

Reverse Code Engineering [RCE]
Emphasizing On

Breaking Software Protection

526576657273696E6720746865204D696E64206F6620476F64

Exclusive Edition 2006

BY

Copyright © 2006 tHE mUTABLE

June 29, 2006

BEGIN tHE mUTABLE ENCODING

000000010000000100000001000000000000000100010000000100000000000000000001000100000001000
000000001000000010001000100000000000100010000000000010000000000000000000000000001000100
000001000000000001000000010001000100000000000100010000000000010000000000000000000000000
001000100000000000000000001000000000001000000000000000000000000000100010001000000000001
000100000001000100000000000100000001000000010001000000010001000100000000000100010000000
100000000000100000001000100000001000100010001000000010001000100000000000100000000000000
010000000000000000000000000001000000010000000000000000000000010001000100000000000100000
000000100010000000100010001000100000001000100000001000000010000000000010001000000000001
000000010000000100010000000000000001000100000001000100010000000100000000000000000001000
000000000000000000000000100010000000000000000000100000000000100000000000000000000000000
000001000000000000000100000000000100000001000000010000000000000001000100000001000000000
000000000010001000000000001000000010000000100010001000000000001000100000001000100000001
000000000001000000010001000100000000000100010000000000010000000000000001000000000000000
100000001000100000001000000000001000000000000000000000000000100000000000100010000000000
000001000000000001000000000001000000010000000100000001000000010000000000010000000000000
000000000000001000000000000000000010000000000010001000100010000000000010000000000010000
000000000000000000000001000000000001000100000001000000010001000000010001000100010000000
100010000000100000000000000000001000100000000000000000001000000010001000000010001000000
010000000100010000000100010000000100000001000100000000000100000001000000010001000000000
001000000000000000000010000000000000000000000000001000000000000000100010000000000010001
000000000000000000010000000100010000000000010000000000000001000100000000000100000001000
000010001000000010001000000000000000000010000000000000000000000000001000000000001000100
000001000000010001000000010001000100010000000100010000000100000001000100000001000100000
000000000010000000000010001000000000001000000010000000100010000000100010000000000000000
000100000000000000000000000000000001000100000000000100000000000000010001000000000000000
000000000000100010000000000000000000000000001000100000001000100000000000000010000000000
000000000000000001000000000001000100000000000000010001000000000001000000010000000100010
000000000000001000000000001000100000000000000000001000000010001000000010001000100000000
000100010000000100010001000100000001000100000001000100010000

END tHE mUTABLE ENCODING

History
∃±VersionA 0.1A E.E.

Files Included

Complete Source Code...

I Don't Know
Life Is More Than Human Evolution

#

.: :. 0.1 .: :. . .I A A II E E+ ± = ∃∫

S. & C.
You Are Welcome For Any Suggestions, Comments

I hereby declare that I am the sole author of this document.

tHE mUTABLE

I further authorize the ARTeam to reproduce, distribute the document by photocopying

or by other means, in total or in part, at the request of other individuals or group’s for

the purpose of research.

License agreement: PLEASE NOTE THAT YOU SHOULD OBEY THESE CONDITIONS BEFORE

YOU READ THIS BOOK. I'M NOT RESPONSIBLE FOR ANY CONSEQUENCES YOU MAY

ENCOUNTER AFTER READING IT.

This Book is for educational purposes only

You are not allowed to modify the content in any way; you have to contact me for
more info.

 einsteinzero@hotmail.com

 cheviva2000@hotmail.com

 http://www.themutable.com

tHE mUTABLE

 iv

ABSTRACT

Reverse Code Engineering with emphasizing on breaking software protection. For
many specialists in this field especially in the field of malware reversing, it’s a must
to understand what all is about by “analyzing the subject system to identify the
system’s components and their interrelationships and to create representations of the
system in another form or at a higher level of abstraction “(IEEE 1990) in order to
take the control over the malware invaders and protect millions of computers around
the world from being infected as quick as possible. For breaking protections
protocols the rationale is to get the knowledge for the unknown because it’s
enjoyable and truly truth to reconstruct 0’s & 1’s for another purpose without
knowing the original state (source code) of construction.

The objective is to unhide the castle of secrets behind the beauty of how things
works and to present a newly customized approach for better protection against
illegal reversing concerning commercial software applications. The methods used to
perform this task, that is, analytical, numerical, and experimental.

The study shows the weakness of the Operating System in handling the binaries
connections system call, protections in a commercial applications and how it’s fully
reversed to its newborn phase, which impose a great threat on the customers and
companies affecting companies’ liability. It reveals the integrity in reversing
software executable files and how to break software’s protections.

Most of the materials presented are newly designed and implemented for this
purpose.

Keywords: Reverse Engineering, Breaking Protections, Algorithm, Packer,
 UnPacker, Patching, Serial

 v

ACKNOWLEDGEMENTS

I’d like to thank Lena151 for his very well done newbie’s to advance RCE Flash

Tutorials, and last but certainly not least every member in the ARTeam with special

thanks to Goppit & Shub – Nigurrath: Thanks a lot for your proofreading my book, your

corrections and suggestions is deeply appreciated and for your generosity to take time

out of a busy schedule to answer my questions.

Sincere thanks go out to the true professionals, the RCE’s AR The incredibly

hard working team. And I would like to thank everyone for his contributions concerning

RCE and many aspects of advanced techniques used in the scene.

 tHE mUTABLE

 vi

TABLE OF CONTENTS

ABSTRACT ……………………………………………………………………... iv

ACKNOWLEDGEMENTS …………………………………………………….. v

LIST OF FIGURES …………………………………………………………….. viii

LIST OF TABLES ……………………………………………………………… x

1. Introduction …………………………………………………………………... 1

 1.1 Reverse Engineering? …………………………………………………… 1

 1.2 0’s & 1’s Ubiquity: Philosophy …………………………………………. 1

 1.3 Protection Classifications ………………………………………………... 2

 1.4 Protection Determination ………………………………………………... 4

2. Portable Executable Anatomy ………………………………………………. 6

 2.1 File Structure …………………………………………………………….. 6

 2.2 Sections Surgery ………………………………………………………… 9

 2.2.1 Executable Code Section ……………………………………………. 10

 2.2.2 Data Section …………………………………………………………. 10

 2.2.3 Resource Section …………………………………………………….. 10

 2.2.4 Export Data Section …………………………………………………. 12

 2.2.5 Import Data Section …………………………………………………. 12

 2.2.6 Debug Information Section ………………………………………….. 12

 2.2.7 Base Relocation Section ……………………………………………... 12

 2.3 The Import Section ………………………………………………………. 12

 2.4 The Loader ………………………………………………………………. 13

3. ASM and C++ Compiler Lab Test ………………………………………….. 14

 3.1 ASM & C++ Compiler Study …………………………………………… 14

 3.1.1 ASM Disassembled Code …………………………………………… 16

 3.1.2 C++ Disassembled Code …………………………………………….. 17

4. Breaking Protections …………………………………………………………. 21

 4.1 Debugger ………………………………………………………………… 21

 4.2 Packer Theory …………………………………………………………… 21

 4.3 Newton Third Law: Protectors …………………………………………... 22

 vii

 4.4 A Little Bit About Assembly ……………………………………………. 23

 4.5 Packer Theory Demonstration …………………………………………... 29

 4.5.1 First Stage: Deciphering The Bits …………………………………… 31

 4.5.2 Second Stage: Packing and Unpacking ……………………………... 32

 4.5.3 Third Stage: Cracking The Micro-Universe of Bits ………………… 37

 4.5.3.1 Third Stage: Understanding False and True Password ………….. 38

 4.5.3.2 Third Stage: Defeat The Counter Limitation ……………………. 39

 4.5.3.3 Third Stage: Defeat Password Checking Array …………………. 42

 4.5.4 Patching: Static Changes …………………………………………….. 47

 4.5.5 Code Injection: Tracking The Unbounded …………………………... 47

5. Case Studies: Reversing The Invisible ……………………………………… 51

 5.1 Serial Fishing: L0pht Crack v5.02 Victim ……………………………….. 51

 5.2 Patching The EXE: 8085 Simulator IDE v2.35 Victim ………………….. 57

 5.3 Keygenning The KeygenMe: Reengineering The Ripped Algorithm …… 62

 5.3.1 Serial Generator Algorithm: Analyses ………………………………. 64

 5.3.2 Serial Generator Algorithm: C++ Translation ………………………. 67

 5.4 Deciphering The Algorithm ……………………………………………… 68

 5.4.1 Target & Tools Description …………………………………………. 68

 5.4.2 Java Reversing Approach …………………………………………… 69

 5.4.3 Applet Java Class Source Code Anatomy …………………………... 73

 5.4.4 Bomb Section Analysis ……………………………………………… 83

 5.4.5 Flash Plain Text Searching Approach ………………………………. 87

6. Conclusions …………………………………………………………………… 89

REFERENCES ………………………………………………………………….. 90

VITA AUCTORIS ……………………………………………………………… 91

 viii

LIST OF FIGURES

1.1 The main types of protection ……………………………………………. 4

2.1 Virtual Memory …………………………………………………………. 7

2.2 Restorator: DlgBox Identification ………………………………………. 11

3.1 ASM Executable MessageBox ………………………………………….. 15

3.2 C++ Executable MessageBox …………………………………………... 15

3.3 C++ Byte Value Distribution …………………………………………… 20

3.4 ASM Byte Value Distribution …………………………………………... 20

4.1 IA-32 Basic Program Execution Registers ……………………………… 24

4.2 Compressed code error from OllyDbg ………………………………….. 34

4.3 OllyDump: Dumping and Rebuilding the packed program …………….. 37

4.4 MessageBoxA Injected …………………………………………………. 50

5.1 LC5 Trial Version Startup Window …………………………………….. 52

5.2 LC5 Registration Window ……………………………………………… 52

5.3 Invalid Unlock Code message …………………………………………... 53

5.4 Setting a Breakpoint on MessageBoxA API ……………………………. 53

5.5 Stack Window in OllyDbg ……………………………………………… 53

5.6 How to clear the Breakpoint …………………………………………….. 54

5.7 8085 Simulator IDE nag screen ………………………………………… 58

5.8 8085 Simulator IDE expired version Nag Screen ………………………. 58

5.9 Keygen Screen …………………………………………………………... 62

5.10 Valid Entered Serial …………………………………………………….. 67

5.11 Congratulation Message ………………………………………………… 67

5.12 CoffeeCup Startup Screen ………………………………………………. 68

5.13 Applet Preview ………………………………………………………….. 69

5.14 General Tab ……………………………………………………………... 69

5.15 Login Tab settings ………………………………………………………. 70

5.16 User Tab Properties ……………………………………………………... 70

 ix

5.17 HTML Required Parameters Tab ……………………………………….. 71

5.18 HTML required …………………………………………………………. 71

5.19 Default Value Encrypted ………………………………………………... 72

5.20 Text representation ……………………………………………………… 72

5.21 Encrypted format for the first username ………………………………... 73

 x

LIST OF TABLES

2.1 Section analyses [Sample DialogBox.exe] ……………………………… 9

3.1 Differences between ASM & C++ compiler implementation …………... 19

4.1 Overlapping relationship For EAX, EBX, ECX, EDX registers ……….. 25

4.2 16-bit registers used in real –address mode …………………………….. 25

4.3 Output Summary: F.E.T, R.E.P. ………………………………………… 39

4.4 Methods to defeat checking counter limitation …………………………. 41

4.5 Methods to defeat the password checking procedure …………………… 47

Chapter 1 INTRODUCTION
__

1

Chapter 1

INTRODUCTION

1.1 Reverse Engineering?

Reverse Engineering is the ultimate apex human mind could ever achieve in the
embarking creation of the process and reengineered it back to its original composition
through multi sophisticated Neuron-Digital combinational analysis.

Opening up a program’s “box,” and looking inside, it would be a very interesting
project to tackle. Reverse Code Engineering it’s one of the most important fields in the
development industry concerning security, piracy software, malicious software,
reversing cryptographic algorithms. It’s all about translating the Low Level
Programming Language to High Level Programming Language which requires
understanding everything as bits 0’s and 1’s to reveal the hidden secrets behind the
interface; Operating system, Assembly Language, High Level Language, Hardware
Development, Human minds,… it’s a must to have all of these requirements and much
more for better understanding of how things works.

It’s a very long chain of connections from top till down where there are multi-
branches for each cross-reference from one procedure to another in order for the
instructions to flow cumulatively based on the previous block of procedures and
functions.

1.2 0’s & 1’s Ubiquity: Philosophy

Binary! It’s all about binary 0’s and 1’s, wherever you go whatever you think
you will fall into the same extreme point as a looser or a winner, and there is nothing in
the middle or the system will collapse over itself because there is only one mode at a
time. So in order to understand how things work one must accept the fact of the
experiment being done.

Everything is a bit with variable time being the ultimate ruler on the behavior of
the inter-modular call between the procedures and instructions. Locating a reference and
follow it to the source step by step, it’s an enjoyable very long journey to tackle, but had
better to allocate something dynamically tracing it line by line and grasp the whole
pictures of how registers and numbers follow your control till the desired conclusion.
Not always things that easy, what if you crashed out of the game and there is no return.
No, for every procedure there is a starting point and ending one but be careful
sometimes you will never get out of this loop until you setting another breakpoint
outside this loop and run freely for another block of 0’s and 1’s where your imagination
start to degenerate after the long trip of fighting. May be there is something monitors
your movements and record a log file for all of your actions without noticing anything at
all and that’s the pleasure. Don’t think that you know what you know is what you don’t

Chapter 1 INTRODUCTION
__

2

know; analyzing your mysterious actions in parallel with the victim being hijacked
might reveal for you secrets behind the outer shell. Sometimes it’s easy, sometimes it’s
not, it depends on how much experience you have to toggle things on and off and make
everything reversible to its raw state. It’s truly truth to have something well done and
share it with the others.

Binary can represent anything, but you can’t make things work the same as each
other. Executable code and data are, at the lowest level, the exact same thing a
collection of 0’and 1’s, you may want to try to run data as code, but most likely this will
lead to a crash. Why, because every object is being structured for it’s own purpose, and
that’s what makes things more than just binary. And for every object (Picture, Movie,
Executable file …) there is something that understand this structure and will interpreted
in the proper way.

1.3 Protection Classifications

Checking authenticity is the "heart" of the overwhelming majority of protection
mechanisms. In all cases, we have to make sure that the person working with our
program is who he or she claims to be, and that this person is authorized to work with
the program. The word "person" might mean not only a user, but the user's computer or
the medium that stores a licensed copy of the program. Thus, all protection mechanisms
can be divided into two main categories:

 Protection based on knowledge (of a password, serial number, etc.)
 Protection based on possession (of a key disc, documentation, etc.)

Knowledge-based protection is useless if a legitimate owner isn't interested in
keeping the secret. An owner can give the password (and/or serial number) to whomever
he or she likes, and thus anyone can use a program with such protection on his or her
computer.

Naturally, nobody is barging in on users in their homes, and nobody is even
considering it (yet) — your house is still your castle. Besides, what can you get from a
domestic user? A wide distribution of products is good for manufacturers, and who can
distribute better than pirates? Even in that case, serial numbers aren't superfluous—
unregistered users cannot use technical support, which may push them to purchase legal
versions.

Such protection is ideal for giant corporations, but it isn't suitable for small
groups of programmers or individual developers, especially if they earn their bread by
writing highly specialized programs for a limited market (say, star spectra analysis, or
modeling nuclear reactions). Since they cannot apply sufficient pressure, it's unreal for
them to ask users to check their licenses, and it's hardly possible to "beat" the payment
out of illegal users. All that can be done is through threat and eloquence.

Chapter 1 INTRODUCTION
__

3

In this case, protection based on the possession of some unique subject that is
extremely difficult to copy, or impossible to copy in general (the ideal case), is more
appropriate. The first of this kind were key floppies with information written on them in
such a manner that copying the floppy disk was impossible. The simplest way (but not
the best) to prepare such a floppy was to gently damage the disk with a nail (an awl, a
penknife), and then, having determined the sector in which the defect was located (by
writing and reading any test information — up until a certain point, reading will proceed
normally, followed by "garbage"), register it in the program. Then, each time the
program started, it checked whether the defect was located in the same place or not.
When floppy disks became less popular, the same technique was used with compact
discs. The more affluent cripple their discs with a laser, while ordinary folk still use an
awl or nail.

Other possession-based protection mechanisms frequently modify the subject of
possession, limiting the number of program starts or the duration of its use. Such a
mechanism is often used in installers. So as to not irritate users, the key is only
requested once, when the program is installed, and it's possible to work without the key.
If the number of installations is limited, the damage arising from unauthorized
installation of one copy on several computers can be slight.

The problem is that all of this deprives a legal user of his or her rights. Who
wants to limit the number of installations? (Some people reinstall the operating system
and software each month or even several times a day). In addition, key discs are not
recognized by all types of drives, and are frequently "invisible" devices on the network.
If the protection mechanism accesses the equipment directly, bypassing drivers in order
to thwart hackers' attacks more effectively, such a program definitely won't run under
Windows NT/2000, and will probably fail under Windows 9x. (This is, of course, if it
wasn't designed appropriately beforehand. But such a case is even worse, since
protection executing with the highest privileges can cause considerable damage to the
system.) Apart from that, the key item can be lost, stolen, or just stop working correctly.
(Floppy disks are inclined to demagnetize and develop bad clusters, CDs can get
scratched, and electronic keys can "burn out".)

And that’s the summary for protection classifications as reported in figure 1.1

Chapter 1 INTRODUCTION
__

4

Figure 1.1 The main types of protection

Naturally, these considerations concern the effectiveness of keys in thwarting
hackers, and not the concept of keys in general. End users are none the better for this! If
protection causes inconveniences, users would rather visit the nearest pirate and buy
illegal software. Speeches on morals, ethics, respectability, and so on won't have any
effect. Shame on you, developers! Why make users' lives even more complicated? Users
are human beings too!

That said, protections based on registration numbers have been gaining
popularity: Once run for the first time, the program binds itself to the computer, turns on
a "counter", and sometimes blocks certain functionalities. To make the program fully
functional, you have to enter a password from the developer in exchange for monetary
compensation. To prevent pirate copying, the password is often a derivative of key
parameters of the user's computer (or a derivative of their user name, in an elementary
case).

1.4 Protection Determination

If protection is based on the assumption that its code won't be investigated
and/or changed, it's poor protection. Concealing the source code isn't an insurmountable
obstacle to studying and modifying the application. Modern reverse engineering

Protection types

Knowledge-based Possession-based

Static key Pair of associated keys

Password

Serial Number

Registration number

Key diskette

Key disk

Key computer

Electronic key

Limitation of
program starts

Nag Screen

Chapter 1 INTRODUCTION
__

5

techniques automatically recognize library functions, local variables, stack arguments,
data types, branches, loops, etc. And, in the near future, disassemblers will probably be
able to generate code similar in appearance to that of high-level languages.

But, even today, analyzing machine code isn't so complex as to stop hackers for
long. The overwhelming number of constant cracks is the best testament to this. Ideally,
knowing the protection algorithm shouldn't influence the protection's strength, but this is
not always possible to achieve. For example, if a server application has a limitation on
the number of simultaneous connections in a demo version (which frequently happens),
all a hacker needs to do is find the instruction of the process carrying out this check and
delete it. Modification of a program can be detected and prevented by testing the
checksum regularly; however, the code that calculates the checksum and compares it to
a particular value can be found and deleted.

However many protection levels there are — one or one million — the program
can be cracked! It's only a matter of time and effort. But, when there are no effective
laws protecting intellectual property, developers must rely on protection more than law-
enforcement bodies. There's a common opinion that if the expense of neutralizing
protection isn't lower than the cost of a legal copy, nobody will crack it. This is wrong!
Material gain isn't the only motivation for a hacker. Much stronger motivation appears
to lie in the intellectual struggle(who's more clever: the protection developer or me?),
the competition (which hacker can crack more programs?), curiosity (what makes it
tick?), advancing one's own skills (to create protections, you first need to learn how to
crack them), and simply as an interesting way to spend one's time. Many young hackers
spend weeks removing the protection from a program that only costs a few dollars, or
even one distributed free of charge.

The usefulness of protection is limited to its competition — other things being
equal, clients always select unprotected products, even if the protection doesn't restrain
the client's rights. Nowadays, the demand for programmers considerably exceeds
supply, but, in the distant future, developers should either come to an agreement or
completely refuse to offer protection. Thus, protection experts will be forced to look for
other work.

Chapter 2 PORTABLE EXECUTABLE ANATOMY
__

6

Chapter 2

PORTABLE EXECUTABLE ANATOMY

Portable Executable file is the native Win32 file format. Every win32 executable
(except VxDs and 16-bit DLLs) uses PE file format. 32bit DLLs, COM files, OCX
controls, Control Panel Applets (.CPL files) and .NET executables are all PE format.
Even NT's kernel mode drivers use PE file format.

2.1 File Structure

This analysis will help later in unpacking and code injection technique for most
of the shareware software available today in the market.

At a minimum, a PE file will have 2 sections; one for code and the other for
data. An application for Windows NT has 9 predefined sections named .text, .bss,
.rdata, .data, .rsrc, .edata, .idata, .pdata, and .debug. Some applications do not need
all of these sections, while others may define still more sections to suit their specific
needs.

The sections that are most commonly present in an executable (depends on the
compiler being used) are:

 Executable Code Section, named .text (Microsoft) or CODE (Borland)
 Data Sections, named .data, .rdata, or .bss (Microsoft) or DATA (Borland)
 Resources Section, named .rsrc
 Export Data Section, named .edata
 Import Data Section, named .idata
 Debug Information Section, named .debug

Chapter 2 PORTABLE EXECUTABLE ANATOMY
__

7

Figure 2.1 Virtual Memory

The names are actually irrelevant as they are ignored by the OS and are present
only for the convenience of the programmer. Another important point is that the
structure of a PE file on disk is exactly the same as when it is loaded into memory so if
you can locate info in the file on disk you will be able to find it when the file is loaded
into memory.

However it is not copied exactly into memory. The windows loader decides
which parts need mapping in and omits any others. Data that is not mapped in is placed
at the end of the file past any parts that will be mapped in e.g. Debug information.

