
9
78

22
12

12
48

35

C
od

e
éd

ite
ur

:
G

1
2
4
8
3

IS
B

N
:

2
-2

1
2

-1
2

4
8

3
-5

Tarek Ziadé

Tarek Ziadé est directeur
technique d’Ingeniweb
(AlterWay), leader de la
gestion de contenu Open
Source. Il intervient dans
des conférences nationales
et internationales et a fondé
l’association afpy.org.
Il contribue non seulement
au développement de Python
mais également à d’autres
projets communautaires.

T.
 Z

ia
dé

C
on

ce
pt

io
n

:
N

or
d

C
om

po

38 €

T a r e k Z i a d é

P r é f a c e d e
S t e p h a n R i c h t e r

Choisi par Google comme l’un de ses langages piliers et utilisé dans des projets d’envergure tels que YouTube,
Python est omniprésent dans les applications web modernes. Open Source et portable, sa modularité et son
orientation objet permettent de créer des applications de toutes tailles, génériques et maintenables.

Python : de la syntaxe à l’optimisation

Python est tout indiqué pour le développement d’applications web : serveurs de contenu, moteurs de recherche, agents
intelligents, objets distribués… Il est également performant pour réaliser des scripts d’administration système ou
d’analyse de fichiers textuels, pour gérer l’accès à des bases de données, pour servir de langage glu entre plusieurs
applications, réaliser des applications graphiques classiques, etc.

Pour autant, le développeur n’exploitera vraiment sa puissance qu’en ayant acquis une certaine culture. C’est ce
que ce livre permet d’acquérir par la description de techniques éprouvées dans tous les grands projets de déve-
loppement en Python. Au-delà de la prise en main (installation des environnements d’exécution et de développement,
rappels de syntaxe avec les primitives et la bibliothèque standard), cet ouvrage aborde les bonnes pratiques de
développement Python, depuis les conventions de nommage et les design patterns objet les plus courants jusqu’à
la programmation dirigée par les tests et l’optimisation de code.

Enrichie en nouveaux cas pratiques et exercices, cette édition mise à jour pour Python 2.6 détaille également le
script de migration 2to3 vers Python 3 et présente la bibliothèque ctypes qui permet de manipuler les structures
de données en C/C++.

Au sommaire
Pourquoi Python? Pour quels usages ? • Administration système • Prototypage d’application : maquettes d’in-
terfaces, de bibliothèques • Applications web et de gestion • Installation des environnements d’exécution et de
développement • Installation sous Linux, MS-Windows et Mac OS X • Tests et scripts de démarrage. Mode
interactif • Choisir un éditeur • Syntaxe • Commentaires • Modèles de données • Littéraux • Types et opéra-
teurs • Indentation • Structures conditionnelles : if, for..in, while • Structures du langage • Fonctions • Contexte
d’exécution • Directives return et global • Docstrings • Classes • Espaces de noms • Héritage • Attributs pri-
vés • Méthodes de comparaison • Method Resolution Order • Constructeur statique • Surcharge de type •
Slots et decorators • Modules • Import • Reload • Paquets • Exceptions • Listes • Constructeurs et itérateurs •
Primitives du langage • Exceptions : erreurs et avertissements • Conventions de codage • Blocs et espace-
ment • Conventions de nommage • Structure d’un module • Choix des noms : longueur, unicité, expressivité •
Fonctions de la bibliothèque standard • Interaction avec l’interpréteur • Accès au système • Utilitaires fichiers •
Outils de compression • Programmation réseau • Persistance • Conversion, transformation de données • Calculs
numériques • Structures de données • Les modules itertools, re, Tkinter et lib2to3 • Cas pratiques •
Programmation dirigée par les tests • Tests unitaires et fonctionnels • Unittests, doctests et Coverage •
Intégration d’un projet dans l’environnement • Le futur de PyUnit • Optimisation du code • Profiling • Amélioration
des performances • Code Patterns, multithreading • Pool, ctypes • Tests de performance en continu •
Programmation orientée objet • Typage, classification et encapsulation • Héritage et polymorphisme • Relations
entre objets • Design patterns orientés objet • Singleton et Borg, Observer, Chain of responsability, Proxy… •
Annexes • Histoire de Python • Bibliothèques tierces • Sites, flux RSS, blogs…

À qui s’adresse cet ouvrage ?
- Au développeur souhaitant s’initier à un nouveau langage et réaliser des applications web ;
- Aux développeurs Python souhaitant aller plus loin dans les bonnes pratiques de développement (programmation

orientée objet, performances, tests unitaires…).

Programmation

Python
Conception et optimisation

2e édition

Programmation

Python

P
y
t
h
o
n

2
e

é
d
.

Téléchargez le code source
des études de cas sur le site
www.editions-eyrolles.com

@

G12483_ProgPython_3 24/03/09 16:43 Page 1

Programmation

Python

G12483_Titre_Python 17/03/09 14:32 Page 2

R. Goetter. – CSS2. Pratique du design web.
N°12461, 3e édition, 2009, 318 pages.

L. Jayr. – Flex 3 – Cahier du programmeur.
N°12409, 2009, 280 pages.

A. Vannieuwenhuyze. – Flex 3. Applications Internet riches
avec Flash ActionScript 3, MXML et Flex Builder.
N°12387, 2009, 532 pages.

G. Leblanc. – Silverlight 2.
N°12375, 2008, 330 pages.

G. Ponçon et J. Pauli. – Zend Framework.
N°12392, 2008, 460 pages.

E. Daspet et C. Pierre de Geyer. – PHP 5 avancé.
N°12369, 5e édition, 2008, 844 pages.

C. Porteneuve. – Bien développer pour le Web 2.0.
N°12391, 2e édition 2008, 600 pages.

A. Boucher. – Ergonomie web. Pour des sites web
efficaces.
N°12479, 2e édition 2009, 426 pages.

A. Boucher. – Mémento Ergonomie web.
N°12386, 2008, 14 pages.

E. Sloïm. – Sites web. Les bonnes pratiques.
N°12456, 2009, 14 pages.

A. Tasso. – Apprendre à programmer en ActionScript.
N°12199, 2007, 438 pages.

S. Bordage, D. Thévenon, L. Dupaquier, F.
Brousse. – Conduite de projets Web.
N°12325, 4e édition 2008, 394 pages.

N. Chu. – Réussir un projet de site Web.
N°12400, 5e édition ,2008, 246 pages.

O. Andrieu. – Réussir son référencement web.
N°12264, 2008, 302 pages.

G. Ponçon. – Best practices PHP 5. Les meilleures pratiques
de développement en PHP.
N°11676, 2005, 480 pages.

D. Séguy, P. Gamache. – Sécurité PHP 5 et MySQL.
N°12114, 2007, 240 pages.

R. Rimelé. – Mémento MySQL.
N°12012, 2007, 14 pages.

M. Nebra. – Réussir son site web avec XHTML et CSS.
N°12307, 2e édition, 2008, 316 pages.

J.-M. Defrance. – Premières applications Web 2.0 avec
Ajax et PHP.
N°12090, 2008, 450 pages (Collection Blanche).

K. Djaafar. – Développement JEE 5 avec Eclipse Europa.
N°12061, 2008, 380 pages.

S. Powers. – Débuter en JavaScript.
N°12093, 2007, 386 pages.

T. Templier, A. Gougeon. – JavaScript pour le Web 2.0.
N°12009, 2007, 492 pages.

D. Thomas et al. – Ruby on Rails.
N°12079, 2e édition 2007, 800 pages.

W. Altmann et al. – Typo3.
N°11781, 2006, 532 pages.

L. Bloch, C. Wolfhugel. – Sécurité informatique.
Principes fondamentaux pour l’administrateur système.
N°12021, 2007, 350 pages.

G. Gete. – Mac OS X Leopard efficace. Déploiement,
administration et réparation.
N°12263, 2008, 476 pages.

M. Mason. – Subversion. Pratique du développement
collaboratif avec SVN.
N°11919, 2006, 206 pages.

CHEZ LE MÊME ÉDITEUR

T a r e k Z i a d é

P r é f a c e d e S t e p h a n R i c h t e r

2e édition

Programmation

Python
Conception et optimisation

G12483_Titre_Python 17/03/09 14:32 Page 1

ÉDITIONS EYROLLES
61, bd Saint-Germain
75240 Paris Cedex 05

www.editions-eyrolles.com

Le code de la propriété intellectuelle du 1er juillet 1992 interdit en effet expressément la photocopie à
usage collectif sans autorisation des ayants droit. Or, cette pratique s’est généralisée notamment dans les
établissements d’enseignement, provoquant une baisse brutale des achats de livres, au point que la possibilité
même pour les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd’hui
menacée.
En application de la loi du 11 mars 1957, il est interdit de reproduire intégralement ou partiellement le

présent ouvrage, sur quelque support que ce soit, sans autorisation de l’éditeur ou du Centre Français d’Exploitation du
Droit de Copie, 20, rue des Grands-Augustins, 75006 Paris.
© Groupe Eyrolles, 2006, 2009, ISBN : 978-2-212-12483-5

Avec la contribution de Patrick Tonnerre.

À Amina et Milo

Par Stephan Richter

J’ai commencé la programmation avec un Commodore 64 (C64), un petit système
basé sur le langage de programmation Basic, qui est à la fois simple et puissant. J’ai
eu par la suite un PC doté de Borland Pascal. Le système d’aide en ligne de Pascal est
très impressionnant : chaque commande et bibliothèque est parfaitement docu-
mentée et accompagnée bien souvent d’exemples de code. Ce système permet une
maîtrise rapide du langage. De plus, le Pascal permet d’intégrer des séquences
d’assembleur, pour programmer par exemple directement la souris et le joystick. Le
seul défaut du Pascal est la compilation obligatoire, qui est un peu ennuyeuse pour
quelqu’un venant du Basic.

Par la suite, Jason Orendorff, pionnier de la communauté Python et lauréat 2001 du
Concours international d’obfuscation de code C (IOCCC) est devenu mon mentor et
m’a appris toutes les techniques avancées de programmation, comme la programma-
tion orientée objet par le biais de Java, langage particulièrement ordonné et propre.
Mais cette propreté a un prix : l’effort supplémentaire pour écrire un programme Java
dans les règles de l’art est trop important. Il faut toujours écrire des classes, et une
seule par fichier, puis compiler, etc. Jim Fulton parle de programmation « javiotique »
pour décrire ce surcroît d’effort.

Jason m’a alors converti à Python. Après une période d’adaptation, on tombe très vite
amoureux de ce langage. Aucune compilation n’est nécessaire et Python est utilisable
sur tant de plates-formes qu’il est plus portable que Java. De plus, Python permet de
programmer objet mais ne l’impose pas : il reste possible de faire des petits scripts
déstructurés. Youpi ! Enfin, l’indentation obligatoire du code ne pouvait que satis-
faire mes gênes prussiens.

Que peut-on espérer de mieux ? Des fonctionnalités ! Pour un développeur issu du
monde Pascal, le passage à des langages comme Java ou C++ est frustrant à cause de

Choisir Python

Programmation PythonVIII

la pauvreté des bibliothèques standards. La philosophie batteries included de Python
offre tout ce dont un développeur peut rêver.

Un autre avantage de Python est la richesse des bibliothèques tierces. Comme
Python est utilisé dans la quasi-totalité des domaines et à tous les niveaux applicatifs,
il existe des extensions pour toutes les fonctionnalités que l’on peut imaginer. Vous
souhaitez faire du calcul scientifique ? Utilisez l’extension numeric. Vous avez du
code MatLab à intégrer ? Installez l’extension matlab pour pouvoir piloter ce moteur
depuis Python. Le langage est aussi utilisé pour les frameworks web comme Zope et
Plone, les moteurs de jeu comme Pygame, les plug-ins pour Gimp et toute une
myriade d’applicatifs. Cette variété prouve la puissance de Python, qui s’adapte aussi
bien aux situations où seul un langage de script est nécessaire, que pour des besoins
plus complets, faisant appel à la programmation orientée objet.

J’ai découvert par la suite la communauté Python et plus généralement la mouvance
open source. Ma première contribution était un correctif dans un exemple pour une
bibliothèque d’envois d’e-mails. Guido von Rossum m’a personnellement répondu
pour me signaler que mon correctif serait intégré dans la prochaine release. L’Open
Source, quel bonheur !

Une communauté autour d’une technologie fait toute la différence : le niveau d’assis-
tance est incroyable et les questions obtiennent des réponses en général en quelques
heures. Quel logiciel propriétaire offre ce genre de service gratuitement ? Ce système
permet d’avancer sans jamais être bloqué, et les développeurs qui acquièrent leur
expérience par ce biais renvoient souvent l’ascenseur à la communauté en répondant
à leur tour aux questions des autres.

J’ai découvert par la suite Zope, le serveur d’applications écrit en Python. La découverte
de Zope provoque le même effet que celle de Python : « wow ! ». Zope offre toutes les
fonctionnalités rêvées pour une application web, comme la sécurité et la persistance,
ainsi que de nombreuses extensions. Quel plaisir, comparé à des frameworks comme
IBM WebSphere et BEA Weblogic.

Durant les quatre dernières années, j’ai fait partie des core developers de Zope 3, qui
est une récriture complète de Zope, basée sur l’expérience passée des versions 1 et 2.
Ce projet est passé du rang de prototype éducatif à ce qu’il est aujourd’hui : une
application utilisée en production par des entreprises pour des projets web critiques.
Zope 3 est considéré comme la plus stable et la plus sure des plates-formes web open
source disponibles à l’heure actuelle, grâce aux milliers de tests unitaires et fonction-
nels qui ont été codés en parallèle de sa conception. Les performances sont égale-
ment au rendez-vous : Zope 3 peut être configuré pour ne fournir que les services
utilisés dans un applicatif donné, et reste très performant comparé aux frameworks
capables de fournir la même quantité de fonctionnalités.

Choisir Python IX

Mais que pouvez-vous faire avec Zope 3 ? Le premier projet à avoir officiellement uti-
lisé Zope 3 est Schooltool, un outil gratuit de gestion d’école dans lequel je suis égale-
ment investi. Schooltool fournit de nombreuses fonctionnalités, de la génération de
rapports PDF aux calendriers en ligne. Beaucoup d’écoles ont d’ores et déjà adopté
Scholltool ainsi que son petit frère SchoolBell, et démontrent le succès de cet outil.
Pour l’année à venir, SchoolTool a déjà signé avec de nombreux partenaires du monde
de l’éducation, avec pour objectif de remplacer petit à petit les solutions propriétaires,
ce qui constitue un premier signe de l’entrée de la solution sur ce marché. Le projet est
financé par la Shuttleworth Foundation, et Mark Shuttleworth ne risquerait pas un cen-
time sur une technologie qui ne marcherait pas ou ne pourrait pas grandir.

Cela fait maintenant six ans que je gagne ma vie en développant du code Python
open source et c’est un véritable bonheur ! Je ne voudrais jamais, quelque fût le prix,
travailler pour une entreprise qui ne me laisserait pas écrire du code open source
Python. Dans mon autre vie, je suis un doctorant en physique, et même si les publi-
cations de recherche sont ouvertes à tous, le secret qui entoure le travail de recherche
m’oppresse souvent, en comparaison à mes travaux dans le monde de l’open source.

Merci pour votre lecture et régalez-vous avec ce livre !

Sincèrement,

Stephan

À propos de Stephan Richter

Stephan Richter est étudiant en doctorat de physique à l’université de Tufts (Sommervile, Massachusetts,
USA). Il fait partie de la communauté depuis 1999 et a participé à beaucoup de projets communautaires,
comme la documentation et l’organisation de la première conférence EuroZope. Stephan a aussi travaillé
en tant que consultant pour de nombreuses entreprises travaillant avec Zope, développé beaucoup
d’extensions et publié deux livres communautaires sur Zope, et un livre sur Zope 3 (Zope 3 Developer’s
Handbook aux éditions Sams). Depuis son premier sprint Zope 3 en 2002, Stephan participe activement
au développement de ce framework et gère de nombreux sous-projets, comme l’internationalisation et la
documentation.

Table des matières

Avant-propos ... XXXI

PREMIÈRE PARTIE

Découverte de Python ...1

CHAPITRE 1
Introduction... 3

Python ? . 3
Du code de qualité . 4
Orienté objet . 4
Portable . 4
Facile à intégrer . 5
Hautement productif . 5
Dynamique . 6

Python et les autres langages . 6
Python et Perl . 7
Ruby, PHP, Java... 7

CHAPITRE 2
Python pour quels usages ?.. 9

Administration système . 10
Des API simples et efficaces . 10

Manipuler des fichiers et des dossiers . 10
Manipuler des programmes . 11
Envoyer et recevoir des courriers électroniques . 13
Échanger des informations avec d’autres systèmes . 15

Le match Perl-Python . 17
Syntaxe . 17
Structures de données . 18
Manipulation de texte . 19
Conclusion . 20

Programmation PythonXII

Prototypage rapide d’applications . 20
Objectif d’une maquette . 20
Maquette d’interfaces . 21
Maquette de bibliothèque ou Fake . 22

Exemple de prototype de bibliothèque . 22
Recherche et calcul scientifique . 24

Pas de paradigme imposé . 24
Facilité de prise en main . 24
Création ou utilisation d’outils spécialisés . 24

Applications de gestion . 25
Conception d’interface utilisateur . 25
Stockage de données . 26

Sérialisation des objets . 26
Les bases de données relationnelles . 28

Applications web . 29
En un mot... . 30

CHAPITRE 3
Environnement de développement ... 31

Installation sous Linux . 31
Installation par distribution . 32

Paquets Debian . 32
Paquets RedHat . 33
Distributions Mandrake et Fedora Core . 33

Compilation des sources . 33
Étapes d’installation . 34
Options de compilation . 34
Compilation et installation de Python . 36

Gérer plusieurs versions de Python . 37
Installation sous MS-Windows . 37
Installation sous Mac OS X . 39
Premiers tests de Python en mode interactif . 39
Script de démarrage du mode interactif . 40
Le choix d’un éditeur . 41

La coloration syntaxique . 42
La standardisation automatique . 43
Les raccourcis clavier et les macros . 43
L’édition multiple . 43
Le repliement de code et la recherche . 43
L’autocomplétion . 43

Table des matières XIII

L’interpréteur et le débogueur embarqués . 44
La licence . 44
Les plates-formes reconnues . 44

En un mot... . 46

DEUXIÈME PARTIE

Éléments du langage ...47

CHAPITRE 4
Syntaxe du langage... 49

L’instruction print . 50
print devient fonction . 50

Les commentaires . 52
Modèle de données . 52
Les littéraux . 54

Littéraux alphanumériques . 54
Normes ASCII et Unicode . 55
Évolution de l’Unicode de Python 2 à Python 3 . 56
Caractères spéciaux . 57

Littéraux numériques . 58
Littéraux pour les entiers . 59
Littéraux pour les valeurs à virgule flottante . 61
Littéraux pour les nombres complexes . 62

Les types standards . 62
Les types à valeur unique . 63

None . 63
NotImplemented . 63
Ellipsis . 64

Les nombres . 64
Les nombres entiers . 64
Les nombres à virgule flottante . 65
Les nombres complexes . 66
Les décimaux . 66

Les séquences . 66
Les séquences immuables . 67
Les séquences modifiables . 72

Les mappings . 76
Les opérateurs . 81

Opérateurs de base . 81
Autres opérateurs . 82

Programmation PythonXIV

Modulo . 82
Négation . 83
Inversion . 83
Puissance . 83
Appartenance . 83
Opérateurs binaires . 85

Opérateurs de comparaison . 85
Principes de la comparaison . 86

Ordre de traitement des opérations . 86
Construction de comparaisons complexes . 87

L’indentation . 87
Les structures conditionnelles . 88

L’instruction if . 89
L’instruction for..in . 89
L’instruction while . 91

L’instruction with . 92
En un mot... . 95

CHAPITRE 5
Structuration du code ... 97

Fonctions . 97
Contexte d’exécution et directive global . 98
Directive return . 99
Paramètres d’une fonction . 100

Paramètres explicites et valeurs par défaut . 100
Les paramètres non explicites . 102
Les paramètres arbitraires . 103
Collisions de paramètres . 104
Signatures multiples de fonctions . 104

Directive lambda . 105
Documentation strings (docstrings) . 105
Decorators . 106

Classes . 111
Définition . 111
Espace de noms . 112
Paramètre self . 113
Héritage . 113

Héritage multiple . 114
Surcharge des attributs . 115
Constructeur et destructeur . 116

Attributs privés . 117

Table des matières XV

Méthodes spéciales . 119
Représentation et comparaison de l’objet . 119
Utilisation de l’objet comme fonction . 121
Accès aux attributs de l’objet . 121
Utilisation de l’objet comme conteneur . 122
Utilisation de l’objet comme type numérique . 124

New-style classes . 126
Le nouveau Method Resolution Order . 127
Constructeur statique . 128
Surcharge de type() par metaclass . 129
Descriptors . 130
Properties . 131
Slots . 132
Decorators pour les classes . 133

Modules . 133
Directive import . 134
Primitive reload . 135
Directives from et as . 136

Paquets . 137
Organisation d’un paquet . 137
Import * et __all__ . 138
Références relatives . 139

Exceptions . 139
Exceptions du langage . 140

Classes d’exceptions de base . 141
Classes concrètes . 142

try..except..else . 142
try..finally . 144
try..except..finally . 144

Les list comprehensions . 145
Generators et iterators . 147

Iterators . 147
Generators . 148
Generator expression (genexp) . 149

En un mot... . 150

CHAPITRE 6
Les primitives .. 151

Primitives du langage . 152
__import__ . 152
abs . 153

Programmation PythonXVI

all . 153
any . 153
apply. 154
callable . 154
chr . 154
classmethod . 154
cmp . 156
coerce . 156
compile . 157
delattr. 158
dir. 158
divmod . 160
enumerate . 160
eval . 160
execfile . 161
exit . 161
file . 161
filter . 163
getattr . 164
globals . 164
hasattr. 165
hash . 165
help . 165
hex . 166
id . 166
input. 167
int. 167
intern . 167
isinstance . 168
issubclass. 168
iter . 169
len . 169
license. 170
list . 171
locals. 171
map . 171
max. 172
min. 172
oct . 173
open . 173
ord . 173

Table des matières XVII

pow . 174
property . 174
quit. 175
range. 175
raw_input . 176
reduce . 177
reload . 177
repr. 177
round . 178
set. 178
setattr . 179
slice . 179
sorted . 180
staticmethod . 181
str . 182
sum. 182
super. 183
type . 184
type . 184
unichr . 185
unicode . 185
vars . 186
xrange. 186
zip . 186

Exceptions du langage . 187
Erreurs . 187

AssertionError . 187
AttributeError . 188
EOFError . 188
FloatingPointError . 188
IOError . 188
ImportError . 189
IndentationError . 189
IndexError . 189
KeyError . 189
KeyboardInterrupt . 190
MemoryError . 190
NameError . 190
NotImplementedError . 190
OSError . 191
OverflowError . 191

Programmation PythonXVIII

ReferenceError . 191
RuntimeError . 191
StopIteration . 191
SyntaxError . 191
SystemError . 192
SystemExit . 192
TabError . 192
TypeError . 192
UnboundLocalError . 193
UnicodeEncodeError . 193
UnicodeDecodeError . 193
UnicodeTranslateError . 194
ValueError . 194
WindowsError . 194
ZeroDivisionError . 194

Avertissements . 194
UserWarning . 195
DeprecationWarning . 195
FutureWarning . 195
OverflowWarning . 195
PendingDeprecationWarning . 195
RuntimeWarning . 196
SyntaxWarning . 196

En un mot... . 196

CHAPITRE 7
Conventions de codage... 197

Mise en page du code . 198
Indentation . 198
Taille maximum d’une ligne . 198
Commentaires . 199

Commentaires simples . 200
Commentaires en fin de ligne . 200
Blocs de commentaires . 200
Documentation strings ou docstrings . 201

Espacement du code . 202
Espaces dans les expressions et définitions . 203

Conventions de nommage . 204
Modules . 205
Classes . 206
Fonctions et variables globales d’un module, méthodes et attributs d’une classe 206

Table des matières XIX

Constantes . 207
Structure d’un module . 207

En-tête . 207
Interpréteur . 207
Encodage . 207
Copyright et licence . 208
Tags . 208

Docstring de module . 208
Variables globales spécifiques . 209
Clauses d’importations . 209

Les jokers . 209
Organisation des clauses . 210

Variables globales . 211
Fonctions et classes, le corps du module . 211

Structuration d’une classe . 211
Conseils pour le choix des noms . 212

Règles générales . 212
Du sens . 212
Choix de la langue . 213
Unicité des noms . 213
La bonne longueur . 213
Éviter le mélange domaine/technique . 213

Règles pour chaque type . 213
Modules . 213
Classes . 214
Méthodes et fonctions . 214
Variables . 215

En un mot... . 215

TROISIÈME PARTIE

La bibliothèque standard ..217

CHAPITRE 8
Principaux modules... 219

Interaction avec l’interpréteur . 220
sys . 220

argv . 220
executable . 220
exc_info . 220
exit . 220

Programmation PythonXX

modules . 221
last_type, last_value, last_traceback . 221
path . 221
platform . 221
stdin, stdout et stderr . 222

Accès au système . 222
os . 223

Opérations sur les descripteurs de fichiers . 223
Manipulation des fichiers et répertoires . 225
Manipulation des processus . 233
Informations sur le système . 239

subprocess . 241
call . 241
class Popen . 241

os.path . 243
platform . 245

Utilitaires fichiers . 247
shutil . 247

copy . 247
copy2 . 247
copytree . 247
rmtree . 248
move . 248

dircache . 249
filecmp . 249

cmp . 249
class dircmp . 249

Outils de compression . 251
gzip . 251

class GzipFile . 251
open . 252

zipfile . 254
class ZipFile . 254
class ZipInfo. 256
is_zipfile . 256

Programmation réseau . 256
urllib2 . 257
ftplib . 260

En un mot... . 263

Table des matières XXI

CHAPITRE 9
Principaux modules, partie 2.. 265

Persistance . 265
cPickle . 266

dump. 266
load. 266
dumps . 267
loads . 267

shelve . 268
open . 269

Conversion, transformation de données . 270
base64 . 270

b64encode . 270
b64decode . 270

haslib . 271
haslib.md5 . 271
class md5 . 272
hashlib.sha . 272

Calculs numériques . 273
math . 273

fonctions de conversion . 273
fonctions trigonométriques . 274
constantes . 275

Structures de données . 276
array . 276

array . 276
abc . 278
collections . 281

Le type deque . 281
Le type defaultdict . 282
La fonction namedtuple . 284
Les Abstract Base Classes . 284

decimal . 285
class Decimal . 285

cStringIO . 286
class StringIO. 286

Utilitaires divers . 286
atexit . 287
pdb . 288

Le mode pas-à-pas . 288

Programmation PythonXXII

Alias et fichier .pdbrc . 292
Le mode post mortem . 293

getpass . 294
copy . 295
difflib . 296

Affichage des différences . 296
Restauration . 298

time . 299
Epoch . 299
UTC/GMT . 299
Fonctions de manipulation . 300
Formatage des dates . 301

datetime . 303
class timedelta . 303
class date . 304
class time . 306
class datetime . 308
random . 308

En un mot... . 309

CHAPITRE 10
Principaux modules, partie 3.. 311

Le module itertools . 311
chain. 311
count . 312
cycle . 312
dropwhile . 313
groupby. 313
ifilter. 314
ifilterfalse . 314
imap . 315
islice . 315
izip . 315
izip_longest. 316
repeat . 316
starmap. 316
takewhile . 317
tee . 317

Le module re . 317
Expressions régulières ? . 317
Notation pour les expressions régulières . 319

Table des matières XXIII

Syntaxe des expressions régulières . 319
Symboles simples . 319
Symboles de répétition . 321
Symboles de regroupement . 323
Exemples plus complets . 324
Fonctions et objets de re . 325

Le module Tkinter . 328
Programmation événementielle . 328
La classe Tk . 328
Les widgets de base de Tkinter . 329

Positionnement d’un widget . 330
Options et méthodes d’un widget . 331

Binding d’événements . 339
Application type avec Tkinter . 341
Extensions pour Tkinter . 343

Le module lib2to3 et le script 2to3 . 343
En un mot... . 345

CHAPITRE 11
Exercices corrigés .. 347

Mode d’emploi du chapitre . 347
Programme . 348

Exercice 1 : programme paramétrable . 348
Description . 348
Points abordés . 348
Solution . 348
Discussion . 349
Extension . 351

Texte . 351
Exercice 2 : le chiffrement de César . 351

Description . 351
Points abordés . 352
Solution . 352
Discussion . 352
Extension . 353

Exercice 3 : transformer les adresses e-mails et les URL d’un texte en liens . . 353
Description . 353
Points abordés . 354
Solution . 354
Discussion . 354
Extension . 355

Programmation PythonXXIV

Exercice 4 : trier des phrases suivant le nombre de mots 356
Description . 356
Points abordés . 356
Solution . 356
Discussion . 357
Extension . 357

Fichiers . 358
Exercice 5 : recherche et remplacement de texte . 358

Description . 358
Points abordés . 358
Solution . 358
Discussion . 359
Extension . 360

Exercice 6 : recopie conditionnelle et récursive de fichiers 360
Description . 360
Points abordés . 360
Solution . 360
Discussion . 361

Exercice 7 : ajout d’un fichier dans une archive zip . 361
Description . 361
Points abordés . 361
Solution . 361
Discussion . 362
Extension . 363

Threads et processus . 364
Exercice 8 : Tkinter, recherche d’un texte dans des fichiers en tâche de fond . 364

Description . 364
Points abordés . 364
Solution . 364
Discussion . 368
Extension . 368

Exercice 9 : Un web spider rapide . 369
Description . 369
Points abordés . 369
Solution . 369
Discussion . 371
Extension . 371

Persistance . 372
Exercice 10 : rendre persistants tous les objets d’un programme 372

Description . 372
Points abordés . 372

Table des matières XXV

Solution . 372
Discussion . 373
Extension . 374

Web et réseau . 374
Exercice 11 : vérificateur de liens . 374

Description . 374
Points abordés . 375
Solution . 375
Discussion . 375
Extension . 375

Exercice 12 : aspirateur de page web . 375
Description . 375
Points abordés . 376
Solution . 376
Discussion . 378
Extension . 379

Exercice 13 : récupération d’un résumé des nouveaux e-mails reçus 379
Description . 379
Points abordés . 379
Solution . 379
Discussion . 381
Extension . 382

Divers . 382
Exercice 14 : système de documentation en ligne des modules 382

Description . 382
Points abordés . 382
Solution . 382
Discussion . 383
Extension . 384

En un mot... . 384

QUATRIÈME PARTIE

Techniques avancées ..385

CHAPITRE 12
Programmation dirigée par les tests 387

À quoi servent les tests ? . 388
Barrière culturelle . 388
Principes . 389

Tests unitaires . 389

Programmation PythonXXVI

Construction d’un test unitaire . 390
Évolution des use cases . 391
Non-régression . 392
Regroupement des tests . 394
Tests plus complexes : raconter une histoire . 394
Les bouchons . 395
Test coverage . 400
Qualité des tests . 400

Tests fonctionnels . 401
Tests de l’interface . 401
Tests de l’ergonomie . 402
Dépendance forte à l’outil utilisé et au type d’interface 402

Outils . 403
unittest . 403

Définition des test cases . 404
Organisation d’une campagne de tests . 407

doctests . 411
Exécution des doctests . 411
Syntaxe des doctests . 412
Environnement et options d’exécution . 415
doctests dans un fichier texte séparé . 420
Script de test . 423

Coverage . 424
Intégration dans l’environnement d’un projet . 427
Le futur de PyUnit . 428
En un mot... . 430

CHAPITRE 13
Bonnes pratiques et optimisation du code 431

Quand optimiser ? . 432
Profiling . 432

Méthodes de profiling . 433
Outils de profiling . 433

Le module profile . 433
Le module hotshot . 434
Le module cProfile . 435
Le module pstats . 436
hotshot et pstats . 437
timeit . 438

Amélioration des performances . 440
Code patterns . 441

Table des matières XXVII

Quel type de conteneur choisir ? . 441
Trier des valeurs . 441
Concaténer des chaînes . 444
Remplacer certains tests par une gestion d’exception 445
Minimiser les appels et rapprocher le code . 446
Utiliser les list comprehensions . 448
Utiliser les generators et les genexp . 449
Préférer les fonctions d’itertools . 449

Caching . 450
Multithreading . 452

Ressources partagées : difficultés de programmation 452
Le module threading . 454
Le module Queue . 462
Le Global Interpreter Lock et multiprocessing . 463

Le côté obscur de la force : extension du langage . 464
Environnement de compilation . 464
Binding de bibliothèque . 465
Création d’un module d’extension . 469

Optimisation de l’utilisation de mémoire vive . 475
Économie de mémoire . 476

Optimisation du bytecode . 477
Psyco et Cython . 477

Psyco . 477
Cython . 479

Les tests de performance continus . 480
Rapport sur les performances . 481
Tests de performance ciblés . 481
decorator timed . 482

En un mot... . 485

CHAPITRE 14
Programmation orientée objet .. 487

Principes généraux . 487
Typage, classification et encapsulation . 488

Typage de Liskov . 488
Encapsulation . 490

Héritage et polymorphisme . 492
Héritage . 492
Polymorphisme . 493
Duck typing et interfaces . 495

Relations entre objets . 496

Programmation PythonXXVIII

Relation simple . 497
Relation multiple . 497

Héritage multiple . 498
Métaclasses . 499
Garbage collecting . 499

Design patterns orientés objet . 500
Patterns de génération d’objets . 500

Singleton et Borg . 501
Factory . 504

Patterns fonctionnels . 505
Visitor . 505
Observer . 507
Memento . 510
Chain of responsibility . 513
State . 516

Patterns structurels . 518
Adapter . 518
Facade . 520
Proxy . 521

En un mot... . 522

ANNEXE A
L’histoire de Python .. 523

Le langage ABC . 523
Environnement de développement . 523
Types de données . 524
Indentation du code . 524

Le projet Amoeba . 525
Le CNRI . 526
PythonLabs et BeOpen.com . 526
Python Software Foundation et Digital Creations . 527
Python et Zope . 527

ANNEXE B
Bibliothèques tierces... 531

Installer une bibliothèque externe . 532
Utilisation de setuptools . 533

Bases de données . 535
Gadfly . 535
pysqlite . 535

Table des matières XXIX

mysql-python . 535
psycopg . 536
ODBC . 536
python-ldap . 536
SQLAlchemy . 536

Traitement de texte . 536
lxml . 537
Beautiful Soup . 537

Packaging, distribution . 537
Tests fonctionnels et contrôle qualité . 538

Twill . 538
Funkload . 538
guitest . 538
PyLint . 539
Pyflakes . 539

MS-Windows . 539
Win32 Extensions . 539
win32com . 540

Interfaces graphiques . 540
wxPython . 540
PyQT . 540
PyGTK . 540

Reporting et conversion . 541
ReportLab . 541
RML2PDF . 541
reStructuredText . 541
rest2web . 542

Jeux et 3D . 542
Pygame . 542
Soya 3D . 542
vpython . 542
PyOpenGL . 543

Audio et Vidéo . 543
PyMedia . 543
PyAlsa . 543

Bibliothèques scientifiques . 543
Numerical Python . 544
SciPy . 544
Biopython . 544

Web . 544

Programmation PythonXXX

ANNEXE C
Sites, flux RSS, blogs et autres friandises... 545

Flux RSS . 545
Blogs . 546
Sites . 547

Index... 549

« wOOt! I know Python! »

« Wow ! Je maîtrise Python maintenant ! »

— Neo, retirant son casque

Ce livre traite de Python, un langage de programmation de haut niveau, orienté objet,
totalement libre et terriblement efficace, conçu pour produire du code de qualité, por-
table et facile à intégrer. Ainsi la conception d’un programme Python est très rapide et
offre au développeur une bonne productivité. En tant que langage dynamique, il est
très souple d’utilisation et constitue un complément idéal à des langages compilés.

Il reste un langage complet et autosuffisant, pour des petits scripts fonctionnels de quel-
ques lignes, comme pour des applicatifs complexes de plusieurs centaines de modules.

Pourquoi ce livre ?
Il existe déjà de nombreux ouvrages excellents traduits de l’anglais qui traitent de
Python voire en présentent l’intégralité des modules disponibles. Citons Python en
concentré, le manuel de référence de Mark Lutz et David Ascher, aux éditions
O’Reilly, ou encore Apprendre à programmer avec Python de Gérard Swinnen, aux
éditions Eyrolles, inspiré en partie du texte How to think like a computer scientist
(Downey, Elkner, Meyers), et comme son titre l’indique, très pédadogique.

Alors, pourquoi ce livre ?

Avant-propos

Programmation PythonXXXII

Si ce livre présente comme ses prédécesseurs les notions fondamentales du langage, avec
bien sûr des exemples originaux, des choix dans la présentation de certains modules, et
une approche globale particulière, il tente également d’ajouter à ce socle des éléments
qui participent de la philosophie de la programmation en Python, à savoir :
• des conventions de codage ;
• des recommandations pour la programmation dirigée par les tests ;
• des bonnes pratiques de programmation et des techniques d’optimisation ;
• des design patterns orientés objet.

Même si chacun de ces sujets pourrait à lui seul donner matière à des ouvrages
entiers, les réunir dans un seul et même livre contribue à fournir une vue complète de
ce qu’un développeur Python averti et son chef de projet mettent en œuvre quoti-
diennement.

À qui s’adresse l’ouvrage ?
Cet ouvrage s’adresse bien sûr aux développeurs de tous horizons mais également aux
chefs de projets.

Les développeurs ne trouveront pas dans ce livre de bases de programmation ; une
pratique minimale préalable est indispensable, quel que soit le langage utilisé. Il n’est
pour autant pas nécessaire de maîtriser la programmation orientée objet et la con-
naissance d’un langage impératif est suffisante.

Les développeurs Python débutants – ou les développeurs avertis ne connaissant pas
encore ce langage – trouveront dans cet ouvrage des techniques avancées, telles que la
programmation dirigée par les tests, les patterns efficaces et l’application de certains
design patterns objet.

Les chefs de projets trouveront des éléments pratiques pour augmenter l’efficacité de
leurs équipes, notamment la présentation des principaux modules de la bibliothèque
standard – pour lutter contre le syndrome du NIH (Not Invented Here) –, des con-
ventions de codage, et un guide explicite des techniques de programmation dirigée
par les tests.

Avant-propos XXXIII

Guide de lecture
Le livre est découpé en quatre parties qui peuvent être lues de manière relativement
indépendante, en fonction des besoins.

La première partie présente une introduction au langage, décrit les différents
domaines d’utilisation de Python, ainsi que la mise en place d’un environnement de
développement ; elle s’adresse principalement aux lecteurs qui découvrent Python.

La deuxième partie est consacrée à la présentation du langage, de la syntaxe aux con-
ventions de codage, en passant par les primitives. C’est un référentiel complet utile
en toutes circonstances.

La troisième partie présente les modules de la bibliothèque standard les plus fré-
quemment utilisés, pour ne pas rechercher ailleurs ce qui est déjà disponible. Cette
partie s’achève sur une petite série d’exercices.

Enfin, la quatrième partie regroupe les techniques avancées, à savoir la programma-
tion dirigée par les tests, les bonnes pratiques et techniques d’optimisation, et enfin
des techniques de programmation orientée objet.

Ce livre s’achève par une série d’annexes qui présentent l’histoire de Python, une liste
de bibliothèques tierces, une liste de sites, blogs, et autres sources d’information de la
planète Python.

Remerciements
Ce livre n’aurait jamais été possible sans le soutien et l’aide de :

Patrick Tonnerre, Jean-Marie et Gaël Thomas, Muriel Shan Sei Fan, Anahide
Tchertchian, Olivier Grisel, Jean-Philippe Camguilhem, Laurent Godard, Stephan
Richter, Guido van Rossum, Matthieu Agopian, Yoann Aubineau, Eric Brehault,
William Famy, Olivier Deckmyn, Thomas Desvenain, Jean-Philippe Camguilhem.

Amina et Milo !

Tarek Ziadé

tarek@ziade.org

programmation-python.org

Programmation PythonXXXIV

ARTHUR :

 Lancelot ! Lancelot ! Lancelot !

 [mégaphone de police]

 Lancelooooooooot !

LANCELOT :

 Bloody hell, mais que se passe-t-il donc, mon Roi ?

ARTHUR :

 Bevedere, explique-lui !

BEVEDERE :

 Nous devons te parler d’un nouveau langage de programmation : Python

LANCELOT :

 Nouveau ? Cela fait bien dix ans qu’il existe, et je ne vois pas en quoi cela va nous
aider à récupérer le Saint-Graal !

BEVEDERE :

 Saint-Graal, Saint-Graal...

 [soupir]

 Tu ne peux pas penser à des activités plus saines que cette quête stupide de temps en
temps ?

ARTHUR :

 [sort une massue et assomme Bevedere avec]

 Son explication était mal partie de toute manière.

GARDES FRANÇAIS :

 Est-ce que ces messieurs les Anglais peuvent aller s’entretuer plus loin ?

 Ne voyez-vous pas que nous sommes concentrés sur notre jeu en ligne ?

ARTHUR :

 Ce tunnel sous la Manche, quelle hérésie !

 [racle sa gorge]

 Lancelot, assieds-toi, et écoute-moi. (et ferme ce laptop, bloody hell !)

LANCELOT :

 [rabat l’écran de son laptop]

Avant-propos XXXV

ARTHUR :

 La quête a changé. Tu dois maintenant apprendre le langage Python,

 et découvrir pourquoi il est de plus en plus prisé par mes sujets.

