Programmation

Python

Conception et optimisation

2¢ édition

Tarek Ziadeé

Preface de
Stephan Richter

Programmation

Python

CHEZ LE MEME EDITEUR

R. GOETTER. — CSS2. Pratique du design web.
N°12461, 38 édition, 2009, 318 pages.

L. JAYR. — Flex 3 — Cahier du programmeur.
N°12409, 2009, 280 pages.

A. VANNIEUWENHUYZE. — Flex 3. Applications Internet riches
avec Flash ActionScript 3, MXML et Flex Builder.
N°12387, 2009, 532 pages.

G. LEBLANC. — Silverlight 2.
N°12375, 2008, 330 pages.

G. PoNCON ET J. PAULL — Zend Framework.
N°12392, 2008, 460 pages.

E. DASPET ET C. PIERRE DE GEYER. — PHP 5 avancé.
N°12369, 58 édition, 2008, 844 pages.

C. PORTENEUVE. — Bien développer pour le Web 2.0.
N°12391, 28 édition 2008, 600 pages.

A. BoucHER. — Ergonomie web. Pour des sites web
efficaces.
N°12479, 2¢ édition 2009, 426 pages.

A. BOUCHER. — Mémento Ergonomie web.
N°12386, 2008, 14 pages.

E. Sroim. — Sites web. Les bonnes pratiques.
N°12456, 2009, 14 pages.

A. Tasso. — Apprendre a programmer en ActionScript.
N°12199, 2007, 438 pages.

S. BORDAGE, D. THEVENON, L. DUPAQUIER, F.
Broussk. — Conduite de projets Web.
N°12325, 4 édition 2008, 394 pages.

N. CHu. — Réussir un projet de site Web.
N°12400, 58 édition ,2008, 246 pages.

O. ANDRIEU. — Réussir son référencement web.
N°12264, 2008, 302 pages.

G. PoncoN. — Best practices PHP 5. Les meilleures pratiques
de développement en PHP.
N°11676, 2005, 480 pages.

D. SEGuy, P. GAMACHE. — Sécurité PHP 5 et MySQL.
N°12114, 2007, 240 pages.

R. RIMELE. — Mémento MySQL.
N°12012, 2007, 14 pages.

M. NEBRA. — Réussir son site web avec XHTML et CSS.
N°12307, 2¢ édition, 2008, 316 pages.

J.-M. DEFRANCE. — Premiéres applications Web 2.0 avec
Ajax et PHP.
N°12090, 2008, 450 pages (Collection Blanche).

K. DiaAFAR. — Développement JEE 5 avec Eclipse Europa.
N°12061, 2008, 380 pages.

S. Powers. — Débuter en JavaScript.
N°12093, 2007, 386 pages.

T. TEMPLIER, A. GOUGEON. — JavaScript pour le Web 2.0.
N°12009, 2007, 492 pages.

D. THoMAS et al. — Ruby on Rails.
N°12079, 2 édition 2007, 800 pages.

W. ALTMANN et al. — Typo3.
N°11781, 2006, 532 pages.

L. BLocH, C. WOLFHUGEL. — Sécurité informatique.
Principes fondamentaux pour I’administrateur systeme.
N°12021, 2007, 350 pages.

G. GETE. — Mac OS X Leopard efficace. Déploiement,
administration et réparation.
N°12263, 2008, 476 pages.

M. MASON. — Subversion. Pratique du développement
collaboratif avec SVN.
N°11919, 2006, 206 pages.

Programmation

Python

Conception et optimisation

Tarek Ziade

EYROLLES

4.;

DANGER

PHOTOCOPILLAGE
TUE LE LIVRE

EDITIONS EYROLLES
61, bd Saint-Germain
75240 Paris Cedex 05

www.editions-eyrolles.com

Avec la contribution de Patrick Tonnerre.

Le code de la propriété intellectuelle du 1°" juillet 1992 interdit en effet expressément la photocopie a
usage collectif sans autorisation des ayants droit. Or, cette pratique s’est généralisée notamment dans les
établissements d’enseignement, provoquant une baisse brutale des achats de livres, au point que la possibilité
méme pour les auteurs de créer des ceuvres nouvelles et de les faire éditer correctement est aujourd’hui
menacée.

En application de la loi du 11 mars 1957, il est interdit de reproduire intégralement ou partiellement le

présent ouvrage, sur quelque support que ce soit, sans autorisation de I’éditeur ou du Centre Francais d’Exploitation du
Droit de Copie, 20, rue des Grands-Augustins, 75006 Paris.
© Groupe Eyrolles, 2006, 2009, ISBN : 978-2-212-12483-5

A Amina et Milo

Choisir Python

Par Stephan Richter

Jai commencé la programmation avec un Commodore 64 (C64), un petit systéme
basé sur le langage de programmation Basic, qui est a la fois simple et puissant. J’ai
eu par la suite un PC doté de Borland Pascal. Le syst¢me d’aide en ligne de Pascal est
trés impressionnant : chaque commande et bibliothéque est parfaitement docu-
mentée et accompagnée bien souvent d’exemples de code. Ce systeme permet une
maitrise rapide du langage. De plus, le Pascal permet d'intégrer des séquences
d’assembleur, pour programmer par exemple directement la souris et le joystick. Le
seul défaut du Pascal est la compilation obligatoire, qui est un peu ennuyeuse pour
quelqu’un venant du Basic.

Par la suite, Jason Orendorff, pionnier de la communauté Python et lauréat 2001 du
Concours international d’obfuscation de code C (IOCCC) est devenu mon mentor et
m’a appris toutes les techniques avancées de programmation, comme la programma-
tion orientée objet par le biais de Java, langage particulierement ordonné et propre.
Mais cette propreté a un prix : Ueffort supplémentaire pour écrire un programme Java
dans les régles de l'art est trop important. Il faut toujours écrire des classes, et une
seule par fichier, puis compiler, etc. Jim Fulton parle de programmation « javiotique »
pour décrire ce surcroit d’effort.

Jason m’a alors converti a Python. Aprés une période d’adaptation, on tombe trés vite
amoureux de ce langage. Aucune compilation n'est nécessaire et Python est utilisable
sur tant de plates-formes qu’il est plus portable que Java. De plus, Python permet de
programmer objet mais ne I'impose pas : il reste possible de faire des petits scripts
déstructurés. Youpi! Enfin, I'indentation obligatoire du code ne pouvait que satis-
faire mes génes prussiens.

Que peut-on espérer de mieux ? Des fonctionnalités ! Pour un développeur issu du
monde Pascal, le passage a des langages comme Java ou C++ est frustrant a cause de

m Programmation Python

la pauvreté des bibliothéques standards. La philosophie batteries included de Python
offre tout ce dont un développeur peut réver.

Un autre avantage de Python est la richesse des bibliothéques tierces. Comme
Python est utilisé dans la quasi-totalité des domaines et a tous les niveaux applicatifs,
il existe des extensions pour toutes les fonctionnalités que 'on peut imaginer. Vous
souhaitez faire du calcul scientifique ? Utilisez 'extension numeric. Vous avez du
code MatLab 2 intégrer ? Installez 'extension matlab pour pouvoir piloter ce moteur
depuis Python. Le langage est aussi utilisé pour les frameworks web comme Zope et
Plone, les moteurs de jeu comme Pygame, les plug-ins pour Gimp et toute une
myriade d’applicatifs. Cette variété prouve la puissance de Python, qui s’adapte aussi
bien aux situations ou seul un langage de script est nécessaire, que pour des besoins
plus complets, faisant appel 4 la programmation orientée objet.

Jai découvert par la suite la communauté Python et plus généralement la mouvance
open source. Ma premiére contribution était un correctif dans un exemple pour une
bibliothéque d’envois d’e-mails. Guido von Rossum m’a personnellement répondu
pour me signaler que mon correctif serait intégré dans la prochaine refease. LOpen
Source, quel bonheur !

Une communauté autour d’une technologie fait toute la différence : le niveau d’assis-
tance est incroyable et les questions obtiennent des réponses en général en quelques
heures. Quel logiciel propriétaire offre ce genre de service gratuitement ? Ce systéme
permet d’avancer sans jamais étre bloqué, et les développeurs qui acquierent leur
expérience par ce biais renvoient souvent I'ascenseur a la communauté en répondant
a leur tour aux questions des autres.

Jai découvert par la suite Zope, le serveur d’applications écrit en Python. La découverte
de Zope provoque le méme effet que celle de Python : « wow ! ». Zope offre toutes les
fonctionnalités révées pour une application web, comme la sécurité et la persistance,
ainsi que de nombreuses extensions. Quel plaisir, comparé a des frameworks comme

IBM WebSphere et BEA Weblogic.

Durant les quatre derniéres années, jai fait partie des core developers de Zope 3, qui
est une récriture complete de Zope, basée sur 'expérience passée des versions 1 et 2.
Ce projet est passé du rang de prototype éducatif a ce qu’il est aujourd’hui : une
application utilisée en production par des entreprises pour des projets web critiques.
Zope 3 est considéré comme la plus stable et la plus sure des plates-formes web open
source disponibles a 'heure actuelle, grace aux milliers de tests unitaires et fonction-
nels qui ont été codés en parallele de sa conception. Les performances sont égale-
ment au rendez-vous : Zope 3 peut étre configuré pour ne fournir que les services
utilisés dans un applicatif donné, et reste treés performant comparé aux frameworks
capables de fournir la méme quantité de fonctionnalités.

Choisir Python n

Mais que pouvez-vous faire avec Zope 3 ? Le premier projet a avoir officiellement uti-
lisé Zope 3 est Schooltool, un outil gratuit de gestion d’école dans lequel je suis égale-
ment investi. Schooltool fournit de nombreuses fonctionnalités, de la génération de
rapports PDF aux calendriers en ligne. Beaucoup d’écoles ont d’ores et déja adopté
Scholltool ainsi que son petit frére SchoolBell, et démontrent le succes de cet outil.
Pour I'année a venir, SchoolTool a déja signé avec de nombreux partenaires du monde
de I'éducation, avec pour objectif de remplacer petit a petit les solutions propriétaires,
ce qui constitue un premier signe de I'entrée de la solution sur ce marché. Le projet est
financé par la Shuttleworth Foundation, et Mark Shuttleworth ne risquerait pas un cen-
time sur une technologie qui ne marcherait pas ou ne pourrait pas grandir.

Cela fait maintenant six ans que je gagne ma vie en développant du code Python
open source et c’est un véritable bonheur ! Je ne voudrais jamais, quelque fut le prix,
travailler pour une entreprise qui ne me laisserait pas écrire du code open source
Python. Dans mon autre vie, je suis un doctorant en physique, et méme si les publi-
cations de recherche sont ouvertes a tous, le secret qui entoure le travail de recherche
m’oppresse souvent, en comparaison a mes travaux dans le monde de I'open source.

Merci pour votre lecture et régalez-vous avec ce livre !

Sincérement,

Stephan

A propos de Stephan Richter

Stephan Richter est étudiant en doctorat de physique a I'université de Tufts (Sommervile, Massachusetts,
USA). Il fait partie de la communauté depuis 1999 et a participé a beaucoup de projets communautaires,
comme la documentation et |'organisation de la premiére conférence EuroZope. Stephan a aussi travaillé
en tant que consultant pour de nombreuses entreprises travaillant avec Zope, développé beaucoup
d'extensions et publié deux livres communautaires sur Zope, et un livre sur Zope 3 (Zope 3 Developer’s
Handbook aux éditions Sams). Depuis son premier sprint Zope 3 en 2002, Stephan participe activement
au développement de ce framework et gére de nombreux sous-projets, comme I'internationalisation et la
documentation.

Table des matieres

AVvant-proposcccciermirmirmirerer . XXXI

PREMIERE PARTIE
Découverte de Pythoncooiimiimiiiiiiicireeeneanes 1

CHAPITRE 1
INtroduction. ... s e 3
Python? 3
Ducodedequalitéo i 4
Orienté objet i 4
Portable 4
Facile aintégrer i 5
Hautement productif i 5
Dynamique 6
Python etlesautreslangages L. 6
PythonetPerl 7
Ruby, PHP, Java... 7

CHAPITRE 2
Python pour quels usages 2......ccoccirmeimmmsirmenmmsirnesmmnsrnnsrassnnsss 9
Administration SySteme 10
Des API simples et efficaces 10
Manipuler des fichiers et des dossiers o .. 10
Manipuler des programmes i 11
Enwvoyer et recevoir des courriers électroniques 13
Echan ger des informations avec d' autres SYSLMes 15
Le match Perl-Python 17
SYRtaxe 17
Structures de dommées 18
Manipulation de texte 0. i 19

Conclusion 20

m Programmation Python

Prototypage rapide d’applications oo 20
Objectif dune maquettevu vttt 20
Maquette d'interfaces i 21
Maquette de bibliotheque ou Fake oo iiii 22

Exemple de prototype de bibliothéque 22

Recherche et calcul scientifique 24
Pas de paradigme imposé L 24
Facilitt de priseenmainot 24
Création ou utilisation doutils spécialisés 24

Applicationsde gestion il 25
Conception d’interface utilisateurottt 25
Stockage dedonnées i i 26

Sérialisation des objets 26

Les bases de données relationnelles iiiiinnneo.. 28

Applicationsweb 29

Enunmot... e 30
CHAPITRE 3

Environnement de développementcoimiimiimiinminnenneaans 31

Installationsous Linux 31

Installation par distribution il 32
Paguets Debian 0 it 32
Paguets RedHar 33
Distributions Mandrake et Fedora Core e, 33

Compilation des sourcesoouuiiiiiiiiiiii i 33
Etapes Ainstallation 34
Options de compilationc.iiiiiiiiinineinannon.. 34
Compilation et installation de Python 36

Gérer plusieurs versions de Python o i il 37

Installation sous MS-Windows 37

Installationsous Mac OS X 39

Premiers tests de Python en mode interactif 39

Script de démarrage du mode interactif o Lo 40

Lechoixdunéditeur i 41
La coloration syntaxiqueottt et vt inninnaneenn, 42
La standardisation automatiquec.iuiiiiiiniinnen... 43
Les raccourcis clavier et lesmacros i 43
Dédition multipleottt 43
Le repliement de code et larecherche 43

Lrautocomplétiont 43

Table des matiéres m

DL'interpréteur et le débogueur embarqués 44
Lalicenceo 44
Les plates-formes reCONMUESs . .« o v vvvvitn vttt 44
Enunmot... 46

DEUXIEME PARTIE

Eléments du langageccoomiimiimiimeiinennmsinsnsesnnans 47
CHAPITRE 4

Syntaxe du langage.........cccccimmmmiimmmiimmesiin . 49

Llinstructionprint i 50

print devient fonction i 50

Lescommentairesoo ittt e 52

Modélededonnéest 52

Les ttérauxttt e 54

Littéraux alphanumériquesueun ittt e 54

Normes ASCIT et Unicodeo v et 55

Evolution de 'Unicode de Python2a Python 3 56

Caracteres SPEciauxo 57

Littéraux numeériquesttt 58

Littéraux pour les entiers i 59

Littéraux pour les valeurs a virgule flottante 61

Littéraux pour les nombres complexes 62

Lestypesstandards 62

Les types avaleur uniqueoouiuininiinininiiinii ., 63

INOTIE o e e 63

NotImplemented 0. i uiiiiiiiiiiiinnina. 63

EILpsis oo oo 64

Lesnombres 64

Les nombres entiers e e 64

Les nombres a virgule flottante 65

Les nombres complexes 66

Lesdécimaux e 66

Les s€quences . . oo oo v it 66

Les séquences immuables i oo 67

Les séquences modifiables i i oo 72

Les mappings . ..o vvvu it 76

Lesopérateurs i 81

Opérateursde baset 81

AULTES OPETATEULS . . . vttt et e et e e e e et et 82

Xiv

Programmation Python

Modulo 82
INEGALIONot 83
Tnversion 83
Puissance 83
Appartenance 83
Opérateurs binaires i 85
Opérateurs de comparaisonovuiiiin i, 85
Principes de la comparaison o ool 86
Ordre de traitement des opérations, 86
Construction de comparaisons complexesc.oviuiininn.... 87
L'indentation i 87
Les structures conditionnelles 88
Linstruction if .« .. e 89
Linstruction fOr.dn ...ttt e 89
Linstruction while i 91
Linstructionwith 92
Enunmot... 95
CHAPITRE 5
Structuration du code ... 97
Fonctions 97
Contexte d’exécution et directive global 98
Directive return . ..o e 99
Parameétres dune fonctiono 100
Paramétres explicites et valeurs par défaut, 100
Les parametres non explicites i i 102
Les parametres arbitraires i 103
Collisions de paramétres i, 104
Signatures multiples de fonctions 0 o oo i 104
Directive lambda 105
Documentation strings (docstrings) ..., 105
Decorators ..o 106
ClaSSeS . o oo 111
DEéfiNItion ... 111
Espacedenoms 112
Parameétre self 113
Héritage . .. oo e 113
Heritage multiple 114
Surcharge des attributs o 115
Constructeur et destructeurttt 116

Atributs Privés . ..ot e 117

Table des matiéres m

Méthodes spécialeso.ii i e 119

Représentation et comparaison de lobjet 119

Utilisation de lobjet comme fonction, 121

Acces aux attributs de Pobjet e 121

Utilisation de l'objet comme confeneurc..... 122

Utilisation de lobjet comme type numérique 124

New-style classest 126

Le nouveau Method Resolution Order00 iiuieinn.. 127

Constructeur SEQtIque it 128

Surcharge de type() par metaclass 0 . 129

Descriptors 130

Properties 131

02 o e e e 132

Decorators pour les classes i i 133

Modules e 133

Directive Importo oot 134

Primitive reload it 135

Directives from et aso v vttt 136

Paquets 137

Organisation dun paquetottt 137

Import™ et _all 138

Références relativeso voi i e 139

Exceptions 139

Exceptionsdulangage i il 140

Classes d'exceptionsde base 141

Classes COMCTELeso ettt et 142

try.except..else 142

try.finally ..o 144

try.except.finally 144

Les list comprehensions i 145

Generators €titeratorsc.uuuut ittt e 147

Jterators ..o e 147

LTS 1 ' < 148

Generator expression (ZENEXP) vvvvvuttun e e, 149

Enunmot.. e 150
CHAPITRE 6

Les Primitivesccoiiieiieimireirerns e n s s n s nmn e 151

Primitivesdulangage i il 152

AMIPOTE ottt et e e e e e e 152

ADS 153

m Programmation Python

Al 153
ATIY & ottt e e e e e e e e e 153
APPLY . ¢ e 154
callable . .. 154
T 154
classmethodo 154
CIMP &ttt et et e e e e e e 156
COBICE « v v e et e e e e e e e e e e e e e e e e e 156
COMPIlE. ottt 157
delattr. .o 158
dir. o 158
divmod . .. 160
EIIUIMIEIALE .« o o v v e ettt e e e e e e e e e et 160
VAl L 160
EXECTIlE © ot 161
o~ X 161
31 1< 161
513 S 163
EtAtr. L o e 164
globals 164
MaSattr. oo 165
hash . 165
LD oo 165
heX . 166
T 166
IPUL. o ettt e et e e e e e e 167
00X 167
R %<3 o WP 167
ISINSEANICE v ot e e e e e e e e e e e e e e 168
1SSUDCLASS. & v oo 168
<2 o 169
Lo . 169
JCENSE. .« v vttt e 170
LSt vt e 171
JoCals. . oot 171
002 P 171
V2 < 172
% 5o Y 172
oY S 173
05153 173

Table des matiéres m

POW o ettt e e e e e e e e e 174
PIOPEILY & o e e ettt ettt e e e e e e e e e e 174
QUIT. + et et e e e e e e e e e 175
TANZE. © ottt ettt e e e e e e e e 175
N 31U 176
LEAUCE . o e e, 177
reload . .o 177
3C] 5 177
TOUNd .« ot e e 178
S+ e e e e 178
Yoy 7.1 o PP 179
S 179
SOTEEA .« v v ettt e 180
staticmethodo e 181
] S 182
100 '+ VA 182
SUPEI. & o ettt ettt e e e e 183
15/ 1SR 184
15/ 1SR 184
L0 L o) ¥ 185
UNICOAE. « v ottt e e e e 185
VTS e+ e e e e e e e e 186
KEAILZC. « ot vt ettt et et e et 186
2D e e e e e e 186
Exceptionsdulangage il 187
Brreurs . . .o 187
ASSErHIONETTOr o o e e e e 187
ALributeError 188
EOFETTor ... e 188
FloatingPointError 188
TOETT0r @ ot e e 188
ImportError oo 189
IndentationErroro 189
IndexError 189
KeyError 189
KeyboardInterrupt 0. i 190
MemoryError 190
INAMEETIOT .\ v o e e e e 190
NotImplementedError 0 iiiiiiiiineiineon.. 190
OSETTOT .« o o e et e e e 191

OwverflowError 191

m Programmation Python

ReferenceErroro 191
RuntimeError e 191
StopIterationt 191
SyntaxError 191
SystemETror 192
SYstemEXIE « ... 192
TabETror e e 192
TYPeETTor oo 192
UnboundLocalError e e e 193
UnicodeEncodeError e 193
UnicodeDecodeErrort 193
UnicodeTranslateError e e 194
ValueError e 194
WindowsError e 194
ZeroDivisionError ... 194
AVErtiSSEIMENTS & . v v vttt et e e e e 194
UserWarning 195
DeprecationWarning 195
FutureWarning 195
OwverflowWarning 195
PendingDeprecationWarning i 195
RuntimeWarning i 196
SyntaxWarning 196
Enunmot... ... 196
CHAPITRE 7
Conventions de codage.........icurrmuirmmsirmsirnmssrmsirnmsmrnssrnnssnnssrnnssns 197
Miseenpageducode i 198
Indentation 198
Taille maximum d'une ligne i 198
COMMENTAITES . . vt vttt ettt et et e e e e 199
Commentaires simples 200
Commentairesen findeligne i, 200
Blocs de commentaires 200
Documentation strings ou docstrings i i 201
Espacementducode i i 202
Espaces dans les expressions et définitions 203
Conventionsdenommage i il 204
Modules . .. oot 205
ClaSSES & v 206

Fonctions et variables globales d'un module, méthodes et attributs d’'une classe 206

Table des matiéres m

COMStANLES &+ v v ottt e e et e e 207
Structured'unmodule 207
En-tete ... 207
Interpréteur oo i 207

Encodage 207

Copyright ef licence 208

TaGS o o e 208
Docstringdemodule 208
Variables globales spécifiques i i i 209
Clauses dIMportationsoouiuneun e eenennennenennennnn. 209

Les Jokers . v v e 209
Organisation des clauses i 210

Variables globaleso 211
Fonctions et classes, le corpsdumodule 211
Structuration dune classe 211

Conseils pourle choixdesnoms 212
Régles générales i 212
Dusens e 212

Choix delalangue i 213

Unicité des noms e 213

La bonne longueur 213

Eviter le mélange domaine/technique 213

Regles pour chaque typeo 213
Modules @ 213

Classes . oo e e e 214

Meéthodes et fonctions i 214

Variables 215
Enunmot... e 215

TROISIEME PARTIE

La bibliotheque standardccoceimmiimimiiiiciecreneans 217
CHAPITRE 8

Principaux modules..........c i 219

Interaction avec l'interpréteur 220

S e e e e 220

ATGU oottt e e 220

executable 220

o P 220

m Programmation Python

MOAUIES . . . o e 221

last_type, last_value, last_traceback 221

PALh oo 221

Platform 221

Stdin, stdout ef Stderr 222

ACCES AUSYSIEIMEottt ittt 222
08 4 e e e e 223
Opérations sur les descripteurs de fichiers 223
Manipulation des fichiers et répertoiresoiiiiiii... 225
Manipulation des processusoouuiniininninine. 233
Informations sur le systéme il 239
SUDPIOCESS ..ottt 241

Call o e e 241
cassPopen 241

os.path ..o 243
platform 245
Utilitaires fichiers e 247
Shutil . oo 247

5 247

COPY2. oot 247

COPYEFCE . oot et et e et e e 247

FIMEVEE o o o o o v e e e e e e e e e e 248

TROUC . o v v v e e e et e e e e e e e e 248

dircache . ..o 249
filleemp ..o 249
27 249
cassdiremp ... 249

Outils de compression i 251
ZZIP e 251

class GzipFile. oo 251

OPEM © ittt 252

ZIPHle . o 254

class ZipFile. o o 254

class ZipInfo. 256

B_ZIPAile ..o 256
Programmationréseau o i oo 256
UrlliD D L 257
fEpLib o . 260

Enunmot... ..o 263

Table des matiéres m

CHAPITRE 9
Principaux modules, partie 2........cccoiciiminminninneirns s 265
Persistance 265
CPICKlE .« . e 266
BUMP. o oot 266
load. 266
AUMPS . oo 267
loads 267
ShElVE . 268
OPETL « o oo e e 269
Conversion, transformationdedonnées 270
DasEhd . . 270
bbdencode 270
b64decode e 270
haslib .o e 271
haslib.mdS e 271
class mdS . . e 272
hashlib.sha e 272
Calculs numériques. 273
Math o e 273
fonctions de conVersion 273
Jonctions trigonomertriquesl 274
COMSEAMLLS o v v e e e e e e e e e e ettt e e e e e e e 275
Structuresdedonnées 276
AITAY & o ettt ettt e e e e e e e e e e 276
AITAY . o oo i et e e e e 276
ADC 278
COLLECTIONS .« v v vt e e e e e e e 281
Letypedeque 281
Le type defaultdict 282
La fonction namedtuple 284
Les Abstract Base Classesot iieeiiaen 284
decimal ... 285
class Decimal e 285
cStringlO L. 286
cass StringlO. o 286
Utilitaires diversttt e 286
Yo« L S 287
PAb e 288

m Programmation Python

Alas et fichier pdbre 292

Le mode post mortem 293

GOTPASS + v v et 294

COPY « e e et e e 295

o 3 1 296

Affichage des différences 296

Restauration e 298

L0 0T 299

Epoch ..o 299

UTC/GMT . . . e e e e e e 299

Fonctions de manipulation 0. 300

Formatagedesdates i 301

datetime o oo e 303

casstimedelta 303

cassdate 304

ClASS HIME . .« o e 306

class datetime 308

TAMAOTL © . o o e e e 308

Enunmot... e 309
CHAPITRE 10

Principaux modules, partie 3.........coiiiiimiiiirer s 311

Lemoduleitertoolst 311

Chain. « ot 311

COUNE vttt ettt ettt e e e e e e e e e et e e e e e e e e 312

CyCle L 312

dropwhile 313

groUPDY. . L 313

3L 314

At alse . ..ot te 314

IAD « ¢ttt et et e e 315

ISII0E e e 315

LZID o o et e e 315

IZIp_longest. . . oo it e 316

FEPCAL « « v v v vt et et et e e e e e e e e 316

STATIIIAP. &« vttt et et ettt et e e e e 316

takeWhile i 317

B v et e e e e e 317

Lemodulere 317

Expressions régulieres ? 317

Notation pour les expressions réguliéres, 319

Table des matiéres m

Syntaxe des expressions régulieres i i i 319
Symboles simples 319

Symboles de répétition 321

Symboles de regroupement L o o 323

Exemples plus complets i 324

Fonctions et objetsdere 325
Lemodule Tkintert 328
Programmation événementielle o il 328
Laclasse Tk ..o e e e 328

Les widgets de base de Tkinter i 329
Positionnement dun widget i 330

Options et méthodes dun widget, 331

Binding d’événements 339
Application type avec Tkinter i 341
Extensions pour Tkinter i i 343

Le module lib2to3 etle script2to3 343
Enunmot.. e 345

CHAPITRE 11

EXEercices COrrigescouummmmmmmmmmnirmnrnmnrnnssnmssnnsssnsssnnsssnsssnnssnnns 347
Mode demploiduchapitre i 347
Programme 348

Exercice 1 : programme paramétrableo ... 348
Description 348
Pomntsabordés e 348
SolUtion e 348
DISCUSSION « o o oo e 349
EXLension 351

TeXte . oo 351

Exercice 2 : le chiffrementde César 351
Descriptioniiii 351
Points abordés 352
SOIULION . . o o e 352
Discussion 352
Extension e e 353

Exercice 3 : transformer les adresses e-mails et les URL d’un texte en liens ..353
Description 353
Points abordes 354
SolUtion 354
DUSCUSSION + o oo e e e e e e 354

EXtension 355

XXIV Programmation Python

Exercice 4 : trier des phrases suivant le nombre de mots 356
Descriptiont 356
Points abordes 356
SOMEION . v o e 356
DISCUSSION © oo e e 357
Extension 357

Fichiers 358

Exercice 5 : recherche et remplacement de texte 358
Description 358
Points abordeés 358
SolUtion 358
DUSCUSSION © o v o e e e e e e 359
EXLensiono 360

Exercice 6 : recopie conditionnelle et récursive de fichiers 360
Description 360
Points abordés 360
SolUTIOn . . . o e e 360
DiIscussion e 361

Exercice 7 : ajout d’un fichier dans une archive zip 361
Description 361
Points abordés e 361
SOlUtIon e 361
DISCUSSION © o o v e e e e 362
EXIension 363

Threadsetprocessus i 364

Exercice 8 : Tkinter, recherche d’un texte dans des fichiers en tiche de fond .364
Description 364
Pomntsabordés 364
SOUTION .« . o e e 364
Diiscussion e 368
EXIeNSION © o o oo e e 368

Exercice 9: Unwebspiderrapide oL, 369
Description 369
Points abordés 369
SOlUtIon e 369
DIUSCUSSION © o o e e e 371
Extension 371

Persistance e 372

Exercice 10 : rendre persistants tous les objets d'un programme 372

Description 372

Points abordes 372

Table des matiéres m

SOIULION . . o o 372

DISCUSSION . o v e e e e e 373

Extension e 374

Web et réseauot 374
Exercice 11 : vérificateurde lienso 374
Description 374
Pointsabordés 375

SolUtion 375

DUSCUSSION « o oo v e e e e e e e 375

EXLension e 375

Exercice 12 : aspirateur de pageweb i i 375
Description 375

Points abordés 376

SOMEION © . o o 376

DISCUSSION .. . v oo 378

Extension 379

Exercice 13 : récupération d'un résumé des nouveaux e-mails regus 379
Description 379
Pointsabordés e 379

SOMEION .« o o e 379

DiISCUSSION « o o oo 381

EXIenSION oo oo 382

Davers ... 382
Exercice 14 : systéme de documentation en ligne des modules 382
Description 382
Pointsabordes 382

SOlUtion e 382

Discussion e e 383

Extension e e 384
Enunmot... 384

QUATRIEME PARTIE
Techniques avanCées IIIlllIIIllIIIlIIllIIIIlllIIIIIIIIIIIIIIIIIIIIIIII385

CHAPITRE 12

Programmation dirigée par les tests.......ccccoimmiiimiiiieiiineennns 387
A quoiserventlestests® 388
Barriereculturelle L 388
Principes 389

TeSts UNILAITES .« . oot e et e e e e e e e e e e 389

m Programmation Python

Construction d'un test unitairec.c..uiiuiunmnnnnnnnn . 390

Evolution des use caseso oo vun e 391

NON=TEGTESSION . . oo v ittt e 392

Regroupement des fests i 394

Tests plus complexes : raconter une histoire 394

Les bouchons 395

TeSECOVETAGE « . o oo ettt e 400

Qualité des tests o e 400

Tests fonctionnelsttt 401

Tests de linterface i 401

Tests de lergonomieuiuiiniineineineinenenn.. 402

Dépendance forte & loutil utilisé et au type dinterface 402

Outils ..o 403

UIIEEEST o v v vt e e e e e e e e e e e e e e 403

Définition des test cases 404

Organisation d'une campagne de tests 407

dOCLESES v vttt e 411

Exécution des doctests 411

Syntaxe des doctests o 412

Environnement et options dexécution 0.0, 415

doctests dans un fichier texte SEparé i e 420

Scriptdetest 423

COVerage ..o v it 424

Intégration dans 'environnement d'un projet 427

LefuturdePyUnit 428

Enunmot.. e 430
CHAPITRE 13

Bonnes pratiques et optimisation du code.........cccevrmnireiinnnnes 431

Quandoptimiser? 432

Profiling 432

Meéthodes de profiling i 433

Outilsde profiling i 433

Lemodule profile 433

Le module hotshot e 434

Lemodule cProfile 435

Lemodule pstats 436

Botshot et PStats 437

FIMEIE « v o o ot e e e e e e e e e et e e 438

Amélioration des performances 440

Code patternsottt e 441

Table des matiéres m

Quel type de conteneur choisir 2 i 441

Trier des valeurs 441

Concaténer des chainest 444

Remplacer certains tests par une gestion d'exception 445

Minimiser les appels et rapprocher lecode 446

Utiliser les list comprebensions 0ciiiiuiiain.. 448

Utiliser les generators et les genexp 449

Préférer les fonctions d'itertools oo i 449

Caching . . oot 450

Multithreadingottt 452

Ressources partagées : difficultés de programmation 452

Le module threading it 454

Lemodule Queneot 462

Le Global Interpreter Lock ef multiprocessing 463

Le coté obscur de la force : extension dulangage 464

Environnement de compilation, 464

Binding de bibliothéque 0. 465

Création d'un module dextension0 0. 469

Optimisation de l'utilisation de mémoirevive 475

Economie de mémoireo 476

Optimisation du bytecode i i 477

Psycoet Cythonot 477

Psyco oo 477

Cythomo 479

Les tests de performance continus 480

Rapport sur les performances o il 481

Tests de performance ciblés i il 481

decorator timed e 482

Enunmot.. e 485
CHAPITRE 14

Programmation orientée objet ..., 487

Principes généraux 487

Typage, classification et encapsulation, 488

Typage de Liskovottt 488

Encapsulation 490

Heéritage et polymorphisme 492

Heritage 492

Polymorphisme e 493

Duck typing ef inferfaces 495

Relations entre objetst 496

m Programmation Python

Relation simple 497

Relation multiple i i 497

Héritage multiplet e 498

MeEtaclasses . . ovvi i 499

Garbage collecting i 499

Design patterns orientésobjet o 500

Patterns de génération dobjets i il 500

Singleton et Borg 501

Factoryo 504

Patterns fonctionnelst 505

VISIEOT © o o e e e e e e e 505

OBSErUET . . o\ v e e e e e e e 507

Memento 510

Chain of responsibility 513

SEALE . o o 516

Patterns structurelsottt 518

Adapter 518

Facade e 520

Proxy ... 521

Enunmot... 522
ANNEXE A

L'histoire de Python.......... e e 523

Lelangage ABC 523

Environnement de développement i ... 523

Typesdedonnéesottt 524

Indentationducode i 524

Leprojet Amoeba 525

Le CNRI 526

PythonLabs et BeOpen.com 526

Python Software Foundation et Digital Creations 527

PythonetZope 527
ANNEXE B

Bibliothéques tierces.........cciimmiimiiimcinmsnre s 531

Installer une bibliothéque externe 532

Utilisation de setuptoolsouuiiuiiniiiiii. 533

Basesdedonnées 535

Gadfly 535

PYSQLIte .o 535

Table des matiéres m

mysql-python oot 535
PSYCOPE - ¢ v e et et e e e e e e e e e e e e e e 536
ODBC . 536
python-Idap 536
SQLAIchemyot 536
Traitementdetexte 536
XMl L 537
Beautiful Soupo 537
Packaging, distribution o 537
Tests fonctionnels et controle qualité 538
Twill 538
Funkload o 538
GUITEST . oottt et et e e e e e 538
PyLint . ..o 539
Pyflakes o 539
MS-Windows 539
Win32 EXtensionsuuiiiiuiiiiiiiii i 539
WIN32COM .ottt 540
Interfaces graphiques i 540
WXPython . ..o 540
PyQ T 540
PyGT K .o 540
Reporting etconversion i 541
ReportLab 541
RM L 2P .o 541
reStructuredTexto 541
rest2web L. 542
Jeuxet3D ... 542
Pygame e 542
Soya 3D L. 542
VPYThon . oo 542
PyOpenGL o 543
Audioet Vidéo 543
PyMedia o 543
PyAlsa . ..o 543
Bibliothéques scientifiques i i 543
Numerical Python 544
SciPy L 544
Biopython 544

m Programmation Python

ANNEXE C
Sites, flux RSS, blogs et autres friandises...ccccovmmeiiiennnnnee 545
Flux RSS .. 545
Blogso 546
Sates L e 547

Avant-propos

« wOO2 I know Python! »
« Wow ! Je maitrise Python maintenant ! »

— Neo, retirant son casque

Ce livre traite de Python, un langage de programmation de haut niveau, orienté objet,
totalement libre et terriblement efficace, congu pour produire du code de qualité, por-
table et facile a intégrer. Ainsi la conception d’'un programme Python est trés rapide et
offre au développeur une bonne productivité. En tant que langage dynamique, il est
trés souple d’utilisation et constitue un complément idéal a des langages compilés.

Il reste un langage complet et autosuffisant, pour des petits scripts fonctionnels de quel-
ques lignes, comme pour des applicatifs complexes de plusieurs centaines de modules.

Pourquoi ce livre ?

Il existe déja de nombreux ouvrages excellents traduits de I'anglais qui traitent de
Python voire en présentent l'intégralité des modules disponibles. Citons Python en
concentré, le manuel de référence de Mark Lutz et David Ascher, aux éditions
O’Reilly, ou encore Apprendre a programmer avec Python de Gérard Swinnen, aux
éditions Eyrolles, inspiré en partie du texte How fo think like a computer scientist
(Downey, Elkner, Meyers), et comme son titre 'indique, trés pédadogique.

Alors, pourquoi ce livre ?

m Programmation Python

Si ce livre présente comme ses prédécesseurs les notions fondamentales du langage, avec
bien sir des exemples originaux, des choix dans la présentation de certains modules, et
une approche globale particuliére, il tente également d’ajouter a ce socle des éléments
qui participent de la philosophie de la programmation en Python, a savoir :

* des conventions de codage ;

* des recommandations pour la programmation dirigée par les tests ;

* des bonnes pratiques de programmation et des techniques d’optimisation ;
* des design patterns orientés objet.

Méme si chacun de ces sujets pourrait a lui seul donner matiére a des ouvrages
entiers, les réunir dans un seul et méme livre contribue a fournir une vue compléte de
ce quun développeur Python averti et son chef de projet mettent en ceuvre quoti-
diennement.

AN

A qui s’adresse I'ouvrage ?

Cet ouvrage s’adresse bien sir aux développeurs de tous horizons mais également aux

chefs de projets.

Les développeurs ne trouveront pas dans ce livre de bases de programmation ; une
pratique minimale préalable est indispensable, quel que soit le langage utilisé. I n'est
pour autant pas nécessaire de maitriser la programmation orientée objet et la con-
naissance d'un langage impératif est suffisante.

Les développeurs Python débutants — ou les développeurs avertis ne connaissant pas
encore ce langage — trouveront dans cet ouvrage des techniques avancées, telles que la
programmation dirigée par les tests, les patterns efficaces et I'application de certains
design patterns objet.

Les chefs de projets trouveront des éléments pratiques pour augmenter Uefficacité de
leurs équipes, notamment la présentation des principaux modules de la bibliotheque
standard — pour lutter contre le syndrome du NIH (Noz Invented Here) —, des con-
ventions de codage, et un guide explicite des techniques de programmation dirigée
par les tests.

Avant-propos m

Guide de lecture

Le livre est découpé en quatre parties qui peuvent étre lues de maniére relativement
indépendante, en fonction des besoins.

La premiere partie présente une introduction au langage, décrit les différents
domaines d’utilisation de Python, ainsi que la mise en place d’'un environnement de
développement ; elle s’adresse principalement aux lecteurs qui découvrent Python.
La deuxi¢me partie est consacrée a la présentation du langage, de la syntaxe aux con-
ventions de codage, en passant par les primitives. Cest un référentiel complet utile
en toutes circonstances.

La troisieme partie présente les modules de la bibliothéque standard les plus fré-
quemment utilisés, pour ne pas rechercher ailleurs ce qui est déja disponible. Cette
partie s’'achéve sur une petite série d’exercices.

Enfin, la quatri¢me partie regroupe les techniques avancées, a savoir la programma-
tion dirigée par les tests, les bonnes pratiques et techniques d’optimisation, et enfin
des techniques de programmation orientée objet.

Ce livre s’'achéve par une série d’annexes qui présentent I'histoire de Python, une liste
de bibliotheques tierces, une liste de sites, blogs, et autres sources d’'information de la

planete Python.

Remerciements

Ce livre n'aurait jamais été possible sans le soutien et 'aide de :

Patrick Tonnerre, Jean-Marie et Gaél Thomas, Muriel Shan Sei Fan, Anahide
Tchertchian, Olivier Grisel, Jean-Philippe Camguilhem, Laurent Godard, Stephan
Richter, Guido van Rossum, Matthieu Agopian, Yoann Aubineau, Eric Brehault,
William Famy, Olivier Deckmyn, Thomas Desvenain, Jean-Philippe Camguilhem.

Amina et Milo !
Tarek Ziadé
tarek@ziade.org

programmation-python.org

XXXIV Programmation Python

ARTHUR :

Lancelot | Lancelot ! Lancelot !

[mégaphone de police]

Lancelooooooooot !
LANCELOT:

Bloody hell, mazis que se passe-t-il donc, mon Roi 2
ARTHUR :

Bevedere, explique-lui !
BEVEDERE :

Nous devons te parler d’un nouveau langage de programmation : Python
LANCELOT:

Nouveau ? Cela fait bien dix ans qu’il existe, et je ne vois pas en quot cela va nous
aider a récupérer le Saint-Graal !

BEVEDERE :
Saint-Graal, Saint-Graal...
[soupir]

Tu ne peux pas penser a des activités plus saines que cette quéte stupide de temps en
temps ?

ARTHUR :

[sort une massue et assomme Bevedere avec]

Son explication était mal partie de toute maniére.
GARDES FRANCAIS :

Est-ce que ces messieurs les Anglais peuvent aller s'entretuer plus loin 2

Ne voyez-vous pas que nous sommes concentrés sur notre jeu en ligne 2
ARTHUR :

Ce tunnel sous la Manche, quelle hérésie !

[racle sa gorge]

Lancelot, assieds-toi, et écoute-mot. (et ferme ce laptop, bloody hell)
LANCELOT:

[rabat I'écran de son laptop]

Avant-propos m

ARTHUR :
La quéte a changé. Tu dois maintenant apprendre le langage Python,

et découvrir pourquoi il est de plus en plus prisé par mes sujets.
LANCELOT:

Mais...
ARTHUR :

1l n’y a pas de mais !

[menace Lancelot avec sa massue]

Je suis ton Roi. dot slash.

Prends ce livre, et au travail !

GARDES FRANCAIS :

Oui, au travail, et en silence !

PREMIERE PARTIE

Découverte de
Python

Cette premiére partie, qui est trés courte, contient trois chapitres dédiés a la
découverte de Python.

Le premier chapitre est une introduction au langage, qui détaille les caractéristiques
présentées dans I'avant-propos, et renvoie le lecteur vers les chapitres consacrés,
puis effectue une comparaison avec d’autres languages.

Pour compléter cette introduction, le deuxi¢me chapitre présente les domaines
d’utilisation les plus courants de Python.

Enfin, le dernier chapitre couvre la mise en place d'un environnement de
développement, de I'installation du langage au choix d’'un éditeur.

Mettre en place un environnement de développement agréable conditionne la
lecture de la suite du livre : de nombreuses portions de code sont fournies et avoir
un prompt et un éditeur a portée de main permet de les tester directement.

Introduction

Python — why settle for snake o1l when you can have the whole snake 2

« Python — Pourquoi se contenter d’huile de serpent quand
on peut avoir le serpent tout entier ? »

Mark Jackson

En guise d'introduction, ce premier chapitre présente quelques caractéristiques de
Python et renvoie aux chapitres consacrés. S’ensuit une comparaison avec d’autres
langages. Le souhait n'est pas d’étre exhaustif, mais plutét de situer Python dans
esprit des développeurs familiers avec d’autres langages.

Python ?

Pour reprendre I'énoncé de I'avant-propos, Python est un langage :
* congu pour produire du code de qualité, portable et facile a intégrer ;
* de haut niveau, orienté objet et totalement libre ;
* hautement productif ;

* dynamique.

Découverte de Python

PREMIERE PARTIE

Du code de qualité

Grice a sa syntaxe claire, cohérente et concise, présentée au chapitre 4, Python
permet aux développeurs de produire du code de qualité, lisible et maintenable.
Ecrire du code Python est un exercice agréable, méme en respectant les conventions
de codage, présentées au chapitre 7.

Fourni des le départ avec des modules de tests, Python est un langage agile. Le terme
agile est originellement issu de la méthodologie de programmation agile (Beck et
Al), trés proche de la programmation itérative. Cette méthodologie, qui réduit les
risques liés a la conception de logiciels, introduit entre autres des principes de tests
continus du code.

» http://www.agilemanifesto.org

Le chapitre 12 présente les techniques de programmation dirigée par les tests appli-

quées a Python.

Orienté objet

Meéme si elle n'est pas imposée, Python permet la programmation orientée objet.
Tous les mécanismes objet essentiels sont implémentés et toutes les données mani-
pulées sont des instances de classes, comme pour les langages SmallTalk ou Ruby.

Enfin, le code peut étre structuré en modules (fichiers) qui sont ensuite importables
dans l'interpréteur. Ce découpage, inspiré de Modula-3, permet d’organiser le code
et son utilisation par des espaces de noms, et aussi de faciliter I'extension du langage
par des bibliotheques tierces compilées dans d’autres langages.

Le chapitre 5 explique comment écrire des classes et structurer le code en modules et
paquets, et le chapitre 14 présente quelques design patterns (motifs de conception)
orientés Python.

Portable

Python fonctionne sous diftérentes variantes d’'Unix, Windows, Mac OS, BeOs,
NextStep, et par le biais de différentes implémentations.
Les implémentations actuelles de Python sont :

* Cpython : implémentation en C, qui est I'implémentation par défaut de Python
et la plus répandue ;

Introduction “
CHAPITRE 1

* Jython : implémentation en Java, qui permet d’exécuter du code source Python

dans un environnement Java, et d’utiliser des modules Java dans le code Python

de maniére transparente ;
* PyPy : implémentation en Python du langage Python ;
* IronPython : implémentation pour .NET et Mono ;
* Stackless Python : une variante de CPython, légerement plus rapide.

I1 existe bien stir des extensions spécifiques a chaque plate-forme, mais 'ensemble
des primitives du langage et la majorité des extensions de la bibliotheque standard
sont disponibles sur toutes les plates-formes. En d’autres termes, un programme
congu sur une plate-forme fonctionnera directement, sauf programmation spéci-
fique, sur d’autres plates-formes.

CPython, implémentation de référence pour cet ouvrage, peut étre installé et utilisé

sous Windows, Mac Os et GNU/Linux (voir chapitre 3).

Facile a intégrer

Un programme écrit en Python s’intégre trés facilement avec d’autres composants
logiciels. Il est possible par exemple d’utiliser directement des bibliothéques externes
ou encore d'intégrer du code C ou C++ comme l'explique le chapitre 13.

Hautement productif

La conception d’applications en Python est trés rapide car certains aspects de pro-
grammation sont gérés automatiquement, comme la gestion des ressources mémoire
et le typage des données, décrits au chapitre 4.

Grice a des types de base trés puissants et des primitives de haut niveau, présentées
dans le chapitre 6, un programme Python est simple 4 concevoir et concis. Un pro-
gramme Python est en général 3 4 5 fois plus court quun programme C++ équivalent.

Ces qualités font de Python un langage idéal dans beaucoup de domaines, comme le
chapitre 2 le décrit.

Enfin, la bibliothéque standard de Python est trés complete, et permet de répondre
aux besoins communs de programmation. Les chapitres 8, 9 et 10 présentent les
modules les plus fréquemment utilisés.

Grace au modeéle Open Source, la communauté des développeurs Python est en
outre trés productive et de nombreuses extensions (voir annexe B) gravitent autour

du langage

Découverte de Python

PREMIERE PARTIE

Dynamique

Python est un langage dynamique : dans la plupart des implémentations, le code
source n'est pas compilé contrairement a des langages comme C ou Pascal, mais exé-
cuté a la volée. On parle alors de langage interprété.

CuLTURE Langage interprété et langage compilé

Un langage est dit interprété lorsque le systéme traduit et exécute chaque ligne d’un programme a la
volée. Le résultat d'une modification peut étre constatée en relangant I'exécution du programme.

A l'inverse, un langage compilé transforme le programme en une série d'instructions machine par le biais
d'une étape de compilation. Celle-ci produit un fichier exécutable qui est directement compréhensible
par le processeur. La modification du fichier source nécessite de repasser par |'étape de compilation
avant de pouvoir tester la nouvelle version.

Ce mode de fonctionnement rend la programmation beaucoup plus souple puisqu’il
est possible de changer un programme en cours d’exécution, ou de tester du code en
mode interactif sans disposition particuliére.

Ce dynamisme fait partie également de la philosophie de programmation objet
Python, basée sur le duck typing, décrit dans le chapitre 14.

Linterprétation rend aussi I'exécution plus lente, mais ce défaut est surmontable
grice a de bonnes pratiques de programmation et des techniques d’optimisation
décrites dans le chapitre 13.

Les applications ou les performances sont un facteur critique ne seront pas écrites a
100 % en Python, mais pourront avantageusement étre nivelées : un noyau codé en
C, C++ ou tout autre langage compilé, et une couche supérieure en Python, pour
toutes les parties non critiques.

Le langage Cython, décrit dans le chapitre 13, permet en outre de conserver les béné-
fices de la syntaxe de Python tout en manipulant des structures compilées en

langage C.

Python et les autres langages

Sivous étes habitué a un autre langage, cette section, sans vouloir faire un comparatif
exhaustif, présente les différences majeures entre Python et d’autres outils.

Introduction _
CHAPITRE 1
Python et Perl

Le chapitre 2 fournit des éléments de comparaison avec le langage Perl, relatifs a la
programmation systeme. En attendant, voici un message humoristique publié sur la
mailing-list Python il y a quelques années, qui décrit bien une des différences
majeures entre Python et Perl : la lisibilité.

Comparaison de Perl et Python par Yoda
Sur la planéte Dagobab,

avec Yoda accroché dans son dos, Luke grimpe sur une des vignes qui poussent dans le
marais pour atteindre le laboratoire de statistiques de Dagobah.

11y continue ses exercices, greppe, installe des nouveaux paquets,se connecte en root, écrit des
nouvelles versions de scripts en Python pour remplacer des scripts Perl vieux de deux ans.

Yoda : Ecris du code ! Oui. La Sforce dun programmeur découle de la maintenabilité de son
code. Mais méfies-toi de Perl! Syntaxe laconique, plus dune maniere de faire quelque
chose | Le coté obscur de la maintenabilité Perl est. Si une seule fois par le chemin obscur tu
tengages, pour toujours ta destinée sera marquée.

Luke : Est-ce que Perl est mieux que Python 2
Yoda : Non... non... non. Plus rapide, plus facile, plus séduisant.
Luke : Mais comment saurais-je pourquoi Python est mieux que Perl ¢

Yoda : Tu sauras. Quand le code écrit il y a 6 mots de relire tu tenteras.

Ruby, PHP, Java...

En janvier 2005, lors de la premiére édition de ce livre, ce chapitre présentait un
comparatif entre Python et les autres langages. Ce comparatif avait du sens car la
maturité des langages a I'époque nétait pas encore trés avancée dans certains
domaines. Ruby par exemple ne supportait pas encore I’'Unicode, et PHP commen-
cait a supporter un modele objet depuis quelques mois.

En 2009, les langages de programmation modernes ont tous évolué et apportent tous
une réponse efficace dans un ou plusieurs domaines d’application, sans souftrir de limi-
tations. Cependant, ils comportent toujours des faiblesses, méme si en général des outils
complémentaires les pallient, a 'image de ce qu'Eclipse apporte a Java par exemple : des
automatismes répondent au manque d’expressivité de la syntaxe du langage.

Aujourd’hui, Python n'est certainement pas supérieur a d’autres langages. Sa philo-
sophie, qui est distillée tout au long de ce livre, est une fagon de programmer. Mais,
contrairement a des langages spécifiques comme PHP qui se focalise sur un domaine
précis, Python est universel. Il peut étre utilisé dans un grand nombre de contextes.
Les domaines d’application les plus répandus sont présentés dans le chapitre suivant.

Python pour quels usages ?

For tiny projects (100 lines or fewer) that involve a lot of text pattern matching, I am still
more likely to tinker up a Perl-regexp-based solution [...] For anything larger or more com-
plex, I have come to prefer the subtle virtues of Python — and I think you will, too.

« Pour les petits projets de moins de cent lignes qui nécessitent beaucoup de
recherche de texte, je préfere encore la solution Perl et ses outils d’expressions régu-
lieres. Pour tout projet plus grand ou plus complexe, jopte a présent pour les vertus
de Python, et je pense que vous y viendrez aussi. »

Eric Raymond

Le langage C pour 'embarqué, Ada pour les systémes critiques, Perl pour les expres-
sions régulieres, etc. Chaque langage a ses sujets de prédilection, que ce soit pour des
raisons historiques ou parce qu’il offre de réels avantages dans le domaine.

Ce chapitre décrit les différents domaines dans lesquels Python est le plus utilisé, au
travers d’exemples concrets, a savoir :

* l'administration systéme ;

* le prototypage rapide d’applications ;

* la recherche et le calcul scientifique ;

* les applications de gestion ;

* les applications web.

Cette liste n'est certainement pas exhaustive mais représente les domaines les plus
fréquemment cités.

Découverte de Python

PREMIERE PARTIE

Administration systéeme

Les administrateurs systéme ont souvent besoin de concevoir des petits programmes
pour automatiser certaines tiches. Ils utilisent généralement l'interpréteur de com-
mandes, qui offre une syntaxe basique pour concevoir des séquences d’opérations.

Toutefois ce systeme est trés limité et n'offre que des fonctionnalités de trés haut
niveau : certaines opérations sur le systéme ne sont pas possibles sans appels a des
programmes annexes.

Utiliser des langages de plus bas niveau comme le C permet de lever ces limitations,
mais la conception des scripts devient vite fastidieuse et délicate.

Python, congu a l'origine pour ce cas de figure, s'intercale entre l'interpréteur de com-
mandes et le C, en proposant un niveau intermédiaire, c’est-a-dire un shell surpuissant,
et dans le méme temps un langage de programmation plus simple et plus direct.

Bien que ce genre de besoin soit plus fréquent sur les systémes Unices (les systémes
de la famille Unix), il n’est plus rare de rencontrer des administrateurs Windows qui
aient adopté Python pour la conception de leurs scripts systeme.

Des API simples et efficaces

Un langage de manipulation d’un systéme d’exploitation doit permettre de travailler
avec ce dernier de maniére pertinente et concise. Manipuler un systéme consiste
notamment a :

* manipuler des fichiers et des dossiers ;
* manipuler des programmes ;
* envoyer et recevoir des e-mails ;

* échanger des informations avec d’autres systemes.

Manipuler des fichiers et des dossiers

La manipulation du systéme de fichiers est triviale et puissante en Python. Prenons
I'exemple d’un script dont 'objectif est de faire la copie d’'un dossier en ne conservant
que les fichiers dont la taille ne dépasse pas 1 Mo.

Recopie conditionnelle

#1/usr/bin/python

-*- coding: utf8 -*-
import os

from shutil import copytree
import sys

Python pour quels usages ? “
CHAPITRE 2

MEGA = 1024*1024

def _ignore(dir, filenames):
def _filter(dir, filename):
fullname = os.path.join(dir, filename)
big_file = os.path.getsize(fullname) > MEGA
if big_file:
print('%s trop gros' % fullname)
else:
print('%s recopié' % fullname)
return big_file

return set([filename for filename in filenames
if _filter(dir, filename)])

if __name__ == '__main__"':
copytree(sys.argv[l], sys.argv[2], ignore=_ignore)

Ce petit script multi-plate-forme utilise pour recopier une arborescence I'API
copytree du module shutil, qui gere tous les aspects inhérents au systéme de
fichiers comme les problématiques de droits d’accés ou encore les liens symboliques
qui risqueraient de faire partir le programme dans une boucle infinie.

I1 est bien str perfectible, mais témoigne du confort fourni par les API systéme de
Python : seul le code qui définit si un fichier d’'une arborescence est recopié ou non
est écrit, le reste étant déja fourni.

Cette recherche de puissance et de simplicité est une constante dans 1’évolution du
langage Python ('argument ignore de copytree a été introduit dans la version 2.6

du langage).

Manipuler des programmes

Imaginons quun administrateur rencontre un probléme avec son serveur web
Apache, qui s’arréte plusieurs fois par jour sans raison apparente. Ce probléme ne se
retrouve malheureusement que sur le serveur de production. Il faut donc réussir a le
résoudre tout en maintenant le service. Ladministrateur souhaite concevoir un petit
script qui procéde a une série de tests avant de relancer Apache.

Sans entrer dans les détails des tests opérés, voici a quoi pourrait ressembler le script

en question :

Script de surveillance d’Apache

-*- coding: utf8 -*-
import os
from subprocess +import call

Découverte de Python

PREMIERE PARTIE

from url1ib2 dimport urlopen
from url1ib2 dimport HTTPError
from urllib2 {dimport URLError
import socket

from outils import run_audit

URL_CHECK 'http://localhost:80/server-status'
CMD_START = 'apache2ctl start'

def apache_running(Q):
"""Vérifie Te statut d'Apache"""
try:
res = urlopen(URL_CHECK)
except HTTPError:
réponse inattendue (URL_CHECK désactivé ?)
mais Apache répond
return True
except (socket.timeout, URLError):
pas de réponse ou erreur
return False
return True

def check_apache():
""" surveille 1'état du daemon Apache
if not apache_running():
Tests sur le systéme
run_audit()

Apache doit étre relancé
call(CMD_START, shell=True)
if apache_running():
print('Apache relancé avec succes')
else:
print('Impossible de relancer Apache')
else:
print('Etat OK')

check_apache()

Ce script appelle une page web de statut d’Apache grice au module ur11ib2, puis
relance Apache via TAPI call du module subprocess.

Ce script est facilement portable sur tout autre systéme compatible avec Python si le
chemin vers la commande utilisée et 'URL de contréle de statut sont adaptés a la
version d’Apache.

Python pour quels usages ? n
CHAPITRE 2

Envoyer et recevoir des courriers électroniques

Apres le systeme de fichiers, la maitrise des e-mails est primordiale pour un adminis-
trateur systéme. Souvent, I'e-mail est le seul lien entre 'administrateur et 'ensemble
des utilisateurs, ou entre 'administrateur et ses serveurs. Envoyer ou recevoir des e-
mails étant trivial au niveau du shell ou intégré a 'outillage disponible sur la plate-
forme (comme Nagios), l'intérét de programmer 'envoi d’e-mails par des scripts
Python est limité.

La réception et le traitement automatique d’e-mails de structures complexes est en
revanche une opération beaucoup plus délicate. Prenons un exemple concret : I'admi-
nistrateur souhaite automatiser la mise en place des clés SSH (voir encadré) des utilisa-
teurs sur le serveur. Il propose a ces derniers de lui envoyer un e-mail contenant I'iden-
tifiant de l'utilisateur et la clé en piéce attachée 4 une adresse e-mail prévue a cet effet.

Le script a réaliser doit automatiquement récupérer ces e-mails, placer la clé sur le
serveur et envoyer un accusé de réception a lutilisateur. Les e-mails traités sont
ensuite archivés dans un répertoire Traités de 'adresse e-mail dédiée.

Mise en place automatique des clés SSH

-*- coding: utf8 -*-

from imaplib import IMAP4

from smtplib {import SMTP

from email import message_from_string
from email.MIMEText import MIMEText

def setup_key(contenu_nom, contenu_cle):
""" met en place la clé sur le systéme

[...]

nnn

def get_connectors():
"""Mise en place des connecteurs.
imap_server = IMAP4('localhost')
imap_server.login('cles@localhost', 'motdepasse')
imap_server.create('INBOX.Traités')
return imap_server, SMTP('localhost')

non

def process():
"""Gere les demandes.
initialisation des connecteurs
imap_server, smtp_server = get_connectors()

non

mise en place de 1'accusé de réception

mail = MIMEText(u'Votre clé SSH est activée')
mail['From'] = u'administrateur <root@localhost>"
mail['Subject'] = u'Clé SSH activée'

Découverte de Python

PREMIERE PARTIE

if _ _name__ ==
process()

acces a la racine de Ta boite
imap_server.select('INBOX')

def _get_payload_content(mail, index):

return mail.get_payload(index).get_payload() .strip()

Tecture des messages
for mail_id in imap_server.search(None, 'ALL')[1]:

if mail_id.strip() == "':

continue
mail_content = imap_server.fetch(mail_id, '(RFC822)')[1][0][1]
mail_received = message_from_string(mail_content)

if not mail_received.is_multipart():
mauvaise structure, 1'e-mail
devrait étre composé de deux parties
continue

expediteur
from_ = mail_received['From']

lecture nom
name = _get_payload_content(mail_received, 0)

récupération clé
key = _get_payload_content(mail_received, 1)

déplacement message sur serveur dans sous-dossier "Traités"
imap_server.copy('INBOX.Traités', mail_id)
imap_server.store(mail_id, 'FLAGS', '(\Deleted)')

place la clé sur le systeme
setup_key(name, key)

accusé de réception

mail['To'] = from_

sender.sendmail('administrateur <root@localhost>"', from_,
mail.as_string())

fermeture des connecteurs
server.expunge()
server.close()
server.logout()
sender.quit()

__main__":

Python pour quels usages ? n
CHAPITRE 2

Moins de cent lignes sont nécessaires pour mettre en place ce processus relativement
complexe, grice a la simplicité d’utilisation des modules en charge des échanges avec
le serveur de courriels.

CULTURE Le SSH en deux mots

Le SSH (Secure Shell) est un shell sécurisé par lequel les utilisateurs peuvent se connecter au serveur.
Tous les échanges sont chiffrés.

Pour qu’un serveur reconnaisse automatiquement un utilisateur au moment d'une connexion SSH, il est
possible d'utiliser des clés. Les clés SSH sont un couple de fichiers texte que I'utilisateur génére sur son
poste par le biais d'un petit utilitaire. Un des deux fichiers (la clé dite privée) reste sur le poste de I'utili-
sateur et |'autre (la clé publique) est placé sur le serveur. Ces deux clés, de la méme maniére qu'avec le
logiciel GnuPG, sont confrontées au moment de la connexion pour authentifier Iutilisateur.

Ce moyen de connexion est souvent le plus siir et parfois la seule voie proposée par |'administrateur pour
se connecter a un systeme.

Echanger des informations avec d’autres systémes

Toujours dans I'idée d’automatiser les dialogues entre le serveur et d’autres acteurs du
systeme, maitriser les différents protocoles directs d’échanges de données doit étre
aussi simple que 'envoi d’e-mails.

Prenons I'exemple des mises a jour systéme dans un parc de serveurs. La régle ins-
taurée est qu'une machine de I'Intranet met a disposition par le biais d’'un serveur
FTP tous les patchs que les serveurs doivent télécharger et exécuter. Le parc de
machines est relativement homogene, constitué de serveurs GNU/Linux sous distri-
bution Debian et de serveurs Windows 2000. Sur le serveur FTP, un répertoire pour
chacune des plates-formes contient les derniers patchs a récupérer et exécuter.

Chaque serveur est responsable de sa mise a jour. Le script a composer, qui doit pou-
voir s’exécuter sur n'importe quelle plate-forme du parc doit donc :

* récupérer les bons patchs ;

* les télécharger ;

* les exécuter ;

* les archiver.

La derniere étape ne consiste qu'a conserver les fichiers téléchargés.

Mise a jour centralisée automatique

-*- coding: utf8 -*-

import os

from StringIO import StringIO
from ftplib import FTP
import logging

n Découverte de Python
PREMIERE PARTIE

patches_done = os.listdir(os.curdir)
patches_todo = []
_result = StringI0Q

fonctions de récupération des flux ftp
def callback(line):
_result.write(line)

def callbacktext(line):
_result.write('%s\n' % 1line)

def readresults(text=False):
content = _result.getvalue()
_result.buf = "'
return content

code principal
ftp = FTP('localhost')
ftp.login('root', 'motdepasse')
try:
ftp.cwd(os.name)
ftp.dir(callbacktext)
patches = readresults().split('\n")

tous les fichiers téléchargés sont binaires
ftp.voidemd('TYPE 1')
for patch 1in patches:
Tine = patch.split()
if Ten(Tline) == 0:
continue
filename = 1ine[-1]
if filename 1in patches_done:
continues
ftp.retrbinary('RETR %s' % filename, callback)

with open(filename, 'w') as file_:
file_.write(readresults())
os.chmod(filename, 467) # 467 dec => 111 010 011 bin => rwx-w--wx
patch_file = os.path.join(os.curdir, filename)
patches_todo.append(patch_file)
finally:
ftp.close()

for patch 1in patches_todo:
Te patch est auto-exécutable
Togging.info('application du patch %s...' % patch)
Tog = os.popen(patch)
Togging.info('\n'.join(log))

Python pour quels usages ? n
CHAPITRE 2

Les autres protocoles sont rarement plus complexes a implémenter, sauf lorsqu’il est
nécessaire de procéder en entrée et en sortie a des traitements de données plus
poussés.

AsavolR Lancement automatique des scripts

Les exemples précédents et ceux qui suivront dans ce chapitre ont tous été congus pour étre exécutés par
le systéme de maniére automatique et réguliére, que ce soit par le biais des taches cron sur les systemes
de type Unix ou par une nouvelle entrée dans le gestionnaire de taches sur les plates-formes Windows.

Le match Perl-Python

La partie concernant 'administration systeme serait incompléte sans parler de Perl.
Le langage Perl est souvent le langage préféré des administrateurs et a remplacé dans
beaucoup de cas le shell. Perl est trés puissant, posséde une énorme bibliothéque de
modules facilement accessible (CPAN) et une communauté trés active.

Ce langage souffre cependant de défauts qui peuvent peser lourd lors de la concep-
tion d’applications conséquentes, comme une syntaxe pas trés lisible, de I'aveu méme
de Larry Wall, son créateur, et de structures de données difficiles a construire et
manipuler. Perl reste cependant trés puissant pour les manipulations de texte.

« Perl is worse than Python because people wanted it worse »

— Larry Wall

Syntaxe

Prenons I'exemple d’un script en charge de préparer le répertoire web personnel d’'un
utilisateur lorsqu’il est ajouté a un systeme GNU/Linux. Le programme doit remplir
les taches suivantes :

* création d’'une page web personnelle ;
* ajout dans le serveur Apache d’un Virtual Directory ;
* envoi d’'un e-mail de notification au nouvel utilisateur.

La page web créée permet a l'utilisateur d’avoir des liens personnalisés vers les appli-
catifs du groupware de I'entreprise comme le Webmail.

Sans entrer dans les détails du programme, nous allons simplement présenter ici la
partie qui consiste a créer la page web personnelle. Cette section du programme peut
elle-méme étre découpée en trois étapes :

1 Chargement d'un modele de page web.
2 Personnalisation du modéle en fonction de l'utilisateur.

Découverte de Python

PREMIERE PARTIE

Les occurrences de %(NOM) et %(PRENOM) sont remplacées par des valeurs

réelles.

3 Création du fichier dans le répertoire web de lutilisateur.

Version en Python

-*- coding: utf8 -*-
import os

def create_page(firstname, lastname, template, path):
""" création de la page web """
replace = {'NOM': firstname, 'PRENOM': firstname}
with open(model) as model_file:
page = model_file.read() % replace
with open(os.path.join(path, 'index.html'), 'w') as target:
target.write(page)

La version Perl est trés similaire en termes de facilité de mise en ceuvre et de lon-
gueur de code, mais beaucoup moins lisible.

La version Perl

use strict;

use warnings;

sub creation_page

{
my ($firstname, $lastname, $model, $path) = (@);
open I, "<", $model;
my $page = do { Tlocal $/; <I> };
close(I);
$page =~ s/%(NOM)s/$Tastname/g;
$page =~ s/%(PRENOM)/$firstname/g;
open 0, ">", "$path/index.html";
print 0 $page;
close(0);

}

Structures de données

La création et la manipulation de structures de données en Perl est relativement
lourde. Dans I'exemple ci-apres, la création d’une simple classe, sans aucun contenu,
nécessite quatre fois plus de code en Perl qu'en Python :

Python pour quels usages ? n
CHAPITRE 2

Définition d’une classe en Perl et en Python

Version Perl
package MyClass;

sub new {
my $class = shift;
my $self = {};

bless $self, $class
$self->initialize(); # do initialization here
return $self;

}

Version Python
class MyClass:
pass

Cette syntaxe verbeuse de Perl, qui se confirme dans toutes les définitions de struc-
ture, peut étre pesante dans la conception d’applications de grande taille, et aug-
mente proportionnellement les risques de bogues.

Manipulation de texte

En termes de manipulation de texte, les outils disponibles pour Perl sont a I'’heure
actuelle beaucoup plus puissants que pour Python.

A titre d’exemple, les expressions réguliéres sous Python sont un portage de ce qui
existait a I'’époque pour Perl 5, et n’ont plus évolué depuis.

La possibilité d’étendre le moteur d’expressions réguliéres sous Perl est inexistante

sous Python.

Extension du moteur regexp sous Perl

exemple tiré de 1'aide en Tigne de Perl

permet d'ajouter '\Y|' au moteur

qui est un raccourci pour (?=\S) (?<!\S)|(?!I\S) (?<=\S)
package customre;

use overload;

sub import {
shift;
die "No argument to customre::import allowed" if @_;
overload::constant 'qr' => \&convert;

}

sub invalid { die "/$_[0]/: invalid escape '\\$_[1]'"}

n Découverte de Python
PREMIERE PARTIE

my %rules = (C "\\' => "\\'',
"Y' => gr/(2=\S) (?<I\S) | (?!I\S) (?<=\S)/);
sub convert {
my $re = shift;
$re =~ s{

N\CC\N Y)

3
{ $rules{$1} or invalid($re,$1) }sgex;
return $re;

Conclusion

Perl reste supérieur pour la conception de petits scripts de moins de 100 lignes,
lorsqu’il s’agit de manipuler des chaines de caractéres. La puissance de ses outils et
son intégration poussée des expressions régulieres en font un choix de premier ordre
dans ce cas. Python devient meilleur pour de plus grosses applications.

Prototypage rapide d’applications

Pour les gros projets qui durent plusieurs mois, voire plusieurs années, les premiéres
étapes consistent souvent a effectuer des cycles de spécification entre les clients et
I'équipe de développement, en se basant sur des maquettes.

Objectif d’une maquette

Concevoir une maquette permet a I'architecte d’'un logiciel de prendre du recul et de
réduire la marge entre ce qu’il a imaginé et ce quil faut réellement implémenter.
Armé de ce prototype, il va déceler trés vite certaines problématiques de logique
d’implémentation, mais également fournir au client un véritable jouet pour tester les
fonctionnalités. Si ce dernier est lui-méme technicien, il pourra faire évoluer la
maquette pour exprimer ses besoins de maniere plus directe.

Ces cycles d’échange permettent d’affiner les besoins initiaux, pour obtenir sur le
papier un projet plus réaliste et plus mir lorsque les développements démarrent. Ils
peuvent méme continuer pendant les phases de développement, lors de I'introduc-
tion de nouvelles fonctionnalités.

Une maquette est donc un véritable logiciel pate a modeler, facile a créer et a modi-
fier. Les maquettes peuvent étre des maquettes d’interfaces ou plus simplement des
magquettes de code.

Python pour quels usages ? n
CHAPITRE 2

Maquette d’interfaces

Pour les logiciels dotés d’une interface graphique, la maquette est constituée d’une
série d’écrans liés entre eux par des menus et des boutons. C’est avant tout l'ergo-
nomie de l'interface et la logique des enchainements qui priment, car ils sont bien
souvent treés proches des processus métier souhaités par le client.

CuLture Définition de I’ergonomie

L'ergonomie consiste a améliorer I'interface homme-machine, en rendant I'outil le plus simple et le plus
logique possible aux yeux d'un utilisateur. Un programme ergonomique est en général utilisable sans
avoir a se référer a I'aide en ligne et diminue au maximum le nombre d'étapes nécessaires a |utilisateur
pour obtenir le résultat recherché.

La plupart des projets s’arrétent aux maquettes d’écrans sur le papier, qui sont suffi-
santes pour exprimer l'interface d’'un logiciel. Pour les projets web par exemple, des
captures d’écrans suffisent amplement a donner une idée de I'ergonomie. Mais une
maquette d’interface sur le support cible (c’est-a-dire 'écran) avec une interaction
minimale, permet de meilleurs retours.

I1 existe plusieurs méthodes pour créer des interfaces avec Python. La plus intéres-
sante pour les exercices de maquettage consiste a utiliser les Environnements de
Développement Intégré (EDI) qui proposent des éditeurs visuels d’interfaces. Cer-
tains n'ont pas forcément de liens avec Python et se contentent de générer des
fichiers pour chaque fenétre dessinée. Ceux-ci peuvent ensuite étre chargés et inter-
prétés par un programme Python par le biais de bibliothéques spécialisées. Le pro-
gramme associe alors une portion de code a chaque événement provoqué par l'utilisa-
teur, selon le principe de la programmation événementielle.

On peut citer comme EDI pour Python :

* Glade, qui permet de construire des interfaces Gnome/GTK+ sauvegardées dans
des fichiers XIML, pouvant étre interprétés par une bibliothéque Python spécifique.

* BoaConstructor, inspiré des principes des composants VCL de 'outil Delphi de
Borland, et manipulant wxPyzhon, bibliotheque au-dessus de wxWindows.

* QtDesigner, sur le méme principe que BoaConstructor mais pour les bibliotheques Q.

Découverte de Python

PREMIERE PARTIE

® triade@Tarek: homeftzia @ Fielox-bin (5] ~ & Gt Doslgnar by Tralitach

3 x-Chak (2.4.1): tarek_ @ st [Openoffice.crg 1.1.4 (2] =

"Gt Doslgnar by Trolltoch
Eile Edt Prgject Search Jools Layout Preview Window Help
|0 Q@ eprioc> 5| g [1 (DD FETEE: B A Y
- 2 LN D O e YO e X | ¥ L Poistowedes L
Comman Widg... nl
~re i YT L LT SRR Attt ah T - B 1 <o Project> -
Containers - - IE
Views i textLabell A
Database :
Input
Display =
%
T Textiabel oo =
& Fixmaptabal e T
(2] LcoMumber
£ Line .| QPushiuttan
i) Progresssar QGroup8ox
A5 Textarowser textl... |QLabel
B oo, Edtorsan Hanies B
Display (KDE} 4 P————
erLies ignal ers
Buttons (KDE) o | -
At : m [
Input (KDE) . pushfustanl | Praperty alue. 3
name cupBoxl
et enabled True
e = geomatry [20, 20, 57...
Graphics [KDE} | B sizePolicy Freferred ...
Custom Widgets @ mmimumSize 10,0 =
Hiready

Figure 2-1 QTDesigner a I'ceuvre

CULTURE Programmation événementielle

La programmation événementielle, utilisée pour les applications a interface graphique, associe a chaque
événement de I'utilisateur une portion de code.

Un événement peut étre par exemple I'action de cliquer sur un bouton d’une fenétre. Le programme
lorsqu'il est exécuté, entre dans une boucle infinie qui attend qu’un événement se produise. Lorsque
c'est le cas, I'appel est transmis a la portion de code définie pour cet événement, si elle existe, puis la
boucle repasse en attente d'un autre événement.

Ce type de programmation est plus détaillé dans le chapitre 10, dans la partie consacrée a Tkinter.

Magquette de bibliothéque ou Fake

Un autre type de maquette beaucoup moins utilisé mais tres pratique est la maquette
de bibliothéque. Complément des maquettes d’interfaces, ce genre de prototype
permet de simuler un service qui n'a pas encore été développé.

Exemple de prototype de bibliothéque

Prenons I'exemple d’'un module de pilotage d’un appareil électronique que I'on sou-
haite interfacer avec une application graphique.

Python pour quels usages ? n
CHAPITRE 2

La mise au point de ce module peut étre complexe car elle nécessite 'élaboration de
protocoles d’échanges avec I'appareil par le biais du port IEEE. De plus, les per-
sonnes en charge de développer le reste de 'applicatif n'ont pas a leur disposition ce
genre d’appareil et doivent pourtant continuer le développement de I'application
comme s’ils en disposaient.

Les méthodes qui seront accessibles aux programmes qui piloteront 'appareil sont
quant 2 elles trés simples :

* start() :initialise I'appareil ;

* stop() : met I'appareil hors-tension ;

* run(commande) : lance une commande.
Chacune de ces méthodes renvoie vrai lorsque la commande a fonctionné.

Une maquette pour cette bibliotheque pourra se contenter de fournir ces méthodes et
de toujours renvoyer un résultat positif sans que 'appareil réel ait été appelé :

Prototype

-*- coding: utf8 -*-
import time

class Appareil(object):
def __init_ (self):
self.started = False

def start(self):
self.started = True
time.sleep(5)
return 'OK - Listening'

def stop(self):
time.sleep(5)
self.started = False
return 'OK - Closed'

def runCommand(self, command, *args):
time.sleep(2)
return 'OK %s' % command

Ce Fake pourra suffire dans un premier temps a construire le reste de I'application en
se basant sur 'interface fournie.

PROGRAMMATION Simuler des serveurs a I'aide des Fakes

Les applications qui interagissent avec des serveurs tiers utilisent souvent cet artifice pour simuler leur
présence dans des contextes particuliers comme lors de I'exécution de tests unitaires. Une application de
gestion d'e-mails peut implémenter dans ce genre de contexte un « faux » serveur IMAP.

Découverte de Python

PREMIERE PARTIE

Recherche et calcul scientifique

Certains domaines de recherche sont devenus totalement dépendants de I'informatique.
11 existe quantités de logiciels dédiés pour chacun de ces domaines, mais dés lors que le
chercheur souhaite sortir des sentiers battus, il doit programmer lui-méme ses outils.

Dans cet exercice, il cherche un outil de programmation simple a maitriser, qui per-
mette de manipuler facilement quantité de données et utiliser des bibliotheques de
calcul tierces.

Les tableurs comme Excel, qui proposent des fonctionnalités de scripting, sont les
outils les plus répandus dans les laboratoires de recherche, car ils permettent de
manipuler trés simplement les données et de modéliser rapidement des calculs. Mais
dés lors que les traitements se complexifient ou qu’il est nécessaire de mettre en place
des protocoles particuliers, les tableurs atteignent leurs limites.

Pas de paradigme imposé

Python dans ce cas devient un choix de premier ordre car il est multi-paradigme : un
chercheur n'aura donc pas besoin de maitriser la programmation orienté objet pour
écrire ses petits scripts, comme il devrait le faire en Java. Il se contentera d’écrire son
programme avec de simples fonctions, sans avoir a maitriser de concept purement
informatique.

Facilité de prise en main

Contrairement aux langages de plus bas niveau comme le C, qui nécessitent un cer-
tain bagage technique informatique, Python est beaucoup plus simple 4 maitriser
pour un chercheur qui ne connait pas la programmation. La gestion de la mémoire,
l'utilisation de pointeurs, le typage des variables, et tous les détails de 'implémenta-
tion d'un programme sont autant de contraintes qui sont loin des préoccupations

premiéres d’'un chercheur, et doivent le rester.

Parallélement, la facilité avec laquelle une bibliothéque de traitement peut étre inté-
q q p

grée au langage comme extension fait de Python un outil de script de choix dans ce

domaine.

Création ou utilisation d’outils spécialisés

Prenons I'exemple de la biologie moléculaire. Si le chercheur souhaite confronter des
séquences d’ADN a des séquences connues et répertoriées dans un dépdt centralisé
comme le dépdt GenBank, il doit mettre en place un outil d’accés au serveur distant
pour étre en mesure de I'interroger puis d'interpréter les fichiers.

Python pour quels usages ? n
CHAPITRE 2

Nous avons vu dans les exemples précédents que le langage Python disposait d’une
bibliothéque d’acces FTP simple d'usage. Construire une bibliothéque d’accés aux
dépots GenBank n'est pas plus compliqué. Une fois mise au point, cette bibliotheque
offre au chercheur la possibilité d’utiliser et de réutiliser ce genre de systéme dans ses
programmes.

En l'occurrence, la bibliotheque d’acces au dépdt GenBank et de lecture des fichiers
existe déja : elle fait partie d’'un ensemble d’outils Python dédiés a la bio-informa-
tique nommé Biopython, créé par des chercheurs en biologie moléculaire. Toujours
dans T'esprit des logiciels libres, ces outils sont mis a disposition de tous sur Internet.

RECHERCHE Le projet GenBank

La base de données GenBank (http://www.ncbi.nlm.nih.gov/) est un projet international de regrou-
pement de séquences de nucléotides et leur traduction en protéines. Ces données sont fournies par des
centres de séquencages du monde entier et sont librement consultables en ligne.

Applications de gestion

Les applications de gestion peuvent étre définies comme des logiciels qui traitent un
probléme métier particulier, comme :

* la gestion de stocks ;
* la gestion de la relation client ;
* la gestion financiere, etc.

Ces logiciels se caractérisent en général par :
* une interface utilisateur pour saisir, visualiser et manipuler des données ;
* un besoin de stockage de données qui peut parfois étre assez conséquent en taille ;

* une standardisation des flux d’entrées et de sorties pour intégrer le programme au
parc applicatif existant.

Conception d’interface utilisateur

Outre la conception et I'enchainement d’écrans décrits dans la partie concernant le
prototypage, une application de gestion a un besoin fondamental d’ergonomie.
Lorsque de simples maquettes peuvent se contenter dans la plupart des cas des com-
posants visuels (widgets) de base, il s’avére souvent nécessaire de créer ses propres
composants pour de véritables applications. En pratique, la création d’une interface
en adéquation avec les besoins métier et la nature des données peut peser tres lourd
dans la balance lorsque I'utilisateur teste I'outil.

Découverte de Python

PREMIERE PARTIE

Prenons l'exemple de I'application GRAMPS (http://gramps-project.org/). Ce logiciel
de gestion de généalogie, écrit en Python, offre une interface de visualisation des
liens de parenté entre des personnes. Cette fonctionnalité prend tout son sens grice
au composant spécifiquement développé pour afficher des arbres généalogiques.

Figure 2-2] Untitled. Lgrdb - GRAMPS.

V|Sual|sat|0n des ||ens Eile Edit View Go Bookmarks Repors Teals Windows Help

de parenté avec GRAMPS D oapr i O X 2 =
Open ' Back Forward Home ' Reports Tools | Add Remove Edit

1 2 3 4

Gustaf Smith, Sr.

Hialmar Smith

Anna Hansdaiter

ohn Hjalmar Smith

Marjarie Ohman

[+ [Edwin Michael Smith |

{Alice Paula Perkins L]

[137] Edwin Michael Smith

Tous les kits a disposition du développeur Python fournissent un framework de créa-
tion de nouveaux widgets.

Stockage de données

Le stockage de données, appelé aussi persistance, peut prendre différentes formes en
fonction des besoins et des contraintes du programme. Il peut parfois s’agir d’'un
simple besoin de sauvegarde de parameétres de fonctionnement. Dans ce cas de
figure, les fichiers INI ou autres fichiers XML font I'affaire. Mais lorsque les besoins
de stockage s’étendent, d’autres outils plus en adéquation avec la quantité et la granu-
larité des données manipulées doivent prendre le relais.

Sérialisation des objets

Python fournit des fonctionnalités de sérialisation des objets intéressantes. La sériali-
sation consiste a sauvegarder sur le systéme de fichiers I'état d'un objet stocké en
mémoire. Cette mécanique peut étre par exemple utilisée pour mémoriser I'état d’'un
objet lorsque I'application se termine, pour pouvoir le restaurer au prochain démar-

Python pour quels usages ? n
CHAPITRE 2

rage. Le principe de sérialisation est aussi trés utile dans des programmes distribués.
Ce mécanisme fonctionne pour tous les objets Python a quelques exceptions, comme
nous le verrons dans le chapitre 9.

Exemple de sérialisation d’un objet

-*- coding: utf8 -*-
import cPickle

class MyClass:
value_1 = '1'
value_2 5

création d'un objet
example = MyClass()
example.value_1= u'je suis modifié'

sauvegarde
with open('MyClass.sav', 'wb') as file_:
cPickle.dump(example, file_, 1)

rechargement

with open('MaClasse.sav', 'rb') as file_:
new_example = cPickle.load(file_)

vérification des valeurs
print(new_example.valeur_1)
print(new_example.valeur_2)

Ce systeme, appelé pickling, peut étre utilisé pour les besoins de sauvegarde de tout
type de programme, mais il impose un certain nombre de contraintes au déve-
loppeur. Une des problématiques les plus importantes est que ce fonctionnement
introduit une dépendance forte entre le code et les données : si ce systeme est utilisé
pour des sauvegardes durables, toute modification des attributs d’une classe rend les
sauvegardes précédentes caduques. Les évolutions du code sont donc plus complexes
a gérer. Une bonne pratique consiste donc a ne sauvegarder que des instances de

classes ou de types de Python ou de sa bibliotheque standard.

Quoi quil en soit, dans le cas d'une application de gestion qui travaille avec des don-
nées qui peuvent provenir d’autres sources et dont le format est imposé, on optera
pour un stockage plus classique.

Découverte de Python

PREMIERE PARTIE

Les bases de données relationnelles

Outre tous les connecteurs existants pour la quasi-totalité des bases de données du
marché dans des bibliothéques tierces, Python integre dans la bibliotheque standard
(depuis la version 2.5) un module d’acces au systéme de base de données SQLite
(http:/iwww.sglite.org). Cette base de données ne nécessite aucune configuration et
aucun serveur pour fonctionner, et stocke ses données dans un simple fichier ou en
mémoire. Elle est largement répandue depuis quelques années et utilisée pour des
besoins de stockage léger.

Création d’une table et ajout de lignes avec sqlite

connection
conn = sqlite3.connect('data.db')
c = conn.cursor()

creation de 1a table table
c.execute('create table client (firstname text, lastname text)')

ajout d'une Tigne
c.execute("insert into client values ('Tarek', 'Ziadé')")

Sauvegarde
conn.commit()

Fermeture du curseur
c.close()

INSTALLATION SQLite

Python fournit dans sa bibliothéque standard un accés a SQLite, mais ce dernier doit étre installé sur le
systéme.

I1 existe également des systémes de Mapping Objet-Relationnel (Object-Relational
Mapping en anglais, ou ORM) trés efficaces en Python. Les ORM permettent
d’associer a une table de la base une classe, et a une ligne de cette table une instance
de la classe, et de s'occuper automatiquement des échanges vers le SGBD. Le code
de manipulation des données peut des lors s’affranchir du langage SQL.

Les deux systémes les plus notables sont :
+ SQLAlchemy : http://www.sqglalchemy.org
* Storm : https://storm.canonical.com

Python pour quels usages ? n
CHAPITRE 2

Applications web

Les applications web sont des applications qui mettent en jeu la quasi-totalité des
technologies informatiques actuelles.

La conception d’'un Intranet nécessite couramment la mise en ceuvre :

» d’annuaires LDAP ;

* de gestion de flux de données variés ;

* de systemes distribués ;

* d’un systéme de publication web avancé, etc.
Une application web est bien souvent la brique centrale d’un systéme d’information,
et doit offrir aux développeurs des outils souples et modulaires pour implémenter
toutes les fonctionnalités nécessaires, s'intégrer a un parc applicatif, et s'interfacer
avec des applications tierces qui participent aux services fournis par 'applicatif.

Les frameworks web Python ont connu une évolution majeure depuis trois ans, pour
deux raisons :

* La vague provoquée par le projet Ruby On Rails (http://rubyonrails.org), qui a
donné envie 4 la communauté Python de moderniser la programmation Web.

+ Démergence de la norme WSGI (http://wsgi.org) qui a permis de partager entre
certains frameworks des briques pour la conception de fonctionnalités.
Les frameworks majeurs sont :
* Zope : http://zope.org
* Twisted : http://twistedmatrix.com/trac
. Pylons : http://pylonshq.com
* Django : http://www.djangoproject.com
. Turbogears : http://turbogears.org
Le framework Zope, par exemple, est I'un des plus gros projets Open Source Python.

De nombreuses évolutions et innovations du langage sont issues de ce framework et
de sa communauté trés active.

De nouveaux frameworks émergent également, comme Repoze (http://repoze.org).

Lensemble de ces frameworks sont tres actifs et propulsent Python sur le devant de
la scéne en matiére de développement web.

n Découverte de Python
PREMIERE PARTIE
En un mot...

Meéme si Python est beaucoup plus a I'aise dans certains domaines vus dans ce chapitre,
comme la programmation systéme ou le prototypage, ses facultés d’extension et son
ouverture lui permettent de s'adapter relativement facilement a de nouveaux contextes.

Il n’est plus rare par exemple de rencontrer dans le secteur industriel des applications
critiques dont les couches supérieures sont codées en Python.

Le prochain chapitre présente I'installation de Python et son paramétrage, ainsi
qu'un tour d’horizon de quelques éditeurs de code.

Environnement de
développement

Ce chapitre présente la mise en place d'un environnement de développement pour
Python, de l'installation de l'interpréteur jusqu’au choix de I'éditeur de code.

Installation sous Linux

Python est souvent préinstallé sur la plupart des distributions GNU/Linux. Vous
pouvez contrdler sa présence en tapant la commande python dans un terminal.

Lancement du mode interactif de Python

$ python

Python 2.6.1 (r261:67515, Dec 6 2008, 16:42:21)

[GCC 4.0.1 (Apple Computer, Inc. build 5370)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

Si la commande fonctionne, vous serez automatiquement placé dans un mode inte-
ractif qui permet de lancer directement des commandes dans l'interpréteur Python.
La version du langage étant précisée, vous pouvez savoir si une mise a jour est pos-

Découverte de Python

PREMIERE PARTIE

sible. Il est en général recommandé d’étre a jour avec la derniére version stable, sauf
contraintes de production particulieres.

ARETENR Quitter I'interpréteur Python

Pour sortir du mode interactif, utilisez les combinaisons de touches Ctrl+D sous GNU/Linux et Mac 0S X
et Ctrl+Z sous MS-Windows.

S’il vous est nécessaire d’installer Python ou de mettre 4 jour une version existante,
vous pouvez le faire par le biais du systéme de package de la distribution ou le recom-
piler manuellement. Les manipulations d’installation se font en tant que super-utili-
sateur, ou root.

ur étre root sur vi eme, 1 ¢ ire d’exécuter la commande su, ou de

Pour étre root sur votre systeme, il est nécessaire d ,

passer par l'utilitaire sudo, qui étend temporairement et de maniére controlée les
roits d’'un utilisateur autorisé.

droits d

Installation par distribution

Lintérét d’utiliser I'installation par paquets est de pouvoir mettre a jour le systeme a
chaque nouvelle version sans avoir a se soucier des problémes de dépendances, de
manipulations particuliéres ou de post-conditions nécessaires du systeme. Il suffit la
plupart du temps d’invoquer une seule ligne de commande en lui passant en para-
métre le fichier paquet concerné.

Paquets Debian

Les paquets Debian sont des fichiers d’extension .deb qui peuvent étre installés par le
biais de l'utilitaire dpkg. Ce systéme est utilisé principalement sur Debian et sur
Ubuntu. Il existe en outre un utilitaire encore plus direct, capable de télécharger sur
Internet puis d’installer la derniere version d’un paquet : apt

Installation par apt

I $ apt-get install python2.6

apt-get télécharge automatiquement le paquet et l'installe sur le systeme. Confort
ultime, il se charge tout seul de récupérer et d’installer les éventuels paquets annexes,
en controlant toutes les dépendances.

http://packages.debian.org/stable/python/python2.6

Environnement de développement n
CHAPITRE 3

Paquets RedHat

De maniere similaire 2 Debian ou Ubuntu, les distributions basées sur RedHat, que
ce soient les versions professionnelles payantes comme Red Hat Entreprise ou les ver-
sions communautaires comme Fedora Core ou CentOS, proposent le systéme de
paquets rpm, un des tout premiers systémes de paquetage qui ait vu le jour.

Installation ou mise a jour par rpm

$ rpm -i python.rpm
$ rpm -U python.rpm

» http://www.python.org/download/releases/2.6/rpms

Distributions Mandrake et Fedora Core

Les distributions Mandrake et Fedora Core, toutes deux basées sur le systeme de paquets
rpm, proposent des systémes similaires a apt, respectivement nommeés urpmi et yum.

urpmi et yum

$ urpmi python
$ yum install python

» http://www.python.org/download/releases/2.6/rpms

SYSTEMES DE PAQUET Délais de disponibilité

Il peut se passer plusieurs mois avant qu'une nouvelle version de Python soit disponible en paquets sta-
bles pour une distribution Linux, a cause des longueurs des cycles de release.

A I'heure ol ce livre est imprimé, c'est le cas : Python 2.6 n’est pas encore trés diffusé, et une installation
spécifique peut étre nécessaire.

Compilation des sources

Si votre distribution ne propose pas de systeme de paquets ou si tout simplement,
vous souhaitez faire une installation personnalisée de Python, il est nécessaire de pro-
céder a une compilation des sources du langage pour créer les fichiers binaires équi-
valents a ceux qui sont fournis dans les paquets.

Compiler un logiciel sous GNU/Linux ou Mac OS X consiste a lancer une série de
commandes 4 un ou plusieurs programmes du systéme. La plupart du temps, le pro-
gramme invoqué est le compilateur gcc qui va générer les binaires. Cette opération se
fait en général dans un répertoire dédié du systéme ou tous les fichiers sources com-

Découverte de Python

PREMIERE PARTIE

pilés sont conservés. La premiére étape consiste a décompresser le fichier zarball,
fichier archive d’extension .tar.gz, que vous trouverez sur le site de Python.
9 y

RessoURCES Le site officiel du langage Python

Le site officiel du projet Python offre des informations de premier ordre, et propose les derniéres versions
du langage en téléchargement :

» http://www.python.org

» http://www.python.org/download/releases/2.6.1

Récupération et décompression du tarball de Python 2.6.1

$ wget http://www.python.org/ftp/python/2.6.1/Python-2.6.1.tgz
$ tar -xzvf Python-2.6.1.tgz
$ cd Python-2.6.1

Cette manipulation va créer un répertoire Python-2.6.1 avec 'ensemble des sources
de la distribution ainsi que les fichiers de configuration nécessaires a la compilation.

Etapes d’installation

Une distribution de sources est en général livrée avec des fichiers Makefile et
configure. Makefile contient toutes les commandes qui seront exécutées pour I'ins-
tallation. II sera appelé par le biais de lutilitaire make. Le fichier configure, quant a
lui, est un script en charge de :

* Controler que le systéeme remplit toutes les conditions nécessaires a I'exécution du
script d’installation et d’informer I'utilisateur des éventuels manques.

* Créer un fichier de parametres utilisé par Makefile, qui contiendra entre autres
les options définies par l'utilisateur.
Les étapes d’installation sont donc :
* controler le systéme et définir les options de compilation ;
* compiler les sources ;
* installer les binaires et autres modules dans le systeme.

Options de compilation

Le script configure définit un ensemble impressionnant de parameétres que vous
pouvez visualiser par le biais de I'option --help.

Environnement de développement n
CHAPITRE 3

Ecran d’aide du fichier configure de Python

$./configure --help
'configure' configures python 2.6 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:
-h, --help display this help and exit
[...]
-n, --no-create do not create output files
--srcdir=DIR find the sources in DIR [configure dir or '..']

Installation directories:
--prefix=PREFIX install architecture-independent files in
PREFIX
[/usr/local]
--exec-prefix=EPREFIX install architecture-dependent files in
EPREFIX
[PREFIX]

Lécran d’aide, comme pour les prochains extraits, a été largement tronqué. Loption
la plus utilisée est U'option prefix qui définit le répertoire cible de l'installation. Le
script y recopiera le résultat de la compilation dans un sous-répertoire bin et les
bibliothéques Python dans un sous-répertoire 1ib. Le préfixe par défaut étant /usr/
Tocal, le binaire exécutable Python sera installé dans /usr/Tocal/bin et les biblio-
theques dans /usr/local/1ib. Mais il est fréquent de modifier ce préfixe pour ins-
taller Python directement dans le répertoire /usr.

Exécution de configure

$./configure --prefix=/usr

checking MACHDEP... Tinux2

checking EXTRAPLATDIR...

checking for --without-gcc... no

[...]

configure: creating ./config.status
config.status: creating Makefile.pre
config.status: creating Modules/Setup.config
config.status: creating pyconfig.h

n Découverte de Python
PREMIERE PARTIE

config.status: pyconfig.h 1is unchanged
creating Setup

creating Setup.local

creating Makefile

Une fois le script configure exécuté avec succes, il ne reste plus qu’a compiler et ins-
taller Python, par le biais des commandes make et make install.

Compilation et installation de Python

Ces deux étapes entierement automatiques peuvent prendre un certain temps en
fonction de la puissance de votre machine.

Compilation et installation

$ make

gcc -pthread -c -fno-strict-aliasing -DNDEBUG -g -03 -Wall
-Wstrict-prototypes -I. -I./Include -DPy_BUILD_CORE -o Modules/config.o
Modules/config.c

[...]

*) CC='gcc -pthread' LDSHARED='gcc -pthread -shared' OPT='-DNDEBUG -g
-03 -Wall -Wstrict-prototypes' ./python -E ./setup.py build;; \

esac

running build

running build_ext

running build_scripts

$ make install
/usr/bin/install -c python /usr/bin/python2.6
if test -f Tibpython2.6.s0; then \
if test ".so" = .d11; then \
/usr/bin/install -c -m 555 Tibpython2.6.s0 /usr/local/
bin; \
else \
/usr/bin/install -c -m 555 Tibpython2.6.so0 /usr/local/
Tib/1ibpython2.6.a; \
if test Tibpython2.6.so != libpython2.6.a; then \
(cd /usr/T1ib; 1n -sf Tibpython2.6.a
Tibpython2.6.s0); \
i\
fi5 0\
else true; \
fi
/usr/bin/install -c -m 644 ./Lib/aifc.py /usr/1ib/python2.3
/usr/bin/install -c -m 644 ./Lib/anydbm.py /usr/1ib/python2.3
/usr/bin/install -c -m 644 ./Lib/asynchat.py /usr/1ib/python2.3
[...]

Environnement de développement n
CHAPITRE 3

Python est a présent installé sur le systéme et peut étre lancé par la biais de la com-
mande pythonX.X ol X.X est le numéro de version. S’il n’y a pas d’autres installations
de Python sur le systéme, la commande python permet aussi de lancer l'interpréteur,
grice au lien /usr/bin/python qui pointe sur la commande.

Gérer plusieurs versions de Python

Il arrive que plusieurs versions de Python cohabitent sur la méme machine. Vous
pouvez les répertorier par le biais de la commande whereis.

Plusieurs versions de Python installées

[tziade@Tarek ~]$ whereis python

python: /usr/bin/python /usr/bin/python2.4 /usr/1ib/python2.5 /usr/1ib/
python2.5 /usr/local/bin/python /usr/Tocal/bin/python2.6 /usr/local/
Tib/python2.6 /usr/include/python2.6 /usr/include/

Ce cas de figure est en général a proscrire car il rend I'installation et le suivi des exten-
sions plus délicats. Toutefois, certains programmes ne sont pas forcément compatibles
avec la derniére release et I'installation d’une version antérieure peut parfois s'avérer
obligatoire. La version principale de Python, c’est-a-dire celle qui sera utilisée dans la
majeure partie des cas, doit étre associée au chemin par défaut de l'interpréteur afin
d’étre automatiquement utilisée lorsque la commande python est invoquée.

Prenons le cas d’'une machine ot les versions 2.6 et 2.5 ont été installées. Bien qu’il
n’y ait pas de probléme majeur a exécuter les programmes congus avec la version 2.5
sur une version 2.6, il est tout de méme recommandé d’utiliser la version d’origine,
c’est-a-dire la 2.5. Dans ce cas, les programmes doivent étre appelés avec la com-
mande python2.5.

Installation sous MS-Windows

Les plates-formes MS-Windows bénéficient d’un installeur graphique automatique,
présenté sous la forme d’un Wizard (un assistant). Si vous n’avez pas les droits admi-
nistrateurs sur la machine, il est possible de sélectionner dans les options avancées
une installation en tant que non-administrateur. Uinstallation de Python par ce biais
ne présente aucune difficulté.

n Découverte de Python
PREMIERE PARTIE

Figure 3-1
Installation sous MS-Windows

i& Python 2.6.1 Setup

python

windows

Select whether to install Python 2.6.1
for all users of this computer.

O Install just for me (not avalable on Windows Vista)

Bacl Next =] [Cancel

Une fois I'installation achevée, une nouvelle entrée Python 2.6 apparait dans le menu
Démarrer>Programmes, contenant entre autres l'interface IDLE. Llexécution de ce
menu doit faire apparaitre un prompt Python.

Figure 3-2
Idle sous MS-Windows

La derniére étape

. b
ou l'on se trouve.

Python Shell

Hle Edit Shell

Python 2.6.1 (r201:67517, Dec 4 2000, 16:51:00) [HSC v.1500 22 bit (Intel)] on wind2 _i

Debug Options Windows Help

Type "copyright®, "eredica"™ or Mlicense ()" for more information.

B T T

Perzonal firewsll software may warn shout the connection IDLE
wAKFEE TN 1ra Suhproceas u=ing this compurer's internal Innpriar“.k
interface. This comnnection iz not wvisible on any external
interface and no data is sent to or received from the Internet.
B AR AR AR AR AR RN AR A AR A AR A A RN AR R A RN AR R A AR AR R A AR A AR A ARAARA AR AN AN

1DLE Z2.6.1
>2> print
hello

35>

‘hellu’

EBEX

Ln: & Col: 64

consiste a ajouter dans la variable PATH, le chemin vers l'interpré-
teur, de maniére & pouvoir 'appeler dans I'invite de commande quel que soit 'endroit

» http://www.python.org/ftp/python/2.6.1/python-2.6.1.msi

Environnement de développement n
CHAPITRE 3

Installation sous Mac 0S X

Sous Mac OS X version supérieure ou égale a 10.5, il existe une version de Python
préinstallée, mais incomplete. 11 est donc préconisé d’installer la version compleéte,
disponible sur 'Internet a I'adresse suivante :

» http://www.python.org/ftp/python/2.6.1/python-2.6.1-macosx2008-12-06.dmg

L'image disque python-2.6.1-macosx2008-12-06.dmg contient un installeur
MacPython.mpkg, qui peut étre lancé pour installer Python.

AVERTISSEMENT Controdler la version de Python exécutée

La version préinstallée de Python reste installée sur le systéme, et il est nécessaire de contrdler, lorsqu’un
script est exécuté, que c'est bien la nouvelle version compléte de Python qui est utilisée.

Premiers tests de Python en mode interactif

Pour tester l'installation, nous allons concevoir un tout premier programme qui
affiche « Hello World ! ». Ce programme peut étre exécuté directement par le biais
du mode interactif, ouvert par la commande python sur toutes les plates-formes, ou
plus directement sous MS-Windows par 'environnement IDLE qui fournit un shell
connecté avec le mode interactif.

Le programme « Hello World »

$ python

Python 2.6.1 (r261:67515, Dec 6 2008, 16:42:21)

[GCC 4.0.1 (Apple Computer, Inc. build 5370)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> print('Hello World")

Hello World

Le mode interactif de Python fournit une invite de commande ou promps, symbolisé
par le préfixe >>>, qui interpréte les commandes saisies et rend immédiatement la
main, en affichant s’il y a lieu, un résultat ou une erreur.

Essais du prompt
>> 5+ 6

11
>>> a = 3

“ Découverte de Python
PREMIERE PARTIE

>>> 9 + 8
17
>>> print(a)
3
>>> je peux ecrire n'importe quoi !!!
File "<stdin>", 1line 1
je peux ecrire n'importe quoi !!!
A

SyntaxError: invalid syntax
>>> print('du moment que c'est syntaxiquement correct')
du moment que c'est syntaxiquement correct

Cette interactivité permet de tester de petites séquences de code.

Script de démarrage du mode interactif

Pour les systémes Unix, il est possible de mettre en place un script Python qui s’exé-
cute a chaque lancement de l'interpréteur, en associant un nom de fichier a la variable
d’environnement PYTHONSTARTUP.

Dans l'exemple ci-dessous, le script .pythonstartup met en place 'autocomplétion
et un historique automatique. L'autocomplétion permet d’utiliser la touche Tabula-
tion pour compléter une frappe en cours, que ce soit pour des mots-clés du langage
Python ou pour des noms définis dans le contexte. L'historique automatique permet,
quant a lui, de sauvegarder les lignes saisies dans l'interpréteur, et de rappeler cette
sauvegarde lorsque l'interpréteur est relancé. On navigue dans cette sauvegarde avec
les touches Haut et Bas permettent de naviguer dans cette sauvegarde.

Script de démarrage Python .pythonstartup

import os

import sys

import atexit
import readline
import rlcompleter

try:
import readline
has_readline = True
except ImportError:
has_readline = False

ifnot has_readline:
sys.exit(0)

Environnement de développement “
CHAPITRE 3

print("Chargement des options")

tabulation
readline.parse_and_bind("tab: complete")

historique
home = os.path.expanduser('~")
history_file = os.path.join(Chome, '.pythonhistory')
try:
readline.read_history_file(Chistory_file)
except IOError:
pass

atexit.register(readline.write_history_file, history_file)
nettoyage de sys.modules

del (os, sys, history, atexit, readline, rlcompleter,
has_readline, home)

Ce script est sauvegardé dans le dossier personnel, puis associé a la variable d’envi-
ronnement PYTHONSTARTUP. Si le shell courant est Bash, la ligne suivante peut étre
ajoutée dans le fichier .bashrc du répertoire personnel.

Personnalisation de I’environnement

I export PYTHONSTARTUP=~/.pythonstartup

Asavor Script de démarrage Python

Certaines distributions fournissent parfois par défaut un script de démarrage standard comme celui pré-
senté dans ce paragraphe.

Des projets libres comme IPython proposent aussi des configurations plus poussées du mode interactif :
» http://ipython.scipy.org/

Le choix d’un éditeur

Le choix des outils de développement dépend fortement du type de programmation
réalisée. Par exemple, un simple éditeur de texte est amplement suffisant pour la con-
ception de scripts systéme mais ne suffit plus pour la conception d’applications a
interface graphique.

Lorsque le développeur a besoin de concevoir des interfaces graphiques, il peut opter
pour des outils de conception indépendants de I'éditeur de code ou, lorsqu’il existe,
utiliser un EDI qui combine les deux fonctionnalités.

Découverte de Python

PREMIERE PARTIE

Les EDI congus pour Python ne proposent parfois que de simples liens vers des con-
cepteurs d’interfaces indépendants mais proposent d’autres fonctionnalités intéres-
santes, comme la gestion de projet ou la liaison avec un systéme de gestion de ver-
sion, comme CVS ou Subversion. On peut donc regrouper les outils disponibles en
trois catégories :

* les éditeurs de code ;

* les éditeurs d’interface ;

* les EDI.

Asavor Editeurs d'interfaces graphiques

Cet ouvrage ne portant pas sur la conception d'interfaces graphiques, seuls les éditeurs de code sont pré-
sentés ici.

Un ensemble non exhaustif, mais relativement varié, d’éditeurs a été testé en fonction
d’un certain nombre de critéres. Si un éditeur ne figure pas dans la (courte et éphé-
mere) liste présentée ici, les critéres sont suffisamment explicites pour que l'outil soit
évalué facilement.
Les critéres de comparaison retenus sont :

* la coloration syntaxique (CS) ;

* la standardisation automatique (SA) ;

* les raccourcis clavier et les macros (RC) ;

* I'édition multiple (EM) ;

* le repliement de code et la recherche (RR) ;

* lautocomplétion (AC) ;

* l'interpréteur et le débogueur embarqués (IE) ;

* la licence, le prix (LIC) ;

* les plates-formes proposées (PF).

La coloration syntaxique

La coloration syntaxique du code, qui met en exergue les mots-clés du langage et dif-
térencie les blocs de commentaires des autres plates-formes lignes, est une fonction-
nalité non négligeable pour le confort de lecture. Elle ne figure pas dans le tableau
comparatif car tous les éditeurs présentés en sont dotés. Un éditeur sans coloration
syntaxique est donc a éviter.

Environnement de développement n
CHAPITRE 3

La standardisation automatique

Le remplacement automatique des caractéres tabulation par des espaces, et la sup-
pression des espaces en fin de ligne (#7ailing spaces) standardisent le code sauvegardé.
Certains éditeurs proposent en outre de gérer le nombre maximum de caractéres par
ligne. Pour information, la norme est de 80 caracteéres par ligne en Python.

Les raccourcis clavier et les macros

La possibilité d’indenter plusieurs lignes en une seule manipulation, les raccourcis
clavier permettant de saisir automatiquement des portions de code ou tout élément
générique comme les en-tétes (macros), sont autant d’éléments qui accélérent I'écri-
ture du code. Certains éditeurs proposent de programmer soi-méme des macros en
associant des scripts Python 4 des raccourcis clavier, ce qui augmente considérable-
ment la productivité.

L’ édition multiple

La possibilité d’ouvrir plusieurs fichiers a la fois et la facilité de navigation entre les
différentes fenétres d’édition deviennent vite des éléments de choix incontournables.
Tous les éditeurs présentés ont cette fonctionnalité.

Le repliement de code et la recherche

Le repliement de blocs de code (folding) consiste a masquer et démasquer le corps
d’une classe, méthode ou fonction. Cette fonctionnalité peut s’avérer trés pratique
pour les fichiers dont la taille est importante, surtout dans un langage qui ne sépare
pas distinctement la partie déclaration de la partie implémentation. La facilité de
recherche dans le code est indispensable, surtout pour les éditeurs qui ne possédent
pas le repliement.

L’autocomplétion

Lautocomplétion permet de compléter la frappe en affichant une liste de possibilités
extraites de I'ensemble des fonctions et classes disponibles du contexte en cours.
Cette fonctionnalité est trés répandue dans les EDI fournis avec les langages pro-
priétaires comme Delphi, C# ou encore Visual Basic et I'environnement Java Eclipse.
Certains éditeurs ont opté pour une autre approche, moins contraignante pendant la
saisie du code mais moins ergonomique : un référentiel du langage est fourni et faci-
lement accessible, et un double-clic sur un élément 'insére dans le code.

Découverte de Python

PREMIERE PARTIE

Linterpréteur et le débogueur embarqués

Pouvoir invoquer l'interpréteur Python directement depuis I'éditeur pour exécuter le
script ou pour tester une portion du code, minimise les allers-retours entre 'éditeur
et le shell systeme. Cette fonctionnalité est assez pratique sous MS-Windows, ot le
shell est moins intégré au bureau, mais plus anecdotique sous des plates-formes
comme GNU/Linux, ou il est facile d’organiser plusieurs fenétres de shell qui
accompagnent le travail de I'éditeur. Un débogueur embarqué est une fonctionnalité
beaucoup plus intéressante, surtout lorsquil permet d’insérer directement des points
d’arrét dans le code et de fonctionner en mode pas-a-pas. Le débogage interactif sans
cette fonctionnalité nécessite plus de manipulations.

La licence

Les éditeurs présentés sont pour la plupart distribués gratuitement sous licences
GPL ou dérivées. Quelques logiciels commerciaux de trés bonne facture sont toute-
fois présentés, comme WingIDE. Le prix de vente de ces éditeurs est en général d’'un
montant ridicule.

Les plates-formes reconnues

Nom
Bluefish

Pour les développeurs Sans Plate-forme Fixe (SPF), le choix d’un éditeur fonction-
nant sous MS-Windows, Mac et Unix permet de conserver ses habitudes d'une
plate-forme a l'autre. Dans le tableau suivant, la lettre L représente Unix et ses

dérivés, la lettre M, Mac OS, et enfin la lettre W, MS-Windows.
Le tableau ci-apres présente un certain nombre d’éditeurs ot chaque fonctionnalité
est notée de la maniere suivante :

* 0:inexistante ;

* 1:incomplete ;

* 2 :suffisante ;

* 3 : parfaite.

Tableau 3-1 Comparatif des éditeurs Python

SA RC RR AC IE PF LIC
T 1 1 0 0 L |GPL

Intéressant uniquement si I'édition de code Python est mineure par rapport a I'édi-
tion de fichiers XML et HTML (programmation web haut niveau en WYSIWYG)

Environnement de développement

Tableau 3-1 Comparatif des éditeurs Python (suite)

CHAPITRE 3 “

Nom SA RC RR AC IE PF LIC
DrPython 0 1 LW GPL
Editeur correct, extensible par des scripts Python et plug-ins, ce qui le rend trés inté-

ressant. Une bibliothéque de plug-ins est disponible sur le Web directement depuis

I'éditeur. Dommage que I'autocomplétion soit basique et mal congue, et qu'il n'y ait

pas de débogueur intégré.

Emacs, Xemacs, Vim, Vi et dérivés 3 1 LW GPL
Editeurs historiques complets et puissants et qui se paramétrent aux petits oignons,

méme si cette tache reste laborieuse. Ils rendent trés productif mais la courbe

d'apprentissage est lente. lls peuvent parfois étre couplés a d'autres éditeurs (binds

emacs/vi).

Kate 2 0 L GPL
Intégré a KDE et relativement souple, Kate est un éditeur multi-usage. Attention aux

problémes d'encodage parfois sur certaines distributions comme Ubuntu. Débogage

et autocomplétion Python inexistants.

IDLE 2 1 LW GPL
Installé d'office sous MS-Windows avec Python. Le parent pauvre en termes de fonc-

tionnalités, a abandonner au profit d'un autre éditeur.

PyDev 2 1 LW GPL
Nécessite I'installation et I'expérience d'Eclipse. Trés interessant si le travail de

Python se fait en paralléle de Java, via Jython par exemple. Petites configurations

s'abstenir.

Eric3 1 3 LWGPL
L'autocomplétion est illogique, voire énervante. Reste toutefois un excellent éditeur.

BoaConstructor 1 0 L, W GPL
Encore trés bogué a I'heure actuelle. Posséde un outil de construction d'expressions

réguliéres et quelques options intéressantes. Inspiré de Delphi, BoaConstructor pro-

pose un éditeur d'interfaces wxPython.

BlackAdder 1 0 LW PR
La version d'essai se ferme toutes les 10 minutes. Autocomplétion trés mauvaise. Le

reste des fonctionnalités est de bonne facture. Le prix reste trop cher.

Komodo 2 3 LWPR
Bon éditeur, supporte aussi Perl, PHP et TCL. Autocomplétion mauvaise.