Also the location of an item in the file on disk will often differ from its location once
loaded into memory because of the page-based virtual memory management that
windows uses. When the sections are loaded into RAM they are aligned to fit to 4Kb
memory pages, each section starting on a new page.

DOS MZ header

DOS Stub

Section Table

PE Header

.reloc section

other section

.text section

.code section

Section …

Section n

DOS MZ header

DOS Stub

Section Table

PE Header

.reloc section

other section

.text section

.code section

Section …

Section n

Section n

Section n

PE File

In Memory

H
ig

he
r a

dd
re

ss
es

H
ig

he
r O

ff
se

ts

Chapter 2 PORTABLE EXECUTABLE ANATOMY
__

8

The concept of virtual memory is that instead of letting software directly access
physical memory, the processor and OS create an invisible layer between the two. Every
time an attempt is made to access memory, the processor consults a "page table" that
tells the process which physical memory address to actually use. It wouldn’t be practical
to have a table entry for each byte of memory (the page table would be larger than the
total physical memory), so instead processors divide memory into pages. This has
several advantages:

o It enables the creation of multiple address spaces. An address space is an isolated
page table that only allows access to memory that is pertinent to the current
program or process. It ensures that programs are completely isolated from one
another and that an error causing one program to crash is not able to poison
another program's address space.

o It enables the processor to enforce certain rules on how memory is accessed.
Sections are needed in PE files because different areas in the file are treated
differently by the memory manager when a module is loaded. At load time, the
memory manager sets the access rights on memory pages for the different
sections based on their settings in the section header. This determines whether a
given section is readable, writable, or executable. This means each section must
typically start on a fresh page.

o However, the default page size for Windows is 4096 bytes (1000h) and it would
be wasteful to align executables to a 4Kb page boundary on disk as that would
make them significantly bigger than necessary. Because of this, the PE header
has two different alignment fields; Section alignment and file alignment. Section
alignment is how sections are aligned in memory as above. File alignment
(usually 512 bytes or 200h) is how sections are aligned in the file on disk and is
a multiple of disk sector size in order to optimize the loading process.

o It enables a paging file to be used on the hard drive to temporarily store pages
from the physical memory whilst they are not in use. For instance if an app has
been loaded but becomes idle, its address space can be paged out to disk to make
room for another app which needs to be loaded into RAM. If the situation
reverses, the OS can simply load the first app back into RAM and resume
execution where it left off. An app can also use more memory than is physically
available because the system can use the hard drive for secondary storage
whenever there is not enough physical memory.

Chapter 2 PORTABLE EXECUTABLE ANATOMY
__

9

When PE files are loaded into memory by the windows loader, the in-memory
version is known as a module. The starting address where file mapping begins is called
an HMODULE. A module in memory represents all the code, data and resources from an
executable file that is needed for execution whilst the term process basically refers to an
isolated address space which can be used for running such a module.

2.2 Sections Surgery

I wrote a very basic program in assembly language and compiled it using
MASM compiler (Macro Assembler) v9.0 in order to have an overview about sections
in the executable file with their different names and addresses for each one.

No Name VSize VOffset RSize ROffset Charact.
01 .text 000000B0 00001000 00000200 00000400 60000020
02 .rdata 0000012A 00002000 00000200 00000600 40000040
03 .data 00000010 00003000 00000200 00000800 C0000040
04 .rsrc 00000148 00004000 00000200 00000A00 40000040

Table 2.1 Section analyses [Sample DialogBox.exe]

Manipulating these sections could be done through any hex editor or any automated tool
created for this purpose like Stud_PE v2.2.0.5 or LordPE Deluxe by yoda.

Name: [this field is 8 bytes] The name is just a label and can even be left blank.

VirtualSize: [DWORD union] The actual size of the section's data in bytes. This may
be less than the size of the section on disk (Size OfRawData) and will be what the
loader allocates in memory for this section.

VirtualAddress: The RVA of the section. The PE loader examines and uses the value
in this field when it's mapping the section into memory. Thus if the value in this field is
1000h and the PE file is loaded at 400000h, the section will be loaded at 401000h.

SizeOfRawData: The size of the section's data in the file on disk, rounded up to the
next multiple of file alignment by the compiler.

PointerToRawData: (Raw Offset) - incredibly useful because it is the offset from the
file's beginning to the section's data. If it is 0, the section's data are not contained in the
file and will be arbitrary at load time. The PE loader uses the value in this field to find
where the data in the section is in the file.

Characteristics: Contains flags such as whether this section contains executable code,
initialized data, uninitialized data, can it be written to or read from.

Chapter 2 PORTABLE EXECUTABLE ANATOMY
__

10

2.2.1 Executable Code Section

In Windows NT all code segments reside in a single section called .text or
CODE. Since Windows NT uses a page-based virtual memory management system,
having one large code section is easier to manage for both the operating system and the
application developer. This section also contains the entry point mentioned earlier and
the jump thunk table (where present) which points to the IAT.

2.2.2 Data Section

The .bss section represents uninitialized data for the application, including all
variables declared as static within a function or source module.

The .rdata section represents read-only data, such as literal strings, constants,
and debug directory information.

All other variables (except automatic variables, which appear on the stack) are
stored in the .data section. These are application or module global variables.

2.2.3 Resource Section

The .rsrc section contains resource information for a module. There are many
resource editors available today which allows editing, adding, deleting, replacing and
copying resources.

For a demo about resource editor we can use Restorator1 2006 v3.60 build 1535.
This figure shows the Sample DialogBox.exe resources. I didn’t include an icon or any
other resources only a dialog box with two buttons and one edit box.

Source code (Sample DialogBox.exe) written in MASM assembler:

 .386
 .model flat, stdcall ;32 bit memory model
 option casemap :none ;case sensitive

 include Sample DialogBox.inc

 .code

1 Restorator is a resource editor for Windows. Resources are additional data accompanying a Windows
application. Resources are usually part of the application interface. E.g. dialogs, menus, images, text,
icons etc. They are usually stored with the executable or dll. Restorator can edit those resource files and
thereby change the look and feel or language of an application completely independent of the
development and compile tools. By bome.com/Florian Bomers

Chapter 2 PORTABLE EXECUTABLE ANATOMY
__

11

 start:

 invoke GetModuleHandle,NULL
 mov hInstance,eax

 invoke InitCommonControls
 invoke DialogBoxParam,hInstance,IDD_DIALOG1,NULL,addr DlgProc,NULL
 invoke ExitProcess,0

 DlgProc proc hWin:HWND,uMsg:UINT,wParam:WPARAM,lParam:LPARAM

 .if uMsg == WM_COMMAND
 mov eax,wParam
 .if eax == IDC_MESSAGE
 invoke SetDlgItemText,hWin,IDC_EDITBOX,ADDR Message
 .elseif eax == IDC_EXIT
 invoke SendMessage, hWin, WM_CLOSE, 0, 0
 .endif
 .elseif uMsg == WM_CLOSE
 invoke EndDialog, hWin, 0
 .endif

 xor eax,eax
 ret
 DlgProc endp

 end start

 Figure 2.2 Restorator: DlgBox Identification

DlgBox Identifier

Chapter 2 PORTABLE EXECUTABLE ANATOMY
__

12

This tool helps in translating the strings to any language an it could be used as an
aesthetical purpose for cracking after locating the BadMessage2 String.

2.2.4 Export Data Section

The .edata section contains the Export Directory for an application or DLL.
When present, this section contains information about the names and addresses of
exported functions.

2.2.5 Import Data Section

The .idata section contains various information about imported functions
including the Import Directory and Import Address Table.

2.2.6 Debug Information Section

Debug information is initially placed in the .debug section. The PE file format
also supports separate debug files (normally identified with a .DBG extension) as a
means of collecting debug information in a central location. The debug section contains
the debug information, but the debug directories live in the .rdata section mentioned
earlier. Each of those directories references debug information in the .debug section.

2.2.7 Base Relocation Section

When the linker creates an EXE file, it makes an assumption about where the
file will be mapped into memory. Based on this, the linker puts the real addresses of
code and data items into the executable file. If for whatever reason the executable ends
up being loaded somewhere else in the virtual address space, the addresses the linker
plugged into the image are wrong. The information stored in the .reloc section allows
the PE loader to fix these addresses in the loaded image so that they're correct again. On
the other hand, if the loader was able to load the file at the base address assumed by the
linker, the .reloc section data isn't needed and is ignored.

2.3 The Import Section

The import section (usually .idata) contains information about all the functions
imported by the executable from DLLs. This information is stored in several data
structures. The most important of these are the Import Directory and the Import Address
Table which we will discuss next. The Windows loader is responsible for loading all of
the DLLs that the application uses and mapping them into the process address space. It

2 BadMessage means that the program is not registered yet (annoying message box text), so you have to
locate the GoodMessage either using patching technique where the software being cracked automatically
place the right one or by any resource editor.

Chapter 2 PORTABLE EXECUTABLE ANATOMY
__

13

has to find the addresses of all the imported functions in their various DLLs and make
them available for the executable being loaded.

The addresses of functions inside a DLL are not static but change when updated
versions of the DLL are released, so applications cannot be built using hardcoded
function addresses. Because of this a mechanism had to be developed that allowed for
these changes without needing to make numerous alterations to an executable's code at
runtime. This was accomplished through the use of an Import Address Table (IAT).
This is a table of pointers to the function addresses which is filled in by the windows
loader as the DLLs are loaded.

By using a pointer table, the loader does not need to change the addresses of
imported functions everywhere in the code they are called. All it has to do is add the
correct address to a single place in the import table and its work is done.

2.4 The Loader

When an executable is run, the windows loader creates a virtual address space
for the process and maps the executable module from disk into the process' address
space. It tries to load the image at the preferred base address and maps the sections in
memory. The loader goes through the section table and maps each section at the address
calculated by adding the RVA3 of the section to the base address. The page attributes are
set according to the section’s characteristic requirements. After mapping the sections in
memory, the loader performs base relocations if the load address is not equal to the
preferred base address in ImageBase.

The import table is then checked and any required DLLs are mapped into the
process' address space. After all of the DLL modules have been located and mapped in,
the loader examines each DLL's export section and the IAT is fixed to point to the
actual imported function address. If the symbol does not exist (which is very rare), the
loader displays an error. Once all required modules have been loaded execution passes
to the app's entry point.

The area of particular interest in RCE is that of loading the DLLs and resolving
imports. This process is complicated and is accomplished by various internal
(forwarded) functions and routines residing in ntdll.dll which are not documented by
Microsoft. As we said previously function forwarding is a way for Microsoft to expose a
common Win32 API set and hide low level functions which may differ in different
versions of the OS. Many familiar kernel32 functions such as GetProcAddress are
simply thin wrappers around ntdll.dll exports such as LdrGetProcAddress which do the
real work.

3 Relative Virtual Address: In an executable file or DLL, an RVA is always the address of an item once
loaded into memory, with the base address (ImageBase) of the image file subtracted from it: RVA = VA –
ImageBase ∴VA = RVA + ImageBase

Chapter 3 ASM AND C++ COMPILER LAB TEST
__

14

Chapter 3

ASM AND C++ COMPILER LAB TEST

For Reverse Code Engineering RCE mechanism, Assembly language it’s a must
to understand it fully at least as a prerequisite for better understanding of how things
flow between lines.

Machine Language is a numeric language that is specifically understood by a
computer’s processor (the CPU). Intel processors, for example, have a machine
language that is automatically understood by other Intel processors. Machine languages
consists purely of numbers.
Assembly language consists of statement that uses short mnemonics such as ADD,
MOV, SUB, and CALL. Assembly language has one to one relationship with machine
language, meaning that one assembly language instruction corresponds to one machine-
language instruction.

3.1 ASM & C++ Compiler Study

After readings about computer languages and learning most of it from DOS,
Qbasic, Delphi, C++, VB, to ASM, I came to a conclusion based on my experience
concerning compiler architecture especially in the protection field that the programmer
imagination and the compiler capabilities must unite for better performance and better
protection.

In the following section I will write a small code which only shows a message
box at startup on the screen in assembly language and another one in C++ language (the
same functionality).Using API4 (Application Programming Interface) technique.

ASM Code (Size After compilation: 3.0 KB):

.386
.model flat, stdcall
Option casemap:none

include windows.inc
include kernel32.inc
include user32.inc
includelib kernel32.lib
includelib user32.lib

.data
MsgBoxCaption db "Thesis DemoBox II",0
MsgBoxText db "Welcome To LIU University",0

4 Functions that user applications can use to request specific operations to be performed by the kernel.

Chapter 3 ASM AND C++ COMPILER LAB TEST
__

15

.code
start:
invoke MessageBox, NULL, ADDR MsgBoxText, ADDR MsgBoxCaption, MB_OK
invoke ExitProcess,0
end start

Figure 3.1 ASM Executable MessageBox

C++ Code (Size After compilation: 152 KB):

#include <windows.h>

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{

MessageBox(NULL, "Welcome To LIU University", "Thesis DemoBox II
 C++", MB_OK);

 return 0;
}

Figure 3.2 C++ Executable MessageBox

I’ve used an API technique in these two examples (API): Which is a set of
functions that the operating system makes available to application programs for
communicating with the operating system. For reversing under Windows, it is
imperative that you develop a solid understanding of the Windows APIs and of the
common methods of doing things using these APIs.

After the compilation for these two small programs comes the disassembler in
order to investigate the behavior of the program as an assembly language with hex code
mnemonic.

The disassembler is one of the most important reversing tools. Basically, a
disassembler decodes binary machine code (which is just a stream of numbers) into a
readable assembly language text. This process is somewhat similar to what takes place

Chapter 3 ASM AND C++ COMPILER LAB TEST
__

16

within a CPU while a program is running. The difference is that instead of actually
performing the tasks specified by the code (as is done by a processor), the disassembler
merely decodes each instruction and creates a textual representation for it.
Needless to say, the specific instruction encoding format and the resulting textual
representation are entirely platform-specific. Each platform supports a different
instruction set and has a different set of registers. Therefore a disassembler is also
platform-specific (though there are disassemblers that contain specific support for more
than one platform).

I’m going to use IDA (Interactive Disassembler) by DataRescue
(www.datarescue.com) which is an extremely powerful disassembler that supports a
variety of processor architectures, including IA-32, IA-64 (Itanium), AMD64, and many
others. IDA also supports a variety of executable file formats, such as PE (Portable
Executable, used in Windows), ELF (Executable and Linking Format, used in Linux),
and even XBE, which is used on Microsoft’s Xbox.

Using IDA Pro Advanced v 4.9.0.863 (32bit)

3.1.1 ASM Disassembled Code

Disassembling the compiled ASM Code:

.text:00401000 public start
.text:00401000 start proc near
.text:00401000 push 0 ; uType
.text:00401002 push offset Caption ; "Thesis
 DemoBox II"
.text:00401007 push offset Text ; "Welcome To
 LIU University"
.text:0040100C push 0 ; hWnd
.text:0040100E call MessageBoxA
.text:00401013 push 0
.text:00401015 call $+5
.text:0040101A jmp ds:ExitProcess
.text:0040101A start endp

As you notice the code is very clear and understandable from the first looking
without any additional garbage from the MASM compiler. MessageBox calling
convention is in the reverse order to invoke (C convention where for Delphi it’s almost
the same as the source code). Everything is clear. If we compare this disassembled code
to ASM source code: no huge differences.

According to the MSDN library the MessageBox:

The MessageBox function creates, displays, and operates a message box. The
message box contains an application-defined message and title, plus any combination of
predefined icons and push buttons.

Chapter 3 ASM AND C++ COMPILER LAB TEST
__

17

Syntax

 int MessageBox(

 HWND hWnd, ; in this case “0” no owner window referred to.”hWnd”

 LPCTSTR lpText, ; “Welcome To The LIU University”

 LPCTSTR lpCaption, ; “Thesis DemoBox II”

 UINT uType ; for every type (Icon, Buttons Combination assigned
nb)

);

Parameters
hWnd

[in] Handle to the owner window of the message box to be
created. If this parameter is NULL, the message box has no owner
window.

lpText
[in] Pointer to a null-terminated string that contains the
message to be displayed.

lpCaption
[in] Pointer to a null-terminated string that contains the
dialog box title. If this parameter is NULL, the default title
Error is used.

uType
[in] Specifies the contents and behavior of the dialog box. This
parameter can be a combination of flags.

The Exit Process function ends a process and all its threads.

Void ExitProcess(

 UINT uExitCode. ; “0”

);

3.1.2 C++ Disassembled Code

Disassembling the compiled C++ Code:

.text:00401010 ; int __stdcall WinMain(HINSTANCE hInstance,HINSTANCE

hPrevInstance,LPSTR lpCmdLine,int nShowCmd)

.text:00401010 WinMain proc near ; CODE XREF:

Chapter 3 ASM AND C++ COMPILER LAB TEST
__

18

 WinMain(x,x,x,x)�j
.text:00401010
.text:00401010 var_40 = dword ptr -40h
.text:00401010 hInstance = dword ptr 8
.text:00401010 hPrevInstance = dword ptr 0Ch
.text:00401010 lpCmdLine = dword ptr 10h
.text:00401010 nShowCmd = dword ptr 14h
.text:00401010
.text:00401010 push ebp
.text:00401011 mov ebp, esp
.text:00401013 sub esp, 40h
.text:00401016 push ebx
.text:00401017 push esi
.text:00401018 push edi
.text:00401019 lea edi, [ebp+var_40]
.text:0040101C mov ecx, 10h
.text:00401021 mov eax, 0CCCCCCCCh
.text:00401026 rep stosd
.text:00401028 mov esi, esp
.text:0040102A push 0 ; uType
.text:0040102C push offset Caption ; "Thesis
DemoBox
 II C++"
.text:00401031 push offset Text ; "Welcome To
 LIU
University"
.text:00401036 push 0 ; hWnd
.text:00401038 call ds:__imp__MessageBoxA@16 ;
 MessageBoxA(x,x,x,x)
.text:0040103E cmp esi, esp
.text:00401040 call __chkesp
.text:00401045 xor eax, eax
.text:00401047 pop edi
.text:00401048 pop esi
.text:00401049 pop ebx
.text:0040104A add esp, 40h
.text:0040104D cmp ebp, esp
.text:0040104F call __chkesp
.text:00401054 mov esp, ebp
.text:00401056 pop ebp
.text:00401057 retn 10h
.text:00401057 WinMain endp

.text:00401BB1 loc_401BB1: ; CODE XREF: doexit+ �BD
.text:00401BB1 mov _C_Exit_Done, 1
.text:00401BBB mov ecx, [ebp+uExitCode]
.text:00401BBE push ecx ; uExitCode
.text:00401BBF call ds:__imp__ExitProcess@4 ;
 ExitProcess(x)

Chapter 3 ASM AND C++ COMPILER LAB TEST
__

19

In the compiled C++ program the disassembled code is very lengthy with many
cross references, Import functions from other DLL (Dynamic Link Library) file
It seems clear enough which code is more readable and compact for better performance.

 ASM Code C++ Code
Size 3 KB 152 KB
Imports 2 50
D.ASM.Code readability More Less
Compactness High Low
Names 2 531
Functions 2 239

Table 3.1 Differences between ASM & C++ compiler implementation

From compiler point of view MASM compiler is better when writing Assembly
language instructions without any help from other resources only the required ones,
whereas concerning the Microsoft Visual Studio v6.0 C++ compiler, writing in high
level language (C++) requires many additional resources from other DLL’s to interact
with the operating system. But for reversing with such huge informative analysis
depicted by IDA the task become less complex especially in malware analysis.

We can also check the distribution of the byte value in each one with respect to the
sections size and how messy it’s the graph in C++ compiler.

Chapter 3 ASM AND C++ COMPILER LAB TEST
__

20

 Figure 3.3 C++ Byte Value Distribution

 Figure 3.4 ASM Byte Value Distribution

C++ compiler Byte Value
Distribution: it’s clear how
much variation there are in
the same section and that’s
declare the extremity in the
near and far jumping in the
program in order to
interconnect with its own
procedures from one place to
another.

ASM compiler Byte Value
Distribution: here the graph
is very well distributed with
no extremities between
sections; also we notice the
three sections being varied in
size and distribution in a
normal way.

Chapter 4 BREAKING PROTECTIONS
__

21

Chapter 4

BREAKING PROTECTIONS

Before start breaking the protection of any software, let me first introduce some
definitions which is important for later discussions.

4.1 Debugger

The term debugger is something of a misnomer5. Strictly speaking, a debugger is
a tool to help track down, isolate, and remove bugs from software programs. Bugs are
software defects that have been affectionately known as bugs. In truth, debuggers are
tools to illuminate the dynamic nature of a program-they are used to understand a
program as well as find and fix defects. Debuggers are the magnifying glass, the
microscope, the logic analyzer, the profiler, and the browser with which a program can
be examined.

 Debuggers are software tools that help determine why the program does not
behave correctly. They aid a programmer in understanding a program and then in
finding the cause of the discrepancy. The programmer can then repair the defect and so
allow the program to work according to its original intent. A debugger is a tool that
controls the application being debugged so as to allow the programmer to follow the
flow of program execution and, at any desired point, stop the program and inspect the
state of the program to verify its correctness.

4.2 Packer Theory

The executable file is packed? What does that mean. Just as we pack files using
Winzip or Winrar we can pack executables to protect them and conserve space. You
can't open a zip file without a program to unpack it. The same is true for packed
executables; except the program that unpacks it is part of the executable. The unpacker
program is called a STUB. When you run a packed EXE the STUB first
decrypts/unpacks the original EXE into memory. Then it executes the original program.
The beginning of the original program is called the Original Entry Point "OEP". What to
do next is waiting until the program is decrypted into memory, find the OEP and then
dump6 the decrypted file to the hard drive. However, the OEP does not mean the
beginning of a "working" EXE. Even if the programs code is known but an executable

5 A wrong or unsuitable name.
6 Dump: every program executed is mapped in memory as it’s, even if it’s packed. After a while
everything will be clear. So, in order to overcome the packed executable file we must load it into
debugger and then save it to a disk file, of course after we found the Original Entry Point, hence the
dumped program will be freed from the unpacking stub and will again run as before. But sometimes the
OEP redirected in a very complicated way in order to increase the protection.