LANCELOT :

 Mais...

ARTHUR :

 Il n’y a pas de mais !

 [menace Lancelot avec sa massue]

 Je suis ton Roi. dot slash.

 Prends ce livre, et au travail !

GARDES FRANÇAIS :

 Oui, au travail, et en silence !

PREMIÈRE PARTIE

Découverte de
Python

Cette première partie, qui est très courte, contient trois chapitres dédiés à la
découverte de Python.

Le premier chapitre est une introduction au langage, qui détaille les caractéristiques
présentées dans l’avant-propos, et renvoie le lecteur vers les chapitres consacrés,
puis effectue une comparaison avec d’autres languages.

Pour compléter cette introduction, le deuxième chapitre présente les domaines
d’utilisation les plus courants de Python.

Enfin, le dernier chapitre couvre la mise en place d’un environnement de
développement, de l’installation du langage au choix d’un éditeur.

Mettre en place un environnement de développement agréable conditionne la
lecture de la suite du livre : de nombreuses portions de code sont fournies et avoir
un prompt et un éditeur à portée de main permet de les tester directement.

Python – why settle for snake oil when you can have the whole snake ?

« Python – Pourquoi se contenter d’huile de serpent quand
on peut avoir le serpent tout entier ? »

Mark Jackson

En guise d’introduction, ce premier chapitre présente quelques caractéristiques de
Python et renvoie aux chapitres consacrés. S’ensuit une comparaison avec d’autres
langages. Le souhait n’est pas d’être exhaustif, mais plutôt de situer Python dans
l’esprit des développeurs familiers avec d’autres langages.

Python ?
Pour reprendre l’énoncé de l’avant-propos, Python est un langage :
• conçu pour produire du code de qualité, portable et facile à intégrer ;
• de haut niveau, orienté objet et totalement libre ;
• hautement productif ;
• dynamique.

1
Introduction

Découverte de Python
PREMIÈRE PARTIE

4

Du code de qualité
Grâce à sa syntaxe claire, cohérente et concise, présentée au chapitre 4, Python
permet aux développeurs de produire du code de qualité, lisible et maintenable.
Écrire du code Python est un exercice agréable, même en respectant les conventions
de codage, présentées au chapitre 7.

Fourni dès le départ avec des modules de tests, Python est un langage agile. Le terme
agile est originellement issu de la méthodologie de programmation agile (Beck et
Al.), très proche de la programmation itérative. Cette méthodologie, qui réduit les
risques liés à la conception de logiciels, introduit entre autres des principes de tests
continus du code.

Le chapitre 12 présente les techniques de programmation dirigée par les tests appli-
quées à Python.

Orienté objet
Même si elle n’est pas imposée, Python permet la programmation orientée objet.
Tous les mécanismes objet essentiels sont implémentés et toutes les données mani-
pulées sont des instances de classes, comme pour les langages SmallTalk ou Ruby.

Enfin, le code peut être structuré en modules (fichiers) qui sont ensuite importables
dans l’interpréteur. Ce découpage, inspiré de Modula-3, permet d’organiser le code
et son utilisation par des espaces de noms, et aussi de faciliter l’extension du langage
par des bibliothèques tierces compilées dans d’autres langages.

Le chapitre 5 explique comment écrire des classes et structurer le code en modules et
paquets, et le chapitre 14 présente quelques design patterns (motifs de conception)
orientés Python.

Portable
Python fonctionne sous différentes variantes d’Unix, Windows, Mac OS, BeOs,
NextStep, et par le biais de différentes implémentations.

Les implémentations actuelles de Python sont :
• Cpython : implémentation en C, qui est l’implémentation par défaut de Python

et la plus répandue ;

B http://www.agilemanifesto.org

Introduction
CHAPITRE 1

5

• Jython : implémentation en Java, qui permet d’exécuter du code source Python
dans un environnement Java, et d’utiliser des modules Java dans le code Python
de manière transparente ;

• PyPy : implémentation en Python du langage Python ;
• IronPython : implémentation pour .NET et Mono ;
• Stackless Python : une variante de CPython, légèrement plus rapide.

Il existe bien sûr des extensions spécifiques à chaque plate-forme, mais l’ensemble
des primitives du langage et la majorité des extensions de la bibliothèque standard
sont disponibles sur toutes les plates-formes. En d’autres termes, un programme
conçu sur une plate-forme fonctionnera directement, sauf programmation spéci-
fique, sur d’autres plates-formes.

CPython, implémentation de référence pour cet ouvrage, peut être installé et utilisé
sous Windows, Mac Os et GNU/Linux (voir chapitre 3).

Facile à intégrer
Un programme écrit en Python s’intègre très facilement avec d’autres composants
logiciels. Il est possible par exemple d’utiliser directement des bibliothèques externes
ou encore d’intégrer du code C ou C++ comme l’explique le chapitre 13.

Hautement productif
La conception d’applications en Python est très rapide car certains aspects de pro-
grammation sont gérés automatiquement, comme la gestion des ressources mémoire
et le typage des données, décrits au chapitre 4.

Grâce à des types de base très puissants et des primitives de haut niveau, présentées
dans le chapitre 6, un programme Python est simple à concevoir et concis. Un pro-
gramme Python est en général 3 à 5 fois plus court qu’un programme C++ équivalent.

Ces qualités font de Python un langage idéal dans beaucoup de domaines, comme le
chapitre 2 le décrit.

Enfin, la bibliothèque standard de Python est très complète, et permet de répondre
aux besoins communs de programmation. Les chapitres 8, 9 et 10 présentent les
modules les plus fréquemment utilisés.

Grâce au modèle Open Source, la communauté des développeurs Python est en
outre très productive et de nombreuses extensions (voir annexe B) gravitent autour
du langage

Découverte de Python
PREMIÈRE PARTIE

6

Dynamique
Python est un langage dynamique : dans la plupart des implémentations, le code
source n’est pas compilé contrairement à des langages comme C ou Pascal, mais exé-
cuté à la volée. On parle alors de langage interprété.

Ce mode de fonctionnement rend la programmation beaucoup plus souple puisqu’il
est possible de changer un programme en cours d’exécution, ou de tester du code en
mode interactif sans disposition particulière.

Ce dynamisme fait partie également de la philosophie de programmation objet
Python, basée sur le duck typing, décrit dans le chapitre 14.

L’interprétation rend aussi l’exécution plus lente, mais ce défaut est surmontable
grâce à de bonnes pratiques de programmation et des techniques d’optimisation
décrites dans le chapitre 13.

Les applications où les performances sont un facteur critique ne seront pas écrites à
100 % en Python, mais pourront avantageusement être nivelées : un noyau codé en
C, C++ ou tout autre langage compilé, et une couche supérieure en Python, pour
toutes les parties non critiques.

Le langage Cython, décrit dans le chapitre 13, permet en outre de conserver les béné-
fices de la syntaxe de Python tout en manipulant des structures compilées en
langage C.

Python et les autres langages
Si vous êtes habitué à un autre langage, cette section, sans vouloir faire un comparatif
exhaustif, présente les différences majeures entre Python et d’autres outils.

CULTURE Langage interprété et langage compilé

Un langage est dit interprété lorsque le système traduit et exécute chaque ligne d’un programme à la
volée. Le résultat d’une modification peut être constatée en relançant l’exécution du programme.
À l’inverse, un langage compilé transforme le programme en une série d’instructions machine par le biais
d’une étape de compilation. Celle-ci produit un fichier exécutable qui est directement compréhensible
par le processeur. La modification du fichier source nécessite de repasser par l’étape de compilation
avant de pouvoir tester la nouvelle version.

Introduction
CHAPITRE 1

7

Python et Perl
Le chapitre 2 fournit des éléments de comparaison avec le langage Perl, relatifs à la
programmation système. En attendant, voici un message humoristique publié sur la
mailing-list Python il y a quelques années, qui décrit bien une des différences
majeures entre Python et Perl : la lisibilité.

Comparaison de Perl et Python par Yoda

Sur la planète Dagobah,

avec Yoda accroché dans son dos, Luke grimpe sur une des vignes qui poussent dans le
marais pour atteindre le laboratoire de statistiques de Dagobah.

Il y continue ses exercices, greppe, installe des nouveaux paquets,se connecte en root, écrit des
nouvelles versions de scripts en Python pour remplacer des scripts Perl vieux de deux ans.

Yoda : Écris du code ! Oui. La force d'un programmeur découle de la maintenabilité de son
code. Mais méfies-toi de Perl ! Syntaxe laconique, plus d'une manière de faire quelque
chose ! Le coté obscur de la maintenabilité Perl est. Si une seule fois par le chemin obscur tu
t'engages, pour toujours ta destinée sera marquée.

Luke : Est-ce que Perl est mieux que Python ?

Yoda : Non... non... non. Plus rapide, plus facile, plus séduisant.

Luke : Mais comment saurais-je pourquoi Python est mieux que Perl ?

Yoda : Tu sauras. Quand le code écrit il y a 6 mois de relire tu tenteras.

Ruby, PHP, Java...
En janvier 2005, lors de la première édition de ce livre, ce chapitre présentait un
comparatif entre Python et les autres langages. Ce comparatif avait du sens car la
maturité des langages à l’époque n’était pas encore très avancée dans certains
domaines. Ruby par exemple ne supportait pas encore l’Unicode, et PHP commen-
çait à supporter un modèle objet depuis quelques mois.

En 2009, les langages de programmation modernes ont tous évolué et apportent tous
une réponse efficace dans un ou plusieurs domaines d’application, sans souffrir de limi-
tations. Cependant, ils comportent toujours des faiblesses, même si en général des outils
complémentaires les pallient, à l’image de ce qu’Eclipse apporte à Java par exemple : des
automatismes répondent au manque d’expressivité de la syntaxe du langage.

Aujourd’hui, Python n’est certainement pas supérieur à d’autres langages. Sa philo-
sophie, qui est distillée tout au long de ce livre, est une façon de programmer. Mais,
contrairement à des langages spécifiques comme PHP qui se focalise sur un domaine
précis, Python est universel. Il peut être utilisé dans un grand nombre de contextes.
Les domaines d’application les plus répandus sont présentés dans le chapitre suivant.

For tiny projects (100 lines or fewer) that involve a lot of text pattern matching, I am still
more likely to tinker up a Perl-regexp-based solution [...] For anything larger or more com-
plex, I have come to prefer the subtle virtues of Python — and I think you will, too.

« Pour les petits projets de moins de cent lignes qui nécessitent beaucoup de
recherche de texte, je préfère encore la solution Perl et ses outils d’expressions régu-
lières. Pour tout projet plus grand ou plus complexe, j’opte à présent pour les vertus
de Python, et je pense que vous y viendrez aussi. »

Eric Raymond

Le langage C pour l’embarqué, Ada pour les systèmes critiques, Perl pour les expres-
sions régulières, etc. Chaque langage a ses sujets de prédilection, que ce soit pour des
raisons historiques ou parce qu’il offre de réels avantages dans le domaine.

Ce chapitre décrit les différents domaines dans lesquels Python est le plus utilisé, au
travers d’exemples concrets, à savoir :
• l’administration système ;
• le prototypage rapide d’applications ;
• la recherche et le calcul scientifique ;
• les applications de gestion ;
• les applications web.

Cette liste n’est certainement pas exhaustive mais représente les domaines les plus
fréquemment cités.

2
Python pour quels usages ?

Découverte de Python
PREMIÈRE PARTIE

10

Administration système
Les administrateurs système ont souvent besoin de concevoir des petits programmes
pour automatiser certaines tâches. Ils utilisent généralement l’interpréteur de com-
mandes, qui offre une syntaxe basique pour concevoir des séquences d’opérations.

Toutefois ce système est très limité et n’offre que des fonctionnalités de très haut
niveau : certaines opérations sur le système ne sont pas possibles sans appels à des
programmes annexes.

Utiliser des langages de plus bas niveau comme le C permet de lever ces limitations,
mais la conception des scripts devient vite fastidieuse et délicate.

Python, conçu à l’origine pour ce cas de figure, s’intercale entre l’interpréteur de com-
mandes et le C, en proposant un niveau intermédiaire, c’est-à-dire un shell surpuissant,
et dans le même temps un langage de programmation plus simple et plus direct.

Bien que ce genre de besoin soit plus fréquent sur les systèmes Unices (les systèmes
de la famille Unix), il n’est plus rare de rencontrer des administrateurs Windows qui
aient adopté Python pour la conception de leurs scripts système.

Des API simples et efficaces
Un langage de manipulation d’un système d’exploitation doit permettre de travailler
avec ce dernier de manière pertinente et concise. Manipuler un système consiste
notamment à :
• manipuler des fichiers et des dossiers ;
• manipuler des programmes ;
• envoyer et recevoir des e-mails ;
• échanger des informations avec d’autres systèmes.

Manipuler des fichiers et des dossiers
La manipulation du système de fichiers est triviale et puissante en Python. Prenons
l’exemple d’un script dont l’objectif est de faire la copie d’un dossier en ne conservant
que les fichiers dont la taille ne dépasse pas 1 Mo.

Recopie conditionnelle

#!/usr/bin/python
-*- coding: utf8 -*-
import os
from shutil import copytree
import sys

Python pour quels usages ?
CHAPITRE 2

11

Ce petit script multi-plate-forme utilise pour recopier une arborescence l’API
copytree du module shutil, qui gère tous les aspects inhérents au système de
fichiers comme les problématiques de droits d’accès ou encore les liens symboliques
qui risqueraient de faire partir le programme dans une boucle infinie.

Il est bien sûr perfectible, mais témoigne du confort fourni par les API système de
Python : seul le code qui définit si un fichier d’une arborescence est recopié ou non
est écrit, le reste étant déjà fourni.

Cette recherche de puissance et de simplicité est une constante dans l’évolution du
langage Python (l’argument ignore de copytree a été introduit dans la version 2.6
du langage).

Manipuler des programmes
Imaginons qu’un administrateur rencontre un problème avec son serveur web
Apache, qui s’arrête plusieurs fois par jour sans raison apparente. Ce problème ne se
retrouve malheureusement que sur le serveur de production. Il faut donc réussir à le
résoudre tout en maintenant le service. L’administrateur souhaite concevoir un petit
script qui procède à une série de tests avant de relancer Apache.

Sans entrer dans les détails des tests opérés, voici à quoi pourrait ressembler le script
en question :

Script de surveillance d’Apache

MEGA = 1024*1024

def _ignore(dir, filenames):
 def _filter(dir, filename):
 fullname = os.path.join(dir, filename)
 big_file = os.path.getsize(fullname) > MEGA
 if big_file:
 print('%s trop gros' % fullname)
 else:
 print('%s recopié' % fullname)
 return big_file

 return set([filename for filename in filenames
 if _filter(dir, filename)])

if __name__ == '__main__':
 copytree(sys.argv[1], sys.argv[2], ignore=_ignore)

-*- coding: utf8 -*-
import os
from subprocess import call

Découverte de Python
PREMIÈRE PARTIE

12

Ce script appelle une page web de statut d’Apache grâce au module urllib2, puis
relance Apache via l’API call du module subprocess.

Ce script est facilement portable sur tout autre système compatible avec Python si le
chemin vers la commande utilisée et l’URL de contrôle de statut sont adaptés à la
version d’Apache.

from urllib2 import urlopen
from urllib2 import HTTPError
from urllib2 import URLError
import socket

from outils import run_audit

URL_CHECK = 'http://localhost:80/server-status'
CMD_START = 'apache2ctl start'

def apache_running():
 """Vérifie le statut d'Apache"""
 try:
 res = urlopen(URL_CHECK)
 except HTTPError:
 # réponse inattendue (URL_CHECK désactivé ?)
 # mais Apache répond
 return True
 except (socket.timeout, URLError):
 # pas de réponse ou erreur
 return False
 return True

def check_apache():
 """ surveille l'état du daemon Apache """
 if not apache_running():
 # Tests sur le système
 run_audit()

 # Apache doit être relancé
 call(CMD_START, shell=True)
 if apache_running():
 print('Apache relancé avec succès')
 else:
 print('Impossible de relancer Apache')
 else:
 print('État OK')

check_apache()

Python pour quels usages ?
CHAPITRE 2

13

Envoyer et recevoir des courriers électroniques
Après le système de fichiers, la maîtrise des e-mails est primordiale pour un adminis-
trateur système. Souvent, l’e-mail est le seul lien entre l’administrateur et l’ensemble
des utilisateurs, ou entre l’administrateur et ses serveurs. Envoyer ou recevoir des e-
mails étant trivial au niveau du shell ou intégré à l’outillage disponible sur la plate-
forme (comme Nagios), l’intérêt de programmer l’envoi d’e-mails par des scripts
Python est limité.

La réception et le traitement automatique d’e-mails de structures complexes est en
revanche une opération beaucoup plus délicate. Prenons un exemple concret : l’admi-
nistrateur souhaite automatiser la mise en place des clés SSH (voir encadré) des utilisa-
teurs sur le serveur. Il propose à ces derniers de lui envoyer un e-mail contenant l’iden-
tifiant de l’utilisateur et la clé en pièce attachée à une adresse e-mail prévue à cet effet.

Le script à réaliser doit automatiquement récupérer ces e-mails, placer la clé sur le
serveur et envoyer un accusé de réception à l’utilisateur. Les e-mails traités sont
ensuite archivés dans un répertoire Traités de l’adresse e-mail dédiée.

Mise en place automatique des clés SSH

-*- coding: utf8 -*-
from imaplib import IMAP4
from smtplib import SMTP
from email import message_from_string
from email.MIMEText import MIMEText

def setup_key(contenu_nom, contenu_cle):
 """ met en place la clé sur le système """
 [...]

def get_connectors():
 """Mise en place des connecteurs."""
 imap_server = IMAP4('localhost')
 imap_server.login('cles@localhost', 'motdepasse')
 imap_server.create('INBOX.Traités')
 return imap_server, SMTP('localhost')

def process():
 """Gère les demandes."""
 # initialisation des connecteurs
 imap_server, smtp_server = get_connectors()

 # mise en place de l'accusé de réception
 mail = MIMEText(u'Votre clé SSH est activée')
 mail['From'] = u'administrateur <root@localhost>'
 mail['Subject'] = u'Clé SSH activée'

Découverte de Python
PREMIÈRE PARTIE

14

 # accès à la racine de la boîte
 imap_server.select('INBOX')

 def _get_payload_content(mail, index):
 return mail.get_payload(index).get_payload().strip()

 # lecture des messages
 for mail_id in imap_server.search(None, 'ALL')[1]:
 if mail_id.strip() == '':
 continue
 mail_content = imap_server.fetch(mail_id, '(RFC822)')[1][0][1]
 mail_received = message_from_string(mail_content)

 if not mail_received.is_multipart():
 # mauvaise structure, l'e-mail
 # devrait être composé de deux parties
 continue

 # expediteur
 from_ = mail_received['From']

 # lecture nom
 name = _get_payload_content(mail_received, 0)

 # récupération clé
 key = _get_payload_content(mail_received, 1)

 # déplacement message sur serveur dans sous-dossier "Traités"
 imap_server.copy('INBOX.Traités', mail_id)
 imap_server.store(mail_id, 'FLAGS', '(\Deleted)')

 # place la clé sur le système
 setup_key(name, key)

 # accusé de réception
 mail['To'] = from_
 sender.sendmail('administrateur <root@localhost>', from_,
 mail.as_string())

 # fermeture des connecteurs
 server.expunge()
 server.close()
 server.logout()
 sender.quit()

if __name__ == '__main__':
 process()

Python pour quels usages ?
CHAPITRE 2

15

Moins de cent lignes sont nécessaires pour mettre en place ce processus relativement
complexe, grâce à la simplicité d’utilisation des modules en charge des échanges avec
le serveur de courriels.

Échanger des informations avec d’autres systèmes
Toujours dans l’idée d’automatiser les dialogues entre le serveur et d’autres acteurs du
système, maîtriser les différents protocoles directs d’échanges de données doit être
aussi simple que l’envoi d’e-mails.

Prenons l’exemple des mises à jour système dans un parc de serveurs. La règle ins-
taurée est qu’une machine de l’Intranet met à disposition par le biais d’un serveur
FTP tous les patchs que les serveurs doivent télécharger et exécuter. Le parc de
machines est relativement homogène, constitué de serveurs GNU/Linux sous distri-
bution Debian et de serveurs Windows 2000. Sur le serveur FTP, un répertoire pour
chacune des plates-formes contient les derniers patchs à récupérer et exécuter.

Chaque serveur est responsable de sa mise à jour. Le script à composer, qui doit pou-
voir s’exécuter sur n’importe quelle plate-forme du parc doit donc :
• récupérer les bons patchs ;
• les télécharger ;
• les exécuter ;
• les archiver.

La dernière étape ne consiste qu’à conserver les fichiers téléchargés.

Mise à jour centralisée automatique

CULTURE Le SSH en deux mots

Le SSH (Secure Shell) est un shell sécurisé par lequel les utilisateurs peuvent se connecter au serveur.
Tous les échanges sont chiffrés.
Pour qu’un serveur reconnaisse automatiquement un utilisateur au moment d’une connexion SSH, il est
possible d’utiliser des clés. Les clés SSH sont un couple de fichiers texte que l’utilisateur génère sur son
poste par le biais d’un petit utilitaire. Un des deux fichiers (la clé dite privée) reste sur le poste de l’utili-
sateur et l’autre (la clé publique) est placé sur le serveur. Ces deux clés, de la même manière qu’avec le
logiciel GnuPG, sont confrontées au moment de la connexion pour authentifier l’utilisateur.
Ce moyen de connexion est souvent le plus sûr et parfois la seule voie proposée par l’administrateur pour
se connecter à un système.

-*- coding: utf8 -*-
import os
from StringIO import StringIO
from ftplib import FTP
import logging

Découverte de Python
PREMIÈRE PARTIE

16

patches_done = os.listdir(os.curdir)
patches_todo = []
_result = StringIO()

fonctions de récupération des flux ftp
def callback(line):
 _result.write(line)

def callbacktext(line):
 _result.write('%s\n' % line)

def readresults(text=False):
 content = _result.getvalue()
 _result.buf = ''
 return content

code principal
ftp = FTP('localhost')
ftp.login('root', 'motdepasse')
try:
 ftp.cwd(os.name)
 ftp.dir(callbacktext)
 patches = readresults().split('\n')

 # tous les fichiers téléchargés sont binaires
 ftp.voidcmd('TYPE I')
 for patch in patches:
 line = patch.split()
 if len(line) == 0:
 continue
 filename = line[-1]
 if filename in patches_done:
 continues
 ftp.retrbinary('RETR %s' % filename, callback)

 with open(filename, 'w') as file_:
 file_.write(readresults())
 os.chmod(filename, 467) # 467 dec => 111 010 011 bin => rwx-w--wx
 patch_file = os.path.join(os.curdir, filename)
 patches_todo.append(patch_file)
finally:
 ftp.close()

for patch in patches_todo:
 # le patch est auto-exécutable
 logging.info('application du patch %s...' % patch)
 log = os.popen(patch)
 logging.info('\n'.join(log))

Python pour quels usages ?
CHAPITRE 2

17

Les autres protocoles sont rarement plus complexes à implémenter, sauf lorsqu’il est
nécessaire de procéder en entrée et en sortie à des traitements de données plus
poussés.

Le match Perl-Python
La partie concernant l’administration système serait incomplète sans parler de Perl.
Le langage Perl est souvent le langage préféré des administrateurs et a remplacé dans
beaucoup de cas le shell. Perl est très puissant, possède une énorme bibliothèque de
modules facilement accessible (CPAN) et une communauté très active.

Ce langage souffre cependant de défauts qui peuvent peser lourd lors de la concep-
tion d’applications conséquentes, comme une syntaxe pas très lisible, de l’aveu même
de Larry Wall, son créateur, et de structures de données difficiles à construire et
manipuler. Perl reste cependant très puissant pour les manipulations de texte.

« Perl is worse than Python because people wanted it worse »

— Larry Wall

Syntaxe
Prenons l’exemple d’un script en charge de préparer le répertoire web personnel d’un
utilisateur lorsqu’il est ajouté à un système GNU/Linux. Le programme doit remplir
les tâches suivantes :
• création d’une page web personnelle ;
• ajout dans le serveur Apache d’un Virtual Directory ;
• envoi d’un e-mail de notification au nouvel utilisateur.

La page web créée permet à l’utilisateur d’avoir des liens personnalisés vers les appli-
catifs du groupware de l’entreprise comme le Webmail.

Sans entrer dans les détails du programme, nous allons simplement présenter ici la
partie qui consiste à créer la page web personnelle. Cette section du programme peut
elle-même être découpée en trois étapes :
1 Chargement d’un modèle de page web.
2 Personnalisation du modèle en fonction de l’utilisateur.

À SAVOIR Lancement automatique des scripts

Les exemples précédents et ceux qui suivront dans ce chapitre ont tous été conçus pour être exécutés par
le système de manière automatique et régulière, que ce soit par le biais des tâches cron sur les systèmes
de type Unix ou par une nouvelle entrée dans le gestionnaire de tâches sur les plates-formes Windows.

Découverte de Python
PREMIÈRE PARTIE

18

Les occurrences de %(NOM) et %(PRENOM) sont remplacées par des valeurs
réelles.

3 Création du fichier dans le répertoire web de l’utilisateur.

Version en Python

La version Perl est très similaire en termes de facilité de mise en œuvre et de lon-
gueur de code, mais beaucoup moins lisible.

La version Perl

Structures de données
La création et la manipulation de structures de données en Perl est relativement
lourde. Dans l’exemple ci-après, la création d’une simple classe, sans aucun contenu,
nécessite quatre fois plus de code en Perl qu’en Python :

-*- coding: utf8 -*-
import os

def create_page(firstname, lastname, template, path):
 """ création de la page web """
 replace = {'NOM': firstname, 'PRENOM': firstname}
 with open(model) as model_file:
 page = model_file.read() % replace
 with open(os.path.join(path, 'index.html'), 'w') as target:
 target.write(page)

use strict;
use warnings;

sub creation_page
{
 my ($firstname, $lastname, $model, $path) = (@_);
 open I, "<", $model;
 my $page = do { local $/; <I> };
 close(I);

 $page =~ s/%(NOM)s/$lastname/g;
 $page =~ s/%(PRENOM)/$firstname/g;

 open O, ">", "$path/index.html";
 print O $page;
 close(O);
}

Python pour quels usages ?
CHAPITRE 2

19

Définition d’une classe en Perl et en Python

Cette syntaxe verbeuse de Perl, qui se confirme dans toutes les définitions de struc-
ture, peut être pesante dans la conception d’applications de grande taille, et aug-
mente proportionnellement les risques de bogues.

Manipulation de texte
En termes de manipulation de texte, les outils disponibles pour Perl sont à l’heure
actuelle beaucoup plus puissants que pour Python.

À titre d’exemple, les expressions régulières sous Python sont un portage de ce qui
existait à l’époque pour Perl 5, et n’ont plus évolué depuis.

La possibilité d’étendre le moteur d’expressions régulières sous Perl est inexistante
sous Python.

Extension du moteur regexp sous Perl

Version Perl
package MyClass;
sub new {
 my $class = shift;
 my $self = {};
 bless $self, $class
 $self->initialize(); # do initialization here
 return $self;
}

Version Python
class MyClass:
 pass

exemple tiré de l'aide en ligne de Perl
permet d'ajouter '\Y|' au moteur
qui est un raccourci pour (?=\S)(?<!\S)|(?!\S)(?<=\S)
package customre;
use overload;

sub import {
 shift;
 die "No argument to customre::import allowed" if @_;
 overload::constant 'qr' => \&convert;
}

sub invalid { die "/$_[0]/: invalid escape '\\$_[1]'"}

Découverte de Python
PREMIÈRE PARTIE

20

Conclusion
Perl reste supérieur pour la conception de petits scripts de moins de 100 lignes,
lorsqu’il s’agit de manipuler des chaînes de caractères. La puissance de ses outils et
son intégration poussée des expressions régulières en font un choix de premier ordre
dans ce cas. Python devient meilleur pour de plus grosses applications.

Prototypage rapide d’applications
Pour les gros projets qui durent plusieurs mois, voire plusieurs années, les premières
étapes consistent souvent à effectuer des cycles de spécification entre les clients et
l’équipe de développement, en se basant sur des maquettes.

Objectif d’une maquette
Concevoir une maquette permet à l’architecte d’un logiciel de prendre du recul et de
réduire la marge entre ce qu’il a imaginé et ce qu’il faut réellement implémenter.
Armé de ce prototype, il va déceler très vite certaines problématiques de logique
d’implémentation, mais également fournir au client un véritable jouet pour tester les
fonctionnalités. Si ce dernier est lui-même technicien, il pourra faire évoluer la
maquette pour exprimer ses besoins de manière plus directe.

Ces cycles d’échange permettent d’affiner les besoins initiaux, pour obtenir sur le
papier un projet plus réaliste et plus mûr lorsque les développements démarrent. Ils
peuvent même continuer pendant les phases de développement, lors de l’introduc-
tion de nouvelles fonctionnalités.

Une maquette est donc un véritable logiciel pâte à modeler, facile à créer et à modi-
fier. Les maquettes peuvent être des maquettes d’interfaces ou plus simplement des
maquettes de code.

my %rules = ('\\' => '\\',
 'Y|' => qr/(?=\S)(?<!\S)|(?!\S)(?<=\S)/);
sub convert {
 my $re = shift;
 $re =~ s{
 \\ (\\ | Y .)
 }
 { $rules{$1} or invalid($re,$1) }sgex;
 return $re;
}

Python pour quels usages ?
CHAPITRE 2

21

Maquette d’interfaces
Pour les logiciels dotés d’une interface graphique, la maquette est constituée d’une
série d’écrans liés entre eux par des menus et des boutons. C’est avant tout l’ergo-
nomie de l’interface et la logique des enchaînements qui priment, car ils sont bien
souvent très proches des processus métier souhaités par le client.

La plupart des projets s’arrêtent aux maquettes d’écrans sur le papier, qui sont suffi-
santes pour exprimer l’interface d’un logiciel. Pour les projets web par exemple, des
captures d’écrans suffisent amplement à donner une idée de l’ergonomie. Mais une
maquette d’interface sur le support cible (c’est-à-dire l’écran) avec une interaction
minimale, permet de meilleurs retours.

Il existe plusieurs méthodes pour créer des interfaces avec Python. La plus intéres-
sante pour les exercices de maquettage consiste à utiliser les Environnements de
Développement Intégré (EDI) qui proposent des éditeurs visuels d’interfaces. Cer-
tains n’ont pas forcément de liens avec Python et se contentent de générer des
fichiers pour chaque fenêtre dessinée. Ceux-ci peuvent ensuite être chargés et inter-
prétés par un programme Python par le biais de bibliothèques spécialisées. Le pro-
gramme associe alors une portion de code à chaque événement provoqué par l’utilisa-
teur, selon le principe de la programmation événementielle.

On peut citer comme EDI pour Python :
• Glade, qui permet de construire des interfaces Gnome/GTK+ sauvegardées dans

des fichiers XML, pouvant être interprétés par une bibliothèque Python spécifique.
• BoaConstructor, inspiré des principes des composants VCL de l’outil Delphi de

Borland, et manipulant wxPython, bibliothèque au-dessus de wxWindows.
• QtDesigner, sur le même principe que BoaConstructor mais pour les bibliothèques Qt.

CULTURE Définition de l’ergonomie

L’ergonomie consiste à améliorer l’interface homme-machine, en rendant l’outil le plus simple et le plus
logique possible aux yeux d’un utilisateur. Un programme ergonomique est en général utilisable sans
avoir à se référer à l’aide en ligne et diminue au maximum le nombre d’étapes nécessaires à l’utilisateur
pour obtenir le résultat recherché.

Découverte de Python
PREMIÈRE PARTIE

22

Maquette de bibliothèque ou Fake
Un autre type de maquette beaucoup moins utilisé mais très pratique est la maquette
de bibliothèque. Complément des maquettes d’interfaces, ce genre de prototype
permet de simuler un service qui n’a pas encore été développé.

Exemple de prototype de bibliothèque
Prenons l’exemple d’un module de pilotage d’un appareil électronique que l’on sou-
haite interfacer avec une application graphique.

Figure 2–1 QTDesigner à l’œuvre

CULTURE Programmation événementielle

La programmation événementielle, utilisée pour les applications à interface graphique, associe à chaque
événement de l’utilisateur une portion de code.
Un événement peut être par exemple l’action de cliquer sur un bouton d’une fenêtre. Le programme
lorsqu’il est exécuté, entre dans une boucle infinie qui attend qu’un événement se produise. Lorsque
c’est le cas, l’appel est transmis à la portion de code définie pour cet événement, si elle existe, puis la
boucle repasse en attente d’un autre événement.
Ce type de programmation est plus détaillé dans le chapitre 10, dans la partie consacrée à Tkinter.

Python pour quels usages ?
CHAPITRE 2

23

La mise au point de ce module peut être complexe car elle nécessite l’élaboration de
protocoles d’échanges avec l’appareil par le biais du port IEEE. De plus, les per-
sonnes en charge de développer le reste de l’applicatif n’ont pas à leur disposition ce
genre d’appareil et doivent pourtant continuer le développement de l’application
comme s’ils en disposaient.

Les méthodes qui seront accessibles aux programmes qui piloteront l’appareil sont
quant à elles très simples :
• start() : initialise l’appareil ;
• stop() : met l’appareil hors-tension ;
• run(commande) : lance une commande.

Chacune de ces méthodes renvoie vrai lorsque la commande a fonctionné.

Une maquette pour cette bibliothèque pourra se contenter de fournir ces méthodes et
de toujours renvoyer un résultat positif sans que l’appareil réel ait été appelé :

Prototype

Ce Fake pourra suffire dans un premier temps à construire le reste de l’application en
se basant sur l’interface fournie.

-*- coding: utf8 -*-
import time

class Appareil(object):
 def __init__(self):
 self.started = False

 def start(self):
 self.started = True
 time.sleep(5)
 return 'OK - Listening'

 def stop(self):
 time.sleep(5)
 self.started = False
 return 'OK - Closed'

 def runCommand(self, command, *args):
 time.sleep(2)
 return 'OK %s' % command

PROGRAMMATION Simuler des serveurs à l’aide des Fakes

Les applications qui interagissent avec des serveurs tiers utilisent souvent cet artifice pour simuler leur
présence dans des contextes particuliers comme lors de l’exécution de tests unitaires. Une application de
gestion d’e-mails peut implémenter dans ce genre de contexte un « faux » serveur IMAP.

Découverte de Python
PREMIÈRE PARTIE

24

Recherche et calcul scientifique
Certains domaines de recherche sont devenus totalement dépendants de l’informatique.
Il existe quantités de logiciels dédiés pour chacun de ces domaines, mais dès lors que le
chercheur souhaite sortir des sentiers battus, il doit programmer lui-même ses outils.

Dans cet exercice, il cherche un outil de programmation simple à maîtriser, qui per-
mette de manipuler facilement quantité de données et utiliser des bibliothèques de
calcul tierces.

Les tableurs comme Excel, qui proposent des fonctionnalités de scripting, sont les
outils les plus répandus dans les laboratoires de recherche, car ils permettent de
manipuler très simplement les données et de modéliser rapidement des calculs. Mais
dès lors que les traitements se complexifient ou qu’il est nécessaire de mettre en place
des protocoles particuliers, les tableurs atteignent leurs limites.

Pas de paradigme imposé
Python dans ce cas devient un choix de premier ordre car il est multi-paradigme : un
chercheur n’aura donc pas besoin de maîtriser la programmation orienté objet pour
écrire ses petits scripts, comme il devrait le faire en Java. Il se contentera d’écrire son
programme avec de simples fonctions, sans avoir à maîtriser de concept purement
informatique.

Facilité de prise en main
Contrairement aux langages de plus bas niveau comme le C, qui nécessitent un cer-
tain bagage technique informatique, Python est beaucoup plus simple à maîtriser
pour un chercheur qui ne connaît pas la programmation. La gestion de la mémoire,
l’utilisation de pointeurs, le typage des variables, et tous les détails de l’implémenta-
tion d’un programme sont autant de contraintes qui sont loin des préoccupations
premières d’un chercheur, et doivent le rester.

Parallèlement, la facilité avec laquelle une bibliothèque de traitement peut être inté-
grée au langage comme extension fait de Python un outil de script de choix dans ce
domaine.

Création ou utilisation d’outils spécialisés
Prenons l’exemple de la biologie moléculaire. Si le chercheur souhaite confronter des
séquences d’ADN à des séquences connues et répertoriées dans un dépôt centralisé
comme le dépôt GenBank, il doit mettre en place un outil d’accès au serveur distant
pour être en mesure de l’interroger puis d’interpréter les fichiers.

Python pour quels usages ?
CHAPITRE 2

25

Nous avons vu dans les exemples précédents que le langage Python disposait d’une
bibliothèque d’accès FTP simple d’usage. Construire une bibliothèque d’accès aux
dépôts GenBank n’est pas plus compliqué. Une fois mise au point, cette bibliothèque
offre au chercheur la possibilité d’utiliser et de réutiliser ce genre de système dans ses
programmes.

En l’occurrence, la bibliothèque d’accès au dépôt GenBank et de lecture des fichiers
existe déjà : elle fait partie d’un ensemble d’outils Python dédiés à la bio-informa-
tique nommé Biopython, créé par des chercheurs en biologie moléculaire. Toujours
dans l’esprit des logiciels libres, ces outils sont mis à disposition de tous sur Internet.

Applications de gestion
Les applications de gestion peuvent être définies comme des logiciels qui traitent un
problème métier particulier, comme :
• la gestion de stocks ;
• la gestion de la relation client ;
• la gestion financière, etc.

Ces logiciels se caractérisent en général par :
• une interface utilisateur pour saisir, visualiser et manipuler des données ;
• un besoin de stockage de données qui peut parfois être assez conséquent en taille ;
• une standardisation des flux d’entrées et de sorties pour intégrer le programme au

parc applicatif existant.

Conception d’interface utilisateur
Outre la conception et l’enchaînement d’écrans décrits dans la partie concernant le
prototypage, une application de gestion a un besoin fondamental d’ergonomie.
Lorsque de simples maquettes peuvent se contenter dans la plupart des cas des com-
posants visuels (widgets) de base, il s’avère souvent nécessaire de créer ses propres
composants pour de véritables applications. En pratique, la création d’une interface
en adéquation avec les besoins métier et la nature des données peut peser très lourd
dans la balance lorsque l’utilisateur teste l’outil.

RECHERCHE Le projet GenBank

La base de données GenBank (http://www.ncbi.nlm.nih.gov/) est un projet international de regrou-
pement de séquences de nucléotides et leur traduction en protéines. Ces données sont fournies par des
centres de séquençages du monde entier et sont librement consultables en ligne.

Découverte de Python
PREMIÈRE PARTIE

26

Prenons l’exemple de l’application GRAMPS (http://gramps-project.org/). Ce logiciel
de gestion de généalogie, écrit en Python, offre une interface de visualisation des
liens de parenté entre des personnes. Cette fonctionnalité prend tout son sens grâce
au composant spécifiquement développé pour afficher des arbres généalogiques.

Tous les kits à disposition du développeur Python fournissent un framework de créa-
tion de nouveaux widgets.

Stockage de données
Le stockage de données, appelé aussi persistance, peut prendre différentes formes en
fonction des besoins et des contraintes du programme. Il peut parfois s’agir d’un
simple besoin de sauvegarde de paramètres de fonctionnement. Dans ce cas de
figure, les fichiers INI ou autres fichiers XML font l’affaire. Mais lorsque les besoins
de stockage s’étendent, d’autres outils plus en adéquation avec la quantité et la granu-
larité des données manipulées doivent prendre le relais.

Sérialisation des objets
Python fournit des fonctionnalités de sérialisation des objets intéressantes. La sériali-
sation consiste à sauvegarder sur le système de fichiers l’état d’un objet stocké en
mémoire. Cette mécanique peut être par exemple utilisée pour mémoriser l’état d’un
objet lorsque l’application se termine, pour pouvoir le restaurer au prochain démar-

Figure 2–2
Visualisation des liens
de parenté avec GRAMPS

Python pour quels usages ?
CHAPITRE 2

27

rage. Le principe de sérialisation est aussi très utile dans des programmes distribués.
Ce mécanisme fonctionne pour tous les objets Python à quelques exceptions, comme
nous le verrons dans le chapitre 9.

Exemple de sérialisation d’un objet

Ce système, appelé pickling, peut être utilisé pour les besoins de sauvegarde de tout
type de programme, mais il impose un certain nombre de contraintes au déve-
loppeur. Une des problématiques les plus importantes est que ce fonctionnement
introduit une dépendance forte entre le code et les données : si ce système est utilisé
pour des sauvegardes durables, toute modification des attributs d’une classe rend les
sauvegardes précédentes caduques. Les évolutions du code sont donc plus complexes
à gérer. Une bonne pratique consiste donc à ne sauvegarder que des instances de
classes ou de types de Python ou de sa bibliothèque standard.

Quoi qu’il en soit, dans le cas d’une application de gestion qui travaille avec des don-
nées qui peuvent provenir d’autres sources et dont le format est imposé, on optera
pour un stockage plus classique.

