Reverse Code [ngineering [RCE]

[mphasizing On
“reaking ~of tware ' rotection

G265 766572756 966 7270776 86520706 I6E6FA6 76 620476 67

 J J
1 1
1 1
1 1
A . |
1 1 1
- e +
1 | I 1
| Copurahi o006 WERTABLE
1 | I 1

| 1
: : ——————————————— e ! I :
1] 1 : 1
| $----------- -+ : *---------- *

1 1
: ! : ! :
O , ! , e-----4
1 1
& - - -+ : T °
1
e & - - --— - -

June 29, 2006

BEGIN tHE mUTABLE ENCODING

000000010000000100000001000000000000000100010000000100000000000000000001000100000001000
000000001000000010001000100000000000100010000000000010000000000000000000000000001000100
000001000000000001000000010001000100000000000100010000000000010000000000000000000000000
001000100000000000000000001000000000001000000000000000000000000000100010001000000000001
000100000001000100000000000100000001000000010001000000010001000100000000000100010000000
100000000000100000001000100000001000100010001000000010001000100000000000100000000000000
010000000000000000000000000001000000010000000000000000000000010001000100000000000100000
000000100010000000100010001000100000001000100000001000000010000000000010001000000000001
000000010000000100010000000000000001000100000001000100010000000100000000000000000001000
000000000000000000000000100010000000000000000000100000000000100000000000000000000000000
000001000000000000000100000000000100000001000000010000000000000001000100000001000000000
000000000010001000000000001000000010000000100010001000000000001000100000001000100000001
000000000001000000010001000100000000000100010000000000010000000000000001000000000000000
100000001000100000001000000000001000000000000000000000000000100000000000100010000000000
000001000000000001000000000001000000010000000100000001000000010000000000010000000000000
000000000000001000000000000000000010000000000010001000100010000000000010000000000010000
000000000000000000000001000000000001000100000001000000010001000000010001000100010000000
100010000000100000000000000000001000100000000000000000001000000010001000000010001000000
010000000100010000000100010000000100000001000100000000000100000001000000010001000000000
001000000000000000000010000000000000000000000000001000000000000000100010000000000010001
000000000000000000010000000100010000000000010000000000000001000100000000000100000001000
000010001000000010001000000000000000000010000000000000000000000000001000000000001000100
000001000000010001000000010001000100010000000100010000000100000001000100000001000100000
000000000010000000000010001000000000001000000010000000100010000000100010000000000000000
000100000000000000000000000000000001000100000000000100000000000000010001000000000000000
000000000000100010000000000000000000000000001000100000001000100000000000000010000000000
000000000000000001000000000001000100000000000000010001000000000001000000010000000100010
000000000000001000000000001000100000000000000000001000000010001000000010001000100000000
000100010000000100010001000100000001000100000001000100010000

END tHE mUTABLE ENCODING

History
Version Ax01A3FEE.

_ FilesIncluded
Complete Source Code..

| [Don 't Know |
Cite 1s More T han Human Evolution

i
Gl A0 A= 0. TE L.

5. & (.

Iyou Are Welcome JFor Any Suggestions, C omments

I hereby declare that I am the sole author of this document.

tHE mUTABLE

I further authorize the ARTeam to reproduce, distribute the document by photocopying
or by other means, in total or in part, at the request of other individuals or group’s for

the purpose of research.

License agreement: PLEASE NOTE THAT YOU SHOULD OBEY THESE CONDITIONS BEFORE

YOU READ THIS BOOK. I'M NOT RESPONSIBLE FOR ANY CONSEQUENCES YOU MAY
ENCOUNTER AFTER READING IT.

This Book is for educational purposes only

You are not allowed to modify the content in any way; you have to contact me for
more info.

einsteinzero@hotmail.com

cheviva2000@hotmail.com

http://www.themutable.com

tHE mUTABLE

ABSTRACT

Reverse Code Engineering with emphasizing on breaking software protection. For
many specialists in this field especially in the field of malware reversing, it’s a must
to understand what all is about by “analyzing the subject system to identify the
system’s components and their interrelationships and to create representations of the
system in another form or at a higher level of abstraction “(IEEE 1990) in order to
take the control over the malware invaders and protect millions of computers around
the world from being infected as quick as possible. For breaking protections
protocols the rationale is to get the knowledge for the unknown because it’s
enjoyable and truly truth to reconstruct 0’s & 1’s for another purpose without
knowing the original state (source code) of construction.

The objective is to unhide the castle of secrets behind the beauty of how things
works and to present a newly customized approach for better protection against
illegal reversing concerning commercial software applications. The methods used to
perform this task, that is, analytical, numerical, and experimental.

The study shows the weakness of the Operating System in handling the binaries
connections system call, protections in a commercial applications and how it’s fully
reversed to its newborn phase, which impose a great threat on the customers and
companies affecting companies’ liability. It reveals the integrity in reversing
software executable files and how to break software’s protections.

Most of the materials presented are newly designed and implemented for this
purpose.

Keywords: Reverse Engineering, Breaking Protections, Algorithm, Packer,
UnPacker, Patching, Serial

v

ACKNOWLEDGEMENTS

I’d like to thank Lenal51 for his very well done newbie’s to advance RCE Flash
Tutorials, and last but certainly not least every member in the ARTeam with special
thanks to Goppit & Shub — Nigurrath: Thanks a lot for your proofreading my book, your
corrections and suggestions is deeply appreciated and for your generosity to take time

out of a busy schedule to answer my questions.
Sincere thanks go out to the true professionals, the RCE’s AR The incredibly

hard working team. And I would like to thank everyone for his contributions concerning

RCE and many aspects of advanced techniques used in the scene.

tHE mUTABLE

TABLE OF CONTENTS

ABSTRACT .itiiiiiiiiiiiiiiiiiiiieiietietnitntieseesssasssssssssssssssssssssnssssssssses iv
ACKNOWLEDGEMENTSoitiiiiiiiiiiiiiiiiiiieiiiiiiiiiiiiecitiecieciecnceasncn v
LIST OF FIGURESuiitiiiiiiiiiiiiiiiiiiiiiiieiiiiiiatietiettiatsasecncensnen viii
LIST OF TABLEScuuintiiiiiiiiiiiiiiiiiiieiiiiiiiieiietitinitaseesnssnssasesnss X
1. INtroduction ..cccveiieiiiniiiieiiiniiiieiiieiiiniiiieteieteiesceiaccinscsnsscnsscsnssones 1
1.1 Reverse Engineering?c.oviuiiiiiiiiiiiiii i eiee e 1
1.2 0’s & 1’s Ubiquity: Philosophyc.ccoviiiiiiiiieen, 1
1.3 Protection Classificationsooeviuiiiiiiiiiiii i, 2
1.4 Protection Determinationco.veiiiiiiiiiiiiiniiiiiei e, 4
2. Portable Executable ANAtOMYccccviieiiiniiiiiiiiniiiieiiieiiineiiineeinecennees 6
2.1 File Structureoouoinii i 6
2.2 SECHONS SUIZEIY «.entnttttit ettt et ettt eaaeaaes 9
2.2.1 Executable Code Sectioncoeieiiiiiiiiiiiiiiiniiiiiinenaen, 10
2.2.2 Datad SECHION ...uueentettet e 10
2.2.3 ReSOUICEe SECHIOMNuuutniitiitt e 10
2.2.4 Export Data Sectionco.eieiiiiiiiiiiiiiiiii 12
2.2.5 TImport Data SECtiONc.viiiiiiitiiii i 12
2.2.6 Debug Information Sectionccceviiiiiiiiiiiiiiiiiiiiiieeinennn, 12
2.2.7 Base Relocation Sectionc.ooiuiiiiiiiiiiiiiiiiiiiiiiie, 12
2.3 The Import SECHIONouvuitii it 12
24 The Loaderc.oouiiniii i 13
3. ASM and C++ Compiler Lab Testcccvveviieiiiiiieiiiiiiiiiiiiniieiieninennnn 14
3.1 ASM & CH++ Compiler Studyc.oovniiiiiiii e 14
3.1.1 ASM Disassembled Codecooeiiiiiiiiiiiiiiiiii 16
3.1.2 C++ Disassembled Codeoovvuiiiiiiiiiiiiiiiiiiiie, 17
4. BreaKing Protectionscccoeeviiiiiieiiiniiiiiiiieiiiieiiieicietiintcisccssccnnns 21
O T B o) o) 745 21
4.2 Packer Theoryoouiiiii i 21
4.3 Newton Third Law: Protectorscooeviiiiiiiiiiiiiniiiiiiea, 22

vi

4.4 A Little Bit About Assemblyccoiiiiiiiiiii 23

4.5 Packer Theory Demonstrationcovviuiiiiiiiiiiiiiniiiieneennennn, 29
4.5.1 First Stage: Deciphering The Bitsoooiiiiiiiiiiiiii i, 31
4.5.2 Second Stage: Packing and Unpackingc.oooiiiii 32
4.5.3 Third Stage: Cracking The Micro-Universe of Bits 37

4.5.3.1 Third Stage: Understanding False and True Password 38
4.5.3.2 Third Stage: Defeat The Counter Limitation 39
4.5.3.3 Third Stage: Defeat Password Checking Array 42

4.5.4 Patching: Static Changesccooiiiiiiiiiiiiiiiiiiiiii e, 47
4.5.5 Code Injection: Tracking The Unboundedoooeiniinin. 47

5. Case Studies: Reversing The Invisiblecccccvviiiiiiiiiiiiiiiiiiiiiiiinnn. 51

5.1 Serial Fishing: LOpht Crack v5.02 Victimccoooviiiiiiiiiinnn.. 51

5.2 Patching The EXE: 8085 Simulator IDE v2.35 Victim 57

5.3 Keygenning The KeygenMe: Reengineering The Ripped Algorithm 62
5.3.1 Serial Generator Algorithm: Analysescccovviiiiiiiiiiinnnnn. 64
5.3.2 Serial Generator Algorithm: C++ Translationc...e. 67

5.4 Deciphering The Algorithm ..o 68
5.4.1 Target & Tools DeSCriptionc.evviiiiiieiiiiiiiiieiiieieennns 68
5.4.2 Java Reversing Approachcooviiiiiiiiiiiiiiiiiiiiieieeens 69
5.4.3 Applet Java Class Source Code Anatomyccevvvvvvnviennnnnnn. 73
5.4.4 Bomb Section Analysisccovuiiuiiiiiiiiiiiiiii e 83
5.4.5 Flash Plain Text Searching Approachcooiiiiiiiiiiin.n. 87

T 0712 1 T4 L1 11 11 89
| 23 D1 28 O 2 00 O 920
VITA AUCTORIS ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitietiteiiiatiecnecaciesecnenns 91

Vil

1.1
2.1
2.2
3.1
32
3.3
3.4
4.1
4.2
4.3
4.4
5.1
52
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14
5.15
5.16

LIST OF FIGURES

The main types of Protectionocevveiiiiiiiiiiiiiiiiieneeeennnn. 4

Virtual MemOTy ...ttt 7

Restorator: DIgBox Identificationcooeviiiiiiiiiiiiinn.n. 11
ASM Executable MessageBoXcooeviiiiiiiiiiiiiiiii 15
C++ Executable MessageBoXc.ovviiiiiiiiiiiiiiiii e 15
C++ Byte Value Distributionc.ooeviiiiiiiiiiiiiiiiiii e 20
ASM Byte Value Distributionccooeiiiiiiiiiiiiiiiiiiieeen, 20
IA-32 Basic Program Execution Registersc.ccoeiiiiiiininn... 24
Compressed code error from OllyDbgcocoviiiiiiiiiiiiiin 34
OllyDump: Dumping and Rebuilding the packed program 37
MessageBoxA Injectedcooiviiiiiiiiii i 50
LCS5 Trial Version Startup Windowcooviiiiiiiiiiiiiiiiiinennn 52
LCS5 Registration Windowooiiiiiiiiiiiiiiiiiiiieieieieeenns 52
Invalid Unlock Code messageoevvuiiiiiiiiiiiiiiiieiieieeeanan, 53
Setting a Breakpoint on MessageBoxA API ..., 53
Stack Window in OllyDbgccooiiiiiiiiii e 53
How to clear the Breakpoint ..o, 54
8085 Simulator IDE nag SCTeenccovviviiiiiiiiniiiiiiiinneenennn. 58
8085 Simulator IDE expired version Nag Screencoeevenennn... 58
Keygen SCreenoouiiiiii i 62
Valid Entered Serial ..o 67
Congratulation MeSSAZEouvenriniintiite et eeaans 67
CoffeeCup Startup SCTEeNoveiiriiiii i, 68
APPLEt PIEVIEW ..tettiii i 69
General Tab ..o 69
Login Tab SETHNGSvoueieeiitiit e aaaes 70
User Tab Propertieso.ovuiiuiiiiii e, 70

5.17
5.18
5.19
5.20
5.21

HTML Required Parameters Tabccoooiiiiiiiiiiiiiiiie, 71
HTML 1eqUIredonveieie e e e e e e e e 71
Default Value Encryptedoooiiiiii 72
TeXt 1ePreSeNtatioNc.uiiieiiet ettt e eeeeaeeness 72
Encrypted format for the first usernamecooiiiinin. 73

X

2.1
3.1
4.1
42
43
4.4
45

LIST OF TABLES

Section analyses [Sample DialogBox.exe]ccoovviiiiiiiiiiiiinnn.n 9

Differences between ASM & C++ compiler implementation 19
Overlapping relationship For EAX, EBX, ECX, EDX registers 25
16-bit registers used in real —address modecooiiiinn. 25
Output Summary: FET,R.E.P. ... 39
Methods to defeat checking counter limitation 41
Methods to defeat the password checking procedure 47

Clhopptor 7 SHTRODUCTIOY

Chapter 1

INTRODUCTION

1.1 Reverse Engineering?

Reverse Engineering is the ultimate apex human mind could ever achieve in the
embarking creation of the process and reengineered it back to its original composition
through multi sophisticated Neuron-Digital combinational analysis.

Opening up a program’s “box,” and looking inside, it would be a very interesting
project to tackle. Reverse Code Engineering it’s one of the most important fields in the
development industry concerning security, piracy software, malicious software,
reversing cryptographic algorithms. It’s all about translating the Low Level
Programming Language to High Level Programming Language which requires
understanding everything as bits 0’s and 1’s to reveal the hidden secrets behind the
interface; Operating system, Assembly Language, High Level Language, Hardware
Development, Human minds,... it’s a must to have all of these requirements and much
more for better understanding of how things works.

It’s a very long chain of connections from top till down where there are multi-
branches for each cross-reference from one procedure to another in order for the
instructions to flow cumulatively based on the previous block of procedures and
functions.

1.2 0’s & 1’s Ubiquity: Philosophy

Binary! It’s all about binary 0’s and 1’s, wherever you go whatever you think
you will fall into the same extreme point as a looser or a winner, and there is nothing in
the middle or the system will collapse over itself because there is only one mode at a
time. So in order to understand how things work one must accept the fact of the
experiment being done.

Everything is a bit with variable time being the ultimate ruler on the behavior of
the inter-modular call between the procedures and instructions. Locating a reference and
follow it to the source step by step, it’s an enjoyable very long journey to tackle, but had
better to allocate something dynamically tracing it line by line and grasp the whole
pictures of how registers and numbers follow your control till the desired conclusion.
Not always things that easy, what if you crashed out of the game and there is no return.
No, for every procedure there is a starting point and ending one but be careful
sometimes you will never get out of this loop until you setting another breakpoint
outside this loop and run freely for another block of 0’s and 1’s where your imagination
start to degenerate after the long trip of fighting. May be there is something monitors
your movements and record a log file for all of your actions without noticing anything at
all and that’s the pleasure. Don’t think that you know what you know is what you don’t

Clhopptor 7 SHTRODUCTIOY

know; analyzing your mysterious actions in parallel with the victim being hijacked
might reveal for you secrets behind the outer shell. Sometimes it’s easy, sometimes it’s
not, it depends on how much experience you have to toggle things on and off and make
everything reversible to its raw state. It’s truly truth to have something well done and
share it with the others.

Binary can represent anything, but you can’t make things work the same as each
other. Executable code and data are, at the lowest level, the exact same thing a
collection of 0’and 1’s, you may want to try to run data as code, but most likely this will
lead to a crash. Why, because every object is being structured for it’s own purpose, and
that’s what makes things more than just binary. And for every object (Picture, Movie,
Executable file ...) there is something that understand this structure and will interpreted
in the proper way.

1.3 Protection Classifications

Checking authenticity is the "heart" of the overwhelming majority of protection
mechanisms. In all cases, we have to make sure that the person working with our
program is who he or she claims to be, and that this person is authorized to work with
the program. The word "person" might mean not only a user, but the user's computer or
the medium that stores a licensed copy of the program. Thus, all protection mechanisms
can be divided into two main categories:

= Protection based on knowledge (of a password, serial number, etc.)
= Protection based on possession (of a key disc, documentation, etc.)

Knowledge-based protection is useless if a legitimate owner isn't interested in
keeping the secret. An owner can give the password (and/or serial number) to whomever
he or she likes, and thus anyone can use a program with such protection on his or her
computer.

Naturally, nobody is barging in on users in their homes, and nobody is even
considering it (yet) — your house is still your castle. Besides, what can you get from a
domestic user? A wide distribution of products is good for manufacturers, and who can
distribute better than pirates? Even in that case, serial numbers aren't superfluous—
unregistered users cannot use technical support, which may push them to purchase legal
versions.

Such protection is ideal for giant corporations, but it isn't suitable for small
groups of programmers or individual developers, especially if they earn their bread by
writing highly specialized programs for a limited market (say, star spectra analysis, or
modeling nuclear reactions). Since they cannot apply sufficient pressure, it's unreal for
them to ask users to check their licenses, and it's hardly possible to "beat" the payment
out of illegal users. All that can be done is through threat and eloquence.

Clhopptor 7 SHTRODUCTIOY

In this case, protection based on the possession of some unique subject that is
extremely difficult to copy, or impossible to copy in general (the ideal case), is more
appropriate. The first of this kind were key floppies with information written on them in
such a manner that copying the floppy disk was impossible. The simplest way (but not
the best) to prepare such a floppy was to gently damage the disk with a nail (an awl, a
penknife), and then, having determined the sector in which the defect was located (by
writing and reading any test information — up until a certain point, reading will proceed
normally, followed by "garbage"), register it in the program. Then, each time the
program started, it checked whether the defect was located in the same place or not.
When floppy disks became less popular, the same technique was used with compact
discs. The more affluent cripple their discs with a laser, while ordinary folk still use an
awl or nail.

Other possession-based protection mechanisms frequently modify the subject of
possession, limiting the number of program starts or the duration of its use. Such a
mechanism is often used in installers. So as to not irritate users, the key is only
requested once, when the program is installed, and it's possible to work without the key.
If the number of installations is limited, the damage arising from unauthorized
installation of one copy on several computers can be slight.

The problem is that all of this deprives a legal user of his or her rights. Who
wants to limit the number of installations? (Some people reinstall the operating system
and software each month or even several times a day). In addition, key discs are not
recognized by all types of drives, and are frequently "invisible" devices on the network.
If the protection mechanism accesses the equipment directly, bypassing drivers in order
to thwart hackers' attacks more effectively, such a program definitely won't run under
Windows NT/2000, and will probably fail under Windows 9x. (This is, of course, if it
wasn't designed appropriately beforehand. But such a case is even worse, since
protection executing with the highest privileges can cause considerable damage to the
system.) Apart from that, the key item can be lost, stolen, or just stop working correctly.
(Floppy disks are inclined to demagnetize and develop bad clusters, CDs can get
scratched, and electronic keys can "burn out".)

And that’s the summary for protection classifications as reported in figure 1.1

Clhopptor 7 SHTRODUCTIOY

Protection types

Possession-based

Knowledge-based

‘l Static key

l Password
l Serial Number

Key computer
Limitation of Nag Screen
program starts

Electronic key

Figure 1.1 The main types of protection

Pair of associated keys

Key diskette

Registration number

Key disk

Il

Naturally, these considerations concern the effectiveness of keys in thwarting
hackers, and not the concept of keys in general. End users are none the better for this! If
protection causes inconveniences, users would rather visit the nearest pirate and buy
illegal software. Speeches on morals, ethics, respectability, and so on won't have any
effect. Shame on you, developers! Why make users' lives even more complicated? Users
are human beings too!

That said, protections based on registration numbers have been gaining
popularity: Once run for the first time, the program binds itself to the computer, turns on
a "counter", and sometimes blocks certain functionalities. To make the program fully
functional, you have to enter a password from the developer in exchange for monetary
compensation. To prevent pirate copying, the password is often a derivative of key
parameters of the user's computer (or a derivative of their user name, in an elementary
case).

1.4 Protection Determination

If protection is based on the assumption that its code won't be investigated
and/or changed, it's poor protection. Concealing the source code isn't an insurmountable
obstacle to studying and modifying the application. Modern reverse engineering

Clhopptor 7 SHTRODUCTIOY

techniques automatically recognize library functions, local variables, stack arguments,
data types, branches, loops, etc. And, in the near future, disassemblers will probably be
able to generate code similar in appearance to that of high-level languages.

But, even today, analyzing machine code isn't so complex as to stop hackers for
long. The overwhelming number of constant cracks is the best testament to this. Ideally,
knowing the protection algorithm shouldn't influence the protection's strength, but this is
not always possible to achieve. For example, if a server application has a limitation on
the number of simultaneous connections in a demo version (which frequently happens),
all a hacker needs to do is find the instruction of the process carrying out this check and
delete it. Modification of a program can be detected and prevented by testing the
checksum regularly; however, the code that calculates the checksum and compares it to
a particular value can be found and deleted.

However many protection levels there are — one or one million — the program
can be cracked! It's only a matter of time and effort. But, when there are no effective
laws protecting intellectual property, developers must rely on protection more than law-
enforcement bodies. There's a common opinion that if the expense of neutralizing
protection isn't lower than the cost of a legal copy, nobody will crack it. This is wrong!
Material gain isn't the only motivation for a hacker. Much stronger motivation appears
to lie in the intellectual struggle(who's more clever: the protection developer or me?),
the competition (which hacker can crack more programs?), curiosity (what makes it
tick?), advancing one's own skills (to create protections, you first need to learn how to
crack them), and simply as an interesting way to spend one's time. Many young hackers
spend weeks removing the protection from a program that only costs a few dollars, or
even one distributed free of charge.

The usefulness of protection is limited to its competition — other things being
equal, clients always select unprotected products, even if the protection doesn't restrain
the client's rights. Nowadays, the demand for programmers considerably exceeds
supply, but, in the distant future, developers should either come to an agreement or
completely refuse to offer protection. Thus, protection experts will be forced to look for
other work.

Chapter 2 PORTACLE EXECU TABLE 77T ONY

Chapter 2

PORTABLE EXECUTABLE ANATOMY

Portable Executable file is the native Win32 file format. Every win32 executable
(except VxDs and 16-bit DLLs) uses PE file format. 32bit DLLs, COM files, OCX
controls, Control Panel Applets (.CPL files) and .NET executables are all PE format.
Even NT's kernel mode drivers use PE file format.

2.1 File Structure

This analysis will help later in unpacking and code injection technique for most
of the shareware software available today in the market.

