Java JSON Tools S.D.1.-Consulfing BVBA © 2006

Java JSON Tools

version 1.2

Bruno Ranschaert

Your feedback is very important fo me. You are welcome fo send me your remarks
or suggestion so that | can improve the library.
mailto.//nospam@sdi-consulting.com

Table of Contents

I O U T ON. - 3
T INTTOAUCTION. ... e 3
1.2 D PENAENCIES. vttt 4
L3 LI NS . it 4
1.4 ADOUT S.D.I-CONSUMING. .11ttt 4
1.5.Extensions 10 the JSON fOrmMAT........ccciiiiiiiii e 5

2.TNE COrE TOOIS. ...ei ittt 5
2.1.Parsing - REAAING JSON........iiiiiiiiiiii e 5
2.2.Rendering - WHTING JSON....uuviiiiiiii i 5
2.3.JAVA SENANZOTON. 11iii i 6

2.3 1. PIIMITIVE TYES. ..o e 6

2.3.2.REFEIENCE TYPES. ... ittt 7

/Y o || T [] 1 o] o T OSSR 8

241 BASIC TUIES. ..ottt a1 a e 9

2. 4.1 1 YD L U oo 9

2.4.1.2. Y PE TAISE” oo 10

2.4.1. 8. YR ANA e 10

2., 1 A, Y O i ————————————————— 10

2.4, 1 D, Y MO 10

242 TYPE TUIES. ...ttt 10
2.4.2.1. type"”:"complex”, “type”:“array”, “type”:"object”, “type”:“simple”,
“type”:"null”, “type”.“bool”, “type”:“string”, “type”:"number”, “type”:“int”,

Y AECIMAI . 11

243 AHIDUTE TUIES. ...t 11

2.4.3.1.Mype" EeNGIN .o 11

2.4.3.2. Y 1 IANGE i 11

2.4.3.3. 1Y BNUM oo 11

2.4, 3.4, YD IO P ittt 12

2.4.3.5. Y P CONTENT L. 12

2.4.3.6. 1Y P PIOPEITIES .. i 12

244 STTUCTUIOI TUIES. rrrrae e e e 13

2. A 4. YD T 13

2. 4.4, 2. Y i B 13

11 Y CUSTOM L 14

1002, Y P SWITCN 15

2.4.5.Example: Validator for validators.........ccccii i 15

3. TOOI EXTENSIONS. ..ttt 18

4, FUTUIE EXTENSIONS. ... ittt e e e e e e e e a e e e e e 18

Java JSON Tools S.D.I.-Consulting BVBA © 2006

1. Introduction

1.1. Introduction

JSON (JavaScript Object Notation) is a file format to represent data. It is similar 1o
XML but has different characteristics. It is suited to represent configuration
information, implement communication protocols and so on. XML is more suited to
represent annotated documents. JSON parsing is very fast, the parser can be kept
lean and mean. It is easy for humans to read and write. It is based on a subset of
the JavaScript Programming Language, Standard ECMA-262 3rd Edition - December
1999. JSON is a text format that is completely language independent but uses
conventions that are familiar to programmers of the C-family of languages, including
C, C++, C#, Java, JavaScript, Perl, Python, and many others. These properties make
JSON an ideal data-interchange language. The format is specified on
http://www.json.org/, for the details please visit this sife.

JSON is a very simple format. As a result, the parsing and rendering is fast and easy,
you can concentrate on the content of the file in stead of the format. In XML it is
often difficult to fully understand all features (e.g. name spaces, validation, ...). Asa
result, XML tends to become part of the problem i.s.o. the solutfion. In JSON
everything is well defined, all aspects of the representation are clear, you can
concentrate on how you are going to represent your application concepts.

The following example comes from the JSON example page
http://www.json.org/example.htmi:

{

"wi dget" :
"debug" : "on",
"text"
{
"onMouseUp" : "sunl.opacity = (sunl.opacity / 100) * 90;",
"hOf fset" : 250,
"data" : "dick Here",
"alignment" : "center",
"style" : "bold",
"size" : 36,
"nane" : "text1l",
"vOffset" : 100
1
i mage
{
"hOf fset" : 250,
"alignment" : "center",
"src" : "l mages/ Sun. png",
"nane" : "sunl",
"vOf fset" : 250
}i
"w ndow' :

"wi dth" : 500,

http://www.json.org/example.html

"height" : 500,
"title" : "Sanpl e Konfabul ator Wdget",
"nanme" : "main_w ndow'

This project wants to provide the tools to manipulate and use the format in a Java
application.