-*- coding: utf8 -*-
import cPickle

class MyClass:
 value_1 = '1'
 value_2 = 5

création d'un objet
example = MyClass()
example.value_1= u'je suis modifié'

sauvegarde
with open('MyClass.sav', 'wb') as file_:
 cPickle.dump(example, file_, 1)

rechargement

with open('MaClasse.sav', 'rb') as file_:
 new_example = cPickle.load(file_)

vérification des valeurs
print(new_example.valeur_1)
print(new_example.valeur_2)

Découverte de Python
PREMIÈRE PARTIE

28

Les bases de données relationnelles
Outre tous les connecteurs existants pour la quasi-totalité des bases de données du
marché dans des bibliothèques tierces, Python intègre dans la bibliothèque standard
(depuis la version 2.5) un module d’accès au système de base de données SQLite
(http://www.sqlite.org). Cette base de données ne nécessite aucune configuration et
aucun serveur pour fonctionner, et stocke ses données dans un simple fichier ou en
mémoire. Elle est largement répandue depuis quelques années et utilisée pour des
besoins de stockage léger.

Création d’une table et ajout de lignes avec sqlite

Il existe également des systèmes de Mapping Objet-Relationnel (Object-Relational
Mapping en anglais, ou ORM) très efficaces en Python. Les ORM permettent
d’associer à une table de la base une classe, et à une ligne de cette table une instance
de la classe, et de s’occuper automatiquement des échanges vers le SGBD. Le code
de manipulation des données peut dès lors s’affranchir du langage SQL.

Les deux systèmes les plus notables sont :
• SQLAlchemy : http://www.sqlalchemy.org

• Storm : https://storm.canonical.com

connection
conn = sqlite3.connect('data.db')
c = conn.cursor()

creation de la table table
c.execute('create table client (firstname text, lastname text)')

ajout d'une ligne
c.execute("insert into client values ('Tarek', 'Ziadé')")

Sauvegarde
conn.commit()

Fermeture du curseur
c.close()

INSTALLATION SQLite

Python fournit dans sa bibliothèque standard un accès à SQLite, mais ce dernier doit être installé sur le
système.

Python pour quels usages ?
CHAPITRE 2

29

Applications web
Les applications web sont des applications qui mettent en jeu la quasi-totalité des
technologies informatiques actuelles.

La conception d’un Intranet nécessite couramment la mise en œuvre :
• d’annuaires LDAP ;
• de gestion de flux de données variés ;
• de systèmes distribués ;
• d’un système de publication web avancé, etc.

Une application web est bien souvent la brique centrale d’un système d’information,
et doit offrir aux développeurs des outils souples et modulaires pour implémenter
toutes les fonctionnalités nécessaires, s’intégrer à un parc applicatif, et s’interfacer
avec des applications tierces qui participent aux services fournis par l’applicatif.

Les frameworks web Python ont connu une évolution majeure depuis trois ans, pour
deux raisons :
• La vague provoquée par le projet Ruby On Rails (http://rubyonrails.org), qui a

donné envie à la communauté Python de moderniser la programmation Web.
• L’émergence de la norme WSGI (http://wsgi.org) qui a permis de partager entre

certains frameworks des briques pour la conception de fonctionnalités.

Les frameworks majeurs sont :
• Zope : http://zope.org

• Twisted : http://twistedmatrix.com/trac

• Pylons : http://pylonshq.com

• Django : http://www.djangoproject.com

• Turbogears : http://turbogears.org

Le framework Zope, par exemple, est l’un des plus gros projets Open Source Python.
De nombreuses évolutions et innovations du langage sont issues de ce framework et
de sa communauté très active.

De nouveaux frameworks émergent également, comme Repoze (http://repoze.org).

L’ensemble de ces frameworks sont très actifs et propulsent Python sur le devant de
la scène en matière de développement web.

Découverte de Python
PREMIÈRE PARTIE

30

En un mot...
Même si Python est beaucoup plus à l’aise dans certains domaines vus dans ce chapitre,
comme la programmation système ou le prototypage, ses facultés d’extension et son
ouverture lui permettent de s’adapter relativement facilement à de nouveaux contextes.

Il n’est plus rare par exemple de rencontrer dans le secteur industriel des applications
critiques dont les couches supérieures sont codées en Python.

Le prochain chapitre présente l’installation de Python et son paramétrage, ainsi
qu’un tour d’horizon de quelques éditeurs de code.

Ce chapitre présente la mise en place d’un environnement de développement pour
Python, de l’installation de l’interpréteur jusqu’au choix de l’éditeur de code.

Installation sous Linux
Python est souvent préinstallé sur la plupart des distributions GNU/Linux. Vous
pouvez contrôler sa présence en tapant la commande python dans un terminal.

Lancement du mode interactif de Python

Si la commande fonctionne, vous serez automatiquement placé dans un mode inte-
ractif qui permet de lancer directement des commandes dans l’interpréteur Python.
La version du langage étant précisée, vous pouvez savoir si une mise à jour est pos-

3
Environnement de

développement

$ python
Python 2.6.1 (r261:67515, Dec 6 2008, 16:42:21)
[GCC 4.0.1 (Apple Computer, Inc. build 5370)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Découverte de Python
PREMIÈRE PARTIE

32

sible. Il est en général recommandé d’être à jour avec la dernière version stable, sauf
contraintes de production particulières.

S’il vous est nécessaire d’installer Python ou de mettre à jour une version existante,
vous pouvez le faire par le biais du système de package de la distribution ou le recom-
piler manuellement. Les manipulations d’installation se font en tant que super-utili-
sateur, ou root.

Pour être root sur votre système, il est nécessaire d’exécuter la commande su, ou de
passer par l’utilitaire sudo, qui étend temporairement et de manière contrôlée les
droits d’un utilisateur autorisé.

Installation par distribution
L’intérêt d’utiliser l’installation par paquets est de pouvoir mettre à jour le système à
chaque nouvelle version sans avoir à se soucier des problèmes de dépendances, de
manipulations particulières ou de post-conditions nécessaires du système. Il suffit la
plupart du temps d’invoquer une seule ligne de commande en lui passant en para-
mètre le fichier paquet concerné.

Paquets Debian
Les paquets Debian sont des fichiers d’extension .deb qui peuvent être installés par le
biais de l’utilitaire dpkg. Ce système est utilisé principalement sur Debian et sur
Ubuntu. Il existe en outre un utilitaire encore plus direct, capable de télécharger sur
Internet puis d’installer la dernière version d’un paquet : apt

Installation par apt

apt-get télécharge automatiquement le paquet et l’installe sur le système. Confort
ultime, il se charge tout seul de récupérer et d’installer les éventuels paquets annexes,
en contrôlant toutes les dépendances.

http://packages.debian.org/stable/python/python2.6

À RETENIR Quitter l’interpréteur Python

Pour sortir du mode interactif, utilisez les combinaisons de touches Ctrl+D sous GNU/Linux et Mac OS X
et Ctrl+Z sous MS-Windows.

$ apt-get install python2.6

Environnement de développement
CHAPITRE 3

33

Paquets RedHat
De manière similaire à Debian ou Ubuntu, les distributions basées sur RedHat, que
ce soient les versions professionnelles payantes comme Red Hat Entreprise ou les ver-
sions communautaires comme Fedora Core ou CentOS, proposent le système de
paquets rpm, un des tout premiers systèmes de paquetage qui ait vu le jour.

Installation ou mise à jour par rpm

B http://www.python.org/download/releases/2.6/rpms

Distributions Mandrake et Fedora Core
Les distributions Mandrake et Fedora Core, toutes deux basées sur le système de paquets
rpm, proposent des systèmes similaires à apt, respectivement nommés urpmi et yum.

urpmi et yum

B http://www.python.org/download/releases/2.6/rpms

Compilation des sources
Si votre distribution ne propose pas de système de paquets ou si tout simplement,
vous souhaitez faire une installation personnalisée de Python, il est nécessaire de pro-
céder à une compilation des sources du langage pour créer les fichiers binaires équi-
valents à ceux qui sont fournis dans les paquets.

Compiler un logiciel sous GNU/Linux ou Mac OS X consiste à lancer une série de
commandes à un ou plusieurs programmes du système. La plupart du temps, le pro-
gramme invoqué est le compilateur gcc qui va générer les binaires. Cette opération se
fait en général dans un répertoire dédié du système où tous les fichiers sources com-

$ rpm -i python.rpm
$ rpm -U python.rpm

$ urpmi python
$ yum install python

SYSTÈMES DE PAQUET Délais de disponibilité

Il peut se passer plusieurs mois avant qu’une nouvelle version de Python soit disponible en paquets sta-
bles pour une distribution Linux, à cause des longueurs des cycles de release.
À l’heure où ce livre est imprimé, c’est le cas : Python 2.6 n’est pas encore très diffusé, et une installation
spécifique peut être nécessaire.

Découverte de Python
PREMIÈRE PARTIE

34

pilés sont conservés. La première étape consiste à décompresser le fichier tarball,
fichier archive d’extension .tar.gz, que vous trouverez sur le site de Python.

Récupération et décompression du tarball de Python 2.6.1

Cette manipulation va créer un répertoire Python-2.6.1 avec l’ensemble des sources
de la distribution ainsi que les fichiers de configuration nécessaires à la compilation.

Étapes d’installation
Une distribution de sources est en général livrée avec des fichiers Makefile et
configure. Makefile contient toutes les commandes qui seront exécutées pour l’ins-
tallation. Il sera appelé par le biais de l’utilitaire make. Le fichier configure, quant à
lui, est un script en charge de :
• Contrôler que le système remplit toutes les conditions nécessaires à l’exécution du

script d’installation et d’informer l’utilisateur des éventuels manques.
• Créer un fichier de paramètres utilisé par Makefile, qui contiendra entre autres

les options définies par l’utilisateur.

Les étapes d’installation sont donc :
• contrôler le système et définir les options de compilation ;
• compiler les sources ;
• installer les binaires et autres modules dans le système.

Options de compilation
Le script configure définit un ensemble impressionnant de paramètres que vous
pouvez visualiser par le biais de l’option --help.

RESSOURCES Le site officiel du langage Python

Le site officiel du projet Python offre des informations de premier ordre, et propose les dernières versions
du langage en téléchargement :
B http://www.python.org
B http://www.python.org/download/releases/2.6.1

$ wget http://www.python.org/ftp/python/2.6.1/Python-2.6.1.tgz
$ tar -xzvf Python-2.6.1.tgz
$ cd Python-2.6.1

Environnement de développement
CHAPITRE 3

35

Écran d’aide du fichier configure de Python

L’écran d’aide, comme pour les prochains extraits, a été largement tronqué. L’option
la plus utilisée est l’option prefix qui définit le répertoire cible de l’installation. Le
script y recopiera le résultat de la compilation dans un sous-répertoire bin et les
bibliothèques Python dans un sous-répertoire lib. Le préfixe par défaut étant /usr/
local, le binaire exécutable Python sera installé dans /usr/local/bin et les biblio-
thèques dans /usr/local/lib. Mais il est fréquent de modifier ce préfixe pour ins-
taller Python directement dans le répertoire /usr.

Exécution de configure

$./configure --help
'configure' configures python 2.6 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:
 -h, --help display this help and exit
[...]
 -n, --no-create do not create output files
 --srcdir=DIR find the sources in DIR [configure dir or '..']

Installation directories:
 --prefix=PREFIX install architecture-independent files in
PREFIX
 [/usr/local]
 --exec-prefix=EPREFIX install architecture-dependent files in
EPREFIX
 [PREFIX]

[...]

$./configure --prefix=/usr
checking MACHDEP... linux2
checking EXTRAPLATDIR...
checking for --without-gcc... no
[...]
configure: creating ./config.status
config.status: creating Makefile.pre
config.status: creating Modules/Setup.config
config.status: creating pyconfig.h

Découverte de Python
PREMIÈRE PARTIE

36

Une fois le script configure exécuté avec succès, il ne reste plus qu’à compiler et ins-
taller Python, par le biais des commandes make et make install.

Compilation et installation de Python
Ces deux étapes entièrement automatiques peuvent prendre un certain temps en
fonction de la puissance de votre machine.

Compilation et installation

config.status: pyconfig.h is unchanged
creating Setup
creating Setup.local
creating Makefile

$ make
gcc -pthread -c -fno-strict-aliasing -DNDEBUG -g -O3 -Wall
-Wstrict-prototypes -I. -I./Include -DPy_BUILD_CORE -o Modules/config.o
Modules/config.c
[...]
*) CC='gcc -pthread' LDSHARED='gcc -pthread -shared' OPT='-DNDEBUG -g
-O3 -Wall -Wstrict-prototypes' ./python -E ./setup.py build;; \
esac
running build
running build_ext
running build_scripts

$ make install
/usr/bin/install -c python /usr/bin/python2.6
if test -f libpython2.6.so; then \
 if test ".so" = .dll; then \
 /usr/bin/install -c -m 555 libpython2.6.so /usr/local/
bin; \
 else \
 /usr/bin/install -c -m 555 libpython2.6.so /usr/local/
lib/libpython2.6.a; \
 if test libpython2.6.so != libpython2.6.a; then \
 (cd /usr/lib; ln -sf libpython2.6.a
libpython2.6.so); \
 fi \
 fi; \
else true; \
fi
/usr/bin/install -c -m 644 ./Lib/aifc.py /usr/lib/python2.3
/usr/bin/install -c -m 644 ./Lib/anydbm.py /usr/lib/python2.3
/usr/bin/install -c -m 644 ./Lib/asynchat.py /usr/lib/python2.3
[...]

Environnement de développement
CHAPITRE 3

37

Python est à présent installé sur le système et peut être lancé par la biais de la com-
mande pythonX.X où X.X est le numéro de version. S’il n’y a pas d’autres installations
de Python sur le système, la commande python permet aussi de lancer l’interpréteur,
grâce au lien /usr/bin/python qui pointe sur la commande.

Gérer plusieurs versions de Python
Il arrive que plusieurs versions de Python cohabitent sur la même machine. Vous
pouvez les répertorier par le biais de la commande whereis.

Plusieurs versions de Python installées

Ce cas de figure est en général à proscrire car il rend l’installation et le suivi des exten-
sions plus délicats. Toutefois, certains programmes ne sont pas forcément compatibles
avec la dernière release et l’installation d’une version antérieure peut parfois s’avérer
obligatoire. La version principale de Python, c’est-à-dire celle qui sera utilisée dans la
majeure partie des cas, doit être associée au chemin par défaut de l’interpréteur afin
d’être automatiquement utilisée lorsque la commande python est invoquée.

Prenons le cas d’une machine où les versions 2.6 et 2.5 ont été installées. Bien qu’il
n’y ait pas de problème majeur à exécuter les programmes conçus avec la version 2.5
sur une version 2.6, il est tout de même recommandé d’utiliser la version d’origine,
c’est-à-dire la 2.5. Dans ce cas, les programmes doivent être appelés avec la com-
mande python2.5.

Installation sous MS-Windows
Les plates-formes MS-Windows bénéficient d’un installeur graphique automatique,
présenté sous la forme d’un Wizard (un assistant). Si vous n’avez pas les droits admi-
nistrateurs sur la machine, il est possible de sélectionner dans les options avancées
une installation en tant que non-administrateur. L’installation de Python par ce biais
ne présente aucune difficulté.

[tziade@Tarek ~]$ whereis python
python: /usr/bin/python /usr/bin/python2.4 /usr/lib/python2.5 /usr/lib/
python2.5 /usr/local/bin/python /usr/local/bin/python2.6 /usr/local/
lib/python2.6 /usr/include/python2.6 /usr/include/

Découverte de Python
PREMIÈRE PARTIE

38

Une fois l’installation achevée, une nouvelle entrée Python 2.6 apparaît dans le menu
Démarrer>Programmes, contenant entre autres l’interface IDLE. L’exécution de ce
menu doit faire apparaître un prompt Python.

La dernière étape consiste à ajouter dans la variable PATH, le chemin vers l’interpré-
teur, de manière à pouvoir l’appeler dans l’invite de commande quel que soit l’endroit
où l’on se trouve.
B http://www.python.org/ftp/python/2.6.1/python-2.6.1.msi

Figure 3–1
Installation sous MS-Windows

Figure 3–2
Idle sous MS-Windows

Environnement de développement
CHAPITRE 3

39

Installation sous Mac OS X
Sous Mac OS X version supérieure ou égale à 10.5, il existe une version de Python
préinstallée, mais incomplète. Il est donc préconisé d’installer la version complète,
disponible sur l’Internet à l’adresse suivante :
B http://www.python.org/ftp/python/2.6.1/python-2.6.1-macosx2008-12-06.dmg

L’image disque python-2.6.1-macosx2008-12-06.dmg contient un installeur
MacPython.mpkg, qui peut être lancé pour installer Python.

Premiers tests de Python en mode interactif
Pour tester l’installation, nous allons concevoir un tout premier programme qui
affiche « Hello World ! ». Ce programme peut être exécuté directement par le biais
du mode interactif, ouvert par la commande python sur toutes les plates-formes, ou
plus directement sous MS-Windows par l’environnement IDLE qui fournit un shell
connecté avec le mode interactif.

Le programme « Hello World »

Le mode interactif de Python fournit une invite de commande ou prompt, symbolisé
par le préfixe >>>, qui interprète les commandes saisies et rend immédiatement la
main, en affichant s’il y a lieu, un résultat ou une erreur.

Essais du prompt

AVERTISSEMENT Contrôler la version de Python exécutée

La version préinstallée de Python reste installée sur le système, et il est nécessaire de contrôler, lorsqu’un
script est exécuté, que c’est bien la nouvelle version complète de Python qui est utilisée.

$ python
Python 2.6.1 (r261:67515, Dec 6 2008, 16:42:21)
[GCC 4.0.1 (Apple Computer, Inc. build 5370)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> print('Hello World')
Hello World

>>> 5 + 6
11
>>> a = 3

Découverte de Python
PREMIÈRE PARTIE

40

Cette interactivité permet de tester de petites séquences de code.

Script de démarrage du mode interactif
Pour les systèmes Unix, il est possible de mettre en place un script Python qui s’exé-
cute à chaque lancement de l’interpréteur, en associant un nom de fichier à la variable
d’environnement PYTHONSTARTUP.

Dans l’exemple ci-dessous, le script .pythonstartup met en place l’autocomplétion
et un historique automatique. L’autocomplétion permet d’utiliser la touche Tabula-
tion pour compléter une frappe en cours, que ce soit pour des mots-clés du langage
Python ou pour des noms définis dans le contexte. L’historique automatique permet,
quant à lui, de sauvegarder les lignes saisies dans l’interpréteur, et de rappeler cette
sauvegarde lorsque l’interpréteur est relancé. On navigue dans cette sauvegarde avec
les touches Haut et Bas permettent de naviguer dans cette sauvegarde.

Script de démarrage Python .pythonstartup

>>> 9 + 8
17
>>> print(a)
3
>>> je peux ecrire n'importe quoi !!!
 File "<stdin>", line 1
 je peux ecrire n'importe quoi !!!
 ^
SyntaxError: invalid syntax
>>> print('du moment que c'est syntaxiquement correct')
du moment que c'est syntaxiquement correct

import os
import sys
import atexit
import readline
import rlcompleter

try:
 import readline
 has_readline = True
except ImportError:
 has_readline = False

ifnot has_readline:
 sys.exit(0)

Environnement de développement
CHAPITRE 3

41

Ce script est sauvegardé dans le dossier personnel, puis associé à la variable d’envi-
ronnement PYTHONSTARTUP. Si le shell courant est Bash, la ligne suivante peut être
ajoutée dans le fichier .bashrc du répertoire personnel.

Personnalisation de l’environnement

Le choix d’un éditeur
Le choix des outils de développement dépend fortement du type de programmation
réalisée. Par exemple, un simple éditeur de texte est amplement suffisant pour la con-
ception de scripts système mais ne suffit plus pour la conception d’applications à
interface graphique.

Lorsque le développeur a besoin de concevoir des interfaces graphiques, il peut opter
pour des outils de conception indépendants de l’éditeur de code ou, lorsqu’il existe,
utiliser un EDI qui combine les deux fonctionnalités.

print("Chargement des options")

tabulation
readline.parse_and_bind("tab: complete")

historique
home = os.path.expanduser('~')
history_file = os.path.join(home, '.pythonhistory')
try:
 readline.read_history_file(history_file)
except IOError:
 pass

atexit.register(readline.write_history_file, history_file)

nettoyage de sys.modules
del (os, sys, history, atexit, readline, rlcompleter,
 has_readline, home)

export PYTHONSTARTUP=~/.pythonstartup

À SAVOIR Script de démarrage Python

Certaines distributions fournissent parfois par défaut un script de démarrage standard comme celui pré-
senté dans ce paragraphe.
Des projets libres comme IPython proposent aussi des configurations plus poussées du mode interactif :
B http://ipython.scipy.org/

Découverte de Python
PREMIÈRE PARTIE

42

Les EDI conçus pour Python ne proposent parfois que de simples liens vers des con-
cepteurs d’interfaces indépendants mais proposent d’autres fonctionnalités intéres-
santes, comme la gestion de projet ou la liaison avec un système de gestion de ver-
sion, comme CVS ou Subversion. On peut donc regrouper les outils disponibles en
trois catégories :
• les éditeurs de code ;
• les éditeurs d’interface ;
• les EDI.

Un ensemble non exhaustif, mais relativement varié, d’éditeurs a été testé en fonction
d’un certain nombre de critères. Si un éditeur ne figure pas dans la (courte et éphé-
mère) liste présentée ici, les critères sont suffisamment explicites pour que l’outil soit
évalué facilement.

Les critères de comparaison retenus sont :
• la coloration syntaxique (CS) ;
• la standardisation automatique (SA) ;
• les raccourcis clavier et les macros (RC) ;
• l’édition multiple (EM) ;
• le repliement de code et la recherche (RR) ;
• l’autocomplétion (AC) ;
• l’interpréteur et le débogueur embarqués (IE) ;
• la licence, le prix (LIC) ;
• les plates-formes proposées (PF).

La coloration syntaxique
La coloration syntaxique du code, qui met en exergue les mots-clés du langage et dif-
férencie les blocs de commentaires des autres plates-formes lignes, est une fonction-
nalité non négligeable pour le confort de lecture. Elle ne figure pas dans le tableau
comparatif car tous les éditeurs présentés en sont dotés. Un éditeur sans coloration
syntaxique est donc à éviter.

À SAVOIR Éditeurs d’interfaces graphiques

Cet ouvrage ne portant pas sur la conception d’interfaces graphiques, seuls les éditeurs de code sont pré-
sentés ici.

Environnement de développement
CHAPITRE 3

43

La standardisation automatique
Le remplacement automatique des caractères tabulation par des espaces, et la sup-
pression des espaces en fin de ligne (trailing spaces) standardisent le code sauvegardé.
Certains éditeurs proposent en outre de gérer le nombre maximum de caractères par
ligne. Pour information, la norme est de 80 caractères par ligne en Python.

Les raccourcis clavier et les macros
La possibilité d’indenter plusieurs lignes en une seule manipulation, les raccourcis
clavier permettant de saisir automatiquement des portions de code ou tout élément
générique comme les en-têtes (macros), sont autant d’éléments qui accélèrent l’écri-
ture du code. Certains éditeurs proposent de programmer soi-même des macros en
associant des scripts Python à des raccourcis clavier, ce qui augmente considérable-
ment la productivité.

L’édition multiple
La possibilité d’ouvrir plusieurs fichiers à la fois et la facilité de navigation entre les
différentes fenêtres d’édition deviennent vite des éléments de choix incontournables.
Tous les éditeurs présentés ont cette fonctionnalité.

Le repliement de code et la recherche
Le repliement de blocs de code (folding) consiste à masquer et démasquer le corps
d’une classe, méthode ou fonction. Cette fonctionnalité peut s’avérer très pratique
pour les fichiers dont la taille est importante, surtout dans un langage qui ne sépare
pas distinctement la partie déclaration de la partie implémentation. La facilité de
recherche dans le code est indispensable, surtout pour les éditeurs qui ne possèdent
pas le repliement.

L’autocomplétion
L’autocomplétion permet de compléter la frappe en affichant une liste de possibilités
extraites de l’ensemble des fonctions et classes disponibles du contexte en cours.
Cette fonctionnalité est très répandue dans les EDI fournis avec les langages pro-
priétaires comme Delphi, C# ou encore Visual Basic et l’environnement Java Eclipse.
Certains éditeurs ont opté pour une autre approche, moins contraignante pendant la
saisie du code mais moins ergonomique : un référentiel du langage est fourni et faci-
lement accessible, et un double-clic sur un élément l’insère dans le code.

Découverte de Python
PREMIÈRE PARTIE

44

L’interpréteur et le débogueur embarqués
Pouvoir invoquer l’interpréteur Python directement depuis l’éditeur pour exécuter le
script ou pour tester une portion du code, minimise les allers-retours entre l’éditeur
et le shell système. Cette fonctionnalité est assez pratique sous MS-Windows, où le
shell est moins intégré au bureau, mais plus anecdotique sous des plates-formes
comme GNU/Linux, où il est facile d’organiser plusieurs fenêtres de shell qui
accompagnent le travail de l’éditeur. Un débogueur embarqué est une fonctionnalité
beaucoup plus intéressante, surtout lorsqu’il permet d’insérer directement des points
d’arrêt dans le code et de fonctionner en mode pas-à-pas. Le débogage interactif sans
cette fonctionnalité nécessite plus de manipulations.

La licence
Les éditeurs présentés sont pour la plupart distribués gratuitement sous licences
GPL ou dérivées. Quelques logiciels commerciaux de très bonne facture sont toute-
fois présentés, comme WingIDE. Le prix de vente de ces éditeurs est en général d’un
montant ridicule.

Les plates-formes reconnues
Pour les développeurs Sans Plate-forme Fixe (SPF), le choix d’un éditeur fonction-
nant sous MS-Windows, Mac et Unix permet de conserver ses habitudes d’une
plate-forme à l’autre. Dans le tableau suivant, la lettre L représente Unix et ses
dérivés, la lettre M, Mac OS, et enfin la lettre W, MS-Windows.

Le tableau ci-après présente un certain nombre d’éditeurs où chaque fonctionnalité
est notée de la manière suivante :
• 0 : inexistante ;
• 1 : incomplète ;
• 2 : suffisante ;
• 3 : parfaite.

Tableau 3–1 Comparatif des éditeurs Python

Nom SA RC RR AC IE PF LIC

Bluefish
Intéressant uniquement si l’édition de code Python est mineure par rapport à l’édi-
tion de fichiers XML et HTML (programmation web haut niveau en WYSIWYG)

1 1 1 0 0 L GPL

Environnement de développement
CHAPITRE 3

45

DrPython
Éditeur correct, extensible par des scripts Python et plug-ins, ce qui le rend très inté-
ressant. Une bibliothèque de plug-ins est disponible sur le Web directement depuis
l’éditeur. Dommage que l’autocomplétion soit basique et mal conçue, et qu’il n’y ait
pas de débogueur intégré.

0 3 3 1 1 L, W GPL

Emacs, Xemacs, Vim, Vi et dérivés
Éditeurs historiques complets et puissants et qui se paramètrent aux petits oignons,
même si cette tâche reste laborieuse. Ils rendent très productif mais la courbe
d’apprentissage est lente. Ils peuvent parfois être couplés à d’autres éditeurs (binds
emacs/vi).

3 3 3 2 1 L, W GPL

Kate
Intégré à KDE et relativement souple, Kate est un éditeur multi-usage. Attention aux
problèmes d’encodage parfois sur certaines distributions comme Ubuntu. Débogage
et autocomplétion Python inexistants.

2 2 3 0 0 L GPL

IDLE
Installé d’office sous MS-Windows avec Python. Le parent pauvre en termes de fonc-
tionnalités, à abandonner au profit d’un autre éditeur.

2 1 1 1 1 L, W GPL

PyDev
Nécessite l’installation et l’expérience d’Eclipse. Très interessant si le travail de
Python se fait en parallèle de Java, via Jython par exemple. Petites configurations
s’abstenir.

2 2 2 3 1 L, W GPL

Eric3
L’autocomplétion est illogique, voire énervante. Reste toutefois un excellent éditeur.

1 2 3 2 3 L, W GPL

BoaConstructor
Encore très bogué à l’heure actuelle. Possède un outil de construction d’expressions
régulières et quelques options intéressantes. Inspiré de Delphi, BoaConstructor pro-
pose un éditeur d’interfaces wxPython.

1 0 1 1 0 L, W GPL

BlackAdder
La version d’essai se ferme toutes les 10 minutes. Autocomplétion très mauvaise. Le
reste des fonctionnalités est de bonne facture. Le prix reste trop cher.

1 0 1 1 0 L, W PR

Komodo
Bon éditeur, supporte aussi Perl, PHP et TCL. Autocomplétion mauvaise.

2 3 2 3 3 L, W PR

WingIDE
Un des meilleurs éditeurs pour Python, conçu par des développeurs Python pour des
développeurs Python. Le prix à payer est ridiculement bas par rapport à sa qualité.
Permet de déboguer Zope. Reste quelques incohérences.

2 2 3 3 3 L, W PR

SPE
Éditeur correct lorsqu’il n’y a pas de bogues qui rendent impossible l’édition de cer-
tains fichiers (bogues d’encoding au moment de la sauvegarde, impossibilité
d’ouvrir certains fichiers), voire qui suppriment le contenu du fichier :(. Produit jeune
à surveiller.

2 1 3 2 1 L, W GPL

Tableau 3–1 Comparatif des éditeurs Python (suite)

Nom SA RC RR AC IE PF LIC

Découverte de Python
PREMIÈRE PARTIE

46

En un mot...
Les éditeurs présentés dans ce chapitre ne sont qu’un aperçu de la multitude des
outils existants, et ce comparatif reste très éphémère. L’essentiel reste d’être à l’aise
avec l’environnement de développement pour aborder la suite du livre.

Le prochain chapitre présente la syntaxe du langage et les exemples pouvant tous être
rejoués dans le prompt. Il est préférable d’avoir procédé à l’installation de Python à ce
point du livre.

Figure 3–3 L’éditeur Eric3 en action

DEUXIÈME PARTIE

Éléments
du langage

Un développeur entretient une relation cognitive très forte avec la syntaxe du
langage qu’il utilise, comme peut le faire un peintre avec ses pinceaux et ses
mélanges de couleurs.

Le vocabulaire emprunté par les développeurs pour qualifier une portion de code est très
lié à la notion d’esthétisme et au plaisir ressenti lors de sa conception ou de sa relecture.
Une fonction écrite de manière claire et concise est agréable, un module qui n’est pas
bien organisé est sale, un programme qui évolue facilement est beau, une classe qui
implémente une fonctionnalité déjà existante dans les primitives est bavarde, etc.

Ce jugement est basé sur un référentiel commun, qualifié de norme, et cette partie
regroupe tous les éléments nécessaires pour écrire du code Python standard :
• la syntaxe du langage dans le chapitre 4 ;
• la structuration du code dans le chapitre 5 ;
• les primitives au chapitre 6 ;
• les conventions de codage pour le chapitre 7.

L’objectif est de fournir les outils de base du développeur Python, sans pour autant
remplacer un élément essentiel pour écrire du code avec goût : l’expérience.

La syntaxe du langage Python est simple, concise et terriblement efficace. Cette par-
ticularité a été dès le départ une volonté de Guido van Rossum, alias GvR, pour en
faire un langage le plus productif possible. Et le fossé en termes d’efficacité entre
Python et d’autres langages modernes se voit ligne après ligne pour les développeurs :
le code saisi est en général immédiatement fonctionnel et s’écrit sans hésitation.

Cette facilité est d’autant plus prononcée que la syntaxe des structures condition-
nelles rapproche beaucoup Python du pseudo-code, ce qui nécessite moins de
réflexion sur la manière dont une portion de code doit être écrite, contrairement à
d’autres langages ou les temps d’arrêt dans l’écriture sont légion.

Ce chapitre fournit la syntaxe du langage et est découpé comme suit :
• l’instruction print ;

• les commentaires ;

• le modèle de données ;

• les littéraux ;

• les types standards ;

• les opérateurs ;

• l’indentation ;

• les structures conditionnelles.

4
Syntaxe du langage

Éléments du langage
DEUXIÈME PARTIE

50

L’instruction print
Écrivons notre premier programme qui affiche à l’écran quelques phrases :

Utilisation de print

La commande print évalue une expression et affiche le résultat. Ce qui est vrai pour
des phrases est aussi vrai pour des valeurs numériques, des calculs ou tout autre élé-
ment interprétable, car l’instruction convertit automatiquement le résultat de
l’expression en une chaîne de caractères affichable, lorsque c’est possible.

Utilisation de print #2

print devient fonction
Une modification majeure sur le fonctionnement de print a été introduite dans la
version 3 de Python. Cette commande est passée du statut d’instruction à celui de
fonction, ce qui rend les programmes écrits pour Python 2 incompatibles avec
Python 3 lorsqu’ils l’utilisent.

Appel de print avec Python 3

>>> print "Il y a un monsieur avec une moustache qui frappe à la porte"
Il y a un monsieur avec une moustache qui frappe à la porte
>>> print "Dis lui de passer son chemin j'en ai déjà une"
Dis lui de passer son chemin j'en ai déjà une

>>> print 3
3
>>> print 3 * 3
9
>>> print 3 + 4 + 5
12
>>> print je ne suis pas interprétable
 File "<stdin>", line 1
 print je ne suis pas interprétable
 ^
SyntaxError: invalid syntax

$ python
Python 3.0+ (release30-maint:67944, Dec 27 2008, 14:34:16)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> print 'Bonjour'

Syntaxe du langage
CHAPITRE 4

51

Le programme de conversion 2to3, présenté au chapitre 8, permet de transformer le
code d’un programme Python 2 en syntaxe compatible avec Python 3. Il ne permet
cependant pas de gérer la conversion de l’utilisation de print de manière optimale, et
se contente d’ajouter des parenthèses.

Transformations de print par 2to3

Dans le deuxième cas, le programme de conversion est incapable de différencier si
print est utilisé comme instruction ou comme fonction, et doublera les parenthèses.

Il est possible de fournir à 2to3 une option pour traiter print comme une fonction,
et une bonne pratique consiste à écrire des programmes qui utilisent cette nouvelle
syntaxe, en incluant un appel à __future__.print_function.

Utilisation de print comme une fonction, avec Python 2

Le passage à Python 3 est ainsi facilité.

 File "<stdin>", line 1
 print 'Bonjour'
 ^
SyntaxError: invalid syntax

>>> print "du texte" # Python 2
>>> print("du texte") # Apres transformation avec 2to3
>>> print ("du", "texte") # Python 2
>>> print(("du", "texte")) # Apres transformation avec 2to3

$ python2.6
Python 2.6.1 (r261:67515, Dec 6 2008, 16:42:21)
[GCC 4.0.1 (Apple Computer, Inc. build 5370)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from __future__ import print_function
>>> print 'ok'
 File "<stdin>", line 1
 print 'ok'
 ^
SyntaxError: invalid syntax
>>> print('Je fais comme Python 3!')
Je fais comme Python 3!

BONNE PRATIQUE print comme fonction

Les exemples du livre utilisent print comme fonction, puisque c’est devenu une bonne pratique sous
Python 2.

Éléments du langage
DEUXIÈME PARTIE

52

Les commentaires
En Python, les commentaires sont préfixés par le caractère dièse (#), et peuvent être
placés en fin de ligne ou prendre une ligne complète.

Exemples de commentaires

L’interpréteur syntaxique ignore ces commentaires et considère que le caractère dièse
marque la fin d’une ligne logique, sauf lorsqu’elle est liée à la ligne suivante par le
caractère antislash (\).

Modèle de données
Le modèle de données de Python est basé sur les objets. Toute donnée manipulée est
un objet avec un identifiant, un type et une valeur.

L’identifiant est une valeur entière et définie une bonne fois pour toutes à la création de
l’objet. Elle est calculée à partir de l’adresse mémoire de l’objet et garantit son unicité.

Le type de l’objet est immuable et définit toutes les fonctionnalités qui pourront être
utilisées avec l’objet, et ce quel que soit ce type.

La valeur attribuée à l’objet peut être modifiable en fonction du type de l’objet. Par
exemple, les objets de type entier ou chaîne de caractère ne peuvent pas être modifiés
après leur création. On les appelle objets immuables.

Il existe une série de primitives qui permettent de lire chacun des attributs décrits :
• id() : renvoie l’identifiant d’un objet.
• type() : renvoie le type d’un objet.
• dir() : liste l’ensemble des fonctionnalités d’un objet.

Manipulation d’objets de type entier

commentaire judicieux
print("hello") # commentaire très à propos
oubliez le commentaire précédent
celui-ci est bien mieux

>>> id(1)
134536624
>>> type(1)
<type 'int'>
>>> dir(1)

Syntaxe du langage
CHAPITRE 4

53

Les objets ne sont jamais explicitement détruits, ce travail étant réalisé automatique-
ment par le gestionnaire de mémoire de Python. Cette fonctionnalité, nommée
ramasse-miettes ou garbage collector, est basée sur un compteur de référence associé à
chaque type d’objet. Ce mécanisme peut être observé et en partie modifié grâce au
module gc qui fournit une interface d’accès.

Pour l’utiliser, liez l’objet à une variable par le biais d’une affectation.

Affectation d’une variable

Aucune syntaxe particulière n’est nécessaire pour cette affectation et la variable a
devient une référence à l’objet.

['__abs__', '__add__', '__and__', '__class__', '__cmp__', '__coerce__',
'__delattr__', '__div__', '__divmod__', '__doc__', '__float__',
'__floordiv__', '__getattribute__', '__getnewargs__', '__hash__',
'__hex__', '__init__', '__int__', '__invert__', '__long__',
'__lshift__', '__mod__', '__mul__', '__neg__', '__new__',
'__nonzero__', '__oct__', '__or__', '__pos__', '__pow__', '__radd__',
'__rand__', '__rdiv__', '__rdivmod__', '__reduce__', '__reduce_ex__',
'__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__',
'__ror__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__',
'__rtruediv__', '__rxor__','__setattr__', '__str__', '__sub__',
'__truediv__', '__xor__']

>>> a = 1
>>> a
1
>>> id(a)
134536624
>>> type(a)
<type 'int'>

Éléments du langage
DEUXIÈME PARTIE

54

Les littéraux
Les littéraux sont des constantes qui définissent une valeur. Il en existe trois types en
Python :
• valeurs alphanumériques ;
• valeurs numériques ;
• nombres complexes.

Littéraux alphanumériques
Les chaînes de caractères sont des valeurs alphanumériques entourées par des guille-
mets simples ou doubles, ou dans une série de trois guillemets simples ou doubles. Ces
dernières sont appelées chaînes triple-quoted et permettent de composer des chaînes
sur plusieurs lignes et contenant elles-mêmes des guillemets simples ou doubles.

SYSTÈME Optimisation mémoire

Pour tous les objets immuables dont le type et la valeur sont identiques, le gestionnaire de mémoire peut
décider de ne conserver qu’une seule instance et de toujours s’y référer, optimisant ainsi l’utilisation de la
mémoire :
>>> a = 1
>>> b = 1
>>>id(a)
134536624
>>>id(1)
134536624
>>>id(b)
134536624
>>> a is b
True

Cette optimisation peut considérablement réduire la taille mémoire occupée. Les objets modifiables,
quant à eux, sont bien sûr toujours uniques :
>>> a = []
>>> b = []
>>>id(a)
1211995860
>>>id(b)
1212018900
>>>id([])
1211995892

Syntaxe du langage
CHAPITRE 4

55

Chaînes de caractères simples et triple-quoted

Il est par ailleurs possible de préfixer les chaînes par le caractère :
• r ou R pour spécifier que le contenu est du texte brut, où les caractères antislash (\)

n’ont plus le même usage. Ce préfixe est surtout utilisé pour travailler avec du
contenu brut de texte, comme :
– lors de recherches de séquences par le biais d’expressions régulières ;
– avec des chaînes riches en antislash, comme les chemins sous Windows

(r'c:\ici\et\la').
• u ou U pour spécifier que le texte est une chaîne de caractères Unicode sous

Python 2.
• b ou B pour spécifier que le texte est de type bytes depuis Python 2.6.

Normes ASCII et Unicode
Sous Python 2, les chaînes sont par défaut des chaînes de caractères codées sur 8 bits
dont le type est str. Pour exprimer des chaînes de caractères en anglais, ce type
suffit, en se basant sur la norme ASCII (American Standard Code for Information
Interchange) de 1961.

Pour les langues comme le français, les 128 caractères de la table ASCII ne suffisent plus,
et une table étendue sur 256 caractères a permis d’introduire de nouveaux caractères
comme « é » ou « à ». Le problème est que cette extension varie d’une langue à l’autre.
Cette variation entraîne un véritable casse-tête pour les programmes multilingues car il
est nécessaire de gérer des encodages différents en fonction de la langue utilisée.

Pour simplifier ce problème, la norme Unicode a été initiée en 1991. Elle répond à
un souhait d’unification de tous les systèmes d’encodage de caractères pour proposer
un référentiel unique, indépendant de toute plate-forme ou logiciel, et global à toutes
les langues.

>>> print("Nous avons trouvé une sorcière ! Allons-nous la brûler ?")
Nous avons trouvé une sorcière ! Allons-nous la brûler ?
>>> print('Au secours ! je suis opprimé')
Au secours ! je suis opprimé
>>> print("""on est censé être ici pour s'amuser
... ne nous chamaillons pas pour savoir qui a tué qui""")
on est censé être ici pour s'amuser
ne nous chamaillons pas pour savoir qui a tué qui

EN PRATIQUE Unicode version 3.2

À l’heure où ces lignes sont écrites, la version 3.2 propose 95 221 caractères, symboles et directives.

Éléments du langage
DEUXIÈME PARTIE

56

Le support d’Unicode a été introduit dans Python 2.4, et peut être utilisé avec des
chaînes préfixées du caractère u comme vu précédemment, qui deviennent des objets
de type unicode.