WingIDE 2 3 LWPR
Un des meilleurs éditeurs pour Python, concu par des développeurs Python pour des

développeurs Python. Le prix a payer est ridiculement bas par rapport a sa qualité.

Permet de déboguer Zope. Reste quelques incohérences.

SPE 2 1 LW GPL

Editeur correct lorsqu'il n'y a pas de bogues qui rendent impossible I'édition de cer-
tains fichiers (bogues d'encoding au moment de la sauvegarde, impossibilité
d’ouvrir certains fichiers), voire qui suppriment le contenu du fichier :(. Produit jeune
a surveiller.

“ Découverte de Python
PREMIERE PARTIE

Eile Edit Wiew Debug Lnittest Project [efactoring Futras Setings wWindow Sookmarks Help
NEQ EHAdEdN o @ 4|4 D B3 # & K% FH ARAX Z DN
®EMTIN TN IR TAMACEEET 2000 TEN EEN AFEE &8 P 455
e A W XTI YEYLY ==
X[O color.py | imapssiay
o] =3 | -
. = | 103 ARy
Name » [VCS Status | ig: class Parsers ADMINLIMIT EXCEEDED
108 s rolored py| AFFECTS MUITIPLE D548
ALIAS DFREF_PROBLEM
| 108 ALIAS PROBLEM
| 108 stylesheet = ST aimpany ExisTS
| g A0Tellier (T
| 111 - def_init_(self, r: =
- Stora the so A0TUNlellier : 7
- 2l] [41+]
il 114 | selforaw = string. stnglsting.expandtabsirawl)
115 | selfoout = out

(hometzlade/Desktop/colorize.py - Eric

117 = def formatiself:
|

“Parse-and send the - colored source.

lirve-offsets insell lines

= Ar
% Tracebock ot recer ol st =[BT bmsermtn ————Tename i [¥ 1 ython 2. (o L sep 30 2005, 212150
File =fusrilibjpythonZ 4/site-packagesienc HuyT | 2 [GLe 4.0.2 20050808 (prerelease) (Ubuntu 4.0, L-dubuntus)l on Tarek,
fn = itm getedenamel) | gtaversion
ArtributeError. ‘NoneType® object has no attributy e

Finir Falgo de parsing

]

stdoun | stierr | EE (@ G EIH

rw file: fhometade/Desktop/calorae. py Line: 114 Pos: 26

Figure 3-3 L'éditeur Eric3 en action

En un mot...

Les éditeurs présentés dans ce chapitre ne sont qu'un apergu de la multitude des
outils existants, et ce comparatif reste trés éphémere. L'essentiel reste d’étre a l'aise
avec 'environnement de développement pour aborder la suite du livre.

Le prochain chapitre présente la syntaxe du langage et les exemples pouvant tous étre
rejoués dans le prompt. Il est préférable d’avoir procédé a I'installation de Python a ce
point du livre.

DEUXIEME PARTIE

Eléments
du langage

Un développeur entretient une relation cognitive trés forte avec la syntaxe du
langage qu’il utilise, comme peut le faire un peintre avec ses pinceaux et ses
mélanges de couleurs.

Le vocabulaire emprunté par les développeurs pour qualifier une portion de code est tres
lié a la notion d’esthétisme et au plaisir ressenti lors de sa conception ou de sa relecture.
Une fonction écrite de maniére claire et concise est agréable, un module qui n'est pas
bien organisé est sale, un programme qui évolue facilement est beau, une classe qui
implémente une fonctionnalité déja existante dans les primitives est bavarde, etc.

Ce jugement est basé sur un référentiel commun, qualifié de norme, et cette partie
regroupe tous les éléments nécessaires pour écrire du code Python standard :

* la syntaxe du langage dans le chapitre 4 ;

* la structuration du code dans le chapitre 5 ;

* les primitives au chapitre 6 ;

* les conventions de codage pour le chapitre 7.

Lobjectif est de fournir les outils de base du développeur Python, sans pour autant
remplacer un élément essentiel pour écrire du code avec goiiz : 'expérience.

Syntaxe du langage

La syntaxe du langage Python est simple, concise et terriblement efficace. Cette par-
ticularité a été des le départ une volonté de Guido van Rossum, alias GvR, pour en
faire un langage le plus productif possible. Et le fossé en termes d’efficacité entre
Python et d’autres langages modernes se voit ligne aprés ligne pour les développeurs :
le code saisi est en général immédiatement fonctionnel et s’écrit sans hésitation.

Cette facilité est d’autant plus prononcée que la syntaxe des structures condition-
nelles rapproche beaucoup Python du pseudo-code, ce qui nécessite moins de
réflexion sur la maniere dont une portion de code doit étre écrite, contrairement a
d’autres langages ou les temps d’arrét dans 'écriture sont légion.

Ce chapitre fournit la syntaxe du langage et est découpé comme suit :

* l'instruction print ;

* les commentaires ;

* le modéle de données ;

¢ les littéraux ;

* les types standards ;

* les opérateurs ;

* l'indentation ;

* les structures conditionnelles.

Eléments du langage

DEUXIEME PARTIE

Linstruction print

Ecrivons notre premier programme qui affiche a 'écran quelques phrases :

Utilisation de print

>>> print "IT y a un monsieur avec une moustache qui frappe a la porte"
I1 y a un monsieur avec une moustache qui frappe a Ta porte

>>> print "Dis Tui de passer son chemin j'en ai déja une"

Dis lui de passer son chemin j'en ai déja une

La commande print évalue une expression et affiche le résultat. Ce qui est vrai pour
des phrases est aussi vrai pour des valeurs numériques, des calculs ou tout autre élé-
ment interprétable, car linstruction convertit automatiquement le résultat de
I'expression en une chaine de caractéres affichable, lorsque c’est possible.

Utilisation de print #2

>>> print 3

3

>>> print 3 * 3

9

>>> print 3 + 4 + 5
12

>>> print je ne suis pas interprétable
File "<stdin>", 1line 1
print je ne suis pas interprétable
A

SyntaxError: invalid syntax

print devient fonction

Une modification majeure sur le fonctionnement de print a été introduite dans la
version 3 de Python. Cette commande est passée du statut d’instruction a celui de
fonction, ce qui rend les programmes écrits pour Python 2 incompatibles avec
Python 3 lorsqu’ils I'utilisent.

Appel de print avec Python 3

$ python

Python 3.0+ (release30-maint:67944, Dec 27 2008, 14:34:16)

[GCC 4.0.1 (Apple Inc. build 5465)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> print 'Bonjour’'

Syntaxe du langage “
CHAPITRE 4

File "<stdin>", line 1
print 'Bonjour'
A
SyntaxError: invalid syntax

Le programme de conversion 2to3, présenté au chapitre 8, permet de transformer le
code d’'un programme Python 2 en syntaxe compatible avec Python 3. Il ne permet
cependant pas de gérer la conversion de 'utilisation de print de maniére optimale, et
se contente d’ajouter des parentheses.

Transformations de print par 2to3

>>> print "du texte" # Python 2
>>> print("du texte") # Apres transformation avec 2to3
>>> print ("du", "texte") # Python 2
>>> print(("du", "texte")) # Apres transformation avec 2to3

ans le deuxiéme cas, le programme de conversion est incapable de différencier si
Dans le d , d t ble de diffe
print est utilisé comme instruction ou comme fonction, et doublera les parenthéses.

I1 est possible de fournir a 2to3 une option pour traiter print comme une fonction,
et une bonne pratique consiste a écrire des programmes qui utilisent cette nouvelle
syntaxe, en incluant un appel a __future__.print_function.

Utilisation de print comme une fonction, avec Python 2

$ python2.6
Python 2.6.1 (r261:67515, Dec 6 2008, 16:42:21)
[GCC 4.0.1 (Apple Computer, Inc. build 5370)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from __future__ import print_function
>>> print 'ok'
File "<stdin>", 1ine 1
print 'ok'
A

SyntaxError: invalid syntax
>>> print('Je fais comme Python 3!")
Je fais comme Python 3!

Le passage a Python 3 est ainsi facilité.

BONNE PRATIQUE print comme fonction

Les exemples du livre utilisent print comme fonction, puisque c’est devenu une bonne pratique sous
Python 2.

Eléments du langage

DEUXIEME PARTIE

Les commentaires

En Python, les commentaires sont préfixés par le caractére di¢se (#), et peuvent étre
placés en fin de ligne ou prendre une ligne compléte.

Exemples de commentaires

commentaire judicieux

print("hello") # commentaire treés a propos
oubliez le commentaire précédent

celui-ci est bien mieux

Linterpréteur syntaxique ignore ces commentaires et considére que le caractere diese
marque la fin d’une ligne logique, sauf lorsqu’elle est liée a la ligne suivante par le
caractére antislash (\).

Modele de données

Le modéle de données de Python est basé sur les objets. Toute donnée manipulée est
un objet avec un identifiant, un type et une valeur.

Lidentifiant est une valeur enti¢re et définie une bonne fois pour toutes a la création de
'objet. Elle est calculée a partir de 'adresse mémoire de I'objet et garantit son unicité.

Le type de l'objet est immuable et définit toutes les fonctionnalités qui pourront étre
utilisées avec 'objet, et ce quel que soit ce type.

La valeur attribuée a I'objet peut étre modifiable en fonction du type de l'objet. Par
exemple, les objets de type entier ou chaine de caractere ne peuvent pas étre modifiés
apres leur création. On les appelle objets immuables.
Il existe une série de primitives qui permettent de lire chacun des attributs décrits :

* id(Q) :renvoie I'identifiant d’'un objet.

* type() :renvoie le type d'un objet.

* dirQ :liste 'ensemble des fonctionnalités d’'un objet.

Manipulation d’objets de type entier

>>> id(1)
134536624
>>> type(1)
<type 'int'>
>>> dir(l)

Syntaxe du langage n
CHAPITRE 4

['_abs_ ', '_add__', '__and__', '_class__ ', '_cmp__"', '_ _coerce__',
'_delattr__', '_div_"', '_divmod_"', '_doc_ ', '_ float_ ',
'__floordiv__"', '__getattribute__', '__getnewargs__', '__hash__',

' hex__ ', '__dnit__"', '_int__', '__dnvert__', '__Tong__"',
'_dshift__ "', '_mod__"', '_mul_"', '_neg__"', '_new__"',
'_nonzero__', '_oct_', '_or_', '_pos_ ', '_pow_ ', '__radd_',
' rand__', '_rdiv_', '__rdivmod__', '__reduce__ ', '_ reduce_ex__',
'_repr__"', '__rfloordiv_"', '__rishift_ ', '__rmod__"', '__rmul__",
'_ror__', '_rpow__"', '__rrshift__', '_rshift_"', '__rsub_"',
'__rtruediv__', '__rxor__"',' setattr__ ', '__str_ "', ' _sub_ ',
'__truediv__', '__xor__']

Les objets ne sont jamais explicitement détruits, ce travail étant réalisé automatique-
ment par le gestionnaire de mémoire de Python. Cette fonctionnalité, nommée
ramasse-miettes ou garbage collector, est basée sur un compteur de référence associé a
chaque type d’objet. Ce mécanisme peut étre observé et en partie modifié grace au
module gc qui fournit une interface d’accés.

Pour T'utiliser, liez 'objet a une variable par le biais d’'une affectation.

Affectation d’une variable

>>a =1
>>> a

1

>>> id(a)
134536624
>>> type(a)
<type "int'>

Aucune syntaxe particuliére n'est nécessaire pour cette affectation et la variable a
devient une référence a I'objet.

n Eléments du langage
DEUXIEME PARTIE

SYSTEME Optimisation mémoire

Pour tous les objets immuables dont le type et la valeur sont identiques, le gestionnaire de mémoire peut
décider de ne conserver qu'une seule instance et de toujours s'y référer, optimisant ainsi |"utilisation de la
mémoire :

>>>a =1

>>> b =1

>>>id(a)

134536624

>>>id (1)

134536624

>>>1d(b)

134536624

>>> a is b

True
Cette optimisation peut considérablement réduire la taille mémoire occupée. Les objets modifiables,
quant a eux, sont bien s{r toujours uniques :

>>> a = []

>>> b = []

>>>id(a)

1211995860

>>>1d(b)

1212018900

>>>id([])

1211995892

Les littéraux

Les littéraux sont des constantes qui définissent une valeur. Il en existe trois types en

Python :
* valeurs alphanumériques ;
* valeurs numériques ;

* nombres complexes.

Littéraux alphanumériques

Les chaines de caracteres sont des valeurs alphanumériques entourées par des guille-
mets simples ou doubles, ou dans une série de trois guillemets simples ou doubles. Ces
derniéres sont appelées chaines triple-quoted et permettent de composer des chaines
sur plusieurs lignes et contenant elles-mémes des guillemets simples ou doubles.

Syntaxe du langage ﬂ
CHAPITRE 4

Chaines de caracteres simples et triple-quoted

>>> print("Nous avons trouvé une sorciere ! Allons-nous la briler ?")
Nous avons trouvé une sorciére ! Allons-nous T1a brdler ?

>>> print('Au secours ! je suis opprimé')

Au secours ! je suis opprimé

>>> print("""on est censé étre ici pour s'amuser

- ne nous chamaillons pas pour savoir qui a tué qui""™")

on est censé étre 1ici pour s'amuser

ne nous chamaillons pas pour savoir qui a tué qui

I1 est par ailleurs possible de préfixer les chaines par le caractere :

* r ouR pour spécifier que le contenu est du texte brut, ou les caracteres antislash (\)
n'ont plus le méme usage. Ce préfixe est surtout utilisé pour travailler avec du
contenu brut de texte, comme :

— lors de recherches de séquences par le biais d’expressions régulieres ;
— avec des chaines riches en antislash, comme les chemins sous Windows
(r'c:\ici\et\1a").
* u ou U pour spécifier que le texte est une chaine de caractéres Unicode sous

Python 2.
* b ou B pour spécifier que le texte est de type bytes depuis Python 2.6.

Normes ASCII et Unicode

Sous Python 2, les chaines sont par défaut des chaines de caractéres codées sur 8 bits
dont le type est str. Pour exprimer des chaines de caractéres en anglais, ce type
suffit, en se basant sur la norme ASCII (American Standard Code for Information
Interchange) de 1961.

Pour les langues comme le francais, les 128 caractéres de la table ASCII ne suffisent plus,
et une table étendue sur 256 caractéres a permis d’introduire de nouveaux caracteres
comme « é » ou «a». Le probleme est que cette extension varie d’une langue a l'autre.
Cette variation entraine un véritable casse-téte pour les programmes multilingues car il
est nécessaire de gérer des encodages différents en fonction de la langue utilisée.

Pour simplifier ce probléme, la norme Unicode a été initiée en 1991. Elle répond a
un souhait d’unification de tous les syst¢emes d’encodage de caracteres pour proposer
un référentiel unique, indépendant de toute plate-forme ou logiciel, et global 4 toutes

les langues.

EN PRATIQUE Unicode version 3.2

A I'heure ol ces lignes sont écrites, la version 3.2 propose 95 221 caractéres, symboles et directives.

Eléments du langage

DEUXIEME PARTIE

Le support d’Unicode a été introduit dans Python 2.4, et peut étre utilisé avec des
chaines préfixées du caractére u comme vu précédemment, qui deviennent des objets
de type unicode.

Chaines unicode

>>> unicode = u"Je suis en unicode."
>>> unicode.encode('utf8')
'Je suis en unicode.'
>>> 'je vais étre en unicode'.decode()
Traceback (most recent call last):
File "<stdin>", Tine 1, in <module>
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 1in position 8:
ordinal not in range(128)
>>> 'je vais étre en unicode'.decode('utf8')
u'je vais \xeatre en unicode'

Des méthodes d’encodage et de décodage permettent de passer du type str au type
unicode, en utilisant une table de correspondance, appelée codec et portant un nom
unique (utf8 est utilisé dans Uexemple).

Mais cette situation n'est qu'une transition vers un environnement ot I'Unicode
devient le type par défaut pour la gestion des chaines de caracteéres.

Evolution de I’'Unicode de Python 2 a Python 3
Python 3 adopte le standard Unicode de base, et le préfixe u disparait. Python 2.6,

quant a lui, ajoute un nouveau type bytes, qui est un synonyme du type str. Le pré-
fixe b peut étre utilisé pour ce type.

Le préfixe b

>>> b'je suis un bytes'
'je suis un bytes'

Lintérét de ce synonyme est de permettre aux développeurs d’utiliser dans leurs pro-
grammes Python 2.6 un marqueur simple pour différencier les chaines qui ne sont
pas utilisées dans le programme pour stocker du contenu textuel d’une langue
donnée. Ce contenu textuel est de préférence stocké dans des chaines unicode.

Donnée vs contenu textuel

>>> b'datal234'

'datal234’

>>> u'je suis une phrase moi, pas de la donnée !'
u'je suis une phrase moi, pas de la donn\xe9%e !'

Syntaxe du langage n
CHAPITRE 4

Un programme qui respecte cette convention pourra passer sans probleme a la
version 3 de Python, ot le type unicode disparait : les chaines unicode deviennent des
chaines str sans préfixe grice a une conversion automatique (avec le programme 2to3).
Les chaines bytes, quant 4 elles, deviennent directement des chaines bytes Python 3.

Pour résumer :

* Python 2.3 et inférieur — Les chaines sont toutes stockées dans des objets de type
str.

* Python 2.4 et Python 2.5 — Les chaines sont stockées dans des objets de type str
ou unicode, avec des méthodes de conversion. Les conventions suivantes sont
adoptées :

— Les chaines de caractéres dédiées a du texte utilisent le type unicode avec le
préfixe u.
— Les chaines de données utilisent le type str sans préfixe.

* Python 2.6 — Le préfixe b fait son apparition et permet d’indiquer que la chaine
est de type bytes. C’est un synonyme de str. La chaine sans préfixe reste aussi
une chaine str, et les chaines unicode sont toujours présentes. Les conventions
suivantes sont adoptées :

— Les chaines dédiées a du texte utilisent le type unicode avec le préfixe u.
— Les chaines de données utilisent de préférence le type bytes avec le préfixe b, afin
de les différencier des chaines de texte avec le test isinstance(texte, bytes).

* Python 3.0 et supérieur — Le type unicode disparait et devient le type str, et le
préfixe u est également retiré. Enfin, 'ancien type str devient le type bytes. Les
conventions suivantes sont adoptées :

— Les chaines de caractéres utilisent le type str sans préfixe.
— Les chaines ASCII classiques utilisent le type bytes avec le préfixe b.

Caracteres spéciaux

I1 est possible, comme avec le langage C, d’insérer des caractéres spéciaux dans les
littéraux. Le caractére antislash ou dackslash (\), permet d’intégrer ces caractéres afin
qu’ils soient interprétés comme des commandes. Voici un tableau contenant la liste
compléte des caractéres spéciaux disponibles en Python :

Tableau 4-1 Caractéres spéciaux pour le backslash

Caractére Description Exemple

et

Guillemet simple ou double, permet >>> print('1\'apostrophe')
d'éviter de casser I'enrobage d'une | 1'apostrophe
chaine

“ Eléments du langage
DEUXIEME PARTIE

Tableau 4-1 Caractéres spéciaux pour le backslash (suite)

Caractére Description

n

nnn

xHH

unnnn

N{nom}

Saut de ligne

Retour chariot, souvent placé avant
un saut de ligne sur les plates-formes
Windows.

Le code de fin de de ligne (EOL) varie
d'une plate-forme a I'autre (Mac :
\r', Windows : "\r\n’, Unix: \n') mais
tend a s'uniformiser vers \n'.

Antislash ou backslash

Tabulation verticale

Tabulation horizontale
Bip

Backspace

Valeur octale sur trois chiffres
Valeur hexadécimale sur deux chif-
fres

Caractére Unicode codé sur 16 bits

Caractére Unicode défini par le nom

Littéraux numériques

Exemple

>>>print('ok\ncorral')

ok

corral
>>>print('bataille\r\na\r\nok\r\ncorral')
bataille

a

ok

corral

>>>print('le fichier est dans
c:\\fichiers\\"')
Te fichier est dans c:\fichiers\

>>>print('1\v2"')

1

2
>>>print('ici\tou\tailleurs"')
ici ou ailleurs

>>>print('un bip : \a')

un bip :

>>>print('parfois je mange mes \b\b\b\b\b
mots')

parfois je mange mots
>>>print('\124out a fait')

Tout a fait

>>>print('7 est \x3E a 6')

7 est > a6

>>>print u'\uOObfHabla espa\u00flol?")
iHabla espafiol?

>>>print u'\N{POUND SIGN}'
f

I1 existe trois types de littéraux numériques pour représenter des valeurs :

* les entiers simples ou longs

* les valeurs a virgule flottante ;

* les nombres complexes.

Syntaxe du langage “
CHAPITRE 4
Littéraux pour les entiers

En Python, un entier peut étre représenté sous forme décimale, binaire, octale ou
hexadécimale.

Représentation décimale

Classiquement, la forme décimale est représentée par une séquence de chiftres numéri-
ques. La plage des valeurs possibles s'étend de 0 a 2 147 483 647, ce qui correspond a

une valeur non signée sur 32 bits et permet de représenter un entier naturel.

Pour obtenir des valeurs négatives et étendre la représentation aux entiers relatifs, le lit-
téral est préfixé de 'opérateur - pour former une expression correspondant a la valeur.

Pour toutes les valeurs qui dépassent cette plage, des entiers longs doivent étre utilisés.
Un entier long est représenté de la méme mani¢re qu’un entier, mais suffixé par la lettre
L ou 1. Il est conseillé d’utiliser la version majuscule afin d’éviter une éventuelle confu-
sion avec le chiffre 1. Il n'y a pas de limite de représentation pour les entiers longs mise
a part la mémoire virtuelle disponible de 'ordinateur. En d’autres termes, et contraire-
ment a beaucoup d’autres langages, il n'y a pas besoin de mettre en place des algo-
rithmes de changement de base pour manipuler des nombres de grande taille.

Représentation d’entiers

>>> u = -1

>>> U = 23456

>>> u = 2L

>>> U = 826252524370896L

>>> U = 826252524352928685376357642970896L # Tlong, isn't it ?

Depuis la version 2.4 de Python, lorsque qu'un entier simple dépasse la plage auto-
risée, il est automatiquement transtypé, c’est-a-dire converti, en entier long.

Transtypage automatique en entier /ong

>>> U = 56

>>> type(u)

<type 'int'>

>>> U = 3456876534567
>>> type(u)

<type 'long'>

La version 3 de Python, quant a elle, ne fait plus de distinction entre ces deux types
et les unifie en un seul type d’entiers sans suffixes.

Eléments du langage

DEUXIEME PARTIE

Manipulation d’entiers sous Python 3

>>> 2L
File "<stdin>", line 1
2L
A
SyntaxError: invalid syntax
>>> 826252524352928685376357642970896
826252524352928685376357642970896

Représentation binaire

La forme binaire (base 2) est obtenue avec le préfixe Ob (zéro suivi de b) ou 0B. bin
permet d’afficher la représentation binaire d’un entier.

Représentation binaire

>>> 000101101001
361

>>> bin(14)
'0b1110'

La représentation binaire n'existe que depuis Python 2.6.

Représentation octale

La forme octale est obtenue par une séquence de chiftres de 0 a4 7, préfixée d’'un 0o
(zéro suivi d’un petit 0) ou 00. oct permet d’afficher la représentation octale d’un
entier.

Exemples de représentation octale

>>> u = 00546
>>> u = 0076453L
>>> oct(543)
'01037'

Cette forme existe depuis Python 2.6, qui supporte encore I'ancienne forme ou le
chiffre octal était précédé d’'un zéro simple.
Représentation hexadécimale

La forme hexadécimale est obtenue par une séquence de chiffres et de lettres de A a F,
préfixée par la séquence Ox ou 0X. La forme la plus courante est d’utiliser le préfixe Ox.

Syntaxe du langage “
CHAPITRE 4

Les lettres qui servent a la composition de la valeur peuvent étre en majuscules ou
minuscules. La notation la plus lisible est I'utilisation de lettres majuscules, combi-
nées a l'utilisation du préfixe Ox, mais ce choix reste souvent dicté par le domaine.

Enfin, hex permet d’afficher la représentation hexadécimale d’un entier.

Exemples de notation hexadécimale

>>> u = 0X3EF5

>>> u = OX3EF598L
>>> u = Ox3EF76L
>>> U = 0x3ef7b66L
>>> hex(43676)
'Oxaagc’

Littéraux pour les valeurs a virgule flottante

La représentation de valeurs a virgule flottante, que 'on notera littéraux réels, permet
de décrire des valeurs réelles. Les parties entiére et fractionnelle de la valeur réelle
sont séparées par le signe « . », chaque partie étant composée de chiffres. Si le pre-
mier chiffre de la partie entiere est 0, le nombre représenté ne sera néanmoins pas
considéré comme un octal et restera traité en base 10.

Représentation de réels

>>> u = .001

>>> u = 103.

>>> U = 103.001

>>> u = -103.2

>>> U = -.1

>>> U = -2.

>>> u = 09.02 # équivalent a 9.02

De méme que pour un littéral entier, le signe - peut étre utilisé en préfixe pour com-
poser une valeur négative.

Une puissance est aussi une valeur a virgule flottante. Elle est représentée par une
partie entiére (ou littéral réel) compléte suivie d’'un exposant. L'exposant est un suf-
fixe composé de la lettre e ou E, suivi d'un signe + ou - optionnel et d’un certain
nombre de chiffres.

Le module decimal, présenté au chapitre 9, permet quant a lui de représenter des
valeurs décimales.

n Eléments du langage
DEUXIEME PARTIE

Représentation de valeurs exponentielles

>>> u = 3.1el0
>>> u = .2E9
>>> u = .2E09
>>> u = 4.2E09
>>> u = 4el0

Littéraux pour les nombres complexes

En Python, la représentation d’un nombre complexe se fait par 'association de deux
littéraux réels séparés par le signe +. La partie imaginaire est suffixée par la lettre J ou
j. Il est aussi possible d’omettre la partie réelle lorsqu’elle est nulle.

Enfin, les parties réelle et imaginaire peuvent étre consultées par le biais des
méthodes real et imag fournies par les objets de type compTex.

Exemples de nombres complexes

>>> U = 5j

>>> u =3 + .3]
>>> U = 6.1 + 96j
>>> U =7 + 34]
>>> Uu.real

7.0

>>> U.imag

34.0

>>> U

(7+3473)

Les types standards

Python fournit de maniére standard certains types de données :
* les types a valeur unique ;
* les nombres ;
* les séquences ;
* les mappings ;
* le type file.

A ces quatre types s'ajoutent les types de données accessibles qui seront présentés
dans le chapitre 6.

Syntaxe du langage n
CHAPITRE 4
Les types a valeur unique

Les types a valeur unique permettent de définir des objets qui jouent un rdle spéci-
fique dans le langage. Python en fournit trois par défaut :

* None;
* NotImplemented;
* Ellipsis.

None

None permet de déclarer une absence de valeur et est en quelque sorte comparable au
nil de Pascal ou au NULL de C. Son usage est trés fréquent. I est commun par
exemple pour certaines variables associées a certaines structures de données (les
classes pour ne pas les nommer) de les initialiser a None. La valeur booléenne de None
est & False et ce type peut donc étre employé dans des expressions de test.

Notimplemented

Dans un algorithme complexe, lorsque certaines combinaisons de parameétres ne per-
mettent pas de calculer un résultat, NotImplemented peut étre renvoyé. Ce type est
aussi utilisé lorsque le code n’est pas terminé.

PrROGRAMMATION Utilisation de NotimplementedError

Il est plus fréquent d'utiliser NotImplementedError qui permet de lever une exception dans ce
genre de cas, afin de ne pas laisser le code appelant continuer (voir le prochain chapitre sur la gestion
d'exceptions).

Dans lexemple ci-dessous, la méthode get_data déclenche une erreur
NotImplementedError pour signifier qu'elle doit étre surchargée.

Utilisation de NotlmplementedError

>>> class AbstractData(object):
def print_data(self):
print(self.get_data())
def get_data(self):
raise NotImplementedError('A surcharger')

>>> d = AbstractData()

>>> d.print_data()

Traceback (most recent call Tast):
File "<stdin>", T1ine 1, in <module>
File "<stdin>", 1ine 3, in print_data

Eléments du langage

DEUXIEME PARTIE

File "<stdin>", Tine 5, in get_data
NotImplementedError: A surcharger
>>> class ConcreteData(AbstractData):
def _ _init__(self, data):
self.data = data
def get_data(self):
return self.data

>>> d = ConcreteData('xxx"')
>>> d.print_data()
XXX

ABSTRACTION Module abc

Le module abc, introduit dans Python 2.6 et présenté au chapitre 10, offre une nouvelle technique de
description de classes abstraites, comparable aux interfaces.

Ellipsis

ETlipsis est utilisé par la notation étendue des tranches, vues 4 la fin de ce chapitre,
et par les doctests (voir le chapitre 12, sur la programmation dirigée par les tests).

Les nombres

Les nombres sont des objets immuables représentés par les littéraux numériques.
On retrouve donc les trois types, soit :

* les nombres entiers ;

* les nombres a virgule flottante ;

* les nombres complexes.

Enfin, un type supplémentaire compléte les nombres virgule flottante : les décimaux.

Les nombres entiers

Le type int

Les nombres entiers sont codés par le biais du complément a deux sur 32 bits ou plus.
Le principe de ce codage est de représenter les entiers relatifs sur n-1 bits en différen-
ciant les entiers relatifs positifs ou nuls des entiers relatifs négatifs par le dernier bit : 0
pour les positifs et 1 pour les négatifs. Une valeur négative est obtenue en prenant son
opposée positive et en inversant chaque bit de sa représentation, puis en ajoutant 1.

Cette technique permet de rendre directes certaines opérations de bas niveau sur les
nombres, comme les masquages ou décalages de bits.

Syntaxe du langage n
CHAPITRE 4
Le type long
Les nombres entiers dépassant la plage de -2 147 483 648 a 2 147 483 647, définis

précédemment comme des entiers longs, sont quant a eux codés par le biais d’'une
variante du complément a deux. Cette variante définit une valeur suivant une série de
bits de taille indéfinie, la mémoire disponible étant la seule limite. L'objectif de cette
représentation est de minimiser les problématiques de passages de type Tong a type
int lors d’opérations arithmétiques.

PytHON 3 Unification des types long et int

Les types Tong et int ne sont plus qu'un seul et méme type sous Python 3, et ce nouveau type int
fonctionne sans limites de valeur.

Le type bool
I1 existe enfin un sous-ensemble composé des valeurs 0 et 1, qui permet de définir le
type booléen. Ce type est représenté par deux objets uniques :

* True;

* False.
Ces objets sont équivalents aux objets 0 et 1 de type int.

Les nombres a virgule flottante

Les nombres a virgule flottante utilisés pour représenter des réels sont tous a double
précision (norme IEEE 754) en Python, soit des nombres codés sur 64 bits. La simple
précision nest pas implémentée, car le gain en termes de taille mémoire et de temps
CPU est ridicule par rapport aux autres consommations d'un programme Python.

CULTURE La norme IEEE 754

La norme |EEE 754, reprise par la norme internationale IEC 60559, définit le format des nombres a vir-
gule flottante et est adoptée par la quasi-totalité des architectures d'ordinateur actuelles. Les proces-
seurs intégrent directement des implémentations matérielles pour le calcul sur les flottants IEEE, ce qui
rend leur usage rapide. Les flottants IEEE sont codés en « simple précision » sur 32 bits ou en « double
précision » sur 64 bits. Le seul intérét de la simple précision est un gain relatif de mémoire et de temps
CPU, ce qui est devenu accessoire avec la puissance des machines actuelles.

Le principe de la virgule flottante est de définir le nombre réel par un signe, une mantisse entiére ou signifi-
cande qui représente le nombre complet, et |'exposant qui détermine la place de la virgule dans le nombre.
Les flottants demeurent une approximation rationnelle des nombres réels, et posent quelques problémes.
Le principal est que des arrondis peuvent se cumuler dans les calculs et introduire des erreurs dramati-
ques dans certains domaines comme le calcul scientifique ou la comptabilité. L'utilisation des flottants y
est donc proscrite, et remplacée par des entiers.

Eléments du langage

DEUXIEME PARTIE

Les nombres complexes

Les nombres complexes sont formés d'un couple de nombres a virgule flottante et
subissent donc les mémes contraintes.

Les décimaux

Introduits dans Python 2.4, les décimaux permettent de combler les limitations des
nombres a virgule flottante dans la représentation de certaines fractions. Contraire-
ment aux types précédents, définir un décimal ne peut pas se faire directement et il
est nécessaire d’utiliser explicitement le module decimal. Ce module et son utilisa-
tion sont décrits dans le chapitre 8.

Les séquences

Une séquence est une collection finie d’éléments ordonnés, indexés par des nombres
)
positifs. Ces nombres varient de 0 4 n-1 pour une séquence contenant n éléments. La

notation pour se référer au i élément de la séquence est :

I sequence[i-1]

I1 est aussi possible d’utiliser des index négatifs pour se référer aux éléments, en les
faisant varier de -n a -1. Le dernier élément de la séquence devient :

I sequence[-1]

et le premier :

I sequence[-n]

Les éléments d'une séquence peuvent étre découpés en tranches en formant des
sous-séquences. Par exemple, sequence[u:v] est une séquence qui est une sous-
. Y212 b . b Y212 b
partie de sequence, de I'élément d’index u inclus, a I'élément d’index v exclus. La
nouvelle séquence obtenue devient une séquence a part entiére et de méme type. La
notation de certaines tranches est simplifiée par la double indexation positive et
négative vue précédemment. Par exemple, obtenir la tranche qui contient tous les
éléments d’une séquence, excepté le premier et le dernier se note :

I sequence[1l:-1].

Il existe un systéme de tranches étendu pour certains types de listes qui permet
d’insérer un troisiéme parameétre qui définit le pas. sequence[u:v:w] est équivalent a

Syntaxe du langage n
CHAPITRE 4

sequence[u:v] mais seuls les éléments multiples de w seront conservés, c’est-a-dire
que pour tout index i supérieur ou égal a u et inférieur 4 v, sequence[i] sera con-
servésii = u + n*w.
Python fournit quelques primitives de manipulation communes a tous les types de
séquences :

* lenQ : permet de récupérer le nombre d’éléments de la séquence ;

* min() etmax() :renvoient les éléments de valeurs minimum et maximum ;

* sum() : renvoie la somme des éléments, lorsque tous les éléments de la liste ont

des types qui peuvent étre additionnés.

I1 existe deux sortes de séquences :

* les séquences immuables, qui ne peuvent plus étre modifiées apres création ;

* les séquences modifiables.

Les séquences immuables
Les séquences immuables sont des objets dont la valeur ne peut plus étre modifiée
apres création.
Ce sont :
* les chaines de caracteres de type str nommées string ;
* les chaines de caractéres Unicode, nommées unicode ;
* les listes immuables d’éléments hétérogenes, de type tuple et nommées tuples ;
* le nouveau type bytes ;
* le type frozenset.

strings et unicode

Les strings sont des séquences de caractéres. Un caractére est une valeur codée sur
8 bits, pour représenter une valeur comprise entre 0 et 255. Ce qui correspond 4 un
signe de la table ASCII (0 et 127) ou de la table étendue (128 a 255) pour les valeurs

supérieures.

Contrairement a d’autre langages, il n'existe pas en Python de type spécifique pour
un caractere, et un caractére n'est rien d’autre qu'une séquence string de longueur 1.
I1 existe cependant deux primitives spécifiques aux caractéres, qui permettent de faire
la conversion entre le caractére et sa valeur entiere : ord() et chr().

Utilisation de chr() et ord()

>>> chr(97)
Ial

Eléments du langage

DEUXIEME PARTIE

>>> ord('z")
122
>>> ord('Z")
90
>>> chr(90)
lZl

Les chaines unicode fonctionnent de la méme maniere, mais ont une plage de
valeurs plus étendue, puisqu'un signe Unicode peut représenter une valeur sur 16 ou
32 bits. Il n’existe pas de fonction chr() pour les chaines unicode, mais une fonction
spécifique unichr(). La conversion inverse reste possible avec ord().

La conversion entre chaines string et unicode est possible grice aux méthodes
encode() et decode() et aux primitives unicode() et str(). Le principe de conver-
sion est relativement simple :

Figure 4-1

Schéma de correspondance ' icod
unicode-string Vad unicode .

I sring |4
_—
codecs _
1SO-8859-15 1S0-2022-KR 1S0-20....
‘ abedefghijklm . abcdefghijklm | abedef..........
| PArSUVWXYZ... | | pQrsuvwxyz... || PArstuvwxyz...

Une chaine unicode peut étre convertie en sa correspondance en string avec la
méthode encode() ou la fonction str(). Cette correspondance nest pas bijective,
puisque I'Unicode est en quelque sorte un regroupement de toutes les tables de carac-
teres existantes. Il est donc nécessaire d’utiliser pour la conversion une table de cor-
respondance, nommée codec, qui permet de convertir une chaine unicode en son
équivalent en fonction d’un jeu de caracteres donné. Ce jeu de caractéres est spéci-
fique a chaque groupe alphabétique de langues et celui utilisé pour le francais est
I'ISO-8859-15. Si l'une des valeurs Unicode n'existe pas dans le codec utilisé, une
erreur UnicodeEncodeError est retournée.

Syntaxe du langage n
CHAPITRE 4

Essais d’encodage

>>> encode = u'je m\'appréte a étre encodé'.encode('IS0-8859-15")
>>> print(encode)
je m'appréte a étre encodé
>>> u'je m\'appréte a étre encodé'.encode('IS0-2022-KR")
Traceback (most recent call last):
File "<stdin>", 1line 1, in ?
UnicodeEncodeError: 'is02022_kr' codec can't encode character u'\xea' in
position 9: illegal multibyte sequence

AReTeNiR Utilisation de str pour les conversions de chaines

La primitive str n'a pas été utilisée ici car elle ne permet pas de convertir une chaine unicode vers
une chaine string uniquement avec le codec par défaut, c'est-a-dire ascii. Si la chaine unicode
n'avait été composée que de caractéres de la table asci, cette conversion aurait fonctionné.

La conversion de chaine string vers unicode, appelée décodage, est basée sur le
méme principe.

Essais de décodage

>>> string = 'je m\'appréte a étre décodé, j\'ai peur'
>>> string.decode('IS0-8859-15")

u"je m'appr\xeate \xe0 \xeatre d\xe9cod\xe9, j'ai peur"
>>> unicode(string, 'IS0-8859-15")

u"je m'appr\xeate \xe0 \xeatre d\xe9cod\xe9, j'ai peur"

La primitive unicode peut étre utilisée au méme titre que la méthode decode, car elle
prend en deuxieéme parameétre le nom du codec, contrairement 4 str.

Opérateur d’interpolation

Les objets de type string et unicode possedent un opérateur d’interpolation, ou
opérateur de formatage, qui permet de convertir des marqueurs disposés dans la
chaine de caractéres par des valeurs fournies la suite.

Lécriture est de la forme objet unicode ou string % valeurs, ol valeurs estun
tuple contenant I'ensemble des valeurs a utiliser dans le formatage.

S’il n’y a qu'une seule valeur, I'élément peut étre directement placé apres I'opérateur
moduTo.

Eléments du langage

DEUXIEME PARTIE

Formatage de chaine

>>> print("Bonjour Madame %s" % 'Plaindozeille')
Bonjour Madame Plaindozeille

>>> print("Cet objet colite %d euros, Madame %s" % (234,
'Plaindozeille'))

Cet objet colte 234 euros, Madame Plaindozeille

A chaque expression précédée d’un %, appelé marqueur de formatage, doit corres-
pondre une valeur de formatage dans le tuple fourni.

Lexpression est de la forme %[PIc, ou c est un caractére qui détermine le type de
valeur et P un éventuel parameétre supplémentaire, indiquant la précision a utiliser
pour la valeur a formater.

La précision est représentée par un entier préfixé par un point, qui spécifie le nombre
de chiffres significatifs apres la virgule.
Les caracteres de formatage sont :

* %d : entier décimal signé ;

* %o :octal non signé ;

* %u :décimal non signé ;

* %x ou %X : valeur hexadécimale, préfixée respectivement par Ox ou 0X ;

* %e ou %E :valeur a virgule flottante, de la forme xev ou xEv ;

* %f ou F% :réel;

* %g ou %G : pour les valeurs a virgule flottante, équivalent a %e ou %E si 'exposant

est supérieur a -4 ou inférieur a la précision, sinon équivalent a %f ;

* %c : un seul caractére (sous la forme d’un string ou d’un entier) ;

* %r : renvoie le résultat de la primitive repr() ;

* %s : renvoie le résultat de la primitive str(Q ;

* %% : permet d'utiliser le caractere % dans une chaine formatée.

Exemples de formatages

>>> print('%.2f euros' % 2.394765)
2.39 euros

>>> print('%E euros' % 2.394765)
2.394765E+00 euros

>>> print('%s euros' % '2.394")
2.394 euros

>>> print('%d euros' % 2.394)

2 euros

Cette notation s’avere parfois complexe lorsquil y a beaucoup d’éléments a rem-
placer, et il est possible d’utiliser des formatages nommés avec un dictionnaire.

Syntaxe du langage "
CHAPITRE 4
Formatage par méthode classique puis par dictionnaire

>>> "Remplacement de %s par %s. Oui %s par %s, vraiment %s." % \

. ('ce mot', 'ce mot-ci', 'ce mot', 'ce mot-ci', 'ce mot-ci')

'Remplacement de ce mot par ce mot-ci. Oui ce mot par ce mot-ci,

vraiment ce mot-ci.'

>>> ("Remplacement de %(old)s par %(new)s. Oui %(old)s par %(new)s,
"vraiment %(old)s." % {'old': 'ce mot', 'new': 'ce mot ci'})

'Remplacement de ce mot par ce mot-ci. Oui ce mot par ce mot-ci,

vraiment ce mot.'

Le formatage « %s » devient « %(1abel)s » ot Tabel est une clé dans le dictionnaire
passé a I'opérateur « % ».

Tuples

Les tuples sont des séquences qui contiennent des éléments de types hétérogenes.
Chacun des éléments est séparé par une virgule et 'ensemble est défini par des
parentheses. Une fois 'objet créé, il est impossible de modifier sa valeur. Cette con-
trainte permet d’utiliser ce type d’objet dans des cas de programmation précis que
nous verrons par la suite. Pour pouvoir modifier les éléments d’'un tuple, il faut donc
en créer un nouveau qui le remplacera.

Les tuples composés d’un seul élément ont une écriture un peu particuliére puisqu’il
est nécessaire d’ajouter une virgule apres I'élément, sans quoi I'analyseur syntaxique
de Python ne le considérera pas comme un tuple mais comme I'élément lui-méme, et
supprimera les parentheses qu'il analyserait comme superflues.

Manipulation de tuples

>>> tuple()

O
>>> tuple('a')
('a',)

>>> color_and_note = ('rouge', 12, 'vert', 14, 'bleu', 9)
>>> colors = color_and_note[::2]

>>> print(colors)

('rouge', 'vert', 'bleu')

>>> notes = color_and_note[1::2]

>>> print(notes)

(12, 14, 9)

>>> color_and_note = color_and_note + ('violet',)
>>> print(color_and_note)

('rouge', 12, 'vert', 14, 'bleu', 9, 'violet')
>>> print('violet')

violet

>>> print('violet',)

('violet',)

Eléments du langage

DEUXIEME PARTIE

Loubli de la virgule dans un tuple a un élément, pour différencier ('violet',) de
'violet', est une erreur courante de programmation.

bytes
Le type bytes est sous Python 2.6 un simple alias vers le type str. Il permet une

transition en douceur vers Python 3.

Il devient réellement différent dans Python 3 et permet de manipuler des entiers de 0
4 127 correspondants a la table ASCIL. II peut étre initialisé par des valeurs dans une
séquence préfixée de b, ou par une chaine de caracteres de type str.

Manipulation de bytes sous Python 3

>>> data = b'\xcl\xc2'
>>> data

b'\xcl\xc2'

>>> data = b'some bytes'
>>> data

b'some bytes'

Pour étre initialisé avec un objet de type str, il est nécessaire d’utiliser le constructeur de
bytes et de préciser 'encodage de la chaine pour que Python puisse traduire la chaine.

Initialisation avec une simple chaine

>>> data = bytes('some bytes', 'utf-8')
>>> data
b'some bytes'

frozenset

Le type frozenset est une version immuable du type set. Il est présenté avec le type
set dans la prochaine section.

Les séquences modifiables

Les séquences modifiables implémentent un certain nombre de méthodes qui permet-
tent d’ajouter, de supprimer ou de modifier chacun des éléments qui les composent.
Le langage propose plusieurs types de séquences modifiables :

* 1ist, le type le plus classique ;

* bytearray, qui permet de manipuler des bytes ;

* set, qui définit une séquence non ordonnée ;

* array, qui implémente une liste d’éléments homogeénes simples, comme les entiers
ou chaines de caractéres, du moment qu’ils sont dans la bibliotheque standard.

Syntaxe du langage n
CHAPITRE 4
Le type list

Dans une liste, chaque élément est séparé par une virgule et 'ensemble est entouré
) q pare p g
par des crochets. Une liste vide se note donc [].

Manipulation de list

>>> Tist(Q)

[]

>>> Tist('1234")
[lll’ I2l, l3l, |4']
>>> [1, 2, 3]

[1, 2, 3]

Le tableau ci-dessous regroupe I'ensemble des méthodes applicables aux listes, et
compléte les primitives communes a toutes les séquences. Pour les méthodes, les
parameétres optionnels sont notés en italique :

Tableau 4-2 Méthodes pour les listes

Nom Description Exemple
append(e) Permet d'ajouter un élément e enfinde >>> a = [1, 3, 'b']
liste. >>> a.append('t')

>>> print(a)
[1, 3, 'b', "t']
extend(L) Permet d'ajouter les éléments d'une >>> a = [1, 2, 3]
seconde liste L en fin de liste. >>> b = [4, 5]
>>> a.extend(b)
>>> print(a)
[1, 2, 3, 4, 5]

insert(p, e) Permetd'insérer un élément e a une >>a=['e", 'j', '0o', 'u', 'r']
position p. La position O correspondd >>> a.insert(0, 'b')
une insertion en début de liste. >>> a.insert(2, 'n")
>>> print(a)
[lb” ’Ol’ 'n" 'jl’ '0', 'u" 'r||]
remove (e) Retire le premier élément de la liste quia >>> a = [1, 2, 3]
la méme valeur que celle fournie. Si >>> a.remove(2)
aucun élément n'est trouvé, une erreur >>> print(a)
est retournée. [1, 3]

>>> a.remove(2)

Traceback (most recent call last):
File "<stdin>", 1line 1, 1in

<moduTe>?

ValueError: Tist.remove(x): x not 1in

Tist

n Eléments du langage
DEUXIEME PARTIE

Nom

pop(7)

index(e)

count(e)

sort(fonc)

reverse()

Tableau 4-2 Méthodes pour les listes (suite)

Description

Retire I'élément d'index i de la liste et le
renvoie. Si i n'est pas fourni, c'est le der-
nier élément qui est retiré.

Renvoie I'index du premier élément dont
la valeur est e. Une erreur est renvoyée si
e n'est pas trouvé.

Indique le nombre d'occurrences de I'élé-
ment e.

Trie les éléments de la liste. Le paramétre
optionnel fonc est un nom de fonction
qui sera utilisé pour comparer deux a
deux les éléments de la liste. S'il est omis,
un tri par défaut basé sur les valeurs bru-
tes des éléments est appliqué.

Le principe de comparaison par valeurs

brutes sera explicité dans le chapitre trai- * - -

tant des opérateurs.

Retourne la liste. Le premier élément
devient le dernier, le deuxiéme
I'avant-dernier, etc.

Exemple

>>> a = [1, 2, 3]
>>> a.pop(1l)

2

>>> a.pop()

3

>>> a

[1]

>>> a = [1, 2, 3, 2]

>>> a.index(2)

1

>>> a.index(17)

Traceback (most recent call last):
File "<stdin>", 1line 1, in

<module>?

ValueError: Tist.index(x): x not 1in

Tist

>>a = [1, 2, 3, 2]

>>> a.count(2)

2
>>> a.count(l)
1
>>> a.count(17)
0
>>> a = [4, 1, 2, 3]
>>> a.sort()
>>> a
[1, 2, 3, 4]
>>>a = ['c', "ihfge', 'ef']
>>> def size_sort(el, e2):
if len(el) > len(e2):
return 1
if Ten(el) < len(e2):
return -1
return 0

>>> a.sort(size_sort)
>>> a

['c', "ef', "ihfge']
>>a = [2, 0, 0, 5]
>>> a.reverse()

>>> a
(5, 0, 0, 2]

Syntaxe du langage n
CHAPITRE 4

Asavor Supprimer directement un élément d'une séquence

Pour supprimer directement I'élément d'index i d’une séquence s modifiable, il est possible d'utiliser la
primitive de1 en utilisant la notation : de1 s[i]

bytearray

Le type bytearray est équivalent au type bytes mais permet de modifier les don-
nées. 11 s'instancie avec une liste d’entiers, une chaine binaire ou une chaine classique
du moment que I'encodage est fourni.

Initialisation d’un bytearray

>>> array = bytearray([1l, 78, 76])
>>> array

bytearray(b'\x01NL")

>>> bytearray(b'some data')
bytearray(b'some data')

>>> bytearray('some data', 'utf8')
bytearray(b'some data')

bytearray implémente certaines méthodes du type str, comme startswith,
endswith ou encore find.

Il permet aussi de manipuler les données comme une séquence, et implémente cer-
taines méthodes de 1ist, comme append, pop ou encore sort.

Manipulation de bytearray

>>> array = bytearray([1l, 78, 76])
>>> array.startswith(b'\x01")
True

>>> array[2]

76

>>> array.append(12)

>>> array
bytearray(b'\x01INL\x0c")

>>> array.reverse()

>>> array
bytearray(b'\x0cLN\x01")

set

Le type set est une séquence non ordonnée d’objets hashable uniques. Un objet has-
hable est un objet qui implémente la méthode spéciale __hash__, qui renvoie une
valeur unique pendant toute la durée de vie de I'objet. En d’autres termes, les objets
hashable sont tous des objets de valeur constante.

n Eléments du langage
DEUXIEME PARTIE

La primitive hash permet de renvoyer la valeur retournée par méthode __hash__ de
T'objet et de provoquer une erreur si 'objet n'en a pas, c’est-a-dire s'il n’est pas constant.

Manipulation de hash

>>> hash('some string')

-604248944

>>> hash('some string')

-604248944

>>> hash(12)

12

>>> hash([1, 2])

Traceback (most recent call last):
File "<stdin>", Tine 1, in <module>

TypeError: unhashable type: 'list'

Cette restriction permet a set d’étre beaucoup plus performant quune séquence
classique pour certains opérateurs, comme in, car il construit en mémoire un index
des éléments.

Opérateur in sur set et list

>>> 1 1in [1, 2, 3] # complexité 0(n*n)
True

>>> 1 1in set([1, 2, 31) # complexité 0(n)
True

Les méthodes disponibles avec set sont celles des séquences.

frozenset est un sous-type de set qui est immuable et permet de figer le contenu de
la séquence et d’offrir de nouvelles méthodes de comparaisons puissantes et rapides.

Les mappings

Le mapping est une collection d’éléments qui sont identifiés par des clés uniques. Il
n’y a donc dans ce cas aucune notion d’ordre comme dans les listes. La notation est la
méme que pour les séquences, et 'élément e du mapping map associé a la clé cle se
récupére par la commande :

I e = map[cle]

On peut utiliser les mémes primitives que pour les séquences sur un mapping, soit
max, min et Ten. En réalité, ces opérations s’appliqueront sur la séquence équivalente a
I'ensemble des clés qui composent le mapping.

Syntaxe du langage n
CHAPITRE 4

Python propose un type de mapping dict (appelé dictionnaire), sachant qu’il est tout
a fait possible d’'implémenter son propre type de mapping comme le module array
de la bibliotheéque standard le fait pour les séquences.

N

Dans les dictionnaires, la clé associée a un élément doit étre un objet de type
immuable, comme un entier ou une chaine de caractéres. Il est possible d’utiliser un
tuple comme clé a condition que les éléments qui le composent soient tous immua-
bles. Cette contrainte permet aux mécanismes internes du dictionnaire de traduire la
clé en une valeur constante, en utilisant hash, qui sera ensuite utilisée pour accélérer
tous les acces aux éléments.

Chaque élément d’un dictionnaire est séparé par une virgule et I'ensemble est
entouré par des accolades. Un dictionnaire vide se note donc {}. Pour représenter un
élément de dictionnaire, on le préfixe de sa clé suivie de deux points. L'élément e de
clé cle se note donc cle: e, et un dictionnaire composé de deux éléments clel: el
et cle2: e2 senote: {clel: el, cle2: e2}

Exemples de dictionnaire

>>> dicol = {'a': 1, 2: 'b'}
>>> dicol['a']

1

>>> dicol[2]

lbl

>>> len(dicol)

2

>>> dict(Q)

{}

>>> dict((('a', 1), ('b', 2), ('c', 3)))
{'a': 1, 'c': 3, 'b': 2}

Tout comme les listes, les objets de type dictionnaire proposent un certain nombre de
méthodes regroupées dans le tableau ci-dessous :

Tableau 4-3 Méthodes pour les dictionnaires

Nom Description Exemple
clear(Q) Supprime tous les éléments du diction- >>> dicol = {'a': 1, 'b': 2}
naire. >>> dicol.clear()
>>> dicol

{}

n Eléments du langage
DEUXIEME PARTIE

Tableau 4-3 Méthodes pour les dictionnaires (suite)

Nom Description Exemple

copy) Renvoie une copie par références du dic- >>> dico = {'1': 'r', "'2"': [1,2]}
tionnaire. >>> dico2 = dico.copy()
Lire la remarque sur les copies un peu plus >>> dico2
bas. "1 ety 2% [1, 213

>>> dico['2"'].append('E")
>>> dico2['2'] # dico2 est aussi

impacté
[1, 2, '"E']
has_key(cle) Renvdevmiﬂlac%fmﬂmeeﬂsm.Equ& >>> dico = {'a': 1, 'b': 2}
lent a la notation : >>> dico.has_key('a")
cle in dictionnaire. True
cle not in dictionnaire est >>> dico.has_key('c")
I'équivalent de I'inverse, soit not False
has_key(cle). >>> 'a' 1in dico
True
>>> 'c' not in dico
True
items () Renvoie sous la forme d'une liste de tuples, >>> a = {'a': 1, 'b': 1}

des couples (clé, valeur) du dictionnaire. >>> a.items()

Les objets représentant les valeurssont ~ [('a', 1), ('b", 1)]
des copies complétes et non des référen-

ces.

keys () Renvoie sous la forme d'une liste I'ensem- >>> a = {(1, 3): 3, 'Q': 4}
ble des clés du dictionnaire. L'ordre de ren- >>> a.keys()
voi des éléments n'a aucune signification | ['Q", (1, 3)]
ni constance et peut varier a chaque modi-
fication du dictionnaire.

values() Renvoie sous forme de liste les valeursdu >>> a = {(1, 3): 3, 'Q': 4}
dictionnaire. L'ordre de renvoi n‘aicinon >>> a.values()
plus aucune signification mais sera le [4, 3]

méme que pour keys () sila liste n'est
pas modifiée entre-temps, ce qui permet
de faire des manipulations avec les deux
listes.

iteritems() Fonctionne comme items () mais renvoie >>> 1 {1: 'a', 2: 'b', 3: 'c'}
un itérateur sur les couples (clé, valeur). >>> i = 1.iteritems()
>>> i.next()

@, 'a")
>>> j.next()
2, 'b")

>>> i.next()
@3, 'ch

Nom

iterkeys()

itervalues()

get(cle,
default)

pop(cle,
default)

popitem()

Syntaxe du langage n
CHAPITRE 4

Tableau 4-3 Méthodes pour les dictionnaires (suite)

Description

Fonctionne comme keys () mais renvoie
un itérateur sur les clés.

Fonctionne comme values () mais ren-
voie un itérateur sur les valeurs.

Renvoie la valeur identifiée par la clé
cle. Silaclé n'existe pas, renvoie la
valeur default fournie. Si aucune valeur
n'est fournie, renvoie None.

Renvoie la valeur identifiée par la clé cle
et retire I'élément du dictionnaire. Si la clé
n'existe pas, pop se contente de renvoyer
la valeur default. Si le paramétre
default n'est pas fourni, une erreur est
levée.

Renvoie le premier couple (clé, valeur) du
dictionnaire et le retire. Si le dictionnaire
est vide, une erreur est renvoyée. L'ordre
de retrait des éléments correspond a
I'ordre des clés retournées par keys () si
la liste n'est pas modifiée entre-temps.

Exemple

>>> 1 = {1: 'a', 2: 'b', 3:
>>> cles = 1.iterkeys()
>>> cles.next()

1

>>> cles.next()

2

>>> cles.next()

3

>>> values = T.itervalues()
>>> values.next()

ICI}

>>> values.next()
lbl
>>> values.next()

>>> 1 = {1: 'a', 2: 'b", 3:
>>> 1.get(1l

al

>>> 1.get(13)

>>> 1.get(13, 7)

>>> 1 = {1: 'a', 2: 'b', 3:
>>> T.pop(1)

a
>>>]

{2: 'b', 3: 'c'}
>>> 1.pop(13, 6)
6
>>>]

{2: 'b', 3: 'c'}

>>> 1.pop(18)
Traceback (most recent call
Tast):

File "<stdin>", 1ine 1, in ?
KeyError: 18

>>> 1 = {1: 'a', 2: 'b', 3:
>>> T1.popitem()

ICI}

@a, 'a"
>>> T1.popitem()
2, 'b")

>>> T.popitem()
@3, 'cH

Eléments du langage

DEUXIEME PARTIE

Tableau 4-3 Méthodes pour les dictionnaires (suite)

Nom Description Exemple
update(dic, Update permet de mettre a jour le dic- >>> 1 = {1: 'a', 2: 'b', 3: 'c'}
#%dic) tionnaire avec les éléments du dictionnaire >>> 12 = {3: 'ccc', 4: 'd'}

di c. Pour les clés existantes dans la liste, >>> 1.update(12)

les valeurs sont mises a jour, sinon créées. >>> 1

Le deuxiéme argument est aussi utilisé {1: 'a', 2: 'b', 3: ‘'ccc', 4:
pour mettre a jour les valeurs. d'}

setdefault(cle, Fonctionne commeget() maissicle >>> 1 = {1: 'a', 2: 'b', 3: 'c'}

default) n'existe pas et default est fourni, le >>> 1.setdefault(4, 'd")
couple (cle, default) est ajouté a la liste. | "d’
>>>
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
fromkeys(seq, Génére un nouveau dictionnaire et y >>> 1 = {3
default) ajoute les clés fournies dans la séquence | >>> 1.fromkeys([1, 2, 31, 0)

seq. La valeur associée & ces clés est {1: 0, 2: 0, 3: 0}
default sile paramétre est fourni,
None le cas échéant.

ARETENR Copie légére et copie compléte

Les copies de type shallow sont littéralement des copies légéres. Chaque référence aux objets du diction-
naire est recopiée et les changements des objets modifiables sont donc visibles dans chaque copie origi-
nelle du dictionnaire.

A l'inverse, les copies complétes, notées deepcopy, fabriquent une copie conforme en scrutant et reco-
piant récursivement tous les éléments contenus dans les objets modifiables du dictionnaire. Pour la
méthode 1items, une copie compléte est effectuée dans la liste résultante, ce qui n'est pas le cas de
copy .

Nous verrons dans les exercices du chapitre 9 qu'il existe un systéme générique de copie compléte, dans
le module copy, qui offre la possibilité d'implémenter ce mécanisme pour tout type d'objet.

A savoR Les itérateurs

Les itérateurs, qui seront plus largement abordés dans la partie de description de la fonction yield, et
les générateurs, sont des objets qui permettent de parcourir une séquence sans que les éléments qui la
constituent ne soient connus au préalable. Le principe est équivalent a un curseur de données placé sur la
premiére donnée et qui découvre les éléments au fur et a mesure de I'avancée dans la séquence. Ce
mécanisme permet d'optimiser grandement la vitesse d'exécution pour des cas d'utilisation spécifiques.

Syntaxe du langage
CHAPITRE 4 “
Les opérateurs

Cette section présente 'ensemble des opérateurs disponibles en Python, ainsi que les
régles qui les gerent, comme l'ordre de traitement par l'interpréteur des éléments
d’une opération.

Opérateurs de base

Les opérateurs de base que sont 'addition, la soustraction et la multiplication, fonc-
tionnent de maniere tout 4 fait classique en Python. La division est particuliére : his-
toriquement, cet opérateur fonctionne exactement comme celui du langage C. Ainsi,
lorsque les deux opérandes de la division sont des entiers, le résultat est toujours un
nombre entier, ce qui peut étre relativement perturbant. Pour éviter ce probleme, il
est nécessaire de transformer I'un des opérandes en nombre 2 virgule flottante.

Essais de division

>>> 5/6

0

>>> (-1)/2

-1

>>> -1/2

-1

>>> -1/2.5
-0.40000000000000002
>>> -1/6

-1

>>> -float(1l)/float(6)
-0.16666666666666666
>>> -float(1)/6
-0.16666666666666666

Cette particularité, qui existe depuis le début du langage a été souvent décriée par la
communauté et par Guido van Rossum lui-méme. Un des objectifs de la version 3 de
Python est de voir disparaitre ce fonctionnement au profit d’'un principe plus clas-
sique. Ce changement étant relativement lourd pour le langage, il est introduit par
petites étapes successives depuis la version 2.2.

La premiére étape a consisté a introduire un nouvel opérateur noté // et voué a rem-
placer a terme l'actuel opérateur /. Lopérateur // est donc la division entiére mais
fonctionne de la méme maniére pour tous les types d’opérandes. Ainsi, 1.0 // 4.0
est bien équivalent a 0.0, contrairement 2 1.0 / 4.0 qui vaut 0.25.

La deuxieme étape offre la possibilité d'implémenter des a présent le futur fonctionne-
ment de la prochaine version 3.0, par le biais d'une directive d'importation spéciale.

n Eléments du langage
DEUXIEME PARTIE

Passage en mode division réelle

>>> from __future__ dimport division
>>1/ 4

0.25

>>1/5

0.20000000000000001

>> 1.0 / 4

0.25

AVENIR Le module _ future__

__future__ estun module particulier de Python qui regroupe un certain nombre d'éléments appelés fea-

tures. Ce sont des fonctionnalités du langage qui n’existent pas encore dans la version en cours, mais qui

peuvent d'ores et déja étre testées et utilisées dans les programmes actuels. __future__ indique pour

chaque fonctionnalité a partir de quelle version elle peut &tre utilisée, et a quelle version elle sera ajoutée.
>>> _ future__.division

_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

Autres opérateurs

On compte comme autres opérateurs :
* modulo;

* négation ;

* inversion ;

* puissance ;

* appartenance ;

* opérateurs binaires.

Modulo

Lopération modulo est effectuée par l'opérateur % ou par la primitive divmod qui ren-
voie le quotient de la division et son reste.

Calculs de modulos

>>> 10 % 8

2

>>> divmod(10, 8)
a, 2

Syntaxe du langage n
CHAPITRE 4
Négation

I1 est possible en Python d’appliquer la négation directement sur des variables.
Négation directe

>>> val = 56

>>> -val
-56
Inversion

LU'inversion bit a bit, soit 'équivalent de -(n+1) pour tout n entier ou entier long, se

fait par le biais du signe tilde (~).
Inversion

>>> ~9
-10

Puissance

Lexponentiation s’applique avec 'opérateur **. Lorsque les deux opérandes sont des
entiers et que le résultat dépasse la plage des entiers, il est automatiquement trans-
formé en entier long. Pour le cas des nombres a virgule flottante, une erreur de
dépassement est renvoyée.

Essais sur les puissances

>>> 10 ** 10
10000000000L
>>> 1.8 ** 10
357.0467226624001
>>> 1.8 ** 1034
8.9489128117168538e+263
>>> 1.8 ** 134534
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>?
OverflowError: (34, 'Numerical result out of range')

Appartenance

Lopérateur d’appartenance in sert a vérifier quune séquence posséde un élément
dont la valeur est égale a celle de 'objet fourni. Cette opération s’applique a tous les
types de séquences et est équivalente a cette fonction :

“ Eléments du langage
DEUXIEME PARTIE

Fonction similaire a I’opérateur in

def is_in(element, elements):
"""Teste 1'appartenance d'un élément a une liste.
for elt in elements:
if elt == element:
return True

o

return False

Pour les séquences de type string ou unicode, 'objet doit étre lui-méme de type
unicode ou string. Bien que les deux opérandes puissent étre dans ce cas de types
différents (string in unicode ou unicode 1in string), il est conseillé de rester
homogene afin d’éviter des erreurs de transtypage, puisque les deux opérandes sont
toujours comparés dans le méme type. En cas de probleme, Python gére ce cas parti-
culier en provoquant une erreur spécifique.

Mélange des genres, erreur au tournant

>>> sequence = u'Brian’

>> i = 'é'

>>> i in sequence

Traceback (most recent call last):
File "<stdin>", line 1, in <module>?

TypeError: 'in <string>' requires string as left operand

>>> i = "i
>>> 1 1in sequence
True

Nous verrons dans les chapitres suivants qu’il est possible d'intégrer ce mécanisme a
tout type d’objet en implémentant des méthodes aux noms spécifiques.

ARETENR Appartenance et dictionnaires

Python 2.3 a introduit un nouveau mécanisme qui permet de faire fonctionner directement les dictionnai-
res avec |'opérateur d'appartenance, en lui passant les clés implicitement.
Les deux écritures deviennent possibles, avec une préférence pour |'écriture abrégée :

>>> dic = {'a': 1, 'b': 2}

>>> 'a' 1in dic.keysQ)

True

>>> 'a' 1in dic

True

Syntaxe du langage “
CHAPITRE 4
Opérateurs binaires

Les opérations binaires qui s’effectuent sur des entiers ou des entiers longs sont :
* & : opérateur logique ET, noté AND ;
* | : opérateur logique OU, noté OR ;
* A :opérateur logique OU EXCLUSIEF, noté XOR.

Table de vérité de I'opérateur logique ET

>>[1&1, 1&0, 0&1, 0 & 0]
(1, 0, 0, 0]

A ceux-ci s'ajoutent les opérateurs de décalage de bits vers la gauche et vers la droite :

Décalages de bits

>>> a = 16

>>> a = a << 2; print a
64

>>> a = a << 2; print a
256

>>> a = a << 2; print a
1024

Un décalage de n bits vers la droite est équivalent a une division par pow(2, n) et un
décalage de n bits vers la gauche a une multiplication par pow(2, n). Cette écriture
est en outre beaucoup plus rapide a I'exécution.

Opérateurs de comparaison

En Python, les comparaisons sont accomplies par les opérateurs suivants :
* < :inférieur strictement ;

* > :supérieur strictement ;

* <= :inférieur ou égal ;

* >= :supérieur ou égal ;

s == :égal;
* 1= ou <> :différent de;
* is :est;

* is not :nlestpas.

I= et <> sont équivalents pour tester la diftérence, mais la premiere écriture est celle a
retenir, car <> est devenu obsoléte méme s’1l est encore utilisable.

“ Eléments du langage
DEUXIEME PARTIE

Principes de la comparaison

Une comparaison travaille sur deux objets et renvoie un résultat booléen. A I'excep-
tion des types numériques qui peuvent étre convertis vers un type commun, si les
deux objets sont de types différents, 'égalité est toujours fausse et leur ordonnance-
ment n'est pas interprétable mais reste constant.

Dans le cas de types d’objets équivalents, la comparaison est :

» arithmétique pour les types numériques ;

* lexicographique pour les chaines de caracteres, sans distinction entre unicode et
string ;

* lexicographique pour les séquences, en comparant chaque élément en fonction de
son type ;

* lexicographique pour les mappings, en comparant chaque couple (clé, valeur)
apres 'application d'un tri ;

* identitaire pour 'opérateur is, le résultat n’étant vrai que si les deux opérandes
sont le seul et méme objet.

AVENR Evolution de la comparaison

Le raccourci appliqué a la comparaison de types différents évoluera certainement dans les prochaines
versions de Python au profit d'un principe moins radical.

Ordre de traitement des opérations

Lorsque plusieurs opérateurs entrent en jeu dans une expression, l'interpréteur utilise
lordre d’interprétation dit « PEDMAS » (abréviation de « Parenthéses, Exposants,
Division, Multiplication, Addition, Soustraction ») qui reprend les lois associatives
et commutatives de I'algébre élémentaire.

Exemples d’opérations enchainées

>> 5+ 3 % 4

17

>>> (5 +3) * 4
32

>>> (5 +3) *4 /2
16

Syntaxe du langage n
CHAPITRE 4

Construction de comparaisons complexes

Python permet d’enchainer plusieurs comparaisons dans une méme expression pour
construire des conditions complexes. Lordre d’évaluation est 'exécution des comparai-
sons deux a deux.a < b < ¢ < destdoncéquivalentaa < b and b < c and ¢ < d.

Comparaisons chainées

>>a =1
>>> b 2
>>> C = 3
>>a<b<c
True
(] []
L’indentation

En Python, I'indentation des lignes fait partie intégrante de la structure des pro-
grammes. La ot les langages C et Java utilisent des accolades pour définir des blocs,
Python se base sur le retrait d’'une ligne pour définir son niveau.

Linterpréteur remplace toutes les tabulations rencontrées entre le début de la ligne et
le premier caractére interprétable par un certain nombre d’espaces puis comptabilise
le nombre d’espaces obtenus. Ce nombre définit un niveau d’'indentation. Si le retrait
augmente a la ligne suivante, le niveau est incrémenté et la taille de retrait y est asso-
ciée. Lorsque le retrait diminue, le niveau est décrémenté en conséquence.

Exemple d’indentation

def ma_fonction():# niveau 0
i = 0# niveau 1
print '['# niveau 1
while i < 10: # niveau 1
print '.' # niveau 2
i += 1# niveau 2
print ']'# niveau 1

Lorsque I'indentation nest pas respectée, l'interpréteur provoque une erreur et le
programme s’arréte.

Décalage de print ')’

def ma_fonction():
i=0

Eléments du langage
DEUXIEME PARTIE

print '['
while i < 10:
print '.'
i+=1
print ']’

ma_fonction()
[tziade@Tarek ~]$ python etest.py
File "etest.py", line 7
print ']’
A
IndentationError: unindent does not match any outer indentation Tevel

Comme le nombre d’espaces utilisés pour remplacer une tabulation peut varier, il est
nécessaire de ne pas mélanger les deux caractéres pour indenter les lignes. Il est
d’ailleurs conseillé de ne pas utiliser les tabulations comme nous le verrons dans le
chapitre dédié aux conventions de codage. De plus, cette rigueur d’écriture assure la
lisibilité du code.

Les structures conditionnelles

Les structures conditionnelles sont des regroupements de lignes délimités par un
niveau d’indentation et dont le contenu est exécuté en fonction d'une ou plusieurs
conditions. On dénombre trois structures conditionnelles en Python qui permettent
d’organiser le code, définies par les instructions :

e if
* for ;
* while.

Chacune de ces structures est de la forme :

instruction condition:
bloc de Tignes
else:
bloc de Tignes

A ces quatre instructions s'ajoutent trois instructions supplémentaires qui font I'objet
d’un chapitre complet :

* def ;
* class ;

* try.

Syntaxe du langage “
CHAPITRE 4
Linstruction if

Linstruction if («si») est associée 4 une expression terminée par le caractere :.
Chaque élément de I'expression est évalué tour a tour. Si l'expression évaluée renvoie
False, I'interpréteur n'exécute pas le contenu de la structure. Dans le cas ou I'évalua-
tion de I'expression renvoi True, le bloc est exécuté.

11 est possible de définir un deuxi¢me bloc délimité par l'instruction else (« sinon »),
exécuté lorsque I'expression renvoie False.

Exemple d’instruction if

>>> if 1 > 2:
print "il est temps d'arréter 1'ordinateur"
else:
print "tout va bien"

tout va bien

Enfin, l'instruction elif, forme contractée de else if pour «sinon, si» permet
d’imbriquer une série de structures de type if : chaque condition est testée, et en cas
de résultat négatif, I'instruction suivante est a son tour évaluée. Ce principe permet
de mettre en place des structures équivalentes au switch en C et au case en Pascal.

Enchainement avec elif

>>> if 1 > 2:
print "il est temps d'arréter 1'ordinateur"
elif 1 > 3:
print "i1l est vraiment temps d'arréter 1'ordinateur"
else:
print "tout va bien"

tout va bien

Linstruction for..in

LUlinstruction for permet d’exécuter un bloc de lignes en fonction d’'une séquence.
Elle est de la forme :

for variable in sequence:
bloc de Tignes

else:
bloc de 1ignes

“ Eléments du langage
DEUXIEME PARTIE

Si sequence possede n éléments, le bloc sera exécuté n fois, et variable référencera
I'élément sequence[n-1] qui sera accessible dans le bloc.

Lorsque I'exécution est achevée, un bloc de lignes optionnel présenté par else est a
son tour exécuté.

Exemple d’instruction for

>>> for caractere 1in "bonjour":
print(caractere)

S € O0OWwsS O T -

Pour les séquences modifiables comme les listes, il est nécessaire de prendre des pré-
cautions en controlant que le code du bloc ne modifie pas sa taille. En effet, Python
conserve en mémoire un compteur pour savoir sur quel élément la boucle for se
trouve. Si la taille de la séquence est modifiée en cours de route, il est possible que le
bloc ne soit pas exécuté pour tous les éléments, ce qui peut étre relativement génant.

Le mécanisme de l'instruction for peut paraitre assez déconcertant et la premiere
question qui vient a U'esprit est : « comment exécuter simplement un bloc de lignes
un certain nombre de fois sans avoir 4 préparer une séquence ». La primitive range)
répond a ce besoin en générant une séquence de n nombres variant de 0 a n-1.

Utilisation de range()

>>> range(10)

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> for i 1in range(5):
print(str(i))

NWNRO:

Deux instructions supplémentaires permettent d’agir sur le déroulement de I'instruc-
tion for :

Syntaxe du langage “
CHAPITRE 4

* continue : interrompt I'exécution de la boucle pour I'élément en cours et passe a
I'élément suivant. Si I'élément était le dernier de la séquence, le contenu de I'ins-
truction else est exécuté sil existe. Cette instruction est utile dans le cas ou I'élé-
ment en cours nest pas concerné par le traitement a effectuer.

* break : interrompt définitivement I'exécution de la boucle et n’exécute pas I'instruc-
tion else. Cette instruction est utile lorsque 'on cherche a appliquer un traitement
a un et un seul élément d’une liste, ou que cet élément est une condition de sortie.

Utilisation de continue et break
>>> # n'affiche que les nombres pairs

>>> for i 1in range(5):

if 1 % 2:
continue
print(str(i))
0
2
4
>>> for i 1in range(5):
if i == 4:
print('4 a été trouvé')
break

print('on continue')

on continue
on continue
on continue
on continue
4 a été trouvé

A savoR Fin de boucle

Lorsque |'exécution est terminée, le dernier élément de la séquence reste toujours accessible par la varia-
ble de boucle.

Linstruction while

Linstruction while permet d’exécuter un bloc de lignes tant qu'une expression est
vérifiée en renvoyant True. Lorsque 'expression nest plus vraie, I'instruction else est
exécutée si elle existe et la boucle s’arréte.

continue et break peuvent étre utilisés de la méme maniére que pour l'instruction for.

n Eléments du langage
DEUXIEME PARTIE

Exemple d’utilisation de while

>>> 1 =0
>>> while i < 4:
print(str(i))
i+=1
. else:
print('end')
0
1
2
3
end
>>> i =0
>>> while i < 5:
i+=1
if i ==
continue
print(str(i))
1
3
4
5

Linstruction with

La solution la plus propre pour écrire dans un fichier consiste a utiliser un bloc
try..finally pour s’assurer que la méthode close est appelée quoi qu’il advienne.

Ecriture dans un fichier

>>> f = open('fichier’, 'w')
>>> try:
.. f.write('contenu')
. finally:
f.close()

Appeler close, cest s'assurer que le handler de fichier est bien libéré.

Ce motif est récurrent en programmation : utiliser une ressource dans un bloc de
code et terminer par un appel a du code spécifique pour fermer proprement 'accés a
cette ressource quoi qu’il advienne dans le bloc. Le méme besoin existe pour la mani-
pulation de sémaphores, ou de sockets réseau.

Syntaxe du langage

CHAPITRE 4

LUinstruction with permet de s’affranchir de la gestion du bloc try..finally et de
I'appel au code de fermeture, en s'en chargeant automatiquement du moment que
I'objet manipulé est compatible avec ce protocole, appelé le context management protocol.

Clest le cas pour les objets de type file. L'écriture ci-dessous est équivalente a un

bloc try..finally avec un appel a close.

Ecriture dans un fichier avec with

>>> f = open('fichier', 'w')
>>> with f:
f.write('contenu')

with se base sur deux nouvelles méthodes spéciales __enter__ et __exit__. La pre-

miére est appelée au début du bloc, la deuxieme a la fin.

Exemple de classe supportant with

>>> class SupportWith(object):
def _ _enter_ (self):
print('début')
def __exit__ (self, exc_type, exc_value, traceback):
print('fin')

>>> s = SupportWith()

>>> with s:
print('bloc')

début

bloc

fin

La méthode __enter__ ne prend aucun parameétre, alors que la méthode __exit__

demande trois. Ces derniers permettent de récupérer une éventuelle exception :
* exc_type : le type de 'erreur déclenchée ;
* exc_value : la valeur de l'erreur déclenchée ;
* traceback :l'objet traceback.

Si aucune erreur n'a lieu, toutes ces valeurs sont a None.

€n

__exit__ ne doit jamais déclencher d’erreur ou redéclencher T'erreur qui lui est
passée. La méthode retourne cependant False lorsquelle souhaite que 'erreur con-
tinue a étre propagée. Si elle retourne True, 'erreur est absorbée et 'interpréteur con-

tinue le programme en se positionnant sur la directive suivante apres le bloc.

“ Eléments du langage
DEUXIEME PARTIE

Déclenchement d’une erreur

>>> class CatchTypeError(object):

def _ _enter__(self):
print('debut')

def __exit__ (self, exc_type, exc_value, traceback):
print('fin')
if exc_type == TypeError:

return True

return False

>>> ¢ = CatchTypeError()
>>> with c:
raise TypeError()
debut
fin
>>> with c:
raise AttributeError()
debut
fin
Traceback (most recent call last):

File "<stdin>", Tine 2, in <module>
AttributeError

Enfin, si une erreur survient dans la méthode __exit__, elle prévaudra sur toute
erreur précédente.

Lorsque l'objet utilisé est initialisé directement, une directive as peut étre associée 4 with

Ecriture dans un fichier

>>> with open('fichier', 'w') as f:
f.write('contenu')

Dans ce cas, f se voit attribuer la valeur renvoyée par __enter__. L'usage le plus cou-
rant est donc de renvoyer self dans cette méthode.

Syntaxe du langage “
CHAPITRE 4

Utilisation de as

>>> class SomeContext(object):
def __enter__(self):
print('debut')
return self
def __exit__(self, *args):
print('fin')

>>> with SomeContext() as s:
print(str(s))
print('bloc')

debut

<__main__.SomeContext object at 0xc00730>

bloc
fin

La bibliothéque standard fournit en outre un module contextlib, décrit dans le
chapitre 10, qui détaille les utilitaires pour 'implémentation de ce protocole.

En un mot...

Python posseéde une syntaxe claire, concise et simple, et est doté de types standards
trés puissants.

Le chapitre suivant couvre des éléments de syntaxe complémentaires, pour la struc-
turation des programmes.

Structuration du code

Pour organiser un programme, il est possible de regrouper les séquences d’instructions
en fonctions et classes. Ces regroupements peuvent ensuite étre organisés en plusieurs
fichiers, appelés modules, et dans plusieurs répertoires pour former un paquet.

Ce chapitre présente chacune de ces structures, pour conclure sur des éléments sup-
)

plémentaires de syntaxe basés sur les classes : la gestion des exceptions, les generators

et les iterators.

Fonctions

Les fonctions sont les éléments structurants de base de tout langage procédural.
Cette section explique comment définir des fonctions en Python et présente plus
précisément :

* le contexte d’exécution et la directive global ;

* la directive return ;

* le fonctionnement des paramétres ;

* la directive 1ambda ;

* les decorators pour les fonctions.

Ecrivons une premiére fonction qui affiche a I'écran un texte d’accueil en fonction
d’un nom.

Eléments du langage

DEUXIEME PARTIE

Une premiere fonction

>>> def home(name):
print('Bonjour %s' % name)

>>> home('Bill")
Bonjour Bill

La définition d’une fonction se fait par le biais du mot-clé def suivi du nom de la
fonction. Suivent des parentheéses qui contiennent les éventuels parameétres de la
fonction puis le caractére : qui délimite le début d’une séquence de code.

Une fonction peut donc étre vue comme un bloc de lignes associé 4 un nom. Cette fonc-
tion devient alors accessible dans le contexte d’exécution par le biais de son nom comme
toute variable. Le code de la fonction définit son propre contexte local d’exécution.

Contexte d’exécution et directive global

Lorsque des variables sont définies dans le code, elles sont placées par I'interpréteur
dans un des deux dictionnaires représentant le contexte d’exécution :

* Le premier dictionnaire contient 'ensemble des variables globales et est accessible
par le biais de la primitive globals().

* Le second, accessible par la directive Tocals(), contient 'ensemble des variables
accessibles a un instant donné et est dépendant du contexte.

Lorsquelle est invoquée, une variable est recherchée dans le contexte local puis
global, et en dernier recours dans les éléments définis dans le module __builtins__
(ce module fait U'objet d’'un chapitre complet dédié a la présentation des primitives).
Lors de sa définition, une variable est insérée :

* Dans le contexte local si elle est définie dans un bloc (boucle, fonction...).

* Dans le contexte global si elle est définie en dehors de tout bloc.

Ainsi, il est impossible d’affecter directement les variables du contexte global depuis
un bloc.

Contexte d’exécution

>>> name = 'Joe'

>>> def home(name):
print(locals())
print('Bonjour %s' % name)

Structuration du code “
CHAPITRE 5

>>> home('Tarek')
{'name': 'Tarek'}
Bonjour Tarek

>>> print(globals())

{'__builtins__': <module '__builtin__"' (built-in)>, '__name__ "':
'_main__"', 'home': <function home at 0Oxb7deffOc>, '_ _doc__': None,
'name': 'Joe'}

Pour pouvoir contourner cette limitation il est nécessaire d’utiliser la directive global
qui permet de spécifier que la variable est dans le contexte global.

Utilisation de la directive global

>>> identity = 'Joe Bie'
>>> def home(firstname, lastname):
global identity
identite = '"%s %s' %(firstname, Tastname)
print(locals())
print(identity)

>>> home('Joe', 'Bae')

{'firstname': 'Joe', 'lastname': 'Bae'}
Joe Bae

>>> print(identity)

Joe Bae

Directive return

Il n’y a pas de distinction entre les fonctions et les procédures en Python, contraire-
ment a certains langages fortement typés comme Ada. Les procédures sont tout sim-
plement des fonctions qui ne renvoient pas de résultat comme en C. Plus précisé-
ment, une fonction qui ne renvoie pas explicitement de valeur renvoie un objet None.

Lorsqu’une fonction doit renvoyer un résultat explicite, la directive return est utilisée.

Utilisation de return

>>> def double(number):
return number®2

>>> double(5)

10

>>> def sequence(start, stop, step):
return range(start, stop, step)

>>> sequence(2, 7, 1)

[2, 3, 4, 5, 6]

Eléments du langage

DEUXIEME PARTIE

Il est possible de retourner plusieurs résultats en les séparant par des virgules. Dans
ce cas, l'interpréteur renvoie ces éléments dans un tuple.

Plusieurs résultats

>>> def three_nums():
return 1, 2, 3

>>> three_nums()
a, 2, 3

CULTURE L'écriture pythonique

Renvoyer les éléments séparés par des virgules est trés spécifique au langage et est souvent préféré a
I'utilisation d'une structure regroupante. Cette écriture est souvent employée lorsqu‘une fonction doit
renvoyer deux ou trois résultats. On parle ici d'écriture pythonique.

Parametres d’une fonction

Il existe trois types de parametres :
* les parametres explicites et valeurs par défaut ;
* les parametres non explicites ;
* les parametres arbitraires.

Parameétres explicites et valeurs par défaut

Les parameétres explicites sont les parameétres utilisés dans les exemples précédents, a
savoir des noms séparés par des virgules. Chacun de ces paramétres peut en outre étre
enrichi d’'une valeur par défaut et devenir optionnel.

Valeur par défaut

>>> def home(firstname, lastname='Doe'):
print('%s %s' % (firstname, Tastname))

>>> home('John")

John Doe

>>> home('John', 'Dull")
John Dull

I est cependant nécessaire de regrouper tous les paramétres optionnels a la fin de la
liste des parametres.

Structuration du code m
CHAPITRE 5

Lorsqu’il y a plusieurs parametres optionnels, le code appelant peut définir ou non la
valeur de chacun sans avoir a respecter un ordre précis, en utilisant la notation
nom=valeur pour ce parameétre. On parle alors de nommage des parametres.

Nommage des parametres

>>> def sum(a, b=2, c=3):
return a + b + ¢

>>> sum(2)
>>> sum(2, 3, 4)
>>> sum(2, c=4)

>>> sum(a=2, b=3, c=4)

ARETENIR Les paramétre nommés

Tous les paramétres peuvent étres nommés. Cette notation permet aussi de fournir les valeurs dans un
ordre quelconque.
>>> def sub(a, b):
return a - b

>>> sub (10, 5)

5

>>> sub(b=10, a=5)
-5

>>> sub(a=10, b=5)
5

Lorsqu‘une fonction posséde beaucoup de parametres, il est judicieux de nommer systématiquement
tous les paramétres, afin de rendre le code plus lisible.

Enfin, les valeurs par défaut ne sont interprétées qu'une seule fois, au moment de la
lecture de la définition, ce qui peut étre relativement important si ces valeurs sont
retournées par des objets modifiables. Chaque nouvel appel 4 la fonction appellera les
mémes objets qui ont été évalués a I'initialisation de la fonction.

Lecture par I'interpréteur des valeurs par défaut

>>> def param():
print('param() appelé')
return [1, 2, 3]

Eléments du langage

DEUXIEME PARTIE

>>> def add_element(element, Tist_=param()):
Tist_.append(element)
return list_

param() appelé

>>> add_element(4)

[1, 2, 3, 4]

>>> add_eTement(5)

[11 2! 3’ 4’ 5]

>>> def param():
print('param() appelé')
return [5]

>>> add_eTement(8)
[1, 2, 3, 4, 5, 8]

Les parameétres non explicites

Python propose un systéme de parameétres non explicites qui permet de laisser 'appe-
lant fournir autant de valeurs nommées qu’il le souhaite sans qu’il soit nécessaire de
les définir dans la liste des arguments. Ces parameétres sont fournis sous la forme
nom=valeur a la fonction. Linterpréteur place ces valeurs dans un dictionnaire qu’il
faut au préalable définir en fin de liste par son nom précédé de deux étoiles :

Utilisation de parametres non explicites

>>> def sentence(**words):
print ('Recu %d mot(s)' % len(words))
print ('Liste des mots: %s' % ' '.join(words.values()))
print ('Nom des paramétres: %s' % ' '.join(words.keys()))

>>> sentence(motl="mot 1', mot2="mot2')
Recu 2 mot(s)

Liste des mots: mot 1 mot2

Nom des paramétres: motl mot2

>>> sentence(encore="des mots", toujours="des mots")
Recu 2 mot(s)

Liste des mots: des mots des mots

Nom des paramétres: encore toujours

>>> sentence()

Recu 0 mot(s)

Liste des mots:

Nom des paramétres:

Cette écriture offre un maximum de souplesse puisqu’elle peut étre combinée avec les
parameétres explicites.

Structuration du code m
CHAPITRE 5

Combinaison de paramétres explicites et non explicites

>> def team(name, Tleader='non défini', **players):
print('Equipe %s' % name
print('Capitaine: %s' % Tleader)
for name, value in players.items():
print('%s: %s' % (name, value))

>>> team('Les bleus"')

Equipe Les bleus

Capitaine: non défini

>>> team('Les vaillants', 'Robert', gardien='André',
attaquant="'Micheline'")

Equipe Les vaillants

Capitaine: Robert

attaquant: Micheline

gardien: André

Astuce Utiliser un dictionnaire

Le dictionnaire pTlayers peut aussi étre directement fourni.
L'écriture :
team('Nom', 'Capitaine', gardien='André', attaquant='Micheline')
étant équivalente a :
players = {gardien: 'André', attaquant: 'Micheline'}
team('Nom', 'Capitaine', **players)

Les paramétres arbitraires

Les parametres arbitraires sont équivalents aux parametres non explicites sauf qu’ils
ne sont pas nommés. Linterpréteur les regroupe dans un tuple nommé qu’il passe a
la fonction. Le nom du tuple est fourni préfixé cette fois-ci d’'une seule étoile.

Parametres arbitraires

>>> def format(sentence, *args):
print(sentence % args)

>>> format('%d fois plus de %s possibles', 2, 'combinaisons')
2 fois plus de combinaisons possibles

Lorsque des parameétres arbitraires sont combinés avec des parameétres explicites ou
non explicites, la déclaration du nom du tuple qui contiendra les valeurs se place tou-
jours apres les parameétres explicites et avant les paramétres non explicites.

Eléments du langage

DEUXIEME PARTIE

Astuce Utiliser la notation arbitraire

Il est possible d'utiliser la notation arbitraire dans des fonctions a paramétrage classique en fournissant
une séquence comme valeur. La séquence sera décompressée en une liste de paramétres.
>>> def sum(a, b, ©):
return a + b + c

>>> elements = [1, 3, 5]
>>> sum(*elements)
9

Ainsi, une fonction sera toujours sous la forme indiquée ci-dessous.

Forme d’une fonction

Idef nom_fonction(a, b, c, ..., *arbitraires, **explicites)

Collisions de parametres

Une fonction peut donc utiliser trois types de paramétrages et les combiner. Il faut
cependant prendre garde aux collisions possibles : un paramétre doit rester unique
dans l'ensemble des parametres fournis. En cas de doublons, une exception
TypeError est retournée.

Collisions de noms

>>> def display(a, **kw):
print('a: %s' % a)
for name, value 1in kw.items():
print('%s: %s' % (name, value))

>>> display(12, a=2, b=3, c=4)
Traceback (most recent call Tast):
File "<stdin>", Tine 1, in ?
TypeError: display() got multiple values for keyword argument 'a'

Signatures multiples de fonctions

La signature d’'une fonction est représentée par la liste de ses parametres. Certains
langages proposent des systemes de surcharge pour permettre au développeur de
définir plusieurs fois la méme fonction avec des signatures diftérentes. C’est le role de
la directive overload en Delphi par exemple.

Les combinaisons infinies de paramétrage de fonction offertes par Python répondent
beaucoup plus simplement a ce probléme de signature multiple.

Structuration du code m
CHAPITRE 5

Directive lambda

Issue de langages fonctionnels comme le Lisp, la directive Tambda permet de définir
une fonction anonyme, c’est-a-dire sans nom. lambda est utilisée lorsqu'une fonction
est a fournir dans une expression et permet d’éviter de la définir explicitement. Cette
fonction doit cependant se limiter a une seule expression.

Raccourci lambda

>>> # fonction explicite

>>> elements = [1, 2, 3]
>>> def add_one(e):
return e + 1

>>> map(add_one, elements)
[2, 3, 4]
>>> # équivalent avec lambda

>>> map(lambda e: e + 1, elements)
[2, 3, 4]

Mis a part quelques cas précis comme 'exemple présenté, Tambda est a proscrire car
cette directive rend le code difficilement lisible.

Documentation strings (docstrings)

Les objets docstrings sont des chaines de caractéres placées au début du corps des
fonctions. Ils sont automatiquement associés a la variable __doc__ de I'objet fonction
par l'interpréteur.

Une fonction dotée d’un docstring

>>> def pi():
.. """Renvoie une approximation du nombre Pi."""
return 3.14

>>> print(pi.__doc_)

Renvoie une approximation du nombre Pi.
ou bien :

>>> help(pi)

Help on function pi in module __main__:

piQ
Renvoie une approximation du nombre Pi.
(END)

Eléments du langage

DEUXIEME PARTIE

Toutes les fonctions fournies dans Python sont dotées d’un docstring, ce qui est pra-
tique pour une documentation en ligne directe. On y renseigne sur I'objectif de la
fonction et sur le détail de ses parametres.

Détails sur divmod par son docstring

>>> print(divmod.__doc__)
divmod(x, y) -> (div, mod)

Return the tuple ((x-x%y)/y, x%y). Invariant: div*y + mod == Xx.

ARETENIR Importance des docstrings

Les docstrings jouent un réle relativement important en Python. Le chapitre 7 décrit précisément les con-
ventions de nommage des docstrings et le chapitre 12 leur utilisation dans le cadre des tests unitaires.

Decorators

Les decorators sont issus d’'un besoin de généralisation des mécanismes introduits par
les fonctions classmethod() et staticmethod() apparus a la version 2.2 de Python.

En l'occurrence, pour spécifier qu'une fonction est une méthode statique ou une méthode
b
de classe (voir les decorators pour les classes 4 la prochaine section), il est nécessaire de
)
procéder a un appel a 'une des primitives en passant en paramétre la fonction.

D’un point de vue plus général aux fonctions, le principe, calqué sur le modeéle exis-
tant en Java (annotations), est d’effectuer un prétraitement au moment de I'appel
d’une fonction.

Définition d’un prétraitement

>>> def decorate(function):
function.__doc__ = 'Fonction décorée %s' % function.__doc_
return fonction

>>> def a_function():
"""Ma fonction.
print('traitement')

nnn

>>> a_function = decorate(a_function)
>>> print(a_function.__doc_)
Fonction décorée Ma fonction.

La fonction decorate décore la fonction a_function de détails supplémentaires et la
liaison se fait par function=decorate(function).

Structuration du code m
CHAPITRE 5

Pour simplifier 1’écriture, les decorators introduisent un nouveau mécanisme qui
)
permet de spécifier qu'une fonction est encapsulée dans une deuxiéme fonction.

Il suffit de préfixer la définition de la fonction a encapsuler par le nom de la
deuxieme fonction préfixé d’une arobase (@).

Définition d’un decorator

>>> def decorate(function):
function.__doc__ = 'Fonction décorée %s' % function.__doc__
return function

>>> @decorate
. def a_function():
"""Ma fonction.
print('traitement')

nnn

>>> print a_function.__doc__
Fonction décorée ma fonction

Plusieurs decorators peuvent étres utilisés sur la méme fonction : ils sont imbriqués
dans l'ordre de déclaration.

Enchainement de decorators

@fl ef2 @f3
def a_function():
pass

Cette notation étant équivalente a I'écriture ci-dessous :
Equivalent explicite

I function = f1(f2(f3(function)))

Les decorators servent également a la mise en place de code patterns récurrents,
comme le contréle de types de parameétres entrants, d’enrichissement du contexte
d’exécution ou de tout mécanisme pré ou post-exécution. La fonction décoratrice est
déclarée une bonne fois pour toute et réutilisée en decorator.

Contréle d’argument

>>> def only_ints(func):
def _only_ints(arg):
ifnot isinstance(arg, int):
raise TypeError("'%s' doit étre un entier" % str(arg))

Eléments du langage

DEUXIEME PARTIE

return func(arg)
return _only_ints

>>> @only_ints
. def function(arg):
return arg + 1

>>> print(function('t'))
Traceback (most recent call last):
File "<stdin>", 1line 1, in ?
File "<stdin>", 1line 4, 1in only_ints
TypeError: 't' doit étre un entier
>>> print(function(3))
4

Une fonction de décoration ne doit pas a proprement parler exécuter de code au
moment de son appel, car cet appel est provoqué par l'interpréteur lorsqu’il lit la défi-
nition de la fonction décorée. Il demande alors a la fonction de décoration de lui ren-
voyer une fonction qui sera appelée a chaque exécution de la fonction décorée.

Quelques print permettent de mieux comprendre cette mécanique :

La mécanique des decorators

>>> def only_ints(func):
print('appel du decorator')
def _only_ints(arg):
print('appel du code de décoration')
ifnot isinstance(arg, int):
raise TypeError("'%s' doit étre un entier" % str(arg))
print('capsule exécute la fonction')
return func(arg)
print('only_ints renvoi la capsule')
return _only_ints

>>> @only_ints
. def function(arg):
return arg + 1

appel du decorator
argument_entier renvoie la capsule
>>> function(5)

appel du code de décoration
capsule exécute la fonction

6

Structuration du code m
CHAPITRE 5

La sous-fonction _only_ints() permet donc de retourner le code a exécuter lorsque
la fonction sera réellement appelée. only_ints() ici prend en parameétre la fonction a
décorer et retourne la fonction a appeler.

I1 est possible de passer des arguments aux decorators : 'appel devient de la forme
@fonction(parametres). Dans ce cas, la fonction utilisée doit renvoyer une fonction
au format decorator classique, afin de permettre a l'interpréteur d’effectuer un appel a
decorateur(fonction).

Lenchainement est le suivant : I'interpréteur appelle dans un premier temps la fonc-
tion de décoration, d’une maniére tout 2a fait classique (resultat =
decorator(parametres)), puis utilise son résultat pour un appel a la fonction
décorée, soit resultat(fonction).

Decorator paramétré

>>> def only_int(function):
def _only_int(arg):
ifnot isinstance(arg, int):
raise TypeError("'%s' doit étre un int" % str(arg))
return function(arg)
return _only_int

>>> def only_Tlong(function):
def _only_long(arg):
ifnot isinstance(arg, long):
raise TypeError("'%s' doit étre un Tong" % str(arg))
return function(arg)
return _only_long

>>> def int_or_long(force_long):
if force_long:
return only_long
else:
return only_int

>>> @int_or_Tlong(True)
. def function(arg):
return arg + 1

>>> function(45)
Traceback (most recent call last):
File "<stdin>", 1line 1, in ?
File "<stdin>", Tine 4, in only_long
TypeError: '45' doit étre un long
>>> function(459876455L)
459876456L

m Eléments du langage
DEUXIEME PARTIE
Si on ajoute des print pour mettre en valeur 'enchainement :

Enchainement d’un decorator paramétré

>>> def only_int(function):
...print('appel de only_int')
def _only_int(arg):
ifnot isinstance(arg, int):
raise TypeError("'%s' doit étre un int" % str(arg))
return function(arg)
print('renvoi de _only_int')
return _only_int

>>> def only_Tlong(function):
print('renvoi de only_long')
def _only_long(arg):
ifnot isinstance(arg, long):
raise TypeError("'%s' doit étre un long" % str(arg))
return function(arg)
print('renvoi de _only_long')
return _only_long

>>> def int_or_long(force_long):

print('appel de int_or_long')

if force_long:
print('renvoi de only_long')
return only_Tlong

else:
print('renvoi de only_int')
return only_int

>>> @int_or_long(True)
. def function(entier):
return entier + 1

appel de int_or_long
renvoi de only_long
appel de only_long
renvoi de _only_Tlong
>>> function(56L)
57L

AvENR Emergence des decorators

Les patterns d'utilisation des decorators émergent actuellement des travaux des développeurs de la com-
munauté. Il est possible qu'a terme Python propose une liste étendue de decorators.

Structuration du code m
CHAPITRE 5

Classes

Sans étre familier avec la programmation orientée objet (POQO), on peut considérer
que les classes sont similaires a des modules : des regroupements logiques de fonc-
tions et de variables pour définir un comportement et un état du programme. Cette
logique se retrouve dans les éléments manipulés en Python, puisque tout est objet.
Ainsi, un objet de type string regroupe des fonctions de manipulation sur la chaine
comme replace() et des variables comme _ doc__

La différence fondamentale entre un module et une classe se situe dans l'utilisation
de cette derniere : elle définit un modele d’objet que 'on peut ensuite instancier
autant de fois que nécessaire. Une instance devient un objet indépendant qui con-
tient les fonctions et les variables définies dans le modéle.

ALLER PLUS LOIN La programmation orientée objet

Si vous n'étes pas familier avec les concepts de la POO, le chapitre 14 est une bonne introduction a son
utilisation en Python.

” go omg o
Définition
Le mot réservé class sert a définir un modéle en associant un certain nombre de
variables et de fonctions 4 un nom.

La classe Voiture

>>> class Car:
color = 'Rouge'

Toutes les variables et les fonctions placées dans le niveau d’indentation de la classe en
deviennent des membres. Ces éléments sont nommés attributs et on parle plus précisé-
ment de méthodes pour les fonctions et d’attributs de données pour les variables.

La classe Car définie dans I'exemple peut ensuite étre utilisée pour instancier des
objets en I'appelant comme une fonction.

Instanciation

>>> car_1 = Car(Q)
>>> car_2 Car(Q)

Ces deux objets de type Car sont des instances distinctes.

Eléments du langage

DEUXIEME PARTIE

Espace de noms

Pour atteindre la variable color de I'instance car_1, il faut spécifier qu’elle se trouve
dans car_1 pour la distinguer par exemple, d’'une éventuelle variable portant le méme
nom définie en dehors de la classe. Cette différenciation se fait par le biais de I'espace
de noms, ou namespace, que I'interpréteur crée lorsque I'instance de classe est utilisée.

Cet espace de noms peut étre vu comme un dictionnaire propre a cette instance de
classe. Il porte les correspondances entre noms d’attributs et valeurs de ces attributs.
Ainsi, la notation car_1.color est utilisée par l'interpréteur pour atteindre l'attribut
color de 'instance car_1.

Pour rechercher color dans car_1, le mapping procéde dans cet ordre :
* Recherchesicar 1. dict_ ['color'] existe.
* Recherche si type(car_1)._ dict__['color'] existe (équivalent 2
Car._ dict__['color']).

Silattribut en question n'existe pas et sil est utilisé dans le cadre d’une attribution de
valeur, le mécanisme de mapping ajoute aussitot 'objet fourni dans la liste des attri-
buts de I'instance liste conservée dans le mapping _ dict__. Les autres instances ne
profitent pas de ce nouvel attribut, sauf s'il est attribué a la classe méme.

Mapping d’attributs

>>> class Car:
color = 'Rouge'

>>> red_car = Car(Q)
>>> blue_car = Car(Q)
>>> red_car.color

'Rouge’

>>> blue_car.color

'Rouge’

>>> blue_car.color = 'Bleu’
>>> red_car.color

'Rouge’

>>> blue_car.color

'Bleu’

>>> red_car.air_conditioner = 'oui'
>>> red_car.air_conditioner
'oui'

>>> blue_car.air_conditioner
Traceback (most recent call Tast):
File "<stdin>", Tine 1, in ?
AttributeError: Car instance has no attribute 'air_conditioner'

Structuration du code m
CHAPITRE 5

Parametre self

De la méme maniere que pour une fonction, I'interpréteur met a jour les variables
locales et globales lors de I'exécution des méthodes. Le code exécuté a donc une visi-
bilité locale aux éléments définis dans la méthode et globale aux éléments en dehors
de 'instance.

Pour atteindre les éléments définis dans I'espace de noms de I'instance de la classe, il
est donc nécessaire d’avoir un lien qui permette de s’y référer. Uinterpréteur répond a
ce besoin en fournissant l'objet instancié en premier parameétre de toutes les
méthodes de la classe.

Par convention, et méme si ce nom n’est pas un mot-clé du langage, ce premier para-
metre prend toujours le nom se/f-

Utilisation de self

>>> class Car:
color = 'Red'
state = 'arret'
def start(self):
self.state = 'marche'
def stop(self):

self.state 'arret'

>>> car = Car(Q)
>>> car.state
'arret'

>>> car.start()
>>> car.state
'marche’

Les méthodes définies dans les classes ont donc toujours un premier parameétre
fourni de maniere transparente par linterpréteur, car.start() étant remplacé au
moment de I'exécution par Car.start(car).

On comprend par cette notation que le code défini dans la classe Car est partagé par
toute les instances et que seuls les attributs de données instanciés dans les méthodes
restent spécifiques aux instances.

Héritage

Le plus grand intérét des classes est bien str 'héritage. L'héritage est la faculté d’une
classe B de s’approprier les fonctionnalités d'une classe A. On dit que B hérite de A
ou encore que B dérive de A.

m Eléments du langage
DEUXIEME PARTIE

Python permet de définir des classes dérivées trés simplement :

Classe dérivée

>>> class Mehari(Car):
pass

Au moment de l'instanciation de la classe Mehari, 'interpréteur mémorise le nom de
la classe parente afin de 'utiliser lorsque des attributs de données ou des méthodes
sont utilisés : si I'attribut en question n’est pas trouvé dans la classe, 'interpréteur le
recherche dans la classe parente. Si I'attribut n’est pas trouvé dans la classe parente,
I'interpréteur remonte I'arbre de dérivation a la recherche d’une méthode portant la
méme signature avant de provoquer une exception AttributeError.

Héritage des attributs

>>> class Car:
type = 'Voiture'
def print_type(self):
print(self.type)

>>> class Mehari(Car):
pass

>>> class MehariTurbo(Mehari):
pass

>>> car = MehariTurbo()
>>> car.print_type()
Voiture

Héritage multiple

Python supporte 'héritage multiple en laissant la possibilité de lister plusieurs classes
parentes dans la définition.

Héritage multiple

>>> class Television:
brand = "'
def print_brand(self):
print(self.brand)

>>> class DVDPlayer:
def play_dvd(self):
pass

Structuration du code m
CHAPITRE 5

>>> class TVDVDCombo(Television, DVDPlayer):
pass

>>> dir(TVDVDCombo)
['_doc__ ', '"__module__', 'brand', 'play_dvd', 'print_brand']

La mécanique de recherche des attributs est appliquée a chacune des classes de base,
de gauche a droite. Dans notre cas, lorsqu’un attribut est demandé a I'instance de
classe TVDVDCombo, linterpréteur parcourt l'arbre de dérivation de la classe
Television comme dans le cas d’un héritage simple, puis passe a la classe DVDPTayer
si l'attribut n’a pas été trouvé.

Lorsque des classes parentes ont une classe de base commune, il devient difficile de
maitriser les enchainements d’appels et d’avoir une bonne visibilité. Lutilisation de
I'héritage multiple est donc délicate et fortement déconseillée dans la plupart des cas.
Son utilisation peut parfois étre imposée lorsqu’un framework un peu rigide est utilisé.

Surcharge des attributs

Toutes les méthodes et attributs de données peuvent étre surchargés, en utilisant la
méme signature.

Surcharge

>>> class Car:
type = 'Voiture'
def print_type(self):
print(self.type)
def use_type(self):
self.print_type(Q)

>>> class Mehari(Car):
def use_type(self):
print('Mehari et %s' % self.type)

>>> my_car = Mehari()
>>> my_car.print_type(Q)
Voiture

>>> my_car.use_type()
Mehari et Voiture

Linterpréteur utilise alors la premiére méthode qu’il trouve en suivant la regle de
recherche précédemment énoncée. Le mécanisme introduit par le mapping de nom,
qui fournit aux méthodes I'instance par le biais du parametre self, permet au code
des méthodes de manipuler d’autres attributs.

Eléments du langage

DEUXIEME PARTIE

Si une méthode doit spécifiquement utiliser un attribut que la régle de surcharge ne
lui renvoie pas, il est possible de préciser a I'interpréteur de quelle classe il s’agit, en
utilisant un préfixe de la forme : ClasseDeBase.methode(self, parametres).

Polymorphisme

>>> class Mehari(Car):
def print_type(self):
print('Mehari et %s' % self.type)
def use_type(self):
Car.print_type(self)

>>> my_car = Mehari()
>>> my_car.print_type()

Car

Constructeur et destructeur

Lorsqu'une classe est instanciée, la méthode spéciale __init__() est invoquée avec
en premier paramétre 'objet nouvellement instancié par 'interpréteur.

Ce fonctionnement permet de procéder a un certain nombre d’initialisations lorsque
l'on crée une instance de classe.

Initialisation de I'instance

>>> class Car:
def __init_ (self):
print("Nouvelle voiture n°%s" % id(self))
self.immatriculation = '%s XZ 21' % id(self)

>>> my_car = Car()

Nouvelle voiture n°211949876
>>> my_car.immatriculation
'211949876 XZ 21'

Grice aux propriétés d’attributions fournies par le mapping, il est d’'usage de déclarer
les attributs de données directement dans le constructeur lorsque ceux-ci ne sont pas
partagés par toutes les instances : ils sont attachés a I'objet au moment de leur initia-
lisation comme c’est le cas dans notre exemple pour immatriculation

Comme pour une méthode classique, le constructeur peut recevoir des parametres
supplémentaires, qui sont directement passés au moment de I'instanciation.

Structuration du code m
CHAPITRE 5

Constructeur paramétré

>>> class Car:
def _ _init_ (self, type):
self.type = type

>>> my_car = Car("Mehari Supa'Turbo™)
>>> my_car.type
"Mehari Supa'Turbo"

Un destructeur peut également étre défini grice a la méthode spéciale __del__Q
lorsque du code doit étre appelé au moment de la destruction de linstance. Cette
méthode est appelée par le garbage collector. Le code contenu dans cette méthode doit
explicitement appeler la méthode __de1__() des classes parentes, si elles existent.

Destructeur

>>> class A:
def _ del__ (self):
print('destructeur')
>>> a = AQ
>>> del a
destructeur

AVERTISSEMENT Utilisation de __del__

L'utilisation de __de1___ est a proscrire car elle peut provoquer des erreurs au moment ou le code est
appelé.

Par exemple, |'ordre de destruction des objets au moment de |'arrét d’'un programme n’est pas garanti, et
le destructeur peut appeler des références a des objets qui n'existent plus.

Attributs privés

En ce qui concerne la protection des attributs, il est possible de définir des attributs
privés a la classe en préfixant le nom de deux espaces soulignés. Si l'attribut se ter-
mine aussi par des espaces soulignés, ils ne doivent pas étre plus de deux pour qu’il
reste considéré comme privé.

Linterpréteur repére ces attributs et modifie leurs noms dans le contexte d’exécution.
Pour un attribut __a de la classe Class, le nom devient _Class__a.

Le mapping étend alors la recherche a cette notation lorsque les appels se font depuis
le code de la classe, de maniére a ce que les appelants extérieurs n'aient plus d’acces a
lattribut par son nom direct.

Eléments du langage

DEUXIEME PARTIE

Protection d’attributs

>>> class Car:

__defaults = ['bruyante']

qualities = ['rapide', 'economique']

def caracteristics(self):
print(self.__defauts)
print(self.qualites)

def visibility(self):
print(dir(self))

>>> 0 = Car()
>>> o0.caracteristics()
['bruyante']

['rapide', 'economique']
>>> o.qualities
['rapide', 'economique']

>>> 0.__defaults
Traceback (most recent call Tast):
File "<stdin>", 1line 1, in ?

AttributeError: Voiture instance has no attribute '__ defaut'
>>> 0.visibility()

['_Car__defaults', '__doc__', '__module__', 'caracteristiques',
"qualites', 'visibilite']

>>> 0._Car__defaults
['bruyante']

Contrairement a d’autres langages objets, cette protection reste déclarative et n'est
pas absolue : il est tout a fait possible d’accéder a un attribut privé en faisant appel a
son nom préfixé, méme si cela n'a aucun intérét.

ARETENR Nom des attributs privés

Le nom des attributs privés est tronqué a 255 caractéres par 'interpréteur

Appelée name mangling, cette mécanique permet d’éviter les collisions de noms dans
des cas précis au niveau du code de l'interpréteur lui-méme. Cependant son utilisa-
tion est & proscrire dans les programmes simples, car il n’y a pas réellement d’intérét
de marquer ainsi ses attributs dans un langage qui prone les conventions sur les noms
des éléments au lieu de forcer certains mécanismes. Quoi qu’il en soit, lorsque des
attributs doivent étre marqués comme privés, la meilleure pratique est de les préfixer
par un seul espace souligné.

FUTUR Retrait du name mangling ?

Le retrait pur et simple du name mangling a été proposé dans le passé, les prochaines versions de
Python ne I'auront peut-étre plus.

Structuration du code m
CHAPITRE 5

Marquage simple d’attributs

>>> class Car:
_defaults
qualities

['bruyante']
['rapide', 'economique']

Méthodes spéciales

I1 est possible en Python de définir d’autres méthodes spéciales que __init__() et
__del__Q), qui déterminent un fonctionnement spécifique pour une classe lorsqu’elle
est utilisée dans certaines opérations.

Ces méthodes permettent de faire varier le comportement des objets et sont regrou-
pées en fonction des cas d’utilisation :

* représentation et comparaison de 'objet ;

* utilisation de I'objet comme fonction ;

* acces aux attributs de 'objet ;

* utilisation de 'objet comme conteneur ;

« utilisation de 'objet comme type numérique.

Représentation et comparaison de I’objet

_str ()

Appelée par la primitive str(). Doit renvoyer une représentation sous forme de
chaine de caractéres d'un objet. Cette représentation peut étre un transtypage de
I'objet en objet string lorsque c’est possible ou une représentation plus informelle.

Str()

>> class A:
def _ str_ (self):
return 'je suis un objet de type A'
>>> a = AQ
>>> str(a)
'je suis un objet de type A'

repr(
Appelée par la primitive repr(). Similaire & __str__() sauf que la représentation
doit étre une expression Python telle que eval(repr(a)) == alorsque c’est possible.

Eléments du langage

DEUXIEME PARTIE

__repr__() doit donc permettre de recréer 'objet. Si le reverse n'est pas possible,
__repr__(Q) doit renvoyer une string de la forme '<description>'. Les instances de
classe renvoient en général leur adresse mémoire.

__cmp__(other)
Utilisée par tous les opérateurs de comparaison lorsque l'objet est impliqué.
__cmp__Q) doit renvoyer :

* un entier négatif si se1f est inférieur a other ;

* un entier positif si self est supérieur a other ;

* zéro en cas d’égalité.

(It , le , eq , ne_,_ gt , ge](other)

Ensemble de méthodes de comparaison, qui sont utilisées de préférence a __cmp__Q
si elles sont présentes, pour chacun des opérateurs. Ces méthodes doivent renvoyer
True ou False ;

* a < bcorrespondaa._1t_ (b);

* a <= bcorrespondaa.__Te_ (b);
* a == bcorrespondaa.__eq__(b);
* a != bcorrespond aa.__ne__(b);

* a > bcorrespondaa._gt_ (b);
* a >= bcorrespond aa.__ge_ (b).

Il n’y a aucun contréle d’intégrité sur ces opérateurs : __ne__ et __eq__ peuvent tous
les deux renvoyer True. Lorsqu'une méthode est implémentée, il est donc conseillé
de toujours implémenter la méthode symétrique pour assurer I'intégrité.