1.2. Dependencies

The parser uses ANTLR, so the ANILR runtime is needed for this. The project is based
on the maven?2 build system.

The JSON Tools libraries are written using the new language features from JDK 1.5.
Enumerations and generices are used because these make the code nicer to read.
There are no dependencies to the new libraries. If you want to use the libraries for an
earlier version of the JDK, the retrofranslator tool might be an option
(http://retrotranslator.sourceforge.net).

1.3. License

The library is released under the LGPL. You are free 1o use it for commercial or non-
commercial applications as long as you leave the copyright infact and add a
reference to the project. Let me know what you like and what you don't like about
the library so that | can improve it.

JSONTOOLS - Java JSON Tool s

Copyright (C 2006 S.D.I.-Consulting BVBA
http://ww. sdi -consul ting. com

mai | t o: // nospam@di - consul ti ng. com

This library is free software; you can redistribute it and/or
nodify it under the terms of the GNU Lesser General Public

Li cense as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any |ater version.

This library is distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; w thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the GNU
Lesser General Public License for nore details.

You shoul d have received a copy of the GNU Lesser Ceneral Public
Li cense along with this library; if not, wite to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

1.4. About S.D.I-Consulting

Visit my welbsite http://www.sdi-consulting.com.
Visit the project website: http://jsontools.sdicons.com, the project is hosted on the
Berlios service at http://jsontools.berlios.de.

http://jsontools.sdicons.com/
http://www.sdi-consulting.com/

Java JSON Tools S.D.1.-Consulfing BVBA © 2006

1.5. Extensions to the JSON format

Comments. | added line comments which start with '#.It is easier for the examples to
e able to put comments in the file. The comments are not retained, they are
skipped and ignored.

2. The Core Tools

2.1. Parsing - Reading JSON

The most important tool in the tool set is the parser, it enables you to convert a JSON
file into a Java model. All JSSON objects remnember the position in the file (line,
column), so if you are doing post processing of the data you can always refer to the
position in the original file.

Invoking the parser is very simple:

JSONPar ser | Parser = new JSONPar ser (JSONTest . cl ass. get Resour ceAsStrean{"/config.json"));
JSONVal ue | Val ue = | Parser . next Val ue();

The JSON model is a hierarchy of types, the hierarchy looks like this:

JSONVal ue
JSONConpl ex
JSONObj ect
JSONAr r ay
JSONSI npl e
JSONNul |
JSONBool ean
JSONSt ri ng
JSONNumnber
JSONI nt eger
JSonDeci nal

2.2. Rendering - Writing JSON

The classes in the JSON model can render themselves to a String. You can choose to
render to a pretty form, nicely indented and easily readable by humans, or you can
render to a compact form, no spaces or indentations are provided. This is suited to
use on a communications channel when you are implementing a communication
protocol.

In the introduction we already saw a pretty rendering of some widget data. The
same structure can be rendered without pretty printing in order to reduce
whitespace. This can be an interesting feature when space opfimization is very
important, e.g. communication protocols.

{"wi dget": {"debug":"on","text": {"onMuseUp": "sunl. opacity = (sunl.opacity / 100) *

90; ", "hOifset": 250, "data": "Cick

Here","al i gnment":"center”, "style":"bol d", "size": 36, "name": "text1","vOf fset": 100}, "i nage"
{"hOfset": 250, "alignment":"center","src": "l mages/ Sun. png", "nane": "sunl", "vOf fset": 250},
"wi ndow': {"wi dt h": 500, "hei ght":500,"title":"Sanpl e Konfabul at or

W dget ", "nanme": " mai n_wi ndow'}}}

2.3. Java Serialization

This tool enables you to render POJO's to a JSON file. It is similar to the XML
serialization in Java or the XML Stream library, but it uses the JSON format. The result is
a very fast text serialization, you can customize it if you want. The code is based on
the SISE project, it was adjusted to make use of and benefit from the JSON format.