Chaînes unicode

Des méthodes d’encodage et de décodage permettent de passer du type str au type
unicode, en utilisant une table de correspondance, appelée codec et portant un nom
unique (utf8 est utilisé dans l’exemple).

Mais cette situation n’est qu’une transition vers un environnement où l’Unicode
devient le type par défaut pour la gestion des chaînes de caractères.

Évolution de l’Unicode de Python 2 à Python 3
Python 3 adopte le standard Unicode de base, et le préfixe u disparaît. Python 2.6,
quant à lui, ajoute un nouveau type bytes, qui est un synonyme du type str. Le pré-
fixe b peut être utilisé pour ce type.

Le préfixe b

L’intérêt de ce synonyme est de permettre aux développeurs d’utiliser dans leurs pro-
grammes Python 2.6 un marqueur simple pour différencier les chaînes qui ne sont
pas utilisées dans le programme pour stocker du contenu textuel d’une langue
donnée. Ce contenu textuel est de préférence stocké dans des chaînes unicode.

Donnée vs contenu textuel

>>> unicode = u"Je suis en unicode."
>>> unicode.encode('utf8')
'Je suis en unicode.'
>>> 'je vais être en unicode'.decode()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 8:
ordinal not in range(128)
>>> 'je vais être en unicode'.decode('utf8')
u'je vais \xeatre en unicode'

>>> b'je suis un bytes'
'je suis un bytes'

>>> b'data1234'
'data1234'
>>> u'je suis une phrase moi, pas de la donnée !'
u'je suis une phrase moi, pas de la donn\xe9e !'

Syntaxe du langage
CHAPITRE 4

57

Un programme qui respecte cette convention pourra passer sans problème à la
version 3 de Python, où le type unicode disparaît : les chaînes unicode deviennent des
chaînes str sans préfixe grâce à une conversion automatique (avec le programme 2to3).
Les chaînes bytes, quant à elles, deviennent directement des chaînes bytes Python 3.

Pour résumer :
• Python 2.3 et inférieur – Les chaînes sont toutes stockées dans des objets de type
str.

• Python 2.4 et Python 2.5 – Les chaînes sont stockées dans des objets de type str
ou unicode, avec des méthodes de conversion. Les conventions suivantes sont
adoptées :
– Les chaînes de caractères dédiées à du texte utilisent le type unicode avec le

préfixe u.
– Les chaînes de données utilisent le type str sans préfixe.

• Python 2.6 – Le préfixe b fait son apparition et permet d’indiquer que la chaîne
est de type bytes. C’est un synonyme de str. La chaîne sans préfixe reste aussi
une chaîne str, et les chaînes unicode sont toujours présentes. Les conventions
suivantes sont adoptées :
– Les chaînes dédiées à du texte utilisent le type unicode avec le préfixe u.
– Les chaînes de données utilisent de préférence le type bytes avec le préfixe b, afin

de les différencier des chaînes de texte avec le test isinstance(texte, bytes).
• Python 3.0 et supérieur – Le type unicode disparaît et devient le type str, et le

préfixe u est également retiré. Enfin, l’ancien type str devient le type bytes. Les
conventions suivantes sont adoptées :
– Les chaînes de caractères utilisent le type str sans préfixe.
– Les chaînes ASCII classiques utilisent le type bytes avec le préfixe b.

Caractères spéciaux
Il est possible, comme avec le langage C, d’insérer des caractères spéciaux dans les
littéraux. Le caractère antislash ou backslash (\), permet d’intégrer ces caractères afin
qu’ils soient interprétés comme des commandes. Voici un tableau contenant la liste
complète des caractères spéciaux disponibles en Python :

Tableau 4–1 Caractères spéciaux pour le backslash

Caractère Description Exemple

' et " Guillemet simple ou double, permet
d’éviter de casser l’enrobage d’une
chaîne

>>> print('l\'apostrophe')
l'apostrophe

Éléments du langage
DEUXIÈME PARTIE

58

Littéraux numériques
Il existe trois types de littéraux numériques pour représenter des valeurs :
• les entiers simples ou longs ;
• les valeurs à virgule flottante ;
• les nombres complexes.

n Saut de ligne >>>print('ok\ncorral')
ok
corral

r Retour chariot, souvent placé avant
un saut de ligne sur les plates-formes
Windows.
Le code de fin de de ligne (EOL) varie
d’une plate-forme à l’autre (Mac :
'\r', Windows : '\r\n', Unix: '\n') mais
tend à s’uniformiser vers '\n'.

>>>print('bataille\r\nà\r\nok\r\ncorral')
bataille
à
ok
corral

\ Antislash ou backslash >>>print('le fichier est dans
c:\\fichiers\\')
le fichier est dans c:\fichiers\

v Tabulation verticale >>>print('1\v2')
1
2

t Tabulation horizontale >>>print('ici\tou\tailleurs')
ici ou ailleurs

a Bip >>>print('un bip : \a')
un bip :

b Backspace >>>print('parfois je mange mes \b\b\b\b\b
mots')
parfois je mange mots

nnn Valeur octale sur trois chiffres >>>print('\124out à fait')
Tout à fait

xHH Valeur hexadécimale sur deux chif-
fres

>>>print('7 est \x3E à 6')
7 est > à 6

unnnn Caractère Unicode codé sur 16 bits >>>print u'\u00bfHabla espa\u00f1ol?')
¿Habla español?

N{nom} Caractère Unicode défini par le nom >>>print u'\N{POUND SIGN}'
£

Tableau 4–1 Caractères spéciaux pour le backslash (suite)

Caractère Description Exemple

Syntaxe du langage
CHAPITRE 4

59

Littéraux pour les entiers
En Python, un entier peut être représenté sous forme décimale, binaire, octale ou
hexadécimale.

Représentation décimale

Classiquement, la forme décimale est représentée par une séquence de chiffres numéri-
ques. La plage des valeurs possibles s’étend de 0 à 2 147 483 647, ce qui correspond à
une valeur non signée sur 32 bits et permet de représenter un entier naturel.

Pour obtenir des valeurs négatives et étendre la représentation aux entiers relatifs, le lit-
téral est préfixé de l’opérateur - pour former une expression correspondant à la valeur.

Pour toutes les valeurs qui dépassent cette plage, des entiers longs doivent être utilisés.
Un entier long est représenté de la même manière qu’un entier, mais suffixé par la lettre
L ou l. Il est conseillé d’utiliser la version majuscule afin d’éviter une éventuelle confu-
sion avec le chiffre 1. Il n’y a pas de limite de représentation pour les entiers longs mise
à part la mémoire virtuelle disponible de l’ordinateur. En d’autres termes, et contraire-
ment à beaucoup d’autres langages, il n’y a pas besoin de mettre en place des algo-
rithmes de changement de base pour manipuler des nombres de grande taille.

Représentation d’entiers

Depuis la version 2.4 de Python, lorsque qu’un entier simple dépasse la plage auto-
risée, il est automatiquement transtypé, c’est-à-dire converti, en entier long.

Transtypage automatique en entier long

La version 3 de Python, quant à elle, ne fait plus de distinction entre ces deux types
et les unifie en un seul type d’entiers sans suffixes.

>>> u = -1
>>> u = 23456
>>> u = 2L
>>> u = 826252524370896L
>>> u = 826252524352928685376357642970896L # long, isn't it ?

>>> u = 56
>>> type(u)
<type 'int'>
>>> u = 3456876534567
>>> type(u)
<type 'long'>

Éléments du langage
DEUXIÈME PARTIE

60

Manipulation d’entiers sous Python 3

Représentation binaire

La forme binaire (base 2) est obtenue avec le préfixe 0b (zéro suivi de b) ou 0B. bin
permet d’afficher la représentation binaire d’un entier.

Représentation binaire

La représentation binaire n’existe que depuis Python 2.6.

Représentation octale

La forme octale est obtenue par une séquence de chiffres de 0 à 7, préfixée d’un 0o
(zéro suivi d’un petit o) ou 0O. oct permet d’afficher la représentation octale d’un
entier.

Exemples de représentation octale

Cette forme existe depuis Python 2.6, qui supporte encore l’ancienne forme où le
chiffre octal était précédé d’un zéro simple.

Représentation hexadécimale

La forme hexadécimale est obtenue par une séquence de chiffres et de lettres de A à F,
préfixée par la séquence 0x ou 0X. La forme la plus courante est d’utiliser le préfixe 0x.

>>> 2L
 File "<stdin>", line 1
 2L
 ^
SyntaxError: invalid syntax
>>> 826252524352928685376357642970896
826252524352928685376357642970896

>>> 0b0101101001
361
>>> bin(14)
'0b1110'

>>> u = 0o546
>>> u = 0o76453L
>>> oct(543)
'01037'

Syntaxe du langage
CHAPITRE 4

61

Les lettres qui servent à la composition de la valeur peuvent être en majuscules ou
minuscules. La notation la plus lisible est l’utilisation de lettres majuscules, combi-
nées à l’utilisation du préfixe 0x, mais ce choix reste souvent dicté par le domaine.

Enfin, hex permet d’afficher la représentation hexadécimale d’un entier.

Exemples de notation hexadécimale

Littéraux pour les valeurs à virgule flottante
La représentation de valeurs à virgule flottante, que l’on notera littéraux réels, permet
de décrire des valeurs réelles. Les parties entière et fractionnelle de la valeur réelle
sont séparées par le signe « . », chaque partie étant composée de chiffres. Si le pre-
mier chiffre de la partie entière est 0, le nombre représenté ne sera néanmoins pas
considéré comme un octal et restera traité en base 10.

Représentation de réels

De même que pour un littéral entier, le signe - peut être utilisé en préfixe pour com-
poser une valeur négative.

Une puissance est aussi une valeur à virgule flottante. Elle est représentée par une
partie entière (ou littéral réel) complète suivie d’un exposant. L’exposant est un suf-
fixe composé de la lettre e ou E, suivi d’un signe + ou - optionnel et d’un certain
nombre de chiffres.

Le module decimal, présenté au chapitre 9, permet quant à lui de représenter des
valeurs décimales.

>>> u = 0X3EF5
>>> u = 0X3EF598L
>>> u = 0x3EF76L
>>> u = 0x3ef7b66L
>>> hex(43676)
'0xaa9c'

>>> u = .001
>>> u = 103.
>>> U = 103.001
>>> u = -103.2
>>> u = -.1
>>> u = -2.
>>> u = 09.02 # équivalent à 9.02

Éléments du langage
DEUXIÈME PARTIE

62

Représentation de valeurs exponentielles

Littéraux pour les nombres complexes
En Python, la représentation d’un nombre complexe se fait par l’association de deux
littéraux réels séparés par le signe +. La partie imaginaire est suffixée par la lettre J ou
j. Il est aussi possible d’omettre la partie réelle lorsqu’elle est nulle.

Enfin, les parties réelle et imaginaire peuvent être consultées par le biais des
méthodes real et imag fournies par les objets de type complex.

Exemples de nombres complexes

Les types standards
Python fournit de manière standard certains types de données :
• les types à valeur unique ;
• les nombres ;
• les séquences ;
• les mappings ;
• le type file.

À ces quatre types s’ajoutent les types de données accessibles qui seront présentés
dans le chapitre 6.

>>> u = 3.1e10
>>> u = .2E9
>>> u = .2E09
>>> u = 4.2E09
>>> u = 4e10

>>> u = 5j
>>> u = 3 + .3J
>>> u = 6.1 + 96j
>>> u = 7 + 34J
>>> u.real
7.0
>>> u.imag
34.0
>>> u
(7+34j)

Syntaxe du langage
CHAPITRE 4

63

Les types à valeur unique
Les types à valeur unique permettent de définir des objets qui jouent un rôle spéci-
fique dans le langage. Python en fournit trois par défaut :
• None ;
• NotImplemented ;
• Ellipsis.

None
None permet de déclarer une absence de valeur et est en quelque sorte comparable au
nil de Pascal ou au NULL de C. Son usage est très fréquent. Il est commun par
exemple pour certaines variables associées à certaines structures de données (les
classes pour ne pas les nommer) de les initialiser à None. La valeur booléenne de None
est à False et ce type peut donc être employé dans des expressions de test.

NotImplemented
Dans un algorithme complexe, lorsque certaines combinaisons de paramètres ne per-
mettent pas de calculer un résultat, NotImplemented peut être renvoyé. Ce type est
aussi utilisé lorsque le code n’est pas terminé.

Dans l’exemple ci-dessous, la méthode get_data déclenche une erreur
NotImplementedError pour signifier qu’elle doit être surchargée.

Utilisation de NotImplementedError

PROGRAMMATION Utilisation de NotImplementedError

Il est plus fréquent d’utiliser NotImplementedError qui permet de lever une exception dans ce
genre de cas, afin de ne pas laisser le code appelant continuer (voir le prochain chapitre sur la gestion
d’exceptions).

>>> class AbstractData(object):
... def print_data(self):
... print(self.get_data())
... def get_data(self):
... raise NotImplementedError('A surcharger')
...
>>> d = AbstractData()
>>> d.print_data()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 3, in print_data

Éléments du langage
DEUXIÈME PARTIE

64

Ellipsis
Ellipsis est utilisé par la notation étendue des tranches, vues à la fin de ce chapitre,
et par les doctests (voir le chapitre 12, sur la programmation dirigée par les tests).

Les nombres
Les nombres sont des objets immuables représentés par les littéraux numériques.

On retrouve donc les trois types, soit :
• les nombres entiers ;
• les nombres à virgule flottante ;
• les nombres complexes.

Enfin, un type supplémentaire complète les nombres à virgule flottante : les décimaux.

Les nombres entiers

Le type int

Les nombres entiers sont codés par le biais du complément à deux sur 32 bits ou plus.
Le principe de ce codage est de représenter les entiers relatifs sur n-1 bits en différen-
ciant les entiers relatifs positifs ou nuls des entiers relatifs négatifs par le dernier bit : 0
pour les positifs et 1 pour les négatifs. Une valeur négative est obtenue en prenant son
opposée positive et en inversant chaque bit de sa représentation, puis en ajoutant 1.

Cette technique permet de rendre directes certaines opérations de bas niveau sur les
nombres, comme les masquages ou décalages de bits.

 File "<stdin>", line 5, in get_data
NotImplementedError: A surcharger
>>> class ConcreteData(AbstractData):
... def __init__(self, data):
... self.data = data
... def get_data(self):
... return self.data
...
>>> d = ConcreteData('xxx')
>>> d.print_data()
xxx

ABSTRACTION Module abc

Le module abc, introduit dans Python 2.6 et présenté au chapitre 10, offre une nouvelle technique de
description de classes abstraites, comparable aux interfaces.

Syntaxe du langage
CHAPITRE 4

65

Le type long

Les nombres entiers dépassant la plage de -2 147 483 648 à 2 147 483 647, définis
précédemment comme des entiers longs, sont quant à eux codés par le biais d’une
variante du complément à deux. Cette variante définit une valeur suivant une série de
bits de taille indéfinie, la mémoire disponible étant la seule limite. L’objectif de cette
représentation est de minimiser les problématiques de passages de type long à type
int lors d’opérations arithmétiques.

Le type bool

Il existe enfin un sous-ensemble composé des valeurs 0 et 1, qui permet de définir le
type booléen. Ce type est représenté par deux objets uniques :
• True ;
• False.

Ces objets sont équivalents aux objets 0 et 1 de type int.

Les nombres à virgule flottante
Les nombres à virgule flottante utilisés pour représenter des réels sont tous à double
précision (norme IEEE 754) en Python, soit des nombres codés sur 64 bits. La simple
précision n’est pas implémentée, car le gain en termes de taille mémoire et de temps
CPU est ridicule par rapport aux autres consommations d’un programme Python.

PYTHON 3 Unification des types long et int

Les types long et int ne sont plus qu’un seul et même type sous Python 3, et ce nouveau type int
fonctionne sans limites de valeur.

CULTURE La norme IEEE 754

La norme IEEE 754, reprise par la norme internationale IEC 60559, définit le format des nombres à vir-
gule flottante et est adoptée par la quasi-totalité des architectures d’ordinateur actuelles. Les proces-
seurs intègrent directement des implémentations matérielles pour le calcul sur les flottants IEEE, ce qui
rend leur usage rapide. Les flottants IEEE sont codés en « simple précision » sur 32 bits ou en « double
précision » sur 64 bits. Le seul intérêt de la simple précision est un gain relatif de mémoire et de temps
CPU, ce qui est devenu accessoire avec la puissance des machines actuelles.
Le principe de la virgule flottante est de définir le nombre réel par un signe, une mantisse entière ou signifi-
cande qui représente le nombre complet, et l’exposant qui détermine la place de la virgule dans le nombre.
Les flottants demeurent une approximation rationnelle des nombres réels, et posent quelques problèmes.
Le principal est que des arrondis peuvent se cumuler dans les calculs et introduire des erreurs dramati-
ques dans certains domaines comme le calcul scientifique ou la comptabilité. L’utilisation des flottants y
est donc proscrite, et remplacée par des entiers.

Éléments du langage
DEUXIÈME PARTIE

66

Les nombres complexes
Les nombres complexes sont formés d’un couple de nombres à virgule flottante et
subissent donc les mêmes contraintes.

Les décimaux
Introduits dans Python 2.4, les décimaux permettent de combler les limitations des
nombres à virgule flottante dans la représentation de certaines fractions. Contraire-
ment aux types précédents, définir un décimal ne peut pas se faire directement et il
est nécessaire d’utiliser explicitement le module decimal. Ce module et son utilisa-
tion sont décrits dans le chapitre 8.

Les séquences
Une séquence est une collection finie d’éléments ordonnés, indexés par des nombres
positifs. Ces nombres varient de 0 à n-1 pour une séquence contenant n éléments. La
notation pour se référer au ième élément de la séquence est :

Il est aussi possible d’utiliser des index négatifs pour se référer aux éléments, en les
faisant varier de -n à -1. Le dernier élément de la séquence devient :

et le premier :

Les éléments d’une séquence peuvent être découpés en tranches en formant des
sous-séquences. Par exemple, sequence[u:v] est une séquence qui est une sous-
partie de sequence, de l’élément d’index u inclus, à l’élément d’index v exclus. La
nouvelle séquence obtenue devient une séquence à part entière et de même type. La
notation de certaines tranches est simplifiée par la double indexation positive et
négative vue précédemment. Par exemple, obtenir la tranche qui contient tous les
éléments d’une séquence, excepté le premier et le dernier se note :

Il existe un système de tranches étendu pour certains types de listes qui permet
d’insérer un troisième paramètre qui définit le pas. sequence[u:v:w] est équivalent à

sequence[i-1]

sequence[-1]

sequence[-n]

sequence[1:-1].

Syntaxe du langage
CHAPITRE 4

67

sequence[u:v] mais seuls les éléments multiples de w seront conservés, c’est-à-dire
que pour tout index i supérieur ou égal à u et inférieur à v, sequence[i] sera con-
servé si i = u + n*w.

Python fournit quelques primitives de manipulation communes à tous les types de
séquences :
• len() : permet de récupérer le nombre d’éléments de la séquence ;
• min() et max() : renvoient les éléments de valeurs minimum et maximum ;
• sum() : renvoie la somme des éléments, lorsque tous les éléments de la liste ont

des types qui peuvent être additionnés.

Il existe deux sortes de séquences :
• les séquences immuables, qui ne peuvent plus être modifiées après création ;
• les séquences modifiables.

Les séquences immuables
Les séquences immuables sont des objets dont la valeur ne peut plus être modifiée
après création.

Ce sont :
• les chaînes de caractères de type str nommées string ;
• les chaînes de caractères Unicode, nommées unicode ;
• les listes immuables d’éléments hétérogènes, de type tuple et nommées tuples ;
• le nouveau type bytes ;
• le type frozenset.

strings et unicode

Les strings sont des séquences de caractères. Un caractère est une valeur codée sur
8 bits, pour représenter une valeur comprise entre 0 et 255. Ce qui correspond à un
signe de la table ASCII (0 et 127) ou de la table étendue (128 à 255) pour les valeurs
supérieures.

Contrairement à d’autre langages, il n’existe pas en Python de type spécifique pour
un caractère, et un caractère n’est rien d’autre qu’une séquence string de longueur 1.
Il existe cependant deux primitives spécifiques aux caractères, qui permettent de faire
la conversion entre le caractère et sa valeur entière : ord() et chr().

Utilisation de chr() et ord()

>>> chr(97)
'a'

Éléments du langage
DEUXIÈME PARTIE

68

Les chaînes unicode fonctionnent de la même manière, mais ont une plage de
valeurs plus étendue, puisqu’un signe Unicode peut représenter une valeur sur 16 ou
32 bits. Il n’existe pas de fonction chr() pour les chaînes unicode, mais une fonction
spécifique unichr(). La conversion inverse reste possible avec ord().

La conversion entre chaînes string et unicode est possible grâce aux méthodes
encode() et decode() et aux primitives unicode() et str(). Le principe de conver-
sion est relativement simple :

Une chaîne unicode peut être convertie en sa correspondance en string avec la
méthode encode() ou la fonction str(). Cette correspondance n’est pas bijective,
puisque l’Unicode est en quelque sorte un regroupement de toutes les tables de carac-
tères existantes. Il est donc nécessaire d’utiliser pour la conversion une table de cor-
respondance, nommée codec, qui permet de convertir une chaîne unicode en son
équivalent en fonction d’un jeu de caractères donné. Ce jeu de caractères est spéci-
fique à chaque groupe alphabétique de langues et celui utilisé pour le français est
l’ISO-8859-15. Si l’une des valeurs Unicode n’existe pas dans le codec utilisé, une
erreur UnicodeEncodeError est retournée.

>>> ord('z')
122
>>> ord('Z')
90
>>> chr(90)
'Z'

Figure 4–1
Schéma de correspondance
unicode-string

Syntaxe du langage
CHAPITRE 4

69

Essais d’encodage

La conversion de chaîne string vers unicode, appelée décodage, est basée sur le
même principe.

Essais de décodage

La primitive unicode peut être utilisée au même titre que la méthode decode, car elle
prend en deuxième paramètre le nom du codec, contrairement à str.

Opérateur d’interpolation

Les objets de type string et unicode possèdent un opérateur d’interpolation, ou
opérateur de formatage, qui permet de convertir des marqueurs disposés dans la
chaîne de caractères par des valeurs fournies à la suite.

L’écriture est de la forme objet unicode ou string % valeurs, où valeurs est un
tuple contenant l’ensemble des valeurs à utiliser dans le formatage.

S’il n’y a qu’une seule valeur, l’élément peut être directement placé après l’opérateur
modulo.

>>> encode = u'je m\'apprête à être encodé'.encode('ISO-8859-15')
>>> print(encode)
je m'apprête à être encodé
>>> u'je m\'apprête à être encodé'.encode('ISO-2022-KR')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeEncodeError: 'iso2022_kr' codec can't encode character u'\xea' in
position 9: illegal multibyte sequence

À RETENIR Utilisation de str pour les conversions de chaînes

La primitive str n’a pas été utilisée ici car elle ne permet pas de convertir une chaîne unicode vers
une chaîne string uniquement avec le codec par défaut, c’est-à-dire ascii. Si la chaîne unicode
n’avait été composée que de caractères de la table ascii, cette conversion aurait fonctionné.

>>> string = 'je m\'apprête à être décodé, j\'ai peur'
>>> string.decode('ISO-8859-15')
u"je m'appr\xeate \xe0 \xeatre d\xe9cod\xe9, j'ai peur"
>>> unicode(string, 'ISO-8859-15')
u"je m'appr\xeate \xe0 \xeatre d\xe9cod\xe9, j'ai peur"

Éléments du langage
DEUXIÈME PARTIE

70

Formatage de chaîne

À chaque expression précédée d’un %, appelé marqueur de formatage, doit corres-
pondre une valeur de formatage dans le tuple fourni.

L’expression est de la forme %[P]c, où c est un caractère qui détermine le type de
valeur et P un éventuel paramètre supplémentaire, indiquant la précision à utiliser
pour la valeur à formater.

La précision est représentée par un entier préfixé par un point, qui spécifie le nombre
de chiffres significatifs après la virgule.

Les caractères de formatage sont :
• %d : entier décimal signé ;
• %o : octal non signé ;
• %u : décimal non signé ;
• %x ou %X : valeur hexadécimale, préfixée respectivement par 0x ou 0X ;

• %e ou %E : valeur à virgule flottante, de la forme xev ou xEv ;

• %f ou F% : réel ;
• %g ou %G : pour les valeurs à virgule flottante, équivalent à %e ou %E si l’exposant

est supérieur à -4 ou inférieur à la précision, sinon équivalent à %f ;

• %c : un seul caractère (sous la forme d’un string ou d’un entier) ;
• %r : renvoie le résultat de la primitive repr() ;

• %s : renvoie le résultat de la primitive str() ;

• %% : permet d’utiliser le caractère % dans une chaîne formatée.

Exemples de formatages

Cette notation s’avère parfois complexe lorsqu’il y a beaucoup d’éléments à rem-
placer, et il est possible d’utiliser des formatages nommés avec un dictionnaire.

>>> print("Bonjour Madame %s" % 'Plaindozeille')
Bonjour Madame Plaindozeille
>>> print("Cet objet coûte %d euros, Madame %s" % (234,
'Plaindozeille'))
Cet objet coûte 234 euros, Madame Plaindozeille

>>> print('%.2f euros' % 2.394765)
2.39 euros
>>> print('%E euros' % 2.394765)
2.394765E+00 euros
>>> print('%s euros' % '2.394')
2.394 euros
>>> print('%d euros' % 2.394)
2 euros

Syntaxe du langage
CHAPITRE 4

71

Formatage par méthode classique puis par dictionnaire

Le formatage « %s » devient « %(label)s » où label est une clé dans le dictionnaire
passé à l’opérateur « % ».

Tuples

Les tuples sont des séquences qui contiennent des éléments de types hétérogènes.
Chacun des éléments est séparé par une virgule et l’ensemble est défini par des
parenthèses. Une fois l’objet créé, il est impossible de modifier sa valeur. Cette con-
trainte permet d’utiliser ce type d’objet dans des cas de programmation précis que
nous verrons par la suite. Pour pouvoir modifier les éléments d’un tuple, il faut donc
en créer un nouveau qui le remplacera.

Les tuples composés d’un seul élément ont une écriture un peu particulière puisqu’il
est nécessaire d’ajouter une virgule après l’élément, sans quoi l’analyseur syntaxique
de Python ne le considérera pas comme un tuple mais comme l’élément lui-même, et
supprimera les parenthèses qu’il analyserait comme superflues.

Manipulation de tuples

>>> "Remplacement de %s par %s. Oui %s par %s, vraiment %s." % \
... ('ce mot', 'ce mot-ci', 'ce mot', 'ce mot-ci', 'ce mot-ci')
'Remplacement de ce mot par ce mot-ci. Oui ce mot par ce mot-ci,
vraiment ce mot-ci.'
>>> ("Remplacement de %(old)s par %(new)s. Oui %(old)s par %(new)s, "
... "vraiment %(old)s." % {'old': 'ce mot', 'new': 'ce mot ci'})
'Remplacement de ce mot par ce mot-ci. Oui ce mot par ce mot-ci,
vraiment ce mot.'

>>> tuple()
()
>>> tuple('a')
('a',)
>>> color_and_note = ('rouge', 12, 'vert', 14, 'bleu', 9)
>>> colors = color_and_note[::2]
>>> print(colors)
('rouge', 'vert', 'bleu')
>>> notes = color_and_note[1::2]
>>> print(notes)
(12, 14, 9)
>>> color_and_note = color_and_note + ('violet',)
>>> print(color_and_note)
('rouge', 12, 'vert', 14, 'bleu', 9, 'violet')
>>> print('violet')
violet
>>> print('violet',)
('violet',)

Éléments du langage
DEUXIÈME PARTIE

72

L’oubli de la virgule dans un tuple à un élément, pour différencier ('violet',) de
'violet', est une erreur courante de programmation.

bytes

Le type bytes est sous Python 2.6 un simple alias vers le type str. Il permet une
transition en douceur vers Python 3.

Il devient réellement différent dans Python 3 et permet de manipuler des entiers de 0
à 127 correspondants à la table ASCII. Il peut être initialisé par des valeurs dans une
séquence préfixée de b, ou par une chaîne de caractères de type str.

Manipulation de bytes sous Python 3

Pour être initialisé avec un objet de type str, il est nécessaire d’utiliser le constructeur de
bytes et de préciser l’encodage de la chaîne pour que Python puisse traduire la chaîne.

Initialisation avec une simple chaîne

frozenset

Le type frozenset est une version immuable du type set. Il est présenté avec le type
set dans la prochaine section.

Les séquences modifiables
Les séquences modifiables implémentent un certain nombre de méthodes qui permet-
tent d’ajouter, de supprimer ou de modifier chacun des éléments qui les composent.

Le langage propose plusieurs types de séquences modifiables :
• list, le type le plus classique ;
• bytearray, qui permet de manipuler des bytes ;
• set, qui définit une séquence non ordonnée ;
• array, qui implémente une liste d’éléments homogènes simples, comme les entiers

ou chaînes de caractères, du moment qu’ils sont dans la bibliothèque standard.

>>> data = b'\xc1\xc2'
>>> data
b'\xc1\xc2'
>>> data = b'some bytes'
>>> data
b'some bytes'

>>> data = bytes('some bytes', 'utf-8')
>>> data
b'some bytes'

Syntaxe du langage
CHAPITRE 4

73

Le type list

Dans une liste, chaque élément est séparé par une virgule et l’ensemble est entouré
par des crochets. Une liste vide se note donc [].

Manipulation de list

Le tableau ci-dessous regroupe l’ensemble des méthodes applicables aux listes, et
complète les primitives communes à toutes les séquences. Pour les méthodes, les
paramètres optionnels sont notés en italique :

>>> list()
[]
>>> list('1234')
['1', '2', '3', '4']
>>> [1, 2, 3]
[1, 2, 3]

Tableau 4–2 Méthodes pour les listes

Nom Description Exemple

append(e) Permet d’ajouter un élément e en fin de
liste.

>>> a = [1, 3, 'b']
>>> a.append('t')
>>> print(a)
[1, 3, 'b', 't']

extend(L) Permet d’ajouter les éléments d’une
seconde liste L en fin de liste.

>>> a = [1, 2, 3]
>>> b = [4, 5]
>>> a.extend(b)
>>> print(a)
[1, 2, 3, 4, 5]

insert(p, e) Permet d’insérer un élément e à une
position p. La position 0 correspond à
une insertion en début de liste.

>>> a = ['o', 'j', 'o', 'u', 'r']
>>> a.insert(0, 'b')
>>> a.insert(2, 'n')
>>> print(a)
['b', 'o', 'n', 'j', 'o', 'u', 'r']

remove(e) Retire le premier élément de la liste qui a
la même valeur que celle fournie. Si
aucun élément n’est trouvé, une erreur
est retournée.

>>> a = [1, 2, 3]
>>> a.remove(2)
>>> print(a)
[1, 3]
>>> a.remove(2)
Traceback (most recent call last):
 File "<stdin>", line 1, in
<module>?
ValueError: list.remove(x): x not in
list

Éléments du langage
DEUXIÈME PARTIE

74

pop(i) Retire l’élément d’index i de la liste et le
renvoie. Si i n’est pas fourni, c’est le der-
nier élément qui est retiré.

>>> a = [1, 2, 3]
>>> a.pop(1)
2
>>> a.pop()
3
>>> a
[1]

index(e) Renvoie l’index du premier élément dont
la valeur est e. Une erreur est renvoyée si
e n’est pas trouvé.

>>> a = [1, 2, 3, 2]
>>> a.index(2)
1
>>> a.index(17)
Traceback (most recent call last):
 File "<stdin>", line 1, in
<module>?
ValueError: list.index(x): x not in
list

count(e) Indique le nombre d’occurrences de l’élé-
ment e.

>>> a = [1, 2, 3, 2]
>>> a.count(2)
2
>>> a.count(1)
1
>>> a.count(17)
0

sort(fonc) Trie les éléments de la liste. Le paramètre
optionnel fonc est un nom de fonction
qui sera utilisé pour comparer deux à
deux les éléments de la liste. S’il est omis,
un tri par défaut basé sur les valeurs bru-
tes des éléments est appliqué.
Le principe de comparaison par valeurs
brutes sera explicité dans le chapitre trai-
tant des opérateurs.

>>> a = [4, 1, 2, 3]
>>> a.sort()
>>> a
[1, 2, 3, 4]
>>> a = ['c', 'ihfqe', 'ef']
>>> def size_sort(e1, e2):
... if len(e1) > len(e2):
... return 1
... if len(e1) < len(e2):
... return -1
... return 0
...
>>> a.sort(size_sort)
>>> a
['c', 'ef', 'ihfqe']

reverse() Retourne la liste. Le premier élément
devient le dernier, le deuxième
l’avant-dernier, etc.

>>> a = [2, 0, 0, 5]
>>> a.reverse()
>>> a
[5, 0, 0, 2]

Tableau 4–2 Méthodes pour les listes (suite)

Nom Description Exemple

Syntaxe du langage
CHAPITRE 4

75

bytearray

Le type bytearray est équivalent au type bytes mais permet de modifier les don-
nées. Il s’instancie avec une liste d’entiers, une chaîne binaire ou une chaîne classique
du moment que l’encodage est fourni.

Initialisation d’un bytearray

bytearray implémente certaines méthodes du type str, comme startswith,
endswith ou encore find.

Il permet aussi de manipuler les données comme une séquence, et implémente cer-
taines méthodes de list, comme append, pop ou encore sort.

Manipulation de bytearray

set

Le type set est une séquence non ordonnée d’objets hashable uniques. Un objet has-
hable est un objet qui implémente la méthode spéciale __hash__, qui renvoie une
valeur unique pendant toute la durée de vie de l’objet. En d’autres termes, les objets
hashable sont tous des objets de valeur constante.

À SAVOIR Supprimer directement un élément d’une séquence

Pour supprimer directement l’élément d’index i d’une séquence s modifiable, il est possible d’utiliser la
primitive del en utilisant la notation : del s[i]

>>> array = bytearray([1, 78, 76])
>>> array
bytearray(b'\x01NL')
>>> bytearray(b'some data')
bytearray(b'some data')
>>> bytearray('some data', 'utf8')
bytearray(b'some data')

>>> array = bytearray([1, 78, 76])
>>> array.startswith(b'\x01')
True
>>> array[2]
76
>>> array.append(12)
>>> array
bytearray(b'\x01NL\x0c')
>>> array.reverse()
>>> array
bytearray(b'\x0cLN\x01')

Éléments du langage
DEUXIÈME PARTIE

76

La primitive hash permet de renvoyer la valeur retournée par méthode __hash__ de
l’objet et de provoquer une erreur si l’objet n’en a pas, c’est-à-dire s’il n’est pas constant.

Manipulation de hash

Cette restriction permet à set d’être beaucoup plus performant qu’une séquence
classique pour certains opérateurs, comme in, car il construit en mémoire un index
des éléments.

Opérateur in sur set et list

Les méthodes disponibles avec set sont celles des séquences.

frozenset est un sous-type de set qui est immuable et permet de figer le contenu de
la séquence et d’offrir de nouvelles méthodes de comparaisons puissantes et rapides.

Les mappings
Le mapping est une collection d’éléments qui sont identifiés par des clés uniques. Il
n’y a donc dans ce cas aucune notion d’ordre comme dans les listes. La notation est la
même que pour les séquences, et l’élément e du mapping map associé à la clé cle se
récupère par la commande :

On peut utiliser les mêmes primitives que pour les séquences sur un mapping, soit
max, min et len. En réalité, ces opérations s’appliqueront sur la séquence équivalente à
l’ensemble des clés qui composent le mapping.

>>> hash('some string')
-604248944
>>> hash('some string')
-604248944
>>> hash(12)
12
>>> hash([1, 2])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

>>> 1 in [1, 2, 3] # complexité O(n*n)
True
>>> 1 in set([1, 2, 3]) # complexité O(n)
True

e = map[cle]

Syntaxe du langage
CHAPITRE 4

77

Python propose un type de mapping dict (appelé dictionnaire), sachant qu’il est tout
à fait possible d’implémenter son propre type de mapping comme le module array
de la bibliothèque standard le fait pour les séquences.

Dans les dictionnaires, la clé associée à un élément doit être un objet de type
immuable, comme un entier ou une chaîne de caractères. Il est possible d’utiliser un
tuple comme clé à condition que les éléments qui le composent soient tous immua-
bles. Cette contrainte permet aux mécanismes internes du dictionnaire de traduire la
clé en une valeur constante, en utilisant hash, qui sera ensuite utilisée pour accélérer
tous les accès aux éléments.

Chaque élément d’un dictionnaire est séparé par une virgule et l’ensemble est
entouré par des accolades. Un dictionnaire vide se note donc {}. Pour représenter un
élément de dictionnaire, on le préfixe de sa clé suivie de deux points. L’élément e de
clé cle se note donc cle: e, et un dictionnaire composé de deux éléments cle1: e1
et cle2: e2 se note: {cle1: e1, cle2: e2}

Exemples de dictionnaire

Tout comme les listes, les objets de type dictionnaire proposent un certain nombre de
méthodes regroupées dans le tableau ci-dessous :

>>> dico1 = {'a': 1, 2: 'b'}
>>> dico1['a']
1
>>> dico1[2]
'b'
>>> len(dico1)
2
>>> dict()
{}
>>> dict((('a', 1), ('b', 2), ('c', 3)))
{'a': 1, 'c': 3, 'b': 2}

Tableau 4–3 Méthodes pour les dictionnaires

Nom Description Exemple

clear() Supprime tous les éléments du diction-
naire.

>>> dico1 = {'a': 1, 'b': 2}
>>> dico1.clear()
>>> dico1
{}

Éléments du langage
DEUXIÈME PARTIE

78

copy() Renvoie une copie par références du dic-
tionnaire.
Lire la remarque sur les copies un peu plus
bas.

>>> dico = {'1': 'r', '2': [1,2]}
>>> dico2 = dico.copy()
>>> dico2
{'1': 'r', '2': [1, 2]}
>>> dico['2'].append('E')
>>> dico2['2'] # dico2 est aussi
impacté
[1, 2, 'E']

has_key(cle) Renvoie vrai si la clé fournie existe. Équiva-
lent à la notation :
cle in dictionnaire.
cle not in dictionnaire est
l’équivalent de l’inverse, soit not
has_key(cle).

>>> dico = {'a': 1, 'b': 2}
>>> dico.has_key('a')
True
>>> dico.has_key('c')
False
>>> 'a' in dico
True
>>> 'c' not in dico
True

items() Renvoie sous la forme d’une liste de tuples,
des couples (clé, valeur) du dictionnaire.
Les objets représentant les valeurs sont
des copies complètes et non des référen-
ces.

>>> a = {'a': 1, 'b': 1}
>>> a.items()
[('a', 1), ('b', 1)]

keys() Renvoie sous la forme d’une liste l’ensem-
ble des clés du dictionnaire. L’ordre de ren-
voi des éléments n’a aucune signification
ni constance et peut varier à chaque modi-
fication du dictionnaire.

>>> a = {(1, 3): 3, 'Q': 4}
>>> a.keys()
['Q', (1, 3)]

values() Renvoie sous forme de liste les valeurs du
dictionnaire. L’ordre de renvoi n’a ici non
plus aucune signification mais sera le
même que pour keys() si la liste n’est
pas modifiée entre-temps, ce qui permet
de faire des manipulations avec les deux
listes.

>>> a = {(1, 3): 3, 'Q': 4}
>>> a.values()
[4, 3]

iteritems() Fonctionne comme items() mais renvoie
un itérateur sur les couples (clé, valeur).

>>> l = {1: 'a', 2: 'b', 3: 'c'}
>>> i = l.iteritems()
>>> i.next()
(1, 'a')
>>> i.next()
(2, 'b')
>>> i.next()
(3, 'c')

Tableau 4–3 Méthodes pour les dictionnaires (suite)

Nom Description Exemple

Syntaxe du langage
CHAPITRE 4

79

iterkeys() Fonctionne comme keys() mais renvoie
un itérateur sur les clés.

>>> l = {1: 'a', 2: 'b', 3: 'c'}
>>> cles = l.iterkeys()
>>> cles.next()
1
>>> cles.next()
2
>>> cles.next()
3

itervalues() Fonctionne comme values() mais ren-
voie un itérateur sur les valeurs.

>>> values = l.itervalues()
>>> values.next()
'a'
>>> values.next()
'b'
>>> values.next()
'c'

get(cle,
default)

Renvoie la valeur identifiée par la clé
cle. Si la clé n’existe pas, renvoie la
valeur default fournie. Si aucune valeur
n’est fournie, renvoie None.

>>> l = {1: 'a', 2: 'b', 3: 'c'}
>>> l.get(1)
'a'
>>> l.get(13)
>>> l.get(13, 7)
7

pop(cle,
default)

Renvoie la valeur identifiée par la clé cle
et retire l’élément du dictionnaire. Si la clé
n’existe pas, pop se contente de renvoyer
la valeur default. Si le paramètre
default n’est pas fourni, une erreur est
levée.

>>> l = {1: 'a', 2: 'b', 3: 'c'}
>>> l.pop(1)
'a'
>>> l
{2: 'b', 3: 'c'}
>>> l.pop(13, 6)
6
>>> l
{2: 'b', 3: 'c'}
>>> l.pop(18)
Traceback (most recent call
last):
 File "<stdin>", line 1, in ?
KeyError: 18

popitem() Renvoie le premier couple (clé, valeur) du
dictionnaire et le retire. Si le dictionnaire
est vide, une erreur est renvoyée. L’ordre
de retrait des éléments correspond à
l’ordre des clés retournées par keys() si
la liste n’est pas modifiée entre-temps.

