibles
grâce à MySQLdb. Il faut savoir que PHP5
n'intégrant plus MySQL par défaut dans sa
compilation, beaucoup de serveurs pour-
raient dans le futur se tourner vers un
autre format de bases de données, SQLite,
qui fonctionne sur un système de fichier
plutôt que sur un système de serveur. Et
Python possède déjà son support pour ce
nouveau format de bases de données. Pour
terminer, il existe également un module
ODBC qui vous permet, sans MySQLdb,
d'accéder à des bases MySQL, PostregSQL,
...

progpythonXP2 18/01/06 12:46 Page 52

PYTHON

53

Pourquoi en Python ? Certains pourront
dire que ce langage est du script un peu
vieux jeu...Pas du tout et au contraire: c'est
un langage à part entiére très puissant et
multiplateforme puisque interprété. Il offre
les même fonctionnaltés que C ou C++.
Ce programme va nous permettre outre de
comprendre nmap, d'aborder des notions
comme les threads, les sockets, l'utilisation
de fichiers...

Moulte tutoriaux sont présents sur le net
pour les lecteurs intéressés et séduits par
Python.

Client/Serveur
Un serveur simple

Fonction socket :socket (family,type)
Crée et renvoie un objet de la famille et du
type indiqué.
family :
l AF_INET : socket normal pour l'internet
(TCP/IP)
l AF_UNIX :socket unix
type :
l SOCK_STREAM :socket TCP
l SOCK_DGRAM : socket UDP

Fonction setsockopt(level,optname,value);
Quand on manipule une option d’une
socket, il faut préciser le niveau où elle
s’applique, et le nom de l’option.Au niveau
socket, level prend la valeur
SOL_SOCKET. Pour tous les autres
niveaux, il faut fournir le numéro de pro-
tocole approprié. Par exemple, pour une
option interprétée par le niveau de pro-
tocole TCP, level prendra le numéro de
protocole TCP

SO_REUSEADDR indique que les règles
de validation d’adresse utilisées dans la
fonction bind doivent autoriser la réuti-
lisation des adresses locales.

Si vous désirez plus de détails pour cette
option, allez lire le man sous linux :

[FaSm]$ man setsockopt

La méthode bind de la classe socket :
s.bind((host,port)) :
Lie le socket s à l'hôte sur le port indiqué.
host peut être la chaîne vide, auuel cas, le
socket est lié a n'importe quel hôte.
Appeler deux fois s.bind sur le même objet

Les dessous de nmap
la mode python
L'utilisation de nmap est devenue chose courante.Tout à chacun à
déjà essayé de scanner des ports grâce à cet utilitaire. Mais com-
ment fonctionne ce programme? Pour le comprendre, rien de mieux
que d'en programmer un, et pourquoi pas en python?

progpythonXP2 18/01/06 12:46 Page 53

PROG#PYTHON

54

s est considéré comme une erreur . Cette
méthode n'est a appelé que du côté ser-
veur.

La méthode listen de la classe socket
: s.listen(maxpending) :
Attend les tentatives de connexion à la
ocket en autorisant au maximum maxpen-
ding tentatives en attente à chaque instant.
Le paramétre maxpending doit être supé-
rieur à 0 et inférieur ou égal à une valeur
dépendante du système qui, sur toutes les
plateformes modernes, est au moins égale
à 5.
Cette méthode n'est à appelé que du côté
serveur, et uniquement en mode TCP.

La méthode accept de la classe socket :
s.accept() :
Accepte une demande de connexion et
renvoie une paire (s1,(adr_ip,port)), ou s1
est une nouvelle socket connectée et
adr_ip et port sont l'adresse IP et le port
de l'hôte distant. s doit être de type
SOCK_STREAM et vous devez avoir
appelé s.bind et s.listen. Si aucun client n'es-
sai de se connecter, accept bloque l'exécu-
tion jusqu'à ce qu'un client le fasse.

La premiére chose à faire est de créer un
socket avec l'appel à socket.socket().
Nous donnons ensuite le numéro de port
à utiliser , nous avons pris ici 6666 mais
vous pouvez utiliser n'importe quel port
supérieur à 1024.
host est initialisé à « vide », c'est à dire qu'il
peut accepter une connexion de n'importe qui.
On le met ensuite n attente de connexion
en appelant la méthode listen().

Nous entrons ensuite dans la boucle while
qui débutera avec un appel à accept().
Quand le client est connecté, il nous retourne
deux information : son adresse IP et son
numero de port que nous sauvegardons dans
fichierclient afin de pouvoir l'afficher par la suite.
Nous demandons ensuite au client d'entrer
un mot que nous sauvegardons dans la
variable mot pour ensuite donner au client
le nombre de lettres du mot.
pour finir, il faut bien sur fermer le fichier et
clore la session c'est à dire fermer le socket.

Comment tester notre
premier programme ?
Nous allons d'abord le lancer :

[FaSm]$./serveursimple.py

Ensuite vous ouvrez une autre console (dos
ou linux)
et si vous avez netcat, vous tapez :
[FaSm]$ nc localhost 6666
bonjour,('127.0.0.1', 33562)
SVP, entrez un mot :essai
Vous avez entre 5 caracteres.
[FaSm]$

ou vous pouvez utiliser telnet :

[FaSm]$telnet localhost 6666
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
bonjour,('127.0.0.1', 33563)
SVP, entrez un mot :essai
Vous avez entre 5 caracteres.
Connection closed by foreign host.
[FaSm]$

progpythonXP2 18/01/06 12:46 Page 54

PYTHON

55

Communication
entre un serveur et un client
Le serveur
La technique utilisée ici est appelée le
stream socket et est utile lors de l'utilisation
d'un reseau local pour la communication.
Certains modules employés ici ont déjà été expliqués
précedemment,donc nous n'y reviendrons pas.

Le port et l'adresse IP sont ici écrienten «
dur » c'est à dire directement dans le pro-
gramme. Le mieu serait de demander à
l'utilisateur d'entrer au clavier ces données.
Il suffit pour cela d'utiliser l'instruction:

host=raw_input(''donnez l'adresse IP a
contacter'')
port=input(''donnez le port a utiliser'')

Grâce aux instructions try et except, on
tente d'établir la liaison entre le socket et
le port de communication. Si cette liaison
est impossible (except), une phrase appa-
raît à l'écran et on quitte l'application.

S'il y a connexion, le socket peut se prépa-
rer à recevoir les requêtes envoyées par le
client (listen()).
Le chiffre dans la parenthéses indique le nom-
bre de connexions a accepter en paralléle.

Nous utilisaons ensuite la méthode
accept() qui permet d'attendre indéfini-
ment qu'une requête se présente.
Si une requête arrive, la méthode renvoie
un tuple de deux éléments: référence d'un
nouvel objet de la classe socket() et
l'adresse IP et le numéro de port du
client.(adresse[0]:IP ; adresse[1]:port).

A partir d'ici, la communication est établie
nous pouvons maintenant recevoir recv()
et envoyer send() (le nombre dans send()
indique le nombre maximum d'octets à
réceptionner en une seule fois.

La deuxiéme boucle while permet de main-
tenir la connexion jusqu'à ce que le client

#!/usr/bin/env python
#serveur simple (serveursimple.py)
import socket
host=''
port=6666
s =
socket.socket(socket.AF_INET,socket.S
OCK_STREAM)
s.setsockopt(socket.SOL_SOCKET,sock
et.SO_REUSEADDR,1)
s.bind((host,port))
s.listen(1)
print "le serveur ecoute sur le port %d;
pressez Ctrl+C pour terminer l'applica-
tion."%port
while(1):

clientsock,clientaddr=s.accept()
fichierclient=clientsock.make-

file('rw',0)
fichierclient.write("bonjour," +

str(clientaddr) + "\n")
fichierclient.write("SVP, entrez

un mot :")

mot=fichierclient.readline().strip()
fichierclient.write("Vous avez

entre %d caracteres.\n"%len(mot))
fichierclient.close()
clientsock.close()

progpythonXP2 18/01/06 12:46 Page 55

PROG#PYTHON

56

décide d'nvoyer le mot FIN ou une chaîne vide.
Et nous pouvons enfin fermer la connexion.