Enfin, si ni __emp__(,ni __eq__ et __ne__ ne sont définies, la primitive id() sera
utilisée pour la comparaison.

__hash_ ()

Appelée par la primitive hash() ou par un objet dictionnaire lorsque I'objet est utilisé
comme clé. Doit renvoyer un entier de 32 bits. Si deux objets sont définis comme
égaux, par __cmp__Q, __eq__(ou __ne__(), __hash__() doit renvoyer la méme
valeur pour ces deux objets.

__nonzero__()

Appelée par la primitive boo1() et par la comparaison avec True ou False. Doit ren-
voyer True ou False. Lorsque cette méthode n'est pas définie, c’est __Ten__() qui est
utilisée. __Ten__() représente la taille de 'objet. Si aucune des deux méthodes n’est
présente, 'objet est toujours considéré comme vrai.

Structuration du code m
CHAPITRE 5

__unicode__ ()

Appelée par la primitive unicode(). Doit renvoyer un objet de type unicode. Si la
méthode nest pas implémentée, une conversion en string est tentée, puis un pas-
sage de string a unicode.

Utilisation de I’objet comme fonction

Lorsqu’une instance d’objet est appelée comme une fonction, c’est __call__() qui
est appelée si elle est définie. Les objets de cette classe deviennent, au méme titre
qu'une fonction ou une méthode, des objets callable.

Class callable

>>> class A:
def _ call__(self, one, two):
return one + two
>>> a = AQ
>>> callable(a)
True
>>> a(l, 6)
7

Acces aux attributs de I’objet

Lorsque l'interpréteur rencontre une écriture de type objet.attribut, il utilise le
dictionnaire interne __dict__ pour rechercher cet attribut, et remonte dans les dic-
tionnaires des classes dérivées si nécessaire.

Lutilisation des trois méthodes suivantes permet d’influer sur ce fonctionnement.

__setattr_ ()

__setattr__() est utilisée lorsqu'une valeur est assignée, en lieu et place d'une modi-
fication classique de l'attribut _dict__ de l'objet.

objet.attribut = 'valeur' devient équivalent a objet.__setattr__('attribut',
'valeur')

Le code contenu dans __setattr__() ne doit pas appeler directement l'attribut a
mettre a jour, au risque de s’appeler lui-méme récursivement. Il faut utiliser un acces
a__dict__.

__getattr__ () et __getattribute_ ()

__getattr__() est appelée en dernier recours lorsqu'un attribut est recherché dans un
objet. Cette méthode ne surcharge pas le fonctionnement normal afin de permettre a
__setattr__(), lorsqu’elle est surchargée, d’accéder aux attributs normalement.

m Eléments du langage
DEUXIEME PARTIE

Les new-style class, présentées dans la prochaine section, introduisent cependant une
nouvelle méthode __getattribute_ (), qui comme __setattr__() permet de sur-
charger complétement I'accés aux attributs.

__delattr__()

Complément des deux méthodes précédentes, objet.__delattr__('attribut') est
équivalent a de1 objet.attribut.

Essais sur les attributs de mapping

>>> class Person:
def __getattr__(self, name):
print('getattr %s' % name)
if name 1in self._ dict_ :
return self._ dict__ [name]
else:
print("attribut '%s' inexistant" % name)
def _ setattr_ (self, name, valeur):
print('set %s: %s' % (name, str(valeur)))
self.__dict__[name] = valeur
def _ delattr__(self, name):
print('del %s' % name)
if name 1in self._ dict_ :
del self.__dict__[name]
else:
print("attribut '%s' inexistant" % name)

>>> john = Person()

>>> john.age = 20

set age: 20

>>> john.first_name

getattr first_name

attribut 'first_name' inexistant
>>> john.first_name = 'John'

set first_name: John

>>> del john.first_name

del first_name

>>> john.first_name

getattr first_name

attribut 'first_name' inexistant

Utilisation de I’objet comme conteneur

Les mappings et les séquences sont tous des objets de type conteneurs, qui implé-
mentent un tronc commun de méthodes. Ces méthodes sont présentées ci-dessous et
peuvent étre définies dans toute classe.

Structuration du code m
CHAPITRE 5

__getitem__ (key)

Utilisée lorsqu’une évaluation de type objet[key] est effectuée. Pour les objets de
type séquences, key doit étre un entier positif ou un objet de type sTice. Les map-
pings, quant a eux, utilisent des clés de tout type non modifiable.

Sila clé fournie n'est pas d’'un type compatible, une erreur TypeError est retournée.
Enfin, si la clé est en dehors des valeurs autorisées, une erreur de type IndexError est
retournée.

__setitem__(key, value)

Utilisée lorsqu'une assignation de type objet[key] = valeur est effectuée. Les
mémes erreurs peuvent étre utilisées que celles de __getitem__. Les mappings ajou-
tent automatiquement la clé lorsqu’elle n’existe pas, contrairement aux séquences qui
retournent une erreur si la clé n'existe pas.

__delitem__(key)

Permet de supprimer une entrée du conteneur.

len ()

Appelée par la primitive Ten(), et permet de renvoyer le nombre d’éléments du con-
teneur.

__iter_ ()

Appelée par la primitive iter(), et doit renvoyer un iterator capable de parcourir les
éléments.

__contains__(item)

Renvoie vrai si item se trouve parmi les éléments.

Un peu de contenu

>>> class MyContainer:
def __init_ (self):
self._data = {}
def _ getitem__(self, key):
if key 1in self._data:
return self._datalkey]
else:
print("Je n'ai pas %s" % key)
def _ setitem__(self, key, value):
self._data[key] = value
def _ delitem__(self, key):
print('on ne fait pas ca chez moi')

Eléments du langage

DEUXIEME PARTIE

def _ len_ (self):
return len(self._data)
def _ contains__(self, item):
return item in self._data.values()

>>> inside = MyContainer()
>>> inside['12']

Je n'ai pas 12

>>> inside['la_cle'] = 45
>>> inside['la_cle']

45

>>> len(inside)

1

>>> del inside['Ta_cle']
on ne fait pas ca chez moi
>>> inside['la_cle2'] = 34
>>> len(inside)

2

Utilisation de I’objet comme type numérique

Ces méthodes peuvent étre utilisées pour définir le fonctionnement de l'objet
lorsqu’il est employé dans toute opération numérique, que ce soit une addition, un
décalage de bits vers la gauche, ou encore une inversion. Chacune de ces méthodes
renvoie en général 'objet lui-méme, qui est I'opérande de gauche, pour assurer une
logique au niveau des opérateurs, mais peut dans certains cas renvoyer I'opérande de
droite ou un tout autre objet.

Tableau 5-1 Méthodes pour les opérateurs numériques

Méthode Opération Variations
__add__(other) objet + other Retl
__sub__(other) Objet - other Retl
__mul__(other) objet * other Retl
_ floordiv__(other) objet // other Retl
__mod__(other) objet % other Retl
__divmod__(other) divmod(objet, other) Retl
__pow__(other[, modulo]) objet ** other Retl
__1Ishift__(other) objet << other Retl
_ rshift__(other) objet >> other Retl
__and__(other) objet & other Retl
__xor__(other) objet A other Retl
__or__(other) objet | other Retl

__div__(other) objet / other Retl

Structuration du code

CHAPITRE 5
Tableau 5-1 Méthodes pour les opérateurs numériques (suite)
Méthode Opération Variations
__truediv__(other) objet / other Retl
_neg__ QO - objet
—pos__Q + objet
_abs__ O abs(objet)
__invert_Q ~ objet
__complex__Q) complex(objet)
_int_0O int(objet)
__long__QO Tong(objet)
__float__ O float(objet)
_oct_QO oct(objet)
__hex__ O hex(objet)

__coerce__(other)

coerce(objet, other)

Pour toutes ces méthodes, un appel a objet opérateur other déclenche un appel a
objet.methode(other).

La variation I ajoute un préfixe i a la méthode (__iadd__ (), 1imul__ (), etc.) et
) p))

permet de définir les opérateurs augmentés +=, *=, etc. Cette variation renvoie en

général objet augmenté de other.

La variation R ajoute un préfixe r a la méthode (__radd__(, __rmul__Q, etc.) et
permet de définir des opérateurs inversés : other.operateur(object) est appelé en
lieu et place de objet.operateur(other). Lorsque l'opération classique n'est pas
supportée, l'interpréteur tente 'opération inverse.

Surcharge de I’addition

>>>

>>>
>>>
>>>
>>>
17"

class Additionable:
def _ _init_ _(self, value):
self.value = value
def _ _add_ (self, other):

return Additionable(self.value + other.value)

def _ iadd__(self, other):
return self.__add__ (other)
def _ str_ (self):
return str(self.value)

vall = Additionable(5)
val2 = Additionable(12)
val3 = vall + val2
str(val3)

m Eléments du langage
DEUXIEME PARTIE

>>> val3 += vall
>>> str(val3)
l22l

>>> str(vall)
ISI

>>> str(val2)
l12l

New-style classes

Python 2.2 a introduit un nouveau type d’objet appelé object. Ce type définit une
classe qui peut étre utilisée comme classe de base pour toute nouvelle définition de
classe. Les classes basées sur le type object sont appelées new-style class.

New-style class

>>> object.__doc__
'The most base type'
>>> class Car:

pass

>>> class NewCar(object):
pass

>>> mehari = Car(Q)
>>> citroen_c5 = NewCar()
>>> dir(mehari)

T T 1 Al
— — ’ — e

[doc moduTe]
>>> dir(citroen_c5)
[' _class_ ', '__delattr__', '__dict__', '_doc_', ' format__',
'__getattribute__', '__hash__', '__dnit__"', '__module__', '_new__"',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__str_ ',
' __subclasshook_ ', ' weakref__']

object introduit un certain nombre de méthodes privées qui permettent de bénéfi-
cier de nouveaux mécanismes comme :

* un nouveau Method Resolution Order ;

* le constructeur statique, sorte de méta-constructeur pour toutes les instances d’'un
type de classe ;

* la surcharge de type() par les metaclass, qui permet de contréler le cycle complet
de création d’un objet ;

* les descriptors, qui permettent de personnaliser I'accés aux attributs ;
* les properties, descriptors automatiques ;

* les slots, économiseurs de mémoire.

Structuration du code m
CHAPITRE 5

Le nouveau Method Resolution Order

La mécanique de recherche des attributs s’appelle le Method Resolution Order
(MRO) et utilise un algorithme qui parcourt I'arborescence des classes en profondeur
puis de gauche a droite.

Cette mécanique change avec I'introduction d’object comme type de base commun
aux types fournis dans Python. En effet, 'ancien algorithme ne pouvait plus
répondre a tous les cas d’héritages multiples introduits par I'insertion de object dans
I'héritage de certains types. Ainsi, I'héritage en « diamant » provoquait avec 1'algo-
rithme précédent un fonctionnement illogique.

Utilisation de __mro__

>>> class Television(object):
brand = "'
def print_brand(self):
print(self.brand)

>>> class TelevisionSatellite(Television):
channels = []
def 1list_channels(self):
return self. channels

>>> class DVDPlayer(object):
- def play_dvd(self):
pass

>>> class DVDWriter(DVDPlayer):
def write_dvd(self):
pass

>>> class SuperTVDVDCombo(TelevisionSatellite, DVDWriter):
pass

>>> dir(SuperTVDVDCombo)

['_class_ ', '__delattr_', '_dict_', '_doc_', '_ format_',
'__getattribute__', '__hash__', '__dnit__"', '_module__', '_new__"',
'_reduce_ ', '__reduce_ex__', '__repr_', '__setattr__', '_ sizeof__',
'_str__', '_ _subclasshook__', '__weakref__', 'brand', 'channels',

'Tist_channels', 'play_dvd', 'print_brand', 'write_dvd']

>>> SuperTVDVDCombo.__mro__

(<class '__main__.SuperTVDVDCombo'>, <class
'_main__.TelevisionSatellite'>, <class '__main__.Television'>, <class
__main__.DVDWriter'>, <class '__main__.DVDPlayer'>, <type 'object's)

Eléments du langage

DEUXIEME PARTIE

Constructeur statique

Lorsqu’une classe dérivée d’object est instanciée, la méthode spéciale __new__() est
appelée par l'interpréteur si elle est implémentée.

__new__() est une méthode statique de la classe, qui prend en premier parameétre le
type de la classe ainsi que I'ensemble des parametres de construction. Cette méthode
doit renvoyer une nouvelle instance de la classe, qui devient self.

__init__() est appelée juste aprés __new__() avec en premier parametre self puis la
liste des parametres de construction fournis.

Ce fonctionnement permet de procéder 4 un certain nombre d’initialisations supplé-
mentaires au niveau de la classe, que ce soit des manipulations d’attributs statiques ou
des modifications de I'objet nouvellement créé.

Implémenter __new__() consiste en général a appeler la méthode __new__() de la
classe de base, par le biais de la primitive super(), et a procéder a des initialisations
en amont ou en aval de cet appel.

Initialisation de I'instance par __new__() et__init_ ()

>>> class Car(object):

production = 0

def _ new__ (cls):
print("une nouvelle Voiture va sortir de 1'usine™)
self = super(Car, cls).__new_ (cls)
cls.production += 1
return self

def __init_ (self):
print("nouvelle voiture n°%s" % id(self))
self.immatriculation = '%s XZ 21' % id(self)

>>> car = Car(Q)

une nouvelle Voiture va sortir de 1'usine
nouvelle voiture n°211950068

>>> car.production

1

>>> car.immatriculation

'211950068 XZ 21'

AvAnCE Utilisation de __new_ ()

Le chapitre 13 sur la programmation orientée objet couvre des cas pratiques d'utilisation de

_new__Q.

Structuration du code m
CHAPITRE 5

Surcharge de type() par metaclass

Les classes en Python sont créées par le biais de la primitive type(), par un appel a
type(nom de la classe, nom des classes de base, mapping des attributs).Il
est possible avec les new-style class de surcharger ce mécanisme et de proposer sa
propre fonction de création : la mezaclass.

Cette fonction finit toujours par appeler type() mais ce point d’accés supplémentaire
sur la chaine de construction rend les controles beaucoup plus puissants qu'avec les
constructeurs statiques puisqu’il devient possible d’intervenir au moment de la créa-
tion de la classe, mére de toutes les instances.

Une metaclass se met en place en définissant une variable _metaclass__ pointant
sur un objet callable. Cette variable peut se trouver dans la classe, et est utilisée a
chaque fois qu'une instance de cette classe, ou de I'une des classes dérivées, est créée.
Si elle n'est pas définie dans la classe, et si la classe ne posseéde pas d’attribut
_ class__, I'interpréteur regarde si une variable globale __metaclass__ existe.

Metaclass a I’ceuvre

>>> def cls(cls, bases, dict):
print('classe "%s" en place' % cls)
return type(cls, bases, dict)

>>> _ _metaclass__ = cls

>>> class Classl:
pass

classe "Classl" en place
>>> class Class2:
pass

classe "Class2" en place
>>> class Class3(object):
_ _metaclass__ = cls

classe "Class3" en place

Cette puissance autorise la mise en place d'une quantité infinie de mécanismes,
comme l'ajout d’attributs a la classe, I'implémentation de statistiques, etc.

L'intérét de ce mécanisme par rapport a la dérivation est de donner la possibilité
d’introspecter dynamiquement l'interface d’'une classe au moment de sa création.

DANGER Les metaclass ne doivent pas étre des pansements a une mauvaise architecture

Le danger des metaclass est d'implémenter des fonctionnalités en cachant I'architecture et le fonctionne-
ment des classes. Elles rendent aussi la compréhension du programme difficile.

Eléments du langage

DEUXIEME PARTIE

Descriptors

Lorsqu’un attribut a est recherché dans un objet A par I'interpréteur que ce soit pour une
lecture, une affectation, ou une suppress1on il i 1nvoque tour 4 tour A.__dict__['a'],
puis type(A).__dict__['a'], et ainsi de suite jusqu'a la classe de base.

Les descriptors permettent de surcharger ce mécanisme en fournissant a 'interpré-
teur des méthodes __get__ (), __set_ () et__delete_ Q).

Une seconde new-style class doit étre spécifiquement créée pour l'attribut et doit
définir ces méthodes. Cette classe devient une sorte d’encapsulation et permet de
gérer toutes les demandes d’acces a I'attribut.

Descriptor

>>> class Immatriculation(object):
def __get_ (self, instance, classe):
if instance isnot None and hasattr(instance,
return instance._immat
else:
return
def _ set_ (self, instance, valeur):
instance._immat = valeur
def _ delete_ (self, instance):
print('Suppression interdite !')

_immat'):

>>> class Car(object):
immatriculation = Immatriculation()

>>> electric_car = Car(Q)

>>> electric_car.immatriculation

T

>>> electric_car.immatriculation = 'V'
>>> electric_car.immatriculation

lVl

>>> dir(electric_car)

['_class__', '__delattr__"', '__dict__', '__doc__', '__getattribute__',

'_hash_ ', '__dinit_"', '__module__', '_new_ ', '_ reduce_ ',
' _reduce_ex__', '__repr__', '__setattr__', '__str__', '__weakref_ ',
_immat', 'immatriculation']

>>> del electric_car.immatriculation

Suppression interdite !

>>> electric_car.immatriculation

IVI

>>> Car.immatriculation

Structuration du code m
CHAPITRE 5

La classe descriptor doit gérer les demandes faites par toutes les instances de la
classe utilisatrice :

. 7 N b
* __get_ (instance, classe) : est appelée avec en paramétre I'instance courante
et la classe. Silappel est effectué sur la classe directement, instance est a None.

* __set__(instance, value) : permet d’affecter une valeur sur I'instance.
* __delete__(instance): supprime l'attribut de I'instance.

Properties

Décriture des descriptors peut étre relativement lourde lorsque I'objectif est d’encap-
suler de la maniére la plus basique une variable d’instance.

N

La primitive property() fournit cette généralisation et évite d’avoir & créer une
deuxi¢me classe en charge de la gestion de l'attribut : elle associe directement a une
variable donnée trois méthodes d’accés.

property(fget=None, fset=None, fdel=None, doc=None) -> property attribute

fget, fset et fdel correspondent a trois objets callable (fonctions, méthodes ou
classes avec méthode __call__Q)).

doc permet d’associer 4 la volée 4 la propriété un docstring, puisqu’il n'est pas pos-
sible de le faire par code.

Implémentation de property

>>> class Car(object):
def __init_ _(self):
self._immat = "'
def _setimmat(self, value):
self._immat = value
def _getimmat(self):
return self._immat
def _delimmat(self):
print('achéte un meilleur tournevis')
immatriculation = property(_getimmat, _setimmat, _delimmat)

>>> car = Car(Q)

>>> car.immatriculation

>>> car.immatriculation = '3245 XX 21'
>>> car.immatriculation

'3245 XX 21'

>>> del car.immatriculation

achéte un meilleur tournevis

>>> voiture.immatriculation

'3245 XX 21'

Eléments du langage

DEUXIEME PARTIE

On retrouve ainsi un modele beaucoup plus léger que les descriptors et trés proche
syntaxiquement d’autres langages qui implémentent les propriétés, comme Delphi.

Slots

A chaque création d’objet, I'interpréteur associe a l'instance un dictionnaire __dict__
chargé de contenir ses attributs. Les slots introduisent un mécanisme global a la
classe, qui permet d’éviter la création d’un __dict__ par instance pour économiser de
I'espace mémoire : le mapping modifie sa fagon d’accéder aux attributs, en se référant
aux slots.

Ce gain devient intéressant lorsqu'une méme classe est instanciée une multitude de
fois dans un programme.

Les slots sont définis dans une variable statique __slots__, sous la forme d’une
séquence ou d’un itérable. Si une seule variable est a réserver, __slots__ peut étre un

objet de type string.
Utilisation des slots

>>> class Car(object):
_slots__ = ['color', "immatriculation', 'horsepower']

>>> car = Car(Q)

>>> car.color = 'Rouge'

>>> car.immatriculation = '1111 XR 21'
>>> car.horsepower = 7

>>> dir(car)

['_class__', '__delattr__"', '__doc__', '__getattribute__', '__hash__"',
' dnit_"', '_module__', '_new__', '__reduce__', '_ reduce_ex__ ',
'_repr_ "', '__setattr__', '__slots_ ', '__str__"', 'color',
"immatriculation', 'horsepower']

>>> hasattr(car, '__dict__")

False

>>> car.color

'Rouge’

Lutilisation des slots entraine cependant quelques restrictions :

* Limplémentation des slots, basée sur les descriptors, empéche l'utilisation d’attri-
buts de classe pour initialiser les valeurs des attributs définis dans les slots : ils
écraseraient les définitions de descriptors.

* Siune classe de base définit le méme nom de slot que la classe dérivée, la variable
de la classe de base ne peut plus étre atteinte. Il est donc nécessaire de controler
qu’un slot ne surcharge pas un autre slot, en attendant qu'une prochaine version
de Python ajoute un contréle pour empécher ce probléme.

Structuration du code m
CHAPITRE 5

* Une classe ne bénéficie pas des slots de la classe dont elle dérive.

* Les instances ne peuvent plus se voir attribuer de nouveaux attributs
dynamiquement : une erreur AttributeError est retournée. Depuis la version
2.3, il est possible d’ajouter le nom __dict__ aux slots pour autoriser I'ajout dyna-
mique d’attributs.

* Les instances ne peuvent plus bénéficier du mécanisme des weak references.
Cette situation peut étre débloquée en ajoutant comme précédemment le nom
__weakref__ aux slots.

Decorators pour les classes

Les decorators directement utilisables en Python sont des fonctions déclarées dans
les built-ins. C’est le cas de staticmethod et classmethod, présentées dans le chapitre
suivant.

Modules

Passés les essais dans le prompt Python, il est nécessaire de sauvegarder le code dans
des fichiers, appelés modules. Un module est un objet chargé par l'interpréteur a
partir d’un fichier texte qui contient un regroupement de variables, classes et fonc-
tions. Le fichier est en en général d’extension .py

Module absmod3.py

#!/usr/bin/python
-*- coding: utf8 -*-

o

module absmod3
def only_int(func):
"""Decorator pour vérifier les parametres.
def _only_int(arg):
ifnot isinstance(arg, int):
raise TypeError("'%s' doit étre un entier" % str(arg))
return func(arg)
return _only_int

non

@only_int

def absmod3(a):
"""Renvoie 'abs(a) mod 3' pour a entier.
return abs(a) % 3

non

Eléments du langage

DEUXIEME PARTIE

Directive import

La directive import permet ensuite d’utiliser le code contenu dans le fichier python.
Sa syntaxe est :

I import modulel[, module2, ...].

Importation du module absmod3

>>> 1import absmod3
>>> dir(absmod3)

['_builtins__', ' _doc__ "', '__file__ "', '"__name__', 'absmod3',
'only_int']

>>> absmod3.__ file__

'absmod3.py'

>>> absmod3.absmod3(-44)

2

import absmod3 cherche dans le répertoire courant le fichier absmod3. py, puis dans
la liste des répertoires définis dans la variable d’environnement PYTHONPATH et enfin
dans le répertoire d’installation de Python qui contient tous les modules fournis avec
I'interpréteur. Cette liste de répertoires peut étre retrouvée dans la liste path du
module sys, et méme modifiée 2 la volée.

Extension de sys.path

>>> import sys
>>> sys.path
['", "/usr/Tib/python24.zip', '/usr/1ib/python2.4', '/usr/T1ib/
python2.4/plat-1inux2', '/usr/Tlib/python2.4/1ib-tk', '/usr/1lib/
python2.4/Tib-dynload', '/usr/lib/python2.4/site-packages', '/usr/Tib/
python2.4/site-packages/Numeric', '/usr/lib/python2.4/site-packages/
PIL', '/usr/1lib/python2.4/site-packages/gtk-2.0"', '/usr/1ib/python2.4/
site-packages/wx-2.5.3-gtk2-ansi']
>>> 1import absmod3
Traceback (most recent call last):

File "<stdin>", Tine 1, in ?
ImportError: No module named absmod3
>>> sys.path.append('/home/tziade/Desktop')
>>> 1import absmod3
>>> absmod3.absmod3(6)

0
>>> sys.path
['", "/usr/Tib/python24.zip', '/usr/1ib/python2.4', '/usr/1ib/

python2.4/plat-1inux2', '/usr/lib/python2.4/1ib-tk', '/usr/T1ib/
python2.4/1ib-dynload', '/usr/1lib/python2.4/site-packages', '/usr/1lib/
python2.4/site-packages/Numeric', '/usr/Tib/python2.4/site-packages/
PIL', '/usr/1lib/python2.4/site-packages/gtk-2.0"', '/usr/1ib/python2.4/

site-packages/wx-2.5.3-gtk2-ansi', '/home/tziade/Desktop']

Structuration du code m
CHAPITRE 5

L'importation génére un objet de type module qui contient, outre 'ensemble des élé-
ments du fichier, deux variables globales __name__ et _ file__ qui contiennent res-
pectivement le nom du module et le nom du fichier systéme correspondant.

Variables globales __name__ et _ file_

>>> absmod3.__name_

'absmod3'

>>> absmod3.__file__
'/home/tziade/Desktop/absmod3.pyc'’

On constate que le nom du fichier n'est pas absmod3.py mais absmod3.pyc. Les
fichiers .pyc sont issus d'une optimisation automatiquement mise en ceuvre par
I'interpréteur : lorsque quun module est invoqué, il recherche dans le répertoire du
fichier source un fichier portant le méme nom avec I'extension .pyc. Le contenu de
ce fichier correspond au résultat du travail de lecture du fichier source par I'interpré-
teur (analyse lexicale) et permet de gagner du temps au moment du chargement.

Ce gain de temps peut étre relativement important lorsque des sources importent
plusieurs modules qui eux-mémes en importent d’autres et ainsi de suite : 'arbre des
dépendances peut étre rapidement conséquent et la quantité de code 4 lire pour pré-
parer les contextes d’exécution monstrueuse.

Ce fichier est bien sar recalculé par I'interpréteur si sa date de création est antérieure
a la date de modification du fichier source.

Primitive reload

Lorsqu’un fichier source est modifié et déja chargé par une directive import, les
modifications ne seront pas visibles par le code. Un deuxiéme appel a import ne
rechargera pas non plus le fichier car avant d’importer un module, linterpréteur
vérifie quil ne l'est pas déja, en scrutant sys.path. La primitive reload permet de
forcer le rechargement du fichier.

Rechargement d’un module

>>> reload(absmod3)
<module 'absmod3' from '/home/tziade/Desktop/absmod3.pyc'>

Attention cependant : les éventuelles instances de classe déja créées ne sont pas tou-
chées par 'appel a reload.

Eléments du langage

DEUXIEME PARTIE

Directives from et as

En général, seules quelques fonctionnalités d'un module ont besoin d’étre importées
dans un autre module. La directive from permet d'importer dans le contexte d’exécu-
tion un élément spécifique du module et s’écrit :

I from module import elementl[, element2, ...]

Importation de la fonction absmod3

>>> from absmod3 import absmod3
>>> absmod3(4)
1

Cette écriture est d’autant plus intéressante qu'elle permet d’affiner les dépendances
entres modules et de ne plus avoir a préfixer les éléments du nom du module
importé. Pour éviter d’éventuelles collisions de noms, il est en outre possible de
modifier le nom importé par le biais de la directive as.

Alias

>>> from absmod3 import absmod3 as transformation
>>> transformation(4)
1

Lorsque plusieurs éléments d'un méme module doivent étre importés, il est possible
de le faire dans la méme directive import, en séparant chaque élément par une vir-

gule.

Plusieurs éléments d’un méme module

I >>> from absmod3 import absmod3, absmod3, absmod6

Lorsque la ligne d'importation dépasse 80 caractéres et qu'un retour a la ligne est
souhaitable, il est possible depuis la version 2.4 d’utiliser des parenthéses pour
regrouper les éléments a importer.

Passage a la ligne
>>> # < Python 2.4
>>> from absmod3 dimport absmod3,\

absmod3, \
absmod6

Structuration du code m
CHAPITRE 5

>>> # >= Python 2.4

>>> from absmod3 import (absmod3,
absmod3,
absmod6)

I1 existe aussi un raccourci pour importer tous les éléments d’'un module, le joker.

Tous les éléments d’un méme module

I >>> from absmod3 import *

Lorsqu’un module définit par exemple une série de constantes, 'utilisation du joker
pour avoir acces a ces constantes dans le code est tres pratique. Certains toolkits gra-
phiques, comme Tkinter ou wx, sont organisés de telle maniére que l'utilisation d’'un
joker est conseillée. En dehors de ces cas particuliers, cette notation est & proscrire
car elle réduit considérablement la visibilité des dépendances entres modules.

Paquets

Un deuxi¢me niveau d’organisation permet de structurer le code : les fichiers Python
peuvent étre organisés dans une arborescence de répertoires que l'on appelle paquet.
Chaque répertoire peut étre utilisé dans une directive d'importation au méme titre
quun fichier.

Le caractére . joue alors le role de séparateur, pour localiser un module dans une
arborescence de répertoire.

Organisation d’un paquet

Prenons I'exemple d’'une application de gestion de fichiers clients. Le programme
posséde un noyau autour duquel sont organisés une interface graphique, un moteur
de base de données, et un module métier qui permet d’appliquer des calculs statisti-
ques sur les clients. On peut représenter cette organisation sous la forme de
répertoires :

FichierClient

| _init__.py

| description.py

| - noyau

| | __init__.py

| | application.py

m Eléments du langage
DEUXIEME PARTIE

- dinterface
| __init__.py
| fiche_client.py
| Tiste_clients.py
- bdd
| __init__.py
| acces_bd.py
| acces_pgsql.py
- stats
| __init__.py
| frequence.py

Chaque répertoire faisant partie du paquet doit posséder un fichier __init__.py
pour que l'interpréteur le prenne en compte. Ce fichier peut étre vide ou contenir du
code d’initialisation qui est exécuté dés que le répertoire est trouvé dans une directive
d’importation. Il représente le répertoire dans le contexte d’exécution.

Exemples d’utilisation du paquet :

* from FichierClient import description : charge les modules __init__ et
description du répertoire FichierClient.

* from FichierClient.noyau import application : charge les modules __init__
des répertoires FichierClient et noyau, et le module application.

* Dans le module frequence.py: l'importation relative from ..bdd import
acces_db permet d’atteindre le module acces_db.

Import *et __all

Lorsqu'un paquet est mis en place, l'interpréteur parcourt automatiquement les
répertoires contenant un fichier __init__.py a la recherche de fichiers Python. Le
résultat de cette recherche peut varier d’'un systtme a lautre. Sur un systéme
MS-Windows ou Macintosh, les noms de fichiers récupérés peuvent avoir une casse
qui varie et un fichier python dont le nom contient des majuscules ne sera pas forcé-
ment importé de la méme maniére.

Pour éviter ce probleme, lorsqu'un appel a from Paquet import * est fait, I'interpré-
teur n'importe que les éléments trouvés dans le fichier __init__.py du répertoire. La
seule possibilité pour importer tous les modules du répertoire est de les définir explici-
tement dans une variable globale __al1__ dans le fichier __init__.py du répertoire.

Ainsi le fichier __init__.py du répertoire interface contiendra :

I_aﬂ_ = ['fiche_client', 'liste_clients']

Structuration du code m
CHAPITRE 5

Références relatives

Dans un paquet, chaque module peut se référer a d’autres modules. Lorsque ces
modules sont dans le méme répertoire, il est bien str possible d’utiliser une notation
relative sans avoir a préfixer le module des noms des paquets. Si ces modules sont dans
un répertoire voisin, il est nécessaire d’écrire le chemin absolu pour chacun d’entre eux.

Importations dans le module fiche_client

import FichierClients.noyau.application
import FichierClients.description
import liste_clients

Depuis Python 2.5, il est possible de réaliser des imports relatifs a la localisation du
module en cours, en utilisant la notation . pour désigner le répertoire courant. Par
exemple, si un deuxieme module utils.py, placé dans le méme répertoire que le
module absmod3. py, les deux écritures suivantes sont équivalentes.

Importation relative

from absmod3 dimport absmod3
from . import absmod3.absmod3 as absmod3

Cette écriture n'a d’intérét que pour récupérer des références dans des modules situés
dans une arborescence de répertoires.

Dans T'exemple du paquet FichierClients, le module fiche_client.py peut
atteindre le module acces_bd.py ainsi: from ..bdd import acces_bd.

De maniere similaire au fonctionnement des chemins dans les interpréteurs de com-
mande MS-Windows ou *nix, chaque point de la directive from permet de remonter
dans le répertoire parent du répertoire en cours.

Exceptions

Lorsqu’un événement ou des conditions d’exécution ne sont pas souhaitables, il est
possible de lever une exception. Uinterpréteur passe alors dans un mode particulier
ou il stoppe 'exécution du programme en cours et affiche une erreur. C’est le cas par
exemple lorsque 'on tente une division par zéro.

m Eléments du langage
DEUXIEME PARTIE
Division par zéro

>>7 /0
Traceback (most recent call last):
File "<stdin>", Tine 1, in ?
ZeroDivisionError: integer division or modulo by zero

Le message affiché contient en général le traceback, c’est-a-dire la pile d’appel, le
type d’exception levée et enfin un message explicite sur le probléme rencontré. La
pile d’appel est le chemin parcouru par I'interpréteur pour atteindre I'erreur, soit la
liste des méthodes et fonctions traversées pour atteindre l'erreur.

Pour lever une exception, il suffit d’utiliser la directive raise suivie d’une classe ou
d’une instance de classe.

Utilisation d’une classe d’exception

>>> class BrokenCode:
pass

>>> def func():

. raise BrokenCode()

>>> func()

Traceback (most recent call Tast):
File "<stdin>", Tine 1, in <module>

File "<stdin>", 1ine 2, 1in func
__main__.BrokenCode: <__main__.BrokenCode instance at 0x84300>

Bon A SAVOIR Exceptions de type string

Le support des exceptions de type string (comme raise 'erreur !') a été supprimé depuis
Python 2.6.

Meéme si tout type de classe peut servir dans une exception, il est recommandé d’uti-
liser ou de spécialiser les classes d’exceptions fournies dans Python et présentées dans
la prochaine section.

Exceptions du langage

Python propose une liste de classes d’exception directement accessibles sans directive
d’importation, et utilisées par le langage. Les classes sont organisées en deux
niveaux :
* La premiére couche contient un ensemble de classes de base qui ne sont jamais
directement appelées.

Structuration du code m
CHAPITRE 5

* La deuxi¢me couche représente soit des classes qui dérivent d’'une des classes de
base et qui sont utilisables, soit des classes concretes.

ARETENR Différence entre classes d'exception abstraites et concrétes

Cette distinction entre classes d'exception abstraites et concrétes est purement symbolique et il reste
techniquement tout a fait possible de lever des exceptions avec les classes de base.

Classes d’exceptions de base

Exception

Exception est la classe de base de toutes les exceptions. Son constructeur peut étre
appelé avec un ou plusieurs parametres libres qui sont conservés dans I'attribut args.
Lorsque T'exception est levée, l'interpréteur affiche le type d’exception, suivi de la
chaine de caractéres obtenue par str(exception), soit un appel a
exception.__str__(). La méthode _ str__() de la classe Exception renvoie une
chaine de caractéres représentant args.

StandardError

Dérivée d’Exception, StandardError est la classe de base pour la quasi-totalité des
classes d’exceptions.

ArithmeticError

Dérivée de StandardError, ArithmeticError est la classe de base pour les exceptions
relatives aux erreurs arithmétiques, soit la division par zéro (ZeroDivisionError), un
dépassement de capacité (OverflowError), une erreur de calcul en virgule flottante
(FloatingPointError).

LookupError

Dérivée de StandardError, LookupError est la classe de base pour les exceptions
relatives aux erreurs d’index ou de clé, lorsqu’un appel a une clé inexistante est faite
sur un mapping ou sur un index hors limite sur une séquence.

EnvironmentError

Dérivée de StandardError, EnvironmentError est la classe de base pour les erreurs
systéme, comme des erreurs de lecture ou d’écriture (I0Error) ou des erreurs provo-
quées lors d’appels 4 des API systeme (0SError).

e systéme d’exploitation posséde une liste d’erreurs standardisée, représentée par
L t d ,

es entiers que 'on peut retrouver dans le module errno. Lorsquun programme
d t l
provoque une erreur systéme, il peut lever une exception EnvironmentError cons-

m Eléments du langage
DEUXIEME PARTIE

truite avec le couple (errno, message). Linstance présentera alors deux attributs
errno et strerror, utilisés par __str__Q.

Levée d’'une OSError

>>> import errno
>>> error = OSError(errno.ECONNREFUSED, 'Connection refused')
>>> raise error
Traceback (most recent call last):
File "<stdin>", Tine 1, in ?
OSError: [Errno 111] Connection refused

I1 est possible enfin d’instancier 'exception avec un troisieme parameétre représentant
un nom de fichier. Ce troisieme parametre est souvent utile pour IOError.

UnicodeError

Classe de base pour les erreurs relatives aux conversions entre type unicode et type
string et aux problémes de traduction de caractéres (par appel de translate(Q)).
Une erreur de conversion d'unicode vers string est une erreur d’encodage
(UnicodeEncodeError) et de string vers unicode une erreur de décodage
(UnicodeDecodeError). Cette distinction a été introduite dans la version 2.3.

Warning

Classe de base pour toutes les exceptions de type avertissement.

Classes concretes

Les classes d’exceptions concrétes sont présentées dans le chapitre suivant.

try..except..else

Lorsqu'une exception est levée, le programme est interrompu et linterpréteur
remonte en sens inverse toutes les couches de code précédemment traversées, a la
maniére d’une bulle d’air qui remonte dans I'eau. Arrivée a la surface, I'exception est
affichée et le programme s’arréte.

Il est cependant possible de stopper cette remontée en interceptant U'erreur, avec la
directive try..except. Tout le code contenu ou appelé dans le bloc délimité par try
est surveillé par 'interpréteur. En cas de levée d’exception, I'exécution du bloc s’arréte
et 'interpréteur exécute le code contenu dans le bloc except avant de continuer le
programme normalement.

Si le code ne leve pas d’exception le programme continue et ignore le bloc contenu
dans except.

Structuration du code m
CHAPITRE 5

Il reste en outre possible d’appeler 4 nouveau une directive raise dans le bloc except
(principe du reraise).

Utilisation de try..except

>>> try:
print(2 / 0)
except:
print('une erreur est survenue')

une erreur est survenue

Cette écriture a cependant un inconvénient majeur : il est impossible de savoir quel type
d’erreur est survenue dans le bloc. Cette protection aveugle peut entrainer des effets de
bords dans la suite du programme en masquant silencieusement toutes les erreurs.

Pour éviter ce probleme, il est possible de préciser quelle classe d’exception est gérée
par la directive except. Dans ce cas, le bloc sera ignoré si 'exception levée n'est pas

du type indiqué.
Typage de I’exception

>>> try:
print(2 / 0)
except ZeroDivisionError:
print('+infini')

+infini

En outre, il est possible d’associer plusieurs exceptions a un bloc except et
d’enchainer plusieurs blocs except.

Série d’except

>>> try:
print(a)
. except ZeroDivisionError:
print('division par zéro')
except (AttributeError, NameError):
print('element non défini')

element non défini

except peut aussi prendre un nom de variable en deuxiéme paramétre qui regoit
I'instance de 'exception levée.

Eléments du langage

DEUXIEME PARTIE

>>> try:
print(2 / 0)
. except ZeroDivisionError, error:
print('Erreur: %s' % str(error))

Erreur: integer division or modulo by zero

Enfin, un bloc else peut étre ajouté a la fin du bloc try. .except, et ne sera exécuté
que s'il n’y a eu aucune erreur.

try. finally

La directive try..finally permet de sassurer quun bloc de code est toujours
exécuté : le bloc contenu dans la directive try peut lever une exception, ou méme
exécuter une directive return ou break, le bloc finally sera toujours exécuté.

Lecture d’un fichier

>>> with open('zipfile.py', 'w') as file_
try:
some_code()
finally:
file_.write('fini")

Dans cet exemple, la directive finally permet de s’assurer que le mot « fini » sera
écrit dans le fichier, quoi qu’il advienne dans some_code().

AReTeNR Débogage d'un programme Python

Pour déboguer un programme Python, il convient d'utiliser le module pdb, présenté au chapitre 9.

try..except..finally

Pour simplifier le code, il est aussi possible d’unifier les directives except et finally

imbriquées depuis Python 2.5.1.
Unification

>>> try: # avant 2.5.1
try:
print('Te code')
except:
print("1'erreur™)

Structuration du code m
CHAPITRE 5

. finally:
print("1'ultime opération™)

Te code
T'ultime opération

>>> try: # depuis 2.5.1
print('le code')
. except:
.. print("1'erreur™)
. finally:
print("1'ultime opération™)

Te code
T'ultime opération
>>>

Les list comprehensions

Les list comprehensions sont des expressions qui permettent de générer des listes
d’une maniére trés compacte, sans avoir 4 utiliser de boucles si les éléments doivent
étres testés ou traités avant d’étre intégrés dans la liste, ni les fonctions map(Q),
reduce() ou filter().

Lexpression est de la forme :

I [expression for expression in sequence [if test]]

Exemples de list comprehensions

>>> sentence = "voici une Tiste de mots".split()
>>> sentence
['voici', 'une', 'liste', 'de', 'mots']

>>> sentence2 = [word.upper() for word in sentence]

>>> sentence2

['VOICI', 'UNE', 'LISTE', 'DE', 'MOTS']

>>> sentence2 = [word for word in sentence2 if word != "UNE"]
>>> sentence2

['VOICI', 'LISTE', 'DE', 'MOTS']

>>> [3*i for i 1in range(4)]

[0, 3, 6, 9]

>>> [i for i in range(4) if i > 2]

[3]

>>> [i for i in range(6) id i != 4 and i > 2]

[3, 5]

Eléments du langage

DEUXIEME PARTIE

Cette écriture combinée réduit considérablement le code nécessaire a la composition
de certaines listes. Si elle devient difficile 4 lire, il faut envisager une boucle classique.
Le méme code sans list comprehensions est trois fois plus long.

Méme code sans list comprehensions (sans utilisation de map())

>>> sentence = "voici une Tiste de mots".split(Q
>>> sentence
['voici', 'une', 'liste', 'de', 'mots']

>>> sentence2 = []
>>> for word 1in sentence:
sentence2.append(word.upper())

>>> sentence2
['VOICI', 'UNE', 'LISTE', 'DE', 'MOTS']
>>> sentence3 = []
>>> for word in sentence2:
if word != 'UNE':
sentence3.append(word)

>>> sentence2 = sentence3
>>> sentence2
['VvOICI', 'LISTE', 'DE', 'MOTS']
>>> 1 = []
>>> for i 1in range(4):
1.append(i*3)
>>> 1
[0, 3, 6, 9]
>>> 1 = []
>>> for i 1in range(4):
if i > 2:
1.append(i)
>>> 1
[3]
>>> 1 = []
>>> for u 1in range(6):
ifu l= 4:
1.append(u)
>>> 12 = []
>>> for i in 1:
if i > 2:
12.append(i)
>>> 12
[3, 5]

Structuration du code m
CHAPITRE 5

Generators et iterators

Iterators

A chaque fois qu'un objet est utilisé dans une boucle for, I'interpréteur génére en
interne un iterator avec lequel il travaille. Un iterator est un objet qui contient une
méthode next() qui est appelée a chaque cycle et qui renvoie la séquence, élément
par élément. Lorsqu’il n'y a plus d’éléments, literator déclenche une exception de
type StopIteration.

Les objets iterators peuvent étre créés par le biais de la primitive iter() qui prend en
paramétre tout objet compatible avec les itérations.

Iterator sur objet liste

>>> Tlist_ = [1, 2, 3]

>>> iterator = iter(list_)

>>> jterator.next()

1

>>> iterator.next()

2

>>> jterator.next()

3

>>> iterator.next()

Traceback (most recent call last):
File "<stdin>", 1ine 1, in ?

StopIteration

Un objet compatible avec les itérations est un objet qui implémente une méthode
__iter__(Q). La primitive iter() appelle et renvoie le résultat de cette méthode
lorsqu’un objet lui est fourni en parametre.

Iterator de liste

>>> list_ = [1, 2, 3]

>>> jterator = list_._ _iter_ Q)
>>> jterator.next()

1

>>> iterator.next()

2

>>> jterator.next()

3

>>> jterator.next()

Traceback (most recent call last):
File "<stdin>", 1line 1, in ?

StopIteration

m Eléments du langage
DEUXIEME PARTIE

La méthode la plus simple pour rendre un objet compatible avec les itérations est d’y
implémenter directement la méthode next() et de renvoyer se1f dans __iter__ Q).

Iterator simple

>>> class Iterable:

index = 0

def __iter__(self):
return self

def next(self):
if self.index > 5:

raise StopIteration

self.index += 1
return self.index

>>> for element in Iterable():
print(element)

OV WN R -

AsavoR Gestion des iterators avec itertool

Le module itertool, présenté dans le chapitre 8, fournit des utilitaires rapides de création et de mani-
pulation d'iterators.

Generators

Les generators permettent de générer de maniére trés simple et trés puissante des ite-
rators. La création d’un iterator par le biais d’un generator se résume a I'écriture d’'une
fonction qui parcourt les éléments de la séquence. Au lieu de retourner ces éléments
par la directive return, la fonction doit faire appel a la directive yield, qui sert a
définir un point de sauvegarde.

Cette fonction peut ensuite étre utilisée dans une boucle for sans avoir a implé-
menter toute la garniture nécessaire a un iterator, ou a gérer la levée d’une exception
StopIteration.

Generator simple

>>> def iterable():
print('début de boucle')

Structuration du code m
CHAPITRE 5

for i 1in range(6):
yield i + 1

>>> for element 1in iterable():
print(element)

début de boucle

SOV WN R

Linterpréteur utilise la fonction a chaque itération en mémorisant son état, la direc-
tive yield constituant en quelque sorte un return avec point de sauvegarde de I'état
des variables locales et de 'endroit ot le code de la fonction a été quitté. Le prochain
appel a la fonction reprendra a cet endroit.

Generator expression (genexp)

I1 est possible d’utiliser une notation abrégée pour créer un generator, a 'aide d'une
generator expression.

Ces expressions sont d’'une forme équivalente aux /ist comprehensions :(expression for
expression in sequence [if fest]), et renvoient un objet generator.

Exemples de generator expression

>>> genexp = (i for i 1in range(5) if i % 2 == 0)
>>> genexp.next()

0

>>> genexp.next()

2

>>> genexp.next()

4

>>> genexp.next()
Traceback (most recent call last):
File "<stdin>", 1ine 1, in ?
StopIteration
>>> genexp = (i for i 1in range(5) if i % 2 == 0)
>>> for element in genexp:
print(element)

N

m Eléments du langage
DEUXIEME PARTIE

En un mot...

Deés qu'un programme grossit, une structuration en classes, modules et paquets faci-
lite grandement son évolution, sa lisibilité et sa maintenance.

Le prochain chapitre présente les primitives du langage, qui sont toutes les fonction-
nalités directement accessibles venant étoffer la syntaxe.

Les primitives

Les primitives sont des fonctions directement accessibles dans l'interpréteur, aussi
appelées built-ins. Ces fonctions sont toutes du type builtin_function_or_method
et sont regroupées dans le module __builtins__.

ATTENTION Fonctions de transtypage

Lorsqu'ils sont utilisables comme des fonctions de transtypage, certains types sont présentés dans ce
chapitre alors qu'ils ne sont pas des buiTtin_function_or_method.

Allant de la simple transformation de valeurs aux fonctionnalités plus élaborées, les
primitives sont le couteau suisse du développeur Python.

Ce chapitre présente un référentiel complet des primitives et comporte deux parties.
La premiére partie porte sur tous les éléments qui ne sont pas des classes d’exception,
lesquelles sont regroupées dans la deuxiéme partie.

Linterpréteur est aussi un bon allié lors de la manipulation des primitives : heTp(x)
permet d’afficher un écran d’aide sur l'utilisation de x.

Eléments du langage

DEUXIEME PARTIE

Affichage de I’écran d’aide d’abs

>>> help(abs)
Help on built-in function abs in module __builtin__:

abs(...)
abs(number) -> number

Return the absolute value of the argument.

Primitives du langage

__import__ : __import__(nom, globals={}, locals={}, fromlist=[), level=-
1) -> module

__import__ sert a importer un module comme le ferait une directive import clas-
sique. Lenvironnement local et global peuvent étre passés en parametre, et fromlist
permet quant a lui d’émuler la directive from.

Enfin, Tevel est un drapeau qui permet de déterminer si les imports sont relatifs ou
absolus.

* Un nombre de 1 a4 n définit le nombre de répertoires parents a remonter avant de
rechercher 'élément a importer ;
+ Réglé sur 0, c’est un import absolu classique ;

* Réglé sur -1, __import__ essaye d’effectuer un import absolu ou relatif en se
basant sur le nom fourni.

Importations avec __import__

>>> __import__(’os.path’, fromlist=["’o0s’])
<module ’posixpath’ from ’posixpath.pyc’>
>>> _ import__(’os’)

<module ’os’ from ’os.pyc’>

__import__ est utilisé pour des importations a effectuer aprés le lancement du pro-
gramme. Un syst¢eme de plug-ins peut par exemple utiliser cette primitive pour
charger a la volée un module dans un programme.

Les primitives m
CHAPITRE 6
abs : abs(nombre) -> nombre

Renvoie la valeur absolue du nombre passé en paramétre. abs peut aussi servir a récu-
pérer le module d’un nombre complexe.

abs

>>> abs(-145)

145

>>> cplx = -3 + 23
>>> abs(cplx)
3.6055512754639891

DEFINITION Module d'un nombre complexe

Le module d'un nombre complexe z, noté |z| est un réel positif tel que |z| = V(a2 + b2) = \(zz*)

all : all(iterable) -> booléen

Renvoie True si bool(x) renvoie True pour tous les éléments x de la séquence
iterable.

Test de ’homogénéité d’une séquence

>>> elements = [1, 23, 233, 322]

>>> all([isinstance(el, int) for el 1in elements])
True

>>> elements = [1, 23, 233, ’k’]

>>> all([isinstance(el, int) for el in elements])
False

Dans cet exemple, al1 vérifie que tous les objets de la liste sont des entiers.

any : any(iterable) -> booléen

Renvoie True si bool(x) renvoie True pour au moins l'un des éléments x de la
séquence iterable.

Test de ’homogénéité d’une séquence

>>> elements = [’a’, 23, 'b’, 'c’]

>>> any([isinstance(el, int) for el 1in elements])
True

>>> elements = [’a’, 'b’, ’c’, ’d’]

>>> any([isinstance(el, int) for el 1in elements])
False

m Eléments du langage
DEUXIEME PARTIE

apply : apply(objet(, args(, kwargs]]) -> valeur

Permet d’appeler une méthode ou une fonction avec une liste de parameétres. Cette
primitive ne doit plus étre utilisée depuis la version 2.3, au profit d’'un appel direct,
comme nous le verrons dans le chapitre suivant.

callable : callable(objet) -> booléen

Renvoie True si 'objet fourni est une fonction ou une méthode. Si I'objet est une ins-
tance de classe, renvoie True a condition que la classe implémente une méthode
_call_Q.

callable s’avére pratique pour tester des objets lorsqu’une fonction exécute des fonc-
tions tierces fournies en parameétre.

Test de callable

>>> def ma_fonction():
print(Avez vous déja essayé le camembert frit ?’)

>>> callable(ma_fonction)

True

>>> chaine = "C’est extra"
>>> callable(chaine)

False

chr : chr(code) -> caractere

Renvoie un objet string qui représente le caractere dont le code ASCII est 'entier
code fourni en paramétre.

chr en action
>>> chr(97)

>>> chr(97+25)

La fonction inverse est ord() : voir aussi ord et unichr.

classmethod : classmethod(fonction) -> méthode

Convertit une simple fonction en une méthode de classe. Une méthode de classe est
une méthode qui est associée 4 une classe et non a ses instances. Elle peut donc étre

Les primitives m
CHAPITRE 6

appelée depuis la classe ou depuis n'importe quelle instance, sachant que dans tous
les cas, le premier parametre implicite est la classe et non I'instance.

classmethod est utilisée le plus souvent pour des fonctions qui générent une instance
de la classe donnée. Comme il n’est pas nécessaire pour cette fonction de connaitre
autre chose que la classe, on peut alors opter pour une méthode de classe. C’est le cas
par exemple de la méthode fromkeys() pour les dictionnaires.

La méthode de classe fromkeys()

class UserDict:

def fromkeys(cls, iterable, value=None):
d =clsQO
for key 1in iterable:
d[key] = value
return d
fromkeys = classmethod(fromkeys)

Lusage veut que le premier parameétre soit noté c1s en lieu et place de self.

fromkeys() peut donc étre appelée directement depuis la classe ou depuis une ins-
tance.

Appel de fromkeys()

>>> from UserDict import UserDict

>>> UserDict.fromkeys([’a’, ’b’, 'c’], 0)
{’a’: 0, 'c’: 0, ’b’: 0}

>>> dico = {}

>>> dico.fromkeys([’a’, ’'b', 'c'], 0)
{'a': 0, 'c': 0, 'b': O}

Enfin, il est possible d’utiliser le decorator classmethod pour simplifier I'écriture.

Utilisation du decorator

class UserDict:

@cTassmethod
def fromkeys(cls, iterable, value=None):
d =clsQ
for key 1in iterable:
d[key] = value
return d

Voir aussi: staticmethod.

Eléments du langage

DEUXIEME PARTIE

cmp : cmp(x, y) -> entier

Compare x et y et renvoie :
* un entier négatif six <y ;
* un entier positif six >y ;
* Zérosix ==y.

En général, renvoie -1, 1 et 0.

cmp() a Poeuvre

>>> cmp('a', 'b'")
-1

>>> cmp(2, 1)

1

>>> cmp(None, None)
0

Pour les instances de classe, cmp() se base sur l'entier retourné par la méthode
_cmp__Q si elle est implémentée.

Les opérateurs de comparaison (>=, <=, !=, <> et ==) utilisent cmp() pour renvoyer
leurs résultats.

Implémentation de __cmp___

>>> class Susceptible:
def _ _cmp__(self, 1_autre):
print('Comment osez-vous me comparer a lui !')
return 1

>>> a = Susceptible()

>>> cmp(a, 2)

Comment osez-vous me comparer a Tui !
1

>>a <1

comment osez-vous me comparer a lui !

False

coerce : coerce(x, y) -> (x1, y1)

Rarement utilisée, coerce permet de convertir deux objets numériques x et y en un
type commun lorsque c’est possible. Renvoie un tuple avec les deux valeurs homogenes.

Dans le cas ou U'opération est impossible, ou si les paramétres ne sont pas des objets
numériques, 1éve une exception TypeError.

Les primitives m
CHAPITRE 6
Homogénéisation par coerce()

>>> coerce(l, 2.5)

(1.0, 2.5

>>> coerce('b', 'a'")

Traceback (most recent call last):
File "<stdin>", 1ine 1, in ?

TypeError: number coercion failed

compile : compile(source, fichier, mode|[, flags(, dont_inherit]])) -> objet

code

Python permet de compiler a la volée du code source. Le résultat de cette compila-
tion est ensuite interprétable par le biais des primitives exec() ou eval().
Les parameétres sont :
* source : une chaine de caractéres contenant le code, que ce soit le texte complet
d’un module, une expression ou une suite de lignes.
 fichier : fichier recueillant les messages des erreurs éventuellement survenues
lors de compilation.
* mode : chaine de caractéres pouvant prendre les valeurs exec, single ou eval
— exec : pour compiler les modules.
— single : pour compiler une série d’instructions.
— eval : pour compiler une expression.
* flags : permet de faire varier le fonctionnement du compilateur en intégrant des
clauses du module __future__.
* dont_inherit: si cet entier est différent de zéro et si le code qui appelle
compile() posséde des appels a des directives du module __future__, leur effet

est bloqué. Si dont_inherit vaut zéro ou n'est pas spécifié, le code appelé par
compile() hérite de l'effet.

Compilation sous Linux

>>> byte_code = compile("print('Je suis vivant !!!")", '/dev/null’,
'single')

>>> byte_code

<code object <module>? at Oxb7clbde0, file "/dev/null"™, 1line 1>
>>> exec(byte_code)

Je suis vivant !!!

Voir aussi : eval, execfile.

Eléments du langage

DEUXIEME PARTIE

Asavor Les fichiers .pyc et .pyo

Les fichiers .pyc ou .pyo qui apparaissent pour chaque fichier . py exécuté sont le fruit d'un appel a

compile().

delattr : delattr(objet, nom)

Supprime un attribut nommé d’un objet. Equivalente a de1 objet.nom, cette fonc-
tionnalité doit étre utilisée avec précaution car la suppression d’'un attribut peut
entrainer des problemes si cet attribut est utilisé par du code tiers.

Utilisation de delattr, attention aux impacts

>>> 1import UserList
>>> my_list = UserList.UserList()
>>> my_list.append('t")
>>> my_list
['t']
>>> delattr(my_Tlist, 'data')
>>> my_Tlist.append('t")
Traceback (most recent call Tast):
File "<stdin>", 1line 1, in ?
File "/usr/1ib/python2.4/UserList.py", Tine 73, in append
def append(self, item): self.data.append(item)
AttributeError: UserList instance has no attribute 'data'

Cette méthode est rarement utilisée dans le cadre d’un programme classique. Seules
les bibliothéques qui modifient en bas niveau le fonctionnement de certaines classes
de Python en ont 'usage. Les tests unitaires peuvent aussi s’en servir pour modifier
temporairement certains mécanismes. Si votre programme utilise cette fonction dans
un cadre classique, c’est en général un probléme d’architecture et un refactoring peut
s'avérer nécessaire.

Voir aussi : setattr, hasattr et getattr.

dir : dir((objet]) -> liste d’attributs

Renvoie une liste des attributs de 'objet. Si 'objet n’est pas fourni, renvoie les attri-
buts disponibles dans le contexte d’exécution. Les attributs du contexte sont par
exemple tous les modules préalablement importés.

Les attributs renvoyés lorsqu’un objet est fourni sont :

* pour les objets de type classe ou type : les attributs et tous les attributs des types de
base ;

Les primitives m
CHAPITRE 6
* pour les objets de type module : les attributs du module ;

* pour les instances de classe : les attributs, les attributs de la classe et tous les attri-
buts des classes dont la classe hérite.

Test de dir() sur différents objets

>>> 1import UserDict
>>> dir() # attributs du contexte

['UserDict', '__builtins_', '_doc_ ', '_ file__', '__name__"',
'readline’', 'rlcompleter']

>>> dir(UserDict)# attributs du module UserDict

['DictMixin', 'IterableUserDict', 'UserDict', '_ builtins__',
'_doc_ ', '"__file_ "', '__name__']

>>> dir(UserDict.UserDict) # attributs de Ta classe UserDict
['_cmp__', '"__contains__', '__delitem__"', '__doc__ ', '__getitem__"',
' dnit_ ', '__Ten__', '_module__', '_repr__', '__setitem__',
'clear', 'copy', 'fromkeys', 'get', 'has_key', 'items', 'iteritems',
'iterkeys', 'itervalues', 'keys', 'pop', 'popitem', 'setdefault',
'update', 'values']

>>> dict = UserDict.UserDict()
>>> dir(dict)# attributs de 1'objet dict

['_cmp__"', '__contains__', '__delitem__', '__doc__', '__getitem__',
' dnit_ ', '_Ten_ ', '__module__', '__repr__"', '__setitem__',
'clear', 'copy', 'data', 'fromkeys', 'get', 'has_key', 'items',
'iteritems', 'iterkeys', 'itervalues', 'keys', 'pop', 'popitem',
'setdefault', 'update', 'values']

La fonction dir() est trés pratique dans l'interpréteur pour rechercher des informa-
tions sur les objets ou modules que l'on utilise sans avoir la mise en page imposée par
help(). Cest cette fonction qui est utilisée pour 'autocomplétion.

RAppEL Utilisation de I'autocomplétion

L'autocomplétion est paramétrable dans le prompt, comme décrit dans le chapitre 3 (script de démarrage
du mode interactif).

Utilisation de la touche Tabulation

>>> from UserDict import UserDict
>>> dico = UserDict()

>>> dico. # utilisation de <tab>
dico.__class__ dico.__repr__ dico.iteritems
dico.__cmp__ dico.__setitem__ dico.iterkeys
dico.__contains__ dico.clear dico.itervalues

dico.__delitem__ dico.copy dico.keys

Eléments du langage

DEUXIEME PARTIE
dico.__doc__ dico.data dico.pop
dico.__getitem__ dico.fromkeys dico.popitem
dico.__init__ dico.get dico.setdefault
dico.__Tlen__ dico.has_key dico.update
dico.__module__ dico.items dico.values
>>> dico.

divmod : divmod(x, y) -> (division entiere, modulo)

Renvoie le tuple : ((x-x%y)/y, x%y) qui est une division entiere suivie du modulo.

Utilisation de divmod

>>> divmod(10, 5)

@, 0
>>> divmod(10, 4)
@, 2

enumerate : enumerate(iterable) -> indice, élément

Renvoie un objet de type enumerate a partir d’'un objet qui supporte les itérations
(appelé iterable), comme les listes ou les tuples.

Souvent utilisé pour indexer les listes, un objet enumerate renvoie a chaque itération
un tuple (indice, element) ou indice est un entier variant de 0 a n-1 et element
I'élément indice de la séquence de n éléments fournie.

Itération sur une séquence

>>> for indice, element in enumerate(['a', 'b', 'c']):
print('%s: %s' % (indice, element))

NR O
Nnow

eval : eval(source|, globals|, locals]]) -> valeur

Exécute source en utilisant le contexte d’exécution de globals et Tocals. source
peut étre une chaine de caractéres contenant une expression Python ou un objet de
type code préalablement obtenu par compile().

globals doit étre un dictionnaire contenant le contexte global et Tocals un diction-
naire contenant le contexte local. Si ces éléments ne sont pas fournis, eval utilise les
contextes en cours. Si seul globals est fourni, Tocals prend alors la méme valeur.

Les primitives m
CHAPITRE 6
Exécution de code par eval

>>> eval('a-2', {'a': 12})

10
>>> eval('"a vaut %d" % a', {'a': 12})
'a vaut 12'

Voir aussi: execfile, globals, Tocals.

execfile : execfile(filename[, globals[, locals]))

Exécute un script Python contenu dans un fichier. Comme pour eval, globals et
Tocals sont des mappings permettant de définir un contexte d’exécution. S’ils sont

omis, le contexte courant est utilisé. Si seul globals est fourni, Tocals prend la
méme valeur.

Voir aussi : eval, globals, locals.

exit : exit -> string
exit est une chaine de caractéres spéciale qui peut étre appelée dans le prompt.

Appel d’exit

>>> exit
'Use Ctr1-D (i.e. EOF) to exit.'

Son réle est d’'indiquer a l'utilisateur comment sortir du prompt s'il ne connait pas
encore le signal de fin obtenu avec ce raccourci et tente instinctivement la commande
exit. Equivalente a quit.

Voir aussti : quit.

file : file(nom(, mode[, buffering]]) -> objet file
Permet d’ouvrir le fichier nommé nom. Le parameétre mode peut prendre différentes
valeurs :
* r : ouverture pour lecture (mode par défaut) ;

* w: ouverture pour écriture, le fichier est créé s’il n’existe pas, sinon son contenu
est écrasé ;

* a: ouverture pour ajout, le fichier est créé s’il n'existe pas, sinon son contenu est
conservé et 'écriture est effectuée a la suite.

Eléments du langage

DEUXIEME PARTIE

Chacun de ces modes peut s’enrichir d’options supplémentaires :

b : pour les opérations sur les fichiers binaires ;

+ : pour permettre la lecture et I'écriture simultanées ;

U : permet de standardiser le traitement des retours a la ligne du fichier en cours de
lecture. Ils seront tous vus comme un caractére \n méme si le fichier est basé sur un
autre standard, comme \r\n ou \r (possible uniquement avec le mode r). Lobjet
file retourné avec cette option posséde un attribut supplémentaire nommé
newlines, qui contient tous les types de sauts de ligne rencontrés dans le fichier.

buffering spécifie si le fichier est ouvert avec un buffer mémoire. Valeurs possibles :

0 : pas de buffer ;
1:laligne en cours est le buffer ;
n : buffer contenant n caractéres (avec n>1).

Lobjet renvoyé est un objet de type file, qui contient les méthodes suivantes :

close() : ferme le flux.

flush() :vide le tampon interne.

fileno() : renvoie le descripteur de fichier.

isatty() :renvoie vrai si le fichier est branché sur un terminal tty.

next() : renvoie la prochaine ligne lue, ou provoque une exception
StopIteration.

read([size]) :lit au plus size octets. Si size est omis, lit tout le contenu.
readline([size]) : lit la prochaine ligne. Si size est fourni, limite le nombre
d’octets lus.

readlines([sizehint]) : appelle readline() en boucle, jusqu’a la fin du flux. Si
sizehint est fourni, s’arréte lorsque ce nombre est atteint ou dépassé par la ligne
en cours.

seek(offset[, whence]) : positionne le curseur de lecteur en fonction de la
valeur d’offset. whence permet de faire varier le fonctionnement (0 : position
absolue — valeur par défaut, 1 : relative a la position courante, 2 : relative a la fin
du fichier).

te11() : renvoie la position courante.

truncate([size]) : tronque la taille du fichier. Si size est fourni, détermine la
taille maximum.

write(str) : écrit la chaine str dans le fichier.

writelines(sequence) : écrit la séquence de chaines.

Les objets de type file sont des itérateurs, qui peuvent donc étre utilisés directement
comme des séquences.

Les primitives m
CHAPITRE 6
Création et lecture d’un fichier

>>> mon_fichier = open('infos.txt', 'w')
>>> mon_fichier.write('l. premiére info\n')
>>> mon_fichier.write('2. deuxiéeme info\n')
>>> mon_fichier.close()
>>> mon_fichier = open('infos.txt', 'r')
>>> for 1line 1in mon_fichier:

print(Tine)

1. premiére info
2. deuxieme info

Le type file posséde en outre un certain nombre d’attributs :
* closed : renvoie vrai si le fichier a été fermé.

* encoding : renvoie 'encoding utilisé par le fichier pour Iécriture. Si des chaines
unicode sont écrites dans le flux, elles sont encodées avec ce codec.

* mode : renvoie le mode avec lequel le fichier a été ouvert.

* name : renvoie le nom du fichier.

* newlines :renvoie le type de passage a la ligne utilisé (\r, \n, ou \r\n), si l'option
U a été utilisée lors de U'ouverture du fichier.

* softspace : renvoie vrai si un espace est a afficher avant lors de I'appel a la direc-
tive print.

La primitive file est équivalente a open.

filter : filter(fonction ou None, séquence) -> list, tuple, ou string

Renvoie une nouvelle séquence qui contient tous les éléments de la séquence fournie
qui répondent au critére suivant :

I fonction(element) == True.

Si None est fourni a la place d’une fonction, la nouvelle séquence ne conserve que les
éléments qui sont True.

filter renvoie une séquence du méme type pour les types liste, tuple et string et une
liste dans tous les autres cas.

Filtrage

>>> def no_spc(element):
return element !=

m Eléments du langage
DEUXIEME PARTIE

>>> res = filter(no_spc, "Nous nous sentions de plus en plus a
1'étroit")

>>> print(res)

Noushoussentionsdeplusenplusal'étroit

Voir aussti : reduce, map.

getattr : getatir(objet, nom[, défaut)) -> valeur

Récupere l'attribut nom de l'objet. Equivalente a objet.nom. Si I'attribut nexiste pas,
une erreur est provoquée, sauf si defaut est fourni : il est alors renvoyé.

getattr en action

>>> 1import UserDict
>>> dict = UserDict.UserDict()
>>> dict['a'] =1
>>> getattr(dict, 'data')
{'a': 1}
>>> getattr(dict, 'data2')
Traceback (most recent call last):
File "<stdin>", Tine 1, in ?
AttributeError: UserDict instance has no attribute 'data2'
>>> getattr(dict, 'data2', 'attribut inconnu')
'attribut inconnu'

Voir aussi : hasattr, setattr.

globals : globals() -> dictionnaire

Renvoie un dictionnaire contenant toutes les variables globales du contexte.

Utilisation de globals

>>> globals()

{'_builtins__": <module '__builtin__" (built-in)>, '__file__': '/etc/
pythonrc.py', '__name__ ': '__main__"', '__doc__': None}

>>a =9

>>> globals()

{'a': 9, '__builtins__": <module '__builtin__" (built-in)>, '__ file_ ':
'/etc/pythonrc.py', '_name__': '__main__"', '__doc__': None}

Voir aussi : Tocals.

Les primitives
CHAPITRE 6 m
hasattr : hasattr(objet, nom) -> booléen

Renvoie True si'objet posséde bien I'attribut nom.

Vérification des attributs

>>> 1import UserDict

>>> dico = UserDict.UserDict()
>>> hasattr(dico, 'data')

True

>>> hasattr(dico, 'data2')
False

Voir aussi : setattr, getattr, isinstance.

hash : hash(objet) -> integer

Renvoie un hash pour l'objet lorsque c’est possible (les objets qui peuvent étre modi-
fiés ne peuvent pas avoir de hash). Le hash est calculé en fonction de la valeur de

l'objet.
Calculs de hash

>>> Tiste_1 =
>>> liste_2 =
>>> hash(liste_1
381002522
>>> hash(liste_2)
381002522

~ oo

Les hash peuvent étre utilisés pour indexer des objets. Cest le cas par exemple pour
les dictionnaires, qui se servent en interne du hash des objets utilisés comme clés.

Voir ausst : id.

help : Fonction d’aide en ligne

help est un raccourci vers la fonction help du module pydoc. C’est une aide en ligne
qui fournit une interface pour naviguer facilement dans la documentation contenue
dans les docstrings.

Cette documentation est aussi directement accessible par l'attribut _ doc__ des
modules, classes, fonctions et méthodes.

m Eléments du langage
DEUXIEME PARTIE

Utilisation de help sur filter

>>> help(filter)
Help on built-in function filter in module _ builtin__:

filter(...)
filter(function or None, sequence) -> list, tuple, or string

Return those items of sequence for which function(item) 1is true. If

function is None, return the items that are true. If sequence is a
tuple

or string, return the same type, else return a Tist.

hex : hex(nombre) -> représentation hexadécimale

Renvoie une chaine de caracteres représentant la forme hexadécimale d’un entier ou
un entier long.

hex

>>> hex(253)
'Oxfd'

>>> hex(2)
'Ox2'

Voir ausst : oct.

id : id(objet) -> entier

Renvoie un identifiant unique pour un objet donné. Correspond a 'adresse mémoire
de lobjet. Lorsque deux objets de type immuable ont la méme valeur, l'interpréteur
peut décider de ne conserver qu'un seul objet en mémoire, et les identifiants devien-
nent alors identiques.

Identifiants d’objets

>>> chaine = 'abcdef'
>>> chaine2 = 'abcdef'
>>> id(chaine)

549920

>>> jd(chaine2)
549920

>>> id(3)

16793968

>>> t = 3

>>> id(t)

16793968

Les primitives
CHAPITRE 6 m
input : input([prompt}) -> valeur

Permet d’exécuter une expression fournie par lutilisateur. Equivalente

eval(raw_input(prompt)). Si prompt nest pas fourni, la fonction équivaut
eval(raw_input()).

8, Qs

Saisie d’expression

>>> input('saisissez une expression: ')
saisissez une expression: 2%4

8

>>> input()

9+1

10

Voir ausst : raw_input.

int : int(x[, base]) -> entier

Conversion d’une chaine de caractéres ou d’un nombre vers un entier. Si le nombre
est de type float, la partie fractionnaire est tronquée. Lorsque le parameétre est de

type string, I'argument optionnel base peut étre fourni pour définir une base diffé-
rente de la base 10.

Conversions en entier

>>> int('11', 16)

17

>>> int('11")
11

>>> int(5.6787)
5

Voir aussti : Tong.

intern: intern(string) -> string

Ajoute T'objet string fourni en paramétre a une liste globale bas niveau d’objets
string utilisée pour accélérer les recherches dans les clés des objets de type diction-
naire. Renvoie l'objet string lui-méme. Rarement utilisé.

m Eléments du langage
DEUXIEME PARTIE

isinstance : isinstance(objet, classe ou type ou tuple) -> booléen

Permet de tester si un objet est d'un type donné ou une instance d’une classe. Un
tuple peut aussi étre fourni pour représenter une liste de types et/ou classes pour
définir si 'objet appartient 4 'un des types ou l'une des classes.

Souvent utilisé pour contrdler des parameétres entrants dans une méthode ou une
fonction, isinstance permet de pallier le non-typage des variables.

Test des types et classes

>>> isinstance('test', (unicode, str))

True

>>> isinstance('test', int)

False

>>> isinstance(['test', 'deux'], list)
True

>>> from UserDict import UserDict
>>> dict = UserDict()

>>> isinstance(dict, UserDict)
True

Voir aussi : issubclass.

issubclass : issubclass(C, B) -> bool

Vérifie si la classe C dérive de la classe B. Comme pour isinstance,B peut étre rem-
placé par un tuple représentant une liste de classes. issubclass renvoie alors vrai si C
hérite au moins de 'une des classes de la séquence.

Test de I’héritage

>>> class B:
pass

>>> class A(B):
pass

>>> issubclass(A, B)
True

>>> jssubclass(B, A)
False

Voir aussi : isinstance.

Les primitives m
CHAPITRE 6
iter : iter(collection) -> iterateur ou iter(callable, sentinelle) -> iterateur

Renvoie un itérateur construit a partir :

* d’une collection ;

* d’un couple callable-sentinelle.
Dans le cas d’'une collection, le parameétre doit étre une séquence. Dans le cas du
couple callable-sentinel, le premier argument est une fonction ou une méthode

qui renvoie les valeurs une a une. Litération s’arréte lorsque la fonction renvoie la
valeur définie par sentinelle.

Création d’itérateurs

>>a =0

>>> def jterator():
global a
a+=1
return a

>>> i = iter(iterator, 4)# itérateur par sentinelle
>>> j.next()

>>> i.next()
>>> j.next()

>>> i = iter([1l, 2, 3, 4])# itérateur construit avec une séquence
>>> i.next()

>>> i.next()
>>> j.next()

>>> i.next()

len : len(objet) -> entier

Renvoie le nombre d’éléments d'une séquence. Lorsque l'objet fourni est un map-
ping, renvoie le nombre d’éléments de la séquence représentant la liste des clés,
Ten(dico) étant équivalent a Ten(dico.keys(Q)).

m Eléments du langage
DEUXIEME PARTIE

Calculs de longueurs

>>> dico = {'a': 1, 'b': 2, 'c': 3}
>>> len(dico)

3

>>> my_list = ['a', 'b', 'c']

>>> Ten(my_Tlist)

3

>>> title = 'The Tife of Brian'

>>> len(title)

17

license : license() -> prompt interactif

Prompt interactif permettant d’afficher les informations de licence et I'historique des
versions de Python.

Affichage des informations de licence

>>> license()
A. HISTORY OF THE SOFTWARE

Python was created in the early 1990s by Guido van Rossum at Stichting
Mathematisch Centrum (CWI, see http://www.cwi.n1l) in the Netherlands
as a successor of a language called ABC. Guido remains Python's
principal author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for
National Research Initiatives (CNRI, see http://www.cnri.reston.va.us)
in Reston, Virginia where he released several versions of the
software.

In May 2000, Guido and the Python core development team moved to
BeOpen.com to form the BeOpen PythonlLabs team. In October of the same
year, the PythonLabs team moved to Digital Creations (now Zope
Corporation, see http://www.zope.com). In 2001, the Python Software
Foundation (PSF, see http://www.python.org/psf/) was formed, a
non-profit organization created specifically to own Python-related
Intellectual Property. Zope Corporation is a sponsoring member of

the PSF.

A1l Python releases are Open Source (see http://www.opensource.org for
Hit Return for more, or g (and Return) to quit: g
>>>

Les primitives m
CHAPITRE 6
list : list() -> nouvelle liste ou list(sequence) -> nouvelle liste

Permet de générer un nouvel objet liste, vide dans le premier cas et initialisé avec la
séquence fournie dans le deuxiéme cas. Tiste = 1ist() est équivalent a 1iste = [].

sequence peut étre un objet de type séquence comme une liste, un tuple ou un objet
de type string, mais aussi un mapping. Dans ce cas, c’est la séquence représentant la
liste des clés qui est utilisée pour construire la liste.

Construction de listes

>>> liste = Tist({'a':1})

>>> Tliste

['a']

>>> Tist(Q)

[]

>>> 1ist('fun matters')

[I_FI’ lul’ lnl’ 1 l, 'ml, lal’ 't', ltl’ lel, 'rl ISI]
>>>

La forme Tiste = 1ist(tuple) est souvent utilisée pour rendre un tuple modifiable.

locals : locals() -> dictionnaire
Renvoie un objet dictionnaire contenant les variables locales du contexte en cours.

Contexte local d’une fonction

>>> def fonction(Q):

a =12

print Tocals(Q)
>>> fonction()
{'a': 12}

Voir aussi : globals.

map : map(fonction, séquence[, séquence...]) -> liste

map() renvoie une liste correspondant a4 I'ensemble des éléments de la séquence.
Avant d’étre inséré dans la liste, chaque élément est passé a la fonction fournie. Cette
derniére doit donc étre de la forme :

I fonction(element) - element

Eléments du langage

DEUXIEME PARTIE

Lorsque plusieurs séquences sont fournies, la fonction regoit une liste d’arguments
correspondants a un élément de chaque séquence. Si les séquences ne sont pas de la
méme longueur, elles sont complétées avec des éléments a la valeur None.

La fonction peut étre définie a None, et dans ce cas tous les éléments des séquences
fournies sont conservés. map(None, sequence) est équivalent a sequence et
map(None, sequencel, sequence2) i zip(sequencel, sequence2) (mais s’arréte
lorsque le dernier élément de la séquence la plus courte est atteint).

Utilisation de map

>>> def get_title(element):
return element.title()

>>> map(get_title, ['fiat lux', 'the named is the mother of all
things'])
['Fiat Lux', 'The Named Is The Mother Of A1l Things']

>>> map(None, 'hlowrd', 'el ol')
[C'h', e, C'1', "1, (fo', "), C('w', 'o"), C'r', "1, ('d",
None)]

>>> map(str, [1, '2', 3, 4])
[lll, l2|’ |3|’ l4l]

Voir aussi : filter, reduce, zip.

max : max(séquence) -> valeur

max() renvoie I'élément le plus grand de la séquence. Si plusieurs séquences sont
fournies, renvoie la séquence la plus grande.

Recherche du plus grand élément

>>> max('max"')

X

>>> max(1, 2, 3, 4)
4

>>> max('Python')
lyl

Voir aussti : min.

min : min(séquence) -> valeur

min() renvoie I'élément le plus petit de la séquence. Si plusieurs séquences sont four-
nies, renvoie la séquence la plus petite.

Les primitives

CHAPITRE 6

Recherche du plus petit élément

>>> min('max"')

a

>>> min(l, 2, 3, 4)
1

>>> min('Python")
IPI

>>> map(ord, 'Python')

[80, 121, 116, 104, 111, 110]
>>> min('1', 2, 3, '4")

2

Voir aussi : max.

oct : oct(nombre) -> représentation octale.

Renvoie une représentation octale d’'un entier ou d’un entier long.

Utilisation de oct

>>> oct(45383)
'0130507"'

>>> oct(4538)
'010672"'

Voir ausst : hex.

open : open(nom(, mode(, buffering]]) -> objet file
Alias de file.

Voir aussi : file.

ord : ord(caractére) -> entier

Renvoie le rang d’un caractére. Un caractére est un objet string de longueur 1.

Rang de caractéres

>>> map(ord, 'abcdefgh')
[97, 98, 99, 100, 101, 102, 103, 104]

Voir ausst : chr.

m Eléments du langage
DEUXIEME PARTIE

pow : pow(X, y[, z]) -> nombre

Calcul de la puissance, équivalent a x**y et & (x**y) % z. Dans ce deuxiéme cas, la
primitive peut étre plus rapide que la notation directe.

Utilisation de pow

>>> pow(2, 4)
16
>>> pow(2, 7)
128

property : property(fget=None, fset=None, fdel=None, doc=None) ->
attribut propriété

property permet de créer une propriété a partir d’un attribut d’objet. Ajoutée récem-
ment, cette fonctionnalité sert a retrouver une mécanique qui existe dans d’autres
langages orientés objet : les attributs des objets ne sont pas directement accessibles
par les utilisateurs de I'objet mais a travers la propriété qui utilise des fonctions get ()
et set() intermédiaires pour atteindre l'attribut. La méthode de1() reste accessoire
et est beaucoup plus spécifique a Python.

Les parameétres sont :
* fget : méthode de l'objet utilisée lorsque la propriété est lue.
* fset : méthode de l'objet utilisée lorsque la propriété est affectée.

* fdel: méthode de 'objet utilisée lorsque la propriété est supprimée par del ou
delattr.

* doc : docstring de la propriété.
Création d’une propriété

>>> class MyClass(object):

_,a=20

def get_a(self):
print('voici a')
return self._a

def set_a(self, value):
print('je place %s dans a' % str(value))
self._a = value

def del_a(self):
print ('je supprime a')
del self._a

a = property(get_a, set_a, del_a, 'Propriété a')

Les primitives m
CHAPITRE 6

>>> obj = MyClass()
>>> obj.a

voici a

0

>>> obj.a =1

je place 1 dans a
>>> obj.a

voici a

1

>>>

Lintérét de cette écriture est de permettre aux classes de faire évoluer le code interne
et donc les attributs sans impacter le code appelant : I'ensemble des propriétés for-
ment la partie publiée de I'objet.

quit : quit -> string
quit est un objet string qui peut étre appelé dans le prompt.
Appel de quit
>>> quit
'Use Ctr1-D (i.e. EOF) to exit.'
Invite a l'utilisation d’exit.

Voir ausst : exit.

range : range([start,] stop[, step]) -> liste d’entiers

Renvoie la liste des entiers variant de start a stop-1 avec un pas de step. step vaut
1 par défaut et start 0.

step pouvant étre un entier négatif, il est possible de faire une liste variant de
start-14 stop avec stop < start.

Listes issues de range

>>> range(5)

[0’ ll 2! 3! 4]

>>> range(4, -1, -1)
[4, 3, 2, 1, 0]

>>> range(4, -1, -2)

[4, 2, 0]
>>> range(0)
[1

range est trés fréquemment utilisé pour concevoir des séquences de boucle.

m Eléments du langage
DEUXIEME PARTIE
Utilisation de range dans une boucle for :

>>> for i 1in range(3):
print i

0
1
2
Voir aussi : xrange.

raw_input : raw_input([prompt]) -> string

raw_input permet de lire 'entrée standard et de renvoyer le contenu dans un objet
string. Si prompt est fourni, il est affiché sans passage a la ligne.

Saisie utilisateur :

>>> a = raw_input()

12

>>> a

’12’

>>> phrase = raw_input('saisissez une phrase: ')
saisissez une phrase: une phrase

>>> phrase

'une phrase'

Si l'utilisateur envoie un signal EOF (Ctrl+Z et Entrée sous MS-Windows ou Ctrl+D
sous systémes unices), une erreur EOFError est provoquée. Elle peut étre interceptée
pour gérer cet arrét.

Interception de EOF

>>> try:
. phrase = raw_input('saisissez une phrase: ')
. except EOFError:
print 'abandon'

saisissez une phrase: [Ctr1+D] abandon
>>>

PytHon 3 disparition de raw_input

raw_1input disparait sous Python 3, pour é&tre remplacé par input.

Voir aussti : input.

Les primitives m
CHAPITRE 6

reduce : reduce(fonction, séquence, initial)) -> valeur

Appelle la fonction fournie avec les deux premiers éléments de la séquence. Le
résultat de la fonction est ensuite utilisé avec le troisitme élément de la séquence
pour appeler a nouveau la fonction, et ainsi de suite. Le résultat final est donc un élé-
ment unique.

Utilisation de reduce

>>> def somme(x, y):
print('%d + %d' %(x, y))
return x + y

>>> reduce(somme, [1, 2, 3, 4])
1+ 2

3+ 3

6 + 4

10

initial est un parametre optionnel qui permet :

* d’amorcer le calcul, la premiere itération de reduce se basant sur le couple
(initial, premier élément de la séquence) ;

* de définir une valeur par défaut si la séquence fournie est vide.

Voir aussi : map, filter.

reload : reload(module) -> module

Recharge un module qui a été préalablement chargé par le biais d’'une directive
import. Lorsque le code source du fichier d'un module est modifié, les modifications
ne seront pas effectives sans un appel a reload(module). Notons que les instances
déja existantes ne sont pas impactées par reload.

Voir aussti : import.

repr : repr(objet) -> représentation

Renvoie une représentation fonctionnelle sous forme de chaine de caractéres d’un
objet. Cette représentation est pour la plupart des types simples la chaine de carac-
téres que l'utilisateur aurait pu saisir pour créer I'instance.

eval(repr(object)) est donc souvent équivalent a object.

La plupart du temps, str(object) est équivalent a repr(object), mais la premiere
notation est destinée 4 renvoyer une représentation purement visuelle.

m Eléments du langage
DEUXIEME PARTIE

Représentation d’un objet

>>> liste = [1, 2, 3, 4]

>>> repr(liste)

'[11 21 31 4]'

>>> eval(repr(liste))

[1, 2, 3, 4]

>>> eval(repr(Tliste)) == Tiste
True

Une classe peut implémenter le fonctionnement de repr en définissant une méthode
__repr__.

Voir aussi : str.

round : round(nombre|, ndigits]) -> réel

Permet d’arrondir un nombre en fonction de la précision ndigits, qui représente le
nombre de chiffres apres la virgule. ndigits est a 0 par défaut et peut étre négatif.
round renvoie toujours un réel (flottant). Un entier passé en paramétre est donc
transformé en réel.

Arrondis

>>> round(4.5687645, 3)
4.569

>>> round(4.5687645, 0)
5.0

>>> round(4.5687645)
5.0

>>> round(5)

5.0

>>> round(567.897, -1)
570.0

set : set(iterable) -> objet de type set

Renvoie une collection non ordonnée d’éléments. Le parametre doit étre un objet
supportant les itérations.

Création d’une collection

>>> collection = set([1, 2, 3])
>>> collection.pop()
1

Les primitives m
CHAPITRE 6

>>> collection.pop()
2
>>> collection.pop()
3

setatir : setattr(objet, nom, valeur)

Permet de définir la valeur d’un attribut pour un objet donné. Equivalente a
objet.nom = valeur.

Si lattribut n'existe pas, une erreur AttributeError est levée lorsque 'objet ne peut
se voir attribuer de nouveaux attributs, comme les types built-ins.

Affectation d’attribut

>>> 0 = object()
>>> setattr(o, 'a', 1)
Traceback (most recent call last):

File "<stdin>", 1line 1, in <module>
AttributeError: 'object' object has no attribute
>>> class F:

pass

[|

a

>>> g = FQ

>>> setattr(g, 'a', 1)
>>> g.a

1

Voir aussi : getattr, hasattr.

slice : slice([start,) stop(, step))

Géneére un objet s1ice. Les objets s1ice sont des utilitaires pour la gestion de tran-
ches. Une fois créé, I'objet s1ice fournit une méthode indices() qui prend en para-
meétre une longueur et renvoie un tuple contenant la liste des indices en fonction des
valeurs de start, stop et step.

Python se sert des objets s11ce lorsque des séquences sont tranchées, en générant par

exemple I'objet sTice(a, b, c) pour la tranche sequence[a:b:c].

Tranches de liste

>>> my_liste = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> my_liste[2:5:2]
[3, 5]

m Eléments du langage
DEUXIEME PARTIE

>>> my_liste[2:5:1]
[3, 4, 5]

>>> my_liste[1l:2:1]
[2]

>>> my_liste[1:4:1]
[2, 3, 4]

>>> my_liste[1l:4:2]
[2, 4]

sorted : sorted(iterable, cnp=None, key=None, reverse=False) -> liste

triée

Renvoie une liste d’éléments triés en fonction des éléments de 'objet itérable fourni.
sorted() utilise une fonction de comparaison a laquelle il passe les éléments deux a
deux de l'itérable :
* Si cmp est fourni, la fonction est utilisée pour comparer les éléments deux 4 deux
dans l'algorithme de tri. cmp(elementl, element2) doit renvoyer -1, 0 ou 1.
* Si key est fourni, elle pointe sur une fonction qui sera utilisée au moment des
appels aux éléments dans la fonction de comparaison : chaque élément sera trans-
formé par key(element) avant la comparaison.

Lorsque key n'est pas fourni, ce sont les éléments qui sont directement passés a la
fonction de comparaison. Enfin, lorsque cmp n’est pas fourni, sorted() utilise une
fonction de comparaison générique.

reverse permet d’inverser le résultat obtenu.

Combinaisons possibles pour sorted

>>> def cmp(eltl, elt2):
if eltl > elt2:

res = -1
elif eltl < elt2:
res =1
else:
res =0

print('cmp(%s, %s) = %s'%(eltl, elt2, res))
return res

>>> def key(elt):

. res = -ord(elt)
print("key('%s') = %s"%(elt, res))
return res

Les primitives m
CHAPITRE 6

>>> sorted(['c', 'a', 'b'], cmp=cmp, key=key)
key('c') = -99
key('a') = -97
key('b') = -98

cmp(-97, -99) = -1
cmp(-98, -97) =1
cmp(-98, -99) = -1
cmp(-98, -97) 1

['a.', 'b', lcli

staticmethod : staticmethod(fonction) -> méthode statique

Transforme une fonction en une méthode statique. Une méthode statique est une
méthode qui n'est pas dépendante de l'instance de classe. Le premier parameétre
implicite qui contient cet objet n’est donc pas fourni et toutes les instances de la
classe ou la classe elle-méme pourront utiliser cette méthode de la méme maniére et
obtenir les mémes résultats.

Méthode statique

>>> class MyClass(object):
def static_method():
print("je suis universelle")
static_method = staticmethod(static_method)

>>> MyClass.static_method()
je suis universelle

>>> instance = MyClass()
>>> instance.static_method()
je suis universelle

Cette écriture peut étre remplacée par un appel par decorator.

Ecriture abrégée par decorator

>>> class MyClass(object):
@staticmethod
def static_method():
print("je suis universelle")

>>> MyClass.static_method()
je suis universelle

>>> instance = MyClass()
>>> instance.static_method()
je suis universelle

m Eléments du langage
DEUXIEME PARTIE

Les méthodes statiques de Python sont similaires a celles de Java et C++, mais il
existe une technique un peu plus avancée : les méthodes de classe, générées par la
primitive classmethod().

voir aussi : classmethod.

str : str(objet) -> représentation de I’objet

sum :

Renvoie une représentation visuelle de I'objet sous forme d’un objet string. Si 'objet
est un objet string, alors str(objet) est égal a objet.

Cette primitive est souvent équivalente a repr(). Il est possible de définir sa propre
représentation visuelle pour une classe en définissant la méthode __str__() qui est

appelée par strQ).

str() sert aussi a transformer des nombres en chaines de caracteres, sachant que le
chemin inverse est possible par le biais des primitives int() ou float().

Utilisation de str()

>>> str(6)

l6l

>>> str([])
l[]l

>>> str([1, 2])
1[1, 2]'

>>> int(str(6))
6

Voir aussti : repr.

sum(sequence, start=0) -> valeur

Renvoie la somme des éléments d’une séquence de nombres. Tous les éléments de la
séquence doivent étre des nombres pour que sum() puisse fonctionner. Lorsque la
séquence contient des nombres réels, le résultat renvoyé est un réel, méme si la
somme renvoie une valeur entiére.

Si start est fourni, il définit une valeur d’amorce pour la somme, qui sera renvoyée
au cas ou la séquence fournie est vide.

Les primitives m
CHAPITRE 6

Sommes

>>>
6.0

>>>

>>>
10
>>>

sum([1, 2.6, 2.4])
sum([1, 2, 3D
sum([1, 2, 3], 4)

sum([], 4

super : super(type, objet) -> objet super lié a I’objet

Un type peut dériver d’un autre type. Ce dernier peut lui-méme dériver d’un troi-
sieme type. Cet arbre de dérivation peut étre parcouru pour un objet d’un type donné
grice 4 la primitive super (). On l'utilise le plus fréquemment lorsqu’une méthode est
surchargée dans les descendants du type. On peut appeler la méthode du niveau qui
nous intéresse par le biais de super() en spécifiant en premier paramétre le type de
ce niveau.

Polymorphisme de type

>>>

>>>

>>>

>>>

>>>

Mo1i
Mo

class MyClass(object):
def title(self):
return "Moi c'est la classe\n"

class MyClass2(MyClass):
def title(self):
return "Moi aussi\n"

class MyClass3(MyClass2):
def title(self):
titlel = super(MyClass2, self).title()
title2 = super(MyClass3, self).title()
my_title = "Jamais deux sans trois !"
return titlel + title2 + my_title

test = MyClass3()
print(test.title())
c'est la classe
aussi

Jamais deux sans trois !

Eléments du langage

DEUXIEME PARTIE

A savorr super() et les définitions de classe

ses de base du type de base object, ou en faire des types :
>>>> def title(self):
return "Moi c'est la classe\n"

>>> class MyClass2(MyClass):
def title(self):
return "Moi aussi\n"

>>> class MyClass3(MyClass2):
def title(self):

>>> test = MyClass3()
>>> print(test.title())
Moi c'est la classe

Moi aussi

Jamais deux sans trois !

Pour pouvoir faire fonctionner super () avec vos définitions de classes, il faut toujours dériver les clas-

>> MyClass = type('MyClass', (), {'title': title})

titlel = super(MyClass2, self).title()
title2 = super(MyClass3, self).title()
mon_title = "Jamais deux sans trois
return titlel + title2 + mon_title

IR

type : type(objet) -> type de I’objet

Renvoie le type d'un objet. Le test type(objet)
isinstance(type, objet).

Essais avec type

>>> type('texte')
<type 'str's>

>>> type(l)

<type 'int'>

>>> type([])
<type 'list'>

type : type(nom, bases, dict) -> nouveau type

is type est équivalent 2

Permet de définir un nouveau type ou une nouvelle classe de nom name. bases est un
tuple représentant 'ensemble des types dont le nouveau type doit hériter et dict est
un dictionnaire qui contient I'ensemble des méthodes et attributs définis pour le
type. Cette notation est a éviter au profit d'une définition explicite du nouveau type.

Les primitives m
CHAPITRE 6
Notations équivalentes

>>> class MyType(str):# notation explicite
a=1

>>> MyType = type('MyType', (str,), {'a': 1})

unichr : unichr(i) -> caractére unicode

Renvoie un objet unicode de longueur 1 représentant le caractere de rang i. i est un
entier compris entre 0 et 65 536 ou entre 0 et 0x10£ttf en fonction de la maniére dont
votre interpréteur Python a été compilé.

PytHon 3 Disparition de unichr()

Puisque unicode devient le type chaine de base en Python 3, cette fonction disparait.

Voir ausst : chr.

unicode : unicode(string [, encoding|, errors]]) -> objet

Génere un nouvel objet unicode en fonction d’un objet string et d'un codec spécifié
par encoding. Si encoding n'est pas fourni, le codec par défaut est utilisé, soit ascii.

errors peut prendre trois valeurs :
* strict : tout caractére qui ne peut étre décodé génére une erreur ;
* replace: tout caractére qui ne peut étre décodé est remplacé par \ufff ;
* ignore: tout caractere qui ne peut étre décodé est retiré.

La valeur par défaut pour errors est strict et tout caractére indécodable léve une
exception UnicodeDecodeError.

Essais unicode

>>> unicode('Le café de 1a place', errors='ignore')
u'Le caf de 1a place'
>>> unicode('Le café de Ta place', errors='replace')
u'Le caf\ufffd de 1a place'
>>> unicode('Le café de 1a place')
Traceback (most recent call last):
File "<stdin>", 1line 1, in ?
UnicodeDecodeError: 'ascii' codec can't decode byte 0xe9 in position 6:
ordinalnot in range(128)
>>> unicode('The cafe de 1a place')
u'The cafe de 1a place'

Voir aussti : str.

m Eléments du langage
DEUXIEME PARTIE

AVERTISSEMENT Erreurs d’encodage et de décodage

Les erreurs d'encodage et de décodage sont monnaie courante pour les développeurs francophones
étant donné que les chaines que nous utilisons sont des caractéres de la norme 1S0-8859-15. Certains
appels a unicode () se faisant dans du code de trés bas niveau sans qu'il soit possible de spécifier de
maniéere simple I'encoding a utiliser, il est vivement conseillé de ne jamais utiliser d'objet string pour
représenter le texte d'une application, et d’externaliser les traductions.

PytHon 3 Disparition de unicode()

Puisque unicode devient le type chaine de base en Python 3, cette fonction disparait.

vars : vars([objet]) -> dictionnaire

Si objet n'est pas fourni, vars() est équivalente a Tocals(). Dans le cas contraire,
vars(objet) est équivalente a object._ dict__.

Voir aussi : globals, locals.

xrange : xrange([start,] stop|, step]) -> itérateur

xrange() est équivalente 4 range() mais au lieu de renvoyer une liste d’entiers, elle
renvoie un objet xrange qui génere les entiers au fur et a mesure des besoins. Plus
rapide et plus léger en mémoire, xrange () est & préférer a range().

Voir aussi : range.

zip : zip(seql [, seq2 [...]]) -> [(seq1[0], seq2[0]...), (...)]

zip() permet de concaténer des séquences. Chaque énieme élément de chaque séquence
est pris pour former un tuple. Lorsque le dernier élément de la séquence la plus courte est
utilisé, la concaténation sarréte. zip() renvoie alors une liste des tuples formés.

Concaténation de séquence

>>> zip([1, 2, 3, 41, [5, 6]1)
[, 5, 2, 6)]

>>> Z.ip(lp.il’ 'yS', lt l’ 'hg', '00', vnov’ v d')
[(lpl’ lyl’ ltl’ lhl’ IOI, lnl’] l)’ (l_il’ ISI’] l’ lgl, Iol’ IOI’
ldl)]

>>> zip(['a', 'b', 'c'], [1, 2, 3], ['A", 'B', 'C'])
[(C'a', 1, 'A", ('b*, 2, 'B"), ('c', 3, "C)]

Les primitives
CHAPITRE 6 m
Exceptions du langage

Voici I'ensemble des exceptions définies dans le langage, dérivant toutes de classes
d’exceptions de base, présentées dans le chapitre précédent. On retrouve ces excep-
tions dans le module exceptions.

On distingue deux types d’exceptions :

* Les erreurs qui provoquent I'arrét de I'exécution du code et doivent étre intercep-
tées par une directive try. .except.

* Les avertissements, dérivés de I'exception de base Warning, utilisés avec la fonc-
tion warn du module warnings, et qui se contentent dans ce cas d’afficher un mes-
sage d’avertissement sans interrompre 'exécution du programme.

ASAVOR Les exceptions de type Warning

Les exceptions de type Warning sont des exceptions comme les autres et provoquent |'arrét de I'exécu-
tion du programme si elles sont utilisées directement avec une directive raise. Seule la fonction warn
leur donne ce fonctionnement particulier.

Erreurs

AssertionError

La primitive assert() permet de contréler qu'une expression renvoie True. Dans le
cas contraire, une exception AssertionError est levée. Peut étre utilisée pour valider
des préconditions a 'exécution du code d’une fonction.

Validation d’un précondition

>>> def delta(a, b):
assert(a > b)
return a - b

>>> delta(10, 5)

5

>>> delta(2, 5)

Traceback (most recent call Tast):
File "<stdin>", 1ine 1, in ?
File "<stdin>", line 2, in delta

AssertionError

Eléments du langage

DEUXIEME PARTIE

AttributeError

Levée lorsque, pour un objet donné, I'interpréteur ne trouve pas l'attribut demandé,
ou ne peut pas lui assigner de valeur.

Erreurs d’attributs

>>> 0 = []
>>> 0.items
Traceback (most recent call last):
File "<stdin>", 1line 1, in ?
AttributeError: 'Tist' object has no attribute 'items'
>>> o0.items = 0
Traceback (most recent call last):
File "<stdin>", line 1, in ?
AttributeError: 'Tist' object has no attribute 'items'

EOFError

Levée lorsque qu’un flux de lecture de données rencontre le caractére de fin de fichier
EOF. C’est le cas par exemple lorsque l'on renvoie le signal EOF (Ctrl+D sous Linux et
Ctrl+Z sous MS-Windows) 4 une commande comme input().

Signal EOF

>>> input() # Ligne suivi d'un signal EOF
Traceback (most recent call last):

File "<stdin>", 1line 1, in ?
EOFError

FloatingPointError

Exception concernant les erreurs de calcul en virgule flottante. Pour pouvoir 'uti-
liser, Python doit étre configuré avec l'option -with-fpectl ou pyconfig.h doit
définir la constante WANT_SIGFPE_HANDLER. Cette option est activée dans une installa-
tion Python par défaut.

10Error

Exception levée lorsquune opération de lecture ou d’écriture échoue. Voir I'excep-
tion parent EnvironmentError dans le chapitre précédent pour les parameétres du
constructeur.

Les primitives m
CHAPITRE 6
Exemples d’erreurs systeme

>>> mon_fichier = open('jexistepas', 'r')
Traceback (most recent call Tast):
File "<stdin>", 1ine 1, in ?
IOError: [Errno 2] No such file or directory: 'jexistepas'
>>> mon_fichier = open('/root/.ssh/known_hosts', 'r')
Traceback (most recent call Tast):
File "<stdin>", 1ine 1, in ?
IOError: [Errno 13] Permission denied: '/root/.ssh/known_hosts'

ImportError

Concerne les erreurs relatives au chargement d’un module ou d’un élément de
module lors de 'utilisation de la directive import ou from. Si le nom de 1’élément
n'est pas trouvé, I'interpréteur léve une exception ImportError.

IndentationError

Provoquée lorsque I'interpréteur rencontre une erreur d’'indentation de code.

IndexError

Exception utilisée lorsqu'un indice de séquence est hors limites.

IndexError

>>> liste = [1, 2, 3]

>>> liste[12]

Traceback (most recent call last):
File "<stdin>", 1ine 1, in ?

IndexError: 1ist index out of range

KeyError

Exception utilisée lorsqu'une clé de mapping n'existe pas dans la liste des clés.

KeyError

>>> dico = {'a': 12}

>>> dico['b']

Traceback (most recent call last):
File "<stdin>", 1line 1, in ?

KeyError: 'b'

Eléments du langage

DEUXIEME PARTIE

Keyboardinterrupt

Provoquée lorsque l'utilisateur utilise une interruption (Ctrl+C). Permet l'arrét de
I'exécution d’un programme.

Sortie de programme par Ctrl+C

>>> import time

>>> while True:
time.sleep(0.25)
print('.")

ACTraceback (most recent call Tast):
File "<stdin>", line 2, in ?

KeyboardInterrupt

MemoryError

Exception provoquée lorsquun programme n’a plus de mémoire disponible au
moment d’une allocation ou d’'un calcul. Il est possible dans ce cas de tenter de libérer
de la mémoire par le biais de la directive del.

NameError

rovoquée lorsqu’'un nom utilisé n'existe pas dans le contexte d’exécution en cours,
P 1 til t dans 1 texte d t
que ce soit dans la liste des variables locales ou dans celle des globales.

NotimplementedError

Utilisée dans le corps des méthodes qui n'ont pas encore été codées, ou dans les
méthodes abstraites qui n'ont aucune implémentation et doivent étre surchargées
dans les classes dérivées.

Une classe abstraite qui définit des méthodes utilise NotImpTementedError en lieu et
place de pass. Equivalente aux méthodes virtuelles pures du langage C++.

Méthode abstraite

>>> class MaClass:
def methode():
raise NotImplementedError

Les primitives m
CHAPITRE 6
OSError

Levée pour toute erreur systéme. Utilisée pour toutes les fonctions implémentées
dans le module os. Voir 'exception parent EnvironmentError dans le chapitre précé-
dent pour les paramétres du constructeur.

OverflowError

Utilisée lors d’'un dépassement de capacité.

Contréle de dépassement de capacité par xrange

>>> xrange(1lel00, 1lel01l, 1el0Ol)
Traceback (most recent call last):
File "<stdin>", 1ine 1, in ?
OverflowError: long int too large to convert to int

Pour les entiers, le passage d’un entier a un entier long étant automatique, aucune
exception de type OverflowError ne sera levée. Il est donc nécessaire de faire le con-
trole explicitement.

ReferenceError

Provoquée lorsqu’un proxy créé par la fonction proxy() du module weakref tente
d’accéder a un objet qui n'existe plus, c’est-a-dire supprimé par le ramasse-miettes.

VERSION Module weakref

Cette exception était, jusqu'a la version 2.2, dans le module weakref.

RuntimeError

Exception issue des anciennes versions de Python et tres rarement utilisée dans les
versions actuelles, permet de signaler des erreurs inclassables.

Stoplteration

Utilisée pour signaler la fin d’une séquence dans les itérateurs. Cette exception est
interceptée par I'interpréteur pour terminer une boucle for.

SyntaxError

Levée par l'interpréteur lorsqu’il rencontre une erreur de syntaxe au moment de la
lecture du code. Outre le message d’erreur, posséde des informations utiles sur
lerreur, comme le nom du fichier (filename), le numéro de ligne (Tineno), la
colonne (offset) et enfin le texte (text).

m Eléments du langage
DEUXIEME PARTIE

SystemError

Provoquée lorsque I'interpréteur rencontre une erreur interne non fatale.

SystemEXxit

Cette exception est levée par la fonction exit du module sys et déclenche la sortie de
I'interpréteur Python. Elle peut prendre en parameétre de constructeur un entier qui
sera renvoyé par linterpréteur au systtme comme code de sortie du programme
(0 par défaut). Si une chaine de caractéres est passée, elle sera affichée avant que
I'interpréteur ne quitte 'exécution et renvoie le code 0 au systéme.

Il est possible d’associer une fonction a cet événement, par le biais de la fonction
register du module atexit. Cette fonction s’exécutera apres la gestion de I'excep-
tion et peut contenir du code de nettoyage spécifique.

Sortie de programme

>>> def fin(Q):
print('The End')

>>> import atexit

>>> atexit.register(fin)

>>> raise SystemExit('Arret execution')
Arret execution

The End

TabError

Provoquée lorsque l'interpréteur rencontre un mélange d’espaces et de tabulations
pour I'indentation du code.

TypeError

Provoquée lorsqu'un objet fourni 4 une opération, une fonction ou une méthode,
n'est pas du type attendu.

TypeError

>>> 'a' + 2
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: cannot concatenate
>> 1 + 'a'
Traceback (most recent call last):
File "<stdin>", 1line 1, in ?
TypeError: unsupported operand type(s) for +: '"int' and

str' and 'int' objects

str

Les primitives m
CHAPITRE 6
UnboundLocalError

Provoquée lorsqu’une référence a une variable est faite sans qu'aucune valeur ne lui ait
été précédemment attribuée. Cette erreur est provoquée lorsque l'interpréteur trouve
dans le contexte d’exécution de la variable une initialisation de sa valeur aprés son utili-
sation. Si 'interpréteur ne trouve aucune initialisation, une erreur NameError est levée.

Initialisation tardive

>>> def fonction(Q):
print y
y=1

>>> fonction()

Traceback (most recent call Tast):
File "<stdin>", 1line 1, in ?
File "<stdin>", 1ine 2, in fonction

UnboundLocalError: local variable 'y' referenced before assignment

UnicodeEncodeError

Introduite dans la version 2.3 comme classe dérivée de UnicodeError, permet de pré-
ciser lorsqu’une erreur de conversion d’unicode est provoquée, c’est-a-dire qu’il s’agit
d’un probléme de conversion d’unicode vers string.

Erreur d’encodage

>>> u'\u0200"'.encode()
Traceback (most recent call last):
File "<stdin>", 1ine 1, in ?
UnicodeEncodeError: 'ascii' codec can't encode character u'\u0200' 1in
position 0: ordinal not in range(128)

UnicodeDecodeError

Equivalente 4 UnicodeEncodeError, mais pour les problémes de conversions de
string vers unicode.

Erreur de décodage

>>> '"\xff'.decode()
Traceback (most recent call last):
File "<stdin>", 1ine 1, in ?
UnicodeDecodeError: 'ascii' codec can't decode byte Oxff in position 0:
ordinal not in range(128)

m Eléments du langage
DEUXIEME PARTIE

UnicodeTranslateError

Provoquée lors d’'une erreur de traduction de chaine de type unicode.

ValueError

Provoquée lorsqu’une opération, méthode ou fonction regoit un parameétre du bon
type mais dont la valeur n’est pas utilisable par le code.

Incompatibilité de valeurs

>>> from pickle {import Pickler
>>> pickler = Pickler('/home/tziade/file', protocol=1)
Traceback (most recent call Tast):
File "<stdin>", 1line 1, in ?
File "/usr/Tib/python2.4/pickle.py", 1line 199, in __init__
raise ValueError, "can't specify both 'protocol' and 'bin'"
ValueError: can't specify both 'protocol' and 'bin'

Dans l'exemple, le code de la classe Pickle sassure que deux options incompatibles
n'ont pas été appelées en méme temps.

WindowsError

Provoquée pour toutes les erreurs 0SError spécifiques 8 MS-Windows qui n'ont pas
d’équivalent dans la table des erreurs errno. Les valeurs errno et strerror sont récu-
pérées dans ce cas par le biais des API systéme GetLastError() et FormatMessage()
spécifiques a cette plate-forme. N’est définie et accessible dans les primitives que sur

la plate-forme MS-Windows.

ZeroDivisionError

Provoquée lorsque le diviseur d’une division ou d'un modulo est zéro.

Avertissements

Voici 'ensemble des classes d’exceptions utilisées comme avertissements. Ces classes
ne sont jamais directement appelées avec une directive raise mais utilisées avec la
fonction warn du module warnings.

Les primitives m
CHAPITRE 6
Exemple d’utilisation d’un avertissement

>>> def function(Q:

import warnings

warnings.warn('cette fonction disparaitra dans la prochaine
version', DeprecationWarning)

print('resultat')

>>> function()

/etc/pythonrc.py:2: DeprecationWarning: cette fonction disparaitra dans
Ta prochaine version

resultat

UserWarning

Classe de base pour tous les avertissements. La fonction warn vérifie que le type de
I'exception qui lui est fournie dérive bien de cette classe.

DeprecationWarning

Avertit le développeur que la fonction ou méthode exécutée est une relique et ne doit
plus étre utilisée.

FutureWarning

Avertissement sur du code qui sera remis en cause dans le futur (voir module
_ future_).

OverflowWarning

Avertissement pour les dépassements numériques.

PendingDeprecationWarning

Avertit le développeur que la fonction ou méthode exécutée est vouée a disparaitre et
n'est conservée que pour assurer une compatibilité avec le code existant et une migra-
tion douce. Le message fournit en général le nom de la fonction ou méthode qui doit
étre utilisée a la place.

La distinction entre cet avertissement et le précédent est relativement floue. Il est
fréquent que les développeurs utilisent des avertissements de type
DeprecationWarning en lieu et place d’avertissements de type
PendingDeprecationWarning.

m Eléments du langage
DEUXIEME PARTIE
RuntimeWarning

Avertissement sur un comportement d’exécution douteux.

SyntaxWarning

Avertissement sur une syntaxe douteuse.

En un mot...

Les primitives du langage sont les fonctionnalités les plus importantes a maitriser et a
retenir car elles fournissent toutes les manipulations de base des objets.

Conventions de codage

« Readability counts ». Tim Peters, The Zen of Python
« La lisibilité est essentielle »

— Tim Peters, « Le Zen de Python »

Avant de présenter les principaux modules et de se plonger dans les exercices, il est
nécessaire d’aborder un dernier theme : les conventions de codage, ou style guide.

Adopter des conventions pour I'écriture du code est indispensable pour assurer la
bonne homogénéité d’un projet, surtout lorsque plusieurs développeurs travaillent
sur les mémes portions de code. Ce chapitre est un guide qui fournit les recomman-
dations les plus communément adoptées. Il présente dans un premier temps la mise
en page du code, puis les conventions de nommage et la structure d'un module. La
derniere partie propose des bonnes pratiques pour le choix des noms.

Eléments du langage

DEUXIEME PARTIE

Mise en page du code

Indentation

Nous avons vu au chapitre 4 que l'une des originalités du langage Python est de
rendre obligatoire I'indentation du code dans les structures algorithmiques. En cas de
non-respect de cette régle, la sanction est immédiate :

Non-respect de I'indentation

>>> for i 1in range (2):
print(str(i))
File "<stdin>", Tine 2
print str(i)
A

IndentationError: expected an indented block
>>> for i 1in range (2):
print(str(i))

0
1

Cette regle, souvent vécue comme une contrainte par les développeurs qui décou-
vrent le langage, s’avére étre agréable a I'usage : I'indentation étant I'élément structu-
rant du code, celui-ci se trouve allégé des accolades et autres begin. . .end qui parse-
ment les autres langages.

Le nombre d’espaces ou de tabulations qui constituent I'indentation est libre, la seule
obligation étant de ne pas mélanger les deux. Le premier réflexe est d’utiliser la
touche Tab pour minimiser le nombre de frappes, mais les espaces sont en général
préférés pour la bonne et simple raison que le code obtenu conservera la méme allure
d’un éditeur de code a l'autre.

La recommandation est d’utiliser quatre espaces par niveau d’indentation. Il est donc
conseillé d’utiliser un éditeur de texte qui remplace automatiquement les tabulations
par des espaces pour faciliter la frappe.

Taille maximum d’une ligne

La taille maximum d’une ligne de code doit étre de 79 caractéres. Cette raison est
historique puisque les écrans en mode texte, avant I'avénement des modes graphi-
ques, étaient en général de 80 caracteres de large.

Conventions de codage m
CHAPITRE 7

Sur le matériel actuel, les développeurs qui travaillent avec des éditeurs comme
Emacs ou Vim alignent généralement deux terminaux.

Cette taille limite de 80 caractéres reste de toute maniére un standard immuable et
défini par défaut dans la plupart des éditeurs Python.

Pour les lignes dépassant la limite, il est nécessaire d’utiliser :
* un saut de ligne dans une séquence d’éléments entre parenthéses, accolades ou
crochets ;
* des antislash (\) ou des parenthéses supplémentaires;

puis d’indenter correctement le code passé a la ligne.