>>> l = {1: 'a', 2: 'b', 3: 'c'}
>>> l.popitem()
(1, 'a')
>>> l.popitem()
(2, 'b')
>>> l.popitem()
(3, 'c')

Tableau 4–3 Méthodes pour les dictionnaires (suite)

Nom Description Exemple

Éléments du langage
DEUXIÈME PARTIE

80

update(dic,
**dic)

Update permet de mettre à jour le dic-
tionnaire avec les éléments du dictionnaire
dic. Pour les clés existantes dans la liste,
les valeurs sont mises à jour, sinon créées.
Le deuxième argument est aussi utilisé
pour mettre à jour les valeurs.

>>> l = {1: 'a', 2: 'b', 3: 'c'}
>>> l2 = {3: 'ccc', 4: 'd'}
>>> l.update(l2)
>>> l
{1: 'a', 2: 'b', 3: 'ccc', 4:
'd'}

setdefault(cle,
default)

Fonctionne comme get() mais si cle
n’existe pas et default est fourni, le
couple (cle, default) est ajouté à la liste.

>>> l = {1: 'a', 2: 'b', 3: 'c'}
>>> l.setdefault(4, 'd')
'd'
>>> l
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

fromkeys(seq,
default)

Génère un nouveau dictionnaire et y
ajoute les clés fournies dans la séquence
seq. La valeur associée à ces clés est
default si le paramètre est fourni,
None le cas échéant.

>>> l = {}
>>> l.fromkeys([1, 2, 3], 0)
{1: 0, 2: 0, 3: 0}

Tableau 4–3 Méthodes pour les dictionnaires (suite)

Nom Description Exemple

À RETENIR Copie légère et copie complète

Les copies de type shallow sont littéralement des copies légères. Chaque référence aux objets du diction-
naire est recopiée et les changements des objets modifiables sont donc visibles dans chaque copie origi-
nelle du dictionnaire.
À l’inverse, les copies complètes, notées deepcopy, fabriquent une copie conforme en scrutant et reco-
piant récursivement tous les éléments contenus dans les objets modifiables du dictionnaire. Pour la
méthode items, une copie complète est effectuée dans la liste résultante, ce qui n’est pas le cas de
copy.
Nous verrons dans les exercices du chapitre 9 qu’il existe un système générique de copie complète, dans
le module copy, qui offre la possibilité d’implémenter ce mécanisme pour tout type d’objet.

À SAVOIR Les itérateurs

Les itérateurs, qui seront plus largement abordés dans la partie de description de la fonction yield, et
les générateurs, sont des objets qui permettent de parcourir une séquence sans que les éléments qui la
constituent ne soient connus au préalable. Le principe est équivalent à un curseur de données placé sur la
première donnée et qui découvre les éléments au fur et à mesure de l’avancée dans la séquence. Ce
mécanisme permet d’optimiser grandement la vitesse d’exécution pour des cas d’utilisation spécifiques.

Syntaxe du langage
CHAPITRE 4

81

Les opérateurs
Cette section présente l’ensemble des opérateurs disponibles en Python, ainsi que les
règles qui les gèrent, comme l’ordre de traitement par l’interpréteur des éléments
d’une opération.

Opérateurs de base
Les opérateurs de base que sont l’addition, la soustraction et la multiplication, fonc-
tionnent de manière tout à fait classique en Python. La division est particulière : his-
toriquement, cet opérateur fonctionne exactement comme celui du langage C. Ainsi,
lorsque les deux opérandes de la division sont des entiers, le résultat est toujours un
nombre entier, ce qui peut être relativement perturbant. Pour éviter ce problème, il
est nécessaire de transformer l’un des opérandes en nombre à virgule flottante.

Essais de division

Cette particularité, qui existe depuis le début du langage a été souvent décriée par la
communauté et par Guido van Rossum lui-même. Un des objectifs de la version 3 de
Python est de voir disparaître ce fonctionnement au profit d’un principe plus clas-
sique. Ce changement étant relativement lourd pour le langage, il est introduit par
petites étapes successives depuis la version 2.2.

La première étape a consisté à introduire un nouvel opérateur noté // et voué à rem-
placer à terme l’actuel opérateur /. L’opérateur // est donc la division entière mais
fonctionne de la même manière pour tous les types d’opérandes. Ainsi, 1.0 // 4.0
est bien équivalent à 0.0, contrairement à 1.0 / 4.0 qui vaut 0.25.

La deuxième étape offre la possibilité d’implémenter dès à présent le futur fonctionne-
ment de la prochaine version 3.0, par le biais d’une directive d’importation spéciale.

>>> 5/6
0
>>> (-1)/2
-1
>>> -1/2
-1
>>> -1/2.5
-0.40000000000000002
>>> -1/6
-1
>>> -float(1)/float(6)
-0.16666666666666666
>>> -float(1)/6
-0.16666666666666666

Éléments du langage
DEUXIÈME PARTIE

82

Passage en mode division réelle

Autres opérateurs
On compte comme autres opérateurs :
• modulo ;
• négation ;
• inversion ;
• puissance ;
• appartenance ;
• opérateurs binaires.

Modulo
L’opération modulo est effectuée par l’opérateur % ou par la primitive divmod qui ren-
voie le quotient de la division et son reste.

Calculs de modulos

>>> from __future__ import division
>>> 1 / 4
0.25
>>> 1 / 5
0.20000000000000001
>>> 1.0 / 4
0.25

AVENIR Le module __future__

__future__ est un module particulier de Python qui regroupe un certain nombre d’éléments appelés fea-
tures. Ce sont des fonctionnalités du langage qui n’existent pas encore dans la version en cours, mais qui
peuvent d’ores et déjà être testées et utilisées dans les programmes actuels. __future__ indique pour
chaque fonctionnalité à partir de quelle version elle peut être utilisée, et à quelle version elle sera ajoutée.
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

>>> 10 % 8
2
>>> divmod(10, 8)
(1, 2)

Syntaxe du langage
CHAPITRE 4

83

Négation
Il est possible en Python d’appliquer la négation directement sur des variables.

Négation directe

Inversion
L’inversion bit à bit, soit l’équivalent de -(n+1) pour tout n entier ou entier long, se
fait par le biais du signe tilde (~).

Inversion

Puissance
L’exponentiation s’applique avec l’opérateur **. Lorsque les deux opérandes sont des
entiers et que le résultat dépasse la plage des entiers, il est automatiquement trans-
formé en entier long. Pour le cas des nombres à virgule flottante, une erreur de
dépassement est renvoyée.

Essais sur les puissances

Appartenance
L’opérateur d’appartenance in sert à vérifier qu’une séquence possède un élément
dont la valeur est égale à celle de l’objet fourni. Cette opération s’applique à tous les
types de séquences et est équivalente à cette fonction :

>>> val = 56
>>> -val
-56

>>> ~9
-10

>>> 10 ** 10
10000000000L
>>> 1.8 ** 10
357.0467226624001
>>> 1.8 ** 1034
8.9489128117168538e+263
>>> 1.8 ** 134534
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>?
OverflowError: (34, 'Numerical result out of range')

Éléments du langage
DEUXIÈME PARTIE

84

Fonction similaire à l’opérateur in

Pour les séquences de type string ou unicode, l’objet doit être lui-même de type
unicode ou string. Bien que les deux opérandes puissent être dans ce cas de types
différents (string in unicode ou unicode in string), il est conseillé de rester
homogène afin d’éviter des erreurs de transtypage, puisque les deux opérandes sont
toujours comparés dans le même type. En cas de problème, Python gère ce cas parti-
culier en provoquant une erreur spécifique.

Mélange des genres, erreur au tournant

Nous verrons dans les chapitres suivants qu’il est possible d’intégrer ce mécanisme à
tout type d’objet en implémentant des méthodes aux noms spécifiques.

def is_in(element, elements):
 """Teste l'appartenance d'un élément à une liste."""
 for elt in elements:
 if elt == element:
 return True

 return False

>>> sequence = u'Brian'
>>> i = 'é'
>>> i in sequence
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>?
TypeError: 'in <string>' requires string as left operand
>>> i = 'i'
>>> i in sequence
True

À RETENIR Appartenance et dictionnaires

Python 2.3 a introduit un nouveau mécanisme qui permet de faire fonctionner directement les dictionnai-
res avec l’opérateur d’appartenance, en lui passant les clés implicitement.
Les deux écritures deviennent possibles, avec une préférence pour l’écriture abrégée :
>>> dic = {'a': 1, 'b': 2}
>>> 'a' in dic.keys()
True
>>> 'a' in dic
True

Syntaxe du langage
CHAPITRE 4

85

Opérateurs binaires
Les opérations binaires qui s’effectuent sur des entiers ou des entiers longs sont :
• & : opérateur logique ET, noté AND ;
• | : opérateur logique OU, noté OR ;
• ^ : opérateur logique OU EXCLUSIF, noté XOR.

Table de vérité de l’opérateur logique ET

À ceux-ci s’ajoutent les opérateurs de décalage de bits vers la gauche et vers la droite :

Décalages de bits

Un décalage de n bits vers la droite est équivalent à une division par pow(2, n) et un
décalage de n bits vers la gauche à une multiplication par pow(2, n). Cette écriture
est en outre beaucoup plus rapide à l’exécution.

Opérateurs de comparaison
En Python, les comparaisons sont accomplies par les opérateurs suivants :
• < : inférieur strictement ;
• > : supérieur strictement ;
• <= : inférieur ou égal ;
• >= : supérieur ou égal ;
• == : égal ;
• != ou <> : différent de ;
• is : est ;
• is not : n’est pas .

!= et <> sont équivalents pour tester la différence, mais la première écriture est celle à
retenir, car <> est devenu obsolète même s’il est encore utilisable.

>>> [1 & 1, 1 & 0, 0 & 1, 0 & 0]
[1, 0, 0, 0]

>>> a = 16
>>> a = a << 2; print a
64
>>> a = a << 2; print a
256
>>> a = a << 2; print a
1024

Éléments du langage
DEUXIÈME PARTIE

86

Principes de la comparaison
Une comparaison travaille sur deux objets et renvoie un résultat booléen. À l’excep-
tion des types numériques qui peuvent être convertis vers un type commun, si les
deux objets sont de types différents, l’égalité est toujours fausse et leur ordonnance-
ment n’est pas interprétable mais reste constant.

Dans le cas de types d’objets équivalents, la comparaison est :
• arithmétique pour les types numériques ;
• lexicographique pour les chaînes de caractères, sans distinction entre unicode et
string ;

• lexicographique pour les séquences, en comparant chaque élément en fonction de
son type ;

• lexicographique pour les mappings, en comparant chaque couple (clé, valeur)
après l’application d’un tri ;

• identitaire pour l’opérateur is, le résultat n’étant vrai que si les deux opérandes
sont le seul et même objet.

Ordre de traitement des opérations
Lorsque plusieurs opérateurs entrent en jeu dans une expression, l’interpréteur utilise
l’ordre d’interprétation dit « PEDMAS » (abréviation de « Parenthèses, Exposants,
Division, Multiplication, Addition, Soustraction ») qui reprend les lois associatives
et commutatives de l’algèbre élémentaire.

Exemples d’opérations enchaînées

AVENIR Évolution de la comparaison

Le raccourci appliqué à la comparaison de types différents évoluera certainement dans les prochaines
versions de Python au profit d’un principe moins radical.

>>> 5 + 3 * 4
17
>>> (5 + 3) * 4
32
>>> (5 + 3) * 4 / 2
16

Syntaxe du langage
CHAPITRE 4

87

Construction de comparaisons complexes
Python permet d’enchaîner plusieurs comparaisons dans une même expression pour
construire des conditions complexes. L’ordre d’évaluation est l’exécution des comparai-
sons deux à deux. a < b < c < d est donc équivalent à a < b and b < c and c < d.

Comparaisons chaînées

L’indentation
En Python, l’indentation des lignes fait partie intégrante de la structure des pro-
grammes. Là où les langages C et Java utilisent des accolades pour définir des blocs,
Python se base sur le retrait d’une ligne pour définir son niveau.

L’interpréteur remplace toutes les tabulations rencontrées entre le début de la ligne et
le premier caractère interprétable par un certain nombre d’espaces puis comptabilise
le nombre d’espaces obtenus. Ce nombre définit un niveau d’indentation. Si le retrait
augmente à la ligne suivante, le niveau est incrémenté et la taille de retrait y est asso-
ciée. Lorsque le retrait diminue, le niveau est décrémenté en conséquence.

Exemple d’indentation

Lorsque l’indentation n’est pas respectée, l’interpréteur provoque une erreur et le
programme s’arrête.

Décalage de print ']'

>>> a = 1
>>> b = 2
>>> c = 3
>>> a < b < c
True

def ma_fonction():# niveau 0
 i = 0# niveau 1
 print '['# niveau 1
 while i < 10: # niveau 1
 print '.' # niveau 2
 i += 1# niveau 2
 print ']'# niveau 1

def ma_fonction():
 i = 0

Éléments du langage
DEUXIÈME PARTIE

88

Comme le nombre d’espaces utilisés pour remplacer une tabulation peut varier, il est
nécessaire de ne pas mélanger les deux caractères pour indenter les lignes. Il est
d’ailleurs conseillé de ne pas utiliser les tabulations comme nous le verrons dans le
chapitre dédié aux conventions de codage. De plus, cette rigueur d’écriture assure la
lisibilité du code.

Les structures conditionnelles
Les structures conditionnelles sont des regroupements de lignes délimités par un
niveau d’indentation et dont le contenu est exécuté en fonction d’une ou plusieurs
conditions. On dénombre trois structures conditionnelles en Python qui permettent
d’organiser le code, définies par les instructions :
• if ;

• for ;

• while.

Chacune de ces structures est de la forme :

À ces quatre instructions s’ajoutent trois instructions supplémentaires qui font l’objet
d’un chapitre complet :
• def ;

• class ;

• try.

 print '['
 while i < 10:
 print '.'
 i += 1
 print ']'

ma_fonction()
[tziade@Tarek ~]$ python etest.py
 File "etest.py", line 7
 print ']'
 ^
IndentationError: unindent does not match any outer indentation level

instruction condition:
 bloc de lignes
else:
 bloc de lignes

Syntaxe du langage
CHAPITRE 4

89

L’instruction if
L’instruction if (« si ») est associée à une expression terminée par le caractère :.
Chaque élément de l’expression est évalué tour à tour. Si l’expression évaluée renvoie
False, l’interpréteur n’exécute pas le contenu de la structure. Dans le cas où l’évalua-
tion de l’expression renvoi True, le bloc est exécuté.

Il est possible de définir un deuxième bloc délimité par l’instruction else (« sinon »),
exécuté lorsque l’expression renvoie False.

Exemple d’instruction if

Enfin, l’instruction elif, forme contractée de else if pour « sinon, si » permet
d’imbriquer une série de structures de type if : chaque condition est testée, et en cas
de résultat négatif, l’instruction suivante est à son tour évaluée. Ce principe permet
de mettre en place des structures équivalentes au switch en C et au case en Pascal.

Enchaînement avec elif

L’instruction for..in
L’instruction for permet d’exécuter un bloc de lignes en fonction d’une séquence.
Elle est de la forme :

>>> if 1 > 2:
... print "il est temps d'arrêter l'ordinateur"
... else:
... print "tout va bien"
...
tout va bien

>>> if 1 > 2:
... print "il est temps d'arrêter l'ordinateur"
... elif 1 > 3:
... print "il est vraiment temps d'arrêter l'ordinateur"
... else:
... print "tout va bien"
...
tout va bien

for variable in sequence:
 bloc de lignes
else:
 bloc de lignes

Éléments du langage
DEUXIÈME PARTIE

90

Si sequence possède n éléments, le bloc sera exécuté n fois, et variable référencera
l’élément sequence[n-1] qui sera accessible dans le bloc.

Lorsque l’exécution est achevée, un bloc de lignes optionnel présenté par else est à
son tour exécuté.

Exemple d’instruction for

Pour les séquences modifiables comme les listes, il est nécessaire de prendre des pré-
cautions en contrôlant que le code du bloc ne modifie pas sa taille. En effet, Python
conserve en mémoire un compteur pour savoir sur quel élément la boucle for se
trouve. Si la taille de la séquence est modifiée en cours de route, il est possible que le
bloc ne soit pas exécuté pour tous les éléments, ce qui peut être relativement gênant.

Le mécanisme de l’instruction for peut paraître assez déconcertant et la première
question qui vient à l’esprit est : « comment exécuter simplement un bloc de lignes
un certain nombre de fois sans avoir à préparer une séquence ». La primitive range()
répond à ce besoin en générant une séquence de n nombres variant de 0 à n-1.

Utilisation de range()

Deux instructions supplémentaires permettent d’agir sur le déroulement de l’instruc-
tion for :

>>> for caractere in "bonjour":
... print(caractere)
...
b
o
n
j
o
u
r

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> for i in range(5):
... print(str(i))
...
0
1
2
3
4

Syntaxe du langage
CHAPITRE 4

91

• continue : interrompt l’exécution de la boucle pour l’élément en cours et passe à
l’élément suivant. Si l’élément était le dernier de la séquence, le contenu de l’ins-
truction else est exécuté s’il existe. Cette instruction est utile dans le cas où l’élé-
ment en cours n’est pas concerné par le traitement à effectuer.

• break : interrompt définitivement l’exécution de la boucle et n’exécute pas l’instruc-
tion else. Cette instruction est utile lorsque l’on cherche à appliquer un traitement
à un et un seul élément d’une liste, ou que cet élément est une condition de sortie.

Utilisation de continue et break

L’instruction while
L’instruction while permet d’exécuter un bloc de lignes tant qu’une expression est
vérifiée en renvoyant True. Lorsque l’expression n’est plus vraie, l’instruction else est
exécutée si elle existe et la boucle s’arrête.

continue et break peuvent être utilisés de la même manière que pour l’instruction for.

>>> # n'affiche que les nombres pairs
...
>>> for i in range(5):
... if i % 2:
... continue
... print(str(i))
...
0
2
4
>>> for i in range(5):
... if i == 4:
... print('4 a été trouvé')
... break
... print('on continue')
...
on continue
on continue
on continue
on continue
4 a été trouvé

À SAVOIR Fin de boucle

Lorsque l’exécution est terminée, le dernier élément de la séquence reste toujours accessible par la varia-
ble de boucle.

Éléments du langage
DEUXIÈME PARTIE

92

Exemple d’utilisation de while

L’instruction with
La solution la plus propre pour écrire dans un fichier consiste à utiliser un bloc
try..finally pour s’assurer que la méthode close est appelée quoi qu’il advienne.

Écriture dans un fichier

Appeler close, c’est s’assurer que le handler de fichier est bien libéré.

Ce motif est récurrent en programmation : utiliser une ressource dans un bloc de
code et terminer par un appel à du code spécifique pour fermer proprement l’accès à
cette ressource quoi qu’il advienne dans le bloc. Le même besoin existe pour la mani-
pulation de sémaphores, ou de sockets réseau.

>>> i = 0
>>> while i < 4:
... print(str(i))
... i += 1
... else:
... print('end')
...
0
1
2
3
end
>>> i = 0
>>> while i < 5:
... i += 1
... if i == 2:
... continue
... print(str(i))
...
1
3
4
5

>>> f = open('fichier', 'w')
>>> try:
... f.write('contenu')
... finally:
... f.close()
...

Syntaxe du langage
CHAPITRE 4

93

L’instruction with permet de s’affranchir de la gestion du bloc try..finally et de
l’appel au code de fermeture, en s’en chargeant automatiquement du moment que
l’objet manipulé est compatible avec ce protocole, appelé le context management protocol.

C’est le cas pour les objets de type file. L’écriture ci-dessous est équivalente à un
bloc try..finally avec un appel à close.

Écriture dans un fichier avec with

with se base sur deux nouvelles méthodes spéciales __enter__ et __exit__. La pre-
mière est appelée au début du bloc, la deuxième à la fin.

Exemple de classe supportant with

La méthode __enter__ ne prend aucun paramètre, alors que la méthode __exit__ en
demande trois. Ces derniers permettent de récupérer une éventuelle exception :
• exc_type : le type de l’erreur déclenchée ;
• exc_value : la valeur de l’erreur déclenchée ;
• traceback : l’objet traceback.

Si aucune erreur n’a lieu, toutes ces valeurs sont à None.

__exit__ ne doit jamais déclencher d’erreur ou redéclencher l’erreur qui lui est
passée. La méthode retourne cependant False lorsqu’elle souhaite que l’erreur con-
tinue à être propagée. Si elle retourne True, l’erreur est absorbée et l’interpréteur con-
tinue le programme en se positionnant sur la directive suivante après le bloc.

>>> f = open('fichier', 'w')
>>> with f:
... f.write('contenu')

>>> class SupportWith(object):
... def __enter__(self):
... print('début')
... def __exit__(self, exc_type, exc_value, traceback):
... print('fin')
...
>>> s = SupportWith()
>>> with s:
... print('bloc')
...
début
bloc
fin

Éléments du langage
DEUXIÈME PARTIE

94

Déclenchement d’une erreur

Enfin, si une erreur survient dans la méthode __exit__, elle prévaudra sur toute
erreur précédente.

Lorsque l’objet utilisé est initialisé directement, une directive as peut être associée à with

Écriture dans un fichier

Dans ce cas, f se voit attribuer la valeur renvoyée par __enter__. L’usage le plus cou-
rant est donc de renvoyer self dans cette méthode.

>>> class CatchTypeError(object):
... def __enter__(self):
... print('debut')
... def __exit__(self, exc_type, exc_value, traceback):
... print('fin')
... if exc_type == TypeError:
... return True
... return False
...
>>> c = CatchTypeError()
>>> with c:
... raise TypeError()
...
debut
fin
>>> with c:
... raise AttributeError()
...
debut
fin
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
AttributeError

>>> with open('fichier', 'w') as f:
... f.write('contenu')

Syntaxe du langage
CHAPITRE 4

95

Utilisation de as

La bibliothèque standard fournit en outre un module contextlib, décrit dans le
chapitre 10, qui détaille les utilitaires pour l’implémentation de ce protocole.

En un mot...
Python possède une syntaxe claire, concise et simple, et est doté de types standards
très puissants.

Le chapitre suivant couvre des éléments de syntaxe complémentaires, pour la struc-
turation des programmes.

>>> class SomeContext(object):
... def __enter__(self):
... print('debut')
... return self
... def __exit__(self, *args):
... print('fin')
...
>>> with SomeContext() as s:
... print(str(s))
... print('bloc')
...
debut
<__main__.SomeContext object at 0xc00730>
bloc
fin

Pour organiser un programme, il est possible de regrouper les séquences d’instructions
en fonctions et classes. Ces regroupements peuvent ensuite être organisés en plusieurs
fichiers, appelés modules, et dans plusieurs répertoires pour former un paquet.

Ce chapitre présente chacune de ces structures, pour conclure sur des éléments sup-
plémentaires de syntaxe basés sur les classes : la gestion des exceptions, les generators
et les iterators.

Fonctions
Les fonctions sont les éléments structurants de base de tout langage procédural.
Cette section explique comment définir des fonctions en Python et présente plus
précisément :
• le contexte d’exécution et la directive global ;

• la directive return ;

• le fonctionnement des paramètres ;
• la directive lambda ;

• les decorators pour les fonctions.

Écrivons une première fonction qui affiche à l’écran un texte d’accueil en fonction
d’un nom.

5
Structuration du code

Éléments du langage
DEUXIÈME PARTIE

98

Une première fonction

La définition d’une fonction se fait par le biais du mot-clé def suivi du nom de la
fonction. Suivent des parenthèses qui contiennent les éventuels paramètres de la
fonction puis le caractère : qui délimite le début d’une séquence de code.

Une fonction peut donc être vue comme un bloc de lignes associé à un nom. Cette fonc-
tion devient alors accessible dans le contexte d’exécution par le biais de son nom comme
toute variable. Le code de la fonction définit son propre contexte local d’exécution.

Contexte d’exécution et directive global
Lorsque des variables sont définies dans le code, elles sont placées par l’interpréteur
dans un des deux dictionnaires représentant le contexte d’exécution :
• Le premier dictionnaire contient l’ensemble des variables globales et est accessible

par le biais de la primitive globals().
• Le second, accessible par la directive locals(), contient l’ensemble des variables

accessibles à un instant donné et est dépendant du contexte.

Lorsqu’elle est invoquée, une variable est recherchée dans le contexte local puis
global, et en dernier recours dans les éléments définis dans le module __builtins__
(ce module fait l’objet d’un chapitre complet dédié à la présentation des primitives).

Lors de sa définition, une variable est insérée :
• Dans le contexte local si elle est définie dans un bloc (boucle, fonction...).
• Dans le contexte global si elle est définie en dehors de tout bloc.

Ainsi, il est impossible d’affecter directement les variables du contexte global depuis
un bloc.

Contexte d’exécution

>>> def home(name):
... print('Bonjour %s' % name)
...
>>> home('Bill')
Bonjour Bill

>>> name = 'Joe'
>>> def home(name):
... print(locals())
... print('Bonjour %s' % name)
...

Structuration du code
CHAPITRE 5

99

Pour pouvoir contourner cette limitation il est nécessaire d’utiliser la directive global
qui permet de spécifier que la variable est dans le contexte global.

Utilisation de la directive global

Directive return
Il n’y a pas de distinction entre les fonctions et les procédures en Python, contraire-
ment à certains langages fortement typés comme Ada. Les procédures sont tout sim-
plement des fonctions qui ne renvoient pas de résultat comme en C. Plus précisé-
ment, une fonction qui ne renvoie pas explicitement de valeur renvoie un objet None.

Lorsqu’une fonction doit renvoyer un résultat explicite, la directive return est utilisée.

Utilisation de return

>>> home('Tarek')
{'name': 'Tarek'}
Bonjour Tarek
>>> print(globals())
{'__builtins__': <module '__builtin__' (built-in)>, '__name__':
'__main__', 'home': <function home at 0xb7deff0c>, '__doc__': None,
'name': 'Joe'}

>>> identity = 'Joe Bie'
>>> def home(firstname, lastname):
... global identity
... identite = '%s %s' %(firstname, lastname)
... print(locals())
... print(identity)
...
>>> home('Joe', 'Bae')
{'firstname': 'Joe', 'lastname': 'Bae'}
Joe Bae
>>> print(identity)
Joe Bae

>>> def double(number):
... return number*2
...
>>> double(5)
10
>>> def sequence(start, stop, step):
... return range(start, stop, step)
>>> sequence(2, 7, 1)
[2, 3, 4, 5, 6]

Éléments du langage
DEUXIÈME PARTIE

100

Il est possible de retourner plusieurs résultats en les séparant par des virgules. Dans
ce cas, l’interpréteur renvoie ces éléments dans un tuple.

Plusieurs résultats

Paramètres d’une fonction
Il existe trois types de paramètres :
• les paramètres explicites et valeurs par défaut ;
• les paramètres non explicites ;
• les paramètres arbitraires.

Paramètres explicites et valeurs par défaut
Les paramètres explicites sont les paramètres utilisés dans les exemples précédents, à
savoir des noms séparés par des virgules. Chacun de ces paramètres peut en outre être
enrichi d’une valeur par défaut et devenir optionnel.

Valeur par défaut

Il est cependant nécessaire de regrouper tous les paramètres optionnels à la fin de la
liste des paramètres.

>>> def three_nums():
... return 1, 2, 3
...
>>> three_nums()
(1, 2, 3)

CULTURE L’écriture pythonique

Renvoyer les éléments séparés par des virgules est très spécifique au langage et est souvent préféré à
l’utilisation d’une structure regroupante. Cette écriture est souvent employée lorsqu’une fonction doit
renvoyer deux ou trois résultats. On parle ici d’écriture pythonique.

>>> def home(firstname, lastname='Doe'):
... print('%s %s' % (firstname, lastname))
...
>>> home('John')
John Doe
>>> home('John', 'Dull')
John Dull

Structuration du code
CHAPITRE 5

101

Lorsqu’il y a plusieurs paramètres optionnels, le code appelant peut définir ou non la
valeur de chacun sans avoir à respecter un ordre précis, en utilisant la notation
nom=valeur pour ce paramètre. On parle alors de nommage des paramètres.

Nommage des paramètres

Enfin, les valeurs par défaut ne sont interprétées qu’une seule fois, au moment de la
lecture de la définition, ce qui peut être relativement important si ces valeurs sont
retournées par des objets modifiables. Chaque nouvel appel à la fonction appellera les
mêmes objets qui ont été évalués à l’initialisation de la fonction.

Lecture par l’interpréteur des valeurs par défaut

>>> def sum(a, b=2, c=3):
... return a + b + c
...
>>> sum(2)
7
>>> sum(2, 3, 4)
9
>>> sum(2, c=4)
8
>>> sum(a=2, b=3, c=4)
9

À RETENIR Les paramètre nommés

Tous les paramètres peuvent êtres nommés. Cette notation permet aussi de fournir les valeurs dans un
ordre quelconque.
>>> def sub(a, b):
... return a – b
...
>>> sub(10, 5)
5
>>> sub(b=10, a=5)
-5
>>> sub(a=10, b=5)
5

Lorsqu’une fonction possède beaucoup de paramètres, il est judicieux de nommer systématiquement
tous les paramètres, afin de rendre le code plus lisible.

>>> def param():
... print('param() appelé')
... return [1, 2, 3]
...

Éléments du langage
DEUXIÈME PARTIE

102

Les paramètres non explicites
Python propose un système de paramètres non explicites qui permet de laisser l’appe-
lant fournir autant de valeurs nommées qu’il le souhaite sans qu’il soit nécessaire de
les définir dans la liste des arguments. Ces paramètres sont fournis sous la forme
nom=valeur à la fonction. L’interpréteur place ces valeurs dans un dictionnaire qu’il
faut au préalable définir en fin de liste par son nom précédé de deux étoiles :

Utilisation de paramètres non explicites

Cette écriture offre un maximum de souplesse puisqu’elle peut être combinée avec les
paramètres explicites.

>>> def add_element(element, list_=param()):
... list_.append(element)
... return list_
...
param() appelé
>>> add_element(4)
[1, 2, 3, 4]
>>> add_element(5)
[1, 2, 3, 4, 5]
>>> def param():
... print('param() appelé')
... return [5]
...
>>> add_element(8)
[1, 2, 3, 4, 5, 8]

>>> def sentence(**words):
... print ('Reçu %d mot(s)' % len(words))
... print ('Liste des mots: %s' % ' '.join(words.values()))
... print ('Nom des paramètres: %s' % ' '.join(words.keys()))
...
>>> sentence(mot1='mot 1', mot2='mot2')
Reçu 2 mot(s)
Liste des mots: mot 1 mot2
Nom des paramètres: mot1 mot2
>>> sentence(encore="des mots", toujours="des mots")
Reçu 2 mot(s)
Liste des mots: des mots des mots
Nom des paramètres: encore toujours
>>> sentence()
Reçu 0 mot(s)
Liste des mots:
Nom des paramètres:

Structuration du code
CHAPITRE 5

103

Combinaison de paramètres explicites et non explicites

Les paramètres arbitraires
Les paramètres arbitraires sont équivalents aux paramètres non explicites sauf qu’ils
ne sont pas nommés. L’interpréteur les regroupe dans un tuple nommé qu’il passe à
la fonction. Le nom du tuple est fourni préfixé cette fois-ci d’une seule étoile.

Paramètres arbitraires

Lorsque des paramètres arbitraires sont combinés avec des paramètres explicites ou
non explicites, la déclaration du nom du tuple qui contiendra les valeurs se place tou-
jours après les paramètres explicites et avant les paramètres non explicites.

>> def team(name, leader='non défini', **players):
... print('Equipe %s' % name
... print('Capitaine: %s' % leader)
... for name, value in players.items():
... print('%s: %s' % (name, value))
...
>>> team('Les bleus')
Equipe Les bleus
Capitaine: non défini
>>> team('Les vaillants', 'Robert', gardien='André',

 attaquant='Micheline')
Equipe Les vaillants
Capitaine: Robert
attaquant: Micheline
gardien: André

ASTUCE Utiliser un dictionnaire

Le dictionnaire players peut aussi être directement fourni.
L’écriture :
team('Nom', 'Capitaine', gardien='André', attaquant='Micheline')

étant équivalente à :
players = {gardien: 'André', attaquant: 'Micheline'}
team('Nom', 'Capitaine', **players)

>>> def format(sentence, *args):
... print(sentence % args)
...
>>> format('%d fois plus de %s possibles', 2, 'combinaisons')
2 fois plus de combinaisons possibles

Éléments du langage
DEUXIÈME PARTIE

104

Ainsi, une fonction sera toujours sous la forme indiquée ci-dessous.

Forme d’une fonction

Collisions de paramètres
Une fonction peut donc utiliser trois types de paramétrages et les combiner. Il faut
cependant prendre garde aux collisions possibles : un paramètre doit rester unique
dans l’ensemble des paramètres fournis. En cas de doublons, une exception
TypeError est retournée.

Collisions de noms

Signatures multiples de fonctions
La signature d’une fonction est représentée par la liste de ses paramètres. Certains
langages proposent des systèmes de surcharge pour permettre au développeur de
définir plusieurs fois la même fonction avec des signatures différentes. C’est le rôle de
la directive overload en Delphi par exemple.

Les combinaisons infinies de paramétrage de fonction offertes par Python répondent
beaucoup plus simplement à ce problème de signature multiple.

ASTUCE Utiliser la notation arbitraire

Il est possible d’utiliser la notation arbitraire dans des fonctions à paramétrage classique en fournissant
une séquence comme valeur. La séquence sera décompressée en une liste de paramètres.
>>> def sum(a, b, c):
... return a + b + c
...
>>> elements = [1, 3, 5]
>>> sum(*elements)
9

def nom_fonction(a, b, c, ..., *arbitraires, **explicites)

>>> def display(a, **kw):
... print('a: %s' % a)
... for name, value in kw.items():
... print('%s: %s' % (name, value))
...
>>> display(12, a=2, b=3, c=4)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: display() got multiple values for keyword argument 'a'

Structuration du code
CHAPITRE 5

105

Directive lambda
Issue de langages fonctionnels comme le Lisp, la directive lambda permet de définir
une fonction anonyme, c’est-à-dire sans nom. lambda est utilisée lorsqu’une fonction
est à fournir dans une expression et permet d’éviter de la définir explicitement. Cette
fonction doit cependant se limiter à une seule expression.

Raccourci lambda

Mis à part quelques cas précis comme l’exemple présenté, lambda est à proscrire car
cette directive rend le code difficilement lisible.

Documentation strings (docstrings)
Les objets docstrings sont des chaînes de caractères placées au début du corps des
fonctions. Ils sont automatiquement associés à la variable __doc__ de l’objet fonction
par l’interpréteur.

Une fonction dotée d’un docstring

>>> # fonction explicite
...
>>> elements = [1, 2, 3]
>>> def add_one(e):
... return e + 1
...
>>> map(add_one, elements)
[2, 3, 4]
>>> # équivalent avec lambda
...
>>> map(lambda e: e + 1, elements)
[2, 3, 4]

>>> def pi():
... """Renvoie une approximation du nombre Pi."""
... return 3.14
...
>>> print(pi.__doc__)
Renvoie une approximation du nombre Pi.
ou bien :
>>> help(pi)
Help on function pi in module __main__:

pi()
 Renvoie une approximation du nombre Pi.
(END)

Éléments du langage
DEUXIÈME PARTIE

106

Toutes les fonctions fournies dans Python sont dotées d’un docstring, ce qui est pra-
tique pour une documentation en ligne directe. On y renseigne sur l’objectif de la
fonction et sur le détail de ses paramètres.

Détails sur divmod par son docstring

Decorators
Les decorators sont issus d’un besoin de généralisation des mécanismes introduits par
les fonctions classmethod() et staticmethod() apparus à la version 2.2 de Python.

En l’occurrence, pour spécifier qu’une fonction est une méthode statique ou une méthode
de classe (voir les decorators pour les classes à la prochaine section), il est nécessaire de
procéder à un appel à l’une des primitives en passant en paramètre la fonction.

D’un point de vue plus général aux fonctions, le principe, calqué sur le modèle exis-
tant en Java (annotations), est d’effectuer un prétraitement au moment de l’appel
d’une fonction.

Définition d’un prétraitement

La fonction decorate décore la fonction a_function de détails supplémentaires et la
liaison se fait par function=decorate(function).

>>> print(divmod.__doc__)
divmod(x, y) -> (div, mod)

Return the tuple ((x-x%y)/y, x%y). Invariant: div*y + mod == x.

À RETENIR Importance des docstrings

Les docstrings jouent un rôle relativement important en Python. Le chapitre 7 décrit précisément les con-
ventions de nommage des docstrings et le chapitre 12 leur utilisation dans le cadre des tests unitaires.

>>> def decorate(function):
... function.__doc__ = 'Fonction décorée %s' % function.__doc__
... return fonction
...
>>> def a_function():
... """Ma fonction."""
... print('traitement')
...
>>> a_function = decorate(a_function)
>>> print(a_function.__doc__)
Fonction décorée Ma fonction.

Structuration du code
CHAPITRE 5

107

Pour simplifier l’écriture, les decorators introduisent un nouveau mécanisme qui
permet de spécifier qu’une fonction est encapsulée dans une deuxième fonction.

Il suffit de préfixer la définition de la fonction à encapsuler par le nom de la
deuxième fonction préfixé d’une arobase (@).

Définition d’un decorator

Plusieurs decorators peuvent êtres utilisés sur la même fonction : ils sont imbriqués
dans l’ordre de déclaration.

Enchaînement de decorators

Cette notation étant équivalente à l’écriture ci-dessous :

Équivalent explicite

Les decorators servent également à la mise en place de code patterns récurrents,
comme le contrôle de types de paramètres entrants, d’enrichissement du contexte
d’exécution ou de tout mécanisme pré ou post-exécution. La fonction décoratrice est
déclarée une bonne fois pour toute et réutilisée en decorator.

Contrôle d’argument

>>> def decorate(function):
... function.__doc__ = 'Fonction décorée %s' % function.__doc__
... return function
...
>>> @decorate
... def a_function():
... """Ma fonction."""
... print('traitement')
...
>>> print a_function.__doc__
Fonction décorée ma fonction

@f1 @f2 @f3
def a_function():
 pass

function = f1(f2(f3(function)))

>>> def only_ints(func):
... def _only_ints(arg):
... ifnot isinstance(arg, int):
... raise TypeError("'%s' doit être un entier" % str(arg))

Éléments du langage
DEUXIÈME PARTIE

108

Une fonction de décoration ne doit pas à proprement parler exécuter de code au
moment de son appel, car cet appel est provoqué par l’interpréteur lorsqu’il lit la défi-
nition de la fonction décorée. Il demande alors à la fonction de décoration de lui ren-
voyer une fonction qui sera appelée à chaque exécution de la fonction décorée.

Quelques print permettent de mieux comprendre cette mécanique :

La mécanique des decorators

... return func(arg)

... return _only_ints

...
>>> @only_ints
... def function(arg):
... return arg + 1
...
>>> print(function('t'))
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 4, in only_ints
TypeError: 't' doit être un entier
>>> print(function(3))
4

>>> def only_ints(func):
... print('appel du decorator')
... def _only_ints(arg):
... print('appel du code de décoration')
... ifnot isinstance(arg, int):
... raise TypeError("'%s' doit être un entier" % str(arg))
... print('capsule exécute la fonction')
... return func(arg)
... print('only_ints renvoi la capsule')
... return _only_ints
...
>>> @only_ints
... def function(arg):
... return arg + 1
...
appel du decorator
argument_entier renvoie la capsule
>>> function(5)
appel du code de décoration
capsule exécute la fonction
6

Structuration du code
CHAPITRE 5

109

La sous-fonction _only_ints() permet donc de retourner le code à exécuter lorsque
la fonction sera réellement appelée. only_ints() ici prend en paramètre la fonction à
décorer et retourne la fonction à appeler.

Il est possible de passer des arguments aux decorators : l’appel devient de la forme
@fonction(parametres). Dans ce cas, la fonction utilisée doit renvoyer une fonction
au format decorator classique, afin de permettre à l’interpréteur d’effectuer un appel à
decorateur(fonction).

L’enchaînement est le suivant : l’interpréteur appelle dans un premier temps la fonc-
tion de décoration, d’une manière tout à fait classique (resultat =

decorator(parametres)), puis utilise son résultat pour un appel à la fonction
décorée, soit resultat(fonction).

Decorator paramétré

>>> def only_int(function):
... def _only_int(arg):
... ifnot isinstance(arg, int):
... raise TypeError("'%s' doit être un int" % str(arg))
... return function(arg)
... return _only_int
...
>>> def only_long(function):
... def _only_long(arg):
... ifnot isinstance(arg, long):
... raise TypeError("'%s' doit être un long" % str(arg))
... return function(arg)
... return _only_long
...
>>> def int_or_long(force_long):
... if force_long:
... return only_long
... else:
... return only_int
...
>>> @int_or_long(True)
... def function(arg):
... return arg + 1
...
>>> function(45)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 4, in only_long
TypeError: '45' doit être un long
>>> function(459876455L)
459876456L

Éléments du langage
DEUXIÈME PARTIE

110

Si on ajoute des print pour mettre en valeur l’enchaînement :

Enchaînement d’un decorator paramétré

>>> def only_int(function):
...print('appel de only_int')
... def _only_int(arg):
... ifnot isinstance(arg, int):
... raise TypeError("'%s' doit être un int" % str(arg))
... return function(arg)
... print('renvoi de _only_int')
... return _only_int
...
>>> def only_long(function):
... print('renvoi de only_long')
... def _only_long(arg):
... ifnot isinstance(arg, long):
... raise TypeError("'%s' doit être un long" % str(arg))
... return function(arg)
... print('renvoi de _only_long')
... return _only_long
...
>>> def int_or_long(force_long):
... print('appel de int_or_long')
... if force_long:
... print('renvoi de only_long')
... return only_long
... else:
... print('renvoi de only_int')
... return only_int
...
>>> @int_or_long(True)
... def function(entier):
... return entier + 1
...
appel de int_or_long
renvoi de only_long
appel de only_long
renvoi de _only_long
>>> function(56L)
57L

AVENIR Émergence des decorators

Les patterns d’utilisation des decorators émergent actuellement des travaux des développeurs de la com-
munauté. Il est possible qu’à terme Python propose une liste étendue de decorators.