Chapter 4 BREAKING PROTECTIONS
__

22

can have many different sections outside of the code. One very important section is
called the Import Address Table "IAT". The Import Address Table allows a program to
use functions stored outside of the program. A Messagebox from the Windows API is
an example of an outside function. When a program wants to use an outside function
Windows loads the DLL with that function into memory address space and then gives
the IAT the code location for the desired functions. A table is created with called
functions, and addresses of those functions within the DLL's; hence the Import Address
Table.

The compressed executable file requires:

o Less storage space in the file system
o Less time to transfer data from the file system into memory
o More time to decompress the data before execution begins than

the uncompressed original .

These advantages come at a price. For viruses, virii, worms and other malicious
software (Malware) which spread rapidly on the internet the antiviruses face a big
problem because of the packers being used in these viruses and make things more
complicated for AV programmer to identify the signature of the virus. Because the
cracker themselves build their own advanced packers (Private License only for crackers
group not for public use) especially in polymorphic and Import Address Table
redirection means.

4.3 Newton Third Law: Protectors

For every action there is an equal and opposite reaction.

The aim of the protector is emphasizing more or even completely on protection
against Reverse Engineering than the simple packer. So, protectors try adding another
sections and layers of obfuscations in order to defeat the reverser. The size of the
program being protected is large. But in fact sometimes things are easier to defeat with
protectors than packer.(my experience with highly sophisticated packers and protectors).

Nothing is impossible, for every packing, protecting mechanism there are tens of
unpacking and unprotecting mechanisms, for some packers, protectors there is a fully
automated software which delete the whole protection of the software in one click.

What the most important thing a protector mess with is the Import Address Table (IAT).
The following paragraphs are very important, so read it carefully and try to visualize
the mechanism of the possibilities of what the protectors’ abilities inside this area.

There are different Microsoft windows operating systems, and they all have different
addresses for their API functions, because of different structured DLL’s. when an
application starts, it has a list of all functions that aren’t originally a part of the
application. These functions, called imports, are located in the operating system DLL’s,

Chapter 4 BREAKING PROTECTIONS
__

23

but the application doesn’t know where. Every win32 executable application has an
Import address table (IAT) residing inside the program. The IAT is used as a lookup
table when the application is calling a windows API function. So before starting, the
windows loader has to find each address of each API that the program wants to call and
constructs an IAT with them. When the program is running and it wants to call API, it
simply looks in the IAT and thus finds immediately the address it needs to go in the
DLL. When an executable has been packed or protected the reverse engineer must
recover the original executable file because a lot of packers/protectors destroy the IAT
(while taking care of finding the API’s for the program). The import address table needs
to be either rebuilt or fixed to allow for the executable to run properly. Import rebuilding
is the reconstruction of the import address table (IAT).

Now, let’s start this over but look in it in more detail. First of all: when an
executable is first loaded, the windows loader is responsible for reading in the PE
structure and loading the executable image into memory. One of the other steps it takes
is to load all of the DLL’s that the application uses and map them into the process
address space. The executable also lists all of the functions it will require from each
DLL. Because the function addresses are not static, a mechanism was developed that
allows for these variables to be change without needing to alter all of the compiled code
at runtime. This was accomplished through the use of an import address table (IAT).
This is a table of function pointers filled in by the windows loader as the DLL’s are
loaded. When the application was first compiled, it was designed so that none of the
API calls use direct hardcoded addresses but rather work through a function pointer. In
follow, this pointer table can be accessed in several ways. Either directly by a call
[pointer address] or via a jump thunk table. By using the pointer table, the loader does
not need to fix up all of the places in the code that want to use the API call, all it has to
do is add the pointer to a single place in a table and its work is done.

When it comes to packed executables, they almost invariably mess with the
processes import table in order to make the executable smaller and make it harder for
people to unpack and get running again. Packed programs were still generated with
standard compilers, and of course they were still designed to work this fixed mechanism
(which is a very efficient way to handle the problem anyway). If a packer has destroyed
the default import table mechanism, which simply means that the packer/protector will
have to figure out which DLL’s and functions to load and where to place the pointers so
that the original program still operates as normal after it has done its decompression and
restorations routines.

4.4 A Little Bit About Assembly

But before embarking on the Reverse Engineering, let me first describe a little
bit about registers because they are the primary information holders when using a
debugger. So, registers are high-speed storage locations directly inside the CPU,
designed to be accessed at much higher speed than conventional memory. When a
processing loop is optimized for speed, for example, registers are used inside the loop
rather than variables.

Chapter 4 BREAKING PROTECTIONS
__

24

 Figure 4.1 IA-32 Basic Program Execution Registers

Figure 4.1 shows the basic program execution registers. There are eight general purpose
registers, six segment registers, a register that holds processor status flags (EFLAGS),
and an instruction pointer.

General-Purpose Registers: The general-purpose registers are primarily used for
arithmetic and data movement. As shown in the following figure, each register can be
addressed as either a single 32-bit value or a 16-bit value:

 8 8

 AH AL

 EAX

Some 16-bit registers can be addressed as two separate 8-bit values. For example, the
EAX register is 32 bits. Its lower 16 bits are also named AX. The upper 8 bits of AX are
named AH, and the lower 8 bits are named AL.

This overlapping relationship exists for the EAX, EBX, ECX, and EDX registers:

EAX
EBX
ECX
EDX

EBP
ESP
ESI
EDI

EFLAGS CS
SS
DS EIP

 A X

32-bit General-Purpose Registers

16-bit Segment Registers

8 bits + 8 bits

16 bits

32 bits

ES
FS
GS

Chapter 4 BREAKING PROTECTIONS
__

25

32-bit 16-bit 8-bit(High) 8-bit(Low)
EAX AX AH AL
EBX BX BH BL
ECX CX CH CL
EDX DX DH DL

Table 4.1 Overlapping relationship For EAX, EBX, ECX, EDX registers

The remaining general purpose registers have separate names for their lower 16-bits, but
cannot be divided further.

32-bit 16-bit
ESI SI
EDI DI
EBP BP
ESP SP

Table 4.2 16-bit registers used in real –address mode

Specialized Used Some general-purpose registers have specialized uses:

• EAX is automatically used by multiplication and division instructions. It is often
called the extended accumulator register. “EAX is also the return register for
almost all API functions.”

• The CPU automatically uses ECX as loop counter.
• ESP addresses data on the stack (a system memory structure). It should never be

used for ordinary arithmetic or data transfer. It is often called the extended stack
pointer register

• ESI and EDI are used by high-speed memory transfer instructions. They are
sometimes called the extended source index and extended destination index
registers.

• EBP is used by high-level languages to reference function parameters and local
variables on the stack. It should not be used for ordinary arithmetic or data
transfer except at an advanced level of programming. It is often called the
extended frame pointer register.

Segment Registers the segment registers are used as base locations for preassigned
memory areas called segments. Some segments hold program instructions (code),
others hold variables (data), and another segment called the stack segment holds local
function variables and function parameters.

Instruction pointer The EIP, or instruction pointer register contains the address of the
next instruction to be executed. Certain machine instruction manipulate this address,
causing the program to branch to a new location.

Chapter 4 BREAKING PROTECTIONS
__

26

EFLAGS Register The EFLAGS (or just Flags) register consists of individual binary bits
that either control the operation of the CPU or reflect the outcome of some CPU
operation. There are machine instructions that can test and manipulate the processor
flags.

Note: A flag is set when it equals 1; it is clear (or reset) when it equals 0.

 Instructions (ASM mnemonics)

An instruction is a statement that is executed by the processor at runtime after the
program has been loaded into memory and started. For example:

MOV destination,source ; Copies a byte or word from a source operand
 to a destination operand. Ex. MOV eax,10000h

MOV (copies) the integer 10000h to EAX regi-
ster, Now EAX holds the value 10000h, EAX =
10000h and so on for another instructions the
same procedure(relatively speaking).

Here is some of the fundamental instructions is ASM which often considered to be the
key point in breaking protections depending on conditional and unconditional jump’s
and how it affects the flags status.

Mnemonic Comment

AND dest,src

(Logical AND). Each bit in the destination operand is
ANDed with the corresponding bit in the source operand.
This will equal to 1 only when two 1 are stand below
each other otherwise equal to 0. This instruction will
clear the O-Flag and the C-Flag and can set the Z-Flag.
(Ex. AND EAX, EDX), where EAX holds 10101101 & EDX
holds 11101100

10101101
11101100
10101100

CALL address

call a procedure, pushes the location of the next
instruction on the stack and transfers to the
destination location, executes a function at the
specified address, (Ex. CALL 00404056, CALL EAX, CALL
DWORD PTR [EAX] , CALL DWORD PTR [EAX+3]): call address
00404056 , call register EAX, calls the address that is
stored at [EAX], calls the address that is stored at
[EAX+3] and then when the function has finished the
code will continue the line after the call.

CMP dest,src

Compares the destination to the source by performing an
implied subtraction of the source from the destination
and updates the flags, this is a very important
instruction, because it verify something whether it’s
to check if the program is registered or to compare the
entered serial (fake) to the real one. Usually comes

Chapter 4 BREAKING PROTECTIONS
__

27

after a call instruction...
Ex. CMP EAX,ECX
 JZ 00401648 ;(“address”)
Compare EAX to ECX if equal the zero flag is set to 1,
hence if the zero flag is set then jump to 00401648

INC

Adds 1 to register (Ex. INC EAX)or a memory operand
(Ex. INC [00406234], INC [EAX], INC [EAX+00406234]):
increase the dword that is stored at [00406234], [EAX],
[EAX+00406234].

DEC Subtracts 1 from an operand. The opposite of the INC
INT Interrupt. Generates a software interrupt, which in

turn calls an operating system subroutine (Ex. INT 3)

RET
To return from a function, located usually at the end
of a function, and it simply instructs the processor to
RETurn to the address of the CALL to the function

NOP This instruction does nothing (No Operation). (it’s
used for patches so often)

OR dest,src

Performs a boolean (bitwise) OR operation between each
matching bit in the destination operand and each bit in
the source operand. Only when there are two 0 on top of
each other, the resulting bit is 0. Else the resulting
bit is 1. This instruction will clear the O-Flag and
the C-Flag and can set the Z-Flag.
(Ex. OR EAX, EBX), let’s say EAX holds 01011001 & EBX
holds 10001010 therefore ORing them will yield:

01011001
10001010
11011011

XOR dest,src

Each bit in the source operand is exclusive ORed with
its corresponding bit in the destination. The
destination bit is a 1 only when the original source
and destination bits are different. This instruction
will clear the O-Flag and the C-Flag and can set the Z-
Flag. (Ex. OR EAX,EBX), let’s say EAX holds 01011001 &
EBX holds 10001010 therefore XORing them will yield:

01011001
10001010
11110011

One of the most often seen use of XOR is XOR EAX,EAX
This will set EAX to 0, because when you XOR a value
with itself, the result is always 0

TEST dest,src

Tests individual bits in the destination operand
against those in the source operand. Performs a logical
AND operation that affects the flags but not the
destination operand. (Ex. TEST EAX,EAX). It does not
save the values. It only sets the Z-Flag, when EAX is 0
or clears it, when EAX is not 0. The Overflow/Carry
flags are always cleared.

Chapter 4 BREAKING PROTECTIONS
__

28

POP dest

(Pop from Stack7). Copies a word or a doubleword at
the current stack pointer location into the destination
operand, and adds 2(or 4) to (Extended) Stack Pointer
(E)SP.
POP loads the value of byte/word/dworp ptr [esp] and
puts it into dest. Additionaly it increases the stack
by the size of the value that was popped of the stack,
so that the next POP would get the next value.
(LaZaRuS)

PUSH operand

(Push on Stack). Subtracts 2 from (E)SP and copies the
source operand into the stack location pointed to by
(E)SP.
PUSH is the opposite of POP. It stores a value on the
stack and decreases it by the size of the operand that
was pushed, so that ESP points to the value that was
PUSHed.(LaZaRuS)

JMP Jump unconditionally to... (“address”) a code.
Ex. JMP 00412075

Jxx Meaning Jump Condition
JA Jump if (unsigned) above CF=0 and ZF=0
JAE Jump if (unsigned) above or

equal
CF=0

JB Jump if (unsigned) below CF=1
JBE Jump if (unsigned) below or

equal
CF=1 or ZF=1

JC Jump if carry flag set CF=1
JCXZ Jump if CX is 0 CX=0
JE Jump if equal ZF=1

JECXZ Jump if ECX is 0 ECX=0
JG Jump if (signed) greater ZF=0 and SF=OF (SF =

Sign Flag)
JGE Jump if (signed) greater or

equal
SF=OF

JL Jump if (signed) less SF != OF (!= is not)
JLE Jump if (signed) less or

equal
ZF=1 and SF != OF

JMP Jump Jumps always
JNA Jump if (unsigned) not above CF=1 or ZF=1
JNAE Jump if (unsigned) not above

or equal
CF=1

JNB Jump if (unsigned) not below CF=0
JNBE Jump if (unsigned) not below

or equal
CF=0 and ZF=0

JNC Jump if carry flag not set CF=0
JNE Jump if not equal ZF=0

7 The Stack is a group of memory locations in the Read/Write memory that is used for temporary storage
of binary information during the execution of a program. The starting memory location of the stack is
defined in the main program, and space is reserved, usually at the high end of the memory map. The
method of information storage resembles a stack of books. The contents of each memory location are, in a
sense, “Stacked” –one memory location above another –and information is retrieved starting from the top.
Hence, this particular group of memory locations is called the stack. (Gaonkar, Ramesh. Microprocessor
Architecture, Programming, and Applications with the 8085, Third Edition. 1996

Chapter 4 BREAKING PROTECTIONS
__

29

JNG Jump if (signed) not greater ZF=1 or SF!=OF
JNGE Jump if (signed) not greater

or equal
SF!=OF

JNL Jump if (signed) not less SF=OF
JNLE Jump if (signed) not less or

equal
ZF=0 and SF=OF

JNO Jump if overflow flag not set OF=0
JNP Jump if parity flag not set PF=0
JNS Jump if sign flag not set SF=0
JNZ Jump if not zero ZF=0
JO Jump if overflow flag is set OF=1
JP Jump if parity flag set PF=1
JPE Jump if parity is equal PF=1
JPO Jump if parity is odd PF=0
JS Jump if sign flag is set SF=1
JZ Jump if zero ZF=1

4.5 Packer Theory Demonstration

Real demonstration about packers and IAT theory:

 First stage: writing a small C++ program and loaded in a debugger in order to
investigate IAT theory.

 Second stage: pack the same program using a free packer and investigate how
the OEP being changed upon using the packer and making a step by step manual
unpacking demo.

 Third stage: make the software accept any password or changed to another one.

In this part, the debugger role is crucial for code analysis to visualize the
implementation of the theory in real application. One of the most important debugger
with many advanced features is OllyDbg v1.10 for Ole Yuschuk and is free you can
download it from http://www.ollydbg.de. OllyDbg is a 32-bit assembler-level analyzing
debugger with intuitive interface. It is especially useful if source code is not available or
when you experience problems with your compiler.

I wrote a small C++ console based program (Compiled using MS Visual Studio 6.0)in
order to demonstrate the three stages mentioned above.
First of all. I will explain the C++ source code functionality .

#include <iostream>
using namespace std;

int main()

{
 int counter = 0;

 while(counter !=3)
 {
 const int k = 13;

Chapter 4 BREAKING PROTECTIONS
__

30

 const int l = 13;

 char password[k] = "drhasanbazzi";
 char user[l] = {0};

 cout <<"Thesis IAT, Packer, Serial Protection Demo"<<endl;

 cout <<"Please Enter Your Password: ";

 cin>>user;

 for (int i=0; i<=11; i++)
 {
 if (user[i] == password[i])
 {

cout<<"Character:"<<"["<<i<<"]"<<"="<<user[i]<<"
 :Access Approved"<<endl;

 }

 else
 {
 cout<<"Character:"<<"["<<i<<"]"<<"="<<user[i]<<"
 :Access Denied"<<endl;
 }
 }

 counter++;
 }

 return 0;
}

Explanation: what’s the functionality of this software? This software will serve

as a guidance to apply the three stages after the compilation.

The purpose is: when it’s executed the software will receive a password from the
user and check it with a predefined one, if they match an Access Approved Message
will appear otherwise an Access Denied Message will appear. The password created
using an array of size 13 one for the predefined password and another one for user
checking. The while loop will decide how many times you try in checking the password,
in this case it’s allowed for three times only. The usefulness of this software is that it
will check each entered character with predefined one and after that the output will
show with respect to the array index which matches and which doesn’t. Why this?
Because in the reversing we can try many thing for better understanding. When it comes
to the disassembly we no longer have the source code only the executable, we deal with
it in a disassembler and debugger in parallel.

Chapter 4 BREAKING PROTECTIONS
__

31

4.5.1 First Stage: Deciphering The Bits

 First Stage Anatomy: the executable being loaded in OllyDbg

00424ED0 /$ 55 PUSH EBP
00424ED1 |. 8BEC MOV EBP,ESP
00424ED3 |. 6A FF PUSH -1
00424ED5 |. 68 70E14600 PUSH IATTheor.0046E170
00424EDA |. 68 CCF14200 PUSH IATTheor._except_handler3
00424EDF |. 64:A1 00000000 MOV EAX,DWORD PTR FS:[0]
00424EE5 |. 50 PUSH EAX
00424EE6 |. 64:8925 00000000 MOV DWORD PTR FS:[0],ESP
00424EED |. 83C4 F0 ADD ESP,-10
00424EF0 |. 53 PUSH EBX
00424EF1 |. 56 PUSH ESI
00424EF2 |. 57 PUSH EDI
00424EF3 |. 8965 E8 MOV [LOCAL.6],ESP
00424EF6 |. FF15 A4B14700 CALL DWORD PTR

DS:[<&KERNEL32.GetVersion>]
00424EFC |. A3 248D4700 MOV DWORD PTR DS:[_osver],EAX

\

Apply the rule: Relative Virtual Address: For EXE file the image base is 00400000 and differs
from the DLL files.

Let’s take the second row as an example with VA = 00424ED1 (Hex), Therefore:

The Virtual Address (VA) of the first row is the Entry Point (EP)

CALL DWORD PTR DS:[<&KERNEL32.GetVersion>], now if we assemble this
line in OllyDbg by double-click on it, this will looks like any other call: CALL DWORD
PTR DS:[47B1A4],jumps to a value of dw pointer. where 47B1A4 is the destination
address to where this functions goes. If we press enter in Olly this will lead to the
Kernel32.dll routine. So, from whatever place from the program we call this function
the same address “47B1A4” will be used an this makes things easier for the windows
loader, and only the junk table needs to point to the right address instead of changing

This for example a call to an API
function which is located in
Kernel32.dll library.

The VA (Virtual Address), when
starting a program the windows
loader loads the program at a
certain location.

Hexadecimal representation of the assembly instruction.
The opcode which the computer can understand.

RVA = 00424ED1 – 00400000 = 24ED1

Assembly mnemonics

Chapter 4 BREAKING PROTECTIONS
__

32

every call anywhere to GetVersion API function. If we search for this address in the
dump window in Olly by right click -> Go To - > Expression and then we cath the IAT
with all the addresses for the API’s in their respective DLL’s.

0047B184 >FC A7 E7 77 49 A9 E7 77 44 0C F6 77 37 38 E7 77 ü§çwI©çwD.öw78çw
0047B194 >04 � 5A E7 77 0D 5B E7 77 48 C7 E6 77 58 E3 E7 77 Zçw.[çwHÇæwXãçw

�0047B1A4 >42 D1 E7 77 FD 98 E7 77 B8 16 E6 77 B9 E6 E7 77 BÑçwý˜çw¸ æw¹æçw
0047B1B4 >31 A0 E7 77 7E DE E7 77 1C EE EA 77 94 E4 E7 77 1 çw~Þçw îêw”äçw
0047B1C4 >3A F1 E7 77 71 A6 E7 77 B7 49 E9 77 32 B3 E7 77 :ñçwq¦çw·Iéw2³çw
0047B1D4 >61 D9 E7 77 60 A6 E7 77 A9 AD E7 77 5E E3 E7 77 aÙçw`¦çw©-çw^ãçw
0047B1E4 >F8 5C E7 77 95 D9 E7 77 6B 15 F5 77 A1 E5 E7 77 ø\ �çw•Ùçwk õw¡åçw

� �0047B1F4 >A1 16 F5 77 5F 8C F5 77 02 15 F5 77 16 89 E7 77 ¡ õw_Œõw � �õw ‰çw
�0047B204 >D2 E2 E7 77 CB 15 E8 77 72 AC E7 77 86 AD E7 77 ÒâçwË èwr¬çw†-çw

0047B214 >C0 30 E9 77 42 75 E9 77 95 E5 E7 77 F2 94 E6 77 À0éwBuéw•åçwò”æw
�0047B224 >85 E5 E7 77 51 E3 E7 77 FB E3 E7 77 7E 17 E6 77 …åçwQãçwûãçw~ æw

0047B234 >2E F0 E7 77 59 53 E7 77 F0 A6 E7 77 E6 75 E7 77 .ðçwYSçwð¦çwæuçw
�0047B244 >CE 77 E7 77 62 73 E7 77 0F 31 E6 77 82 67 E7 77 Îwçwbsçw 1æw‚gçw

0047B254 >AF DD E7 77 54 C9 E6 77 C8 E0 E7 77 95 81 E7 77 ¯ÝçwTÉæwÈàçw•� çw
0047B264 >ED 95 E7 77 99 06 E7 77 8B B0 E7 77 97 � 25 E7 77 í•çw™ çw‹°çw—%çw

 0047B274 >4E AB E7 77 1D 20 E8 77 55 E8 E7 77 6B 90 E6 77 N«çw èwUèçwk� æw
0047B284 >00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Therefore each call in the code that wants to call an API will call the respective
address in the jump thunk table which will point to the API’s respective address in the
IAT.

The windows loader first reads the header of the program. Specifically for the
construction of the IAT, the bytes at RVA 3C are read. In this case, that will be at VA
40003C (RVA + ImageBase). This is done because the import table’s RVA is stored
in the PE header at its value plus 80h.