Exemples de passage a la ligne

def _layout_modified(self, REQUEST, RESPONSE, type_id,
Tayout_index=1, is_flexible=False):
"""Modifie Te Tayout a Ta volée."""

if Tayout_index == 1 and is_flexible and self.step == 12 and \
type_id != 4:
self._modify(type_id)
elif layout_index == 1 and is_flexible and (self.step == 13
and type_id = 3):
self._modifyAll(type_id)
else:
self._modifyAl1(13)

Asavor Editeurs Python

Les éditeurs qui gérent Python proposent parfois une gestion automatique du passage a la ligne.

Commentaires

La bonne quantité de commentaires est en général assez difficile a trouver et dépend
de plusieurs facteurs :

* la personnalité du développeur ;

* la nature du code ;

* le rythme du projet.
Le développeur qui entame un projet est toujours plus bavard dans ses commentaires
que celui qui essaye de terminer dans les temps.
Enfin, l'utilisation de plus en plus fréquente des doctests, décrits au chapitre 12, qui
donnent directement des exemples d’utilisation du code, réduit considérablement le
besoin de certains types de commentaires.

Eléments du langage

DEUXIEME PARTIE

Commentaires simples
Les commentaires simples sont des lignes insérées dans la continuité du code et
constituant des phrases completes. Le point de fin de phrase est retiré.

Commentaires simples

Préparation des données du XF4 et normalisation
datas = get_datas(2)
normalized_datas = normalize_xf4(datas)

Commentaires en fin de ligne

Les commentaires en fin de ligne sont distants d’au moins deux espaces de la fin du
code et commencent par un caractere diése (#) suivi d’un espace. Ils sont en général
trés courts et doivent avoir une valeur ajoutée, c’est-a-dire ne pas se contenter de
répéter en francais ce que le code de la ligne fait.

Ils sont préférés aux commentaires simples pour des remarques concernant I'implé-
mentation.

Utilisation d’'un commentaire en ligne

resultat = resultat.strip() # des espaces en trop altérent la Tisibilité
a éviter:

resultat = resultat * 2 # le résultat est multiplié par deux

Blocs de commentaires

Un bloc de commentaires est en général utilisé pour expliquer le fonctionnement et
l'objectif de la portion de code. Si le texte est constitué de plusieurs paragraphes, une
ligne de commentaire vide les sépare. Un saut de ligne est inséré avant et parfois
apres le bloc lorsquil est nécessaire d’accentuer 'importance de ce commentaire.

Exemple d’utilisation d’un bloc

if kw.has_key('autolayout'):

Mise en place d'un affichage auto
pour 1'instant sur trois colonnes

Pourra étre plus perfectionné
par la suite.

HoH K H R

Conventions de codage m
CHAPITRE 7

layoutdef = {'ncols': 1, 'rows': []}
rows = []
for item in layout.objectIds():
element = {}
element['widget_id'] = item[3:] # retrait du préfixe "w__"
element['ncols'] =1
rows.append([element])
Tayoutdef['rows'] = rows

appel au moteur de rendu
Tayout.set_layout_definition(layoutdef)

Les blocs servent aussi comme en-tétes des modules pour insérer les informations de
licence, de copyright et autres éléments spécifiques et communs a tous les fichiers du
projet, comme nous le verrons dans la structure d'un module en fin de chapitre.

Enfin, les notes de développement sont souvent des commentaires avec un préfixe
particulier (FIXME:, TODO: ou XXX:).

Commentaire de développement

[...]

def afficher(self, taille):
mon a_F_F_i chage mon
FIXME: A quoi sert cette variable ?
i=12

for u in range(taille):
print str(u)
[...]

BONS USAGES Soigner les commentaires

Un soin tout particulier doit étre apporté aux commentaires pour la valorisation a long terme du code.
Lors d'étapes de refactoring ou d‘outsourcing, qui peuvent survenir des mois, voire des années aprés la
création initiale, les modules peu ou mal commentés sont en général trés rapidement jetés aux oubliettes.

Documentation strings ou docstrings

I1 est recommandé de fournir un docstring pour tous les éléments de code, exceptés
les méthodes privées. La raison est que I'interpréteur Python lit ces docstrings et les
associe pour chaque élément commenté a un attribut spécial __doc__. Cet attribut est
utilisé dans certains cas lors d’interactions entre l'utilisateur et le programme et
devient parfois obligatoire. Par exemple, dans une application Zope 2, une méthode
d’une classe sans docstring ne pourra pas étre appelée par le biais de I'interface web.

Eléments du langage

DEUXIEME PARTIE

De la méme maniere, tous les logiciels de création automatique de documentation de
code se basent sur cette fonctionnalité.

Les docstrings peuvent étre écrits sur une seule ligne ou sur plusieurs lignes et sont
entourés de triples guillemets, et suivis d’'un saut de ligne :

Exemple de docstring

def mimetype_to_icon(mimetype):
"""Transforme un type mime en nom de fichier icone.
if mimetype.strip() == '':
return 'unknown.png'
return mimetype.replace('/', '_'") + '.png'

non

Lorsqu’il est nécessaire d’écrire un texte un peu plus élaboré, il est en général con-
seillé de commencer le docstring par un résumé du texte, puis de laisser un saut de
ligne entre ce titre et le corps du texte :

Exemple de docstring sur plusieurs lignes

def mimetype_to_icon(mimetype):
"""Transforme un type mime en nom de fichier icone.

Utilisé pour Tles fichiers attachés. Si Te type

est inconnu, renvoie 'unknown.png'.

mimetype = mimetype.strip()

if mimetype == '' or mimetype notin kown_types:
return 'unknown.png'

return mimetype.replace('/', '_'") + '.png'

Le corps du texte est aligné sur les triples guillemets et une ligne entiére est réservée
au triple guillemet final.

AsavolR Docstring sur plusieurs lignes

Cette structure permet aux outils de documentation de différencier le titre, comparable a un docstring
sur une seule ligne, des informations complémentaires. Si elle n’est pas respectée, les documentations
générées ne seront pas trés claires.

Espacement du code

Les sauts de lignes sont un facteur de lisibilité du code non négligeable. Ils doivent
donc étre utilisés a bon escient et combinés aux commentaires pour mettre en valeur
la structure du code. Dans les algorithmes complexes, un saut de ligne judicieuse-
ment placé avant et aprés une boucle permet de mieux suivre le rythme, comme le
fait la ponctuation dans une phrase.

Conventions de codage m
CHAPITRE 7

Exemple et contre-exemple

code nécessitant un effort de lecture supplémentaire
def reverse_text(text):
size = len(text)
result = []
for i 1in range(size).reverse():
result.append(text[i])
return ''.join(result)

code mettant en relief le rythme de 1'algorithme
def reverse_text(text):
"""Fonction qui renvoie un texte a 1'envers.
size = len(text)
result = []

o

for i 1in range(size).reverse():
result.append(text[i])

return .join(result)

ARETENIR Ligne vide en fin de fichier

Les fichiers Python doivent toujours se terminer par une ligne vide, pour éviter d'éventuels problémes
avec certains outils de lecture de source.

La commande cat de certains shells Unix n'affiche jamais la derniére ligne d'un fichier par exemple. Les
systemes de version CVS ou Subversion affichent en général un avertissement dans ce cas de figure.

Espaces dans les expressions et définitions

Les espaces dans les expressions et définitions doivent respecter un certain nombre

de regles :
1 toujours placer un espace apres une virgule, un point-virgule ou deux-points ;
2 ne jamais placer d’espace avant une virgule, un point-virgule ou deux-points ;

3 toujours placer un espace de chaque coté d’'un opérateur, sauf lorsque cet opérateur
est le signe égal (=) utilisé dans laffectation par défaut dans une liste d’arguments ;

4 ne pas placer d’espace apres une accolade, un crochet ou une parenthése ouvrante ;

5 ne pas placer d’espace entre le nom d’une fonction et sa liste d’arguments, ou le
nom d’un dictionnaire et un index.

m Eléments du langage
DEUXIEME PARTIE

Exemples et contre-exemples d’espacement

Regle 1
a éviter :
def foo(paraml , param2 ,param3):

préférer :
def foo(paraml, param2, param3):

Regle 2

a éviter :

def foo(paraml, param2, param3 = 2):
if a=b or c=d:

préférer :
def foo(paraml, param2, param3=2):
ifa=bor c-=d:

Regle 3

a éviter :

dictionnary = { 'key' : 1}
préferer :

dictionnary = {'key' : 1}

Regle 4

a éviter :

self.method (3, 'a')
dictionnary ['key'] = 12
préferer :
self.method(3, 'a')
dictionnary['key'] = 12

Conventions de nommage

Les conventions de nommage des différents éléments de code sont aussi importantes que
la mise en page vue dans la partie précédente, car elles donnent des informations supplé-
mentaires aux développeurs quant a la nature de certains attributs ou certaines variables.

Les conventions de nommage sont les conventions qui different le plus. Elles sont
souvent inhérentes a certains frameworks. Ces outils tiers imposent leur propre style,
et il est en général conseillé, lorsque I'on travaille avec un environnement basé sur ces
outils, de respecter leurs conventions.

Conventions de codage m
CHAPITRE 7

Avant de présenter les différentes conventions, voici quelques définitions :
* CapitalizedWords : nom composé d’un ou plusieurs mots attachés dont chaque
premiére lettre est en majuscules ;
* mixedCase : CapitalizedWords dont la premiere lettre est en minuscules ;
* lowercase : nom composé d’un ou plusieurs mots attachés dont toutes les lettres
sont en minuscules ;
* lowercase_words : nom composé d’'un ou plusieurs mots séparés par des espaces
soulignés, dont toutes les lettres sont en minuscules ;
* UPPERCASE_WORDS : nom composé d’un ou plusieurs mots séparés par des
espaces soulignés, dont toutes les lettres sont en majuscules.
Ces diftérentes écritures peuvent étres appliquées a trois familles de noms :
* les modules ;
* les classes ;

* les fonctions et variables globales d'un module, les méthodes et attributs d'une
classe.

Modules

Les modules doivent étres écrits en /owercase. I1 faut cependant veiller & ne pas utiliser
des noms de plus de huit caracteres pour éviter par exemple, que votre code qui fonc-
tionne parfaitement sous GNU/Linux, ne marche plus sous certaines versions de

MS-DOS i cause de problémes d'importation.

La recommandation précédente était de nommer les modules de deux maniéres dif-
térentes suivant leur appartenance a une des deux sous-familles de modules :

* les bibliotheques ;

* les modules de classe.

Les bibliothéques sont des modules contenant un certain nombre de fonctions et de
classes. C’est le cas par exemple d’imap1ib, de smtpTib, ou encore de gzip.

es modules de classe sont des modules qui ne contiennent qu'une seule classe et
L dules de cl td dules q t tq

quelques éléments supplémentaires comme des définitions de constantes. Le module
porte en général le méme nom que la classe qu’il contient et utilise une notation

CapitalizedWords.

I1 est préconisé aujourd’hui, outre le fait d’abandonner la notation CapitalizedWords, de
ne plus créer un module par classe mais de préférer un regroupement logique des classes,
a différencier du regroupement fonctionnel proposé par les modules de type bibliothe-
ques. Ce regroupement est en général défini par les relations entres classes : une classe de
base et ses classes dérivées, les classes en charge du méme lot de fonctionnalités, etc.

m Eléments du langage
DEUXIEME PARTIE

Cette organisation simplifie grandement I'écriture et la compréhension des clauses
d’importation, qui ont tendance a représenter un nombre conséquent de lignes quand
le code grossit. Par exemple, toute les classes d'un objet concernant les connexions vers
des bases de données peuvent étre regroupées dans un module nommé bdaccess.

ARETENR Les parties privées, protégées et publiques d'une classe en Python

Avant de présenter les conventions de nommage pour les classes, il est nécessaire de faire un rapide
résumé des différents niveaux de visibilité des méthodes et attributs d'une classe.

Contrairement a la plupart des langages objet, le langage Python ne définit pas de sections privées, pro-
tégées ou publiques.

Ces distinctions sont laissées a la charge du développeur qui doit utiliser une convention particuliére qui
consiste a préfixer d'un espace souligné le nom des méthodes et des attributs protégés, et de deux espa-
ces soulignés ceux destinés a étre privés.

Le chapitre 14 couvre plus en détail la programmation orientée objet.

Classes

Les noms des classes sont toujours en CapitalizedWords, et préfixés si nécessaire d’'un ou
deux espaces soulignés. Le choix d’'un nom de classe doit étre le plus descriptif possible
et si possible avoir une racine commune au nom de la classe parente s'il y a héritage.

B.A-BA Nommage de classes

Prenons I'exemple d'un ensemble de classes destinées a gérer des flux de données. Une classe de base
définit une certaine abstraction du fonctionnement des flux et une classe dérivée implémente cette abs-
traction pour des flux RSS. Les noms pourraient étre :

¢ BaseDataStream

e RSSDataStream

Fonctions et variables globales d’'un module, méthodes et attributs
d’une classe

Les fonctions et variables globales d'un module sont en Jowercase_words, et préfixées
si nécessaire d’'un espace souligné. De méme, les méthodes et attributs d’'une classe
doivent étre en lowercase_words, et préfixés si nécessaire d’'un ou deux espaces souli-
gnés. Cette convention prévaut dans la plupart des cas, mais certains frameworks
comme Zope préconisent une autre convention pour le nommage des méthodes, qui
a tendance a étre de plus en plus pratiquée : le mixedCase.

Conventions de codage m
CHAPITRE 7

Constantes

Les constantes sont, comme dans la plupart des langages, en
UPPERCASE_WORDS, préfixées si nécessaire par un ou deux espaces soulignés.

Structure d’un module

Un module respecte toujours la méme organisation, soit :
* un en-téte ;
* des clauses d'importations ;
* des variables globales ;
* des fonctions et classes.

En-téte
Len-téte est composé d’'un bloc de commentaires commun a tous les modules d’'un
projet, avec quelques éléments spécifiques :
* l'interpréteur ;
* l'encodage ;

* la balise Id CVS ou SVN; appelée tag.

Interpréteur

Pour les plates-formes Unices, il est de coutume de commencer ce bloc par une ligne
indiquant au systéme I'endroit ot se trouve l'interpréteur python.

Directive

I #!/usr/bin/python

Cette ligne permet d’exécuter directement le module en ligne de commande. Elle s’avere
inutile pour les modules qui ne sont pas exécutés directement, mais n'est pas génante.

Encodage

Les modules Python étant chargés par défaut en ASCII par l'interpréteur, les carac-
teres spécifiques dépassant les 128 premiers signes posent des problémes lorsqu’il est
nécessaire d’écrire des chaines unicode. Jusqua la version 2.2 de Python, I'écriture de
ces caracteres n'était possible quien utilisant leurs équivalents en unicode-escape, ou
par exemple é s’écrit \xe9.

Eléments du langage

DEUXIEME PARTIE

Python 2.3 a introduit une nouvelle directive a placer en premiéere ou deuxiéme ligne
du fichier, qui permet de spécifier I'encoding. L'encodage en général utilisé par les
programmeurs francophones est 'utf-8.

Directive d’encodage

I# -*- encoding: utf8 -*-

AsavolR Encodage d'un fichier Python

Les éditeurs de code Python recherchent généralement cette ligne pour déterminer I'encodage du fichier,
s'il différe de celui du systeme.

Copyright et licence

Les lignes suivantes peuvent concerner le copyright, ainsi que la licence du fichier.
La structure de ces informations est libre.

Tags

Si vous utilisez CVS ou SVN (Subversion), la derniére ligne du commentaire peut
étre utilisée pour mettre en place un tag de version, utilisé par le systeme de version-
ning pour placer un certain nombre d’informations.

Tag vierge

|# $1d: $

Ce tag sera renseigné lors du premier commit.
Tag aprés commit

I # $Id: test_mailmessageeditview.py,v 1.2 2005/02/09 10:44:06 tziade Exp $

Docstring de module

Le docstring général au module vient se placer juste aprés le bloc de commentaire et
contient un descriptif complet de tous les éléments et de leur utilisation. Il peut aussi
contenir des informations relatives aux dépendances, c’est-a-dire a I'ensemble des
programmes et modules tiers nécessaires. En outre, si le module est directement exé-
cutable, on retrouvera dans ce docstring la liste des parametres d’exécution.

Conventions de codage m
CHAPITRE 7

Variables globales spécifiques

Un ensemble de variables globales spécifiques peut suivre le bloc de commentaire.
Toutes ces variables sont optionnelles et en général préconisées par des outils tiers de
génération automatique de documentation, la référence étant celles utilisées par le

module pydoc.

Les variables utilisées par pydoc

__author__ = "Tarek Ziadé <tarek@ziade.org>"
__date__ = "26 February 2005"

__version__ = "$Revision: 1.5 $"

_ credits__ = """Thanks to my mother."""

Clauses d’importations

Chaque clause d'importation doit étre sur une ligne distincte, en évitant de réunir plu-
sieurs clauses sur la méme ligne, sauf lorsque les éléments importés appartiennent au
méme module. Pour ce dernier cas, une écriture explicite est tout de méme préférable.

Cette notation facilite la lecture, surtout lorsque les clauses d’'importation sont nom-
breuses.

Exemples et contre-exemples

écriture incorrecte :
import smtplib, imaplib

écriture correcte :
import smtplib
import imaplib

plusieurs éléments du méme module, souvent utilisé :
from smtplib import SMTP, SMTP_PORT

plusieurs éléments du méme module, préférable :
from smtplib import SMTP
from smtplib import SMTP_PORT

Les jokers

Comme vu au chapitre 4, Python permet de faire des importations avec des jokers

P y P P J
pour avoir acces a I'ensemble des fonctions, classes et méthodes d’'un module, dans
votre espace de noms.

m Eléments du langage
DEUXIEME PARTIE

Importation de I’ensemble des éléments d’un module

I from smtplib import *

Cette écriture est a proscrire sauf cas particuliers car les éléments utilisés ne sont pas
clairement identifiés et entrainent une perte de visibilité des dépendances entre
modules. Préférez une écriture complete vers I'élément utilisé.

Importations explicites

accés a une classe du module
from smtplib import SMTP

accés au module complet
SMTP sera atteint par smtplib.SMTP
import smtplib

Organisation des clauses

Les clauses d'importation doivent étre regroupées par niveaux séparés par un saut de
ligne, le plus bas niveau étant placé en premier :

1 importations d’éléments des bibliothéques standards ;

2 importations d’éléments de bibliothéques utilitaires ;

3 importations spécifiques au projet.

Exemple

import os
import sys

from smtplib 1import SMTP
from smtplib import SMTP_PORT
from imaplib import IMAP4

from MonProjet.MonModulel import MaClasseA
from MonProjet.MonModule2 1import MaClasseB
from MonProjet.MonModule2 import MaClasseC

Si les niveaux ne contiennent qu'une seule clause, ils peuvent étre regroupés.

Exemple 2

import os
from smtplib import SMTP
from MonProjet.MonModule2 1import MaClasseB

Conventions de codage m
CHAPITRE 7

Variables globales

Les variables globales suivent les clauses d'importation et peuvent étre réunies par
thémes séparés par un saut de ligne.

Exemple

TIMEOU

= 12
SLEEP = 2

DEFAULT_SERVER = 'Tocalhost'
DEFAULT_PORT = 25

Fonctions et classes, le corps du module

Le reste du module est bien sir réservé aux différentes fonctions et classes qui le
composent. Lordre de ces éléments est en général guidé par la logique des
interactions : une classe de base est toujours placée au dessus de ses classes héritées.
De la méme maniére, une fonction qui doit étre appelée pour toutes les classes d’une
application se placera toujours juste apres cette classe.

Organisation logique des classes et fonctions

class BaseDataStream:
"""Classe de base pour les flux."""
def read_stream(self):
"""Lecture d'un flux.
raise NotImplementedError

non

class RSSDataStream(BaseDataStream):
"""Classe pour les flux RSS."""

def read_stream(self):
"""Lecture d'un flux RSS."""

registerClass(RSSDataStream)

Structuration d’une classe

Une derniére partie importante en terme de structuration concerne l'organisation d’'une
classe. Lorsqu'une classe implémente beaucoup de méthodes, c’est en général une bonne
idée de faire des regroupements logiques séparés par des blocs de commentaires.

m Eléments du langage
DEUXIEME PARTIE

Structuration d’une classe

class RPCDataStream(BaseDataStream):
"""Classe pour les flux RPC."""

def _fonction_internel(self):
def _fonction_interne2(self):

#

API public

#

def read_stream(self):
"""Lecture d'un flux RPC."""

Cette notation permet de renforcer la visibilité lorsque les modules commencent a
faire une certaine taille.

Quoi quil en soit, des méthodes ou des modules anormalement longs sont bien sou-
vent le témoin d’'une mauvaise architecture, et un éclatement est en général a envisager.

Conseils pour le choix des noms

Le choix des noms, que ce soit pour les classes, variables, méthodes, ou tout autre
élément du code, doit étre fait en gardant a esprit que le programme n’est pas des-
tiné a étre lu par des ordinateurs, mais par des développeurs ou des clients.

Lordinateur n’attache aucune importance aux noms choisis pour les variables, le
développeur en charge de la correction du module quant a lui peut vivre un véritable
cauchemar si les variables trouvées dans le programme s’appellent toujours a, b et c.

Regles générales

Du sens

Un nom doit étre porteur de sens. Hormis quelques exceptions comme le nom de
certaines variables utilisées dans des boucles, un nom doit informer sur la nature de
I'élément qu’il désigne.

Conventions de codage m
CHAPITRE 7

Choix de la langue

Python est un langage écrit en anglais et tous ses éléments sont des mots anglais.
Langlais étant de plus la langue universelle de I'informatique, il est vivement con-
seillé de 'adopter pour tous les noms si le contexte le permet.

I1 est aussi nécessaire de maitriser 'anglais utilisé pour éviter des franglismes ou des
fautes d’orthographe qui peuvent préter 4 confusion sur le sens des noms.

Unicité des noms

Une fois un nom choisi, il doit étre utilisé et écrit de la méme maniére dans tout le
programme, dans la documentation et dans les spécifications techniques. Il faut
absolument éviter d’utiliser plusieurs noms différents pour parler de la méme chose.

La bonne longueur

Utiliser des abréviations pour les noms n’est pas une bonne idée. Les noms trop
courts perdent du sens et deviennent vite anonymes. Lorsque I'on recherche une
variable nommeée cpt dans le code, on risque d’étre noyé sous les résultats.

Des noms trop longs ne sont pas non plus conseillés, a I'instar des noms a rallonge
que l'on trouve en Java.

La bonne longueur est donc un nom court mais précis, et non abrégé.

Eviter le mélange domaine/technique

Les termes techniques de Python peuvent étre : dictionnaire, dico, liste, collection,
tuple, etc.

Les termes du domaine peuvent étre : article, rayon, catalogue, etc.

Pour éviter de rendre le code illisible, il ne faut jamais mélanger les deux ensembles
pour composer des noms comme : dico_article, tuple_rayon, etc.

Reégles pour chaque type

Modules

Le nom d’un module doit informer sur son contenu et rester homogeéne, lorsque le
cas se présente, aux autres modules du méme paquet ou du méme théme.

Un module de client sftp sappellera logiquement sftplib, en continuité avec
ftplib, httplib, imaplib, etc.

Eléments du langage

DEUXIEME PARTIE

Classes
Le nom d’une classe doit toujours indiquer ses objectifs et parfois ses origines.

Sans documentation supplémentaire, il doit étre possible de savoir ce que fait la
classe, uniquement par son nom.

Le nom d’une classe doit s’inscrire dans une certaine continuité avec les classes du
méme ensemble.

Dans un framework complet, cette regle peut s’étendre a I'utilisation de racines com-
munes dans le nom de la classe, indiquant par exemple le niveau de dérivation et
I'appartenance a une famille de classes, c’est-a-dire I'origine.

Les racines communes sont toujours & droite du nom et le préfixe est modifié ou
enrichi dans les classes dérivées.

Par exemple :

* StreamRequestHandler

* BaseHTTPRequestHandler

* SimpleHTTPRequestHandler

Ces trois classes utilisent un tronc commun RequestHandler, puis se spécialisent en
Stream, BaseHTTP et enfin Simp1eHTTP.

D’une maniére plus générale, si un bon nom ne peut pas étre trouvé pour une classe, il
y a certainement un probléme d’analyse et les abstractions sont probablement a revoir.

Méthodes et fonctions
Tous les conseils présentés ci-dessous s’appliquent également aux fonctions.
Les méthodes doivent indiquer ce qu’elles font ou ce qu’elles retournent.

On peut séparer quelques types de méthodes :

* Les booléens : il est bon de préfixer les méthodes qui renvoient un booléen par
has ou is.

* Les get et set : ces méthodes ont comme objectif de retourner ou de modifier une
valeur donnée. Elles sont toujours préfixées, comme leur nom I'indique, de set et
get, suivi du nom de la valeur.

* Les actions : méme principe que get et set mais plus général. Toutes les métho-
des qui font quelque chose commencent par un verbe court, suivi d'un nom.
Exemples : add_alias(), remove_codec(), etc.

Conventions de codage m
CHAPITRE 7

Variables

Les variables doivent informer sur la valeur. Lorsque ces variables sont des collec-
tions de valeurs, une forme plurielle doit étre utilisée.

Les variables booléennes doivent étre préfixées par has ou is.

En un mot...

Un guide de recommandations a comme unique objectif de rendre homogene
I'ensemble du code source d’un projet. Il est issu de pratiques éprouvées. 11 est néces-
saire d’adopter les conventions décrites dans ce guide pour les projets publics, a savoir
les projets ouverts dont les licences permettent a des développeurs externes a I'orga-
nisation de modifier le code.

Le prochain chapitre est le premier d’'une série de trois chapitres consacrés aux
modules les plus importants de la bibliothéque standard.

TROISIEME PARTIE

La bibliotheque
standard

Un des souhaits principaux de Guido van Rossum était de faire de Python un outil
complet, apte a répondre aux besoins communs de programmation. Cette philosophie,
appelée batteries included, est a I'origine de la richesse de la bibliothéque standard.

La majorité des programmes écrits en Python peuvent la plupart du temps étre
congus sans avoir a rechercher des fonctionnalités supplémentaires dans des librai-
ries tierces, méme si certains domaines sont volontairement écartés et simplement
couverts par des abstractions, comme les connecteurs aux bases de données.

La clarté et lefficacité des API de la bibliothéque standard jouent aussi un role
important dans la simplicité de programmation et participent au succés du langage.
Un module d’extension prend toujours en modele les modules existants, pour étre le
plus pythonique possible.

Cette troisiéme partie regroupe trois chapitres qui présentent une sélection de
modules de la bibliothéque standard, agrémentés de nombreux exemples et
regroupés par thémes, 4 savoir :

* interaction avec l'interpréteur ;

* acces au systéme ;

* utilitaires fichiers ;

* outils de compression ;

* programmation réseau ;

* persistance ;

* conversion, transformation de données ;

m La bibliothéque standard
TROISIEME PARTIE

* calculs numériques ;
* structures de données ;
* utilitaires divers.

Llobjectif de cette partie est simple : avant de se plonger dans la conception d’'un
nouveau module d’extension, une petite vérification de U'existant dans les modules de
la bibliotheéque standard peut éviter de tomber dans le syndrome du Not Invented
Here, ou Réinvention de la roue, trés fréquent dans le monde de I'OpenSource.

Le dernier chapitre regroupe une série d’exercices de mise en pratique de Python
dans des conditions plus réalistes que les exemples égrainés dans les premieres parties
du livre.

Principaux modules

La philosophie de Python est de proposer un langage batteries included, c'est-a-dire
de fournir, de base, toutes les fonctionnalités utiles au développeur. Ce chapitre pré-
sente une sélection de modules de la bibliotheque standard, susceptibles de répondre
aux besoins de programmation les plus courants.

Les modules présentés sont regroupés en cinq thémes. Chaque module est résumé et
présenté avec une liste de ses fonctionnalités les plus importantes, accompagnée
d’exemples d’utilisation ou de liens vers les exercices du chapitre 11, et quelques fois
de liens vers des modules annexes.
Les thémes sont :

* interaction avec l'interpréteur ;

* acces au systéme ;

« utilitaires fichiers ;

* outils de compression ;

® programmation réseau.

m La bibliothéque standard
TROISIEME PARTIE

Interaction avec I’'interpréteur

sys

Le module sys contient la plupart des informations relatives a I'exécution en cours,
L b . PR > . g

mises a jour par linterpréteur, ainsi quune série de fonctions et d’objets de bas

niveau.

argv

argv contient la liste des parametres d’exécution d’un script. Le premier élément de
la liste est le nom du script et est suivi de la liste des parameétres.

executable

Renvoie le chemin de l'interpréteur Python.

exc_info()->infos

Donne des informations sur I'exception en cours, soit le type d’exception, I'instance
de I'exception, et I'objet traceback.

Informations sur I’exception en cours

>>> import sys
>>> try:
3/0
. except:
print(sys.exc_info())

(<class exceptions.ZeroDivisionError at Oxb7c5balc>,
<exceptions.ZeroDivisionError instance at Oxb7c2b2ec>, <traceback
object at Oxb7c227ac>)

exit()
Quitte l'interpréteur en levant une exception SystemError. Prend en paramétre un
entier qui sera utilisé comme code de retour fourni au systéme en suivant la norme :
* 0 sile programme a fonctionné correctement.
* > 0en cas d’erreur.

Si un autre type d’objet est fourni, il est affiché et 'interpréteur utilise 0 comme code
de retour. Voir 'exception SystemError du chapitre 7 pour plus d’'informations.

Principaux modules m
CHAPITRE 8
modules

Dictionnaire contenant 'ensemble des modules chargés par I'interpréteur par le biais
de directives d’'importation. Lorsqu'un module est importé, I'interpréteur se réfere a
ce dictionnaire pour ne pas recharger le module s'il est déja présent dans la liste des
clés. Ce dictionnaire peut étre manipulé a la volée dans un programme.

Modifier modules peut étre relativement pratique dans le cadre de tests unitaires
pour remplacer un module déja chargé par une autre version de ce module, spéciale-
ment codé pour les tests.

last_type, last_value, last_traceback

Disponibles uniquement dans le prompt interactif, ces trois objets donnent des
informations sur la derniére exception non interceptée, levée par I'interpréteur.

Informations sur la derniére exception

>>> import sys
>>3/0
Traceback (most recent call last):
File "<stdin>", 1ine 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>> sys.last_type
<class exceptions.ZeroDivisionError at Oxb7c5balc>
>>> sys.last_value
<exceptions.ZeroDivisionError instance at Oxb7c2bb8c>
>>> sys.last_traceback
<traceback object at Oxb7c2albc>

path

Liste contenant tous les répertoires dans lesquels I'interpréteur recherche des modules
lorsque la directive import est utilisée, ou lorsque des noms de fichiers sont utilisés sans
leur chemin complet. path peut étre modifiée a la volée dans un programme.

platform

Informe sur le systéme d’exploitation.

Quelle plate-forme ?

>>> import sys
>>> sys.platform
'"Tinux2'

m La bibliothéque standard
TROISIEME PARTIE

sys.platform est souvent préféré a4 os.name car plus précis. Par exemple, sous

Mac OS X, il permettra de différencier Mac de Linux.

Appels sous Mac 0S X

>>> import os
>>> 0S.name
'posix’

>>> sys.platform
"darwin’

Appels sous Linux

>>> import os
>>> 0S.name
'posix’

>>> sys.platform
"Tinux2'

stdin, stdout et stderr

Obyjets fichiers pointant respectivement sur 'entrée standard, la sortie standard et la
sortie standard pour les erreurs.

Manipulation du flux de sortie standard

>>> import sys

>>> sys.stdout

<open file '<stdout>', mode 'w' at Oxb7c64068>
>>> sys.stdout.write("Dans quel flux j'erre")
Dans quel flux j'erre>>>

Acces au systeme

Ce théme réunit les modules os, subprocess et platform.

Le module os fournit un certain nombre de fonctions de manipulations du systéme.
11 se place au-dessus de modules spécifiques a une plate-forme, comme les modules
posix ou nt, et permet de garantir une portabilité du code.

Le module subprocess, introduit récemment, propose des fonctions alternatives de
manipulations des processus.

Le module os définit également os.path qui est un alias vers le module posixpath,
ntpath ou macpath, en fonction de la plate-forme en cours et qui fournit des utili-
taires de manipulation des noms de fichiers et répertoires.

0s

Principaux modules m
CHAPITRE 8

Enfin, platform est un module qui réunit toutes les informations que le systeme
d’exploitation a pu fournir, du type d’architecture matérielle, au nom de version du
systeme d’exploitation, en passant par le type de processeur.

Le module os regroupe quelques 200 fonctions ou objets qui sont dans certains cas
des alias vers des éléments d’autres modules.
On peut regrouper ces éléments en quatre sous-ensembles :

* opérations sur les descripteurs de fichiers ;

* manipulation des fichiers et répertoires ;

* manipulation des processus ;

* informations sur le systéme.

Opérations sur les descripteurs de fichiers

Lorsqu’un fichier est ouvert, un numéro unique est attribué au flux jusqu'a ce qu’il
soit fermé. Ce numéro est un entier et est appelé descripteur du fichier.

Le module os fournit une fonction open() qui retourne un descripteur de fichier qui
peut ensuite étre utilisé avec certaines fonctions, qui sont présentées dans cette partie.

AsavolR Gestion des fichiers

Pour des manipulations classiques sur les fichiers, il n'est pas préconisé d'utiliser ces fonctions, qui sont
plus complexes a mettre en ceuvre, mais de préférer les objets de haut niveau de type fiTe, générés par
la primitive open() ou file(Q).

Ces objets conservent le descripteur de fichier dans I'attribut £i1eno et implémentent une partie des
fonctions présentées ci-dessous en méthodes.

open(nom, flags, [, mode=0777]) -> fd

Ouvre le fichier nom et renvoie un descripteur de fichier. flags définit le mode
d’ouverture et est construit avec les constantes suivantes (associées avec des opéra-
teurs OR) :

* O_RDONLY ;
* O_WRONLY ;
* O_RDWR ;

* O_APPEND ;
* O_CREAT ;
* O_EXCL ;

* O_TRUNC.

La bibliothéque standard

TROISIEME PARTIE

Il existe des constantes supplémentaires spécifiques a chaque plate-forme.
Pour Windows :

 0_BINARY ;

* O_NOINHERIT ;

* O_SHORT_LIVED ;

* O_TEMPORARY ;

* 0_RANDOM ;

* O_SEQUENTIAL ;

* O_TEXT.

Pour GNU/Linux et Macintosh :
* 0_DSYNC ;

* O_RSYNC ;

* 0_SYNC ;

* O_NDELAY ;

* O_NONBLOCK ;

* O_NOCTTY.

close(fd)

Ferme le descripteur de fichier fd. Similaire 4 la méthode close() de la classe file.

fstat(fd)

Renvoie le statut d’un fichier pointé par le descripteur fd. Equivalente 2 os.stat(
définie dans la section suivante, qui prend pour sa part le nom du fichier.

fsync(fd)

Force I'écriture du fichier sur le disque pointé par le descripteur fd. Les objets de type
file implémentent en outre la méthode flush() qui vide les tampons internes. Pour
une écriture compléte et sécurisée, flush() peut étre appelée juste avant fsyncQ.

ftruncate(fd, longueur)

Tronque le fichier pointé par le descripteur fd 2 la taille Tongueur, exprimée en octets
(non disponible sous MS-Windows). Similaire a la méthode truncate() de la classe
file.

Iseek(fd, position, comment) -> nouvelle position

Déplace le curseur du descripteur de fichier 4 position. comment définit si le curseur
est déplacé par rapport au début du fichier (0), a la fin (2), ou a la position courante
(1). On retrouve cette fonction en méthode seek () des objets de type file.

Principaux modules m
CHAPITRE 8
read(fd, taille_buffer) -> chaine

Lit dans le flux pointé par le descripteur de fichiers un maximum de taille_buffer
bytes, renvoyés dans un objet de type string. Similaire 4 la méthode read() de la
classe file.

write(fd, str) -> nombre d’octets écrits

Ecrit la chaine de I'objet string str dans le flux pointé par le descripteur fd. Similaire
a la méthode write () de la classe file.

Les opérations sur les descripteurs de fichiers peuvent s’avérer intéressantes pour des
implémentations spécifiques de lecture-écriture de fichiers.

Lecture-écriture bas niveau dans le module tarfile

class _LowlLevelFiTe:
"""Low-level file object. Supports reading and writing.
It is used instead of a regular file object for streaming
access.

non

def _ init__(self, name, mode):
mode = {
"r": os.0_RDONLY,
"w": 0s.0_WRONLY | os.0_CREAT | os.0_TRUNC,
} [mode]
if hasattr(os, "O_BINARY"):
mode |= o0s.0_BINARY
self.fd = os.open(name, mode)

def close(self):
os.close(self.fd)

def read(self, size):
return os.read(self.fd, size)

def write(self, s):
os.write(self.fd, s)

Manipulation des fichiers et répertoires

Cette section regroupe toutes les fonctions de manipulation du systeme de fichiers.
Certaines sont spécifiques aux plates-formes Unix et Macintosh qui possédent un
systtme de fichiers aux fonctionnalités plus poussées que celui de MS-Windows,
comme les fonctions de création de liens symboliques.

La bibliothéque standard

TROISIEME PARTIE

access(chemin, mode) -> booléen

Utilise les droits courants pour contrdler que I'acces au chemin est possible et auto-
risé. mode définit le type de test et peut prendre une ou plusieurs des valeurs ci-des-
sous, combinées avec des OR :

* F_OK : teste 'existence du chemin.
* R_OK : teste le droit de lecture.
* W_OK : teste le droit d’écriture.

* X_OK : teste le droit d’exécution.

chdir(chemin)

Modifie le répertoire de travail en cours par celui pointé par chemin.

getcwd() -> répertoire de travail

Renvoie le répertoire de travail en cours, sous la forme d’un objet string.

chroot(chemin)

Permet de changer le répertoire root du processus courant par celui pointé par
chemin (non disponible sous MS-Windows).

chmod(chemin, mode)
Modifie les droits d’accés du chemin chemin. mode peut prendre une valeur octale ou
une des constantes définies dans le module stat :
* S_ISUID ;
* S_ENFMT ou S_ISGID ;
« S_ISVTX ;
* S_IRWXU ;
« S_IREAD ou S_IRUSR ;
* S_IWRITE ou S_IWUSR ;
* S_TIEXEC ou S_IXUSR ;
* S_IRWXG ;
« S_IRGRP ;
* S_IWGRP ;
« S_IXGRP ;
* S_IRWXO ;
* S_IROTH ;
* S_IWOTH ;
* S_IXOTH.

Principaux modules m
CHAPITRE 8

chown(chemin, uid, gid)

Modifie le propriétaire et le groupe du chemin chemin, avec les valeurs numériques
fournies dans uid et gid (non disponible sous MS-Windows).

link(src, dst)

Crée un lien direct nommé dst vers src (non disponible sous MS-Windows).

listdir(chemin) -> liste de noms

Renvoie une liste contenant le nom des fichiers et répertoires trouvés dans le réper-
toire pointé par le chemin chemin, a Uexception des entrées « . » et « .. ».

Une modification a été apportée dans la version 2.3, pour les plates-formes
MS-Windows et Unix : si le chemin fourni est un objet unicode, la liste renvoyée
sera composée d’objets unicode.

Istat(chemin) -> stat

Identique 4 os.stat(), mais ne suit pas les liens symboliques (non disponible sous
MS-Windows).

mkdir(chemin, (mode=0777]))

Crée un répertoire de nom chemin. Si le répertoire ne peut pas étre créé, une OSError
est levée. mode est ignoré sous MS-Windows.

Création de répertoire

>>> import os
>>> os.mkdir('test')
>>> os.mkdir('test')
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
OSError: [Errno 17] File exists: 'test'

makedirs(chemin, [mode=0777))

Fonctionne comme mkdir() mais permet de créer récursivement tous les sous—réper—
toires éventuellement fournis dans le chemin. Si le dernier répertoire existe, une
erreur est levée.

Création récursive de répertoires

>>> import os

>>> os.makedirs('la/route/est/longue')
>>> os.makedirs('Ta/route/est/courte')
>>>

La bibliothéque standard

TROISIEME PARTIE

[tziade@Tarek ~1$ 1s la/

route/

[tziade@Tarek ~]1$ 1s Ta/route
est/

[tziade@Tarek ~]1$ 1s Ta/route/est
courte/Tongue/

pathconf(chemin, nom) -> entier
Renvoie les informations de configuration systéme pour le chemin chemin.

nom définit le type d’'informations a récupérer. C’est une chaine de caractéres ou un

entier récupéré respectivement dans la liste des clés et des valeurs du dictionnaire

os.pathconf_names. La liste fournie n'est pas exhaustive et il est possible sur certains
\ ? *1: b

systemes d’utiliser d’autres valeurs avec pathconf.

De plus, si le systeme ne connait pas une des constantes fournies dans le dictionnaire,
une erreur sera levée au moment de son utilisation (pathconf nest pas disponible

sous MS-Windows).
Récupération d’informations de configuration

>>> import os

>>> 0s.pathconf_names

{"PC_MAX_INPUT': 2, "PC_VDISABLE': 8, 'PC_SYNC_IO': 9, 'PC_SOCK_MAXBUF"':
12, 'PC_NAME_MAX': 3, '"PC_MAX_CANON': 1, 'PC_PRIO_IO': 11,
'PC_CHOWN_RESTRICTED':6, 'PC_ASYNC_IO': 10, 'PC_NO_TRUNC': 7,
'"PC_FILESIZEBITS': 13, 'PC_LINK_MAX': 0, 'PC_PIPE_BUF': 5,
'"PC_PATH_MAX': 4}

>>> os.pathconf('/usr/1ib/python2.4/tarfile.py', 'PC_FILESIZEBITS')

64

readlink(lien) -> chemin

Récupere le chemin pointé par un lien. Provoque une 0SError si le chemin fourni
n'est pas un lien (non disponible sous MS-Windows).

Recherche du fichier originel d’un lien

$ touch fichier.py

$ 1In -s fichier.py lien.py

$ python

Python 2.6.1 (r261:67515, Dec 6 2008, 16:42:21)

[GCC 4.0.1 (Apple Computer, Inc. build 5370)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import os

>>> os.readlink('lien.py')

'fichier.py'

Principaux modules m
CHAPITRE 8
remove(chemin)

Supprime le fichier pointé par son chemin. Equivalente a unlink(path). Si le fichier
ne peut pas étre retiré (par exemple, lorsque le fichier est en cours d’utilisation pour
les systemes MS-Windows) ou si le chemin pointe sur un répertoire, une erreur sys-
teme est levée.

removedirs(chemin)

Supprime chemin récursivement. Commence par supprimer le répertoire le plus pro-
fond et remonte le chemin. Si un répertoire rencontré n'est pas vide, removedirs
s'arréte silencieusement, sauf dans le cas du répertoire le plus profond ot une erreur
est générée.

rename(ancien, nouveau)
Renomme le fichier ancien en nouveau.

Attention : sous Unix, si un fichier nommé nouveau existe déja et si l'utilisateur a les
droits en écriture sur ce fichier, il sera écrasé silencieusement. En cas de probleme,
une erreur systéme est levée.

renames(ancien, nouveau)

Renomme le fichier ancien en nouveau de la méme maniére que rename(). Si les
répertoires intermédiaires du chemin nouveau nexistent pas, ils sont créés. Sil'opéra-
tion réussit, un appel a removedirs() est ensuite effectué sur 'ancien chemin.

Dans 'exemple ci-dessous, le fichier fichier.txt qui est contenu dans le répertoire
sous_dossier, est renommé en fichier2.txt et déplacé dans sous_dossier2.
Comme ce fichier est le seul du répertoire sous_dossier, ce dernier est supprimé.

Renommage d’arborescence

>>> import os

>>> 0s.listdir('/home/tziade/testrenames')

['sous_dossier']

>>> 0s.1istdir('/home/tziade/testrenames/sous_dossier')

['fichier.txt']

>>> os.renames('/home/tziade/testrenames/sous_dossier/fichier.txt',
'/home/tziade/testrenames/sous_dossier2/fichier2.txt"')

>>> 0s.listdir('/home/tziade/testrenames’')

['sous_dossier2']

>>> 0s.listdir('/home/tziade/testrenames/sous_dossier2')

['fichier2.txt']

La bibliothéque standard

TROISIEME PARTIE

rmdir(chemin)

Supprime le répertoire pointé par chemin. Si le répertoire en question n’est pas vide,
ou si ce n'est pas un répertoire, une erreur systeéme est levée.

stat(chemin) -> objet stat_result
Renvoie un objet stat_result dont les attributs contiennent des informations sur le
chemin, 2 savoir :
* st_mode : permissions ;
* st_ino : numéro d’inode ;
* st_dev : périphérique ;
* st_nlink : numéro de lien si lien direct ;
* st_uid : ID du propriétaire ;
* st_gid : ID du groupe ;
* st_size : taille du fichier en octets ;
* st_atime : date de dernier acces ;
* st_mtime : date de derniére modification ;
* st_ctime : date de création sous MS-Windows et date de derniére modification
des méta-données sous Unix.
Certains attributs supplémentaires sont accessibles pour certaines plates-formes:
* st_blocks : nombre de blocs alloués au fichier (GNU/Linux) ;
* st_blksize : taille d’un bloc d’allocation (GNU/Linux) ;
* st_rdev : type de périphérique pour les périphériques inode (GNU/Linux) ;
* st_rsize : taille réelle du fichier (Mac) ;
* st_creator : créateur du fichier (Mac) ;
* st_type : type de fichier (Mac).
Lorsqu'un appel a stat() est effectué, il est possible d’accéder aux résultats sous la

forme d’un tuple qui renvoie une partie des attributs de I'objet, pour assurer une
compatibilité avec les anciennes versions.

Pour toutes les valeurs de temps, stat() fait appel 4 os.stat_float_times(). Si
cette fonction renvoie vrai, les temps sont renvoyés en secondes dans des objets float.
Dans le cas inverse, des secondes entieéres sont renvoyées. Par défaut,
stat_float_times() renvoie False, pour assurer une compatibilit¢ avec les
anciennes versions de Python, mais il est possible de modifier cette valeur en appe-
lant stat_float_times() avec la valeur booléenne de renvoi souhaitée en paramétre.
Cette modification sera conservée pour tous les appels suivants du programme.

Principaux modules m
CHAPITRE 8
stat() sur socket.py

>>> import os
>>> o0s.stat('socket.py')
posix.stat_result(st_mode=33188, st_ino=2598207L, st_dev=234881026L,
st_nlink=1, st_uid=501, st_gid=80, st_size=17974L, st_atime=1234532028,
st_mtime=1232790848, st_ctime=1232790848)
>>> stats = os.stat('socket.py')
>>> for attribut in dir(stats):

if attribut.startswith('st_'):

print('%s: %s' % (attribut, getattr(stats, attribut)))

st_atime: 1234532028.0
st_blksize: 4096
st_blocks: 40
st_ctime: 1232790848.0
st_dev: 234881026

st_flags: O
st_gen: 0
st_gid: 80

st_ino: 2598207
st_mode: 33188
st_mtime: 1232790848.0

st_nlink: 1
st_rdev: 0
st_size: 17974
st_uid: 501

symlink(src, dst)

Spécifique a Unix, crée un lien symbolique dst, pointant vers src.

unlink(chemin)

Similaire 2 remove(chemin).

walk(top(, topdown=True[, onerror=None]])

Permet de parcourir récursivement l'arborescence des répertoires, en utilisant le
chemin top comme racine. walk() renvoie un itérateur dont chaque entrée est un
tuple composé de trois éléments :

* Le premier élément est le chemin du répertoire.

* Le second fournit la liste des sous-répertoires de ce répertoire par un appel a
os.listdir().

* Le troisiéme élément est la liste des fichiers.

Sur les systémes supportant les liens symboliques, ces derniers seront affichés dans la liste
des sous-répertoires mais les liens ne seront pas suivis pour éviter les boucles infinies.

m La bibliothéque standard
TROISIEME PARTIE

Lordre de parcours de I'arborescence est défini par le parameétre topdown. Lorsqu'il
est & True, I'arbre est parcouru de bas en haut, et chaque branche est suivie jusqu’a sa
teuille. Si topdown est a False, I'arbre est parcouru dans 'ordre inverse et les noeuds
enfants se présentent toujours avant leurs parents.

Dans le cas ou topdown est a True, l'itérateur renvoyé par walk() se base sur la liste
des sous-répertoires renvoyée dans le tuple pour un répertoire donné, pour continuer
son parcours dans la branche. Cette liste peut étre modifiée a la volée pour influencer
le fonctionnement de I'algorithme de parcours.

Lexemple ci-dessous parcourt 'arborescence d’une installation Python, pour afficher
tous les fichiers Python exceptés les fichiers __init__.py, en excluant a la volée les
répertoires aux noms spéciaux.

Parcours des sources de Python

>>> for root, dirs, files in os.walk('/usr/1lib/python2.5'):
for dir_ 1in dirs:
if (dir_.startswith('_"') or
dir_ in ('demos', 'docs', 'doc', 'test')):
dirs.remove(dir_)
for f in files:
if f.endswith('.py') and f != '__init__.py':
print(os.path.join(root, f))

/usr/1ib/python2.5/BaseHTTPServer.py
/usr/1ib/python2.5/Bastion.py
/usr/1ib/python2.5/CGIHTTPServer.py
/usr/1ib/python2.5/ConfigParser.py
/usr/1ib/python2.5/Cookie.py
/usr/1ib/python2.5/DocXMLRPCServer.py

/usr/1ib/python2.5/xml/sax/handler.py
/usr/1ib/python2.5/xml/sax/saxutils.py
/usr/Tib/python2.5/xml/sax/xmlreader.py

Loption onerror, lorsquelle est spécifiée, permet d’associer une fonction a toute erreur
systéme survenue lors du parcours des répertoires, ces erreurs étant rendues silencieuses
par walk() par défaut. Lerreur est alors passée a la fonction, qui devient en quelque
sorte le bloc except et peut décider de provoquer un raise ou de laisser passer l'erreur.

Lecture du répertoire /var/log

>>> import os
>>> def print_error(e):
print("Lecture impossible %s" % e)

Principaux modules m
CHAPITRE 8

>>> for root, dirs, files in os.walk(top="'/var/log',
onerror=print_error):
for f in files:
print(os.path.join(root, f))

/var/1og/CDIS.custom
/var/1og/0SInstall.custom

/var/log/cups/page_1log

Lecture impossible [Errno 13] Permission denied: '/var/log/krb5kdc’
/var/log/samba/Tog.nmbd

Lecture impossible [Errno 13] Permission denied: '/var/log/samba/cores'

Manipulation des processus

Les fonctions ci-dessous permettent de créer et de gérer des processus annexes au
processus principal. Ce besoin peut aller du simple appel 4 un exécutable du systéme
a des interactions plus complexes mettant en ceuvre des protocoles d’échanges de
données entre processus.

abort() -> ne retourne pas !

Envoie un signal SIGABRT au processus en cours. Le processus stoppe immédiate-
ment son exécution et renvoie un code de sortie a 3.

Sous Unix, un fichier core dump est généré avant la sortie du processus.

exec*([cheminl|fichier], (args|arg0, arg1, ..., argn], (env])

I1 existe huit fonctions qui permettent d’exécuter un programme sous Python, avec un
méme préfixe exec. Ces fonctions lancent I'exécution d’'un programme dans un pro-
cessus qui vient remplacer le processus en cours. Lorsque le programme a achevé son
exécution, il n'y a pas de retour au processus précédent (voir dans ce cas spawn*()) :

I execl(chemin, arg0, argl, ..., argn)

path est le chemin vers I'exécutable. La série des argx représente les parameétres
passés a l'exécutable, sachant que arg0 correspond au nom de I'exécutable, de la
méme maniére que sys.argv. Le nouveau processus récupére les variables d’environ-
nement du processus précédent.

Iexec1e(chem1’n, arg0, argl, ..., argn, env)

La bibliothéque standard

TROISIEME PARTIE

Méme fonctionnement qu’execl, avec un parametre supplémentaire env. env est un
mapping qui contient les variables d’environnement pour le processus.

Iexec'lp(f'ich'ier', arg0, argl, ..., argn)

Méme fonctionnement qu’execl, excepté que le nom de l'exécutable nest pas fourni
par un chemin mais par un nom relatif. Uinterpréteur recherche alors 'exécutable
dans les répertoires définis dans la variable d’environnement PATH.

Iexec]pe(ﬁ'chier, arg0, argl, ..., argn, env)

Méme fonctionnement qu'execlpe, excepté que I'environnement est fourni dans env,
comme pour execle.

I execv(chemin, args)

Méme fonctionnement qu’execl, sauf que les arguments sont passés dans la
séquence arg.

Iexecve(chem'in, args, env)

Méme fonctionnement qu’execv, avec les variables d’environnement fournies dans
env comme pour execle.

I execvp(fichier, args)

Méme fonctionnement qu’execv, excepté que le nom de 'exécutable nest pas fourni
par un chemin mais par un nom relatif, comme pour execlp.

Iexecvpe(ﬁ'chier, args, env)

Méme fonctionnement qu’execvp, les variables d’environnement en plus.

FoncTions 0s.Exec* disparition programmée

Le module subprocess a été ajouté pour supprimer un jour les fonctions os . exec*. Sachant que
chacune de ces fonctions a une équivalence dans subprocess, une bonne pratique est de ne plus les
utiliser.

Voir aussti : le module subprocess.

Principaux modules

CHAPITRE 8

fork() -> PID

Permet de créer un processus enfant. fork() renvoie le PID (Process ID) du nouveau
processus dans le processus pere, et 0 dans le processus enfant (non disponible sous

MS-Windows).

Le principe du forking est de créer un deuxieme processus qui continue a exécuter la suite
du programme, en paralléle du processus original. Le code doit donc étre en mesure de
différencier les deux processus dans la suite du programme. Il peut le faire grice au retour

de la fonction fork (), qui est différente suivant le processus ot 'on se trouve.

Lexemple ci-dessous est un squelette possible de mise en ceuvre de fork(Q).

Implémentation de fork() dans un module fork.py

-*- coding: utf8 -*-
import os

import time

import sys

import warnings

child_pid = os.fork()

if child_pid == 0:
code enfant
print('enfant: je suis le processus enfant')
try:
print('enfant: je travail')
time.sleep(2)
print("enfant: j'ai fini")
except:
le code du processus enfant
ne doit pas générer une erreur ici
qui risquerait de le faire remonter
et de lui faire exécuter
du code prévu pour Te processus parent
lerr = "%s: %s' % (sys.exc_info()[0], sys.exc_info()[1])
warnings.warn('Erreur dans le processus enfant:\n %s' % Tlerr)
else:
code parent
print('pere: je suis le processus pere')
print("pere: j'attends le processus enfant")
os.wait()
print('pere: le processus enfant a terminé')

Lexécution de ce programme entrainera la création de deux processus.

La bibliothéque standard

TROISIEME PARTIE

Exécution de fork.py

$ python fork.py

enfant: je suis le processus enfant
enfant: je travail

pere: je suis le processus pere
pere: j'attends le processus enfant
enfant: j'ai fini

pere: le processus enfant a terminé

Pour sortir d'un processus enfant, il existe une fonction exit() spécifique :
os._exit().

Cette fonction fonctionne comme la fonction standard sys.exit() et peut étre
appelée depuis la version 2.3 avec un code de sortie optionnel en paramétre, pour les
plates-formes non MS-Windows. Parmi les codes existants, nous trouvons :

* EX_OK : sortie normale ;
* EX_OSERR : erreur systéme.

SUBPROCESS un fork portable

Le module subprocess, introduit dans Python 2.6, et présenté dans le chapitre 10, offre un systéme
de création et de gestion de processus portable, beaucoup plus simple qu'un appel bas niveau a
os. fork.

kill(PID, sig)

Tue un processus avec un signal sig. Le module signal fournit les constantes dispo-
nibles pour le signal et contient, entres autres : SIGKILL, SIGQUIT, SIGABRT (non dis-
ponible sous MS-Windows).

nice(inc) -> nouvelle priorité

Réduit la priorité d’ordonnancement du processus en cours en incrémentant sa valeur
de gentillesse de la valeur inc.

La priorité d’un processus varie de -20 (le plus prioritaire) a 19 (le moins prioritaire)
et est fixée 4 0 par défaut. Seuls les utilisateurs root peuvent augmenter la priorité en
fournissant des valeurs négatives (non disponible sous MS-Windows).

popen*(cmd(, mode|, bufsize]))

La série des fonctions popen() permet de lancer une commande cmd sur le systéme
dans un processus enfant et d’ouvrir un tunnel de communication (un pipe) entre le
processus courant et ce processus enfant.

Principaux modules m
CHAPITRE 8

Ce tunnel prend la forme d’un fichier ouvert dans lequel le processus peut lire les
éventuelles données renvoyées par le processus enfant et écrire des données si le
mode d’ouverture mode le permet. mode est a r par défaut mais peut prendre toute les
valeurs de mode d’ouverture de fichier.

Enfin, bufsize détermine la taille du tampon d’entrée-sortie du fichier. Comme
pour la primitive open(), bufsize peut prendre la valeur 0 (pas de tampon), 1
(tampon de la taille d’'une ligne), n (entier supérieur a 1, déterminant la taille du
tampon en caracteres).

Lorsque le fichier est fermé par le biais de la méthode close(), le sous-processus
renvoie le code de retour sous la forme d’un entier. S’il n'y a eu aucune erreur,
close() renvoie None en lieu et place du code de retour 0.

Cette fonctionnalité est disponible sous quatre formes, avec un retour différent pour
chacune d’entre elles.

Ipopen(cmd[, mode[, bufsize]l)

Renvoie un fichier ouvert vers le sous-processus.

IpopenZ(cmd[, mode[, bufsize]l])

Renvoie un tuple composé de deux fichiers ouverts vers le sous-processus. Le pre-
mier est le flux d’entrée standard du processus, le second le flux de sortie.

Ipopen3(cmd[, mode[, bufsizel])

Comme popen2 mais ajoute un troisiéme fichier pour le flux standard d’erreurs.
I popend(cmd[, mode[, bufsizel]l)

Comme popen3 mais regroupe les flux de sortie et d’erreur dans le méme flux.
Lexemple ci-dessous utilise popen() pour appeler la commande shell 1s.

Appel de Is

>>> pipe = os.popen('ls -Th /usr/1ib/python2.4")

>>> pipe.readline()

'total 9,2M\n'
>>> pipe.readline()

'-rw-r--r-- 1 root root 33K f\xe9v 12 2005 aifc.py\n'
>>> pipe.readline()
'-rw-r--r-- 1 root root 28K f\xe9v 12 2005 aifc.pyc\n'

>>> pipe.readline()
'-rw-r--r-- 1 root root 28K f\xe9v 12 2005 aifc.pyo\n'

La bibliothéque standard

TROISIEME PARTIE

>>> pipe.readline()
'-rw-r--r-- 1 root root 2,6K f\xe9v 12 2005 anydbm.py\n'
>>> pipe.close()

Voir ausst : le module subprocess.

spawn*(mode, (cheminlfichier], (args), ..., [env])

La série des fonctions spawn() est basée sur le méme principe que les exec() a
I'exception prés que le programme appelé est exécuté dans un nouveau processus.
mode permet de déterminer si le processus principal se met en attente de fin d’exécu-
tion du processus enfant (P_WAIT) et récupére directement le code de sortie, ou il
lance le processus en paralléle (P_NOWAIT) et récupére le pid du processus enfant. Les
autres parameétres fonctionnent sur le méme modele d’exec(), a savoir :

* spawnl(mode, chemin, arg0, argl, ..., argn) ;

* spawnle(mode, chemin, arg0, argl, ..., argn, env) ;
* spawnlp(mode, fichier, arg0, argl, ..., argn) ;

* spawnlpe(mode, fichier, arg0, argl, ..., argn, env) ;

* spawnv(mode, chemin, args) ;

* spawnve(mode, chemin, args, env) ;

* spawnvp(mode, fichier, args) ;

* spawnvpe(mode, fichier, args, env).

Les fonctions contenant p ne sont pas disponibles sous MS-Windows.

Voir ausst : le module subprocess.

system(commande) -> code de retour

Permet de lancer une commande dans un sous-shell et renvoie le code de retour de la
commande. La sortie standard de la commande est liée a la sortie standard du pro-
cessus principal.

Utilisation d’o0s.system

>>> coderet = os.system('ls /')

backups boot dev home Tib mnt opt root service
Src sys usr

bin command etc initrd Tost+found proc sbin srv tmp var

>>> coderet

0

Le code de retour est fortement lié au type de systéme et varie d’'une version a 'autre,
car cette fonction appelle la fonction system(), cmd.exe ou encore command . com.

Voir aussti : le module subprocess.

Principaux modules m
CHAPITRE 8
wait() -> (PID, statut)
Attend la fin de 'exécution d’un processus enfant et renvoie le PID du processus ter-

miné ainsi que son statut de retour.

Le statut est un entier sur 16 bits. Les 7 bits de poids faible représentent le signal qui
a tué le processus. Le 8éme bit est 4 1 lorsqu’un fichier core dump a été créé, et les 8
bits de poids fort représentent le code de sortie.

waitpid(PID, options) -> (PID, statut)

Méme fonctionnement que wait() mais permet d’attendre un processus enfant par-
ticulier, en fournissant son PID.

PID peut aussi prendre des valeurs particuliéres sous Unix :

* 0 :attente de n'importe lequel des processus du groupe auquel appartient le pro-
cessus courant ;

* -1 :attente de n'importe quel enfant du processus courant ;
* -n :pour n < -1, attente de n'importe lequel des processus du groupe de proces-
sus n.
Les options sont a prendre dans les constantes suivantes, qui peuvent étre associées
avec des OR :
* 0 :aucune option ;

* WNOHANG : évite un blocage si aucun statut nest disponible.

Informations sur le systéeme

environ -> dictionnaire

Renvoie un dictionnaire contenant ’ensemble des variables d’environnement. Ce
dictionnaire peut étre directement modifié. Les fonctions putenv() et getenv() sont
alors automatiquement appelées par I'interpréteur.

Modification de la variable TMP

>>> import os

>>> o0s.environ['TMP']

'/home/tziade/tmp'

>>> os.environ['TMP'] = '/home/tziade/tmp2'
>>> o0s.environ['TMP']

'/home/tziade/tmp2’'

La bibliothéque standard

TROISIEME PARTIE

getloadavg() -> tuple de trois réels

Renvoie une moyenne du nombre de processus gérés par la queue d’exécution du sys-
teme les 1, 5 et 15 derniéres minutes. Correspond a l'information affichée dans
I’écran de la commande top sous Linux et Mac OS X.

Appel de getloadavg

>>> import os
>>> os.getloadavg()
(0.5380859375, 0.62841796875, 0.6630859375)

Si cette information de charge ne peut pas étre obtenue, léve une erreur systéme.

getuid() -> uid, getgid() -> gid et getlogin() -> login

Récupere, pour les plates-formes Unix, le user id, group id et le login correspondant,
pour le processus en cours.

Lecture des informations user

>>> import os

>>> print('uid: %d, gid: %d, Togin: %s' %

. (os.getuid(), os.getgid(), os.getlogin()))
uid: 501, gid: 501, Togin: tziade

name -> type de systéme
Renvoie le type de systeme.
Peut prendre les valeurs suivantes :
* posix (Unix et affiliés) ;
* nt (Windows) ;
* mac;
* riscos ;
* 0s2;
* ce;
* java.

Voir aussti : sys.platform.

setuid(uid) et setgid(gid)

Permet de spécifier pour le processus en cours, l'utilisateur et le groupe. Uniquement
pour Unix.

Principaux modules m
CHAPITRE 8
sysconf(nom) -> entier

Renvoie une valeur de configuration du systéme. Le dictionnaire os.sysconf_names
contient I'ensemble des noms pouvant étre utilisés pour le parametre nom sur le sys-
téme courant (non disponible sous MS-Windows).

Récupération du nombre de processeurs

>>> import os

>>> nbproc = os.sysconf('SC_NPROCESSORS_CONF")
>>> print 'Nombre de processeurs: %d' % nbproc
Nombre de processeurs: 1

uname() -> (sysname, nodename, release, version, machine)

Disponible uniquement pour les Unix récents, renvoie les identifiants du systeme.

Identifiants du systéme sous Linux

>>> 0s.uname()
('"Linux', 'Tarek', '2.6.11-6mdk-i1686-up-4GB', '#1 Tue Mar 22 15:51:40
CET 2005', 'i686"')

subprocess

Ce module, introduit a la version 2.4 de Python, offre des fonctions de trés haut niveau,
permettant de créer de nouveaux processus. Lobjectif de subprocess est de remplacer a
terme la série des fonctions popen*() et spawn*(), et autres créateurs de processus
enfants, pour fournir une interface unifiée plus simple d’utilisation et plus souple.

call(*args, **kwargs) -> code de retour

Lance sur le systtme une commande avec des arguments, attend que la commande
s'acheéve, et renvoie le code de retour. Equivalente a os.system().

class Popen
La classe Popen encapsule un processus enfant et fournit des méthodes et des attri-
buts pour manipuler ce processus :

* po11Q) : vérifie sile processus enfant est toujours vivant.

* wait() :attend que le processus enfant se termine.

* communicate(input=None) : communique avec le processus enfant. Si input est
fourni, il est écrit dans l'entrée standard du processus enfant. Renvoie un tuple
(stdout, stderr) apres avoir attendu la fin du processus enfant.

La bibliothéque standard

TROISIEME PARTIE

* stdin : attribut pointant sur I'entrée standard du processus enfant.

* stdout :comme stdin, pour la sortie standard.

* stderr :comme stdin, pour la sortie d’erreur standard.

* pid : pid du processus enfant.

* returncode : code de retour du processus enfant. Si returncode vaut None, le
processus enfant n'a pas terminé. Renvoie -n sous Unix pour le code de retour n.

La création d’une instance de Popen peut prendre une multitude d’options :

Popen(args, bufsize=0, executable=None, stdin=None, stdout=None,
stderr=None, preexec_fn=None, close_fds=False, shell=False, cwd=None,
env=None, universal_newlines=False, startupinfo=None, creationflags=0)

args contient la commande a lancer et est sous la forme d’un objet string ou une
séquence d’objets string en fonction du paramétre shell.

Si le paramétre shell est a False, args doit étre une séquence dont le premier élé-
ment est la commande a lancer et les suivants les parameétres de la commande. Une
string sera alors automatiquement traduite en une séquence d’'un élément.

Sile parametre shell est a True, la commande compléte peut étre contenue dans un
objet string. Si une séquence est passée, le premier élément sera pris comme com-
mande et les suivants comme arguments shell supplémentaires.

MS-Windows fonctionne différemment pour la lecture de la commande : si args est
une séquence, et ce quelle que soit la valeur de shel7, le systéme demandera une con-
version vers un objet string avec la méthode Tist2cmdTine.
bufsize fonctionne de la méme maniére que la primitive open() :

* 0 :pasde tampon ;

* 1 :tampon ligne ;

* n tavecn > 1, taille du tampon.
executable permet de définir le programme a exécuter et se place en amont de args.
Reste a None en général, ou contient le chemin vers un shell particulier. Popen utilise

en temps normal le shell par défaut, soit /bin/sh sous Unix et celui spécifié dans la
variable d’environnement COMSPEC sous MS-Windows.

stdin, stdout et stderr définissent les trois flux standards du processus, a savoir
Pentrée, la sortie et la sortie d’erreur.
Peuvent prendre une des valeurs suivantes pour la redirection :

* subprocess.PIPE : création d’'un nouveau pipe ;

* un descripteur de fichier ;

* un objet fichier ;

Principaux modules m
CHAPITRE 8
* None : aucune redirection.

stderr peut aussi prendre la valeur subprocess.STDOUT. Elle est alors redirigée vers
le flux stdout.

Popen en action

>>> from subprocess {import *

>>> pipe = Popen('ls -1 /usr/1ib/python2.5',
. shell=True, stdout=PIPE).stdout
>>> pipe.readline()
'total 9388\n'

>>> pipe.readline()

'-rw-r--r-- 1 root root 33330 f\xe9v 12 2005 aifc.py\n'
>>> pipe.readline()

'-rw-r--r-- 1 root root 28568 f\xe9v 12 2005 aifc.pyc\n'
>>> pipe.readline()

'-rw-r--r-- 1 root root 28568 f\xe9v 12 2005 aifc.pyo\n'
>>> pipe.close()

os.path

Ce module réunit des fonctions de manipulation de noms de chemins.

abspath(chemin) -> chemin

Renvoie un chemin absolu en fonction du chemin relatif et du chemin de travail cou-
rant renvoy€ par os.getcwd().

basename(chemin) -> chemin

Renvoie le dernier élément du chemin.

commonprefix(list) -> chemin

Retourne le préfixe le plus long, commun a tous les chemins fournis dans la liste.

defpath -> liste de chemins

Obyjet string contenant une liste de répertoires séparés par des «: ». Cette liste est
utilisée par les fonctions exec() et spawn() lorsqu’un exécutable est recherché et
qu'aucune variable d’environnement PATH n’a été trouvée. Peut étre modifié.

dirname(chemin) -> répertoire

Renvoie le répertoire du chemin. Correspond au premier élément retourné par un
appel a sp1itQ.

La bibliothéque standard

TROISIEME PARTIE

exists(chemin) -> booléen

Renvoie True si le chemin existe. Pour les liens symboliques, vérifie aussi que le
chemin pointé par le lien existe toujours et retourne False dans le cas de liens cassés.
Une nouvelle version a été introduite dans Python 2.4, qui fonctionne de la méme
maniére mais qui retourne True sur les liens symboliques qui sont cassés : Texists Q.
Cette version reste bien siir équivalente a exists() pour les systémes sans liens sym-

boliques, comme MS-Windows.

getsize(chemin) -> taille

Renvoie la taille en octets du chemin.
isfile(chemin) -> booléen
islink(chemin) -> booléen
isdir(chemin) -> booléen

ismount(chemin) -> booléen

Permet de savoir si le chemin est un fichier (isfile()), un répertoire (isdir()), un
point de montage (ismount()) et/ou un lien symbolique (is1ink()). is1ink() ren-
vole toujours False sur les systémes sans liens.

Utilisation des API sur /tmp

>>> from os import path
>>> path.isdir('/tmp')
True

>>> path.isfile('/tmp')
False

>>> path.ismount('/tmp")
False

>>> path.ismount('/")
True

join(cheminl [, chemin2|, ...]}) -> chemin concaténé

Permet de concaténer plusieurs parcelles de chemins en un chemin unique, en utili-
sant le séparateur du systeme conservé dans os.sep.

Jointure

>>> import os
>>> os.path.join('home', 'tziade', 'Documents')
'"home/tziade/Documents’

Principaux modules m
CHAPITRE 8
Le code utilisant join() reste ainsi portable.

split(chemin) -> (chemin, dernier élément)
Sépare un chemin en deux composants, le deuxiéme est le dernier élément du

chemin et le premier le reste. Si le chemin n’a aucun séparateur, head est vide.

Extraction du nom de fichier avec split

>>> import os
>>> os.path.split('/Users/tarek/.vimrc')
('/Users/tarek', '.vimrc')

platform

Le module platform réunit des informations sur le systéme hote. Seules les informa-
tions communes a toutes les plates-formes sont présentées ici.

architecture(executable=sys.executable, bits=", linkage=") -> (bits, linkage)

Scanne Texécutable fourni pour récupérer des informations d’architecture.
executable est par défaut le binaire de I'interpréteur Python. bits représente le type
d’architecture (16, 32 ou 64 bits) et Tinkage le format de liaison (ELF, etc.) Sile
fichier fourni n'est pas un exécutable, renvoie ('32bits', '") ou les valeurs fournies
en parametres.

machine() -> type de machine

Renvoie le type de machine sous forme de string, soit 1686, 1586...

node() -> nom réseau

Renvoie le nom réseau de la machine. Renvoie une chaine vide si le nom de la
machine n’a pas pu étre obtenu.

platform(aliased=False, terse=False) -> informations plate-forme

Récupére et concaténe des informations sur le systéme. Le résultat n'est pas destiné a
étre parsé par du code car il peut varier d’un systéme a I'autre. Si aliased est a True,
platform() tente d’appliquer la fonction plateform.system_alias() au triplet
(system, release, version) sil est trouvé. system_alias() tente de trouver un
nom commun correspondant au triplet.

processor() -> informations sur le processeur

Renvoie le nom du processeur. Ce nom contient en général le nom du fondeur, le
modele, et la fréquence, en fonction de la maniére dont Python a été compilé

m La bibliothéque standard
TROISIEME PARTIE
Appel sous Mac OS X, avec Python 2.6

>>> 1import platform
>>> platform.processor()
'i386'
python_build(), python_compiler() et python_version()
Renvoient les informations sur 'interpréteur Python, le numéro et la date de bui/d, le
compilateur utilisé, la version.
release() -> info de release

Renvoie le numéro de release du systeme.

system() -> nom du systeme

Renvoie le nom du systéme.

version() -> version de release

Renvoie la version de release du systéme.

uname() -> (system, node, release, version, machine, processor)

Renvoie un tuple composé de résultats d’appels a diverses fonctions présentées dans
cette section. Ajoute le nom du processeur, par rapport a os.uname().

Script d’exemple d’utilisation du module platform

-*- coding: utf8
from platform dimport *

system, node, release, version, machine, processor = uname()
pbuild = python_build()

pversion = python_version()

print('Systéme: %s %s (%s)' % (system, release, version))
print('Architecture: %s' % machine)
print('Processeur: %s' % processor)
print('Nom réseau: %s' % node)
print('Version Python: %s build %s (%s)' %
(pversion, pbuild[0], pbuild[1]))

[...]
$ python 1infos.py

Systéme: Darwin 9.6.0 (Darwin Kernel Version 9.6.0: Mon Nov 24 17:37:00
PST 2008; root:xnu-1228.9.59~1/RELEASE_I386)

Principaux modules m
CHAPITRE 8

Architecture: 1386

Processeur: 11386

Nom réseau: MacZiade

Version Python: 2.6.1 build r261:67515 (Dec 6 2008 16:42:21)

Utilitaires fichiers

Ce théme est un complément au théme précédent et contient trois modules :
* shutil : fournit des fonctions de copie et suppression de fichiers.
* dircache :implémente une lecture de répertoires avec cache.

 filcmp : offre des fonctions de comparaison de répertoires et fichiers.

shutil

shutil encapsule des appels au module os pour fournir des fonctionnalités de plus
haut niveau, concernant la copie et la suppression de fichiers ou de groupes de
fichiers.

copy(src, dst)

Copie le fichier de chemin src vers dst. Si dst est un fichier existant, il est écrasé. Si
dst est un répertoire, la fonction copie le fichier dans ce répertoire. copy() recopie
les données mais également les droits d’accés.

copy2(src, dst)

Similaire 4 copy() mais copie également les dates de derniére modification et
d’acces.

copytree(src, dst[, symlinks [, ignore]))

Recopie récursivement l'arborescence de racine src vers dst en utilisant copy2 (). dst
est un chemin qui ne doit pas encore exister.

Loption symlinks permet de spécifier si les liens symboliques sont recopiés comme
liens symboliques (sym1inks=True) ou si les ressources pointées sont recopiées en lieu
et place des liens (symlinks=False ou non défini).

Loption ignore permet de filtrer certains fichiers a ne pas recopier. Cette option est
par défaut a None.Lorsqu'elle est spécifiée, ignore doit étre un callable qui regoit
pour chaque répertoire traversé le nom du répertoire et la liste de ses éléments.

La bibliothéque standard

TROISIEME PARTIE

Dans l'exemple ci-dessous (repris de la documentation officielle de Python), un log
est émis a chaque copie.
Logging des copies

from shutil dimport copytree
import logging

def _logpath(path, names):
Togging.info('Working in %s' % path)
return [] # nothing will be ignored

copytree(source, destination, ignore=_logpath)

shutil fourni aussi une fonction d’exemple ignore_patterns, qui prend une liste de
motifs de type glob pour représenter les fichiers a filtrer.

Dans I'exemple ci-dessous, les fichiers d’extension « .txt » et « .tmp » sont omis.

Recopie conditionnelle

from shutil import copytree, ignore_patterns
copytree(source, destination, ignore=ignore_patterns('*.txt', 'tmp*'))

rmtree(chemin, [ignore_errors(, onerror]))

Supprime une arborescence compléte. Si ignore_errors est a True, les erreurs de
suppression seront silencieuses. Si ignore_errors est 4 False ou non défini, les
erreurs sont passées a la fonction fournie dans onerror. Si onerror n'est pas spécifié,
lerreur est levée normalement. onerror doit pointer sur une fonction qui définit trois
parametres : function, path et excinfo.

* function détermine quelle fonction du module os a provoqué lerreur
(19stdirQ, remove() ou rmdir(Q)).

* path rappelle le chemin passé a la fonction.

* excinfo est un appel 4 sys.exc_info().

La fonction implémentée pour onerror peut ensuite décider de provoquer un raise
ou de laisser passer U'erreur.

move(src, dst)

Déplace une arborescence compléte.

AVERTISSEMENT Perte d'informations sous plate-forme Mac

Pour toutes ces fonctions, certaines métadonnées ne sont pas recopiées sous Mac, et les informations
comme le créateur sont perdues.

Principaux modules m
CHAPITRE 8
dircache

Ce module implémente une version spécifique de 1istdir(), similaire a
os.listdir() mais dont le résultat est trié, puis sauvegardé en mémoire, dans le dic-
tionnaire cache, global au module dircache.

Les appels suivants se basent alors sur la date de modification du répertoire pour
éviter de relire 'arborescence si rien n’a changé. Cette approche permet d’augmenter
tres sensiblement les performances des programmes qui accedent régulierement au
systéme de fichiers.

Utilisation du cache

>>> import dircache

>>> dircache.Tistdir('/")

['.autofsck', '.rnd', '.thunderbird', 'backups', 'bin', 'boot',
'command', 'dev', 'etc', 'home', 'initrd', '1ib', 'lost+found', 'mnt',
"nohup.out', 'opt','proc', 'root', 'sbin', 'service', 'slapd.log',
'src', 'srv', 'sys', 'tmp', 'usr', 'var']

>>> dircache.cache

{'/"': (1124398584, ['.autofsck', '.rnd', '.thunderbird', 'backups',
'bin', 'boot', 'command', 'dev', 'etc', 'home', 'initrd', 'Tib',
'Tost+found', 'mnt', 'nohup.out', 'opt', 'proc', 'root', 'sbin',
'service', 'slapd.log', 'src', 'srv', 'sys', 'tmp', 'usr', 'var'])}

dircache fournit aussi une fonction reset() pour vider le dictionnaire cache.

filecmp

Permet de comparer des fichiers et des répertoires complets.

cmp(f1, f2(, shallow=True|, use_statcache]]) ->booléen

Compare le fichier nommé f1 avec le fichier 2. Si shallow est a True, les fichiers
sont considérés égaux si un appel a os.stat() est identique pour les deux. Si shallow
est a False, une lecture du fichier est effectuée pour la comparaison. Lorsquune
comparaison par lecture est effectuée, le résultat est systématiquement mis en cache
et n'est recalculé que si les dates des fichiers changent. use_statecache est obsoléte
depuis la version 2.3.

class dircmp(a, b[, ignore|, hide])) -> instance

Crée un objet de type dircmp, qui permet de comparer les répertoires a et b. ignore
est une liste de noms a ignorer et est par défaut initialisée a ['RCS', 'CVS',
"tags']. hide est une liste de noms a ne pas afficher et est par défaut initialisée a
[os.curdir, os.pardir],soit['.', '..'] sous Unix et MS-Windows.

La bibliothéque standard

TROISIEME PARTIE

dircmp fournit ensuite un certain nombre de méthodes :

report() : affiche sur la sortie courante un comparatif entre a et b.
report_partial_closure() : affiche sur la sortie courante un comparatif entre a
et b et entre les sous-répertoires communs.

report_full_closure() : affiche sur la sortie courante un comparatif entre a et b
et entre les sous-répertoires communs, de maniére récursive.

Outre ces rapports, dircmp posséde des attributs qui permettent de récupérer des
informations sur la comparaison effectuée, soit :

left_Tist : fichiers et sous-répertoires de a, filtrés par hide et ignore ;
right_list : fichiers et sous-répertoires de b, filtrés par hide et ignore ;
common : fichiers et sous-répertoires communs ;

left_only : fichiers et sous-répertoires communs uniquement présents dans a ;
right_only : fichiers et sous-répertoires communs uniquement présents dans b ;
common_dirs : sous-répertoires communs ;

common_files : fichiers communs ;

common_funny : éléments communs mais dont les types différent, ou éléments
ayant provoqué une erreur dans os.stat() ;

same_files : fichiers communs et de contenus identiques ;
diff_files : fichiers communs mais de contenus différents ;
funny_files : fichiers communs qui n'ont pas pu étre comparés ;

subdirs : dictionnaires contenant des objets de type dircmp associés aux €élé-
ments de la liste common_dirs.

Comparaison des versions 2.3 et 2.4 de Python

>>> import filecmp

>>> comp = filecmp.dircmp('/usr/1ib/python2.4', '/usr/1lib/python2.3")
>>> nouveautes = comp.left_only

>>> disparus = comp.right_only

>>> modifies = comp.diff_files

>>> inchanges = comp.same_files

>>> nouveautes

['_LWPCookieJlar.py', 'cookielib.py', 'subprocess.py', 'decimal.py',
'_MozillaCookielar.py', '_threading_local.py']

>>> disparus

['TERMIOS.py', 'FCNTL.py', 'pre.py']

>>> modifies

['weakref.py', '"ihooks.py', 'pydoc.py',..., 'whichdb.py', 'string.py']
>>> inchanges

['Cookie.py', 'MimeWriter.py', ..., 'user.py', 'uu.py']

Principaux modules m
CHAPITRE 8

Asavor Combiner dircmp et difflib

Cet outil peut étre combiné a di ff11b, pour afficher précisément les différences entre les fichiers com-
muns dont le contenu varie.

Outils de compression

Python inclut dans sa bibliothéque standard un module z11b qui encapsule la biblio-
theéque systeme zlib. Cette derniére, distribuée par gzip, fournit un algorithme de
compression utilisé dans la plupart des formats de fichiers archives.

C’est le cas bien str du format gzip mais aussi du format zip, sachant que les fichiers
zip peuvent étre compressés en suivant plusieurs méthodes, dont zlib.

Enfin, le format tar utilise aussi la compression zlib pour construire et lire des

archives de type tar gzipped.

Cette section présente les modules qui permettent de travailler avec des archives gzip
et zip, sachant que les modules bz2 et tarfile sont respectivement basés sur le
méme mode opératoire.

gzip
Le format gzip permet de compresser des données dans un fichier archive. Il est en

énéral utilisé avec les utilitaires gzip et gunzip, qui prennent en parameétre un
général util les utilit GNU t quip tenp t
fichier et le compressent dans une archive d’extension .gz.

Le module gzip fournit une classe similaire a une classe de type file, qui permet
d’accéder de fagon transparente aux données d’une archive gzip, en lecture et en écri-
ture, comme si le fichier n’était pas compressé.

class GzipFile([filename[, mode[, compresslevell, fileobj]]]])

La classe GzipFile peut étre instanciée avec un objet fileobj représentant les don-
nées. fileobj peut étre un objet de type file ouvert, un objet StringIO, ou tout autre
objet qui puisse simuler les méthodes des objets de type fichier (read(), writeQ),
seek(), etc.). filename est ensuite utilisé pour stipuler le nom de fichier qui est placé
dans 'en-téte du fichier gzip dans le cas d’une écriture.

Si filename est 4 None, le nom renvoyé par filobj.name est utilisé. S’il est non spécifié,
mode est récupéré dans fileobj lorsqu’il est disponible. S’il ne 'est pas, il est fixé a rb par
défaut. Le mode de travail peut prendre les valeurs r, rb, pour les lectures et a, ab, w ou wb
pour les écritures, bien qu'il soit conseillé de toujours utiliser les modes binaires.

La bibliothéque standard

TROISIEME PARTIE

Lorsque fileobj est passé en parametre, son ouverture et sa fermeture sont a la
charge du développeur, en amont et en aval. Ce fonctionnement autorise la récupéra-
tion de flux compressés sans pour autant forcer une écriture de fichier sur le systeme.

Dans le cas ou filobj n'est pas spécifié ou a None, la classe utilise le nom de fichier
fourni dans filename pour ouvrir un nouvel objet file, en utilisant le mode fourni
ou par défaut, rb.

compresslevel permet de spécifier le niveau de compression pour les écritures et est
fixé a 9 par défaut, soit le niveau de compression le plus fort et le plus gourmand en
temps CPU. Les niveaux varient de 0 (le moins compressé mais le plus rapide) a 9.

open(fichier[, mode[, compresslevel]))

Raccourci direct permettant d’instancier un nouvel objet de type GzipFile sur le
fichier, a la maniére de la primitive open().

open() est utilisée dans 'exemple ci-dessous, pour simuler le fonctionnement de base
des outils gzip et gunzip.

Module gzipper.py

#!/usr/bin/python

-*- coding: IS0-8859-15 -*-

""" Ce module simule Te fonctionnement
de base de gzip et gunzip

import sys

import os

from optparse import OptionParser

from gzip import open as gzopen

option_1 = {'noms': ('-c', '"--compress'), 'dest': 'compress',
'action': 'count', 'help': 'fichier a compresser'}

option_2 = {'noms': ('-d', '--decompress'), 'dest': 'decompress',
'action': 'count', 'help': 'fichier a décompresser'?}

options = [option_1, option_2]

def _compress(filename, compresslevel=9):
""" compresse un fichier en une archive gzip

attention, écrase un éventuel fichier filename+".gz"
et ne crée que des archives par lecture binaire

original = open(filename, mode='rb"')

Principaux modules m
CHAPITRE 8

try:
compressed = gzopen(filename+'.gz', mode="wb')
try:
for Tine in original.readlines():
compressed.write(line)
finally:
compressed.close()
os.remove(filename)
finally:
original.close()

def _decompress(filename):
""" décompresse une archive gzip

attention, écrase un éventuel fichier "resultfile"
archive = gzopen(filename)
try:
if filename.endswith('.gz'):
resultfile = filename[:-3]
else:
resultfile = '%s.uncompressed' % filename

uncompressed = open(resultfile, mode='w")
try:
for Tline in archive.readlines():
uncompressed.write(Tline)
finally:
uncompressed.close()
os.remove(filename)
finally:
archive.close()

def main(options, arguments):
if Ten(arguments) != 1:
print 'usage: %s' % parser.usage
sys.exit(2)

compress = options.compress isnot None
decompress = options.decompress isnot None

if (compress and decompress) or (not compress and not decompress):
print 'usage: %s' % parser.usage
sys.exit(2)

filename = arguments[0]

if compress:
_compress(filename)

else:
_decompress(filename)

m La bibliothéque standard
TROISIEME PARTIE

zipfile

if __name_ == '__main__"':
parser = OptionParser()
parser.usage = 'gzipper [-cd] [fichier]'

for option 1in options:
param = option['noms']
del option['noms']
parser.add_option(*param, **option)
options, arguments = parser.parse_args()
sys.argv[:] = arguments
main(options, arguments)

L..]

tziade@Tarek:~/Desktop$ python gzipper.py -c started.py
tziade@Tarek:~/Desktop$ 1s started.py.gz

started.py.gz

tziade@Tarek:~/Desktop$ python gzipper.py -d started.py.gz
tziade@Tarek:~/Desktop$ 1s started.py

started.py

Bon A SAVOIR gzip et directive with

Le module gz1ip a récemment été étendu pour supporter la directive wi th.
Ainsi, un fichier pourra étre traité avec:
with gzip.open(fichier) as f:

Le format zip est plus complet que gzip car il permet de compresser dans une méme
archive plusieurs fichiers. Le module zipfiTe fournit une classe ZipFile de manipu-
lation d’une archive zip.

class ZipFile(fichier, mode[, compression)))

La classe est instanciée avec fichier, qui peut étre le nom d’un fichier ou un fichier
de type file ou assimilé, comme pour le cas de gzip.

Le mode par défaut est r et peut étre fixé a r, w ou a suivant les cas (si b est ajouté, il
est automatiquement retiré).

Le mode de compression peut étre ZIP_STORED (pas de compression, valeur par défaut)
ou ZIP_DEFLATED (compression zlib, avec un niveau de compression par défaut).

Principaux modules m
CHAPITRE 8
Une fois 'instance créée, une série de méthodes est disponible :
) P

close()

Ferme l'archive. Doit obligatoirement étre appelée pour valider des écritures.

getinfo(nom) -> objet Zipinfo

Renvoie des informations concernant I'élément nom de I'archive dans un objet de type
ZipInfo.

infolist() -> liste d’objets ZipInfo

Renvoie une liste ordonnée d’objets ZipInfo, pour chaque entrée de I'archive.

namelist() -> liste d’entrées

Renvoie une liste ordonnée des noms des entrées de ’archive.

printdir()

Affiche sur la sortie standard le contenu de l'archive.

read(name) -> data

Renvoie le contenu de I'entrée name, pour une archive ouverte en mode r ou a.

testzip() -> None ou le premier fichier défectueux

Passe en revue toutes les entrées de 'archive, et teste les codes CRC. Renvoie le nom
de la premiére entrée défectueuse ou None si tout est correct.

write(fichier[, arcname(, compress_type]))

Ajoute a I'archive, ouverte en mode w ou a, le fichier. S’il est fourni, le paramétre
arcname sera utilisé pour le nom de l'entrée. compress_type permet de spécifier un
mode de compression différent de celui général a 'archive si nécessaire.

writestr(zinfo_or_arcname, bytes)

Ecrit les données contenues dans I'objet stringbytes dans I'archive ouverte en mode
w ou a, en utilisant comme nom d’entrée celui fourni dans zinfo_or_arcname (objet
string ou objet ZipInfo).

debug

Attribut spécifiant le niveau de débogage utilisé. A 0 (par défaut), ne donne aucune
information. De 1 4 3 : informations de débogage, de plus en plus complétes, sur la
sortie standard.

La bibliothéque standard

TROISIEME PARTIE

class ZipInfo([fichier(, date_time]))

Classe complémentaire a ZipFile contenant des informations sur une entrée
d’archive. Peut étre utilisée en entrée de la méthode writestr() ou retournée par
getinfo() ou infolist().

Peut étre construite avec deux parameétres optionnels. fichier est le nom de I'entrée
et date_time un tuple de six valeurs entiéres: Année, Mois, Jour, Heures,
Minutes, Secondes, représentant la date de derniére modification de I'entrée.
Les autres attributs intéressants de ZipInfo sont :

* compress_type : type de compression de I'entrée ;

* comment : commentaires sur I'entrée ;

* volume : numéro de volume de l'entrée ;

* CRC : CRC-32 des données décompressées ;

* compress_size : taille compressée des données de I'entrée ;

* file_size : taille décompressée des données de I'entrée.

is_zipfile(fichier) -> booléen

Renvoie True si le fichier est une archive de type zip.

ALLER PLUS LOIN Exemple d'utilisation de ZipFile

Pour un exemple complet d'utilisation de ZipFile, voir I'exercice 7 du chapitre 10.

Programmation réseau

Toute la programmation réseau sous Python repose sur le module bas niveau socket,
prog y p
qui encapsule les primitives systéme d’acceés a la couche réseau.

Le module masque toute la complexité de la programmation réseau dans une
approche objet, en fournissant une fonction socket() qui génére des objets de type
socket. Ces objets publient des méthodes simples pour toutes les opérations réseau
et prennent en charge, entres autres, la création et la destruction des tampons asso-
ciés aux ressources réseau.

Lexemple ci-dessous utilise un objet socket, pour se connecter sur la machine locale,
sur le port 25, pour vérifier qu'un serveur SM'TP est actif.

Principaux modules m
CHAPITRE 8
Test SMTP

>>> import socket
>>> s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

>>> s.connect(('"', 25))
>>> data = s.recv(1024)
>>> data

'220 TocaThost ESMTP\r\n'
>>> s.close()

Cette simplicité ne supprime pas pour autant les possibilités et toutes les fonctionna-
lités de la couche réseau restent accessibles en Python. Pour plus d’informations sur
le module socket, 'exercice 13 du chapitre 10 implémente un client/serveur TCP.

Quoi qu’il en soit, 2 moins d’implémenter un protocole réseau exotique ou un serveur
particulier, il est trés rare de devoir utiliser directement le module socket. La biblio-
theéque standard fournit des modules pour la plupart des protocoles réseau connus.

Cette section présente deux modules qui implémentent des clients pour les proto-

coles HT'TP(S) et FTP (RFC 959).

Les autres protocoles sont accessibles via les modules imap1ib, smtplib, nntplib, et
consorts.

urllib2

Le module ur11ib2, version plus avancée qu'ur11ib, utilise le module httplib, pour
proposer des fonctionnalités d’acces a des URL (Universal Ressource Locator). Les
URL sont en général les adresses de pages web.

ur11ib2 gere tous les aspects du protocole HT'TP, comme 'authentification, les coo-
kies, les redirections, ou encore les flux sécurisés.

Pour des appels simples, ur11ib2 fournit une fonction urlopen() qui permet de
récupérer sous la forme d’un flux de type fichier le contenu de la ressource.

Lorsquil est nécessaire de mettre en ceuvre des options particuliéres du protocole
HTTP, comme l'authentification, la gestion des redirections, ou les GET et POST,
ur11ib2 fournit un systeme de Aandlers. Chaque option du protocole est alors gérée par
une classe spécialisée, appelée handler. (HTTPBasicAuthHandler pour l'authentification,
HTTPRedirectHandler pour les redirections, HTTPHandTer pour les GET et POST).

Ces handlers sont regroupés dans un objet appelé OpenerDirector, généré par la
fonction build_opener(), et mis en place pour étre utilisé par urlopen(), par le biais
de la fonction install_opener(). OpenDirector invoque alors le bon handler, au bon
moment, en fonction des besoins.

La bibliothéque standard

TROISIEME PARTIE

urlopen(url [, data)) -> objet de type fichier

Ouvre 'URL pointée par url et renvoie un objet de type fichier, qui possede deux
méthodes supplémentaires par rapport a un objet file classique. getur1(), qui ren-
voie 'URL, et info(), qui renvoie un dictionnaire contenant des métadonnées con-
cernant la ressource ouverte.

url peut étre un objet string qui pointe directement sur la ressource, comme la ver-
sion du module ur1Tib, mais aussi un objet Request, qui peut contenir des informa-
tions de requétage plus étendues.

Lecture d’une page web CPS

>>> import urllib2
>>> result = urllib2.urlopen('http://Tocalhost:8080/cps’')
>>> for line in result.readlines():

print Tine[:-1]

<!IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.0org/TR/xhtm11/DTD/xhtml1-transitional.dtd">

<htm1 xmlns="http://www.w3.0rg/1999/xhtm1" Tang="en"

xml:Tang="en">
<head>

<meta http-equiv="Content-Type" content="text/html;
charset=IS0-8859-15" />

<meta name='"generator" content="Nuxeo CPS http://www.cps-project.org/
" />

<title>CPS Portal</title>

<base href="http://localhost:8080/cps/" />

</body>
</html>

Pour certaines ressources HT'TP, data peut contenir des données a envoyer au ser-
veur. Ces données doivent étre au format appTication/x-www-form-urlencoded qui
est obtenu en appelant url.urlencode() avec un mapping. Cette fonction forme une
chaine de requéte cle0=valeur0O&clel=valeurl&..., similaire a celle que I'on peut
retrouver sur certaines URL. urlopen() concaténe data a url au moment de I'appel.

Création d'une chaine application/x-www-form-urfencoded

>>> import urllib

>>> data = {'clientno': '12', 'theme': 13}
>>> urllib.urlencode(data)
'theme=13&c1lientno=12"

Principaux modules m
CHAPITRE 8
class OpenDirector()

Classe gérant une collection de handlers. Les instances sont construites par un appel
a build_opener(). Présente une méthode open() similaire a openur1(), pouvant étre
utilisée pour invoquer les handlers contenus dans I'objet. Cette méthode appelle tour
a tour chaque handler de sa collection et renvoie le résultat dés qu'un handler a
accepté de prendre en charge la demande.

install_opener(opener)

Définit I'objet opener de type OpenDirector comme l'objet utilisé par défaut par tout
appel 2 openur1(). Clest la méthode open() de I'objet opener qui est appelée dans ce cas.

build_opener((handler, ...]) -> instance OpenDirector
Raccourci pour créer un objet OpenDirector garni. Renvoie un objet de type
OpenDirector qui contient une collection ordonnée de handlers :

* ProxyHandler : handler de proxy.

* UnknownHandler : gere toutes les URL de protocole inconnu.

* HTTPHandler : gére les URL HTTP.

* HTTPDefaultErrorHandler : gere les erreurs renvoyées par le serveur.

* HTTPRedirectHandler : gere les redirections.

* FTPHandler : gere les acces a des URL de type ftp.

* FileHandler : gere les accés aux URL fichiers.

* HTTPSHandler : gestion du protocole HT'TPS si la version de Python le permet.

* HTTPErrorProcessor : gere les erreurs.
La fonction peut prendre en parameétre des handlers supplémentaires, qui viennent
remplacer les handlers de la liste prédéfinie, en fonction de leurs types. Les handlers
sont conservés dans l'ordre fourni, sauf dans le cas ou la valeur de lattribut

handler_order du handler est modifiée. Cet attribut est fixé a 500 par défaut pour
tous les handlers, sauf celui pour ProxyHandler qui est a 100.

class HTTPBasicAuthHandler({password_mgr))

Handler de gestion d’authentification. Si password_mgr est fourni, doit étre un objet
de type HTTPPasswordMgr. Les objets HTTPPasswordMgr sont des objets qui conservent
des couples (nom d’utilisateur, mot de passe), associés a des couples (realms, urls).

class HTTPPasswordMgr()

Permet de conserver des couples (nom d’utilisateur, mot de passe), associés a des clés
(realms, urls). Cette classe peut étre utilisée pour mémoriser les parameétres de con-
nexion a des pages qui nécessite une authentification.

La bibliothéque standard

ftplib

TROISIEME PARTIE

class Request(url[, data][, headers]|, origin_req_host][, unverifiable])

Request permet de regrouper des informations pour une requéte a effectuer avec
urlopen(). url est 'URL 2 ouvrir, data les éventuelles données annexes a trans-
mettre, headers un dictionnaire contenant les en-tétes de la requéte.

origin_req_host et unverifiable permettent de gérer certains aspects de fonction-
nement des cookies. origin_req_host définit le request-host a Uorigine de la requéte,
qui sera utilisé par le serveur distant dans les cookies. Le request-host est le nom
d’héte racine de 'URL appelée. 11 est par défaut obtenu par I'extraction de la racine
d’url. unverifiable, par défaut a False, permet de spécifier si la requéte n'est pas
vérifiable. Une requéte non vérifiable est une requéte qui est déclenchée sans I'aval
manuel de 'utilisateur. Par exemple, la requéte qui récupére une image sur une page
web est unverifiable.

Lexemple ci-dessous accéde a la page de gestion sécurisée d'un serveur web local
Zope écoutant sur le port 8080.

Acces avec authentification

>>> import urllib2
>>> handler = url1lib2.HTTPBasicAuthHandler()
>>> handler.add_password('Zope', 'localhost:8080', 'demo', 'demo')
>>> opener = urllib2.build_opener(handler)
>>> urllib2.install_opener(opener)
>>> result = urllib2.urlopen('http://localhost:8080/manage"')
>>> for 1line in result.readlines():
print Tine[:-1]

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://
www.w3.0org/TR/REC-htm140/1o0se.dtd">

<html>

<head>

<title>Zope on http://localhost:8080</title>

</html>

Le module ftplib fournit une classe FTP qui implémente un client ftp complet.
Une session F'TP est en général composée de ces étapes :
* connexion ;

* authentification ;

Principaux modules m
CHAPITRE 8
* manipulations ;
* déconnexion.

class FTP((host(, user(, passwd|, acct]]]]))

Lorsque host est fourni, la méthode connect() est aussi appelée avec. Si le para-
métre user est fourni, un appel a la méthode Togin() est ensuite effectué. passwd et
acct sont ajoutés a I'appel si fournis. acct est un parametre qui permet de choisir un
compte ftp particulier, si le serveur implémente cette commande (ACCT).

Les méthodes principales accessibles dans un objet de type F'TP, sont :

abort()

Stoppe un transfert en cours (réussite non garantie).

close()

Ferme une connexion sans envoyer de commande QUIT au serveur. L'objet devient
alors inutilisable.

connect(host(, port])) -> résultat

Tente une connexion de l'objet au serveur host et renvoie la réponse recue sous forme
de string. Un seul appel est nécessaire au début de la session. port est par défaut a 21.
Si T'objet a été préliminairement créé avec le parametre host, il n'est pas nécessaire
d’utiliser connect (). Dans le cas contraire, cette méthode est la premiere a appeler.

cwd(pathname) -> résultat

Change le répertoire en cours sur le serveur et affiche le résultat de lopération.

delete(filename) -> résultat

Supprime le fichier filename sur le serveur et renvoie le résultat de 'opération. Une
erreur est levée en cas d’échec.

dir(argument, ...]) -> listing

Récupere un listing du répertoire en cours, par le biais de la commande LIST. Le
résultat est envoyé dans la sortie standard. Des arguments supplémentaires peuvent
étre fournis, et sont concaténés a la commande envoyée au serveur (comme le nom
d’un sous-répertoire a lister). Si le dernier argument fourni est une fonction, elle est
appelée pour chaque entrée du listing, pour pouvoir étre parsée.

La bibliothéque standard

TROISIEME PARTIE

login([user(, passwd(, acct]]])

Se connecte au serveur FTP en utilisant les paramétres user et passwd s’ils sont
fournis. Si user n'est pas fourni, anonymous est utilisé. Si user est a anonymous et
que le passwd n’est pas fourni, anonymous@ est utilisé pour ce deuxiéme champ.
login() ne doit pas étre appelée si I'objet a été préliminairement initialisé avec use.
Dans le cas inverse, doit toujours étre appelée apres la connexion. Les opérations sur
le serveur ne peuvent étre effectuées pour la plupart qu'aprés un appel a ToginQ.

mkd(pathname) -> chemin absolu

Crée un nouveau répertoire sur le serveur, et renvoie son chemin complet.

nist(argumentf, ...])) -> liste de fichiers

Equivalente a dir(), mais renvoie les fichiers sous forme de liste et ne gére pas de
fonction callback.

pwd() -> chemin courant

Renvoie le chemin courant sur le serveur.

quit()
Envoie le signal QUIT au serveur, et ferme la connexion. close() doit ensuite étre

appelée.

rename(ancien_nom, nouveau_nom) -> résultat

Renomme le fichier distant ancien_nom en nouveau_nom.

retrbinary(commande, callback[, maxblocksize|, rest]])

Récupere un fichier en mode binaire, par le biais de la commande, de la forme « RETR
nom de fichier ». callback est une fonction appelée a chaque bloc de données
recu, maxblocksize permet de définir la taille maximale des blocs en octets.

rest est une chaine de caractéres optionnelle et qui sera utilisée en parametre de la
commande RESTART par le serveur au cas ou le transfert est interrompu. Clest un
marqueur qui détermine la position ou reprendre le chargement.

retrlines(commande [, callback])

Récupere les données en ligne, par le biais de la commande, de la forme « RETR nom de
fichier ». callback est une fonction appelée a chaque bloc de données regu. Si
callback n'est pas fournie, la ligne est imprimée par le biais de
ftplib.print_1ine(Q).

Principaux modules m
CHAPITRE 8
rmd(dirname) -> résultat

Supprime le répertoire dirname.

storbinary(commande, file[, blocksize])

Envoie un fichier pointé par un objet file ouvert en lecture. commande est de la
forme « STOR nom fichier », blocksize détermine la taille du tampon de lecture
(8192 par défaut). Le fichier est envoyé en mode binaire.

storlines(commande, file)

Equivalente a storbinary, pour les fichiers texte. Envoie le contenu du fichier ligne
a ligne.

Session FTP

>>> import ftplib

>>> ftp = ftplib.FTP('localhost')

>>> ftp.getwelcome()

'220 ProFTPD 1.2.10 Server (ProFTPD Default Installation) [127.0.0.1]"'
>>> ftp.login('tziade', 'xxx')

'230 User tziade logged in.'

>>> Ttp.dirQ

-rw-r--r-- 1 tziade 4704 Jul 27 19:58 5505.tgz
-rw-rw-r-- 1 tziade 473 Feb 15 2005 backup.sh
-rw-r--r-- 1 tziade 292694 Mar 27 22:09
enigmail-0.91.0-tb-Tinux.xpi

-rw-rw-r-- 1™ tziade 10315 Jan 3 2005 dinstall.py
-rw-r--r-- 1 tziade 9269 May 3 14:05 Tog.txt
drwxr-xr-x 13 (?) tziade 4096 Jul 11 23:37 server
drwxr-xr-x 2 (™ tziade 4096 Jul 11 23:37 www

>>> ftp.quit(Q)
'221 Goodbye.'

En un mot...

Cette premiere série de modules constitue une bonne trousse a outils pour la pro-
grammation systeme. Le prochain chapitre aborde des modules plus orientés sur la
programmation.

Principaux modules, partie 2

Ce chapitre présente les modules majeurs de la bibliothéque standard couvrant les
thémes suivants :

* persistance ;

* conversion, transformation de données ;
* calculs numériques ;

* structures de données ;

* utilitaires divers.

Persistance

Python fournit dans sa bibliotheque standard des outils de sérialisation d’objets de
trés haut niveau, qui peuvent permettre a un programme de sauvegarder des données
et de les recharger sans avoir 4 mettre en place un systéme de sauvegarde plus poussé,
comme une base de données.

Les modules cPickle et shelve offrent des fonctionnalités de sauvegarde totalement
transparentes qui mémorisent I'état des attributs d’'un objet quelconque. Cette
approche générique permet de bénéficier directement de ce mécanisme sans avoir a
mettre au point du code spécifique.

La bibliothéque standard

TROISIEME PARTIE

cPickle

cPickle offre un mécanisme de sérialisation des objets trés puissant : tout objet en
mémoire peut étre sauvegardé sur le systéme de fichiers puis rechargé par la suite.
cPickle est le grand frere du module pickle : il implémente 4 peu de choses pres les
mémes fonctionnalités mais est codé en C, donc beaucoup plus rapide.

cPickle est supérieur au module de fonctionnalités similaires marshal car il permet
de sérialiser de maniére transparente tout type de classe.

e mécanisme de sérialisation ne sauvegarde pas le code des fonctions ni les
L d alisat d le code des fonct 1
paramétres : une simple référence est conservée et il est nécessaire de pouvoir
retrouver ces définitions lorsqu’un objet est dé-sérialisé.

Les rares types d’objets ne pouvant étre sérialisés par cPickle sont dits unpickable et
sont les instances de socket, les pointeurs de fichiers et les threads. Les objets compa-

tibles sont dit pickable.

cPickle fournit deux types de fonctions pour sérialiser les objets :

* dump() et Toad(), pour une écriture et une lecture directe dans un objet de type
fichier ;

* dumps() et Toads (), pour récupérer et fournir les flux sous forme de string.

dump(objet, fichier{, protocol])

Sérialise l'objet. fichier est un objet qui doit présenter une méthode write(), uti-
lisée par dump (). C’est en général un objet de type fichier (ouvert en écriture) ou assi-
milé, comme StringIO.

protocol est un parameétre qui permet de déterminer la structure créée pendant la
sérialisation. Avec une valeur a 0 par défaut, cette structure reste la méme pour toutes
les versions de Python passées ou a venir et assure ainsi une compatibilité ascendante.
1 détermine une structure plus efficace et 2 la meilleure structure possible.

Pour Python 2.4 et supérieur, la valeur 2 peut étre récupérée par la variable
cPickle .HIGHEST_PROTOCOL, qui détermine la valeur maximum pour la version cou-
rante, sachant que les prochaines versions introduiront certainement des valeurs sup-
plémentaires. Une valeur négative est équivalente a cPickle.HIGHEST_PROTOCOL.

load(fichier) -> objet

Utilise 'objet fichier pour reconstruire 'objet sérialisé. fichier est un objet de type
file ou assimilé qui doit fournir les méthodes read() et readlines().

Principaux modules, partie 2 m
CHAPITRE 9

dumps(objet(, protocole]) -> chaine

Similaire 2 dump (), mais renvoie le résultat de la sérialisation dans un objet de type str.

loads(chaine [, protocole]) -> objet

Similaire & Toad() mais utilise un objet de type str plutdét qu'un fichier.

Utilisation de loads et dumps

>>> from cPickle import loads, dumps
>>> class MyClass(object):
def __init_ (self):
self.data = [1, 2, 3]

>>> instance_of = MyClass()

>>> instance_of.data.append(56)

>>> serialisation = dumps(instance_of)

>>> serijalisation
"ccopy_reg\n_reconstructor\npl\n(c__main__\nMyClasse\np2\nc__builtin__\
nobject\np3\nNtRp4\n(dp5\nS'data’'\np6\n(Tp7\nIl\nal2\naIl3\nalI56\nasb."
>>> more = loads(serialisation)

>>> more.data

[1, 2, 3, 56]

Plusieurs objets peuvent étre sérialisés dans le méme flux, grice a la classe Pickler,
qui permet de gérer un fichier et d’y accumuler des objets, et a la classe Unpickler qui
renvoie les objets reconstruits.

class Pickler(fichier [, protocole])
Pickler sinstancie avec un objet de type file comme dump() et offre deux
méthodes :

* dump(object) : sérialise I'objet dans le fichier. Peut étre appelée plusieurs fois
pour stocker plusieurs objets.

* clear_memo() : permet d’initialiser le cache interne, qui contient 'ensemble des
objets visités par les sérialisations. Utile lorsque I'objet est réutilisé.

class Unpickler(fichier)

Unpickler fournit une interface de désérialisation :

* load() :litle flux et retourne un objet. Peut étre appelée plusieurs fois pour récu-
pérer les objets stockés dans le flux. Lorsque la fin des données est atteinte, une
erreur EOFError est levée.

* Noload() : similaire 2 Toad() mais ne charge pas les objets en mémoire (des
objets None sont renvoyés). Permet de parcourir la structure.

m La bibliothéque standard
TROISIEME PARTIE

Utilisation de Pickler et Unpickler

>>> from cPickle dimport Pickler, Unpickler
>>> class MyClass(object):
def _ _init__(self, name):
self.data = [1, 2, 3]
self.name = name

>>> def Toad(objects):
f = Pickler(open('datas', 'w'))
for obj 1in objects:
f.dump(obj)

>>> def unload():
f = Unpickler(open('datas', 'r'))
objects = []
while 1:
try:
objects.append(f.Toad())
except EOFError:
break
return objects

>>> Toad([MyClass('1'), MyClass('2')1])

>>> objects = unload()

>>> for obj in objects:
print(obj.name)

shelve

Le module shelve se base sur cPickle pour fournir un systeme de dictionnaire per-
sistent. Ce dictionnaire est utilisé comme tout autre dictionnaire dans le programme
et peut contenir tout objet pickable. Les données sont sauvegardées dans une base de
données sur le systéme de fichiers.

Le type de base de données utilisé est choisi automatiquement et dépend des biblio-
théques installées sur le systéme, et peut étre :
* une base dbm sous Unix ;

* une base GNU/dbm sous Unix ;
* une base Berkeley DB sous Unix et Windows.

shelve fournit une fonction open() qui retourne une instance d’un tel dictionnaire.

Principaux modules, partie 2 m
CHAPITRE 9

open(nom_fichier(, flag[, protocole(, writeback]]))

Ouvre un dictionnaire persistent contenu dans le fichier nom_fichier. flag déter-
mine le type d’ouverture, a savoir :

* r :lecture seule ;
* w : lecture-écriture ;
* c : création si base de donnée inexistante, puis accés en lecture-écriture (valeur

par défaut).

protocole, s’il est fourni et différent de None, est passé directement a cPickle, et
détermine la structure de sérialisation (voir la section précédente).

Lorsque writeback est fourni et différent de True, shelve conserve en mémoire tous
les éléments modifiables du dictionnaire et les réécrit dans le fichier au moment de la
termeture. Cette option permet de mettre a jour automatiquement ces éléments mais
peut devenir relativement gourmande en mémoire.

Utilisation de shelve

>>> import shelve
>>> import __builtin__
>>> documentation = shelve.open('primitives.db')
>>> for element in dir(__builtin_):
if element.startswith('_'):
continue
doc = getattr(__builtin__, element).__doc
try:
documentation[element] = doc
except TypeError:
print 'impossible de pickler %s' % str(doc)

>>> documentation.close()

>>> documentation = shelve.open('primitives.db')

>>> for element in documentation:
print('primitive %s:\n%s\n\n' % \

(element, documentation[element]))

[...]

primitive getattr:

getattr(object, name[, default]) -> value

Get a named attribute from an object; getattr(x, 'y') is equivalent to
X.Y.

When a default argument 1is given, it is returned when the attribute
doesn't

exist; without it, an exception is raised in that case.

La bibliothéque standard

TROISIEME PARTIE

Conversion, transformation de données

Les algorithmes les plus fréquemment utilisés pour 'encodage de données, que ce
soit pour leur transport ou leur hachage, sont fournis dans la bibliothéque standard
sous forme de fonctions trés simples d’usage.

Cette section présente base64 et hashlib.

base64

base64 fournit des fonctions d’encodage et de décodage de données binaires au for-
mats définis par la norme RFC3548, 4 savoir base16, base32 et base64. Cet encodage
fait correspondre a chaque valeur un signe de I'alphabet base16, 32 ou 64. Il est uti-
lisé pour transformer des données binaires en données texte qui peuvent étre trans-
portées dans certains protocoles d’échanges qui ne supportent que du texte, comme

HTTP ou IMAPA4.

b64encode(chaine|, altchars)) -> chaine

Encode les données contenues dans l'objet string chaine. Si altchars est spécifié et
est différent de None, c’est un objet string de longueur 2, qui définit un caractere spé-
cifique pour les caractéres + et /. Cette variation permet de définir des flux base64
compatibles avec certains formats, comme les URL.

b64decode(chaine|, altchars]) -> chaine
Décode les données contenues dans chaine.
Les autres formats sont rarement utilisés, et le module base64 fournit des fonctions
raccourcis pour encoder et décoder en base64, a savoir :
* encodestring(s) : équivalente a b64encode(s) ;
* decodestring(s) :équivalente a b64decode(s) ;

* encode(input, output) : encode le contenu pointé par I'objet input vers 'objet
output. input et output sont des objets de type fichier ou assimilés, et doivent
étre ouverts dans les bons modes ;

* decode(input, output) :équivalente & encode (), mais pour le décodage.
Encodage d’un fichier binaire

>>> from base64 import encode, decode

>>> fichier_pdf = open('CPS.pdf', 'r')

>>> fichier_pdf_b64 = open('CPS.pdf.b64', 'w')
>>> encode(fichier_pdf, fichier_pdf_b64)

Principaux modules, partie 2 m
CHAPITRE 9
>>> fichier_pdf_b64.close()

>>> fichier_pdf_b64 = open('CPS.pdf.b64', 'r')
>>> for i 1in range(5):
fichier_pdf_b64.readline()

' JVBER10xLjQNCiXk9tzfDQoxIDAgh2]gqDQo8PCAVTGVuUZ3RoIDIgMCBSDQogICAVRMTsdGVYICIG\n'
"bGFOZURTY29kZQOKPj4NCnNOcmVhbQOKeJyVWtugZMcNfTIw/mE/GIKu+wVMII7HkEeDIR+QxAnB\n'
' J8F+ye+nS1pLpd09nhAMnTarSpc11Uq10+H6z/vbL1edthce8epp/7+W/fIf/3b9+avrX+9v8dr/\n'
' /fr397ewWdfH+9talx9/3juu/S//r9/+4/3tp6/e3364frnqCI9+9dGu2PpjXHk88pGIFMXeyhUe\n'
'0fRQ179ThjhFWx1xmTFieMyts44Msi4NddT176aiUGOpOVR/NK7 cGwekbNZ41EXFtVyo9T1BoG7K\n'

haslib

has1ib fournit, par une série de fonctions, une interface a 6 algorithmes de hashage,
a savoir :

* md5

* shal

* sha224

* sha256

* sha384

* sha512

Tous ces algorithmes peuvent étre manipulés par des objets retournés par chacune de
ces fonctions, et respectent la méme interface.