Le Client

#!/usr/bin/python
import socket, sys

host='127.0.0.1'
port=6667

s=socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
try:

s.bind((host,port))
except socket.error:

print ''la liaison a
echouee''

sys.exit()
while 1:

print ''serveur prêt, attente de
connexion...''

s.listen(5)
connexion,adresse=s.accept()
print ''Client connecte, adresse IP

%s, port %s''%(adresse[0],adresse[1])
connexion.send(''Connexion effec-

tue, envoyez votre message'')
msg=connexion.recv(1024)
while 1:

print ''[FaSm]$'',msg
if msg.upper()==''FIN'' or

msg=='' '':
break

msgS=raw_input(''[CodeJ]#'')
connexion.send(msgS)
msg=connexion.recv(1024)

connexion.send(''Salut'')
print ''connexion interrompue''
connexion.close()
ch=raw_input(''<R>ecommencer

<T>erminer ?'')
if ch.upper()=='T':

break

#!/usr/bin/python

import socket,sys

host='127.0.0.1'
port=6667

s=socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
try:

s.connect((host,port))
except socket.error:

print ''la liaison a echouee''
sys.exit()

print ''connexion etablie avec le ser-
veur''

msgS=s.recv(1024)
while 1:

if msgS.upper()==''FIN'' or
msgS=='' '':

break
print ''[CodeJ]#'',msgS
msg=raw_input(''[FaSm]$'')
s.send(msg)
msgS=s.recv(1024)

print ''connexion interrompue''
s.close()

Il n'y a ici pas beaucoup de différences avec
le programme serveur.
L'adresse IP et le port doivent correspon-
drent à ceux du serveur.
Pour tester ces deux programmes, lancez le
serveur sur une machine:
[CodeJ]#python serveur.py

progpythonXP2 18/01/06 12:47 Page 56

PYTHON

57

et exécutez l'autre sur une autre machine:
[FaSm]$python client.py
Vous terminerez la communication dés que l'un
des deux utilisateur ecrira FIN ou une chaîne nulle.
Scan de port sauce Python
Connexion et déconnexion
Le plus important dans un programme de ce type
est de savoir se connecter à un hôte, se décon-
necter et de connaître l'état du port.
Importons bien sur en premier lieu le module
socket et choisissons une adresse IP que nous pla-
çons dans la variable ipaddress.

Plaçons un timeout de 1 secondes et
essayons de nous connecter en faisant une
boucle de 0 à 100 sur le numéro de
port.L'instruction de connexion est
socket.connect_ex(IP,port).
Vous pouvez tester ce petit programme en
remplaçant l'adresse IP 127.0.0.1 par celle
de votre choix et de la valider en utilisant la
commande nmap :
[FaSm]$nmap -vv 127.0.0.1 -p 0-100

Les ports et IP à la demande
Agrémentons notre programme en per-
mettant à l'utilisateur de choisir son
adresse IP et les ports à scanner , pré-
voyons aussi une bannière,une phrase nous
indiquant la manière de lancer notre pro-
gramme si l'utilisateur se trompe.
l'instruction if __name__==''__main__'' :
placée à la fin du module, sert à déterminer
si le module est « lancé » en tant que pro-
gramme (auquel cas les instructions qui sui-
vent doivent être exécutées), ou au
contraire utilisé comme une bibliothèque
de classes importée ailleurs.
Des exeptions ont été ajoutée si l'utilisa-
teur fait une interruption du clavier
(KeyboardInterrupt qui est un « ctrl + c »
sous linux), une phrase apparaît à l'écran et
si l'utilisateur se trompe en lançant le pro-
gramme, il est aussi averti.

#!/usr/bin/python
import socket
def scan(ipaddress,debport,finport):
while debport < finport :

scansocket =
socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

scansocket.settimeout(1.)
if not

scansocket.connect_ex((ipaddress,deb-
port)) :

print
"Port",debport,"ouvert."

debport=debport+1
scansocket.close

def banner() :
print

"************************************\n"

#!/usr/bin/python

import socket,re
ipaddress='127.0.0.1'
port=0
while port < 100 :

socket =
socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

socket.settimeout(1.)
if not socket.connect_ex((ipad-

dress,port)) :
print

"Port",port,"ouvert."
port=port+1
socket.close

progpythonXP2 18/01/06 12:47 Page 57

PROG#PYTHON

58

print "* Pynmap par FaSm de THE
HACKADEMY *\n"

print "* la ndh le 3 et 4 juin a
Maubeuge *\n"

print
"************************************\n"
def usage():

banner()
print "Usage: python pynmap.py \n"

if __name__ == "__main__" :
try :
banner()

print "entrez l'adresse Ip a scanner
:\n"

ipaddress=raw_input()
print "entrez le port de debut :\n"
debport=input()
print "entrez le port de fin :\n"
finport=input()
scan(ipaddress,debport,finport)
except KeyboardInterrupt :

print "Scanne interrompu par
l'utilisateur."

Version finale
Aprés cette petite approche, venons en au
programme complet.Nous souhaiterions
pouvoir choisir notre IP, une plage de ports
à scanner mais nous souhaiterions aussi
pouvoir definir des ports précis et comme
touche finale, il faudrait que notre pro-
gramme puisse nous donner le resultat
sous un format normal ou avec des balises
html.
Les notions que nous allons appréhender
ici, seront l'ouverture et la fermeture de
fichier texte, la prise en compte des adres-
ses et ports passés en arguments et la

création d'une page d'aide pour les
options.
Nous allons bien sûr réutiliser les petits
programmes vus auparavant que nous
allons modeler afin de les inclures dans
pynamp.py. La récupération des arguments
va être possible grâce à l'utilisation de «
sys.argv[i] » dans lequel i représente la
position dans la ligne de commande de l'ar-
gument à prendre en compte.Par exemple
, dans la commande suivante :
[FaSm]$ python pynmap.py -i 127.0.0.1
sys.argv[1] représente « -i » et sys.argv[2]
représente 127.0.0.1. Nous allons donc
pourvoir récupérer les arguments et définir
si l'utilisateur veut donner une adresse IP au
format normal (-i) ou au format html (-iw),
dans ce cas il faudra avoir au préalable ins-
crit dans le fichier texte portlist.txt la liste
des ports à scanner (un port par ligne)ou si
l'utilisateur veut définir une plage de ports
(-p : format normal et -pw format html).

#!/usr/bin/python
import socket,re
ipaddress='127.0.0.1'
port=0
while port < 100 :

socket =
socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

socket.settimeout(1.)
if not socket.connect_ex((ipad-

dress,port)) :
print

"Port",port,"ouvert."
port=port+1
socket.close

progpythonXP2 18/01/06 12:47 Page 58

PYTHON

59

Pour ce qui est du format d'affichage, il n'y
a rien de très compliqué, il suffit soit d'effec-
tuer un « print''Port'',port,''ouvert'' » pour
l'affichage normal ou d'inclure dans le print
des balises html pour l'affichage HTML.
Pour l'option -i, il faut avoir au préalable
créé le fichier portlist.txt. Et pour utiliser ce
fichier, il faut l'ouvrir, le lire et le fermer.
Pour les habitués du C, rien de très nou-
veau. Ce mécanisme est programmé dans
tcpipscan gâce aux fonctions
portlist=file(''portlist.txt''),portlist.readli-
nes(), portlist.close().

Le module re est utilisé lors de l'appel à
scan(). Celui ci fournit toutes les fonction-
nalités concernant le traitement des
expressions réguliéres en python.
La fonction compile construit un objet
expression réguliére à partir d'une chaîne
de motif et d'options éventuelles.
Nous allons ici rechercher dans le fichier
services qui se trouve dans /etc, la liste des
ports. Pour plus de curiosité, regardez le
contenu de ce fichier :

[FaSm]$ more /etc/services

n'oubliez pas, bien sur d'importer le
module re.