4.5.2 Second Stage: Packing and Unpacking

 Second Stage Anatomy: Packing and Unpacking

Now we need to envelop the executable file by packing it with a free packer UPX
v1.24w for Markus F.X.J. Oberhumer & Laszlo Molnar. Which a command line tool
without GUI (Graphical User Interface).
And here a screenshot for this nice packer/compressor because it has nothing to do with
any anti debugging or protection. The main objective of this packer is to reduce the size
of the executable file.

Dump Window from Olly

Chapter 4 BREAKING PROTECTIONS
__

33

 Ultimate Packer for executables
 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
UPX 1.24w Markus F.X.J. Oberhumer & Laszlo Molnar Nov 7th 2002

Usage: upx [-123456789dlthVL] [-qvfk] [-o file] file..

Commands:
 -1 compress faster -9 compress better
 -d decompress -l list compressed file
 -t test compressed file -V display version number
 -h give more help -L display software
license
Options:
 -q be quiet -v be verbose
 -oFILE write output to `FILE'
 -f force compression of suspicious files
 -k keep backup files
 file.. executables to (de)compress

This version supports: dos/exe, dos/com, dos/sys, djgpp2/coff,
watcom/le,win32/pe, rtm32/pe, tmt/adam, atari/tos, linux/386

UPX comes with ABSOLUTELY NO WARRANTY; for details type `upx -L'.

This compressor able to decompress the file without any manual unpacking but for
checking the mechanism of how packer/compressor works we will do everything
manually.

Now place the executable file in the same directory where the UPX located.
If the name of our executable is “IATTheory.exe”. now we need to compress it using
the command line options and write :

“upx” is the name of the compressor, “-9” stands for better compression which is the
maximum level of compression , “-k” for backing the executable file we work on for
safe if something goes wrong, and finally “IATTheory.exe” the name of our executable
to be compressed.
Now after executing this statement in the command line the result will be like this:

upx -9 –k IATTheory.exe

Chapter 4 BREAKING PROTECTIONS
__

34

Ultimate Packer for eXecutables
Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002

UPX 1.24w Markus F.X.J. Oberhumer & Laszlo Molnar Nov 7th 2002

 File size Ratio Format Name
 -------------------- ------ ----------- -----------

 516197 -> 95744 18.54% win32/pe IATTheory.exe

 Packed 1 file.

This is an amazing job for such compressor for reducing the size of the executable to
such level.

After that, we need to load the compressed executable inside Olly, but Olly will
complain about that, because of the PE Header realignment the compressor had done on
it.

Figure 4.2 Compressed code error from OllyDbg

It doesn’t matter just press yes and Olly will analyze the compressed executable. And
here how the code looks like at first in Olly:

00481E50 > $ 60 PUSHAD
00481E51 . BE 00B04600 MOV ESI,IATTheor.0046B000
00481E56 . 8DBE 0060F9FF LEA EDI,DWORD PTR DS:[ESI+FFF96000]
00481E5C . 57 PUSH EDI
00481E5D . 83CD FF OR EBP,FFFFFFFF
00481E60 . EB 10 JMP SHORT IATTheor.00481E72
00481E62 90 NOP
00481E63 90 NOP
00481E64 90 NOP
00481E65 90 NOP
00481E66 90 NOP
00481E67 90 NOP
00481E68 > 8A06 MOV AL,BYTE PTR DS:[ESI]
00481E6A . 46 INC ESI

Original File
Size: 516,197
bytes

Compressed File
Size: 95,744
bytes

Quick statistical test of module 'IATTheor' reports that its code section is either
compressed, encrypted, or contains large amount of embedded data. Results of code
analysis can be very unreliable or simply wrong. Do you want to continue analysis?

Yes No

Chapter 4 BREAKING PROTECTIONS
__

35

00481E6B . 8807 MOV BYTE PTR DS:[EDI],AL
Another look at the Register Window in Olly:

EAX 00000000
ECX 0012FFB0
EDX 7FFE0304
EBX 7FFDF000
ESP 0012FFC4
EBP 0012FFF0
ESI 76397C78
EDI 77E94809 kernel32.77E94809
EIP 00481E50 IATTheor.<ModuleEntryPoint>

First of all we need to find the OEP (Original Entry Point) of the program which will
allow for dumping the program to it’s original state (original file size) without any error.

UPX uses the stack mechanism (PUSHPOP) in order to unpack the compressed file
in memory and run freely of the STUB.

A look at the Stack Window in Olly:

0012FFC4 77E814C7 RETURN to kernel32.77E814C7
0012FFC8 77E94809 kernel32.77E94809
0012FFCC 76397C78
0012FFD0 7FFDF000
0012FFD4 F2381CF0
0012FFD8 0012FFC8
0012FFDC 8053C88F
0012FFE0 FFFFFFFF End of SEH chain
0012FFE4 77E94809 SE handler
0012FFE8 77E91210 kernel32.77E91210
0012FFEC 00000000
0012FFF0 00000000
0012FFF4 00000000
0012FFF8 00481E50 IATTheor.<ModuleEntryPoint>
0012FFFC 00000000

We notice that the value of the register (ESP 0012FFC4) has been pushed onto
the stack, This is the result of the PUSHAD function at the beginning of the program.
The function that POP's the register value from the stack is appropriately called
POPAD. This will pop the value off of the stack and back into the register.

Now the method is by tracing the code and setting a breakpoint8 in Dump Window in
order to reach the OEP. The next step is to Step over9 the code by pressing F8 in

8 Setting a breakpoint at a specific location in the executing code such that when the processor reaches
this location, execution will stop; this can be provided for by simply writing some illegal instruction into
the code stream for the debuggee. (ex, INT 3)

This is the extended stack pointer
register, and it’s clear how the value
of this register is being pushed onto
the stack. (Stack Window)

Chapter 4 BREAKING PROTECTIONS
__

36

OllyDbg, or shortcut (Ctrl-F12). Now that we have executed the PUSHAD, watch how
the ESP register is changed to (ESP 0012FFA4). our register is on the stack. We need to
break when the register is POPed off the stack.
In the Register Window: Right-click on the ESP register → Follow in Dump. (ESP
register contains the address to the top of the stack).
In the Dump Window: Highlight the first four byte and Right-click → Breakpoint →
Hardware10, on access → Dword. Now Olly will stop when the first four bytes are
accessed.
Now Press F9 (Run) wait for the program to be unpacked and we will be break at a
JMP. The code looks like the following:

00481F80 .- E9 4B2FFAFF JMP IATTheor.00424ED0

00481F85 00 DB 00
00481F86 00 DB 00
00481F87 00 DB 00
00481F88 00 DB 00
00481F89 00 DB 00
00481F8A 00 DB 00

Now press Step into F7 (Enter the JMP address). The code looks like the following:

00424ED0 55 PUSH EBP

00424ED1 8BEC MOV EBP,ESP
00424ED3 6A FF PUSH -1
00424ED5 68 70E14600 PUSH IATTheor.0046E170
00424EDA 68 CCF14200 PUSH IATTheor.0042F1CC
00424EDF 64:A1 00000000 MOV EAX,DWORD PTR FS:[0]
00424EE5 50 PUSH EAX
00424EE6 64:8925 00000000 MOV DWORD PTR FS:[0],ESP
00424EED 83C4 F0 ADD ESP,-10
00424EF0 53 PUSH EBX
00424EF1 56 PUSH ESI
00424EF2 57 PUSH EDI
00424EF3 8965 E8 MOV DWORD PTR SS:[EBP-18],ESP
00424EF6 FF15 A4B14700 CALL DWORD PTR DS:[47B1A4]
 ; kernel32.GetVersion
00424EFC A3 248D4700 MOV DWORD PTR DS:[478D24],EAX
00424F01 A1 248D4700 MOV EAX,DWORD PTR DS:[478D24]
00424F06 C1E8 08 SHR EAX,8
00424F09 25 FF000000 AND EAX,0FF

9 Trace over (Single Step) means that the processor is instructed to execute a single machine instruction
when it is next processing instructions for the debuggee. But this doesn’t allow entering the call; it’s like a
watcher for variables variations with respect to its line of code being executed.

10 Hardware Breakpoints are directly supported by the CPU, using some special registers, called debug
registers.

If we Step Into this JMP, it
will lead immediately to
the OEP (depends on the
experience)

Chapter 4 BREAKING PROTECTIONS
__

37

The virtual address: 00424ED0, is the same as when the executable file was in its
original state without being UPX’ed . and that does demonstrate that we are on the right
track. (the code is the same as in First Stage analysis)
Dumping the executable file from memory to the hard drive. Using OllyDump Plug-in:
Now Right-click in the Code Workplace → Dump debugged process. And it should
looks like the following screenshot:

Figure 4.3 OllyDump: Dumping and Rebuilding the packed program

Then press on Dump button, a save Dump to file dialog will appear asking a name for
the dumped file (in this case choose: dumped.exe)

The dumped file get back to its original state (size, configuration, IAT, Strings,...):
everything work fine now.

4.5.3 Third Stage: Cracking The Micro-Universe of Bits

Third Stage: this is a very interesting stage for understanding how bits works together in
a very organized structure to translate the exe back to assembly. And how to decrypt
the algorithm step by step to its HL (High Level). The objective is to locate the routine
which responsible about password checking mechanism and try to defeat the whole
algorithm in a many different ways. It’s a little bit complicated to grasp it at first, so had
better to make a chart for every step of procedures.

The sections being altered
by the compressor

Chapter 4 BREAKING PROTECTIONS
__

38

A little bit explanation about this stage:

 Entering a False and True password to understand the output
 Defeat the counter limitation
 Defeat password checking array
 Patching the executable (static changes)
 Code Injection for the packed executable

4.5.3.1 Third Stage: Understanding False and True Password

 Starting with Entering a False and True password to understand the output.

 Entering a False password: 1r326autrzhm

 Entering a True password: drhasanbazzi

Thesis IAT, Packer, Serial Protection Demo
Please Enter Your Password: 1r326autrzhm
Character:[0]=1 :Access Denied
Character:[1]=r :Access Approved
Character:[2]=3 :Access Denied
Character:[3]=2 :Access Denied
Character:[4]=6 :Access Denied
Character:[5]=a :Access Approved
Character:[6]=u :Access Denied
Character:[7]=t :Access Denied
Character:[8]=r :Access Denied
Character:[9]=z :Access Approved
Character:[10]=h :Access Denied
Character:[11]=m :Access Denied

Output Screen

Thesis IAT, Packer, Serial Protection Demo
Please Enter Your Password: drhasanbazzi
Character:[0]=d :Access Approved
Character:[1]=r :Access Approved
Character:[2]=h :Access Approved
Character:[3]=a :Access Approved
Character:[4]=s :Access Approved
Character:[5]=a :Access Approved
Character:[6]=n :Access Approved
Character:[7]=b :Access Approved
Character:[8]=a :Access Approved
Character:[9]=z :Access Approved
Character:[10]=z :Access Approved
Character:[11]=i :Access Approved

Output Screen

Chapter 4 BREAKING PROTECTIONS
__

39

As we notice in False password, some characters are equivalent to the right password
corresponding to the array index and that’s why we have an Access Approved, where in
entering the true password we have an Access Approved for all characters.

Short identification:
T.P: True Password
F.E.P: False Entered Password
R.E.P: Right Entered Password

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
T.P d r h a s a n b a z z i
F.E.P 1 3 3 2 6 a u t r z h m
R.E.P d r h a s a n b a z z i

Table 4.3 Output Summary: F.E.T, R.E.P.

4.5.3.2 Third Stage: Defeat The Counter Limitation

 Defeat the Counter Limitation: the program allows only three times of checking,
after that exit. Locating the routine responsible for that and change it for
unlimited or increase the value. In order to get into the procedure responsible for
that, we have to figure out a way to enter in. STRINGS (Characters) are found
to be in the same .code section in relevant with the procedure relating to. Olly
has a feature for searching for all referenced text strings. Therefore, strings will
lead us to the heart of the routine. Load the executable file (IATTheory.exe) in
Olly and Right-click in the Workplace code → Search for → All referenced
text strings. And the output looks like this: the list is more than that, but that’s
what we want.

Text strings referenced in IATTheor:.text
Address Disassembly Text string
0040170D PUSH IATTheor.0046D088 ASCII "Thesis IAT, Packer, Serial
 Protection Demo"
00401726 PUSH IATTheor.0046D064 ASCII "Please Enter Your Password: "
0040177E PUSH IATTheor.0046D04C ASCII " :Access Approved"
0040179E PUSH IATTheor.0046D030 ASCII "Character:"
004017F2 PUSH IATTheor.0046D01C ASCII " :Access Denied"
00401812 PUSH IATTheor.0046D030 ASCII "Character:"

Now, double click at ASCII "Thesis IAT, Packer, Serial Protection Demo"
And we land here: (routine (Start...End) recognized as (Push...Ret))

004016A0 > \55 PUSH EBP
004016A1 . 8BEC MOV EBP,ESP
004016A3 . 83EC 70 SUB ESP,70
004016A6 . 53 PUSH EBX

Chapter 4 BREAKING PROTECTIONS
__

40

004016A7 . 56 PUSH ESI
004016A8 . 57 PUSH EDI
004016A9 . 8D7D 90 LEA EDI,DWORD PTR SS:[EBP-70]
004016AC . B9 1C000000 MOV ECX,1C
004016B1 . B8 CCCCCCCC MOV EAX,CCCCCCCC
004016B6 . F3:AB REP STOS DWORD PTR ES:[EDI]
004016B8 . C745 FC 00000000 MOV DWORD PTR SS:[EBP-4],0
004016BF > 837D FC 03 CMP DWORD PTR SS:[EBP-4],3
004016C3 . 0F84 A9010000 JE IATTheor.00401872
004016C9 . C745 F8 0D000000 MOV DWORD PTR SS:[EBP-8],0D
004016D0 . C745 F4 0D000000 MOV DWORD PTR SS:[EBP-C],0D
004016D7 . A1 BCD04600 MOV EAX,DWORD PTR DS:[46D0BC]
004016DC . 8945 E4 MOV DWORD PTR SS:[EBP-1C],EAX
004016DF . 8B0D C0D04600 MOV ECX,DWORD PTR DS:[46D0C0]
004016E5 . 894D E8 MOV DWORD PTR SS:[EBP-18],ECX
004016E8 . 8B15 C4D04600 MOV EDX,DWORD PTR DS:[46D0C4]
004016EE . 8955 EC MOV DWORD PTR SS:[EBP-14],EDX
004016F1 . A0 C8D04600 MOV AL,BYTE PTR DS:[46D0C8]
004016F6 . 8845 F0 MOV BYTE PTR SS:[EBP-10],AL
004016F9 . C645 D4 00 MOV BYTE PTR SS:[EBP-2C],0
004016FD . 33C9 XOR ECX,ECX
004016FF . 894D D5 MOV DWORD PTR SS:[EBP-2B],ECX
00401702 . 894D D9 MOV DWORD PTR SS:[EBP-27],ECX
00401705 . 894D DD MOV DWORD PTR SS:[EBP-23],ECX
00401708 . 68 F5104000 PUSH IATTheor.004010F5
0040170D . 68 88D04600 PUSH IATTheor.0046D088
 ; ASCII "Thesis IAT, Packer, Serial Protection Demo"
00401712 . 68 F8874700 PUSH IATTheor.004787F8
00401717 . E8 EBFBFFFF CALL IATTheor.00401307
0040171C . 83C4 08 ADD ESP,8
0040171F . 8BC8 MOV ECX,EAX
00401721 . E8 32FBFFFF CALL IATTheor.00401258
00401726 . 68 64D04600 PUSH IATTheor.0046D064
 ; ASCII "Please Enter Your Password: "
0040172B . 68 F8874700 PUSH IATTheor.004787F8
00401730 . E8 D2FBFFFF CALL IATTheor.00401307
. .

00401867 . 83C2 01 ADD EDX,1
0040186A . 8955 FC MOV DWORD PTR SS:[EBP-4],EDX
. .

00401872 > \33C0 XOR EAX,EAX

004016B8 . C745 FC 00000000 MOV DWORD PTR SS:[EBP-4],0

Counter initialization to 0.
Counter = 0;

Chapter 4 BREAKING PROTECTIONS
__

41

CMP DWORD PTR SS:[EBP-4],3

JE IATTheor.00401872

004016BF > 837D FC 03

004016C3 . 0F84 A9010000

00401867 . 83C2 01 ADD EDX,1

0040186A . 8955 FC MOV DWORD PTR SS:[EBP-4],EDX

This could be defeated in either: changing the initialization counter value to a higher
value than the one in the while loop (limit counter), or changing the 3 value in the
comparison statement to “-1”, and many other ways. To do this just select the line in
Olly and press space button and change the value to whatever you want then press ok.

Table 4.4 Methods to defeat checking counter limitation

List of methods to defeat the checking counter limitation
004016B8 . C745 FC 04000000 MOV DWORD PTR SS:[EBP-4],4
004016BF > 837D FC FF CMP DWORD PTR SS:[EBP-4],-1
004016C3 . 0F85 A9010000 JNE IATTheor.00401872
004016C3 . 9090 90909090 NOP : (NO OPERTAION)

Checking the counter value in the While loop if the counter
does not exceed 3 times of trials yet. While (counter!= 3)

If register EAX(counter) = 3 then jump to VA 00401872, which will zeroed
the counter again and exit from the routine (XOR EAX,EAX)

00401872 > \33C0 XOR EAX,EAX1

This could be written like this:

004016A0: Starting Routine Address
. .
004016B8 . C745 FC 00000000 MOV [LOCAL.counter],0
004016BF > 837D FC 03 CMP [LOCAL.counter],3
. .
00401884: Ending Routine Address

Otherwise increase the counter by 1 each loop (“the counter

is increased at the end of the while loop”). Counter++;

Chapter 4 BREAKING PROTECTIONS
__

42

4.5.3.3 Third Stage: Defeat Password Checking Array

 Defeat password checking array: for every character of the false entered password
there is an equivalent in the right password (hardcoded). So, the program will
make a loop for each character and checking if its match or not. Another check
for the array size and ... now the full assembly code (Routine) snippet from Olly:

004016A0 > \55 PUSH EBP
004016A1 . 8BEC MOV EBP,ESP
004016A3 . 83EC 70 SUB ESP,70
004016A6 . 53 PUSH EBX
004016A7 . 56 PUSH ESI
004016A8 . 57 PUSH EDI
004016A9 . 8D7D 90 LEA EDI,DWORD PTR SS:[EBP-70]
004016AC . B9 1C000000 MOV ECX,1C
004016B1 . B8 CCCCCCCC MOV EAX,CCCCCCCC
004016B6 . F3:AB REP STOS DWORD PTR ES:[EDI]
004016B8 . C745 FC 00000000 MOV DWORD PTR SS:[EBP-4],0
004016BF > 837D FC 03 CMP DWORD PTR SS:[EBP-4],3
004016C3 . 0F84 A9010000 JE IATTheor.00401872
004016C9 . C745 F8 0D000000 MOV DWORD PTR SS:[EBP-8],0D
004016D0 . C745 F4 0D000000 MOV DWORD PTR SS:[EBP-C],0D
004016D7 . A1 BCD04600 MOV EAX,DWORD PTR DS:[46D0BC]
004016DC . 8945 E4 MOV DWORD PTR SS:[EBP-1C],EAX
004016DF . 8B0D C0D04600 MOV ECX,DWORD PTR DS:[46D0C0]
004016E5 . 894D E8 MOV DWORD PTR SS:[EBP-18],ECX
004016E8 . 8B15 C4D04600 MOV EDX,DWORD PTR DS:[46D0C4]
004016EE . 8955 EC MOV DWORD PTR SS:[EBP-14],EDX
004016F1 . A0 C8D04600 MOV AL,BYTE PTR DS:[46D0C8]
004016F6 . 8845 F0 MOV BYTE PTR SS:[EBP-10],AL
004016F9 . C645 D4 00 MOV BYTE PTR SS:[EBP-2C],0
004016FD . 33C9 XOR ECX,ECX
004016FF . 894D D5 MOV DWORD PTR SS:[EBP-2B],ECX
00401702 . 894D D9 MOV DWORD PTR SS:[EBP-27],ECX
00401705 . 894D DD MOV DWORD PTR SS:[EBP-23],ECX
00401708 . 68 F5104000 PUSH IATTheor.004010F5
0040170D . 68 88D04600 PUSH IATTheor.0046D088

; ASCII "Thesis IAT, Packer, Serial Protection
Demo"

00401712 . 68 F8874700 PUSH IATTheor.004787F8
00401717 . E8 EBFBFFFF CALL IATTheor.00401307
0040171C . 83C4 08 ADD ESP,8
0040171F . 8BC8 MOV ECX,EAX
00401721 . E8 32FBFFFF CALL IATTheor.00401258
00401726 . 6864D04600 PUSH IATTheor.0046D064

; ASCII "Please Enter Your Password: "
0040172B . 68 F8874700 PUSH IATTheor.004787F8
00401730 . E8 D2FBFFFF CALL IATTheor.00401307
00401735 . 83C4 08 ADD ESP,8
00401738 . 8D55 D4 LEA EDX,DWORD PTR SS:[EBP-2C]
0040173B . 52 PUSH EDX
0040173C . 68 88884700 PUSH IATTheor.00478888
00401741 . E8 2DF9FFFF CALL IATTheor.00401073
00401746 . 83C4 08 ADD ESP,8
00401749 . C745 D0 00000000 MOV DWORD PTR SS:[EBP-30],0

Chapter 4 BREAKING PROTECTIONS
__

43

00401750 . EB 09 JMP SHORT IATTheor.0040175B
00401752 > 8B45 D0 MOV EAX,DWORD PTR SS:[EBP-30]
00401755 . 83C0 01 ADD EAX,1
00401758 . 8945 D0 MOV DWORD PTR SS:[EBP-30],EAX
0040175B > 837D D0 0B CMP DWORD PTR SS:[EBP-30],0B
0040175F . 0F8F FF000000 JG IATTheor.00401864
00401765 . 8B4D D0 MOV ECX,DWORD PTR SS:[EBP-30]
00401768 . 0FBE540D D4 MOVSX EDX,BYTE PTR SS:[EBP+ECX-2C]
0040176D . 8B45 D0 MOV EAX,DWORD PTR SS:[EBP-30]
00401770 . 0FBE4C05 E4 MOVSX ECX,BYTE PTR SS:[EBP+EAX-1C]
00401775 . 3BD1 CMP EDX,ECX
00401777 . 75 74 JNZ SHORT IATTheor.004017ED
00401779 . 68 F5104000 PUSH IATTheor.004010F5
0040177E . 68 4CD04600 PUSH IATTheor.0046D04C