Structuration du code
CHAPITRE 5

111

Classes
Sans être familier avec la programmation orientée objet (POO), on peut considérer
que les classes sont similaires à des modules : des regroupements logiques de fonc-
tions et de variables pour définir un comportement et un état du programme. Cette
logique se retrouve dans les éléments manipulés en Python, puisque tout est objet.
Ainsi, un objet de type string regroupe des fonctions de manipulation sur la chaîne
comme replace() et des variables comme __doc__.

La différence fondamentale entre un module et une classe se situe dans l’utilisation
de cette dernière : elle définit un modèle d’objet que l’on peut ensuite instancier
autant de fois que nécessaire. Une instance devient un objet indépendant qui con-
tient les fonctions et les variables définies dans le modèle.

Définition
Le mot réservé class sert à définir un modèle en associant un certain nombre de
variables et de fonctions à un nom.

La classe Voiture

Toutes les variables et les fonctions placées dans le niveau d’indentation de la classe en
deviennent des membres. Ces éléments sont nommés attributs et on parle plus précisé-
ment de méthodes pour les fonctions et d’attributs de données pour les variables.

La classe Car définie dans l’exemple peut ensuite être utilisée pour instancier des
objets en l’appelant comme une fonction.

Instanciation

Ces deux objets de type Car sont des instances distinctes.

ALLER PLUS LOIN La programmation orientée objet

Si vous n’êtes pas familier avec les concepts de la POO, le chapitre 14 est une bonne introduction à son
utilisation en Python.

>>> class Car:
... color = 'Rouge'
...

>>> car_1 = Car()
>>> car_2 = Car()

Éléments du langage
DEUXIÈME PARTIE

112

Espace de noms
Pour atteindre la variable color de l’instance car_1, il faut spécifier qu’elle se trouve
dans car_1 pour la distinguer par exemple, d’une éventuelle variable portant le même
nom définie en dehors de la classe. Cette différenciation se fait par le biais de l’espace
de noms, ou namespace, que l’interpréteur crée lorsque l’instance de classe est utilisée.

Cet espace de noms peut être vu comme un dictionnaire propre à cette instance de
classe. Il porte les correspondances entre noms d’attributs et valeurs de ces attributs.
Ainsi, la notation car_1.color est utilisée par l’interpréteur pour atteindre l’attribut
color de l’instance car_1.

Pour rechercher color dans car_1, le mapping procède dans cet ordre :
• Recherche si car_1.__dict__['color'] existe.
• Recherche si type(car_1).__dict__['color'] existe (équivalent à
Car.__dict__['color']).

Si l’attribut en question n’existe pas et s’il est utilisé dans le cadre d’une attribution de
valeur, le mécanisme de mapping ajoute aussitôt l’objet fourni dans la liste des attri-
buts de l’instance liste conservée dans le mapping __dict__. Les autres instances ne
profitent pas de ce nouvel attribut, sauf s’il est attribué à la classe même.

Mapping d’attributs

>>> class Car:
... color = 'Rouge'
...
>>> red_car = Car()
>>> blue_car = Car()
>>> red_car.color
'Rouge'
>>> blue_car.color
'Rouge'
>>> blue_car.color = 'Bleu'
>>> red_car.color
'Rouge'
>>> blue_car.color
'Bleu'
>>> red_car.air_conditioner = 'oui'
>>> red_car.air_conditioner
'oui'
>>> blue_car.air_conditioner
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: Car instance has no attribute 'air_conditioner'

Structuration du code
CHAPITRE 5

113

Paramètre self
De la même manière que pour une fonction, l’interpréteur met à jour les variables
locales et globales lors de l’exécution des méthodes. Le code exécuté a donc une visi-
bilité locale aux éléments définis dans la méthode et globale aux éléments en dehors
de l’instance.

Pour atteindre les éléments définis dans l’espace de noms de l’instance de la classe, il
est donc nécessaire d’avoir un lien qui permette de s’y référer. L’interpréteur répond à
ce besoin en fournissant l’objet instancié en premier paramètre de toutes les
méthodes de la classe.

Par convention, et même si ce nom n’est pas un mot-clé du langage, ce premier para-
mètre prend toujours le nom self.

Utilisation de self

Les méthodes définies dans les classes ont donc toujours un premier paramètre
fourni de manière transparente par l’interpréteur, car.start() étant remplacé au
moment de l’exécution par Car.start(car).

On comprend par cette notation que le code défini dans la classe Car est partagé par
toute les instances et que seuls les attributs de données instanciés dans les méthodes
restent spécifiques aux instances.

Héritage
Le plus grand intérêt des classes est bien sûr l’héritage. L’héritage est la faculté d’une
classe B de s’approprier les fonctionnalités d’une classe A. On dit que B hérite de A
ou encore que B dérive de A.

>>> class Car:
... color = 'Red'
... state = 'arret'
... def start(self):
... self.state = 'marche'
... def stop(self):
... self.state = 'arret'
...
>>> car = Car()
>>> car.state
'arret'
>>> car.start()
>>> car.state
'marche'

Éléments du langage
DEUXIÈME PARTIE

114

Python permet de définir des classes dérivées très simplement :

Classe dérivée

Au moment de l’instanciation de la classe Mehari, l’interpréteur mémorise le nom de
la classe parente afin de l’utiliser lorsque des attributs de données ou des méthodes
sont utilisés : si l’attribut en question n’est pas trouvé dans la classe, l’interpréteur le
recherche dans la classe parente. Si l’attribut n’est pas trouvé dans la classe parente,
l’interpréteur remonte l’arbre de dérivation à la recherche d’une méthode portant la
même signature avant de provoquer une exception AttributeError.

Héritage des attributs

Héritage multiple
Python supporte l’héritage multiple en laissant la possibilité de lister plusieurs classes
parentes dans la définition.

Héritage multiple

>>> class Mehari(Car):
... pass
...

>>> class Car:
... type = 'Voiture'
... def print_type(self):
... print(self.type)
...
>>> class Mehari(Car):
... pass
...
>>> class MehariTurbo(Mehari):
... pass
...
>>> car = MehariTurbo()
>>> car.print_type()
Voiture

>>> class Television:
... brand = ''
... def print_brand(self):
... print(self.brand)
...
>>> class DVDPlayer:
... def play_dvd(self):
... pass
...

Structuration du code
CHAPITRE 5

115

La mécanique de recherche des attributs est appliquée à chacune des classes de base,
de gauche à droite. Dans notre cas, lorsqu’un attribut est demandé à l’instance de
classe TVDVDCombo, l’interpréteur parcourt l’arbre de dérivation de la classe
Television comme dans le cas d’un héritage simple, puis passe à la classe DVDPlayer
si l’attribut n’a pas été trouvé.

Lorsque des classes parentes ont une classe de base commune, il devient difficile de
maîtriser les enchaînements d’appels et d’avoir une bonne visibilité. L’utilisation de
l’héritage multiple est donc délicate et fortement déconseillée dans la plupart des cas.
Son utilisation peut parfois être imposée lorsqu’un framework un peu rigide est utilisé.

Surcharge des attributs
Toutes les méthodes et attributs de données peuvent être surchargés, en utilisant la
même signature.

Surcharge

L’interpréteur utilise alors la première méthode qu’il trouve en suivant la règle de
recherche précédemment énoncée. Le mécanisme introduit par le mapping de nom,
qui fournit aux méthodes l’instance par le biais du paramètre self, permet au code
des méthodes de manipuler d’autres attributs.

>>> class TVDVDCombo(Television, DVDPlayer):
... pass
...
>>> dir(TVDVDCombo)
['__doc__', '__module__', 'brand', 'play_dvd', 'print_brand']

>>> class Car:
... type = 'Voiture'
... def print_type(self):
... print(self.type)
... def use_type(self):
... self.print_type()
...
>>> class Mehari(Car):
... def use_type(self):
... print('Mehari et %s' % self.type)
...
>>> my_car = Mehari()
>>> my_car.print_type()
Voiture
>>> my_car.use_type()
Mehari et Voiture

Éléments du langage
DEUXIÈME PARTIE

116

Si une méthode doit spécifiquement utiliser un attribut que la règle de surcharge ne
lui renvoie pas, il est possible de préciser à l’interpréteur de quelle classe il s’agit, en
utilisant un préfixe de la forme : ClasseDeBase.methode(self, parametres).

Polymorphisme

Constructeur et destructeur
Lorsqu’une classe est instanciée, la méthode spéciale __init__() est invoquée avec
en premier paramètre l’objet nouvellement instancié par l’interpréteur.

Ce fonctionnement permet de procéder à un certain nombre d’initialisations lorsque
l’on crée une instance de classe.

Initialisation de l’instance

Grâce aux propriétés d’attributions fournies par le mapping, il est d’usage de déclarer
les attributs de données directement dans le constructeur lorsque ceux-ci ne sont pas
partagés par toutes les instances : ils sont attachés à l’objet au moment de leur initia-
lisation comme c’est le cas dans notre exemple pour immatriculation

Comme pour une méthode classique, le constructeur peut recevoir des paramètres
supplémentaires, qui sont directement passés au moment de l’instanciation.

>>> class Mehari(Car):
... def print_type(self):
... print('Mehari et %s' % self.type)
... def use_type(self):
... Car.print_type(self)
...
>>> my_car = Mehari()
>>> my_car.print_type()
Car

>>> class Car:
... def __init__(self):
... print("Nouvelle voiture n°%s" % id(self))
... self.immatriculation = '%s XZ 21' % id(self)
...
>>> my_car = Car()
Nouvelle voiture n°211949876
>>> my_car.immatriculation
'211949876 XZ 21'

Structuration du code
CHAPITRE 5

117

Constructeur paramétré

Un destructeur peut également être défini grâce à la méthode spéciale __del__()
lorsque du code doit être appelé au moment de la destruction de l’instance. Cette
méthode est appelée par le garbage collector. Le code contenu dans cette méthode doit
explicitement appeler la méthode __del__() des classes parentes, si elles existent.

Destructeur

Attributs privés
En ce qui concerne la protection des attributs, il est possible de définir des attributs
privés à la classe en préfixant le nom de deux espaces soulignés. Si l’attribut se ter-
mine aussi par des espaces soulignés, ils ne doivent pas être plus de deux pour qu’il
reste considéré comme privé.

L’interpréteur repère ces attributs et modifie leurs noms dans le contexte d’exécution.
Pour un attribut __a de la classe Class, le nom devient _Class__a.

Le mapping étend alors la recherche à cette notation lorsque les appels se font depuis
le code de la classe, de manière à ce que les appelants extérieurs n’aient plus d’accès à
l’attribut par son nom direct.

>>> class Car:
... def __init__(self, type):
... self.type = type
...
>>> my_car = Car("Mehari Supa'Turbo")
>>> my_car.type
"Mehari Supa'Turbo"

>>> class A:
... def __del__(self):
... print('destructeur')
...
>>> a = A()
>>> del a
destructeur

AVERTISSEMENT Utilisation de __del__

L’utilisation de __del__ est à proscrire car elle peut provoquer des erreurs au moment ou le code est
appelé.
Par exemple, l’ordre de destruction des objets au moment de l’arrêt d’un programme n’est pas garanti, et
le destructeur peut appeler des références à des objets qui n’existent plus.

Éléments du langage
DEUXIÈME PARTIE

118

Protection d’attributs

Contrairement à d’autres langages objets, cette protection reste déclarative et n’est
pas absolue : il est tout à fait possible d’accéder à un attribut privé en faisant appel à
son nom préfixé, même si cela n’a aucun intérêt.

Appelée name mangling, cette mécanique permet d’éviter les collisions de noms dans
des cas précis au niveau du code de l’interpréteur lui-même. Cependant son utilisa-
tion est à proscrire dans les programmes simples, car il n’y a pas réellement d’intérêt
de marquer ainsi ses attributs dans un langage qui prône les conventions sur les noms
des éléments au lieu de forcer certains mécanismes. Quoi qu’il en soit, lorsque des
attributs doivent être marqués comme privés, la meilleure pratique est de les préfixer
par un seul espace souligné.

>>> class Car:
... __defaults = ['bruyante']
... qualities = ['rapide', 'economique']
... def caracteristics(self):
... print(self.__defauts)
... print(self.qualites)
... def visibility(self):
... print(dir(self))
...
>>> o = Car()
>>> o.caracteristics()
['bruyante']
['rapide', 'economique']
>>> o.qualities
['rapide', 'economique']
>>> o.__defaults
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: Voiture instance has no attribute '__defaut'
>>> o.visibility()
['_Car__defaults', '__doc__', '__module__', 'caracteristiques',
'qualites', 'visibilite']
>>> o._Car__defaults
['bruyante']

À RETENIR Nom des attributs privés

Le nom des attributs privés est tronqué à 255 caractères par l’interpréteur

FUTUR Retrait du name mangling ?

Le retrait pur et simple du name mangling a été proposé dans le passé, les prochaines versions de
Python ne l’auront peut-être plus.

Structuration du code
CHAPITRE 5

119

Marquage simple d’attributs

Méthodes spéciales
Il est possible en Python de définir d’autres méthodes spéciales que __init__() et
__del__(), qui déterminent un fonctionnement spécifique pour une classe lorsqu’elle
est utilisée dans certaines opérations.

Ces méthodes permettent de faire varier le comportement des objets et sont regrou-
pées en fonction des cas d’utilisation :
• représentation et comparaison de l’objet ;
• utilisation de l’objet comme fonction ;
• accès aux attributs de l’objet ;
• utilisation de l’objet comme conteneur ;
• utilisation de l’objet comme type numérique.

Représentation et comparaison de l’objet

__str__()

Appelée par la primitive str(). Doit renvoyer une représentation sous forme de
chaîne de caractères d’un objet. Cette représentation peut être un transtypage de
l’objet en objet string lorsque c’est possible ou une représentation plus informelle.

Str()

__repr__()

Appelée par la primitive repr(). Similaire à __str__() sauf que la représentation
doit être une expression Python telle que eval(repr(a)) == a lorsque c’est possible.

>>> class Car:
... _defaults = ['bruyante']
... qualities = ['rapide', 'economique']
...

>> class A:
... def __str__(self):
... return 'je suis un objet de type A'
...
>>> a = A()
>>> str(a)
'je suis un objet de type A'

Éléments du langage
DEUXIÈME PARTIE

120

__repr__() doit donc permettre de recréer l’objet. Si le reverse n’est pas possible,
__repr__() doit renvoyer une string de la forme '<description>'. Les instances de
classe renvoient en général leur adresse mémoire.

__cmp__(other)

Utilisée par tous les opérateurs de comparaison lorsque l’objet est impliqué.
__cmp__() doit renvoyer :
• un entier négatif si self est inférieur à other ;

• un entier positif si self est supérieur à other ;
• zéro en cas d’égalité.

[__lt__, __le__, __eq__, __ne__, __gt__, __ge__](other)

Ensemble de méthodes de comparaison, qui sont utilisées de préférence à __cmp__()
si elles sont présentes, pour chacun des opérateurs. Ces méthodes doivent renvoyer
True ou False ;

• a < b correspond à a.__lt__(b) ;
• a <= b correspond à a.__le__(b) ;
• a == b correspond à a.__eq__(b) ;
• a != b correspond à a.__ne__(b) ;
• a > b correspond à a.__gt__(b) ;
• a >= b correspond à a.__ge__(b).

Il n’y a aucun contrôle d’intégrité sur ces opérateurs : __ne__ et __eq__ peuvent tous
les deux renvoyer True. Lorsqu’une méthode est implémentée, il est donc conseillé
de toujours implémenter la méthode symétrique pour assurer l’intégrité.

Enfin, si ni __cmp__(),ni __eq__ et __ne__ ne sont définies, la primitive id() sera
utilisée pour la comparaison.

__hash__()

Appelée par la primitive hash() ou par un objet dictionnaire lorsque l’objet est utilisé
comme clé. Doit renvoyer un entier de 32 bits. Si deux objets sont définis comme
égaux, par __cmp__(), __eq__() ou __ne__(), __hash__() doit renvoyer la même
valeur pour ces deux objets.

__nonzero__()

Appelée par la primitive bool() et par la comparaison avec True ou False. Doit ren-
voyer True ou False. Lorsque cette méthode n’est pas définie, c’est __len__() qui est
utilisée. __len__() représente la taille de l’objet. Si aucune des deux méthodes n’est
présente, l’objet est toujours considéré comme vrai.

Structuration du code
CHAPITRE 5

121

__unicode__()

Appelée par la primitive unicode(). Doit renvoyer un objet de type unicode. Si la
méthode n’est pas implémentée, une conversion en string est tentée, puis un pas-
sage de string à unicode.

Utilisation de l’objet comme fonction
Lorsqu’une instance d’objet est appelée comme une fonction, c’est __call__() qui
est appelée si elle est définie. Les objets de cette classe deviennent, au même titre
qu’une fonction ou une méthode, des objets callable.

Class callable

Accès aux attributs de l’objet
Lorsque l’interpréteur rencontre une écriture de type objet.attribut, il utilise le
dictionnaire interne __dict__ pour rechercher cet attribut, et remonte dans les dic-
tionnaires des classes dérivées si nécessaire.

L’utilisation des trois méthodes suivantes permet d’influer sur ce fonctionnement.

__setattr__()

__setattr__() est utilisée lorsqu’une valeur est assignée, en lieu et place d’une modi-
fication classique de l’attribut __dict__ de l’objet.

objet.attribut = 'valeur' devient équivalent à objet.__setattr__('attribut',
'valeur')

Le code contenu dans __setattr__() ne doit pas appeler directement l’attribut à
mettre à jour, au risque de s’appeler lui-même récursivement. Il faut utiliser un accès
à __dict__.

__getattr__() et __getattribute__()

__getattr__() est appelée en dernier recours lorsqu’un attribut est recherché dans un
objet. Cette méthode ne surcharge pas le fonctionnement normal afin de permettre à
__setattr__(), lorsqu’elle est surchargée, d’accéder aux attributs normalement.

>>> class A:
... def __call__(self, one, two):
... return one + two
...
>>> a = A()
>>> callable(a)
True
>>> a(1, 6)
7

Éléments du langage
DEUXIÈME PARTIE

122

Les new-style class, présentées dans la prochaine section, introduisent cependant une
nouvelle méthode __getattribute__(), qui comme __setattr__() permet de sur-
charger complètement l’accès aux attributs.

__delattr__()

Complément des deux méthodes précédentes, objet.__delattr__('attribut') est
équivalent à del objet.attribut.

Essais sur les attributs de mapping

Utilisation de l’objet comme conteneur
Les mappings et les séquences sont tous des objets de type conteneurs, qui implé-
mentent un tronc commun de méthodes. Ces méthodes sont présentées ci-dessous et
peuvent être définies dans toute classe.

>>> class Person:
... def __getattr__(self, name):
... print('getattr %s' % name)
... if name in self.__dict__:
... return self.__dict__[name]
... else:
... print("attribut '%s' inexistant" % name)
... def __setattr__(self, name, valeur):
... print('set %s: %s' % (name, str(valeur)))
... self.__dict__[name] = valeur
... def __delattr__(self, name):
... print('del %s' % name)
... if name in self.__dict__:
... del self.__dict__[name]
... else:
... print("attribut '%s' inexistant" % name)
...
>>> john = Person()
>>> john.age = 20
set age: 20
>>> john.first_name
getattr first_name
attribut 'first_name' inexistant
>>> john.first_name = 'John'
set first_name: John
>>> del john.first_name
del first_name
>>> john.first_name
getattr first_name
attribut 'first_name' inexistant

Structuration du code
CHAPITRE 5

123

__getitem__(key)

Utilisée lorsqu’une évaluation de type objet[key] est effectuée. Pour les objets de
type séquences, key doit être un entier positif ou un objet de type slice. Les map-
pings, quant à eux, utilisent des clés de tout type non modifiable.

Si la clé fournie n’est pas d’un type compatible, une erreur TypeError est retournée.
Enfin, si la clé est en dehors des valeurs autorisées, une erreur de type IndexError est
retournée.

__setitem__(key, value)

Utilisée lorsqu’une assignation de type objet[key] = valeur est effectuée. Les
mêmes erreurs peuvent être utilisées que celles de __getitem__. Les mappings ajou-
tent automatiquement la clé lorsqu’elle n’existe pas, contrairement aux séquences qui
retournent une erreur si la clé n’existe pas.

__delitem__(key)

Permet de supprimer une entrée du conteneur.

__len__()

Appelée par la primitive len(), et permet de renvoyer le nombre d’éléments du con-
teneur.

__iter__()

Appelée par la primitive iter(), et doit renvoyer un iterator capable de parcourir les
éléments.

__contains__(item)

Renvoie vrai si item se trouve parmi les éléments.

Un peu de contenu

>>> class MyContainer:
... def __init__(self):
... self._data = {}
... def __getitem__(self, key):
... if key in self._data:
... return self._data[key]
... else:
... print("Je n'ai pas %s" % key)
... def __setitem__(self, key, value):
... self._data[key] = value
... def __delitem__(self, key):
... print('on ne fait pas ca chez moi')

Éléments du langage
DEUXIÈME PARTIE

124

Utilisation de l’objet comme type numérique
Ces méthodes peuvent être utilisées pour définir le fonctionnement de l’objet
lorsqu’il est employé dans toute opération numérique, que ce soit une addition, un
décalage de bits vers la gauche, ou encore une inversion. Chacune de ces méthodes
renvoie en général l’objet lui-même, qui est l’opérande de gauche, pour assurer une
logique au niveau des opérateurs, mais peut dans certains cas renvoyer l’opérande de
droite ou un tout autre objet.

... def __len__(self):

... return len(self._data)

... def __contains__(self, item):

... return item in self._data.values()

...
>>> inside = MyContainer()
>>> inside['12']
Je n'ai pas 12
>>> inside['la_cle'] = 45
>>> inside['la_cle']
45
>>> len(inside)
1
>>> del inside['la_cle']
on ne fait pas ca chez moi
>>> inside['la_cle2'] = 34
>>> len(inside)
2

Tableau 5–1 Méthodes pour les opérateurs numériques

Méthode Opération Variations

__add__(other) objet + other R et I

__sub__(other) Objet - other R et I

__mul__(other) objet * other R et I

__floordiv__(other) objet // other R et I

__mod__(other) objet % other R et I

__divmod__(other) divmod(objet, other) R et I

__pow__(other[, modulo]) objet ** other R et I

__lshift__(other) objet << other R et I

__rshift__(other) objet >> other R et I

__and__(other) objet & other R et I

__xor__(other) objet ^ other R et I

__or__(other) objet | other R et I

__div__(other) objet / other R et I

Structuration du code
CHAPITRE 5

125

Pour toutes ces méthodes, un appel à objet opérateur other déclenche un appel à
objet.methode(other).

La variation I ajoute un préfixe i à la méthode (__iadd__(), __imul__(), etc.) et
permet de définir les opérateurs augmentés +=, *=, etc. Cette variation renvoie en
général objet augmenté de other.

La variation R ajoute un préfixe r à la méthode (__radd__(), __rmul__(), etc.) et
permet de définir des opérateurs inversés : other.operateur(object) est appelé en
lieu et place de objet.operateur(other). Lorsque l’opération classique n’est pas
supportée, l’interpréteur tente l’opération inverse.

Surcharge de l’addition

__truediv__(other) objet / other R et I

__neg__() - objet

__pos__() + objet

__abs__() abs(objet)

__invert__() ~ objet

__complex__() complex(objet)

__int__() int(objet)

__long__() long(objet)

__float__() float(objet)

__oct__() oct(objet)

__hex__() hex(objet)

__coerce__(other) coerce(objet, other)

>>> class Additionable:
... def __init__(self, value):
... self.value = value
... def __add__(self, other):
... return Additionable(self.value + other.value)
... def __iadd__(self, other):
... return self.__add__(other)
... def __str__(self):
... return str(self.value)
...
>>> val1 = Additionable(5)
>>> val2 = Additionable(12)
>>> val3 = val1 + val2
>>> str(val3)
'17'

Tableau 5–1 Méthodes pour les opérateurs numériques (suite)

Méthode Opération Variations

Éléments du langage
DEUXIÈME PARTIE

126

New-style classes
Python 2.2 a introduit un nouveau type d’objet appelé object. Ce type définit une
classe qui peut être utilisée comme classe de base pour toute nouvelle définition de
classe. Les classes basées sur le type object sont appelées new-style class.

New-style class

object introduit un certain nombre de méthodes privées qui permettent de bénéfi-
cier de nouveaux mécanismes comme :
• un nouveau Method Resolution Order ;
• le constructeur statique, sorte de méta-constructeur pour toutes les instances d’un

type de classe ;
• la surcharge de type() par les metaclass, qui permet de contrôler le cycle complet

de création d’un objet ;
• les descriptors, qui permettent de personnaliser l’accès aux attributs ;
• les properties, descriptors automatiques ;
• les slots, économiseurs de mémoire.

>>> val3 += val1
>>> str(val3)
'22'
>>> str(val1)
'5'
>>> str(val2)
'12'

>>> object.__doc__
'The most base type'
>>> class Car:
... pass
...
>>> class NewCar(object):
... pass
...
>>> mehari = Car()
>>> citroen_c5 = NewCar()
>>> dir(mehari)
['__doc__', '__module__']
>>> dir(citroen_c5)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__',
'__getattribute__', '__hash__', '__init__', '__module__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__str__',
'__subclasshook__', '__weakref__']

Structuration du code
CHAPITRE 5

127

Le nouveau Method Resolution Order
La mécanique de recherche des attributs s’appelle le Method Resolution Order
(MRO) et utilise un algorithme qui parcourt l’arborescence des classes en profondeur
puis de gauche à droite.

Cette mécanique change avec l’introduction d’object comme type de base commun
aux types fournis dans Python. En effet, l’ancien algorithme ne pouvait plus
répondre à tous les cas d’héritages multiples introduits par l’insertion de object dans
l’héritage de certains types. Ainsi, l’héritage en « diamant » provoquait avec l’algo-
rithme précédent un fonctionnement illogique.

Utilisation de __mro__

>>> class Television(object):
... brand = ''
... def print_brand(self):
... print(self.brand)
...
>>> class TelevisionSatellite(Television):
... channels = []
... def list_channels(self):
... return self. channels
...
>>> class DVDPlayer(object):
... def play_dvd(self):
... pass
...
>>> class DVDWriter(DVDPlayer):
... def write_dvd(self):
... pass
...
>>> class SuperTVDVDCombo(TelevisionSatellite, DVDWriter):
... pass
...
>>> dir(SuperTVDVDCombo)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__',
'__getattribute__', '__hash__', '__init__', '__module__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '__weakref__', 'brand', 'channels',
'list_channels', 'play_dvd', 'print_brand', 'write_dvd']
>>> SuperTVDVDCombo.__mro__
(<class '__main__.SuperTVDVDCombo'>, <class
'__main__.TelevisionSatellite'>, <class '__main__.Television'>, <class
'__main__.DVDWriter'>, <class '__main__.DVDPlayer'>, <type 'object'>)

Éléments du langage
DEUXIÈME PARTIE

128

Constructeur statique
Lorsqu’une classe dérivée d’object est instanciée, la méthode spéciale __new__() est
appelée par l’interpréteur si elle est implémentée.

__new__() est une méthode statique de la classe, qui prend en premier paramètre le
type de la classe ainsi que l’ensemble des paramètres de construction. Cette méthode
doit renvoyer une nouvelle instance de la classe, qui devient self.

__init__() est appelée juste après __new__() avec en premier paramètre self puis la
liste des paramètres de construction fournis.

Ce fonctionnement permet de procéder à un certain nombre d’initialisations supplé-
mentaires au niveau de la classe, que ce soit des manipulations d’attributs statiques ou
des modifications de l’objet nouvellement créé.

Implémenter __new__() consiste en général à appeler la méthode __new__() de la
classe de base, par le biais de la primitive super(), et à procéder à des initialisations
en amont ou en aval de cet appel.

Initialisation de l’instance par __new__() et__init__()

>>> class Car(object):
... production = 0
... def __new__(cls):
... print("une nouvelle Voiture va sortir de l'usine")
... self = super(Car, cls).__new__(cls)
... cls.production += 1
... return self
... def __init__(self):
... print("nouvelle voiture n°%s" % id(self))
... self.immatriculation = '%s XZ 21' % id(self)
...
>>> car = Car()
une nouvelle Voiture va sortir de l'usine
nouvelle voiture n°211950068
>>> car.production
1
>>> car.immatriculation
'211950068 XZ 21'

AVANCÉ Utilisation de __new__()

Le chapitre 13 sur la programmation orientée objet couvre des cas pratiques d’utilisation de
__new__().

Structuration du code
CHAPITRE 5

129

Surcharge de type() par metaclass
Les classes en Python sont créées par le biais de la primitive type(), par un appel à
type(nom de la classe, nom des classes de base, mapping des attributs). Il
est possible avec les new-style class de surcharger ce mécanisme et de proposer sa
propre fonction de création : la metaclass.

Cette fonction finit toujours par appeler type() mais ce point d’accès supplémentaire
sur la chaîne de construction rend les contrôles beaucoup plus puissants qu’avec les
constructeurs statiques puisqu’il devient possible d’intervenir au moment de la créa-
tion de la classe, mère de toutes les instances.

Une metaclass se met en place en définissant une variable __metaclass__ pointant
sur un objet callable. Cette variable peut se trouver dans la classe, et est utilisée à
chaque fois qu’une instance de cette classe, ou de l’une des classes dérivées, est créée.
Si elle n’est pas définie dans la classe, et si la classe ne possède pas d’attribut
__class__, l’interpréteur regarde si une variable globale __metaclass__ existe.

Metaclass à l’œuvre

Cette puissance autorise la mise en place d’une quantité infinie de mécanismes,
comme l’ajout d’attributs à la classe, l’implémentation de statistiques, etc.

L’intérêt de ce mécanisme par rapport à la dérivation est de donner la possibilité
d’introspecter dynamiquement l’interface d’une classe au moment de sa création.

>>> def cls(cls, bases, dict):
... print('classe "%s" en place' % cls)
... return type(cls, bases, dict)
...
>>> __metaclass__ = cls
>>> class Class1:
... pass
...
classe "Class1" en place
>>> class Class2:
... pass
...
classe "Class2" en place
>>> class Class3(object):
... __metaclass__ = cls
...
classe "Class3" en place

DANGER Les metaclass ne doivent pas être des pansements à une mauvaise architecture

Le danger des metaclass est d’implémenter des fonctionnalités en cachant l’architecture et le fonctionne-
ment des classes. Elles rendent aussi la compréhension du programme difficile.

Éléments du langage
DEUXIÈME PARTIE

130

Descriptors
Lorsqu’un attribut a est recherché dans un objet A par l’interpréteur que ce soit pour une
lecture, une affectation, ou une suppression, il invoque tour à tour A.__dict__['a'],
puis type(A).__dict__['a'], et ainsi de suite jusqu’à la classe de base.

Les descriptors permettent de surcharger ce mécanisme en fournissant à l’interpré-
teur des méthodes __get__(), __set__() et __delete__().

Une seconde new-style class doit être spécifiquement créée pour l’attribut et doit
définir ces méthodes. Cette classe devient une sorte d’encapsulation et permet de
gérer toutes les demandes d’accès à l’attribut.

Descriptor

>>> class Immatriculation(object):
... def __get__(self, instance, classe):
... if instance isnot None and hasattr(instance, '_immat'):
... return instance._immat
... else:
... return ''
... def __set__(self, instance, valeur):
... instance._immat = valeur
... def __delete__(self, instance):
... print('Suppression interdite !')
...
>>> class Car(object):
... immatriculation = Immatriculation()
...
>>> electric_car = Car()
>>> electric_car.immatriculation
''
>>> electric_car.immatriculation = 'V'
>>> electric_car.immatriculation
'V'
>>> dir(electric_car)
['__class__', '__delattr__', '__dict__', '__doc__', '__getattribute__',
'__hash__', '__init__', '__module__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__str__', '__weakref__',
'_immat', 'immatriculation']
>>> del electric_car.immatriculation
Suppression interdite !
>>> electric_car.immatriculation
'V'
>>> Car.immatriculation
''

Structuration du code
CHAPITRE 5

131

La classe descriptor doit gérer les demandes faites par toutes les instances de la
classe utilisatrice :
• __get__(instance, classe) : est appelée avec en paramètre l’instance courante

et la classe. Si l’appel est effectué sur la classe directement, instance est à None.
• __set__(instance, value) : permet d’affecter une valeur sur l’instance.
• __delete__(instance): supprime l’attribut de l’instance.

Properties
L’écriture des descriptors peut être relativement lourde lorsque l’objectif est d’encap-
suler de la manière la plus basique une variable d’instance.

La primitive property() fournit cette généralisation et évite d’avoir à créer une
deuxième classe en charge de la gestion de l’attribut : elle associe directement à une
variable donnée trois méthodes d’accès.

property(fget=None, fset=None, fdel=None, doc=None) -> property attribute

fget, fset et fdel correspondent à trois objets callable (fonctions, méthodes ou
classes avec méthode __call__()).

doc permet d’associer à la volée à la propriété un docstring, puisqu’il n’est pas pos-
sible de le faire par code.

Implémentation de property

>>> class Car(object):
... def __init__(self):
... self._immat = ''
... def _setimmat(self, value):
... self._immat = value
... def _getimmat(self):
... return self._immat
... def _delimmat(self):
... print('achète un meilleur tournevis')
... immatriculation = property(_getimmat, _setimmat, _delimmat)
...
>>> car = Car()
>>> car.immatriculation
''
>>> car.immatriculation = '3245 XX 21'
>>> car.immatriculation
'3245 XX 21'
>>> del car.immatriculation
achète un meilleur tournevis
>>> voiture.immatriculation
'3245 XX 21'

Éléments du langage
DEUXIÈME PARTIE

132

On retrouve ainsi un modèle beaucoup plus léger que les descriptors et très proche
syntaxiquement d’autres langages qui implémentent les propriétés, comme Delphi.

Slots
À chaque création d’objet, l’interpréteur associe à l’instance un dictionnaire __dict__
chargé de contenir ses attributs. Les slots introduisent un mécanisme global à la
classe, qui permet d’éviter la création d’un __dict__ par instance pour économiser de
l’espace mémoire : le mapping modifie sa façon d’accéder aux attributs, en se référant
aux slots.

Ce gain devient intéressant lorsqu’une même classe est instanciée une multitude de
fois dans un programme.

Les slots sont définis dans une variable statique __slots__, sous la forme d’une
séquence ou d’un itérable. Si une seule variable est à réserver, __slots__ peut être un
objet de type string.

Utilisation des slots

L’utilisation des slots entraîne cependant quelques restrictions :
• L’implémentation des slots, basée sur les descriptors, empêche l’utilisation d’attri-

buts de classe pour initialiser les valeurs des attributs définis dans les slots : ils
écraseraient les définitions de descriptors.

• Si une classe de base définit le même nom de slot que la classe dérivée, la variable
de la classe de base ne peut plus être atteinte. Il est donc nécessaire de contrôler
qu’un slot ne surcharge pas un autre slot, en attendant qu’une prochaine version
de Python ajoute un contrôle pour empêcher ce problème.

>>> class Car(object):
... __slots__ = ['color', 'immatriculation', 'horsepower']
...
>>> car = Car()
>>> car.color = 'Rouge'
>>> car.immatriculation = '1111 XR 21'
>>> car.horsepower = 7
>>> dir(car)
['__class__', '__delattr__', '__doc__', '__getattribute__', '__hash__',
'__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__setattr__', '__slots__', '__str__', 'color',
'immatriculation', 'horsepower']
>>> hasattr(car, '__dict__')
False
>>> car.color
'Rouge'

Structuration du code
CHAPITRE 5

133

• Une classe ne bénéficie pas des slots de la classe dont elle dérive.
• Les instances ne peuvent plus se voir attribuer de nouveaux attributs

dynamiquement : une erreur AttributeError est retournée. Depuis la version
2.3, il est possible d’ajouter le nom __dict__ aux slots pour autoriser l’ajout dyna-
mique d’attributs.

• Les instances ne peuvent plus bénéficier du mécanisme des weak references.
Cette situation peut être débloquée en ajoutant comme précédemment le nom
__weakref__ aux slots.

Decorators pour les classes
Les decorators directement utilisables en Python sont des fonctions déclarées dans
les built-ins. C’est le cas de staticmethod et classmethod, présentées dans le chapitre
suivant.

Modules
Passés les essais dans le prompt Python, il est nécessaire de sauvegarder le code dans
des fichiers, appelés modules. Un module est un objet chargé par l’interpréteur à
partir d’un fichier texte qui contient un regroupement de variables, classes et fonc-
tions. Le fichier est en en général d’extension .py

Module absmod3.py

#!/usr/bin/python
-*- coding: utf8 -*-
"""
 module absmod3
"""
def only_int(func):
 """Decorator pour vérifier les paramètres."""
 def _only_int(arg):
 ifnot isinstance(arg, int):
 raise TypeError("'%s' doit être un entier" % str(arg))
 return func(arg)
 return _only_int

@only_int
def absmod3(a):
 """Renvoie 'abs(a) mod 3' pour a entier."""
 return abs(a) % 3

Éléments du langage
DEUXIÈME PARTIE

134

Directive import
La directive import permet ensuite d’utiliser le code contenu dans le fichier python.
Sa syntaxe est :

Importation du module absmod3

import absmod3 cherche dans le répertoire courant le fichier absmod3.py, puis dans
la liste des répertoires définis dans la variable d’environnement PYTHONPATH et enfin
dans le répertoire d’installation de Python qui contient tous les modules fournis avec
l’interpréteur. Cette liste de répertoires peut être retrouvée dans la liste path du
module sys, et même modifiée à la volée.

Extension de sys.path

import module1[, module2, ...].

>>> import absmod3
>>> dir(absmod3)
['__builtins__', '__doc__', '__file__', '__name__', 'absmod3',
'only_int']
>>> absmod3.__file__
'absmod3.py'
>>> absmod3.absmod3(-44)
2

>>> import sys
>>> sys.path
['', '/usr/lib/python24.zip', '/usr/lib/python2.4', '/usr/lib/
python2.4/plat-linux2', '/usr/lib/python2.4/lib-tk', '/usr/lib/
python2.4/lib-dynload', '/usr/lib/python2.4/site-packages', '/usr/lib/
python2.4/site-packages/Numeric', '/usr/lib/python2.4/site-packages/
PIL', '/usr/lib/python2.4/site-packages/gtk-2.0', '/usr/lib/python2.4/
site-packages/wx-2.5.3-gtk2-ansi']
>>> import absmod3
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ImportError: No module named absmod3
>>> sys.path.append('/home/tziade/Desktop')
>>> import absmod3
>>> absmod3.absmod3(6)
0
>>> sys.path
['', '/usr/lib/python24.zip', '/usr/lib/python2.4', '/usr/lib/
python2.4/plat-linux2', '/usr/lib/python2.4/lib-tk', '/usr/lib/
python2.4/lib-dynload', '/usr/lib/python2.4/site-packages', '/usr/lib/
python2.4/site-packages/Numeric', '/usr/lib/python2.4/site-packages/
PIL', '/usr/lib/python2.4/site-packages/gtk-2.0', '/usr/lib/python2.4/
site-packages/wx-2.5.3-gtk2-ansi', '/home/tziade/Desktop']

Structuration du code
CHAPITRE 5

135

L’importation génère un objet de type module qui contient, outre l’ensemble des élé-
ments du fichier, deux variables globales __name__ et __file__ qui contiennent res-
pectivement le nom du module et le nom du fichier système correspondant.

Variables globales __name__ et __file__

On constate que le nom du fichier n’est pas absmod3.py mais absmod3.pyc. Les
fichiers .pyc sont issus d’une optimisation automatiquement mise en œuvre par
l’interpréteur : lorsque qu’un module est invoqué, il recherche dans le répertoire du
fichier source un fichier portant le même nom avec l’extension .pyc. Le contenu de
ce fichier correspond au résultat du travail de lecture du fichier source par l’interpré-
teur (analyse lexicale) et permet de gagner du temps au moment du chargement.

Ce gain de temps peut être relativement important lorsque des sources importent
plusieurs modules qui eux-mêmes en importent d’autres et ainsi de suite : l’arbre des
dépendances peut être rapidement conséquent et la quantité de code à lire pour pré-
parer les contextes d’exécution monstrueuse.

Ce fichier est bien sûr recalculé par l’interpréteur si sa date de création est antérieure
à la date de modification du fichier source.

Primitive reload
Lorsqu’un fichier source est modifié et déjà chargé par une directive import, les
modifications ne seront pas visibles par le code. Un deuxième appel à import ne
rechargera pas non plus le fichier car avant d’importer un module, l’interpréteur
vérifie qu’il ne l’est pas déjà, en scrutant sys.path. La primitive reload permet de
forcer le rechargement du fichier.

Rechargement d’un module

Attention cependant : les éventuelles instances de classe déjà créées ne sont pas tou-
chées par l’appel à reload.