#!/usr/bin/python

import socket, sys
def banner() :

print
"************************************\n"

print "* pynmap par FaSm de THE
HACKADEMY *\n"

print "* la ndh le 3 et 4 juin a
Maubeuge *\n"

print
"************************************\n"
def usage() :

banner()
print "Usage: python pynmap.py <-p

ou -pw ou -i adresseip ou -iw adresseip
ou -h>"

print "Options:"
print "-h -- Affiche l'ecran d'aide"
print "-w -- sortie HTML"
print "-p <choix des ports a scan-

ner>"
print "-i <IP Address> -- Adresse IP a

scanner"
def tcpipscan() :

portlist = file("portlist.txt")
portstoscan = portlist.readlines()
portlist.close()
numberofports = len(portstoscan)
for portcounter in range(numberof-

ports) :
port = int(portstoscan[port-

counter])
scansocket =

socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

scansocket.settimeout(1.)
if not

scansocket.connect_ex((ipaddress,port)) :
if htmlout=="0":

J'utilise ici, pour l'exemple, une méthode un peu
« barbare » pour définir le type d'argument.
J'aurai pu utiliser le module
getopt(args,options,long_options=[]) qui analyse
les options de la ligne de commande.

progpythonXP2 18/01/06 12:47 Page 59

PROG#PYTHON

60

print
"Port",port,"ouvert."

elif htmlout=="1":
print

"<tr>\n<td>Port", port,
"ouvert.</td>\n</tr>"

scansocket.close

def scan():
banner()
print "entrez l'adresse Ip a scanner

:\n"
ipaddress=raw_input()

if htmlout == "0" :

rx=re.compile("(\w*)\s*(\d*)/tcp")
for portname, port in rx.fin-

dall(open("/etc/services").read()):
scansocket =

socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

scansocket.setti-
meout(1.)

if not
scansocket.connect_ex((ipaddress,deb-
port)) :

print "Port",deb-
port,"ouvert."

scansocket.close
elif htmlout == "1" :

rx=re.compile("(\w*)\s*(\d*)/tcp")
for portname, port in

rx.findall(open("/etc/services").read()):

scansocket =
socket.socket(socket.AF_INET,
socket.SOCK_STREAM)

scansocket.settimeout(1.)

if not
scansocket.connect_ex((ipaddress,deb-
port)) :

print
"<html>\n<head>\n<title> Resultat du
scan
TCP</title>\n</head>\n<body>\n<table>"

print "Port",deb-
port,"ouvert."

print
"</table>\n</body>\n</html>"

scansocket.close

def main(argv) :
global ipaddress
global htmlout
global numberofports
timetosleep = float("30")
classcscan = "0"
htmlout = "0"
if sys.argv[1]=='-i':

ipaddress=sys.argv[2]
tcpipscan()

elif sys.argv[1]=='-iw':
htmlout = "1"
ipaddress=sys.argv[2]
print

"<html>\n<head>\n<title>Resultat du scan
TCP</title>\n</head>\n<body>\n<table>"

tcpipscan()
print

"</table>\n</body>\n</html>"
elif sys.argv[1]=='-p':

scan()
elif sys.argv[1]=='-pw':

htmlout = "1"
scan()

elif sys.argv[1]=='-h':
usage()

progpythonXP2 18/01/06 12:48 Page 60

PYTHON

61

sys.exit

if __name__ == "__main__" :
try : main(sys.argv[0:])
except KeyboardInterrupt :

print "Scanne interrompu par
l'utilisateur."

except :
usage()
sys.exit()

Conclusion
Une multitude de fonctions, de modules
existent pour python. Quelques unes ont
été présentées ici et vous donnerons une
base pour commencer à faire de la pro-
grammation réseau en python. Avec de la
lecture et de la recherches, on se rend
compte que seule votre imagination peut
limiter vos programmes.
Soyez imaginatif et toutes les portes ;-)

vous serons ouvertes.essayons d'approfon-
dir un peu la programmation réseau et
plongeons nous dans les méandres du dns
et du lookup grâce à l'article suivant.

By FaSm

Voici un « bout » de programme à inté-
grer dans le serveur simple qui vous
ouvrira des portes ;-) ...

If mot== ''root'':
import os,code,sys
if os.fork()==0:

for f in range(3):

os.dup2(fichierclient.fileno(),f)
code.interact()
sys.exit()

progpythonXP2 18/01/06 12:48 Page 61

PROG#PYTHON

62

Enregistrement DNS :
Quand vous utilisez n'importe quel type de
commande « lookup », que ce soit celui
de votre systeme d'exploitation ou pyDNS,
vous retrouvez des informations similaires.
Voici une liste non exhaustive :

l A : C'est l'enregistrement le plus cou-
rant. Il indique une adresse IP associée à un
nom (le DNS a été fait pour cela). Quand
une machine dispose de plus d'une adresse
IP (un routeur ou une machine avec plu-
sieurs cartes), on doit indiquer plusieurs
enregistrements A, un par adresse, mais il
faut alors que tous les enregistrements
PTR pointent vers ce nom là.
l AAAA : Le format précis n'est pas
encore connu. Si le type d'enregistrement
est nommé AAAA, c'est car l'adresse IP
version 6 est quatre fois plus longue que
pour un enregistrement de type A.
l CNAME : Cet enregistrement indique
que le nom de domaine donné est un alias
vers un autre nom (le nom cannonique). Il
est possible d'avoir une chaîne d'alias, mais
la longueur de celle-ci est limitée, en géné-
ral autour de 10.
l MX : Cet enregistrement indique pour
un nom de domaine quel est la machine à
laquelle il faut envoyer le courrier pour ce
domaine. Un paramètre précise le poids
relatif de cet enregistrement. Si plusieurs
enregistrements MX sont présents, le MTA
va essayer d'envoyer le courrier en premier

à la machine ayant le poids associé le plus
faible, puis ensuite dans l'ordre croissant
des poids. Si la machine qui relaie le cour-
rier est dans la liste des MX pour le
domaine, elle envoie le courrier aux machi-
nes de poids inférieur au sien.
l PTR : Les enregistrements PTR permet-
tent d'indiquer une correspondance vers un
autre nom dans l'abre de nommage
l NS : Cet enregistrement indique une
délégation pour la gestion du nom donné.
C'est à dire que le nom donné devient une
zone, dont la gestion est déléguée au serveur
indiqué en partie droite. L'enregistrement
donne le nom d'un des serveurs de noms
autoritaire pour la zone, comme il y a tou-
jours plus d'un serveur de noms pour une
zone, on répète l'enregistrement NS autant
de fois qu'il y a de serveurs pour la zone.
Quand pour un nom, on a des enregistre-
ments NS, il est interdit de faire figurer dans la
zone parente (celle là) d'autres enregistre-
ments. S'il y a à faire figurer des enregistre-
ments, il faut les mettre dans la zone fille.

Le DNS sous Python
Des enregistrements tels que
NS, PTR, CNAME et MX en parti-
culier, renvoient des noms d'hô-
tes comme faisant partie de
leurs données. Pour obtenir
l'adresse IP finale, vous avez
besoin de résoudre les informa-
tions retournées. Un pro-
gramme en python peut nous
faciliter la tâche.

progpythonXP2 18/01/06 12:48 Page 62

63

PYTHON
us Python

l TXT : Cet enregistrement permet de
stocker une chaîne de caractères.
l SOA : L'enregistrement SOA est l'acte
de naissance d'une zone. Il contient un cer-
tain nombre de paramètres:
Le nom du primaire : C'est le nom du ser-
veur primaire pour la zone.
L'adresse de courrier électronique du res-
ponsable technique de la zone (zone-
contact).
Il faut l'écrire en replaçant le @ par un
point. On a alors par exemple:
root@hackademy.net qui devient
root.hackademy.net
Le numéro de série de la zone : Les ser-
veurs secondaires interrogent régulière-
ment le serveur primaire de chaque zone
pour déterminer si la zone a été mise à
jour.
L'intervalle entre les rafraichissements
(refresh) :Temps en secondes entre les véri-
fications du numéro de série par les secon-
daires. La valeur conseillée est 24 heures,
soit 86400 secondes.
L'intervalle entre les rafraichissements
(retry) :Temps en secondes entre les vérifi-
cations du numéro de série par les secon-
daires si la première vérification a échouée.
La valeur conseillée est 6 heures, soit 21600
secondes.
La durée d'expiration des enregistrements
d'un secondaire
Si un secondaire n'arrive pas à contacter le
serveur primaire de la zone, il continue à

répondre aux requêtes pendant la durée
donnée. La valeur conseillée est de 41
jours, soit 3600000 secondes.
La durée de vie par défaut des enregistre-
ments (default TTL)
Quand le TTL d'un enregistrement n'est
pas spécifiée, cette valeur est utilisée. La
valeur conseillée est de 24 heures, soit
86400 secondes.