; ASCII " :Access Approved"
00401783 . 8B55 D0 MOV EDX,DWORD PTR SS:[EBP-30]
00401786 . 8A4415 D4 MOV AL,BYTE PTR SS:[EBP+EDX-2C]
0040178A . 50 PUSH EAX
0040178B . 68 48D04600 PUSH IATTheor.0046D048
00401790 . 68 44D04600 PUSH IATTheor.0046D044
00401795 . 8B4D D0 MOV ECX,DWORD PTR SS:[EBP-30]
00401798 . 51 PUSH ECX
00401799 . 68 40D04600 PUSH IATTheor.0046D040
0040179E . 68 30D04600 PUSH IATTheor.0046D030

; ASCII "Character:"
004017A3 . 68 F8874700 PUSH IATTheor.004787F8
004017A8 . E8 5AFBFFFF CALL IATTheor.00401307
004017AD . 83C4 08 ADD ESP,8
004017B0 . 50 PUSH EAX
004017B1 . E8 51FBFFFF CALL IATTheor.00401307
004017B6 . 83C4 08 ADD ESP,8
004017B9 . 8BC8 MOV ECX,EAX
004017BB . E8 76F9FFFF CALL IATTheor.00401136
004017C0 . 50 PUSH EAX
004017C1 . E8 41FBFFFF CALL IATTheor.00401307
004017C6 . 83C4 08 ADD ESP,8
004017C9 . 50 PUSH EAX
004017CA . E8 38FBFFFF CALL IATTheor.00401307
004017CF . 83C4 08 ADD ESP,8
004017D2 . 50 PUSH EAX
004017D3 . E8 49FAFFFF CALL IATTheor.00401221
004017D8 . 83C4 08 ADD ESP,8
004017DB . 50 PUSH EAX
004017DC . E8 26FBFFFF CALL IATTheor.00401307
004017E1 . 83C4 08 ADD ESP,8
004017E4 . 8BC8 MOV ECX,EAX
004017E6 . E8 6DFAFFFF CALL IATTheor.00401258
004017EB . EB 72 JMP SHORT IATTheor.0040185F
004017ED > 68 F5104000 PUSH IATTheor.004010F5
004017F2 . 68 1CD04600 PUSH IATTheor.0046D01C

; ASCII " :Access Denied"
004017F7 . 8B55 D0 MOV EDX,DWORD PTR SS:[EBP-30]
004017FA . 8A4415 D4 MOV AL,BYTE PTR SS:[EBP+EDX-2C]
004017FE . 50 PUSH EAX
004017FF . 68 48D04600 PUSH IATTheor.0046D048
00401804 . 68 44D04600 PUSH IATTheor.0046D044

Chapter 4 BREAKING PROTECTIONS
__

44

00401809 . 8B4D D0 MOV ECX,DWORD PTR SS:[EBP-30]
0040180C . 51 PUSH ECX
0040180D . 68 40D04600 PUSH IATTheor.0046D040
00401812 . 68 30D04600 PUSH IATTheor.0046D030

; ASCII "Character:"
00401817 . 68 F8874700 PUSH IATTheor.004787F8
0040181C . E8 E6FAFFFF CALL IATTheor.00401307
00401821 . 83C4 08 ADD ESP,8
00401824 . 50 PUSH EAX
00401825 . E8 DDFAFFFF CALL IATTheor.00401307
0040182A . 83C4 08 ADD ESP,8
0040182D . 8BC8 MOV ECX,EAX
0040182F . E8 02F9FFFF CALL IATTheor.00401136
00401834 . 50 PUSH EAX
00401835 . E8 CDFAFFFF CALL IATTheor.00401307
0040183A . 83C4 08 ADD ESP,8
0040183D . 50 PUSH EAX
0040183E . E8 C4FAFFFF CALL IATTheor.00401307
00401843 . 83C4 08 ADD ESP,8
00401846 . 50 PUSH EAX
00401847 . E8 D5F9FFFF CALL IATTheor.00401221
0040184C . 83C4 08 ADD ESP,8
0040184F . 50 PUSH EAX
00401850 . E8 B2FAFFFF CALL IATTheor.00401307
00401855 . 83C4 08 ADD ESP,8
00401858 . 8BC8 MOV ECX,EAX
0040185A . E8 F9F9FFFF CALL IATTheor.00401258
0040185F >^ E9 EEFEFFFF JMP IATTheor.00401752
00401864 > 8B55 FC MOV EDX,DWORD PTR SS:[EBP-4]
00401867 . 83C2 01 ADD EDX,1
0040186A . 8955 FC MOV DWORD PTR SS:[EBP-4],EDX
0040186D .^ E9 4DFEFFFF JMP IATTheor.004016BF
00401872 > 33C0 XOR EAX,EAX
00401874 . 5F POP EDI
00401875 . 5E POP ESI
00401876 . 5B POP EBX
00401877 . 83C4 70 ADD ESP,70
0040187A . 3BEC CMP EBP,ESP
0040187C . E8 CF030200 CALL IATTheor.00421C50
00401881 . 8BE5 MOV ESP,EBP
00401883 . 5D POP EBP
00401884 . C3 RETN

Now, stepping over the code line by line will reveal many important information in
how the high level language being translated to low level language. By setting a
breakpoint (Toggle) at the beginning of the routine (select 004016A0: Starting Routine
Address line and press F2 in Olly) → Run F9 when the program start after a while,
it will stop at the breakpoint point we set→ and then press step over the code with F8
button in order to investigate the registers changing mode till VA 004016C9

Chapter 4 BREAKING PROTECTIONS
__

45

004016C9 . C745 F8 0D000000 MOV DWORD PTR SS:[EBP-8], 0D
004016D0 . C745 F4 0D000000 MOV DWORD PTR SS:[EBP-C], 0D

Continue F8

004016D7 . A1 BCD04600 MOV EAX,DWORD PTR DS:[46D0BC]

Load the value at address 46D0BC into register EAX which is as showed in the pane
window in Olly [0046D0BC]=61687264. The value 61687264 is in hexadecimal in the
reverse order (Little Endian Order11), now if we convert the hexadecimal value to string:
“ahrd” in the reverse order, this is the first four letter of the right password.

Continue F8

004016DC . 8945 E4 MOV DWORD PTR SS:[EBP-1C],EAX
004016DF . 8B0D C0D04600 MOV ECX,DWORD PTR DS:[46D0C0]

The same. Load the value at address 46D0C0 into register ECX which is as showed in
the pane window in Olly DS:[0046D0C0]=626E6173. The value 626E6173 is in
hexadecimal in the reverse order (Little Endian Order), now if we convert the
hexadecimal value to string: “bnas” in the reverse order, this is the second four letter of
the right password.

004016E5 . 894D E8 MOV DWORD PTR SS:[EBP-18],ECX
004016E8 . 8B15 C4D04600 MOV EDX,DWORD PTR DS:[46D0C4]

Same as previously analyzed: DS:[0046D0C4]=697A7A61 ⎯⎯ →⎯String “izza”
Reverse each block of the hexadecimal value: 61687264→ 64726861
 626E6173→ 73616E62
 697A7A61→ 617A7A69

Concatenate the whole hexadecimal values to big one, we will have the hardcoded right
password. (6472686173616E62617A7A69)

Hexa 64 72 68 61 73 61 6E 62 61 7A 7A 69
string d r h a s a n b a z z i

11 Intel processors store and retrieve data from memory using what is referred to as little endian order.
This means that the least significant byte of a variable is stored at the lowest address. The remaining bytes
are stored in the next consecutive memory positions.

Load the pointer register address (EBP-8) and (EBP-c) with
These two values”0D” which are in hexadecimal. They are
responsible for array constant size init., 130 ⎯⎯ →⎯DecimalD

const int k = 13;
const int l = 13;

Chapter 4 BREAKING PROTECTIONS
__

46

We can change the hexadecimal value to another one which will make the software
accept only the newly inserted password as simple as that.

Continue F8 till this line 00401746 . 83C4 08 ADD ESP,8
Now the software is being loaded into memory and we can enter a false password to
check the comparison with the right one. Let’s enter a false password “mfm1hdiatuzi”
and press enter, Olly will break

Continue F8 till VA 00401765

00401765 . 8B4D D0 MOV ECX,DWORD PTR SS:[EBP-30]
00401768 . 0FBE540D D4 MOVSX EDX,BYTE PTR SS:[EBP+ECX-2C]

Load the first character of the false entered password “m” from the
pointer address 0012FF54 into register EDX

Stack SS:[0012FF54]=6D ('m')
EDX=0046D134 (IATTheor.0046D134)

0040176D . 8B45 D0 MOV EAX,DWORD PTR SS:[EBP-30]
00401770 . 0FBE4C05 E4 MOVSX ECX,BYTE PTR SS:[EBP+EAX-1C]

Load the first character of the right hardcoded password “d” from the
pointer address 0012FF64 into register ECX
 Stack SS:[0012FF64]=64 ('d')

ECX=00000000
00401775 . 3BD1 CMP EDX,ECX

Compare the registers value EDX & ECX: ECX=00000064 ('d')
 EDX=0000006D ('m')

00401777 . 75 74 JNZ SHORT IATTheor.004017ED

Jump if not zero (controlled through flag) to VA 004017ED and print on
the screen Access Denied message, otherwise Access Approved message.
In this case the jump will be taken to the bad message because no
match between the two registers.

00401779 . 68 F5104000 PUSH IATTheor.004010F5
0040177E . 68 4CD04600 PUSH IATTheor.0046D04C

; ASCII " :Access Approved"
. . .
. . .
. . .
004017ED > 68 F5104000 PUSH IATTheor.004010F5
004017F2 . 68 1CD04600 PUSH IATTheor.0046D01C

; ASCII " :Access Denied"

Continue F8 till this line 0040185F >^ E9 EEFEFFFF JMP IATTheor.00401752

Chapter 4 BREAKING PROTECTIONS
__

47

This line will jump back to VA 00401752 to read the next character and applying the
same procedure as above till the end of the array.

For defeating the checking password procedure we need to alter the decision maker
statement which is in this case at line:

00401777 . 75 74 JNZ SHORT IATTheor.004017ED

If we change the JNZ equivalent in hexadecimal (75h) to JZ (74h) this will not function
perfectly, it will accept as an access approved only the characters which differ than the
right password characters.
So, if we enter the right password an access denied message will appear. The best
solution is by nopping (no operation (nop: 90h)) this statement and the code will follow
directly with no checking. Or make the cmp mnemonic checking itself. We know that
the register ECX is holding the right character to compare with the wrong entered one in
the register EDX, so if we replace the register EDX with ECX with comparison will
always be true (CMP ECX,ECX).

Methods for defeating the password checking procedure

Original 00401777 . 75 74 JNZ SHORT IATTheor.004017ED

Modified 00401777 . 90 90 nop

Original 00401775 . 3BD1 CMP EDX,ECX
Modified 00401775 . 3BC9 CMP ECX,ECX

Table 4.5 Methods to defeat the password checking procedure

4.5.4 Patching: Static Changes

 Patching the executable (static changes)

Apply the changes for counter limitation and password protection as summarized in the
steps before.

how to make a permanent change for the modified code, so that the executable will have
a new phase of instructions. This is easy to be done using Olly. Right-click→ Copy to
executable → All modifications → Copy all → Save file. A dialog box (Save file as)
appear give it a name and press save, and that’s it.

4.5.5 Code Injection: Tracking the Unbounded

 Code Injection for the packed executable

What is Code injection? You don’t have the source code only the executable,
and you want to insert or add some functionality. This task could be done by searching
inside the executable for empty area (left from the compiler alignment) which is usually

Chapter 4 BREAKING PROTECTIONS
__

48

denoted by zeros, and then redirect your Entry Point to this location where you want to
add your new code. After that jump again to the EP++(...) to make the software work in
its normal flow.
This process is tedious, especially if you need to add a lot of code, it requires a very
good understanding of the PE structure and mastering in the assembly language.
Another way to add new code is by linking the executable to DLL (Dynamic Link
Library) to do some function.

In our case we need to do a lot of things, not for the original executable but for
the packed one. We can’t change the instructions (Counter Limitation, Password
Checking) in this mode, because as stated in the packer’s theory memory mapping will
be different than what we see in the disassembler, we are not yet in the original place
and the packer isn’t yet unpacked the executable. That’s why we need to locate the
magic jump to the Original Entry Point and then redirect the execution to our cave.

Steps required for doing this process:

a. Search for padded area of zeros (usually at the end of the file)
b. Locating the magic point: the line which responsible for jumping to the OEP.
c. Instead of entering the OEP, force the flow of the program to jump to our cave.
d. Write the newly inserted code in the empty stomach area.
e. If some lines of code deleted at the redirection step(because of no match

between the size of the previous instruction with the JMP instruction) write it at
the end of the cave.

f. Redirect the cave to the Magic point++(...)

In our example we need to do some aesthetic modification: insert a message box
at the start of the packed program. Configure the changes we’ve done for the executable
in the last stage(Counter Limitation, Password Checking). Note: the packed program
(UPXe’d) is the target and not the original one, and that’s impose a different scenario as
mentioned in the steps required.

 a. Search for the zeros zone. Load the packed executable in Olly, scroll down till VA
00481FC7, looks like the following

00481F90 00 DB 00
00481F91 00 DB 00
00481F92 00 DB 00
00481F93 00 DB 00
00481F94 00 DB 00

 b. Locating the magic point : as you remember when we unpacked this software in
the previous part :

00481F80 .- E9 4B2FFAFF JMP IATTheor.00424ED0

If we Step Into this JMP, it will lead immediately to the OEP

Chapter 4 BREAKING PROTECTIONS
__

49

 c. Instead of entering the OEP, redirect it to the cave started at VA 00481FC7

00481F80 .- E9 4B2FFAFF JMP IATTheor.00481FC7

 d. Write the modified code: this step is very important.

Insert a message box at the beginning of the packed executable. There is a
problem concerning API function MessageBoxA which is located inside
user32.dll windows library system, because this function isn’t loaded in the
Imported Functions Table to use it, so we have to insert it manually using any
hex editor or automatically using a tool: Code Snippet Creator version 1.05 build
2 by Iczelion. Follow along: start Code Snippet tool→ Action→ New Target→
a dialog box appear→ Press Browse→ Locate the packed executable
(IATTheory.exe) and press open→ Press Save→ Action→ Add New
Imports→ Browse for user32.dll in the system32 directory→ Press Open→ In
the Import Functions Group select MessageBoxA→Click Add→ Press Exit.
And that’s it.

Imported Functions [Before]
KERNEL32.DLL
 LoadLibraryA ord:0 rva: 00082028
 GetProcAddress ord:0 rva: 0008202C
 ExitProcess ord:0 rva: 00082030

Imported Functions [After]

KERNEL32.DLL
 LoadLibraryA ord:0 rva: 00082028
 GetProcAddress ord:0 rva: 0008202C
 ExitProcess ord:0 rva: 00082030
user32.dll
 AppendMenuW ord:0 rva: 0008401B
 MapDialogRect ord:0 rva: 0008401F
 MessageBoxA ord:0 rva: 00084023

Now we can call our newly inserted function.

As I explained the MessageBoxA functionality before, a handle of owner
window, address of text in message box, address of text in message box, style of
message box.
In assembler this written in the reverse order starting with: Style, text, caption, handle.

If we Step Into this JMP, it will lead immediately to the
cave starting address.

Chapter 4 BREAKING PROTECTIONS
__

50

Making the ASCII texts for message box text and caption. Select in Olly loads of
those zeros line starting at VA 00481F90 and then press CTRL+E and write : “Modified
Packed IATTheory” as a caption for the message box, and select another load of zeros
and write: “The Software Is Defeated” → press CTRL+A to analyze the code. Now, we
start patching the MessageBoxA function in its reverse order. After that we need to
insert the defeated protection code. Here is the complete modification:

00481F80 EB 45 JMP SHORT IATTheor.00481FC7
00481F82 90 NOP
00481F83 90 NOP
00481F84 90 NOP
00481F85 00 DB 00
00481F86 00 DB 00
00481F87 00 DB 00
00481F88 00 DB 00
00481F89 00 DB 00
00481F8A 00 DB 00
00481F8B 00 DB 00
00481F8C 00 DB 00
00481F8D 00 DB 00
00481F8E 00 DB 00
00481F8F 00 DB 00
00481F90 . 4D 6F 64 69 66>ASCII "Modified Packed "
00481FA0 . 49 41 54 54 68>ASCII "IATTheory",0
00481FAA 00 DB 00
00481FAB . 54 68 65 20 53>ASCII "The Software Is "
00481FBB . 44 65 66 65 61>ASCII "Defeated",0
00481FC4 00 DB 00
00481FC5 00 DB 00
00481FC6 00 DB 00
00481FC7 > 6A 00 PUSH 0 ; /Style = MB_OK|MB_APPLMODAL
00481FC9 . 68 AB1F4800 PUSH IATTheor.00481FAB ; |Title = "The

Software Is Defeated"
00481FCE . 68 901F4800 PUSH IATTheor.00481F90 ; |Text =

"Modified Packed IATTheory"
00481FD3 . 6A 00 PUSH 0 ; |hOwner = NULL
00481FD5 . E8 9C448E77 CALL user32.MessageBoxA ; \MessageBoxA
00481FDA C605 BB164000 >MOV BYTE PTR DS:[4016BB],4
00481FE1 66:C705 771740>MOV WORD PTR DS:[401777],9090
00481FEA -E9 E12EFAFF JMP IATTheor.00424ED0

∴The packed executable file (IATTheory.exe) is fully defeated as following:

Figure 4.4 MessageBoxA Injected

And the protection on the counter limitation + password checking does no longer exist.

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 51

Chapter 5

CASE STUDIES: REVERSING THE INVISIBLE

The pleasure of breaking protections always found to be in the commercial
protected applications. Cracking is the “dark art” of defeating, bypassing, or eliminating
any kind of copy protection scheme. In its original form, cracking is aimed at software
copy protection schemes such as serial-number-based registrations, hardware keys
(dongles), and so on. More recently, cracking has also been applied to digital rights
management (DRM) technologies, which attempt to protect the flow of copyrighted
materials such as movies, music recordings, and books. Unsurprisingly, cracking is
closely related to reversing, because in order to defeat any kind of software-based
protection mechanism crackers must first determine exactly how that protection mechanism
works.

Note for the beginners: “Chapter 5 case studies are probably not for the learning
beginner. They are probably more for the more experienced. So, do not try and follow
along, but refer back to the case studies later as you gain experience.”

5.1 Serial Fishing: L0phtCrack v5.02 Victim

Target: LC5 (L0phtCrack) v5.02, the award-winning password audit and recovery tool
for Windows and UNIX passwords. This software cost around 500$ for the
Administrator version Unlock Code, and it accept three mode of registration (basic,
Professional, Administration). Why am I apply this on a commercial software, I know
it’s illegal but after a search in the specialized media i found this software to be
keygenned12 already.

LC5 provides two critical capabilities to system administrators:

• LC5 helps administrators secure Windows and Unix-authenticated networks
through comprehensive auditing of Windows NT, Windows 2000, Windows XP,
and Unix user account passwords.

• LC5 recovers Windows and Unix user account passwords to streamline
migration of users to another authentication system or to access accounts whose
passwords are lost.

Generate keys based on a combination of user input and computer-specific information.

After starting this program, a dialog box appears as in figure 5.1. choose either to
continue as a trial version or register to enter the valid unlock code for this software.

12 Keygenning is the process of creating programs that mimic the key-generation algorithm within a
protection technology and essentially provide an unlimited number of valid keys, for everyone to use.

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 52

Press on Register button and another dialog box as in figure 5.2

Figure 5.1 LC5 Trial Version Startup Window

Figure 5.2 LC5 Registration Window

Note: Serial Number: 13ce42e66, this key is generated based on computer-specific
information. This number will always change from computer to another. So, the
mechanism for the Unlock Code means that a product key will only be valid on the
computer on which it was installed—users can’t share product keys.
To overcome this problem software pirates use keygen programs that typically contain
exact replicas of the serial number generation algorithms in the protected programs.

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 53

The next step is to try to type a random values into the text box (Unlock Code: r94e2d)
and then clicking the “OK” button produces a message box as in figure 5.3

Figure 5.3 Invalid Unlock Code message.

This is important because if this is indeed a conventional Windows message box,
we could use a debugger (Olly) to set a breakpoint on the message box(MessageBoxA)
APIs. From there, we could try to reach the code in the program that’s telling us that we
have a bad serial number. This is a fundamental cracking technique—find the part in the
program that’s telling you you’re unauthorized to run it. Once you’re there it becomes
much easier to find the actual logic that determines whether you’re authorized or not.