At a minimum, a PE file will have 2 sections; one for code and the other for
data. An application for Windows NT has 9 predefined sections named .text, .bss,
.rdata, .data, .rsrc, .edata, .idata, .pdata, and .debug. Some applications do not need
all of these sections, while others may define still more sections to suit their specific
needs.

The sections that are most commonly present in an executable (depends on the
compiler being used) are:

= Executable Code Section, named .text (Microsoft) or CODE (Borland)

= Data Sections, named .data, .rdata, or .bss (Microsoft) or DATA (Borland)
= Resources Section, named .rsrc

= Export Data Section, named .edata

= Import Data Section, named .idata

= Debug Information Section, named .debug

Chapter 2 FORTAGLE EAECH TABLE A7/ T Oy

In Memory

PE File |

T PE Header

o Section Table

.reloc section

other section

.text section

Section ...

.code section

Section n

Higher Offsets

i
i

Higher addresses

Section n

Figure 2.1 Virtual Memory

The names are actually irrelevant as they are ignored by the OS and are present
only for the convenience of the programmer. Another important point is that the
structure of a PE file on disk is exactly the same as when it is loaded into memory so if
you can locate info in the file on disk you will be able to find it when the file is loaded
into memory.

However it is not copied exactly into memory. The windows loader decides
which parts need mapping in and omits any others. Data that is not mapped in is placed
at the end of the file past any parts that will be mapped in e.g. Debug information.

Also the location of an item in the file on disk will often differ from its location once
loaded into memory because of the page-based virtual memory management that
windows uses. When the sections are loaded into RAM they are aligned to fit to 4Kb
memory pages, each section starting on a new page.

Chapter 2 PORTACLE EXECU TABLE 77T ONY

The concept of virtual memory is that instead of letting software directly access
physical memory, the processor and OS create an invisible layer between the two. Every
time an attempt is made to access memory, the processor consults a "page table" that
tells the process which physical memory address to actually use. It wouldn’t be practical
to have a table entry for each byte of memory (the page table would be larger than the
total physical memory), so instead processors divide memory into pages. This has
several advantages:

o It enables the creation of multiple address spaces. An address space is an isolated
page table that only allows access to memory that is pertinent to the current
program or process. It ensures that programs are completely isolated from one
another and that an error causing one program to crash is not able to poison
another program's address space.

o It enables the processor to enforce certain rules on how memory is accessed.
Sections are needed in PE files because different areas in the file are treated
differently by the memory manager when a module is loaded. At load time, the
memory manager sets the access rights on memory pages for the different
sections based on their settings in the section header. This determines whether a
given section is readable, writable, or executable. This means each section must
typically start on a fresh page.

o However, the default page size for Windows is 4096 bytes (1000h) and it would
be wasteful to align executables to a 4Kb page boundary on disk as that would
make them significantly bigger than necessary. Because of this, the PE header
has two different alignment fields; Section alignment and file alignment. Section
alignment is how sections are aligned in memory as above. File alignment
(usually 512 bytes or 200h) is how sections are aligned in the file on disk and is
a multiple of disk sector size in order to optimize the loading process.

o It enables a paging file to be used on the hard drive to temporarily store pages
from the physical memory whilst they are not in use. For instance if an app has
been loaded but becomes idle, its address space can be paged out to disk to make
room for another app which needs to be loaded into RAM. If the situation
reverses, the OS can simply load the first app back into RAM and resume
execution where it left off. An app can also use more memory than is physically
available because the system can use the hard drive for secondary storage
whenever there is not enough physical memory.

Chapter 2 PORTACLE EXECU TABLE 77T ONY

When PE files are loaded into memory by the windows loader, the in-memory
version is known as a module. The starting address where file mapping begins is called
an HMODULE. A module in memory represents all the code, data and resources from an
executable file that is needed for execution whilst the term process basically refers to an
isolated address space which can be used for running such a module.

2.2 Sections Surgery

I wrote a very basic program in assembly language and compiled it using
MASM compiler (Macro Assembler) v9.0 in order to have an overview about sections
in the executable file with their different names and addresses for each one.

No | Name VSize VOffset RSize ROffset Charact.

01 text 000000B0O | 00001000 00000200 00000400 60000020
02 .rdata 0000012A | 00002000 00000200 00000600 40000040
03 .data 00000010 00003000 00000200 00000800 C0000040
04 | .rsrc 00000148 00004000 00000200 00000A00 | 40000040

Table 2.1 Section analyses [Sample DialogBox.exe]

Manipulating these sections could be done through any hex editor or any automated tool
created for this purpose like Stud PE v2.2.0.5 or LordPE Deluxe by yoda.

Name: [this field is 8 bytes] The name is just a label and can even be left blank.

VirtualSize: [DWORD union] The actual size of the section's data in bytes. This may
be less than the size of the section on disk (Size OfRawData) and will be what the
loader allocates in memory for this section.

VirtualAddress: The RVA of the section. The PE loader examines and uses the value
in this field when it's mapping the section into memory. Thus if the value in this field is
1000h and the PE file is loaded at 400000h, the section will be loaded at 401000h.

SizeOfRawData: The size of the section's data in the file on disk, rounded up to the
next multiple of file alignment by the compiler.

PointerToRawData: (Raw Offset) - incredibly useful because it is the offset from the
file's beginning to the section's data. If it is 0, the section's data are not contained in the
file and will be arbitrary at load time. The PE loader uses the value in this field to find
where the data in the section is in the file.

Characteristics: Contains flags such as whether this section contains executable code,
initialized data, uninitialized data, can it be written to or read from.

Chapter 2 PORTACLE EXECU TABLE 77T ONY

2.2.1 Executable Code Section

In Windows NT all code segments reside in a single section called .text or
CODE. Since Windows NT uses a page-based virtual memory management system,
having one large code section is easier to manage for both the operating system and the
application developer. This section also contains the entry point mentioned earlier and
the jump thunk table (where present) which points to the IAT.

2.2.2 Data Section

The .bss section represents uninitialized data for the application, including all
variables declared as static within a function or source module.

The .rdata section represents read-only data, such as literal strings, constants,
and debug directory information.

All other variables (except automatic variables, which appear on the stack) are
stored in the .data section. These are application or module global variables.

2.2.3 Resource Section

The .rsrc section contains resource information for a module. There are many
resource editors available today which allows editing, adding, deleting, replacing and
copying resources.

For a demo about resource editor we can use Restorator' 2006 v3.60 build 1535.
This figure shows the Sample DialogBox.exe resources. I didn’t include an icon or any
other resources only a dialog box with two buttons and one edit box.

Source code (Sample DialogBox.exe) written in MASM assembler:

.386
.model flat, stdcall ;32 bit memory model
option casemap :none ;case sensitive

include Sample DialogBox.inc

.code

! Restorator is a resource editor for Windows. Resources are additional data accompanying a Windows
application. Resources are usually part of the application interface. E.g. dialogs, menus, images, text,
icons etc. They are usually stored with the executable or dll. Restorator can edit those resource files and
thereby change the look and feel or language of an application completely independent of the
development and compile tools. By bome.com/Florian Bomers

10

Chapter 2 PORTACLE EXECU TABLE 77T ONY

start:

invoke GetModuleHandle, NULL
mov hInstance, eax

invoke InitCommonControls
invoke DialogBoxParam, hInstance, IDD DIALOG1,NULL, addr DlgProc,NULL
invoke ExitProcess, 0

DlgProc proc hWin:HWND,uMsg:UINT,wParam:WPARAM, lIParam: LPARAM

.if uMsg == WM COMMAND
mov eax,wParam
.if eax == IDC MESSAGE
invoke SetDlgItemText, hWin, IDC EDITBOX,ADDR Message
.elseif eax == IDC_EXIT
invoke SendMessage, hWin, WM CLOSE, 0, O
.endif
.elseif uMsg == WM CLOSE
invoke EndDialog, hWin, 0
.endif

XOr eax,eax
ret

DlgProc endp

end start

Il Sample I By EHE mUTABLE =10 x|

E st Meszane

= E Sample DialogBox. exe

=) Dialog :
. I_] DlgBox Identifier

Figure 2.2 Restorator: DigBox Identification

11

Chapter 2 PORTACLE EXECU TABLE 77T ONY

This tool helps in translating the strings to any language an it could be used as an
aesthetical purpose for cracking after locating the BadMessage® String.

2.2.4 Export Data Section

The .edata section contains the Export Directory for an application or DLL.
When present, this section contains information about the names and addresses of
exported functions.

2.2.5 Import Data Section

The .idata section contains various information about imported functions
including the Import Directory and Import Address Table.

2.2.6 Debug Information Section

Debug information is initially placed in the .debug section. The PE file format
also supports separate debug files (normally identified with a .DBG extension) as a
means of collecting debug information in a central location. The debug section contains
the debug information, but the debug directories live in the .rdata section mentioned
earlier. Each of those directories references debug information in the .debug section.

2.2.7 Base Relocation Section

When the linker creates an EXE file, it makes an assumption about where the
file will be mapped into memory. Based on this, the linker puts the real addresses of
code and data items into the executable file. If for whatever reason the executable ends
up being loaded somewhere else in the virtual address space, the addresses the linker
plugged into the image are wrong. The information stored in the .reloc section allows
the PE loader to fix these addresses in the loaded image so that they're correct again. On
the other hand, if the loader was able to load the file at the base address assumed by the
linker, the .reloc section data isn't needed and is ignored.

2.3 The Import Section

The import section (usually .idata) contains information about all the functions
imported by the executable from DLLs. This information is stored in several data
structures. The most important of these are the Import Directory and the Import Address
Table which we will discuss next. The Windows loader is responsible for loading all of
the DLLs that the application uses and mapping them into the process address space. It

? BadMessage means that the program is not registered yet (annoying message box text), so you have to
locate the GoodMessage either using patching technique where the software being cracked automatically
place the right one or by any resource editor.

12

Chapter 2 PORTACLE EXECU TABLE 77T ONY

has to find the addresses of all the imported functions in their various DLLs and make
them available for the executable being loaded.

The addresses of functions inside a DLL are not static but change when updated
versions of the DLL are released, so applications cannot be built using hardcoded
function addresses. Because of this a mechanism had to be developed that allowed for
these changes without needing to make numerous alterations to an executable's code at
runtime. This was accomplished through the use of an Import Address Table (IAT).
This is a table of pointers to the function addresses which is filled in by the windows
loader as the DLLs are loaded.

By using a pointer table, the loader does not need to change the addresses of
imported functions everywhere in the code they are called. All it has to do is add the
correct address to a single place in the import table and its work is done.

2.4 The Loader

When an executable is run, the windows loader creates a virtual address space
for the process and maps the executable module from disk into the process' address
space. It tries to load the image at the preferred base address and maps the sections in
memory. The loader goes through the section table and maps each section at the address
calculated by adding the RVA® of the section to the base address. The page attributes are
set according to the section’s characteristic requirements. After mapping the sections in
memory, the loader performs base relocations if the load address is not equal to the
preferred base address in ImageBase.

The import table is then checked and any required DLLs are mapped into the
process' address space. After all of the DLL modules have been located and mapped in,
the loader examines each DLL's export section and the IAT is fixed to point to the
actual imported function address. If the symbol does not exist (which is very rare), the
loader displays an error. Once all required modules have been loaded execution passes
to the app's entry point.

The area of particular interest in RCE is that of loading the DLLs and resolving
imports. This process is complicated and is accomplished by various internal
(forwarded) functions and routines residing in ntdll.dll which are not documented by
Microsoft. As we said previously function forwarding is a way for Microsoft to expose a
common Win32 API set and hide low level functions which may differ in different
versions of the OS. Many familiar kernel32 functions such as GetProcAddress are
simply thin wrappers around ntdll.dll exports such as LdrGetProcAddress which do the
real work.

3 Relative Virtual Address: In an executable file or DLL, an RVA is always the address of an item once
loaded into memory, with the base address (ImageBase) of the image file subtracted from it: RVA = VA —
ImageBase .. VA = RVA + ImageBase

13

Chapter 5 AN 7700 (7 # COWFEAERLFE TEST

Chapter 3

ASM AND C++ COMPILER LAB TEST

For Reverse Code Engineering RCE mechanism, Assembly language it’s a must
to understand it fully at least as a prerequisite for better understanding of how things
flow between lines.

Machine Language is a numeric language that is specifically understood by a

computer’s processor (the CPU). Intel processors, for example, have a machine
language that is automatically understood by other Intel processors. Machine languages
consists purely of numbers.
Assembly language consists of statement that uses short mnemonics such as ADD,
MOV, SUB, and CALL. Assembly language has one to one relationship with machine
language, meaning that one assembly language instruction corresponds to one machine-
language instruction.

3.1 ASM & C++ Compiler Study

After readings about computer languages and learning most of it from DOS,
Qbasic, Delphi, C++, VB, to ASM, I came to a conclusion based on my experience
concerning compiler architecture especially in the protection field that the programmer
imagination and the compiler capabilities must unite for better performance and better
protection.

In the following section I will write a small code which only shows a message
box at startup on the screen in assembly language and another one in C++ language (the

same functionality).Using API* (Application Programming Interface) technique.

ASM Code (Size After compilation: 3.0 KB):

.386

.model flat, stdcall
Option casemap:none
include windows.inc
include kernel32.inc
include user32.inc

includelib kernel32.1lib
includelib wuser32.lib

.data
MsgBoxCaption db "Thesis DemoBox II",
MsgBoxText db "Welcome To LIU University",

* Functions that user applications can use to request specific operations to be performed by the kernel.

14

Chapter 5 AN 7700 (7 # COWFEAERLFE TEST

.code

start:

invoke MessageBox, NULL, ADDR MsgBoxText, ADDR MsgBoxCaption, MB OK
invoke ExitProcess,0

end start

Thesis DemoBo x|

Welcome To LIU University

Figure 3.1 ASM Executable MessageBox

C++ Code (Size After compilation: 152 KB):

#include <windows.h>

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)
{
MessageBox (NULL, "Welcome To LIU University", "Thesis DemoBox II
C++", MB OK);
return 0O;

Thesis DemoBox I x|

Welcome To LI Universiky

Figure 3.2 C++ Executable MessageBox

I’ve used an API technique in these two examples (API): Which is a set of
functions that the operating system makes available to application programs for
communicating with the operating system. For reversing under Windows, it is
imperative that you develop a solid understanding of the Windows APIs and of the
common methods of doing things using these APIs.

After the compilation for these two small programs comes the disassembler in
order to investigate the behavior of the program as an assembly language with hex code
mnemonic.

The disassembler is one of the most important reversing tools. Basically, a
disassembler decodes binary machine code (which is just a stream of numbers) into a
readable assembly language text. This process is somewhat similar to what takes place

15

Chapter 5 AN 7700 (7 # COWFEAERLFE TEST

within a CPU while a program is running. The difference is that instead of actually
performing the tasks specified by the code (as is done by a processor), the disassembler
merely decodes each instruction and creates a textual representation for it.

Needless to say, the specific instruction encoding format and the resulting textual
representation are entirely platform-specific. Each platform supports a different
instruction set and has a different set of registers. Therefore a disassembler is also
platform-specific (though there are disassemblers that contain specific support for more
than one platform).

I'm going to use IDA (Interactive Disassembler) by DataRescue
(www.datarescue.com) which is an extremely powerful disassembler that supports a
variety of processor architectures, including [IA-32, IA-64 (Itanium), AMD64, and many
others. IDA also supports a variety of executable file formats, such as PE (Portable
Executable, used in Windows), ELF (Executable and Linking Format, used in Linux),
and even XBE, which is used on Microsoft’s Xbox.

Using IDA Pro Advanced v 4.9.0.863 (32bit)

3.1.1 ASM Disassembled Code

Disassembling the compiled ASM Code:

.text:00401000 public start

.text:00401000 start proc near

.text:00401000 push 0 ; uType

.text:00401002 push offset Caption ; "Thesis
DemoBox II"

.text:00401007 push offset Text ; "Welcome To
LIU University"

.text:0040100C push 0 ; hWnd

.text:0040100E call MessageBoxA

.text:00401013 push 0

.text:00401015 call $+5

.text:0040101A jmp ds:ExitProcess

.text:0040101A start endp

As you notice the code is very clear and understandable from the first looking
without any additional garbage from the MASM compiler. MessageBox calling
convention is in the reverse order to invoke (C convention where for Delphi it’s almost
the same as the source code). Everything is clear. If we compare this disassembled code
to ASM source code: no huge differences.

According to the MSDN library the MessageBox:

The MessageBox function creates, displays, and operates a message box. The
message box contains an application-defined message and title, plus any combination of

predefined icons and push buttons.

16

Chapter 5 AN 7700 (7 # COWFEAERLFE TEST

Syntax

int MessageBox (

HWND hWnd, ; in this case “0” no owner window referred to.”hWnd”
LPCTSTR IpText, ; “Welcome To The LIU University”
LPCTSTR IpCaption, ; “Thesis DemoBox II”

UINT uType ,; for every type (Icon, Buttons Combination assigned

nb)

) ;

Parameters

hiWnd
[in] Handle to the owner window of the message box to be
created. If this parameter is NULL, the message box has no owner
window.

1lpText

[in] Pointer to a null-terminated string that contains the
message to be displayed.

IpCaption
[in] Pointer to a null-terminated string that contains the
dialog box title. If this parameter is NULL, the default title
Error is used.

uType
[in] Specifies the contents and behavior of the dialog box. This
parameter can be a combination of flags.

The Exit Process function ends a process and all its threads.

Void ExitProcess(

UINT uExitCode. ; “0”

);

3.1.2 C++ Disassembled Code

Disassembling the compiled C++ Code:

.text:00401010 ; int stdcall WinMain (HINSTANCE hInstance, HINSTANCE
hPrevInstance, LPSTR lpCmdLine, int nShowCmd)

.text:00401010 WinMain proc near ; CODE XREF:

17

Chapter 5 AN 7700 (7 # COWFEAERLFE TEST

WinMain(x,x,x,x)Tj
.text:00401010
.text:00401010 var 40 = dword ptr -40h
.text:00401010 hInstance dword ptr 8
.text:00401010 hPrevInstance dword ptr OCh
.text:00401010 lpCmdLine dword ptr 10h

.text:00401010 nShowCmd = dword ptr 14h
.text:00401010
.text:00401010 push ebp
.text:00401011 mov ebp, esp
.text:00401013 sub esp, 40h
.text:00401016 push ebx
.text:00401017 push esi
.text:00401018 push edi
.text:00401019 lea edi, [ebptvar 40]
.text:0040101C mov ecx, 10h
.text:00401021 mov eax, (0CCccCccCcCcCCh
.text:00401026 rep stosd
.text:00401028 mov esi, esp
.text:0040102A push 0 ; uType
.text:0040102C push offset Caption ; "Thesis
DemoBox
IT C++"
.text:00401031 push offset Text ; "Welcome To
LIU
University"
.text:00401036 push 0 ; hWnd
.text:00401038 call ds: imp MessageBoxAQRl6 ;
MessageBoxA (X, X, X, X)
.text:0040103E cmp esi, esp
.text:00401040 call ___chkesp
.text:00401045 XOr eax, eax
.text:00401047 pop edi
.text:00401048 pop esi
.text:00401049 pop ebx
.text:0040104A add esp, 40h
.text:0040104D cmp ebp, esp
.text:0040104F call ___chkesp
.text:00401054 mov esp, ebp
.text:00401056 pop ebp
.text:00401057 retn 10h
.text:00401057 WinMain endp
| | |
A A A
.text:00401BB1 loc 401BBl: ; CODE XREF: doexit+BD!
.text:00401BB1 mov ~C Exit Done, 1
.text:00401BBB mov ecx, [ebptuExitCode]
.text:00401BBE push ecx ; uExitCode
.text:00401BBF call ds: imp ExitProcess@4 ;

ExitProcess (x)

18

Chapter 5 AN 7700 (7 # COWFEAERLFE TEST

In the compiled C++ program the disassembled code is very lengthy with many
cross references, Import functions from other DLL (Dynamic Link Library) file
It seems clear enough which code is more readable and compact for better performance.

ASM Code C++ Code
Size 3 KB 152 KB
Imports 2 50
D.ASM.Code readability More Less
Compactness High Low
Names 2 531
Functions 2 239

Table 3.1 Differences between ASM & C++ compiler implementation

From compiler point of view MASM compiler is better when writing Assembly
language instructions without any help from other resources only the required ones,
whereas concerning the Microsoft Visual Studio v6.0 C++ compiler, writing in high
level language (C++) requires many additional resources from other DLL’s to interact
with the operating system. But for reversing with such huge informative analysis
depicted by IDA the task become less complex especially in malware analysis.

We can also check the distribution of the byte value in each one with respect to the
sections size and how messy it’s the graph in C++ compiler.

19

Clhapter 3 AN 70D O+ COWFPRIER LAE TEST

240
220

200
130
160

==

S 140

120

Biyte wal

100
a0
B0
40
20

text: 00401010

Byte value distribution

u u u T
text:0040F 151 text: 0041 F180

Figure 3.3 C++ Byte Value Distribution

Byte walue distribution

text: 00401000

C++ compiler Byte Value
Distribution: it’s clear how
much variation there are in
the same section and that’s
declare the extremity in the
near and far jumping in the
program in order to
interconnect with its own
procedures from one place to
another.

ASM compiler Byte Value
Distribution: here the graph
is very well distributed with
no extremities between
sections; also we notice the
three sections being varied in
size and distribution in a
normal way.

Jdlata: 00402000 datac004

Figure 3.4 ASM Byte Value Distribution

20

Chapter # EREARGIV G FROITECT IS

Chapter 4

BREAKING PROTECTIONS

Before start breaking the protection of any software, let me first introduce some
definitions which is important for later discussions.

4.1 Debugger

The term debugger is something of a misnomer’. Strictly speaking, a debugger is
a tool to help track down, isolate, and remove bugs from software programs. Bugs are
software defects that have been affectionately known as bugs. In truth, debuggers are
tools to illuminate the dynamic nature of a program-they are used to understand a
program as well as find and fix defects. Debuggers are the magnifying glass, the
microscope, the logic analyzer, the profiler, and the browser with which a program can
be examined.

Debuggers are software tools that help determine why the program does not
behave correctly. They aid a programmer in understanding a program and then in
finding the cause of the discrepancy. The programmer can then repair the defect and so
allow the program to work according to its original intent. A debugger is a tool that
controls the application being debugged so as to allow the programmer to follow the
flow of program execution and, at any desired point, stop the program and inspect the
state of the program to verify its correctness.

4.2 Packer Theory

The executable file is packed? What does that mean. Just as we pack files using
Winzip or Winrar we can pack executables to protect them and conserve space. You
can't open a zip file without a program to unpack it. The same is true for packed
executables; except the program that unpacks it is part of the executable. The unpacker
program is called a STUB. When you run a packed EXE the STUB first
decrypts/unpacks the original EXE into memory. Then it executes the original program.
The beginning of the original program is called the Original Entry Point "OEP". What to
do next is waiting until the program is decrypted into memory, find the OEP and then
dump® the decrypted file to the hard drive. However, the OEP does not mean the
beginning of a "working" EXE. Even if the programs code is known but an executable

> A wrong or unsuitable name.

® Dump: every program executed is mapped in memory as it’s, even if it’s packed. After a while
everything will be clear. So, in order to overcome the packed executable file we must load it into
debugger and then save it to a disk file, of course after we found the Original Entry Point, hence the
dumped program will be freed from the unpacking stub and will again run as before. But sometimes the
OEP redirected in a very complicated way in order to increase the protection.