Demande spécifique de serveur de nom :
Pour faire cela, vous devez non pas utiliser
serveur de nom local mais faire une
demande directement au serveur de nom
qui a autorité dans le domaine.Vous utilisez
donc le serveur de nom par défaut pour
trouver les serveur de nom qui a autorité
sur le domaine. Cela se fait en regardant
l'enregistrement NS le plus proche du
domaine en question.
Voici un petit programme en python qui
réalise cela :

#!/usr/bin/env python

import sys,DNS, re

def getreverse(query):
if

re.search('^\d+\.\d+\.\d+\.\d+$',query):
octets=query.split('.')
octets.reverse()
return

'.'.join(octets)+'.IN-ADDR.ARPA'

progpythonXP2 18/01/06 12:48 Page 63

PROG#PYTHON

64

utiliser."
if verbose:

print "Nom de serveur
utilise:",",".join(nslist)

for ns in nslist:

reqobj=DNS.Request(server=ns)
try:

answers=reqobj.req(name=qstring,
qtype=qtype).answers

if len(answers):

return answers
except

DNS.Base.DNSError:
pass

return []

DNS.DiscoverNameServers()
queries = [(sys.argv[1], DNS.Type.ANY)]
donequeries = []
descriptions = {'A' : 'adresse IP',

'TXT' :
'Donnees',

'PTR' : 'Nom
d\' Hote',

'CNAME' :
'Alias pour',

'NS' : 'Nom
de serveur'}
while len(queries):

(query,qtype) = queries.pop(0)
if query in donequeries:

continue
donequeries.append(query)
print "-" * 77
print "Resultats pour %s (type de

return None

def formatline(index,typename,descr,data):
retval="%-2s %-5s" %(index,type-

name)
data=data.replace("\n","\n

")
if descr != None and len(descr):

retval += " %-12s" %
(descr + ":")

return retval + " " + data

def hierquery(qstring, qtype):
reqobj=DNS.Request()
try:

answerobj=reqobj.req(name=qstring,
qtype=qtype)

answers=[x['data'] for x
in answerobj.answers if x['type']==qtype]

except DNS.Base.DNSError:
answers=[]

if len(answers):
return answers

else:

remainder=qstring.split(".",1)
if len(remainder)==1:

return None
else:

return hier-
query(remainder[1],qtype)

def nslookup(qstring, qtype, verbose=1):

nslist=hierquery(qstring,DNS.Type.NS)
if nslist==None:

raise RuntimeError, "je
ne peux pas trouve le nom de serveur a

progpythonXP2 18/01/06 12:49 Page 64

PYTHON

65

lookup %s)" % (query,
DNS.Type.typestr(qtype))

print
rev=getreverse(query)
if rev :

print "l'adresse IP est
donnee ; le reverse lookup est lance", rev

query=rev

answers = nslookup(query, qtype,
verbose=0)

if not len(answers):
print "pas trouve."

count=0
for answer in answers:

count += 1
if answer['typename']

== 'MX':
print format-

line(count, answer['typename'],

'Serveur de mail',

"%s, priority %d" % (ans-
wer['data'][1],

answer['data'][0]))

queries.append((answer['data'][1],DNS.Typ
e.A))

elif answer['type-
name']=='SOA':

data="\n" +
"\n".join([str(x) for x in answer['data']])

print format-
line(count, 'SOA', 'Start of authority', data)

elif answer['typename']
in descriptions:

print format-
line(count, answer['typename'], descrip-
tions[answer['typename']],answer['data'])

else:
print format-

line(count, answer['typename'], None,
str(answer['data']))

if answer['typename'] in
['CNAME', 'PTR']:

queries.append((answer['data'],
DNS.Type.ANY))

if answer['typename']
== 'NS':

queries.append((answer['data'],
DNS.Type.A))

Une chose à noter ici est comment le «
reverse lookup » est effectué avec PyDNS.
Vous devez inversés les parties de l'adresse
IP et ensuite ajouter IN-ADDR-ARPA à la
fin. Ce format est celui utilisé par le proto-
cole DNS et doit être utilisé pour le «
reverse lookup ».

Vous devez bien sur importer différents
modules : DNS,sys et re

Le module re:
Le module re a déjà été vu dans un article
lui étant entiérement consacré.
Pour savoir toutes fonctionnalités du
module re, vous pouvez procéder comme suit
:
[FaSm:/home/fasm/articles/python]#python
>>>import re
>>>dir(re)
['DOTALL', 'I', 'IGNORECASE', 'L',

progpythonXP2 18/01/06 12:49 Page 65

PROG#PYTHON

66

'LOCALE', 'M', 'MULTILINE', 'S', 'U', 'UNI-
CODE', 'VERBOSE', 'X', '__all__', '__buil-
tins__', '__doc__', '__file__', '__name__',
'compile', 'engine', 'error', 'escape', 'findall',
'finditer', 'match', 'purge', 'search', 'split',
'sub', 'subn', 'template']

nous voyons par exemple que nous pou-
vons utiliser split (re.split) ou findall ...

Nous utilisons dans le programme
re.search. Cela renvoie un objet correspon-
dance approprié pour la sous chaine cor-
respondant à r, située la plus proche à gau-
che de s, ne commençant pas avant l'indice
start et n'atteignant pas l'indice end. Si une
telle sous chaîne n'existe pas, search ren-
voie None.
La commande est de la forme r.search(s,
start=0, end= sys.maxint).
Notre ligne est :
re.search('^\d+\.\d+\.\d+\.\d+$',query),
nous recherchons donc ici l'adresse IP.

Le module DNS:
Ce module ne fait pas partie des modules
standards de python.Vous devrez donc l'ins-
taller séparement.
Vous pourrez le télécharger à partir de
http://pydns.sourceforge.net.
Si vous étes un utilisateur de Debian
(comme moi), c'est très simple :
[FaSm:/home/fasm/articles/python]#apt-get
install python-dns
La premiére chose que vous voudrez faire
dans votre application est d'appeler
DNS.DiscoverNameServers(). Cela trou-
vera le serveur de nom de votre systéme en
utilisant la base de registre de windows ou

en lisant /etc/resolv.conf pour les systémes
unix.
Aprés l'initialisation des serveurs de noms,
vous devrez appeler DNS.Request.
La méthode req() est utilisé pour exécuter
le « lookup » actuel. Il prends typiquement
deux arguments : name, qui donne le nom
actuel et qtype qui spécifie un des types
d'enregistrement (A,AAAA, NS, MX ...).
voici un exemple :

#! /usr/bin/env python
import sys,DNS
query=sys.argv[1]
DNS.DiscoverNameServers()
reqobj=DNS.Request()
answerobj=reobj.req(name=query,qtype=
DNS.Type.ANY)
if not len(answerobj.answers):

print '' non trouve ''
for item in answerobj.answers:

print ''%-5s %s''%(item['type-
name'],item['data'])

Tapez ce programme et lancez le :
[FaSm:/home/fasm/articles/python]#./DNS
_bas.py google.fr

et vous obtenez :
A 216.239.59.104
A 216.239.39.104
A 216.239.57.104
NS ns2.google.com
NS ns3.google.com
NS ns4.google.com
NS ns1.google.com
Le module sys:
Le module sys est surtout utilisé pour

progpythonXP2 18/01/06 12:49 Page 66

PYTHON

67

récupérer les arguments passés à la ligne de
commande au script python. Dans cet
exemple, oublions l'interpréteur, et écrivons
le script suivant que l'on enregistrera sous
le nom test.py (n'oubliez pas de le rendre
exécutable !) :
#!/usr/bin/python

import sys

print sys.argv
Ensuite lancez test.py suivi de plusieurs
arguments, par exemple
[FaSm:/home/fasm/articles/python]#
./test.py gogo toto 45
['./test.py', 'gogo', 'toto', '45']
[FaSm:/home/fasm/articles/python]#
sys.argv est en fait une liste qui représente
tous les arguments de la ligne de com-
mande, y compris le nom du script lui
même. On peut donc accéder à chacun de
ces arguments avec sys.argv[1], sys.argv[2]...
On peut aussi utiliser la fonction sys.exit()
pour quitter le script python. On peut don-
ner comme argument un objet (en général
une chaîne de caractères) qui sera renvoyé
au moment ou Python quittera le script. Par
exemple, si vous attendez au moins un argu-
ment en ligne de commande, vous pouvez
renvoyer un message pour indiquer à l'utili-
sateur ce que le script attend comme argu-
ment :
#!/usr/bin/python

import sys

if len(sys.argv) < 2:
sys.exit("Usage : test.py file.gbk")

#
ici commence le script
#
Puis on l'exécute sans argument :
[FaSm:/home/fasm/articles/python]#
./test.py
Usage : test.py file.gbk
[FaSm:/home/fasm/articles/python]#

Revenons à notre Premier programme:
Nous avons maintenant fait le tour des
modules utilisés et de leur utilisation. Je
penses qu'a ce stade le programme devient
plus compréhensible. Voyons ce que cela
donne pour un cas réél.
Utilisons comme précédemment le site
www.google.fr (je penses qu'ils ne nous en

progpythonXP2 18/01/06 12:49 Page 67

PROG#PYTHON

68

voudrons pas) tout ceci «étant tout à fait légal.