Marshalling (converting from Java to JSON) as well as unmarshalling is very
straightforward:

nmyTest Cbj ect = ...
Mar shal | mar shal |
JSONObj ect resul t

new Marshal | | npl ();
mar shal | . mar shal | (nyTest Cbj ect) ;

And the other way around:

JSONCbj ect nmyJSONOhj ect = . ..
Mar shal | Val ue | Result = marshal | . unmar shal | (myJSONObj ect) ;
. = | Resul t. get Ref erence()

You might wonder what the MarshallValue is all about, why is unmarshalling giving
an extra object back? The answer is that we went to great lengths to provide
marshalling/unmarshalling for both Java reference types as Java basic types. A
basic type needs 1o be fetched using specific methods (there is no other way). In
order to provide these specific methods we need an extra class.

2.3.1. Primitive types
Primitive types are represented like this.

{
> P
D g mil
"t tintt
}

The “>” attribute with value “P” indicates a primitive type. The “=" aftribute contains
the representation of the value and the “t” attribute contains the original java type.

Java JSON Tools S.D.I.-Consulting BVBA © 2006

2.3.2. Reference types

An array is defined recursively like this. We can see the “>” aftribute this time with the
“A” value, indicating that the object represents an array. The “C” attribute contains

the type representation for arrays as it is defined in java. The *=" attribute contains a
list of the values.

An object is represented like this.

"name"
{
wan "o,
"c" "java.lang. String"
" &' "id2",
=" "This is a test..."
1
i nt1"
{
" >ll : " nul I "
}v
lli dll :
{
"o "o
"c" "java.l ang. I nteger",
" &ll : lli dlll ,
=" : "1003"

}
}

The “>” marker contains “O” for object this time. The “C” attribute contains a fully
qualified class name. The “&” contains a unique id, it can be used to refer to the
object so that we are able to represent recursive data structures. The “=" attribute
contains a JSON object having a property for each Java Bean property. The
property value is recursively a representation of a Java object.

Note that there is a special notation to represent java null values.

{

wseos vyl

}

Also note that you can refer to other objects with the reference object which looks
like this:

2.4. Validation

This tool enables you to validate your JSON files. You can specify which content you
expect, the validator can check these constraints for you. The system is
straightforward 1o use and extend. You can add your own rules if you have specific
needs. The validation definition is in JSON - as you would expect.

Built-in rules:

{
"nane" : "Sone rul e nane",
“type” : “<built-in-type>"

Java JSON Tools S.D.1.-Consulfing BVBA © 2006

A validation document consists of a validation rule. This rule will be applied to the
JSONValue that has to be validated. The validation rules can be nested, so it is
possible to create complex rules out of simpler ones. The “type” attribute is
obligatory. The “name” is optional, it will be used during error reporting and for re-
use. The predefined rules are listed below. The name can come in handy while
debugging. The name of the failing validation will be available in the exception. If
you give each rule its own name or numiber, you can quickly find out on which
predicate the validation fails.

Here is an example of how you can create a validator.

/Il First we create a parser to read the validator specification which is

/1 defined using the (what did you think) JSON fornat.

/1 The validator definition is located in the “my-validator.json” resource in the

/'l cl asspat h.

JSONPar ser | Parser = new JSONPar ser (M/d ass. cl ass. get Resour ceAsStrean(" ny-val i dator. json"));

// W parse the validator spec and convert it into a Java representation.
JSONObj ect | Val i dat or Cbj ect = (JSONCbj ect) | Parser. next Val ue();

I/l Finally we can convert our validator using the Java nodel.
Val i dator | Validator = new JSONVal i dat or (I Val i dat or Obj ect) ;

And now that you have the validator, you can start validating your data.

/Il First we create a parser to read the data.
JSONPar ser | Parser = new JSONPar ser (Myd ass. cl ass. get Resour ceAsSt rean{ "dat a. j son"));

/Il We parse the datafile and convert it into a Java representation.
JSONVal ue | MyData = | Parser. next Val ue();

// Now we can use the validtor to check on our data. W can test if the data has the
// correct format or not.
| Val i dat or. val i dat e(| MyDat a) ;

2.4.1. Basic rules
These rules are the basic rules in boolean logic.

2.4.1.1. “type” : “true”

Parameters: -
Description: This rule always succeeds.
Example: A validator that wil succeed on all JSON data structures.

"name" :"This validator validates *everything*",
"type" :"true"

2.4.1.2. “type”:"false”

Parameters: -
Description: This rule always fails.
Example: A validator that rejects all data structures.