21

Chapter # EREARGIV G FROITECT IS

can have many different sections outside of the code. One very important section is
called the Import Address Table "IAT". The Import Address Table allows a program to
use functions stored outside of the program. A Messagebox from the Windows API is
an example of an outside function. When a program wants to use an outside function
Windows loads the DLL with that function into memory address space and then gives
the IAT the code location for the desired functions. A table is created with called
functions, and addresses of those functions within the DLL's; hence the Import Address
Table.

The compressed executable file requires:

o Less storage space in the file system

Less time to transfer data from the file system into memory

o More time to decompress the data before execution begins than
the uncompressed original .

@)

These advantages come at a price. For viruses, virii, worms and other malicious
software (Malware) which spread rapidly on the internet the antiviruses face a big
problem because of the packers being used in these viruses and make things more
complicated for AV programmer to identify the signature of the virus. Because the
cracker themselves build their own advanced packers (Private License only for crackers
group not for public use) especially in polymorphic and Import Address Table
redirection means.

4.3 Newton Third Law: Protectors
For every action there is an equal and opposite reaction.

The aim of the protector is emphasizing more or even completely on protection
against Reverse Engineering than the simple packer. So, protectors try adding another
sections and layers of obfuscations in order to defeat the reverser. The size of the
program being protected is large. But in fact sometimes things are easier to defeat with
protectors than packer.(my experience with highly sophisticated packers and protectors).

Nothing is impossible, for every packing, protecting mechanism there are tens of
unpacking and unprotecting mechanisms, for some packers, protectors there is a fully
automated software which delete the whole protection of the software in one click.

What the most important thing a protector mess with is the Import Address Table (IAT).
The following paragraphs are very important, so read it carefully and try to visualize
the mechanism of the possibilities of what the protectors’ abilities inside this area.

There are different Microsoft windows operating systems, and they all have different
addresses for their API functions, because of different structured DLL’s. when an
application starts, it has a list of all functions that aren’t originally a part of the
application. These functions, called imports, are located in the operating system DLL’s,

22

Chapter # EREARGIV G FROITECT IS

but the application doesn’t know where. Every win32 executable application has an
Import address table (IAT) residing inside the program. The IAT is used as a lookup
table when the application is calling a windows API function. So before starting, the
windows loader has to find each address of each API that the program wants to call and
constructs an IAT with them. When the program is running and it wants to call API, it
simply looks in the IAT and thus finds immediately the address it needs to go in the
DLL. When an executable has been packed or protected the reverse engineer must
recover the original executable file because a lot of packers/protectors destroy the IAT
(while taking care of finding the API’s for the program). The import address table needs
to be either rebuilt or fixed to allow for the executable to run properly. Import rebuilding
is the reconstruction of the import address table (IAT).

Now, let’s start this over but look in it in more detail. First of all: when an
executable is first loaded, the windows loader is responsible for reading in the PE
structure and loading the executable image into memory. One of the other steps it takes
is to load all of the DLL’s that the application uses and map them into the process
address space. The executable also lists all of the functions it will require from each
DLL. Because the function addresses are not static, a mechanism was developed that
allows for these variables to be change without needing to alter all of the compiled code
at runtime. This was accomplished through the use of an import address table (IAT).
This is a table of function pointers filled in by the windows loader as the DLL’s are
loaded. When the application was first compiled, it was designed so that none of the
API calls use direct hardcoded addresses but rather work through a function pointer. In
follow, this pointer table can be accessed in several ways. Either directly by a call
[pointer address] or via a jump thunk table. By using the pointer table, the loader does
not need to fix up all of the places in the code that want to use the API call, all it has to
do is add the pointer to a single place in a table and its work is done.

When it comes to packed executables, they almost invariably mess with the
processes import table in order to make the executable smaller and make it harder for
people to unpack and get running again. Packed programs were still generated with
standard compilers, and of course they were still designed to work this fixed mechanism
(which is a very efficient way to handle the problem anyway). If a packer has destroyed
the default import table mechanism, which simply means that the packer/protector will
have to figure out which DLL’s and functions to load and where to place the pointers so
that the original program still operates as normal after it has done its decompression and
restorations routines.

4.4 A Little Bit About Assembly

But before embarking on the Reverse Engineering, let me first describe a little
bit about registers because they are the primary information holders when using a
debugger. So, registers are high-speed storage locations directly inside the CPU,
designed to be accessed at much higher speed than conventional memory. When a
processing loop is optimized for speed, for example, registers are used inside the loop
rather than variables.

23

Chapter # EREARGIV G FROITECT IS

32-bit General-Purpose Registers
— —

EAX EBP
EBX ESP
ECX ESI
EDX EDI

EFLAGS | s ES

SS FS

EIP | DS GS

— g _

16-bit Segment Registers

Figure 4.1 1A-32 Basic Program Execution Registers

Figure 4.1 shows the basic program execution registers. There are eight general purpose
registers, six segment registers, a register that holds processor status flags (EFLAGS),
and an instruction pointer.

General-Purpose Registers: The general-purpose registers are primarily used for
arithmetic and data movement. As shown in the following figure, each register can be
addressed as either a single 32-bit value or a 16-bit value:

8 8
L AH * AL L 8 bits + 8 bits

AX {16 bits

| EAX i 32 bits

[}

Some 16-bit registers can be addressed as two separate 8-bit values. For example, the
EAX register is 32 bits. Its lower 16 bits are also named AX. The upper 8 bits of AX are
named AH, and the lower 8 bits are named AL.

This overlapping relationship exists for the EAX, EBX, ECX, and EDX registers:

24

Chapter # EREARGIV G FROITECT IS

32-bit 16-bit 8-bit(High) 8-bit(Low)
EAX AX AH AL
EBX BX BH BL
ECX CX CH CL
EDX DX DH DL

Table 4.1 Overlapping relationship For EAX, EBX, ECX, EDX registers

The remaining general purpose registers have separate names for their lower 16-bits, but
cannot be divided further.

32-bit 16-bit
ESI SI
EDI DI
EBP BP
ESP SP

Table 4.2 16-bit registers used in real —address mode
Specialized Used Some general-purpose registers have specialized uses:

e EAX is automatically used by multiplication and division instructions. It is often
called the extended accumulator register. “EAX is also the return register for
almost all API functions.”

e The CPU automatically uses ECX as loop counter.

e ESP addresses data on the stack (a system memory structure). It should never be
used for ordinary arithmetic or data transfer. It is often called the extended stack
pointer register

e ESI and EDI are used by high-speed memory transfer instructions. They are
sometimes called the extended source index and extended destination index
registers.

e EBP is used by high-level languages to reference function parameters and local
variables on the stack. It should not be used for ordinary arithmetic or data
transfer except at an advanced level of programming. It is often called the
extended frame pointer register.

Segment Registers the segment registers are used as base locations for preassigned
memory areas called segments. Some segments hold program instructions (code),
others hold variables (data), and another segment called the stack segment holds local
function variables and function parameters.

Instruction pointer The EIP, or instruction pointer register contains the address of the
next instruction to be executed. Certain machine instruction manipulate this address,
causing the program to branch to a new location.

25

Chapter # EREARGIV G FROITECT IS

EFLAGS Register The EFLAGS (or just Flags) register consists of individual binary bits
that either control the operation of the CPU or reflect the outcome of some CPU
operation. There are machine instructions that can test and manipulate the processor

flags.

Note: A flag is set when it equals 1; it is clear (or reset) when it equals 0.

= Instructions (4SM mnemonics)

An instruction is a statement that is executed by the processor at runtime after the
program has been loaded into memory and started. For example:

MOV destination,source ; Copies a byte or word from a source operand

to a destination operand. Ex. MOV eax,10000h
MOV (copies) the integer 10000h to EAX regi-
ster, Now EAX holds the value 10000h, EAX =
10000h and so on for another instructions the
same procedure(relatively speaking).

Here is some of the fundamental instructions is ASM which often considered to be the
key point in breaking protections depending on conditional and unconditional jump’s
and how it affects the flags status.

Mnemonic

Comment

AND dest,src

(Logical AND). Each bit in the destination operand is
ANDed with the corresponding bit in the source operand.
This will equal to 1 only when two 1 are stand below
each other otherwise equal to 0. This instruction will
clear the O-Flag and the C-Flag and can set the Z-Flag.
(Ex. AND EAX, EDX), where EAX holds 10101101 & EDX
holds 11101100

10101101
11101100
10101100

CALL address

call a procedure, pushes the location of the next
instruction on the stack and transfers to the

destination location, executes a function at the
specified address, (Ex. CALL 00404056, CALL EAX, CALL
DWORD PTR [EAX] , CALL DWORD PTR [EAX+3]): call address

00404056 , call register EAX, calls the address that is
stored at [EAX], calls the address that 1is stored at
[EAX+3] and then when the function has finished the
code will continue the line after the call.

CMP dest, src

Compares the destination to the source by performing an
implied subtraction of the source from the destination
and updates the flags, this 1is a very important
instruction, because it verify something whether it’s
to check if the program is registered or to compare the
entered serial (fake) to the real one. Usually comes

26

Chapter # EREARGIV G FROITECT IS

after a call instruction...
Ex. CMP EAX,ECX
JZ 00401648
Compare EAX to ECX if equal the zero flag is set to 1,
hence if the zero flag is set then jump to 00401648

Adds 1 to register (Ex. INC EAX)or a memory operand
(Ex. INC [00406234], INC [EAX], INC [EAX+00406234]):

INC increase the dword that is stored at [00406234], [EAX],
[EAX+004062347 .

DEC Subtracts 1 from an operand. The opposite of the INC

INT Interrupt. Generates a software interrupt, which in
turn calls an operating system subroutine (Ex. INT 3)
To return from a function, located usually at the end

RET of a function, and it simply instructs the processor to
RETurn to the address of the CALL to the function

NOP This instruction does nothing (No Operation). (it’s

used for patches so often)

OR dest, src

Performs a boolean (bitwise) OR operation between each
matching bit in the destination operand and each bit in
the source operand. Only when there are two 0 on top of
each other, the resulting bit is 0. Else the resulting
bit is 1. This instruction will clear the O-Flag and
the C-Flag and can set the Z-Flag.

(Ex. OR EAX, EBX), let’s say EAX holds 01011001 & EBX
holds 10001010 therefore ORing them will yield:

XOR dest, src

01011001

10001010

11011011
Each bit in the source operand is exclusive ORed with
its corresponding bit in the destination. The

destination bit is a 1 only when the original source
and destination bits are different. This instruction
will clear the O-Flag and the C-Flag and can set the Z-
Flag. (Ex. OR EAX,EBX), let’s say EAX holds 01011001 &
EBX holds 10001010 therefore XORing them will yield:

01011001
10001010
11110011

One of the most often seen use of XOR is XOR EAX,EAX
This will set EAX to 0, because when you XOR a value
with itself, the result is always 0

TEST dest,src

Tests individual Dbits in the destination operand
against those in the source operand. Performs a logical
AND operation that affects the flags but not the
destination operand. (Ex. TEST EAX,EAX). It does not
save the values. It only sets the Z-Flag, when EAX is O
or clears it, when EAX is not 0. The Overflow/Carry
flags are always cleared.

27

Chapter # EREARGIV G FROITECT IS

POP dest

(Pop from Stack’). Copies a word or a doubleword at
the current stack pointer location into the destination
operand, and adds 2 (or 4) to (Extended) Stack Pointer
(E)SP.

POP loads the value of byte/word/dworp ptr [esp] and
puts it into dest. Additionaly it increases the stack
by the size of the value that was popped of the stack,
so that the next POP would get the next wvalue.
(LaZaRusS)

PUSH operand

(Push on Stack). Subtracts 2 from (E)SP and copies the
source operand into the stack location pointed to by
(E) SP.

PUSH is the opposite of POP. It stores a value on the
stack and decreases it by the size of the operand that
was pushed, so that ESP points to the value that was
PUSHed. (LazaRuS)

JMP

Jump unconditionally to... a code.

Ex. JMP 00412075

JA Jump 1f (unsigned) above CF=0 and ZF=0
JAE Jump if (unsigned) above or CF=0
equal
JB Jump if (unsigned) below CF=1
JBE Jump i1if (unsigned) below or CF=1 or ZF=1
equal
JC Jump if carry flag set CrF=1
JCXZ Jump if CX is O CX=0
JE Jump i1f equal ZF=1
JECXZ Jump if ECX is O ECX=0
JG Jump if (signed) greater ZF=0 and SF=0OF (SF =
Sign Flag)
JGE Jump if (signed) greater or SF=0F
equal
JL Jump if (signed) less SF != OF (!= is not)
JLE Jump i1f (signed) less or ZF=1 and SF != OF
equal
JMP Jump Jumps always
JNA Jump if (unsigned) not above CF=1 or ZF=1
JNAE Jump 1f (unsigned) not above CF=1
or equal
JNB Jump if (unsigned) not below CF=0
JNBE Jump if (unsigned) not below CF=0 and ZF=0
or equal
JNC Jump if carry flag not set CF=0
JNE Jump if not equal ZF=0

” The Stack is a group of memory locations in the Read/Write memory that is used for temporary storage
of binary information during the execution of a program. The starting memory location of the stack is
defined in the main program, and space is reserved, usually at the high end of the memory map. The
method of information storage resembles a stack of books. The contents of each memory location are, in a
sense, “Stacked” —one memory location above another —and information is retrieved starting from the top.
Hence, this particular group of memory locations is called the stack. (Gaonkar, Ramesh. Microprocessor
Architecture, Programming, and Applications with the 8085, Third Edition. 1996

28

Chapter # EREARGIV G FROITECT IS

JNG Jump if (signed) not greater ZF=1 or SF!=0F

JNGE Jump if (signed) not greater SE!=0F
or equal

JNL Jump if (signed) not less SEF=0F

JNLE Jump if (signed) not less or ZF=0 and SF=0F
equal

JNO Jump 1f overflow flag not set | OF=0

JNP Jump if parity flag not set PF=0

JNS Jump if sign flag not set SF=0

JNZ Jump if not zero ZF=0

Jo Jump if overflow flag is set OF=1

JP Jump if parity flag set PF=1

JPE Jump if parity is equal PF=1

JPO Jump i1f parity is odd PF=0

JS Jump if sign flag is set SF=1

JZ Jump if zero ZF=1

4.5 Packer Theory Demonstration

Real demonstration about packers and IAT theory:

investigate IAT theory.

unpacking demo.

In this part, the debugger role is crucial for code analysis to visualize the
implementation of the theory in real application. One of the most important debugger
with many advanced features is OllyDbg v1.10 for Ole Yuschuk and is free you can
download it from http://www.ollydbg.de. OllyDbg is a 32-bit assembler-level analyzing
debugger with intuitive interface. It is especially useful if source code is not available or

when you experience problems with your compiler.

I wrote a small C++ console based program (Compiled using MS Visual Studio 6.0)in

order to demonstrate the three stages mentioned above.
First of all. I will explain the C++ source code functionality .

#include <iostream>
using namespace std;

int main ()

{

int counter = 0;

while (counter !=3)

{
const int k = 13;

v’ First stage: writing a small C++ program and loaded in a debugger in order to

v Second stage: pack the same program using a free packer and investigate how
the OEP being changed upon using the packer and making a step by step manual

v' Third stage: make the software accept any password or changed to another one.

29

Chapter # EREARGIV G FROITECT IS

const int 1 = 13;

password[k] = "drhasanbazzi";
user[1] = {0};

cout <<"Thesis IAT, Packer, Serial Protection Demo'"<<endl;

cout <<"Please Enter Your Password: ;
cin>>user;

for (int 1i=0; 1i<=11; i++)
{
if (user[i] == password[i])
{
cout<<"Character:"<<" ["<<i<<"] "<<"="<<user [1]<<"
:Access Approved"<<endl;

counter++;

}

return 0;

Explanation: what’s the functionality of this software? This software will serve
as a guidance to apply the three stages after the compilation.

The purpose is: when it’s executed the software will receive a password from the
user and check it with a predefined one, if they match an Access Approved Message
will appear otherwise an Access Denied Message will appear. The password created
using an array of size 13 one for the predefined password and another one for user
checking. The while loop will decide how many times you try in checking the password,
in this case it’s allowed for three times only. The usefulness of this software is that it
will check each entered character with predefined one and after that the output will
show with respect to the array index which matches and which doesn’t. Why this?
Because in the reversing we can try many thing for better understanding. When it comes
to the disassembly we no longer have the source code only the executable, we deal with
it in a disassembler and debugger in parallel.

30

Chapter # EREARGIV G FROITECT IS

4.5.1 First Stage: Deciphering The Bits

®,

¢ First Stage Anatomy: the executable being loaded in OllyDbg

1
PUSH EBP

00424EDO | /$ | 55 ! :
00424ED1 | |. | 8BEC ! MOV EBP,ESP '
00424ED3 | |. | 6A FF ! PUSH -1 i
00424ED5 | |. | 68 70E14600 i PUSH IATTheor.0046E170 |
00424EDA | |. | 68 CCF14200 | PUSH IATTheor. except_handler3
00424EDF | |. | 64:A1 00000000 ' MOV EAX, DWORD PTR FS:[0] !
00424EE5 | |. | 50 ! PUSH EAX !
00424EE6 | |. | 64:8925 00000000 ! MOV DWORD PTR FS:[0],ESP !
00424EED | |. | 83C4 FO ' ADD ESP,-10 |
00424EF0 | |. | 53 i PUSH EBX :
00424EF1 | |. | 56 | PUSH EST i
00424EF2 | |. | 57 ' PUSH EDI !
00424EF3 | |. | 8965 E8 ' MOV [[LOCAL.6], ESP !
00424EF6 | |. | FF15 A4B14700 ' GALE DWORD PTR !
! DS:[K&KERNEL32.GetVersion>]] |
00424EFC | |. | A3 248D4700 | MOV DWORD PTR DS:[_osver],EAXi
1
I |
The VA (Virtual Address), when - Y
starting a program the windows This for example a call to an API
loader loads the program at a function which is located in
certain location. Kernel32.dll library.

—» Assemblv mnemonics

A 4

Hexadecimal representation of the assembly instruction.
The opcode which the computer can understand.

Apply the rule: Relative Virtual Address: For EXE file the image base is 00400000 and differs
from the DLL files.

Let’s take the second row as an example with VA = 00424ED1 (Hex), Therefore:

RVA = 00424ED1 - 00400000 = 24ED1

The Virtual Address (VA) of the first row is the Entry Point (EP)

CALL DWORD PTR DS:[<&KERNEL32.GetVersion>], now if we assemble this
line in OllyDbg by double-click on it, this will looks like any other call: CALL, DWORD
PTR DS:[47B1A4],jumps to a value of dw pointer. where 47B1A4 is the destination
address to where this functions goes. If we press enter in Olly this will lead to the
Kernel32.dll routine. So, from whatever place from the program we call this function
the same address “47B1A4” will be used an this makes things easier for the windows
loader, and only the junk table needs to point to the right address instead of changing

31

Chapter # EREARGIV G FROITECT IS

every call anywhere to GetVersion API function. If we search for this address in the
dump window in Olly by right click -> Go To - > Expression and then we cath the IAT
with all the addresses for the API’s in their respective DLL’s.

0047B184 >FC A7 E7 77 49 A9 E7 77 44 0C F6 77 37 38 E7 77 {iiScwIOcwD.dw78cw
0047B194 >04 5A E7 77 0D 5B E7 77 48 C7 E6 77 58 E3 E7 77 * Zcw. [cwHCaewXacw
0047B1A4 >42 D1 E7 77 FD 98 E7 77 B8 16 E6 77 B9 E6 E7 77 BNcwy cw,Tewlaecw
0047B1B4 >31 A0 E7 77 7E DE E7 77 1C EE EA 77 94 E4 E7 77 1 cw~bcw iéw”&cw
0047B1C4 >3A F1 E7 77 71 A6 E7 77 B7 49 E9 77 32 B3 E7 77 :ficwg!cw:Iéw23cw
0047B1D4 >61 D9 E7 77 60 A6 E7 77 A9 AD E7 77 5E E3 E7 77 aUcw’ |cwO-cw acw
0047B1E4 >F8 5C E7 77 95 D9 E7 77 6B 15 F5 77 Al E5 E7 77 o\cweUcwk dw;acw
0047B1F4 >Al1 16 F5 77 S5F 8C F5 77 02 15 F5 77 16 89 E7 77 ;70w Edw1Ldwrhcw
0047B204 >D2 E2 E7 77 CB 15 E8 77 72 AC E7 77 86 AD E7 77 OacwEléwr-cwt-cw
0047B214 >CO 30 E9 77 42 75 E9 77 95 E5 E7 77 F2 94 E6 77 AOéwBuéweacwd”aw
0047B224 >85 E5 E7 77 51 E3 E7 77 FB E3 E7 77 7E 17 E6 77 ..AcwQacwlacw~1aw
0047B234 >2E FO E7 77 59 53 E7 77 FO A6 E7 77 E6 75 E7 77 .8cwYScwd!cwaeucw
0047B244 >CE 77 E7 77 62 73 E7 77 OF 31 E6 77 82 67 E7 77 Iwcwbscwilew,gcw
0047B254 >AF DD E7 77 54 C9 E6 77 C8 EO E7 77 95 81 E7 77 ~YcwTEawEacwel cw
0047B264 >ED 95 E7 77 99 06 E7 77 8B BO E7 77 97 25 E7 77 iecw™ cw< ‘Cw—%Cw
0047B274 >4E AB E7 77 1D 20 E8 77 55 E8 E7 77 6B 90 E6 77 N«cw eéwUécwkl aw
0047B284 >00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 v.'vuevuereenenenennn..

S— _
o~

Dump Window from Olly

Therefore each call in the code that wants to call an API will call the respective
address in the jump thunk table which will point to the API’s respective address in the
IAT.

The windows loader first reads the header of the program. Specifically for the
construction of the IAT, the bytes at RVA 3C are read. In this case, that will be at VA
40003C (RVA + ImageBase). This is done because the import table’s RVA is stored
in the PE header at its value plus 80h.

4.5.2 Second Stage: Packing and Unpacking

X/

% Second Stage Anatomy: Packing and Unpacking

Now we need to envelop the executable file by packing it with a free packer UPX
v1.24w for Markus F.X.J. Oberhumer & Laszlo Molnar. Which a command line tool
without GUI (Graphical User Interface).

And here a screenshot for this nice packer/compressor because it has nothing to do with
any anti debugging or protection. The main objective of this packer is to reduce the size
of the executable file.

32

Chapter # EREARGIV G FROITECT IS

Ultimate Packer for executables
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
UPX 1.24w Markus F.X.J. Oberhumer & Laszlo Molnar Nov 7th 2002

Usage: upx [-123456789d1thVL] [-gvfk] [-o file] file..

Commands:
-1 compress faster -9 compress better
-d decompress -1 1list compressed file
-t test compressed file -V display version number
-h give more help -L display software
license
Options:
-q be quiet -v be verbose
-oFILE write output to "FILE'
-f force compression of suspicious files
-k keep backup files
file.. executables to (de)compress
This version supports: dos/exe, dos/com, dos/sys, djgpp2/coff,

watcom/le,win32/pe, rtm32/pe, tmt/adam, atari/tos, linux/386

UPX comes with ABSOLUTELY NO WARRANTY; for details type “upx -L'.