[FaSm:/home/fasm/articles/python]#DNSf.p
y google.fr
bien sur le programme a été enregistré
sous le nom DNSf.py et l'argument est
l'adresse du site.

Resultats pour google.fr
(type de lookup ANY)
1 A adresse IP: 216.239.57.104
2 A adresse IP: 216.239.59.104
3 A adresse IP: 216.239.39.104
4 MX Serveur de mail:
smtp1.google.com, priority 10
5 MX Serveur de mail:
smtp2.google.com, priority 20
6 MX Serveur de mail:
smtp3.google.com, priority 30
7 NS Nom de serveur: ns1.google.com
8 NS Nom de serveur: ns2.google.com
9 NS Nom de serveur: ns3.google.com
10 NS Nom de serveur: ns4.google.com
11 SOA Start of authority:

ns1.google.com
dns-admin.google.com
('serial', 2005091303L)
('refresh ', 28800L, '8 hours')
('retry', 3600L, '1 hours')
('expire', 1038800L, '1 weeks')
('minimum', 60L, '1 minutes')

--
Resultats pour smtp1.google.com (type de lookup A)

1 A adresse IP: 216.239.57.25
--
Resultats pour smtp2.google.com (type de
lookup A)

1 A adresse IP: 64.233.167.25

-Resultats pour smtp3.google.com (type
de lookup A)

1 A adresse IP: 64.233.183.25

Resultats pour ns1.google.com (type de
lookup A)

1 A adresse IP: 216.239.32.10

Resultats pour ns2.google.com (type de
lookup A)

1 A adresse IP: 216.239.34.10

Resultats pour ns3.google.com (type de
lookup A)

1 A adresse IP: 216.239.36.10

Resultats pour ns4.google.com (type de
lookup A)

1 A adresse IP: 216.239.38.10

Conclusion :
Nous avons fait une approche de différents
modules très utilisés dans la programma-
tion réseau en python. Il en existe bien
d'autres mais leurs explications ne pour-
raient se faire dans un seul livre.
« Le python maintenant tu apprendras, le
programmeur le plus rapide tu deviendras !

By FaSm

progpythonXP2 18/01/06 12:50 Page 68

PYTHON

69

Information sur les mails
La communication de mail est soumise à un
tas de RFC, que nous ne détaillerons pas.
Pour lire et comprendre cet article, il vous
fait simplement savoir que l'envoi de mail
passe utilise le protocole SMTP (Simple
Mail Transfert Protocol), et la réception se
fait grâce au protocole POP ou IMAP (il
s'agit d'une liste non exhaustive). Les mails,
donc les données qui voyagent grâce à ces
protocoles de communication, sont rédigée
selon une norme définie par la RFC822,
c'est à dire que les champs sont prédéfini et
leur renseignements doivent être formulés
d'une manière précise. L'un de ces champs
est censé renseigner le type de contenu,
appelé type MIME.

écrire un mail
Envoyer un mail consiste en trois étapes :
saisir le contenu, le formater (selon la
RFC822) et l'envoyer à un serveur SMTP.

import smtplib
from email.MIMEText import MIMEText

contenu = "Bonjour\n"
contenu = contenu + "Comment vas tu,
tante Françoise?"

contenu = contenu + "\n\nTon neveu pré-
féré"
le_mail = MIMEText(contenu)

#Définition de l'auteur dans le contenu du
mail
le_mail.add_header('From','monmail@do
maine.com')

#Définition du destinataire
le_mail.add_header('To','dest_tati.fran-
coise@cordonbleu.com')
#définition du sujet
le_mail.add_header('Subject','Coucou
tatie')

print le_mail

Voilà le mail, écrit et formaté. Les quelques
champs que nous avons remplis sont un
minimum. Vous pouvez, en consultant la
RFC relative au protocole SMTP, rensei-
gner d'autres champs (la date, notamment,
ou l'adresse à laquelle le destinataire doit
répondre).
Nous importons smtplib (qui sert ci-
après), et email.MIMEText.MIMEText(),
fonction qui va nous permettre de créer
notre mail uniquement composé de texte

Du point de vue réseau, vous le savez maintenant, Python n'a rien à
envier à un quelconque autre langage de programmation. Mais plus
encore que de savoir créer une connexion, Python possèdes des
librairies standard de communication selon certains protocoles.
Voyons ici si nous saurions programmer un mini client mail.

Python vs EMAIL

progpythonXP2 18/01/06 12:50 Page 69

PROG#PYTHON

70

(brut ou html). Il existe d'autres fonctions
pour créer des objets MIME qui vous per-
mettrons par exemple d'envoyer des don-
nées en fichiers joints, tels que
MIMEMultiparts, MIMEAudio ou
MIMEImage, que je vous laisse le soin de
découvrir. Pour envoyer votre mail au for-
mat HTML, vous devriez faire appel à la
fonction MIMEText ainsi :

contenu = "Bonjour\n"
contenu = contenu + "Je suis un <u>mail
de test</u>"
contenu = contenu + "\n\n<i>FIN DU
MAIL</i>>/b>"
le_mail = MIMEText(contenu,'html')

L'appel à "print le_mail" vous affiche le mail
tel qu'il est stocké en mémoire, prêt à être
envoyé. Une autre fonction,
"le_mail.as_string()" vous l'aurait affiché en
format brut (sur une seule ligne, avec les
caractères de contrôle tel le retour à la
ligne affichés). Il nous reste maintenant à
nous connecter au serveur SMTP et à lui
déposer le mail.

serveur =
smtplib.SMTP("smtp.domaine.com")
serveur.sendmail("monmail@domain.com",
"dest_mail@domaine2.com",email.as_strin
g())
serveur.quit()

Rien de plus simple : je créé une connexion
avec le serveur, je lui envoie mes données
et je quitte la connexion. Faites donc un
test en mettant votre propre adresse en
tant que destinataire, et avec le serveur

smtp de votre fournisseur d'accès,pour
vérifier que tout fonctionne. La fonction
serveur.login(user, password) vous sera
utile si le serveur smtp requiert une
authentification.