Prenons I'exemple des deux algorithmes les plus utilisés : md5 et shal.

haslib.md5

md5 fournit une implémentation de I'algorithme de hachage de la RSA, le Message
Digest 5. Cet algorithme permet de créer une clé (quasi-)unique de 128 bits, a partir
des données fournies. Revenir aux données originelles depuis une clé de hachage est
(quasi-)impossible.

Ce genre de signature permet de garantir de maniére sécurisée I'intégrité des données
dans certaines situations :

* Lorsque l'on télécharge une archive sur Internet, la clé MD5 qui peut 'accompagner
permet de garantir que le fichier n'est pas corrompu : une fois le téléchargement ter-
miné, la clé est recalculée sur le systéme local et comparée avec la clé originelle.

* Les systemes d’authentification stockent bien souvent des clés de hachage MD5
au lieu des mots de passe en clair : au moment de 'authentification d’un utilisa-
teur, ce n'est pas le mot de passe saisi qui est comparé mais sa clé de hachage.

La bibliothéque standard

TROISIEME PARTIE

* Des systemes de cache mémoire peuvent utiliser MD5 pour identifier une don-
née, etc.

has1ib.md5() fournit un objet md5, décrit ci-dessous.

class md5([chaine))

Les objets de type md5 peuvent étre initialisés avec un objet de type string. Ils four-
nissent quatre méthodes :
* update(s) : concatene l'objet de type string a la chaine déja stockée.
* digest() : calcule et renvoie la clé correspondant a la chaine stockée.
* hexdigest() :calcule et renvoie la clé comme digest(), mais sous la forme d’une
représentation hexadécimale. Cest la forme la plus utilisée.
* copy() :renvoie un clone de 'objet md5. Permet d’optimiser les calculs MD5 qui
sont relativement coGteux : si la chaine stockée est une sous-chaine d’une autre
chaine a calculer, 'objet peut étre réutilisé par ce biais.

Calcul de la clé MD5 d’un fichier

>>> import hashlib

>>> cle = hashTlib.md5Q)

>>> with open('Plone.pdf') as f:
cle.update(f.read())

>>> digest = cle.hexdigest()
>>> digest
'5e6ff71b1791f645cfbfd0d6f8d8e522"'

hashlib.sha

Les clés MD5 peuvent étre cassées en quelques jours, moyennant une puissance de
calcul importante et des techniques complexes. La recherche des collisions est une de
ces techniques et tente de trouver deux données différentes qui génerent la méme clé

de hachage.

Lalgorithme SHA-1 offre une clé de hachage moins sensible aux collisions et plus
difficile a casser. Il est implémenté par le module sha, qui fournit exactement la
méme interface que md5.

Calcul de la clé SHA-1 d’un fichier

>>> 1import hashlib

>>> cle = hashlib.sha(Q)

>>> with open('zasync .pdf') as f:
cle.update(f.read())

Principaux modules, partie 2 m
CHAPITRE 9

>>> digest = cle.hexdigest()
>>> digest
'1332e8e7c¢13¢c700d132babf392216c7495alelal’

Calculs numériques

Python fournit des fonctions mathématiques de base, regroupées dans le module math.
Le module cmath fournit les mémes fonctionnalités pour les nombres complexes.

math

Le module math fournit un certain nombre de fonctions mathématiques courantes. Ces
derniéres accedent directement aux fonctions de la bibliothéque C et sont trés rapides.

Elle peuvent étre regroupées en trois ensembles :
* fonctions de conversion ;
* fonctions trigonométriques ;

* constantes.

fonctions de conversion

ceil(x) -> réel

Renvoie, sous forme de réel, la premiére valeur entiere supérieure au réel x.

exp(x) -> réel

Renvoie e**x. e est la constante mathématique de valeur arrondie 2.72.

fabs(x) -> réel

Renvoie la valeur absolue de x. x peut étre un entier ou un réel. Equivalente A abs()
mais renvoie toujours un réel.

floor(x) -> réel

Renvoie, sous forme de réel, la premiére valeur entiere inférieure au réel x.

fmod(x, y) -> réel

Renvoie x modulo y. Cette fonction peut renvoyer un résultat différent de x % y pour
les réels, a cause du fonctionnement des réels dans Python. fmod(x, y) est préco-
nisée pour les réels et x % y pour les entiers.

m La bibliothéque standard

TROISIEME PARTIE
frexp(x) -> (m, e)
Décompose x en (m, e), tel que x est égal am * (2%*e).
Idexp(m, e) -> x

Renvoie m * (2**e), soit I'inverse de frexp().

log(x[, base]) -> réel

Renvoie le logarithme de x. Si base n'est pas spécifié, c’est le logarithme de base e
(logarithme naturel) qui est calculé.

log10(x) -> réel

Equivalente a Tog(x, 10).

pow(x, y) -> réel

Renvoie x**y.

modf(x) -> (fraction, entier)

Décompose le réel en ses parties fractionnaire et entiere, sous la forme d’un tuple de
deux réels.

fonctions trigonométriques

acos(x) -> réel

Renvoie 'arc cosinus de x en radians.
asin(x) -> réel

Renvoie 'arc sinus de x en radians.
atan(x) -> réel

Renvoie 'arc tangente de x en radians.

atan2(y, x) -> réel

Equivalentc A atan(y/x).

cos(x) -> réel

Renvoie le cosinus de x en radians.

cosh(x) -> réel

Renvoie le cosinus hyperbolique de x en radians.

Principaux modules, partie 2

degrees(radians) -> degrés

Convertit en degrés un angle exprimé en radians.

hypot(x, y) -> réel

Renvoie sqrt(x*x + y*y). Soit la norme euclidienne.

radians(degrés) -> radians

Convertit en radians un angle exprimé en degrés.
sin(x) -> réel

Renvoie le sinus de x en radians.

sinh(x) -> réel

Renvoie le sinus hyperbolique de x en radians.
sqrt(x) -> réel

Renvoie la racine carrée de x.

tan(x) -> réel

Renvoie la tangente de x en radians.

tanh(x) -> réel

Renvoie la tangente hyperbolique de x en radians.

constantes

e
Constante mathématique e (constante d’Euler).

pi

Constante mathématique

Calcul d’angles

>>> degres = 55

>>> degres * math.pi / 360.0
0.47996554429844063

>>> math.sin(degres)
-0.99975517335861985

CHAPITRE 9

m La bibliothéque standard
TROISIEME PARTIE

Structures de données

array

Il est possible d’utiliser dans certains cas précis des types de données spécialisés.
* array permet de gérer des listes de valeurs de type homogene ;
* abc définit des classes de base abstraites ;
* collections offre des conteneurs haute performance ;
* cStringIO fournit une chaine de caractéres qui fonctionne comme un type file ;

* decimal permet de travailler avec des nombres décimaux.

Le module array définit une structure de données équivalente aux listes mais pour
des éléments du méme type. Les éléments sont convertis et placés dans un
conteneur C, ce qui rend certaines manipulations beaucoup plus rapides qu’avec une
liste.

array(typecode(, initializer]) -> tableau

typecode détermine le type des éléments stockés, et correspond aux types C.
typecode peut prendre les valeurs suivantes :

* ¢ :string de longueur 1 stocké dans un char ;

* u :unicode de longueur 1 ;

* b :entier stocké dans un signed char ;

* B : entier stocké dans un unsigned char ;

* h : entier stocké dans un short int ;

* H : entier stocké dans un unsigned short int ;
* i :entier stocké dans un signed int ;

* I :entier stocké dans un unsigned int ;

* 1 :entier long stocké dans un signed long ;

* L : entier long stocké dans un unsigned long ;
* f :réel stocké dans un float ;

* d :réel stocké dans un double.

initializer, si fourni, est une séquence contenant des éléments a placer dans le
conteneur. Les objets de type array fournissent des méthodes de manipulation des
éléments et des méthodes de conversion.

Principaux modules, partie 2 m
CHAPITRE 9

Méthodes de manipulation
Toutes ces méthodes supposent, lorsqu'un élément est fourni, qu’il est du type cor-
respondant au tableau, sans quoi une erreur de type TypeError est levée :

* count(x) :renvoie le nombre d’occurrences de I'élément x dans le tableau.

* extend(array or iterable) : ajoute les éléments de I'array ou de la séquence
passée.

* index(x) : renvoie l'index de la premiére occurrence de x dans le tableau. Si x
n'est pas présent dans le tableau, une erreur ValueError est levée.

* insert(i, x) :ajoute I'élément x avant I'élément de position i. Si i est négatif, il
correspond a I'index Tongueur - 1.

* pop([i]) :renvoie 'élément d’index i et I'enléve du tableau. Si i nest pas fourni,
c’est le dernier élément qui est renvoyé.

* remove(x) : retire la premiére occurrence de x du tableau. Si x n'est pas présent
dans le tableau, une erreur ValueError est levée.

* Reverse() : retourne le tableau, tel que le premier élément se retrouve en der-
niére position, et ainsi de suite.

Méthodes de conversion
Les méthodes de conversion permettent de transformer le contenu du tableau en un
autre objet, et inversement d'importer un objet dans le tableau :

* tofile(f) :sérialise le tableau dans I'objet de type fichier ou assimilé f.

* tolist() : convertit le tableau en objet Tist.

* tostring() : convertit le tableau en objet string. Le contenu de l'objet string
correspond au contenu brut en octets du tableau.

* tounicode() : équivalente a tostring() mais renvoie un objet unicode et ne
fonctionne qu’avec un array de type u.

* fromfile(f, n) :lit n éléments de l'objet de type fichier (et non assimilés). Si
moins de n items sont disponibles, une erreur EOFError est levée.

* fromlist(list) : ajoute les éléments de la liste en fin de tableau. Si un des élé-
ments nest pas du bon type, 'opération est annulée et une erreur de type
TypeError est levée.

* fromstring(s) : ajoute les éléments de la chaine de caractéres en fin de tableau.
Les caracteres sont interprétés comme contenu brut, comme pour tostring().

* fromunicode(s) : équivalente a fromstring(), mais ajoute des caractéres uni-
code. Le tableau doit étre de type u.

m La bibliothéque standard
TROISIEME PARTIE

abc

Array en action

>>> import array

>>> tableau = array.array('c', 'Oh, mon tableau, o, 0000')
>>> tableau.count('o')
3

>>> tableau.extend(', tu es le plus beau des tableaux')

>>> tableau.insert(0, '0")

00h, mon tableau, o, 0000, tu es le plus beau des tableaux

>>> entiers = array.array('i', [1, 2, 3, 4, 5D

>>> entiers.tostring()
"\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x05\x
00\x00\x00"

Le module abc introduit un concept de classe abstraite, décrit dans le PEP 3119
(voir http://www.python.org/dev/peps/pep-3119).

Une classe abstraite est une classe qui permet de définir un certain nombre de
méthodes dites abstraites. Une méthode abstraite est une méthode qui n’est pas réel-
lement utilisée dans un programme, mais qui sert de guide a 'ensemble des classes
dérivées.

Prenons l'exemple d’une classe Sized, qui définit la méthode abstraite _ len__.
Définir une méthode abstraite en Python peut se faire en levant une I'exception
NotImplementedError dans le code.

Classe abstraite Sized

>>> class Sized(object):
def __len__(self):
raise NotImplementedError

Ainsi, elle ne peut pas étre utilisée directement, et il faut implémenter __len__ dans
une classe dérivée appelée classe concréte.

Classe Data

>>> class Data(Sized):
def __init__(self):
self. _data = []
def add(self, data):
self._data.append(data)

Principaux modules, partie 2 m
CHAPITRE 9

def __Ten__ (self):
return len(self._data)

>>> d = Data(Q)
>>> d.add('data')

La classe Data peut évidemment se passer de Sized pour fonctionner dans cet
exemple, mais cette couche d’abstraction permet d’utiliser Sized comme un mar-
queur indiquant qu'un objet implémente __Ten__. Le test d’appartenance ci-dessous,
indique qu'il est possible d’utiliser Ten() sur d.

Test de I'appartenance de d a Sized

>>> isinstance(d, Sized)
True

>>> len(d)

1

On peut traduire isinstance(d, Sized) par « Est-ce que je peux utiliser Ten sur d ? ».

abc sert a formaliser ce mécanisme. Une métaclasse ABCMeta est implémentée dans ce
module, ainsi qu'un décorateur abstractmethod.

Sized avec abc

>>> from abc import ABCMeta, abstractmethod
>>> class Sized(object):
__metaclass__ = ABCMeta
@abstractmethod
def _ Ten_ (self):
return 0

Sized utilise dans ce cas ABCMeta comme métaclasse et marque __Ten__ avec le déco-
rateur abstractmethod pour indiquer que c’est une méthode abstraite.

Cette méthode devra obligatoirement étre implémentée, et toute tentative d’instan-
ciation d’une classe contenant encore des méthodes abstraites provoquera une erreur.
Lutilisation explicite de NotImplementedError n'est donc plus requise.

Création de Data au-dessus de Sized

>>> class Data(Sized):
pass

La bibliothéque standard

TROISIEME PARTIE

>>> d = Data(Q)
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
TypeError: Can't instantiate abstract class Data with abstract methods
len
>>> class Data(Sized):
def _ init_ (self):
self._data = []
def add(self, data):
self._data.append(data)
def _ len_ (self):
return len(self._data)

>>> d = Data()
>>> issubclass(Data, Sized)
True

Le probleme de cette implémentation est quil reste nécessaire de faire dériver Data
de Sized pour pouvoir bénéficier du mécanisme. A terme, les arbres de dérivation
deviennent trés complexes et 'héritage multiple fréquent.

Pour éviter ce probléme, ABCMeta ajoute une fonction register a la classe abstraite. Ceci
permet de lui associer une classe arbitraire sans que cette derniére ne doive en dériver.

Utilisation de register

>>> class Data(object):
def __init_ (self):
self._data = []
def add(self, data):
self._data.append(data)
def _ len_ (self):
return len(self._data)

>>> Sized.register(Data)
>>> issubclass(Data, Sized)
True

Cette fonctionnalité désolidarise les classes des classes abstraites et rapprochent ces
derniéres du concept d’interface. Un programme peut alors marquer des classes
comme implémentatrices de méthodes définies dans des classes abstraites.

Il est aussi possible d’exprimer cette association explicite de maniére implicite en
implémentant au niveau de Sized une méthode de classe __subclasshook__, qui sera
invoquée a chaque appel de issubclass.

Principaux modules, partie 2 m
CHAPITRE 9

Utilisation de __subclasshook___

>>> class Sized(object):
_ _metaclass__ = ABCMeta
@abstractmethod
def __ Ten_ (self):
return 0
@classmethod
def _ subclasshook__ (cls, O):
if cls 1is Sized:
if any("__len__" in B.__dict__ for B in C.__mro__):
return True
return NotImplemented

Pour chaque appel issubclass(C, Sized), cette méthode doit retourner True si la
classe C implémente __Ten__ et NotImplemented (ou False) si elle ne I'implémente pas.

I n'est donc plus utide lorsque _ subclasshook__ est implémentée, dappeler
register : toute classe testée par le biais de issubclass sera validée par cette méthode.

Test du hook sur des classes arbitraires

>>> issubclass(list, Sized)
True

>>> issubclass(object, Sized)
False

Le module collections, présenté ci-dessous, fournit une série I’ ABC (Abstract Base

Classes).

collections
Ajouté dans la version 2.4, le module collections introduit des conteneurs de don-
nées treés performants, a savoir :
* deque : une file 2 double entrée ;
* defaultdict : un mapping avec valeur par défaut ;
* namedtuple : un tuple avec des accesseurs nommeés.

Enfin, collections introduit un certain nombre d’ABC.

Le type deque

Le type deque est un conteneur qui fonctionne comme une file, mais permet d’ajouter et
de récupérer des données des deux cotés de la file, avec les mémes performances.

m La bibliothéque standard
TROISIEME PARTIE
deque([iterable])

Renvoie un objet deque, initialisé avec la séquence iterable si elle est fournie. Les
objets de type deque fournissent un certain nombre de méthodes, a savoir :

* append(x) : ajoute 'élément x a droite de la file.
* appendleft(x) :ajoute 'élément x a gauche de la file.
* clear() :supprime tous les éléments de la liste.

* extend(iterable) :ajoute un a un les éléments de la séquence iterable a droite

de la file.

* extendleft(iterable) : ajoute un a un les éléments de la séquence iterable a

gauche de la file.

* pop() : renvoie le dernier élément de la file et le retire. Si la file est vide, une
erreur IndexError est levée.

* popleft() :renvoie le premier élément de la file et le retire. Sila file est vide, une
erreur IndexError est levée.

* rotate(n) : effectue une rotation de n pas vers la droite de la file. Une rotation
passe le dernier élément en premier, n fois.

Utilisation d’un deque

>>> from collections 1import deque

>>> d = deque("Le saut a T1'élastique™)
>>> d.pop(Q)

lel

>>> d.popleft()

lLl

>>> d.rotate(4)

>>> d.pop()

lsl

Le type defaultdict

Type hérité de dict, defaultdict permet d’attribuer automatiquement une valeur
lors de la premieére utilisation d’une clé. Un callable passe en paramétre du construc-
teur et renvoie la valeur a appliquer par défaut. On appelle cela un factory.

Dans l'exemple suivant, les clés sont initialisées par défaut a 0. En effet, int crée un
entier qui vaut 0 s'il est appelé sans paramétre.

Utilisation de la factory

>>> from collections import defaultdict
>>> d = defaultdict(int)
>>> d['a']

Principaux modules, partie 2 m
CHAPITRE 9

0
>>> d
defaultdict(<type 'int'>, {'a': 0})

Ce comportement permet de s’affranchir du code d’initialisation lorsque les diction-
naires sont utilisés pour des calculs sur des séries.

Occurrences de lettres dans un texte

>>> from string import lowercase
>>> from collections 1import defaultdict
>>> sentence = "Ceci est un texte. Banal, certes. Mais c'est un texte"
>>> counter = defaultdict(int)
>>> for car 1in sentence:

if car not in Towercase:

continue
counter[car] += 1

>>> for car in lowercase:
print('%s: %s' % (car, counter[car]))

N X =< <cCrtWTODTOSS XKLL -1TTQ HDQONTR
OONOONNPROOOWOROONOODODLOWOWOW

La bibliothéque standard

TROISIEME PARTIE

Ainsi, I'initialisation automatique de chaque clé simplifie la conception d’un comp-
teur d’occurrence des lettres dans un texte.

La fonction namedtuple

namedtuple est une fonction qui génére des tuples nommés dont les fonctionnalités
sont étendues. namedtuple prend en parameétre un nom de type et une chaine qui
contient des noms d’attributs séparés par des espaces ou des virgules. Ce nouveau
type est comparable aux structures nommées du C++.

Création d’un tuple User

>>> from collections 1import namedtuple

>>> User = namedtuple('User', 'first_name last_name Togin password')
>>> joe = User('joe', 'biden', 'jbiden', 'obama2009')
>>> joe

User(first_name='joe', Tast_name='biden',
Togin="'jbiden', password='obama2009"')

>>> joe.password

'obama2009"'

Lintérét des tuples nommés est de fonctionner exactement comme des tuples classi-
ques tout en étant plus faciles a manipuler grace aux libellés attribués a chaque posi-
tion de séquence. Si nous reprenons notre exemple, pour récupérer la valeur du mot
de passe, joe.password est beaucoup plus explicite que joe[-1].

La méthode de classe _make(iterable) génére également une instance de tuple

nommé et lui assigne les valeurs fournies dans I'itérable.

Utilisation de _make

>>> values = ['tarek',6 'ziadé', 'tziade', 'poupoum']

>>> User._make(values)

User(first_name='"tarek', last_name='ziad\xc3\xa9',
Togin="tziade', password='poupoum')

Les Abstract Base Classes

collections propose pas moins de seize Abstract Base Classes ou ABC. Elles se
basent sur 'implémentation des méthodes spéciales existantes en Python comme
__len__ou __iter__, et permet d’associer un nom de classe abstraite 4 un certain
nombre de concepts déja existants.

La liste des ABC est accessible a ’adresse suivante :

http://docs.python.org/library/collections.html#abcs-abstract-base-classes.

Principaux modules, partie 2 m
CHAPITRE 9

decimal

Introduit dans la version 2.4, le module decimal crée des objets de type Decimal afin
de représenter des nombres décimaux. Les objets de type Decimal s’instancient avec
un objet string, un entier, ou un tuple, représentant le nombre décimal.

class Decimal([value [, context]])

value peut étre :
* un objet string, qui représente un décimal en respectant la syntaxe numérique ;
* un entier ;
* un tuple de trois éléments :
— le signe (0 pour positif, 1 pour négatif) ;
— un tuple contenant tous les chiffres qui composent le décimal ;

— un entier exposant, qui place la virgule.
Lorsque value nest pas fourni, le décimal est initialisé 4 0.
context est un objet Context, qui spécifie un environnement particulier pour l'objet.

Par rapport aux entiers réels classiques, ce nouveau type présente un avantage
intéressant : sa représentation reste exacte.

Représentation décimale

>>> 5.75 / 2.5

2.2999999999999998

>>> from decimal import Decimal

>>> Decimal('5.75') / Decimal('2.5")
Decimal("2.3")

I est en outre possible de définir le degré de précision, qui est réglé a 28 chiffres
significatifs par défaut , par le biais des objets Context.
Un objet Context détermine un environnement d’exécution. Il contient :
* prec : degré de précision, par défaut a 28 ;
* rounding : définit le fonctionnement de l'arrondi et peut prendre entre autres
valeurs :
— ROUND_CEILING : arrondi supérieur ;
— ROUND_DOWN : arrondi vers zéro ;
— ROUND_FLOOR : arrondi inférieur.

Chaque thread posséde un contexte qui peut étre récupéré par getcontext() et écrit
par setcontext(contexte).

m La bibliothéque standard
TROISIEME PARTIE
Degré de précision

>>> from decimal import Decimal, getcontext
>>> Decimal('5.9"'")/Decimal('3.4")
Decimal("1.735294117647058823529411765")
>>> getcontext().prec = 2

>>> Decimal('5.9"')/Decimal('3.4")
Decimal("1.7")

cStringl0

Ce module fournit, comme le module StringIO, une classe StringI0 qui implé-
mente les mémes interfaces que le type file mais travaille avec une chaine de carac-
teres en mémoire. cStringIO est une implémentation rapide de l'objet StringIO.

class StringlO([buffer])

StringIO s’initialise avec un objet string ou unicode. Cependant, et contrairement a
StringI0.StringIO, les méthodes de lecture de données retournent toujours des objets
de type string et il est donc déconseillé de manipuler de I'unicode avec cet objet.

Toutes les méthodes de I'objet sont équivalentes aux objets de type file exceptée la
méthode close() qui libére le contenu en mémoire.

Manipulation d’un fichier mémoire

>>> from cStringIO import StringIO

>>> donnes = StringIO('Répéte aprés moi: Python est Te meilleur
Tangage\n'*100000)

>>> print donnes.readline()

Répéte aprés moi: Python est le meilleur Tangage

>>> donnes.seek(0)

>>> fichier = open('hypnose.txt', 'w')
>>> fichier.write(donnes.getvalue())
>>> fichier.close()

Utilitaires divers

Cette section présente une série de modules utilitaires, a savoir :
* atexit : permet de gérer la fin du programme ;
* pdb : débogueur interactif ;

* getpass : saisie interactive d’identité ;

Principaux modules, partie 2 m
CHAPITRE 9

* copy : recopie d’objets ;
* difflib : module de comparaison de textes ;
* time et datetime : modules de manipulation de temps ;

* random : module de génération aléatoire.

atexit

Le module atexit fournit une fonction unique qui permet d’empiler des fonctions a
exécuter lorsque le programme se termine. Une fois le code principal exécuté, atexit
dépile les fonctions de la derniére ajoutée a la premiére.

Ce mécanisme peut étre pratique pour nettoyer des éléments ou pour effectuer des
sauvegardes en fin d’exécution de programme.

Dans I'exemple ci-dessous, atexit permet de s'assurer que les threads sont bien tous
arrétés en sortie de programme.

Nettoyage de threads

import atexit

from threading import Thread
from time import sleep

from sys import stdout

class Work(Thread):

def run(self):
sleep(1)

def cleanup(Q:
for worker in workers:
stdout.write('.")
worker.join()
print('\nEnd')

workers = []

if __name__ == '__main__"':
atexit.register(cleanup)

for i in range(100):
workers.append(Worker())

for worker in workers:
worker.start()

La bibliothéque standard
288 .
TROISIEME PARTIE

pdb

Python fournit par le biais du module pdb un débogueur interactif qui permet au
développeur d’exécuter le code en mode interactif ou en mode pas-a-pas.

Le mode pas-a-pas

Le mode pas-a-pas est disponible nativement dans la plupart des EDI pour les lan-
gages compilés, et permet d’observer le déroulement du programme en maitrisant
chaque étape d’exécution. Ce mode s’active en insérant des points d’arrét, qui sont
des lignes de code marquées sur lesquelles I'interpréteur s’arréte, pour attendre une
décision du programmeur.

Avec pdb, les points d’arrét explicites sont définis par un appel a4 la fonction
set_trace(). Lorsque l'interpréteur rencontre cette commande, le mode interactif
est alors enclenché et I'interpréteur se met en attente d’une instruction.

La commande h ou help affiche la liste compléte des commandes disponibles.

Activation du mode pas-a-pas

>>> 1import pdb
>>> def sub_function():
for i 1in range(3):
print('12')

>>> def main_function():
pdb.set_trace()

for i 1in range(2):

sub_function(i)

>>> main_function()
> <stdin>(3)main_function()
(Pdb) h

Documented commands (type help <topic>):

EOF break condition disable help Tist ¢q step w

a bt cont down ignore n quit tbreak whatis
alias c continue enable Jj next r u where
args cl d exit jump p return unalias

b clear debug h 1 pp s up

Miscellaneous help topics:

exec pdb

Principaux modules, partie 2 m
CHAPITRE 9

Undocumented commands:

retval rv

(Pdb)

Le mode interactif de pdb est visualisé par le changement de prompt :
>>> devient (Pdb).

Les commandes disponibles sont :
* aouargs : affiche les arguments de la fonction en cours, lorsqu’il y en a.

* alias[name [command]] : permet d’associer a un nom une séquence de code. Si
command est omis, alias affiche le contenu de la commande. Si alias est appelé
sans parameétres, tous les alias définis sont affichés. Un alias devient une nouvelle
commande du débogueur (présenté en détail a la prochaine section) et il peut éga-
lement porter le méme nom qu’une commande native et dans ce cas la surcharger.

* b ou break([file:]T1ineno | function) [, condition] : permet d’ajouter un
point d’arrét dans le code. I1 y a deux fagons de localiser le code pour la mise en
place du point d’arrét : par numéro de ligne avec T1ineno ou par nom de fonction
avec function.

Si le point d’arrét est a placer dans un autre fichier, il est possible de préfixer la
localisation par le nom du fichier suffixé de « : ».

Enfin, condition est une éventuelle expression, sous la forme d’une chaine de
caractéres qui est évaluée pour savoir si 'arrét est marqué. Une variante de break
est threak, qui est automatiquement retirée apreés un premier passage. Si break
est appelée sans parametre, il liste les points d’arrét existants, avec pour chacun un
numéro unique.

* cou cont ou continue : relance I'exécution de la suite du programme. Le déve-
loppeur ne récupere la main qu'au prochain point d’arrét s’il existe.

* ¢l ou clear [bpnumber [bpnumber -] | [[filename:]1ineno
[filename:]1ineno...]] : permet de supprimer les points d’arrét, en fournissant
leurs numéros ou leurs localisations. Si aucun parameétre n'est fourni, clear sup-
prime tous les points d’arrét définis par break, aprés confirmation.

* condition bpnumber str_condition : permet d’associer au point d’arrét de
numéro bpnumber I'expression conditionnelle str_condition. Si cet argument
n'est pas fourni, le point d’arrét n’a plus de condition associée.

* Debug : permet de lancer un nouveau débogueur, qui s'exécute dans 'environne-
ment du débogueur originel.

* disable bpnumber [bpnumber ...] : désactive les points d’arrét, qui restent
cependant toujours associés au code.

La bibliothéque standard

TROISIEME PARTIE

d ou down : déplace le débogueur d’un niveau plus bas dans la pile d’appel.

enable bpnumber [bpnumber ...] : réactive les points d’arrét précédemment
désactivés.

exit ou qouquit : quitte le débogueur, puis le programme.

h ou help : affiche I’écran d’aide.

ignore bpnumber count : associe a un point d’arrét un entier positif count. A
chaque passage sur le point d’arrét, cet entier est décrémenté et I'arrét n'est pas
marqué, tant que count n’a pas atteint 0.

j ou jumplineno : permet de définir la prochaine ligne a exécuter.

1ouTist [first[, Tast]] : affiche le code source entre la ligne first et la ligne
last du code courant. Si ces paramétres ne sont pas fournis, affiche les 11 lignes
suivantes. Si seul first est fourni, affiche les 11 lignes en partant de first. Enfin,
si last est inférieur a first, il est utilisé comme le nombre de lignes a afficher.
nou next : exécute la ligne courante et s’arréte a la suivante, dans la fonction cou-
rante.

p ou ppexpression : affiche la valeur de I'expression. pp est une variante qui uti-
lise le module pprint pour afficher 'expression en prezty print, C’est-a-dire en
affichant de maniere lisible et indentée les structures complexes comme les listes
imbriquées sur plusieurs niveaux.

r ou return : exécute le code jusqu'a la fin de la fonction courante.

s ou step : exécute la ligne courante et s’arréte a la suivante. Contrairement a
next, sila ligne exécutée appelle une autre fonction, step passe alors a la premiére
ligne de cette fonction.

uou up : déplace le débogueur d’'un niveau plus haut dans la pile d’appel.
unalias name :supprime l'alias name

w ou where ou bt : affiche la pile d’appel, du plus haut au plus bas niveau.
whatisarg : affiche le type de 'argument arg.

Exemple de session pas-a-pas

def sub_function(text):

for i 1in range(3):
print(text)

def main_function(Q):

import pdb

pdb.set_trace()

for i 1in range(2):
sub_function(str(i))

Principaux modules, partie 2 m
CHAPITRE 9

main_function()

[...]

tziade@Tarek:~/Desktop$ python scripts/debugging.py
> /home/tziade/Desktop/scripts/debugging.py(9)main_function()
-> for i 1in range(2):
(Pdb) w
/home/tziade/Desktop/scripts/debugging.py(12)?()
-> ma_fonction()
> /home/tziade/Desktop/scripts/debugging.py(9)main_function()
-> for i 1in range(2):
(Pdb) n
> /home/tziade/Desktop/scripts/debugging.py(10)main_function()
-> sub_function(str(i))
(Pdb) n
0
0
0
> /home/tziade/Desktop/scripts/debugging.py(9)main_function()
-> for i 1in range(2):
(Pdb) n
> /home/tziade/Desktop/scripts/debugging.py(10)main_function()
-> sub_function(str(i))
(Pdb) s
--Call--
> /home/tziade/Desktop/scripts/debugging.py(2)sub_function()
-> def sub_function(text):
(Pdb) n
> /home/tziade/Desktop/scripts/debugging.py(3)sub_function()
-> for i 1in range(3):
(Pdb) n
> /home/tziade/Desktop/scripts/debugging.py(4)sub_function()
-> print(text)
(Pdb) whatis text
<type 'str's>
(Pdb) c
1

1
1

Outre ces commandes, le prompt (Pdb) reste un prompt Python tout a fait fonc-
tionnel et il est possible de l'utiliser pour appeler du code a exécuter, afficher des
valeurs, ou effectuer toute autre manipulation. L'environnement d’exécution est dans
ce cas celui de la fonction dans laquelle le débogueur est arrété.

m La bibliothéque standard
TROISIEME PARTIE
Exécution de code dans le prompt Pdb

tziade@Tarek:~/Desktop$ python scripts/debugging.py python

> /home/tziade/Desktop/scripts/debugging.py(9)main_function()
-> for i 1in range(2):

(Pdb) n

> /home/tziade/Desktop/scripts/debugging.py(10)main_function()
-> sub_function(str(i))

(Pdb) i

0

(Pdb) import time

(Pdb) time.asctime()

'Wed Oct 5 13:23:22 2005

(Pdb) (next) = 12

(Pdb) print next

12

(Pdb) next

0

0

0

> /home/tziade/Desktop/scripts/debugging.py(9)main_function()
-> for i 1in range(2):

(Pdb) ¢

1

1
1

a seule précaution dans 'exécution de code est de garnir de parenthéses les variables
L 1 tion dans 1
portant le méme nom qu'une commande pdb ou un alias, afin d’éviter une collision
de noms au moment de l'interprétation, comme dans le cas de next ci-dessus.

)

Alias et fichier .pdbrc

Au premier chargement de pdb, si un fichier nommé .pdbrc se trouve dans votre
répertoire personnel (variable HOME dans les variables d’environnement de votre sys-
teme) ou dans le répertoire courant, il est interprété par le débogueur et peut contenir
des commandes pdb.

Ce fichier permet de créer des macros de commandes, associées a des alias, pour ne
))
pas avoir a les retaper a chaque session de débogage.

Exemple de fichier .pdbrc

fichier d'alias pour pdb
print("alias charges")

affiche 1a Tiste des variables de 1'instance objet
alias obvars pp %1.__dict__

Principaux modules, partie 2 m
CHAPITRE 9

détermine si 1'instance passée est une new-style cass
alias nsc issubclass(%1l.__class__, object)

Les commandes peuvent récupérer des parameétres en entrée, suivant le modele des
scripts shell : %1 est le premier parameétre, %2 le second, etc. %* renvoie tous les para-

métres, a I'image de *args. Les commandes peuvent bien sir utiliser d’autres alias
s'ils ont été définis avant.

Utilisation des alias

>>> class T(object):
def _ init_ (self):

self.t = 12
>>t =T0O
>>> import pdb; pdb.set_trace()
--Return--

alias charges
> <stdin>(1)?()->None
(Pdb) obvars t

{'t': 12}
(Pdb) nsc t
True

Le mode post mortem

Le mode post mortem, comme son nom 'indique, permet d’utiliser pdb apres la mort
du programme. En d’autres termes, lorsque le programme léve une exception, il est

possible d’étudier la derniére pile d’appel, et méme de remonter les niveaux. Ce mode
s'obtient par la fonction pm().

Le retour du code vivant

def sub_function(texte):
for i 1in range(3):
raise TypeError('affreux plantage')
print(text)

def main_function():
for i 1in range(2):
sub_function(str(i))
[...]

>>> from debugging import ma_fonction
>>> main_function()

La bibliothéque standard

TROISIEME PARTIE

Traceback (most recent call last):
File "<stdin>", 1line 1, in ?
File "debugging.py", Tine 9, in main_function
sub_function(str(i))
File "debugging.py", Tine 4, in sub_function
raise TypeError('affreux plantage')
TypeError: affreux plantage
>>> import pdb;pdb.pm(Q)
alias charges
> /home/tziade/Desktop/scripts/debugging.py(4)sub_function()
-> raise TypeError('affreux plantage')
(Pdb) i
0
(Pdb) up
> /home/tziade/Desktop/scripts/debugging.py(9)main_function()
-> sub_function(str(i))

(Pdb) 1
4 raise TypeError('affreux plantage')
5 print(text)
6
7 def main_function():
8 for i 1in range(2):
9 > sub_function(str(i))
(Pdb)

getpass

Le module getpass récupére par le biais de la fonction getpass() un mot de passe de
maniére interactive. Il se base sur les bibliotheques disponibles du systeme héte pour
faire cette demande, soit :

* avec msvcrt sous MS-Windows ;
* avec EasyDialogs.AskPassword sous Mac ;

* dans le terminal, avec le mode echo 2 off, sous Unix.

getpass fournit aussi une fonction getuser(), qui renvoie le nom de l'utilisateur
courant, en le recherchant dans les variables d’environnement du systéme (respecti-
vement LOGNAME, USER, LNAME et USERNAME).

getpass a 'usage

>>> import getpass

>>> getpass.getuser()

'tziade'

>>> getpass.getpass('Entrez un mot de passe :')
Entrez un mot de passe :

'unmotdepasse’

Principaux modules, partie 2

copy

CHAPITRE 9

copy fournit deux fonctions, copy() et deepcopy(), qui permettent de recopier le
contenu d’un objet dans un clone. La premiére effectue une shallow copy et la seconde

une deep copy.

Une shallow copy crée un second objet et y recopie les liens vers les objets qui com-
opy second obj y recop Jets q
posent les attributs de l'objet originel. En d’autres termes, ces deux objets partagent

les mémes attributs en mémoire.

Une deep copy, quant a elle, recopie complétement les objets. Le nouvel objet

devient donc totalement indépendant.

copy, comme pickle, est basée sur une lecture de __dict__. Elle est donc réservée
aux manipulations d’instances de données et ne permet pas de recopier les objets de

types fonctionnels comme :
* les modules ;
* les classes ;
* les fonctions ;
* les fichiers ;

* les sockets, ...
copy() et deepcopy() sont dans un bateau

>>> class T(object):
def _ init_ (self):
self.t = [1, 2]
>>t =T0O
>>> from copy import copy, deepcopy
>>> t2 = copy(t)

>>> t2.t

[1, 2]

>>> t2.t.append(3)
>>> t2.t

[1, 2, 3]

>>> t.t

[1, 2, 3]

>>> t3 = deepcopy(t)
>>> t3.t.append(4)
>>> t3.t

[1, 2, 3, 4]

>>> t.t

[1, 2, 3]

d

La bibliothéque standard

ffl

b

TROISIEME PARTIE

Le module difflib fournit un certain nombre d’utilitaires pour comparer deux
textes. Les fonctionnalités sont équivalentes a ce que des outils de versioning comme

CVS ou SVN peuvent fournir.

diff1ib offre des fonctions pour :
« afficher les différences entre deux textes ;

* restaurer un texte avec les différences.

Affichage des différences

Les fonctions context_diff() et unified diff() calculent les différences entre les
deux textes passés en parameétres sous forme de listes de lignes, et renvoient un
generator qui contient le texte des différences.

Pour chaque sous-partie de texte qui contient une différence, context_diff() ren-
voie un bloc préfixé des numéros des lignes concernées dans le texte, avec la version 1
suivie de la version 2.

unified_diff() quant a elle regroupe les différences dans un méme texte.

Comparaison de textes

nnn

>>> text_1 =
Lorsque les mouette volent a basse altitude,
I1 faut se méfier du temps qu'il fera demain.

. Car 1'adage dit:
"Mouette basse, orage haut"

non

non

>>> text_2 =
Lorsque les mouettes volent a basse altitude,
I1 faut se méfier du temps qu'il fera le Tendemain.

. Car 1'adage dit:
"Mouette basse, orage haut"

(Auteur: ?7?77?)

5/20
>>> text_1 text_1l.splitlines(l)
>>> text_2 = text_2.splitlines(1)
>>> res = difflib.context_diff(text_1, text_2)
>>> print(''.join(list(res)))

el

Principaux modules, partie 2 m
CHAPITRE 9

I Lorsque les mouette volent a basse altitude,
I I1 faut se méfier du temps qu'il fera demain.

Car 1'adage dit:
"Mouette basse, orage haut"
-—- 1,8 —-—-

I Lorsque les mouettes volent a basse altitude,
I I1 faut se méfier du temps qu'il fera le lendemain.

Car 1'adage dit:
"Mouette basse, orage haut
+ (Auteur: ?77?)
+ 5/20

n

>>> res = difflib.unified_diff(text_1, text_2)
>>> print(''.join(list(res)))

+++

@@ -1,6 +1,8 @@

-Lorsque Tes mouette volent a basse altitude,
-I1 faut se méfier du temps qu'il fera demain.
+Lorsque les mouettes volent a basse altitude,
+I1 faut se méfier du temps qu'il fera le lendemain.

Car 1'adage dit:

"Mouette basse, orage haut"
+(Auteur: ?7?7)
+5/20

Chagque ajout ou retrait de texte est signifié par les caractéres +, - ou ! selon les cas.
Linterprétation des résultats reste cependant relativement difficile car les lignes sont
signalées différentes mais sans plus de détail, et un post-traitement est nécessaire
pour ne pas avoir a rechercher les écarts.

La classe Differ joue ce role, en se plagant au-dessus de ces fonctions. Elle fournit une
fonction compare() qui affiche le résultat avec plus de précision : chaque caractere
ajouté, supprimé, ou modifié est notifié par un caractére +, - ou A, placé sur une ligne
dédiée. Differ.compare() peut aussi étre appelée directement par la fonction ndiff().

Utilisation de Differ

>>> from difflib import Differ, ndiff
>>> res = Differ().compare(text_1, text_2)
>>> print ''.join(list(res))

La bibliothéque standard

TROISIEME PARTIE

?

?

?

>>>

N+ N

~ o+

+ +

- Lorsque
+ Lorsque

I1 faut
+ IT faut

+

Car 1'adage dit:

"Mouette basse, orage haut"

+ (Auteur: ??77)
+ 5/20

res = ndiff(text_1, text_2)

>>> print(''.join(list(res)))

+

Car 1'adage dit:

"Mouette basse, orage haut"

Restauration

Les différences renvoyées par les fonctions précédentes peuvent étre utilisées pour
offrir des fonctions de restauration. Le texte renvoyé par ndiff() contient toutes les
informations nécessaires pour reconstruire les deux textes comparés.

difflib fournit pour cette opération la fonction restore() qui prend en premier
paramétre les différences issues d’un appel a ndiff(),Differ() ou compare(), et en
deuxieme parameétre un entier qui définit quel texte doit étre renvoyé. Pour une dif-
térence issue d’'une comparaison ndiff(a, b), si 1 est fourni en deuxiéme parameétre
de restore(), c’est a qui est renvoyé. Si 2 est fourni, c’est b qui est renvoyé.

Restauration

>>>
>>>
>>>
>>>
>>>

diffs =
diffs

from difflib import restore

rtext_1
rtext_1

(Auteur: ??77)
5/20

les mouettes volent a basse altitude,

les mouettes volent a basse altitude,

se méfier du temps qu'il fera demain.
se méfier du temps qu'il fera le lendemain.

+H++++

Lorsque les mouettes volent a basse altitude,

Lorsque les mouettes volent a basse altitude,

- I1 faut se méfier du temps qu'il fera demain.
I1 faut se méfier du temps qu'il fera le Tendemain.

+H++++

ndiff(text_1, text_2)
Tist(diffs)

restore(diffs, 1)
Tist(rtext_1)

time

Principaux modules, partie 2 m
CHAPITRE 9

>>> rtext_2 restore(diffs, 2)
>>> rtext_2 = Tist(rtext_2)
>>> print(''.join(rtext_1))

Lorsque les mouette volent a basse altitude,
IT faut se méfier du temps qu'il fera demain.

Car 1'adage dit:
"Mouette basse, orage haut"

>>> print(''.join(rtext_2))

Lorsque les mouettes volent a basse altitude,
IT faut se méfier du temps qu'il fera le Tendemain.

Car 1'adage dit:
"Mouette basse, orage haut"
(Auteur: ?77?)

5/20

Le module time fournit des fonctions de manipulation de temps, basé sur deux
représentations différentes : le temps écoulé depuis 'Epoch, et le temps UTC (Coor-
dinated Universal Time).

Epoch

L’Epoch correspond a une date particuliére, fixée par le systeme, qui est la date de
référence a partir de laquelle le temps est compté en secondes écoulées. Cette date est
fixée au ler Janvier 1970 sur la plupart des systémes et est représentée en Python sous
la forme d’un réel.

UTC/GMT

LUTC (Universal Time Coordinate), ou Greenwich Mean Time représente quant 2 lui
le temps sous la forme d’une date complete et est représenté en Python sous la forme
d’un tuple composé d’entiers :

* lannée (entre 1 et 9999) ;
* le mois (1-12) ;

le jour (1-31) ;

I'heure (0-23) ;

* les minutes (0-59) ;

La bibliothéque standard

TROISIEME PARTIE

les secondes (0-59) ;

le jour de la semaine (0-6) ;

le jour de 'année (1-366) ;

DST : un drapeau pour 'heure d’été (-1, 0 ou 1).

Le temps UTC courant renvoyé par localtime()

>>> import time
>>> time.localtime()
(2009, 3, 8, 1, 56, 11, 5, 281, 1)

Lorsque le drapeau DST vaut 1, le temps renvoyé est ajusté en fonction de I'heure
d’été ou d’hiver. Pour 0, le temps est conservé sans modification.

Fonctions de manipulation

Les fonctions fournies par time sont :

asctime([utc]) : convertit le temps UTC en sa représentation string. Si utc
n'est pas fourni, asctime() utilise le temps courant. Cette fonction ne contrdle
pas la cohérence calendaire des données fournies : si le jour de la semaine fourni
ne correspond pas au jour de 'année fournie, aucune erreur nest levée.

clock() : renvoie le temps cpu pris par le processus courant depuis son démar-
rage. Cette méthode est trés précise (de I'ordre de la microseconde) .
ctime([seconds]) : renvoie, sous forme de string, la représentation UTC des
secondes depuis Epoch définies par seconds. Si seconds n'est pas fourni, le nom-
bre de secondes courant est utilisé.

gmtime([seconds]) : convertit le temps seconds, écoulé depuis Epoch, en sa
représentation UTC. Si seconds n'est pas fourni, le nombre de secondes courant
est utilisé. Ne gere pas le drapeau DST.

localtime([seconds]) : comme gmttime() mais gere le drapeau DST.
mktime(utc) : convertit le temps UTC en secondes depuis Epoch.
sTeep(seconds) : place l'interpréteur en attente pendant le nombre de secondes
fournies sous forme de float.

time() :renvoie le temps en secondes écoulées depuis Epoch.

Manipulation de dates

>>> import time
>>> time.time()
1128869880.906467

>>> time.localtime()
(2005, 10, 9, 16, 47, 33, 6, 282, 1)

'Fri Dec 24 12:10:00 1976'

>>> date_epoch

220273800.0

>>> time.ctime(date_epoch)

'Fri Dec 24 12:10:00 1976'

>>> time.gmtime()

(2005, 10, 9, 14, 49, 35, 6, 282, 0)

Formatage des dates

Principaux modules, partie 2 m
CHAPITRE 9

>>> time.asctime((1976, 12, 24, 12, 10, 0, 4, 360, 0))

>>> date_epoch = time.mktime((1976, 12, 24, 12, 10, 0, 4, 360, 0))

Pour pouvoir afficher les dates sous un format particulier, time fournit la fonction
strftime(format, utc), qui renvoie une date sous la forme d’une chaine de carac-

téres, en appliquant le formatage fourni.

Le fonctionnement est similaire au formatage des chaines classiques, et se base sur

un ensemble de directives dédiées, a savoir :

Tableau 9-1 Directives de formatage des dates

Directive Description

%a
%A
%b
%B
%c
%d
%H
%l

%j

%m

Renvoie I'abrévation locale du jour.

Comme %a mais nom complet.

Renvoie I'abréviation locale du mois.
Equivalente & %b, sans abréviation.
Renvoie une représentation locale compléte.
Renvoie le jour du mois.

Renvoie I'heure au format 24h.

Renvoie I'heure au format 12h.

Renvoie le jour de I'année.

Renvoie le mois de I'année, en version numérique.

Exemple

>>> strftime('%a', gmtime())
'Sun'

>>> strftime('%A', gmtime())
'Sunday’

>>> strftime('%b', gmtime())
'Oct'

>>> strftime('%B', gmtime())
'October’

>>> strftime('%c', gmtime())
'Sun Oct 9 15:17:40 2008’

>>> strftime('%d', gmtime())
|09|
>>> strftime('%H', gmtime())
llSl
>>> strftime('%I', gmtime())
'03'
>>> strftime('%j', gmtime())
1282

>>> strftime('%m', gmtime())
llOl

m La bibliothéque standard
TROISIEME PARTIE

Tableau 9-1 Directives de formatage des dates (suite)

Directive Description Exemple
%M Renvoie les minutes. >>> strftime('%M', gmtime())
|l 24 |l
%p Renvoie AM ou PM, en fonction de I'heure. >>> strftime('%p', gmtime())
|l PM’
%S Renvoie les secondes. >>> strftime('%S', gmtime())
] 34]
%U Renvoie le numéro de semaine, en se basant sur le dimanche >>> strftime('%U', gmtime())
comme premier jour de la semaine. 41"
Y%w Renvoie le jour de la semaine sous forme numérique (0 cor- >>> strftime('%w', gmtime())
respond a Dimanche) '0'
%W Comme %U mais Lundi est pris en référence comme premier >>> strftime('%W', gmtime())
jour de la semaine. 40"
%x Comme %c mais version courte sans jour ni heure. >>> strftime('%x', gmtime())
'10/09/08"'
%X Renvoie la représentation locale de I'heure. >>> strftime('%X', gmtime())
'15:31:33"
%y Renvoie les deux derniers chiffres de I'année. >>> strftime('%y', gmtime())
T 05 T
%Y Renvoie I'année. >>> strftime('%Y', gmtime())
'2008"
%Z Renvoie la timezone. >>> strftime('%Z', gmtime())
"CET'

Lopération inverse est possible grace a la fonction strptime(string[, formatl),
qui transforme la date passée sous la forme d’une chaine de caractére en date UTC.
Si le format n'est pas spécifié, '%a %b %d %H:%M:%S %Y' est utilisé par défaut.

Transformation inverse

>>> from time import strftime, strptime, gmtime
>>> temps = strftime('%c', gmtime())

>>> temps

"Sun Oct 9 21:21:42 2005

>>> strptime(temps)

(2005, 10, 9, 21, 21, 42, 6, 282, -1

Asavor Changer la localisation

Dans les exemples précédents, toutes les dates sont en anglais car la machine utilisée est installée dans
cette langue. Il est possible d'influer sur ce paramétrage depuis Python, par le biais du module Tocale,
en modifiant par code les paramétres locaux.

Principaux modules, partie 2 m
CHAPITRE 9

datetime

datetime compléte le module time en fournissant des objets de plus haut niveau,
soit :

* une classe date, pour gérer les dates sans heures ;

* une classe datetime, pour gérer les dates avec heures ;

* une classe time, pour gérer les heures simples ;

* une classe timedelta, pour gérer les écarts de temps entres instances des classes
précédentes.

class timedelta(weeks, days, minutes, hours, seconds, microsecondes,
milliseconds)

La classe timedelta sert a représenter une durée.

Les instances de cette classe supportent entre elles I'addition, la soustraction, le chan-
gement de signe et I'opérateur abs(), et peuvent étre utilisées dans des opérations
avec les classes time, date et datetime.

Opérations ferroviaires

>>> from datetime import timedelta, datetime

>>> tgv_dijon_paris = timedeltaChours=1, minutes=40)
>>> tgv_dijon_paris

datetime.timedelta(0, 6000)

>>> # 10 minutes de retard

>>> tgv_dijon_paris + timedelta(minutes=10)
datetime.timedelta(0, 6600)
>>> # 5 mn d'avance (!)

>>> tgv_dijon_paris - timedelta(minutes=5)
datetime.timedelta(0, 5700)

>>> - tgv_dijon_paris
datetime.timedelta(-1, 80400)

>>> abs(-tgv_dijon_paris)
datetime.timedelta(0, 6000)

>>> # calcul trajet

>>> depart = datetime.now()

>>> depart.ctime()

'"Mon Oct 10 11:59:11 2005'

>>> arrivee = depart + tgv_dijon_paris
>>> arrivee.ctime()

'Mon Oct 10 13:39:11 2005'

La bibliothéque standard

TROISIEME PARTIE

class date

La classe date représente une date et est instanciée avec un jour, un mois et une
année. Ces informations se retrouvent ensuite comme attributs de I'objet.

Création d’objets date

>>> from datetime import date
>>> date(2004, 12, 3)
datetime.date(2004, 12, 3)

>>> my_date = date(2004, 12, 3)
>>> my_date.year

2004

>>> my_date.month

12

>>> my_date.day

3

Les valeurs possibles pour les instances de date sont bornées par deux constantes
définies dans le module, 4 savoir MINYEAR et MAXYEAR.

Fourchette des dates possibles

>>> import datetime

>>> datetime.MINYEAR

1

>>> datetime.MAXYEAR
9999

>>> # date la plus petite

>>> datetime.date(datetime.MINYEAR, 1, 1)
datetime.date(1, 1, 1)
>>> # date la plus grande

>>> datetime.date(datetime.MAXYEAR, 12, 31)

datetime.date(9999, 12, 31)

date fournit également des méthodes de classe qui permettent d’instancier des objets
particuliers, a savoir :

* today() :renvoie un objet date pour la date courante.

* fromtimestamp(seconds) : renvoie un objet date pour la date correspondant au
nombre de secondes écoulées depuis Epoch.

* fromordinal(ordinal) : renvoie un objet date pour la date correspondante au
nombre de jours écoulés depuis la plus petite date possible.

Principaux modules, partie 2 m
CHAPITRE 9

Méthodes de classe de date

>>> datetime.date.today()
datetime.date(2009, 3, 1)

>>> datetime.date.fromtimestamp(270000000)
datetime.date(1978, 7, 23)

>>> datetime.date.fromordinal(7)
datetime.date(l, 1, 7)

Les méthodes d’'instances permettent de manipuler la date et utilisent en interne les
fonctions fournies par le module time :

* __str__() :renvoie une représentation sous forme de chaine de caractéres, calcu-
lée par isoformat().

* ctime() :similaire & date.ctime() pour la date.

* isoweekday() : renvoie le numéro de semaine, avec lundi en référence (calendrier
IS0 8601).

* isocalendar() :renvoie un tuple (année, numéro de semaine, numéro de jour).
* jisoformat() :renvoie la date au format ISO 8601.

* replace(year, month, day) : renvoie une instance de date, en appliquant au
préalable une modification sur les valeurs. Chacun des parameétres de remplace-
ment est optionnel.

* strftime(format) :appelle la fonction time.strftime() pour la date.
e timetuple(): renvoie la date au format UTC.

* toordinal() : convertit la date en nombre de jours écoulés depuis la date mini-
male.

* weekday() :renvoie le jour de la semaine, avec lundi = 0.

A savoR La norme I1SO 8601

Le calendrier utilisé pour les méthodes préfixées de « iso » est basé sur la norme 1SO 8601, qui définit les
regles suivantes :

e |undi est le premier jour de la semaine et vaut 1.

¢ dimanche est le dernier jour de la semaine et vaut 7.

¢ La premiére semaine de |'année est la premiére semaine contenant un jeudi.

Manipulation de date

>>> my_date = datetime.date(1976, 12, 24)
>>> str(my_date)
'1976-12-24"

m La bibliothéque standard
TROISIEME PARTIE

>>> my_date.ctime()
'"Fri Dec 24 00:00:00 1976'
>>> my_date.isocalendar()

(1976, 52, 5)
>>> my_date.toordinal ()
721712

>>> my_date.replace(day=28)
datetime.date(1976, 12, 28)

class time

La classe time gere une heure, construite avec les éléments suivants :
* heures (de 0223);
* minutes (optionnel, de 0 a4 59) ;
* secondes (optionnel, de 0 4 59) ;
* microsecondes (optionnel, de 0 2 999 999) ;
* tzinfo (optionnel).
tzinfo est une instance de la classe de base tzinfo fournie par le module, qui permet de

définir des regles particulieres sur I'heure, comme le décalage heure d’été/heure d’hiver,
ou l'information de zone locale (Europe/Berlin, Europe/Paris, Australia/Sidney, etc.).

La classe tzinfo ne peut pas étre instanciée directement et ses méthodes nécessitent
d’étre implémentées dans des classes concretes.

Un objet tzinfo doit fournir trois méthodes :
* tzname() :le nom de la zone qui sera utilisé dans les affichages.
* utcoffset(dt) :renvoie le décalage de zone a appliquer a dt, exprimé en objet de
type timedelta.
* dst(dt) :renvoie le décalage heure d’été/heure d’hiver, a appliquer a dt, exprimé
en objet de type timedelta.

Implémentation de tzinfo pour Paris

#!/usr/bin/python

-*- coding: utf8 -*-

from time import altzone, timezone, mktime, localtime
from datetime import tzinfo, timedelta, datetime

class TZParis(tzinfo):

def _ _init_ (self):
self.ofsset_summer = timedelta(seconds=-altzone)
self.ofsset_zone = timedelta(seconds=-timezone)
self.ofsset = self.ofsset_summer - self.ofsset_zone

Principaux modules, partie 2 m
CHAPITRE 9

wuan

def _dt_Tocal(self, dt):
"""Détermine la nature de 1'objet datetime fourni.
ne peut utiliser timetuple() ici car
provoquerait un appel récursif sans fin
tuple_ = (dt.year, dt.month, dt.day, dt.hour,
dt.minute, dt.second, dt.weekday(), 0, -1)
return localtime(mktime(tuple_)).tm_isdst > 0

def utcoffset(self, dt):
if self._dt_local(dt):
return self.ofsset_summer
else:
return self.ofsset_zone

def tzname(self, dt):
return "Europe/Paris"

def dst(self, dt):
if self._dt_Tocal(dt):
return self.decalage
else:
return timedelta(0)

if _name_ == '__main__":
exemple d'utilisation

my_date = datetime(1976, 12, 24, 12, 00, 00, tzinfo=TZParis())
print(my_date.isoformat())

[...]

tziade@Tarek:~/Desktop/scripts$ python timezone.py
1976-12-24T12:00:00+01:00

Les méthodes de manipulation fournies par la classe time sont :
* __str__() :renvoie le résultat de la méthode isoformat().

* dst() : renvoie tzinfo.dst(None) si tzinfo a été défini. Renvoie None dans le
cas inverse.

* isoformat(): renvoie une chaine de caracteres représentant l'heure au format
ISO 8601.

* replaceChour, minute, second, microsecond, tzinfo) : renvoie une instance
de time, apres avoir remplacé les éléments fournis. Chaque élément est optionnel.

* Utcoffset() : renvoie tzinfo.utcoffset(None) si tzinfo a été défini. Renvoie
None dans le cas inverse.

* Tzname() :renvoie tzinfo.tzname() si tzinfo a été défini. Renvoie None dans le
cas inverse.

La bibliothéque standard

TROISIEME PARTIE

class datetime

datetime est en quelque sorte une combinaison des classes date et time. Cette classe
fournit la plupart des méthodes des deux classes précédentes et quelques méthodes
supplémentaires, comme la méthode combine(). combine(date, time) fusionne un
objet date et un objet time en objet datetime.

Date importante

>>> from datetime import date, time, datetime
>>> my_date = datetime(2005, 12, 21)
>>> my_time = time(20, 50)
>>> the_date = datetime(2005, 12, 21)
>>> print('\nRediffusion de Columbo "le Milliardaire psychopathe"
'sur France 1\n %s'
% the_date.combine(my_date, my_time).ctime()

Rediffusion de Columbo "le Milliardaire psychopathe" sur France 1
Wed Dec 21 20:50:00 2005'

random

Le module random fournit des fonctions de génération de valeurs pseudo-aléatoires,
basées sur une implémentation en C de I'algorithme déterministe Mersenne Twister.
Les fonctions les plus couramment utilisées sont :

* choice(sequence) : renvoie un élément au hasard de la séquence fournie.

* randint(a, b) :renvoie un nombre entier compris entre a et b.

* random() : renvoie un réel compris entre 0.0 et 1.0.

* sample(sequence, k) :renvoie k éléments uniques de la séquence.

* seed([salt]) :initialise le générateur aléatoire.

* shuffle(sequence[, random]) : mélange l'ordre des éléments de la séquence
(dans l'objet lui-méme). Si random est fourni, c’est un callable qui renvoie un réel
entre 0.0 et 1.0. random() est pris par défaut.

* uniform(a, b) :renvoie un réel compris entre a et b.
Correction copies

>>> import random

>>> good_work = ['Excellent travail!',
'Trés bonne analyse',

- 'Les résultats sont la !']

>>> bad_work = ["J'ai gratté la copie pour mettre des points",
'Vous filez un mauvais coton',
'Que se passe-t-il ?']

Principaux modules, partie 2 m
CHAPITRE 9

>>> ok_work = ['Bonne premiére partie mais soignez Tla présentation',
'Petites erreurs, dommage !',
- 'Des progreés']
>>> class Work(object):
def _ _init_ (self, student):
self.student = student
self.auto_corrector()
def auto_corrector(self):
self.note = random.randint(l, 20)
if self.note < 8:
self.appreciation = random.choice(bad_work)
elif self.note < 14:
self.appreciation = random.choice(ok_work)
else:
self.appreciation = random.choice(good_work)
def _ str__ (self):
. return '%s: %s, %s' %(self.student, self.note,
self.appreciation)

>>> students = ['Bernard', 'Robert', 'René', 'Gaston',
- "Eglantine', 'Aimé', 'Robertine']
>>> works = [Work(student) for student in students]
>>> for work in works:

print work

Bernard: 20, Trés bonne analyse

Robert: 13, Des progreés

René: 1, Vous filez un mauvais coton

Gaston: 13, Des progreés

Eglantine: 20, Trés bonne analyse

Aimé: 2, J'ai gratté la copie pour mettre des points
Robertine: 11, Petites erreurs, dommage !

En un mot...

Les modules présentés dans ce chapitre fournissent des outils de programmation qui
peuvent étre utilisés dans des applications variées.

Le chapitre 10 compléte cette collection par la présentation de quelques modules
additionnels : itertools, re, Tkinter et 1ib2to3

10

Principaux modules, partie 3

Ce chapitre termine la présentation des principaux modules par :
* itertools : utilitaires pour itérateurs;
* re : module sur les expressions régulieres ;
* tkinter : module de création d’interfaces Tk ;
* Lib2to3 et 2to3 : scripts de conversion de code Python 2 vers Python 3.

Le module itertools

Ce module fournit des fonctions rapides pour générer des itérateurs, et remplacer
directement certaines primitives comme map(), filter(), reduce() et zipQ.

chain(*itérables) -> itérateur

chain() renvoie un itérateur composé de tous les éléments fournis dans les itérables
passés en parametre.

chain concaténe des itérables par exemple dans une boucle.

m La bibliothéque standard
TROISIEME PARTIE
Composition par chaine

>>> from itertools import chain
>>> seql = [1, 2, 3]

>>> def seq2():

.. return (a for a in [4, 5])

>>> for elm in chain(seql, seq2()):
print elm

U WN R -

count([premier_entier]) -> itérateur

Retourne un itérateur qui renvoie des entiers incrémentés par pas de 1. Si
premier_entier est fourni, il est le premier entier renvoyé. Sinon count() utilise 0.

Un compteur

>>> import itertools

>>> iter = itertools.count(10)

>>> [iter.next() for i in range(5)]
[10, 11, 12, 13, 14]

Cet itérateur est pseudo-infini : une fois sys.maxint atteint, il continue sur des

valeurs de type long sous Python 2.
D’int a long

>>> import sys

>>> iter = itertools.count(sys.maxint-1)
>>> iter.next()

2147483646

>>> iter.next()

2147483647

>>> iter.next()

2147483648L

>>> jter.next()

2147483649L

cycle(itérable) -> itérateur

Renvoie un itérateur qui parcourt indéfiniment les éléments de I'itérable.

Principaux modules, partie 3 m
CHAPITRE 10

Cydle infini

>>> import itertools

>>> iter = itertools.cycle('abc')

>>> [iter.next() for i 1in range(8)]
[lal’ lbl, ICI’ lal, lbl’ 'C', lal, lbl]

Au premier passage, chaque élément parcouru est sauvegardé en interne, puis l'itéra-
teur boucle indéfiniment sur les éléments sauvegardés.

La mémoire maximum utilisée par cette fonction est donc le double de la taille de
I'itérable passé en parametre.

dropwhile(prédicat, itérable) -> itérateur

Fournit un itérateur qui fonctionne en deux temps :

* il parcourt les éléments de litérable et envoie chaque élément au callable
prédicat. La boucle s’arréte dés que prédicat renvoie False ou que la séquence
se termine. Dans le cas ol prédicat renvoie False, 'élément déclencheur est le
premier renvoyé par l'itérateur.

* Il fournit ensuite un itérateur classique sur tous les éléments suivants de la boucle.
Déclencheur

>>> import itertools
>>> def watcher(element):
return element != "c'est Tui!"

>>> jter = itertools.dropwhile(watcher,
["c'est moi", "c'est eux",
. "c'est Tui!", "c'est nous"])
>>> iter.next()
"c'est lui!"
>>> jter.next()
"c'est nous"
>>> iter.next()
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>?
StopIteration

Cette forme d’itérateur permet de travailler avec une sous-séquence.

groupby(itérable(, keyfunc]) -> itérateur

Renvoie un itérateur qui récupere des couples (c1é, groupe). keyfunc est une fonc-
tion qui doit renvoyer la clé pour 'élément courant. groupe est un itérable qui réunit
les éléments regroupés par clé.

m La bibliothéque standard
TROISIEME PARTIE
Regroupement

>>> 1import qitertools
>>> def odd_even(element):
if element % 2 ==
return 'pair’
return 'impair'

>>> for key, group in itertools.groupby([2, 7, 68, 3, 6], odd_even):
print('%s: %s' % (key, str(list(group))))

pair: [2]
impair: [7]
pair: [68]
impair: [3]
pair: [6]

ifilter(prédicat, itérable) -> itérateur

Renvoie un itérateur qui contient les éléments de I'itérable fourni, lorsque le callable
prédicat renvoie vrai.

Si prédicat vaut None, les valeurs sont testées avec boo1().

Filtre sur iterator

>>> 1import itertools
>>> elements = [1, 2, 3, 4, 5, 6]
>>> def filter(element):

return element % 2 ==

>>> filtered = itertools.ifilter(filter, elements)
>>> list(filtered)
[2, 4, 6]

ifilterfalse(prédicate, itérable) -> itérateur

Fonction inverse de ifilter().

Filtre sur iterator

>>> import itertools
>>> elements = [1, 2, 3, 4, 5, 6]
>>> def filter(element):

return element % 2 ==

>>> filtered = itertools.ifilterfalse(filter, elements)
>>> list(filtered)
[1, 3, 5]

Principaux modules, partie 3 m
CHAPITRE 10

imap(fonction, *itérables) -> itérateur

Renvoie un itérateur qui appelle fonction avec les éléments des itérables fournis,
concaténés pour former la liste des parametres.

Si fonction vaut None, renvoie les parameétres préparés.

Appels en cascade

>>> import itertools
>>> def sum(a, b, ©):
return a + b + ¢

>>> iter = itertools.imap(sum, [1, 2, 3], [4, 5, 6], [7, 8, 9])
>>> Tist(iter)
[12, 15, 18]

islice(itérable, [start,] stop [, step)) -> itérateur

Renvoie un itérable qui est une sous-séquence de litérable fourni. start, stop et
step s'utilisent comme les tranches.

Tranche d’itérable

>>> import itertools

>>> iter = jtertools.islice([1l, 2, 3, 4], 2, 4)
>>> Tist(iter)

[3, 4]

izip(*itérables) -> itérateur
Fonctionne comme zip(), pour agréger les éléments des itérables fournis.

Combinaisons de séquences

>>> import itertools

>>> iter = itertools.izip(['a', 'b', 'c'], [1, 2, 31, ['A', 'B', 'C'D
>>> Tist(iter)

[('a', 1, '"A"Y), ('b', 2, 'BY), ('c', 3, 'CY]

Lorsque les itérateurs sont de longueurs différentes, izip s’arréte dés que litérateur le
plus petit est consommé.

m La bibliothéque standard
TROISIEME PARTIE
izip_longest(*itérables, [fillvalue=None]) -> itérateur

izip_longest est une variation d’izip, qui continue tant que tous les itérateurs ne
sont pas vidés. Lorsqu'un itérateur ne fournit plus d’éléments, c’est fillvalue qui est
utilisé. Par défaut, il est 2 None.

Combinaisons de séquences avec izip_longest

>>> import itertools

>>> iter = itertools.izip_longest('abc', 'def', 'g', 'hijk")

>>> list(iter)

[('a’, 'd", 'g', 'h'), ('b', 'e', Nome, 'i'), ('c’, 'f', None, 'j"),

(None, None, None, 'k')]

>>> iter = itertools.izip_longest('abc', 'def', 'g', 'hijk',
fillvalue="'z")

>>> Tlist(iter)

[(lal’ ldl, lgl’ lhl)’ (lbl’ lel, IZI’ l_il)’

('C’, I.Fl’ 'Z" ljl)’ (IZI’ IZ" 'Z', lkl)]

repeat(élément, nb_occurences) -> itérateur

Génere un itérateur qui répéte é1ément nb_occurences fois. Si nb_occurences n'est
pas fourni, devient un itérateur infini qui renvoie toujours element.

3 fois 3

>>> import itertools

>>> iter = itertools.repeat('3', 3)
>>> Tlist(iter)

[131’ l3l’ l3l]

starmap(fonction, séquence) -> itérateur

Comparable a imap() mais le deuxiéme argument doit étre une séquence de tuples.
A chaque itération n, I'itérateur renvoie le résultat de fonction(*séquence[n]).

Tuples préts a I’emploi

>>> import itertools
>>> def fonc(*elements):
print(str(elements))

>>> st = itertools.starmap(fonc, [('a',), (1, 2), (None,)])
>>> st.next()

(a',)

Principaux modules, partie 3

CHAPITRE 10

>>> st.next()
a, 2
>>> st.next()
(None,)

takewhile(prédicat, itérable) -> itérateur

Renvoie les éléments de itérable tant que prédicate(element) renvoie True.

Un garde

>>> import itertools
>>> def guard(element):
return element != 'stop'

>>> elements = [1, 2, 'a', 'stop', 12]

>>> it = itertools.takewhile(guard, elements)
>>> list(it)

[1, 2, 'a']

tee(itérable[, n=2]) -> tuple d’itérateurs

Découpe itérable en n itérables, renvoyés sous la forme d’un tuple. Chaque itérable

renvoie ensuite les éléments de itérable.

Duplication

>>> [Tist(el) for el 1in itertools.tee(['a', 'b', 'c'], 3)]
[[lal’ lbl’ lcl]’ [lal’ lbl’ lcl]’ [lal’ lb" lcl]]

Le module re

Le module refournit des fonctionnalités d’expressions régulieres, similaires a ce qui

existe en Perl.

Expressions réguliéres ?

Les expressions régulieres, ou expressions rationnelles, permettent de rechercher
dans un texte des éléments correspondants & un motif. Uexpression réguliére (regexp)
utilise une grammaire pour décrire ce motif, qui est ensuite interprétée dans un auto-

mate de parcours de texte.

m La bibliothéque standard
TROISIEME PARTIE

Un des tout premiers programmes informatiques qui aient bénéficié de ce systéme,
issu des travaux du mathématicien Kleene, est grep sous GNU/Linux : les recherches
dans les fichiers peuvent étre réalisées avec des regexp.

Recherche dans les sources de Python 2.4

$ cd python2.4

$ grep -ri "bicycle.*man.*emacs"

./site-packages/bikeemacs.py:# Bicycle Repair Man integration with
(X)Emacs

Toute la puissance de ce systeéme réside dans la grammaire utilisée dans les expres-
sions, qui est de type 3 dans la classification de Chomsky, C’est-a-dire apte a décrire un
langage complet.

En d’autres termes, il n’y a aucune limite dans la recherche de texte basée sur ce sys-
téme, méme si les expressions deviennent vite complexes a mettre au point. Il existe
dans ce cas un programme de débogage d’expressions régulieres pour Python, appelé
Kodos (http://kodos.sourceforge.net/), qui permet de travailler en mode essai-erreur
sans avoir a concevoir un programme.

Figure 10-1

. % Kodos
Kodos en action o
File Edit Help
sH £@B® nqQ [0 Kodos|

Fiegular Expreszion

(?P<key>.*?)=(?P<va|ue>.*?)1tslb

Flags
[~ lgnore Case [Multiline [Dotal [~ Verbose [~ Locale [~ Unicode

Shing

color=green color=white color=yellow color=purple

Match number: |3 3:

Group | Match Sample Code

color=green color=white color=yellow color=purple

& Pattern matches (Found 4 matches)

Principaux modules, partie 3 m
CHAPITRE 10

EN SAVOIR PLUS Les expressions réguliéres

Pour plus d'informations sur les expressions réguliéres, lire Les expressions réguliéres par I'exemple de
Vincent Fourmond, aux éditions H&K

Notation pour les expressions réguliéres

Meéme si les expressions réguliéres ne sont pas propres a un langage, chaque implé-
mentation introduit généralement des spécificités pour leur notation.

Lantislash (\) tient un role particulier dans la syntaxe des expressions réguliéres
puisqu’il permet d’introduire des caracteres spéciaux. Comme il est également inter-
prété dans les chaines de caracteres, il est nécessaire de le doubler pour ne pas le
perdre dans I'expression.

Expressions régulieres

>>> expression = "\btest\b"
>>> print(expression)

test

>>> expression = "\\btest\\b"
>>> print(expression)
\btest\b

Cette écriture n'est cependant pas tres lisible, et l'utilisation de chaines brutes (raw
strings) qui ne sont pas interprétées par le compilateur évite le doublement des antislashs.

Expression réguliére en raw string

>>> expression = r"\btest\b"
>>> print(expression)
\btest\b

Syntaxe des expressions réguliéres

La syntaxe des expressions réguliéres peut se regrouper en trois groupes de symboles :
* les symboles simples ;
* les symboles de répétition ;
* les symboles de regroupement.

Symboles simples

Les symboles simples sont des caractéres spéciaux qui permettent de définir des
régles de capture pour un caractére du texte et sont réunis dans le tableau ci-dessous.

La bibliothéque standard

TROISIEME PARTIE

Tableau 10-1

Symbole Fonction

\A

\b

\B

\d

\D

\s

Remplace tout caractére sauf le saut
de ligne.

Symbolise le début d'une ligne.

Symbolise la fin d'une ligne.

Symbolise le debut de la chaine.

Symbolise le caractére d'espace-
ment. Intercepté seulement au début
ou a la fin d'un mot. Un mot est ici
une séquence de caractéres alphanu-
mériques ou espace souligné.

Comme \ b mais uniquement lorsque
ce caractére n'est pas au début ou a
la fin d'un mot.

Intercepte tout chiffre.

Intercepte tout caractére sauf les
chiffres.

Intercepte tout caractére
d'espacement :

- tabulation horizontale(\t) ;
- tabulation verticale(\v) ;

- saut de ligne (\n) ;

- retour a la ligne (\r) ;

- form feed (\f).

Symboles expressions réguliéres

Exemple

>>> re.findall(r'."', ' test *')
"', 't', 'e', 's', 't', "', '"¥']
>>> re.findall(r'."', 'test\n')
['t', 'e', 's'", "t']

>>> re.findall(r'."', '"\n")

(1

>>> re.findall(r'Ale', "c'est Te début")
[]

>>> re.findall(r'Ale', "le début")
['"Te']

>>> re.findal1(r'mot$', 'mot mot mot')
["mot']

>>> re.findal1(r'\Aparoles', 'paroles,
paroles, paroles,\nparoles, encore des
parooooles')

['paroles']

>>> re.findal1(r'\bpar\b', 'parfaitement')
[]

>>> re.findal1(r'\bpar\b', 'par monts et par
veaux')

['par', 'par']

>>> re.findal1(r'\Bpar\B', "imparfait")
['par']

>>> re.findal1(r'\Bpar\B', "parfait")

[]

>>> re.findal1(r'\d', '1, 2, 3, nous irons au
bois (a 12:15h)")

[lll’ l2l, l3l’ lll’ '2', lll’ l5l]

>>> print ''.join(re.findall1(r'\D', '1, 2, 3,
nous irons au bois (a 12:15h) "))

, ,» , hous 1irons au bois (a :h)

>>> len(re.findal1(r'\s', "combien d'espaces
dans Ta phrase ?"))
5
>>> len(re.findall(r'\s"',
"Tatoucheespaceestbloquée"))
0
>>> phrase = """Lancez
. VOus!llIlll
>>> len(re.findal1(r'\s', phrase))
1

Principaux modules, partie 3 m
CHAPITRE 10

Tableau 10-1 Symboles expressions réguliéres (suite)

Symbole Fonction Exemple

\S Symbole inverse de \'s >>> len(re.findal1(r'\S', "combien de lettres
dans Ta phrase ?"))
29

\w Intercepte tout caractére alphanumé- >>> ''.join(re.findall(r'\w', '*!mot-clé_*"))

rique et espace souligné. 'motclé_"'

\W Symbole inverse de \w. >>> ''.join(re.findal1(r'\w', "*Imot-clé_*'))
V] %

\Z Symbolise la fin de la chaine. >>> re.findall(r'end\Z', 'The end will come')
>[1> re.findall(r'end\Z', 'This is the end')
['end']

Le fonctionnement de chacun de ces symboles est affecté par les options suivantes :

* SouDOTALL : le saut de ligne est également intercepté par le symbole \b.

* (M)ULTILINE : dans ce mode, les symboles A et $ interceptent le début et la fin de
chaque ligne.

* (L)OCALE : rend les symboles \w, \W, \b et \B dépendants de la configuration de
langue locale. Pour le francais, les caractéres comme « é » sont alors considérés
comme des caractéres alphanumériques.

* (UINICODE :les symboles \w, \W, \b, \B, \d, \D, \s et \S se basent sur de 'unicode.

* (I)GNORECASE : rend les symboles insensibles a la casse du texte.

* X ou VERBOSE : autorise l'insertion d’espaces et de commentaires en fin de ligne,
pour une mise en page de 'expression réguliere plus lisible.

Symboles de répétition

Les symboles simples peuvent étre combinés et répétés par le biais de symboles de

répétition :

Tableau 10-2 Symboles de répétition
Symbole Fonction Exemple
Répéte le symbole précédentde0an >>> re.findall(r'pois*', 'poisson pois
fois (autant que possible). poilant poi')
['poiss', 'pois', 'poi', 'poi']

+ Répéte le symbole précédentde 1an >>> re.findall(r'pois+', 'poisson pois

fois (autant que possible).

poilant poi')
['poiss', 'pois']

m La bibliothéque standard
TROISIEME PARTIE

Tableau 10-2 Symboles de répétition (suite)

Symbole Fonction Exemple
? Répéte le symbole précédentOou1 >>> re.findall(r'pois?', 'poisson pois
fois (autant que possible). poilant poi')
['pois', 'pois', 'poi', 'poi'l
{n} Répéte le symbole précédent n fois. >>> re.findall(r'pois{2}', 'poisson pois
poilant poi')
['poiss']

{n,m} Répéte le symbole précédent entren >>> re.findal1(r'pois{2,4}',

et m fois inclus. n ou m peuvent étre 'poissssssssssssson pois poilant poi')

omis comme pour les tranches de ['poissss’]

séquences. Dans ce cas ils sont rem- >>> re.findall(r'pois{,4}",

placés respectivement par 0 et *. 'poissssssssssssson pois poilant poi')
['poissss', 'pois', 'poi', 'poi'l
>>> re.findal1(r'pois{2,}"',
'poissssssssssssson pois poilant poi')
['poisssssssssssss']

{n,m}? Equivalentd {n,m} mais intercepte >>> re.findall(r'pois{2,4}?",
le nombre minimum de caractéres. | 'poissssssssssssson pois poilant poi')
['poiss']
>>> re.findall(r'pois{2,3}?',
'poissssssssssssson pois poilant poi')
['poiss']
>>> re.findall(r'pois{,43}?',
'poissssssssssssson pois poilant poi')

['poi', 'poi', 'poi', 'poi'l
el|e2 Intercepte |'expression el ou e2. >>> re.findall1(r'Mr|Mme', 'Mr et Mme')
(OR) ['Mr*, 'Mme']
>>> re.findal1(r'Mr|Mme', 'Mr Untel')
['Mr']
>>> re.findall(r'Mr|Mme', 'Mme Unetelle')
["Mme']
>>> re.findal1(r'Mr|Mme', 'M11e Unetelle')
[]
[1] Regroupe des symboles et caractéres >>> re.findal1(r'[abc]def', 'adef bdef cdef')
en un jeu. ['adef', 'bdef', 'cdef']

Le regroupement de caractéres accepte aussi des caractéres d’abréviation, a savoir :
* - : définit une plage de valeurs. [a-z] représente par exemple toutes les lettres de
I'alphabet en minuscules.
* A :placé en début de jeu, définit la plage inverse. [Aa-z] représente par exemple
tous les caracteres sauf les lettres de I'alphabet en minuscules.

Les symboles de répétition ?, * et + sont dits gloutons ou greedy : comme ils répétent
autant de fois que possible le symbole précédent, des effets indésirables peuvent sur-

Principaux modules, partie 3
CHAPITRE 10

venir. Dans 'exemple suivant, I'expression réguliere tente d’extraire les balises htm1
du texte sans succes : le texte complet est intercepté car il correspond au plus grand
texte possible pour le motif. La solution est d’ajouter un symbole ? apres le symbole
greedy, pour qu’il n’intercepte que le texte minimum.

Effet greedy

>>> import re

>>> re.findall(r'<.*>", '<div>Tle titre</div>"')
['<div>T1e titre</div>"]

>>> re.findall(r'<.*?>", '<div>le titre</div>")
["<div>", '', '', '</div>']

Symboles de regroupement

Les symboles de regroupement offrent des fonctionnalités qui permettent de com-
biner plusieurs expressions réguliéres, au-dela des jeux de caracteres [] et de la fonc-
tion OR, et d’associer a chaque groupe un identifiant unique. Certaines d’entre elles
permettent aussi de paramétrer localement le fonctionnement des expressions.

Tableau 10-3 Symboles de regroupement

Symbole Fonction Exemple
(e) Forme un groupe avec I'expression e. Si >>> re.findal1(r'(\(03\))(80)(.*)",
les caractéres « (» ou «) » sont utilisés ' (03)80666666"')
dans e, ils doivent &tre préfixés de « \» [('(03)", "80', '666666')]
(?FLAGS) Insere directement des flags d'options >>> re.findall(r'(?i)AAZ*"', 'aaZzzRr')
dans |'expression. S'applique a I'expres- | ['aaZzz']
sion compléte quel que soit son position-
nement.
(?:e) Similaire a (e) mais le groupe intercepté >>>
n'est pas conservé. re.findalT(r'(?:\(03\))(?:80)(.*)",
'(03)80666666')
['666666']
(?P<name>e) Associe |'étiquette name au groupe. Ce >>> match =
groupe peut ensuite étre manipulé par ce | re.search(r'(03)(80) (?P<numero>.*)",
nom par le biais des APl de re, ou méme '0380666666")
dans la suite de I'expression réguliere. ~ >>> match.group('numero')
'666666'
(?#comment) Insére un commentaire, qui sera ignoré. Le >>> re.findall(r'(?# récupération des

mode verbose est plus souple pour |'ajout
direct de commentaires en fin de ligne.

balises)<.*?>",
'<h2>hopTla</h2>")

['<h2>", '', '', '</h2>']

m La bibliothéque standard
TROISIEME PARTIE

Tableau 10-3 Symboles de regroupement (suite)

Symbole Fonction

(?=e) Similaire a (e) mais le groupe n'est pas
consommé.

(?le) Le groupe n'est pas consommé et est

intercepté uniquement si le pattern (le
motif) n'est pas e. (?!e) est le symbole
inverse de (?=e)

(?7<=el)e2 Intercepte e2 a condition qu'elle soit pré-
fixée d'el.

(?<lel)e2 Intercepte e2 a condition qu'elle ne soit
pas préfixée d'el.

(?(id/name) Rend |'expression conditionnelle : si le
el|e2) groupe d'identifiant i d ou name existe,
el est utilisée, sinon e2. e2 peut étre
omise, dans ce cas el ne s'applique que si
le groupe id ou name existe.
Dans I'exemple <123> et 123 sont inter-
ceptés mais pas 123>.

Exemples plus complets

Exemple

>>> re.findal1(r'John(?= Doe)"',
'John Doe')

['"John']

>>> re.findal1(r'John(?= Doe)"',
'John Minor')

[]

>>> re.findal1(r'John(?! Doe)',
'John Doe')

[]

>>> re.findal1(r'John(?! Doe)',
'John Minor')

['John']

>>> re.findal1(r'(?<=John)Doe',
'John Doe')

['Doe']

>>> re.findal1(r'(?<=John)Doe',
'John Minor")

[]

>>> re.findal1(r'(?<!John)Doe',
'John Doe')

[]

>>> re.findal1(r'(?<!John)Doe',
'Juliette Doe')

['Doe']

>>>

re.match(r' (?P<one><)?(\d+) (?(one)>)"'

, '123>")

>>>

re.match(r'(?P<one><)?(\d+) (?(one)>)"'

, '123")

<_sre.SRE_Match object at Oxb7dea7b8>

>>>

re.match(r'(?P<one><)?(\d+) (?(one)>)"'

, '<123>")

<_sre.SRE_Match object at Oxb7dea770>

Voici une série d’exemples plus complets, mettant en ceuvre les différentes mécani-
ques. Lexpression est optionnellement accompagnée de flags.

Principaux modules, partie 3 m
CHAPITRE 10

Tableau 10-4 Exemples
Expression[, flags] Objectif Explication

\w+@\w+\.\w{2,4} Intercepte les e-mails L'e-mail est composé de trois parties séparées par
« @ » et « . ». La derniére partie fait entre deux et qua-
tres caracteres. (com, fr, biz, etc.)

(<body.*>) (.*) (</body>), Intercepte le corps d'un | Les éléments sont regroupés en trois parties, et seul le
IGNORECASE fichier HTML. deuxieme groupe sera utilisé.

(?<=\s"{3}).*?7(?="{3}\s) Intercepte tous les com- | Utilise des assertions sur le texte précédent et suivant
mentaires triple-quoted | (trois guillemets). Le ? suffixant le . * permet d'arréter
d'un texte. dés qu'un deuxiéme triple-quote est atteint.

Fonctions et objets de re

Le module re contient un certain nombre de fonctions qui permettent de manipuler
des motifs et les exécuter sur des chaines :

* compile(pattern[, flags]) : compile le motif pattern et renvoie un objet de
type SRE_Pattern.

* escape(string) : ajoute un antislash (\) devant tous les caractéres non alphanu-
mériques contenus dans string. Permet d’utiliser la chaine dans les expressions
régulieres.

* findall(pattern, string[, flags]) : renvoie une liste des éléments intercep-
tés dans la chaine string par le motif pattern. Lorsque le motif est composé de
groupes, chaque élément est un tuple composé de chaque groupe.

* finditer(pattern, string[, flags]) :équivalente a findal1(), mais un itéra-
teur sur les éléments est renvoyé. flags est un entier contenant d’éventuels flags,
appliqués au motif complet.

* match(pattern, string[, flags]) :renvoie un objet de type MatchObject sile
début de la chaine string correspond au motif. flags est un entier contenant
d’éventuels flags, appliqués au motif complet.

* search(pattern, string[, flags]) : équivalente 4 match() mais recherche le
motif dans toute la chaine.

* split(pattern, string[, maxsplit = 0]) : équivalente au sp1it() de l'objet
string. Renvoie une séquence de chaines délimitées par le motif pattern. Si
maxsplit est fourni, limite le nombre d’éléments 4 maxsplit, le dernier élément
regroupant la fin de la chaine lorsque maxsp1it est atteint.

* sub(pattern, repl, string[, count]) : remplace les occurrences du motif
pattern de string par repl. repl peut étre une chaine ou un objet callable qui
recoit un objet MatchObject et renvoie une chaine. Si count est fourni, limite le
nombre de remplacements.

m La bibliothéque standard
TROISIEME PARTIE

* subn(pattern, repl, string[, count]) :équivalente a sub() mais renvoie un
tuple (nouvelle chaine, nombre de remplacements) au lieu de la chaine.

Classe SRE_Pattern

La classe SRE_Pattern, contient une expression réguliere compilée, et accélere les
traitements lorsqu’elle est utilisée plusieurs fois. Cette classe fournit en méthodes
toutes les fonctions ci-dessus, et le parametre pattern n’est plus a fournir.

Pour les méthodes de recherche, rappelées ci-dessous, deux parametres optionnels sup-
plémentaires, pos et endpos, servent a délimiter une sous-chaine de recherche. Il n'est
également plus nécessaire de définir les flags, puisqu’ils sont donnés & compile() :

* match(string[, pos[, endpos]]) ;

* search(string[, pos[, endpos]]) ;

* findall(string[, pos[, endpos]]) ;

* finditer(string[, pos[, endpos]]).

Compilation de motif

>>> import re

>>> motif = re.compile(r'\d{2}")

>>> motif.findal1('voici 32 bananes et 125 carottes, de quoi faire 3
gloubiboulga')

['32', '12']

>>> motif.findall('rajoute quand méme 18 navets')

['18']

Classe MatchObject

La classe MatchObject, quant a elle, est retournée par les fonctions ou méthodes
match() et search(), et est utilisée dans sub() et subn().

Elle offre un certain nombre de méthodes :

* group([groupl, ...]) :renvoie un ou plusieurs groupes du résultat de I'expres-
sion réguliere. group() peut recevoir en parametre des indices de groupes, ou leurs
noms lorsqu’ils ont été définis. Sans aucun paramétre, renvoie toute la chaine.

* groups([default]) : renvoie un tuple contenant tous les groupes. Si defaut est
fourni, c’est le nom ou 'indice d’un groupe qui n’a pas participé au motif.

* groupdict([default]) :équivalente a groups (), mais renvoie uniquement les grou-
pes nommés, sous la forme d’'un dictionnaire dont les clés sont les noms des groupes.

* start([group]) :renvoie I'indice du premier caractére intercepté dans la chaine.

Si group est fourni, c’est un entier ou un nom qui identifie le groupe dans lequel
chercher. start() recherche dans toute la séquence.

Principaux modules, partie 3 m
CHAPITRE 10

* end([group]) : renvoie I'indice du dernier caractere intercepté dans la chaine. Si
group est fourni, c’est un entier ou un nom qui identifie le groupe dans lequel
chercher. end() recherche dans toute la séquence par défaut.

* pos :renvoie le paramétre pos fourni 4 search() oumatch(). 0 par défaut.

* endpos : renvoie le parameétre endpos fourni a search() ou match(). Indice du
dernier caractére par défaut.

* expand(template) :équivalente a sub, ou template est la chaine de substitution.

* lastgroup : renvoie le nom du dernier groupe intercepté, ou None si inexistant ou
non nommé.

* lastindex : renvoie I'indice du dernier groupe intercepté, ou None si inexistant.

* re :renvoie 'objet SRE_Pattern qui a été utilisé.

* string : renvoie la chaine qui a été recherchée.

* span([group]) : renvoie le tuple correspondant a (self.start(group),
self.end(group)).

Les backreferences

Pour toutes les fonctions ou méthodes de substitution, il est possible d’insérer dans la
chaine de substitution les valeurs interceptées par des groupes. Chaque séquence corres-
pondant a un groupe peut étre insérée par le biais de marqueurs appelés backreferences.

Les backreferences ont trois écritures possibles :
* \i :oui est!lindice du groupe, I'indice du premier groupe étant 1.
* \g<i> :ou i est I'indice du groupe.

* \g<name> : ol name est le nom du groupe.

Backreferences

>>> import re

>>> motif = re.compile(' (Mr|Mme|M11e)\s([A-Za-z]+)\s([A-Za-z]+)")
>>> print(motif.sub(r'Nom: \3, Prénom: \2', 'Mr John Doe'))

Nom: Doe, Prénom: John

>>> print(motif.sub(r'Mon nom est \g<3>, \g<2> \g<3>', 'Mr Jean Bon'))
Mon nom est Bon, Jean Bon

>>> motif = re.compile(' (Mr|Mme|M1T1e)\s(?P<prenom>[A-Za-
z]4+)\s(?P<nom>[A-Za-z]+) ")

>>> print(motif.sub(r'\g<prenom>, de la lignée des \g<nom>',

. 'Mr Pif LeChien'))

Pif, de 1a Tlignée des LeChien

La bibliothéque standard

TROISIEME PARTIE

Le module Tkinter

Le module Tkinter fournit des outils de construction d’interfaces de type Tcl/Tk, indé-
pendantes de la plate-forme. Pour la programmation d’interfaces graphiques en Python,
le toolkit Tcl/Tk est aujourd’hui avantageusement remplacé par d’autres systémes
d’'interface comme wxPython, qui permet d’utiliser wxWindows, ou encore PyQt/
PyKDE, qui seront détaillés dans 'annexe sur les bibliothéques tierces. Ces outils tiers
sont aujourd’hui plus largement répandus que Tcl/Tk et offrent une meilleure intégra-
tion au systéme hote ainsi qu'un panel de composants beaucoup plus riche.

11 reste bien str possible de composer une interface graphique compléte avec Tcl,
mais au prix d’un effort supérieur et d’'un rendu final au look un peu « vieillot ».
Cependant pour des besoins trés limités en interfaces, Tkinter offre I'énorme avan-
tage d’étre entiérement intégré a Python et les systéme hotes ont généralement une
installation standard de Tk. Tkinter reste dans ce cas un excellent choix. Cette sec-
tion présente une simple introduction a Tkinter, avec le minimum d’informations
nécessaires a la conception d’interfaces basiques.

EN SAVOIR PLUS Python et Tkinter

Le lecteur intéressé pourra approfondir en lisant Python and Tkinter Programming de John Grayson, aux
éditions Hanning.

Programmation événementielle

Un programme doté d’une interface graphique base son fonctionnement sur les évé-
nements qui lui sont envoyés par le systéme via cette interface. Les événements
regroupent, entre autres, toutes les actions souris ou clavier de l'utilisateur sur I'inter-
face. En d’autres termes, lorsque le programme est lancé, il n'exécute pas une
séquence de code comme un script classique, mais se met en attente d’événements
dans une boucle sans fin.

Chaque événement recu par le programme est alors envoyé puis traité par un ges-
tionnaire spécial, qui exécute tout code éventuellement associé a I'événement. Con-
cevoir une interface graphique consiste donc 4 associer a des événements 'exécution
de portions de code.

La classe Tk

La classe Tk est un widget spécial qui, lorsqu’elle est instanciée, génére un nouvel
interpréteur Tc1 et représente la fenétre principale de I'application, sur laquelle on
peut greffer d’autres widgets.

Principaux modules, partie 3 m
CHAPITRE 10

Instanciée dans l'interpréteur, elle s’affiche directement a I'écran.

Application Tk minimale

>>> from Tkinter import *
>>> Tk
<Tkinter.Tk instance at Oxb7a9ffcc>

Les widgets de base de Tkinter

Tkinterfournit un certain nombre de classes appelées widgets, qui permettent de
composer une interface graphique. Toutes ces classes savent s'afficher et gérent un
certain nombre d’événements et un nombre relativement important de méthodes (en
général plus d’une centaine).
Les 15 widgets de base de Tkinter sont :
* Button : un bouton simple, qui permet de lancer une commande ;
+ Canvas : un widget générique, qui offre une surface de dessin ;
* Checkbutton : une case a cocher ;
* Entry : un champ texte ;
* Frame : un widget qui peut contenir d’autres widgets (une fiche) ;
* Label : affiche un texte ou une image ;
* Listbox : une liste de choix déroulante ;
* Menu : un menu ;
* Menubutton : un élément de menu, qui permet de lancer une commande ;
* Message : un label évolué ;
* Radiobutton : un sélecteur ;
* Scale : une réglette qui permet de modifier une valeur ;
* Scrollbar : un ascenseur, généralement associé a la bordure d’'un autre widget pour
se déplacer ;
* Text : peut contenir du texte éditable, et des éléments supplémentaires comme du
texte ;
* Toplevel : équivalent au widget Frame, mais permet de gérer une fenétre modale
autonome.

CULTURE Fenétre modale

Une fenétre modale est une fenétre qui s'affiche et attend une interaction de I'utilisateur par le biais du
clavier ou de la souris. Pendant cette attente, toute autre action avec ces derniers est impossible hors de
la fenétre modale dans la méme application.

La bibliothéque standard

TROISIEME PARTIE

Chacun de ces widgets présente des options et méthodes communes, qui permettent
de spécifier les propriétés de positionnement, de forme ou de fonctionnement, ainsi
que des éléments spécifiques.

Positionnement d’un widget

Le positionnement d’'un widget dans un widget conteneur se fait par le biais de la
méthode pack(), qui rend en outre le widget visible.

Ce systeme est disponible par défaut et remplit la plupart des besoins de mise en
page, méme sl reste possible d’utiliser des systemes géométriques plus complets,
basés sur des grilles. Voici les cas d’utilisation les plus communs.

Remplir entiérement le conteneur

Utilisé avec fi11 a BOTH et expand a 1, pack() utilise tout 'espace directement dispo-
nible du conteneur, en prenant en compte les propriétés d’extensibilité du widget. Si
la taille de la fiche est modifiée, le widget suit les modifications.

Une fiche avec une liste

>>> from Tkinter import *

>>> racine = Tk(Q)

>>> liste = Listbox(racine)

>>> liste.insert(END, 'coucou')
>>> Tiste.pack(fi11=BOTH, expand=1)

Placer les widgets en pile

fi11 a4 X permet de signaler que le widget prend toute la largeur disponible. Ajouter
séquentiellement des widgets dans un conteneur les place en pile, les uns au-dessus
des autres.

Pile de boutons

>>> from Tkinter import *

>>> racine = Tk(Q)

>>> for i 1in range(10):
bouton = Button(racine)
bouton['text'] = str(i)
bouton.pack(fil1=X)

Placer les widgets sur une méme ligne

Le paramétre side permet de caler un widget 4 gauche (LEFT) ou & droite (RIGHT).
Pour placer plusieurs widgets sur la méme ligne, il suffit de tous les caler du méme coté.

Principaux modules, partie 3 m
CHAPITRE 10

Widgets sur la méme ligne

>>> from Tkinter import *
>>> racine = Tk(Q)

>>> ok = Button(racine)

>>> ok['text'] = 'OK'

>>> cancel = Button(racine)
>>> cancel['text'] = 'Cancel'
>>> ok.pack(side=LEFT)

>>> cancel.pack(side=LEFT)

Options et méthodes d’un widget

Chaque widget posseéde un certain nombre de propriétés, appelées options, qui sont
utilisées par le systéme pour sa manipulation et son affichage.

Les options peuvent étre lues et configurées comme des éléments de dictionnaire, ou
spécifiées en parametres du constructeur.

Manipulation des options d’un widget

>>> import Tkinter

>>> mon_texte = Tkinter.Text()

>>> mon_texte['font']
'—*—*_-medium-r-normal--14-*-*-%-c-*-1508859-15"
>>> mon_texte['state']

'normal’

>>> mon_texte['height']

l24l

>>> mon_texte['height'] = '50'

Les docstrings des constructeurs de chaque classe permettent de s'informer sur ses
options disponibles.

Options de Text

>>> import Tkinter

>>> Tkinter.Text.__doc__

'Text widget which can display text in various forms.'
>>> print(Tkinter.Text.__init__.__doc__)

Construct a text widget with the parent MASTER.

STANDARD OPTIONS
background, borderwidth, cursor,

exportselection, font, foreground,
highlightbackground, highlightcolor,

m La bibliothéque standard
TROISIEME PARTIE

highlightthickness, insertbackground,
insertborderwidth, insertofftime,
insertontime, insertwidth, padx, pady,
relief, selectbackground,
selectborderwidth, selectforeground,
setgrid, takefocus,

xscrollcommand, yscrollcommand,

WIDGET-SPECIFIC OPTIONS
autoseparators, height, maxundo,

spacingl, spacing2, spacing3,
state, tabs, undo, width, wrap,

Les fonctionnalités spécifiques des widgets sont ensuite disponibles par le biais d'une
poignée de méthodes. La section suivante présente pour chaque widget de base un
exemple d’utilisation.

Button

Le widget button est trés simple a utiliser, puisqu’il suffit de fournir dans l'option
command un objet callable, qui sera appelé lorsque l'utilisateur appuiera sur le bouton.

Dans l'exemple suivant, lorsque l'utilisateur clique sur le bouton, le texte du bouton
est modifié par la fonction click().

Exemple de bouton

>>> from Tkinter 1import *
>>> racine = Tk()
>>> bouton = Button(racine, text='Click')
>>> def click(Q):
bouton['text'] = 'bien recu'

>>> bouton['command'] = click
>>> bouton.pack()

11 existe deux méthodes spécifiques a la class Button :
* flash(Q) : fait clignoter le bouton en le redessinant plusieurs fois.

* invoque() : appelle la commande associée au bouton.

Canvas

Le widget canvas est un widget générique qui offre des possibilités génériques de
tracé et permet de créer des widgets personnalisés. Le canvas présente une surface de
dessin avec son propre systéme de coordonnées.

Principaux modules, partie 3 m
CHAPITRE 10

Les éléments placés sur le canvas sont appelés canvas items et sont nommés :
* arc:une corde ;
* image :une image
* line : une ligne ;
* oval :un cercle ou une ellipse ;
* polygon : un polygone ;
* rectangle : un rectangle ou un carré ;
* text :un texte;
* window : un widget quelconque.

Chacun de ces éléments peut étre créé par le biais de la méthode create_xx(), ol xx
est le nom de I’élément.

Création d’un canvas avec une ligne

>>> from Tkinter import *

>>> racine = Tk(Q)

>>> canvas = Canvas(racine)

>>> ligne = canvas.create_1line(0, 0, 100, 100)
>>> canvas.pack()

Checkbutton

Le widget Checkbutton fonctionne avec une variable définie dans I'option variable,
dont il synchronise I'état avec celui affiché a I'écran.
Les classes de variables en Tkinter sont :

* IntVar, pour les entiers et les entiers longs ;

* BooleanVar, pour les booléens ;

* DoubleVar, pour les réels ;

* StringVar pour les chaines de caractéres.

Pour CheckButton, la variable est une classe de type IntVar, et prendra les valeurs 0
ou 1, ou de type BooleanVar, pour les valeurs True ou False.

Exemple de Checkbutton

>>> from Tkinter import *

>>> racine = Tk(Q)

>>> variable = IntVar(Q)

>>> check = Checkbutton(racine, variable=variable)
>>> check['text'] = 'check'

>>> check.pack()

m La bibliothéque standard
TROISIEME PARTIE

Il est également possible d’associer des valeurs différentes de O et 1 par les options
onvalue et offvalue. La classe de variable doit avoir un type compatible avec ces valeurs.

Exemple de Checkbutton avec StringVar

>>>
>>>
>>>
>>>

>>>

8

from Tkinter {import
racine = TkQ)
variable = StringVar()
check = Checkbutton(racine, variable=variable,
onvalue='oui', offvalue="non',
text="voulez-vous recevoir nos promotions ?')
check.pack()

Dans cet exemple, la variable a également été placée en attribut de I'objet check.

Entry

Le widget Entry affiche une ligne unique de saisie de texte. La méthode get() récu-
pere le texte saisi. Il est également possible d’associer cette valeur, par le biais de
I'option textvariable, a une variable de type Stringvar.

Dans l'exemple ci-dessous, le texte saisi est affiché sur la sortie standard, lorsque
l'utilisateur appuie sur le bouton.

Exemple de saisie de texte

>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>

*

from Tkinter {import
racine = Tk(Q)
valeur StringVar(Q
entree Entry(racine, textvariable=valeur,
text='Saisissez votre nom')

def saisie():
print(valeur.get())

bouton = Button(racine, command=saisie, text='OK')
entree.pack()
bouton.pack()

Entry fournit également des méthodes de manipulation du texte, comme :

* delete(first, Tast=None) : supprime le texte, partant de la position first a
last. Si last est omis, un seul caractére est supprimé.

* icursor(index) : positionne le curseur a la position index.

* insert(index, string) :insére string a la position index.

* selection_range(start, end) :sélectionne le texte de la position start a end.

* selection_clear() :annule toute sélection, etc.

Principaux modules, partie 3 m
CHAPITRE 10

Utilisation d’insert

from Tkinter {import *
racine = Tk(Q)
entree = Entry(racine, text='Saisissez votre nom')
def saisie():
entree.insert(0, 'Bonjour, ')

bouton = Button(racine, command=saisie, text='0K')
entree.pack()
bouton.pack()

Frame

Le widget Frame représente une région rectangulaire utilisée pour contenir d’autres
widgets et pour organiser la mise en page.

Un objet Frame peut étre construit avec le parametre master qui définit le widget
parent. S'il est omis, c’est le widget racine qui est utilisé.
Des options supplémentaires peuvent étre fournies en keywords, comme :

* background ou bg : couleur du fond ;

* borderwidth ou bd : largeur de la bordure ;

* height : hauteur en pixels ;

* width :largeur en pixels.

Deux frames cote a cote

>>> from Tkinter import *

>>> racine = Tk(Q)

>>> frame_1 = Frame(width=100, height=100, bg="blue")
>>> frame_1.pack(side=LEFT)

>>> frame_2 = Frame(width=100, height=100, bg="red")
>>> frame_2.pack(side=LEFT)

Label

Le widget Label affiche un texte ou une image, et gére en interne un double buffer.
Ce mécanisme permet de modifier le contenu de I'objet a I'écran sans aucun clignote-
ment puisque c’est une version en mémoire qui est mise & jour avant affichage.

Affichage d’un texte

>>> from Tkinter import *

>>> racine = Tk()

>>> mon_texte = Label(racine, text="C'est Te texte')
>>> mon_texte.pack()

La bibliothéque standard

TROISIEME PARTIE

Lorsque T'objet est utilisé pour afficher une image, un objet de type PhotoImage
(images au format gif) ou BitmapImage (images au format x11 Bitmap) doit étre
fourni dans I'option image.

Affichage d’une image

>>> from Tkinter dimport *

>>> racine = Tk()

>>> image = PhotoImage(file='/home/tziade/fade.gif"')
>>> texte = Label(racine, image=image)

>>> texte.pack()

Listbox

Ce widget affiche une liste d’éléments. Chaque élément de la liste est un texte, et peut
étre ajouté par le biais de la méthode insert(), et retiré par la méthode delete().

insert() prend deux parameétres : la position d’insertion qui est un indice entier ou
les valeurs spéciales END (derniere position) ou ACTIVE (indice de I'élément sélec-
tionné), et le texte.

delete() prend lindice de I'élément a supprimer, et de fagcon optionnelle un
deuxieme indice, pour supprimer une série d’éléments.

Liste de trois éléments

>>> from Tkinter import *

>>> racine = Tk(Q)

>>> choix = Listbox(racine)

>>> for element in ('un', 'deux', 'trois'):
choix.insert(END, element)

>>> choix.pack(

Menu

Menu sert a concevoir un menu, contextuel ou général. Le widget fournit une
méthode add_command(), qui permet d’ajouter une entrée de menu, et une méthode
add_cascade(), pour greffer un sous-menu, qui est lui-méme un widget Menu.

Un menu général est associé et affiché a la fenétre par le biais de la méthode
config() de la fenétre.

Menu général « Fichier »

>>> racine = Tk(Q)

>>> menu = Menu(racine)

>>> def actionl():
print('action 1')

Principaux modules, partie 3 m
CHAPITRE 10

>>> menu_fichier = Menu(menu)

>>> menu_Tichier.add_command(label="Action 1", command=actionl)
>>> menu.add_cascade(label="Fichier", menu=menu_fichier)

>>> racine.config(menu=menu)

Pour les menus contextuels, la méthode post() du menu est utilisée pour un affi-
chage direct, et associée a 'événement clic droit.

Menu contexuel

>>> racine = Tk(Q)

>>> menu = Menu(racine)

>>> def actionl():
print('action 1')

>>> menu.add_command(Tabel="action 1", command=actionl)
>>> def popup(event):
menu.post(event.x_root, event.y_root)

>>> racine.bind("<Button-3>", popup)
'1210676212popup’

Les événements sont couverts dans la prochaine section.

Message

Equivalente a Label mais affiche un texte multiligne, avec un passage a la ligne auto-
matique. L'option width sert a définir la largeur du widget, la hauteur s’adaptant
automatiquement.

Texte multiligne

>>> from Tkinter import *

>>> racine = Tk(Q)

>>> message = Message(text="Voici un texte qui devrait s'adapter a la
fenétre")

>>> message.pack()

Radiobutton

Le widget RadioButton affiche un sélecteur, associé a une variable et une valeur.
Lorsque l'utilisateur sélectionne le sélecteur, la variable se voit attribuer la valeur.

Plusieurs widgets Radiobutton peuvent étre associés 4 une méme variable : un seul
sélecteur peut étre sélectionné a la fois.

m La bibliothéque standard
TROISIEME PARTIE
Sélecteur

>>> from Tkinter dimport *

>>> racine = Tk()

>>> variable = IntVar(Q)

>>> elements = (C('un', 1), ('deux', 2), ('trois', 3))

>>> for texte, valeur in elements:
bouton = Radiobutton(text=texte, variable=variable, value=valeur)
bouton.pack(anchor=W)

Scale

Le widget Scale est une glissiére qui sert a définir une valeur entiére dans un inter-
valle donné. Llintervalle est fourni par les options from_ et to. La méthode get()
permet ensuite de récupérer la valeur.

Glissiere

>>> from Tkinter import *

>>> racine = Tk(Q)

>>> glissiere = Scale(from_=0, to=100)
>>> glissiere.pack()

Scrollbar

Le widget Scrollbar fournit des ascenseurs a des widgets dont la taille est susceptible
de dépasser la taille affichée. C’est le cas par exemple des widgets Canvas ou Listbox.

La méthode set () du widget définit la position de la glissiére de I'ascenseur, et un cal-
lable peut étre associé a la modification de la position a I'option command, par le biais de
la fonction config().

Pour concevoir par exemple une liste avec un ascenseur vertical, ces deux méthodes

peuvent étre respectivement liées aux propriétés yscrollcommand et yview du widget
Listbox.

Liste avec ascenseur vertical

>>> from Tkinter import *
>>> racine = Tk(Q)
>>> ascenseur = Scrollbar(racine)
>>> ascenseur.pack(side=RIGHT, fill=Y)
>>> Tiste = Listbox(racine, yscrollcommand=ascenseur.set)
>>> for i 1in range(100):
Tiste.insert(END, str(i))

>>> Tiste.pack(side=LEFT, fi11=BOTH)
>>> ascenseur.config(command=Tiste.yview)

Principaux modules, partie 3 m
CHAPITRE 10

Text

Le widget Text affiche du texte formaté, qui peut contenir des images et gérer des
marqueurs.

Toplevel

Le widget TopLevel est un widget de type Frame, utilisé pour afficher des fenétres
modales. Typiquement, une application se sert de ce widget pour les dialogues de
I'application.

Affichage d’une fenétre modale

>>> from Tkinter import *

>>> racine = Tk(Q)

>>> modale Toplevel ()

>>> fermer = Button(modale, text="Fermer", command=modale.destroy)
>>> fermer.pack()

Binding d’événements

Lorsque I'application est en attente d’événements, chaque widget peut associer une
fonction Python 4 un événement qu’elle recoit, par le biais de la méthode bind ().

Les événements majeurs qui peuvent étre interceptés, sont des événements clavier ou
des événements souris.
Evénements clavier :
* <Alt_L> : touches Alt (L pour Left, gauche et R pour Right, droite) ;
* <BackSpace> : retour arriére (backspace) ;
* <Cancel> : combinaison des touches Ctrl+C;
* <Caps_Lock> : verrouillage majuscules ;
* <Control_L> : touches Ctrl (L pour Left, gauche et R pour Right, droite) ;
* <Up>: fleche haut ;
* <Left>: fleche gauche ;
* <Down> : fleche bas;
* <Right> : fleche droite ;
* <Delete> : touche Suppression ;
* <End> : touche Fin;
* <Enter> :touche Entrée;
* <Escape> : touche Echappement ;
* <FN> : touches de fonctions F1, F2, F3... ;

La bibliothéque standard

TROISIEME PARTIE

<Home> : touche Home ;

<Insert> : touche Insertion;

<Key> : touche quelconque ;

<Num_Lock> : touche verrouillage numérique ;
<Next> : touche Page down ;

<Pause> : touche Pause ;

<Prior> : touche Page up;

<Print> : touche Impression ;

<Return> : touche Entrée ;

<Shift_L> : touches shift (L pour Left, gauche et R pour Right, droite) ;
<Scrol1_Lock> : touche Verrouillage défilement ;
<Tab> : touche Tabulation.

Intercepte les événements clavier

>>> from Tkinter {import *
>>> racine = Tk(Q)
>>> def evenement(event):

print 'evenement clavier'

>>> racine.bind('<Key>', evenement)

'1213559236evenement’

Evénements souris :

<[Button|ButtonPress]-n> : un des boutons de la souris est appuyé. n vaut 1
(bouton gauche), 2 (bouton du centre) ou 3 (bouton de droite). Les préfixes
Button ou ButtonPress peuvent étre utilisés, ou n seul.

<Bn-Motion> : la souris est déplacée au dessus du widget, avec un bouton appuyé
(nvaut 1, 2 ou 3).

<ButtonRelease-n> :le bouton n est laché.

<Configure> :la taille du widget est modifiée.

<DoubTle-Button-n> : équivalent a Button, mais pour un double-clic.
<Enter> :la souris entre sur le widget.

<Leave> :la souris sort du widget.

<Triple-Button-n> : équivalent a Button, mais pour un triple-clic.

Principaux modules, partie 3 m
CHAPITRE 10

Intercepte le clic gauche

>>> from Tkinter import *

>>> racine = Tk(Q)

>>> def evenement(event):
print 'click!'’