{

"nanme" :"This validator rejects all",
"type" :"fal se"

2.4.1.3. “type”:”and”

Parameters:
e ‘“rules” : array of nested rules.
Description: All nested rules have to hold for the and rule to succeed.
Example: A validator that succeeds if the olbject under scrutiny is both a list and has
content consisting of integers.

{

"name" :"List of integers",

Iltypell :Il and",

"rules" : [{"type":"array"},{"type":"content”, "rule":{"type":"int"}}]
}

2.4.1.4. “type”:”’or”

Parameters:

e ‘“rules” : array of nested rules.
Description: One of the nested rules has to succeed for this rule to succeed.
Example: A validator that validates null or integers.

{

"nanme” :"Null or int",

“type" :"or",

Ilrul esIl : [{"type":"int"},{"type":"bool Il}]
}

2.4.1.5. “type”:”not”

Parameters:
e ‘rule”: Asingle nestedrule.
Description: The rule succeeds if the nested rule fails and vice versa.

2.4.2. Typerules

These rules are predefined rules which allows you to specify type restrictions on the
JSON data elements. The meaning of these predicates is obvious, they will not be
discussed. See the examples for more information.

10

Java JSON Tools S.D.1.-Consulfing BVBA © 2006

FE 11

2.4.2.1. “type”:”complex”, “type”:”array”, “type”:”object”, “type”:”simple”,
‘ttype ll: l’nullli, l‘type ,l: l’boolll’ l‘type ,l: I!string !l’ lttype !l: J!numberll’ l‘type ,l: I!intll’
“type”:”decimal”

2.4.3. Attribute rules

These rules check for attributes of certain types.

2.4.3.1. “type” : “length”

Parameters:
e "min”: (optional) The minimal length of the array.
e "max”: (optional) The maximal length of the array.

Description: Applicable fo complex objects and string objects. The rule will fail if the
object under investigation has another type. For array objects the number of
elements is counted, for objects the number of properties and for strings, the length
of its value in Java (not the JSON representation; “\n” in the file counts as a single
character).

Example: A validator that only wants arrays of length 5.

{

"name" :"Array of |ength 5",

"type" :"and",

"rules" : [{"type":"array"}, {"type":"length", "mn":5, "max": 5}]
}

2.4.3.2. “type” : “range”
Parameters:
e "min”: (optional) The minimal value.
e "max”: (optional) The maximal value.
Description: Applicable to JSONNumbers, i.e. JSONInteger and JSONDecimal.
Example: Allow numbers between 50 and 100.

{
"nanme" :"Range validator",
"type" :"range",
"mn" : 50,
"max" : 100
}

2.4.3.3. “type”:”enum”
Parameters:

11

e “values” : An array of JSON values.

Description: The value has to occur in the provided list. The list can contain simple
types as well as complex nested types.

Example: An enum validator.

{

"nanme" :"Enum validator",

"type" :"enunt,

"val ues" : [13, 17, "JSON', 123.12, [1, 2, 3], {"key":"value"}]
}

2.4.3.4. “type”:"regexp”
Parameters:
e “pattern”: A regexp pattern.

Description: For strings, requires a predefined format according to the regular
expression.

Example: A validator that validates strings containing a sequence of a's , b's and C's.

{

"nane" :"A-B-C validator",
"type" :"regexp",
"pattern" : "a*b*c*"

}

2.4.3.5. “type”:”content”
Parameters:

e “rule”: The rule that specifies how the content of a complex sfructure — an
array or the property values of an object - should behave.

Description: Note that in contrast with the “properties” rule (for objects), you can
specify in a single rule what all property values of an object should ook like.

Example: See “type”:“and”.

2.4.3.6. “type”:”properties”
Parameters:

e "pairs”: A list of key/value pair descriptions. Each description contains three
properties: “key” the key string; “optional” a boolean indicating whether this
property is optional or not and “rule” a validation rule that should be applied
to the properties value. Note that in contrast wit the “content” rule above you
can specify a rule per attribute.

Description: This predicate is only applicable (and only has meaning) on object data

12

Java JSON Tools S.D.1.-Consulfing BVBA © 2006

structures. It will fail on any other type.