>>> absmod3.__name__
'absmod3'
>>> absmod3.__file__
'/home/tziade/Desktop/absmod3.pyc'

>>> reload(absmod3)
<module 'absmod3' from '/home/tziade/Desktop/absmod3.pyc'>

Éléments du langage
DEUXIÈME PARTIE

136

Directives from et as
En général, seules quelques fonctionnalités d’un module ont besoin d’être importées
dans un autre module. La directive from permet d’importer dans le contexte d’exécu-
tion un élément spécifique du module et s’écrit :

Importation de la fonction absmod3

Cette écriture est d’autant plus intéressante qu’elle permet d’affiner les dépendances
entres modules et de ne plus avoir à préfixer les éléments du nom du module
importé. Pour éviter d’éventuelles collisions de noms, il est en outre possible de
modifier le nom importé par le biais de la directive as.

Alias

Lorsque plusieurs éléments d’un même module doivent être importés, il est possible
de le faire dans la même directive import, en séparant chaque élément par une vir-
gule.

Plusieurs éléments d’un même module

Lorsque la ligne d’importation dépasse 80 caractères et qu’un retour à la ligne est
souhaitable, il est possible depuis la version 2.4 d’utiliser des parenthèses pour
regrouper les éléments à importer.

Passage à la ligne

from module import element1[, element2, ...]

>>> from absmod3 import absmod3
>>> absmod3(4)
1

>>> from absmod3 import absmod3 as transformation
>>> transformation(4)
1

>>> from absmod3 import absmod3, absmod3, absmod6

>>> # < Python 2.4
...
>>> from absmod3 import absmod3,\
 absmod3, \
 absmod6

Structuration du code
CHAPITRE 5

137

Il existe aussi un raccourci pour importer tous les éléments d’un module, le joker.

Tous les éléments d’un même module

Lorsqu’un module définit par exemple une série de constantes, l’utilisation du joker
pour avoir accès à ces constantes dans le code est très pratique. Certains toolkits gra-
phiques, comme Tkinter ou wx, sont organisés de telle manière que l’utilisation d’un
joker est conseillée. En dehors de ces cas particuliers, cette notation est à proscrire
car elle réduit considérablement la visibilité des dépendances entres modules.

Paquets
Un deuxième niveau d’organisation permet de structurer le code : les fichiers Python
peuvent être organisés dans une arborescence de répertoires que l’on appelle paquet.
Chaque répertoire peut être utilisé dans une directive d’importation au même titre
qu’un fichier.

Le caractère . joue alors le rôle de séparateur, pour localiser un module dans une
arborescence de répertoire.

Organisation d’un paquet
Prenons l’exemple d’une application de gestion de fichiers clients. Le programme
possède un noyau autour duquel sont organisés une interface graphique, un moteur
de base de données, et un module métier qui permet d’appliquer des calculs statisti-
ques sur les clients. On peut représenter cette organisation sous la forme de
répertoires :

>>> # >= Python 2.4
...
>>> from absmod3 import (absmod3,
 absmod3,
 absmod6)

>>> from absmod3 import *

FichierClient
| __init__.py
| description.py
|- noyau
| | __init__.py
| | application.py

Éléments du langage
DEUXIÈME PARTIE

138

Chaque répertoire faisant partie du paquet doit posséder un fichier __init__.py
pour que l’interpréteur le prenne en compte. Ce fichier peut être vide ou contenir du
code d’initialisation qui est exécuté dès que le répertoire est trouvé dans une directive
d’importation. Il représente le répertoire dans le contexte d’exécution.

Exemples d’utilisation du paquet :
• from FichierClient import description : charge les modules __init__ et
description du répertoire FichierClient.

• from FichierClient.noyau import application : charge les modules __init__
des répertoires FichierClient et noyau, et le module application.

• Dans le module frequence.py : l’importation relative from ..bdd import

acces_db permet d’atteindre le module acces_db.

Import * et __all__
Lorsqu’un paquet est mis en place, l’interpréteur parcourt automatiquement les
répertoires contenant un fichier __init__.py à la recherche de fichiers Python. Le
résultat de cette recherche peut varier d’un système à l’autre. Sur un système
MS-Windows ou Macintosh, les noms de fichiers récupérés peuvent avoir une casse
qui varie et un fichier python dont le nom contient des majuscules ne sera pas forcé-
ment importé de la même manière.

Pour éviter ce problème, lorsqu’un appel à from Paquet import * est fait, l’interpré-
teur n’importe que les éléments trouvés dans le fichier __init__.py du répertoire. La
seule possibilité pour importer tous les modules du répertoire est de les définir explici-
tement dans une variable globale __all__ dans le fichier __init__.py du répertoire.

Ainsi le fichier __init__.py du répertoire interface contiendra :

|- interface
| | __init__.py
| | fiche_client.py
| | liste_clients.py
|- bdd
| | __init__.py
| | acces_bd.py
| | acces_pgsql.py
|- stats
| | __init__.py
| | frequence.py

__all__ = ['fiche_client', 'liste_clients']

Structuration du code
CHAPITRE 5

139

Références relatives
Dans un paquet, chaque module peut se référer à d’autres modules. Lorsque ces
modules sont dans le même répertoire, il est bien sûr possible d’utiliser une notation
relative sans avoir à préfixer le module des noms des paquets. Si ces modules sont dans
un répertoire voisin, il est nécessaire d’écrire le chemin absolu pour chacun d’entre eux.

Importations dans le module fiche_client

Depuis Python 2.5, il est possible de réaliser des imports relatifs à la localisation du
module en cours, en utilisant la notation . pour désigner le répertoire courant. Par
exemple, si un deuxième module utils.py, placé dans le même répertoire que le
module absmod3.py, les deux écritures suivantes sont équivalentes.

Importation relative

Cette écriture n’a d’intérêt que pour récupérer des références dans des modules situés
dans une arborescence de répertoires.

Dans l’exemple du paquet FichierClients, le module fiche_client.py peut
atteindre le module acces_bd.py ainsi : from ..bdd import acces_bd.

De manière similaire au fonctionnement des chemins dans les interpréteurs de com-
mande MS-Windows ou *nix, chaque point de la directive from permet de remonter
dans le répertoire parent du répertoire en cours.

Exceptions
Lorsqu’un événement ou des conditions d’exécution ne sont pas souhaitables, il est
possible de lever une exception. L’interpréteur passe alors dans un mode particulier
où il stoppe l’exécution du programme en cours et affiche une erreur. C’est le cas par
exemple lorsque l’on tente une division par zéro.

import FichierClients.noyau.application
import FichierClients.description
import liste_clients
...

from absmod3 import absmod3
from . import absmod3.absmod3 as absmod3

Éléments du langage
DEUXIÈME PARTIE

140

Division par zéro

Le message affiché contient en général le traceback, c’est-à-dire la pile d’appel, le
type d’exception levée et enfin un message explicite sur le problème rencontré. La
pile d’appel est le chemin parcouru par l’interpréteur pour atteindre l’erreur, soit la
liste des méthodes et fonctions traversées pour atteindre l’erreur.

Pour lever une exception, il suffit d’utiliser la directive raise suivie d’une classe ou
d’une instance de classe.

Utilisation d’une classe d’exception

Même si tout type de classe peut servir dans une exception, il est recommandé d’uti-
liser ou de spécialiser les classes d’exceptions fournies dans Python et présentées dans
la prochaine section.

Exceptions du langage
Python propose une liste de classes d’exception directement accessibles sans directive
d’importation, et utilisées par le langage. Les classes sont organisées en deux
niveaux :
• La première couche contient un ensemble de classes de base qui ne sont jamais

directement appelées.

>>> 7 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero

>>> class BrokenCode:
... pass
...
>>> def func():
... raise BrokenCode()
...
>>> func()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in func
__main__.BrokenCode: <__main__.BrokenCode instance at 0x84300>

BON À SAVOIR Exceptions de type string

Le support des exceptions de type string (comme raise 'erreur !') a été supprimé depuis
Python 2.6.

Structuration du code
CHAPITRE 5

141

• La deuxième couche représente soit des classes qui dérivent d’une des classes de
base et qui sont utilisables, soit des classes concrètes.

Classes d’exceptions de base

Exception

Exception est la classe de base de toutes les exceptions. Son constructeur peut être
appelé avec un ou plusieurs paramètres libres qui sont conservés dans l’attribut args.
Lorsque l’exception est levée, l’interpréteur affiche le type d’exception, suivi de la
chaîne de caractères obtenue par str(exception), soit un appel à
exception.__str__(). La méthode __str__() de la classe Exception renvoie une
chaîne de caractères représentant args.

StandardError

Dérivée d’Exception, StandardError est la classe de base pour la quasi-totalité des
classes d’exceptions.

ArithmeticError

Dérivée de StandardError, ArithmeticError est la classe de base pour les exceptions
relatives aux erreurs arithmétiques, soit la division par zéro (ZeroDivisionError), un
dépassement de capacité (OverflowError), une erreur de calcul en virgule flottante
(FloatingPointError).

LookupError

Dérivée de StandardError, LookupError est la classe de base pour les exceptions
relatives aux erreurs d’index ou de clé, lorsqu’un appel à une clé inexistante est faite
sur un mapping ou sur un index hors limite sur une séquence.

EnvironmentError

Dérivée de StandardError, EnvironmentError est la classe de base pour les erreurs
système, comme des erreurs de lecture ou d’écriture (IOError) ou des erreurs provo-
quées lors d’appels à des API système (OSError).

Le système d’exploitation possède une liste d’erreurs standardisée, représentée par
des entiers que l’on peut retrouver dans le module errno. Lorsqu’un programme
provoque une erreur système, il peut lever une exception EnvironmentError cons-

À RETENIR Différence entre classes d’exception abstraites et concrètes

Cette distinction entre classes d’exception abstraites et concrètes est purement symbolique et il reste
techniquement tout à fait possible de lever des exceptions avec les classes de base.

Éléments du langage
DEUXIÈME PARTIE

142

truite avec le couple (errno, message). L’instance présentera alors deux attributs
errno et strerror, utilisés par __str__().

Levée d’une OSError

Il est possible enfin d’instancier l’exception avec un troisième paramètre représentant
un nom de fichier. Ce troisième paramètre est souvent utile pour IOError.

UnicodeError

Classe de base pour les erreurs relatives aux conversions entre type unicode et type
string et aux problèmes de traduction de caractères (par appel de translate()).
Une erreur de conversion d’unicode vers string est une erreur d’encodage
(UnicodeEncodeError) et de string vers unicode une erreur de décodage
(UnicodeDecodeError). Cette distinction a été introduite dans la version 2.3.

Warning

Classe de base pour toutes les exceptions de type avertissement.

Classes concrètes
Les classes d’exceptions concrètes sont présentées dans le chapitre suivant.

try..except..else
Lorsqu’une exception est levée, le programme est interrompu et l’interpréteur
remonte en sens inverse toutes les couches de code précédemment traversées, à la
manière d’une bulle d’air qui remonte dans l’eau. Arrivée à la surface, l’exception est
affichée et le programme s’arrête.

Il est cependant possible de stopper cette remontée en interceptant l’erreur, avec la
directive try..except. Tout le code contenu ou appelé dans le bloc délimité par try
est surveillé par l’interpréteur. En cas de levée d’exception, l’exécution du bloc s’arrête
et l’interpréteur exécute le code contenu dans le bloc except avant de continuer le
programme normalement.

Si le code ne lève pas d’exception le programme continue et ignore le bloc contenu
dans except.

>>> import errno
>>> error = OSError(errno.ECONNREFUSED, 'Connection refused')
>>> raise error
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
OSError: [Errno 111] Connection refused

Structuration du code
CHAPITRE 5

143

Il reste en outre possible d’appeler à nouveau une directive raise dans le bloc except
(principe du reraise).

Utilisation de try..except

Cette écriture a cependant un inconvénient majeur : il est impossible de savoir quel type
d’erreur est survenue dans le bloc. Cette protection aveugle peut entraîner des effets de
bords dans la suite du programme en masquant silencieusement toutes les erreurs.

Pour éviter ce problème, il est possible de préciser quelle classe d’exception est gérée
par la directive except. Dans ce cas, le bloc sera ignoré si l’exception levée n’est pas
du type indiqué.

Typage de l’exception

En outre, il est possible d’associer plusieurs exceptions à un bloc except et
d’enchaîner plusieurs blocs except.

Série d’except

except peut aussi prendre un nom de variable en deuxième paramètre qui reçoit
l’instance de l’exception levée.

>>> try:
... print(2 / 0)
... except:
... print('une erreur est survenue')
...
une erreur est survenue

>>> try:
... print(2 / 0)
... except ZeroDivisionError:
... print('+infini')
...
+infini

>>> try:
... print(a)
... except ZeroDivisionError:
... print('division par zéro')
... except (AttributeError, NameError):
... print('element non défini')
...
element non défini

Éléments du langage
DEUXIÈME PARTIE

144

Enfin, un bloc else peut être ajouté à la fin du bloc try..except, et ne sera exécuté
que s’il n’y a eu aucune erreur.

try..finally
La directive try..finally permet de s’assurer qu’un bloc de code est toujours
exécuté : le bloc contenu dans la directive try peut lever une exception, ou même
exécuter une directive return ou break, le bloc finally sera toujours exécuté.

Lecture d’un fichier

Dans cet exemple, la directive finally permet de s’assurer que le mot « fini » sera
écrit dans le fichier, quoi qu’il advienne dans some_code().

try..except..finally
Pour simplifier le code, il est aussi possible d’unifier les directives except et finally
imbriquées depuis Python 2.5.1.

Unification

>>> try:
... print(2 / 0)
... except ZeroDivisionError, error:
... print('Erreur: %s' % str(error))
...
Erreur: integer division or modulo by zero

>>> with open('zipfile.py', 'w') as file_
... try:
... some_code()
... finally:
... file_.write('fini')
...

À RETENIR Débogage d’un programme Python

Pour déboguer un programme Python, il convient d’utiliser le module pdb, présenté au chapitre 9.

>>> try: # avant 2.5.1
... try:
... print('le code')
... except:
... print("l'erreur")

Structuration du code
CHAPITRE 5

145

Les list comprehensions
Les list comprehensions sont des expressions qui permettent de générer des listes
d’une manière très compacte, sans avoir à utiliser de boucles si les éléments doivent
êtres testés ou traités avant d’être intégrés dans la liste, ni les fonctions map(),
reduce() ou filter().

L’expression est de la forme :

Exemples de list comprehensions

... finally:

... print("l'ultime opération")

...
le code
l'ultime opération

>>> try: # depuis 2.5.1
... print('le code')
... except:
... print("l'erreur")
... finally:
... print("l'ultime opération")
...
le code
l'ultime opération
>>>

[expression for expression in sequence [if test]]

>>> sentence = "voici une liste de mots".split()
>>> sentence
['voici', 'une', 'liste', 'de', 'mots']
>>> sentence2 = [word.upper() for word in sentence]
>>> sentence2
['VOICI', 'UNE', 'LISTE', 'DE', 'MOTS']
>>> sentence2 = [word for word in sentence2 if word != "UNE"]
>>> sentence2
['VOICI', 'LISTE', 'DE', 'MOTS']
>>> [3*i for i in range(4)]
[0, 3, 6, 9]
>>> [i for i in range(4) if i > 2]
[3]
>>> [i for i in range(6) id i != 4 and i > 2]
[3, 5]

Éléments du langage
DEUXIÈME PARTIE

146

Cette écriture combinée réduit considérablement le code nécessaire à la composition
de certaines listes. Si elle devient difficile à lire, il faut envisager une boucle classique.
Le même code sans list comprehensions est trois fois plus long.

Même code sans list comprehensions (sans utilisation de map())

>>> sentence = "voici une liste de mots".split()
>>> sentence
['voici', 'une', 'liste', 'de', 'mots']
>>> sentence2 = []
>>> for word in sentence:
... sentence2.append(word.upper())
...
>>> sentence2
['VOICI', 'UNE', 'LISTE', 'DE', 'MOTS']
>>> sentence3 = []
>>> for word in sentence2:
... if word != 'UNE':
... sentence3.append(word)
...
>>> sentence2 = sentence3
>>> sentence2
['VOICI', 'LISTE', 'DE', 'MOTS']
>>> l = []
>>> for i in range(4):
... l.append(i*3)
...
>>> l
[0, 3, 6, 9]
>>> l = []
>>> for i in range(4):
... if i > 2:
... l.append(i)
...
>>> l
[3]
>>> l = []
>>> for u in range(6):
... if u != 4:
... l.append(u)
...
>>> l2 = []
>>> for i in l:
... if i > 2:
... l2.append(i)
...
>>> l2
[3, 5]

Structuration du code
CHAPITRE 5

147

Generators et iterators

Iterators
À chaque fois qu’un objet est utilisé dans une boucle for, l’interpréteur génère en
interne un iterator avec lequel il travaille. Un iterator est un objet qui contient une
méthode next() qui est appelée à chaque cycle et qui renvoie la séquence, élément
par élément. Lorsqu’il n'y a plus d’éléments, l’iterator déclenche une exception de
type StopIteration.

Les objets iterators peuvent être créés par le biais de la primitive iter() qui prend en
paramètre tout objet compatible avec les itérations.

Iterator sur objet liste

Un objet compatible avec les itérations est un objet qui implémente une méthode
__iter__(). La primitive iter() appelle et renvoie le résultat de cette méthode
lorsqu’un objet lui est fourni en paramètre.

Iterator de liste

>>> list_ = [1, 2, 3]
>>> iterator = iter(list_)
>>> iterator.next()
1
>>> iterator.next()
2
>>> iterator.next()
3
>>> iterator.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
StopIteration

>>> list_ = [1, 2, 3]
>>> iterator = list_.__iter__()
>>> iterator.next()
1
>>> iterator.next()
2
>>> iterator.next()
3
>>> iterator.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
StopIteration

Éléments du langage
DEUXIÈME PARTIE

148

La méthode la plus simple pour rendre un objet compatible avec les itérations est d’y
implémenter directement la méthode next() et de renvoyer self dans __iter__().

Iterator simple

Generators
Les generators permettent de générer de manière très simple et très puissante des ite-
rators. La création d’un iterator par le biais d’un generator se résume à l’écriture d’une
fonction qui parcourt les éléments de la séquence. Au lieu de retourner ces éléments
par la directive return, la fonction doit faire appel à la directive yield, qui sert à
définir un point de sauvegarde.

Cette fonction peut ensuite être utilisée dans une boucle for sans avoir à implé-
menter toute la garniture nécessaire à un iterator, ou à gérer la levée d’une exception
StopIteration.

Generator simple

>>> class Iterable:
... index = 0
... def __iter__(self):
... return self
... def next(self):
... if self.index > 5:
... raise StopIteration
... self.index += 1
... return self.index
...
>>> for element in Iterable():
... print(element)
...
1
2
3
4
5
6

À SAVOIR Gestion des iterators avec itertool

Le module itertool, présenté dans le chapitre 8, fournit des utilitaires rapides de création et de mani-
pulation d’iterators.

>>> def iterable():
... print('début de boucle')

Structuration du code
CHAPITRE 5

149

L’interpréteur utilise la fonction à chaque itération en mémorisant son état, la direc-
tive yield constituant en quelque sorte un return avec point de sauvegarde de l’état
des variables locales et de l’endroit où le code de la fonction a été quitté. Le prochain
appel à la fonction reprendra à cet endroit.

Generator expression (genexp)
Il est possible d’utiliser une notation abrégée pour créer un generator, à l’aide d’une
generator expression.

Ces expressions sont d’une forme équivalente aux list comprehensions :(expression for
expression in sequence [if test]), et renvoient un objet generator.

Exemples de generator expression

... for i in range(6):

... yield i + 1

...
>>> for element in iterable():
... print(element)
...
début de boucle
1
2
3
4
5
6

>>> genexp = (i for i in range(5) if i % 2 == 0)
>>> genexp.next()
0
>>> genexp.next()
2
>>> genexp.next()
4
>>> genexp.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
StopIteration
>>> genexp = (i for i in range(5) if i % 2 == 0)
>>> for element in genexp:
... print(element)
...
0
2
4

Éléments du langage
DEUXIÈME PARTIE

150

En un mot...
Dès qu’un programme grossit, une structuration en classes, modules et paquets faci-
lite grandement son évolution, sa lisibilité et sa maintenance.

Le prochain chapitre présente les primitives du langage, qui sont toutes les fonction-
nalités directement accessibles venant étoffer la syntaxe.

Les primitives sont des fonctions directement accessibles dans l’interpréteur, aussi
appelées built-ins. Ces fonctions sont toutes du type builtin_function_or_method
et sont regroupées dans le module __builtins__.

Allant de la simple transformation de valeurs aux fonctionnalités plus élaborées, les
primitives sont le couteau suisse du développeur Python.

Ce chapitre présente un référentiel complet des primitives et comporte deux parties.
La première partie porte sur tous les éléments qui ne sont pas des classes d’exception,
lesquelles sont regroupées dans la deuxième partie.

L’interpréteur est aussi un bon allié lors de la manipulation des primitives : help(x)
permet d’afficher un écran d’aide sur l’utilisation de x.

6
Les primitives

ATTENTION Fonctions de transtypage

Lorsqu’ils sont utilisables comme des fonctions de transtypage, certains types sont présentés dans ce
chapitre alors qu’ils ne sont pas des builtin_function_or_method.

Éléments du langage
DEUXIÈME PARTIE

152

Affichage de l’écran d’aide d’abs

Primitives du langage

__import__ : __import__(nom, globals={}, locals={}, fromlist=[], level=-
1) -> module

__import__ sert à importer un module comme le ferait une directive import clas-
sique. L’environnement local et global peuvent être passés en paramètre, et fromlist
permet quant à lui d’émuler la directive from.

Enfin, level est un drapeau qui permet de déterminer si les imports sont relatifs ou
absolus.
• Un nombre de 1 à n définit le nombre de répertoires parents à remonter avant de

rechercher l’élément à importer ;
• Réglé sur 0, c’est un import absolu classique ;
• Réglé sur -1, __import__ essaye d’effectuer un import absolu ou relatif en se

basant sur le nom fourni.

Importations avec __import__

__import__ est utilisé pour des importations à effectuer après le lancement du pro-
gramme. Un système de plug-ins peut par exemple utiliser cette primitive pour
charger à la volée un module dans un programme.

>>> help(abs)
Help on built-in function abs in module __builtin__:

abs(...)
 abs(number) -> number

 Return the absolute value of the argument.

>>> __import__(’os.path’, fromlist=[’os’])
<module ’posixpath’ from ’posixpath.pyc’>
>>> __import__(’os’)
<module ’os’ from ’os.pyc’>

Les primitives
CHAPITRE 6

153

abs : abs(nombre) -> nombre
Renvoie la valeur absolue du nombre passé en paramètre. abs peut aussi servir à récu-
pérer le module d’un nombre complexe.

abs

all : all(iterable) -> booléen
Renvoie True si bool(x) renvoie True pour tous les éléments x de la séquence
iterable.

Test de l’homogénéité d’une séquence

Dans cet exemple, all vérifie que tous les objets de la liste sont des entiers.

any : any(iterable) -> booléen
Renvoie True si bool(x) renvoie True pour au moins l’un des éléments x de la
séquence iterable.

Test de l’homogénéité d’une séquence

>>> abs(-145)
145
>>> cplx = -3 + 2j
>>> abs(cplx)
3.6055512754639891

DÉFINITION Module d’un nombre complexe

Le module d’un nombre complexe z, noté |z| est un réel positif tel que |z| = √ (a2 + b2) = √ (zz*)

>>> elements = [1, 23, 233, 322]
>>> all([isinstance(el, int) for el in elements])
True
>>> elements = [1, 23, 233, ’k’]
>>> all([isinstance(el, int) for el in elements])
False

>>> elements = [’a’, 23, ’b’, ’c’]
>>> any([isinstance(el, int) for el in elements])
True
>>> elements = [’a’, ’b’, ’c’, ’d’]
>>> any([isinstance(el, int) for el in elements])
False

Éléments du langage
DEUXIÈME PARTIE

154

apply : apply(objet[, args[, kwargs]]) -> valeur
Permet d’appeler une méthode ou une fonction avec une liste de paramètres. Cette
primitive ne doit plus être utilisée depuis la version 2.3, au profit d’un appel direct,
comme nous le verrons dans le chapitre suivant.

callable : callable(objet) -> booléen
Renvoie True si l’objet fourni est une fonction ou une méthode. Si l’objet est une ins-
tance de classe, renvoie True à condition que la classe implémente une méthode
__call__().

callable s’avère pratique pour tester des objets lorsqu’une fonction exécute des fonc-
tions tierces fournies en paramètre.

Test de callable

chr : chr(code) -> caractère
Renvoie un objet string qui représente le caractère dont le code ASCII est l’entier
code fourni en paramètre.

chr en action

La fonction inverse est ord() : voir aussi ord et unichr.

classmethod : classmethod(fonction) -> méthode
Convertit une simple fonction en une méthode de classe. Une méthode de classe est
une méthode qui est associée à une classe et non à ses instances. Elle peut donc être

>>> def ma_fonction():
... print(Avez vous déjà essayé le camembert frit ?’)
...
>>> callable(ma_fonction)
True
>>> chaine = "C’est extra"
>>> callable(chaîne)
False

>>> chr(97)
’a’
>>> chr(97+25)
’z’

Les primitives
CHAPITRE 6

155

appelée depuis la classe ou depuis n’importe quelle instance, sachant que dans tous
les cas, le premier paramètre implicite est la classe et non l’instance.

classmethod est utilisée le plus souvent pour des fonctions qui génèrent une instance
de la classe donnée. Comme il n’est pas nécessaire pour cette fonction de connaître
autre chose que la classe, on peut alors opter pour une méthode de classe. C’est le cas
par exemple de la méthode fromkeys() pour les dictionnaires.

La méthode de classe fromkeys()

L’usage veut que le premier paramètre soit noté cls en lieu et place de self.

fromkeys() peut donc être appelée directement depuis la classe ou depuis une ins-
tance.

Appel de fromkeys()

Enfin, il est possible d’utiliser le decorator classmethod pour simplifier l’écriture.

Utilisation du decorator

Voir aussi: staticmethod.

class UserDict:
 ...
 def fromkeys(cls, iterable, value=None):
 d = cls()
 for key in iterable:
 d[key] = value
 return d
 fromkeys = classmethod(fromkeys)

>>> from UserDict import UserDict
>>> UserDict.fromkeys([’a’, ’b’, ’c’], 0)
{’a’: 0, ’c’: 0, ’b’: 0}
>>> dico = {}
>>> dico.fromkeys([’a’, ’b', 'c'], 0)
{'a': 0, 'c': 0, 'b': 0}

class UserDict:
 ...
 @classmethod
 def fromkeys(cls, iterable, value=None):
 d = cls()
 for key in iterable:
 d[key] = value
 return d

Éléments du langage
DEUXIÈME PARTIE

156

cmp : cmp(x, y) -> entier
Compare x et y et renvoie :
• un entier négatif si x < y ;
• un entier positif si x > y ;
• zéro si x == y.

En général, renvoie -1, 1 et 0.

cmp() à l’œuvre

Pour les instances de classe, cmp() se base sur l’entier retourné par la méthode
__cmp__() si elle est implémentée.

Les opérateurs de comparaison (>=, <=, !=, <> et ==) utilisent cmp() pour renvoyer
leurs résultats.

Implémentation de __cmp__

coerce : coerce(x, y) -> (x1, y1)
Rarement utilisée, coerce permet de convertir deux objets numériques x et y en un
type commun lorsque c’est possible. Renvoie un tuple avec les deux valeurs homogènes.

Dans le cas où l’opération est impossible, ou si les paramètres ne sont pas des objets
numériques, lève une exception TypeError.

>>> cmp('a', 'b')
-1
>>> cmp(2, 1)
1
>>> cmp(None, None)
0

>>> class Susceptible:
... def __cmp__(self, l_autre):
... print('Comment osez-vous me comparer à lui !')
... return 1
...
>>> a = Susceptible()
>>> cmp(a, 2)
Comment osez-vous me comparer à lui !
1
>>> a < 1
comment osez-vous me comparer à lui !
False

Les primitives
CHAPITRE 6

157

Homogénéisation par coerce()

compile : compile(source, fichier, mode[, flags[, dont_inherit]]) -> objet
code

Python permet de compiler à la volée du code source. Le résultat de cette compila-
tion est ensuite interprétable par le biais des primitives exec() ou eval().

Les paramètres sont :
• source : une chaîne de caractères contenant le code, que ce soit le texte complet

d’un module, une expression ou une suite de lignes.
• fichier : fichier recueillant les messages des erreurs éventuellement survenues

lors de compilation.
• mode : chaîne de caractères pouvant prendre les valeurs exec, single ou eval :

– exec : pour compiler les modules.
– single : pour compiler une série d’instructions.
– eval : pour compiler une expression.

• flags : permet de faire varier le fonctionnement du compilateur en intégrant des
clauses du module __future__.

• dont_inherit : si cet entier est différent de zéro et si le code qui appelle
compile() possède des appels à des directives du module __future__, leur effet
est bloqué. Si dont_inherit vaut zéro ou n’est pas spécifié, le code appelé par
compile() hérite de l’effet.

Compilation sous Linux

Voir aussi : eval, execfile.

>>> coerce(1, 2.5)
(1.0, 2.5)
>>> coerce('b', 'a')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: number coercion failed

>>> byte_code = compile("print('Je suis vivant !!!')", '/dev/null',
'single')
>>> byte_code
<code object <module>? at 0xb7c1bde0, file "/dev/null", line 1>
>>> exec(byte_code)
Je suis vivant !!!

Éléments du langage
DEUXIÈME PARTIE

158

delattr : delattr(objet, nom)
Supprime un attribut nommé d’un objet. Équivalente à del objet.nom, cette fonc-
tionnalité doit être utilisée avec précaution car la suppression d’un attribut peut
entraîner des problèmes si cet attribut est utilisé par du code tiers.

Utilisation de delattr, attention aux impacts

Cette méthode est rarement utilisée dans le cadre d’un programme classique. Seules
les bibliothèques qui modifient en bas niveau le fonctionnement de certaines classes
de Python en ont l’usage. Les tests unitaires peuvent aussi s’en servir pour modifier
temporairement certains mécanismes. Si votre programme utilise cette fonction dans
un cadre classique, c’est en général un problème d’architecture et un refactoring peut
s’avérer nécessaire.

Voir aussi : setattr, hasattr et getattr.

dir : dir([objet]) -> liste d’attributs
Renvoie une liste des attributs de l’objet. Si l’objet n’est pas fourni, renvoie les attri-
buts disponibles dans le contexte d’exécution. Les attributs du contexte sont par
exemple tous les modules préalablement importés.

Les attributs renvoyés lorsqu’un objet est fourni sont :
• pour les objets de type classe ou type : les attributs et tous les attributs des types de

base ;

À SAVOIR Les fichiers .pyc et .pyo

Les fichiers .pyc ou .pyo qui apparaissent pour chaque fichier .py exécuté sont le fruit d’un appel à
compile().

>>> import UserList
>>> my_list = UserList.UserList()
>>> my_list.append('t')
>>> my_list
['t']
>>> delattr(my_list, 'data')
>>> my_list.append('t')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "/usr/lib/python2.4/UserList.py", line 73, in append
 def append(self, item): self.data.append(item)
AttributeError: UserList instance has no attribute 'data'

Les primitives
CHAPITRE 6

159

• pour les objets de type module : les attributs du module ;
• pour les instances de classe : les attributs, les attributs de la classe et tous les attri-

buts des classes dont la classe hérite.

Test de dir() sur différents objets

La fonction dir() est très pratique dans l’interpréteur pour rechercher des informa-
tions sur les objets ou modules que l’on utilise sans avoir la mise en page imposée par
help(). C’est cette fonction qui est utilisée pour l’autocomplétion.

Utilisation de la touche Tabulation

>>> import UserDict
>>> dir() # attributs du contexte
['UserDict', '__builtins__', '__doc__', '__file__', '__name__',
'readline', 'rlcompleter']
>>> dir(UserDict)# attributs du module UserDict
['DictMixin', 'IterableUserDict', 'UserDict', '__builtins__',
'__doc__', '__file__', '__name__']
>>> dir(UserDict.UserDict) # attributs de la classe UserDict
['__cmp__', '__contains__', '__delitem__', '__doc__', '__getitem__',
'__init__', '__len__', '__module__', '__repr__', '__setitem__',
'clear','copy', 'fromkeys', 'get', 'has_key', 'items', 'iteritems',
'iterkeys', 'itervalues', 'keys', 'pop', 'popitem', 'setdefault',
'update', 'values']
>>> dict = UserDict.UserDict()
>>> dir(dict)# attributs de l'objet dict
['__cmp__', '__contains__', '__delitem__', '__doc__', '__getitem__',
'__init__', '__len__', '__module__', '__repr__', '__setitem__',
'clear','copy', 'data', 'fromkeys', 'get', 'has_key', 'items',
'iteritems', 'iterkeys', 'itervalues', 'keys', 'pop', 'popitem',
'setdefault', 'update', 'values']

RAPPEL Utilisation de l’autocomplétion

L’autocomplétion est paramétrable dans le prompt, comme décrit dans le chapitre 3 (script de démarrage
du mode interactif).

>>> from UserDict import UserDict
>>> dico = UserDict()
>>> dico. # utilisation de <tab>
dico.__class__ dico.__repr__ dico.iteritems
dico.__cmp__ dico.__setitem__ dico.iterkeys
dico.__contains__ dico.clear dico.itervalues
dico.__delitem__ dico.copy dico.keys

Éléments du langage
DEUXIÈME PARTIE

160

divmod : divmod(x, y) -> (division entière, modulo)
Renvoie le tuple : ((x-x%y)/y, x%y) qui est une division entière suivie du modulo.

Utilisation de divmod

enumerate : enumerate(iterable) -> indice, élément
Renvoie un objet de type enumerate à partir d’un objet qui supporte les itérations
(appelé iterable), comme les listes ou les tuples.

Souvent utilisé pour indexer les listes, un objet enumerate renvoie à chaque itération
un tuple (indice, element) où indice est un entier variant de 0 à n-1 et element
l’élément indice de la séquence de n éléments fournie.

Itération sur une séquence

eval : eval(source[, globals[, locals]]) -> valeur
Exécute source en utilisant le contexte d’exécution de globals et locals. source
peut être une chaîne de caractères contenant une expression Python ou un objet de
type code préalablement obtenu par compile().

globals doit être un dictionnaire contenant le contexte global et locals un diction-
naire contenant le contexte local. Si ces éléments ne sont pas fournis, eval utilise les
contextes en cours. Si seul globals est fourni, locals prend alors la même valeur.

dico.__doc__ dico.data dico.pop
dico.__getitem__ dico.fromkeys dico.popitem
dico.__init__ dico.get dico.setdefault
dico.__len__ dico.has_key dico.update
dico.__module__ dico.items dico.values
>>> dico.

>>> divmod(10, 5)
(2, 0)
>>> divmod(10, 4)
(2, 2)

>>> for indice, element in enumerate(['a', 'b', 'c']):
... print('%s: %s' % (indice, element))
...
0: a
1: b
2: c

Les primitives
CHAPITRE 6

161

Exécution de code par eval

Voir aussi: execfile, globals, locals.

execfile : execfile(filename[, globals[, locals]])
Exécute un script Python contenu dans un fichier. Comme pour eval, globals et
locals sont des mappings permettant de définir un contexte d’exécution. S’ils sont
omis, le contexte courant est utilisé. Si seul globals est fourni, locals prend la
même valeur.

Voir aussi : eval, globals, locals.

exit : exit -> string
exit est une chaîne de caractères spéciale qui peut être appelée dans le prompt.

Appel d’exit

Son rôle est d’indiquer à l’utilisateur comment sortir du prompt s’il ne connaît pas
encore le signal de fin obtenu avec ce raccourci et tente instinctivement la commande
exit. Équivalente à quit.

Voir aussi : quit.

file : file(nom[, mode[, buffering]]) -> objet file
Permet d’ouvrir le fichier nommé nom. Le paramètre mode peut prendre différentes
valeurs :
• r : ouverture pour lecture (mode par défaut) ;
• w : ouverture pour écriture, le fichier est créé s’il n’existe pas, sinon son contenu

est écrasé ;
• a : ouverture pour ajout, le fichier est créé s’il n’existe pas, sinon son contenu est

conservé et l’écriture est effectuée à la suite.

>>> eval('a-2', {'a': 12})
10
>>> eval('"a vaut %d" % a', {'a': 12})
'a vaut 12'

>>> exit
'Use Ctrl-D (i.e. EOF) to exit.'

Éléments du langage
DEUXIÈME PARTIE

162

Chacun de ces modes peut s’enrichir d’options supplémentaires :
• b : pour les opérations sur les fichiers binaires ;
• + : pour permettre la lecture et l’écriture simultanées ;
• U : permet de standardiser le traitement des retours à la ligne du fichier en cours de

lecture. Ils seront tous vus comme un caractère \n même si le fichier est basé sur un
autre standard, comme \r\n ou \r (possible uniquement avec le mode r). L’objet
file retourné avec cette option possède un attribut supplémentaire nommé
newlines, qui contient tous les types de sauts de ligne rencontrés dans le fichier.

buffering spécifie si le fichier est ouvert avec un buffer mémoire. Valeurs possibles :
• 0 : pas de buffer ;
• 1 : la ligne en cours est le buffer ;
• n : buffer contenant n caractères (avec n>1).

L’objet renvoyé est un objet de type file, qui contient les méthodes suivantes :
• close() : ferme le flux.
• flush() : vide le tampon interne.
• fileno() : renvoie le descripteur de fichier.
• isatty() : renvoie vrai si le fichier est branché sur un terminal tty.
• next() : renvoie la prochaine ligne lue, ou provoque une exception
StopIteration.

• read([size]) : lit au plus size octets. Si size est omis, lit tout le contenu.
• readline([size]) : lit la prochaine ligne. Si size est fourni, limite le nombre

d’octets lus.
• readlines([sizehint]) : appelle readline() en boucle, jusqu’à la fin du flux. Si
sizehint est fourni, s’arrête lorsque ce nombre est atteint ou dépassé par la ligne
en cours.

• seek(offset[, whence]) : positionne le curseur de lecteur en fonction de la
valeur d’offset. whence permet de faire varier le fonctionnement (0 : position
absolue – valeur par défaut, 1 : relative à la position courante, 2 : relative à la fin
du fichier).

• tell() : renvoie la position courante.
• truncate([size]) : tronque la taille du fichier. Si size est fourni, détermine la

taille maximum.
• write(str) : écrit la chaîne str dans le fichier.
• writelines(sequence) : écrit la séquence de chaînes.

Les objets de type file sont des itérateurs, qui peuvent donc être utilisés directement
comme des séquences.

Les primitives
CHAPITRE 6

163

Création et lecture d’un fichier

Le type file possède en outre un certain nombre d’attributs :
• closed : renvoie vrai si le fichier a été fermé.
• encoding : renvoie l’encoding utilisé par le fichier pour l’écriture. Si des chaînes

unicode sont écrites dans le flux, elles sont encodées avec ce codec.
• mode : renvoie le mode avec lequel le fichier a été ouvert.
• name : renvoie le nom du fichier.
• newlines : renvoie le type de passage à la ligne utilisé (\r, \n, ou \r\n), si l’option
U a été utilisée lors de l’ouverture du fichier.

• softspace : renvoie vrai si un espace est à afficher avant lors de l’appel à la direc-
tive print.

La primitive file est équivalente à open.

filter : filter(fonction ou None, séquence) -> list, tuple, ou string
Renvoie une nouvelle séquence qui contient tous les éléments de la séquence fournie
qui répondent au critère suivant :

Si None est fourni à la place d’une fonction, la nouvelle séquence ne conserve que les
éléments qui sont True.

filter renvoie une séquence du même type pour les types liste, tuple et string et une
liste dans tous les autres cas.

Filtrage

>>> mon_fichier = open('infos.txt', 'w')
>>> mon_fichier.write('1. première info\n')
>>> mon_fichier.write('2. deuxième info\n')
>>> mon_fichier.close()
>>> mon_fichier = open('infos.txt', 'r')
>>> for line in mon_fichier:
... print(line)
...
1. première info
2. deuxième info

fonction(element) == True.

>>> def no_spc(element):
... return element != ' '
...

Éléments du langage
DEUXIÈME PARTIE

164

Voir aussi : reduce, map.

getattr : getattr(objet, nom[, défaut]) -> valeur
Récupère l’attribut nom de l’objet. Équivalente à objet.nom. Si l’attribut n’existe pas,
une erreur est provoquée, sauf si defaut est fourni : il est alors renvoyé.

getattr en action

Voir aussi : hasattr, setattr.

globals : globals() -> dictionnaire
Renvoie un dictionnaire contenant toutes les variables globales du contexte.

Utilisation de globals

Voir aussi : locals.

>>> res = filter(no_spc, "Nous nous sentions de plus en plus à
l'étroit")
>>> print(res)
Nousnoussentionsdeplusenplusàl'étroit

>>> import UserDict
>>> dict = UserDict.UserDict()
>>> dict['a'] = 1
>>> getattr(dict, 'data')
{'a': 1}
>>> getattr(dict, 'data2')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: UserDict instance has no attribute 'data2'
>>> getattr(dict, 'data2', 'attribut inconnu')
'attribut inconnu'

>>> globals()
{'__builtins__': <module '__builtin__' (built-in)>, '__file__': '/etc/
pythonrc.py', '__name__': '__main__', '__doc__': None}
>>> a = 9
>>> globals()
{'a': 9, '__builtins__': <module '__builtin__' (built-in)>, '__file__':
'/etc/pythonrc.py', '__name__': '__main__', '__doc__': None}

Les primitives
CHAPITRE 6

165

hasattr : hasattr(objet, nom) -> booléen
Renvoie True si l’objet possède bien l’attribut nom.