We open the program in OllyDbg and we search for MessageBoxA API which is
responsible for displaying the Invalid Unlock Code message on the screen. This could
be done by typing “bp MessageBoxA” in the command bar in Olly and then press enter
as in figure 5.4

 Figure 5.4 Setting a Breakpoint on MessageBoxA API

Press F9 in Olly and follow as previously we did, enter an invalid Unlock Code
and then press on “OK” button. Olly at this point will break (stop) executing because of
the breakpoint we set. We can check the Stack Window in OllyDbg which reveal a lots
of important information from where this message box is being called (the source which
will lead us to the registration mechanism). As in figure 5.5

Figure 5.5 Stack Window in OllyDbg

CALL to MessageBoxA from lc5.004B84AF: select this line in stack window and press
Enter (Follow in Disassembler), then scroll up till the starting routine VA 004B83E3.
and set a Breakpoint F2 (Toggle) at this address (004B83E3). We no longer need the
Breakpoint at MessageBoxA function, delete it by typing in the command bar

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 54

bc MessageBoxA as in figure 5.6

 Figure 5.6 How to clear the Breakpoint

Now, if we restart the program inside Olly the bp we set at VA 004B83E3 still activated
and that’s what we want. Restart LC5.EXE : press CTRL+F2 or press on the icon →
press yes when the warning message box appear→ after a while the program restarted
and we are ready for the next journey→ press Run (F9)→ and follow the same
procedure as above. When we enter the invalid Unlock Code Olly will break at the bp
we set at VA 004B83E3 this time→ and step over (F8)→ the invalid message box
appear again press on button “OK”→ and continue stepping over the code with F8
shortcut→ this time the dialog box in the figure 5.3 will popup→ press on button “OK’
again→ continue with F8 till VA 0044159A. now we are in the determination block of
code for the valid Unlock Code. We notice at this VA the register ECX is being loaded
with the Serial Number: 13ce42e66 (Registers Window in OllyDbg)

0044159A . 8D4C24 10 LEA ECX,DWORD PTR SS:[ESP+10]

Continue F8 till VA 004415A7 where also the register EDX is loaded with the invalid
Unlock Code: r94e2d we entered

 004415A7 . 8D5424 18 LEA EDX,DWORD PTR SS:[ESP+18]

At this point in the Pane window and in the Stack window in OllyDbg the real Unlock
Code is calculated and appear as an ASCII plain text. (Basic version)

 Stack address=0012F068, (ASCII "d80bdb20")

EDX=0012F06F

How do I know that this is the real Unlock code because of the logic in the analysis
steps. For better visualization here is the code for basic, professional, administration
algorithm calculation.

004415A7 . 8D5424 18 LEA EDX,DWORD PTR SS:[ESP+18]
004415AB . 52 PUSH EDX
004415AC . 50 PUSH EAX
004415AD . E8 D1F70400 CALL lc5.00490D83
004415B2 . 83C4 10 ADD ESP,10
004415B5 . 85C0 TEST EAX,EAX
004415B7 . 75 43 JNZ SHORT lc5.004415FC
004415B9 . 8B07 MOV EAX,DWORD PTR DS:[EDI]
004415BB . 50 PUSH EAX ; /Arg3
004415BC . 68 E4B14D00 PUSH lc5.004DB1E4 ; |Arg2 = 004DB1E4

ASCII "Unlock Code"
004415C1 . 68 D4B14D00 PUSH lc5.004DB1D4 ; |Arg1 = 004DB1D4
 ASCII "Registration"

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 55

004415C6 . 8BCE MOV ECX,ESI ; |
004415C8 . 899E 94010000 MOV DWORD PTR DS:[ESI+194],EBX ; |
004415CE . E8 28700700 CALL lc5.004B85FB ; \lc5.004B85FB
004415D3 . 53 PUSH EBX ; /Arg3
004415D4 . 53 PUSH EBX ; |Arg2
004415D5 . 68 74B04D00 PUSH lc5.004DB074 ; |Arg1 = 004DB074
ASCII "You have successfully registered the Basic version of LC5."
004415DA . C786 A4010000 0100>MOV DWORD PTR DS:[ESI+1A4],1 ; |
004415E4 . E8 066F0700 CALL lc5.004B84EF ; \lc5.004B84EF
004415E9 . 33C0 XOR EAX,EAX
004415EB . 894424 10 MOV DWORD PTR SS:[ESP+10],EAX
004415EF . 894424 14 MOV DWORD PTR SS:[ESP+14],EAX
004415F3 . 884424 18 MOV BYTE PTR SS:[ESP+18],AL
004415F7 . E9 9B010000 JMP lc5.00441797
004415FC > 8B45 00 MOV EAX,DWORD PTR SS:[EBP]
004415FF . 8D4C24 10 LEA ECX,DWORD PTR SS:[ESP+10]
00441603 . 51 PUSH ECX
00441604 . 50 PUSH EAX
00441605 . E8 E610FCFF CALL lc5.004026F0
0044160A . 8B07 MOV EAX,DWORD PTR DS:[EDI]
0044160C . 8D5424 18 LEA EDX,DWORD PTR SS:[ESP+18]
00441610 . 52 PUSH EDX
00441611 . 50 PUSH EAX
00441612 . E8 6CF70400 CALL lc5.00490D83
00441617 . 83C4 10 ADD ESP,10
0044161A . 85C0 TEST EAX,EAX
0044161C . 0F85 AA000000 JNZ lc5.004416CC
00441622 . 53 PUSH EBX
00441623 . 8D8C24 28010000 LEA ECX,DWORD PTR SS:[ESP+128]
0044162A . E8 319B0000 CALL lc5.0044B160
0044162F . 8D8C24 24010000 LEA ECX,DWORD PTR SS:[ESP+124]
00441636 . C68424 80040000 05 MOV BYTE PTR SS:[ESP+480],5
0044163E . E8 4D930600 CALL lc5.004AA990
00441643 . 83F8 01 CMP EAX,1
00441646 . 0F85 59010000 JNZ lc5.004417A5
0044164C . 8B07 MOV EAX,DWORD PTR DS:[EDI]
0044164E . 50 PUSH EAX ; /Arg3
0044164F . 68 E4B14D00 PUSH lc5.004DB1E4; |Arg2 = 004DB1E4

ASCII "Unlock Code"
00441654 . 68 D4B14D00 PUSH lc5.004DB1D4 ; |Arg1 = 004DB1D4

ASCII "Registration"
00441659 . 8BCE MOV ECX,ESI ; |
0044165B . 899E 94010000 MOV DWORD PTR DS:[ESI+194],EBX ; |
00441661 . E8 956F0700 CALL lc5.004B85FB ; \lc5.004B85FB
00441666 . 53 PUSH EBX ; /Arg3
00441667 . 53 PUSH EBX ; |Arg2
00441668 . 68 30B04D00 PUSH lc5.004DB030; |Arg1 = 004DB030
ASCII "You have successfully registered the Professional version of
LC5."
0044166D . C786 A4010000 0200>MOV DWORD PTR DS:[ESI+1A4],2 ; |
00441677 . E8 736E0700 CALL lc5.004B84EF ; \lc5.004B84EF
0044167C . 33C0 XOR EAX,EAX
0044167E . 894424 10 MOV DWORD PTR SS:[ESP+10],EAX
00441682 . 894424 14 MOV DWORD PTR SS:[ESP+14],EAX
00441686 . 884424 18 MOV BYTE PTR SS:[ESP+18],AL
0044168A . 8B8424 94010000 MOV EAX,DWORD PTR SS:[ESP+194]
00441691 . 83C0 F0 ADD EAX,-10

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 56

00441694 . C68424 80040000 06 MOV BYTE PTR SS:[ESP+480],6
0044169C . 8D48 0C LEA ECX,DWORD PTR DS:[EAX+C]
0044169F . 83CA FF OR EDX,FFFFFFFF
004416A2 . F0:0FC111 LOCK XADD DWORD PTR DS:[ECX],EDX;

LOCK prefix
004416A6 . 4A DEC EDX
004416A7 . 85D2 TEST EDX,EDX
004416A9 . 7F 08 JG SHORT lc5.004416B3
004416AB . 8B08 MOV ECX,DWORD PTR DS:[EAX]
004416AD . 8B11 MOV EDX,DWORD PTR DS:[ECX]
004416AF . 50 PUSH EAX
004416B0 . FF52 04 CALL DWORD PTR DS:[EDX+4]
004416B3 > 8D8C24 24010000 LEA ECX,DWORD PTR SS:[ESP+124]
004416BA . C68424 80040000 04 MOV BYTE PTR SS:[ESP+480],4
004416C2 . E8 988B0600 CALL lc5.004AA25F
004416C7 . E9 CB000000 JMP lc5.00441797
004416CC > 8B45 00 MOV EAX,DWORD PTR SS:[EBP]
004416CF . 8D4C24 10 LEA ECX,DWORD PTR SS:[ESP+10]
004416D3 . 51 PUSH ECX
004416D4 . 50 PUSH EAX
004416D5 . E8 B60FFCFF CALL lc5.00402690
004416DA . 8B07 MOV EAX,DWORD PTR DS:[EDI]
004416DC . 8D5424 18 LEA EDX,DWORD PTR SS:[ESP+18]
004416E0 . 52 PUSH EDX
004416E1 . 50 PUSH EAX
004416E2 . E8 9CF60400 CALL lc5.00490D83
004416E7 . 83C4 10 ADD ESP,10
004416EA . 85C0 TEST EAX,EAX
004416EC . 53 PUSH EBX
004416ED . 0F85 7F000000 JNZ lc5.00441772
004416F3 . 8D4C24 38 LEA ECX,DWORD PTR SS:[ESP+38]
004416F7 . E8 649A0000 CALL lc5.0044B160
004416FC . 8D4C24 34 LEA ECX,DWORD PTR SS:[ESP+34]
00441700 . C68424 80040000 07 MOV BYTE PTR SS:[ESP+480],7
00441708 . C78424 A8000000 01>MOV DWORD PTR SS:[ESP+A8],1
00441713 . E8 78920600 CALL lc5.004AA990
00441718 . 83F8 01 CMP EAX,1
0044171B . 0F85 9B000000 JNZ lc5.004417BC
00441721 . 8B07 MOV EAX,DWORD PTR DS:[EDI]
00441723 . 50 PUSH EAX ; /Arg3
00441724 . 68 E4B14D00 PUSH lc5.004DB1E4 ; |Arg2 = 004DB1E4

ASCII "Unlock Code"
00441729 . 68 D4B14D00 PUSH lc5.004DB1D4 ; |Arg1 = 004DB1D4

ASCII "Registration"
0044172E . 8BCE MOV ECX,ESI ; |
00441730 . 899E 94010000 MOV DWORD PTR DS:[ESI+194],EBX ; |
00441736 . E8 C06E0700 CALL lc5.004B85FB ; \lc5.004B85FB
0044173B . 53 PUSH EBX ; /Arg3
0044173C . 53 PUSH EBX ; |Arg2
0044173D . 68 E8AF4D00 PUSH lc5.004DAFE8 ; |Arg1 = 004DAFE8
ASCII "You have successfully registered the Administrator version of

LC5."
00441742 . C786 A4010000 0300>MOV DWORD PTR DS:[ESI+1A4],3 ; |
0044174C . E8 9E6D0700 CALL lc5.004B84EF ; \lc5.004B84EF
00441751 . 33C0 XOR EAX,EAX
00441753 . 894424 10 MOV DWORD PTR SS:[ESP+10],EAX
00441757 . 894424 14 MOV DWORD PTR SS:[ESP+14],EAX

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 57

0044175B . 8D4C24 34 LEA ECX,DWORD PTR SS:[ESP+34]
0044175F . 884424 18 MOV BYTE PTR SS:[ESP+18],AL
00441763 . C68424 80040000 04 MOV BYTE PTR SS:[ESP+480],4
0044176B . E8 C01CFDFF CALL lc5.00413430
00441770 . EB 25 JMP SHORT lc5.00441797
00441772 > 33C9 XOR ECX,ECX ; |
00441774 . 894C24 14 MOV DWORD PTR SS:[ESP+14],ECX ; |
00441778 . 53 PUSH EBX ; |Arg2
00441779 . 894C24 1C MOV DWORD PTR SS:[ESP+1C],ECX ; |
0044177D . 68 B4AF4D00 PUSH lc5.004DAFB4 ; |Arg1 = 004DAFB4
ASCII "You have entered an invalid code. Please try again."
00441782 . 884C24 24 MOV BYTE PTR SS:[ESP+24],CL ; |
00441786 . E8 646D0700 CALL lc5.004B84EF ; \lc5.004B84EF

As you notice the block of code for Basic, Professional, Administration calculations is
the same. So, if you continue stepping over the code with F8 you’ll get the real Unlock
code for Professional and Administration version. As in the following:

 Professional version: 8deeb68b

Stack address=0012F068, (ASCII "8deeb68b")
EDX=0012F06F

 Administration version: 27d63d04

Stack address=0012F068, (ASCII "27d63d04")
EDX=0012F06F

Pane Window in OllyDbg

The method I follow to fish the serial is little bit complicated. There are many

other methods which is more simple and fast by searching for the String reference and
set a breakpoint at starting routine address and follow as above. But what if the strings
are encrypted you’ll end up with nothing in this way.

5.2 Patching The EXE: 8085 Simulator IDE v2.35 Victim

Target: 8085 Simulator IDE v2.35 at http://www.oshonsoft.com/. 8085 Simulator IDE is
powerful application that supplies 8085 educators and developers with user-friendly
graphical development environment for Windows with integrated BASIC compiler,
assembler, simulator, debugger and disassembler for Intel 8085 8-bit microprocessor.

While I was studying the Microprocessor Architecture and Organization Course,
I needed a software for simulating the Intel 8085 8-bit microprocessor in order to get
more acquainted with the assembly language. I like to work with 32-bit not 8-bit ASM.

I studied the behavior of this software and I found that there is no place to enter
a user name & serial number to activate the software as fully function as usual in the

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 58

trial applications. It could be registered as Personal, Commercial, Educational, Site,
Institution License.

Limitations:

 You can start the program only 30 times.
 Session duration 120 minutes after that the soft. exit

automatically.
 Nag Screen at startup inform us that we need to register the

 Software.

This is the nag screen figure 5.7 when we start the program

Figure 5.7 8085 Simulator IDE nag screen

Now, if we exceed the 30 times trials, the program will not start anymore stating that as
in figure 5.8:

Figure 5.8 8085 Simulator IDE expired version Nag Screen

This software is programmed using Visual Basic Programming Language and
that’s clear from the library it uses. All VB programs relies on an external Dll
(MSVBVM60.DLL for VB version 6.0 and similar DLL’s for the other versions) which
implements all the language APIs and also the event dispatchers: the result is that a VB
app takes almost all its time inside this Dll or generally goes into it and out of it very

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 59

frequently. This is a by-design behavior: being VB a very high language all the VB
APIs are implemented into MSVBVM60.DLL. The only thing, almost, that the
application owns are the events handlers, used as callbacks from the VB Dll to answer
to specific events/messages. The rest of a compiled VB application are the resources,
the variables and the functions used to associate events-handlers. There are decompilers
for Visual Basic applications which help in understanding the structure of the compiled
program. But I will not get into this method, rather using OllyDbg features.(check Load
the program into Olly and it’s obvious from the first two lines : VB application)

00405158 > $ 68 F0554000 PUSH QWE.004055F0 ; ASCII "VB5!6&*"
0040515D . E8 EEFFFFFF CALL <JMP.&MSVBVM60.#100>

Referenced Text Strings Method

Load the program in Olly and do a search for referenced text strings→ Right-click in
the code workplace→ Search for→ All referenced text strings. Now, we have to search
for the strings “The special evaluation period has expired.”, which will lead us
to the main routine responsible for this behavior. Right-click in the Text strings
referenced in 8085simu:.txt window→ Search for text→ Uncheck Case sensitive check
box and check Entire scope and write in the edit box: The special evaluation
period has expired. mode → Press on “OK” button→ Press CTRL+L twice and
bingo as in the following:

Address=004A2B3C
Disassembly=MOV EDX,8085simu.0041AB04
Text string=UNICODE "The special evaluation period has expired."

double click on the string and we are here:

004A2861 . 6A 03 PUSH 3
004A2863 . FF15 2C104000 CALL DS:[<&MSVBVM60.__vbaFreeVarLis>;

MSVBVM60.__vbaFreeVarList
004A2869 . 83C4 10 ADD ESP,10
004A286C . FF15 30104000 CALL DWORD PTR

DS:[<&MSVBVM60.__vbaEnd>] ; MSVBVM60.__vbaEnd
004A2872 > A1 44D04C00 MOV EAX,DWORD PTR DS:[4CD044]
004A2877 . 85C0 TEST EAX,EAX
004A2879 . 0F8E 67030000 JLE 8085simu.004A2BE6
004A287F . 50 PUSH EAX
004A2880 . E8 0B170000 CALL 8085simu.004A3F90
004A2885 . 8945 E4 MOV DWORD PTR SS:[EBP-1C],EAX
004A2888 . E8 F31C0000 CALL 8085simu.004A4580
004A288D . 3B45 E4 CMP EAX,DWORD PTR SS:[EBP-1C]
004A2890 . 0F8F A6020000 JG 8085simu.004A2B3C
004A2896 . 8B45 E0 MOV EAX,DWORD PTR SS:[EBP-20]
004A2899 . 85C0 TEST EAX,EAX
004A289B . 0F8C 9B020000 JL 8085simu.004A2B3C
004A28A1 . BA C0AB4100 MOV EDX,8085simu.0041ABC0;
UNICODE "8085 Simulator IDE is running in special evaluation mode."
004A28A6 . 8D4D D8 LEA ECX,DWORD PTR SS:[EBP-28]
004A28A9 . FF15 B0114000 CALL DWORD PTR

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 60

DS:[<&MSVBVM60.__vbaStrCopy>]; MSVBVM60.__vbaStrCopy

. . .

. . .

. . .
004A2BE6 > \66:837D EC FF CMP WORD PTR SS:[EBP-14],0FFFF
004A2BEB . 0F85 9B020000 JNZ 8085simu.004A2E8C

. . .

. . .

. . .
004A2E8C > \8B45 E0 MOV EAX,DWORD PTR SS:[EBP-20]
004A2E8F . 8B0D 38D04C00 MOV ECX,DWORD PTR DS:[4CD038]
004A2E95 . 3BC1 CMP EAX,ECX
004A2E97 0F8E 72010000 JLE 8085simu.004A300F
004A2E9D . BA 48AF4100 MOV EDX,8085simu.0041AF48; UNICODE

"The evaluation period has expired."
004A2EA2 . 8D4D D8 LEA ECX,DWORD PTR SS:[EBP-28]
004A2EA5 . FF15 B0114000 CALL DWORD PTR
 DS:[<&MSVBVM60.__vbaStrCopy>] ; MSVBVM60.__vbaStrCopy
004A2EAB . 8B4D D8 MOV ECX,DWORD PTR SS:[EBP-28]
004A2EAE . 51 PUSH ECX
004A2EAF . 68 B8574100 PUSH 8085simu.004157B8 ; UNICODE ""

Explanation: the code at VA 004A2879 (Jump if less than or equal) is the key for

deciding whether to continue in the trial mode below 30 times or not
(upon testing the register EAX), but also this will be tested again at VA
004A2BE6 if we change the JLE to JMP this will not solve the problem.
The best solution is at VA 004A2E97 by forcing the program to always
jump to VA 004A300F (JMP 004A300F). Now we have unlimited times
of trials.

 To defeat the nag screen. Visual Basic API’s is differs than the C++

concerning MessageBox calling. VB programs use rtcMsgBox API for
displaying a message on the screen. To bypass the nag screen (figure 5.7):
set a bp at this API (go to command bar in Olly and type bp rtcMsgBox)
→ Run F9 Olly→ after a while Olly will break→ go to the Stack
window in Olly and press Enter (Follow in Disassembler) at this line

0012FBD4 004A2FEC RETURN to 8085simu.004A2FEC from

MSVBVM60.rtcMsgBox

 Then go to VA 004A3416 where this message is being called as in this line:

004A3416 . FF15 98104000 CALL DWORD PTR DS:[<&MSVBVM60.#595>]
 ; MSVBVM60.rtcMsgBox

 Nopping the call at this line will bypass the nag screen

Session duration 120 minutes: the same procedure as above search for the text string:
This evaluation session is finished and double click.

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 61

00442259 /75 68 JNZ SHORT 8085simu.004422C3
0044225B . |8D55 AC LEA EDX,DWORD PTR SS:[EBP-54]
0044225E . |8D4D DC LEA ECX,DWORD PTR SS:[EBP-24]
00442261 . |897D C4 MOV DWORD PTR SS:[EBP-3C],EDI
00442264 . |8975 BC MOV DWORD PTR SS:[EBP-44],ESI
00442267 . |897D D4 MOV DWORD PTR SS:[EBP-2C],EDI
0044226A . |8975 CC MOV DWORD PTR SS:[EBP-34],ESI
0044226D . |C745 A4 28D04C00 MOV DWORD PTR SS:[EBP-5C]

,8085simu.004CD028
00442274 . |C745 9C 08400000 MOV DWORD PTR SS:[EBP-64],4008
0044227B . |C745 B4 F8514100 MOV DWORD PTR SS:[EBP-4C],
8085simu.004151F8 ; UNICODE "This evaluation session is finished."

00442282 . |C745 AC 08000000 MOV DWORD PTR SS:[EBP-54],8
00442289 . |FF15 F8114000 CALL DWORD PTR
 DS:[<&MSVBVM60.__vbaVarDup>] ; MSVBVM60.__vbaVarDup
0044228F . |8D4D BC LEA ECX,DWORD PTR SS:[EBP-44]
00442292 . |8D55 CC LEA EDX,DWORD PTR SS:[EBP-34]
00442295 . |51 PUSH ECX
00442296 . |8D45 9C LEA EAX,DWORD PTR SS:[EBP-64]
00442299 . |52 PUSH EDX
0044229A . |50 PUSH EAX
0044229B . |8D4D DC LEA ECX,DWORD PTR SS:[EBP-24]
0044229E . |53 PUSH EBX
0044229F . |51 PUSH ECX
004422A0 . |FF15 98104000 CALL DWORD PTR DS:[<&MSVBVM60.#595>]

; MSVBVM60.rtcMsgBox
004422A6 . |8D55 BC LEA EDX,DWORD PTR SS:[EBP-44]
004422A9 . |8D45 CC LEA EAX,DWORD PTR SS:[EBP-34]
004422AC . |52 PUSH EDX
004422AD . |8D4D DC LEA ECX,DWORD PTR SS:[EBP-24]
004422B0 . |50 PUSH EAX
004422B1 . |51 PUSH ECX
004422B2 . |6A 03 PUSH 3
004422B4 . |FF15 2C104000 CALL DWORD PTR
 DS:[<&MSVBVM60.__vbaFreeVarLis>; MSVBVM60.__vbaFreeVarList
004422BA . |83C4 10 ADD ESP,10
004422BD . |FF15 30104000 CALL DWORD PTR
 DS:[<&MSVBVM60.__vbaEnd>] ; MSVBVM60.__vbaEnd
004422C3 > \895D FC MOV DWORD PTR SS:[EBP-4],EBX

This also very easy to defeat just change the JNZ (Jump if not zero) to JMP (Jump)
which will bypass the API MSVBVM60.__vbaEnd at VA 004422BD because this API
terminates the software.