Example:
{

"nane" :"Contact spec.",

"type" :"properties",

"pairs" : [{"key":"name", "optional":false, "rule":{"type":"string"}},
{"key":"country", "optional":false, "rule":{"type":"string"}},
{"key":"salary", "optional":true, "rule":{"type":"decinmal"}}

]
}

It will validate objects looking like this:

{"nane":"Bruno Ranschaert", "country":"Bel giuni, "salary":100.0 }

2.4.4. Structural rules

2.4.4.1. “type”:"ref”
Parameters:

W%

° + The name of the rule to invoke.

Description: This rule lets you specify recursive rules. Be careful not to create infinite
validations which is quite possible using this rule. The containing rule will be fetched
just before validation, there will be no error message during construction when the
containing rule is not found. The rule will fail in this case. If there are several rules with
the same name, only the last one with that name is remembered and the last one
will be used.

Example: A validator that validates nested lists of infegers. A ref is needed to enable
recursion in the validator.

{
"nane" :"Nested |ist of integers",
"type" :"and",
"rul es" :
[
{"type":"array"},
{"type":"content",
"rul e":
{"type" : "or",
"rul es":
[{"type":"int"},
{"type":"ref", "*" : "Nested |ist of integers"}]
}}
]
}

2.4.4.2. “type”: “let”

Parameters:
e ‘rules” : Alist of rules.
e " :The name of the rule that should be used.

13

Description: Lets you specify a number of named rules in advance. It is a
convenience rule that lefs you specify a list of global shared validation rules in
advance before using these later on. It becomes possible 1o first define a number of
recurring types and then give the starting point. It is a utility rule that lets you tackle
more complex validations. Note that it makes no sense to define anonymous rules
inside the list, it is impossible 1o refer to these |later on.

Example:
{
"nane" :"Let test - a's or b's",
"type" :"let",
tox . “"start",
"rul es" :
[{"name":"start", "type":"or", "rules":[{"type":"ref", "*":"a"},
{"type":"ref", "*":"b"}]},
{"nane":"a", "type":"regexp", "pattern":"a*"},

{"name":" b "type":"regexp", "pattern":"b*"}
]
}

1.1.1.1. “type”:”custom”

Parameters:

e “class” : The fully qudlified class name of the validator.
Description: An instance of this validator will be created and will be given a hash
map of validations. A custom validator should be derived from
“com.sdicons.json.validator.impl.predicates.CustomValidator”.

Example:
{

"name" :"Customtest",

"type" :"custont,

"class" : "com sdicons. json.validator. M/Validator"
}

The validator class looks like this:

public class MyVali dator
ext ends Cust onVal i dat or

public MyVal i dat or (
String aNane, JSONObj ect aRul e, HashMap<String, Vali dator> aRul eset)
{

super (aName, aRul e, aRul eset);

public void validate(JSO\NVal ue aVal ue) throws Vali dati onException
{
/1 Do whatever you need to do on aVal ue ...
/1 1f validation is ok, sinply return.
/1l If validation fails, you can use:
[/ fail (JSONVal ue aVal ue) or fail (String aReason, JSONval ue aVal ue)
/!l to throw the Validation exception for you.

14

Java JSON Tools S.D.I.-Consulting BVBA © 2006

1.1.1.2. “type”:”switch”

Parameters:

e “key”: The key name of the object that will act as the discriminator.

e “case”: Alist of objects containing the parameters “values” and “rule”. The

first one is a list of values the second one a validator rule.

Description: The switch validator is a convenience one. It is a sulbset of the or
validator, but the problem with the or validator is that it does a bad job for error
reporting when things go wrong. The reason is that all rules fail and it is not always
clear why, because the reason a rule fails might be some levels deeper. The switch
validator selects a validator based on the value of a property encountered in the
value being validated. The error produced will be the one of the selected validator.
The first applicable validator is used, the following ones are ignored.
Example: The top level rule in the validator for validators contains a switch that could
have been described by an or, but the switch gives better error messages.

2.4.5. Example: Validator for validators

This example validator is able to validate validators. The example is a bit contrived
because the validators really don't need validation because it is built-in in the
construction. It is interesting because it can serve as a definition of how to construct
a validator.