This compressor able to decompress the file without any manual unpacking but for
checking the mechanism of how packer/compressor works we will do everything
manually.

Now place the executable file in the same directory where the UPX located.
If the name of our executable is “IATTheory.exe”. now we need to compress it using
the command line options and write :

upx -9 -k IATTheory.exe

“upx” is the name of the compressor, “-9” stands for better compression which is the
maximum level of compression , “-k” for backing the executable file we work on for
safe if something goes wrong, and finally “IATTheory.exe” the name of our executable
to be compressed.

Now after executing this statement in the command line the result will be like this:

33

Chapter # EREARGIV G FROITECT IS

Ultimate Packer for eXecutables
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002

UPX 1.24w Markus F.X.J. Oberhumer & Laszlo Molnar Nov 7th 2002
File size Ratio Format Name
516197 | -> 95744 18.54% win32/pe IATTheory.exe

Packed [1 file.

A 4 A 4

Original File Compressed File
Size: 516,197 Size: 95,744
bytes bytes

This is an amazing job for such compressor for reducing the size of the executable to
such level.

After that, we need to load the compressed executable inside Olly, but Olly will
complain about that, because of the PE Header realignment the compressor had done on
it.

Quick statistical test of module 'IATTheor' reports that its code section is either
compressed, encrypted, or contains large amount of embedded data. Results of code
analysis can be very unreliable or simply wrong. Do you want to continue analysis?

Yes No

Figure 4.2 Compressed code error from OllyDbg

It doesn’t matter just press yes and Olly will analyze the compressed executable. And
here how the code looks like at first in Olly:

00481E50 > $ 60 PUSHAD

00481E51 . BE 00B04600 MOV ESI, IATTheor.0046B000
00481E56 . 8DBE 0060FSFF LEA EDI,DWORD PTR DS: [ESI+FFF96000]
00481E5C . 57 PUSH EDI

00481E5D . 83CD FF OR EBP,FFFFFFFF

00481E60 . EB 10 JMP SHORT IATTheor.00481E72
00481E62 90 NOP

00481E63 90 NOP

00481E64 90 NOP

00481E65 90 NOP

00481E66 90 NOP

00481E67 90 NOP

00481E68 > 8A06 MOV AL,BYTE PTR DS:[ESTI]
00481E6A . 46 INC EST

34

Chapter # EREARGIV G FROITECT IS

00481E6B . 8807 MOV BYTE PTR DS: [EDI],AL
Another look at the Register Window in Olly:

EAX 00000000

ECYX 0012FFRO This is the extended stack pointer

EDX TEFE0304 register, and it’s clear how the value
EBX 7FFDF000 of this register is being pushed onto
ESP Uulozrcs the stack. (Stack Window)

EBP 0012FFFO
ESI 76397C78
EDI 77E94809 kernel32.77E94809

EIP 00481E50 IATTheor.<ModuleEntryPoint>

First of all we need to find the OEP (Original Entry Point) of the program which will
allow for dumping the program to it’s original state (original file size) without any error.

UPX uses the stack mechanism (PUSHPOP) in order to unpack the compressed file
in memory and run freely of the STUB.

A look at the Stack Window in Olly:

0012FFC4 77E814C7 RETURN to kernel32.77E814C7
0012FFC8 77E94809 kernel32.77E94809

0012FFCC 76397C78

0012FFDO TFFDF000

0012FFD4 F2381CFO

0012FFD8 0012FFC8

0012FFDC 8053C88F

0012FFEO FFFFFFFF End of SEH chain

0012FFE4 77E94809 SE handler

0012FFES8 77E91210 kernel32.77E91210

0012FFEC 00000000

0012FFFO 00000000

0012FFF4 00000000

0012FFF8 00481E50 IATTheor.<ModuleEntryPoint>
0012FFFC 00000000

We notice that the value of the register (Esp 0012rrFc4) has been pushed onto
the stack, This is the result of the PUSHAD function at the beginning of the program.
The function that POP's the register value from the stack is appropriately called
POPAD. This will pop the value off of the stack and back into the register.

Now the method is by tracing the code and setting a breakpoint® in Dump Window in
order to reach the OEP. The next step is to Step over’ #¥ the code by pressing F8 in

¥ Setting a breakpoint at a specific location in the executing code such that when the processor reaches
this location, execution will stop; this can be provided for by simply writing some illegal instruction into
the code stream for the debuggee. (ex, INT 3)

35

Chapter # EREARGIV G FROITECT IS

OllyDbg, or shortcut (Ctrl-F12). Now that we have executed the PUSHAD, watch how
the ESP register is changed to (Esp 0012rra4). our register is on the stack. We need to
break when the register is POPed off the stack.

In the Register Window: Right-click on the ESP register — Follow in Dump. (ESP
register contains the address to the top of the stack).

In the Dump Window: Highlight the first four byte and Right-click — Breakpoint —
Hardware'®, on access — Dword. Now Olly will stop when the first four bytes are
accessed.

Now Press F9 (Run) ™ wait for the program to be unpacked and we will be break at a
JMP. The code looks like the following:

00481F80] .- E9 4B2FFAFF JMP TATTheor.00424EDO

00481F85 00 DB 00

00481F86 00 DB 00

00481F87 00 DB 00 \ 4

00481F88 00 DB 00 If we Step Into this JMP, it

00481F89 00 DB 00 will lead immediately to

00481F8A 00 DB 00 the OEP (depends on the
experience)

Now press Step into F7] (Enter the JMP address). The code looks like the following:

00424EDO 55 PUSH EBP

00424ED1 8BEC MOV EBP,ESP

00424ED3 6A FF PUSH -1

00424EDS 68 70E14600 PUSH IATTheor.0046E170
00424EDA 68 CCF14200 PUSH IATTheor.0042F1CC
00424EDF 04:A1 00000000 MOV EAX, DWORD PTR FS:[0]
00424EES 50 PUSH EAX

00424EE6 64:8925 00000000 MOV DWORD PTR FS:[0],ESP
00424EED 83C4 FO ADD ESP,-10

00424EF0 53 PUSH EBX

00424EF1 56 PUSH ESI

00424EF2 57 PUSH EDI

00424EF3 8965 E8 MOV DWORD PTR SS: [EBP-18],ESP
00424EF06 FF15 A4B14700 CALL DWORD PTR DS:[47B1lA4]

; kernel32.GetVersion
00424EFC A3 248D4700 MOV DWORD PTR DS:[478D24],EAX
00424F01 Al 248D4700 MOV EAX,DWORD PTR DS:[478D24]
00424F06 ClE8 08 SHR EAX, 8
00424F09 25 FF000000 AND EAX, OFF

? Trace over (Single Step) means that the processor is instructed to execute a single machine instruction
when it is next processing instructions for the debuggee. But this doesn’t allow entering the call; it’s like a
watcher for variables variations with respect to its line of code being executed.

' Hardware Breakpoints are directly supported by the CPU, using some special registers, called debug
registers.

36

Chapter # EREARGIV G FROITECT IS

The virtual address: 00424EDO, is the same as when the executable file was in its
original state without being UPX’ed . and that does demonstrate that we are on the right
track. (the code is the same as in First Stage analysis)

Dumping the executable file from memory to the hard drive. Using OllyDump Plug-in:
Now Right-click in the Code Workplace — Dump debugged process. And it should
looks like the following screenshot:

OllyDump - IATTheory.exe El

Start Address: |4nunnn Size: |Bannn
Entry Paoint: IE'I E50 -» hdodify: IEJ'ED':I GetEIP asz OEP | Cancel |

Baze of Code: IEE“:":":' Baze of Data: IE‘E':”:":'

W Fix Faw Size & Offzet of Dump Image

| Section | Vitual Size | Wirtual O ffzet | Faw Size | R aw Offzet | Charactariztics |
VP O006A000 Q0007 000 Q00EA000 Q0001 ooa EQQQ0020
:UP‘><1 : 00017000 QO0EE 000 Q0017000 Q00&E 000 EQO0O040
WUP:2 00007000 000a2000 Q0007 ooa Q00sz2000 Coonoo4o
1l]
Lo --!

_____ | The sections being altered

by the compressor

v Febuild Import
' Method] : Search JMP[API] | CALLIAP] in memorny image
" Method? : Search DLL & AP name sting in dumped file

Figure 4.3 OllyDump: Dumping and Rebuilding the packed program

Then press on Dump button, a save Dump to file dialog will appear asking a name for
the dumped file (in this case choose: dumped.exe)

The dumped file get back to its original state (size, configuration, IAT, Strings,...):
everything work fine now.

4.5.3 Third Stage: Cracking The Micro-Universe of Bits

Third Stage: this is a very interesting stage for understanding how bits works together in
a very organized structure to translate the exe back to assembly. And how to decrypt
the algorithm step by step to its HL (High Level). The objective is to locate the routine
which responsible about password checking mechanism and try to defeat the whole
algorithm in a many different ways. It’s a little bit complicated to grasp it at first, so had
better to make a chart for every step of procedures.

37

Chapter # EREARGIV G FROITECT IS

A little bit explanation about this stage:

Entering a False and True password to understand the output
Defeat the counter limitation

Defeat password checking array

Patching the executable (static changes)

Code Injection for the packed executable

YVVYYVY

4.5.3.1 Third Stage: Understanding False and True Password
v Starting with Entering a False and True password to understand the output.

¢ Entering a False password: 1r326autrzhm

Output Screen

Thesis IAT, Packer, Serial Protection Demo
Please Enter Your Password: 1lr326autrzhm
Character: [0]=1 :Access Denied
Character: [1]=r :Access Approved
Character: [2]=3 :Access Denied
Character:[3]=2 :Access Denied
Character:[4]=6 :Access Denied
Character: [5]=a :Access Approved
Character: [6]=u :Access Denied
Character: [7]=t :Access Denied
Character: [8]=r :Access Denied
Character:[9]=z :Access Approved
Character: [10]=h :Access Denied
Character:[11]=m :Access Denied

% Entering a True password: drhasanbazzi

Output Screen

Thesis IAT, Packer, Serial Protection Demo
Please Enter Your Password: drhasanbazzi
Character:[0]=d :Access Approved
Character:[1]=r :Access Approved
Character:[2]=h :Access Approved
Character:[3]=a :Access Approved
Character:[4]=s :Access Approved
Character:[5]=a :Access Approved
Character:[6]=n :Access Approved
Character:[7]=b :Access Approved
Character:[8]=a :Access Approved
Character:[9]=z :Access Approved
Character:[10]=z :Access Approved
Character:[11]=1 :Access Approved

38

Chapter # EREARGIV G FROITECT IS

As we notice in False password, some characters are equivalent to the right password
corresponding to the array index and that’s why we have an Access Approved, where in
entering the true password we have an Access Approved for all characters.

Short identification:
T.P: True Password
F.E.P: False Entered Password
R.E.P: Right Entered Password

[0] | [1] f (2] | (31 | [4] | (51 | (6] | (71 | (8] | [9] [[10]] [11]
T.P d r h a S a n b a z z i

F.E.P 1 3 3 2 6 a u t r z h m

R.EP d r h a S a n b a z z i

Table 4.3 Output Summary: F.E.T, R.E.P.
4.5.3.2 Third Stage: Defeat The Counter Limitation

v" Defeat the Counter Limitation: the program allows only three times of checking,
after that exit. Locating the routine responsible for that and change it for
unlimited or increase the value. In order to get into the procedure responsible for
that, we have to figure out a way to enter in. STRINGS (Characters) are found
to be in the same .code section in relevant with the procedure relating to. Olly
has a feature for searching for all referenced text strings. Therefore, strings will
lead us to the heart of the routine. Load the executable file (IATTheory.exe) in
Olly and Right-click in the Workplace code — Search for — All referenced
text strings. And the output looks like this: the list is more than that, but that’s
what we want.

Text strings referenced in IATTheor:.text

Address Disassembly Text string

0040170D PUSH IATTheor.0046D088 ASCII "Thesis IAT, Packer, Serial
Protection Demo"

00401726 PUSH IATTheor.0046D064 ASCII "Please Enter Your Password: "

0040177E PUSH IATTheor.0046D04C ASCII " :Access Approved"
0040179E PUSH IATTheor.0046D030 ASCII "Character:"
004017F2 PUSH IATTheor.0046D01C ASCII " :Access Denied"

00401812 PUSH IATTheor.0046D030 ASCII "Character:"

Pknv,doubk:chck at ASCII "Thesis IAT, Packer, Serial Protection Demo"
And we land here: (routine (Start...End) recognized as (Push...Ret))

004016A0 > \55 PUSH EBP
004016A1 . 8BEC MOV EBP,ESP
004016A3 . 83EC 70 SUB ESP, 70
004016A6 . 53 PUSH EBX

39

Chapter # EREARGIV G FROITECT IS

004016A7
004016A8
004016A9
004016AC
004016B1
004016B6
004016B8
004016BF
004016C3
004016C9
004016DO0O
004016D7
004016DC
004016DF
004016E5
004016E8
004016EE
004016F1
004016F6
004016F9
004016FD
004016FF
00401702
00401705
00401708
0040170D

00401712
00401717
0040171C
0040171F
00401721
00401726

0040172B
00401730

00401867
0040186A

00401872

004016B8

56

57

8D7D 90

B9 1C000000

B8 CCCCCcCcC
F3:AB

C745 FC 00000000
837D FC 03

0F84 AS010000
C745 F8 0D00000O
C745 F4 0D0000OO
Al BCD04600

8945 E4

8BOD COD04600
894D ES8

8B15 C4D04600
8955 EC

AQ0 C8D04600

8845 FO

C645 D4 00

33C9

894D D5

894D DI

894D DD

68 F5104000

68 88D04600

68 F8874700
E8 EBFBFFFF
83C4 08
8BCS8

E8 32FBFFFF
68 64D04600

68 F8874700
E8 D2FBFFFF

83C2 01
8955 FC

> \33C0

C745 FC 00000000

PUSH EST
PUSH EDI

LEA
MOV
MOV
REP
MOV
CMP

EDI, DWORD
ECX, 1C

PTR SS:[EBP-70]

EAX, CCCCCCCC
STOS DWORD PTR ES: [EDI]

DWORD PTR
DWORD PTR

SS: [EBP-4],0
SS: [EBP-4], 3

JE IATTheor.00401872

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
XOR
MOV
MOV
MOV

PUSH IATTheor.
. PUSH IATTheor.
ASCII "Thesis IAT, Packer, Serial Protection Demo"

DWORD PTR
DWORD PTR
EAX, DWORD
DWORD PTR
ECX, DWORD
DWORD PTR
EDX, DWORD
DWORD PTR

SS: [EBP-8], 0D

Ss: [EBP-C], 0D

PTR DS: [46DOBC]
SS: [EBP-1C], EAX
PTR DS:[46D0CO]
SS: [EBP-18],ECX
PTR DS: [46D0C4]
SS: [EBP-14],EDX

AL,BYTE PTR DS:[46D0C8]
BYTE PTR SS:[EBP-10],AL
BYTE PTR SS:[EBP-2C],0

ECX,ECX
DWORD PTR
DWORD PTR
DWORD PTR

SS: [EBP-2B], ECX
SS: [EBP-27],ECX
SS: [EBP-23],ECX
004010F5
0046D088

PUSH IATTheor.004787F8
CALL IATTheor.00401307

ADD
MOV

CALL IATTheor.
. PUSH IATTheor.
ASCII "Please Enter Your Password: "

PUSH IATTheor.
CALL IATTheor.

ADD
MOV

XOR

ESP, 8
ECX, EAX

EDX, 1
DWORD PTR

EAX, EAX

00401258
0046D064

004787F8
00401307

SS: [EBP-4],EDX

MOV

DWORD PTR

SS: [EBP-4],0

l

Counter initialization to 0.
Counter = 0;

40

Chapter # EREARGIV G FROITECT IS

004016BF > 837D FC 03 CMP DWORD PTR SS: [EBP-4],3

A 4

Checking the counter value in the While loop if the counter
does not exceed 3 times of trials yet. While (counter!=3)

004016C3 . O0F84 A9010000 JE IATTheor.00401872

A 4

If register EAX(counter) = 3 then jump to VA 00401872, which will zeroed
the counter again and exit from the routine (XOR EAX,EAX)

00401872 > \33C0 XOR EAX, EAX'

This could be written like this:

004016A0: Starting Routine Address

004016B8 . C745 FC 00000000 MOV [LOCAL.counter], O
004016BF > 837D FC 03 CMP [LOCAL.counter],3

00401884 : Ending Routine Address

00401867 . 83C2 01 ADD EDX, 1

0040186A . 8955 FC MOV DWORD PTR SS:[EBP-4],EDX

A 4

Otherwise increase the counter by 1 each loop (“the counter
is increased at the end of the while loop”). Counter++;

This could be defeated in either: changing the initialization counter value to a higher
value than the one in the while loop (limit counter), or changing the 3 value in the
comparison statement to “-1”, and many other ways. To do this just select the line in
Olly and press space button and change the value to whatever you want then press ok.

List of methods to defeat the checking counter limitation
004016B8 . C745 FC 04000000 MOV DWORD PTR SS:[EBP-4],4
004016BF > 837D FC FF CMP DWORD PTR SS:[EBP-4],-1
004016C3 . (0F85 A9010000 JNE IATTheor.00401872
004016C3 . 9090 90909090 NOB : (NO OPERTAION)

Table 4.4 Methods to defeat checking counter limitation

41

Chapter # EREARGIV G FROITECT IS

4.5.3.3 Third Stage: Defeat Password Checking Array

v' Defeat password checking array: for every character of the false entered password
there is an equivalent in the right password (hardcoded). So, the program will
make a loop for each character and checking if its match or not. Another check
for the array size and ... now the full assembly code (Routine) snippet from Olly:

004016A0
004016A1
004016A3
004016A6
004016A7
004016A8
004016A9
004016AC
004016B1
004016B6
004016B8
004016BF
004016C3
004016CH9
004016DO0O
004016D7
004016DC
004016DF
004016E5
004016E8
004016EE
004016F1
004016F6
004016F9
004016FD
004016FF
00401702
00401705
00401708
0040170D

00401712
00401717
0040171C
0040171F
00401721
00401726

0040172B
00401730
00401735
00401738
0040173B
0040173C
00401741
00401746
00401749

> \55

8BEC
83EC 70
53
56
57
8D7D 90
B9 1C000000
B8 CCCCCCcCC
F3:AB
C745 FC 00000000
837D FC 03
0F84 AS010000
C745 F8 0D0000O0O
C745 F4 0D0000OO
Al BCD04600
8945 EA4
8BOD C0OD04600
894D ES8
8B15 C4D04600
8955 EC
AQ0 C8D04600
8845 FO
C645 D4 00
33C9
894D D5
894D DO
894D DD
68 F5104000
68 88D04600
H ASCII

Demo"

68 F8874700
E8 EBFBFFFF
83C4 08
8BCS8

E8 32FBFFFF
6864D04600

"Thesis

PUSH EBP
MOV EBP,ESP
SUB ESP, 70
PUSH EBX

PUSH ESI

PUSH EDI

LEA EDI, DWORD
MOV ECX,1C

PTR SS:[EBP-70]

MOV EAX, CCCCCCCC
REP STOS DWORD PTR ES: [EDI]

MOV DWORD PTR
CMP DWORD PTR

SS: [EBP-41,0
SS: [EBP-4],3

JE IATTheor.00401872

MOV DWORD PTR
MOV DWORD PTR
MOV EAX, DWORD
MOV DWORD PTR
MOV ECX, DWORD
MOV DWORD PTR
MOV EDX, DWORD
MOV DWORD PTR

SS: [EBP-8],0D

SS: [EBP-C], 0D

PTR DS: [46D0OBC]
SS: [EBP-1C], EAX
PTR DS:[46D0CO]
SS: [EBP-18],ECX
PTR DS:[46D0C4]
SS: [EBP-14],EDX

MOV AL,BYTE PTR DS:[46D0C8]
MOV BYTE PTR SS:[EBP-10],AL
MOV BYTE PTR SS:[EBP-2C],0

XOR ECX,ECX
MOV DWORD PTR
MOV DWORD PTR
MOV DWORD PTR
PUSH IATTheor.
PUSH IATTheor.
IAT,

PUSH IATTheor.
CALL IATTheor.
ADD ESP, 8

MOV ECX, EAX
CALL IATTheor.
PUSH IATTheor.