Target Patches Needed To Defeat The Following
Original (Trials 30)

004A2E97 0F8E 72010000 JLE 8085simu.004A300F

Modified (Trials 30)
004A2E97 /E9 73010000 JMP 8085simu.004A300F

Original (Session duration 120 minutes)
00442259 /75 68 JNZ SHORT 8085simu.004422C3

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 62

Modified (Session duration 120 minutes)
00442259 /EB 68 JMP SHORT 8085simu.004422C3

Original (Nag Screen)
004A3416 . FF15 98104000 CALL DWORD PTR DS:[<&MSVBVM60.#595>]

 ; MSVBVM60.rtcMsgBox
Modified (Nag Screen)

004A3416 . 909090909090 NOP

5.3 Keygenning the KeygenMe: Reengineering the Ripped Algorithm

This is one of the most important topics related to software cracking. The
purpose of the keygen is to provide an intellectual challenge to crackers. This is not a
cracking demonstration, actually in this case study; I’ll explain everything step by step:
how to find the serial generation algorithm and how to make a keygen out of it,
translating the low level instructions to more readable in high level language(C++).
Why am I apply this technique on a special program called KeygenMe (Google it with
keyword “KeygenMe”, and you’ll found many of this KeygenMe available on the net on
several RE websites) because it would be illegal and immoral at the same time if I
applied on commercial software.

Now let’ go beyond the beautifulness of the GUI, and seeking the invisible
secretes in how the algorithm work. I will take as an example the keygenMe : KeyGen-
me#1 by devilz. When we start it a nice screen appear with two edit boxes: one for the
user name and another for the serial number as in figure 5.9

Figure 5.9 Keygen Screen

The Serial is calculated in conjunction with the Name. So, you cannot enter a
valid serial with different name. (Parallel combination). If we enter an invalid serial a
message box appears telling us that: (Fatal Error: Bad boy, Read more and more Tuts
man !!). How do we locate the code which is responsible for this behavior? As we did in
the previous analysis, follow the same procedures using the MessageBox API technique
(setting a Breakpoint and you are in the game) or search for the referenced strings
method.

We will enter as an example, Name: dradeldabou and Serial: r029f4 in order to calculate
the valid serial for this name (dradeldabou).

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 63

And the following is the snippet assembly code from OllyDbg:

004010E2 . 6A 0C PUSH 0C ; /Count = C (12.)

// Maximum entered characters in the Name text box is 12 including the null character at
 the end of the array (‘\0’).

. . .

004010F5 . /75 19 JNZ SHORT KeyGen-m.00401110
004010F7 . 6A 00 PUSH 0 ; /Style = MB_OK|MB_APPLMODAL
004010F9 . 68 96304000 PUSH KeyGen-m.00403096
 ; |Title = "Fill in the blank"
004010FE . 68 A8304000 PUSH KeyGen-m.004030A8
 ; |Text = "The name please !!!"
00401103 . 6A 00 PUSH 0 ; |hOwner = NULL
00401105 . E8 18010000 CALL <JMP.&USER32.MessageBoxA>

; \MessageBoxA
// This message box at VA 00401105 popup when the edit box for the Name is empty

0040110A . C9 LEAVE
0040110B . C2 1000 RETN 10
0040110E . EB 2F JMP SHORT KeyGen-m.0040113F
00401110 > \6A 0C PUSH 0C ; /Count = C (12.)
00401112 . 68 80334000 PUSH KeyGen-m.00403380
 ; |Buffer = KeyGen-m.00403380
00401117 . 68 C8000000 PUSH 0C8 ; |ControlID = C8 (200.)
0040111C . FF75 08 PUSH DWORD PTR SS:[EBP+8] ; |hWnd
0040111F . E8 F2000000 CALL <JMP.&USER32.GetDlgItemTextA>

; \GetDlgItemTextA
00401124 . 0BC0 OR EAX,EAX
00401126 . 75 17 JNZ SHORT KeyGen-m.0040113F
00401128 . 6A 00 PUSH 0 ; /Style = MB_OK|MB_APPLMODAL
0040112A . 68 BC304000 PUSH KeyGen-m.004030BC
 ; |Title = "Fill in the blank"
0040112F . 68 CE304000 PUSH KeyGen-m.004030CE
 ; |Text = "The serial please
!!!"
00401134 . 6A 00 PUSH 0 ; |hOwner = NULL
00401136 . E8 E7000000 CALL <JMP.&USER32.MessageBoxA>

 ; \MessageBoxA

// This message box at VA 00401136 popup when the edit box for the Serial is empty

0040113B . C9 LEAVE
0040113C . C2 1000 RETN 10
0040113F > 6A 0C PUSH 0C ; /Count = C (12.)
00401141 . 68 80334000 PUSH KeyGen-m.00403380
 ; |Buffer = KeyGen-m.00403380
00401146 . 6A 64 PUSH 64 ; |ControlID = 64 (100.)
00401148 . FF75 08 PUSH DWORD PTR SS:[EBP+8] ; |hWnd
0040114B . E8 C6000000 CALL <JMP.&USER32.GetDlgItemTextA>

 ; \GetDlgItemTextA

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 64

This is the algorithm for generating the equivalent Serial for the entered Name.
To get comfortable with each line of code set a Breakpoint at VA 00401150 and step
over the Code with F8 in OllyDbg (don’t forget to enter the Name: dradeldabou and
Serial:r029f4), and you’ll notice how registers values varies from line to line in
accordance with the calculations.

00401150 . 33D2 XOR EDX,EDX
00401152 . 33DB XOR EBX,EBX
00401154 . 33C9 XOR ECX,ECX
00401156 . 33C0 XOR EAX,EAX
00401158 . BE 80334000 MOV ESI,KeyGen-m.00403380
0040115D > 8A1C31 MOV BL,BYTE PTR DS:[ECX+ESI]
00401160 . 03C3 ADD EAX,EBX
00401162 . 41 INC ECX
00401163 . 80FB 00 CMP BL,0
00401166 .^ 75 F5 JNZ SHORT KeyGen-m.0040115D
00401168 . BA 28000000 MOV EDX,28
0040116D . F7E2 MUL EDX
0040116F . 83C0 19 ADD EAX,19

5.3.1 Serial Generator Algorithm: Analyses

A Fully Descriptive Analyses for the Serial Generator Algorithm

00401150 . 33D2 XOR EDX,EDX
00401152 . 33DB XOR EBX,EBX
00401154 . 33C9 XOR ECX,ECX
00401156 . 33C0 XOR EAX,EAX

These four lines of code will XOR’ed the registers EDX, EBX, ECX,
EAX to 0: Initialize registers EDX == 0, EBX == 0, ECX == 0, EAX
== 0

00401158 . BE 80334000 MOV ESI,KeyGen-m.00403380

The Name entered will be loaded into register ESI: ESI ==
dradeldabou

0040115D > 8A1C31 MOV BL,BYTE PTR DS:[ECX+ESI]

Load the first character from the Name entered into the register
BL (8-bit). In this case BL == ‘d’ == 64h, everything manipulated
as Hexa.
h: denotes hexadecimal

00401160 . 03C3 ADD EAX,EBX

Add the value in the source register EBX into destination register
EAX and save the result into EAX (32-bit). In this case

EAX == EAX + EBX == 00000000 + 00000064 == 00000064

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 65

00401162 . 41 INC ECX

Increments register ECX by 1. An indicator to know how many
characters are in the Name entered (counter). ECX == 1

00401163 . 80FB 00 CMP BL,0

Compare register BL (8-bit) with value ‘0’: the end of the array

00401166 .^ 75 F5 JNZ SHORT KeyGen-m.0040115D

Jump if not Zero; Jump if BL is not Zero yet at VA 0040115D (which
is not zero in this case). So, this will make a loop for reading
the next character till BL == 0 the end of the array (‘\0’)
(entered Name). It will loops 12 times (reading the full Name),the
last loop is for the ending of the array with BL == 0

Note: in the next steps, I will not explain everything as above
only what the registers are holding in each loop.

Loop [2] : BL == ‘r’ == 72h
 EAX == EAX + EBX == 00000064 + 00000072 == 000000D6
 ECX == 2
 BL != 0

Loop [3] : BL == ‘a’ == 61h
 EAX == EAX + EBX == 000000D6 + 00000061 == 00000137
 ECX == 3
 BL != 0

Loop [4] : BL == ‘d’ == 64h
 EAX == EAX + EBX == 00000137 + 00000064 == 0000019B
 ECX == 4
 BL != 0

Loop [5] : BL == ‘e’ == 65h
 EAX == EAX + EBX == 0000019B + 00000065 == 00000200
 ECX == 5
 BL != 0

Loop [6] : BL == ‘l’ == 6Ch
 EAX == EAX + EBX == 00000200 + 0000006C == 0000026C
 ECX == 6
 BL != 0

Loop [7] : BL == ‘d’ == 64h
 EAX == EAX + EBX == 0000026C + 00000064 == 000002D0
 ECX == 7
 BL != 0

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 66

Loop [8] : BL == ‘a’ == 61h
 EAX == EAX + EBX == 000002D0 + 00000061 == 00000331
 ECX == 8
 BL != 0

Loop [9] : BL == ‘b’ == 62h
 EAX == EAX + EBX == 00000331 + 00000062 == 00000393
 ECX == 9
 BL != 0

Loop [10] : BL == ‘o’ == 6Fh
 EAX == EAX + EBX == 00000393 + 0000006F == 00000402
 ECX == 10
 BL != 0

Loop [11] : BL == ‘u’ == 75h
 EAX == EAX + EBX == 00000402 + 00000075 == 00000477
 ECX == 11
 BL != 0

Loop [12] : BL == ‘0’ == 00h
 EAX == EAX + EBX == 00000477 + 00000000 == 00000477
 ECX == 12
 BL == 0

00401168 . BA 28000000 MOV EDX,28

Load the register EDX with 28h: EDX == 00000028h

0040116D . F7E2 MUL EDX

Multiply the value in the register EDX with The value in the
accumulator EAX and save the result into EAX.

EAX == EAX * EDX == 00000477 * 00000028 == 0000B298

0040116F . 83C0 19 ADD EAX,19

Add 00000019 to the value in the register EAX and save the result
into EAX.

EAX == EAX + 19 == 0000B298 + 00000019 == 0000B2B1

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 67

Now, what do you think the next step is? We have in the final
calculation EAX == B2B1. of course we must converted to decimal

4574512 ⎯⎯ →⎯DecimalBB

That’s it our valid Serial number is 45745 for the entered name
dradeldabou. As in Figure 5.10

 Figure 5.10 Valid Entered Serial Figure 5.11 Congratulation Message

5.3.2 Serial Generator Algorithm: C++ Translation

This is the equivalent in C++ for the ripped serial generator from the KeygenMe, which
will simulate the original one for any entered name.

#include <iostream>
using namespace std;
int main()

{
 float EAX = 0; // XOR EAX,EAX
 float EBX = 0; // XOR EBX,EBX
 int ECX = 0; // XOR ECX,ECX
 float EDX = 0; // XOR EDX,EDX

 const int Size = 12; // PUSH 0C ; Count = C (12.)

 char Name[Size];

 cout<< "Please Enter Your Name (Maximum 11): ";

 cin.getline(Name,Size); // MOV ESI,KeyGen-m.00403380

 for (ECX=0; Name[ECX] != '\0'; ECX++)
 {

 EBX = Name[ECX]; // MOV BL,BYTE PTR DS:[ECX+ESI]
 EAX = EAX + EBX; // ADD EAX,EBX

 }

 EDX = 0x28; // MOV EDX,28

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 68

 EAX = EAX * EDX; // MUL EDX
 EAX = EAX + 0x19; // ADD EAX,19

 cout <<dec<<"Your Serial Number Is: "<<EAX;

 return 0;
}

5.4 Deciphering The Algorithm

Target: CoffeeCup Applet Password Wizard v3.0 Registered Version from
http://www.coffeecup.com. Its software which will allows you to add a simple password
protection to your site, with customization of usernames and passwords, links to
different forwarding site one for "access approved" and another for "access denied"
permission for each user. It's very easy to implement such a password schema to your
site but it's weakness in the encryption algorithm lies behind the simplicity. You can
implement the protection either by using Java or Flash mode and the two are very
dangerous to protect your site with such software, you will see later why.

Goals: Decrypting the algorithm step by step for the Password Wizard with Java &
Flash (Algorithm Decryption with ASCII Plain Text Search Approach). I will decrypt the
Java implementation with DJ Java Decompiler Software in the first part of the reversing and
the Flash implementation with 010 Editor "Hex Editor" in the second part of this tutorial.

5.4.1 Target & Tools Description

 Applet Password Wizard v3.0

Upon starting up the software you'll be asked to choose between the Java or Flash mode
as in figure 5.12

Figure 5.12 CoffeeCup Startup Screen

Studying the program behavior is very important to know the limitations and the
purposes of its functionalities.

 DJ Java Decompiler v3.7.7.81: With DJ Java Decompiler you can decompile java

CLASS files and save it in text or other format. It's simple and easy. DJ Java

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 69

Decompiler is decompiler and disassembler for Java that reconstructs the original
source code from the compiled binary CLASS files (for example Java applets). DJ
Java Decompiler is able to decompile complex Java applets and binaries, producing
accurate source code. It's a must to have it in your lab tools.

In Java analysis, I'm going to use this great software to decompile the Java Applet Class
to its original high level language construction and then decoding the flow of statements
step by step in order to reassemble the encoding of the password protection routine.

 010 Editor V2.0.2: It’s a professional Hex Editor designed to quickly and easily edit

the contents of binary files. You can use any hex editor but I advice you to give it a
try and discover its potential especially it's script language for automation in the
binary analysis. (used in the second approach)

5.4.2 Java Reversing Approach

The flow of the analysis will be applied as live demonstration by taking an example
of how the software and the Applet Java Class will interact with each other. Before start
explaining anything: Run the software -> Choose "Click Here to Use Java" as in figure
5.12. So, now we are inside the game but even though not yet there is much more to
discover. We will follow a step by step procedure to create an example:

1. File-> New Applet... ("Applet Preview" screen appears as a preview of how the
system will look like). Figure 5.13

Figure 5.13 Applet Preview

1. General Tab: Startup configuration (default values), in the "Link" section (Edit Box)
write http://www.themutable.com as a default value. Figure 5.14

Figure 5.14 General Tab

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 70

3. Login Tab: everything is clear. Figure 5.15

Figure 5.15 Login Tab settings

4. Users tab: This is the important area where you add a new user with name, password,
and access approved forward link. Click on -> New User and enter the following value
as in figure 5.16.

Figure [7]

 Figure 5.16 User Tab Properties

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 71

5. HTML tab: Here comes the HTML required for this Applet Java Class to work.
Figure 5.17

Figure 5.17 HTML Required Parameters Tab

Here is the HTML required for this applet to work in the edit box. by copying and
pasting these HTML lines, the connection between the username and password
implementation will be made with the joylock.class file which handle the decryption
routine inside it in order to decode the param name="0" ... the first username and
password. The fie joylock.class must be in the same folder where the page being
implemented is. And this file is our target in this session with combination with Figure 5.18

Figure 5.18 HTML required

<applet code="joylock.class" width="342" height="117">

<param name="generator" value="Created with the Applet Password Wizard 3.0
 www.coffeecup.com">

<applet code="joylock.class" width="342" height="117">
<param name="generator" value="Created with the Applet Password Wizard
3.0 www.coffeecup.com">
<param name="GENERAL"
value="1|11|000000|00FF00|pbihxzuqjkmcnalwsvfregytdodxxa://ppp.xdukgxnbou
.lzk| |Login Complete.|Enter the Username and
Password.|http://www.microsoft.com| |">
<param name="0"
value="14|12|25|0|ugiceqsrvzothxbmajlfwpkdnyayxehdkylhks66pqswkicgm798mll
v://uuu.lmepalqose.dkp">
</applet>

Startup: Loading the joylock.class file this will be our next victim

Software creator name & version number

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 72

<param name="GENERAL"
value="1|11|000000|00FF00|pbihxzuqjkmcnalwsvfregytdodxxa://ppp.xdukgxnbou.lzk|
|Login Complete.|Enter the Username and Password.|http://www.microsoft.com|
|">

value="1|11|000000|00FF00|pbihxzuqjkmcnalwsvfregytdodxxa://ppp.xdukgxnbou.lzk|

 Figure 5.19 default value encrypted

1. This segment will check if the software is registered or not. If you use the trial
version this would be different. This confirms that the registration routine is a part of the
Applet Java Class File and not the executable file. This software is fully registered so
it's yes you'll see later why. do you know what does that mean, try to obtain a trial
version of this software and the full one and create a New Applet file you'll notice what
makes this software registered or not. Isn’t so simple!

if(Integer.parseInt(stringtokenizer.nextToken()) == 11)
registered = true;

2. This segment will check for the Background Color (Hex Value) as specified in the
General tab.

3. This segment will check for Text Color (Hex Value) as specified in the General tab.

4. This segment "LinkURL" contains the encrypted format of the default Access
Approved Forwarding Website. Check figure 5.14. this encryption will act as an inter-
modular between the (5."LinkFrame") and the key for the decryption mechanism.

5. This segment "LinkFrame" is the real default Access Approved Forwarding Website
after the encryption don't get confused with segment 4 do you remember what we set
here as a default value figure 5.14.

|Login Complete.|Enter the Username and Password.|http://www.microsoft.com| |"

Figure 5.20 Text representation

Check Figure 5.16 & 5.16: Initialization and default value configuration

1 2 3 4 5

Compare each segment with figure 5.15

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 73

name="0": this segment will indicate the user number (in this case "0") to configure for
each one its own settings. You can create more than one user.

value="14|12|25|0|ugiceqsrvzothxbmajlfwpkdnyayxehdkylhks66pqswkicgm798

mllv://uuu.lmepalqose.dkp">

Figure 5.21 Encrypted format for the first username

1. This segment tells about total number of the alphabet(26).

2. This segment tells about alphabet number starting from 0.

3. This segment tells about Username Length with its encrypted format, do you notice
that the decimal numbers aren't encoded you can check this by the last two numbers
(Username: undecontrol66). Figure 5.16

4. This segment tells about Access Approved Forwarding Website in its encrypted
format, (Link: http://www.themutable.com). Figure 5.16

5. This segment tells about Password Length with its encrypted format, (Passowrd:
malkovish798). Figure 5.16

5.4.3 Applet Java Class Source Code Anatomy

Now, the time to have the power in front of your eyes with the decompiled version of
the Applet Java Class file ("joylock.class"). It's nothing more than to open this file with
DJ Java Decompiler software and you have the source code. that's it.

// Decompiled by DJ v3.7.7.81 Copyright 2004 Atanas Neshkov Date:
2/22/2006 8:23:29 AM
// Home Page : http://members.fortunecity.com/neshkov/dj.html - Check
often for new version!
// Decompiler options: packimports(3)
// Source File Name: joylock.java

3 51 2 4

6

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 74

import java.applet.Applet;
import java.applet.AppletContext;
import java.awt.*;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.StringTokenizer;

public class joylock extends Applet
{

 public void init()
 {
 super.init();
 int i = size().width - 80;

StringTokenizer stringtokenizer =
new
StringTokenizer(getParameter("GENERAL"), "|", false);

 numUsers = Integer.parseInt(stringtokenizer.nextToken());
 if(Integer.parseInt(stringtokenizer.nextToken())
== 11); Interesting!, Figure 5.19.1

 registered = true; Good Good.
 else
 if(getDocumentBase().toString().startsWith("file"))
 registered = true;
 if(registered)
 {
 bkColor = new Color(Integer.parseInt(stringtokenizer.nextToken(),
16)); Figure 5.19.2
 textColor = new Color(Integer.parseInt(stringtokenizer.nextToken(),
16)); Figure 5.19.3
 linkURL = stringtokenizer.nextToken();Figure 5.19.4
 if(!linkURL.equalsIgnoreCase(" "))
 decript(linkURL, 0, 0, 0, 0, 0, false); The azimuth of our analysis
 linkFrame = stringtokenizer.nextToken();Figure 5.19.5
 loginText = stringtokenizer.nextToken();Figure 5.15 & Figure 5.20
 preLoginMessage = stringtokenizer.nextToken();Figure 5.15 & Figure 5.20
 reLinkURL = stringtokenizer.nextToken();Figure 5.21.4
 reLinkFrame = stringtokenizer.nextToken();Figure 5.21.6
 username = new String[numUsers]; Figure 5.21.3
 password = new String[numUsers]; Figure 5.21.5
 urls = new String[numUsers];
 frames = new String[numUsers];
 for(int j1 = 0; j1 < numUsers; j1++); Read first user number "0" parameters
 {
StringTokenizer stringtokenizer1 = new
StringTokenizer(getParameter(Integer.toString(j1)), "|", false);

int j = Integer.parseInt(stringtokenizer1.nextToken());
Username Length, Figure 5.21.3
int k = Integer.parseInt(stringtokenizer1.nextToken());
Password Length, Figure 5.21.5 Figure [12.5]

 int l = Integer.parseInt(stringtokenizer1.nextToken());
Figure [12.1] Figure 5.21.1

Java Library Loading

Read each segment one by one
with respect to its parameter
name. for example "General" &
User Number "0"

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 75

 int i1 = Integer.parseInt(stringtokenizer1.nextToken());
Figure [12.2] Figure 5.21.2
 String s = stringtokenizer1.nextToken();
decript(s, j1, j, k, l, i1, true); Call function decript to decode
the encryption of these values (s, j1, j, k, l, i1), String S:
reLinkURL

 }
setBackground(bkColor);
 setLayout(null);
 loginButton = new Button();
 loginButton.setLabel("Login");
 loginButton.reshape(8, size().height - 30, size().width - 16, 24);
 loginButton.setBackground(new Color(0xc0c0c0));
 add(loginButton);
 lUsername = new Label("Username:");
 lUsername.reshape(8, size().height - 88, 64, 24);
 lUsername.setForeground(textColor);
 add(lUsername);
 lPassword = new Label("Password:");
 lPassword.reshape(8, size().height - 60, 64, 24);
 lPassword.setForeground(textColor);
 add(lPassword);
 eUsername = new TextField();
 eUsername.reshape(72, size().height - 88, i, 24);
 eUsername.setBackground(new Color(0xffffff));
 add(eUsername);
 ePassword = new TextField();
 ePassword.setEchoCharacter('*');
 ePassword.reshape(72, size().height - 60, i, 24);
 ePassword.setBackground(new Color(0xffffff));
 add(ePassword);
 textArea = new TextArea(preLoginMessage);
 textArea.reshape(8, 6, size().width - 16, size().height - 98);
 textArea.setBackground(new Color(0xffffff));
 textArea.setEditable(false);
 add(textArea);
 }
 }
public void paint(Graphics g)
 {
 if(!registered)
 {

 g.drawString("You have the unregistered", 0, 10);
 g.drawString("version of this program", 0, 20);
 g.drawString("You need the registered version", 0, 30);
 g.drawString("for this Applet to work on the internet", 0, 40);

 g.drawString("Click HERE for registration instructions", 0, 50);
 }
 }

 void clickLoginButton(Event event)
 {

Visualization Theme Settings,
Figure 5.13, General tab

This message will not appear when your are offline even if
you are using the trial version.