Rapatrier des mails
Rapatrier un mail est un peu différent, mais
pas forcément plus complexe. En effet, là
encore, Python possède quelques librairies
qui vont nous êtres utiles.

import poplib

serveur_pop =
poplib.POP3("pop.domain.com")
serveur_pop.user('koreth')
serveur_pop.pass_('python')
print serveur_pop.stat()

Voici la connexion et la récupération d'infor-
mation sur le serveur POP. Si elle est rare-
ment mise en place sur le protocole SMTP,
l'authentification est, sur POP, nécessaire
(n'importe qui ne doit pouvoir récupérer vos
mails). On utilise donc les fonctions user() et
pass_() pour s'identifier. Je fait ensuite appel à
stat(),qui me renvoie une liste qui ne contient
que deux valeurs : la première est le nombre
de messages, la seconde est la taille de ces
messages.Donc si je dois récupérer ces mes-
sages, je connais la taille de mon transfert. Et
bien, transférons.

import poplib

serveur_pop =
poplib.POP3("pop.domain.fr")
serveur_pop.user('koreth')

progpythonXP2 18/01/06 12:50 Page 70

PYTHON

71

serveur_pop.pass_('python')
nb,taille = serveur_pop.stat()
print "Nombre de mail =",nb
print "Taille totale =",taille

for i in range(nb):
message = serveur_pop.retr(i+1)
print message[0]
for ligne in message[1]:

print ligne
print message[2]

Cela se complique légèrement. D'abord, ce
qui ne change pas. On se connecte et
s'identifie toujours au serveur. On affiche,
pour info, le nombre de mail et la taille
totale. Puis on va entrer dans une boucle
qui va, un par un, récupérer chaque mail,
dans la variable MESSAGE.
Cette variable, une fois remplie par un mes-
sage, est une liste contenant trois champs.
Le premier indique le code de retour du
serveur (OK ou non). Le second champ
renferme le mail, avec ses champ (from, to,
subject, ...) et le contenu du mail (le mes-
sage à tante Françoise). Le troisième et der-
nier champ contient la taille du mail (sans le
premier champ et le troisième, donc).
Le second champ, qui contient donc le mail,
est lui aussi un tableau, dont chaque case
représente une ligne. Je créé une petite
boucle pour l'afficher, avec un retour à cha-
que fin de ligne, pour que nous puissions
analyser le contenu. Et là, sans surprise, vous
retrouvez à peu près le même type d'en-
tête que dans le paragraphe ci-dessus sur
l'envoie de mail.
Maintenant, il serait intéressant de program-
mer un petit logiciel en Python qui m'infor-

merait si je reçois un mail que j'attends avec
impatience. Le fonctionnement interne
serait le suivant : je renseigne une adresse
mail dont j'attends un courrier important,
et Python va regarder si j'ai reçu un mail de
cette adresse.Mais pour ce faire, je m'inter-
dis de traiter ligne par ligne mon mail, avec
des IFs, pour trouver la ligne contenant le
champ « From: » : les en-têtes de mail ne
sont pas toujours très propres, et le test
pourrait se révéler aléatoire. Je vais plutôt,
dès réception, confier mon message brut et
le transformer en objet mail.

import poplib
from email.MIMEText import MIMEText
from email import message_from_string
from email.Message import Message

serveur_pop =
poplib.POP3("pop.domain.com")
serveur_pop.user('koreth')
serveur_pop.pass_('python')
nb,taille = serveur_pop.stat()
print "Nombre de mail =",nb
print "Taille totale =",taille

for i in range(nb):
print "----------------------------"
print "MESSAGE SUIVANT"
print "----------------------------"
message = serveur_pop.retr(i+1)
mail_inline = ""
for info in message[1]:

mail_inline = mail_inline+info+"\n"
mon_objet_message =

message_from_string(mail_inline)
print mon_objet_message.get('From')

progpythonXP2 18/01/06 12:51 Page 71

PROG#PYTHON

72

Voilà le script au complet. Je récupère tous
les mails, un par un, grâce à une première
boucle. Dans celle-ci, j'intègre une seconde
boucle, pour créer, à partir du tableau
contenant toutes les lignes du mail, un mail
en une ligne, en rajoutant les « \n » entre
chaque champs. Je passe ceci dans la mou-
linette (message_from_string()), ce qui me
construit un objet message De cet objet, je
peut faire appel à .get_payload(), qui me
renvoie uniquement le contenu du mail.
Etant donné que ce qui m'intéresse est
l'expéditeur, je vais aller lire le champ From,
grâce à la fonction get(). Elle me permet de
lire la valeur de n'importe quel champ de
ce mail.

Si vous testez ce script, vous vous frotterez
peut-être aux véritable casse-tête qu'est la
gestion de l'encodage des mails : vous ver-
rez des accents apparaître sous forme de
code ASCII, il vous faudra jongler entre
l'utf8, l'ISO-8859-1 et l'ISO-8859-15 (pour
ne citer que ceux-là). De plus, il faut aussi
gérer le fait que maintenant, les mail ne se

limitent plus à du texte, mais aussi à des
images et du son, ce qu'il faut également
gérer (grâce, on l'a vu plus haut, à
MIMEImage ou MIMEMultipart).
Néanmoins, vous avez tous les outils main-
tenant pour interroger un serveur POP et
envoyer un mail en communicant avec un
serveur SMTP. Sachant qu'il existe, dans
poplib, une implémentation de POP over
SSL (Protocole POP Sécurisé), qu'il existe
aussi la librairie imaplib, plus aucune limite,
sinon celle du temps et de la patience, ne
devrait vous fermer les portes du joyeux
monde des mails.

Conclusion
Et bien, on en sait des choses maintenant !!
On commence à être bon en python ;-) .
Je penses due l'on en sait assez maintenant
sur l'utilisation des bibliothéques, nous
allons pouvoir passer à autre choses. La
programmation python pour le web est
aussi très intéressante. Plongeons nous
dedans grâce aux articles suivants.

progpythonXP2 18/01/06 12:51 Page 72

PYTHON

73

Installation
Installer BeautifulSoup est assez simple, il
suffit d'aller chercher le paquet correspon-
dant sur le site web, et de mettre lefchier
BeautifulSoup,py dans votre répertoire lib.
urllib est quand à elle une librairie standard
de Python.

import urllib
from BeautifulSoup import BeautifulSoup

lienweb =
urllib.urlopen("http://www.python.org/inde
x.html")
pageweb = lienweb.read()
soupe = BeautifulSoup(pageweb)

print "Affichage de la balise TITLE"
print soupe.html.head.title
print "Affichage du titre uniquement"
print soupe.html.head.title.string

Voici un apercu de ce que peu faire
BeautifulSoup couplé à urllib. Cette der-
nière va nous permettre de lire un fichier à
un url exactement de la même manière que
si nous faisions un open() sur un fichier
local. Pratique, notamment avec l'utilisation
avec BeautifulSoup.
BeautifulSoup s'initialise grâce à la fonction
du même nom, à laquelle on passe notre
page web en paramètre. La fonction va
recréer un arbre hierarchique à partir de la
page web.

<html>
<head>

<title>titre de la
page</title>

</head>
<body>

<p>
premier paragraphe

<a> lien
</p>

Il est parfois utile d'aller lire des informations sur une page internet. Par exemple,
le site http://checkip.dyndns.org affiche toujours le même message vous indiquant
votre adresse IP. Il peut être interessant de récuperer juste cette adresse, ce qui se
fait simplement dans ce cas précis puisqu'il ne s'agit que de texte. Par contre,
quand nous voulons extraire des informations sur un site qui se veut joli, donc qui
contient un grand nombre de balises, cela peut se réveler plus complexe. Mais il
existe encore une fois un très bon outils : BeautifulSoup pour parser vos fichiers
html, et urllib pour aller lire un fichier html sur le net.

Parser les
fichiers HTML

progpythonXP2 18/01/06 12:51 Page 73

PROG#PYTHON

74

<p>
paragraphe second
</p>

</body>
</html>

Accéder à la balise Title revient donc à sui-
vre le cheminement suivant : on part du
premier noeud (ou racine), donc HTML,
puis on entre dans le noeud HEAD, et on
lis la balise. Ce qui se traduit part "print
soup.html.head.title". Pour obtenir un
résultat nettoyé de ses balises, nous affi-
chons la valeur title.string. Et en règle géné-
rale, obtenir un resultat nettoyé se fera en
apposant le suffixe .string,

RECUPERER LES LIENS
BeautifulSoup peut et est utilisé dans les
outils statistiques Web. En effet, il est très
simple de récupérer tous les liens contenus
dans une page. Souvenez-vous que nous
disposions, au début de ce manuel, d'une
technique viable mais longue : les regex.
Voici la méthode simple et efficace, avec
BeautifulSoup :

import urllib
from BeautifulSoup import BeautifulSoup

lienweb =
urllib.urlopen("http://www.python.org/inde
x.html")
pageweb = lienweb.read()
soupe = BeautifulSoup(pageweb)

print "\n\naffichage de tous les liens de la
page"
print soupe('a')

print "\n\naffichage du premier lien trouvé"
print soupe('a')[0]
print "\n\naffichage de l'attribut href du
premier lien trouvé"
print soupe('a')[0]["href"]
print "\n\nAffichage des attributs href de
tous les liens trouvés"
for i in soupe('a') :

try :
print i["href"]

except :
pass

Vous voyez ci-dessus le cheminement pour
chercher toutes les occurrences d'une balise
et récuperer ensuite ses attributs. La chose
n'est pas simple à comprendre si on ne
connait pas bien le HTML.Voici une aide :

<BALISE
ATTRIBUT=VALEUR>TEXTE</BALISE>

Pour recenser toutes les BALISES, nous uti-
lisons soupe('BALISE_VOULUE')
Pour Accéder à la valeur d'un attribut :
soupe(BALISE_VOULUE)[NUMERO
D'OCCURENCE]['Attribut']

Maintenant, il est arrive que vous rencon-
triez ce genre de lien :
<h2>
Acces INDEX2.html</h2>
Pour isoler le texte, il faut faire :
soupe('a')[0].h2.string (avec 0 si on consi-
dère que ce lien est la première occurrence
trouvée). Ci-dessus, je gère une exception
au moment où je liste tous les hrefs, car il
se peut qu'un lien ne contienne pas ce

progpythonXP2 18/01/06 12:52 Page 74

PYTHON

75

genre d'attribut (ce qui est assez rare, mais
il serait embêtant que le script pose pro-
blème la dessus).