Packer,

SS: [EBP-2B],ECX
SS: [EBP-27],ECX
SS: [EBP-23],ECX
004010F5
0046D088

004787F8
00401307

00401258
0046D064

; ASCII "Please Enter Your Password: "

68 F8874700

E8 D2FBFFFF

83C4 08

8D55 D4

52

68 88884700

E8 2DFOFFFF

83C4 08

C745 DO 00000000

PUSH IATTheor.
CALL IATTheor.
ADD ESP, 8
LEA EDX, DWORD
PUSH EDX
PUSH IATTheor.
CALL IATTheor.
ADD ESP, 8
MOV DWORD PTR

004787F8
00401307

PTR SS:[EBP-2C]

00478888
00401073

SS: [EBP-30],0

42

Serial Protection

Chapter # BREIRGN G FROTECTFO77S

00401750
00401752
00401755
00401758
0040175B
0040175F
00401765
00401768
0040176D
00401770
00401775
00401777
00401779
0040177E

00401783
00401786
0040178A
0040178B
00401790
00401795
00401798
00401799
0040179E

004017A3
004017A8
004017AD
004017BO
004017B1
004017B6
004017B9
004017BB
004017CO
004017C1
004017C6
004017C9
004017CA
004017CF
004017D2
004017D3
004017D8
004017DB
004017DC
004017E1
004017E4
004017E6
004017EB
004017ED
004017F2

004017F7
004017FA
004017FE
004017FF
00401804

EB 09
8B45 DO
83C0 01
8945 DO
837D DO 0B
OF8F FF000000
8B4D DO
OFBE540D D4
8B45 DO
OFBE4CO05 E4
3BD1
75 74
68 F5104000
68 4CD04600
; ASCII "
8B55 DO
8A4415 D4
50
68 48D04600
68 44D04600
8B4D DO
51
68 40D04600
68 30D04600

JMP SHORT IATTheor.0040175B

MOV EAX,DWORD PTR SS: [EBP-30]

ADD EAX,1

MOV DWORD PTR SS: [EBP-30],EAX

CMP DWORD PTR SS:[EBP-30],0B

JG IATTheor.00401864

MOV ECX,DWORD PTR SS: [EBP-30]
MOVSX EDX,BYTE PTR SS:[EBP+ECX-2C]
MOV EAX,DWORD PTR SS: [EBP-30]
MOVSX ECX,BYTE PTR SS: [EBP+EAX-1C]
CMP EDX, ECX

JNZ SHORT IATTheor.004017ED

PUSH IATTheor.004010F5

PUSH IATTheor.0046D04C

:Access Approved"

MOV EDX, DWORD PTR SS:[EBP-30]
MOV AL,BYTE PTR SS:[EBP+EDX-2C]
PUSH EAX

PUSH IATTheor.0046D048

PUSH IATTheor.0046D044

MOV ECX,DWORD PTR SS:[EBP-30]
PUSH ECX

PUSH IATTheor.0046D040

PUSH IATTheor.0046D030

; ASCII "Character:"

68 F8874700

E8 5AFBFFFF

83C4 08

50

E8 51FBFFFF

83C4 08

8BCS8

E8 T76FIOFFFF

50

E8 41FBFFFF

83C4 08

50

E8 38FBFFFF

83C4 08

50

E8 49FAFFFF

83C4 08

50

E8 26FBFFFF

83C4 08

8BCS8

E8 6DFAFFFF

EB 72

68 F5104000

68 1CD04600
; ASCII "

8B55 DO

8A4415 D4

50

68 48D04600

68 44D04600

PUSH IATTheor.004787F8
CALL IATTheor.00401307
ADD ESP, 8

PUSH EAX

CALL IATTheor.00401307
ADD ESP, 8

MOV ECX, EAX

CALL IATTheor.00401136
PUSH EAX

CALL IATTheor.00401307
ADD ESP, 8

PUSH EAX

CALL IATTheor.00401307
ADD ESP, 8

PUSH EAX

CALL IATTheor.00401221
ADD ESP, 8

PUSH EAX

CALL IATTheor.00401307
ADD ESP, 8

MOV ECX, EAX

CALL IATTheor.00401258
JMP SHORT IATTheor.0040185F
PUSH IATTheor.004010F5
PUSH IATTheor.0046D01C

:Access Denied"

MOV EDX, DWORD PTR SS:[EBP-30]
MOV AL,BYTE PTR SS:[EBP+EDX-2C]
PUSH EAX

PUSH IATTheor.0046D048

PUSH IATTheor.0046D044

43

Chapter # EREARGIV G FROITECT IS

00401809 8B4D DO MOV ECX,DWORD PTR SS: [EBP-30]

0040180C 51 PUSH ECX

0040180D 68 40D04600 PUSH IATTheor.0046D040

00401812 68 30D04600 PUSH IATTheor.0046D030
; ASCII "Character:"

00401817 68 F8874700 PUSH IATTheor.004787F8

0040181C E8 EOFAFFFF CALL IATTheor.00401307

00401821 83C4 08 ADD ESP, 8

00401824 50 PUSH EAX

00401825 E8 DDFAFFFF CALL IATTheor.00401307

0040182A 83C4 08 ADD ESP, 8

0040182D 8BC8 MOV ECX, EAX

0040182F E8 O02F9FFFF CALL IATTheor.00401136

00401834 50 PUSH EAX

00401835 E8 CDFAFFFF CALL IATTheor.00401307

0040183A 83C4 08 ADD ESP, 8

0040183D 50 PUSH EAX

0040183E E8 C4FAFFFF CALL IATTheor.00401307

00401843 83C4 08 ADD ESP, 8

00401846 50 PUSH EAX

00401847 E8 DSFOFFFF CALL IATTheor.00401221

0040184cC 83C4 08 ADD ESP, 8

0040184F 50 PUSH EAX

00401850 E8 B2FAFFFF CALL IATTheor.00401307

00401855 83C4 08 ADD ESP, 8

00401858 8BC8 MOV ECX, EAX

0040185A . E8 FOFOFFFF CALL IATTheor.00401258

0040185F >~ E9 EEFEFFFF JMP IATTheor.00401752

00401864 > 8B55 FC MOV EDX, DWORD PTR SS: [EBP-4]

00401867 83C2 01 ADD EDX, 1

0040186A 8955 FC MOV DWORD PTR SS: [EBP-4],EDX

0040186D .~ E9 4DFEFFFF JMP IATTheor.004016BF

00401872 > 33CO0 XOR EAX, EAX

00401874 5F POP EDI

00401875 5E POP ESI

00401876 5B POP EBX

00401877 83C4 70 ADD ESP, 70

0040187A 3BEC CMP EBP,ESP

0040187C E8 CF030200 CALL IATTheor.00421C50

00401881 8BES MOV ESP,EBP

00401883 5D POP EBP

00401884 C3 RETN

Now, stepping over the code line by line will reveal many important information in
how the high level language being translated to low level language. By setting a
breakpoint (Toggle) at the beginning of the routine (select 00401620: Starting Routine
Address line and press F2 in Olly) — Run FO™ when the program start after a while,
it will stop at the breakpoint point we set— and then press step over the code with ra#d
button in order to investigate the registers changing mode till VA 004016C9

44

Chapter # EREARGIV G FROITECT IS

004016C9 . C745 F8 0D0000O0O MOV DWORD PTR SS: [EBP-8],[OD
004016DO0 . C745 F4 0D0O000OO MOV DWORD PTR SS:[EBP-C],|[OD

Load the pointer register address (EBP-8) and (EBP-c) with
These two values”0D” which are in hexadecimal. They are

A

Decimal

responsible for array constant size init., 0D ——————13
const int k = 13;
const int 1 = 13;

Continue F&
004016D7 . Al BCD04600 MOV EAX,DWORD PTR DS: [46D0OBC]

Load the value at address 46D0BC into register EAX which is as showed in the pane
window in Olly [0046D0BC]=61687264. The value 61687264 is in hexadecimal in the
reverse order (Little Endian Order'"), now if we convert the hexadecimal value to string:
“ahrd” in the reverse order, this is the first four letter of the right password.

Continue F8

004016DC . 8945 E4 MOV DWORD PTR SS:[EBP-1C],EAX
004016DF . 8BOD C0D04600 MOV ECX, DWORD PTR DS:[46D0CO]

The same. Load the value at address 46D0CO into register ECX which is as showed in
the pane window in Olly DS:[0046D0C0]=626E6173. The value 626E6173 is in
hexadecimal in the reverse order (Little Endian Order), now if we convert the
hexadecimal value to string: “bnas” in the reverse order, this is the second four letter of
the right password.

004016E5 . 894D ES8 MOV DWORD PTR SS:[EBP-18],ECX
004016E8 . 8B15 C4D04600 MOV EDX, DWORD PTR DS:[46D0C4]
String

Same as previously analyzed: DS:[0046D0C4]=697A7A61 “izza”

Reverse each block of the hexadecimal value: 61687264 — 64726861
626E6173—> 73616E62
697ATA61 —> 617ATA69

Concatenate the whole hexadecimal values to big one, we will have the hardcoded right
paSSNOHL(6472686173616E62617A7A69)

Hexa | 64 72 68 61 73 61 6E 62 61 TA TA 69

string | d r h a S a n b a z z i

" Intel processors store and retrieve data from memory using what is referred to as little endian order.
This means that the least significant byte of a variable is stored at the lowest address. The remaining bytes
are stored in the next consecutive memory positions.

45

Chapter # BREIRGN G FROTECTFO77S

We can change the hexadecimal value to another one which will make the software
accept only the newly inserted password as simple as that.

Continue F8 till this line 00401746 . 83c4 08 ADD ESP, 8

Now the software is being loaded into memory and we can enter a false password to
check the comparison with the right one. Let’s enter a false password “mfm1hdiatuzi”
and press enter, Olly will break

Continue F8 till VA 00401765

00401765 . 8B4D DO MOV ECX,DWORD PTR SS:[EBP-30]
00401768 . OFBES40D D4 EDX,BYTE PTR SS: [EBP+ECX-2C]

Load the first character of the false entered password “m” from the
pointer address 0012FF54 into register EDX

Stack SS:[0012FF54]=6D ('m")
EDX=0046D134 (IATTheor.0046D134)

0040176D . 8B45 DO MOV EAX,DWORD PTR SS:[EBP-30]
00401770 . 0OFBE4CO05 E4 ECX,BYTE PTR SS: [EBP+EAX-1C]

Load the first character of the right hardcoded password “d” from the
pointer address 0012FF64 into register ECX

Stack SS:[0012FF64]1=64 ('d")

ECX=00000000
00401775 . 3BD1 CMP EDX, ECX

Compare the registers value EDX & ECX: ECX=00000064 ('d")
EDX=0000006D ('m'")

00401777 . 75 74 INZ_SHORT IATTheor.004017EM

Jump if not zero (controlled through flag) to VA 004017ED and print on
the screen Access Denied message, otherwise Access Approved message.

In this case the Jjump will be taken to the bad message because no
match between the two registers.

00401779 . 68 F5104000 PUSH IATTheor.004010F5
0040177E . 68 4CD04600 PUSH IATTheor.0046D04C
; ASCII " :Access Approved"
004017ED > 68 F5104000 PUSH IATTheor.004010F5
004017F2 . 68 1CD04600 PUSH IATTheor.0046D01C
; ASCII " :Access Denied"
Continue F8 till this line 0040185F >~ E9 EEFEFFFF JMP IATTheor.00401752

46

Chapter # EREARGIV G FROITECT IS

This line will jump back to VA 00401752 to read the next character and applying the
same procedure as above till the end of the array.

For defeating the checking password procedure we need to alter the decision maker
statement which is in this case at line:

00401777 . 75 74 Nz SHORT IATTheor.004017E)

If we change the JNZ equivalent in hexadecimal (75h) to JZ (74h) this will not function
perfectly, it will accept as an access approved only the characters which differ than the
right password characters.

So, if we enter the right password an access denied message will appear. The best
solution is by nopping (no operation (nop: 90h)) this statement and the code will follow
directly with no checking. Or make the cmp mnemonic checking itself. We know that
the register ECX is holding the right character to compare with the wrong entered one in
the register EDX, so if we replace the register EDX with ECX with comparison will
always be true (CMP ECX,ECX).

Methods for defeating the password checking procedure

Original | 00401777 . 75 74 —
Modified | 00401777 . 90 90 od)

Original 00401775 . 3BD1 CMP EDX, ECX

Modified | 00401775 . 3BC9 CMP ECX,ECX

Table 4.5 Methods to defeat the password checking procedure
4.5.4 Patching: Static Changes
v' Patching the executable (static changes)

Apply the changes for counter limitation and password protection as summarized in the
steps before.

how to make a permanent change for the modified code, so that the executable will have
a new phase of instructions. This is easy to be done using Olly. Right-click— Copy to
executable — All modifications — Copy all — Save file. A dialog box (Save file as)
appear give it a name and press save, and that’s it.

4.5.5 Code Injection: Tracking the Unbounded
v Code Injection for the packed executable
What is Code injection? You don’t have the source code only the executable,

and you want to insert or add some functionality. This task could be done by searching
inside the executable for empty area (left from the compiler alignment) which is usually

47

Chapter # EREARGIV G FROITECT IS

denoted by zeros, and then redirect your Entry Point to this location where you want to
add your new code. After that jump again to the EP++(...) to make the software work in
its normal flow.

This process is tedious, especially if you need to add a lot of code, it requires a very
good understanding of the PE structure and mastering in the assembly language.
Another way to add new code is by linking the executable to DLL (Dynamic Link
Library) to do some function.

In our case we need to do a lot of things, not for the original executable but for
the packed one. We can’t change the instructions (Counter Limitation, Password
Checking) in this mode, because as stated in the packer’s theory memory mapping will
be different than what we see in the disassembler, we are not yet in the original place
and the packer isn’t yet unpacked the executable. That’s why we need to locate the
magic jump to the Original Entry Point and then redirect the execution to our cave.

Steps required for doing this process:

Search for padded area of zeros (usually at the end of the file)

Locating the magic point: the line which responsible for jumping to the OEP.
Instead of entering the OEP, force the flow of the program to jump to our cave.
Write the newly inserted code in the empty stomach area.

If some lines of code deleted at the redirection step(because of no match
between the size of the previous instruction with the JMP instruction) write it at
the end of the cave.

f. Redirect the cave to the Magic point++(...)

oo o

In our example we need to do some aesthetic modification: insert a message box
at the start of the packed program. Configure the changes we’ve done for the executable
in the last stage(Counter Limitation, Password Checking). Note: the packed program
(UPXe’d) is the target and not the original one, and that’s impose a different scenario as
mentioned in the steps required.

v'a. Search for the zeros zone. Load the packed executable in Olly, scroll down till VA
00481FC7, looks like the following

00481F90 00 DB 00
00481F91 00 DB 00
00481F92 00 DB 00
00481F93 00 DB 00
00481F94 00 DB 00

v b. Locating the magic point : as you remember when we unpacked this software in
the previous part :

00481F80 .— E9 4B2FFAFF JMP IATTheor.00424EDO

v

If we Step Into this JMP, it will lead immediately to the OEP

48

Chapter # EREARGIV G FROITECT IS

v" c. Instead of entering the OEP, redirect it to the cave started at VA 00481FC7

00481F80 .— E9 4B2FFAFF JMP IATTheor.00481FC7

A 4

If we Step Into this JMP, it will lead immediately to the
cave starting address.

v"d. Write the modified code: this step is very important.

Insert a message box at the beginning of the packed executable. There is a
problem concerning API function MessageBoxA which is located inside
user32.dll windows library system, because this function isn’t loaded in the
Imported Functions Table to use it, so we have to insert it manually using any
hex editor or automatically using a tool: Code Snippet Creator version 1.05 build
2 by Iczelion. Follow along: start Code Snippet tool > Action — New Target —
a dialog box appear— Press Browse— Locate the packed executable
(IATTheory.exe) and press open— Press Save— Action— Add New
Imports - Browse for user32.dll in the system32 directory — Press Open— In

the Import Functions Group select MessageBoxA — Click Add— Press Exit.
And that’s it.

Imported Functions [Before]

KERNEL32.DLL

LoadLibraryA ord:0 rva: 00082028
GetProcAddress ord:0 rva: 0008202C
ExitProcess ord:0 rva: 00082030
Imported Functions [After]
KERNEL32.DLL
LoadLibraryA ord: 0 rva: 00082028
GetProcAddress ord:0 rva: 0008202C
ExitProcess ord:0 rva: 00082030
user32.dll
AppendMenuW ord:0 rva: 0008401B
MapDialogRect ord:0 rva: 0008401F
MessageBoxA ord:0 rva: 00084023 |

Now we can call our newly inserted function.

As I explained the MessageBoxA functionality before, a handle of owner

window, address of text in message box, address of text in message box, style of
message box.

In assembler this written in the reverse order starting with: Style, text, caption, handle.

49

Chapter # BREIRGN G FROTECTFO77S

Making the ASCII texts for message box text and caption. Select in Olly loads of
those zeros line starting at VA 00481F90 and then press CTRL+E and write : “Modified
Packed IATTheory” as a caption for the message box, and select another load of zeros
and write: “The Software Is Defeated” — press CTRL+A to analyze the code. Now, we
start patching the MessageBoxA function in its reverse order. After that we need to
insert the defeated protection code. Here is the complete modification:

00481F80 EB 45

00481F82 90 NOP

00481F83 90 NOP

00481F84 90 NOP

00481F85 00 DB 00

00481F86 00 DB 00

00481F87 00 DB 00

00481F88 00 DB 00

00481F89 00 DB 00

00481F8A 00 DB 00

00481F8B 00 DB 00

00481F8C 00 DB 00

00481F8D 00 DB 00

00481F8E 00 DB 00

00481F8F 00 DB 00

00481F90 . 4D 6F 64 69 66>

00481FA0 . 49 41 54 54 68>

00481FAA 00 DB 00

00481FAB . 54 68 65 20 53>

00481FBB . 44 65 66 65 61>

00481FC4 00 DB 00

00481FC5 00 DB 00

00481FCo6 00 DB 00

00481FC7 > 6A 00 PUSH 0 ; /Style = MB OK|MB APPLMODAL

00481FC9 . 68 AB1F4800 PUSH IATTheor.00481FAB ; |Title = "The

Software Is Defeated"

00481FCE . 68 901F4800 PUSH IATTheor.00481F90 ; | Text =
"Modified Packed IATTheory"

00481FD3 . 6A 00 PUSH 0 ; |hOwner = NULL

00481FD5 . E8 9C448E77 \MessageBoxA

00481FDA C605 BB164000 >

00481FE1 66:C705 771740

00481FEA -E9 E12EFAFF

.. The packed executable file (IATTheory.exe) is fully defeated as following:

The Software Is Defes X|

Modified Packed IATTheory

Figure 4.4 MessageBoxA Injected

And the protection on the counter limitation + password checking does no longer exist.

50

Chapter 5 CASE STUDIES: REVERSTN G TAHE SV ASTELE

Chapter 5

CASE STUDIES: REVERSING THE INVISIBLE

The pleasure of breaking protections always found to be in the commercial
protected applications. Cracking is the “dark art” of defeating, bypassing, or eliminating
any kind of copy protection scheme. In its original form, cracking is aimed at software
copy protection schemes such as serial-number-based registrations, hardware keys
(dongles), and so on. More recently, cracking has also been applied to digital rights
management (DRM) technologies, which attempt to protect the flow of copyrighted
materials such as movies, music recordings, and books. Unsurprisingly, cracking is
closely related to reversing, because in order to defeat any kind of software-based

protection mechanism crackers must first determine exactly how that protection mechanism
works.

Note for the beginners: “Chapter 5 case studies are probably not for the learning
beginner. They are probably more for the more experienced. So, do not try and follow
along, but refer back to the case studies later as you gain experience.”

5.1 Serial Fishing: LOphtCrack v5.02 Victim

Target: LC5 (LOphtCrack) v5.02, the award-winning password audit and recovery tool
for Windows and UNIX passwords. This software cost around 500$ for the
Administrator version Unlock Code, and it accept three mode of registration (basic,
Professional, Administration). Why am I apply this on a commercial software, I know
it’s illegal but after a search in the specialized media 1 found this software to be
keygenned'? already.

LCS5 provides two critical capabilities to system administrators:

e LCS5 helps administrators secure Windows and Unix-authenticated networks
through comprehensive auditing of Windows NT, Windows 2000, Windows XP,
and Unix user account passwords.

e LCS5 recovers Windows and Unix user account passwords to streamline
migration of users to another authentication system or to access accounts whose
passwords are lost.

Generate keys based on a combination of user input and computer-specific information.

After starting this program, a dialog box appears as in figure 5.1. choose either to
continue as a trial version or register to enter the valid unlock code for this software.

12 Keygenning is the process of creating programs that mimic the key-generation algorithm within a
protection technology and essentially provide an unlimited number of valid keys, for everyone to use.

51

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

Press on Register button and another dialog box as in figure 5.2

LC5 Trial Yersion x|

q Password Auditing & Recovery

|-| a Days until tial version will expire. Trial |

R egizter |

Figure 5.1 LCS Trial Version Startup Window

X

Serial Humber: |1 Iced 2eBE

Inlock Code: I

'ou mugt regizter the software ta receive an unlock code.
Reqister at:
hittp: A A, abstak e comdlcfreqgister. htrml

If youy are already regiztered and are reinstalling, go to;
hitkp: A A, atstak e comyedreinstall bkl

OF. |

Figure 5.2 LC5 Registration Window

Note: Serial Number: 13ce42e66, this key is generated based on computer-specific
information. This number will always change from computer to another. So, the
mechanism for the Unlock Code means that a product key will only be valid on the
computer on which it was installed—users can’t share product keys.

To overcome this problem software pirates use keygen programs that typically contain
exact replicas of the serial number generation algorithms in the protected programs.

52

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

The next step is to try to type a random values into the text box (Unlock Code: r94e2d)
and then clicking the “OK” button produces a message box as in figure 5.3

LCS x|

L] E You hawe entered an invalid code, Please try again.
[

Figure 5.3 Invalid Unlock Code message.

This is important because if this is indeed a conventional Windows message box,
we could use a debugger (Olly) to set a breakpoint on the message box(MessageBoxA)
APIs. From there, we could try to reach the code in the program that’s telling us that we
have a bad serial number. This is a fundamental cracking technique—find the part in the
program that’s telling you you’re unauthorized to run it. Once you’re there it becomes
much easier to find the actual logic that determines whether you’re authorized or not.

We open the program in OllyDbg and we search for MessageBoxA API which is
responsible for displaying the Invalid Unlock Code message on the screen. This could
be done by typing “bp MessageBoxA” in the command bar in Olly and then press enter
as in figure 5.4

Command :||:||:| MezzageBaoxh LI

Figure 5.4 Setting a Breakpoint on MessageBoxA API

Press F9 in Olly and follow as previously we did, enter an invalid Unlock Code
and then press on “OK” button. Olly at this point will break (stop) executing because of
the breakpoint we set. We can check the Stack Window in OllyDbg which reveal a lots
of important information from where this message box is being called (the source which
will lead us to the registration mechanism). As in figure 5.5

BE4B24BE | FCALL to MessageBoxA from oS, BE4B24AF

BE1ZEF1E| S@0EEaanE|l hwner = HULL

BE1ZEF14| B840RFE4|] Text = "You hawe entered an inwalid code. Please try again.'
HE1ZEF15| @A3F2Cz28|| Title = "LEE™

HE1ZEFIC| B@abEEas3E|Lsty le = MB_OKIME_ICOMEXCLAMATION ! ME_AFPFLHMODAL

HE12EF2A@| BAYAS0ES|ASCII "2k

HE12EF24| BAYASCES| ASCII "heH™

Figure 5.5 Stack Window in OllyDbg

CALL to MessageBoxA from 1c5.004B84AF: select this line in stack window and press
Enter (Follow in Disassembler), then scroll up till the starting routine VA 004B83E3.
and set a Breakpoint F2 (Toggle) at this address (004B83E3). We no longer need the
Breakpoint at MessageBoxA function, delete it by typing in the command bar

53

Chapter 5 CASE STUDIES: REVERSTN G TAHE SV ASTELE

bc MessageBoxA as in figure 5.6

Crommand :II:u: MezzageBoxd j

Figure 5.6 How to clear the Breakpoint

Now, if we restart the program inside Olly the bp we set at VA 004B83E3 still activated
and that’s what we want. Restart LC5.EXE : press CTRL+F2 or press on the icon “
press yes when the warning message box appear — after a while the program restarted
and we are ready for the next journey— press Run (F9)— and follow the same
procedure as above. When we enter the invalid Unlock Code Olly will break at the bp
we set at VA 004B83E3 this time— and step over (F8)— the invalid message box
appear again press on button “OK”— and continue stepping over the code with F8
shortcut— this time the dialog box in the figure 5.3 will popup — press on button “OK’
again— continue with F8 till VA 0044159A. now we are in the determination block of
code for the valid Unlock Code. We notice at this VA the register ECX is being loaded
with the Serial Number: 13ce42e66 (Registers Window in OllyDbg)

0044159A 8D4C24 10 LEA ECX,DWORD PTR SS: [ESP+10]
Continue F8 till VA 004415A7 where also the register EDX is loaded with the invalid

Unlock Code: 194e2d we entered

00441547 8D5424 18 LEA EDX,DWORD PTR SS:[ESP+18]
At this point in the Pane window and in the Stack window in OllyDbg the real Unlock

Code is calculated and appear as an ASCII plain text. (Basic version)

Stack address=0012F068, (ASCII "d80bdb20")
EDX=0012F06F

How do I know that this is the real Unlock code because of the logic in the analysis
steps. For better visualization here is the code for basic, professional, administration
algorithm calculation.