"nane":"Val i dator validator",
"type":"let",

AU Mrul e,

"rul es":

#HHAHHHAHE START #HAHH#AHHHBH

{
"name":"rul e",
"type":"switch",
"key":"type",
"case":
[
{"values":["true", "false", "null"], "rule":{"type":"ref", "*":"atomrul e"}},
{"val ues":["int", "complex", "array", "object", "sinple",
"null", "bool", "string", "nunmber", "decinmal"],
"rule":{"type":"ref","*":"type-rule"}},
{"values":["not", "content"], "rule":{"type":"ref", "*":"rules-rule"}},
{"val ues":["and", "or"], "rule":{"type":"ref","*":"rul eset-rule"}},
{"val ues":["l ength", "range"], "rule":{"type":"ref","*":"m nmax-rul e"}},
{"values":["ref"], "rule":{"type":"ref","*":"ref-rule"}},
{"val ues":["custont'], "rule":{"type":"ref","*":"customrule"}},
{"values":["enun'], "rule":{"type":"ref","*":"enumrule"}},
{"values":["let"], "rule":{"type":"ref","*":"let-rule"}},
{"val ues":["regexp"], "rule":{"type":"ref","*":"regexp-rule"}},
{"val ues":["properties"], "rule":{"type":"ref","*":"properties-rule"}},
{"values":["switch"], "rule": {"type":"ref","*":"switch-rule"}}
)]
#ipiiHt RULESET #######H}
{

"nane": "rul eset",
"type": "and",

15

Java JSON Tools S.D.I.-Consulting BVBA © 2006

"type":"properties",

"pairs" :

[{"key":"name", "optional":true, "rule":{"type":"string"}},
{"key":"type", "optional ":false, "rule":{"type":"enun', "val ues":["regexp"]}},
{"key":"pattern", "optional":false, "rule":{"type":"string"}}

:]
########## PROPERTI| ES #####H#H#H#H#
{
"nanme": "properties-rul e",
"type":"properties",
"pairs" :

[{"key":"nanme", "optional":true, "rule":{"type":"string"}},
{"key":"type", "optional":false, "rule":{"type":"enunl, "val ues":["properties"]}},
{"key":"pairs", "optional":false, "rule":{"type":"ref","*":"pairs"}}

:]

########## SW TCH #####H#AH#H#

{
"nane":"switch-rule",
"type":"properties",
"pairs" :

[{"key":"nanme", "optional":true, "rule":{"type":"string"}},
{"key":"type", "optional":false, "rule":{"type":"enunt, "values":["switch"]}},
{"key": "key", "optional ":false, "rule":{"type":"string"}},
{"key":"case", "optional":false, "rule":{"type":"ref", "*":"cases"}}

]

}

3. Tool Extensions

3.1. Log4J

Is in the jsontools-log4j library. It contains a Log4J layout that will format the messages
in JSON format. In combination with the existing appenders this makes it possible to
create JSON output which will be easy to parse using the core tools.

4. Future extensions

There are many other applications which could benefit from the JSON format. It will
depend on the feedback | receive and my own needs which features will be
implemented first. Here are some candidates:

Spring configuration file.

Hibernate mapping files. In a substantial application the current XML files take ages
to parse and to load. This process could be sped up by using the JSON format.

18

	1.Introduction
	1.1.Introduction
	1.2.Dependencies
	1.3.License
	1.4.About S.D.I-Consulting
	1.5.Extensions to the JSON format

	2.The Core Tools
	2.1.Parsing - Reading JSON
	2.2.Rendering - Writing JSON
	2.3.Java Serialization
	2.3.1.Primitive types
	2.3.2.Reference types

	2.4.Validation
	2.4.1.Basic rules
	2.4.1.1.“type” : “true”
	2.4.1.2.“type”:”false”
	2.4.1.3.“type”:”and”
	2.4.1.4.“type”:”or”
	2.4.1.5.“type”:”not”

	2.4.2.Type rules
	2.4.2.1.“type”:”complex”, “type”:”array”, “type”:”object”, “type”:”simple”, “type”:”null”, “type”:”bool”, “type”:”string”, “type”:”number”, “type”:”int”, “type”:”decimal”

	2.4.3.Attribute rules
	2.4.3.1.“type” : “length”
	2.4.3.2.“type” : “range”
	2.4.3.3.“type”:”enum”
	2.4.3.4.“type”:”regexp”
	2.4.3.5.“type”:”content”
	2.4.3.6.“type”:”properties”

	2.4.4.Structural rules
	2.4.4.1.“type”:”ref”
	2.4.4.2.“type” : “let”
	1.1.1.1.“type”:”custom”
	1.1.1.2.“type”:”switch”

	2.4.5.Example: Validator for validators

	3. Tool Extensions
	3.1. Log4J

	4. Future extensions