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 76

 for(int i = 0; i < numUsers; i++)
 {
 if(username[i].equalsIgnoreCase(eUsername.getText()) &&
 password[i].equalsIgnoreCase(ePassword.getText()))
 {
 try
 {
 URL url;
 if(!urls[i].equalsIgnoreCase(""))
 url = new URL(getDocumentBase(), urls[i]);
 else
 url = new URL(getDocumentBase(), linkURL);
 String s;
 if(!frames[i].equalsIgnoreCase(""))
 s = frames[i];
 else
 s = linkFrame;
 if(s != null && !s.equalsIgnoreCase(" "))
 getAppletContext().showDocument(url, s);
 else
 getAppletContext().showDocument(url);
 }
 catch(MalformedURLException _ex) { }
 textArea.setText(loginText);
 return;
 }
 if(i == numUsers - 1)
 {
 eUsername.setText("");
 ePassword.setText("");
 textArea.setText("Incorrect Username or Password.");
 if(reLinkURL != null && !reLinkURL.equalsIgnoreCase(" ") &&
 numWrongPass == 2)
 {
 numWrongPass = 0;
 try
 {

 URL url1 = new URL(getDocumentBase(), reLinkURL);
 if(reLinkFrame != null && !reLinkFrame.equalsIgnoreCase(" "))
 getAppletContext().showDocument(url1, reLinkFrame);
 else
 getAppletContext().showDocument(url1);
 }
 catch(MalformedURLException _ex) { }
 } else
 {
 numWrongPass++;
 }
 }
 }

 }

 public boolean handleEvent(Event event)
 {
 if(event.key == 10 || event.target == loginButton &&
 event.id == 1001)

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 77

 {
 clickLoginButton(event);
 return true;
 } else
 {
 return super.handleEvent(event);
 }
 }

 public boolean mouseUp(Event event, int i, int j)
 {
 if(!registered)
 try
 {
 URL url = new URL(getDocumentBase(),
 "http://www.coffeecup.com/");
 getAppletContext().showDocument(url);
 }
 catch(MalformedURLException _ex) { }
 return true;
 }

final void decript(String s, int i, int j, int k, int l,
 int i1, boolean flag)
 {
 String s1 = "";
 String s2 = s.substring(0, 26);
 String s3 = s.substring(26, s.length());
 String as[] = new String[52];
 for(int j1 = 0; j1 < 52; j1++)
 as[j1] = "";

 as[0] = as[0] + s2.charAt(alphabet.indexOf("a"));
 as[1] = as[1] + s2.charAt(alphabet.indexOf("b"));
 as[2] = as[2] + s2.charAt(alphabet.indexOf("c"));
 as[3] = as[3] + s2.charAt(alphabet.indexOf("d"));
 as[4] = as[4] + s2.charAt(alphabet.indexOf("e"));
 as[5] = as[5] + s2.charAt(alphabet.indexOf("f"));
 as[6] = as[6] + s2.charAt(alphabet.indexOf("g"));
 as[7] = as[7] + s2.charAt(alphabet.indexOf("h"));
 as[8] = as[8] + s2.charAt(alphabet.indexOf("i"));
 as[9] = as[9] + s2.charAt(alphabet.indexOf("j"));
 as[10] = as[10] + s2.charAt(alphabet.indexOf("k"));
 as[11] = as[11] + s2.charAt(alphabet.indexOf("l"));
 as[12] = as[12] + s2.charAt(alphabet.indexOf("m"));
 as[13] = as[13] + s2.charAt(alphabet.indexOf("n"));
 as[14] = as[14] + s2.charAt(alphabet.indexOf("o"));
 as[15] = as[15] + s2.charAt(alphabet.indexOf("p"));
 as[16] = as[16] + s2.charAt(alphabet.indexOf("q"));
 as[17] = as[17] + s2.charAt(alphabet.indexOf("r"));
 as[18] = as[18] + s2.charAt(alphabet.indexOf("s"));
 as[19] = as[19] + s2.charAt(alphabet.indexOf("t"));
 as[20] = as[20] + s2.charAt(alphabet.indexOf("u"));

The Insider Function.

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 78

 as[21] = as[21] + s2.charAt(alphabet.indexOf("v"));
 as[22] = as[22] + s2.charAt(alphabet.indexOf("w"));
 as[23] = as[23] + s2.charAt(alphabet.indexOf("x"));
 as[24] = as[24] + s2.charAt(alphabet.indexOf("y"));
 as[25] = as[25] + s2.charAt(alphabet.indexOf("z"));
 as[26] = as[26] + s2.charAt(alphabet.indexOf("a"));
 as[27] = as[27] + s2.charAt(alphabet.indexOf("b"));
 as[28] = as[28] + s2.charAt(alphabet.indexOf("c"));
 as[29] = as[29] + s2.charAt(alphabet.indexOf("d"));
 as[30] = as[30] + s2.charAt(alphabet.indexOf("e"));
 as[31] = as[31] + s2.charAt(alphabet.indexOf("f"));
 as[32] = as[32] + s2.charAt(alphabet.indexOf("g"));
 as[33] = as[33] + s2.charAt(alphabet.indexOf("h"));
 as[34] = as[34] + s2.charAt(alphabet.indexOf("i"));
 as[35] = as[35] + s2.charAt(alphabet.indexOf("j"));
 as[36] = as[36] + s2.charAt(alphabet.indexOf("k"));
 as[37] = as[37] + s2.charAt(alphabet.indexOf("l"));
 as[38] = as[38] + s2.charAt(alphabet.indexOf("m"));
 as[39] = as[39] + s2.charAt(alphabet.indexOf("n"));
 as[40] = as[40] + s2.charAt(alphabet.indexOf("o"));
 as[41] = as[41] + s2.charAt(alphabet.indexOf("p"));
 as[42] = as[42] + s2.charAt(alphabet.indexOf("q"));
 as[43] = as[43] + s2.charAt(alphabet.indexOf("r"));
 as[44] = as[44] + s2.charAt(alphabet.indexOf("s"));
 as[45] = as[45] + s2.charAt(alphabet.indexOf("t"));
 as[46] = as[46] + s2.charAt(alphabet.indexOf("u"));
 as[47] = as[47] + s2.charAt(alphabet.indexOf("v"));
 as[48] = as[48] + s2.charAt(alphabet.indexOf("w"));
 as[49] = as[49] + s2.charAt(alphabet.indexOf("x"));
 as[50] = as[50] + s2.charAt(alphabet.indexOf("y"));
 as[51] = as[51] + s2.charAt(alphabet.indexOf("z"));
 for(int k1 = 26; k1 < 51; k1++)
 as[k1] = as[k1].toUpperCase();

 for(int l1 = 0; l1 < s3.length(); l1++)
 switch(s3.charAt(l1))
 {
 case 65: // 'A'
 s1 = s1 + as[26];
 break;

 case 66: // 'B'
 s1 = s1 + as[27];
 break;

 case 67: // 'C'
 s1 = s1 + as[28];
 break;

 case 68: // 'D'
 s1 = s1 + as[29];
 break;

 case 69: // 'E'
 s1 = s1 + as[30];
 break;

Bomb

What does all of these
conversions and checking
statement means. check it
at Bomb section.

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 79

 case 70: // 'F'
 s1 = s1 + as[31];
 break;

 case 71: // 'G'
 s1 = s1 + as[32];
 break;

 case 72: // 'H'
 s1 = s1 + as[33];
 break;

 case 73: // 'I'
 s1 = s1 + as[34];
 break;

 case 74: // 'J'
 s1 = s1 + as[35];
 break;

 case 75: // 'K'
 s1 = s1 + as[36];
 break;

 case 76: // 'L'
 s1 = s1 + as[37];
 break;

 case 77: // 'M'
 s1 = s1 + as[38];
 break;

 case 78: // 'N'
 s1 = s1 + as[39];
 break;

 case 79: // 'O'
 s1 = s1 + as[40];
 break;

 case 80: // 'P'
 s1 = s1 + as[41];
 break;

 case 81: // 'Q'
 s1 = s1 + as[42];
 break;

 case 82: // 'R'
 s1 = s1 + as[43];
 break;

 case 83: // 'S'
 s1 = s1 + as[44];
 break;

 case 84: // 'T'

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 80

 s1 = s1 + as[45];
 break;

 case 85: // 'U'
 s1 = s1 + as[46];
 break;

 case 86: // 'V'
 s1 = s1 + as[47];
 break;

 case 87: // 'W'
 s1 = s1 + as[48];
 break;

 case 88: // 'X'
 s1 = s1 + as[49];
 break;

 case 89: // 'Y'
 s1 = s1 + as[50];
 break;

 case 90: // 'Z'
 s1 = s1 + as[51];
 break;

 case 97: // 'a'
 s1 = s1 + as[0];
 break;

 case 98: // 'b'
 s1 = s1 + as[1];
 break;

 case 99: // 'c'
 s1 = s1 + as[2];
 break;

 case 100: // 'd'
 s1 = s1 + as[3];
 break;

 case 101: // 'e'
 s1 = s1 + as[4];
 break;

 case 102: // 'f'
 s1 = s1 + as[5];
 break;

 case 103: // 'g'
 s1 = s1 + as[6];
 break;

 case 104: // 'h'
 s1 = s1 + as[7];

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 81

 break;

 case 105: // 'i'
 s1 = s1 + as[8];
 break;

 case 106: // 'j'
 s1 = s1 + as[9];
 break;

 case 107: // 'k'
 s1 = s1 + as[10];
 break;

 case 108: // 'l'
 s1 = s1 + as[11];
 break;

 case 109: // 'm'
 s1 = s1 + as[12];
 break;

 case 110: // 'n'
 s1 = s1 + as[13];
 break;

 case 111: // 'o'
 s1 = s1 + as[14];
 break;

 case 112: // 'p'
 s1 = s1 + as[15];
 break;

 case 113: // 'q'
 s1 = s1 + as[16];
 break;

 case 114: // 'r'
 s1 = s1 + as[17];
 break;

 case 115: // 's'
 s1 = s1 + as[18];
 break;

 case 116: // 't'
 s1 = s1 + as[19];
 break;

 case 117: // 'u'
 s1 = s1 + as[20];
 break;

 case 118: // 'v'
 s1 = s1 + as[21];
 break;

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 82

 case 119: // 'w'
 s1 = s1 + as[22];
 break;

 case 120: // 'x'
 s1 = s1 + as[23];
 break;

 case 121: // 'y'
 s1 = s1 + as[24];
 break;

 case 122: // 'z'
 s1 = s1 + as[25];
 break;

 case 91: // '['
 case 92: // '\\'
 case 93: // ']'
 case 94: // '^'
 case 95: // '_'
 case 96: // '`'
 default:
 s1 = s1 + s3.charAt(l1);
 break;
 }

 if(flag)
 {
 username[i] = s1.substring(0, j);
 password[i] = s1.substring(j, j + k);
 urls[i] = s1.substring(j + k, j + k + l);
 frames[i] = s1.substring(j + k + l, s1.length());
 return;
 } else
 {
 linkURL = s1;
 return;
 }
 }

 public joylock()
 {

 alphabet = "abcdefghijklmnopqrstuvwxyz";
 registered = false;
 }

 Label lUsername;
 Label lPassword;
 TextArea textArea;
 Button loginButton;

The Key for deciphering the algorithm

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 83

 TextField ePassword;
 TextField eUsername;
 int numUsers;
 int numWrongPass;
 String loginText;
 String linkURL;
 String linkFrame;
 String preLoginMessage;
 String reLinkURL;
 String reLinkFrame;
 String username[];
 String password[];
 String urls[];
 String frames[];
 String alphabet;
 Color textColor;
 Color bkColor;
 boolean registered;
}

5.4.4 Bomb Section Analysis

What I've done so far is tracing the algorithm Source Code step by step and
check the relations with Figure 5.18. The conclusion for all of these lines of code is:
how the Java Class reads the segments from the HTML required parameters Figure 5.18
and assign each segment it's variable. The whole decryption procedures occurs in the
decript function which analyze the input from Figure 5.18 and try to check it's decoding
equivalence in the decript function. Here, as you notice the alphabet letters plays a
major role in the decryption (no case sensitive). So, as I told you before the LinkUrl
Figure 5.19.4 is the inter-modular between the alphabet characters and the LinkFrame
Figure 5.19.5 for decoding process.

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 84

d a p 0
x b b 1
x c i 2
a d h 3
: e x 4
/ f z 5
/ g u 6
p h q 7
p i j 8
p j k 9
. k m 10
x l c 11
d m n 12
u n a 13
k o l 14
g p w 15
x q s 16
n r v 17
b s f 18
o t r 19
u u e 20
. v g 21
l w y 22
z x t 23
k y d 24

LinkFram
e (Encrypted)

z

o 25

For the default value parameters Figure 5.19 consider this schema: Read it from left to
right. Take for example the first letter of the encrypted LinkFrame "d" (Left to Right)
and follow the path horizontally with respect to the equivalence of the alphabet
arrangement it will gives you an "h" so the LinkURL is also the key for the decryption.

Repeat the rest of the LinkFrame letters and you'll end up with the Access Approved
Forwarding website in its original state: http://www.themutable.com

Array alphabet Letters Positioning

LinkURL (Encrypted)

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 85

m a u
l b g
l c i
v d c
: e e
/ f q
/ g s
u h r
u i v
u j z
. k o

m l t
l m h
e n x
p o b
a p m
l q a
q r j
o s l
s t f
e u w
. v p
d w k
k x d
p y n

z

y

Figure 5.21 [Section “4” & Section “6”] Anatomy
Configuration for username="0"
Follow the same procedure as previously done and you will and up with the same
Access Approved Forwarding website in its original state: http://www.themutable.com

Note: the result is same as before because when I create a new user as in Figure 5.16 I
checked the "Use Default Link" Box, so it's right no problem. Read it from left to right.

LinkFrame (Encrypted)

Alphabet Letters

LinkFrame (Encrypted)

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 86

a a u
y b g
x c i
e d c
h e e
d f q
k g s
y h r
l i v
h j z
k k o
s l t
6 m h
6 n x
 o b
p p m
q q a
s r j
w s l
k t f
i u w
c v p
g w k
m x d
7 y n
9

z

y
8

Figure 5.21 [Section “3” & Section “5”] Anatomy
Configuration for username="0"
Follow the same procedure as before and you will and up with the original Username
and Password (deciphered)
Username: undercontrol66
Password: malkovish798

LinkFrame (Encrypted)

Alphabet Letters

LinkURL (Encrypted)

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 87

5.4.5 Flash Plain Text Searching Approach

Using this software allows you to implement the site password protection in
Flash mode, but it's protection is very poor compared to the Java mode where all what
you need to do is to open the flash file (*.swf) with any Hex Editor and do a search for
an ASCII characters and you'll end up with the username and password as it's with no
encryption being involved at all on the ASCII characters: It's in plain text format (what's
an easy fishing), creating a new user is same as in Java mode (a little bit settings
differences but it doesn't matter), here the HTML required parameters offers no help for
the decoding process, because all the information is embedded inside the Flash file so
our target in this session will be the Macromedia Flash file with an extension .swf .

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://active.macromedia.com/flash2/cabs/swflash.cab#version=5,0,0,0
"
ID=LogSWF WIDTH=342 HEIGHT=117>
<PARAM NAME=movie VALUE="LogSWF.swf">
<PARAM NAME=quality VALUE=high>
<PARAM NAME=loop VALUE=false>
<EMBED src="LogSWF.swf" loop=false quality=high
WIDTH=342 HEIGHT=117 TYPE="application/x-shockwave-flash"
PLUGINSPAGE="http://www.macromedia.com/shockwave/download/index.cgi?P1_Prod_Ve
rsion=ShockwaveFlash">
</EMBED>
</OBJECT>

Let's take a scenario where you access a site using this protection but in this case you
don't have the flash file and as i said before the HTML required are useless in this case
(used only to make the file appear on the web site...) so what, do you know that when
you access a site for a first time, the time required to be fully loaded is longer than the
second entrance and that's refer to the Temporary Internet Files which makes surfing
the net faster if no update occurs on the site (because of the second entrance).

Follow the steps in order to locate where the victim resides:

First I recommend that you delete the files from the Temporary Internet Files so that
locating the file will be easier. This can be done by open the Internet Explorer (in my
case) ---> Tools --> Internet Options... --> Delete Files.

Ok, now the file "Temporary Internet Files" is clear, your next step is to enter the site
which using this protection in Flash mode now you are in (page fully loaded).Go to My
Computer--> C:\ Documents and Settings \ UserName \ Local Settings \ Temporary
Internet Files

and now do a search for the .swf extension (ex, *.swf) if there are more than one file try
to open each one till you find the required one and have a copy in another place.

Now open the file with 010 Editor (Hex Editor) or any other hex editor and do a search for:
userBox or passBox and you'll end up with occurrences of three for each one (depends on the

Chapter 5 CASE STUDIES: REVERSING THE INVISIBLE
__

 88

one you choose for search), stay at the second occurrence what do you notice, are we in the
Bomb Section or Not! I think so. As in the following box (taken from 010 Editor):

UserBox OR passBox: Indicator to find the embedded username & password

undercontrol66: Username

malkovish798: Password

http://www.themutable.com: Access Approved Forwarding Website

Found 3 occurrences of 'userBox'.

38h 7h userBox
1517h 7h userBox
15A4h 7h userBox

...z..........1.

....String.@....

.z.....userBox..

....passBox..!..

...z......underc
ontrol66malkovis
h798......+.....
V.....1.....http
://www.themutabl
e.com......V....

Chapter 6 CONCLUSIONS
__

 89

Chapter 6

CONCLUSIONS

The importance of this project lies in the newly developed methods with step by
step analysis to make things easier to follow. Reverse Code Engineering with
emphasizing on breaking software protection has the influence on the overall developer
programmers who must know the weakness in their protections implementations to
better shield their programs from crackers attacks.

It shows how easy it is to change only one instruction to defeat the protection
from its root. There is no protection that can not be easily removed (my experience). It’s
a matter of time.

The information’s presented in my book and how it’s being processed starting
with the theory chapters till the experimental fact demo, it will serve as a basis for
another development and contributions concerning RCE and the interrelationship with
breaking protections and deciphering the algorithm.

What we've learnt from this newly customized approach. Using the right tools.
How to read the inner and outer shell for many algorithms in the case studies chapter.
Breaking the unbreakable. Deciphering the algorithm. And the most important thing is
to have the pleasure for the unknown.

References
__

90

References

BOOKS

[1] Elam, Eldad. Reversing: Secrets of Reverse Engineering. Indianapolis: Wiley
 Publishing, Inc., 2005.

[2] Irvine, Kip. Assembly Language for Intel®-Based Computers. New Jersey: Pearson
 Education, Inc., 2003.

[3] Rosenberg, Jonathan. How Debuggers Work: algorithms, data structure, and
 architecture. New York: John Wiley & Sons, Inc., 1996.

[4] Kaspersky, Kris. Hacker disassembling Uncovered. East Swedesford: A-LIST
 Publishing, 2003.

[5] Lena151, Imports rebuilding #21 March 14, 2006

[6] Goppit, Portable Executable File Format – A Reverse Engineering View. CBJ,
 Security Analysis; VOL. 2, NO. 3 2005. August 15, 2005.

TOOLS

[7] IDA Pro Advanced: The Interactive Disassmbler, Version 4.9.0.863 (32-bit).
 http://www.datarescue.com. TOO Geliosoft., 2005.

[8] OllyDbg, v1.10. http://www.ollydbg.de/. Oleh Yuschuk, 2000-2004

[9] Stud_PE by ChristicG, Version 2.2.0.5-Build date: 20/03/2006 12:21:00 AM.
 http://www.itimer.home.ro/. CGSoftLabs., 2006.

[10] UPX: Ultimate Packer for eXecutables by Markus F.X.J. Oberhumer & Laszlo
 Molnar, V1.24w, Nov 7th 2002. http://upx.sourceforge.net. 2002.

[11] Code Snippet Creator by Iczelion, version 1.05 build 2. 1999-xxxx

[12] Restorator 2006 v3.60 build 1535 by bome.com/Florian Bomers,
 http://www.bome.com/Restorator/. 1996-2006

[13] RadASM version 2.2.0.6 by Ketil Olsen, http://www.radasm.com/. 2001-2005

[14] Microsoft Visual C++ Enterprise Edition V 6.0, http://www.microsoft.com/.,
 Microsoft Corporation. 1994-98

[15] MASM32 version 9.0 by Steve Hutchesson, http://www.movsd.com. 1998-2006

Vita Auctoris
__

91

Vita Auctoris

The Outer Worlds
Kuiper Belt, Pluto
(000) ↵00 ↵000000

Name: tHE mUTABLE

Place of Birth: I don’t know where, but I think first moment of creation “Quantum”

Year of Birth: -00 -00 -0000

Education: X
λ

, β
π

 , φ
ξ

 , ∞
∞

 () ()Γ −∞ +Γ ∞

einsteinzero@hotmail.com
cheviva2000@hotmail.com
http://www.themutable.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