>>> racine.bind('<Button-1>', evenement)
'1213558996evenement’

Lorsque 'événement est intercepté, un appel a la méthode est effectué avec un objet
Event, qui contient un certain nombre d’attributs :

* char :le code du caractére sous forme de chaine (événement clavier) ;

* height :la nouvelle hauteur (événement configuration) ;

* keysym : le symbole de touche (événement clavier) ;

* keycode : le code de touche (événement clavier) ;

* num :le numéro de bouton (événement souris) ;

* type :le type d’événement ;

* widget :un lien vers I'instance de widget liée a I'événement ;

* width :la nouvelle largeur (événement configuration).

* X :la position horizontale de la souris ;

* x_root :la position horizontale de la souris, relative au coin supérieur gauche ;
* y :la position verticale de la souris ;

* y_root :la position verticale de la souris, relative au coin supérieur gauche.

Interception clavier, exemple 2

>>> from Tkinter import *
>>> racine = Tk(Q)
>>> def evenement(event):
print('evenement clavier: %s' % event.keycode)

>>> racine.bind('<Key>"', evenement)
'1213559796evenement’

Application type avec Tkinter
Une application type en Tkinter, en dehors du prompt, doit appeler la méthode

mainloop() de la fenétre racine aprés son instanciation, pour que l'interpréteur se
place en attente des événements.

Une classe Application peut servir a regrouper ces éléments.

m La bibliothéque standard
TROISIEME PARTIE

Classe Application

from Tkinter {import *

class Application(object):

""" classe application
def _ _init_ (self):
self._tk = TkQ

o

def mainloop(self):
self._tk.mainloop()

if __name__ == '__main__":
Application().mainloop()

En général, pour des mises en page élaborées, les widgets sont regroupés dans des
classes dérivées de Frame. Chacune des instances de Frame gére ses widgets comme
attributs et se positionne sur la fenétre principale.

Application peut aussi proposer une méthode d’ajout de Frame pour associer I'ins-
tance 4 un nom d’attribut. La maniére la plus élégante est de fournir la classe de
Frame a la méthode, et la laisser gérer I'instanciation.

Exemple de création de frames

from Tkinter dimport *

class Application(object):

""" classe application
def __init__ (self):
self._tk = TkQO

non

def mainloop(self):
self._tk.mainloop()

def add_frame(self, name, class_, **pack_options):
instance = class_(self._tk)
setattr(self, name, instance)
instance.pack(**pack_options)

class ButtonFrame(Frame):
""" barre de boutons
def _ init_ (self, racine=None):
Frame.__init__(self, racine)
self.boutton_quitter = Button(self, text="Quitter",
command=self.quit)
self.boutton_quitter.pack(side=LEFT)

nn

if _ _name__ ==

Principaux modules, partie 3 m
CHAPITRE 10

class TopFrame(Frame):

""" barre de boutons

def _ _init_ (self, racine=None):
Frame.__init__(self, racine)
self['height'] = 200
self['width'] = 200
self['bg'] = 'red’

__main__":
app = Application()
app.add_frame('centrale', TopFrame, fill=X)
app.add_frame('boutons', ButtonFrame)
app.mainloop()

Cette organisation permet de conserver un mapping logique et des dépendances
cohérentes, puisque chaque élément peut étre atteint en fonction de sa position réelle
dans un conteneur :

app.boutons.boutton_quitter;

app.centrale, etc.

Extensions pour Tkinter

Des modules de la bibliothéque standard viennent compléter Tkinter, & savoir :

ScrolledText : widget texte doté d’ascenseurs ;

Tix : widgets supplémentaires pour Tk ;

tkColorChooser : implémente un dialogue de sélection de couleur ;
tkCommonDialog : classe de base utilisée par tous les dialogues ;
tkFileDialog : implémente des dialogues de sélection de fichier ;
tkFont : utilitaires pour travailler avec les polices de caracteres ;
tkMessageBox : dialogues standards d’affichage de messages ;
tkSimpleDialog : utilitaires et dialogues de base ;

Tkdnd : implémente le drag'ndrop ;

turtle : fournit des primitives de tracé turtle.

Le module lib2to3 et le script 2to3

Le module 1ib2to3 fournit des fonctionnalités de traduction de code Python 2 en
code Python 3. Installé par Python, le script 2to3 convertit des modules Python 2.x
en modules Python 3.

La bibliothéque standard

TROISIEME PARTIE

Invocation de 2to3

$ 2to3 --help

Usage: refactor.py [options] file|dir ...

Options:

-h, --help show this help message and exit

-d, --doctests_only Fix up doctests only

-f FIX, --fix=FIX Each FIX specifies a transformation; default:
all

-x NOFIX, --nofix=NOFIX

Prevent a fixer from being run.

-1, --1ist-fixes List available transformations (fixes/
fix_*.py)

-p, --print-function Modify the grammar so that print() is a
function

-v, --verbose More verbose Togging

-w, --write Write back modified files

-n, --nobackups Don't write backups for modified files.

Le script peut étre lancé une premiére fois a vide dans le répertoire qui contient le
code source, puis appliqué avec -w.

Test puis application de 2to3

$ 2to3 *

$ 2to3 -w *

RefactoringTool:
RefactoringTool:
RefactoringTool:
RefactoringTool:
RefactoringTool:
RefactoringTool:
RefactoringTool:
RefactoringTool:
RefactoringTool:
RefactoringTool:

RefactoringTool:
RefactoringTool:
RefactoringTool:
RefactoringTool:
RefactoringTool:
RefactoringTool:
RefactoringTool:
RefactoringTool:
RefactoringTool:
RefactoringTool:

Skipping implicit fixer: ws_comma
Files that need to be modified:
processing/__init__.py
processing/connection.py
processing/finalize.py
processing/forking.py
processing/heap.py
processing/managers.py
processing/pool.py
processing/process.py

Skipping implicit fixer: ws_comma
Files that need to be modified:
processing/__init__.py
processing/connection.py
processing/finalize.py
processing/forking.py
processing/heap.py
processing/managers.py
processing/pool.py
processing/process.py

Principaux modules, partie 3 m
CHAPITRE 10

En un mot...

Ce chapitre clot la présentation des modules principaux de la bibliothéque standard.
Lannexe B présente une liste complémentaire de bibliotheques tierces, qui répon-
dent a des besoins plus spécifiques.

Le chapitre suivant présente des exercices corrigés, basés sur les modules standards et
compléte également la présentation de la bibliothéque standard en présentant quel-
ques modules secondaires.

11

Exercices corrigeés

Please | I can defeat them ! There’s only a hundred-and-fifty of them !
— The Holy Grail
« S’1l vous plait ! Je peux les battre ! Ils ne sont que cent cinquante ! »

— Sacré Graal

Ce chapitre met en pratique, a travers des exemples concrets, les modules les plus utilisés
de la bibliothéque standard de Python. Le souhait est de présenter la solution la plus
concise possible en employant des techniques éprouvées de programmation Python.

Mode d’emploi du chapitre

Chaque exercice de ce chapitre est présenté sous la forme de fiches avec :
* une description du probleme ;
* la liste des points techniques abordés dans I'exercice, sous forme de mots-clés ;
* la solution détaillée ;
* une discussion sur la solution présentée ;

* les extensions ou paralléles possibles, ainsi que d’éventuelles références a d’autres
exercices.

m La bibliothéque standard
TROISIEME PARTIE

Les exercices sont présentés regroupés dans des thématiques qui sont :

programme : création de programmes paramétrables ;

texte : manipulation et transformation de texte ;

fichiers : manipulation du systéme de fichiers ;

threads et processus : programmation multithreads et multiprocessus ;
persistance : sauvegarde de données ;

Web et réseau : communication ;

divers : inclassables.

Programme

Cette section contient un seul exercice, qui présente une technique qui pourra étre
réutilisée, pour formaliser la lecture des parametres fournis au programme lorsqu’il

est exécuté en ligne de commande.

Exercice 1 : programme paramétrable

Description

Lobjectif de ce premier exercice est de mettre au point un squelette de programme exé-
cutable en ligne de commande. Le squelette doit fournir une gestion automatique de la
lecture des éventuels parameétres et faciliter 'ajout de paramétres par le développeur.

Points abordés

sys.argv, optparse, __main__

Solution

Squelette de programme

#!/usr/bin/python

-*- coding: utf8 -*-

from optparse import OptionParser
import sys

parametres du programme
options = {}
options[('-p', '--print')] = {'dest': 'print',

'help': 'lance 1\'impression',
'action': 'count'}

Exercices corrigés m
CHAPITRE 11

options[('-n', '--printer')] = {'dest': 'printer',
'help': 'nom de T1\'imprimante'}

def main(options, arguments):
print('options %s' % options)
print('arguments %s' % arguments)

if __name_ == '__main__"':
parser = OptionParser()
for param, option in options.items():
parser.add_option(*param, **option)
options, arguments = parser.parse_args()
main(options, arguments)

Discussion

Lorsqu'un programme Python est exécuté en ligne de commande, c’est-a-dire fourni
en argument a l'interpréteur, 'objet module se voit attribuer la valeur __main__ dans
sa variable globale _ name__. Ce mécanisme permet de différencier ce module des
autres modules chargés au gré des importations. if __name__ == '__main__' permet
donc de lancer le module comme programme principal.

Le module optparse permet ensuite de lire automatiquement tous les parameétres
d’une maniére standardisée, conformément au modele getopt() d’Unix. Un pro-
gramme qui utilise ce formalisme laisse l'utilisateur fournir des paramétres libres,
appelés arguments, et des paramétres nommés, appelés options.

Les options sont déclarées sous la forme -o valeur ou --option valeur. La pre-
miére notation, préfixée par un tiret, est appelée notation courte, et le nom de
l'option ne doit étre défini que par un caractere. La deuxiéme notation, la notation
longue, préfixée par deux tirets, est un mot complet. En général, chaque notation
courte a son équivalent en notation longue.

Chaque option peut étre configurée avec des arguments :

* action : définit I'action exécutée par optparse. La valeur par défaut est store et
indique qu’il faut récupérer la ou des valeurs qui suivent 'option dans la variable
définie dans dest. Lorsque action prend la valeur count, le module compte le
nombre d’occurrences de 'option.

* type : définit le type de la ou des valeurs fournies avec 'option. Par défaut a
string. Valeurs possibles :

— string ;
— int ;

— Tong ;

La bibliothéque standard

TROISIEME PARTIE

— float ;
— complex ;
— choice.

* dest : définit le nom de la variable dans laquelle la ou les valeurs vont étres stoc-
kées.

* default :valeur(s) par défaut.

* nargs : nombre d’arguments a fournir avec I'option.
* choices : liste de choix possibles.

* help : phrase d’aide.

Loption -h, --help est générée automatiquement par défaut et affiche la liste des
arguments avec pour chacun d’entre eux la phrase d’aide si elle a été fournie.

Page d’aide

$./exl.py -h
usage: exl.py [options]

options:
-h, --help show this help message and exit
-p, --print Tance 1'impression

-n PRINTER, --printer=PRINTER
nom de 1'imprimante

Sous Mac OS X et Linux, il n'est pas nécessaire d’appeler l'interpréteur Python
explicitement si la premiere ligne du fichier fournit au systéme son chemin, et si le
fichier Python est paramétré comme étant exécutable.

Sous Windows, un double-clic sur le fichier 'exécutera dans I'environnement IDLE
dans une installation par défaut. Pour pouvoir 'exécuter dans 'invite de commande,
il est nécessaire de préfixer le nom du fichier par l'interpréteur.

Exécution sous Windows

$ python.exe exl.py -h
usage: exl.py [options]

options:
-h, --help show this help message and exit
-p, --print lance 1'impression

-n PRINTER, --printer=PRINTER
nom de 1'imprimante

Exercices corrigés m
CHAPITRE 11

Il existe un module équivalent a optparse, plus ancien, appelé getopt, mais qui ne
propose que des fonctions de lecture bas niveau, sans laisser la possibilité au déve-
loppeur d’automatiser certains controles et certaines tiches comme optparse le fait.

Ce squelette de programme laisse le développeur définir ses options dans un diction-
naire qui est ensuite fourni au module de parsing. Il appelle enfin la fonction
main(options, arguments), qui est le point d’entrée du programme.

Lintérét de séparer les options dans un dictionnaire en téte de fichier est de les
rendre plus lisibles. Elles sont détachées du reste de code et facilement modifiables.

Extension

Le module optparse nest malheureusement pas internationalisé et les messages
d’erreur sont définis en dur dans le code du module. Laffichage de messages comme
«at least one option string must be supplied » au moment de 'exécution du
programme peut étre perturbant si le reste des messages est en frangais.

Une extension possible consisterait a mettre en place une internationalisation. La
méthode la plus rapide est d’intercepter les erreurs et traduire les messages a la volée.
La solution la plus élégante et portable est de créer une version internationalisée du
module.

Texte

Cette partie propose trois exercices de manipulations basiques de chaines de carac-
téres, de la saisie de texte a la recherche de motifs par expressions régulieres, en pas-
sant par les méthodes de tri.

Exercice 2 : le chiffrement de César

Description

Le chiffrement de César est une manipulation basique qui consiste a décaler tous les
caractéres alphabétiques d’un texte de 13 rangs (algorithme ROT13). Ainsi le mot
« bonjour » devient « obawbhe », ou la phrase « Je programme en Python. » devient

« Wr cebtenzzr ra Clguba. ».

Lobjectif de I'exercice est de laisser l'utilisateur saisir un texte et d’afficher le résultat
du chiffrement a Iécran.

m La bibliothéque standard
TROISIEME PARTIE
Points abordés

Tableaux alphabétiques, Tist comprehension, string.maketrans,
string.translate, input() et raw_input(), opérateurs % et in, manipulation de
I'objet 1ist.

Solution
Chiffrement de César

#1/usr/bin/python

-*- coding: utf8 -*-

from string import ascii_lowercase as letters
from string import ascii_uppercase

from string import maketrans

préparation du tableau de traduction

def _rotl3(car):
new_pos = (letters.find(car) + 13) % len(letters)
return letters[new_pos]

CAESAR = ''.join([_rotl3(car) for car in letters])

gestion des minuscules et majuscules
CAESAR = CAESAR + CAESAR.upper(Q)
letters = letters + ascii_uppercase

génération d'un tableau de traduction
TRANS = maketrans(letters, CAESAR)

if __name__ == '__main__"':
text = raw_input('Saisissez une phrase: ')
print(text.translate(TRANS))

Discussion

Le décalage est basé sur I'utilisation de la fonction translate de l'objet de type str.
Cette fonction prend en parameétre un tableau de traduction de longueur 256 qui
correspond aux nouvelles valeurs a utiliser pour chacun des caractéres de la table
ASCII. Python utilise ici des fonctions rapides écrites en C.

La fonction maketrans permet de générer automatiquement ce tableau lorsque le
développeur travaille avec un sous-ensemble de la table ASCII. Il prend en parame-
tres deux séquences et renvoie le tableau correspondant. Iintérét de ces fonctions est
qu’elles sont tres rapides.

Exercices corrigés m
CHAPITRE 11

Llutilisation d’une Tist comprehension rend plus compact le code nécessaire a la
construction de CAESAR: une liste est formée avec les caracteéres décalés, puis la
séquence reformée avec joinQ).

Décriture explicite aurait été :
Sans list comprehension

préparation du tableau de traduction

def _rotl3(car):
new_pos = (letters.find(car) + 13) % len(letters)
return letters[new_pos]

CAESAR = []
for car 1in letters:
CAESAR.append(_rotl3(car))

CAESAR = ''.join(CAESAR)

Extension

Les caractéres en dehors de la chaine ascii_lowercase ne sont pas traités et renvoyés
directement. Les caractéres accentués sont donc laissés tels quels et une extension
intéressante serait d’étendre la chaine ascii_letters avec la plage des caractéres

ISO-8859-15 ou UTFS, n'en déplaise & César.

Exercice 3 : transformer les adresses e-mails et les URL d’un texte en
liens

Description

Le but de ce troisiéme exercice est de concevoir un algorithme concis de transforma-
tion de texte, chargé de remplacer toute occurrence d’e-mails et d'URL par son équi-

valent HTML.
Par exemple :
* tarek@ziade.org
devient
tarek@ziade.org
* http://www.afpy.org
devient
http://www.afpy.org

La bibliothéque standard

TROISIEME PARTIE

Il faut concevoir un programme qui transforme un fichier texte en un deuxiéme
fichier texte, en appliquant cette modification. Le programme affiche aussi sur la
sortie standard les modifications effectuées.

Points abordés

Expressions réguliéres, traitement de fichiers, directive with.

Solution
Remplace e-mails et URL

#!/usr/bin/python

-*- coding: utf8 -*-
import re

import sys

FIND_LINK = r'(?P<Tlink>https|ftp|http+://+[A \t\n\r\f\v\<]*)'
FIND_MAIL = r'(?P<mail>[\w\-1[\w\-\.J+@[\w\-][\w\-\.1+)"'

FIND = re.compile(r'%s|%s"' % (FIND_LINK, FIND_MAIL), re.I | re.M)
IS_LINK = re.compile(FIND_LINK, re.I)

REPLACE_LINK= r'%(1ink)s"
REPLACE_MAIL = r'%(mail)s"

def _replace(match):
value = match.group(Q
if IS_LINK.search(value) 1is not None:
res = REPLACE_LINK % match.groupdict()
else:
res = REPLACE_MAIL % match.groupdict()
print('%s -> %s' % (value, res))
return res
if __name__ == '__main__":
filename = sys.argv[1]
text = open(filename).read()

with open('res_%s' % filename, 'w') as result:
result.write(FIND.sub(_replace, text))

Discussion

Lorsque la manipulation de texte devient un peu plus complexe que de simples
recherches de sous-séquences constantes de caractéres, les expressions réguliéres sont
alors incontournables. Elles recherchent des motifs griace a un langage de description
complet qui décrit les motifs de texte a retrouver.

Exercices corrigés m
CHAPITRE 11

Le module re fournit une fonction de substitution sub qui remplace toutes les occur-
rences d'un motif par une autre valeur, en fournissant une chaine de caractéres ou
une fonction a appeler, comme c’est le cas dans 'exemple.

Toute la difficulté d’un tel exercice réside dans la conception des expressions régu-
lieres. Un programme comme Kodos (http://kodos.sourceforge.net) aide a retrouver la
bonne expression par une série d’essais et d’erreurs.

Extension

Le programme part du principe que le texte fourni n'a aucune balise HTML. Si c’est
le cas, et si certains liens sont déja garnis de balises <a>, la transformation aura un
effet pervers.

Limites du script

$ more text.txt
Mon e-mail est tarek@ziade.org et mon site http://programmation-python.org.

$ python ex3.py text.txt

tarek@ziade.org -> tarek@ziade.org
http://programmation-python.org. -> <a href="http://programmation-
python.org." target="_blank">http://programmation-python.org.

$ more res_text.txt
Mon e-mail est tarek@ziade.org et
mon site <a href="http://programmation-pytho

n

n.org." target="_blank">http://programmation-python.org.

$ python ex3.py res_text.txt

tarek@ziade.org -> tarek@ziade.org
tarek@ziade.org -> tarek@ziade.org
http://programmation-python.org." -> <a href="http://programmation-
python.org."" target="_blank">http://programmation-python.org."
http://programmation-python.org. -> <a href="http://programmation-
python.org." target="_blank">http://programmation-python.org.

$ more res_res_text.txt

Mon e-mail est <a
href="mailto:tarek@ziade.or

g">tarek@ziade.org et mon site <a href="<a href="http://
programmation-python.org."" target="_blank">http://
programmation-python.org." target="_blank"><a href="http://
programmation-python.org." target="_blank">http://pr
ogrammation-python.org.

m La bibliothéque standard
TROISIEME PARTIE

Une extension possible serait d’enrichir 'expression réguliére pour ajouter des condi-
tions sur le texte situé avant et apres le lien.

Exercice 4 : trier des phrases suivant le nombre de mots

Description

Lobjectif de I'exercice 4 est de trier des phrases en fonction du nombre de mots qu'elles
contiennent, sans compter la ponctuation, ni les mots de taille inférieure ou égale a
2 lettres. Le tri obtenu doit rester constant, c’est-a-dire que deux phrases contenant le
méme nombre de mots doivent toujours étre ordonnées de la méme maniere.

Points abordés

Tri et le module itertools.

Solution
Tri en fonction du poids des phrases

#1/usr/bin/python

-*- coding: utf8 -*-

from string import punctuation
from string import maketrans
from itertools {import imap

NO_PUNCT = maketrans(punctuation, ' ' * Ten(punctuation))

def clean_line(Tline):
"""Nettoie Ta phrase, et renvoie son 'Poids'"""
Tine = Tine.translate(NO_PUNCT)
cleaned_Tline = []
for word in line.split(Q):
word = word.strip()
if Ten(word) < 2:
continue
cleaned_T1ine.append(word)
numwords = len(cleaned_1line)
return numwords, ' '.join(cleaned_Tline)

def cmp_lines(Tinel, 1line2):
"""Compare les poids des phrases.

En cas d'égalité, 1'ordre alphanumérique.

Exercices corrigés m
CHAPITRE 11

same_size = cmp(linel[0], 1ine2[0])
if same_size ==

return cmp(linel[1], Tine2[1])
return same_size

def print_sorted_text(text):
""" renvoie un tri en fonction du nombre de mots
print('Résultat:')
for numwords, line 1in sorted(imap(clean_line, text), cmp=cmp_lines):
print('%s (%d)' % (line, numwords))

non

def get_text():

print('Saisissez des phrases (une ligne vide pour terminer): ')
text = []
while True:

Tine = raw_input()

if line == '':

break

text.append(line)

return text

if __name__ == '__main__"':
print_sorted_text(get_text())

Discussion

Deés quune méme opération doit étre appliquée a une séquence, imap() est un bon
moyen de réduire la complexité du code. Il renvoie un generator sur chaque élément
d’une séquence apres lui avoir appliqué la fonction clean_line.

Ici, le fait d’utiliser un generator n’apporte rien de plus qu'une liste comprehension,
si ce n'est que la taille mémoire utilisée pour le traitement reste basse et stable, quelle
que soit la taille du tableau en entrée. Mais utiliser imap dans une directive for amé-
liore considérablement la lisibilité et la longueur du code.

La fonction sorted() réduit également le code nécessaire a un tri efficace, puisque
dans notre cas, seule la fonction de comparaison est fournie et le reste est pris en
charge par la primitive. Cette derniére utilise la primitive cmp, qui renvoie 0, -1 ou 1
a sorted(), qui se base sur I'algorithme de tri rapide quicksort.

Enfin string.maketrans utilise ici string.punctuation pour nettoyer les phrases
efficacement, avant d’en extraire les mots.

Extension

Sans objet

m La bibliothéque standard
TROISIEME PARTIE
Fichiers

Exercice 5 : recherche et remplacement de texte

Description

Lobjectif de cet exercice est de rechercher et remplacer un texte dans un fichier texte
donné. Le texte a rechercher peut apparaitre plusieurs fois dans le fichier et est fourni
sous la forme d’une expression réguliere.

Points abordés

Expressions régulieres, lecture et écriture de fichiers, with.

Solution

Search and replace

#!/usr/bin/python

-*- coding: utf8 -*-
import sys

import os

import re

usage = |ll||l\
Utilisation :

%(prog)s <fichier> <expression> <substitut>
Par exemple:
%(prog)s pim.txt pam poum

Remplacera toutes les occurences de "pam" en "poum"

non

def sub_text(path, expr, repl):
""" remplace un texte dans un fichier
remplacement
with open(path) as source:
with open('%s.tmp' % path, 'w') as target:
target.write(re.sub(expr, repl, source.read()))

non

renommage si tout s'est bien passé
os.rename(path, '%s~' % path)
os.rename('%s.tmp' % path, path)

Exercices corrigés m
CHAPITRE 11

if __name__ == '__main__"':
if Ten(sys.argv) != 4:
print(usage % {'prog': sys.argv[0]})
sys.exit(0)

sub_text(*sys.argv[1l:4])

Discussion

Lecture des arguments

Le module sys contient un attribut global argv de type liste qui est initialisé
lorsqu’un script Python est exécuté depuis le shell. argv contient tous les arguments
passés en paramétres lorsque le script est exécuté. Sil'on sauvegarde un script dans
un fichier nommé argv.py qui contient :

fichier argv.py

import sys
print(sys.argv)

Son exécution affichera tous les arguments fournis au script, le premier étant le nom
du fichier lui-méme :

Exécution de argv.py

$ python argv.py

['argv.py']
$ python argv.py un deux trois
['argv.py', 'un', 'deux', 'trois']

with pour la manipulation de fichiers

Lorsqu’un objet fichier est généré par le biais de la primitive open() ou file(), il est
nécessaire d’appeler la méthode close() ala fin du traitement.

Le pattern qui convient pour manipuler des fichiers est donc :

Manipulation de fichier avec try..finally

f = open(path, 'w')
try:
f.write(content)
finally:
f.close()

La bibliothéque standard

TROISIEME PARTIE

Mais wi th offre un mécanisme équivalent et plus concis. Il se charge de fermer 'objet
fichier quoi qu’il advienne.

Manipulation de fichier avec with

with open(path) as f:
f.write(content)

Extension

Un mode interactif de remplacement et un mode qui ne donne que la liste des élé-
ments interceptés dans le texte sans le modifier peuvent rendre l'utilisation de ce pro-
gramme plus souple.

Exercice 6 : recopie conditionnelle et récursive de fichiers

Description

Llobjectif de I'exercice 6 est de recopier une arborescence de fichiers et de dossiers, en
parcourant récursivement les sous-dossiers. De plus, les fichiers dont I'extension est
.pyc ne doivent pas étre copiés.

Points abordés

Le module shuti.

Solution
Recopie conditionnelle

#!/usr/bin/python

-*- coding: utf8 -*-
import shutil

import sys

def copytree(src, dst):
"""Recopie une arborescence, en ignorant les fichiers .pyc
shutil.copytree(src, dst, ignore=shutil.ignore_patterns('*.pyc'))

nn

if __name_ == '__main__":

copytree(sys.argv[l], sys.argv[2])

Exercices corrigés

CHAPITRE 11

Discussion

shutil.copytree est une fonction trés puissante pour recopier une arborescence de
fichiers. Le paramétre ignore prend une fonction qui regoit, pour chaque dossier traversé

par copytree, la liste des éléments. Elle doit retourner les éléments a ne pas recopier.

ignore_patterns est une fonction fournie dans shutil qui peut étre utilisée pour
ignore. Elle filtre les fichiers qui correspondent aux expressions fournies, les expres-

sions étant de type glob-style.

I1 vaut mieux préférer cette technique a une boucle basée sur os.walk.

Exercice 7 : ajout d’un fichier dans une archive zip

Description

Lobjectif de I'exercice 7 est de créer un utilitaire qui liste les fichiers contenus dans
une archive zip fournie en argument, et ajoute un fichier dans l'archive lorsqu’il est

passé en deuxiéme argument.

Points abordés
Le module zipfile et la variable globale _ doc__

Solution
Manipulations de fichiers zip

#!/usr/bin/python
-*- coding: ISO-8859-15 -*-
mrny

Deux utilisations possibles:

o si seule 1'archive est fournie en argument,
la liste des fichiers contenus est affichée

o si un fichier est aussi fourni, il est inséré dans 1'archive
si T1'archive ne possede pas déja un fichier sous ce nom puis
affiche Ta Tiste des fichiers

Utilisation: %(prog)s <nom de 1'archive> [nom du fichier]
import sys

import os

from zipfile dimport ZipFile, is_zipfile

La bibliothéque standard

TROISIEME PARTIE

def add_to_zip(zip, path):
"""Ajoute un fichier dans une archive zip.
zip = ZipFile(zip, mode="a")
try:
if path not in zip.namelist():
zip.write(path, path)
return True
return False
finally:
zip.close()

non

def print_zip(zip):
"""Affiche Te contenu d'un fichier zip.
zip = ZipFile(zip)
try:
print 'Contenu de %s:\n' % zip.filename
zip.printdirQ
print '%d fichier(s)' % len(zip.filelist)
finally:
zip.close()

non

if __name__ == '__main__"':
if Ten(sys.argv) < 2:
print(__doc__ % {'prog': sys.argv[0]})
sys.exit(0)

zip = sys.argv[1]

if not is_zipfile(zip):
print('"%s" n\'est pas un fichier zip' % zip)
sys.exit(0)

if len(sys.argv) > 2:
if not add_to_zip(zip, sys.argv[2]):
print('Fichier avec le méme nom déja existant')
else:
print('Fichier ajouté')
else:
print_zip(zip)

Discussion

Lorsqu'aucun fichier a ajouter n'est fourni, le programme se contente de fournir la
liste des fichiers de I'archive.

Le module zipfile fournit, outre la classe ZipFile, une petite fonction utilitaire
is_zipfile() qui permet de tester un fichier pour savoir si c’est une archive zip.
Linformation est lue dans les premiers octets du fichier.

Exercices corrigés m
CHAPITRE 11

Enfin, le docstring du module, accessible dans les variables globales avec __doc__, a
ici un double réle : il documente le module et s’affiche lorsque le nombre d’argu-
ments passés au script est insuffisant.

Extension

La méthode printdir() du module zipfile définit en dur le nom des en-tétes du
tableau de fichiers affichés :

Méthode printdir() de la classe ZipFile

def printdir(self):
"""Print a table of contents for the zip file.
print "%-46s %19s %12s" % ("File Name", "Modified ", "Size™)
for zinfo in self.filelist:
date = "%d-%02d-%02d %02d:%02d:%02d" % zinfo.date_time
print "%-46s %s %12d" % (zinfo.filename, date, zinfo.file_size)

non

La mise en page ne fonctionne pas avec des fichiers dont le chemin complet fait plus
de 46 caracteres.

Sans entrer dans les détails des mécanismes de l'internationalisation, on peut d’ores
et déja utiliser une version personnalisée de la classe ZipFile pour afficher les
en-tétes en francais et en profiter pour y intégrer la derniére ligne qui affiche le
nombre de fichiers, ainsi qu'une mise en page un peu plus robuste.

Version francaise de ZipFile

FILENAME = 'Nom fichier'

MODIFIED = 'Modifié’

SIZE = 'Taille’

FILES = 'fichier(s)'

HEADER = '%-46s %19s %12s' % (FILENAME, MODIFIED, SIZE)

class ExtendedZipFile(ZipFile):
def printdir(self):

"""Print a table of contents for the zip file.

print (HEADER)

print(len(HEADER) * '-")

for zinfo 1in self.filelist:
date = "%d-%02d-%02d %02d:%02d:%02d' % zinfo.date_time
filename = zinfo.filename
if len(filename) > 40:

non

filename = '...%s' % filename[-40:]
print('%-46s %s %12d' % (filename, date, zinfo.file_size))
print(len(HEADER) * '-")

print('%d %s' % (len(self.filelist), FILES))

m La bibliothéque standard
TROISIEME PARTIE

Threads et processus

Exercice 8 : Tkinter, recherche d’un texte dans des fichiers en tache de

fond

Description

Cet exercice propose d’aborder l'utilisation des threads avec un probléme récurrent
dés lors que l'on aborde la programmation d’interfaces graphiques : certains traite-
ments prennent trop de temps pour que l'on puisse se permettre de laisser I'interface
utilisateur inactive et bloquée.

Lobjectif de l'exercice est de concevoir une petite interface basée sur Tkinter qui per-
mette a l'utilisateur de saisir un chemin et un texte (expression réguli¢re). Le pro-
gramme doit parcourir récursivement tous les fichiers du chemin et afficher dans la
fenétre graphique les fichiers qui contiennent le texte saisi.

Ces fichiers doivent apparaitre au fur et a mesure que le programme les trouve.

Points abordés

Interface Tkinter, les threads

Solution

Recherche en tache de fond avec interface Tkinter

#!/usr/bin/python

-*- coding: utf8 -*-
import os

from os import walk

from re 1import compile

from threading import Thread

from Tkinter dimport *
from Tkconstants import *

DEFAULT_BUFSIZE = 8+%1024

#
Thread de recherche
#
class SearchThread(Thread):
""" Thread de recherche de texte

Exercices corrigés

def __init__(self, path, text, percent, callback):
Thread.__init__(self)
self.path = path
self.text = text
self.percent = percent
self.callback = callback
self.buffer = DEFAULT_BUFSIZE
self.running = False
self.exts = ('.txt', '.py"')

def stop(self):
"""Arréte le thread."""
if self.running:
self.running = False

def run(self):
"""Méthode lancée par start()."""
path = self.path
text = self.text
found = 0
self.running = True
for root, reps, files in walk(path):
if not self.running:
break
for index, file_ in enumerate(files):
ext = os.path.splitext(file_)[-1]
if ext not in self.exts:
continue
if not self.running:
break

self.percent('Recherche %d/%d: %s/%s' \

CHAPITRE 11

% (index, len(files), root, file_))

fullname = '%s/%s' %(root, file_)
if self.text_in_file(fullname, text):
self.callback('%s' % fullname)
found += 1
if found == 0:
self.callback('Aucun fichier"')

self.percent('%d fichiers(s) trouvé(s)' % found)

def text_in_file(self, file_, text):
"""Renvoie vrai si le file_ contient Te text.

Lis le text par morceaux pour limiter Ta taille

non

mémoire.
ctext = compile(text)
try:

f = open(file_, 'r', buffering=self.buffer)

except IOError: # en cas de pb d'acces (droits, etc.)

return False

m La bibliothéque standard
TROISIEME PARTIE

with f:
Tine = None
while 1line !=
if not self.running:
return False
Tine = f.readline(self.buffer)
if ctext.match(line) is not None:
return True
return False

#

Frames

#

class FramePath(Frame):

def __init__ (self, root):

Frame.__init_ (self)
Tabel = Label(self, text="Chemin de recherche")
Tabel.pack(fil1=X, expand=1)
self.path = Entry(self, name="path")
self.path.pack(fi11=BOTH)
self.path.insert(0, os.path.expanduser('~"'))
self.path.select_range(0, END)

class FrameText(Frame):

def _ _init__(self, root):
Frame.__init_ (self)
self.label = Label(self, text="Texte a rechercher")
self.Tabel.pack(fil1=X, expand=1)
self.text = Entry(self, name="text")
self.text.pack(fil1=BOTH)
self.text.insert(0, '")
self.text.select_range(0, END)

class FrameButton(Frame):
def _ init_ (self, root):
Frame.__init__(self)

def create_elements(self, stop_command, search_command,
close_command) :
self.button = Button(self,text="Stop",
command=stop_command)
self.button.pack(side=RIGHT, padx=5, pady=5)
self.button = Button(self,text="Rechercher",
command=search_command)
self.button.pack(side=RIGHT, padx=5, pady=5)
self.button3 = Button(self,text="Fermer",
command=close_command)
self.button3.pack(side=RIGHT)

Exercices corrigés m
CHAPITRE 11

class FrameResult(Frame):

def

#

_init__(self, root):
Frame.__init_ (self)
self.results_window = Listbox(self)
self.resultats_ascenseur = Scrollbar(self, orient=VERTICAL,
command=self.results_window.yview)
self.results_window.config(yscrollcommand=\
self.resultats_ascenseur.set)

self.results_window.pack(side=LEFT, expand=1, fi11=BOTH)
self.resultats_ascenseur.pack(side=RIGHT, fill=Y)

Application

#

class Application(object):

non

Frame contenant 1'interface de recherche

et d'affichage des résultats

[IRIRT]

def

def

def

def

_init__(self):
self._tk = TkQO

création des 4 frames

options = {'expand': 1, 'fil1': BOTH}
self.add_frame('frm_path', FramePath, **options)
self.add_frame('frm_text', FrameText, **options)

self.add_frame('frm_bouton', FrameButton, **options)

self.frm_bouton.create_elements(self.stop_search,
self.search,
self.close)

self.add_frame('frm_result', FrameResult, **options)
#, 'relief': RIDGE
self.searcher = None

titre fenétre application
self._tk.wm_title('Recherche')

mainToop(self):
self._tk.mainloop()

add_frame(self, name, class_, **pack_options):
instance = class_(self._tk)

setattr(self, name, instance)
instance.pack(**pack_options)

_callback(self, msg):
"""Appelée par le thread."""
self.frm_result.results_window.insert(END, msg)

m La bibliothéque standard
TROISIEME PARTIE

def _percent(self, msg):
""" appelée par le thread """
self._tk.wm_title(msg)

def search(self):
""" 9nce une recherche.
self.stop_search()

self.frm_result.results_window.delete(0, END)
path = self.frm_path.path.get()
text = self.frm_text.text.get()

lance le thread de recherche

self.searcher = SearchThread(path, text, self._percent,
self._callback)

self.searcher.start()

def stop_search(self):
"""Stoppe une éventuelle recherche en cours.
if self.searcher is not None:
self.searcher.stop()

non

def close(self):
"""Demande de fermeture, arrét d'une éventuelle recherche.
self.stop_search()
self._tk.destroy()

non

if __name__ == '__main__"':
app = Application()
app.mainloop()

Discussion

Le code est séparé en deux parties distinctes, 4 savoir :

* Une classe de thread appelée SearchThread, en charge de la recherche sur le dis-
que, qui pourrait étre utilisée dans un autre contexte.

* La couche supérieure qui gere I'interaction avec l'utilisateur, et pilote une instance

du thread de recherche.

Le thread renvoie les résultats pour affichage au fur et 4 mesure qu'il les trouve. Il n'y
a pas de précaution nécessaire dans notre cas, car seul le thread en cours de recherche
manipule la méthode d’affichage.

Extension

Lorsqu’une application graphique a un besoin récurrent de traitements asynchrones,
il peut étre intéressant de mettre en place un pattern producteur-consommateur

Exercices corrigés m
CHAPITRE 11

appelé producer-consumer. Le principe de ce design pattern est de fournir a 'applica-
tion une file d’attente pour les traitements : chaque traitement a exécuter en tiche de
fond est ajouté dans la file d’attente et un ou plusieurs threads, nommés workers, se
chargent de la tache.

En plus de rendre l'interface a l'utilisateur, cette parallélisation multiple accélére le
traitement.

Exercice 9 : Un web spider rapide

Description

Lobjectif de cet exercice est de mettre en place le modéle producteur-consomma-
teur, présenté dans 'extension de I'exercice précédent, en utilisant des processus.

Le programme doit lancer en paralléle 4 processus en charge de trouver des pages web
qui contiennent un mot. Le systéme est amorcé avec une dizaine de pages que les pro-
cessus visitent. A chaque page visitée, le processus suit les liens et visite au maximum
50 pages. Si une page a déja été visitée par un autre processus, elle ne le sera pas de nou-
veau. Un systéme de journal doit aussi afficher les URL scannées au fur et 4 mesure.

Points abordés

Les modules multiprocessing, urllib2 et module logging.

Solution

Producteur-consommateur

#!/usr/bin/python

-*- coding: IS0-8859-15 -*-

import os

import urllib2

import sys

import logging

from multiprocessing import Pool

from multiprocessing import TimeoutError
from multiprocessing import Manager

processed_urls = Manager().dict(Q)
mise en place du logger

Togger = Togging.getLogger('WebLogger')
Togger.setLevel (logging.INFO)

La bibliothéque standard
370 .
TROISIEME PARTIE

def

def

def

if _ _name__ ==

mise en place du handler
handler = logging.StreamHandler()
logger.addHandler(handler)

get_page(url):

"""Extrait le contenu et Tes liens
VOIR EXERCICE 12

return '', []

process_url(query, url):
"""Traite une page et ses liens
Togger.info('Processing %s' % url)

non

if Ten(processed_urls) >= 100:
return
if url in processed_urls:
return
try:
content, Tinks = get_page(url)
processed_urls[url] = query in content
for 1link in links:
process_url(query, url)
except TimeoutError:
pass

Taunch_work(query, urls):
Togger.info('Launching process')
pool = Pool(4)
try:
results = [pool.apply_async(process_url,
for url 1in urls]
for res 1in results:
res.get()
finally:
pool.close()
pool.join(Q)
Togger.info('Done.")

URLS = ['http://python.org',]

__main__":
Taunch_work(sys.argv[1], URLS)

for url, found in processed_urls.items():
if not found:
continue
print url

(query, url))

Exercices corrigés m
CHAPITRE 11
Discussion

Ajouté a la version 2.6, le module multiprocessing gére les processus aussi souple-
ment que des threads. Les API disponibles sont équivalentes aux API du module
threading. En outre, multiprocessing propose une classe PooT qui gere automati-
quement les processus et les tiches a réaliser.

Dans la fonction launch_work, une instance de Pool est créée et chaque URL a
traiter est passée a cette classe avec la requéte de recherche.

Le travail consiste ensuite a programmer la fonction qui traite 'URL de maniere
isolée sans se soucier de I'aspect multiprocessus. Une fois I'instance de classe PooT
remplie, chaque tiche est exécutée par 'appel get.

processed_url est un dictionnaire partagé entre les différents processus, qui liste les
URL déja traitées, de maniére a ne pas repasser par les mémes pages.

La suite est une programmation classique, ou les pages sont lues avec
url11ib2.urlopen et les logs émis avec logging. La lecture des pages n'est pas
décrite ici, car cette fonctionnalité est détaillée dans I'exercice 12.

Extension

La programmation paralléle est utile lors qu'un programme manipule des ressources
distantes, comme des pages web. Mais si ce modele accélére grandement les traite-
ments, pour un volume conséquent de données, il atteint ses limites car il n'est pas
possible de lancer une quantité infinie de processus sur la méme machine.

Le fait d’isoler le travail de recherche dans une fonction unique permet assez facile-
ment de passer 4 des modeles distribués plus robustes. Le programme ci-avant peut
par exemple évoluer vers un programme qui s'exécute en parallele sur plusieurs
machines (appelés nceuds). Dans ce modéle, le pool devient le noeud maitre, et
I'ensemble est appelé c/uster. Le nceud maitre envoie des travaux indépendants a
chaque nceud du cluster et récupére les résultats.

Lalgorithme le plus célebre de modele distribué de ce type est MapReduce (http://
fr.wikipedia.org/wiki/MapReduce) de Google. Coté implémentation, la plus célébre est
Hadoop en Java. Notons que quelques implémentations existent en Python, comme
Disco (http://discoproject.org/).

m La bibliothéque standard
TROISIEME PARTIE
Persistance

Exercice 10 : rendre persistants tous les objets d’'un programme

Description

Lobjectif de cet exercice est de mettre en place un mécanisme qui rende persistantes,
de maniére transparente, toutes les instances de classes dérivées d'une méme classe de
base dans un programme.

A chaque fois que le programme se termine, les objets sont sauvegardés sur le sys-
teme de fichiers. Ils peuvent ensuite étre rechargés griace 4 un identifiant unique qui
leur est attribué.

Points abordés

shelve, atexit

Solution

Programme persistant

#!/usr/bin/python

-*- coding: utf8 -*-
import shelve

import atexit

data = None
objects = []

def _load_objects():
print('Loading...")
global data
data = shelve.open('objects.bin')

def _save_objects():
print('Saving...")
for ob 1in objects:
datal[ob._id] = ob._ dict__
data.close()

class Persistent(object):

def _ new_ (cls, id.):
ob = super(Persistent, cls)._ new__ (cls)

Exercices corrigés m
CHAPITRE 11

if id_ in data:

ob.__dict__ = data[id_]
objects.append(ob)
return ob

def __init_ (self, id_):
self._id = id_

chargement des objets
_load_objects()

_save_objects sera appelée a Ta fermeture du programme
atexit.register(_save_objects)

Discussion

Au chargement du module, shelve charge les données sauvegardées, puis les rend
disponibles a chaque instance. La classe de base Persistent charge les données sau-
vegardées dans son attribut __dict__, puis s'enregistre comme instance.

Lorsque le programme se termine, les données de chaque instance sont sérialisées
grice a un appel provoqué par atexit.

Exemple de programme utilisateur

from ex10 import Persistent
import random

class MyClass(Persistent):

def some_code(self, value):
self.value = value

test = MyClass('the id")

try:

print('ancienne valeur %s' % test.value)
except AttributeError:

print('ancienne valeur : aucune')

test.some_code(random.randint(1l, 1000))
print('nouvelle valeur %s' % test.value)

Chaque instance de MyClass est associée a un identifiant unique, et sérialisée par
shelve.

m La bibliothéque standard
TROISIEME PARTIE
Exécutions du programme

$ python exemple_ex10.py
Loading...

ancienne valeur : aucune
nouvelle valeur 255
Saving. ..

$ python exemple_ex10.py
Loading. ..

ancienne valeur 255
nouvelle valeur 402
Saving. ..

Extension

Le mécanisme présenté ne sauvegarde les données qu’a la fermeture du programme.
Cependant, dans certaines situations, il peut étre intéressant de provoquer cette sauve-
garde 4 chaque modification de données. En outre, aucune protection n'est mise en
place pour les objets qui ne peuvent pas étre sérialisés, comme les locks ou les threads.
Dans ce cas, une exception sera levée par shelve. Enfin, ce systtme de sauvegarde
))
n'est fonctionnel que si le code de la classe associé aux instances ne change pas. En cas
de modification, la sauvegarde sera caduque, et il faudra prévoir une migration.
))

Une autre extension possible est de conserver I'état précédent de I'objet au moment
d’une nouvelle sauvegarde et d’étre ainsi en mesure de revenir en arriére dans I’histo-
rique des modifications.

Ces principes peuvent étre étendus par la mise en place d’'un systeme de transaction,
global au programme.

La ZODB (Zope Object Database, la base de données objet de Zope) est un bon
exemple de cette mécanique.

Web et réseau

Exercice 11 : vérificateur de liens

Description

Lobjectif de I'exercice est de fournir un outil qui vérifie quune adresse URL donnée
est valide, et renvoie la date de derniére modification et le type de contenu.

Exercices corrigés m
CHAPITRE 11
Points abordés
urllib2.

Solution
Vérificateur de liens

#!/usr/bin/python
-*- coding: utf8 -*-
import urllib2

def check_urlCurl):
req = urllib2.Request(url)
try:
url_handle = urllib2.urlopen(req)
except urllib2.URLError:
return None, None

headers = url_handle.info()
return headers['Content-Type'], headers['Date']

Discussion

ur11ib2 récupere directement les en-tétes d'une URL pour analyse. II le fait sans
récupérer le contenu intégral de 'URL, ce qui permet de rendre la récupération du
contenu conditionnelle. Par exemple, si la page est régulierement récupérée, le pro-
gramme peut vérifier si la date de modification a changé avant de récupérer le nou-
veau contenu.

Extension

Ce genre de fonctionnalité peut étre couplé avec le prochain exercice, pour fournir un
systeme de mise a jour de page, ou le contenu n'est rapatrié que s’il différe d’'un con-
tenu récupéré au préalable.

Exercice 12 : aspirateur de page web

Description

Un aspirateur de page web doit :
* récupérer la page ;
* parcourir son contenu et récupérer toutes les composantes nécessaires a 'affichage

de la page (images, feuilles de style, etc.).

m La bibliothéque standard
TROISIEME PARTIE
Les liens ne sont pas suivis et laissés tels quels.

Points abordés

ur11ib2, SGMLParser, création de fichiers.

Solution
Aspirateur

#!/usr/bin/python

-*- coding: utf8 -*-

import sys

import os

import urllib2

import logging

from urlparse import urlsplit
from urlparse import urlunsplit
from os.path import join

from HTMLParser +import HTMLParser
from sgmllib dimport SGMLParser

class PageParser(SGMLParser):
"""Parse une page web et collecte ses Tiens
def __init__(self, on_attribute_visited, tags_to_remove=('base',)):
SGMLParser.__init__(self)
self.on_attribute_visited = on_attribute_visited
self.tags_to_remove = tags_to_remove

def unknown_starttag(self, tag, attrs):
if tag.lower() in self.tags_to_remove:
return None
final_tag = '<%s' % tag
for nom_attr, val_attr 1in attrs:
val_attr = self.on_attribute_visited(tag, nom_attr, val_attr)
final_tag += ' %s="%s" ' % (nom_attr, val_attr)
final_tag += '>'
self._result.append(final_tag)

def unknown_endtag(self, tag):
if tag.lower() in self.tags_to_remove:
return None
self._result.append('</%s>"' % tag)

def parse(self, data):
self._result = []
self.feed(data)

def

def

def

def

Exercices corrigés m
CHAPITRE 11

return .join(self._result)
handle_data(self, data):
self._result.append(data)

handle_comment(self, comment):
self._result.append('<!-- %s -->' % comment)

handle_entyref(self, ref):
x = ';' * ref in self.entitydefs
self._result.append('&%s%s' % (ref, x))

handle_charref(self, ref):
self._result.append('&#%s' % ref)

class WebPage(object):
"""Pointe une page web et permet sa sérialisation

o

def

def

def

def

def

_init__(self, url):
self.url = url

_get_content(self, url):
req = urllib2.Request(url)
try:
return urllib2.urlopen(req).read()
except urllib2.URLError:
return "'

_clean_url(self, url):
scheme, netloc, path, query, fragment = urlsplit(url)
if scheme == '':
scheme = 'http'
return urlunsplit((scheme, netloc, path, query, fragment))

_replace_source(self, source):
source = self._clean_url(source)
if source not in self._media:
filename = join('_files', '"file_%s' % self._count)
self._media[source] = filename
content = self._get_content(source)
with open(filename, 'w') as f:
f.write(content)
self._count += 1
return self._media[source]

_media_needed(self, tag, attribut, valeur):
"""Téléchargement et modification du Tien si nécessaire.
if (tag.lower() in ('img', 'link', 'script') and
attribut.lower() in ('href', 'src')):
return self._replace_source(valeur)

non

m La bibliothéque standard
TROISIEME PARTIE
return valeur

def download(self, filename=None):
"""Récupére la page web et les piéces dépendantes
self._count = 0
self._media = {}
scheme, netloc, path, query, fragment = urlsplit(self.url)
self.urlbase = '%s://%s' % (scheme, netloc)

non

Togging.info('Récupération de %s' % self.url)

try:
content = self._get_content(self.url)

except urllib2.URLError:
Tlogging.info("Impossible de Tire 1'url %s" % self.url)
raise

création d'un sous-dossier
if not os.path.exists('_files'):
os.mkdir('_files")

parcours de Ta page pour remplacer et télécharger
les images

parser = PageParser(self._media_needed)

content = parser.parse(content)

sauvegarde de la page
if filename is None:
filename = path.split('/')[-1]
if filename == '':
filename = '%s.htIm' % netloc
with open(filename, 'w') as f:
f.write(content)

Togging.info('Fichier "%s" créé' % os.path.basename(filename))

if __name__ == '__main__"':
if Ten(sys.argv) != 2:
print('Utilisation: %s <url>"' % sys.argv[0])
sys.exit(0)
url = sys.argv[1l]
my_page = WebPage(url)
my_page.downToad ()

Discussion

La classe PageParser dérive de sgmlib.SGMLParser qui est un simple parseur
SGML, compatible avec tout texte contenant des balises. Ce parseur a été choisi
pour ne pas souffrir des restrictions des parseurs HTML classiques comme

Exercices corrigés m
CHAPITRE 11

HTMLParser, qui ne sont compatibles qu'avec le XHTML strict, c’est-a-dire qui ne
supportent pas qu'une balise ne soit pas correctement fermée.

Le principe du parseur est de parcourir le contenu et de provoquer un appel a des
méthodes de la classe a chaque fois qu'une balise est rencontrée.

PageParser surcharge ces méthodes et alimente en interne une liste qui contient le con-
tenu de la page. Elle fournit en outre un point d’entrée on attribute_visited, pour
qu'une classe extérieure (un visiteur), puisse modifier a la volée un attribut d’'un tag.

La classe PageWeb joue ce role de visiteur et gere les échanges avec le serveur, en télé-
chargeant a la volée les différentes composantes qui affichent une page, comme les
images et les feuilles de style.

Un petit cache interne évitent de télécharger le méme fichier plusieurs fois, et un
sous-dossier est créé pour contenir ces éléments.

Extension

La premiere extension qui vient a I'esprit est de créer un aspirateur récursif, en sui-
vant les liens de la page.

Une autre extension intéressante consiste a utiliser ce genre d’outil pour filtrer le con-
tenu des fichiers, puisque le parseur nous permet de parcourir facilement les tags. Un
serveur proxy peut par exemple utiliser cet outil pour remplacer toutes les URL vers
des sites non autorisés par un lien vers une page interne d’avertissement.

Exercice 13 : récupération d’'un résumé des nouveaux e-mails recus

Description

Lobjectif de I'exercice 13 est de fournir un utilitaire capable de se connecter a un ser-
veur IMAP pour récupérer la liste des nouveaux e-mails regus et afficher le sujet et
l'auteur des 5 derniers e-mails non lus.

Points abordés
imaplib.

Solution

Les 5 derniers e-mails

#!/usr/bin/python
-*- coding: IS0-8859-15 -*-
from optparse import OptionParser

m La bibliothéque standard
TROISIEME PARTIE

impo
impo
impo
from
from
from
from
from

opti

def

head

clas

def

rt sys
rt imaplib
rt socket
email import Message
email.Errors 1import HeaderParseError
email.Header 1import decode_header as decoder
email.Header +import make_header
encodings 1import exceptions as exceptions_codage

ons = []

decode_header(header, encoding='utf8'):
""'"Renvoie un en-téte encodé avec le méme codec.
try:

header_decode = decoder(header)
except HeaderParseError:

return header

non

unified = [(decoded, encoding) for decoded, charset in
er_decode]
return unicode(make_header(unified))

s TextMessage(object):
"""Permet de renvoyer le texte a 1'envers, en utilisant
un séparateur de ligne spécifique en lecture et \n en sortie.
def _ init_ (self, text):
self.lines = text.split('\015\012")
self.lines.reverse()

def readline(self):
try:
return '%s\n' % self.Tines.pop()
except IndexError:
return ''

get_mails(server, user, password):
"""Renvoie le sujet et 1'auteur des 5 derniers e-mails non Tus
imap = imaplib.IMAP4_SSL(server)
imap.Tlogin(user, password)
try:
imap.select('INBOX')

non

status, uids = imap.uid('search', 'UNSEEN')

if status != 'OK':
logging.debug('Impossible de récupérer Tes informations')
sys.exit(0)

uids = uids[0].split(" ")

Exercices corrigés m
CHAPITRE 11

for index, uid in enumerated(reversed(uids)):
uid = uid.stripQ
if index ==
break
if uid == '':
continue
status, res = imap.uid('fetch', uid,
' (BODY.PEEK[HEADER.FIELDS (From Subject)])')

if status != 'OK':
Togging.debug('Impossible de Tire 1e mail n°%s' % uid)
continue

message = Message(TextMessage(res[0][1]), 0)
subject = decode_header(message['subject'])
from_ = decode_header(message['from'])
yield '"%s (%s)' % (subject, from_)
finally:
imap.close()

def main(options, arguments, parser):

if Ten(arguments) != 3:
print(parser.usage)
sys.exit(0)

server = arguments[0]

user = arguments[1]

password = arguments[2]

for mail_info in get_mails(server, user, password):
print(mail_info)

if __name_ == '__main__"':
parser = OptionParser()
parser.usage = 'usage: server user pass'

for option 1in options:
param = option['noms"']
del option['noms']
parser.add_option(*param, **option)

options, arguments = parser.parse_args()
sys.argv[:] = arguments
main(options, arguments, parser)

Discussion

A chaque connexion, le systéme liste les messages marqués non lus du serveur, dans
'ordre chronologique inverse.

Laffichage du sujet et de 'expéditeur nécessitent un traitement préalable car les
en-tétes peuvent étre encodés, lorsque les données contiennent par exemple des
accents. C’est le role de decode_header.

La bibliothéque standard

TROISIEME PARTIE

yield est utilisé pour demander un a un les e-mails au serveur IMAP. De cette
maniere, 'affichage du premier e-mail est instantané et seuls les e-mails affichés sont
consommés dans la boucle. Ainsi, si U'argument num_display (par défaut a5) est
augmenté, et si le programme offre 4 l'utilisateur une option pour afficher les e-mails
en mode pas-a-pas et arréter le processus, le nombre de messages naura pas d’'impact
sur les performances de la fonction get_mails.

Extension

Ce systeme de prélecture peut étre couplé a un systéme local de filtres, en charge de
déplacer sur le serveur les messages dans des sous-dossiers en fonction de régles sur le
contenu du message.

Divers

Cette série d’exercices sachéve par la section Divers, qui contient un exercice de
création d’un systéme de documentation en ligne, capable d’introspecter le code des
modules pour afficher I'aide d’une classe ou d’une fonction.

Exercice 14 : systeme de documentation en ligne des modules

Description

Llobjectif de I'exercice 14 est de fournir un outil d’affichage des docstrings des
fonctions et classes contenus dans un module python, dans I'esprit du module pydoc.

Points abordés

Paquet compiler.

Solution
Doc en ligne

#!/usr/bin/python

-*- coding: utf8 -*-
import os.path

import sys

from compiler {import parse
from compiler {import walk

Exercices corrigés m
CHAPITRE 11

from compiler.visitor import ASTVisitor
from compiler.ast import Stmt, Class, Function

class DisplayVisitor(ASTVisitor):
mn |lV_i Site 'I lASTllll "
def _ init_ (self, name):
self.name = name

def _visit_node(self, node):
"""Appelle sur les nodes
if (isinstance(node, Stmt) or
(hasattr(node, 'name') and node.name != self.name)):
for subnode 1in node.getChildNodes():
self._visit_node(subnode)
return

non

if not (isinstance(node, Class) or isinstance(node, Function)):
return

print('Trouvé ligne %d' % node.Tineno)
if node.doc 1is None:

print('\n\tAucun docstring\n')
else:

print('\n\t%s\n' % node.doc)

visitClass = _visit_node
visitFunction = _visit_node
visitStmt = _visit_node

def print_module(path, element, verbose=False):
"""Permet 1'affichage d'un doctstring de classe ou de fonction
with open(path) as f:
ast = parse(f.read())

non

walk(ast, DisplayVisitor(element))

if __name_ == '__main__"':
print_module(sys.argv[1l], sys.argv[2])

Discussion

Grice a sa fonction parse, le paquet compiler construit un AST (Abstract Syntax
Ttree) a partir de code Python. Trés rapide, cette opération lit le contenu d’un module
sans avoir a I'importer.

walk offre ensuite la possibilité de traverser 'AST, en fournissant une classe qui dérive de
la classe compiler.visitor.ASTVisitor. Chaque nceud de 'AST est passé a la méthode
visitTypeNoeud de la classe si elle existe, ot TypeNoeud est le type de nceud visité.

m La bibliothéque standard
TROISIEME PARTIE
Extension

En partant de ce mécanisme d’introspection, il est possible de concevoir un outil de
recherche rapide équivalent a grep, mais orienté pour le code Python.

En un mot...

Cette série d’exercices a permis d’appréhender Python dans des exemples plus con-
crets et complets que les simples extraits de code des chapitres précédents.

Llobjectif était de restreindre I'intégralité des exercices a la bibliotheque standard pour
montrer son aspect datteries included. Evidemment, il existe des bibliothéques tierces
qui offrent parfois des fonctionnalités plus poussées ou des solutions plus élégantes
pour résoudre certains problémes. Nous en présentons certaines a la fin de ce livre.

Soulignons enfin que les exercices ont été congus par le biais de la programmation
dirigée par les tests, qui est présentée au chapitre suivant.

QUATRIEME PARTIE

Techniques
avancees

Clest officiel, a ce stade du livre, les lecteurs assidus sont devenus des développeurs
Python chevronnés, capables d’écrire en quelques lignes des fonctionnalités simples
et puissantes.

Cependant, des que les programmes grossissent, un nouvel enjeu apparait: le
besoin d’efficacité dans les méthodes de programmation pour ne pas se faire
déborder par le code.
Un développeur efficace sait :

* livrer des programmes fiables, méme lorsqu’ils deviennent conséquents ;

* résoudre les problématiques de performance ;

* gérer I'organisation du code et rendre le programme modulaire.
Cette derniére partie regroupe trois chapitres dédiés a des techniques avancées de
programmation, qui permettent de gérer ces problématiques, a savoir :

* la programmation dirigée par les tests ;

* les bonne pratiques ;

* la programmation orientée objet.

12

Programmation
dirigee par les tests

No tests, no commit

« Code non testé, code invalide »

Python est un langage de programmation agile, propice a la mise en ceuvre de
méthodes de développement réactives, comme la programmation dirigée par les
tests. Cette méthode éprouvée permet d’améliorer de maniére drastique la qualité du
code et 'agilité avec laquelle les développeurs peuvent le modifier, et est trés facile a
mettre en ceuvre en Python.

Culturellement, Guido van Rossum et toutes les personnes qui ont participé a la
création du langage sont tous des convaincus de cette technique et les outils qui sont
présentés dans ce chapitre existent depuis toujours dans Python. Ce chapitre pré-
sente ces outils, apres avoir défini les principes des tests et surtout levé la barriere cul-
turelle que notre cerveau dresse naturellement lorsque 'on découvre pour la premiere
fois cette technique.

Techniques avancées

A

QUATRIEME PARTIE

A quoi servent les tests ?

Dans le cycle de création d’un logiciel, il arrive inévitablement qu'un programmeur
teste le code qu'il a écrit, pour vérifier qu'il se comporte comme prévu. Ces tests sont
préférablement effectués avant de livrer le logiciel ou la fonctionnalité, et font partie
intégrante du travail de développement.

Tester un logiciel comme le ferait le client, pour valider point par point que tout
fonctionne peut devenir relativement fastidieux, car il faut en toute logique recom-
mencer 4 chaque insertion ou modification de code.

La premiere idée de la programmation dirigée par les tests est donc d’écrire des
scripts de tests pour automatiser cette tiche.

La deuxieme idée qui en découle est de se prémunir de toute régression. La régres-
sion est le fait d’introduire ou de modifier du code pour ajouter une fonctionnalité A
et de provoquer indirectement un dysfonctionnement dans une fonctionnalité B qui
se comportait jusqu’alors trés bien : si la batterie de tests contient un test qui vérifie la
fonctionnalité B et si les tests sont relancés au moment de l'introduction de A, le
probléme sera alors tout de suite décelé.

Ce principe est d’autant plus important que le logiciel grossit : il est de plus en plus
difficile pour un développeur d’avoir une vision globale au moment de l'introduction
d’une nouvelle fonctionnalité, pour éviter ces effets de bords.

La programmation dirigée par les tests consiste a écrire des scripts de tests en paral-
léle et au méme moment que le code, pour chaque nouvelle fonctionnalité introduite
dans le programme.

Enfin, 'action méme d’écrire un test au moment de la conception d’une fonctionna-
lité augmente de maniere considérable la qualité du code : réfléchir a un test valide la
pertinence des paramétres d’entrée, de sortie et le fonctionnement logique du code et
force 4 une relecture avec plus de recul. Le nombre de bogues ou de défauts de con-
ception est divisé par cinq par cette action. En outre, ces tests constituent la
meilleure documentation possible pour le code.

Barriere culturelle

« Ecrire un test i chaque nouvelle fonction 2 Je n'ai pas le temps ! »

Le seul frein réel a ce type d’approche est culturel : il est tres difficile pour un déve-
loppeur et/ou son chef de projet d’admettre que 60 % du temps de développement
est voué habituellement 4 déboguer du code écrit. Il est méme fréquent, pour ne pas

Programmation dirigée par les tests m
CHAPITRE 12

dire systématique, que le temps prévu au débogage soit bien en-dessous de la réalité
dans la planification d’un projet.

Les développeurs sceptiques deviennent en général adeptes le jour ot ils sont chargés
d’introduire ou modifier une fonctionnalité de bas niveau dans un gros logiciel en
production : les tests deviennent dans ce cas pour le développeur ce que le filet de
sécurité est au trapéziste.

Les chefs de projet qui émettent des réserves le font car il est trés difficile de quantifier
les gains de temps obtenus par ce genre d’approche : ils dépendent fortement de la per-
sonnalité de chaque composante de 'équipe, du type de projet, et des situations.

EN SAVOIR PLUS La gestion de projet, eXtreme Programming

La lecture de Gestion de projet — eXtreme Programming, par Bénard, Bossavit, Médina et Williams chez
le méme éditeur, donnera plus d'informations sur ce sujet au lecteur intéressé.

Principes

Les eXtrémistes (adeptes de I'eXtreme Programming) préconisent d’écrire les tests
avant le code, pour former une sorte de mini-cahier des charges pour le développe-
ment. Le code peut ensuite étre biti pour faire fonctionner chacun des tests. S’ensuit
un cycle itératif pour faire grossir tour aprés tour tests et code.

Cette approche est la plus pure mais dans la réalité les développeurs alternent en général
T'ordre de conception (code puis test ou test puis code) en fonction des situations.

Lessentiel reste d’alterner chacun des deux exercices : le plus dur en général pour un
développeur est de réussir a s’arréter de coder pour passer coté tests.
On peut séparer les tests en deux catégories complémentaires :

* les tests unitaires ;

* les tests fonctionnels.

Tests unitaires

Les tests unitaires testent de maniére isolée les fonctionnalités d’un module ou pac-
kage, sans se soucier du reste du logiciel, pour vérifier qu’ils répondent bien aux cas
d’utilisation (use cases).

Techniques avancées

QUATRIEME PARTIE

Construction d’un test unitaire
Prenons 'exemple d’'une fonction en charge de calculer une moyenne.

Cette fonction prend en parameétre un nombre indéfini de valeurs entiéres et renvoie
la moyenne, basée sur une division entiere.

Les premiers tests qui peuvent étre effectués sur cette fonction sont de valider qu'elle ren-
voie bien les résultats attendus, en proposant quelques cas basiques qui viennent a I'esprit.

Ecrivons ces tests dans un fichier Python, avec la directive assert(), qui léve une
exception si I'assertion passée en paramétre est fausse.

Use cases pour la nouvelle fonction

#1/usr/bin/python
-*- coding: utf8 -*-

cas simples

assert moyenne(5) == 5

assert moyenne(5, 8, 9) ==

assert moyenne(5, 8, 9, 78, 43) == 28

Ces tests échoueront bien sir des la premiére ligne car la fonction n’existe pas encore,
mais guident le développeur pour la conception.

Premiére implémentation

#!/usr/bin/python
-*- coding: utf8 -*-

def moyenne(*nombres):
taille = Ten(nombres)
somme = 0
for nombre 1in nombres:
somme += nombre
return somme / taille

cas simples

assert moyenne(5) ==

assert moyenne(5, 8, 9) =7

assert moyenne(5, 8, 9, 78, 43) == 28

Cette premiere version remplit plutdt bien ses objectifs puisqu’elle valide les trois cas
proposés.

Programmation dirigée par les tests m
CHAPITRE 12

EVOII.I“OII des use cases

Lorsqu'un nouveau bogue ou un fonctionnement non souhaité est découvert, le che-
minement qui I'a provoqué devient un nouveau use case et le test unitaire correspon-
dant doit étre modifié pour en tenir compte.

L'ajout de ce nouveau cas doit faire échouer le test sur I'ancien code. Ce n'est qu'apres
avoir validé que le test provoquait bien le probleme a corriger que le code est modifié.

Pour notre fonction de moyenne, un cas spécial a été rapporté par un utilisateur : si
aucun parameétre n'est fourni, une erreur de division par zéro est provoquée. Lutilisa-
teur souhaite que la fonction renvoie None dans ce cas.

Un nouveau test correspondant a ce use case est ajouté.

Ajout d’un use case

#!/usr/bin/python
-*- coding: utf8 -*-

def moyenne(*nombres):
taille = len(nombres)
somme = 0
for nombre in nombres:
somme += nombre
return somme / taille

cas simples

assert moyenne(5) == 5
assert moyenne(5, 8, 9) == 7
assert moyenne(5, 8, 9, 78, 43) == 28

aucun parametre en entrée
assert moyenne() == None

Le développeur valide dans un premier temps que ce test provoque bien l'erreur indi-
quée...

Test de la division par zéro

[tziade@Tarek Desktop]$ python tests_unitaires.py
Traceback (most recent call Tast):
File "tests_unitaires.py", line 15, in ?
assert(moyenne() == None)
File "tests_unitaires.py", line 9, in moyenne
return somme / taille
ZeroDivisionError: integer division or modulo by zero

... puis corrige son implémentation pour que le test passe.

m Techniques avancées
QUATRIEME PARTIE
Seconde version

#1/usr/bin/python
-*- coding: utf8 -=-

def moyenne(*nombres):
taille = len(nombres)
if taille ==
return None
somme = 0
for nombre in nombres:
somme += nombre
return somme / taille

cas simples

assert moyenne(5) == 5

assert moyenne(5, 8, 9) ==

assert moyenne(5, 8, 9, 78, 43) == 28

aucun paramétre en entrée
assert moyenne() == None

Non-régression

Paccumulation de tests au fur et a mesure de 'évolution du code permet d’assurer la
non-régression de ce dernier. Si tous les tests sont bien rejoués a chaque modifica-
tion, la nouvelle version du code est assurée de continuer 2 faire fonctionner tous les
use cases précédents.

Toujours sur notre exemple de moyenne, notre utilisateur a remarqué que la fonction
levait bien une erreur de type TypeError lorsque I'un des parameétres n’était pas un
entier, mais sans spécifier lequel. I souhaiterait que le message d’erreur soit plus
explicite, en indiquant le paramétre qui pose probléme.

Un test est ajouté pour proposer un message d’erreur plus explicite.

Message TypeError explicite

#1/usr/bin/python
-*- coding: utf8 -*-

def moyenne(*nombres):
taille = len(nombres)
if taille ==
return None
somme = 0
for nombre in nombres:
somme += nombre
return somme / taille

Programmation dirigée par les tests

cas simples

assert moyenne(5) == 5

assert moyenne(5, 8, 9) == 7

assert moyenne(5, 8, 9, 78, 43) == 28

aucun paramétre en entrée
assert moyenne() == None

message d'erreur de type plus explicite
try:
moyenne(5, 'u', 8)
except TypeError, e:
assert str(e) == "'u' n'est pas un entier"

Le développeur modifie ensuite la fonction pour gérer ce nouveau cas.

Troisiéme version

#!/usr/bin/python
-*- coding: utf8 -=*-

def moyenne(*nombres):
taille = len(nombres)
if taille ==
return None
somme = 0
for nombre in nombres:
if not isinstance(nombre, int):

somme += nombre
return somme / taille

cas simples

assert moyenne(5) == 5

assert moyenne(5, 8, 9) ==

assert moyenne(5, 8, 9, 78, 43) == 28

aucun parametre en entrée
assert moyenne() == None

message d'erreur de type plus explicite
try:
moyenne(5, 'u', 8)
except TypeError, e:
assert str(e) == "'u' n'est pas un entier"

CHAPITRE 12 m

raise TypeError("'%s' n'est pas un entier" % str(nombre))

Si la batterie de tests est a nouveau exécutée pour valider la modification, le premier

test ne fonctionne plus.

Techniques avancées

QUATRIEME PARTIE

Régression

[tziade@Tarek Desktop]$ python tests_unitaires.py
Traceback (most recent call Tast):
File "tests_unitaires.py", line 16, in ?
assert moyenne(5) ==
AssertionError

La modification, qui est valide pour le nouveau use case, a ajouté un bogue qui a pro-
voqué une régression sur un autre use case, décelée par le test unitaire.

Dans notre cas, il s’agit d’une erreur d’indentation classique : la ligne somme +=
nombre qui suit le raise a été indentée par mégarde.

Troisiéme version corrigée

def moyenne(*nombres):
taille = len(nombres)
if taille ==
return None
somme = 0
for nombre 1in nombres:
if not isinstance(nombre, int):
raise TypeError("'%s' n'est pas un entier" % str(nombre))
somme += nombre
return somme / taille

Regroupement des tests

En termes de découpage, on associe généralement un ensemble de tests par module
de code Python. Ce procédé permet de valider que les différentes classes, constantes
et fonctions regroupées dans un méme module représentent une brique logique du
programme : si les éléments regroupés ne se testent pas de maniére simple et homo-
gene dans 'ensemble de tests, il y a fort a parier que leur regroupement n’est pas bon.

En reprenant 'exemple précédent, si la fonction moyenne() fait partie d'un module
utils.py, on peut regrouper le code de test dans un module test_utils.py.

Tests plus complexes : raconter une histoire

Pour des tests plus longs qu'un simple appel a une fonction, la méthode la plus simple
consiste a raconter des petites histoires, qui correspondent a des scenarii d’utilisation.
Ces histoires sont des mélanges de commentaires, lignes de code et assertions.

Lexemple ci-contre est un test possible pour le module cPicke.

Programmation dirigée par les tests m
CHAPITRE 12

Scénario de test de cPickle

#!/usr/bin/python
-*- coding: IS0-8859-15 -*-
import cPickle

une classe basique pour nos tests
class T:

a=20

b=20

voici un objet a sauvegarder

oo
I
N

créons un fichier en écriture
fic = open('/home/tziade/pickled.bin', 'w')

écrivons 1'objet o dans le flux avec la méthode dump de cPickle
cPickle.dump(o, fic)

fermons le fichier
fic.close()

ouvrons le fichier en Tecture
fic = open('/home/tziade/pickled.bin')

cPickle.load permet de recharger un objet aprés une sauvegarde par
dump
02 = cPickle.Tload(fic)

vérifions 1'objet renvoyé
assert(isinstance(o2, object))
assert(o2.a == 1)

assert(o2.b == 2)

Les tests écrits de cette maniere constituent aussi une documentation pour le module
testé.

Les bouchons

Idéalement, un module de test ne doit concerner que le module testé et doit pouvoir
s'exécuter sans dépendre d’une ressource externe qui n'est pas forcément présente sur
la machine de tests.

Les dépendances de ce genre, fréquentes dans les applications web ou de gestion,
P : g q PP g
peuvent étre évitées grice a la technique du bouchon.

Techniques avancées

QUATRIEME PARTIE

Cette technique consiste a modifier a la volée, au moment du test, la portion de code
qui accede a une ressource externe pour la remplacer par du code qui se contente de
renvoyer un résultat convenable pour la suite des tests. L'objectif est de faire croire au
code appelant que tout s’est bien déroulé, et de lui renvoyer un résultat correct. La
qualité d’imitation du résultat renvoyé dépend de I'utilisation qui en est faite dans le
code et peut parfois étre grossiere.

Python est un langage suffisamment souple pour permettre de modifier les défini-
tions de modules, classes et fonctions a la volée, et cette technique peut étre appli-
quée a tous les étages du code.

Modification de fonctions et méthodes

Lexemple ci-dessous modifie temporairement la fonction urlopen d’ur11ib2 avant
de démarrer les tests, pour qu'elle renvoie un résultat méme si la machine de test ne
peut pas se connecter a 'URL indiquée.

Bouchon pour urllib

#1/usr/bin/python

-*- coding: utf8 -*-
import urllib

import StringIO

fonction de remplacement

def fakeopen(url, data=None):
res = StringI0.StringI0('<html><body>Dummy Page</body></html>")
return res

monkey patching
original_urllib = urllib.urlopen
urllib.urlopen = fakeopen

test d'exemple
res = urllib.urlopen('http://google.fr")
assert(res.readlines(),

['<html><body>Dummy Page</body></htm1>"'])

retrait du patch
urllib.urlopen = original_urllib

Le test d’exemple ne sert qu’a valider que le patch a bien été appliqué. Dans cette
zone, tout acces a la fonction urlopen, exécutera le patch, sauf si la directive reload
est appelée sur le module unittest.

Programmation dirigée par les tests m
CHAPITRE 12

Le code contenu dans le patch peut ensuite étre modifié, voire varier en fonction des
appels, afin de flouer tout code appelant.

Modification de classes

I1 est parfois nécessaire de modifier une classe entiére. Clest le cas par exemple de la
quasi-totalité des classes qui implémentent des clients réseaux. Si 'on teste une
application qui est en charge d’envoyer des e-mails, il est nécessaire de créer une
fausse classe smtp1ib.SMTP compléte, appelée fake pour simuler I'envoi des e-mails.

La construction d’un fake doit se faire de maniere itérative, afin de ne coder que ce
qui est vraiment nécessaire a la simulation. La premiére étape consiste a créer une
classe totalement vide et un test qui envoie un e-mail. Au moment de la relance des
tests, 'interpréteur affichera toutes les erreurs dues a la non-disponibilité de la res-
source réseau, a savoir le serveur SM'TP.

Le fake pourra alors étre complété en fonction des erreurs, au fur et a mesure des
essais, jusqu’a ce que la simulation fonctionne.

Version 1

#!/usr/bin/python
-*- coding: utf8 -*-
import smtplib

class FakeSMTP:
pass

mise en place du bouchon
original_SMTP = smtplib.SMTP
smtplib.SMTP = FakeSMTP

séquence classique d'appel a SMTP

sender = smtplib.SMTP('mon.serveur.smtp')

message = 'mon message bidon'

destinataires = ['alfred@mlksnc.com', 'marie@zertceo.com']
sender.sendmail('bil1@hou.com', destinataires, message)
sender.quit()

retrait du patch
smtplib.SMTP = original_SMTP

Llexécution de ce code provoque une erreur de constructeur.

Techniques avancées

QUATRIEME PARTIE

Erreur version 1

[tziade@Tarek Desktop]$ python test_imaplib.py
Traceback (most recent call Tast):
File "test_imaplib.py", 1line 13, in ?
sender = smtplib.SMTP('mon.serveur.smtp')
TypeError: this constructor takes no arguments

I est nécessaire de rajouter un constructeur a notre fake, le plus large possible, pour
couvrir tout type d’initialisation. Reprendre comme modele le constructeur de la
classe réelle est le choix le plus précis, mais un modéle générique suffit amplement.

Version 2

class FakeSMTP:
def __init__(*args, **kw):
pass

Lexécution repousse U'erreur un peu plus loin dans la mécanique d’envoi d’e-mails.

Test version 2

[tziade@Tarek Desktop]$ python test_imaplib.py
Traceback (most recent call last):
File "test_imaplib.py", Tine 17, in ?
sender.sendmail('bil1@hou.com', destinataires, message)
AttributeError: FakeSMTP instance has no attribute 'sendmail'

La fonction sendmail() n’a pas besoin de renvoyer de résultat, sa simulation est donc
aussi simple que le constructeur. Méme observation pour quit(Q).

Version 3

class FakeSMTP:
def __init__(*args, **kw):
pass

def sendmail(*args, **kw):
pass

def quit(self):
pass

Le test est a présent validé et le fake fonctionnel pour I'envoi d’e-mails.

Programmation dirigée par les tests m
CHAPITRE 12

Dans I'exemple, le protocole d’envoi d’un e-mail est connu et a été mis dans le test du
patch, mais le principe de construction par essai-erreur peut s’appliquer en aveugle
pour des objets non connus, en appelant directement le code client dans le test.

Simulation d’un module complet

I1 est parfois nécessaire de simuler un module complet pour couper toute dépendance
a des bibliotheques liées par des directives import. Linterpréteur gere un diction-
naire ou il conserve tous les modules importés. A chaque nouvelle importation, ce
dictionnaire est contrdlé et si le nom (sans chemin) du module apparait dans la liste
des clés, 'objet de type module n'est pas recréé.

Remplacer un module par un autre module réservé aux tests consiste donc a sup-
primer l'entrée de ce module dans le dictionnaire et a4 en recréer une avec le module
de remplacement.

I1 est fortement déconseillé d’utiliser le méme nom que le module original : dans cer-
tains cas le patch peut s’activer lorsque ce n'est pas souhaité. Cette situation peut se
produire lorsque le code appelant rencontre le module de patch avant le module réel,
par le jeu des chemins de recherche.

Un nom préfixé par fake_ par exemple, est plus explicite.

Exemple de patch pour le module imap1ib :

Bouchon (fakeimaplib.py)

"% Bouchon IMAP **
class IMAP4:
def login(sef, user, password):
return True

Unité de test

#!/usr/bin/python
-*- coding: ISO-8859-15 -*-
import sys

déchargement du vrai module imap si nécessaire
if 'imaplib' din sys.modules.keys():
original_imap = sys.modules['imaplib']
del sys.modules['imaplib']
else:
original_imap = None

Techniques avancées

QUATRIEME PARTIE

chargement du fake
import fakeimaplib as imaplib
sys.modules['imaplib'] = sys.modules['fakeimaplib']

utilisation du fake
print imaplib._ _doc__

[...]

déchargement du fake
del sys.modules['imaplib']

rechargement du vrai module imap si nécessaire
if original_imap isnot None:
sys.modules['imaplib'] = original_imap

A RETENIR Primitive reload() et objet module

e La primitive reToad () permet de forcer le rechargement d'un module. Si elle est appelée pendant
les tests, le patch saute.

* L'objet moduTe peut étre remplacé par n'importe quel type d'objet, du moment qu'il couvre les
appels qui lui sont faits.

Test coverage

Lorsque la batterie de tests est exécutée, le ratio entre le nombre de lignes parcourues
et le nombre de lignes totales du programme, appelé test coverage, doit étre dans
I'idéal égal a 1. Si ce ratio est inférieur, cela signifie que certaines lignes de 'applica-
tion ne sont jamais testées.
Deux actions sont possibles :

* Les tests sont complétés pour couvrir les cas non explorés.

* Les lignes de code en question sont retirées car mortes. Les lignes mortes sont des
résidus de code qui ne peuvent jamais étre appelés.

Qualité des tests

Le facteur clé de réussite de ce type de programmation tient dans la pertinence des
tests écrits. Mal employée, la technique peut s’avérer beaucoup moins efficace.

Voici quelques conseils pratiques :

* N’inventez pas de use cases dans les tests, seuls ceux définis dans les spécifications
importent.

* Chaque test doit raconter une petite histoire, du début jusqu’a la fin. Si I'histoire
s'interrompt, le découpage des tests est mauvais.

Programmation dirigée par les tests m
CHAPITRE 12

* Rythmez continuellement les séquences de test et de codage, ne reportez jamais
Iécriture de certains tests a plus tard si vous étes coté code.

* Pour un refactoring, c’est-a-dire une modification en profondeur d’un code exis-
tant, essayez de segmenter au maximum le travail de réécriture pour pouvoir
relancer la batterie de tests compléte régulierement et modifier si nécessaire cer-
tains tests.

Un développeur qui débute dans cette technique dérape facilement vers des tests trop
longs ou incomplets. La pertinence des tests sacquiert par expérience et gout.

Tests fonctionnels

Les tests fonctionnels ont le méme objectif que les tests unitaires, mais imitent un
utilisateur qui se sert de I'applicatif.

Lobjectif n'est plus dans ce cas de couvrir systématiquement chaque ajout de code,
mais plutét de valider globalement que les fonctionnalités demandées sont bien cou-
vertes par le logiciel.

Ces tests peuvent étre utilisés au moment de la recette pour vérifier avec le client que
le produit livré correspond bien a ses attentes. Ils deviennent une sorte de checklist,
ou chaque point du cahier des charges est vérifié.

Dans certains cas, et si les outils le permettent, ces tests peuvent méme étre congus
par le client lui-méme.

Ces tests constituent un excellent outil commercial pour prouver la qualité du code
au client. Ils permettent aussi la prévention de régressions qui apparaissent au cours
de I'évolution du développement d’une application.

La question a se poser est donc :

« Que m’apportent de plus les tests fonctionnels que les tests unitaires 4 moi,
développeur ? »

Tests de I’'interface

Les tests fonctionnels doivent opérer sur le logiciel de la méme maniére qu'un utilisa-
teur. Ils doivent donc utiliser I'interface du logiciel.

ans le cas de programmes utilisés en ligne de commande, 'interface entre le pro-
Dans 1 de prog til ligne d de, l'interf: tre le p
gramme et l'utilisateur est trés étroite, et les tests fonctionnels s'apparentent plus a
des tests d’'intégration en mode boite noire : on vérifie que les différents composants
g q p
de 'application fonctionnent correctement pour un ensemble de parameétres d’entrée
PP p p
qui correspondent aux différents scenarii d’utilisation.

Techniques avancées

QUATRIEME PARTIE

Pour tous les programmes a interface graphique, les tests fonctionnels permettent de
valider des portions de code de trés haut niveau concernant la mécanique d’affichage,
qui ne sont pas toujours couvertes par les tests unitaires, et d’'emprunter les mémes
chemins que l'utilisateur, pour couvrir des combinaisons qui ne se retrouvent pas for-
cément dans les tests unitaires.

Enfin, pour les applications web, les tests fonctionnels qui ne travaillent que par
I'intermédiaire des pages web calculées puis envoyées au navigateur, permettent de
vérifier, dans les limites des outils disponibles, le bon rendu des pages.

Tests de I’ergonomie

Lorsqu’une application graphique est manipulée par un utilisateur, il est guidé par la
logique de présentation des informations. Les tests fonctionnels suivent les mémes rails.

Pour chaque fonctionnalité complexe du logiciel, qui nécessite des enchainements
d’écrans, des saisies de données, etc., la conception d’un test fonctionnel peut per-
mettre de déceler un certain nombre de problématiques d’ergonomie, comme :

* des enchainements d’écrans incompréhensibles ;

* un chemin trop long, pouvant étre raccourci ;

* un dose d’informations par écran trop pauvre ou trop riche, etc.

Dépendance forte a I’outil utilisé et au type d’interface

Contrairement aux tests unitaires, les tests fonctionnels sont fortement dépendants de
loutil utilisé. Pour les interfaces graphiques, les développeurs utilisent fréquemment
des logiciels tiers, qui implémentent leurs propres mécanismes de scripts et parfois ne
proposent que d’enregistrer les actions souris pour les rejouer sur 'applicatif.

La suite de ce chapitre ne portera donc que sur les outils et techniques relatives aux
tests unitaires, applicables dans tout contexte.

On peut citer, pour le lecteur intéressé, certains outils libres pour les tests fonction-
nels, qui s’adaptent bien a un environnement Python :

* Les projets mechanize (http://wwwsearch.sourceforge.net/mechanize/) et WebUnit
(http://webunit.sourceforge.net/) fournissent des objets Python sans interface gra-
phique qui simulent le comportement d’un navigateur web avec gestion des for-
mulaires, des cookies, des redirections...

* Le logiciel Selenium (http://selenium.thoughtworks.com/) permet de jouer des sce-
narii programmés dans un véritable navigateur web tel qulnternet Explorer ou
Mozilla Firefox.

* Le logiciel FunkLoad (http://funkload.nuxeo.org/) offre un syst¢éme de benchmark
et de reporting étendu.

Programmation dirigée par les tests m
CHAPITRE 12

Outils

Python fournit dans la bibliothéque standard un framework de tests pour faciliter
I'écriture et lutilisation des tests unitaires. Comme pour la plupart des langages
actuels, ce framework est inspiré des travaux de Kent Beck, qui a congu un premier
outil sous Smalltalk, porté par la suite sous Java, sous le nom de JUnit.

La version Python, PyUnit, offre les fonctionnalités standards d’'un outil de test, a
Savoir :

* préparation d’'un contexte d’exécution particulier pour une série de tests, appelé
test fixture.

* création de séries de tests, comprenant un test fixture et des tests : les test cases.
* création de collections de test cases, les test suites.

* lancement des test suites et affichage des résultats, par le test runner.
Cette implémentation est faite dans le module unittest de Python.

Certains puristes trouvent que cette implémentation n'est pas trés pythonique, car les
API sont calquées sur 'outil Java, mais elle s’avére trés souple a 'usage et a le mérite
de faciliter I'utilisation des tests unitaires aux développeurs venant d’autres langages.

Un deuxiéme outil plus original et plus spécifique & Python permet d’insérer des tests
directement dans le code source. Ces tests, insérés dans les commentaires, sont col-
lectés par 'outil et exécutés. Ce mode de fonctionnement permet d’illustrer iz sizu le
code avec des exemples d’utilisation.

Enfin, un outil supplémentaire, non présent dans la bibliothéque standard, permet
de scanner le code pour repérer les lignes qui ne sont pas couvertes par les tests.

unittest

Le module unittest fournit toutes les composantes nécessaires a la création des
tests, 4 savoir :

* des classes pour la définition des test cases ;
* une classe pour la collecte des résultats ;

* une classe pour définir des test suites ;

* des utilitaires de lancement des tests.

En utilisation classique, les seules étapes nécessaires a l'utilisation d’'unittest sont :
* la définition des tests cases ;

* lorganisation et 'utilisation des modules de tests.

Techniques avancées

QUATRIEME PARTIE

Définition des test cases

Le module unittest fournit deux classes pour définir des test cases :
* TestCase : classe de base servant de socle pour toute classe implémentant des
tests.
* FunctionTestCase : classe dérivée de TestCase qui permet d’encapsuler une
fonction de test existante pour la rendre compatible avec le framework PyUnit.

La classe TestCase

Ces classes de définitions sont utilisées par le framework, par le biais d’un certain
nombre de méthodes :

* setUp() :appelée avant 'exécution de chaque méthode de test, elle sert 4 initiali-
ser le contexte d’exécution du test suivant. Cette méthode peut étre surchargée
par les classes dérivées pour définir le test fixture. Ne fait rien par défaut.

* run([result]) : lance la batterie de tests de la classe, en collectant toutes les
méthodes de la classe dont le suffixe est « test » et en les exécutant dans l'ordre
trouvé. Si result est fourni, il doit étre un objet de type TestResuTt et est rempli
avec les résultats des tests. Si result est omis ou a None, les résultats sont collectés
dans un objet interne 4 la méthode mais ne seront pas renvoyés.

* Debug() :exécute les méthodes de test de la classe sans collecter les résultats. Ces
appels se font directement, ce qui permet de récupérer d’éventuelles erreurs.

* TearDown() : appelée aprés I'exécution de chaque méthode de test (réussie ou
non). Permet d’effectuer d’éventuels nettoyages (fermeture de connexion réseau,
de fichier, etc.). Cette méthode est appelée uniquement en cas de succes de
setUp(). Cette méthode ne fait rien par défaut et peut étre surchargée dans les
classes dérivées.

Pour adapter TestCase, il suffit de créer une nouvelle classe dérivée, d’y ajouter des
méthodes de test et si besoin d’y implémenter setUp() et tearDown().

Module de test

Chaque classe de test est écrite dans un module Python dédié, portant le nom du
module testé, préfixé de test_ ou test.

Silon utilise cette structure pour le test précédent du module cPickle, on obtient le
module test_cPickle.py ci-contre.

Programmation dirigée par les tests m
CHAPITRE 12

test_cPickle.py

a =
b =

def

def

#!/usr/bin/python

-*- coding: utf8 -*-
import cPickle

import unittest

une classe basique pour nos tests
class T:

0
0

class cPickleTestCase(unittest.TestCase):

_genere_instance(self):
""" renvoi un objet """
o=T0O

o.a=1

o.b =2

return o
test_dump_et_Tload(self):

""" test 1'E/S de cPickle """
objet de test
o = self._genere_instance()

créons un fichier en écriture
fichier = open('/home/tziade/pickled.bin', 'w')

écrivons 1'objet o dans Te flux avec Ta méthode dump de cPickle
cPickle.dump(o, fichier)

fermons le fichier
fichier.close()

ouvrons le fichier en Tecture
fichier = open('/home/tziade/pickled.bin')

cPickle.load permet de recharger un objet aprés une sauvegarde

par dump

02 = cPickle.Tload(fic)

vérifions 1'objet renvoyé
assert(isinstance(o2, object))
assert(o2.a == 1)

assert(o2.b == 2)

Tout nouveau scénario de test pour cPickle pourra étre implémenté dans une nou-
velle méthode de cette classe, en préfixant son nom par « test ».

Techniques avancées

QUATRIEME PARTIE

Méthodes d’assertion de TestCase

Dans le code de test, la directive assert() qui permet de valider un résultat, 1éve en cas
de probléme une erreur de type AssertionError, qui est interceptée par le framework.

Cette erreur napporte pas explicitement d’explications sur le probléme rencontré et
nécessite de toujours fournir une expression qui renvoie une valeur booléenne.

TestCase fournit une batterie de méthodes d’assertions qui couvrent tous les types de
tests et clarifient le code, par leurs noms explicites. Chacune de ces méthodes fournit
un message d’erreur standard pour le test effectué :

assert_(expr, msg=None) : équivalente a la directive assert(). Léve une excep-
tion si I'expression fournie ne vaut pas True. Si msg est fourni, il est associé a
I'exception. Synonymes : assertTrue, failUnless.

assertFalse(expr, msg=None) : similaire & assert_() mais teste si 'expression
renvoie False. Synonyme : failIf.

assertRaises(excClass, callableObj, *args, **kwargs) : permet de valider
que l'objet callab1eObj léve bien une erreur de type excClass lorsqu’il est appelé
par un appel excClass(*args, **kwargs). args et kwargs étant optionnels.
Synonyme : failUnlessRaises.

assertAlmostEqual (first, second, places=7, msg=None) : permet de tester
que round(second-first, places) renvoie 0. places détermine donc la puis-
sance de l'arrondi appliqué au moment de la comparaison. Cette méthode est
utile pour les tests manipulant des objets de type float. Si msg est fourni il est
associé a l'exception. Un message par défaut est utilisé dans le cas contraire.
Synonyrnes : assertAlmostEquals, failUnlessATmostEqual.

assertNotAlmostEqual(first, second, places=7, msg=None) : équivalente ala
méthode précédente mais teste que round(second-first, places) ne renvoie
pas 0. Simsg est fourni il est associé a 'exception. Un message par défaut est utilisé
dans le cas contraire. Synonymes : assertNotATmostEquals, fai1IfATmostEqual.
assertEqual(first, second, msg=None) : teste que first est égal a second. Si
msg est fourni il est associé a 'exception. Un message par défaut est utilisé dans le
cas contraire. Synonymes : assertEquals, failUnlessEqual

assertNotEqual : équivalente & la méthode précédente, mais teste I'inégalité.
Synonymes : assertNotEquals, failIfEqual.

On peut donc remplacer les trois assertions par le code suivant.

Programmation dirigée par les tests m
CHAPITRE 12
Utilisation des méthodes d’assertion

[...]
vérifions 1'objet renvoyé
self.assert_(isinstance(o2, object),
"1'objet renvoyé par dump n'est pas du méme type")

self.assertEqual(o2.a, 1,

"T'objet renvoyé par dump n'a pas Ta méme valeur a")
self.assertEqual(o2.b, 2,

"1'objet renvoyé par dump n'a pas la méme valeur b")

[...]

Utilisation directe d’une classe TestCase

Ily a plusieurs maniéres d’utiliser cette classe de test, la plus simple étant d’appeler la
fonction main() du module unittest, en ajoutant 4 la fin du module contenant la
classe une section __main__.

Ajout d’un appel au framework

if __name_ == '__main__"':
unittest.main()

main() se charge de collecter les tests, de les exécuter et d’afficher les résultats dans la
sortie standard.

Exécution du module

[tziade@Tarek Desktop]$ python test_cPickle.py

Ran 1 test 1in 0.002s

OK

Dans ce mode d’affichage, chaque petit point correspond 4 un test réussi, un F indi-
querait un test raté (F pour FAIL) et un E une erreur différente d’'une erreur de type
AssertionError.

Cet appel permet de valider rapidement un module de test mais ne constitue pas une
campagne de tests en soi, qui intégre généralement plusieurs modules de tests.

Organisation d’une campagne de tests

Pour pouvoir lancer une campagne de tests, qui inclut tous les modules de tests du
programme, il est nécessaire de mettre en place un script qui collecte et exécute
I'ensemble des modules de tests disponibles dans un répertoire donné.

Techniques avancées

QUATRIEME PARTIE

Ce script se base sur la classe TextTestRunner d’unittest, instanciée lors de 'appel
de la fonction de lancements de tests main().

Cette classe est une implémentation par défaut d’une campagne de test, qui collecte
dans un objet TestResult interne tous les résultats des tests et qui les affiche sur la
sortie d’erreur standard.

Une instance de classe TextTestRunner récupere des TestSuite et les exécute dans
un TestSuite global, par le biais de la méthode run().

TestSuite est une classe basique regroupant des objets de type TestCase, fournis a la
construction, ou ajoutés par le biais des méthodes addTest() ou addTests(). Cette
classe possede aussi une méthode run(Q).

Ces deux classes vont permettre au script d’exécuter les tests contenus dans les difté-
rents modules.

Organisation des modules de tests

Pour faciliter la tiche du script de tests, tous les modules de tests de 'application doi-
vent nécessairement :
* avoir un nom avec un préfixe test et un suffixe .py ;
* se trouver dans un dossier nommé tests, réservé a ce type de scripts. Il peut y
avoir plusieurs dossiers tests dans I'arborescence de I'application ;
* contenir une fonction globale get_test_class(), qui renvoie la classe de type

TestCase 2 utiliser. Cette fonction peut aussi renvoyer une séquence de plusieurs
classes a utiliser.

Script de lancement des tests

Notre script de lancement de tests prend en parameétre un répertoire et effectue une
recherche dans tous les répertoires tests de l'arborescence. Un TestSuite est
tabriqué pour chaque module de test rencontré dans ces répertoires. Le script lance
ensuite ces tests par le biais d’'un TestRunner.

Script tester.py
#!/usr/bin/python

-*- coding: utf8 -*-
import sys

from os import getcwd, walk, chdir
import os.path

from optparse import OptionParser
import unittest

from warnings import warn

Programmation dirigée par les tests

options = [{'noms': ('-r', '--repertoire'),
'help': ('Spécifie Te répertoire a utiliser, si non fourni,

def

def

'dest':

lr,epl’

'Te chemin courant est utilisé ')}]

_print_line(Q):
print('-"' * 70)

main(options, arguments, parser):
if options.rep isnot None:
chemin = options.rep
else:
if len(arguments) > O:
print parser.usage
sys.exit(2)
chemin = getcwd()

chemin = os.path.normpath(chemin)
if chemin.endswith(os.path.sep):
chemin = chemin[:-1]

print('Parcours du répertoire')
test_modules = []

for racine, reps, fichiers in walk(chemin):

dossier = os.path.basename(racine)

if dossier == 'tests':
for fichier in fichiers:

if (fichier.startswith('test') and
fichier.endswith('.py') and

fichier != '"test.py'):

CHAPITRE 12

nom_complet = os.path.join(racine, fichier)
test_modules.append((nom_complet, fichier[:-3]))

sys.stdout.write('.")

sys.stdout.flush()

print('\n%d module(s) de test trouvé(s)\n' % Ten(test_modules))

suite = unittest.TestSuite()
dernier_contexte = None
added_paths = []

for module in test_modules:

moduTle_path = os.path.dirname(module[0])

chargement d'un script si nécessaire

contexte = os.path.join(module_path,
if os.path.exists(contexte) and dernier_contexte != contexte:

execfile(contexte)

dernier_contexte = contexte

'contexte.py')

Techniques avancées

QUATRIEME PARTIE

if module_path notin sys.path:
sys.path.append(module_path)
added_paths.append(module_path)

m = __import__(module[1])
if 'get_test_class' in m.__dict_ :
class_type = m.get_test_class()
test_suite = unittest.TestSuite((
unittest.makeSuite(class_type),))
suite.addTest(test_suite)
else:
warn("%s n'a pas de fonction get_test_class" % module[0])

nb_test_case = suite.countTestCases()
if nb_test_case == 0:

print('Aucun test.')

sys.exit(2)

print('\nLancement de %d test(s)...' % nb_test_case)
_print_1line(Q)

campagne = unittest.TextTestRunner(verbosity=2)
campagne.run(suite)

for added_path 1in added_paths:
sys.path.remove(added_path)

if __name__ == '__main__"':
parser = OptionParser()
parser.usage = 'tester [-r repertoire]’

for option 1in options:
param = option['noms']
del option['noms']
parser.add_option(*param, **option)
options, arguments = parser.parse_args()
sys.argv[:] = arguments
main(options, arguments, parser)

Quelques fonctionnalités annexes ont été ajoutées :

* Le programme exécute un éventuel script contexte.py sil est présent dans le
répertoire tests en cours. Ce script peut servir a mettre en place un environne-
ment de test global sans avoir a le répéter dans chaque module de test. Il peut
contenir entre autres des manipulations du chemin de recherche de l'interpréteur,
ou des variables d’environnement.

* Un warning est affiché pour chaque module de test qui n'a pas de fonction
get_test_class().

Programmation dirigée par les tests m
CHAPITRE 12

AsavoRr Scripts de tests des frameworks

Les frameworks de développement Python, comme Twisted ou Zope, proposent généralement leurs pro-
pres scripts de tests, plus ou moins similaires a I'implémentation présentée et plus ou moins pratiques.

doctests

Les doctests offrent une approche complémentaire trés intéressante pour 'écriture
des tests unitaires : il est possible de les insérer directement dans le code a tester.
Contenus dans les docstrings de toute fonction, méthode, classe ou module, les tests
sont récupérés par un outil spécialisé, défini dans le module doctest.

Pour étre reconnus par l'outil, ces tests doivent étre écrits sous la forme de petites
sessions de code ressemblant a des séquences d’'un prompt Python interactif.

Exemple de doctest

def somme(a, b):
""" renvoie a + b

>>> somme(2, 2)
4
>>> somme(2, 4)
6

[IRIRT]

return a + b

Loutil vérifie alors que toutes ces séquences, qui sont indépendantes les unes des
autres, fonctionnent en les exécutant.

Exécution des doctests

Le module doctest fournit une fonction similaire 2 la fonction main() de unittest,
qui permet d’exécuter les tests unitaires contenus dans les docstrings d'un module
donné.

Module de code avec appel a testmod

import doctest

def somme(a, b):
""" renvoie a + b

>>> somme(2, 2)
4

m Techniques avancées
QUATRIEME PARTIE

>>> somme(2, 4)
6

non

return a + b

n n

if __name_ == "__main__":
doctest.testmod()

Appelée avec 'argument -v, cette fonction détaille dans la sortie standard le travail
effectué.

Session de test

[tziade@Tarek tests]$ python test_doctests.py -v
Trying:
somme (2, 2)
Expecting:
4
ok
Trying:
somme(2, 4)
Expecting:
6
ok
1 items had no tests:
__main__
1 items passed all tests:
2 tests in __main__.somme
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

Un appel sans paramétre sera totalement silencieux dans cet exemple ot le test n’aboutit
pas a une erreur. En cas de probléme, un message est affiché avec ou sans 'option -v.

Syntaxe des doctests

Nous I'avons vu dans l'exemple précédent, les doctests sont a peu de chose prés des
copiers-collers de sessions du prompt interactif de Python. Ils doivent donc con-
server les méme caractéristiques, et respecter quelques régles particuliéres, a savoir :

* Respect de l'indentation, sachant que toutes les tabulations sont modifiées a la
volée par des espaces, en utilisant la méme régle que I'analyseur syntaxique de
Iinterpréteur.

* Séquencage correct des lignes, qui doivent commencer par >>> ou par . .. pour le
code et aucun caractére particulier pour une sortie attendue.

Programmation dirigée par les tests

CHAPITRE 12

* Lorsqu’un saut de ligne est renvoyé dans les résultats d'une commande, il ne peut
pas étre comparé a un véritable saut de ligne, interprété par 'outil comme la fin
d’une séquence. Une ligne contenant la chaine <BLANKLINE> permet d’indiquer a

l'outil qu'un saut de ligne est attendu a cet endroit.

* Un docstring étant une chaine de caractéres, il est nécessaire de prendre des pré-
cautions lorsque le caractére antislash («\ ») est utilisé. Pour qu’il soit pris en
compte sans étre interprété au moment de la lecture de la chaine par l'outil, il est

nécessaire de définir la chaine comme étant de type raw.

Dans T'extrait de code ci-dessous, la premiére version de docstring provoque une
erreur SyntaxError a cause de I'antislash. La deuxiéme version utilise une chaine de

caracteres de type raw pour résoudre ce probleme.

Gestion des antislash

docstring de type string
def test():
>>> ligne = 'f\n\nf'
>>>
.f:
<BLANKLINE>
f

non

pass

[tziade@Tarek tests]$ python test_doctests.py -v
[...]
File "test_doctests.py", line 22, in __main__.test
Failed example:
ligne = 'f
Exception raised:
Traceback (most recent call last):
File "/usr/Tib/python2.4/doctest.py", line 1243, 1in
compileflags, 1) in test.globs
File "<doctest _ main__.test[0]>", 1line 1
Tigne = 'f
A

SyntaxError: EOL while scanning single-quoted string

[...]

docstring de type raw
def test(Q):
I"llllll
>>> ligne = 'f\n\nf'
>>> 2
2

run

Techniques avancées

QUATRIEME PARTIE

pass
[tziade@Tarek tests]$ python test_doctests.py -v
[...]
Trying:
2
Expecting:
2
ok

Une autre particularité de ce type de test unitaire est liée a4 son fonctionnement
intrinseque : la réussite du test se basant sur la sortie de 'interpréteur, il est nécessaire
de prendre des précautions lorsque le retour est susceptible de varier.

Cest le cas par exemple pour les affichages de dictionnaires : I'ordre de sortie n'est pas
garanti, et peut varier d'une exécution a l'autre. Il convient dans ce cas de trier le dic-
tionnaire avant affichage ou de faire des tests sur chaque membre de maniére explicite.

Précautions d’usage pour les dictionnaires

def mon_dico(Q):
>>> mon_dico(Q['b"] # test explicite
2
>>> Tiste = mon_dico().items()
>>> Tiste.sort()
>>> Tliste # test nécessitant un ordre constant

[C'a', 1, C('b", 25, ('c', 3)]

non

return {'a': 1, 'b': 2, 'c': 3}

Les objets de type float sont également a manipuler avec précaution, car les valeurs
retournées varient d’un systeme a l'autre. Le plus simple étant d’arrondir les valeurs
comparées par le biais de round() ou de conserver une fraction dont le résultat est a
coup sir identique sur tous les systémes, a savoir de la forme x/2.0%*y.

Les adresses mémoire qui peuvent s’afficher lorsque I'on manipule des objets sont
aussi susceptibles de varier. Un appel a la primitive id() par exemple a toutes les
chances de retourner un entier différent 4 chaque fois que le test est lancé puisqu’il
est calculé en fonction de I'adresse mémoire. Ces valeurs ne peuvent donc pas étre
employées telles quelles dans les tests.

Pour pouvoir s’affranchir de ce probléme, il est possible dans ce cas de remplacer la
valeur hexadécimale par des points de suspension (...) représentant une ellipse et
d’activer une option pour le signaler. Cette option est a ajouter en fin de ligne, par un
marqueur ELLIPSTS.

Programmation dirigée par les tests m
CHAPITRE 12

Marqueur Ellipsis

def mon_objet():

[IRTRT]

>>> mon_objet() #doctest: +ELLIPSIS
<object object at Ox...>

LRI

return object()

Ce marqueur fait partie d’'un ensemble de drapeaux présentés ci-dessous.

Environnement et options d’exécution

Pour chaque docstring parcouru, un environnement d’exécution est créé a partir d’'une
copie des variables globales du module parcouru, renvoyée par globals(). Cette copie
est abandonnée 4 la fin du docstring, afin d’éviter tout impact sur les tests suivants.

Il est aussi possible de faire varier le fonctionnement des doctests par le biais
d’options d’exécution, appelées marqueurs. Chaque marqueur peut étre ajouté aux
lignes des doctests, pour une action locale, ou passé en paramétre lorsque tous les
tests sont lancés, pour une action globale.

Ajouter un marqueur localement se fait en insérant un commentaire en fin de ligne,
avec le nom du marqueur précédé du signe plus (+).

Les marqueurs globaux quant a eux sont concaténés par des opérateurs OR et forment
le paramétre optionflags de la fonction testmod().

Insertion d’un marqueur

marqueur Tocal
>>> error() # doctest: +IGNORE_EXCEPTION_DETAIL

marqueur global

importdoctest

if __name__ == "__main__":
flags = doctest.IGNORE_EXCEPTION_DETAIL
doctest.testmod(optionflags=flags)

Les marqueurs disponibles sont :

* DONT_ACCEPT_TRUE_FOR_1 : les versions 2.2 et précédentes de Python affichent 0
et 1 pour le retour d’une fonction booléenne. Le module doctest accepte donc ces
valeurs en lieu et place de True et False pour que la transition vers des versions
plus récentes de l'interpréteur ne se fasse pas brutalement. Cette option, qui ne
peut étre utilisée que globalement, permet de forcer un contrdle strict.

* DONT_ACCEPT_BLANKLINE : empéche l'utilisation de <BLANKINE>. Sutilise globa-
lement.

Techniques avancées

QUATRIEME PARTIE

* NORMALIZE_WHITESPACE : normalise les espaces dans la comparaison du résultat.
Ce drapeau est relativement utile lorsque I'on souhaite tester un retour de fonc-
tion composé de beaucoup d’espaces, comme les séquences HTML. doctest
compare ' '.join(attendu.split()) et ' '.join(obtenu.split()) en lieu et
place de attendu et obtenu.

Normalisation des espaces

def html_bloc():
P
>>> html_bloc() #doctest: +NORMALIZE_WHITESPACE
'<HTML>\n <BODY>\n test\n </BODY>\n </HTML>'
html = """<HTML>
<BODY>
test
</BODY>
</HTML>"""
return html

ELLIPSIS

Vu dans la section précédente pour les adresses mémoire, ce marqueur permet de
remplacer une séquence de caractéres, et correspond a une chaine indéfinie de carac-
teres.

Ellipsis

def ellipsis():

non

>>> ellipsis() #doctest: +ELLIPSIS

a...j
>>> ellipsis() #doctest: +ELLIPSIS
'abc...'

>>> ellipsis() #doctest: +ELLIPSIS
S R

return 'abcdefghij'

IGNORE_EXCEPTION_DETAIL

Permet d’ignorer le texte complet renvoyé par une exception et de se contenter de
comparer uniquement le type d’erreur. Ce marqueur est conseillé pour ne pas
dépendre de la pile d’appel ou du texte de I'erreur, susceptible de changer.

doctest extrait le message d’erreur minimal, a savoir :

* la premiére ligne : Traceback (most recent call Tast):

Programmation dirigée par les tests m
CHAPITRE 12

* laligne qui contient le type d’erreur, en ne conservant que ce type.

Exception détail

def error():
>>> error() #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
ZeroDivisionError: xx

return 3 / 0

REPORT_NDIFF

Si ce flag est fourni au lancement des tests, les différences entre le retour et le résultat
attendu sont affichées sous forme de diftérences, suivant le format renvoyé par le
module diffTib, qui fournit un algorithme de comparaison intra-ligne.

Hortograffe

def test_orthographe():
>>> test_orthographe()
L'orthographe de ce texte est valide.

return "L'horthografe de ce tecste est validde."
if __name__ == "__main__":

flags = doctest.REPORT_NDIFF

doctest.testmod(optionflags=flags)

[...]

[tziade@Tarek tests]$ python test_doctests.py
FTedededehdehdedefhfdedde N ddehdeNdhdehdhfhdhfdddfdddeNdhdhdehfhdhddfdddhhdeddhdhddhdd
File "test_doctests.py", line 7, in __main__.test_orthographe
Failed example:
test_orthographe()
Differences (ndiff with -expected +actual):
- L'orthographe de ce texte est valide.

? AA A
+ "L'horthografe de ce tecste est validde."
? + + A AA + +

Fededefhdddde NN dddd NN dddedNhddd N Nhdd R NN hdd NN Nddd R hdde NN hddde N hdddenhdddd RNl

1 items had failures:
1 of 1 1in __main__.test_orthographe
Test Failed 1 failures.

Techniques avancées

QUATRIEME PARTIE

REPORT_CDIFF

Méme réle que le marqueur précédent pour afficher les différences contextuelles. Les dif-
férences contextuelles sont présentées sous la forme de deux blocs de lignes de chaque
version. Dans une version, chaque ligne peut étre préfixée d’'un caractere spécial :

* 1 :ligne différente dans l'autre version ;
* + :ligne nexistant pas dans I'autre version ;

* - :ligne présente uniquement dans l'autre version.

Ne fonctionne que pour des textes multilignes de plus de deux lignes.

Différences contextuelles

def test_multiligne():
>>> test_multiligne()
1
2
4
5

print '\n'.join('1234")

" n

if __name_ == "__main__":
flags = doctest.REPORT_CDIFF
doctest.testmod(optionflags=flags)

[...]

[tziade@Tarek tests]$ python test_doctests.py
File "test_doctests.py", line 7, in __main__.test_multiligne
Failed example:
test_multiligne()
Differences (context diff with expected followed by actual):

Programmation dirigée par les tests m
CHAPITRE 12

1 items had failures:
1 of 1 1in __main__.test_multiligne
Test Failed 1 failures.

REPORT_UDIFF

Meéme rdle que le marqueur précédent pour afficher les différences unifiées. Les diffé-
rences sont affichées dans ce cas dans un méme bloc unifié. Le préfixe ! nexiste donc
pas dans ce cas. Ne fonctionne que pour des textes multilignes de plus de deux lignes.

Différences unifiées

def test_multiligne():
>>> test_multiligne()
1
2
4
5

print '\n'.join('1234")

if __name__ == "__main__":
flags = doctest.REPORT_UDIFF
doctest.testmod(optionflags=flags)

[...]

[tziade@Tarek tests]$ python test_doctests.py

Tl

File "test_doctests.py", line 7, in __main__.test_multiligne
Failed example:

test_multiligne()
Differences (unified diff with -expected +actual):

@@ -1,4 +1,4 @@

1
2
+3
4
-5
1 items had failures:
1 of 11dn __main__.test_multiligne
Test Failed 1 failures.

Techniques avancées

QUATRIEME PARTIE

REPORT_ONLY_FIRST_FAILURE

Ce marqueur global permet de spécifier que pour chaque séquence, seule la premiere
comparaison qui échoue est reportée. Le reste de la séquence est exécutée mais plus
aucune erreur n'est reportée. Utilisé pour minimiser le retour des tests deés lors que
des problémes sont rencontrés.

doctests dans un fichier texte séparé

Des fichiers textes peuvent aussi étre dédiés aux doctests : 'outil parcourt dans ce cas
les lignes et exécute le contenu comme un seul et méme docstring. Cette technique
permet de réunir tous les tests dans un seul et méme module, pour revenir a un principe
similaire aux tests unitaires, mais avec toute la puissance narrative des doctests en plus.

Les exemples de code s’alternent de commentaires, dans un flux continu et directe-
ment lisible. Au fur et 2 mesure de I'évolution du code, des exemples de plus en plus
complexes et des cas particuliers s’ajoutent a ce fichier, qui devient une documenta-
tion compléte & progression logique.

Lexemple ci-dessous reprend I'exemple des tests sur cPickle, pour une écriture équi-
valente en doctests.

test_cPickle.txt

le module cPickle permet de sauvegarder des
objets sur Te systéme de fichiers ou dans tout autre flux.