00441577 8D5424 18 LEA EDX,DWORD PTR SS: [ESP+18]

004415AB 52 PUSH EDX

004415AC 50 PUSH EAX

004415AD E8 D1F70400 CALL 1c¢5.00490D83

004415B2 83C4 10 ADD ESP, 10

004415B5 85C0 TEST EAX, EAX

004415B7 75 43 JNZ SHORT 1c¢5.004415FC

004415B9 8B0O7 MOV EAX, DWORD PTR DS: [EDI]

004415BB 50 PUSH EAX ; /Arg3

004415BC 68 E4B14D0O0 PUSH 1c5.004DB1E4 ; |Arg2 = 004DBlE4
ASCII "Unlock Code"

004415C1 68 D4B14DO0O0 PUSH 1c¢5.004DB1D4 ; |Argl = 004DB1D4

ASCII "Registration"

54

Chapter 5 CAASE STUDIES. REVERSTN G THE S/VVASTELE

004415C6
004415C8
004415CE
004415D3
004415D4
004415D5

004415DA
004415E4
004415E9
004415EB
004415EF
004415F3
004415F7
004415FC
004415FF
00441603
00441604
00441605
0044160A
0044160C
00441610
00441611
00441612
00441617
0044161A
0044161C
00441622
00441623
0044162A
0044162F
00441636
0044163E
00441643
00441646
0044164C
0044164E
0044164F

00441654

00441659
0044165B
00441661
00441666
00441667
00441668

0044166D
00441677
0044167C
0044167E
00441682
00441686
0044168A
00441691

8BCE

899E 94010000
E8 28700700
53

53

68 74B04D00

MOV ECX,ESI ;o

MOV DWORD PTR DS:[ESI+194],EBX ; |
CALL 1c5.004B85FB ; \1c5.004B85FB
PUSH EBX ; /Arg3

PUSH EBX ; |Arg2

PUSH 1c5.004DB074 ; |Argl = 004DB074

C786 A4010000 0100>MOV DWORD PTR DS:[ESI+1A4],1 ; |

E8 066F0700
33C0

894424 10
894424 14
884424 18

E9 9B010000
8B45 00

8D4Cc24 10

51

50

E8 E610FCFF
8B0O7

8D5424 18

52

50

E8 6CF70400
83C4 10

85C0

0F85 AA000000
53

8D8C24 28010000
E8 319B0000
8D8C24 24010000
Cc68424 80040000 05
E8 4D930600
83F8 01

0F85 59010000
8B07

50

68 E4B14DO00

68 D4B14DO00

8BCE

899E 94010000
E8 956F0700
53

53

68 30B04D00

CALL 1c5.004B84EF ; \1lc5.004B84EF

XOR EAX,EAX

MOV DWORD PTR SS:[ESP+10],EAX

MOV DWORD PTR SS: [ESP+14],EAX

MOV BYTE PTR SS:[ESP+18],AL

JMP 1c5.00441797

MOV EAX,DWORD PTR SS: [EBP]

LEA ECX,DWORD PTR SS:[ESP+10]

PUSH ECX

PUSH EAX

CALL 1c5.004026F0

MOV EAX,DWORD PTR DS: [EDI]

LEA EDX,DWORD PTR SS:[ESP+18]

PUSH EDX

PUSH EAX

CALL 1c5.00490D83

ADD ESP,10

TEST EAX,EAX

JNZ 1c5.004416cCC

PUSH EBX

LEA ECX,DWORD PTR SS:[ESP+128]

CALL 1c5.0044B160

LEA ECX,DWORD PTR SS:[ESP+124]

MOV BYTE PTR SS:[ESP+480],5

CALL 1c5.004AA990

CMP EAX,1

JNZ 1c5.004417A5

MOV EAX,DWORD PTR DS: [EDI]

PUSH EAX ; /Arg3

PUSH 1c5.004DB1E4; |Arg2 = 004DB1lE4
ASCII "Unlock Code"

PUSH 1c¢5.004DB1D4 ; |Argl = 004DB1D4
ASCII "Registration"

MOV ECX,ESI ;o

MOV DWORD PTR DS:[ESI+194],EBX ; |

CALL 1c5.004B85FB ; \1c5.004B85FB

PUSH EBX ; /Arg3

PUSH EBX ; |Arg2

PUSH 1c¢5.004DB030; |Argl = 004DBO030

C786 A4010000 0200>MOV DWORD PTR DS: [ESI+124],2 ; |

E8 736E0700
33C0

894424 10
894424 14
884424 18
8B8424 94010000
83C0 FO

CALL 1c¢5.004B84EF ; \1lc5.004B84EF
XOR EAX,EAX

MOV DWORD PTR SS:[ESP+10],EAX

MOV DWORD PTR SS:[ESP+14],EAX

MOV BYTE PTR SS:[ESP+18],AL

MOV EAX, DWORD PTR SS: [ESP+194]

ADD EAX,-10

55

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

00441694
0044169C
0044169F
004416A2

004416A6
004416A7
004416A9
004416AB
004416AD
004416AF
004416B0
004416B3
004416BA
004416C2
004416C7
004416CC
004416CF
004416D3
004416D4
004416D5
004416DA
004416DC
004416E0
004416E1
004416E2
004416E7
004416EA
004416EC
004416ED
004416F3
004416F7
004416FC
00441700
00441708
00441713
00441718
0044171B
00441721
00441723
00441724

00441729

0044172E
00441730
00441736
0044173B
0044173C
0044173D

00441742
0044174C
00441751
00441753
00441757

C68424 80040000 06 MOV BYTE PTR SS:[ESP+480],6

8D48 0C LEA ECX,DWORD PTR DS: [EAX+C]

83CA FF OR EDX, FFFFFFFF

FO:0FC111 LOCK XADD DWORD PTR DS: [ECX],EDX;
LOCK prefix

4A DEC EDX

85D2 TEST EDX,EDX

7F 08 JG SHORT 1c5.004416B3

8B08 MOV ECX,DWORD PTR DS: [EAX]

8B11 MOV EDX,DWORD PTR DS: [ECX]

50 PUSH EAX

FEF52 04 CALL DWORD PTR DS: [EDX+4]

8D8C24 24010000 LEA ECX,DWORD PTR SS:[ESP+124]

C68424 80040000 04 MOV BYTE PTR SS:[ESP+480],4

E8 988B0600 CALL 1c5.004AA25F

ES CB00000O JMP 1c5.00441797

8B45 00 MOV EAX,DWORD PTR SS: [EBP]

8D4C24 10 LEA ECX,DWORD PTR SS:[ESP+10]

51 PUSH ECX

50 PUSH EAX

E8 B60FFCFF CALL 1c5.00402690

8B0O7 MOV EAX,DWORD PTR DS: [EDI]

8D5424 18 LEA EDX,DWORD PTR SS:[ESP+18]

52 PUSH EDX

50 PUSH EAX

E8 9CF60400 CALL 1c5.00490D83

83C4 10 ADD ESP, 10

85C0 TEST EAX,EAX

53 PUSH EBX

0F85 7F000000 JNZ 1c5.00441772

8D4C24 38 LEA ECX,DWORD PTR SS:[ESP+38]

E8 649A0000 CALL 1c5.0044B160

8D4C24 34 LEA ECX,DWORD PTR SS:[ESP+34]

C68424 80040000 07 MOV BYTE PTR SS:[ESP+480],7
C78424 A8000000 01>MOV DWORD PTR SS:[ESP+A8],1

E8 78920600 CALL 1c5.004ARA990

83F8 01 CMP EAX,1

0F85 9B000000 JNZ 1¢5.004417BC

8B0O7 MOV EAX,DWORD PTR DS: [EDI]

50 PUSH EAX ; /Arg3

68 E4B14D0O0 PUSH 1c5.004DB1E4 ; |Arg2 = 004DBlE4
ASCII "Unlock Code"

68 D4B14D0O0 PUSH 1c¢5.004DB1D4 ; |Argl = 004DB1D4
ASCII "Registration"

8BCE MOV ECX,ESI P

899E 94010000 MOV DWORD PTR DS:[ESI+194],EBX ; |

E8 CO6E0700 CALL 1c5.004B85FB ; \1c5.004B85FB

53 PUSH EBX ; /Arg3

53 PUSH EBX ; |Arg2

68 E8AF4D0OO0 PUSH 1c5.004DAFE8 ; |Argl = 004DAFES8

C786 A4010000 0300>MOV DWORD PTR DS:[ESI+1A4],3 ; |

E8 9E6D0700 CALL 1c5.004B84EF ; \1c5.004B84EF
33CO0 XOR EAX, EAX

894424 10 MOV DWORD PTR SS:[ESP+10],EAX
894424 14 MOV DWORD PTR SS:[ESP+14],EAX

56

Chapter 5 CASE STUDIES: REVERSTN G TAHE SV ASTELE

0044175B . 8D4C24 34 LEA ECX,DWORD PTR SS:[ESP+34]
0044175F . 884424 18 MOV BYTE PTR SS:[ESP+18],AL

00441763 . (C68424 80040000 04 MOV BYTE PTR SS:[ESP+480],4

0044176B . E8 CO1CFDFF CALL 1c5.00413430

00441770 . EB 25 JMP SHORT 1c¢5.00441797

00441772 > 33C9 XOR ECX,ECX ;
00441774 . 894Cc24 14 MOV DWORD PTR SS:[ESP+14],ECX ;
00441778 . 53 PUSH EBX ; |Arg2
00441779 . 894C24 1C MOV DWORD PTR SS:[ESP+1C],ECX ; |
0044177D . 68 B4AF4D0OO PUSH 1c5.004DAFB4 ; |Argl = 004DAFBR4
ASCII "You have entered an invalid code. Please try again."

00441782 . 884C24 24 MOV BYTE PTR SS:[ESP+24],CL ;
00441786 . E8 646D0700 CALL 1c5.004B84EF ; \1c5.004B84EF

As you notice the block of code for Basic, Professional, Administration calculations is
the same. So, if you continue stepping over the code with F8 you’ll get the real Unlock
code for Professional and Administration version. As in the following:

Professional version: 8deeb68b

Stack address=0012F068, (ASCII "8deebo68b")
EDX=0012F06F

Administration version: 27463404

Stack address=0012F068, (ASCII "27d63d04")
EDX=0012F06F

Pane Window in OllyDbg

The method 1 follow to fish the serial is little bit complicated. There are many
other methods which is more simple and fast by searching for the String reference and
set a breakpoint at starting routine address and follow as above. But what if the strings
are encrypted you’ll end up with nothing in this way.

5.2 Patching The EXE: 8085 Simulator IDE v2.35 Victim

Target: 8085 Simulator IDE v2.35 at http://www.oshonsoft.com/. 8085 Simulator IDE is
powerful application that supplies 8085 educators and developers with user-friendly
graphical development environment for Windows with integrated BASIC compiler,
assembler, simulator, debugger and disassembler for Intel 8085 8-bit microprocessor.

While I was studying the Microprocessor Architecture and Organization Course,
I needed a software for simulating the Intel 8085 8-bit microprocessor in order to get
more acquainted with the assembly language. I like to work with 32-bit not 8-bit ASM.

I studied the behavior of this software and I found that there is no place to enter
a user name & serial number to activate the software as fully function as usual in the

57

Chapter 5 CASE STUDIES: REVERSTN G TAHE SV ASTELE

trial applications. It could be registered as Personal, Commercial, Educational, Site,
Institution License.

Limitations:
<> You can start the program only 30 times.
o Session duration 120 minutes after that the soft. exit
automatically.
<> Nag Screen at startup inform us that we need to register the
Software.

This is the nag screen figure 5.7 when we start the program

8085 Simulator IDE x|

80585 Simulator IDE is running in evaluation mode,

Without the license wou will be able ko start the program only 30 times,
This iz start number 17 . This session will end in 120 minutes,

More information available on 8085 Simulator IDE web site:

http:f feavae, oshonsoft. com)f

The easiest way to explore the features of G035 Simulator IDE is ba Follow
'etting Started' presentation available From 8085 Simulator IDE program group.

Idse Options)Change Color Theme ko customize visual appearance of 035 Simulator IDE.

Figure 5.7 8085 Simulator IDE nag screen

Now, if we exceed the 30 times trials, the program will not start anymore stating that as
in figure 5.8:

8085 Simulator IDE x|

The evaluation period has expired.

You will need ko get the license in order ko use the program.
More information available on S055 Simulator IDE web site:
htkp: [v, oshonsaft, com)f

Figure 5.8 8085 Simulator IDE expired version Nag Screen

This software is programmed using Visual Basic Programming Language and
that’s clear from the library it uses. All VB programs relies on an external DII
(MSVBVM60.DLL for VB version 6.0 and similar DLL’s for the other versions) which
implements all the language APIs and also the event dispatchers: the result is that a VB
app takes almost all its time inside this DIl or generally goes into it and out of it very

58

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

frequently. This is a by-design behavior: being VB a very high language all the VB
APIs are implemented into MSVBVMG60.DLL. The only thing, almost, that the
application owns are the events handlers, used as callbacks from the VB DIl to answer
to specific events/messages. The rest of a compiled VB application are the resources,
the variables and the functions used to associate events-handlers. There are decompilers
for Visual Basic applications which help in understanding the structure of the compiled
program. But I will not get into this method, rather using OllyDbg features.(check Load
the program into Olly and it’s obvious from the first two lines : VB application)

00405158 > $ 68 F0554000 B5!6&*I
0040515D . E8 EEFFFFFF SVBVM60
Referenced Text Strings Method

Load the program in Olly and do a search for referenced text strings — Right-click in
the code workplace — Search for— All referenced text strings. Now, we have to search
for the strings “The special evaluation period has expired.”, which will lead us
to the main routine responsible for this behavior. Right-click in the Text strings
referenced in 8085simu:.txt window — Search for text— Uncheck Case sensitive check
box and check Entire scope and write in the edit box: The special evaluation
period has expired. mode — Press on “OK” button— Press CTRL+L twice and
bingo as in the following:

Address=004A2B3C
Disassembly=MOV EDX,8085simu.0041AB04
Text string=UNICODE "The special evaluation period has expired."

double click on the string and we are here:

004A2861 . 6A 03 PUSH 3
004A2863 . FF15 2C104000 CALL DS:[<&MSVBVM60. vbaFreeVarLis>;
MSVBVM60. vbaFreeVarList

004A2869 . 83C4 10 ADD ESP,10
004A286C . FF15 30104000 CALL DWORD PTR

DS: [<&MSVBVM60. vbaEnd>] ; MSVBVM60. vbaEnd
004A2872 > Al 44D04CO00 MOV EAX,DWORD PTR DS:[4CD044]
004A2877 . 85C0 TEST EAX,EAX
004A2879 . OF8E 67030000 JLE 8085simu.004A2BE(|
004A287F . 50 PUSH EAX
004A2880 . E8 0B170000 CALL 8085simu.004A3F90
004A2885 . 8945 E4 MOV DWORD PTR SS: [EBP-1C],EAX
004A2888 . E8 F31C0000 CALL 8085simu.004A4580
004A288D . 3B45 E4 CMP EAX,DWORD PTR SS:[EBP-1C]
004A2890 . OF8F A6020000 JG 8085simu.004A2B3C
004A2896 . 8B45 EO MOV EAX,DWORD PTR SS: [EBP-20]
004A2899 . 85C0 TEST EAX,EAX
004A289B . 0F8C 9B020000 JL 8085simu.004A2B3C
004A28A1 . BA COAB4100 MOV EDX, 8085simu.0041ABCO;
UNICODE "8085 Simulator IDE is running in special evaluation mode."
004A28A6 . 8D4D D8 LEA ECX,DWORD PTR SS:[EBP-28]
004A28A9 . FF15 B0114000 CALL DWORD PTR

59

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

DS: [<&MSVBVM60. vbaStrCopy>]; MSVBVM60. vbaStrCopy
> \66:837D EC FF CMP WORD PTR SS:[EBP-14], OFFFF
004A2BEB 0F85 9B020000 JNZ 8085simu.004A2E8C
004A2E8C > \8B45 EO MOV EAX,DWORD PTR SS:[EBP-20]
004A2E8F 8BOD 38D04CO00 MOV ECX,DWORD PTR DS:[4CD038]
004A2E95 3BC1 CMP EAX,ECX
004A2E97 OF8E 72010000
004A2E9D BA 48AF4100 MOV EDX, 8085simu.0041AF48; UNICODE
"The evaluation period has expired."
004A2EA2 8D4D D8 LEA ECX,DWORD PTR SS:[EBP-28]
004A2EAS . FF15 B0114000 CALL DWORD PTR
DS: [<&MSVBVM60. vbaStrCopy>] ; MSVBVM60. vbaStrCopy
004A2EAB 8B4D D8 MOV ECX,DWORD PTR SS: [EBP-28]
004A2EAE 51 PUSH ECX
004A2EAF 68 B8574100 PUSH 8085simu.004157B8 ; UNICODE ""

Explanation: the code at VA 004A2879 (Jump if less than or equal) is the key for

0012FBD4

deciding whether to continue in the trial mode below 30 times or not
(upon testing the register EAX), but also this will be tested again at VA
004A2BES6 if we change the JLE to JMP this will not solve the problem.
The best solution is at VA 004A2E97 by forcing the program to always
jump to VA 004A300F (JMP 004A300F). Now we have unlimited times
of trials.

To defeat the nag screen. Visual Basic API’s is differs than the C++
concerning MessageBox calling. VB programs use rtcMsgBox API for
displaying a message on the screen. To bypass the nag screen (figure 5.7):
set a bp at this API (go to command bar in Olly and type bp rtcMsgBox)
— Run F9 Olly— after a while Olly will break— go to the Stack
window in Olly and press Enter (Follow in Disassembler) at this line

B e e e

Then go to VA 004A3416 where this message is being called as in this line:

004A3416

Nopping the call at this line will bypass the nag screen

Session duration 120 minutes: the same procedure as above search for the text string:
This evaluation session is finished and double click.

60

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

00442259 /75 68
0044225B | 8D55 AC LEA EDX,DWORD PTR SS: [EBP-54]
0044225E | 8D4D DC LEA ECX,DWORD PTR SS:[EBP-24]
00442261 | 897D C4 MOV DWORD PTR SS:[EBP-3C],EDI
004422064 |8975 BC MOV DWORD PTR SS: [EBP-44],ESI
00442267 | 897D D4 MOV DWORD PTR SS: [EBP-2C],EDI
0044226A |8975 CC MOV DWORD PTR SS: [EBP-34],ESI
0044226D |C745 A4 28D04CO00 MOV DWORD PTR SS: [EBP-5C]
,8085simu.004CD028

00442274 |C745 9C 08400000 MOV DWORD PTR SS: [EBP-641,4008
0044227B . |C745 B4 F8514100 MOV DWORD PTR SS: [EBP-4C],
8085simu.004151F8 ; UNICODE "This evaluation session is finished."
00442282 |C745 AC 08000000 MOV DWORD PTR SS:[EBP-547,8
00442289 |FF15 F8114000 CALL DWORD PTR

DS: [<&MSVBVM60. vbaVarDup>] ;7 MSVBVM60. vbaVarDup
0044228F | 8D4D BC LEA ECX,DWORD PTR SS: [EBP-44]
00442292 | 8D55 CC LEA EDX,DWORD PTR SS:[EBP-34]
00442295 |51 PUSH ECX
00442296 | 8D45 9C LEA EAX,DWORD PTR SS:[EBP-64]
00442299 |52 PUSH EDX
0044229A |50 PUSH EAX
0044229B | 8D4D DC LEA ECX,DWORD PTR SS:[EBP-24]
0044229E |53 PUSH EBX
0044229F |51 PUSH ECX
004422R0 |[FF15 98104000 CALL DWORD PTR DS: [<&MSVBVM60.#595>]

; MSVBVMG60.rtcMsgBox

004422An6 | 8D55 BC LEA EDX,DWORD PTR SS: [EBP-44]
004422A9 | 8D45 CC LEA EAX,DWORD PTR SS:[EBP-34]
004422AC |52 PUSH EDX
004422AD | 8D4D DC LEA ECX,DWORD PTR SS: [EBP-24]
004422B0 |50 PUSH EAX
004422B1 |51 PUSH ECX
004422B2 |6A 03 PUSH 3
004422B4 . |FF15 2C104000 CALL DWORD PTR

DS: [<&MSVBVM60. vbaFreeVarLis>; MSVBVM60. vbaFreeVarList
004422BA |83C4 10 ADD ESP, 10
004422BD |FF15 30104000 CALL DWORD PTR

DS:[<&MSVBVM60.__VbaEnd>] ; MSVBVM60.__VbaEnd

004422C3 > \895D FC MOV DWORD PTR SS: [EBP-4],EBX

This also very easy to defeat just change the JNZ (Jump if not zero) to JMP (Jump)

which will bypass the API at VA 004422BD because this API

terminates the software.

v e

Target Patches Needed To Defeat The Following

Original (Trials 30)
004A2E97 OF8E 72010000
Modified (Trials 30) ,
004A2E97 /E9 73010000
Original (Session duration 120 minutes)
Toii755 775 68 ONZ_SHORT 80855imu.00442263 |

61

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

Modified (Session duration 120 minutes)

0175 Jes e SMP SHORT 50855imi00442263 |

Original (Nag Screen)

004A3416 . FF15 98104000

Modified (Nag Screen)

004A3416 . 909090909090 -

5.3 Keygenning the KeygenMe: Reengineering the Ripped Algorithm

This is one of the most important topics related to software cracking. The
purpose of the keygen is to provide an intellectual challenge to crackers. This is not a
cracking demonstration, actually in this case study; I’ll explain everything step by step:
how to find the serial generation algorithm and how to make a keygen out of it,
translating the low level instructions to more readable in high level language(C++).
Why am I apply this technique on a special program called KeygenMe (Google it with
keyword “KeygenMe”, and you’ll found many of this KeygenMe available on the net on
several RE websites) because it would be illegal and immoral at the same time if I
applied on commercial software.

Now let” go beyond the beautifulness of the GUI, and seeking the invisible
secretes in how the algorithm work. I will take as an example the keygenMe : KeyGen-
me#1 by devilz. When we start it a nice screen appear with two edit boxes: one for the
user name and another for the serial number as in figure 5.9

® Keygen-me N21 by de 0] x|

Fiegiztration information

Mame : I Okey!

Serial : I About |

Figure 5.9 Keygen Screen

The Serial is calculated in conjunction with the Name. So, you cannot enter a
valid serial with different name. (Parallel combination). If we enter an invalid serial a
message box appears telling us that: (Fatal Error: Bad boy, Read more and more Tuts
man !!). How do we locate the code which is responsible for this behavior? As we did in
the previous analysis, follow the same procedures using the MessageBox API technique
(setting a Breakpoint and you are in the game) or search for the referenced strings
method.

We will enter as an example, B0 and B0 in order to calculate

the valid serial for this name (dradeldabou).

62

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

And the following is the snippet assembly code from OllyDbg:
004010E2 . 6A OC PUSH 0C ; /Count = C (12.)

// Maximum entered characters in the Name text box is 12 including the null character at
the end of the array (\0).