Ensuite, nous pouvons un peu resserer les
critères de recherche, en spécifiant que
notre balise doit comporter tel ou tel cri-
tère, en donnant un second paramètre à
notre commande soupe() : un dictionnaire.

import BeautifulSoup
import urllib

lienweb =
urllib.urlopen("http://www.python.org/inde
x.html")
pageweb = lienweb.read()
soupe = BeautifulSoup.BeautifulSoup(page-
web)

print "Comptons le nombre de balises td"
print len(soupe('td'))
print "Maintenant, le nombre de balises td
de classes body"
print len(soupe('td',{"class" : "body"}))

Ce qui nous permet de faire une recherche
bien ciblée. Plusieurs attributs peuvent être
passés en arguments, et l'on peut même uti-
liser les expressions régulières.

import re
(REINSERER ICI LE CODE CI-DESSUS)
print soup('td', {'class' : re.compile('^.*r$')})

Et voici comment je récupère la listes des
balises COLONNE (<td>) dont l'attribut
CLASS se termine par un "r". Certes, dans
le cas présent, l'utilité est mince. Mais ainsi,

vous pouvez affiner votre robot pour
l'adapter au mieux au site dont nous vou-
lons extiprer les informations. Attention
cependant à ne pas trop affiner car en cas
de changement du site cible (notamment
un changement dans le fichier de style css),
vous pouvez tout avoir à refaire.
Sachez aussi que BeautifulSoup est capable
de parser n'importe quel language balisé
comme l'est HTML, avec des balise de tupe
<TAG> et </TAG> pour l'ouverture et la
fermeture. Et bien que minidom soit fait
pour Cela, un fichier XML peut être parsé
avec BeautifulSoup. Et plus précisément les
flux RSS, écrits en XML, que BeautifulSoup
supporte par l'intermédiaire d'un autre
modules, Scrap'n'feed.

Vous savez a peu près tout ce qu'il y a
savoir des bases du scrapping grâce à
BeautifulSoup. Après, et si l'on en croit les
témoignage, la seule limite reste votre ima-
gination et l'utilité que vous aurez à récu-
pérer des informations à partir du HTML.
Consultez la page officielle de
BeautifulSoup pour voir les plus beau
exemple ce qui à été fait avec ce module
(ce qui va de la recherche de résultats de
baseball à la récupération de liste des inci-
dents de piratage commercial), ainsi que
pour avoir accès à la documentation.

Conclusion :
Vous allez me dire, le html c'est bien mais
c'est basique, maintenant on utilise des
choses plus "compliquées" tels que le xml.
Mon p'tit gars, y a pas de soucis, y a s'qui
faut pour python !
Attends, la porte s'ouvre, c'est qui ?

Ah, c'est TaLi, t'as du temps ?
Tu peux écrire un article sur le xml
sous python ?
Bon ba, je vous laisse, TaLi prends
ma place pour la suite , a+.

By Koreth

progpythonXP2 18/01/06 12:52 Page 75

PROG#PYTHON

76

Présentation :
Python est un langage orienté objet simple,
puissant et possédant un ensemble de
librairies riches et variées. Du XML
(eXtensible Markup Language) avec DOM
et SAX en passant par les DNS ou encore
par les mails. Mais également à l'aide de
bibliothèques graphiques puissantes ou l'in-
teraction avec un gestionnaire de bases de
données, Python se défend dans tous les
domaines.
l Pourquoi utiliser XML ? Tout d'abord, il
est indépendant du programme, lisible,
standardisé W3C et sa structure est hié-
rarchisée. Autant de points forts qui font
l'intérêt de ce langage.
l Un fichier XML est un simple fichier
texte comportant l'extension .xml, qui per-
met de stocker des informations formatées
suivant certains besoins.
l Chaque information est stockée entre
deux "tags" ou "balises" xml. L' exemple le
plus connu de l'utilisation du XML est le
HTML. Mais il également possible d'utiliser
le XML pour stocker des données brutes, il
suffit de parser ce fichier pour en récupé-
rer son contenu.

l Un fichier xml se représente de la façon
suivante :

Ce fichier XML représente le sommaire
d'un livre, chaque noeud ou tag, contient
des données ou des attributs qui peuvent

être modifier selon nos besoins. La struc-
ture du fichier commence toujours par un
tag « racine », suivit d'autres noeuds qui
constituent une liste d'éléments imbriqués.
On peut associer les noeuds d'un docu-
ment à une arborescence de répertoires et
sous répertoires avec comme fichier racine
la balise <sommaire> et ainsi de suite.

Une règle importante, contrairement au
HMTL, tous les tags ouvrant doivent obliga-
toirement être fermés plus loin dans le
fichier. Pour une personne qui a l'habitude
du HTML, cette règle sera sûrement nou-
velle.
l Pourquoi choisir XML plutôt qu'un fichier
plat ou encore une base de données ?
Il existe de nombreux comparatifs qui vous
aideront dans votre choix,mais à mon hum-
ble avis, XML permet d'avoir une structure
clairement définie, qui donne un avantage
par rapport aux fichiers plats et par rapport
au SGBD, son atout reste sa facilité d'utilisa-

Python Xml Api DOM
voilà, je me suis assis. T'as le cul
chaud KoReTh ! En plus, il y a
plein de bouffe sur le clavier !
Mais bon, la n'est pas le but de
l'article. Le xml en quelques
pages, pas facile mais bon pour
la Team Ac'ISSI rien d'impossi-
ble ;-) . Alors c'est parti.

progpythonXP2 18/01/06 12:52 Page 76

77

PYTHON
ml Api DOM

tion. Le XML n'étant pas le sujet de cet arti-
cle, je vous laisse le soin de lire les nom-
breuses documentations disponibles sur le
net.

Python et XML :
Pour manipuler des fichiers XML, nous uti-
liserons l'API DOM (Document Object
Model) réf : http://www.w3.org/DOM/, qui
contrairement à SAX doit générer un
arbre et donc lire l'ensemble du fichier,
SAX quand à lui est capable de travailler
sur des fichiers de très grande taille, ainsi

que de traiter les problèmes d'espaces
entre balises et texte. SAX est l'abrévia-
tion de "Simple API for XML". C'est l'API
la plus adaptée pour lire un document
XML en entier et réaliser des traitements.
On peut par exemple construire une
structure rassemblant les données du
document. Par contre si il s'agit de modi-
fier une structure XML existante, SAX
n'est pas très performant. Pour ce genre
de tâche, l'usage de DOM est préférable.
Quelle est vraiment la différence entre
ces parseurs ? :

<?xml version="1.0" ?>
<sommaire>
<!--Ceci est un exemple-->

<titre>Prog Pyhton</titre>
<chapitre numero="1">

<titre>Introduction</titre>
<date annee="2006" jour="10"

mois="Janvier"/>

<auteur>Koreth</auteur>

</chapitre>
<chapitre numero="1">

<titre>Présentation</titre>
<date annee="2006" jour="11"

mois="Janvier"/>

<auteur>TaLi</auteur>

</chapitre>
</sommaire>

progpythonXP2 18/01/06 12:52 Page 77

PROG#PYTHON

78

SAX : Lie des fonctions à des événe-
ments. Lorsque l'événement se produit
(action d'ouverture ou fermeture d'une
balise), la fonction en question est appelée.