>>> import cPickle

Prenons 1'exemple d'une classe classique
et une instance de cette classe

que nous allons sauvegarder

>>> from UserDict import UserDict

>>> 0 = UserDict()

>>> o['a'] =1

>>> o['b'] = 2

Pour sauver 1'objet, cPickle prend en paramétre
un objet de type file, ouvert par nos soins

>>> fic = open('/home/tziade/pickled.bin', 'w')
La fonction dump se charge de la sérialisation

>>> cPickle.dump(o, fic)

fermons le fichier

Programmation dirigée par les tests m
CHAPITRE 12

>>> fic.close()

Pour récupérer 1'objet, il suffit d'ouvrir un
flux sur le fichier et d'utiliser la fonction load()

>>> fic = open('/home/tziade/pickled.bin')
>>> 02 = cPickle.load(fic)

Vérifions les valeurs de 1'objet renvoyé

>>> jsinstance(o2, UserDict)
True

>>> 02['a']

1

>>> 02['b"']

2

Lexécution d’un fichier de doctests se fait par la fonction testfile() de doctest.

Cette fonction prend, entre autres parametres, module_relative, qui spécifie si les
chemins importés dans les tests sont relatifs au répertoire du module appelant ou
dépendants du systéme, c’est-a-dire de sys.path.

Dans T'exemple ci-dessous, ce paramétre est & False car le test est appelé depuis
'interpréteur interactif.

verbose détermine la quantité d’informations affichée. Il est a False par défaut et
n'affiche rien sauf en cas d’erreur.

Exécution du fichier test__cPickle.txt

>>> 1import doctest
>>> doctest.testfile('test_cPickle.txt', module_relative=False,
verbose=True)
Trying:
import cPickle
Expecting nothing
ok
Trying:
from UserDict import UserDict
Expecting nothing
ok
Trying:
o = UserDict()
Expecting nothing
ok
Trying:
o['a'] =1

m Techniques avancées
QUATRIEME PARTIE

Expecting nothing

ok
Trying:

o['b'] =2
Expecting nothing
ok
Trying:

fic = open('/home/tziade/pickled.bin', 'w')
Expecting nothing
ok
Trying:

cPickle.dump(o, fic)
Expecting nothing
ok
Trying:

fic.close()
Expecting nothing
ok
Trying:

fic = open('/home/tziade/pickled.bin')
Expecting nothing
ok
Trying:

02 = cPickle.Toad(fic)
Expecting nothing
ok
Trying:

isinstance(o2, UserDict)
Expecting:

True
ok
Trying:

o2['a']
Expecting:

1
ok
Trying:

02['b"]
Expecting:

2
ok
1 items passed all tests:

13 tests 1in test_cPickle.txt

13 tests in 1 items.
13 passed and 0 failed.
Test passed.
**% DocTestRunner.merge: 'test_cPickle.txt' in both testers; summing
outcomes.
0, 13)

Programmation dirigée par les tests

CHAPITRE 12

Script de test

Le script de lancement des tests unitaires vu précédemment peut étre modifié pour
prendre en compte les doctests des modules de code rencontrés sur le chemin, et les
fichiers textes de tests. Dans I'extension proposée, ces derniers doivent étre préfixés
par test et suffixés par . txt.

doctest fournit des objets permettant de transformer les tests extraits des docstrings
en objets de type TestCase, qui peuvent étre insérés dans les test suites.

Script tester.py modifié

[...]

[..

[..

import doctest

def main(options, arguments, parser):
.1
print('Parcours du répertoire')

test_modules = []
for racine, reps, fichiers in walk(chemin):

for fichier 1in fichiers:

if ((fichier.endswith('.py') or fichier.endswith('.txt')) and

fichier notin ('test.py', 'test.txt')):
nom_complet = os.path.join(racine, fichier)
tests = os.path.basename(racine) == 'tests'

test_modules.append((nom_complet, fichier.split('."')[0],

tests))
sys.stdout.write('.")
sys.stdout.flush()

.1

for fichier, module, dossier_tests 1in test_modules:

module_path = os.path.dirname(fichier)

if module_path notin sys.path:
sys.path.append(module_path)
added_paths.append(module_path)

chargement d'un contexte si nécessaire
if dossier_tests:
contexte = os.path.join(module_path, 'contexte.py')
else:
contexte = os.path.join(module_path, 'tests_contexte.py')

if os.path.exists(contexte) and dernier_contexte != contexte:
execfile(contexte)
dernier_contexte = contexte

Techniques avancées

QUATRIEME PARTIE

fichiers textes de type doctests
if fichier.endswith('.txt') and dossier_tests:
doc_file_suite = doctest.DocFileSuite(fichier,
module_relative=False)
suite.addTest(doc_file_suite)
continue

fichiers de tests unitaires
if module.startswith('test') and dossier_tests:
m = __import__(module)

if 'get_test_class' in m.__dict__:
class_type = m.get_test_class(Q
test_suite = unittest.TestSuite((
unittest.makeSuite(class_type),))
suite.addTest(test_suite)
else:
warn("%s n'a pas de fonction get_test_class" % fichier)

parcours de tous les fichiers de code pour Tes doctests
ifnot dossier_tests and fichier.endswith('.py'):
m = __import__(module)
try:
doc_test_suite = doctest.DocTestSuite(m)
except ValueError:
pas de doctests
pass
else:
suite.addTest(doc_test_suite)

Ce script introduit en outre une variation sur les fichiers de contexte, qui restent
nommés contexte.py dans les répertoires tests et deviennent tests_contexte.py
en dehors. Cette modification permet de lancer un script de contexte associé a des
répertoires contenant des scripts Python qui sont scannés pour les doctests.

Coverage

Le coverage est un complément utile qui permet de traquer le code non couvert par
les tests unitaires. Les implémentations existantes de scripts de coverage se basent sur
la fonction sys.settrace() qui permet d’associer une fonction a toute exécution de
code. Cette fonction sera appelée a chaque fonction ou méthode visitée, et peut étre
combinée avec une deuxi¢me fonction qui sera invoquée pour chaque ligne visitée.

Le module trace de la bibliothéque standard est un exemple d’implémentation de
settrace(). Il fournit un objet Trace, qui prend en paramétre le code a exécuter et

Programmation dirigée par les tests m
CHAPITRE 12

concocte un fichier d’extension .cover, similaire au code exécuté, mais avec des
informations ajoutées a chaque début de ligne.

Exemple d’utilisation de trace

#!/usr/bin/python

-*- coding: utf8 -*-
import trace

import sys

def methode2(x):

if x % 2:
return 'o'

if x == 123:
return '0'

return 'x'

def methode():
c=ll
for i in range(100):
c = ¢ + methode2(i)

if __name__ == '__main__"':
traced = trace.Trace(ignoredirs=[sys.prefix,
sys.exec_prefix,], trace=0,
count=1)
traced.run('methode() ")

r = traced.results()
r.write_results(show_missing=True)

results = open('tracer.cover', 'r')
print(''.join(results.readlines()))
results.close()

[...]

[tziade@Tarek Desktop]$ python tracer.py
#!/usr/bin/python
-*- coding: utf8 -*-
import trace

>>>>>> import sys

>>>>>> def methode2(x):

100: if x % 2:
50: return 'o'
50: if x == 123:
>>>>>> return 'O’

50: return 'x'

Techniques avancées

QUATRIEME PARTIE
>>>>>> def methode():
1: c=""

101: for i 1in range(100):

100: c = ¢ + methode2(i)
>>>>>> if __name__ == '_ _main__"':
>>>>>> traced = trace.Trace(ignoredirs=[sys.prefix,
sys.exec_prefix,], trace=0,
>>>>>> count=1)
>>>>>> traced.run('methode() ')
>>>>>> r = traced.results()
>>>>>> r.write_results(show_missing=True)
>>>>>> results = open('tracer.cover', 'r')
>>>>>> print ''.join(results.readlines())
>>>>>> results.close()

trace préfixe les lignes non exécutées du code par >>>>>> et par le nombre d’appels
pour les autres. Les lignes de la section __main__ ne sont pas a prendre en compte
car non tracées. En termes d'interprétation, ce test permet de déceler que le cas x ==
123 n’est jamais visité par le code appelant.

D’autres implémentations existent en dehors de la bibliothéque standard, comme le
module coverage.py de Gareth Rees, du projet Perforce Defect Tracking Integration
(http://www.ravenbrook.com/project/p4dti/). Le principe est identique mais cette ver-
sion est beaucoup plus intéressante dans le cadre des tests unitaires car les informa-
tions collectées sont regroupées et affichées dans un tableau ot chaque module utilisé
dans les tests se voit attribuer un pourcentage de couverture.

Résultats de coverage.py

[tziade@Tarek tests]$ coverage.py -x tester.py
Parcours du répertoire

7 module(s) de test trouvé(s)
[..]

Lancement de 4 test(s)...

test 1'E/S de cPickle ... ok

test le monkey patching ... ok

test_patch2 (test_imaplib.SMTPTestCase) ... ok
test_patchR (test_imaplib.SMTPTestCase) ... ok

Ran 4 tests 1in 0.003s

Programmation dirigée par les tests m
CHAPITRE 12

OK

[tziade@Tarek tests]$ coverage -r
Name Stmts ExecCover
base64 173 30 17%
unittest 464 226 48%
test_doctests 33 12 36%
dis 179 16 8%
test_imaplib3 6 3 50%
gettext 368 119 32%
sre_compile 387 265 68%
trace 471 46 9%
sre_parse 605 320 52%
bdb 416 65 15%
_init__ 11 5 45%
warnings 183 58 31%
[...]

traceback 189 22 11%
doctest 950 143 15%
difflib 656 59 8%
_ future__ 22 17 77%
inspect 474 57 12%
TOTAL 15632 3625 23

Des améliorations peuvent étre apportées a ce script, notamment en filtrant les
modules des bibliothéques pour n’afficher que les modules du programme.

Intégration dans I’environnement d’un projet

Les tests constituent la principale assurance qualité du code d’'un programme, et
s'intégrent facilement a la vie d’un projet, voire d’'une maniére plus globale, a la cul-
ture d’entreprise ou communautaire.

Les projets Open Source ont été historiquement parmi les premiers a réellement
adopter ce modeéle de programmation : le nombre d’acteurs impliqués et leur éloi-
gnement géographique ont forcé a rendre les projets de plus en plus autonomes des
développeurs en termes de controle qualité.

Si les nouveaux arrivants proposent des modifications dans le code, les tests unitaires
qui accompagnent ces modifications facilitent considérablement le travail de sur-
veillance des développeurs principaux du projet, et font bien souvent partie de la
charte de participation au projet : « no test, no commit » (pas de test, pas de soumis-
sion de code).

Techniques avancées

QUATRIEME PARTIE

Mais ces échanges doivent étre formalisés par des outils supplémentaires pour faci-
liter la gestion du code du projet, et 'acces a ces outils doit étre direct pour toute per-
sonne impliquée dans le projet.

Le projet Python est un exemple flagrant de ce besoin : avant la version 2 du langage,
toutes les modifications proposées étaient envoyées a Guido van Rossum par e-mail
sous forme de fichiers diff ou python. Ce dernier acceptait ou refusait I'ajout. Dans
le premier cas, il ajoutait le code dans son CVS personnel pour le diffuser ensuite. La
boite e-mail de Guido van Rossum était donc le goulot d’étranglement de I'avancée

du projet Python.

A linstar de Sourceforge, un projet basé sur la programmation dirigée par les tests
peut mettre en place :

* Un gestionnaire de version, comme SVN ou CVS, qui permet aux développeurs
de mettre a jour ou récupérer le code centralisé (code repository), et au systéme de
conserver toutes les versions du code.

* Un systéme de scripts, qui permet de lancer des campagnes de tests et de cove-
rage, a 'instar des scripts présentés dans ce chapitre.

* Des scripts de controle qualité, comme PyLint (http://www.logilab.org/projects/
pylint), qui met entre autres en évidence les directives d'importations non utilisées
et PyChecker (http://pychecker.sourceforge.net/), qui effectue un contréle poussé
sur le code et signale par exemple des objets instanciés mais jamais utilisés, ou des
portions de code qui ne peuvent pas étre appelées.

* Un automate, comme BuildBot (http://buildbot.sourceforge.net/), qui lance a cha-
que modification du code une campagne de tests sur plusieurs environnements
d’exécution, et envoie des e-mails d’avertissement aux développeurs en cas de pro-
bleme (codé en Python).

* Des outils de gestion de listes de diffusion, comme Mailman (http://www.gnu.org/
software/mailman/) (codé en Python).

 Un site permettant de visualiser le code et les modifications, comme le systeme
Trac (http://www.edgewall.com/trac/) (codé en Python), etc.

Le futur de PyUnit

PyUnit hérite de la lourdeur de son mode¢le Java. Ecrire un simple test pour vérifier
une valeur nécessite beaucoup de boiler-plate code.

Programmation dirigée par les tests m
CHAPITRE 12

Un simple test avec PyUnit

>>> import unittest
>>> class MyTestCase(unittest.TestCase):
def test_one(self):
self.assertEquals(sum((2, 3)), 5)

I1 est nécessaire d’équiper les modules de test de code supplémentaire pour construire
des suites de tests. Enfin, pour lancer une campagne de test, un script qui collecte les
tests devient vite indispensable.

PyUnit impose des méthodes pour les assertions reprises de Java, qui sont verbeuses.
Le seul mérite de cette similitude étant de permettre a un développeur maitrisant
Junit d’étre productif directement avec PyUnit et inversement.

Toute cette infrastructure alors que le seul test tient en une ligne !

Test nu

I >>> assert sum((2, 3)), 5

Des projets communautaires proposent des alternatives intéressantes, qui résolvent
ces défauts de PyUnit. Nose (http://somethingaboutorange.com/mrl/projects/nose/) est
probablement le projet le plus intéressant. Il se base sur de simples conventions de
nommage pour I'écriture de tests et fournit un script qui collecte automatiquement
les modules dont le nom commence par test. Les tests en eux-mémes peuvent étre
de simples fonctions du moment qu’elles utilisent aussi un préfixe test.

Test compatible Nose

>>> def test_one():
assert sum((2, 3)), 5

Lintérét de Nose est de lancer également les tests écrits classiquement avec
unittest.

Il est possible qu'a terme unittest soit remplacé par un outil aux fonctionnalités
proches de Nose. Des travaux communautaires laisseraient supposer que cette modi-
fication aura lieu dans les années 2 venir.

m Techniques avancées
QUATRIEME PARTIE
En un mot...

Adopter les techniques présentées dans ce chapitre est un atout considérable pour
augmenter la qualité d’une application et la facilité avec laquelle un développeur peut
la modifier, que ce soit en Python ou dans un autre langage.

Si cette technique est combinée a de bonnes pratiques, présentées dans le prochain
chapitre, elle fait de Python un langage a I'aise dans la plupart des domaines.

13

Bonnes pratiques et
optimisation du code

Oh ! Come and see the violence inherent in the system ! — The Holy Grail
« Oh'! Venez tous voir la violence qui se cache sous ce systéme ! »

— Sacré Graal

on est souvent montré du doigt comme un langage lent. Constat éviden
Pyth t t tré du doigt langage lent. Constat évident
puisqu’il est basé sur de l'interprétation et non sur de la compilation. Mais un pro-
gramme Python bien écrit base la plupart du temps son travail sur des appels les plus
irects a la couche compilée en C des bibliotheéques. La vitesse d'un programme es
directs a | h pil C des bibliotheques. La vitesse d’'un prog t
onc inversement proportionnelle 4 la couche de code on 4 traverser.

d t proport lle al he de code Python a t

Ce chapitre présente les outils et les bons réflexes 4 prendre pour rendre un pro-
gramme le plus performant possible. Si les performances atteintes ne sont pas encore
suffisantes, ce qui peut arriver dans certains domaines spécifiques comme les calculs
matriciels dans les jeux, des bibliotheques ou des techniques spécifiques permettent
de pallier ce probléme.

Le programme est encore trop lent ? I reste possible de passer du c6té obscur de la
force, en codant tout ou partie du code dans une extension au langage en C.

Techniques avancées

QUATRIEME PARTIE

Quand optimiser ?

Il est déconseillé de tenter d’optimiser son code au moment de sa premiére écriture,
car cette approche a pour conséquence de complexifier 'objectif premier : concevoir
un code qui fonctionne.

De plus, il est quasiment impossible d’identifier 4 'avance, sauf pour les cas isolés ou
bien précis, les enchainements de code qui provoqueront de réelles lenteurs poten-
tiellement éradicables. Calculer la complexité d’'un algorithme est une chose, prévoir
toutes les combinaisons d’enchainements et d’imbrications possibles d’un applicatif
en est une autre.

Loptimisation ne s'opére donc que lorsque 'on constate que 'une des fonctionna-
lités de l'applicatif n’est pas conforme aux attentes en termes de rapidité d’exécution,
méme sil est possible comme nous le verrons en fin de chapitre de procéder a des
tests de performance continus.

Cette optimisation se base sur une recherche du goulot d’étranglement, ou bozt/leneck,
et dans le meilleur des cas a son éradication par une modification d’'une partie du
code. Parfois, tout ou partie de I'architecture du programme est remise en cause et
une refonte plus profonde peut étre nécessaire. On parle alors de refactoring.

La recherche du goulot d’étranglement se fait par le biais du profifing, qui consiste a
mesurer les performances d’une fonctionnalité en chronométrant la durée d’exécu-
tion de chacun des acteurs. Cet exercice permet en outre de déceler d’autres types
d’anomalies.

Une fois le coupable identifié, une décision doit étre prise pour améliorer les perfor-
mances.

nfin, des tests de performance continus peuvent étre mis en place, pour garantir, de
Enfin, des tests de perfc tinus p t ét place, pour garantir, d
la méme maniére que pour les tests unitaires, qu'il n'y a pas de régression au niveau

e la rapidité de 'applicatif : chaque introduction ou modification de code pouvan
de la rapidité de I'applicatif : chaq troduct dification de code p t
potentiellement créer un nouveau goulot d’étranglement.

Cette derniére démarche a en outre 'avantage de rendre le développeur de plus en
plus proactif sur les problémes de performances, il les décele des leur introduction.

Profiling

Le profiling permet de repérer rapidement les portions de code les plus lentes pour
les modifier. D’autres anomalies peuvent étre décelées par les profilers, a savoir :

Bonnes pratiques et optimisation du code m
CHAPITRE 13

* Des erreurs logiques : certaines fonctions s’exécutent un nombre anormal de fois
b
pas assez ou trop souvent.

* Des bottlenecks restés inapergus : une fonction a priori anodine apparait comme
une source de ralentissements importants, soit par sa lenteur, soit par un nombre
énorme d’appels.

* Des erreurs de conception : les statistiques remontées par le profiler offrent une
vision particuliére du programme, et peuvent parfois attirer I'attention sur des
problémes de conception.

Méthodes de profiling

I1 existe plusieurs méthodes pour profiler le code. L'approche la plus courante con-
siste & mesurer le temps passé dans chacune des méthodes et fonctions traversées.
C’est une méthode déterministe qui se base sur les mémes techniques que le coverage
vu dans le chapitre précédent. On dresse un tableau du code appelé, avec des infor-
mations annexes comme :

* le nombre d’appels ;
* la liste des appelants, c’est-a-dire les fonctions qui utilisent le code en cours ;
* la liste des appelés, c’est-a-dire les fonctions appelées par le code en cours.
Une autre méthode beaucoup plus abstraite et moins facile & mettre en ceuvre, con-

siste & récupérer des échantillons aléatoires d'instructions exécutées et a en déduire ot
Iinterpréteur passe le plus de temps.

Nous I'avons vu pour le coverage, Python fournit tous les points d’entrée nécessaires
pour mettre en place facilement une solution déterministe. C’est cette approche qui
est implémentée par plusieurs modules de la bibliothéque standard. Lutilisation d’'un
tel outillage allonge les temps d’exécution, mais ne remet généralement pas en cause
I'interprétation des résultats, car ce ralentissement est ridicule par rapport a la durée
d’exécution de n'importe quelle fonction.

Outils de profiling

I1 existe diftérents outils de profiling dans la bibliothéque standard. Le plus connu est
profile.

Le module profile

profile peut étre directement utilisé en ligne de commande pour tester un pro-
gramme Python.

Techniques avancées

QUATRIEME PARTIE

Utilisation de profile

$ python -m "profile" --help
Usage: profile.py [-o0 output_file_path] [-s sort] scriptfile [arg]

Options:
-h, --help show this help message and exit
-0 OUTFILE, --outfile=OUTFILE
Save stats to <outfile>
-s SORT, --sort=SORT Sort order when printing to stdout, based on
pstats.Stats class

$ python -m "profile" -s time
Tistbench.py
155 function calls in 30.830 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:1lineno(function)

1 16.760 16.760 17.120 17.120 Tistbench.py:19(fonc2)
1 11.160 11.160 13.000 13.000 Tlistbench.py:14(foncl)
3 1.250 0.417 1.250 0.417 :0(range)

2 1.030 0.515 1.030 0.515 :0(join)

1 0.590 0.590 30.810 30.810 listbench.py:2(?)

2 0.020 0.010 30.140 15.070 Tistbench.py:7(duree)
1 0.020 0.020 0.020 0.020 :0(setprofile)

Le module hotshot
Un nouveau module plus rapide et complet a été introduit a la version 2.2 : hotshot.

Les fonctionnalités de hotshot sont similaires au module profile, mais réduisent
I'impact sur les performances introduites par loutillage mis en place pour le
profiling : le code est majoritairement écrit en C.

hotshot définit une unique classe Profile, permettant de créer des instances de pro-
filer, ainsi qu'une fonction hotshot.stats.load(logfile), qui permet de charger et
renvoyer les résultats du profiler dans un objet de type Stats, du module pstats.

class Profile(logfile[, lineevents|, linetimings]))

Créer une instance de profiler se fait en fournissant un nom de fichier Togfile, uti-
lisé pour stocker les données récoltées par le profiling.

lineevents détermine la granularité du profiler, a savoir si seuls les appels de
méthodes ou fonctions sont enregistrées (0 ou non défini) ou si toutes les lignes de
code sont observées (1).

Bonnes pratiques et optimisation du code m
CHAPITRE 13

Tinetimings, a défaut a 1, détermine si les informations de temps sont enregistrées
pendant le travail de profiling.

Une fois 'objet créé, il fournit un certain nombre de méthodes décrites ci-dessous :

start()

Lance le profiler.

stop()
Stoppe le profiler.

close()

Ferme le fichier de log et termine le profiler.

run(cmd)

Lance le profiling du code cmd. cmd est une chaine de caractéres qui représente du
code Python exécutable. L'environnement d’exécution est défini par les variables glo-
bales de __main__.

runcall(func, *args, **keywords)

Appelle la fonction ou méthode func, avec des arguments si nécessaire. Le résultat
de T'exécution est renvoyé et les éventuelles erreurs levées remontent comme si le
code avait été appelé directement.

runctx(cmd, globals, locals)

Equivalente & run(), avec la possibilité de fournir un environnement d’exécution par-
ticulier.

fileno()

Renvoie le numéro de descripteur du fichier de log.

Le module cProfile

cProfile est un module équivalent a profile, mais plus rapide car codé partielle-
ment en C. Il s'utilise de la méme maniére.

Utilisation de cProfile

$ python -m "cProfile" --help
Usage: cProfile.py [-o output_file_path] [-s sort] scriptfile [arg]

Techniques avancées

QUATRIEME PARTIE

Options:
-h, --help show this help message and exit
-0 OUTFILE, --outfile=OUTFILE
Save stats to <outfile>
-s SORT, --sort=SORT Sort order when printing to stdout, based on
pstats.Stats class

Le module pstats

Chaque profiler génére ses résultats et les écrit dans un fichier, dans un format
binaire, lisible par les objets Stats du module pstats. L'affichage des résultats d’un
profiling doivent donc se faire par ce biais.

Les méthodes les plus importantes de la classe Stats sont :

print_stats([restriction, ...])

Cette méthode permet d’afficher les données de profiling. restriction représente
un certain nombre de parameétres optionnels qui permettent de filtrer la liste affichée.
Chaque parameétre peut étre sous la forme :

* d’un objet string : représente une expression réguliére qui permet de filtrer les
lignes en fonction de chaque nom de module affiché en début de ligne ;

* d’un entier : définit le nombre de lignes maximum a afficher ;

* d’un nombre réel compris entre 0.0 et 1.0 : définit le pourcentage de la liste a
afficher.

La classe filtre la liste en appliquant les filtres un a un.

print_callers([restriction, ...])

Permet de lister 'ensemble des fonctions appelantes du log de profiling. Chaque
fonction appelée est placée entre parentheses. Peut étre filtrée comme print_stats.

print_callees([restriction, ...))

Permet de lister l'ensemble des fonctions appelées du log de profiling. Chaque fonction a
lorigine de I'appel est placée entre parentheses. Peut étre filtrée comme print_stats.

sort_stats(key(, ...])
Permet de trier la liste en fonction du paramétre key. key est une chaine a4 prendre
dans la liste suivante :

* calls : nombre d’appels (tri décroissant) ;

* cumulative :temps cumulé (tri décroissant) ;

* file : nom du fichier source (tri alphabétique) ;

Bonnes pratiques et optimisation du code

* module : nom du module (tri alphabétique) ;

* pcalls : nombre d’appels primitifs (tri décroissant) ;
* Tine : numéro de ligne (tri décroissant) ;

* name : nom de la fonction (tri alphabétique) ;

* nfl : nom, fichier, ligne (tri alphabétique) ;

* stdname : nom standard (tri alphabétique) ;

* time : temps interne d’exécution (tri décroissant).

CHAPITRE 13

Plusieurs clés peuvent étre fournies pour composer un tri multicritere. La méthode
reverse_order() permet également d'inverser le tri obtenu, sachant que les tris
appliqués par sort_stats() permettent de placer vers le haut de la liste les appels les
plus cotteux.

hotshot et pstats

Les deux modules présentés fournissent un outil complet de profiling. I'exemple ci-
dessous affiche la liste des méthodes appelées par le profiler, triées par nombre d’appels.

profiling.py

def

def

def

def

#!/usr/bin/python
%
import hotshot

import hotshot.stats

- coding: utf8 -*-

methodel(chaine):
return reversed(chaine)

methode2 (chaine):
if Ten(chaine) % 2:

return methodel(chaine)
else:

return chaine

methode3(chaine):

ch =[]

for i in range(3):
ch.extend(methode2 (chaine))

return ''.join(ch)

methode4 () :
o=ll
for i in range(5000):
o += methode3(str(i))
return methodel(o)

Techniques avancées

QUATRIEME PARTIE

profiler = hotshot.Profile("statistiques.prf™)
profiler.runcall(methode4)
profiler.close()

stats = hotshot.stats.load("statistiques.prf™)

trie suivant le nombre d'appels
stats.sort_stats('calls")
stats.print_stats()

[...]

$ python profiling.py
22732 function calls in 0.142 CPU seconds

Ordered by: call count

ncalls tottime percall cumtime percall filename:1lineno(function)
15000 0.046 0.000 0.059 0.000 profiling.py:10(methode2)
5000 0.058 0.000 0.117 0.000 profiling.py:16(methode3)
2731 0.014 0.000 0.014 0.000 profiling.py:7(methodel)
1 0.024 0.024 0.142 0.142 profiling.py:22(methode4)

0 0.000 0.000 profile:0(profiler)

timeit
hotshot peut étre lourd a mettre en place lorsqu’il s’agit de mesurer rapidement les
performances d’une seule fonction indépendante ou d’'une séquence de code extraite.

Le module timeit, introduit & la version 2.3, répond a ce besoin en fournissant un
outil 1éger, beaucoup plus simple & mettre en ceuvre.

timeit fournit une classe Timer, qui prend en paramétre 'expression a mesurer, et
fournit une méthode d’exécution.

class Timer([stmt="pass' [, setup="pass' [, timer=<timer function>)]))

stmt est I'expression 4 mesurer, setup une éventuelle deuxieéme expression, qui sera exé-
cutée avant stmt. Comme Timer désactive le garbage collector pour essayer de mini-
miser les différences introduites par la gestion de la mémoire qui dépend d’éléments
contenus en dehors des tests, setup peut étre utilisé pour le réactiver ('gc.enable()"),
et ceci pour obtenir un test plus réaliste lorsque le code testé parcourt plusieurs niveaux.
Le temps pris par le garbage collector n'est pas négligeable dans ces cas la.

Enfin, time est une fonction qui peut étre fournie pour mesurer les temps. La fonction
interne utilisée par défaut se base sur la fonction systtme time.clock() pour MS-
Windows et time.time() sous Unix, pour obtenir la méme précision de 1/100° de

Bonnes pratiques et optimisation du code m
CHAPITRE 13

seconde sur les deux plates-formes. (time.time() atteint 1/60° de seconde sous

MS-Windows).

De plus, les temps renvoyés dans ce cas ne sont pas les temps de consommation CPU
mais les temps relatifs. Cela signifie que certaines variations peuvent étre observées
lorsque d’autres processus sont actifs sur la machine de tests.

Pour obtenir un temps le plus proche de la réalité, il est judicieux d’exécuter trois fois
de suite la mesure par repeat() et récupérer le meilleur temps des trois.

timeit((number=1000000))

Exécute 'expression setup puis 'expression stmt fournies a la construction de I'ins-
tance. Si number est fourni, il détermine le nombre d’exécutions de stmt. Comme
timeit est orienté code patterns, c’est-a-dire qu'il est en général employé pour opti-
miser de tres courtes séquences de code, number est & défaut a un million.

La méthode renvoie le temps d’exécution.

repeat([repeat=3 [, number=1000000]))

Méthode complémentaire, qui permet d’appeler timeit() repeat fois, en lui passant
si fourni, le parametre number.

Dans I'exemple ci-dessous, timeit est utilisée pour comparer deux algorithmes qui
ont le méme objectif.

Comparaison

#!/usr/bin/python
-*- coding: utf8 -*-
def algol():
chaine =
for i in range(100000):
chaine += '"*'
return chaine

def algo2():
chaine = []
for i in range(100000):
chaine.append('*")
return ''.join(chaine)
if __name__=='_main__"':
from timeit import Timer

t = Timer('algol()', 'from __main__ 1import algol')
print 'exécution algo 1: %f' % t.timeit(10)

Techniques avancées

QUATRIEME PARTIE
t = Timer('algo2(Q)', 'from __main__ import algo2')
print 'exécution algo 2: %f' % t.timeit(10)

Elle permet de constater les différences entre les deux options, et aussi pour ce cas
précis, 'évolution interne de la gestion des chaines entre Python 2.3 et 2.4.

Exemple d’optimisations entre Pyhton 2.3 et Python 2.4

$ python2.3 timing.py
exécution algo 1: 14.064436
exécution algo 2: 0.703696

$ python2.4 timing.py
exécution algo 1: 0.314968
exécution algo 2: 0.482306

Amélioration des performances

Une fois le probleme repéré par le profiler, plusieurs techniques existent pour réduire
le temps d’exécution.

La plupart du temps une légére modification du code suffit a régler le probléme. Sila
solution & appliquer nest pas flagrante, il peut étre nécessaire de rechercher un code
de remplacement dans la liste des code patterns fournis ci-dessous.

Ces code patterns, ou portions de codes, sont des techniques éprouvées pour effec-
tuer un travail précis, le plus rapidement possible.

Python est un langage basé sur le langage C : chaque séquence de code résulte en une
série d’appels a des primitives de bas niveau codées en C.

Certaines fonctions sont des liens directs vers des primitives C et d’autres doivent
traverser des couches plus épaisses d’appels de code Python.

Favoriser I'usage de fonctions proches du C augmente donc de maniére treés impor-
tante les performances.

Si ces modifications ne permettent pas de résoudre le probléeme, d’autres voies sont
possibles :

* Le caching, qui consiste a conserver en mémoire les résultats d’un calcul coliteux
b)
pour pouvoir les resservir en cas de besoin.

* Le multithreading, qui permet d’exécuter du code en tiche de fond.
* La programmation en C d’une extension du langage.

* Lutilisation de bibliothéques de calcul spécialisées.

* Lutilisation d’outils de programmation comme Cython.

Bonnes pratiques et optimisation du code m
CHAPITRE 13

Code patterns

La distinction n’étant pas toujours faite dans la littérature informatique, il est impor-
tant de préciser ici que les code patterns sont a différencier des design patterns : ils
s'apparentent plus a des petites séquences de code souvent utilisées pour répondre a
des besoins communs comme la concaténation de chaines, le tri d’éléments, ou les
bonnes habitudes 4 prendre lorsque 'on manipule certains objets.

Les design patterns, présentés au prochain chapitre, concernent des éléments de code de
plus haut niveau comme des classes ou des groupes de classes, et répondent & un besoin
plus spécifique de conception, comme les générateurs d’objets, les médiateurs, etc.

Voici une liste non exhaustive de code patterns éprouvés, pouvant étre réutilisés pour
les meilleures performances possibles.

Quel type de conteneur choisir ?
Lorsque des éléments doivent étre regroupés dans un conteneur, plusieurs choix sont
possibles :
* Le type Tist offre de nombreuses fonctionnalités pour la gestion d’éléments hété-
rogénes ordonnés.
* Le type set offre un conteneur performant a condition que les éléments soient
uniques.
* Le type tuple permet de créer des séquences non modifiables, et prend moins de
place en mémoire.

* Ledictionnaire est a préférer aux séquences lorsque 'ordre des éléments regrou-
pés n'a pas d’'importance. La clé peut contenir un identifiant unique, susceptible
d’étre utilisé dans des recherches sur les éléments.

* Le type array est plus rapide pour des séquences d’éléments simples homogenes.

Asavolr Remplacer le type Array

Il existe des bibliothéques tierces spécialisées qui remplacent avantageusement Array (présentées en
annexe B).

Trier des valeurs

Le tri en Python s’effectue en utilisant des objets de type 1ist, qui disposent d’une
méthode sort(). Cette méthode trie les valeurs de la liste en les comparant et
effectue son travail implace, C’est-a-dire en appliquant les modifications directement a
'objet sans en renvoyer un nouveau. Ce tri est de type quicksort et implémenté en C,
donc tres rapide.

Techniques avancées

QUATRIEME PARTIE

ARETENR Exemples a suivre

Dans les exemples qui suivent, on considére que la liste est composée uniquement d'éléments du méme

type.

Tri simple

>>> liste = [1, 3, 2]
>>> liste.sort()
>>> liste

(1, 2, 3]

Le tri par défaut est croissant, mais une fonction peut étre passée en parameétre pour
déterminer I'algorithme de comparaison. La fonction regoit deux éléments de la liste
et doit renvoyer un entier pour déterminer 'ordre de ces deux objets : négative, posi-
tive ou nulle si les objets sont estimés égaux.

Tri paramétré

>>> Tiste = [1, 3, 2]
>>> def mon_tri(ell, el2):
if ell > el2:
return -1
if el2 < el2:
return 1
return 0

>>> liste.sort(mon_tri)
>>> liste
[3, 2, 1]

Cette technique permet en outre, pour des éléments de types plus complexes,
d’affiner la comparaison.

Prenons l'exemple d’'une classe A qui contient un attribut titre. Trier les éléments
en fonction de cet attribut peut se faire en modifiant la fonction de comparaison.

Fonction de comparaison de classes de type A

>>> def mon_tri(ell, el2):
if el2.titre < el2.titre:
return 1
if el2.titre > el2.titre:
return -1
return 0

Bonnes pratiques et optimisation du code m
CHAPITRE 13

Cette solution n'est cependant pas optimale et peut ralentir le code de maniere con-
séquente. Pour accélérer les tris d’objets complexes, le code pattern le plus efficace
consiste a utiliser la transformation de schwartzian : utiliser le tri interne de la classe
Tist, en modifiant la liste pour que chaque élément devienne un tuple, composé de
lattribut a trier puis de 'élément d’origine.

Cet attribut extrait devient la clé de tri, et permet d’obtenir le méme résultat.

Tri par extraction de clé

>>> class A:
def __init__(self, title):
self.title = title
def _ str_ (self):
return 'Film: %s' % self.title

>>> Al = A('Qui veut la peau de mes 64 bits ?')
>>> A2 A('ATi Baba et les 40 valeurs')
>>> A3 = A('Placer ici un titre de film plus dréle que les précédents')
>>> mes_films = [Al, A2, A3]
>>> tri_mes_films = []
>>> for film in mes_films:
tri_mes_films.append((film.title, film))

>>> tri_mes_films.sort()

>>> films_tries = []

>>> for cle_de_tri, film in tri_mes_films:
films_tries.append(film)

>>> for film in films_tries:
print str(film)

Film: Ali Baba et Tes 40 valeurs
Film: Placer ici un titre de film plus drdle que les précédents
FiTm: Qui veut la peau de mes 64 bits ?

On peut généraliser le code pattern en proposant une fonction de tri inplace, qui
prend en parameétres la séquence et l'attribut 4 utiliser.

Code pattern de tri inplace d’objets

>>> def tri_liste(liste, attribut):
Tiste[:] = [(getattr(elem, attribut), elem) for elem in Tiste]
Tiste.sort()
Tiste[:] = [elem for cle, elem in 1iste]

Techniques avancées

QUATRIEME PARTIE

La notation Tiste[:] permet d’affecter des éléments a un objet liste sans avoir a
recréer d’objet, afin d’obtenir un tri inplace.

Ce code pattern, valable pour toutes les versions de Python, peut étre adapté pour
trier des séquences entre elles, en fournissant par exemple un entier qui détermine la
position de la valeur a utiliser comme clé de tri.

Concaténer des chaines

Une opération trés fréquente en Python consiste a concaténer des chaines de carac-
teres. La raison en est relativement simple : les objets de type string étant des
séquences immuables, il est nécessaire de recréer un objet lorsque I'on souhaite modi-
fier des éléments de la chaine.

La premiere idée qui vienne a I'esprit lorsque I'on concatene des chaines est de bou-
cler sur les éléments pour les mettre bout a bout.

Concaténation

>>> chaine =
>>> for i 1in range(10):
chaine += str(i)

>>> chaine
'0123456789"

Avant la version 2.4 de Python, ce genre d’écriture était catastrophique, car chaque
itération entrainait une création d’un nouvel objet string en mémoire.

Le code pattern le plus communément adopté était d’utiliser un objet liste pour la
préparation des éléments a concaténer, puis d’appeler la méthode join() d’un objet
string vide.

Concaténation par join()

>>> chaine [str(i) for i in range(10)]
>>> chaine = ''.join(chaine)

>>> chaine

'0123456789"

Cette méthode reste valable pour les versions de Python inférieures a la 2.4 mais est a

présent obsolete, voire légérement plus lente qu'une concaténation classique si une

list comprehension n’est pas utilisée : le code interne de Python a été modifié pour ne
p p p

plus créer d’objets intermédiaires lorsque des chaines sont concaténées.

Bonnes pratiques et optimisation du code m
CHAPITRE 13

La méme remarque est valable pour les chaines formatées : la technique napporte
plus de gain de vitesse. Il est cependant conseillé de conserver I'écriture formatée,
beaucoup plus lisible, voire d’adopter dans certains cas une écriture encore plus expli-
cite, basée sur la substitution des éléments par dictionnaire.

Formatage

>>> nom = 'bob'

>>> phrase = 'bonjour ' + nom + '
>>> phrase

'bonjour bob comment va ?'

>>> phrase = 'bonjour %s comment va ?' % nom# écriture a préférer

>>> phrase

'bonjour bob comment va ?'

>>> elements = {'nom': 'bob'}

>>> phrase = 'bonjour %(nom)s comment va ?' % elements # plus explicite
'bonjour bob comment va ?'

comment va ?'

Remplacer certains tests par une gestion d’exception

Lorsqu’un test cotiteux doit étre mis en place dans une boucle pour gérer un cas raris-
sime, il est intéressant lorsque c’est réalisable, de passer la gestion de ce cas en excep-
tion. On évite ainsi un appel systématique au test.

Gestion d’un cas par exception

>>> def funcl():
- res = 0
elements = [i for i in range(100000)]
elements.append(None)
elements.append('og')
for element in elements:
if element 1isnot None and isinstance(element, int):
res += element
return res

>>> def func2():
res =0
elements = [i for i in range(100000)]
elements.append(None)
elements.append('og')
for element in elements:
try:
res += element
except TypeError:
pass
return res

m Techniques avancées
QUATRIEME PARTIE

>>> timeit.Timer('funcl(Q)', 'from __main__ dimport funcl').timeit(100)
12.883871078491211
>>> timeit.Timer('func2()', 'from __main__ dimport func2').timeit(100)

7.4781858921051025

Minimiser les appels et rapprocher le code

D’un point de vue interpréteur, tout appel 4 une fonction ou une méthode nécessite
de faire une recherche dans le contexte local et/ou global. Si cette fonction est un
attribut d’un objet du contexte, une recherche dans I'attribut _ dict__ de I'objet en
question est de plus nécessaire, et ainsi de suite.

Pour résumer, plus le code est éloigné et éparpillé, plus son acces est cotliteux.

Pour les Aot spots, c’est-a-dire les portions de code a optimiser d’urgence, minimiser
les acceés a du code externe est un exercice tres rentable. Une des méthodes consiste a
regrouper des fonctions dans une seule et méme fonction, en agrégeant si nécessaire
les données utilisées en un seul ensemble de parameétres.

Lexemple ci-dessous est le plus simple, mais le plus parlant : dans une fonction, une
boucle appelle a chaque itération une autre fonction. On repousse cette boucle dans
la fonction, qui prend alors en charge la séquence d’éléments au lieu de ne travailler
que sur un seul élément. On passe dans ce cas a un seul appel extérieur.

Fédération de code

>>> import timeit
>>> def versionl(element):
return element.upper()

>>> def version2(elements):
elements[:] = [element.upper() for element 1in elements]

>>> def code_appelantl():
Tiste = ['azerty', 'qwerty', 'peu importe']
for i 1in range(5):# pour faire une liste + grosse
Tiste = Tiste + Tiste
return [versionl(phrase) for phrase 1in Tiste]

>>> def code_appelant2():
Tiste = ['azerty', 'qwerty', 'peu importe']
for i 1in range(5): # pour faire une liste + grosse
Tiste = Tiste + liste
version2(liste)
return liste

Bonnes pratiques et optimisation du code m
CHAPITRE 13

>>> timeit.Timer('code_appelantl()', 'from __main__ {import
code_appelantl').timeit(100000)

9.484644889831543

>>> timeit.Timer('code_appelant2()', 'from __main__ +import
code_appelant2').timeit(100000)

6.5702319145202637

Cette technique a cependant tendance a rendre le code de moins en moins lisible et
de plus en plus difficile 4 maintenir et faire évoluer, car les fonctions agrégées peu-
vent devenir de gros blocs monolithiques illisibles.

Une autre technique pour minimiser les appels sans modifier les fonctions appelées
consiste a définir des variables locales qui pointent sur chacun des éléments extérieurs.

Variables locales de fonctions

>>> def funcl():

titres = ['qui veut la peau de mes 64 bits ?',
'ali baba et Tes 40 valeurs',
"placer 1ici un titre de film']

Tiste = []

for titre 1in titres:

Tiste.append(str.title(titre))
return liste

>>> def func2():
- titres = ['qui veut la peau de mes 64 bits ?',
'ali baba et Tes 40 valeurs',
'placer 1ici un titre de film']
title str.title
Tiste [1]
append = Tliste.append
for titre 1in titres:
append(title(titre))
return liste

>>> import timeit

>>> 0 = timeit.Timer('funcl()', 'from __main__ import funcl')
>>> o.timeit()

7.7832179069519043

>>> 0 = timeit.Timer('func2()', 'from __main__ import func2')
>>> o.timeit()

6.7249960899353027

Dlécriture est encore une fois beaucoup moins explicite et ce genre de modification
est a utiliser avec parcimonie.

Techniques avancées
448 :
QUATRIEME PARTIE
Utiliser les list comprehensions

Depuis la version 2.4 de Python, les list comprehensions sont de loin la forme la plus
concise et la plus rapide pour manipuler des séquences.

Comparaison de rapidité

-*- coding: utf8 -*-
import time

def transformee_classique(liste):
res = []
for x in liste:
res.append(x + 1)
return res

def transformee_map(liste):
return map(lambda x: x+1, liste)

def transformee_lc(liste):
return [x+1 for x in liste]

def duree(fonction, n=10000000):
debut = time.clock()
fonction(range(n))
fin = time.clock()
return fin - debut

print "Transformée classique: %f" % duree(transformee_classique)
print "Transformée par map(): %f" % duree(transformee_map)
print "Transformée par 1list-comprehension: %f" % duree(transformee_1c)

[...]

$ python2.4 benchlc.py

Transformée classique: 6.010000

Transformée par map(): 5.340000

Transformée par 1ist-comprehension: 2.600000

$ python2.3 benchlc.py

Transformée classique: 8.580000

Transformée par map(): 6.770000
Transformée par Tist-comprehension: 6.430000

On remarque également que T'utilisation de map() n'est guére plus rapide que la
forme éclatée pour la version 2.4, et devient de plus en plus obsoleéte.

Bonnes pratiques et optimisation du code m
CHAPITRE 13

Utiliser les generators et les genexp

Les generators offrent une maniére élégante et performante de récupérer les résultats
intermédiaires d’une fonction sans avoir 4 implémenter un systéme de callback.

Generator infini, suite de Fibonacci

>>> def fibonacci():
a, b=0,1
while 1:

>>> fib = fibonacci()
>>> [fib.next() for val in range(10)]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Cette mécanique peut étre mise en place dans tous les algorithmes de génération de
séquences.

Les generators expressions sont quant a eux I'équivalent des list comprehensions
pour les iterators et permettent des gains de mémoire.

Genexp

>>> def gen(sequence):
for element in sequence:
yield element + 1

>>> genexp = gen([1l, 2, 3, 4])

>>> Tist(genexp)

[2, 3, 4, 5]

>>> # écriture équivalente en genexp

>>> genexp = (element + 1 for element 1in [1, 2, 3, 4])
>>> Tist(genexp)
[2, 3, 4, 5]

Préférer les fonctions d’itertools

itertools, module présenté au chapitre 10, implémente des fonctions codées en C
qui permettent de générer trés rapidement des iterators pouvant étre utilisés pour
remplacer certaines primitives, comme :

* mapQ) ;
* filterQ;
* reduce();

* zipQ.

Techniques avancées

QUATRIEME PARTIE

Caching

Lorsqu’une fonction trés colteuse en temps est appelée plusieurs fois, il peut étre
intéressant de mettre en place un systéme de cache, qui conserve les résultats des cal-
culs en mémoire et les ressert en cas de besoin, afin d’éviter de les recalculer.

Cette technique n'est bien str applicable qu'aux fonctions dont les résultats restent
invariants en fonction des parametres d’entrée.

Le module dircache est un bon exemple de caching : pour fournir une liste des
fichiers d’un répertoire donné, le parcours est relativement colteux, surtout si toute
I'arborescence est demandée.

Le contenu de chaque répertoire parcouru est conservé en mémoire dans un diction-
naire, et resservi a condition que la date de modification du répertoire au moment de
la demande soit identique a celle conservée en mémoire. Dans le cas inverse, le cache
est mis a jour.

Module dircache

cache = {}

def reset():
"""Reset the cache completely.
global cache
cache = {}

non

def 1istdir(path):
"""List directory contents, using cache.
try:
cached_mtime, 1list = cache[path]
del cache[path]
except KeyError:

non

cached_mtime, 1list = -1, []
mtime = os.stat(path).st_mtime
if mtime != cached_mtime:

Tist = os.Tlistdir(path)
Tist.sort()
cache[path] = mtime, Tist
return Tist

Sil'on généralise ce mécanisme, appelé aussi memorizing, on obtient le code pattern
suivant, qui collecte les résultats calculés, en fonction des paramétres, en fabriquant
une clé unique pour chaque combinaison.

Bonnes pratiques et optimisation du code m
CHAPITRE 13

Fonction avec cache

import md5
cache = {}

def calcul_savant(*args):

key = str(args)

try:
res = cachel[key]

except KeyError:
res = md5.md5(Q) .hexdigest()
cache[key] = res

return res

I1 est possible de rendre ce fonctionnement totalement générique en concevant un
decorator, applicable a toute fonction puisqu’il externalise le mécanisme de caching.

decorator memoize

#!/usr/bin/python
-*- coding: utf8 -*-
import md5

def memoize(func):
cache = {}
def call(*args):
try:
return cachel[args]
except KeyError:
res = func(*args)
cache[args] = res
return res
except TypeError:
parametre unashable
return func(*args)
call.func_name = func.func_name
return call

@memoize
def calcul_savant(*args):
key = str(args)
return md5.md5(key) .hexdigest()

Cette mécanique ne reste efficace que si le nombre de combinaisons de parameétres
en entrée reste relativement faible et si les résultats de la fonction ne dépendent pas
d’autres facteurs externes.

Techniques avancées

QUATRIEME PARTIE

De plus, si les résultats renvoyés sont des éléments prenant une certaine place en
mémoire, il faut s’assurer que le mécanisme de caching, qui se charge d’écrire mais
aussi de récupérer les valeurs, ne cotte pas plus cher que le calcul lui-méme.

Enfin, si la mémoire occupée par le cache devient trop importante, et si les condi-
tions le permettent, il peut étre intéressant d’externaliser le stockage du cache vers un
serveur spécialisé dans la gestion de cache mémoire distribué.

Le serveur Open Source memcached (http://www.danga.com/memcached/) répond rela-
tivement bien a ce besoin.

Multithreading

Le multithreading consiste a détacher 'exécution d’une tiche de 'exécution principale
lorsque la suite immédiate du programme n'est pas dépendante des résultats. La tache
est exécutée dans un nouveau thread et le programme devient le thread principal.

Cette situation se rencontre :

* Dans les applications interactives, lorsqu'une commande lance une tiche et ren-
voie la main immédiatement a l'utilisateur, qui peut continuer a utiliser le pro-
gramme en attendant les résultats.

* Dans les programmes de type serveur, ou chaque demande client est gérée dans
un nouveau thread. Par exemple, un serveur FTP détache une session avec un
client dans un thread afin de rester disponible pour d’autres demandes.

* Dans les applications ot I'on souhaite découpler la production et l'utilisation de
données, ces données pouvant étre produites par une source externe non maitrisée.
Clest le cas par exemple de programmes de téléchargement comme BitTorrent.

. etc.

CuLTuRe Quelques définitions courtes

Un thread est associé par le systéme a un unique processus, qui représente le programme en cours d'exé-
cution en mémoire. Il peut exécuter du code comme un processus.

Un processus peut posséder un nombre indéfini de threads. Un thread est différent d'un processus, car il
partage, avec tous les threads issus du méme processus, le méme espace mémoire. On parle de ressour-
ces partagées.

Ressources partagées : difficultés de programmation

Les threads partagent le méme espace mémoire, il est donc nécessaire de prendre des
précautions lorsqu’ils utilisent les mémes éléments.

Bonnes pratiques et optimisation du code m
CHAPITRE 13

En effet, si un thread modifie une ressource, il doit en protéger I'accés par d’autres
threads jusqua la fin de son travail. Ces points de synchronisation ou sections critiques
évitent des effets de bords non maitrisés en garantissant 'intégrité des ressources.

D’un point de vue développement, le travail consiste 4 rendre le code thread-safe,
c’est-a-dire a protéger toutes les parcelles de code qui modifient des données pouvant
étre lues et utilisées par d’autres parcelles de code, en utilisant des /ockers, véritables
verrous programmatiques.

La séquence protégée est donc :

1 lock : enclenchement du verrou ;

2 travail : code protégé ;

3 unlock : libération du verrou.

Lorsqu'un thread A atteint 'étape 1, il verrouille les ressources auxquelles il va

accéder et s’assure ainsi que I'étape 2 ne peut pas étre exécutée par un autre thread en
méme temps.

A la fin du travail, le thread A déverrouille les ressources. Si un deuxiéme thread B
atteint I'étape 1 pendant que le thread A est encore dans I'étape 2, il est bloqué et doit
attendre que le verrou soit libéré avant de pouvoir a son tour verrouiller les ressources.

Cette technique parait relativement simple de prime abord mais entraine des diffi-
cultés de programmation :

* Sile thread A (ou tout autre thread si cette étape est déléguée) ne passe jamais par
I'étape 3, par une exception mal gérée par exemple, le thread B reste bloqué a tout
jamais. On parle dans ce cas d’un deadlock.

* Sile thread A, dans le code protégé, verrouille 4 nouveau les ressources, il se blo-
que lui-méme par deux appels successifs a Tock.

Le deuxi¢me cas peut étre géré grice a des verrous particuliers : les locks réentrants,
qui ne bloquent pas un thread qui tente de verrouiller 4 nouveau les mémes res-
sources. Le déverrouillage doit cependant étre fait par ce méme thread.

Le premier probleme reste entier et nécessite de bien contréler le code protégé.

En termes de performances, il est aussi important de ne protéger que le strict néces-
saire pour éviter des latences dues a des verrous sur des portions de code trop larges.

Une derniére technique de coordination consiste 4 faire communiquer les threads
entre eux pour qu’ils puissent travailler de maniére concertée.

Typiquement, un thread attend qu'un signal soit émis pour commencer ou continuer
son travail, ce signal étant émit par un autre thread.

Techniques avancées

QUATRIEME PARTIE

Le module threading
Python fournit un module de haut niveau nommé threading, qui masque toute la
complexité de mise en ceuvre des threads pour fournir :

* une classe Thread pour exécuter du code dans un nouveau thread ;

* des utilitaires de protection des ressources partagées ;

* une classe Event qui permet aux threads de communiquer entre eux.
La classe Thread permet d’exécuter du code dans un nouveau thread, en passant une
fonction ou une méthode 4 la construction de I'instance, ou en dérivant la classe pour

implémenter le code de la méthode run(). Cest cette méthode qui est exécutée dans
un thread séparé.

class Thread(group=None, target=None, name=None, args=(), kwargs={})

Le paramétre group n'a aucune utilité actuellement et a été introduit pour une future
implémentation des groupes de threads. target définit une fonction ou méthode qui
est appelée par la méthode run(). name détermine le nom du thread, qui peut étre
ensuite lu par la méthode getname(). Ce nom n’a pas d’utilité fonctionnelle mais
peut permettre dans certains cas de différencier simplement plusieurs threads. Enfin,
args et kwargs sont les parameétres passés a target si nécessaire.

start()

Appelée une seule fois, start() permet de lancer un nouveau thread et d’y exécuter
la méthode runQ).

run()

Meéthode exécutée dans le thread. Si target a été fourni, run() 'exécute. Dans le cas
inverse, cette méthode peut étre surchargée pour contenir directement le code a exécuter.

Le thread est a/ive dés que cette méthode est appelée. Lorsque run() est terminé,
soit par la fin de I'exécution, soit par une levée d’exception, le thread est dead.

join({timeout))

Attend que le thread se termine. Cette méthode peut étre appelée par un autre
thread qui se met alors en attente de la fin d’exécution du thread. Si timeout est
fourni, c’est un réel qui détermine en secondes le temps d’attente maximum. Passé ce
délai, le thread mis en attente est débloqué.

isAlive()

Informe sur l'état du thread. Renvoie True si la méthode run() est en cours d’exécution.

Bonnes pratiques et optimisation du code m
CHAPITRE 13

Lexemple ci-dessous exécute une fonction dans un thread séparé et laisse le thread
principal libre. Ce dernier en I'occurrence attend que le thread annexe s’achéve, en
affichant des caractéres sur la sortie standard.

Exemple 1

#!/usr/bin/python

-*- coding: utf8 -*-

from threading import Thread
from time import sleep

from sys import stdout

def visiteur(Q):
print("C'est André, je monte !")
sleep(5)
print('\ntoc toc toc')

if __name__ == '__main__':
print("Drrrrrrring™)
sleep(1)
print('Oui ?')
sleep(1)
thread = Thread(target=visiteur)
thread.start()
sleep(1)
print('0OK, dépéche toi')

i=0
while thread.isAlive(Q):
if i == 0:
stdout.write('z")
i=1
else:
stdout.write('Z")
i=0

stdout.flush()
sleep(0.4)

print("Ah, te voila ! J'ai bien failli attendre !")
[...]
$ python threaded.py
Drrrrrrring

Oui ?
C'est André, je monte !

m Techniques avancées
QUATRIEME PARTIE

0K, dépéche toi

27272727277

toc toc toc

Ah, te voila ! J'ai bien failli attendre !

Lorsque le code est plus complexe qu'une simple fonction, il peut étre judicieux de le
regrouper dans une classe dérivée de Thread et de surcharger run() et si nécessaire
_init_Q.

Dans le cas d'un nouveau constructeur, le constructeur original doit absolument étre
appelé afin d’assurer I'initialisation de la mécanique interne.

Exemple 2

#1/usr/bin/python

-*- coding: utf8 -*-

from threading import Thread
from time import sleep

from sys +import stdout

class Ingenieur(Thread):

def __init__(self, resultats):
Thread.__init__(self)
self._resultats = resultats

def run(self):
""" calcul relativement complexe """

sleep(5)
self._resultats.extend(['je', 'sais', 'pas'])
if __name__ == '__main__':

resultats = []

bob = Ingenieur(resultats)

bob.start()

print('Bob est en train de faire les calculs')

for i 1in reversed(range(5)):
stdout.write('%s '% str(i))
stdout.flush(Q)

sleep(1)
bob.join()
print('\nvoici Bob")
print('Bob: %s' % ' '.join(resultats))

[...]

$ python threaded.py

Bonnes pratiques et optimisation du code m
CHAPITRE 13

Bob est en train de faire les calculs
43210

voici Bob

Bob: je sais pas

Lorsque plusieurs threads se partagent des ressources, il est nécessaire de protéger le
code par des points de synchronisation. Le module thread fournit des fonctions de
création de verrous, encapsulées par deux objets de threading : Lock et Rlock.

class Lock()

Crée une nouvelle primitive de synchronisation. Deux méthodes sont ensuite
accessibles : acquire() et release().

acquire([blocking=1))

Acquiert le verrou et renvoie True en cas de succes. Si blocking est a 1 ou nest pas
spécifié, 'appel de cette méthode bloque le thread si le verrou est déja locké par un
autre thread. Si blocking est a 0, acquire() se contente de renvoyer False pour
signaler que le verrou est déja pris.

release()

Libere le verrou, autorisant d’autres threads a le reprendre. Si plusieurs threads sont
en attente de ce verrou, un seul thread est autorisé a l'acquérir. Appeler cette
méthode sur un verrou qui n'est pas fermé léve une exception.

La classe Rlock est identique mais permet au thread qui a le verrou de rappeler la
méthode acquire() sans provoquer de deadlock. Cette variation simplifie grande-
ment la conception du code, surtout lorsque des fonctions récursives entrent en jeu.
RTock est un lock réentrant.

Lexemple ci-dessous définit une liste globale manipulée par plusieurs instances du
thread Manipe. La suppression et I'ajout d’éléments dans la liste doivent se faire de
maniére protégée.

Un verrou est donc associé a la liste et le code du thread I'utilise pour protéger la

modification de la liste. Un bloc try..finally permet de s’assurer que le verrou est
toujours libéré.

Implémentation d’une section critique

#!/usr/bin/python

-*- coding: utf8 -*-

from threading import Thread, Lock
from time import sleep

from sys import stdout

m Techniques avancées
QUATRIEME PARTIE

threads = []
Tocker = Lock()

liste = ['a', 'b', 'c']
class Manipe(Thread):

def _manip(self):
for i 1in range(5):
locker.acquire()
try:
Tiste.remove('a')
sleep(0.1)
liste.insert(0, 'a')
finally:
Tocker.release()

def run(self):
threads.append(id(self))
try:
self._manip(Q)
finally:
threads.remove(id(self))
if __name__ == '__main__':
for i in range(10):
Manipe().start()

sleep(0.5)

while len(threads) > 0:
stdout.write('.")
stdout.flush()
sleep(0.1)

stdout.write('\n")

[...]

$ python threaded.py

Si la gestion du verrou est mise en commentaire et le code relancé, I'exécution se
passe trés mal, car chaque thread manipule la liste en partant du postulat qu’elle con-
tient 'élément a. Cet élément pouvant étre supprimé par un autre thread, des erreurs
apparaissent.

Bonnes pratiques et optimisation du code m
CHAPITRE 13

Retrait du verrou

[...]
def _manip(self):
for i 1in range(5):
#locker.acquire()
try:
Tiste.remove('a')
sleep(0.1)
liste.insert(0, 'a')
finally:
pass
#locker.release()

[...]

$ python threaded.py
Exception 1in thread Thread-2:
Traceback (most recent call last):
File "/usr/1ib/python2.4/threading.py", line 442, in __bootstrap
self.run()
File "threaded.py", 1line 28, in run
self._manip()
File "threaded.py", 1line 18, in _manip
Tiste.remove('a')
ValueError: Tist.remove(x): x notin list

Exception in thread Thread-3:
Traceback (most recent call last):
File "/usr/1lib/python2.4/threading.py", line 442, in __bootstrap
self.run()
File "threaded.py", 1line 28, 1in run
self._manip(Q)
File "threaded.py", 1line 18, in _manip
Tiste.remove('a')

[...]

Outre les sections critiques, il existe un autre mécanisme qui permet de coordonner
le travail de plusieurs threads : les événements définis par des objets de type Event.

class Event()

Renvoie une instance de type Event, qui peut étre considérée comme un drapeau.
Cette classe fournit des méthodes pour déterminer 'état du drapeau. Les threads
peuvent manipuler ces objets pour se coordonner. L'état interne du drapeau est a
False lorsque l'objet est instancié.

Techniques avancées

QUATRIEME PARTIE

isSet()

Renvoie I'état du drapeau.

set()

Passe le drapeau a True. Tous les threads en attente de 'événement sont débloqués.

clear()

Passe le drapeau a False. Tous les threads qui attendent I'événement seront bloqués.

wait({timeout))

Permet d’attendre I'événement. Si le drapeau est a True, renvoie la main immédiate-
ment.

timeout permet de spécifier un temps en secondes apres lequel le thread en attente
est débloqué méme si 'événement n'a pas eu lieu. Lorsqu’il n'est pas spécifié, le
thread est bloqué indéfiniment.

La classe Event permet de mettre en ceuvre des schémas complexes d’interactions de
threads, ot chaque intervenant se réveille sur un événement particulier, exécute du
code et provoque a son tour un événement, avant de se terminer, ou d’attendre a
nouveau un événement.

Lexemple ci-dessous imite une course de relais 4 x 100 métres o chaque athléte est
représenté par un thread. L'athléte se met a courir lorsque le précédent a terminé sa
distance. Cet événement est représenté par trois objets 100_metres, 200_metres,
300_metres.

Tous les threads sont lancés au début du programme, mais les 3 derniers attendent
leurs événements respectifs pour déclencher leurs courses.

Course 4 x 100 metres

#1/usr/bin/python

-*- coding: utf8 -*-

from threading import Thread, Event
from time import sleep

from sys import stdout

_100_metres = Event()
_200_metres = Event()
_300_metres = Event()

class Coureurl(Thread):
def run(self):
for i in range(10):

Bonnes pratiques et optimisation du code

stdout.write('.")

stdout.flush()

sleep(0.2)
stdout.write('100M")
_100_metres.set()

class Coureur2(Thread):
def run(self):

_100_metres.wait()

for i 1in range(10):
stdout.write('.")
stdout.flush()
sleep(0.2)

stdout.write('200M")

_200_metres.set()

class Coureur3(Thread):
def run(self):

_200_metres.wait()

for i 1in range(10):
stdout.write('.")
stdout.flush()
sleep(0.2)

stdout.write('300M")

_300_metres.set()

class Coureur4(Thread):
def run(self):

_300_metres.wait()

for i 1in range(10):
stdout.write('.")
stdout.flush()
sleep(0.2)

print('400M")

if __name__ == '__main__":
c4 = Coureurd()
cd.start()

Coureur3().start(Q)
Coureur2().start(Q)
Coureurl().start(Q)

attente du dernier coureur
c4.jo0in()

CHAPITRE 13

Les événements et les threads permettent de modéliser des problémes complexes

d’interaction.

Techniques avancées

QUATRIEME PARTIE

Un cas récurrent, et beaucoup plus simple, d’échanges entre threads est présenté dans
la section suivante, mais avant d’aller la lire, merci de laisser nos coureurs faire leur
course, ils attendent depuis quelque temps...

La course, enfin

[tziade@Tarek Documents]$ python course.py
.......... 100M..........200M..........300M..........400M

Le module Queue

Ce module implémente une queue FIFO (first in first out) dans laquelle des données
peuvent étres ajoutées et récupérées. First in first out signifie que la premiére donnée
ajoutée est la premiére récupérée, a I'image d’'un tuyau, en opposition aux piles LIFO
(last in first out) ou le dernier élément ajouté est le premier a étre servi, a 'image
d’une pile de dossiers.

Cette classe convient bien a Iéchange de données entre threads car elle est
thread-safe. Les threads qui remplissent la pile sont nommeés Producteurs et ceux qui
récupérent les données Consommateurs.

class Queue(maxsize)

Un objet Queue doit étre construit avec le paramétre maxsize qui détermine la taille
de la pile. Lorsque la pile est pleine, il n’est plus possible d’y ajouter des éléments. Si
maxsize est 4 0 ou négatif, la pile est de taille infinie.

put(item(, block(, timeout]])

Ajoute I'élément item dans la pile. L'appel a cette méthode devient bloquant lorsque
la pile est pleine : put() rend alors la main dés que I'élément a pu étre ajouté. block
peut étre défini 4 False. Dans ce cas si la pile est pleine, put () léve une exception de

type Full.
put_nowait(item)

Raccourci pour la notation put(item, block=False).

get([block(, timeout]))

Renvoie le premier élément inséré et 'enléve de la pile. block, a défaut a True, met
en attente le code si la pile est vide, avec un timeout en secondes optionnel. Siblock
est forcé a False, et si la pile est vide, une exception Empty est levée.

get_nowait()

Raccourci pour la notation get(block=False).

Bonnes pratiques et optimisation du code m
CHAPITRE 13

qsize()

Renvoie la taille actuelle de la pile.

empty()
Renvoie True si la pile est vide.

full()
Renvoie True si la pile est pleine.

Classiquement, un objet Queue est utilisé lorsque le Producteur de données n'est pas mai-
trisé et que le programme doit se mettre en attente de ces données pour pouvoir lancer un
traitement. Un exemple complet est implémenté dans I'exercice 8 du chapitre 11.

Le Global Interpreter Lock et multiprocessing

Le code méme de I'interpréteur Python n’est pas thread-safe et un lock général existe
pour empécher plusieurs threads de modifier des registres en méme temps. Il s’agit

du Global Interpreter Lock, ou GIL.

A cause du GIL, les threads ne sont pas réellement capables de fonctionner totale-
ment en parallele, sauf lorsqu’ils utilisent du code C ou qu’ils appellent des pro-
grammes externes.

Les performances de la programmation par threads en Python sont donc trés limi-
tées, et les programmes ne sauront pas tirer parti d’'une architecture multi-processus.
Cette limitation se ressent par exemple dans les serveurs d’applications codés en
Python qui tournent sur un serveur multi-processeur : ils utilisent 100 % d’un pro-
cesseur a forte charge et ne tirent pas partie du deuxiéme. Malgré les différents tra-
vaux de membres de la communauté pour supprimer le GIL, I'implémentation
actuelle de CPython ne changera pas car une récriture importante est a envisager.

La solution la plus simple pour contourner ce probléme est d’utiliser des processus au
lieu de threads. C’est ce quoffre le module multiprocessing. Ce module, introduit
dans Python 2.6, mais également backporté dans Python 2.4 et 2.5, permet de mani-
puler des processus avec des fonctions et des classes similaires.

La méthode la plus souple consiste & utiliser la classe Poo1 fournie par le module pour
y placer des travaux indépendants & réaliser. multiprocessing gére alors la création
des processus, leur gestion et la récupération des résultats de maniére totalement
transparente.

Techniques avancées

QUATRIEME PARTIE

Utilisation de multiprocessing.Pool

>>> from multiprocessing import Pool
>>> def async(value):
return value * 2

>>> pool = Pool1()

>>> result = pool.apply_async(async, [10])
>>> result.get(timeout=5)

20

Dans I'exemple ci-dessus, un appel 4 async(10) est effectué dans un nouveau pro-
cessus par un appel a apply_async. Le résultat qu’il retourne est un objet intermé-
diaire de type ApplyAsync. Cet objet possede une méthode get qui se met en attente
du résultat et le renvoie. Le parameétre timeout permet de rendre la main si le pro-
cessus n'a pas fini au bout de 5 secondes.

Le coté obscur de la force : extension du langage

Caching, threading, rien ny fait, aucune de ces méthodes ne permet de rendre le
code suffisamment rapide. Les performances ne sont tout simplement pas au
rendez-vous. Il reste une (presque) derniére alternative pour optimiser le code : coder
une extension a Python dans un autre langage de programmation, en l'occurrence
en C puisqu’il est a la base de Python, comme la plupart des langages modernes.

11 existe deux cas de figure pour concevoir un module d’extension :

* Une bibliotheéque est déja disponible en C, et 'exercice consiste a mettre en place
un pont entre Python et cette bibliotheque : un dinding.

* Le module en C doit étre congu, puis lié comme dans le premier cas.

Mais avant d’aborder ces sujets, il est nécessaire de mettre en place un environne-
ment de compilation.

Environnement de compilation

Pour étendre Python, il est nécessaire de pouvoir compiler le code C. Cette opéra-
tion ne pose aucun probléme sur les plates-formes GNU/Linux ou Mac OS X, ou il
suffit d’installer le compilateur standard gcc (http://gcc.gnu.org/), lorsqu’il n'est pas
déja installé.
Sous MS-Windows, deux options s’offrent a vous :

* installer MVC++ (Microsoft Visual C++ Developer Studio), sachant qu’il existe une

version Express gratuite, suffisante pour les besoins de compilation ;
* installer I'alternative libre : MingGW!(http://www.mingw.org).

Bonnes pratiques et optimisation du code m
CHAPITRE 13

Pour pouvoir utiliser MingGW dans la phase de compilation, il est nécessaire :
* d’ajouter le répertoire bin de I'installation de MinGW au PATH ;
* de copier le fichier Python2x.d11 dans le répertoire 1ib de MinGW ;

* d’ajouter un fichier distutils.cfg dans C:\python2x\Tib\distutils\ avec ce
contenu décrit ci-dessous.

Fichier distutils.cfg

[build]
compiler=mingw32

On obtient alors un environnement de compilation similaire 4 celui obtenu avec

MVC++.

Asavor Vérification sous GNU/Linux

Si vous avez installé Python sous GNU/Linux avec des binaires, vous devez vous assurer que le paquet
python2.x-dev est installé.

Binding de bibliotheque

Pour utiliser des bibliothéques d’extensions il existe deux techniques :
* utiliser 'outil SWIG ;
* utiliser le module standard ctypes.

SWIG

Loutil SWIG (Simplified Wrapper Interface Generator) (http://www.swig.org/) permet
de connecter un programme C ou C++ a plusieurs autres langages (Perl, Python, Tcl,

Guile, Ruby, PHP, Objective Caml, Modula-3, C#, etc.).

Pour qu'un programme C ou C++ soit utilisable par SWIG, il est nécessaire de créer
un fichier interface, qui publie les éléments a lier. Ce fichier est utilisé pour générer le
module d’extension.

Prenons l'exemple du module exemple.c ci-dessous (issu de l'aide en ligne de
SWIG).
Module exemple.c

#include <time.h>
double My_variable = 3.0;

m Techniques avancées
QUATRIEME PARTIE

int fact(int n)
{
if (n <= 1)
return 1;
else
return n*fact(n-1);

}

int my_mod(int x, int y)
{
return (x%y);

}

char *get_time()

{
time_t Ttime;
time(&Ttime);
return ctime(<ime);

}

Le fichier d’interface correspondant publie les éléments du module C, par une syn-
taxe déclarative particuliere.

Module d’interface exemple.i

/% example.i */

%module exemple

%{

extern double My_variable;
extern int fact(int n);

extern int my_mod(int x, int y);
extern char *get_time();

%3

extern double My_variable;
extern int fact(int n);

extern int my_mod(int x, int y);
extern char *get_time();

La commande swig -python exemple.i lance la lecture du fichier interface, et
géneére un fichier exemple_wrap.c qui contient les API de SWIG et le code modifié.
Linstallation de ce module comme extension se fait par le biais du module
distutils.core, qui compile le programme C exemple_wrap.c, et le place dans le
répertoire site-packages de Python pour le rendre disponible.

On retiendra deux éléments de distutils.core :

* la fonction setup(arguments), qui permet de compiler et installer des modules
d’extension ;

Bonnes pratiques et optimisation du code m
CHAPITRE 13

* la classe Extension, qui décrit un module d’extension C ou C++.

La fonction setup() prend en parameétres un certain nombre d’options, dont :
* name :un objet string représentant le nom du module ;
* version :un objet string contenant un numéro de version pour le module ;
* ext_modules :une liste d’objets de type Extension, & construire ;
* maintainer :le nom du développeur en charge du module ;
* maintainer_email :son e-mail;
* description :une description courte, sous la forme d’une ligne de texte ;
* long_description : une description plus détaillée.

La classe Extension est construite quant a elle avec :
* name :le nom du module d’extension ;
* sources : la liste des fichiers sources C, C++

* include_dirs :la liste des répertoires contenant des en-tétes C, C++ a inclure a
la compilation. Le répertoire contenant Python.h est automatiquement ajouté et
ce parametre n'est 4 utiliser que pour ajouter de nouvelles dépendances ;

* library_dirs : la liste des répertoires contenant des bibliothéques 4 inclure a la
liaison, si nécessaire.

Créer un fichier d’installation consiste donc a coder un fichier Python contenant un
appel a setup() . Par convention, ce fichier est nommé setup.py.

Dans notre exemple, les fichiers nécessaires 4 la compilation de I'extension sont
exemple.c et exemple_wrap.c.

Fichier setup.py

from distutils.core import setup
from distutils.extension import Extension

extension = Extension(name='_exemple',
sources=["'exemple.c', 'exemple_wrap.c'])

setup(name="_exemple", ext_modules=[extension])

Le code généré par SWIG préfixe le nom du module par le caractére _ et il est néces-
saire d’en tenir compte dans la création de setup.py.

Ce module est ensuite invoqué en ligne de commande, avec 'option build pour
compiler le module d’extension, et install pour le placer dans I'interpréteur.

Techniques avancées

QUATRIEME PARTIE

Compilation sous Linux

$ python setup.py build

running build

running build_ext

building '_exemple' extension

creating build

creating build/temp.1inux-i686-2.4

gcc -pthread -fno-strict-aliasing -DNDEBUG -02 -fomit-frame-pointer
-pipe -march=1586 -mtune=pentiumpro -g -fPIC -I/usr/include/python2.6 -c
exemple.c -o build/temp.Tinux-i686-2.4/exemple.o

exemple.c:22:2: warning: no newline at end of file

gcc -pthread -fno-strict-aliasing -DNDEBUG -02 -fomit-frame-pointer
-pipe -march=1586 -mtune=pentiumpro -g -fPIC -I/usr/include/python2.6 -c
exemple_wrap.c -o build/temp.Tinux-i686-2.4/exemple_wrap.o

creating build/1ib.1inux-1686-2.4

gcc -pthread -shared build/temp.linux-i686-2.4/exemple.o build/
temp.Tinux-i686-2.4/exemple_wrap.o -o build/1ib.Tinux-1686-2.4/
_exemple.so

Cet appel crée un sous-répertoire build contenant une arborescence de plusieurs
répertoires. On retrouve un fichier compilé _exemple.so, prét a étre installé par un
appel a install. Sous MS-Windows, un fichier _exemple.d11 est créé en lieu et
place de exemple.so.

Installation de I'extension

$ su

Password:

python setup.py install

running install

running build

running build_ext

running install_1ib

copying build/1ib.1linux-1686-2.4/_exemple.so -> /usr/1ib/python2.6/
site-packages

Il est en général nécessaire de passer en super-utilisateur pour cette étape, afin d’avoir
acces en écriture au répertoire site-packages de Python.

Le module est a présent installé et utilisable dans Python.
Essais de I’extension exemple

>>> import exemple
>>> dir(exemple)

Bonnes pratiques et optimisation du code m
CHAPITRE 13

['_builtins__"', '"__doc__', '__file_', '"__name__', '_exemple',
'_newclass', '_object', '_swig_getattr', '_swig_setattr',
'_swig_setattr_nondynamic', 'cvar', 'fact', 'get_time', 'my_mod']

>>> exemple.get_time()

'Sun Sep 25 10:24:14 2005\n’'
>>> exemple.fact(67)

0

A'savolR Construction locale d'une extension

Il est possible de construire I'extension localement pour procéder a des essais avant une installation dans
Python, en utilisant la commande python setup.py build_ext -inplace a la place
dinstall. Dans ce cas, le module est accessible lorsque le répertoire de compilation est dans les che-
mins de recherche de l'interpréteur Python.

Utilisation de ctypes

Pour du code déja compilé, ctypes permet de l'utiliser directement depuis Python en
le chargeant dynamiquement. Il n’y a plus besoin dans ce cas d’écrire une extension.

Dans I'exemple ci-dessous, la bibliothéque Tibc est utilisée directement via ctypes.

Utilisation de libc via ctypes

>>> import ctypes

>>> Tibc = ctypes.CDLL("Tibc.dylib™)

>>> libc.printf("Ecriture dans 1a sortie standard via Tibc\n")
Ecriture dans la sortie standard via libc

Création d’un module d’extension

La création d’'une extension pour Python se réalise en deux étapes :
* création d’'un module en C, en respectant un modele fourni par les API C de
Python ;
* installation du module comme extension de Python, par le biais du module
distutils.

Pour notre exemple, le module C met en ceuvre une fonction banale max (), qui prend en
parameétres deux entiers et renvoie le plus grand. Cette fonction ne sera pas plus rapide
que son équivalent en Python mais est parfaite pour un exemple d’extension simple.
Pour mettre en ceuvre max () coté C, il est nécessaire :
* de garnir la fonction pour la rendre compréhensible par I'interpréteur ;
* de définir une table de méthodes qui publie la fonction pour la rendre accessible a
I'interpréteur ;

* d’initialiser I'interpréteur pour qu'il prenne en charge le module d’extension.

m Techniques avancées
QUATRIEME PARTIE
Garniture de la fonction

Le code C d’une telle fonction pourrait étre :

Fonction max en C

static int max(int a, int b)

{
int resultat;
if (a > b)
resultat = a;
else
resultat = b;

return resultat;

}

Intégrer cette fonction comme extension Python nécessite de modifier les paramétres
d’entrée et de sortie pour qu’ils deviennent utilisables par l'interpréteur. En effet,
I'interpréteur invoque toutes les fonctions C sur le méme modéle d’appel générique,
en passant les paramétres dans des objets et en récupérant le résultat dans un objet.

Ces objets sont définis dans le fichier d’en-téte Python.h, qui est installé en méme
temps que Python sur le systeme, et qui contient également des fonctions et struc-
tures annexes.

On retiendra pour transformer notre fonction C trois éléments :
* PyObject : classe de base de tout objet manipulé par I'interpréteur ;

* PyArg_ParseTuple : fonction permettant la lecture des paramétres passés a la
fonction par l'interpréteur ;

* Py_Buildvalue : fonction permettant de construire un objet résultat en sortie de
méthode, qui sera récupéré par l'interpréteur.

Fonction max modifiée

static PyObject *max(PyObject *self, PyObject *args)
{
int a;
int b;
int resultat;

// récupération des paramétres
if (!PyArg_ParseTuple(args, "ii", &a, &b))
return NULL;

// le code C
if (a > b)
resultat = a;

Bonnes pratiques et optimisation du code

Format

s#

z#

u#

else

resultat = b;

CHAPITRE 13

// construction d'un objet de type int renvoyé a Python
return Py_BuildvValue("i", resultat);

}

Lobjet pointé par args correspond aux parameétres arbitraires passés a la fonction au
moment de son appel et contient un tableau de valeurs. Pour récupérer ces valeurs
coté C, il est nécessaire d’employer la fonction PyArg_ParseTuple qui alimente des
variables en fonction de args et d’'un format de lecture. Chaque référence de variable
cible est fournie en parameétre supplémentaire au moment de 'appel.

Le formatage est défini par une chaine de caractéres dont chaque élément décrit le
type de transformation a opérer, d’un type Python a un type C. Les éléments peuvent
prendre les valeurs décrites dans le tableau suivant (liste non exhaustive).

Type Python
en entrée

stringouunicode

stringouunicode

stringouunicode
ou None

stringouunicode
ou None

unicode
unicode

integer
integer

integer
integer
integer
integer

integer

Tableau 13-1 Formatage des paramétres

Type C en sortie
const char*
const char®, int
const char*
const char*
const char*
const char¥*,int
char

unsigned char

shortint

unsigned short int
int

unsignedint

Tongint

Commentaires

La chaine C est terminée par NULL.

La chaine C n'est pas terminée par NULL. Le
deuxieme élément contient la longueur de la
chaine.

Comme s mais si None est passé renvoie un
pointeur sur NULL

Comme s# mais si None est passé renvoie un
pointeur sur NULL

Comme s mais exclusivement pour les objets
unicode.

Comme s# mais exclusivement pour les objets
unicode.

L'entier Python est converti en tiny int.

L'entier Python est converti en tiny 1int, sans
vérification de dépassement. La valeur passe en
négatif dans ce cas.

RAS
Comme h mais sans contrdle de dépassement.
RAS
RAS
RAS

m Techniques avancées
QUATRIEME PARTIE

Format

O a -+~ n RN

Tableau 13-1 Formatage des paramétres (suite)

Type Python Type C en sortie Commentaires

en entrée

integer Unsignedlong RAS

integer PY_LONG_LONG Convertit en entier 64 bits défini par le type
PY_LONG_LONG, lorsque la plate-forme le
supporte.

integer unsignedPY_LONG_LONG RAS

string char Convertit une string de 1 caractére en char.

float float RAS

float double RAS

compTex Py_complex Convertit un nombre complexe en une structure C
définie par Py_comp1ex.

objet PyObject* Fournit un pointeur de type PyObject vers
I'objet.

string PyObject* Comme O mais si I'objet n'est pas du type string,
une erreur TypeError est levée.

unicode PyObject* Comme O mais si I'objet n'est pas du type
unicode, une erreur TypeError est levée.

tuple éléments Chaque élément du tuple Python est converti en

élément C. Chaque x représente un des formata-
ges vu précédemment.

A ces formatages s'ajoute U'opérateur I, qui permet de spécifier que les paramétres
suivants sont optionnels. Dans notre exemple, le format i1 spécifie que deux entiers
sont attendus.

La fonction Py_Buildvalue permet de procéder aux mémes conversions, dans le sens
inverse. Le résultat entier C est donc converti en objet integer par un appel a
Py_BuildvValue("i", resultat).

Définition de la table des méthodes

La fonction max() est maintenant préte a étre utilisée par l'interpréteur, et la pro-
chaine étape consiste 4 la rendre visible, en définissant la table des méthodes, tableau
de type PyMethodDef.

Chaque entrée est de la forme {nom, fonction, convention d’appel, docstring},
avec :
* nom : nom publié par I'interpréteur ;

* fonction : fonction C liée ;

Bonnes pratiques et optimisation du code m
CHAPITRE 13

* convention d’appel : prend la valeur METH_VARARGS ;
* docstring : définit la chaine de caractéres utilisée comme docstring.

Pour max(), la table des méthodes est définie comme suit, et doit étre obligatoire-
ment renvoyée par la méthode d’initialisation du module, seule fonction non statique
du module, qui porte toujours le nom initnommoduTe().

Table des méthodes

static PyMethodDef CalculsMethods[] = {
{"max", max, METH_VARARGS, "Calcul le max de deux nombres"}

};
PYyMODINIT_FUNC 1initcalculs(void)
{
(void) Py_InitModule("calculs", CalculsMethods);
}

Py_InitModule prend en paramétres le nom du module et le tableau, et renvoie un
objet de type module qui est inséré dans le dictionnaire sys.modules lorsque le
module est importé.

Initialisation du module
Une fois la table des méthodes préte, la fonction main() du module doit appeler tour
a tour :
* Py_SetProgramName(), pour passer argv[0] (le nom du programme) a
'interpréteur ;
* Py_Initialize(), pour initialiser I'interpréteur ;

» appeler la méthode d’initialisation du module.

Module calculs.py complet

#include "Python.h"

static PyObject *max(PyObject *self, PyObject *args)
{

int a;

int b;

int resultat;

// récupération des paramétres
if (!PyArg_ParseTuple(args, "ii", &a, &b))
return NULL;

m Techniques avancées
QUATRIEME PARTIE

// le code C
if (a > b)
resultat = a;
else
resultat = b;

// construction d'un objet de type int renvoyé a Python
return Py_Buildvalue("i", resultat);
}

/:“:
Table des méthodes du module
-.':/
static PyMethodDef CalculsMethods[] = {
{"max", max, METH_VARARGS, "Calcul le max de deux nombres"},

};
PyMODINIT_FUNC initcalculs(void)
{
(void) Py_InitModule("calculs", CalculsMethods);
}
int main(int argc, char *argv[])
{
// argv[0] est utilisé pour initialiser Te nom du module
Py_SetProgramName(argv[0]);
// initialisation de 1'interpréteur python
Py_Initialize(Q);
// initialisation de la table des méthodes
initcalculsQ;
}

Installation de I’extension

Linstallation de ce module comme extension se fait également par le biais du
module distutils.core.

Fichier setup.py

#!/usr/bin/python
-*- coding: utf8 -*-
from distutils.core import setup, Extension

extension = Extension(name='calculs', sources=['calculs.c'])

Bonnes pratiques et optimisation du code m
CHAPITRE 13

setup (name="calculs", version="0.1 beta", ext_modules=[extension],
maintainer="Tarek Ziadé", maintainer_email="tarek@ziade.org",
description="Exemple d'extension en C")

Ce module est ensuite invoqué en ligne de commande, avec 'option build pour
compiler le module d’extension, et install pour le placer dans I'interpréteur.

Installation de I’extension sous GNU/Linux

$ python setup.py build

running build

running build_ext

building 'calculs' extension

gcc -pthread -fno-strict-aliasing -DNDEBUG -02 -fomit-frame-pointer
-pipe -march=1586 -mtune=pentiumpro -g -fPIC -I/usr/include/python2.4 -c
calculs.c -o build/temp.linux-i686-2.4/calculs.o

creating build/1ib.Tinux-1686-2.4

gcc -pthread -shared build/temp.linux-i686-2.4/calculs.o -o build/
Tib.Tinux-i686-2.4/calculs.so

$ su
Password:

python setup.py install

running install

running build

running build_ext

running install_T1ib

copying build/1ib.Tinux-1686-2.4/calculs.so -> /usr/1lib/python2.4/
site-packages

Le module est a présent installé et utilisable dans le prompt.

Test de I'extension

>>> 1import calculs

>>> calculs.max(9, 8)

9

>>> calculs.max.__doc__

'Calcul 1e max de deux nombres'

Optimisation de I'utilisation de mémoire vive

Les problématiques de performances liées a une quantité restreinte de mémoire sont
de moins en moins fréquentes pour la bonne et simple raison que son prix est devenu
ridicule. Dans les années 1970 et 1980, optimiser la taille mémoire d’un programme

Techniques avancées

QUATRIEME PARTIE

était la préoccupation majeure des développeurs et la chasse au gaspi un exercice rela-
tivement fréquent.

Pour les programmes actuels, ce probléme est passé en second plan sauf pour des cas
d’utilisation particuliers, ot I'on peut légitimement se poser quelques questions :

* Quelle sera la taille occupée par un programme lorsque son nombre d’utilisateurs
passera de 10 a 10 000 ?

* Quelle quantité de mémoire une fonction donnée a-t-elle besoin de consommer
dans certaines conditions d’exécution ?

+ Comment étre str que le programme ne va pas dépasser dans certains cas le point
de rupture mémoire, c’est-a-dire consommer toute la mémoire vive disponible et
faire passer le systéme en swapping (utilisation du disque dur comme mémoire) et
par ce biais faire chuter les performances ?

Reproduire ces problématiques dans les tests unitaires est un bon exercice, a condi-
tion de disposer d’'un outil de mesure de charge mémoire.

Economie de mémoire

Economiser la mémoire consiste a diminuer le plus possible le nombre d’objets créés,
que ce soit par le biais de fonctionnalités du langage ou par des techniques de pro-

grammation. Bien souvent, le travail d’optimisation se fait au cas par cas, pour modi-
ier la consommation mémoire d’un algorithme en modifiant son fonctionnement.

fier 1 t d

Voici toutefois deux techniques qui peuvent sappliquer pour réduire la taille
mémoire d’une classe d’objets.

__slots__

Les __slots__ des new-style classes permettent une économie substantielle de
mémoire sur les types de classes créés par le développeur, en modifiant le fonctionne-
ment interne des accesseurs : lattribut __dict__ habituellement utilisé pour con-
server les éléments de chaque instance est retiré au profit d’un fonctionnement diffé-
rent (voir chapitre 6).

Attributs statiques

Préférer les attributs statiques permet également de minimiser la taille mémoire prise
par une classe d’objets, en essayant de partager au maximum les éléments communs
entres les instances.

Cette suppression de redondance, lorsqu’elle est possible, peut permettre des gains
considérables de mémoire lorsqu’un type d’objet posséde un nombre élevé d’instances.

Bonnes pratiques et optimisation du code m
CHAPITRE 13

Optimisation du bytecode

Lorsqu'un fichier source est utilisé par Python, linterpréteur génére un fichier
d’extension .pyc, contenant le code source aprés le travail de I'analyseur syntaxique.
Ce code est appelé dyfecode et c’est ce fichier qui est utilisé pendant 'exécution du
programme, afin d’éviter de refaire 'analyse a chaque utilisation.

I1 est possible de passer I'option -0 a I'interpréteur. Le bytecode généré est alors légere-
ment optimisé par le retrait de toutes les directives d’assertions trouvées dans le code.
Linterpréteur n'utilise plus les fichiers . pyc et compile le bytecode dans des fichiers . pyo.

Loption -00 quant a elle retire en outre les docstrings du code, pour obtenir des
fichiers bytecode plus compacts, mais cette option n'est pas recommandée car cer-
taines fonctionnalités peuvent se baser sur leur lecture.

Psyco et Cython

Psyco et Cython sont deux outils qui permettent d’optimiser les performances, par
deux approches diftérentes :
* Psyco travaille de maniére transparente et tente d’accélérer a la volée le pro-
gramme.
* Cython (anciennement Pyrex) propose un nouveau langage de programmation
qui permet d’utiliser directement des types de données C dans du code Python.

Psyco

Psyco (http://psyco.sourceforge.net), d’Armin Rigo, est une extension pour Python qui
accélére exécution de certaines séquences de code. L'intérét majeur de cet outil est
qu’il opeére de maniére transparente sur le code existant, sans qu'il soit nécessaire de le
modifier.

Une fois l'outil installé, le module psyco est disponible et un simple appel a
psyco.ful1() permet de bénéficier d’'une optimisation transparente.

Psyco en action

def normal():
a=20
for i in range(5000):
a=a+3
return a
if __name_ == '__main__"':
import timeit

Techniques avancées

QUATRIEME PARTIE

temps = timeit.Timer('normal(Q)"',
"from __main__ import normal').timeit(10000)
print('sans psyco: %f s' % temps)

import psyco
psyco.full(Q)
temps = timeit.Timer('normal() "',
'from __main__ import normal').timeit(10000)
print('avec psyco: %f s' % temps)

[...]
$ python psycote.py

sans psyco: 13.725044 s
avec psyco: 0.223533 s

Les gains de performance sont importants sur toutes les opérations arithmétiques et
les boucles répétitives.

Psyco analyse le code a exécuter a la volée et tente, lorsque c’est possible, de rem-
placer directement ce code en mémoire par son équivalent en langage machine.
Cette mécanique a cependant des restrictions lourdes :
* inopérant lorsque map() et filter() sont utilisées dans le code ;
* impossibilité de surcharger une primitive ;
* impossibilité de modifier dynamiquement les méthodes des new-style classes ;
* incompatible avec le module rexec ;
* impossibilité de changer dynamiquement le type d’un objet (en modifiant son
attribut __class_) ;
* Topérateur is ne fonctionne pas toujours correctement sur les objets globaux de
types non modifiables.

Il est donc conseillé de cibler son utilisation a des fonctions d’opérations algorithmi-
ques isolées.

Llusage le plus souple consiste a créer un decorator qui permette d’enclencher Psyco
pour des fonctions précises. Le module fournit une fonction proxy() qui permet
d’implémenter directement le decorator: elle renvoie une version optimisée de
n'importe quel objet callable passé en paramétre.

Decorator psycoed
import psyco

decorator psycoed
def psycoed(function):

Bonnes pratiques et optimisation du code m
CHAPITRE 13

try:
return psyco.proxy(function)

except TypeError:

gére le cas ou 1'objet n'a pas pu étre traité
return function

@psycoed
def speedy():
a=20
for i in range(5000):
a=a+3
return a
Cython

Cython (http://www.cython.org/) est un métalangage qui permet de combiner du code
Python et des types de données C, pour concevoir des extensions compilables pour
Python.

Dans un module Cython, il est possible de définir des variables C directement dans
le code Python et de définir des fonctions C qui prennent en parameétre des

variables C ou des objets Python.

Cython contréle ensuite de maniére transparente la génération de 'extension C, en

transformant le module en code C par le biais des API C de Python.
Toutes les fonctions Python du module sont alors automatiquement publiées.

Le gain de temps dans la conception introduit par Cython est considérable : toute la
mécanique habituellement mise en ceuvre pour créer un module d’extension est
entierement gérée par Cython.

Ains, la fonction max() du module calculs.c précédemment présentée devient :
Fonction max en Pyrex, calculs.pyx

cdef max(int a, int b):
if a > b:
return a
else:
return b

def maximum(a, b):
return max(a, b)

Les fichiers Cython ont par convention 'extension pyx, en référence a I'ancien nom.

Techniques avancées

QUATRIEME PARTIE

Ce code génére un module d’extension par le biais d’'un appel a distutils
particulier :

setup.py pour calculs.pyx

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

extension = Extension("calculs", ["calculs.pyx"])

setup(name="calculs", ext_modules=[extension],
cmdclass={"build_ext': build_ext})

Cython gere aussi de maniére transparente les conversions de types entre C et
Python et permet d’attaquer des modules C externes.

Cette derniére fonctionnalité fait de Cython un concurrent direct de SWIG. Cython
est bien souvent préféré a ce dernier car 1a ot SWIG impose les API des modules C
encapsulés, Cython permet d’obtenir le méme résultat tout en laissant le développeur
définir directement, et sans ajouter une couche Python lente, ses propres interfaces
Ppythoniques.
Cython, comme Psyco, souffre de beaucoup de limitations :

* impossible d'imbriquer des définitions de fonctions ;

* impossible d’utiliser yield et les generators ;

* impossible d’utiliser les primitives globals() et Tocals().

11 faut limiter son utilisation a des parties bien définies du programme pour éviter
d’éventuels problémes.

Les tests de performance continus

Dans la logique de la programmation dirigée par les tests vue dans le chapitre précé-
dent, il est possible :
* de récupérer régulierement des statistiques sur les performances de toutes les
fonctions et classes d'un programme ;
* d'intégrer des tests de performance ciblés au fur et & mesure de la conception,
pour garantir et surveiller que certaines parcelles critiques remplissent toujours les
conditions de performance voulues.

Bonnes pratiques et optimisation du code m
CHAPITRE 13

Rapport sur les performances

Les tests unitaires exécutent, s’ils sont bien faits, la totalité du code d’un programme.
Un module comme hotshot peut donc s’appuyer sur ces tests pour générer un rap-
port complet sur les performances.

Ce profiling global permet de repérer les probléemes de performances ou les temps
anormaux.

Tests cPickle profilés

$ python auditperfs.py
2001 function calls in 0.020 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:1lineno(function)
1 0.009 0.009 0.020 0.020
auditperfs.py:60(test_boucle)
1000 0.007 0.000 0.011 0.000
auditperfs.py:35(test_dump_et_Tload)
1000 0.004 0.000 0.004 0.000
auditperfs.py:28(_genere_instance)
0 0.000 0.000 profile:0(profiler)

Ran 2 tests 1in 1.002s

OK

Dans cette version du test de cPickle du chapitre précédent, I'exécution des tests est
profilée par le biais d’'un decorator spécialisé, intégrant un appel au profiler.

Tests de performance ciblés

Pour les portions du code a surveiller étroitement, des tests de performance ciblés
peuvent étre mis en place.

Le principe est relativement similaire aux tests unitaires mais les assertions portent
cette fois-ci sur le temps écoulé pendant le test.

Techniques avancées

QUATRIEME PARTIE

Test de performance d’un algorithme

def calcul(a):
for i 1in range(10):
a=a+ 3
return a

__main__":
test des performances de calcul()
import timeit

if _ _name__ ==

non non

timer = timeit.Timer('calcul(12)', 'from __main__ dimport calcul')
temps = timer.repeat()
temps = min(temps)

assert(temps < 4)

Cette assertion n'est pas trés précise, méme si dans 'exemple repeat() est utilisée
pour prendre le meilleur de trois mesures, car les résultats varient énormément en
fonction des conditions d’exécution.

De plus, les temps dépendent de la machine utilisée et le temps maximal accordé a
un test peut étre a revoir sur une machine moins puissante. Il est donc nécessaire de
calibrer les tests en fonction des machines cibles du programme et d’insérer des
plages de tolérance.

Ceci étant dit, le test remplit bien son réle de garde-fou : une erreur est déclenchée si
le temps d’exécution d’un algorithme critique devient anormal.

decorator timed

Il existe des outils de mesure de performance ciblés comme pyUnitPerf, de Grig
Gheorghiu (http:/sourceforge.net/projects/pyunitperf) qui est une adaptation de l'outil
Java JUnitPert de Mike Clark, et qui se greffe sur une classe unittest.TestCase pour
définir un temps maximum d’exécution pour la suite de tests définie dans la classe.

Cette approche oblige cependant a ne définir qu'un nombre limité de tests dans la
classe, voire un test unique, et nécessite en outre d’ajouter du code spécifique pour sa
mise en place.

Le seul objectif des tests de performance ciblés étant de signaler qu'un test unitaire
particulier dépasse un temps maximum autorisé, une autre approche plus légére est
de concevoir un decorator.

Le decorator présenté ci-contre fonctionne sur une unité pystone. Les pystones,
fournis par le module test.pystone mesurent les performances de la machine et per-
mettent de rendre tous les tests de performance portables : on ne mesure plus dans ce
cas la durée d’exécution du code en secondes mais en pystones (Ps).

Bonnes pratiques et optimisation du code m
CHAPITRE 13

Ce decorator prend en parameétre un temps maximum d’exécution en Ps et affiche
une erreur de type AssertionError en cas de dépassement de ce temps.

Decorator timedtest

#!/usr/bin/python

-*- coding: utf8 -*-
from test import pystone
import time

Unité kPs
kPs = 1000

TOLERANCE en Ps
TOLERANCE = 0.5 * kPs

class DurationError(AssertionError): pass

def mesure_pystone():
return pystone.pystones(loops=pystone.LOOPS)

def timedtest(max_pystones, local_pystones=mesure_pystone()):
""" décorateur timedtest """
ifnot isinstance(max_pystones, float):
max_pystones = float(max_pystones)

def _timedtest(function):
def __ timedtest(*args, **kw):
start_time = time.time()
try:
return function(*args, *¥*kw)
finally:
total_time = time.time() - start_time
if total_time ==
pystone_total_time = 0
else:
ratio = local_pystones[0] / local_pystones[1]
temps = total_time / ratio
if temps > (max_pystones + TOLERANCE):
raise DurationError((('Test trop long (%.2f Ps, '
'duree maximum: %.2f Ps)')
% (temps,
max_pystones)))
return __timedtest

return _timedtest

TOLERANCE permet de gérer un laps de temps supplémentaire, et sert a calibrer les
tests en fonction de la puissance de la machine de test.

Techniques avancées
QUATRIEME PARTIE

Le deuxiéme paramétre optionnel, Tocal_pystones permet de conserver d’un test a
l'autre le calcul des pystones, qui dure quelques secondes, pour accélérer I'exécution
des tests.

Linsertion de ce decorator ajoute, lorsque les tests sont lancés, des controles sur les
durées d’exécution.

Dans l'exemple ci-dessous, la classe de test effectue trois tests, dont deux sont
mesurés.

Exemple d’utilisation

import unittest
import md5

mstone = mesure_pystone()
class MesTests(unittest.TestCase):

def _ _init_ (self, name):
unittest.TestCase._ init__(self, name)

@timedtest(6*kPs, mstone)
def test_criticall(self):
for i in range(100000):
md5.new('ok"') .hexdigest()

@timedtest(1l, mstone)
def test_critical2(self):
time.sleep(mstone[0]/mstone[1])

@timedtest(1*kPs, mstone)
def test_critical3(self):
a =l 1
for i in range(50000):

a=a+ "x'"* 200

def test_Tlesscrtitical(self):
time.sleep(0.1)

suite = unittest.makeSuite(MesTests)
unittest.TextTestRunner().run(suite)

[...]

$ python perftest.py
.F.

Bonnes pratiques et optimisation du code m
CHAPITRE 13

FAIL: test_critical3 (__main__.MesTests)
Traceback (most recent call Tast):
File "perftest.py", 1line 35, in wrapper
raise DurationError((('Test trop long (%.2f Ps,
DurationError: Test trop long (1951.56 Ps, duree maximum: 1000.00 Ps)

Ran 4 tests 1in 0.319s

FAILED (failures=1)

Cette approche permet de mettre en place des garde-fous pour se prémunir de toute
régression des performances de 'application : I'insertion de nouveau code qui entrai-
nerait une chute des performances pourrait alors déclencher un avertissement.

En un mot...

Les bonnes pratiques et les techniques d’extensions présentées dans ce chapitre, et en
pratiq q p pitre,
particulier les code patterns, se combinent parfaitement avec la programmation

orientée objet.

Le prochain chapitre présente des design patterns orientés objet qui complétent

I'armada du développeur Python.

Programmation orientée objet

If it quacks like a duck then it's a duck - The Holy Grail

« Si ¢a couac comme un canard, c’est un canard » — Sacré Graal

Lorsque Python est utilisé pour concevoir des programmes de grande taille, son
organisation interne devient relativement importante. La programmation orientée
objet est la réponse actuelle a cette problématique et rend le développeur agile,
c’est-a-dire rapidement réactif a des ajouts ou modifications du programme.

Ce chapitre présente les principes généraux de la programmation orientée objet
appliqués a Python, puis une série de recettes de programmation objet, appelés
design patterns.

Principes généraux

Les concepts de programmation orientée objet (POO) ont fait leur apparition dans
les années soixante, avec le langage Simula-67 de Dahl et Nygaard, extension du lan-
gage Algol. Simula ajoute a Algol la quasi-totalité des techniques de POO actuelles,
4 savoir :

* le typage, la classification et 'encapsulation ;

* T'héritage et le polymorphisme ;

* les relations entre objets.

Techniques avancées

QUATRIEME PARTIE

Llobjectif originel de Simula était de fournir aux chercheurs une bibliotheque de
classes de simulation discrete, qui pouvait étre modifiée dans des classes dérivées
pour mettre au point un fonctionnement particulier.

D’autres techniques complémentaires ont été introduites par la suite, dans les années
soixante-dix, par des langages comme SmallTalk, qui vont influencer fortement
Python, a savoir :

* I'héritage multiple ;

* les classes virtuelles pures ;

* les métaclasses ;

* le garbage collecting.

Typage, classification et encapsulation

La programmation orientée objet détermine que les systémes sont définis par des
entités appelées objets, et que chacun de ces objets posséde des caractéristiques défi-
nies dans un type d’objet.

Typage de Liskov

Selon la théorie des types de Liskov, un type détermine un ensemble de caractéristi-
ques que partageront les objets appartenant a ce type.

Ces caractéristiques prennent la forme de méthodes et de valeurs pour 'objet et sont
définies par une classe. Cette classe contient le code a proprement parler et tout objet
de ce type est appelé instance de classe.

Liskov stipule en outre qu’il est possible de créer une sous-classification par le biais
de I'héritage, présenté ci-apres.

Enfin, cette classification introduit un mécanisme de substitution lorsque deux classes
partagent des caractéristiques communes : substituer une classe par une autre sans que
le code utilisateur ne soit impacté est appelé principe de substitution de Liskov.

Principe de substitution de Liskov

Prenons I'exemple d’une classe A, qui utilise dans sa méthode calcul (), la méthode
sous_calcul() d'une classe B. Cette dépendance fonctionnelle rend A tributaire
de B. B peut implémenter d’autres méthodes sans que cela ne géne A car la seule
chose qui intéresse A est la méthode sous_calcul Q.

En d’autres termes, remplacer B par une classe C qui fournisse aussi une méthode
sous_calcul () ne dérangera pas A, qui y trouve son compte.

Cette dépendance peut donc étre remontée dans une abstraction commune a B et C.

Programmation orientée objet
489
CHAPITRE 14

Lexemple ci-dessous implémente le principe de substitution de Liskov sassurant
que l'objet passé a A est dérivé du type Base.

Substitution de Liskov en Python

#!/usr/bin/python
-*- coding: utf8 -*-

class Base(object):
""" classe virtuelle pure
def sous_calcul(self):
raise NotImplementedError

nun

class A:

non non

classe utilisatrice
def __init_ (self, sous_objet):
ifnot isinstance(sous_objet, Base):

raise TypeError("A ne travaille qu'avec Base ou dérivés")
self.sous_objet = sous_objet

def calcul(self):
return 1 + self.sous_objet.sous_calcul(Q)

class B(Base):
Wi lasse B MMM
def sous_calcul(self):
return 1

class C(Base):
man C'lasse C man
def sous_calcul(self):
return 2

Utilisation de A avec B ou C
print(A(BQ)).calculQ))
print(A(CQ).calcul))

Ce principe peut également étre implémenté avec les ABC présentées au chapitre 9.

Implémentation avec ABC

>>> from abc import ABCMeta, abstractmethod
>>> class Base(object):
_ _metaclass__ = ABCMeta
@abstractmethod
def sous_calcul(self):
pass

m Techniques avancées
QUATRIEME PARTIE

@cTassmethod
def _ subclasshook__ (cls, O):
if cls 1is Base:
if any("sous_calcul" 1in sub._ dict__
for sub in C.__mro_):
return True
return NotImplemented

>>> class A(object):
def __init__(self, sous_objet):
if not isinstance(sous_objet, Base):
raise TypeError("A ne travaille qu'avec Base ou dérivés")
self.sous_objet = sous_objet
def calcul(self):
return 1 + self.sous_objet.sous_calcul()

>>> class B(object):
def sous_calcul(self):
return 1

>>> class C(object):
def sous_calcul(self):
return 2

>>> class D(object):
pass

>>> print(A(B(Q)).calcul())
2
>>> print(AC(CQ)).calcul ()
3
>>> print(A(D(Q)).calcul())
Traceback (most recent call last):
File "<stdin>", 1ine 1, in <module>
File "<stdin>", 1line 4, in __init__
TypeError: A ne travaille qu'avec Base ou dérivés

Encapsulation

Quel que soit le typage utilisé, I'objectif des classes reste de séparer l'interface de
I'implémentation. L'interface est représentée par 'ensemble des méthodes et données
que les utilisateurs de la classe connaissent, et 'implémentation est représentée par
toute la mécanique interne. Cette encapsulation permet de rendre les utilisateurs de
la classe indépendants de la représentation interne.

Programmation orientée objet m
CHAPITRE 14

Les méthodes et données internes sont dites privées et celles faisant partie de I'inter-
face de la classe dites publiques. Dans certains langages, une visibilité intermédiaire
permet de définir que des attributs ne sont visibles que des sous-classes. On parle
alors d’attributs protégés.

Certains langages objet, comme le C++, définissent de maniére stricte cette visibilité
en fournissant des mots-clés pour caractériser chaque élément d’une classe.

Python fonctionne quant a lui sur un modeéle moins strict, basé sur des conventions
de nommage des attributs : un attribut privé est toujours préfixé de deux espaces sou-
lignés et un attribut protégé d’un seul espace souligné.

ARETENR Attributs privés et protégés

En langage Python, les attributs privés sont définis en préfixant leur nom de deux espaces soulignés et
les attributs protégés d'un seul espace souligné :

_attrl, __attr2 # noms d’attributs privés

_attr3, _attr4 # noms d’attributs protégés

Linterpréteur protege les attributs privés en les préfixant en interne du nom de la
classe, les rendant inaccessibles par du code extérieur. Cette protection nest cepen-
dant pas inviolable puisqu’il est possible d’accéder a tous les éléments en fouillant
lattribut __dict__. Mais la n’est pas I'objectif.

Enfin, les méthodes protégées sont accessibles tout a fait normalement et le préfixe a
pour seul objectif d’'informer sur leur nature.

Telephone

#!/usr/bin/python
-*- coding: utf8 -*-
class Telephone(object):

def __init__(self):
données privées
self.__numero_serie = '123NouzironAuBois456DesCerises’

données protégées
self._code_pin = '1234'

données publiques
self.modele ="'nokai kitu 45"
self.numero ='06 06 06 06 06'

méthodes protégées
def _chercherReseau(self):
print('Réseau FSR, bienvenue dans un monde meilleur.."')

m Techniques avancées
QUATRIEME PARTIE

def _recupMessage(self):
print("Vous n'avez pas de message")
print("Achetez les corn flakes Snapk")

interface
def allumer(self, code_pin):
print(self.modele)
if code_pin == self._ _code_pin:
print('Tu ti Tu Ti")
self._chercherReseau()
self._recupMessage()
else:
print('mauvais code pin')

if __name_ == '__main__':
nokai = Telephone()
nokai.allumer('1524")
nokai.allumer('1234")

Dans I'exemple ci-dessus, la classe Telephone encapsule toute une mécanique de
fonctionnement interne dont n’a pas idée l'utilisateur qui se contente d’invoquer
alTumer().

Héritage et polymorphisme

Liskov introduit le principe de I'héritage, qui stipule qu'une sous-classe B hérite de
toutes les caractéristiques d’une classe A. La classe B est une classe A, avec des élé-
ments modifiés et/ou supplémentaires. On parle de spécialisation de A, et on dit que
B est dérivée de la classe de base A.

Héritage
En reprenant I'exemple précédent, une spécialisation possible de la classe TeTephone
est TelephonePhoto.

Spécialisation de Telephone

class TelephonePhoto(Telephone):
def prend_photo(self):
print('clik-clak")
if __name_ == '__main__':
nokai = TelephonePhoto()
nokai.allumer('1234")
nokai.prend_photo()

Programmation orientée objet m
CHAPITRE 14

Cette nouvelle classe hérite des caractéristiques de la classe TeTephone et y ajoute une
méthode supplémentaire. Seul le numéro de série n’est plus accessible dans cette spé-
cialisation.

Cette classe peut étre a son tour dérivée dans une autre classe.
Spécialisation de TelephonePhoto

class TelephonePhotoHautdeGamme (TelephonePhoto) :
def fait_cafe(self):
print('plik, pTik, plik')

if __name__ == '__main__':
nokai = TelephonePhotoHautdeGamme()
nokai.allumer('1234")
nokai.prend_photo()
nokai.fait_cafe()

Ces suites de dérivations forment un arbre de dérivation.

Polymorphisme

Lorsque la classe spécialisée implémente les mémes méthodes que la classe dont elle
dérive, on dit que les méthodes sont surchargées.

TelephonePhotoHautdeGamme modifiée

class TelephonePhotoHautdeGamme(TelephonePhoto):
def fait_cafe(self):
print('plik, plik, plik")

def prend_photo(self):
print('clik-clak deluxe')

Ici, la méthode prend_photo() est surchargée et prévaut sur celle de TelephonePhoto.
La méthode est dite virtuelle (en Python, toutes les méthodes sont virtuelles).

Il reste cependant possible d’atteindre la méthode des classes héritées dans les
niveaux précédents dans 'arbre de dérivation, en appelant cette méthode directement
depuis la classe concernée, en passant 'objet dérivé en premier parametre.

Polymorphisme

class TelephonePhoto(Telephone):
def __init__(self):
Telephone.__init__(self)
self.modele = 'nokai kitu 45 Photo+'

m Techniques avancées
QUATRIEME PARTIE

def prend_photo(self):
print('clik-clak')

def _recupMessage(self):
Telephone._recupMessage(self)
print("Vous n'avez pas non plus de photos")

class TelephonePhotoHautdeGamme(Telephone):

def prend_photo(self):
print('clik-clak de Tuxe')

def allumer(self, code_pin):
print self.modele + ' deluxe'
if code_pin == self._code_pin:
self._chercherReseau()
self._recupMessage()
else:
print('baaaaaaaaaaazzzz"')

def _recupMessage(self):
Telephone._recupMessage(self)
print("Vous n'avez pas non plus de photos deluxe™)

if __name__ == '__main__":
nokai = TelephonePhotoHautdeGamme()
nokai.alTumer('1234")
nokai.prend_photo()

[...]

[tziade@Tarek Desktop]$ python classes.py
nokai kitu 45 deluxe

Réseau FSR, bienvenue dans un monde meilleur..
Vous n'avez pas de message

Achetez les corn flakes Snapk

Vous n'avez pas non plus de photos deluxe
clik-cTak de Tuxe

Les méthodes deviennent polymorphiques et il est possible de composer avec tous les
niveaux de I'arbre de dérivation.

Programmation orientée objet m
CHAPITRE 14

Duck typing et interfaces

Python n'utilisant pas de typage statique, le code peut se baser sur une philosophie de
programmation polymorphique plus souple, qui tient en une phrase : If'it quacks like
a duck, then it’s a duck (littéralement : si ¢a fait « coin-coin », c’est un canard).

Cette citation, tirée du film Sacré Graal, signifie que le type des objets peut étre
deviné par les attributs qu’ils portent. Ou plus précisément : si un objet porte un cer-
tain nombre d’attributs, il fait I'affaire.

C’est ce principe qui est appliqué dans le code qui utilise les objets de type fichier ou
assimilés, offrant ainsi la possibilité de substituer un objet de type StringIO dans du
code prévu pour un objet de type file.

Le duck typing se base sur l'utilisation de la primitive hasattr() pour analyser les
attributs d’un objet et évite les primitives isinstance(), type() ou assimilés.

Duck typing

>>> import cStringIO
>>> def Titdonnees(objet):
ifnot hasattr(objet, 'readline'):
raise TypeError("1'objet n'a pas de fonction de lecture")
return objet.readline()

>>> objectl = cStringI0.StringI0('contenu')
>>> 1itdonnees(objectl)
'contenu’
>>> class Compatible(object):
def readline(self):
return 'pas de pb'

>>> object2 = Compatible()
>>> 1itdonnees(object2)
'pas de pb'
>>> object3 = object()
>>> Titdonnees(object3)
Traceback (most recent call Tast):
File "<stdin>", 1ine 1, in ?
File "<stdin>", 1line 3, in 1itdonnees
TypeError: 1'objet n'a pas de fonction de lecture

Cette philosophie influence fortement lorientation du programme en termes
d’architecture et modifie le role de I'héritage : il n'est plus forcément utilisé lorsqu’il
s'agit d’offrir le sésame a certaines fonctions pour un nouveau type de classe.

m Techniques avancées
QUATRIEME PARTIE

On retrouve le principe strict du duck typing dans les gros frameworks comme Zope
ou Twisted : des interfaces peuvent étre définies pour découpler la description des
caractéristiques que des objets doivent nécessairement avoir pour étre utilisés dans
certaines fonctions. Les caractéristiques de I'objet sont automatiquement testées par
des API spécialisées.