004010F5 . /75 19 ONZ SHORT KeyGen-m.00401110
004010F7 . 6A 00 PUSH 0 ; /Style = MB OK|MB APPLMODAL
004010F9 . 68 96304000 PUSH KeyGen-m.00403096

; |Title = "Fill in the blank"
004010FE . 68 A8304000 PUSH KeyGen-m.004030A8

; |Text = "The name please !!!"
00401103 . 6A 00 PUSH O ; |hOwner = NULL
00401105 . E8 18010000 CALL <JMP.&USER32.MessageBoxA>

; \MessageBoxA
// This message box at VA 00401105 popup when the edit box for the Name is empty

0040110A . C9 LEAVE
0040110B . C2 1000 RETN 10
0040110E . EB 2F JMP SHORT KeyGen-m.0040113F
00401110 > \6A 0C PUSH 0C ; /Count = C (12.)
00401112 . 68 80334000 PUSH KeyGen-m.00403380

; |Buffer = KeyGen-m.00403380
00401117 . 68 C8000000 PUSH 0C8 ; |ControlID = C8 (200.)
0040111C . FF75 08 PUSH DWORD PTR SS: [EBP+8] ; |hWnd
0040111F . E8 F2000000 CALL <JMP.&USER32.GetDlgIltemTextA>

; \GetDlgItemTextA
00401124 . 0OBCO OR EAX,EAX
00401126 . 75 17 JNZ SHORT KeyGen-m.0040113F
00401128 . 6A 00 PUSH 0 ; /Style = MBioKIMBiAPPLMODAL
00401122 . 68 BC304000 PUSH KeyGen-m.004030BRC

; |Title = "Fill in the blank"
0040112F . 68 CE304000 PUSH KeyGen-m.004030CE
; |Text = "The serial please

1w
00401134 . 6A 00 PUSH 0 ; | hOwner = NULL
00401136 . E8 E7000000 CALL <JMP.&USER32.MessageBoxA>

; \MessageBoxA

// ' This message box at VA 00401136 popup when the edit box for the Serial is empty

0040113B . C9 LEAVE
0040113C . C2 1000 RETN 10
0040113F > 6A 0OC PUSH 0C ; /Count = C (12.)
00401141 . 68 80334000 PUSH KeyGen-m.00403380

; |Buffer = KeyGen-m.00403380
00401146 . ©6A 04 PUSH 64 ; |ControlID = 64 (100.)
00401148 . FF75 08 PUSH DWORD PTR SS: [EBP+8] ; |hWnd
0040114B . E8 C6000000 CALL <JMP.&USER32.GetDlgIltemTextA>

; \GetDlgItemTextA

63

Chapter 5 CAASE STUDIES. REVERSTN G THE S/VVASTELE

This is the algorithm for generating the equivalent Serial for the entered Name.
To get comfortable with each line of code set a Breakpoint at VA 00401150 and step
over the Code with F8 in OllyDbg (don’t forget to enter the Name: dradeldabou and
Serial:r029f4), and you’ll notice how registers values varies from line to line in
accordance with the calculations.

00401150 . 33D2
00401152 . 33DB
00401154 . 33C9
00401156 . 33CO0
00401158 . BE 80334000
0040115D > 8AlC31
00401160 . 03C3
00401162 .41

00401163 . 80FB 00
00401166 .75 FS
00401168 . BA 28000000
0040116D . FUE2
0040116F . 83C0 19

5.3.1 Serial Generator Algorithm: Analyses

A Fully Descriptive Analyses for the Serial Generator Algorithm

00401150 . 33D2
00401152 . 33DB
00401154 . 33C9
00401156 . 33C0

These four lines of code will XOR’ed the registers EDX, EBX, ECX,
EAX to 0: Initialize registers EDX == (0, EBX == 0, ECX == 0, EAX

00401158 . BE 80334000 MOV EST,KeyGen-m.00403380

The Name entered will be loaded into register ESI: ESI ==
dradeldabou

0040115D > 8AlC31 MOV BL,BYTE PTR DS:[ECX+ESI]
Load the first character from the Name entered into the register
BL (8-bit). In this case BL == ‘d’ == 64h, everything manipulated
as Hexa.

h: denotes hexadecimal

00401160 . 03C3 ADD EAX, EBX

Add the value in the source register EBX into destination register
EAX and save the result into EAX (32-bit). In this case

EAX == EAX + EBX == 00000000 + 00000064 == 00000064

64

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

00401162 . 41

Increments register ECX by 1. An indicator to know how many
characters are in the Name entered (counter). ECX ==

00401163 . 80FB 00 CMP BL, 0

Compare register BL (8-bit) with value ‘0’: the end of the array

00401166 .~ 75 F5 JNZ SHORT KeyGen-m.0040115D
Jump if not Zero; Jump if BL is not Zero yet at VA 0040115D (which
is not zero in this case). So, this will make a loop for reading
the next character till BL == 0 the end of the array ('\0")

(entered Name). It will loops 12 times (reading the full Name), the
last loop is for the ending of the array with BL ==

Note: in the next steps, I will not explain everything as above
only what the registers are holding in each loop.

Loop [2] : BL == ‘r’ == 72h
EAX == EAX + EBX == 00000064 + 00000072 == 000000D6
ECX == 2
BL !=0

Loop [3] : BL == ‘a’ == 61lh
EAX == EAX + EBX == 000000D6 + 00000061 == 00000137
ECX == 3
BL !=0

Loop [4] : BL == ‘d’ == 64h
EAX == EAX + EBX == 00000137 + 00000064 == 0000019B
ECX == 4
BL =0

Loop [5] : BL == ‘e’ == 65h
EAX == EAX + EBX == 0000019B + 00000065 == 00000200
ECX == 5
BL '= 0

Loop [6] : BL == ‘1’ == 6Ch
EAX == EAX + EBX == 00000200 + 0000006C == 0000026C
ECX == 6
BL '= 0

Loop [7] : BL == ‘d’ == 64h
EAX == EAX + EBX == 0000026C + 00000064 == 000002DO
ECX == 7
BL 1= 0

65

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

Loop [8] BL == ‘a’ == 6lh
EAX == EAX + EBX == 000002D0 + 00000061 == 00000331
ECX == 8
BL '= 0
Loop [9] : BL == ‘b’ == 62h
EAX == EAX + EBX == 00000331 + 00000062 == 00000393
ECX == 9
BL '= 0
Loop [10] : BL == ‘o’ == 6Fh
EAX == EAX + EBX == 00000393 + 0000006F == 00000402
ECX == 10
BL !=0
Loop [11] : BL == ‘u’ == 75h
EAX == EAX + EBX == 00000402 + 00000075 == 00000477
ECX == 11
BL !=0
Loop [12] : BL == ‘0’ == 00h
EAX == EAX + EBX == 00000477 + 00000000 == 00000477
ECX == 12
BL == 0
00401168 . BA 28000000 MOV EDX, 28]
Load the register EDX with 28h: EDX == 00000028h
0040116D . F7E2

Multiply the wvalue 1in the register EDX with The wvalue in the
accumulator EAX and save the result into EAX.

EAX == EAX * EDX == (00000477 * 00000028 == 0000B298

0040116F . 83C0 19 ADD EAX,19

Add 00000019 to the value in the register EAX and save the result
into EAX.

EAX == EAX + 19 == 0000B298 + 00000019 == 0000B2B1

66

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

Now, what do you think the next step is? We have in the final
calculation EAX == B2Bl. of course we must converted to decimal

B2 B1—2cimal_y 45745

That’s it our valid Serial number 1is 45745 for the entered name
dradeldabou. As in Figure 5.10

® Keygen-me N°1 by de 0] x|
R eqistration information Good Work x|
Good serial, Maw send me Tuk & KeywGen ko
Mame: |dradeldabou Okey ! devilzcrack@ryahoo.fr
Senal: |45745 About |
| Z

Figure 5.10 Valid Entered Serial

Figure 5.11 Congratulation Message

5.3.2 Serial Generator Algorithm: C++ Translation

This is the equivalent in C++ for
will simulate the original one for

#include <iostream>

using namespace std;
int main ()

{

float EAX = 0;
float EBX = 0;
int ECX = 0;
float EDX = 0;
const int Size

the ripped serial generator from the KeygenMe, which
any entered name.

// XOR EAX, EAX
// XOR EBX,EBX
// XOR ECX,ECX
XOR EDX, EDX

=12; // Count = C (12.)

PUSH 0C ;

char Name[Size];

cout<< "Please

cin.getline (Name, Size); //

"

Enter Your Name (Maximum 11): ;

MOV ESI,KeyGen-m.00403380

for (ECX=0; Name[ECX] != '"\0'; ECX++)

{
EBX = Name[ECX]; // MOV BL,BYTE PTR DS: [ECX+EST]
EAX = EAX + EBX; // ADD EAX,EBX

}

EDX = 0x28; // MOV EDX, 28

67

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

EAX
EAX

EAX * EDX;
EAX + 0x19; ADD EAX,19

cout <<dec<<"Your Serial Number Is: "<<EAX;

return 0;

}

5.4 Deciphering The Algorithm

Target: CoffeeCup Applet Password Wizard v3.0 Registered Version from
http://www.coffeecup.com. Its software which will allows you to add a simple password
protection to your site, with customization of usernames and passwords, links to
different forwarding site one for "access approved" and another for "access denied"
permission for each user. It's very easy to implement such a password schema to your
site but it's weakness in the encryption algorithm lies behind the simplicity. You can
implement the protection either by using Java or Flash mode and the two are very
dangerous to protect your site with such software, you will see later why.

Goals: Decrypting the algorithm step by step for the Password Wizard with Java &
Flash (Algorithm Decryption with ASCII Plain Text Search Approach). I will decrypt the
Java implementation with DJ Java Decompiler Software in the first part of the reversing and
the Flash implementation with 010 Editor "Hex Editor" in the second part of this tutorial.
5.4.1 Target & Tools Description

= Applet Password Wizard v3.0

Upon starting up the software you'll be asked to choose between the Java or Flash mode
as in figure 5.12

& "~ (offeeCup Password Wizard ,,

Click Here ta Use Click Here ta Use
NN

& & Java Flash

Copyright © 1996 - 2001 Coffeelup Software, Inc, www,mﬁEE(up Lom

Figure 5.12 CoffeeCup Startup Screen

Studying the program behavior is very important to know the limitations and the
purposes of its functionalities.

» DJ Java Decompiler v3.7.7.81: With DJ Java Decompiler you can decompile java
CLASS files and save it in text or other format. It's simple and easy. DJ Java

68

Chapter 5 CASE STUDIES: REVERSTN G TAHE SV ASTELE

Decompiler is decompiler and disassembler for Java that reconstructs the original
source code from the compiled binary CLASS files (for example Java applets). DJ
Java Decompiler is able to decompile complex Java applets and binaries, producing
accurate source code. It's a must to have it in your lab tools.

In Java analysis, I'm going to use this great software to decompile the Java Applet Class
to its original high level language construction and then decoding the flow of statements
step by step in order to reassemble the encoding of the password protection routine.

= (010 Editor V2.0.2: 1t’s a professional Hex Editor designed to quickly and easily edit
the contents of binary files. You can use any hex editor but I advice you to give it a
try and discover its potential especially it's script language for automation in the
binary analysis. (used in the second approach)

5.4.2 Java Reversing Approach

The flow of the analysis will be applied as live demonstration by taking an example
of how the software and the Applet Java Class will interact with each other. Before start
explaining anything: Run the software -> Choose "Click Here to Use Java" as in figure
5.12. So, now we are inside the game but even though not yet there is much more to
discover. We will follow a step by step procedure to create an example:

1. File-> New Applet... ("Applet Preview" screen appears as a preview of how the
system will look like). Figure 5.13

Applet Preview

Figure 5.13 Applet Preview

1. General Tab: Startup configuration (default values), in the "Link" section (Edit Box)
write http://www.themutable.com as a default value. Figure 5.14

—Lirk:
Here you enter the default LIRL the applet will link to when the user enters a carect
Lzemame and pazsword.

Link, | http:dAanen themutable. com ﬁFrame I j @

Figure 5.14 General Tab

69

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

3. Login Tab: everything is clear. Figure 5.15

Gerneral Login |L|ser$ I HTMLI

—Pre-Login Meszage
Here you can enter the meszzage which iz dizplayed in the applet before the uzer logs in.

Enter the Uzermame and Paszward. @

—Login kMeszage

Enter the mezzage you want displayed when the loging in comectly.

Login Meszage |Login Complete. @

—Lirk:
If the user enters the incaorrect ugername or passward threes limes you can have the
applet go to a zpecifiic UBL. [pou want to do thiz enter the URL and belov.

Link. |http: A v microzoft, com ﬁ Frame || j @

Figure 5.15 Login Tab settings

4. Users tab: This is the important area where you add a new user with name, password,
and access approved forward link. Click on -> New User and enter the following value
as in figure 5.16.

User Properties =

—Lzer
Enter the uzername and pazsword for this uzer here.

Uzemname |underu:u:untn:|IEE

Fazzwaord Imalkwish?ﬂﬁ

ol can uge the default link for this uzer or enter a
different URL below.

Iv L ze Default Link

Lirk Ihttp:.-".-"www.themutal:-le.u:u:um

Frarne I j

Cloze

Figure 5.16 User Tab Properties

70

Chapter 5 CASE STUDIES: REVERSTN G TAHE SV ASTELE

5. HTML tab: Here comes the HTML required for this Applet Java Class to work.
Figure 5.17
Generall Login I Ugers HTHL I

<applet code="joplock. clazs" width="342" height=""11 .’-"";I Important:

<param hame=""generator’’ value="Created with the Appl Here iz the HTHML required

<param name="GEMERAL" walue="111|000000/00FF 00 for thiz applet. Copy and

<param hame="17" value="1401212510lp=flrzgbtk aeucqnim pazte it in the HTML page

</applet: which pau want the applet
o appear.

Required Files:
Thiz applet reguires the file

jovlock.class

| _>ILI

B Copy HTHL ta Clipbaard (2]

Figure 5.17 HTML Required Parameters Tab

Here is the HTML required for this applet to work in the edit box. by copying and
pasting these HTML lines, the connection between the username and password
implementation will be made with the joylock.class file which handle the decryption
routine inside it in order to decode the param name="0" ... the first username and
password. The fie joylock.class must be in the same folder where the page being
implemented is. And this file is our target in this session with combination with Figure 5.18

<applet code="joylock.class" width="342" height="117">

<param name="generator" value="Created with the Applet Password Wizard
3.0 www.coffeecup.com">

<param name="GENERAL"

.1zk| |Login Complete.|Enter the Username and
Password. |http://www.microsoft.com| |"
<param name="0"

v://uuu.lmepalgose.dkp"
</applet>

value="1[111000000|00FF00|pbihxzugjkmcnalwsviregytdodxxa://ppp.xdukgxnbou

value="14[12|25]0|ugicegsrvzothxbmajlfwpkdnyayxehdkylhks66pgswkicgm798mll

Figure 5.18 HTML required

<applet code="fJovlock.class" width="342" height="117">
A

Startup: Loading the joylock.class file this will be our next victim

<param name="generator" value="Created with the Applet Password Wizard 3.0
A www.coffeecup.com">

Software creator name & version number

71

Chapter 5 CASE STUDIES: REVERSTN G TAHE SV ASTELE

<param name="GENERAL"
value="1[111000000|00FF00|pbihxzugjkmcnalwsviregytdodxxa://ppp.xdukgxnbou.lzk|
|Login Complete. |Enter the Username and Password. |http://www.microsoft.com|
ill>

value="1|111000000|00FF00 |pbihxzugjkmcnalwsvfregytdodxxa://ppp.xdukgxnbou.lzk|
L | I I

Figure 5.19 default value encrypted

1. This segment will check if the software is registered or not. If you use the trial
version this would be different. This confirms that the registration routine is a part of the
Applet Java Class File and not the executable file. This software is fully registered so
it's yes you'll see later why. do you know what does that mean, try to obtain a trial
version of this software and the full one and create a New Applet file you'll notice what
makes this software registered or not. Isn’t so simple!

if (Integer.parselnt (stringtokenizer.nextToken()) == 11)
registered = true;

2. This segment will check for the Background Color (Hex Value) as specified in the
General tab.

3. This segment will check for Text Color (Hex Value) as specified in the General tab.
4. This segment "LinkURL" contains the encrypted format of the default Access
Approved Forwarding Website. Check figure 5.14. this encryption will act as an inter-
modular between the (5."LinkFrame") and the key for the decryption mechanism.

5. This segment "LinkFrame" is the real default Access Approved Forwarding Website

after the encryption don't get confused with segment 4 do you remember what we set
here as a default value figure 5.14.

|Login Complete. |Enter the Username and Password. |http: www.microsoft.com]| |"

A 4

Compare each segment with figure 5.15

Figure 5.20 Text representation

72

Chapter 5 CASE STUDIES: REVERSTN G TAHE SV ASTELE

name="0": this segment will indicate the user number (in this case "0") to configure for
each one its own settings. You can create more than one user.

value="14]12125|0|ugicegsrvzothxbmajlfwpkdnyayxehdkylhks66pgswkicgm798

L1, 1, 1.1 I . I |
[

5 & b b

mllv://uuu.lmepalgose.dkp">

Figure 5.21 Encrypted format for the first username

1. This segment tells about total number of the alphabet(26).
2. This segment tells about alphabet number starting from 0.

3. This segment tells about Username Length with its encrypted format, do you notice
that the decimal numbers aren't encoded you can check this by the last two numbers
(Username: undecontrol66). Figure 5.16

4. This segment tells about Access Approved Forwarding Website in its encrypted
format, (Link: http://www.themutable.com). Figure 5.16

5. This segment tells about Password Length with its encrypted format, (Passowrd:
malkovish798). Figure 5.16

5.4.3 Applet Java Class Source Code Anatomy

Now, the time to have the power in front of your eyes with the decompiled version of
the Applet Java Class file ("joylock.class"). It's nothing more than to open this file with
DJ Java Decompiler software and you have the source code. that's it.

// Decompiled by DJ v3.7.7.81 Copyright 2004 Atanas Neshkov Date:
2/22/2006 8:23:29 AM

// Home Page : http://members.fortunecity.com/neshkov/dj.html - Check
often for new version!

// Decompiler options: packimports(3)

// Source File Name: Jjoylock. java

73

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

import
import
import
import
import
import

public
{

public void init ()

{

Jjava.applet.Applet;
java.applet.AppletContext;
java.awt.*; Java Library Loading
java.net.MalformedURLException;
java.net.URL;
jJava.util.StringTokenizer;

Read each segment one by one
class joylock extends Applet with respect to its parameter
name. for example "General" &
User Number "0"

A

super.init();

int 1 = size () .width - 80;
StringTokenizer stringtokenizer =
new
StringTokenizer (getParameter ("GENERAL"), "|", false);
numUsers = Integer.parselnt (stringtokenizer.nextToken());

if (Integer.parselnt (stringtokenizer.nextToken())
== 11); Interesting!, Figure 5.19.1
registered = true; Good Good.
else
if (getDocumentBase () .toString () .startsWith("file"))
registered = true;
if (registered)

{

bkColor = new Color (Integer.parselnt (stringtokenizer.nextToken(),

16)); Figure 5.19.2

textColor = new Color (Integer.parselnt (stringtokenizer.nextToken (),
16)); Figure 5.19.3
1inkURL = stringtokenizer.nextToken () ;Figure 5.19.4

if (!1inkURL.equalsIgnoreCase (" "))

decript (1inkURL, O, 0, 0, 0, 0, false); The azimuth of our analysis

linkFrame = stringtokenizer.nextToken();fﬁgureS.“)S

loginText = stringtokenizer.nextToken () ;Figure 515 & Figure 5.20
preloginMessage = stringtokenizer.nextToken () ;Figure 5.15 & Figure 5.20

reLinkURL = stringtokenizer.nextToken () ;Figure 5.21.4
relLinkFrame = stringtokenizer.nextToken () ;Figure 5.21.6
username = new String[numUsers]; Figure 5.21.3

password = new String[numUsers]; Figure 5.21.5
urls = new String[numUsers];
frames = new String[numUsers];

for (int j1 = 0; jl < numUsers; jl++); Read first user number "0" parameters

{

StringTokenizer stringtokenizerl = new
StringTokenizer (getParameter (Integer.toString(jl)), "|", false);
int j = Integer.parselnt(stringtokenizerl.nextToken());
Username Length, Figure 5.21.3
int k = Integer.parselnt(stringtokenizerl.nextToken());
Password Length, Figure 5.21.5
int 1 = Integer.parselnt(stringtokenizerl.nextToken());

Figure 5.21.1

74

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

int il = Integer.parselnt (stringtokenizerl.nextToken())
Figure 5.21.2
String s = stringtokenizerl.nextToken();

decript (s, 3j1, j, k, 1, il, true); Call function decript to decode
the encryption of these values (s, j1, j, k, 1, il), String S:
reLinkURL
}
setBackground (bkColor) ; Visualization Theme Settings,
setLayout (null); Figure 5.13, General tab
loginButton = new Button();
loginButton.setLabel ("Login") ;
loginButton.reshape (8, size () .height - 30, size().width - 16, 24);
loginButton.setBackground (new Color (Oxc0Oc0cO0)) ;
add (loginButton) ;
lUsername = new Label ("Username:");
1Username.reshape (8, size().height - 88, 64, 24);
lUsername.setForeground (textColor) ;
add (lUsername) ;
lPassword = new Label ("Password:");
lPassword.reshape (8, size().height - 60, 64, 24);
lPassword.setForeground (textColor) ;
add (1Password) ;
eUsername = new TextField();
eUsername.reshape (72, size().height - 88, i, 24);
eUsername.setBackground (new Color (Oxffffff))
add (eUsername) ;
ePassword = new TextField();
ePassword.setEchoCharacter ('*"');
ePassword.reshape (72, size().height - 60, i, 24);
ePassword.setBackground (new Color (Oxffffff));
add (ePassword) ;
textArea = new TextArea (prelLoginMessage) ;
textArea.reshape (8, 6, size().width - 16, size () .height - 98);
textArea.setBackground (new Color (Oxffffff));
textArea.setEditable (false);
add (textArea) ;
}

~e

}
public void paint (Graphics g)
{
if(!'registered)

{

This message will not appear when your are offline even if
you are using the trial version.