DOM : Charge en mémoire le fichier et
retourne une structure xml. Ensuite on
peut se balader entre les noeuds (monter,
descendre...). Les actions réalisées peuvent
être complexes si on compare à SAX, mais
DOM est beaucoup plus gourmand en
terme de ressources.
Grâce à cette API, nous allons pouvoir lire un
fichier XML mais également ajouter de nou-
veaux éléments à ce fichier. Il faut savoir
qu'avec DOM, tout est élément ou noeud, si
l'on reprend l'exemple ci-dessus, le tag
<titre> de type élément contient
Introduction de type text. Un des inconvé-
nient principal de cette API est qu'elle est peu
adaptée pour de gros documents : l'arbre

généré en mémoire à partir du fichier XML est
environ 16 fois plus gros que le fichier.
La théorie finie passons à la pratique, voici
un petit bout de code pour générer le
fichier XML. Pour l'écriture de ce code, il
est important de bien connaître la structure
d'un fichier XML et la notion de
parent/enfant entre les noeuds du fichier. En
aucun cas les balises ne doivent se recou-
vrir : le XML impose une hiérarchie stricte.
Avant toute chose, veillez à ce que les librai-
ries pyhton-xml soient installées sur votre
système,mes tests ont été réalisés sur Linux,
avec python 2.4 et les libs fournies dans les
paquets Debian. Référez-vous à ce lien
http://pyxml.sourceforge.net/topics/down-
load.html pour trouver le package PyXML
disponible pour Windows/Linux qui inclut
toutes les librairies nécessaires dont mini-
dom qui est l'implémentation de DOM
nécessaire pour cet exemple .

Exemple :
from xml.dom.minidom import Document # Importation des modules

liés au parsing XML

document = Document() # Instanciation de l'objet document, on crée le
document XML

racine = document.createElement("racine") # Déclare Racine du docu-
ment XML document.appendChild(racine)

child = document.createElement("child") # On ajoute l'élément child dans
l'arbre

child.setAttribute("id", "10") # Ajout de l'attribut id au noeud Child
racine.appendChild(child) # On crée le noeud fils de l'élément racine

print document.toxml() # Redirige la sortie standard en xml

progpythonXP2 18/01/06 12:53 Page 78

PYTHON

79

L'exécution de cet exemple provoque l'affichage du code XML suivant:

<?xml version="1.0" ?>
<racine>

<child id=10/>
</racine>

Un document admet une racine unique <racine>, qui est le départ de tout
document XML.

Lors de la création du noeud Child, l'appel à la méthode appendChild se fait
sur l'objet racine afin que le tag Child devienne un noeud fils de racine.

Dans l'exemple qui suit le programme génère l'arbre XML présenté au début de cet
article, dans un fichier doc.xml dans le répertoire ou sera exécuté le programme.

Exemple :
from xml.dom.minidom import Document # Importation des modules

liés au parsing XML
import xml.dom.ext # Implémentation de

l'API Dom

doc = Document() # Instanciation de l'objet document, on crée le
document XML

noeud_racine = doc.createElement("sommaire") # Création de élé-
ment sommaire

doc.appendChild(noeud_racine) # On ajoute un noeud enfant de doc

comment = doc.createComment("Ceci est un exemple") # Il faut commen-
ter son code ;o)

noeud_racine.appendChild(comment)

titre = doc.createElement("titre") # On ajoute le noeud titre enfant de
doc

noeud_racine.appendChild(titre)
contenu = doc.createTextNode("Prog Pyhton")

progpythonXP2 18/01/06 12:53 Page 79

PROG#PYTHON

80

titre.appendChild(contenu) # On ajoute le noeud contenu enfant de titre

element = doc.createElement("chapitre")
element.setAttribute("numero", "1") # setAttribute ajout d'un attri-

but à l'élément chapitre
noeud_racine.appendChild(element)

titre = doc.createElement("titre")
element.appendChild(titre)
contenu = doc.createTextNode("Introduction")
titre.appendChild(contenu)

date = doc.createElement("date")
date.setAttribute("jour", "10") # On ajoute un attribut à l'élément date
date.setAttribute("mois", "Janvier")
date.setAttribute("annee", "2006")
element.appendChild(date)

img = doc.createElement("img")
img.setAttribute("src", "logo1.gif")
element.appendChild(img)

auteur = doc.createElement("auteur")
element.appendChild(auteur)
contenu = doc.createTextNode("Koreth")
auteur.appendChild(contenu)

element = doc.createElement("chapitre")
element.setAttribute("numero", "1")
noeud_racine.appendChild(element)

titre = doc.createElement("titre")
element.appendChild(titre)
contenu = doc.createTextNode("Présentation")
titre.appendChild(contenu)

date = doc.createElement("date")
date.setAttribute("jour", "11")

progpythonXP2 18/01/06 12:53 Page 80

PYTHON

81

Dans notre exemple, nous faisons appel à la
méthode createElement pour déclarer un
tag xml dans l'arbre XML, ensuite il faut pas-
ser la méthode AppendChild qui s'occupe
de créer le noeud dans l'arbre. En réalité
cette méthode ajoute un noeud enfant à
celui précédemment créé.
Lors de cet appel
doc.appendChild(noeud_racine) le premier
noeud que l'on alloue dans l'arbre est tout sim-
plement un enfant de la racine du document,
créé au début du programme. Ensuite on
appelle successivement cette méthode pour
construire l'arborescence de l'arbre XML.
Output_xml est une fonction qui prend en
paramètre un nom de l'objet de type docu-
ment, et le lien où l'on stockera le fichier
xml en sortie. Noter que l'on peut égale-
ment afficher le résultat sans passer par
cette fonction, en utilisant print doc.toxml().

Si la structure XML apporte lisibilité et
robustesse, le problème d'accès à l'informa-
tion demeure.
L'API Dom fournit des méthodes pour par-
ser un fichier et récupérer facilement les
informations que contiennent les balises. Il
existe une méthode très utile
getElementsByTagName('auteur') qui ren-
voie la liste de tous les éléments contenus
dans les balises <auteur></auteur>.
D'autres attributs d'objet s'avèrent utiles
pour la lecture de vos arbres.
correspond au noeud parent
firstChildincarne le premier fils du noeud
parent
previousSiblingpointe sur le noeud précé-
dent le fils aillant le même parent
nextSiblingpointe sur le noeud suivant le
fils aillant le même parent
Vous retrouverez bien sûr tous les attri-

date.setAttribute("mois", "Janvier")
date.setAttribute("annee", "2006")
element.appendChild(date)

img = doc.createElement("img")
img.setAttribute("src", "logo2.gif")
element.appendChild(img)

auteur = doc.createElement("auteur")
element.appendChild(auteur)
contenu = doc.createTextNode("TaLi")
auteur.appendChild(contenu)

def output_xml(doc,dir_xml): #Fonction qui retourne un fichier xml
file = open(dir_xml,"w") # Ouverture du fichier XML
xml.dom.ext.PrettyPrint(doc,file) # Enregistrement indenté

output_xml(doc,"mon_premier_document.xml") # Appel de la fonction

buts et méthodes nécessaires dans
la doc de Python toujours aussi
complète.
Grâce à DOM vous pourrez créer
votre propre aggrégateur de don-
nées RSS, ou agencer vos book-
marks dans un fichier tout en mani-
pulant facilement des données
XML, sans pour autant passer par
les contraintes d'une base de don-
nées. La manipulation des docu-
ments XML en Python ne demande
que peu d'efforts eu égard à la sim-
plicité des API et du langage même.
Cela fait de Python un langage de
choix pour l'exploration de XML.

Conclusion :
Vous en savez un peu plus sur le
xml et python.Vous pouvez bien sur
obtenir toutes les informations sur
le net pour approfondir le sujet.
Bon c'est pas le tout, mais la nuit du
hack 2006 à Maubeuge se prépare,
le 3 et 4 juin, c'est proche et il y a
encore plein de boulot. Je passe la
main pour les derniers articles.

By TaLi

progpythonXP2 18/01/06 12:53 Page 81

PROG#PYTHON

82

progpythonXP2 18/01/06 12:54 Page 82

83

PYTHON
progpythonXP2 18/01/06 12:54 Page 83