Les interfaces selon Zope 3

>>> import zope.interface
>>> class ILInterface(zope.interface.Interface):
""" Mon interface """
attribut = zope.interface.Attribute("""C'est T'attribut""")
def methode(parametre):
"2 méthode" "

>>> class TresClasse(object):
zope.interface.implements(ILInterface)
def _ init_ (self, valeur=None):
self.attribut = valeur
def methode(self, parametre):
return parametre, self.attribut

>>> def ma_fonction(objet):
ifnot ILInterface.providedBy(ILInterface)
raise TypeError("cet objet ne couac pas")
print objet.attribut

>>> Tla_class = TresClasse('trop classe')
>>> ma_fonction(la_class)
"trop classe'

Les interfaces sont comparables aux ABC, puisqu’elles permettent aussi de séparer la
signature d’'un comportement du code qui I'implémente dans une ou plusieurs classes.

Relations entre objets

Sans rentrer dans les détails sémantiques, on peut considérer qu'une classe peut
former deux types de relations avec une autre classe :

* une relation de composition simple, ot l'attribut d’une classe A est une instance
d’une classe B

* une relation multiple ot la classe A gére une collection, explicite ou non, d’instan-
ces de la classe B.

\

Llobjectif des relations entre classes est identique a celui entre fonctions : décom-
poser de maniére logique le code nécessaire a 'exécution d’une tache.

Programmation orientée objet m
CHAPITRE 14

Cette décomposition permet a chaque portion de code :
* d’évoluer de maniére indépendante et de se spécialiser ;
» d’étre réutilisable dans d’autres tiches ;
* de découper en tiches élémentaires des tiches plus complexes.

Relation simple

Dans I'exemple ci-dessous, la classe Afficheur se sert de la classe Calculateur pour
fournir une interface a l'utilisateur.

Afficheur-Calculateur

class Calculateur(object):
""" classe de calculs
def somme(self, *args):
resultat = 0
for arg in args:
resultat += arg
return resultat

non

class Afficheur(object):
""" classe de gestion de 1'interface

def __init_ (self):
self._calculateur = Calculateur()

non

def somme(self, *args):
resultat = self._calculateur.somme(*args)
print('le résultat est %d' % resultat)

Cette relation qui s'instaure entre l'afficheur et le calculateur permet au code d’affi-
chage des résultats d’évoluer indépendamment du code qui effectue le calcul a pro-
prement parler, et inversement.

Relation multiple

Les relations multiples peuvent étre implémentées treés simplement par le biais
d’objets capables de gérer des séquences d’éléments, comme les listes ou les diction-
naires.

Dans I'exemple ci-aprés, la classe Voiture gére une liste de quatre instances d’objet
Roue.

Techniques avancées

QUATRIEME PARTIE

Voiture, toutes options

class Roue(object):
pass

class Voiture(object):
def _ _init_ (self):
self.roues = [Roue() for i 1in range(4)]

La classe Roue ici est totalement indépendante de la classe Voiture : si la voiture
cesse de fonctionner, il est possible de démonter les roues pour les vendre.

Les dictionnaires permettent quant a eux de disposer d’une interface de manipulation
plus directe : chaque objet de la collection est étiqueté par la clé de dictionnaire.

Les quatre filles du docteur Mars

class FilleMars(object):
def __init_ (self, prenom):
self.prenom = prenom

def __str__ (self):
return '%s Mars' % self.prenom

class PapaMars:
def __init_ (self):
self.filles = {}
self.filles['Gibouléd'] = FilleMars('Gibouléd"')
self.filles['Josiane'] FilleMars('Josiane")
self.filles['Rebecca'] FiTlleMars('Rebecca')
self.filles['Sébonlé'] = FilleMars('Sébonlé"')

def crie_a_table(self):
import sys
for nom 1in self.filles:
sys.stdout.write('%s, ' % self.filles[nom])
sys.stdout.write('a table ! Le torglut va refroidir !\n'")

docteur = PapaMars()
docteur.crie_a_table()

Héritage multiple

L’héritage multiple sert a spécifier qu'une classe peut hériter de plusieurs classes.
Lorsque des méthodes entrent en conflit car portant le méme nom, la méthode
visible est la premiere rencontrée par I'interpréteur, qui balaye les classes de gauche a
droite au moment de l'interprétation.

Programmation orientée objet m
CHAPITRE 14

Héritage multiple

>>> class A(object):
def a(self):
print('A.a'")

>>> class B(object):

def a(self):
print('B.a')

def b(self):
print('B.b")

>>> class C(A, B):
def c(self):

print('C.c")
def Aa(self):

A.a(self)

>>> ob = CQO

>>> ob.a()

A.a

>>> ob.b()

B.b

>>> ob.c(Q

C.c

>>> ob.Aa(Q)

A.a

En pratique, 'héritage multiple est a proscrire tant que possible car il peut étre assez
délicat a gérer : la complexité et les caractéristiques de la classe se démultiplient.

Métaclasses

Les métaclasses en Python ont été introduites par le biais de la variable
__metaclass__, présentée au chapitre 5.

Garbage collecting

Comme la plupart des langages modernes, Python offre un mécanisme
ramasse-miettes, ou garbage collecting : toute référence de classe créée en mémoire est
automatiquement libérée par I'interpréteur. Le développeur n'a donc plus besoin de
gérer la libération de ses objets.

Techniques avancées

QUATRIEME PARTIE

Design patterns orientés objet

Le concept de design pattern orienté objet a émergé avec les travaux de Gamma,
Helm, Johnson et Vlissides (appelés Gang of Four, ou GoF). Leur ouvrage, Design
Patterns : Elements of Reusable Object-Oriented Software (Addison Wesley, 1995),
regroupe des solutions a des problémes récurrents de programmation.
Un pattern, selon le GoF, doit :

* porter un nom unique ;

* proposer une solution & un probléme clairement énoncé ;

* décrire précisément les relations entre chaque acteur ;

* déterminer les conséquences de son utilisation.
En phase d’analyse, ce vocabulaire commun entre tous les développeurs permet de

décrire et concevoir la structure d’'un programme objet de maniere trés précise. On
parle alors de Visitor, Mediator ou autre Factory.

Congus a l'origine pour le C++, les design patterns (que nous nommerons parfois DP
par commodité dans la suite de chapitre) du GoF s’appliquent avec plus ou moins de
facilité et de bonheur dans les autres langages.

Lobjectif de cette section est de présenter les DP dans le contexte de Python et de
proposer des implémentations avec les new-style classes.
Le GoF a regroupé les design patterns en plusieurs ensembles :
* les patterns de génération d’objets : composants en charge de créer de maniére
controlée des objets ou structures d’objets ;
* les patterns fonctionnels: composants en charge d’implémenter un mode
d’exécution ;
* les patterns structurels : composants en charge d’organiser les relations entre plu-
sieurs classes, pour constituer une structure coopérative.

Patterns de génération d’objets

Lorsqu'un programme doit instancier un objet, la mani¢re la plus simple est
d’appeler le constructeur d’une classe. Les patterns de génération d’objets fournissent
des outils de plus haut niveau pour contrdler ces créations.

Le code utilisateur ne s’adresse plus directement aux classes mais emploie les services
de ces patterns, sauf lorsque ces outils sont implémentés de maniére transparente.
Les patterns les plus communs de cet ensemble sont :

* Le pattern Singleton qui permet de s’assurer qu'un type de classe ne peut étre ins-
tancié qu'une seule fois dans un programme. Une variation est le pattern Borg,

Programmation orientée objet m
CHAPITRE 14

qui vérifie que toutes les instances d'une méme classe ont toujours le méme état,
sans pour autant interdire la création de plusieurs instances.

* Factory, qui propose une interface de génération d’objets sans que le code appe-
lant n’ait besoin de connaitre forcément le type de classe 4 instancier.

Singleton et Borg

Figure 14-1
Schéma UML de Singleton

Singleton

-_ref
+__new__(cls, *args, **kw)

Le Singleton peut étre utilisé dans tout contexte ou 'on souhaite s'assurer qu’il ne
peut pas y avoir pour une classe donnée deux instances actives dans le programme.

Les connecteurs vers des ressources externes peuvent utiliser ce pattern pour s'assurer
par exemple qu’il n’existe qu'une seule instance de la classe en charge de la connexion
avec un serveur de base de données.

Ce pattern peut étre programmé en Python, en se basant sur la méthode de classe
__new__Q), appelée a chaque demande d’instanciation d’un objet.

Singleton

>>> class Singleton(object):
""" renvoie tjrs la méme instance
_ref = None
def _ new_ (cls, *args, **kw):
if cls._ref dis None:
cls._ref = super(Singleton, clIs).__new__(cls, *args, **kw)
return cls._ref

non

>>> class S(Singleton):
pass

>>> a = SO

>>> b = SO
>>> a is b
True

Toute classe dérivée de la classe Singleton bénéficie du mécanisme qui consiste a
contrdler, au moment de I'instanciation d’un objet, qu'il nexiste pas déja une ins-
tance en vie, par le biais de l'attribut statique _ref. Dans ce cas, 'objet n'est pas
recréé et C’est cette instance qui est renvoyée.

m Techniques avancées
QUATRIEME PARTIE

La seule faille de Singleton est quil n'est effectif que pour les classes dont il est
directement dérivé, car un deuxiéme niveau de dérivation entraine un probleme
visualisé dans I'exemple ci-dessous.

Deux niveaux de dérivation

>>> class Singleton(object):
""" renvoie tjrs Ta méme instance
_ref = None
def _ new_ (cls, *args, **kw):
if cls._ref 1is None:
cls._ref = super(Singleton, cls).__new__(cls, *args, **kw)
return cls._ref

non

>>> class S(Singleton):
pass

>>> class S2(S):
pass

>>> a SO

>>> b = S20

>>> type(b)

<class '__main__.S'>

LU'instanciation de b renvoie a l'objet instancié précédemment par a et b n'est pas,
comme le code semblerait I'indiquer, du type S2, mais du type S.

Ce probléme est intrinséque au pattern Singleton mais une variante consiste a lever une
exception sur toute nouvelle tentative d’instanciation au lieu de renvoyer le premier objet
pour éviter de rendre ce mécanisme transparent et de subir les problemes énoncés.

Strict Singleton

>>> class SingletonError(Exception):
pass

>>> class Singleton(object):

""" provoque une erreur sur la deuxiéme instance
_ref = None
def __new__ (cls, *args, **kw):

if cls._ref isnot None:

raise SingletonError('Une instance existe déja: %s'
% str(cls._ref))
cls._ref = super(Singleton, cls).__new__(cls, *args, **kw)
return cls._ref

non

Programmation orientée objet m
CHAPITRE 14

>>> class S(Singleton):
pass

>>> class S2(S):
pass
>>> a = SO
>>> b = S20
Traceback (most recent call last):
File "<stdin>", 1ine 1, in ?
File "<stdin>", 1line 6, in __new__

__main__.SingletonError: Une instance existe déja: <__main__.S object at
0xb7c32a6c>

Alex Martelli, dans Pyzhon Cookbook (O’Reilly, 2001), propose une autre variante de
Singleton, nommée Borg ou Monostate, qui régle aussi ce probleme et répond au
besoin du Singleton de maniére plus fine : il part du constat que ce n’est pas I'unicité
de l'instance qui compte mais I'unicité de I'état de 'objet.

En d’autres termes, peu importe qu’il y ait plusieurs instances du moment qu'elles
partagent toutes le méme état.

Pattern Borg

>>> class Borg(object):
_shared_state = {}
def __new__(cls, *args, **kw):
instance = super(Borg, cls).__new__(cls, *args, *¥*kw)
instance._ _dict__ = cls._shared_state
return instance

>>> class B(Borg):

pass
>>> a = B(Q)
>>> a.A =1
>>> b = BO
>>> b.A
1
>>> b.B = 2
>>> a.B
2
>>> a is b
False

Borg rend commun a toutes les instances de la classe le dictionnaire interne
__dict__, et de par ce fait I'état. Le probléme lié a plusieurs niveaux de dérivations
disparait aussi.

Techniques avancées

QUATRIEME PARTIE

Ce pattern est cependant dépendant d’éventuelles implémentations des méthodes
__setattr__() et __getattribute__() qui peuvent court-circuiter _ dict__.

D’autres variations existent, comme Flyweight, qui proposent un fonctionnement
similaire & Singleton, mais gerent un certain nombre d’instances définies par des
combinaisons de parameétres au moment de la construction, afin d’optimiser les créa-
tions d’objets en mémoire lorsque c’est important.

Factory

Le DP Factory est une fonction ou méthode qui renvoie une ou plusieurs instances
d’objets. Factory est omniprésent en Python, et 'exemple le plus parlant est la primi-
tive type().

Exemple d’utilisation de type()

>>> MaClasse = type('MaClasse', (object,), {'a': 1})
>>> A = MaClasse()

>>> A.a

1

>>> class MaClasse(object):
a=1

>>> A = MaClasse()

>>> A.a

1

La premiere écriture permet de générer tout type de classe et est équivalente a la
deuxieme écriture explicite. Un autre exemple de Factory est la méthode __new__()
des new-style classes, qui contréle la génération des instances de la classe.

Le champ d’action du DP Factory est relativement large et on peut se demander si
finalement, toute fonction qui renvoie un résultat ne répond pas a ce pattern, puisque
tout est objet en Python.

Il y a cependant un exemple d’utilisation plus concret de ce DP : lorsque le type
d’objet renvoyé par le Factory varie sans que le code appelant ne soit sensible a cette
variation. On parle dans ce cas d’Abstract Factory.

Par exemple, un Abstract Factory en charge de renvoyer une instance de connecteur
de base de données peut le faire en partant du postulat que le type d’objet renvoyé
importe peu, du moment qu’il dérive de la classe BaseDB. Le code appelant ne se
basant que sur les méthodes définies par BaseDB, il reste insensible au type de I'objet,
que ce soit OracleDB ou PostGresDB.

Programmation orientée objet m
CHAPITRE 14

Patterns fonctionnels

Les patterns fonctionnels permettent de mettre en place des modeles d’exécution du
programme, c’est-a-dire de modéliser les relations qui se mettent en place entre
objets lorsqu’ils coopérent pour exécuter une tache.

I1 existe énormément de patterns fonctionnels et les variantes sont nombreuses. On
ne présente ici que quelques DP majeurs :

* Le pattern Visitor, qui permet de manipuler des instances d’objets depuis un
algorithme récursif ;

* Observer, qui met en place un systéme de notification, ou des objets sont préve-
nus d’un événement sur un objet donné ;

* Memento, un syst¢tme de mémorisation de I'état d’'un objet ;

* Chain of responsibility, qui met en place une chaine d’objets, utilisée pour résou-
dre un probléme : le premier maillon de la chaine qui sait résoudre le probleme
prend la main ;

* State, qui permet de changer dynamiquement le type d’un objet.

Visitor

Figure 14-2
Schéma UML de Visitor

Visitor

-__call__(self,visited)

4

Visited

+accept(self,visitor)

Le pattern Visitor permet d’ajouter une méthode récursive a une classe dans une
autre classe spécialisée. Cette deuxieme classe, appelée visiteur, implémente une
extension qui manipule la premiére classe.

Visitor
class Visitor(object):
def _ call__ (self, visited):

raise NotImplementedError

class Visited(object):
def accept(self, visitor):

Techniques avancées

QUATRIEME PARTIE

ifnot isinstance(visitor, Visitor):
raise TypeError("%s n’est pas un Visitor" % visitor)
visitor(self)

Chaque visiteur dispose en entrée de la fonction __cal1__() l'objet visité, qu'il peut
manipuler a sa guise. La classe visitée fournit quant a elle une méthode accept()
pouvant étre appelée par tout visiteur.

Cette mécanique appelant-appelé permet de mettre en place des algorithmes récur-
sifs basés sur des objets organisés en structure.

Lexemple le plus typique est le parcours d’arbres par le biais d’objets nceuds.

Dans l'exemple ci-dessous, le visiteur Tick parcourt une structure de noeuds pour
déclencher les méthodes tick() de chaque nceud.

Visitor sur MaClasse

class Node(Visited):

def __init_ (self):
self.childs = []

def tick(self):
print('tick at %d' % id(self))

class Tick(Visitor):
def _ call__(self, visited):
visited.tick()
for child in visited.childs:
child.accept(self)

root = Node()

for i 1in range(2):
node = Node()
for y 1in range(4):
node.childs.append(Node())
root.childs.append(node)

ticker = Tick(Q)
ticker(root)

L..]

[tziade@Tarek Desktop]$ python visitor.py
tick at -1211997076
tick at -1211995892
tick at -1211995828

Programmation orientée objet

tick
tick
tick
tick
tick
tick
tick
tick

at
at
at
at
at
at
at
at

-1211995796
-1211995764
-1211995732
-1211995860
-1211995668
-1211995636
-1211995604
-1211995572

CHAPITRE 14 m

Lintérét de ce DP est de permettre I'extension d’'une classe sans avoir a modifier son
code, et de gérer chacune des extensions en fonction des situations et des instances :
le visiteur greffe a une instance de la classe visitée une nouvelle fonctionnalité, dans le

méme principe que le DP Adapter.

Chagque visiteur peut en outre gérer plusieurs types de classes visitées pour parcourir
des structures hétérogenes.

Observer

Figure 14-3

Schéma UML d'Observer

Event

Observateur

+name
observateurs

+__call__(self,*args, **kw)

-__init__(self,name)
-__ladd__(self,observateur)

-__isub__(self,observateur)
+__call__(self,*args, **kw)

Observe

+evenemenent: Event

Le DP Observer définit une dépendance de 1 a n entre un objet et une liste d’objets.
Silobjet change d’état, tous les objets associés, en I'occurrence les observateurs, sont
notifiés de cet événement.

Ce pattern est trés répandu dans les systémes d’interfaces graphiques, ot chaque évé-
nement de l'utilisateur est intercepté par un objet qui est en charge de prévenir 4 son
tour un certain nombre d’objets.

Le pattern initialement proposé par GoF stipule que les observateurs sont sensibles a
toute modification d’état de l'objet observé. Une variation, trés communément
adoptée, affine ce mécanisme en laissant chaque observateur s’inscrire a un événe-
ment précis et nommé.

Techniques avancées
m QUATRIEME PARTIE
Pour implémenter Observer le code doit :
* Fournir une méthode d’enregistrement pour que chaque observateur puisse s’ins-
crire 4 un événement donné aupres de l'objet a observer.
* Implémenter un systéme qui intercepte un changement d’état et prévient les
observateurs inscrits.

Lévénement est logiquement une classe a laquelle une liste est associée. Cette liste
contient I'ensemble des observateurs associés a 'événement.

Pour simplifier I'écriture, __iadd__() et __isub__() sont utilisées afin de permettre a
un observateur de :

* s’inscrire en s’ajoutant a 'événement : Evenement += Observateur ;

* se désinscrire en se soustrayant : Evenement -= Observateur.

Limplémentation proposée empéche en outre un méme observateur de s’inscrire
plusieurs fois 4 un événement.

Classe Event

class Event(object):

""" Classe événement
def _ _init__(self, name):
self.name = name

self._observateurs = []

non

def _ _iadd__(self, observateur):
""" ajoute un observateur

ifnot callable(observateur):
raise TypeError("Doit étre un objet appelable")

non

observateurs = self._observateurs
if observateur notin observateurs:
observateurs.append(observateur)

return self

def _ _isub__ (self, observateur):
""" retire un observateur """
observateurs = self._observateurs
if observateur in observateurs:
observers.remove(observateur)

return self
def __call__(self, *args, **kw):

""" déclenche 1'événement auprés de tous les inscrits
[observateur(*args, **kw) for observateur 1in self._observateurs]

nun

Programmation orientée objet m
CHAPITRE 14

La classe observée instancie ces événements en attributs pour les rendre accessibles
aux observateurs.

Enfin, les événements peuvent ensuite étre déclenchés en fonction des besoins dans le
code de la classe, par la biais de la méthode __call1__(), avec les parametres souhaités.

Pattern Observer

class Fenetre(object):
def _ _init__(self, name):
self.name = name
self.titre = '"titre de la fenétre'
self.contenu = 'contenu de Ta fenétre'
self.titreEvent = Event('titre")
self.contenuEvent = Event('contenu')

globalTitreEvent = Event('titre global')

def changeTitre(self, titre):
self.titre = titre
self.titreEvent(titre)
Fenetre.globalTitreEvent(self.name, titre)

def changeContenu(self, contenu):
self.titre = contenu
self.contenuEvent(contenu)

class ObservateurTitre(object):
def _ _init__(self, fenetre):
fenetre.titreEvent += self

def _ call__(self, titre):
print ('le titre a été changé en "%s" !' % titre)

class ObservateurContenu(object):
def _ init__(self, fenetre):
fenetre.contenuEvent += self.contenuChange

def contenuChange(self, contenu):
print('le contenu a été changé en "%s" !' % contenu)

class ObservateurGlobal(object):
def _ _init__(self, fenetre):
fenetre.globalTitreEvent += self

def _ call__(self, name, titre):
print('le titre de "%s" a été changé en "%s" !' \
% (name, titre))

Techniques avancées

QUATRIEME PARTIE

fenetre = Fenetre('fenetre 1')
fenetre2 = Fenetre('fenetre 2')

obl = ObservateurTitre(fenetre)
ob2 = ObservateurContenu(fenetre)
ob3 = ObservateurGlobal (fenetre)

fenetre.changeTitre('nouveau titre')
fenetre.changeContenu('nouveau contenu')
fenetre2.changeTitre('nouveau titre2')

Les événements peuvent étre statiques a la classe, comme globalTitreEvent, ou spé-
cifiques a chaque instance.

Exécution du script

[tziade@Tarek Desktop]$ python observers.py

le titre a été changé en "nouveau titre" !

le titre de "fenetre 1" a été changé en "nouveau titre" !
le contenu a été changé en "nouveau contenu" !

le titre de "fenetre 2" a été changé en "nouveau titre2" !

D’autres variations sont possibles, notamment :

* proposer une implémentation de base de la classe observée, pour gérer des collec-
tions d’événements ;

* rendre les observateurs actifs, c’est-a-dire déclencher les événements avant que le
code qui modifie I'état ne soit effectué, pour qu’ils puissent influer sur les parame-
tres d’exécution, ou méme empécher la suite de 'exécution ;

* donner la possibilité a un observateur de connaitre les autres observateurs ;

* gérer des priorités dans 'ordre d’appel des observateurs ;

. etc.

Memento

Le DP Memento stipule que I'état d’un objet peut étre sauvegardé a tout moment, et
rechargé avec cette sauvegarde en cas de besoin. Cette mémoire permet de mettre en
place du code transactionnel.

Lexemple le plus commun de code transactionnel est I'exécution de requétes de mise
a jour d’'une base de données relationnelle : en cas de probléme, un retour en arriére
(rollback) est possible, pour remettre la base dans I'état précédent le début de la mise a
jour. En cas de succes, les modifications sont validées (commit).

Programmation orientée objet m
CHAPITRE 14

Une transaction respecte donc le modele de code suivant :

Code transactionnel

begin_transaction()
try:
except:
rollback_transaction()
raise

else:
commit_transaction()

La limite de couverture de begin_transaction() est relativement floue et dépend
fortement du contexte : quelles sont et ol sont les données a sauvegarder pendant la
transaction ?

Ce probleme dépend entierement du contexte, et I'implémentation proposée ci-dessous
place la granularité des transactions au niveau des classes : chaque méthode peut devenir
transactionnelle, et les attributs de I'objet sont les cibles de la sauvegarde.

Limplémentation la plus souple dans ce cas consiste a créer un decorator de classe pour
rendre transparente la transaction : chaque méthode transactionnelle peut étre annotée
avec le decorator, qui se charge alors de sauvegarder I'état de I'objet et d’exécuter la
méthode. En cas de levée d’exception, un rollback est automatiquement effectué.

Memento
import copy
def get_memento(objet):

""" récupere 1'état d'un objet
return copy.deepcopy(objet.__dict__)

non

def set_memento(objet, etat):
""" restore un objet """
objet.__dict__.clear(Q)
objet.__dict__ .update(etat)

def transaction(methode):
""" decorator de classe "transaction"

rend Tes méthodes transactionnelles
def capsule(objet, *args, **kw):
etat = get_memento(objet)
try:
return methode(objet, *args, **kw)

m Techniques avancées
QUATRIEME PARTIE

except:
set_memento(objet, etat)
raise

return capsule

Le code est basé sur le module copy, qui recopie le contenu de __dict__. Cette tech-
nique entraine donc les mémes limitations que Borg pour les new-style classes.

Il est possible d’implémenter une méthode _ deepcopy__ () dans la classe. Elle
impactera directement le fonctionnement du decorator, ce qui peut étre relativement
intéressant pour filtrer les données sauvegardées pendant la transaction.

Utilisation du decorator
class M(object):

def __init__(self):

def 0():

print('0K")
self.a = 12
self.b = ['a', 32]
self.1 = o

@transaction
def run(self):
self.b.append('c')

self.o = 12
self.a = '14'
self.a += 1
objet = MQ
try:

objet.run()
except TypeError:
pass

print(objet.a)
print(objet.b)
objet.10)

[...]

[tziade@Tarek Desktop]$ python memento.py
12

['a', 32]

OK

Programmation orientée objet m
CHAPITRE 14

Dans I'exemple, la méthode run() modifie les attributs de 'objet et provoque une erreur
lorsqu’elle tente d’incrémenter a. La transaction assure un retour a 'état précédent.

Une extension intéressante de ce pattern est la mise en place de I'historisation des
transactions dans un journal : chaque état de l'objet est sauvegardé et un retour en
arriere illimité devient possible. Ce principe devient cependant relativement com-
plexe lorsque plusieurs objets transactionnels sont liés entre eux. La base de données
objet de Zope (ZODB) en est un exemple d’implémentation.

Chain of responsibility

Figure 14-4
Schéma UML Chain of responsi- Handler
bility # next_handler

-__init__(self.next_handler)

+__call__(self,*args, **kw) O
-__add__(self,next_handler)

+_handle(self, *args, **kw)

Dir‘e_'ctor

first_handler

+__init__(self:first_handler)
+__call__(self, *args, *kw)

Dans le module ur11ib2, présenté au chapitre 9, chaque option du protocole HTTP
est gérée par une classe spécifique appelée handler. Ces handlers sont chainés et
regroupés dans une classe OpenDirector, qui est en charge de 'ouverture de 'URL.
Cette classe passe au premier handler de la chaine la réponse du serveur, qui la traite,
ou transmet la demande au handler suivant, jusqu’a ce qu'un handler traite la réponse
et renvoie un résultat, ou que la fin de la chaine soit atteinte.

Cette stratégie est une implémentation du DP Chain of Responsibility, et permet
d’adapter automatiquement des situations en fonction des informations a traiter, sans

. y - . b M > .
que la classe qui recoit ces informations (le director) n'ait besoin d’avoir d’expertise :
elle se contente de déposer les données sur un tapis roulant et d’attendre que les
résultats ressortent d’une des trappes du tapis.

Lautre avantage de cette approche est de pouvoir mettre en place un systéme de
plug-ins, ol chaque nouvelle classe peut venir se greffer dans la chaine sans avoir a
connaitre le contexte.

Enfin 'ordonnancement permet de gérer des priorités entre les handlers lorsque deux
d’entre eux sont potentiellement capables de gérer des données.

Techniques avancées

QUATRIEME PARTIE

Une implémentation possible de ce DP est de proposer un objet director qui implé-
mente une interface de publication, et un objet handler, capable de fonctionner
comme un nceud d’une liste chainée : il connait son voisin de droite, mis en place par
le director, et peut lui transmettre le travail.

Chain of responsibility

class Handler(object):
""" classe de base d’un handler
def _ _init_ (self, next_handler=None):
self._next_handler = next_handler

non

def __add_ (self, next_handler):
""" handlerl + handler2, place handler2 en noeud voisin
et renvoi le handler2 si self._next_handler est pris,
remonte la chaine.

current_handler = self

while current_handler._next_handler isnot None:
current_handler = current_handler._next_handler

current_handler._next_handler = next_handler
return self

def __call__(self, *args, **kw):
""" Si la classe provoque une exception NotImplementedError,
le prochain noeud est appelé, si il existe, et ainsi de suite
try:
return self._handle(*args, **kw)
except NotImplementedError:
if self._next_handler isnot None:
return self._next_handler(*args, **kw)
else:
raise NotImplementedError

def _handle(self, *args, **kw):
""" méthode a surcharger
raise NotImplementedError

o

class Director(object):
""" Te director est instancié avec le premier noeud de la chaine
def _ init_ (self, first_handler):
self._first_handler = first_handler

non

def _ call__(self, *args, **kw):
return self._first_handler(*args, *¥*kw)

Programmation orientée objet m
CHAPITRE 14

La méthode __add__() du handler est relativement puissante ici, car elle permet de
construire trés simplement la chaine : quand un handler B est additionné a un han-
dler A, A parcourt la chaine en partant de son voisin de droite pour aller placer le
handler B en bout de chaine.

Le chainage des appels se fait par le biais de I'exception NotImplementedError :
chaque handler qui ne sait pas gérer les données qui lui sont envoyées léve 'exception
pour appeler le suivant. Si aucun handler ne peut gérer les données, I'exception sort
de la chaine.

Dans 'exemple ci-dessous, chaque handler est spécialisé dans un type de données.

Utilisation de Chain of responsibility

class StringHandler(Handler):
"""handler de string"""
def _handle(self, data):
if isinstance(data, str):
return data.lower()
else:
raise NotImplementedError

class IntHandler(Handler):
"""handler de int"""
def _handle(self, data):
if isinstance(data, int):
return data * 2
else:
raise NotImplementedError

class UnicodeHandler(Handler):
"""handler de unicode"""
def _handle(self, data):
if isinstance(data, unicode):
return u'%s (unicode)' % data
else:
raise NotImplementedError

calculator = Director(StringHandler() + IntHandler() + UnicodeHandler())

print(calculator(l))
print(calculator(u'test'))
print(calculator('test'))
print(calculator(object()))

[...]

[tziade@Tarek Desktop]$ python chain_of_responsibility.py
2

m Techniques avancées
QUATRIEME PARTIE

test (unicode)
test
Traceback (most recent call last):
File "chain_of_responsibility.py", 1ine 79, 1in ?
print(calculator(object()))
File "chain_of_responsibility.py", Tine 46, in __call__
return self._first_handler(*args, **kw)
File "chain_of_responsibility.py", 1line 32, in __call__
return self._next_handler(*args, **kw)
File "chain_of_responsibility.py", 1line 32, in __call__
return self._next_handler(*args, **kw)
File "chain_of_responsibility.py", 1ine 34, in __call__
raise NotImplementedError
NotImplementedError

Une variante de ce DP consiste 4 parcourir entierement la chaine. Cette nuance est
relativement commune dans les logiciels de traitement du signal : les filtres qui trans-
forment les données peuvent étre chainés pour étre appliqués les uns apres les autres.

State

Le DP State stipule qu'un objet déja instancié peut changer 4 tout moment de classe,
et donc de comportement. Cette propriété permet 'implémentation d’automates a
état fini (Finite State Machine).

Cette manipulation est impossible pour la plupart des langages de programmation
objet qui définissent une bonne fois pour toutes le type d’'une instance. Python est
I'un des rares langages a le permettre car il est construit sur le principe de la
délégation : un objet donné exécute le code défini dans une classe et peut a tout
moment exécuter le code d’une autre classe. Appeler instance.x() pour un objet de
classe X est donc équivalent a I'appel de X. x(instance).

Changement de classe d’une instance

>>> class A(object):
def a(self):
print('%s est passé par A' % str(self))

>>> class B(object):
def b(self):
print('%s est passé par B' % str(self))

>>> objet = AQ

>>> objet.a()

<__main__.A object at Oxb7c268ac> est passé par A
>>> B.b(objet)

Traceback (most recent call last):

Programmation orientée objet m
CHAPITRE 14

File "<stdin>", 1ine 1, in ?
TypeError: unbound method b() must be called with B instance as first
argument (got A instance instead)
>>> # qu'a cela ne tienne...

>>> objet.__class_ =B

>>> B.b(objet)

<__main__.B object at Oxb7c268ac> est passé par B
>>> objet.b()

<__main__.B object at 0xb7c268ac> est passé par B

Le seul controle effectué par l'interpréteur est de vérifier que l'attribut __class__ de
I'instance corresponde a la classe traversée. 11 suffit donc de le changer pour rendre
I'objet compatible.

Il est cependant nécessaire de prendre quelques précautions supplémentaires au
moment du changement d’état :
* Le constructeur de la classe doit étre appelé, pour assurer l'intégrité de I'état de
l'objet.
* Les attributs privés de lobjet, stockés dans _ dict__ sous la forme
_Classe_attribut, doivent étre manuellement supprimés, méme si ces résidus ne
peuvent pas en théorie poser de problémes.

State

class State(object):

def change_state(self, class_, *args, **kw):

""" méthode de changement dynamique de classe """
permet d'éviter une réinitialisation
if self._ _class__ is class_:

return None

suppression des attributs privés
spécifiques a la classe en cours

class_name = self.__class__._ name__
for attribute in tuple(self.__dict_):
if attribute.startswith('_%s__' % class_name):

del self.__dict_ [attribute]

passage au nouveau type
self.__class__ = class_

initialisation
if hasattr(self, '__init__'):
self.__init__(*args, **kw)

m Techniques avancées
QUATRIEME PARTIE

D’autres DP peuvent implémenter ce principe mais le gros intérét de State est que
I'objet s’auto-suffit : il n’est pas nécessaire ici d’'implémenter une classe qui orchestre
les transitions, et suivre le code devient nettement plus simple.

Patterns structurels

Les patterns structurels permettent d’organiser plusieurs classes en structures, ou com-
posants. Les patterns structurels se ressemblent généralement beaucoup car ils mettent
tous en ceuvre des agrégations ou des encapsulations, mais ils répondent chacun a des
problémes précis, et leurs différences se creusent a 'usage, sur le code appelant :

* utiliser Adapter permet de recombiner des relations entre classes.
* Facade est utile pour masquer un systeme et limiter son acces.

* Proxy quant a lui, est un intermédiaire entre le code et un type d’objet, et differe
d’Adapter car il permet d'implémenter une couche logique supplémentaire.

Adapter

Le DP Adapter permet d’adapter une classe pour 'utiliser dans un contexte d’exécu-
tion prévu pour d’autres classes. La classe est encapsulée dans une deuxiéme classe
(I’Adapter) qui se charge de fournir au contexte les interfaces attendues et de traduire
en interne les appels pour qu'ils soient compréhensibles par la classe adaptée.

Les Adapters sont de véritables liants pour la mise en place d’interactions entre com-
posants qui n‘ont pas été prévus pour fonctionner ensemble au départ. Ils peuvent
aussi permettre de gérer les problématiques de versions lorsque l'interface d’'un com-
posant externe évolue. On parle alors de découplage, le code spécifique au contexte
étant restreint dans la classe d’adaptation.

Il n'existe pas d’implémentation générique pour ce pattern. Le seul principe commun
entre les Adapters est la facon dont ils sont créés : U'objet adapté est un paramétre du
constructeur de ’Adapter.

La classe StringIO est un bon exemple d’Adapter : elle simule le fonctionnement
d’un objet de type file en fournissant toutes les méthodes de lecture, et travaille en
interne avec un objet de type string.

Adapter StringlO

>>> import cStringIO

>>> file = cStringI0.StringI0O('contenu du fichier')
>>> file.readlines()

['contenu du fichier']

>>> file.seek(0)

Programmation orientée objet m
CHAPITRE 14

>>> file.read()
'contenu du fichier'
>>> file.close()

StringIO peut donc étre utilisé en lieu et place de tout type fichier, lorsqu'un flux de
lecture est attendu : le code appelant ne fait pas la différence.

Ce pattern est bien str sensible a tous les tests effectués sur le type de classe d’'un
objet lorsque ce dernier traverse le code adapté, comme un test isinstance(objet,
classe), mais ce probléme est restreint a son utilisation sur du code non maitrisé et il
reste possible de tricher en modifiant I'attribut _ class__.

Un autre exemple d’utilisation d’Adapter est 'implémentation du modele docu-
ment-vue. En quelques mots, ce modele stipule qu'une classe qui implémente une
certaine fonctionnalité ne doit pas, si elle est utilisée dans une interface de visualisa-
tion, étre étendue pour fournir les méthodes qui permettent de l'afficher.

En d’autres termes, l'affichage est spécifique a un type d’interface et cette logique
doit étre découplée de la classe car elle n'évolue pas de la méme maniére.

Adapter, exemple 2

class MaClasse(object):

def __init__(self):
self.a = 2
self.b = 4
def calcul(self):
return self.a + self.b

class InterfaceMaClasse(object):

def _ _init__ (self, contexte):
self.contexte = contexte

def afficheCalcul(self):
resultat = self.contexte.calcul()
print resultat

def saisieValeurs(self):
a = int(raw_input('saisissez a: '))
b = int(raw_input('saisissez b: '))

if __name__ == '__main__':
A = MaClasse()
interface = InterfaceMaClasse(A)
interface.saisieValeurs()

Techniques avancées

QUATRIEME PARTIE

interface.afficheCalcul)

[...]

[tziade@Tarek Desktop]$ python adapter2.py
saisissez a: 1

saisissez a: 5

6

Dans cet exemple, InterfaceMaClasse implémente toute la couche d’interaction
avec l'utilisateur : MaClasse reste indépendante de cette logique d’affichage.

Facade

Le DP Facade peut étre considéré comme un Adapter multiple : lorsqu'une opéra-
tion met en ceuvre un certain nombre de classes, il peut étre intéressant de masquer
cette complexité dans une classe qui ne publie que 'opération.

Facade n’a de sens que si la classe qui publie I'opération est correctement nommée et
que les classes sous-jacentes ne sont pas appelées ailleurs dans le programme pour le
méme type de besoin. Comme pour Adapter, il n'existe pas de modele générique
particulier pour Facade.

Dans 'exemple ci-dessous, une archive tar est construite a partir d’'un fichier et de
son empreinte MD5. Cette opération nécessite l'utilisation d’un objet de type file,
de la classe md5 du module éponyme et du module tarball.

Facade

class Archiveur(object):

def archive_fichier(self, nom):
importations locales

import md5

import tarfile

import os

création de 1'archive

nom_archive = '%s.tgz' % nom

archive = tarfile.TarFile(nom_archive, 'w')
archive.add(nom)

ajout du fichier a 1'archive
with open(nom, 'rb') as fichier:
md5
calculateur = md5.new()

Programmation orientée objet m
CHAPITRE 14

for 1line 1in fichier:
calculateur.update(Tline)

empreinte = calculateur.hexdigest()

création et ajout du fichier md5

nom_empreinte = os.tmpname()

with open(nom_empreinte, 'w') as fichier:
fichier_empreinte.write(empreinte)

archive.add(nom_empreinte, '%s.md5"' % nom)
archive.close()
if __name_ == '__main__"':
archiveur = Archiveur()
archiveur.archive_fichier('memento.py')

Cet exemple pousse la logique jusqu'au bout puisque les importations sont aussi
locales a 'opération : tout est masqué.

Proxy

Le DP Proxy permet de représenter et de controler tous les acceés a un objet par le
biais d’un deuxi¢me objet. On compte plusieurs types de proxy, dont :
* Le Virtual Proxy, qui ne permet de gérer I'instanciation de 'objet sous-jacent que
lorsqu’on y acceéde réellement.
* Le Remote Proxy, qui permet 'accés a un objet distant. Ce proxy publie les métho-
des de I'objet mais ajoute le protocole réseau pour échanger avec 'objet distant.

Construits comme les Adapters, les Proxies n'ont pas a4 proprement parler de modeéle
générique : chaque implémentation dépend du contexte.

Dans I'exemple ci-dessous, le Virtual Proxy mis en ceuvre permet de manipuler des
fichiers vidéos de grande taille sans avoir a les ouvrir : seules les métadonnées sont
chargées et permettent l'utilisation du fichier. On n’accede aux données qu’en cas de
nécessité (méthode donnees()).

Virtual Proxy

import os
import stat

class VideoFile(object):
def _ init__(self, nom):

self.nom = nom
self.stats = os.stat(nom)

m Techniques avancées
QUATRIEME PARTIE

def derniere_modification(self):
return self.stats[stat.ST_MTIME]

def dernier_acces(self):
return self.stats[stat.ST_ATIME]

def taille(self):
return self.stats[stat.ST_SIZE]

def donnees(self):
return iter(open(self.nom))

if __name_ == '__main__":

fichier = VideoFile('/home/tziade/Capture.avi')
print('taille: %d octets' % fichier.taille())
print('dernier accés: %s ' % str(fichier.dernier_acces()))

lecture des données

iterateur = fichier.donnees()

for i 1in range(10):
print(str(iterateur.next()))

AsavoR Le module weakref

Le module standard weak ref permet de mettre en place des patterns équivalents a I'aide de références
faibles vers les objets, c'est-a-dire des références qui n'empéchent pas I'objet d'étre détruit.

En un mot...

Le principe des design patterns est de déceler des schémas récurrents de programma-
tion pour les systématiser.

Seuls les designs patterns les plus fréquents ont été présentés ici, et le lecteur inté-
ressé pourra se référer, en complément du livre du Gok, a Pattern-oriented Software
Architecture, a system of patterns (Buschmann, Meunier, Rohnert, Sommerlad, Stal
aux Editions Wiley) pour y retrouver d’autres exemples et les porter a Python.

L'histoire de Python

Le langage Python a été créé a la fin des années 1980 a I'Institut national de recher-
ches mathématiques et informatiques de Hollande (le CWI) par Guido van Rossum.
Par commodité, nous utiliserons le raccourci GvR pour nommer ce dernier dans la
suite de cette annexe.

Le langage ABC

GvR a rejoint le CWI en 1983 dans I’équipe en charge du développement du langage
ABC, sur lequel il a travaillé pendant 3 ans. Cette période a fortement influencé
GvR sur la conception de Python, qui hérite de certains des concepts ’ABC.

Le langage ABC est un langage de programmation interactif fortement typé, qui a
été pensé pour remplacer le Basic, largement répandu a 'époque, en fournissant un
environnement particulier ainsi que d’autres caractéristiques notables, comme le
typage spécifique des données et la syntaxe par indentation.

Environnement de développement

La particularité de I'environnement ’ABC est qu'il n'est pas nécessaire de sauve-
garder fonctions et procédures dans des fichiers sources : une fois entrées dans I'envi-
ronnement interactif, leur saisie dans l'invite de commande (le prompt, symbolisé
sous ABC par >>>) les conservent automatiquement d’'une exécution a l'autre.

m Programmation Python
ANNEXES

Un systéme de complétion de code permet en outre de faciliter la saisie des com-
mandes. Enfin, un historique autorise de revenir en arriére sans limite.

Types de données

ABC fournit 5 types, qui permettent d’exprimer toutes formes de structures de
données :

* le type nombre, pour les entiers et les réels, sans aucune limite de taille, hormis la
mémoire physique disponible de la machine ;

* le type text, pour les chaines de caractéres ;
* le type Tist, pour manipuler des collections d’éléments ordonnés ;

* le type compound, équivalent au type Tist mais non modifiable. C’est une sorte de
recordset sans étiquette ;

* le type table, qui définit un certain nombre de clés uniques, et associe une valeur
a chacune d’entre elles. Ce type est comparable 4 une combinaison de deux ins-
tances de type Tist : les clés et les valeurs.

Exemple de manipulation de table sous ABC

>>> PUT {} IN distance_paris

>>> PUT 300 IN distance_paris["Dijon"]

>>> PUT 220 IN distance_paris["Lille"]

>>> PUT 770 IN distance_paris["Marseille"]

>>> WRITE distance_paris["Dijon"]

300

>>> WRITE distance_paris

{["Dijon"]: 300; ["LiTle"]: 220; ["Marseille"]: 770}

Il n'est pas nécessaire ici de signaler que la variable distance_paris est de type
table, ABC le fait automatiquement lors de la premiére affectation.

Indentation du code

Limbrication de code ABC n’est pas faite comme en C ou en Pascal par des acco-
lades ou des délimiteurs begin..end. C’est I'indentation des lignes qui détermine le
niveau d’imbrication du code.

Exemple de définition de la fonction message

HOW TO DISPLAY message:
FOR Tine IN message:
WRITE line /

L’'histoire de Python m
ANNEXE

>>> DISPLAY "ABC est 1'ancétre de Python"
ABC est 1'ancétre de Python

EN SAVOIR PLUS Le langage ABC

Pour plus d'informations sur le langage ABC, Le lecteur interessé peut se référer a I'ouvrage The ABC
Programmer’s Handbook (Geurts, Meertens, Pemberton, aux Editions Prentice-Hall).

Le projet ABC n'a malheureusement pas eu le succes escompté en dehors du cercle
du CWI et est resté relativement confidentiel.

Le projet Amoeba

GvR a rejoint en 1986 le projet Amoeba, un systeme d’exploitation distribué. Il a été
chargé dans ce cadre de créer un langage de script pour manipuler le systeme plus
facilement. Les contraintes du projet étaient relativement souples pour laisser GvR,
fort de son expérience passée, mettre au point une premiére version de ce qui allait
devenir le langage Python.

GvR implémenta ce langage de script en essayant de supprimer toutes les contraintes
et frustrations qu’il avait vécues avec ABC.

Par exemple, ABC ne permettait pas de lire et écrire dans un fichier, et cette fonc-
tionnalité ne pouvait pas étre ajoutée facilement au langage, dénué de tout concept
de bibliothéque ou de tout systéme de programmation d’entrée/sortie souple.

Lextensibilité fut le premier chantier de GvR car il voulait que Python, méme si son
objectif premier était de fonctionner pour Amoeba, puisse étre étendu facilement par
des programmeurs tiers en se basant sur un socle commun de primitives et des points
d’entrée simples.

Lidée de rendre le langage portable, c’est-a-dire fonctionnel sur plusieurs
plates-formes comme Amoeba bien sir, mais aussi sur MS-Windows, Unix ou Mac-
intosh, était aussi un objectif de GvR.

A un moment de I'histoire de I'informatique ol les ordinateurs commengcaient a
envahir les entreprises et les foyers, le manque d’extensibilité et de portabilité con-
damnait ABC 4 un réle mineur, et GvR, en visionnaire, a su ouvrir les portes de son
langage de script.

GvR congut les premieres versions du langage qu'il appela Python, a la gloire des
Monty Python dont il était fan. Lorsque la liste de diffusion fut créée plus tard, il
n'était pas rare de voir régulierement des messages de fans des Monty Python, ne
pensant pas avoir affaire 4 un langage de programmation.

Programmation Python

ANNEXES

Dans les premiéres versions du langage, le systeme d’extension qui permettait
d’ajouter de nouveaux types d’objets a Python a partir d’un fichier de code Python ou
un fichier compilé en C, C++ ou encore en Fortran, a tout de suite été adopté et plé-
biscité par U'entourage de GvR.

Les versions de Python s’enchainérent jusqu’a la version 1.2 en 1995, date a laquelle
GvR quitta le CIW pour rejoindre le CNRI (Corporation of National Research Ini-

tiatives) 2 Reston en Virginie (USA) pour continuer ses travaux.

Le CNRI

Cet organisme finanga le développement de Python pendant cinq ans, par le biais de
fonds de recherche. La Python Software Activity (PSA), le Python Consortium et des
sociétés privées apportérent également des fonds pour soutenir I'avancée du langage.
Le travail au CNRI a permis de sortir plusieurs versions de Python, dela 1.3 ala 1.6.

En 2000, GvR prit la décision de quitter le CNRI, car les fonds alloués a Python
étaient de plus en plus maigres et les développeurs dispatchés sur d’autres projets. De
plus, I'organisme ne semblait pas tres favorable au logiciel libre.

Ce départ fut relativement tendu et le CNRI insista pour modifier le texte de la
licence de Python pour garder une mainmise, en provoquant a I'époque une grande
inquiétude de la communauté sur la suite des événements.

Accompagné de 3 autres développeurs du CNRI, GvR fonda le PythonLabs, et
rejoignit la startup Californienne BeOpen.com.

PythonLabs et BeOpen.com

Avec larrivée 2 BeOpen.com, I'équipe du PythonLabs passa directement de la ver-
sion 1.6 4 1a 2.0, en intégrant des améliorations majeures, comme les /ist comprehen-
sions, le support étendu du XML, un nouveau systéme de ramasse-miettes cyclique,
et une nouvelle licence plus orientée Open Source.

Le projet Python 3000 était lancé en paralléle, pour accueillir la nouvelle version de
Python, vouée a contenir des modifications incompatibles avec les versions 2.x, pour
corriger des erreurs de conception du langage.

n systéme d’avertissement a alors été introduit pour permettre de spécifier les com-
Un systéme d’avert t a alors été introduit pour p ttre de spécifier 1
patibilités ascendantes et descendantes du langage.

L’'histoire de Python m
ANNEXE

En d’autres termes, toute introduction de nouvelle fonctionnalité incompatible avec
la version en cours, peut étre apercue et utilisée par le biais du module __ future__, et
toute fonctionnalité qui n'existera plus dans la version suivante affiche un warning
lorsqu’elle est utilisée.

Ce systéme est d’ores et déja utilisé dans la série des versions 2.x.

Python Software Foundation et Digital Creations

Moins d’un an aprés I'arrivée a BeOpen.com, I'équipe de PythonLabs déménage une
nouvelle fois pour rejoindre Digital Creation, la société qui allait devenir par la suite

Zope Corp.

En Mars 2001, la Python Software Foundation voit le jour et remplace la PSA,
annoncée par GvR a la neuvieme conférence Python, et sponsorisée par les sociétés
Digital Creation et ActiveState, contributeurs majeurs de la communauté Python de
I'époque.

Le premier comité directeur réunissait des membres de PythonLabs et des responsa-
bles des deux sociétés, a savoir : Dick Hardt, David Ascher, Paul Everitt, Fredrik
Lundh, Tim Peters, Greg Stein, Guido van Rossum et Thomas Wouters.

Les versions de Python se sont ensuite enchainées jusqu’a la toute derniere en 2009
au moment de 1’écriture de ce livre (3.0).

Python et Zope

Python a joué un réle fondamental pour le développement du framework Zope, et
inversement, Zope a beaucoup contribué au développement du langage.

Le texte ci-dessous est une interview de Paul Everitt, créateur de Digital Creations,
I'entreprise qui congoit Zope, et qui répond a la question suivante :

Quelle a été la place de Python dans l'histoire de Zope et Digital Creations ?

En 1995, la société Digital Creations a été créée pour mettre en ligne des journaux.

Nous avons utilisé Python pour concevoir l'architecture de notre plate-forme de
journaux en ligne et avons beaucoup participé a la communauté Python.

Jim Fulton (ndlr : directeur technique actuel) a rejoint Uentreprise 'année suivante et
a lancé I'idée de publier des objets Python via le Web. Le framework « Bobo » était
né et distribué sous licence Open Source.

Programmation Python

ANNEXES

Une application commerciale nommée Principia et entierement écrite en Python fai-
sait également partie de nos travaux.

En 1997, nous avons été sortis du consortium des journaux et conservé la propriété
intellectuelle. En 1998, Hadar Pedhazur a investi dans I'entreprise, et nous avons
concentré nos travaux Python, dans un seul et méme produit Open Source : Zope.
Une large communauté de développeurs pour la plupart issus de 'Open Source s’est
construite autour du projet.

Python était dans notre sang dés le départ. Jim et moi sommes allés a la toute pre-
miere conférence Python publique (20 personnes). Jim était alors considéré comme
un, sinon le principal contributeur du noyau du langage Python.

Grice a Python, nous étions capables de construire des systémes web, comme des
systemes de petites annonces électroniques trés dynamiques en un temps record, ce
qui nous rendait trés compétitifs.

Parallelement, lorsque nous avons congu Principia, le serveur d’applications proprié-
taire, nous avions décidé de cacher Python. Cette décision a eu un énorme impact
aussi bien positif que négatif, sur le fonctionnement de Zope. Les idées de gérer tout
un site a travers des interfaces d’administration en ligne, de stocker des portions de
code restreint dans une base de données (ndlr : la ZODB), et d’étendre le serveur par
des paquets d’extension, vinrent de cette décision.

Nous avons aussi apporté une nouvelle audience pour le langage Python, puisque
beaucoup de gens qui choisissaient Zope, n’avaient jamais fait de Python auparavant
(a la premiére conférence Zope a 'ICP8, la moitié de 'audience n'avait jamais utilisé
Python avant Zope).

Malheureusement le choix de cacher Python a également généré une confusion sur
ce qu'était Zope. La communauté Python jugeait Zope 2 comme un framework pas
tres Pythonique. De plus, Zope 2 lui-méme vivait une crise d’identité : était-ce un
produit destiné aux intégrateurs, ou un produit orienté développeur ?

Zope 3 a résolument pris un tournant en orientant le framework vers un outil pour
développeurs.

Des journalistes comme Jon Udell ou Edd Dumbill considerent que Zope est I'un
des frameworks ot 'Open Source a réellement vécu des innovations, pour la plupart
issues des idées de Jim Fulton. Le langage Python influenga beaucoup Jim dans ses
idées, et offrit a Zope des fonctionnalités magnifiques : I'idée de publier des objets
sur le Web est devenu un sujet informatique d’actualité, 9 ans aprés que Jim l'ait fait.

Une base de données transactionnelle distribuée d’objets Python, utilisée dans des
sites commerciaux énormes, c’est un résultat impressionnant. Lhistoire de Zope et
Python est maintenant vieille de 10 ans. Place maintenant 4 un nouveau chapitre :

L’'histoire de Python m
ANNEXE

Zope 3 et son souhait d’étre plus pythonique que son prédécesseur et d’intéresser
d’avantage la communauté Python.

-- Paul Everitt, fondateur de Digital Creations.

BLoc L'histoire continue...
Iy a quelque temps, Guido van Rossum a initié un blog dédié a I'histoire de Python. Il contient beaucoup
plus de détails que cette annexe. Un blog a surveiller donc, pour étre au fait des derniers événements liés

au langage.
» http://python-history.blogspot.com/

Bibliotheques tierces

La philosophie Batteries Included de Python rencontre ses limites lorsque des fonc-
tionnalités trés spécifiques sont recherchées. Cette limitation n'est cependant pas
bloquante grace a la facilité d’extension du langage : il est possible de trouver des
bibliothéques tierces pour la quasi-totalité des besoins.

D’autre part, certains modules initialement présents dans la bibliothéque standard
ont été volontairement délaissés au fur et 2 mesure des versions du langage, pour pré-
térer des solutions externes.

Cette annexe liste un certain nombre de bibliothéques externes, les plus fréquem-
ment utilisées, organisées par themes :

* bases de données ;

* traitement de texte ;

* packaging, distribution ;

* tests fonctionnels et controle qualité ;

* MS-Windows ;

* interfaces graphiques ;

* reporting et conversion ;

* jeuxet3D;

* audio et vidéo ;

* bibliotheques scientifiques ;

* Web.

m Programmation Python
ANNEXES

Chacune des bibliothéques est présentée par un court texte et une URL suit le méme
schéma d’installation, présenté ci-apres.

Installer une bibliothéque externe

Lensemble des bibliothéques externes présentées dans cette annexe sont tres simples
a installer car basées sur le module distutils, présenté au chapitre 13. Ces biblio-
théques externes sont souvent livrées dans un fichier compressé sous la forme
NomDuPaquet-version.zip ou NomDuPaquet-version.tar.gz.

Installer une extension se fait en trois étapes :

1 décompression du paquet, par I'outil tar ou équivalent ;

2 construction du paquet dans le répertoire de décompression, par 'option build
du script setup.py ;

3 installation du paquet dans Python, par l'option install du script setup. py.

Lorsque la premiére étape est effectuée, on retrouve dans le répertoire décompressé
une structure commune a toutes ces bibliothéques, a savoir :

* Un fichier setup.py, qui contient la configuration et l'appel au framework
distutils.

* Un fichier setup.cfg, optionnellement présent, qui contient des informations
supplémentaires, lorsqu'une compilation est nécessaire.

* Des informations sur I'extension, contenues dans les fichiers INSTALL et README.

* Une certain nombre de fichiers source.

La construction du paquet prépare un sous-répertoire build qui contient les élé-
ments a fournir a Python.

Enfin, la derniére étape recopie ces fichiers dans le répertoire site-packages de
I'installation de Python. Elle peut donc nécessiter les droits d’administrateur.

Installation de Ixml

$ tar -xzf Txml1-0.7.tgz

$ cd Txml

$ python setup.py build

running build

running build_py

creating build

creating build/1ib.1inux-1686-2.4

creating build/Tib.Tinux-i686-2.4/1xml
creating build/1ib.Tinux-i686-2.4/1xml/tests
[...]

Bibliothéques tierces m
ANNEXE

$ sudo python setup.py install

running install

running build

running build_py

running build_ext

running install_T1ib

creating /usr/1lib/python2.4/site-packages/Txml
creating /usr/1ib/python2.4/site-packages/Txml/tests
copying build/1ib.1inux-1686-2.4/1xml/tests/test_etree.py -> /usr/Tib/
python2.4/site-packages/1xml/tests

[...]

Une fois linstallation effectuée, le nouveau module doit étre disponible dans le
prompt.

Vérification de I'installation

tziade@Tarek:/home/packages/1xml1$ python
Python 2.4.1 (#2, Mar 30 2005, 21:51:10)
[GCC 3.3.5 (Debian 1:3.3.5-8ubuntu2)] on Tinux2

Type "help", "copyright", "credits" or "license" for more information.
>>> dimport Txml
>>>

Asavor Contréler la bonne installation d'une bibliothéque

Certaines bibliothéques fournissent des tests (souvent basés sur le framework pyUn1 t) qui peuvent étre
lancés pour vérifier que I'installation est correcte et que tout fonctionne comme prévu.

Lorsque le paquet est disponible sur PyPI, il est possible d’utiliser setuptools ou pip
pour procéder a une installation automatique.

Utilisation de setuptools

setuptools est une bibliothéque tierce qui fournit des fonctionnalités au-dessus de
distutils, dont un script d’installation de paquets disponibles sur PyPI.

» http://peak.telecommunity.com/DevCenter/setuptools

Son installation est simplifiée par un script appelé ez_setup. py, disponible sur le site
du projet setuptools, a I'adresse : http://peak.telecommunity.com/dist/ez_setup.py.

m Programmation Python
ANNEXES

Installation de setuptools

$ wget http://peak.telecommunity.com/dist/ez_setup.py

--2009-03-05 23:12:12-- http://peak.telecommunity.com/dist/ez_setup.py
Résolution de peak.telecommunity.com... 209.190.5.234

Connexion vers peak.telecommunity.com|209.190.5.234|:80...connecté.
requéte HTTP transmise, en attente de la réponse...200 OK

Longueur: 9716 (9,5K) [text/plain]

Saving to: “ez_setup.py'

100%[>] 9.716 35,0K/s 1in 0,3s

2009-03-05 23:12:12 (35,0 KB/s) - « ez_setup.py » sauvegardé [9716/9716]
$ python ez_setup.py -U setuptools

Searching for setuptools

Reading http://pypi.python.org/simple/setuptools/

Best match: setuptools 0.6c9

Processing setuptools-0.6c9-py2.6.egg

setuptools 0.6c9 is already the active version in easy-install.pth
Installing easy_install script to /Library/Frameworks/Python.framework/
Versions/2.6/bin

Installing easy_install-2.6 script to /Library/Frameworks/

Python. framework/Versions/2.6/bin

Using /Library/Frameworks/Python.framework/Versions/2.6/1ib/python2.6/
site-packages/setuptools-0.6c9-py2.6.egg

Processing dependencies for setuptools

Finished processing dependencies for setuptools

Une fois setuptools installé, une nouvelle commande appelée easy_install est dis-
ponible. Elle installe tout paquet disponible sur PyP1, grace 4 son nom.

Installation de BeautifulSoup avec easy_install

$ easy_install BeautifulSoup

Searching for BeautifulSoup

Reading http://pypi.python.org/simple/BeautifulSoup/

Reading http://www.crummy.com/software/BeautifulSoup/

Reading http://www.crummy.com/software/BeautifulSoup/downToad/
Best match: BeautifulSoup 3.1.0.1

Downloading http://www.crummy.com/software/BeautifulSoup/download/
BeautifulSoup-3.1.0.1.tar.gz

Processing BeautifulSoup-3.1.0.1.tar.gz

Bibliothéques tierces m
ANNEXE

Bases de données

Python fournit les briques de base (DBAPI) a tout type de connecteur de base de
données et propose quelques modules d’acces a des formats ultra standards comme
BerkeleyDB. Cependant, aucun connecteur aux SGBD courants nest intégré dans la

bibliotheque standard.

Toutes les bases de données du marché peuvent étre bien évidemment attaquées
depuis Python, et cette section présente les connecteurs les plus courants. Elle inclut
également un connecteur LDAP et un ORM.

Gadfly

Codé en Python, Gadfly est un mini-systtme SGBD complet. Linstallation de cette
extension permet de créer des fichiers de stockage qui peuvent étre manipulés via le
langage SQL, en mode direct ou en mode client-serveur.

Gadfly supporte une charge relativement limitée et est en général utilisé pour le pro-
totypage d’applications client-serveur : la norme DBAPI étant respectée, ce connec-
teur peut étre facilement interchangé sans modification de code.

» http://gadfly.sourceforge.net/

pysqlite
pysqlite est un connecteur compatible DBAPI vers le systtme SQLite. Ce systéme
léger de SGBD (non client-serveur) est de plus en plus prisé dans les applications qui
ont des besoins de stockage simples et un accés unique aux données, comme les
applications web. sqlite est parfois plus rapide que les SGBD client-serveur classi-
ques.

» http://initd.org/tracker/pysqlite

mysql-python
mysql-python est un connecteur vers le célebre SGBD MySQL.

» http://sourceforge.net/projects/mysql-python

m Programmation Python
ANNEXES

psycopg
Connecteur pour PostgreSQL.

» http://initd.org/projects/psycopg1

ODBC

Certaines bases de données sous MS-Windows peuvent étre accédées par le biais de
I'ODBC (Open DataBase Connectivity). La bibliothéque Python Win32 Exten-
sions fournit un certain nombre de modules dédiés 2 MS-Windows, dont le module
ODBC.

» http://www.python.org/windows/win32/

python-ldap

python-ldap expose les API de OpenLDAP 2.x et quelques utilitaires annexes (lec-
tures LDIF). Cette bibliothéque permet d’utiliser tout type de serveur compatible
avec le standard LDAP (OpenLDAP, ActiveDirectory, etc.).

» http://python-ldap.sourceforge.net/

SQLAIchemy
SQLAIchemy est un ORM (Object-Relational Mapper) trés utilisé dans la commu-

nauté. Un ORM permet de manipuler une base de données a travers des objets

Python.

» http://www.sglalchemy.org

Traitement de texte

Le besoin le plus fréquent en traitement de texte est la gestion du format XML. La
bibliothéque standard propose des modules dédiés mais qui sont de plus en plus
délaissés par les développeurs, en raison de problémes de performances et surtout par
un manque cruel de simplicité : manipuler un fichier XML avec ces modules néces-

Bibliothéques tierces m
ANNEXE

site un effort relativement important pour un développeur Python, habitué a plus de
concision et de simplicité ou ne fournit pas de performances correctes.

Cette section présente une extension dédiée au traitement du XML, plus perfor-
mante et naturelle a utiliser car basée sur le principe des curseurs : Ixml.

Un autre besoin récurrent est le traitement de fichiers HTIML non stricts : ce type de
format n'est pas lisible par des bibliotheques XIVIL et doit étre traité spécifiquement.
Lextension BeautifulSoup propose un outil spécialisé.

Ixml

Ixml est un bind Python codé en Pyrex de 1ibxm1 et 1ibxs1t qui fournit les mémes
API quElementTree. Trés rapide, pythonique et puissante, probablement la
meilleure bibliotheque XML actuelle.

» http://codespeak.net/Ixml/

Beautiful Soup

Lorsquil s’agit de lire du contenu HTML non strict, le développeur utilise en
général les modules HTMLParser ou SCMLParser de la bibliothéque standard, ou dans
certains cas, scrute le contenu avec une expression réguliére.

Beautiful Soup propose une alternative intéressante en scrutant le texte a la recherche
de balises, parameétres ou contenu.

» http://www.crummy.com/software/BeautifulSoup/

Packaging, distribution
Outre l'outil standard distutils, il existe une extension de plus en plus utilisée pour
la distribution de programmes Python, a savoir zc.buildout.

zc.buildout est un outil qui installe un environnement de bibliothéques tierces en
se basant sur un fichier de configuration et setuptools.

» http://pypi.python.org/pypi/zc.buildout

m Programmation Python
ANNEXES

Tests fonctionnels et controle qualité

En matiére de tests, les modules unittest et doctest couvrent tous les besoins basi-
ques mais ne permettent pas de mettre en ceuvre facilement des tests fonctionnels,
qui restent spécifiques au type d’interface de I'applicatif.

Les extensions qui offrent un environnement de développement de tests fonction-
nels, que ce soit pour des applications web ou desktop, fonctionnent toutes sur le
méme principe : elles mettent en ceuvre un pont entre les tests et I'interface utilisa-
teur. Twill et Funkload permettent de tester des applications web et guitest des
applications GTK. Enfin, PyLint et PyFlakes offrent de bons garde-fous, complé-
mentaires aux tests, pour s’assurer de la qualité du code écrit.

Twill
Twill fournit un langage de script simple qui teste une application web via des scripts
Python. Loutil effectue des requétes vers le serveur web et analyse les résultats.
» http://www.idyll.org/%7Et/www-tools/twill.html
Funkload
Funkload est un outil basé sur webunit, qui écrit des tests fonctionnels en Python.
Cet outil permet également de tester la montée en charge et génére des rapports
complets. Les tests peuvent étre congus facilement via le navigateur grice a
TCPWatch.
» http://funkload.nuxeo.org/
guitest

Cet outil fournit des classes de base pour effectuer des tests unitaires sur des applica-

tions PyGtk.

» http://gintas.pov.lt/guitest/

Bibliothéques tierces m
ANNEXE

PyLint

PyLint est un outil qui teste le code a la recherche d’erreurs ou de signes de mauvaise
qualité. Ce programme est facilement configurable et extensible. Il est comparable a

PyChecker mais propose plus de tests.

» http://www.logilab.org/projects/pylint

Pyflakes

Cet outil contrdle le code a la recherche d’erreurs, de code mort (impossible a
appeler) ou de directives d’'importation inutiles. Contrairement a PyChecker, cet
outil n'exécute pas le code testé, ce qui le rend plus rapide et plus sécurisé.

» http://divmod.org/projects/pyflakes

MS-Windows

Il existe des bibliotheques spécialisées dans la programmation sur plate-forme
MS-Windows et la technologie COM/ActiveX, a savoir les bibliothéques Win32

Extensions et win32com.

Win32 Extensions

La bibliotheque win32 présentée dans la section base de données pour TODBC, con-
tient également des modules pour :

* les API win32 (un fichier d’aide WinHelp avec la liste des méthodes est fourni) ;
* les services NT';

* les Memory Mapped Files ;

* les API win32pipe et win32;

* Les timers win32, etc.

» http://www.python.org/windows/win32/

m Programmation Python
ANNEXES

win32com

win32com sert & programmer des clients ou des serveurs COM/ActiveX.

» http://www.python.org/windows/win32com/

Interfaces graphiques

I1 existe plusieurs toolkits graphiques qui peuvent étre utilisés par le biais de biblio-
théques Python, pour remplacer Tkinter. Les plus répandus sont wxPython, PyQT et
PyGTK.

wxPython

PyQT

wxPython est une bibliothéque d’acces au toolkit wxWidgets, qui est de loin le plus
portable des systemes d’interface. Il existe en outre des outils de conception d’inter-
faces qui générent du code Python compatible avec wxPython, comme wxGlade.

» http://www.wxpython.org/

PyQT est un bind vers le toolkit graphique Qt de Trolltech. Il offre un acces a des
widgets trés avancés, comme le controle texte Qscintilla, utilisé par certains éditeurs
comme Eric3. En outre, QT designer est I'un des plus puissants éditeurs pour la con-
ception d’interfaces graphiques. Attention cependant aux licences en fonction des cas
d’utilisation, et des plates-formes.

» http://www.riverbankcomputing.co.uk/pyqt/

PyGTK

PyGTK fournit un lien entre Python et le toolkit GTK+ (Gimp toolkit), utilisé par
I'environnement Gnome. Loutil Glade peut étre utilisé pour concevoir des interfaces
GTK et présente la méme interface que wxGlade (qui s’en inspire).

» http://www.pygtk.org/

Bibliothéques tierces m
ANNEXE

Reporting et conversion

En termes de reporting, il existe une bibliotheque Open Source incontournable
nommée ReportlLab éditée par la société éponyme. Elle génere des documents PDF
et possede des fonctionnalités trés puissantes.

RML2PDF est un outil de conversion du format RIML vers PDF. rest2web est une
bibliothéque de création de sites web statiques générés a partir de fichiers écrits au
format reStructuredText.

ReportLab

Le toolkit ReportLab sert a4 concevoir en Python des systemes de génération de PDF
et fournit :

* un moteur de mise en page, Platypus ;
* une librairie étendue de widgets et de formes ;

* des points d’entrée pour toutes sources de données, etc.

» http://www.reportlab.org/rl_toolkit.html

RML2PDF
Le format Report Markup Language (RIML) créé par la société ReportLab définit

simplement un document dans un fichier de description XML. Un outil de conver-
sion, nommé RML2PDF se charge ensuite de le convertir en PDF. Cet outil est
payant, mais il existe une variante Open Source éditée par Tiny ERP.

» http://openreport.tiny.be/index.py/static/page/trml2pdf

reStructuredText

reStructuredText est un format texte tres utilisé pour la documentation de projets
Python et pour I'écriture des docstrings des modules de code. Il introduit une syntaxe
trés simple qui permet la mise en page de texte.

Ce format est également tres utilisé dans les systémes wikiwikiweb, pour offrir aux
utilisateurs un format simple a écrire et aussi riche que le HTML. 11 est facilement
convertible en rendu HTML par des outils comme rest2html.

» http://docutils.sourceforge.net/rst.html

m Programmation Python
ANNEXES

rest2web

rest2web permet de générer des pages HT ML statiques a partir de documents écrits
au format reStructured Text.

» http://www.voidspace.org.uk/python/rest2web/

Jeux et 3D

En termes de programmation de jeux et plus généralement de scénes 3D, Python est
un langage de script de choix. Les toolkits Pygame et Soya 3D permettent de bénéfi-
cier de la puissance de Python dans ce domaine.

VPython propose, quant a lui, un environnement de programmation 3D temps réel
propice a 'étude de la modélisation.

I1 est aussi possible de programmer en plus bas niveau en accédant directement aux

bibliothéques 3D par le biais par exemple de PyOpenGL.

Pygame

Pygame fournit des modules d’extension pour la programmation de jeux 3D et de
programmes multimédias, basés sur la bibliotheque SDL (Simple DirectMedia
Layer).

» http://www.pygame.org/

Soya 3D

Soya 3D est un moteur 3D pour Python, écrit en Pyrex et doté de toutes les fonc-
tionnalités d'un moteur professionnel.

» http://home.gna.org/oomadness/fr/soya/

vpython

vpython propose un environnement de programmation 3D complet, en fournissant
sa propre version d’IDLE qui permet de programmer et d’animer interactivement
des scénes 3D. Tres pratique pour I'apprentissage de la mécanique.

Bibliothéques tierces m
ANNEXE

» http://vpython.org/

PyOpenGL
Module d’extension offrant I'acces aux API d’OpenGL depuis Python.

» http://pyopengl.sourceforge.net/

Audio et Vidéo

Le domaine multimédia n'est pas en reste grice a des bibliotheques trés complétes
comme PyMedia ou des modules spécifiques comme PyAlsa.

PyMedia

PyMedia propose un ensemble de modules pour manipuler tous les types de formats
audio et vidéo (mp3, ogg, avi, mpeg, etc.), modifier les échantillons par quelques fil-
tres et piloter le matériel.

» http://pymedia.org/

PyAlsa
PyAlsa est un wrapper pour le systtme ALSA (Advanced Linux Sound Architecture)

» http://respyre.org/pyalsa.html

Bibliotheques scientifiques

Cette section regroupe différentes bibliotheques scientifiques spécialisées dans les
calculs numériques comme Numerical Python et SciPy, et dans les outils dédiés a des
domaines particuliers comme Biopython.

m Programmation Python
ANNEXES

Numerical Python

Numerical Python, qui se nomme maintenant SciPy, est une bibliothéque puissante
de fonctions de manipulation de matrices, de transformées de Fourier, et autres utili-
taires de calcul.

» http://sourceforge.net/projects/numpy

SciPy

SciPy complete Numerical Python en fournissant des fonctions de calculs statisti-
ques, des modules de lecture et d’écriture de matrices au format Matrix Market, etc.

» http://www.scipy.org/

Biopython

Ce projet regroupe un ensemble de modules spécialisés dans la biologie moléculaire.

» http://biopython.org

Web

Pour terminer, voici une liste de frameworks de programmation web, qui proposent
des fonctionnalités plus ou moins évoluées :

* Zope : http://www.zope.org

* Quixote : http://www.mems-exchange.org/software/quixote/
* CherryPy : http://www.cherrypy.org/

* Django : http://www.djangoproject.com/

. Turbogears : http://www.turbogears.org/

* Pylons : http://pylonshq.com/

Sites, flux RSS,
blogs et autres friandises...

Cette annexe présente une liste de liens de la planéte Python, regroupés en trois
catégories :

* les sites web ;
* les flux rss;

* les blogs (flux rss nominatifs).

Chaque lien, qui peut étre en anglais ou en frangais, est commenté.

Flux RSS

EN Daily Python-URL! : le flux RSS du langage Python, géré par Fredrik Lundh et,
soutenu par Secret Labs AB (Pythonware).

» http://effbot.org

Ce flux, mis a jour quotidiennement, est un véritable travail éditorial, mené par un
core developer du langage et qui contient une sélection des meilleures nouvelles de la

planete Python.

» http://www.pythonware.com/daily/

Programmation Python

ANNEXES

EN Unofficial Planet Python: T'autre flux RSS majeur. Cette deuxieme source
d’informations n’est pas une sélection qualitative comme Daily Python-URL mais
propose un agrégateur de flux ; il reste nécessaire de faire le tri.

» http://www.planetpython.org/rss20.xml

EN PyPI recent updates : le flux des mises a jour des bibliothéques de PyP1. Garder
un ceil sur ce flux peut permettre de découvrir de nouveaux outils ou de surveiller cer-
tains modules.

» http://www.python.org/pypi?%3Aaction=rss

EN Recipes from the Python Cookbook : le flux des recettes Python saisies dans le
CookBook du site ASPN. Une lecture saine et bénéfique.

» http://code.activestate.com/feeds/langs/python/

FR Planéte Python Francophone : Le site de 'association francophone Python.

» http://www.afpy.org/planet/

Il existe évidemment beaucoup d’autres flux, mais les liens fournis ci-dessus générent
les informations les plus intéressantes, et produisent entre 50 et 100 nouvelles par
jour, ce qui est plus que suffisant.

Blogs

EN Guido van Rossum’s Weblog : GvR bloggue relativement rarement, mais il est
important de I'avoir dans ses marqueurs.

» http://neopythonic.blogspot.com/

Sites, flux RSS, blogs et autres friandises... m
ANNEXE

EN Agile Testing : le blog de Grig Gheorghiu, membre de I'alliance agile, qui parle

quasiment exclusivement des outils de tests pour Python.

» http://agiletesting.blogspot.com/atom.xml

Sites

FR Programmation Python : le site personnel de I'auteur, qui regroupe des éléments
relatifs a ce livre et des informations Python.

» http://programmation-python.org

EN Site officiel de Python : sans commentaires, la référence.

» http://www.python.org

FR Site de '’Association Francophone Python (AFPY) : site communautaire avec des
nouvelles, des tutoriaux Python et Zope, des forums, etc.

» http://www.afpy.org

Et enfin, pour quelque chose de complétement différent, et afin de reprendre une
activité intellectuelle saine aprés la lecture de ce livre, l'incontournable site des

Monty Python :

» http://www.pythonline.com/

Index

Symboles

.pdbrc 292

_112,116,117,129, 132,135,
151, 154, 156

all 138

_ doc__361

_ future__ 82

__import__ 152

_ slots__ 476

Numeriques
2to3 51, 343

A

ABC (Abstract Base
Class) 278, 281, 284

ABC (langage) 523

abs 125, 153

acces au systéme 222

actions 214

Ada9

addition 81

administration systéme 10

AFPY (Association Francoph-
one Python) 547

alias 292

all 153

alphanumériques 54

Amoeba 525

antislash 55

any 153

Apache 11

apply 154

arbre de dérivation 280

argv 359

array 276

as 136

ASCII 55
AST (Abstract Syntax
Tree) 383
atexit 287, 372
attribut 111
de données 111
privé 117
statique 476
avertissement 194
DeprecationWarning 195
FutureWarning 195
OverflowWarning 195
PendingDeprecationWarning
195
RuntimeWarning 196
SyntaxWarning 196
UserWarning 195

B
base de données 535
base64 270
b64decode 270
b64encode 270
batteries included 219
Beautiful Soup 537
BeOpen.com 526
binaire 60
binding 465
Biopython 25, 544
BlackAdder 45
Bluefish 44
BoaConstructor 21
bool 65, 120
booléens 214
bottleneck 432
bouchon 395

break 91
BuildBot 428
built-ins 151
bytearray 75
bytecode 477
bytes 72

C

C# 43

caching 450

calcul numérique 273

call 12

callable 154

CapitalizedWords 205

chaine
concaténer 444

CherryPy 544

chr 154

classe 111, 214
arbitraire 280
concréte 278
implémentrice de

méthode 280
nom 206
partie privée, protégée et
publique 206

structuration 211
Thread 454

classe d’exception de base 141
ArithmeticError 141
EnvironmentError 141
Exception 141
LookupError 141
StandardError 141
UnicodeError 142
Warning 142

m Programmation Python

classmethod 154
clause
organisation 210
cls 155
cluster 371
cmp 156
CNRI 526
code
mort 539
patterns 441
codec 68
coerce 125,156
collections 281
commentaire 52, 199, 201
bloc 200
comparaisons complexes 87
comparatif 6
Perl 7
compile 157
compiler 382
complex 125
complexe (nombre) 62
concaténer une chaine 444
constante 207
constructeur 116
statique 128
conteneur 441
context management
protocol 93
contexte d’exécution 98
continue 91
convention de nommage 204
copy 295
copytree 11
coverage 424
cPickle 266
dump 266
dumps 267
load 266
loads 267
Pickler 267
Unpickler 267
cProfile 435
cStringlO 286

ctypes 469
CWI 523
Cython 477

D
date 301
formatage 301
datetime 303, 308
date 304
time 306
timedelta 303
DBAPI 535
deadlock 453
decimal 285
décimal (nombre) 66
decorator 106
deepcopy 80
def 98
defaultdict 282
définition de classes 184
del 158
delattr 158
Delphi 43
deque 281
descripteurs de fichiers 223
descriptor 130
design pattern 500
Adapter 518
Borg 501
Chain of responsibility 513
Facade 520
Factory 504
Memento 510
Observer 507
Proxy 521
Singleton 501
State 516
Visitor 505
destructeur 116
dictionnaire 77
difflib 296
Digital Creations 527
dir 158
dircache 249

distutils 469
distutils.core 466
division

entiere 81

réelle 82
divmod 160
Django 29, 544
docstring 105, 201, 202

de module 208
doctest 411
documentation string 105, 201
donnée

structure 276
DrPython 45
duck typing 6, 495

E

Eclipse 7, 43, 45

EDI (Environnement de

développement
intégré) 21, 42

Ellipsis 64

Emacs 45

e-mail 13

encapsulation 130, 131, 490

encodage 207

en-téte 207

entier 59
long 59

enumerate 160

ergonomie 21

Eric3 45

erreur 187
AssertionError 187
AttributeError 188
EOFError 188
FloatingPointError 188
ImportError 189
IndentationError 189
IndexError 189
IOError 188
KeyboardInterrupt 190
KeyError 189
MemoryError 190

NameError 190
NotImplementedError 190
OSError 191
OverflowError 191
ReferenceError 191
RuntimeError 191
Stoplteration 191
SyntaxError 191
SystemError 192
SystemExit 192
TabError 192
TypeError 192
UnboundLocalError 193
UnicodeDecodeError 193
UnicodeEncodeError 193
UnicodeTranslateError 194
ValueError 194
WindowsError 194
ZeroDivisionError 194

espace
dans le code 202
de noms 112
regle 203

eval 160

Event 459

Excel 24

except 142

exception 139

execfile 161

exit 161

expression réguliere 19, 317,

354
externe 532
eXtreme Programming 389

F
factory 282
fake 22, 397
file 161
filecmp 249
cmp 249
dircmp 249
filter 163
finally 144

float 125
folding 43
fonction 97
for 89
franglisme 213
from 136
fromkeys 155
frozenset 72
ftplib 260
FTP 261
Funkload 402, 538

G
Gadfly 535
Gang of Four 500
garbage collector
(ramasse-miette) 53, 499

gee 33
GenBank 24
generator 148, 449

expression 149
genexp 149, 449
get 214
getattr 164
getgid 240
getlogin 240
getpass 294
GIL (Global Interpreter

Lock) 463

Glade 21
global 98
globals 98, 164
GoF 500
GRAMPS 26
guitest 538
gzip 251

GzipFile 251

H

hachage 271
hasattr 165
hash 120, 165
hashlib.sha 272
haslib 271

e
help 165

héritage 113, 127, 492
multiple 114, 280, 498

hex 125, 166

hexadécimale 60

hot spot 446

hotshot 434

HTMLParser 379

|
id 166
IDLE 38, 45
IEEE 754 65
if 89
imaplib 379
implémentation 4
Cpython 4
IronPython 5
Jython 5
PyPy 5
Stackless Python 5
import 134
*138
importation
clause 209
indentation 87, 198
informations sur le
systéeme 239
input 167, 352
int 125, 167
interaction avec
Iinterpréteur 220
interface 280, 495
intern 167
Inversion 83
IPython 41
isdir 244
isinstance 168
islink 244
ismount 244
issubclass 168
iter 123, 147, 169
itérateur 80
Iterators 147

m Programmation Python

itertools 311, 356
chain 311
count 312
cycle 312
dropwhile 313
groupby 313
ifilter 314
ifilterfalse 314
imap 315
islice 315
izip 315
repeat 316
starmap 316
takewhile 317
tee 317

J

joker 209
JUnit 403
JUnitPerf 482

K

Kate 45

Kent Beck 403
Komodo 45

L

lambda 105

langage
compilé 6
dynamique 6
interprété 6

LDAP 29

len 123, 169

lib2to3 343

license 170

ligne
taille maximum 198
vide 203

list 73, 171
comprehension 145, 352,

448

littéral 54

locals 98, 171

lock 457

réentrant 453
locker 453
logging 369
logiciel pate 4 modeler 20
long 125
lowercase 205

lowercase_words 205
Ixml 537

M
Mailman 428
maketrans 352
manipulation
des fichiers et
répertoires 225
des processus 233
map 171
mapping 76
maquette 20
marqueur de formatage 70
math 273
acos 274
asin 274
atan 274
atan2 274
ceil 273
cos 274
cosh 274
degrees 275
e 275
exp 273
fabs 273
floor 273
fmod 273
frexp 274
hypot 275
ldexp 274
log 274
log10 274
modf 274
pi275
pow 274
radians 275
sin 275

sinh 275
sqrt 275
tan 275
tanh 275
max 172
md5 271, 272
mechanize 402
memorizing 450
metaclass 129
métaclasse 499
méthode 111, 214
hash 75
spéciale 119, 121, 124, 125,
128, 130, 147
__cmp__ 120
__contains__ 123
__delattr 122
__delitem__ 123
_eq__120
ge 120
_ getattr__ 121
__getattribute__ 121
__getitem__ 123

_ gt 120
__hash 120
iter 123
le 120
len 123

_ It 120
_ne__ 120
__nonzero__ 120
_repr__ 119

__setattr__ 121
__setitem___ 123
__str 119
__unicode__ 121
min 172
MingGW 464
minimiser (appel) 446
mixedCase 205
mode
interactif 31, 41
pas-a-pas 288
post mortem 293

e

modele oct 125,173 Iseek 224
de données 52 octale 60 Istat 227
producteur-consommateur ODBC (Open DataBase makedirs 227
369 Connectivity) 536 mkdir 227
Modula-3 4 open 173 name 240
module 133, 205, 213 opérateur 81 nice 236
structure 207 appartenance 83 open 223
Modulo 82 binaire 85 pathconf 228
MRO (Method Resolution d’interpolation 69 popen 236
Order) 127 de comparaison 85 read 225
multiplication 81 optparse 348 readlink 228
multiprocessing 369, 463 ord 173 remove 229
multithreading 452 ORM (Object-Relational removedirs 229
mysql-python 535 Mapper) 536 rename 229
N ORM (Object-Relational renames 229
. Mapping) 28 rmdir 230
name mangling 118 05 223 setgid 240
namedtuple 284 abort 233 setuid 240
namespace 112 access 226 spawn 238
négation 83 chdir 226 stat 230
nettoyage 287 chmod 226 symlink 231
New-style classe 126 chown 227 sysconf 241
next 147 chroot 226 system 238
noeud 371 close 224 uname 241
nombre entier 64 environ 239 unlink 231
nommage exec 233 wait 239
bonne pratique 212 execle 233 waitpid 239
conventions 204 execlp 234 walk 231
de classe 206 Ipe 234 ite 225
execlpe write
None ,63 . execv 234 os.path 243
non-régression 392 execve 234 abspath 243
porme execvp 234 basename 243
ISO 8601 305 execvpe 234 commonprefix 243
AR file 223 defpath 243
Nose 429 fork 235 dirname 243
Notlmplemented 63 fstat 224 exists 244
Numerical Python 544 fovne 224 tsize 244
. - yne getsize
numérique (littéral) 58 ftruncate 224 isfile 244
(o] getewd 226 join 244
object 126 getloadavg 240 split 245
objet getuid 240 outil de compression 251
hashable unique 75 kill 236 P
immuable 52 link 227

listdir 227 PageParser 378

m Programmation Python

Paquets 137
parametre
arbitraires 103
explicite 100
nommé 101
non explicites 102
pdb 288
PEP 3119 278
Perforce Defect Tracking
Integration 426
Perl 17
persistance 26, 265, 372
PHP 7
pickling 27
platform 245
architecture 245
machine 245
node 245
processor 245
python_build 246
release 246
system 246
uname 246
version 246
point
d’arrét 288
de rupture mémoire 476
de synchronisation 453
Polymorphisme 116, 493
post mortem 293
pow 174
print 50
processus 452
profile 433
profiling 432
programmation
événementielle 21
réseau 256

programme paramétrable 348

prompt 39

Pdb 292
property 131, 174
prototypage rapide 20
pseudo-code 49

pstats 436

Psyco 477

psycopg 536

puissance 83

Py_BuildValue 470

Py_InitModule 473

PyAlsa 543

PyArg ParseTuple 470

PyChecker 428

PyDev 45

pydoc 209

Pyflakes 539

Pygame 542

PyGTK 540

PyLint 428, 539

Pylons 29, 544

PyMedia 543

PyMethodDef 472

PyObject 470

PyOpenGL 543

PyQT 540

Pyrex 477

pysqlite 535

pystone 482

Python Software
Foundation 527

python_compiler 246

python_version 246

pythonique 100

PythonLabs 526

python-ldap 536

PYTHONPATH 134

PYTHONSTARTUP 40

PyUnit 403

pyUnitPerf 482

Q

QtDesigner 21
Queue 462
quicksort 357
quit 175
Quixote 544

R
ramasse-miette 53, 499
random 308
range 175
raw_input 176, 352
re 317
backreferences 327
MatchObject 326
SRE_Pattern 326
reduce 177
refactoring 401
référence relative 139
régression 388
relations entre objets 496
reload 135, 177
ReportLab 541
repr 119, 177
reraise 143
rest2web 542
reStructured Text 541
return 99
RML2PDF 541
round 178
Ruby 7
Ruby On Rails 29

S

SciPy 544

script de test 388

section critique 453

Selenium 402

self 113

séquence 66
immuable 67

modifiable 72

sérialisation 26, 265, 266, 267

set 75,178,214
setattr 179
settrace 424
SGMLParser 376, 378
shallow 80
shelve 268, 372
open 269
shutil 11, 247, 360

copy 247
copy2 247
copytree 247
move 248
rmtree 248
slice 179
Slots 132
sorted 180
soustraction 81
Soya 3D 542
SPE 45
SQLAlchemy 28, 536
SQlLite 28
SSH (Secure Shell) 13, 15
staticmethod 181
Stoplteration 147
Storm 28
str 182
string 67
structure conditionnelle 88
subprocess 12, 241
call 241
Popen 241
sum 182
super 183
surcharge des attributs 115
SWIG (Simplified Wrapper
Interface Generator) 465
sys 220
argv 220
exc_info 220
executable 220
exit 220
last_traceback 221
last_type 221
last_value 221
modules 221
path 221
platform 221
stderr 222
stdin 222
stdout 222

T
table des méthodes 472
tag 207, 208
taille de ligne 198
test
cases 403
coverage 400
ergonomie 402
fixture 403
fonctionnel 401
performance continu 480
runner 403
suites 403
unitaire 389
TestCase 404
texte
comparaison 296
TextTestRunner 408
thread 364, 452
threading 454
thread-safe 453
time 299
timeit 438
Tkinter 328, 364
binding d’événements 339
Button 332
Canvas 332
Checkbutton 333
Entry 334
extension 343
Frame 335
Label 335
Listbox 336
Menu 336
Message 337
Radiobutton 337
Scale 338
Scrollbar 338
Text 339
Tk 328
Toplevel 339
Trac 428
trace 424
traceback 140

e m

translate 352
transtypage 59, 151
tri 356
triple-quoted 54
try 142, 144
try..except..else 142
try..except..finally 144
try..finally 144
tuple 71

nommé 284
Turbogears 29, 544
Twill 538
Twisted 29
typage de Liskov 488
type 129, 184

a valeur unique 63

bool 65

int 64

long 65

U

unichr 185

unicode 55, 68, 121, 185

unittest 403

UPPERCASE_WORDS 205

urllib2 12, 257, 369, 375
build_opener 259
HTTPBasicAuthHandler 2

59

HTTPPasswordMgr 259
install_opener 259
OpenDirector 259
Request 260
urlopen 258

use case 389

utilitaire fichier 247

\")

valeur
a virgule flottante 61
exponentielle 62
trier 441

variable 215
booléenne 215

m Programmation Python

globale spécifique 209

vars 186

Vi 45

Visual Basic 43
vpython 542

w

Wall, Larry 17

WebUnit 402

while 91

Win32
extension 539

win32com 540
WingIDE 44
with 92, 354, 358
wxPython 540

X
XML 536
xrange 186

Y
yield 148

Y4

zc.buildout 537

zip 186

zipfile 254, 361
is_zipfile 256
ZipFile 254
Ziplnfo 256

Zope 29, 544

Programmation

Python

Choisi par Google comme I'un de ses langages piliers et utilisé dans des projets d’envergure tels que YouTube,
Python est omniprésent dans les applications web modernes. Open Source et portable, sa modularité et son
orientation objet permettent de créer des applications de toutes tailles, génériques et maintenables.

Python : de la syntaxe a 'optimisation

Python est tout indiqué pour le développement d'applications web : serveurs de contenu, moteurs de recherche, agents
intelligents, objets distribués... Il est également performant pour réaliser des scripts d'administration systeme ou
d'analyse de fichiers textuels, pour gérer I'accés a des bases de données, pour servir de langage glu entre plusieurs
applications, réaliser des applications graphiques classiques, etc.

Pour autant, le développeur n'exploitera vraiment sa puissance qu'en ayant acquis une certaine culture. Cest ce
que ce livre permet d’acquérir par la description de techniques éprouvées dans tous les grands projets de déve-
loppement en Python. Au-dela de la prise en main (installation des environnements d’exécution et de développement,
rappels de syntaxe avec les primitives et la bibliothéque standard), cet ouvrage aborde les bonnes pratiques de
développement Python, depuis les conventions de nommage et les design patterns objet les plus courants jusqu'a
la programmation dirigée par les tests et I'optimisation de code.

Enrichie en nouveaux cas pratiques et exercices, cette édition mise a jour pour Python 2.6 détaille également le
script de migration 2to3 vers Python 3 et présente la hibliothéque ctypes qui permet de manipuler les structures
de données en C/C++.

Au sommaire

Pourquoi Python? Pour quels usages? © Administration systeme e Prototypage d'application : maquettes d'in-
terfaces, de bibliotheques © Applications web et de gestion e Installation des environnements d’exécution et de
développement e Installation sous Linux, MS-Windows et Mac OS X e Tests et scripts de démarrage. Mode
interactif ® Choisir un éditeur ® Syntaxe ® Commentaires ® Modéles de données e Littéraux ® Types et opéra-
teurs e Indentation e Structures conditionnelles : if, for..in, while ® Structures du langage © Fonctions ¢ Contexte
d'exécution e Directives return et global ® Docstrings ® Classes ® Espaces de noms e Héritage ® Attributs pri-
vés ® Méthodes de comparaison ® Method Resolution Order ® Constructeur statique ® Surcharge de type ®
Slots et decorators © Modules ¢ Import Reload © Paguets ® Exceptions e Listes Constructeurs et itérateurs ©
Primitives du langage ® Exceptions : erreurs et avertissements e Conuventions de codage ° Blocs et espace-
ment ® Conventions de nommage ® Structure d’'un module ® Choix des noms : longueur, unicité, expressivité ®
Fonctions de la bibliotheque standard e Interaction avec I'interpréteur ® Accés au systeme e Utilitaires fichiers
Outils de compression ® Programmation réseau ® Persistance ® Conversion, transformation de données e Calculs
numériques ® Structures de données e Les modules itertools, re, Tkinter et lib2to3 e Cas pratiques ®
Programmation dirigée par les tests ® Tests unitaires et fonctionnels e Unittests, doctests et Coverage e
Intégration d'un projet dans I'environnement © Le futur de PyUnit © Optimisation du code ¢ Profiling ® Amélioration
des performances ® Code Patterns, multithreading e Pool, ctypes ¢ Tests de performance en continu °
Programmation orientée ohjet ® Typage, classification et encapsulation ® Héritage et polymorphisme ® Relations
entre objets e Design patterns orientés objet ® Singleton et Borg, Observer, Chain of responsability, Proxy... ®
Rnnexes © Histoire de Python e Bibliothéques tierces ® Sites, flux RSS, blogs...

A qui s’adresse cet ouvrage ?
- Au développeur souhaitant s'initier @ un nouveau langage et réaliser des applications web;

- Aux développeurs Python souhaitant aller plus loin dans les bonnes pratiques de développement (programmation

orientée objet, performances, tests unitaires...).

Tarek Ziadé

Tarek Ziadé est directeur
technique d’'Ingeniweb
(AlterWay), leader de la
gestion de contenu Open
Source. Il intervient dans
des conférences nationales
et internationales et a fondé
I'association afpy.org.

Il contribue non seulement
au développement de Python
mais également a d’autres
projets communautaires.

Téléchargez le code source
des études de cas sur le site
wwwi.editions-eyrolles.com

Nord Compo

cC
8
2
o
18]
o
C
Q
(&)

EYROLLES

——

	Choisir Python
	Table des matières
	Avant-propos
	Pourquoi ce livre ?
	À qui s’adresse l’ouvrage ?
	Guide de lecture
	Remerciements

	Première partie -
Découverte de Python
	1 -
Introduction
	Python ?
	Du code de qualité
	Orienté objet
	Portable
	Facile à intégrer
	Hautement productif
	Dynamique

	Python et les autres langages
	Python et Perl
	Ruby, PHP, Java...

	2 -
Python pour quels usages ?
	Administration système
	Des API simples et efficaces
	Manipuler des fichiers et des dossiers
	Manipuler des programmes
	Envoyer et recevoir des courriers électroniques
	Échanger des informations avec d’autres systèmes

	Le match Perl-Python
	Syntaxe
	Structures de données
	Manipulation de texte
	Conclusion

	Prototypage rapide d’applications
	Objectif d’une maquette
	Maquette d’interfaces
	Maquette de bibliothèque ou Fake
	Exemple de prototype de bibliothèque

	Recherche et calcul scientifique
	Pas de paradigme imposé
	Facilité de prise en main
	Création ou utilisation d’outils spécialisés

	Applications de gestion
	Conception d’interface utilisateur
	Stockage de données
	Sérialisation des objets
	Les bases de données relationnelles

	Applications web
	En un mot...

	3 -
Environnement de développement
	Installation sous Linux
	Installation par distribution
	Paquets Debian
	Paquets RedHat
	Distributions Mandrake et Fedora Core

	Compilation des sources
	Étapes d’installation
	Options de compilation
	Compilation et installation de Python

	Gérer plusieurs versions de Python

	Installation sous MS-Windows
	Installation sous Mac OS X
	Premiers tests de Python en mode interactif
	Script de démarrage du mode interactif
	Le choix d’un éditeur
	La coloration syntaxique
	La standardisation automatique
	Les raccourcis clavier et les macros
	L’édition multiple
	Le repliement de code et la recherche
	L’autocomplétion
	L’interpréteur et le débogueur embarqués
	La licence
	Les plates-formes reconnues

	En un mot...

	Deuxième partie -
Éléments du langage
	4 -
Syntaxe du langage
	L’instruction print
	print devient fonction

	Les commentaires
	Modèle de données
	Les littéraux
	Littéraux alphanumériques
	Normes ASCII et Unicode
	Évolution de l’Unicode de Python 2 à Python 3
	Caractères spéciaux

	Littéraux numériques
	Littéraux pour les entiers
	Littéraux pour les valeurs à virgule flottante
	Littéraux pour les nombres complexes

	Les types standards
	Les types à valeur unique
	None
	NotImplemented
	Ellipsis

	Les nombres
	Les nombres entiers
	Les nombres à virgule flottante
	Les nombres complexes
	Les décimaux

	Les séquences
	Les séquences immuables
	Les séquences modifiables

	Les mappings

	Les opérateurs
	Opérateurs de base
	Autres opérateurs
	Modulo
	Négation
	Inversion
	Puissance
	Appartenance
	Opérateurs binaires

	Opérateurs de comparaison
	Principes de la comparaison

	Ordre de traitement des opérations
	Construction de comparaisons complexes

	L’indentation
	Les structures conditionnelles
	L’instruction if
	L’instruction for..in
	L’instruction while

	L’instruction with
	En un mot...

	5 -
Structuration du code
	Fonctions
	Contexte d’exécution et directive global
	Directive return
	Paramètres d’une fonction
	Paramètres explicites et valeurs par défaut
	Les paramètres non explicites
	Les paramètres arbitraires
	Collisions de paramètres
	Signatures multiples de fonctions

	Directive lambda
	Documentation strings (docstrings)
	Decorators

	Classes
	Définition
	Espace de noms
	Paramètre self
	Héritage
	Héritage multiple
	Surcharge des attributs
	Constructeur et destructeur

	Attributs privés
	Méthodes spéciales
	Représentation et comparaison de l’objet
	Utilisation de l’objet comme fonction
	Accès aux attributs de l’objet
	Utilisation de l’objet comme conteneur
	Utilisation de l’objet comme type numérique

	New-style classes
	Le nouveau Method Resolution Order
	Constructeur statique
	Surcharge de type() par metaclass
	Descriptors
	Properties
	Slots
	Decorators pour les classes

	Modules
	Directive import
	Primitive reload
	Directives from et as

	Paquets
	Organisation d’un paquet
	Import * et __all__
	Références relatives

	Exceptions
	Exceptions du langage
	Classes d’exceptions de base
	Classes concrètes

	try..except..else
	try..finally
	try..except..finally

	Les list comprehensions
	Generators et iterators
	Iterators
	Generators
	Generator expression (genexp)

	En un mot...

	6 -
Les primitives
	Primitives du langage
	__import__ : __import__(nom, globals={}, locals={}, fromlist=[], level=- 1) -> module
	abs : abs(nombre) -> nombre
	all : all(iterable) -> booléen
	any : any(iterable) -> booléen
	apply : apply(objet[, args[, kwargs]]) -> valeur
	callable : callable(objet) -> booléen
	chr : chr(code) -> caractère
	classmethod : classmethod(fonction) -> méthode
	cmp : cmp(x, y) -> entier
	coerce : coerce(x, y) -> (x1, y1)
	compile : compile(source, fichier, mode[, flags[, dont_inherit]]) -> objet code
	delattr : delattr(objet, nom)
	dir : dir([objet]) -> liste d’attributs
	divmod : divmod(x, y) -> (division entière, modulo)
	enumerate : enumerate(iterable) -> indice, élément
	eval : eval(source[, globals[, locals]]) -> valeur
	execfile : execfile(filename[, globals[, locals]])
	exit : exit -> string
	file : file(nom[, mode[, buffering]]) -> objet file
	filter : filter(fonction ou None, séquence) -> list, tuple, ou string
	getattr : getattr(objet, nom[, défaut]) -> valeur
	globals : globals() -> dictionnaire
	hasattr : hasattr(objet, nom) -> booléen
	hash : hash(objet) -> integer
	help : Fonction d’aide en ligne
	hex : hex(nombre) -> représentation hexadécimale
	id : id(objet) -> entier
	input : input([prompt]) -> valeur
	int : int(x[, base]) -> entier
	intern: intern(string) -> string
	isinstance : isinstance(objet, classe ou type ou tuple) -> booléen
	issubclass : issubclass(C, B) -> bool
	iter : iter(collection) -> iterateur ou iter(callable, sentinelle) -> iterateur
	len : len(objet) -> entier
	license : license() -> prompt interactif
	list : list() -> nouvelle liste ou list(sequence) -> nouvelle liste
	locals : locals() -> dictionnaire
	map : map(fonction, séquence[, séquence...]) -> liste
	max : max(séquence) -> valeur
	min : min(séquence) -> valeur
	oct : oct(nombre) -> représentation octale.
	open : open(nom[, mode[, buffering]]) -> objet file
	ord : ord(caractère) -> entier
	pow : pow(x, y[, z]) -> nombre
	property : property(fget=None, fset=None, fdel=None, doc=None) -> attribut propriété
	quit : quit -> string
	range : range([start,] stop[, step]) -> liste d’entiers
	raw_input : raw_input([prompt]) -> string
	reduce : reduce(fonction, séquence[, initial]) -> valeur
	reload : reload(module) -> module
	repr : repr(objet) -> représentation
	round : round(nombre[, ndigits]) -> réel
	set : set(iterable) -> objet de type set
	setattr : setattr(objet, nom, valeur)
	slice : slice([start,] stop[, step])
	sorted : sorted(iterable, cmp=None, key=None, reverse=False) -> liste triée
	staticmethod : staticmethod(fonction) -> méthode statique
	str : str(objet) -> représentation de l’objet
	sum : sum(sequence, start=0) -> valeur
	super : super(type, objet) -> objet super lié à l’objet
	type : type(objet) -> type de l’objet
	type : type(nom, bases, dict) -> nouveau type
	unichr : unichr(i) -> caractère unicode
	unicode : unicode(string [, encoding[, errors]]) -> objet
	vars : vars([objet]) -> dictionnaire
	xrange : xrange([start,] stop[, step]) -> itérateur
	zip : zip(seq1 [, seq2 […]]) -> [(seq1[0], seq2[0]...), (...)]

	Exceptions du langage
	Erreurs
	AssertionError
	AttributeError
	EOFError
	FloatingPointError
	IOError
	ImportError
	IndentationError
	IndexError
	KeyError
	KeyboardInterrupt
	MemoryError
	NameError
	NotImplementedError
	OSError
	OverflowError
	ReferenceError
	RuntimeError
	StopIteration
	SyntaxError
	SystemError
	SystemExit
	TabError
	TypeError
	UnboundLocalError
	UnicodeEncodeError
	UnicodeDecodeError
	UnicodeTranslateError
	ValueError
	WindowsError
	ZeroDivisionError

	Avertissements
	UserWarning
	DeprecationWarning
	FutureWarning
	OverflowWarning
	PendingDeprecationWarning
	RuntimeWarning
	SyntaxWarning

	En un mot...

	7 -
Conventions de codage
	Mise en page du code
	Indentation
	Taille maximum d’une ligne
	Commentaires
	Commentaires simples
	Commentaires en fin de ligne
	Blocs de commentaires
	Documentation strings ou docstrings

	Espacement du code
	Espaces dans les expressions et définitions

	Conventions de nommage
	Modules
	Classes
	Fonctions et variables globales d’un module, méthodes et attributs d’une classe
	Constantes

	Structure d’un module
	En-tête
	Interpréteur
	Encodage
	Copyright et licence
	Tags

	Docstring de module
	Variables globales spécifiques
	Clauses d’importations
	Les jokers
	Organisation des clauses

	Variables globales
	Fonctions et classes, le corps du module
	Structuration d’une classe

	Conseils pour le choix des noms
	Règles générales
	Du sens
	Choix de la langue
	Unicité des noms
	La bonne longueur
	Éviter le mélange domaine/technique

	Règles pour chaque type
	Modules
	Classes
	Méthodes et fonctions
	Variables

	En un mot...

	Troisième partie -
La bibliothèque standard
	8 -
Principaux modules
	Interaction avec l’interpréteur
	sys
	argv
	executable
	exc_info()->infos
	exit()
	modules
	last_type, last_value, last_traceback
	path
	platform
	stdin, stdout et stderr

	Accès au système
	os
	Opérations sur les descripteurs de fichiers
	Manipulation des fichiers et répertoires
	Manipulation des processus
	Informations sur le système

	subprocess
	call(*args, **kwargs) -> code de retour
	class Popen

	os.path
	platform

	Utilitaires fichiers
	shutil
	copy(src, dst)
	copy2(src, dst)
	copytree(src, dst[, symlinks [, ignore]])
	rmtree(chemin, [ignore_errors[, onerror]])
	move(src, dst)

	dircache
	filecmp
	cmp(f1, f2[, shallow=True[, use_statcache]]) ->booléen
	class dircmp(a, b[, ignore[, hide]]) -> instance

	Outils de compression
	gzip
	class GzipFile([filename[, mode[, compresslevel[, fileobj]]]])
	open(fichier[, mode[, compresslevel]])

	zipfile
	class ZipFile(fichier[, mode[, compression]])
	class ZipInfo([fichier[, date_time]])
	is_zipfile(fichier) -> booléen

	Programmation réseau
	urllib2
	ftplib

	En un mot...

	9 -
Principaux modules, partie 2
	Persistance
	cPickle
	dump(objet, fichier[, protocol])
	load(fichier) -> objet
	dumps(objet[, protocole]) -> chaîne
	loads(chaîne [, protocole]) -> objet

	shelve
	open(nom_fichier[, flag[, protocole[, writeback]]])

	Conversion, transformation de données
	base64
	b64encode(chaîne[, altchars]) -> chaîne
	b64decode(chaîne[, altchars]) -> chaîne

	haslib
	haslib.md5
	class md5([chaîne])
	hashlib.sha

	Calculs numériques
	math
	fonctions de conversion
	fonctions trigonométriques
	constantes

	Structures de données
	array
	array(typecode[, initializer]) -> tableau

	abc
	collections
	Le type deque
	Le type defaultdict
	La fonction namedtuple
	Les Abstract Base Classes

	decimal
	class Decimal([value [, context]])

	cStringIO
	class StringIO([buffer])

	Utilitaires divers
	atexit
	pdb
	Le mode pas-à-pas
	Alias et fichier .pdbrc
	Le mode post mortem

	getpass
	copy
	difflib
	Affichage des différences
	Restauration

	time
	Epoch
	UTC/GMT
	Fonctions de manipulation
	Formatage des dates

	datetime
	class timedelta(weeks, days, minutes, hours, seconds, microsecondes, milliseconds)
	class date
	class time
	class datetime
	random

	En un mot...

	10 -
Principaux modules, partie 3
	Le module itertools
	chain(*itérables) -> itérateur
	count([premier_entier]) -> itérateur
	cycle(itérable) -> itérateur
	dropwhile(prédicat, itérable) -> itérateur
	groupby(itérable[, keyfunc]) -> itérateur
	ifilter(prédicat, itérable) -> itérateur
	ifilterfalse(prédicate, itérable) -> itérateur
	imap(fonction, *itérables) -> itérateur
	islice(itérable, [start,] stop [, step]) -> itérateur
	izip(*itérables) -> itérateur
	izip_longest(*itérables, [fillvalue=None]) -> itérateur
	repeat(élément, nb_occurences) -> itérateur
	starmap(fonction, séquence) -> itérateur
	takewhile(prédicat, itérable) -> itérateur
	tee(itérable[, n=2]) -> tuple d’itérateurs

	Le module re
	Expressions régulières ?
	Notation pour les expressions régulières
	Syntaxe des expressions régulières
	Symboles simples
	Symboles de répétition
	Symboles de regroupement
	Exemples plus complets
	Fonctions et objets de re

	Le module Tkinter
	Programmation événementielle
	La classe Tk
	Les widgets de base de Tkinter
	Positionnement d’un widget
	Options et méthodes d’un widget

	Binding d’événements
	Application type avec Tkinter
	Extensions pour Tkinter

	Le module lib2to3 et le script 2to3
	En un mot...

	11 -
Exercices corrigés
	Mode d’emploi du chapitre
	Programme
	Exercice 1 : programme paramétrable
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Texte
	Exercice 2 : le chiffrement de César
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Exercice 3 : transformer les adresses e-mails et les URL d’un texte en liens
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Exercice 4 : trier des phrases suivant le nombre de mots
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Fichiers
	Exercice 5 : recherche et remplacement de texte
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Exercice 6 : recopie conditionnelle et récursive de fichiers
	Description
	Points abordés
	Solution
	Discussion

	Exercice 7 : ajout d’un fichier dans une archive zip
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Threads et processus
	Exercice 8 : Tkinter, recherche d’un texte dans des fichiers en tâche de fond
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Exercice 9 : Un web spider rapide
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Persistance
	Exercice 10 : rendre persistants tous les objets d’un programme
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Web et réseau
	Exercice 11 : vérificateur de liens
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Exercice 12 : aspirateur de page web
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Exercice 13 : récupération d’un résumé des nouveaux e-mails reçus
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Divers
	Exercice 14 : système de documentation en ligne des modules
	Description
	Points abordés
	Solution
	Discussion
	Extension

	En un mot...

	Quatrième partie -
Techniques avancées
	12 -
Programmation dirigée par les tests
	À quoi servent les tests ?
	Barrière culturelle
	Principes
	Tests unitaires
	Construction d’un test unitaire
	Évolution des use cases
	Non-régression
	Regroupement des tests
	Tests plus complexes : raconter une histoire
	Les bouchons
	Test coverage
	Qualité des tests

	Tests fonctionnels
	Tests de l’interface
	Tests de l’ergonomie
	Dépendance forte à l’outil utilisé et au type d’interface

	Outils
	unittest
	Définition des test cases
	Organisation d’une campagne de tests

	doctests
	Exécution des doctests
	Syntaxe des doctests
	Environnement et options d’exécution
	doctests dans un fichier texte séparé
	Script de test

	Coverage

	Intégration dans l’environnement d’un projet
	Le futur de PyUnit
	En un mot...

	13 -
Bonnes pratiques et optimisation du code
	Quand optimiser ?
	Profiling
	Méthodes de profiling
	Outils de profiling
	Le module profile
	Le module hotshot
	Le module cProfile
	Le module pstats
	hotshot et pstats
	timeit

	Amélioration des performances
	Code patterns
	Quel type de conteneur choisir ?
	Trier des valeurs
	Concaténer des chaînes
	Remplacer certains tests par une gestion d’exception
	Minimiser les appels et rapprocher le code
	Utiliser les list comprehensions
	Utiliser les generators et les genexp
	Préférer les fonctions d’itertools

	Caching
	Multithreading
	Ressources partagées : difficultés de programmation
	Le module threading
	Le module Queue
	Le Global Interpreter Lock et multiprocessing

	Le côté obscur de la force : extension du langage
	Environnement de compilation
	Binding de bibliothèque
	Création d’un module d’extension

	Optimisation de l’utilisation de mémoire vive
	Économie de mémoire

	Optimisation du bytecode
	Psyco et Cython
	Psyco
	Cython

	Les tests de performance continus
	Rapport sur les performances
	Tests de performance ciblés
	decorator timed

	En un mot...

	14 -
Programmation orientée objet
	Principes généraux
	Typage, classification et encapsulation
	Typage de Liskov
	Encapsulation

	Héritage et polymorphisme
	Héritage
	Polymorphisme
	Duck typing et interfaces

	Relations entre objets
	Relation simple
	Relation multiple

	Héritage multiple
	Métaclasses
	Garbage collecting

	Design patterns orientés objet
	Patterns de génération d’objets
	Singleton et Borg
	Factory

	Patterns fonctionnels
	Visitor
	Observer
	Memento
	Chain of responsibility
	State

	Patterns structurels
	Adapter
	Facade
	Proxy

	En un mot...

	A -
L’histoire de Python
	Le langage ABC
	Environnement de développement
	Types de données
	Indentation du code

	Le projet Amoeba
	Le CNRI
	PythonLabs et BeOpen.com
	Python Software Foundation et Digital Creations
	Python et Zope

	B -
Bibliothèques tierces
	Installer une bibliothèque externe
	Utilisation de setuptools

	Bases de données
	Gadfly
	pysqlite
	mysql-python
	psycopg
	ODBC
	python-ldap
	SQLAlchemy

	Traitement de texte
	lxml
	Beautiful Soup

	Packaging, distribution
	Tests fonctionnels et contrôle qualité
	Twill
	Funkload
	guitest
	PyLint
	Pyflakes

	MS-Windows
	Win32 Extensions
	win32com

	Interfaces graphiques
	wxPython
	PyQT
	PyGTK

	Reporting et conversion
	ReportLab
	RML2PDF
	reStructuredText
	rest2web

	Jeux et 3D
	Pygame
	Soya 3D
	vpython
	PyOpenGL

	Audio et Vidéo
	PyMedia
	PyAlsa

	Bibliothèques scientifiques
	Numerical Python
	SciPy
	Biopython

	Web

	C -
Sites, flux RSS, blogs et autres friandises...
	Flux RSS
	Blogs
	Sites

	Index
	Symboles
	Numeriques
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