.drawString ("You have the unregistered", 0, 10);

.drawString ("version of this program", 0, 20);

.drawString ("You need the registered version", 0, 30);
.drawString ("for this Applet to work on the internet", 0, 40);
.drawString ("Click HERE for registration instructions", 0, 50);

}

Q QY

}

void clickLoginButton (Event event)

{

75

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

for(int 1 = 0; 1 < numUsers; i++)
{
if (username[i] .equalsIgnoreCase (eUsername.getText ()) &&
password[i] .equalsIgnoreCase (ePassword.getText ()))
{
try
{
URL url;
if(!urls([i] .equalsIgnoreCase(""))
url = new URL(getDocumentBase (), urls[i]);
else
url = new URL(getDocumentBase (), 1inkURL);
String s;
if(!frames[i] .equalsIgnoreCase(""))
s = frames([i];
else
s = linkFrame;
if(s !'= null && !s.equalsIgnoreCase(" "))
getAppletContext () .showDocument (url, s);
else
getAppletContext () . showDocument (url) ;
}
catch (MalformedURLException ex) { }
textArea.setText (loginText) ;

return;
}
if (1 == numUsers - 1)
{
eUsername.setText ("");
ePassword.setText ("") ;
textArea.setText ("Incorrect Username or Password.");
if (reLinkURL != null && !relLinkURL.equalsIgnoreCase (" ") &&
numWrongPass == 2)
{
numWrongPass = 0;
try

{
URL urll = new URL(getDocumentBase (), reLinkURL) ;

if (reLinkFrame != null && !relLinkFrame.equalsIgnoreCase(" "))
getAppletContext () .showDocument (urll, reLinkFrame);
else

getAppletContext () .showDocument (urll) ;

}
catch (MalformedURLException ex) { }
} else

{

numWrongPass++;

}

}

public boolean handleEvent (Event event)

{
if (event.key == 10 || event.target == loginButton &&

event.id == 1001)

76

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

clickLoginButton (event) ;
return true;
} else
{
return super.handleEvent (event) ;
}
}

public boolean mouseUp (Event event, int i, int 73j)
{
if (!registered)
try
{
URL url = new URL (getDocumentBase(),
"http://www.coffeecup.com/") ;
getAppletContext () .showDocument (url) ;
}
catch (MalformedURLException ex) { }
return true;

o---o--
final void decript (String s, int i, int j, int k, int 1,

int i1, boolean flag)

{
String sl1 = "";
String s2 = s.substring(0, 26);
String s3 = s.substring (26, s.length());
String as[] = new String[52];
for(int j1 = 0; jl < 52; Jjl++)

as[jl] = "";

as[0] = as[0] s2.charAt (alphabet.indexOf ("a"));
as[l] = as[1l] s2.charAt (alphabet.indexOf ("b")) ;
as[2] = as[2] s2.charAt (alphabet.indexOf ("c"));
as[3] = as[3] s2.charAt (alphabet.indexOf ("d")) ;
as[4] = as[4] s2.charAt (alphabet.indexOf ("e"));
as[5] = as[5] s2.charAt (alphabet.indexOf ("f"));
as[6] = as[6] s2.charAt (alphabet.indexOf ("g"));
as[7] = asl[7] (();
as[8] = as[8] s2.charAt (alphabet.indexOf ("1i")) ;
as[9] = as[9] s2.charAt (alphabet.indexOf ("J3"))

n il .
’

s2.charAt (alphabet.indexOf

as[1l1l] = as[1l1 s2.charAt (alphabet.indexOf ("1")) ;
as[1l2] = as[1l2 s2.charAt (alphabet.indexOf ("m")) ;
as[1l3] = as[13 s2.charAt (alphabet.indexOf ("n")) ;
as[1l4] = as[1l4 s2.charAt (alphabet.indexOf ("o"));

n

s2.charAt (alphabet.indexOf

as[le] = as[lé6 s2.charAt (alphabet.indexOf ("q"));
as[17] = as[17 s2.charAt (alphabet.indexOf ("r"));
as[1l8] = as[18 s2.charAt (alphabet.indexOf ("s"));
as[19] = as[19 s2.charAt (alphabet.indexOf ("t"));

woon

’

+ a")
+ b"™)
+ c")
+ da")
+ e")
+ £")
+ a")
+ s2.charAt (alphabet.indexOf ("h")
+ im)
+ ")
] ("k
] ("1
] ("m
] ("n
] ("o
] ("p
] ("g
] ("r
] ("s
] ("t
] ("u

))
))
))
))
))
"))
))
))
))
))
))

+ + + + + A+ A+ A+ o+

s2.charAt (alphabet.indexOf

77

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

as[21] as[21] + s2.charAt (alphabet.indexOf ("v"));
as[22] = as[22] + s2.charAt (alphabet.indexOf ("w"));
as[23] = as[23] + s2.charAt (alphabet.indexOf ("x"));
as[24] = as[24] + s2.charAt (alphabet.indexOf ("y"));
as[25] = as[25] + s2.charAt (alphabet.indexOf ("z"));
as[26] = as[26] + s2.charAt (alphabet.indexOf ("a"));
as[27] = as[27] + s2.charAt (alphabet.indexOf ("b"));
as[28] = as[28] + s2.charAt (alphabet.indexOf ("c"));
as[29] = as[29] + s2.charAt (alphabet.indexOf ("d"));
as[30] = as[30] + s2.charAt (alphabet.indexOf ("e"));
as[31] = as[31] + s2.charAt (alphabet.indexOf ("f"));
as[32] = as[32] + s2.charAt (alphabet.indexOf ("g"));
as[33] = as[33] + s2.charAt (alphabet.indexOf ("h"));
as[34] = as[34] + s2.charAt (alphabet.indexOf ("1i"));
as[35] = as[35] + s2.charAt (alphabet.indexOf ("3"));
as[36] = as[36] + s2.charAt (alphabet.indexOf ("k"));
as[37] = as[37] + s2.charAt (alphabet.indexOf ("1"));
as[38] = as[38] + s2.charAt (alphabet.indexOf ("m")) ;
as[39] = as[39] + s2.charAt (alphabet.indexOf ("n"));
as[40] = as[40] + s2.charAt (alphabet.indexOf ("o"));
as[41] = as[41] + s2.charAt (alphabet.indexOf ("p"));
as[42] = as[42] + s2.charAt (alphabet.indexOf ("gq"));
as[43] = as[43] + s2.charAt (alphabet.indexOf ("r"));
as[44] = as[44] + s2.charAt (alphabet.indexOf ("s"));
as[45] = as[45] + s2.charAt (alphabet.indexOf ("t"));
as[46] = as[46] + s2.charAt (alphabet.indexOf ("u"));
as[47] = as[47] + s2.charAt (alphabet.indexOf ("v"));
as[48] = as[48] + s2.charAt (alphabet.indexOf ("w"));
as[49] = as[49] + s2.charAt (alphabet.indexOf ("x"));
as[50] = as[50] + s2.charAt (alphabet.indexOf ("y"));
as[51] = as[51] + s2.charAt (alphabet.indexOf ("z"));
for(int k1l = 26; k1 < 51; kl++)
as[kl] = as[kl].toUpperCase():;
for(int 11 = 0; 11 < s3.length(); 11++)
switch (s3.charAt (11))
{ fmmmemeo :
case 65: : Bomb :
sl = sl + as[26]; . i
break; _-"T"'
1
case 66: !
sl = sl + as[27]; TS T IS T T m T
break; i What does all of these 1
i conversions and checking |
case 67: ' statement means. check it i
sl = sl + as[28]; | . 1
b ; at Bomb section. I
reak; : \
b e e e e e e e e e e e e - —— 1
case 68:
sl = s1 + as[29];
break;
case 69:
sl = sl + as[30];
break;

78

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

case 70: //
sl = sl
break;

case 71: //
sl = sl
break;

case 72: //
sl = sl
break;

case 73: //
sl = sl
break;

case 74: //
sl = sl
break;

case 75: //
sl = sl
break;

case 76: //
sl = sl
break;

case 77: //
sl = sl
break;

case 78: //
sl = sl
break;

case 79: //
sl = sl
break;

case 80: //
sl = sl
break;

case 81: //
sl = sl
break;

case 82: //
sl = sl
break;

case 83: //
sl = sl

break;

case 84: //

N’

+ as[39];

o’

+ as[40];

79

Chapter 5 CASE STUDIES: REVERSTN G THE SV ASTELE

sl = sl + as[45];
break;

case 85: // 'U'
sl = sl + as[46];
break;

case 86: // 'V’
sl = sl + as[47];
break;

case 87: // W'
sl = sl + as[48];
break;

case 88: // 'X'
sl = s1 + as[49];
break;

case 89: // 'y’
sl = sl + as[50];
break;

case 90: // "2’
sl = sl + as[51];
break;

case 97: // 'a'
sl = sl + as[0];
break;

case 98: // 'b'
sl = sl + as[1l];
break;

case 99: // "¢’
sl = sl + as[2];
break;

S/

case 100: d
sl = sl + as[3];
break;

case 101: // 'e’
sl = sl + as[4];
break;

case 102: // 'f’
sl = sl + as[5];
break;

case 103: // 'qg'
sl = sl + as[6];
break;

case 104: // 'h'
sl = sl + asl[7];

80

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

break;

case 105: // "1’
sl = sl + as[8]:
break;

case 106: // '’

sl = sl + as[9];
break;

case 107: // k!
sl = s1 + as[10];
break;

case 108: // '1?
sl = sl + as[1l1l];
break;

case 109: // 'm’'
sl = sl + as[12];
break;

case 110: // 'n’
sl = sl + as[13];
break;

case 111: // "o’
sl = sl + as[1l4];
break;

case 112: // 'p’
sl = sl + as[1l5];
break;
case 113: // '
sl = s1 + as[16];
break;

case 114: // 'r’
sl = sl + as[17];
break;

case 115: // 's'
sl = sl + as[18];
break;

case 1lle: // 't'
sl = sl + as[19];
break;

case 117: // 'u’
sl = s1 + as[20];
break;

case 118: // 'v!
sl = sl + as[21];
break;

81

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

case l l 9 B 1] W r
sl = sl + as[22];

break;

case 120: // 'x!
sl = s1 + as[23];
break;

case 121: // 'y'
sl = sl + as[24];
break;

case 122: // 'z’
sl = sl + as[25];
break;

case 91:
case 92:
case 93:
case 94:
case 95:
case 96:
default:
sl = sl + s3.charAt(11);
break;

}

if(flaqg)
{
= sl.substring (0,

] 0,)7
] = sl.substring(j, j + k);
S k, 3 +

username [
password|
urls[i] =
frames [i]
return;

} else

{

i

i
1l.substring(j + k, k + 1);
sl.substring(j + k + 1, sl.length());

1inkURL = sl;
return;

}

public joylock ()

alphabet = "abcdefghijklmnopgrstuvwxyz";
registered = false;

}

Label lUsername;
Label 1lPassword;
TextArea textArea;
Button loginButton;

82

Chapter 5 CASE STUDIES: REVERSTN G TAHE SV ASTELE

TextField ePassword;
TextField eUsername;
int numUsers;

int numWrongPass;
String loginText;
String 1inkURL;
String linkFrame;
String prelLoginMessage;
String reLinkURL;
String relLinkFrame;
String usernamel];
String password[];
String urls|(];
String frames|[];
String alphabet;
Color textColor;
Color bkColor;
boolean registered;

5.4.4 Bomb Section Analysis

What I've done so far is tracing the algorithm Source Code step by step and
check the relations with Figure 5.18. The conclusion for all of these lines of code is:
how the Java Class reads the segments from the HTML required parameters Figure 5.18
and assign each segment it's variable. The whole decryption procedures occurs in the
decript function which analyze the input from Figure 5.18 and try to check it's decoding
equivalence in the decript function. Here, as you notice the alphabet letters plays a
major role in the decryption (no case sensitive). So, as I told you before the LinkUrl
Figure 5.19.4 is the inter-modular between the alphabet characters and the LinkFrame
Figure 5.19.5 for decoding process.

83

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

ir Array alphabet Letters Positioning i _____________ é _____ s
e ; ;
d I 2l a I plo
x_|i-e! o [|peseoeees > b | 1

X 0-1‘, ! © |[pe======c > 1 2

I S BN T I'n |3

: Lo i e |” I x| 4

/ E . E f > >l z 5
R TN ey SN vy o

p 0----%--}7 E i I |bocssssse >l q 7
poJ--a-te i] i > j | 38

o e Sl I —
A T > m [10
T I S I S [SRS NI
5 d it m oo »l n] 12
@ u .--15 E_:f_j-—i—i—» n | "lLa 13
5 k| o |- 1|14
= L8 '*:. A lp e lLw | 15
\% X ,--J:,: i ii @ | boeme e »| s 16
n .__,:_i ______] ii O N »l v | 17

b Joii B s | e] s
o o i ! et » |19
u of--ebo-onees S I TS > e] 20

. | i LA SE— NIFE B
17 J w " "y | 22

z b ke I S v 23
k y | > d 24
Z fo-------- »| o | 25

For the default value parameters Figure 5.19 consider this schema: Read it from left to
right. Take for example the first letter of the encrypted LinkFrame "d" (Left to Right)
and follow the path horizontally with respect to the equivalence of the alphabet
arrangement it will gives you an "h" so the LinkURL is also the key for the decryption.

Repeat the rest of the LinkFrame letters and you'll end up with the Access Approved
Forwarding website in its original state: http://www.themutable.com

84

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

85

.---p
o sl oo~ o] of o 2] =] > N| o] == ¥]o] E]| <|-—|—[|*]| Bl <]l=]| =] »
I~ 1
[In o] 1
| .mr | A AR A A A AL A A AR A A A AA A A A AR A A AA
1 1 1 1 | | | | | 1 1 1 1 | | | | | 1 1 1 1 1 | | | | 1
AN T T T O T S R T R R T S R
1 Q 1 1 1 | | | | | 1 1 1 1 | | | | |] 1 1 1 1 | | | | 1
1 n 1 1 1 ! ! ! | | 1 1 1 1 | | | | | 1 1 1 1 1 | | | | 1
_E 1 1 1 | | | | | 1 1 1 1 | | | | |] 1 1 1 1 | | | | 1
[1 1 1 ! ! ! ! ! 1 1 1 1 | | | | |] 1 1 1 1 | | | | 1
1) 1 1 1 | | | | | 1 1 1 1 | | | | | 1 1 1 1 1 | | | | 1
1 1 1 1 | | | | | 1 1 1 1 | | | | | 1 1 1 1 1 | | | | 1
ﬂ----._“m“ T T T O T S R T R R T S R
1 1 1] 1 1 1 I I I I I 1 1 1 1 | | | | |] 1 1 1 1 | | | | 1
1 1 _F 1 1 1 ! ! ! ! ! 1 1 1 1 | | | | | 1 1 1 1 1 | | | | 1
1 1 _k 1 1 1 | | | | | 1 1 1 1 | | | | |] 1 1 1 1 | | | | 1
1 1 1 n 1 1 1 | | | | | 1 1 1 1 | | | | |] 1 1 1 1 | | | | 1
| NG I T T S T O S S S
R o o K B B B I L I B £ I B R
P s s] sle] o s o) =] o =]~ <l —]| €] =] o] A = =] 2| ~| =] 2] B 2| A
EeER R
S B VI A A A AA A A A A
_10 I~ ! 1 0 | "oy | | 0 [
=T = I 1 i i 1 ! '
R | IR 0t At s et Sttt
R _ R FoooTooooes el E
B-RE - | . . T o
SRR N DN sy it T I 1
“ V) “ " 1 1 1 1 [" | |
£ et e e boodeodd o
poEo Fo---------- Fo=q--—------- R e e e e s ' o
“H “ |||||||| v _|||_||_||||.0|||" OulJ |||||||| T--TO---r--1 l l
= I v a3 3T ' L I T L
LS ! R F— S L
1 1
B g 1%1 > ~|~1 =] =| = gl—| o] o a.%l of o] »| © ol 4] =
e---p

checked the "Use Default Link" Box, so it's right no problem. Read it from left to right.

Follow the same procedure as previously done and you will and up with the same
Access Approved Forwarding website in its original state: http://www.themutable.com
Note: the result is same as before because when I create a new user as in Figure 5.16 1

Figure 5.21 [Section “4” & Section “6”] Anatomy

Configuration for username="0"

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

||||||

r

*---p
—_— -
~ =]~ o] o] o =] =| >| 5] of =| =] <] =] E] =]~ —|«] 2| & ~<|=]| =| »
T
& A AA A A A AA A A AL A A A AL A A AA A A A A
f = 1 I I 1 1 1 1 1 I I I I 1 1 1 1 1 I I I I 1 1 1 1 1 1
(9] 1 ! ! 1 1 1 1 1 ! ! ! ! 1 1 1 1 1 ! ! ! ! 1 1 1 1 1 1
n 1 " ! 1 1 1 1 1 ! ! ! ! 1 1 1 1 1 ! ! ! ! 1 1 1 1 1 1
S T T T T
2 | T O

1 ! 1 1 1 1 1 ! ! ! ! 1 1 1 1 1 ! ! ! ! 1 1 1 1 1 1
Do I O e

|
- T T T O T O T T S S S SO R S S R
.- 1 ! ! 1 1 1 1 1 ! ! ! ! 1 1 1 1 1 ! ! ! ! 1 1 1 1 1 1
= R S S S N S S S U S S N R N U S D U N S S
-——=-1 N 3 e ¢ ¢ ¢ L1 Kd + + 2 4 ¢ ¢ ¢ 2 £4 + + L g ¢ ¢ ¢ ¢ ¢
---- sjo| ol o] o =|-~|-—|~4]—]| E] =] 2| & = ~| 2| =] =] >| B| %] > ™
~ 1
\go} 1
g ! A A A A A A A A A A
g " A P b | b
>~ | ! | | (. 0 Lossso=s=s A---r----[T-----—----- [l | “
ﬁ “ ' B s e FReo=lrososssmg jeesoossssosss R e | '
= | ot Y SO | | Do 1
...... _ .-
g8 | I T Gl FTTTTRTToooooooooes CIIIIgIIdTTT oA s m
g | | I e e b e : | T====--r- =
m ! | T- "=~ ~"r-"A--~-~-°-°-°77 r==-a-"=~"=~="="=T7-~======°-°=° b i e B [A---r--T1-!
S | A C | | CoO T
r.qlxm “ " 4 " 4 4 4 4 " 4 I " "
£
= S| > X ol g AN —]| =] <] »|Of O o of | 2l -~ o] oo E]]
—-——-1
+---p

Figure 5.21 [Section “3” & Section “5”] Anatomy

Configuration for username="0"

Follow the same procedure as before and you will and up with the original Username

and Password (deciphered)
Username: undercontrol66
Password: malkovish798

86

Chapter 5 CASE STUDIES: REVERSTN G TAHE SV ASTELE

5.4.5 Flash Plain Text Searching Approach

Using this software allows you to implement the site password protection in
Flash mode, but it's protection is very poor compared to the Java mode where all what
you need to do is to open the flash file (*.swf) with any Hex Editor and do a search for
an ASCII characters and you'll end up with the username and password as it's with no
encryption being involved at all on the ASCII characters: It's in plain text format (what's
an easy fishing), creating a new user is same as in Java mode (a little bit settings
differences but it doesn't matter), here the HTML required parameters offers no help for
the decoding process, because all the information is embedded inside the Flash file so
our target in this session will be the Macromedia Flash file with an extension .swf .

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96R8-444553540000"
codebase="http://active.macromedia.com/flash2/cabs/swflash.cabf#version=5,0,0,0

ID=LogSWF WIDTH=342 HEIGHT=117>

<PARAM NAME=movie VALUE="LogSWE.swf">

<PARAM NAME=quality VALUE=high>

<PARAM NAME=loop VALUE=false>

<EMBED src="LogSWE.swf" loop=false quality=high

WIDTH=342 HEIGHT=117 TYPE="application/x-shockwave-flash"
PLUGINSPAGE="http://www.macromedia.com/shockwave/download/index.cgi?Pl Prod Ve
rsion=ShockwaveFlash">

</EMBED>

</OBJECT>

Let's take a scenario where you access a site using this protection but in this case you
don't have the flash file and as i said before the HTML required are useless in this case
(used only to make the file appear on the web site...) so what, do you know that when
you access a site for a first time, the time required to be fully loaded is longer than the
second entrance and that's refer to the Temporary Internet Files which makes surfing
the net faster if no update occurs on the site (because of the second entrance).

Follow the steps in order to locate where the victim resides:

First I recommend that you delete the files from the Temporary Internet Files so that
locating the file will be easier. This can be done by open the Internet Explorer (in my
case) ---> Tools --> Internet Options... --> Delete Files.

Ok, now the file "Temporary Internet Files" is clear, your next step is to enter the site
which using this protection in Flash mode now you are in (page fully loaded).Go to My
Computer--> C:\ Documents and Settings \ UserName \ Local Settings \ Temporary
Internet Files

and now do a search for the .swf extension (ex,) if there are more than one file try
to open each one till you find the required one and have a copy in another place.

Now open the file with 010 Editor (Hex Editor) or any other hex editor and do a search for:
or and you'll end up with occurrences of three for each one (depends on the

87

Chapter 5 CAASE STUDIES: REVERSTN G TAHE SVVASFELE

one you choose for search), stay at the second occurrence what do you notice, are we in the
Bomb Section or Not! I think so. As in the following box (taken from 010 Editor):

Found 3 occurrences of 'userBox'.

= |
i 38h 7h userBox i
I 1

1517h 7h userBox
15A4h 7h userBox
____________________ ,____________________l
1
1
1
1
1
| Y ___________ 1
| Z e 1. !
|String.@... '
bz userBox, |
! ..passBox..!.. |
L Zae... :
' malkovis i
. h798...... foo... !
VA 1..... http |
i ://www.themutabl |
' e.com...... v |

UserBox OR passBox: Indicator to find the embedded username & password
undercontrol66: Username
malkovish798: Password

http://www.themutable.com: Access Approved Forwarding Website

88

Cllapter 6 COWELUSIONS

Chapter 6

CONCLUSIONS

The importance of this project lies in the newly developed methods with step by
step analysis to make things easier to follow. Reverse Code Engineering with
emphasizing on breaking software protection has the influence on the overall developer
programmers who must know the weakness in their protections implementations to
better shield their programs from crackers attacks.

It shows how easy it is to change only one instruction to defeat the protection
from its root. There is no protection that can not be easily removed (my experience). It’s
a matter of time.

The information’s presented in my book and how it’s being processed starting
with the theory chapters till the experimental fact demo, it will serve as a basis for
another development and contributions concerning RCE and the interrelationship with
breaking protections and deciphering the algorithm.

What we've learnt from this newly customized approach. Using the right tools.
How to read the inner and outer shell for many algorithms in the case studies chapter.
Breaking the unbreakable. Deciphering the algorithm. And the most important thing is
to have the pleasure for the unknown.

89

References

BOOKS

[1] Elam, Eldad. Reversing: Secrets of Reverse Engineering. Indianapolis: Wiley
Publishing, Inc., 2005.

[2] Irvine, Kip. Assembly Language for Intel®-Based Computers. New Jersey: Pearson
Education, Inc., 2003.

[3] Rosenberg, Jonathan. How Debuggers Work: algorithms, data structure, and
architecture. New York: John Wiley & Sons, Inc., 1996.

[4] Kaspersky, Kris. Hacker disassembling Uncovered. East Swedesford: A-LIST
Publishing, 2003.

[S] Lenal51, Imports rebuilding #21 March 14, 2006

[6] Goppit, Portable Executable File Format — A Reverse Engineering View. CBJ,
Security Analysis; VOL. 2, NO. 3 2005. August 15, 2005.

TOOLS

[7] IDA Pro Advanced: The Interactive Disassmbler, Version 4.9.0.863 (32-bit).
http://www.datarescue.com. TOO Geliosoft., 2005.

[8] OllyDbg, v1.10. http://www.ollydbg.de/. Oleh Yuschuk, 2000-2004

[91 Stud PE by ChristicG, Version 2.2.0.5-Build date: 20/03/2006 12:21:00 AM.
http://www.itimer.home.ro/. CGSoftLabs., 2006.

[10] UPX: Ultimate Packer for eXecutables by Markus F.X.J. Oberhumer & Laszlo
Molnar, V1.24w, Nov 7" 2002. http://upx.sourceforge.net. 2002.

[11] Code Snippet Creator by Iczelion, version 1.05 build 2. 1999-xxxx

[12] Restorator 2006 v3.60 build 1535 by bome.com/Florian Bomers,
http://www.bome.com/Restorator/. 1996-2006

[13] RadASM version 2.2.0.6 by Ketil Olsen, http://www.radasm.com/. 2001-2005

[14] Microsoft Visual C++ Enterprise Edition V 6.0, http://www.microsoft.com/.,
Microsoft Corporation. 1994-98

[15] MASM32 version 9.0 by Steve Hutchesson, http://www.movsd.com. 1998-2006

90

Uter #Fuetosris

Vita Auctoris

The Outer Worlds
Kuiper Belt, Pluto
(000) 400 1000000

Name: tHE mUTABLE

Place of Birth: I don’t know where, but I think first moment of creation “Quantum”

Year of Birth: -00.™-00."-0000

N ™

Education: £ ,
A

818

2 2

[
¢
F(—oo)+F(oo)

einsteinzero@hotmail.com
cheviva2000@hotmail.com
http://www.themutable.com

91

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