Vérification des attributs

Voir aussi : setattr, getattr, isinstance.

hash : hash(objet) -> integer
Renvoie un hash pour l’objet lorsque c’est possible (les objets qui peuvent être modi-
fiés ne peuvent pas avoir de hash). Le hash est calculé en fonction de la valeur de
l’objet.

Calculs de hash

Les hash peuvent être utilisés pour indexer des objets. C’est le cas par exemple pour
les dictionnaires, qui se servent en interne du hash des objets utilisés comme clés.

Voir aussi : id.

help : Fonction d’aide en ligne
help est un raccourci vers la fonction help du module pydoc. C’est une aide en ligne
qui fournit une interface pour naviguer facilement dans la documentation contenue
dans les docstrings.

Cette documentation est aussi directement accessible par l’attribut __doc__ des
modules, classes, fonctions et méthodes.

>>> import UserDict
>>> dico = UserDict.UserDict()
>>> hasattr(dico, 'data')
True
>>> hasattr(dico, 'data2')
False

>>> liste_1 = ('a', 'b', 'c')
>>> liste_2 = ('a', 'b', 'c')
>>> hash(liste_1)
381002522
>>> hash(liste_2)
381002522

Éléments du langage
DEUXIÈME PARTIE

166

Utilisation de help sur filter

hex : hex(nombre) -> représentation hexadécimale
Renvoie une chaîne de caractères représentant la forme hexadécimale d’un entier ou
un entier long.

hex

Voir aussi : oct.

id : id(objet) -> entier
Renvoie un identifiant unique pour un objet donné. Correspond à l’adresse mémoire
de l’objet. Lorsque deux objets de type immuable ont la même valeur, l’interpréteur
peut décider de ne conserver qu’un seul objet en mémoire, et les identifiants devien-
nent alors identiques.

Identifiants d’objets

>>> help(filter)
Help on built-in function filter in module __builtin__:

filter(...)
 filter(function or None, sequence) -> list, tuple, or string

 Return those items of sequence for which function(item) is true. If
 function is None, return the items that are true. If sequence is a
tuple
 or string, return the same type, else return a list.

>>> hex(253)
'0xfd'
>>> hex(2)
'0x2'

>>> chaine = 'abcdef'
>>> chaine2 = 'abcdef'
>>> id(chaine)
549920
>>> id(chaine2)
549920
>>> id(3)
16793968
>>> t = 3
>>> id(t)
16793968

Les primitives
CHAPITRE 6

167

input : input([prompt]) -> valeur
Permet d’exécuter une expression fournie par l’utilisateur. Équivalente à
eval(raw_input(prompt)). Si prompt n’est pas fourni, la fonction équivaut à
eval(raw_input()).

Saisie d’expression

Voir aussi : raw_input.

int : int(x[, base]) -> entier
Conversion d’une chaîne de caractères ou d’un nombre vers un entier. Si le nombre
est de type float, la partie fractionnaire est tronquée. Lorsque le paramètre est de
type string, l’argument optionnel base peut être fourni pour définir une base diffé-
rente de la base 10.

Conversions en entier

Voir aussi : long.

intern: intern(string) -> string
Ajoute l’objet string fourni en paramètre à une liste globale bas niveau d’objets
string utilisée pour accélérer les recherches dans les clés des objets de type diction-
naire. Renvoie l’objet string lui-même. Rarement utilisé.

>>> input('saisissez une expression: ')
saisissez une expression: 2*4
8
>>> input()
9+1
10

>>> int('11', 16)
17
>>> int('11')
11
>>> int(5.6787)
5

Éléments du langage
DEUXIÈME PARTIE

168

isinstance : isinstance(objet, classe ou type ou tuple) -> booléen
Permet de tester si un objet est d’un type donné ou une instance d’une classe. Un
tuple peut aussi être fourni pour représenter une liste de types et/ou classes pour
définir si l’objet appartient à l’un des types ou l’une des classes.

Souvent utilisé pour contrôler des paramètres entrants dans une méthode ou une
fonction, isinstance permet de pallier le non-typage des variables.

Test des types et classes

Voir aussi : issubclass.

issubclass : issubclass(C, B) -> bool
Vérifie si la classe C dérive de la classe B. Comme pour isinstance,B peut être rem-
placé par un tuple représentant une liste de classes. issubclass renvoie alors vrai si C
hérite au moins de l’une des classes de la séquence.

Test de l’héritage

Voir aussi : isinstance.

>>> isinstance('test', (unicode, str))
True
>>> isinstance('test', int)
False
>>> isinstance(['test', 'deux'], list)
True
>>> from UserDict import UserDict
>>> dict = UserDict()
>>> isinstance(dict, UserDict)
True

>>> class B:
... pass
...
>>> class A(B):
... pass
...
>>> issubclass(A, B)
True
>>> issubclass(B, A)
False

Les primitives
CHAPITRE 6

169

iter : iter(collection) -> iterateur ou iter(callable, sentinelle) -> iterateur
Renvoie un itérateur construit à partir :
• d’une collection ;
• d’un couple callable-sentinelle.

Dans le cas d’une collection, le paramètre doit être une séquence. Dans le cas du
couple callable-sentinel, le premier argument est une fonction ou une méthode
qui renvoie les valeurs une à une. L’itération s’arrête lorsque la fonction renvoie la
valeur définie par sentinelle.

Création d’itérateurs

len : len(objet) -> entier
Renvoie le nombre d’éléments d’une séquence. Lorsque l’objet fourni est un map-
ping, renvoie le nombre d’éléments de la séquence représentant la liste des clés,
len(dico) étant équivalent à len(dico.keys()).

>>> a = 0
>>> def iterator():
... global a
... a += 1
... return a
...
>>> i = iter(iterator, 4)# itérateur par sentinelle
>>> i.next()
1
>>> i.next()
2
>>> i.next()
3
>>> i = iter([1, 2, 3, 4])# itérateur construit avec une séquence
>>> i.next()
1
>>> i.next()
2
>>> i.next()
3
>>> i.next()
4

Éléments du langage
DEUXIÈME PARTIE

170

Calculs de longueurs

license : license() -> prompt interactif
Prompt interactif permettant d’afficher les informations de licence et l’historique des
versions de Python.

Affichage des informations de licence

>>> dico = {'a': 1, 'b': 2, 'c': 3}
>>> len(dico)
3
>>> my_list = ['a', 'b', 'c']
>>> len(my_list)
3
>>> title = 'The life of Brian'
>>> len(title)
17

>>> license()
A. HISTORY OF THE SOFTWARE
==========================

Python was created in the early 1990s by Guido van Rossum at Stichting
Mathematisch Centrum (CWI, see http://www.cwi.nl) in the Netherlands
as a successor of a language called ABC. Guido remains Python's
principal author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for
National Research Initiatives (CNRI, see http://www.cnri.reston.va.us)
in Reston, Virginia where he released several versions of the
software.

In May 2000, Guido and the Python core development team moved to
BeOpen.com to form the BeOpen PythonLabs team. In October of the same
year, the PythonLabs team moved to Digital Creations (now Zope
Corporation, see http://www.zope.com). In 2001, the Python Software
Foundation (PSF, see http://www.python.org/psf/) was formed, a
non-profit organization created specifically to own Python-related
Intellectual Property. Zope Corporation is a sponsoring member of
the PSF.

All Python releases are Open Source (see http://www.opensource.org for
Hit Return for more, or q (and Return) to quit: q
>>>

Les primitives
CHAPITRE 6

171

list : list() -> nouvelle liste ou list(sequence) -> nouvelle liste
Permet de générer un nouvel objet liste, vide dans le premier cas et initialisé avec la
séquence fournie dans le deuxième cas. liste = list() est équivalent à liste = [].

sequence peut être un objet de type séquence comme une liste, un tuple ou un objet
de type string, mais aussi un mapping. Dans ce cas, c’est la séquence représentant la
liste des clés qui est utilisée pour construire la liste.

Construction de listes

La forme liste = list(tuple) est souvent utilisée pour rendre un tuple modifiable.

locals : locals() -> dictionnaire
Renvoie un objet dictionnaire contenant les variables locales du contexte en cours.

Contexte local d’une fonction

Voir aussi : globals.

map : map(fonction, séquence[, séquence...]) -> liste
map() renvoie une liste correspondant à l’ensemble des éléments de la séquence.
Avant d’être inséré dans la liste, chaque élément est passé à la fonction fournie. Cette
dernière doit donc être de la forme :

>>> liste = list({'a':1})
>>> liste
['a']
>>> list()
[]
>>> list('fun matters')
['f', 'u', 'n', ' ', 'm', 'a', 't', 't', 'e', 'r', 's']
>>>

>>> def fonction():
... a = 12
... print locals()
...
>>> fonction()
{'a': 12}

fonction(element)→ element

Éléments du langage
DEUXIÈME PARTIE

172

Lorsque plusieurs séquences sont fournies, la fonction reçoit une liste d’arguments
correspondants à un élément de chaque séquence. Si les séquences ne sont pas de la
même longueur, elles sont complétées avec des éléments à la valeur None.

La fonction peut être définie à None, et dans ce cas tous les éléments des séquences
fournies sont conservés. map(None, sequence) est équivalent à sequence et
map(None, sequence1, sequence2) à zip(sequence1, sequence2) (mais s’arrête
lorsque le dernier élément de la séquence la plus courte est atteint).

Utilisation de map

Voir aussi : filter, reduce, zip.

max : max(séquence) -> valeur
max() renvoie l’élément le plus grand de la séquence. Si plusieurs séquences sont
fournies, renvoie la séquence la plus grande.

Recherche du plus grand élément

Voir aussi : min.

min : min(séquence) -> valeur
min() renvoie l’élément le plus petit de la séquence. Si plusieurs séquences sont four-
nies, renvoie la séquence la plus petite.

>>> def get_title(element):
... return element.title()
...
>>> map(get_title, ['fiat lux', 'the named is the mother of all
things'])
['Fiat Lux', 'The Named Is The Mother Of All Things']
>>> map(None, 'hlowrd', 'el ol')
[('h', 'e'), ('l', 'l'), ('o', ' '), ('w', 'o'), ('r', 'l'), ('d',
None)]
>>> map(str, [1, '2', 3, 4])
['1', '2', '3', '4']

>>> max('max')
'x'
>>> max(1, 2, 3, 4)
4
>>> max('Python')
'y'

Les primitives
CHAPITRE 6

173

Recherche du plus petit élément

Voir aussi : max.

oct : oct(nombre) -> représentation octale.
Renvoie une représentation octale d’un entier ou d’un entier long.

Utilisation de oct

Voir aussi : hex.

open : open(nom[, mode[, buffering]]) -> objet file
Alias de file.

Voir aussi : file.

ord : ord(caractère) -> entier
Renvoie le rang d’un caractère. Un caractère est un objet string de longueur 1.

Rang de caractères

Voir aussi : chr.

>>> min('max')
'a'
>>> min(1, 2, 3, 4)
1
>>> min('Python')
'P'
>>> map(ord, 'Python')
[80, 121, 116, 104, 111, 110]
>>> min('1', 2, 3, '4')
2

>>> oct(45383)
'0130507'
>>> oct(4538)
'010672'

>>> map(ord, 'abcdefgh')
[97, 98, 99, 100, 101, 102, 103, 104]

Éléments du langage
DEUXIÈME PARTIE

174

pow : pow(x, y[, z]) -> nombre
Calcul de la puissance, équivalent à x**y et à (x**y) % z. Dans ce deuxième cas, la
primitive peut être plus rapide que la notation directe.

Utilisation de pow

property : property(fget=None, fset=None, fdel=None, doc=None) ->
attribut propriété

property permet de créer une propriété à partir d’un attribut d’objet. Ajoutée récem-
ment, cette fonctionnalité sert à retrouver une mécanique qui existe dans d’autres
langages orientés objet : les attributs des objets ne sont pas directement accessibles
par les utilisateurs de l’objet mais à travers la propriété qui utilise des fonctions get()
et set() intermédiaires pour atteindre l’attribut. La méthode del() reste accessoire
et est beaucoup plus spécifique à Python.

Les paramètres sont :
• fget : méthode de l’objet utilisée lorsque la propriété est lue.
• fset : méthode de l’objet utilisée lorsque la propriété est affectée.
• fdel : méthode de l’objet utilisée lorsque la propriété est supprimée par del ou
delattr.

• doc : docstring de la propriété.

Création d’une propriété

>>> pow(2, 4)
16
>>> pow(2, 7)
128

>>> class MyClass(object):
... _a = 0
... def get_a(self):
... print('voici a')
... return self._a
... def set_a(self, value):
... print('je place %s dans a' % str(value))
... self._a = value
... def del_a(self):
... print ('je supprime a')
... del self._a
... a = property(get_a, set_a, del_a, 'Propriété a')
...

Les primitives
CHAPITRE 6

175

L’intérêt de cette écriture est de permettre aux classes de faire évoluer le code interne
et donc les attributs sans impacter le code appelant : l’ensemble des propriétés for-
ment la partie publiée de l’objet.

quit : quit -> string
quit est un objet string qui peut être appelé dans le prompt.

Appel de quit

Invite à l’utilisation d’exit.

Voir aussi : exit.

range : range([start,] stop[, step]) -> liste d’entiers
Renvoie la liste des entiers variant de start à stop-1 avec un pas de step. step vaut
1 par défaut et start 0.

step pouvant être un entier négatif, il est possible de faire une liste variant de
start-1 à stop avec stop < start.

Listes issues de range

range est très fréquemment utilisé pour concevoir des séquences de boucle.

>>> obj = MyClass()
>>> obj.a
voici a
0
>>> obj.a = 1
je place 1 dans a
>>> obj.a
voici a
1
>>>

>>> quit
'Use Ctrl-D (i.e. EOF) to exit.'

>>> range(5)
[0, 1, 2, 3, 4]
>>> range(4, -1, -1)
[4, 3, 2, 1, 0]
>>> range(4, -1, -2)
[4, 2, 0]
>>> range(0)
[]

Éléments du langage
DEUXIÈME PARTIE

176

Utilisation de range dans une boucle for :

Voir aussi : xrange.

raw_input : raw_input([prompt]) -> string
raw_input permet de lire l’entrée standard et de renvoyer le contenu dans un objet
string. Si prompt est fourni, il est affiché sans passage à la ligne.

Saisie utilisateur :

Si l’utilisateur envoie un signal EOF (Ctrl+Z et Entrée sous MS-Windows ou Ctrl+D
sous systèmes unices), une erreur EOFError est provoquée. Elle peut être interceptée
pour gérer cet arrêt.

Interception de EOF

Voir aussi : input.

>>> for i in range(3):
... print i
...
0
1
2

>>> a = raw_input()
12
>>> a
'12'
>>> phrase = raw_input('saisissez une phrase: ')
saisissez une phrase: une phrase
>>> phrase
'une phrase'

>>> try:
... phrase = raw_input('saisissez une phrase: ')
... except EOFError:
... print 'abandon'
...
saisissez une phrase: [Ctrl+D] abandon
>>>

PYTHON 3 disparition de raw_input

raw_input disparaît sous Python 3, pour être remplacé par input.

Les primitives
CHAPITRE 6

177

reduce : reduce(fonction, séquence[, initial]) -> valeur
Appelle la fonction fournie avec les deux premiers éléments de la séquence. Le
résultat de la fonction est ensuite utilisé avec le troisième élément de la séquence
pour appeler à nouveau la fonction, et ainsi de suite. Le résultat final est donc un élé-
ment unique.

Utilisation de reduce

initial est un paramètre optionnel qui permet :
• d’amorcer le calcul, la première itération de reduce se basant sur le couple

(initial, premier élément de la séquence) ;
• de définir une valeur par défaut si la séquence fournie est vide.

Voir aussi : map, filter.

reload : reload(module) -> module
Recharge un module qui a été préalablement chargé par le biais d’une directive
import. Lorsque le code source du fichier d’un module est modifié, les modifications
ne seront pas effectives sans un appel à reload(module). Notons que les instances
déjà existantes ne sont pas impactées par reload.

Voir aussi : import.

repr : repr(objet) -> représentation
Renvoie une représentation fonctionnelle sous forme de chaîne de caractères d’un
objet. Cette représentation est pour la plupart des types simples la chaîne de carac-
tères que l’utilisateur aurait pu saisir pour créer l’instance.

eval(repr(object)) est donc souvent équivalent à object.

La plupart du temps, str(object) est équivalent à repr(object), mais la première
notation est destinée à renvoyer une représentation purement visuelle.

>>> def somme(x, y):
... print('%d + %d' %(x, y))
... return x + y
...
>>> reduce(somme, [1, 2, 3, 4])
1 + 2
3 + 3
6 + 4
10

Éléments du langage
DEUXIÈME PARTIE

178

Représentation d’un objet

Une classe peut implémenter le fonctionnement de repr en définissant une méthode
__repr__.

Voir aussi : str.

round : round(nombre[, ndigits]) -> réel
Permet d’arrondir un nombre en fonction de la précision ndigits, qui représente le
nombre de chiffres après la virgule. ndigits est à 0 par défaut et peut être négatif.
round renvoie toujours un réel (flottant). Un entier passé en paramètre est donc
transformé en réel.

Arrondis

set : set(iterable) -> objet de type set
Renvoie une collection non ordonnée d’éléments. Le paramètre doit être un objet
supportant les itérations.

Création d’une collection

>>> liste = [1, 2, 3, 4]
>>> repr(liste)
'[1, 2, 3, 4]'
>>> eval(repr(liste))
[1, 2, 3, 4]
>>> eval(repr(liste)) == liste
True

>>> round(4.5687645, 3)
4.569
>>> round(4.5687645, 0)
5.0
>>> round(4.5687645)
5.0
>>> round(5)
5.0
>>> round(567.897, -1)
570.0

>>> collection = set([1, 2, 3])
>>> collection.pop()
1

Les primitives
CHAPITRE 6

179

setattr : setattr(objet, nom, valeur)
Permet de définir la valeur d’un attribut pour un objet donné. Équivalente à
objet.nom = valeur.

Si l’attribut n’existe pas, une erreur AttributeError est levée lorsque l’objet ne peut
se voir attribuer de nouveaux attributs, comme les types built-ins.

Affectation d’attribut

Voir aussi : getattr, hasattr.

slice : slice([start,] stop[, step])
Génère un objet slice. Les objets slice sont des utilitaires pour la gestion de tran-
ches. Une fois créé, l’objet slice fournit une méthode indices() qui prend en para-
mètre une longueur et renvoie un tuple contenant la liste des indices en fonction des
valeurs de start, stop et step.

Python se sert des objets slice lorsque des séquences sont tranchées, en générant par
exemple l’objet slice(a, b, c) pour la tranche sequence[a:b:c].

Tranches de liste

>>> collection.pop()
2
>>> collection.pop()
3

>>> o = object()
>>> setattr(o, 'a', 1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'object' object has no attribute 'a'
>>> class F:
... pass
...
>>> g = F()
>>> setattr(g, 'a', 1)
>>> g.a
1

>>> my_liste = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> my_liste[2:5:2]
[3, 5]

Éléments du langage
DEUXIÈME PARTIE

180

sorted : sorted(iterable, cmp=None, key=None, reverse=False) -> liste
triée

Renvoie une liste d’éléments triés en fonction des éléments de l’objet itérable fourni.
sorted() utilise une fonction de comparaison à laquelle il passe les éléments deux à
deux de l’itérable :
• Si cmp est fourni, la fonction est utilisée pour comparer les éléments deux à deux

dans l’algorithme de tri. cmp(element1, element2) doit renvoyer -1, 0 ou 1.
• Si key est fourni, elle pointe sur une fonction qui sera utilisée au moment des

appels aux éléments dans la fonction de comparaison : chaque élément sera trans-
formé par key(element) avant la comparaison.

Lorsque key n’est pas fourni, ce sont les éléments qui sont directement passés à la
fonction de comparaison. Enfin, lorsque cmp n’est pas fourni, sorted() utilise une
fonction de comparaison générique.

reverse permet d’inverser le résultat obtenu.

Combinaisons possibles pour sorted

>>> my_liste[2:5:1]
[3, 4, 5]
>>> my_liste[1:2:1]
[2]
>>> my_liste[1:4:1]
[2, 3, 4]
>>> my_liste[1:4:2]
[2, 4]

>>> def cmp(elt1, elt2):
... if elt1 > elt2:
... res = -1
... elif elt1 < elt2:
... res = 1
... else:
... res = 0
... print('cmp(%s, %s) = %s'%(elt1, elt2, res))
... return res
...
>>> def key(elt):
... res = -ord(elt)
... print("key('%s') = %s"%(elt, res))
... return res
...

Les primitives
CHAPITRE 6

181

staticmethod : staticmethod(fonction) -> méthode statique
Transforme une fonction en une méthode statique. Une méthode statique est une
méthode qui n’est pas dépendante de l’instance de classe. Le premier paramètre
implicite qui contient cet objet n’est donc pas fourni et toutes les instances de la
classe ou la classe elle-même pourront utiliser cette méthode de la même manière et
obtenir les mêmes résultats.

Méthode statique

Cette écriture peut être remplacée par un appel par decorator.

Écriture abrégée par decorator

>>> sorted(['c', 'a', 'b'], cmp=cmp, key=key)
key('c') = -99
key('a') = -97
key('b') = -98
cmp(-97, -99) = -1
cmp(-98, -97) = 1
cmp(-98, -99) = -1
cmp(-98, -97) = 1
['a', 'b', 'c']

>>> class MyClass(object):
... def static_method():
... print("je suis universelle")
... static_method = staticmethod(static_method)
...
>>> MyClass.static_method()
je suis universelle
>>> instance = MyClass()
>>> instance.static_method()
je suis universelle

>>> class MyClass(object):
... @staticmethod
... def static_method():
... print("je suis universelle")
...
>>> MyClass.static_method()
je suis universelle
>>> instance = MyClass()
>>> instance.static_method()
je suis universelle

Éléments du langage
DEUXIÈME PARTIE

182

Les méthodes statiques de Python sont similaires à celles de Java et C++, mais il
existe une technique un peu plus avancée : les méthodes de classe, générées par la
primitive classmethod().

voir aussi : classmethod.

str : str(objet) -> représentation de l’objet
Renvoie une représentation visuelle de l’objet sous forme d’un objet string. Si l’objet
est un objet string, alors str(objet) est égal à objet.

Cette primitive est souvent équivalente à repr(). Il est possible de définir sa propre
représentation visuelle pour une classe en définissant la méthode __str__() qui est
appelée par str().

str() sert aussi à transformer des nombres en chaînes de caractères, sachant que le
chemin inverse est possible par le biais des primitives int() ou float().

Utilisation de str()

Voir aussi : repr.

sum : sum(sequence, start=0) -> valeur
Renvoie la somme des éléments d’une séquence de nombres. Tous les éléments de la
séquence doivent être des nombres pour que sum() puisse fonctionner. Lorsque la
séquence contient des nombres réels, le résultat renvoyé est un réel, même si la
somme renvoie une valeur entière.

Si start est fourni, il définit une valeur d’amorce pour la somme, qui sera renvoyée
au cas où la séquence fournie est vide.

>>> str(6)
'6'
>>> str([])
'[]'
>>> str([1, 2])
'[1, 2]'
>>> int(str(6))
6

Les primitives
CHAPITRE 6

183

Sommes

super : super(type, objet) -> objet super lié à l’objet
Un type peut dériver d’un autre type. Ce dernier peut lui-même dériver d’un troi-
sième type. Cet arbre de dérivation peut être parcouru pour un objet d’un type donné
grâce à la primitive super(). On l’utilise le plus fréquemment lorsqu’une méthode est
surchargée dans les descendants du type. On peut appeler la méthode du niveau qui
nous intéresse par le biais de super() en spécifiant en premier paramètre le type de
ce niveau.

Polymorphisme de type

>>> sum([1, 2.6, 2.4])
6.0
>>> sum([1, 2, 3])
6
>>> sum([1, 2, 3], 4)
10
>>> sum([], 4)
4

>>> class MyClass(object):
... def title(self):
... return "Moi c'est la classe\n"
...
>>> class MyClass2(MyClass):
... def title(self):
... return "Moi aussi\n"
...
>>> class MyClass3(MyClass2):
... def title(self):
... title1 = super(MyClass2, self).title()
... title2 = super(MyClass3, self).title()
... my_title = "Jamais deux sans trois !"
... return title1 + title2 + my_title
...
>>> test = MyClass3()
>>> print(test.title())
Moi c'est la classe
Moi aussi
Jamais deux sans trois !

Éléments du langage
DEUXIÈME PARTIE

184

type : type(objet) -> type de l’objet
Renvoie le type d’un objet. Le test type(objet) is type est équivalent à
isinstance(type, objet).

Essais avec type

type : type(nom, bases, dict) -> nouveau type
Permet de définir un nouveau type ou une nouvelle classe de nom name. bases est un
tuple représentant l’ensemble des types dont le nouveau type doit hériter et dict est
un dictionnaire qui contient l’ensemble des méthodes et attributs définis pour le
type. Cette notation est à éviter au profit d’une définition explicite du nouveau type.

À SAVOIR super() et les définitions de classe

Pour pouvoir faire fonctionner super() avec vos définitions de classes, il faut toujours dériver les clas-
ses de base du type de base object, ou en faire des types :
>>>> def title(self):
... return "Moi c'est la classe\n"
...
>> MyClass = type('MyClass', (), {'title': title})
>>> class MyClass2(MyClass):
... def title(self):
... return "Moi aussi\n"
...
>>> class MyClass3(MyClass2):
... def title(self):
... title1 = super(MyClass2, self).title()
... title2 = super(MyClass3, self).title()
... mon_title = "Jamais deux sans trois !"
... return title1 + title2 + mon_title
...
>>> test = MyClass3()
>>> print(test.title())
Moi c'est la classe
Moi aussi
Jamais deux sans trois ! :

>>> type('texte')
<type 'str'>
>>> type(1)
<type 'int'>
>>> type([])
<type 'list'>

Les primitives
CHAPITRE 6

185

Notations équivalentes

unichr : unichr(i) -> caractère unicode
Renvoie un objet unicode de longueur 1 représentant le caractère de rang i. i est un
entier compris entre 0 et 65 536 ou entre 0 et 0x10ffff en fonction de la manière dont
votre interpréteur Python a été compilé.

Voir aussi : chr.

unicode : unicode(string [, encoding[, errors]]) -> objet
Génère un nouvel objet unicode en fonction d’un objet string et d’un codec spécifié
par encoding. Si encoding n’est pas fourni, le codec par défaut est utilisé, soit ascii.

errors peut prendre trois valeurs :
• strict : tout caractère qui ne peut être décodé génère une erreur ;
• replace : tout caractère qui ne peut être décodé est remplacé par \ufff ;
• ignore : tout caractère qui ne peut être décodé est retiré.

La valeur par défaut pour errors est strict et tout caractère indécodable lève une
exception UnicodeDecodeError.

Essais unicode

Voir aussi : str.

>>> class MyType(str):# notation explicite
... a = 1
...
>>> MyType = type('MyType', (str,), {'a': 1})

PYTHON 3 Disparition de unichr()

Puisque unicode devient le type chaîne de base en Python 3, cette fonction disparaît.

>>> unicode('Le café de la place', errors='ignore')
u'Le caf de la place'
>>> unicode('Le café de la place', errors='replace')
u'Le caf\ufffd de la place'
>>> unicode('Le café de la place')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeDecodeError: 'ascii' codec can't decode byte 0xe9 in position 6:
ordinalnot in range(128)
>>> unicode('The cafe de la place')
u'The cafe de la place'

Éléments du langage
DEUXIÈME PARTIE

186

vars : vars([objet]) -> dictionnaire
Si objet n’est pas fourni, vars() est équivalente à locals(). Dans le cas contraire,
vars(objet) est équivalente à object.__dict__.

Voir aussi : globals, locals.

xrange : xrange([start,] stop[, step]) -> itérateur
xrange() est équivalente à range() mais au lieu de renvoyer une liste d’entiers, elle
renvoie un objet xrange qui génère les entiers au fur et à mesure des besoins. Plus
rapide et plus léger en mémoire, xrange() est à préférer à range().

Voir aussi : range.

zip : zip(seq1 [, seq2 […]]) -> [(seq1[0], seq2[0]...), (...)]
zip() permet de concaténer des séquences. Chaque énième élément de chaque séquence
est pris pour former un tuple. Lorsque le dernier élément de la séquence la plus courte est
utilisé, la concaténation s’arrête. zip() renvoie alors une liste des tuples formés.

Concaténation de séquence

AVERTISSEMENT Erreurs d’encodage et de décodage

Les erreurs d’encodage et de décodage sont monnaie courante pour les développeurs francophones
étant donné que les chaînes que nous utilisons sont des caractères de la norme ISO-8859-15. Certains
appels à unicode() se faisant dans du code de très bas niveau sans qu’il soit possible de spécifier de
manière simple l’encoding à utiliser, il est vivement conseillé de ne jamais utiliser d’objet string pour
représenter le texte d’une application, et d’externaliser les traductions.

PYTHON 3 Disparition de unicode()

Puisque unicode devient le type chaîne de base en Python 3, cette fonction disparaît.

>>> zip([1, 2, 3, 4], [5, 6])
[(1, 5), (2, 6)]
>>> zip('pi', 'ys', 't ', 'hg', 'oo', 'no', ' d')
[('p', 'y', 't', 'h', 'o', 'n', ' '), ('i', 's', ' ', 'g', 'o', 'o',
'd')]
>>> zip(['a', 'b', 'c'], [1, 2, 3], ['A', 'B', 'C'])
[('a', 1, 'A'), ('b', 2, 'B'), ('c', 3, 'C')]

Les primitives
CHAPITRE 6

187

Exceptions du langage
Voici l’ensemble des exceptions définies dans le langage, dérivant toutes de classes
d’exceptions de base, présentées dans le chapitre précédent. On retrouve ces excep-
tions dans le module exceptions.

On distingue deux types d’exceptions :
• Les erreurs qui provoquent l’arrêt de l’exécution du code et doivent être intercep-

tées par une directive try..except.
• Les avertissements, dérivés de l’exception de base Warning, utilisés avec la fonc-

tion warn du module warnings, et qui se contentent dans ce cas d’afficher un mes-
sage d’avertissement sans interrompre l’exécution du programme.

Erreurs

AssertionError
La primitive assert() permet de contrôler qu’une expression renvoie True. Dans le
cas contraire, une exception AssertionError est levée. Peut être utilisée pour valider
des préconditions à l’exécution du code d’une fonction.

Validation d’un précondition

À SAVOIR Les exceptions de type Warning

Les exceptions de type Warning sont des exceptions comme les autres et provoquent l’arrêt de l’exécu-
tion du programme si elles sont utilisées directement avec une directive raise. Seule la fonction warn
leur donne ce fonctionnement particulier.

>>> def delta(a, b):
... assert(a > b)
... return a - b
...
>>> delta(10, 5)
5
>>> delta(2, 5)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 2, in delta
AssertionError

Éléments du langage
DEUXIÈME PARTIE

188

AttributeError
Levée lorsque, pour un objet donné, l’interpréteur ne trouve pas l’attribut demandé,
ou ne peut pas lui assigner de valeur.

Erreurs d’attributs

EOFError
Levée lorsque qu’un flux de lecture de données rencontre le caractère de fin de fichier
EOF. C’est le cas par exemple lorsque l’on renvoie le signal EOF (Ctrl+D sous Linux et
Ctrl+Z sous MS-Windows) à une commande comme input().

Signal EOF

FloatingPointError
Exception concernant les erreurs de calcul en virgule flottante. Pour pouvoir l’uti-
liser, Python doit être configuré avec l’option -with-fpectl ou pyconfig.h doit
définir la constante WANT_SIGFPE_HANDLER. Cette option est activée dans une installa-
tion Python par défaut.

IOError
Exception levée lorsqu’une opération de lecture ou d’écriture échoue. Voir l’excep-
tion parent EnvironmentError dans le chapitre précédent pour les paramètres du
constructeur.

>>> o = []
>>> o.items
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: 'list' object has no attribute 'items'
>>> o.items = 0
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: 'list' object has no attribute 'items'

>>> input() # Ligne suivi d'un signal EOF
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
EOFError

Les primitives
CHAPITRE 6

189

Exemples d’erreurs système

ImportError
Concerne les erreurs relatives au chargement d’un module ou d’un élément de
module lors de l’utilisation de la directive import ou from. Si le nom de l’élément
n’est pas trouvé, l’interpréteur lève une exception ImportError.

IndentationError
Provoquée lorsque l’interpréteur rencontre une erreur d’indentation de code.

IndexError
Exception utilisée lorsqu’un indice de séquence est hors limites.

IndexError

KeyError
Exception utilisée lorsqu’une clé de mapping n’existe pas dans la liste des clés.

KeyError

>>> mon_fichier = open('jexistepas', 'r')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
IOError: [Errno 2] No such file or directory: 'jexistepas'
>>> mon_fichier = open('/root/.ssh/known_hosts', 'r')
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
IOError: [Errno 13] Permission denied: '/root/.ssh/known_hosts'

>>> liste = [1, 2, 3]
>>> liste[12]
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
IndexError: list index out of range

>>> dico = {'a': 12}
>>> dico['b']
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
KeyError: 'b'

Éléments du langage
DEUXIÈME PARTIE

190

KeyboardInterrupt
Provoquée lorsque l’utilisateur utilise une interruption (Ctrl+C). Permet l’arrêt de
l’exécution d’un programme.

Sortie de programme par Ctrl+C

MemoryError
Exception provoquée lorsqu’un programme n’a plus de mémoire disponible au
moment d’une allocation ou d’un calcul. Il est possible dans ce cas de tenter de libérer
de la mémoire par le biais de la directive del.

NameError
Provoquée lorsqu’un nom utilisé n’existe pas dans le contexte d’exécution en cours,
que ce soit dans la liste des variables locales ou dans celle des globales.

NotImplementedError
Utilisée dans le corps des méthodes qui n’ont pas encore été codées, ou dans les
méthodes abstraites qui n’ont aucune implémentation et doivent être surchargées
dans les classes dérivées.

Une classe abstraite qui définit des méthodes utilise NotImplementedError en lieu et
place de pass. Équivalente aux méthodes virtuelles pures du langage C++.

Méthode abstraite

>>> import time
>>> while True:
... time.sleep(0.25)
... print('.')
...
.
.
.
.
.
^CTraceback (most recent call last):
 File "<stdin>", line 2, in ?
KeyboardInterrupt

>>> class MaClass:
... def methode():
... raise NotImplementedError
...

Les primitives
CHAPITRE 6

191

OSError
Levée pour toute erreur système. Utilisée pour toutes les fonctions implémentées
dans le module os. Voir l’exception parent EnvironmentError dans le chapitre précé-
dent pour les paramètres du constructeur.

OverflowError
Utilisée lors d’un dépassement de capacité.

Contrôle de dépassement de capacité par xrange

Pour les entiers, le passage d’un entier à un entier long étant automatique, aucune
exception de type OverflowError ne sera levée. Il est donc nécessaire de faire le con-
trôle explicitement.

ReferenceError
Provoquée lorsqu’un proxy créé par la fonction proxy() du module weakref tente
d’accéder à un objet qui n’existe plus, c’est-à-dire supprimé par le ramasse-miettes.

RuntimeError
Exception issue des anciennes versions de Python et très rarement utilisée dans les
versions actuelles, permet de signaler des erreurs inclassables.

StopIteration
Utilisée pour signaler la fin d’une séquence dans les itérateurs. Cette exception est
interceptée par l’interpréteur pour terminer une boucle for.

SyntaxError
Levée par l’interpréteur lorsqu’il rencontre une erreur de syntaxe au moment de la
lecture du code. Outre le message d’erreur, possède des informations utiles sur
l’erreur, comme le nom du fichier (filename), le numéro de ligne (lineno), la
colonne (offset) et enfin le texte (text).

>>> xrange(1e100, 1e101, 1e101)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
OverflowError: long int too large to convert to int

VERSION Module weakref

Cette exception était, jusqu’à la version 2.2, dans le module weakref.

Éléments du langage
DEUXIÈME PARTIE

192

SystemError
Provoquée lorsque l’interpréteur rencontre une erreur interne non fatale.

SystemExit
Cette exception est levée par la fonction exit du module sys et déclenche la sortie de
l’interpréteur Python. Elle peut prendre en paramètre de constructeur un entier qui
sera renvoyé par l’interpréteur au système comme code de sortie du programme
(0 par défaut). Si une chaîne de caractères est passée, elle sera affichée avant que
l’interpréteur ne quitte l’exécution et renvoie le code 0 au système.

Il est possible d’associer une fonction à cet événement, par le biais de la fonction
register du module atexit. Cette fonction s’exécutera après la gestion de l’excep-
tion et peut contenir du code de nettoyage spécifique.

Sortie de programme

TabError
Provoquée lorsque l’interpréteur rencontre un mélange d’espaces et de tabulations
pour l’indentation du code.

TypeError
Provoquée lorsqu’un objet fourni à une opération, une fonction ou une méthode,
n’est pas du type attendu.

TypeError

>>> def fin():
... print('The End')
...
>>> import atexit
>>> atexit.register(fin)
>>> raise SystemExit('Arret execution')
Arret execution
The End

>>> 'a' + 2
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects
>>> 1 + 'a'
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Les primitives
CHAPITRE 6

193

UnboundLocalError
Provoquée lorsqu’une référence à une variable est faite sans qu’aucune valeur ne lui ait
été précédemment attribuée. Cette erreur est provoquée lorsque l’interpréteur trouve
dans le contexte d’exécution de la variable une initialisation de sa valeur après son utili-
sation. Si l’interpréteur ne trouve aucune initialisation, une erreur NameError est levée.

Initialisation tardive

UnicodeEncodeError
Introduite dans la version 2.3 comme classe dérivée de UnicodeError, permet de pré-
ciser lorsqu’une erreur de conversion d’unicode est provoquée, c’est-à-dire qu’il s’agit
d’un problème de conversion d’unicode vers string.

Erreur d’encodage

UnicodeDecodeError
Équivalente à UnicodeEncodeError, mais pour les problèmes de conversions de
string vers unicode.

Erreur de décodage

>>> def fonction():
... print y
... y = 1
...
>>> fonction()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 2, in fonction
UnboundLocalError: local variable 'y' referenced before assignment

>>> u'\u0200'.encode()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeEncodeError: 'ascii' codec can't encode character u'\u0200' in
position 0: ordinal not in range(128)

>>> '\xff'.decode()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
UnicodeDecodeError: 'ascii' codec can't decode byte 0xff in position 0:
ordinal not in range(128)

Éléments du langage
DEUXIÈME PARTIE

194

UnicodeTranslateError
Provoquée lors d’une erreur de traduction de chaîne de type unicode.

ValueError
Provoquée lorsqu’une opération, méthode ou fonction reçoit un paramètre du bon
type mais dont la valeur n’est pas utilisable par le code.

Incompatibilité de valeurs

Dans l’exemple, le code de la classe Pickle s’assure que deux options incompatibles
n’ont pas été appelées en même temps.

WindowsError
Provoquée pour toutes les erreurs OSError spécifiques à MS-Windows qui n’ont pas
d’équivalent dans la table des erreurs errno. Les valeurs errno et strerror sont récu-
pérées dans ce cas par le biais des API système GetLastError() et FormatMessage()
spécifiques à cette plate-forme. N’est définie et accessible dans les primitives que sur
la plate-forme MS-Windows.

ZeroDivisionError
Provoquée lorsque le diviseur d’une division ou d’un modulo est zéro.

Avertissements
Voici l’ensemble des classes d’exceptions utilisées comme avertissements. Ces classes
ne sont jamais directement appelées avec une directive raise mais utilisées avec la
fonction warn du module warnings.

>>> from pickle import Pickler
>>> pickler = Pickler('/home/tziade/file', protocol=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "/usr/lib/python2.4/pickle.py", line 199, in __init__
 raise ValueError, "can't specify both 'protocol' and 'bin'"
ValueError: can't specify both 'protocol' and 'bin'

Les primitives
CHAPITRE 6

195

Exemple d’utilisation d’un avertissement

UserWarning
Classe de base pour tous les avertissements. La fonction warn vérifie que le type de
l’exception qui lui est fournie dérive bien de cette classe.

DeprecationWarning
Avertit le développeur que la fonction ou méthode exécutée est une relique et ne doit
plus être utilisée.

FutureWarning
Avertissement sur du code qui sera remis en cause dans le futur (voir module
__future__).

OverflowWarning
Avertissement pour les dépassements numériques.

PendingDeprecationWarning
Avertit le développeur que la fonction ou méthode exécutée est vouée à disparaître et
n’est conservée que pour assurer une compatibilité avec le code existant et une migra-
tion douce. Le message fournit en général le nom de la fonction ou méthode qui doit
être utilisée à la place.

La distinction entre cet avertissement et le précédent est relativement floue. Il est
fréquent que les développeurs utilisent des avertissements de type
DeprecationWarning en lieu et place d’avertissements de type
PendingDeprecationWarning.

>>> def function():
... import warnings
... warnings.warn('cette fonction disparaîtra dans la prochaine
version', DeprecationWarning)
... print('resultat')
...
>>> function()
/etc/pythonrc.py:2: DeprecationWarning: cette fonction disparaîtra dans
la prochaine version
resultat

Éléments du langage
DEUXIÈME PARTIE

196

RuntimeWarning
Avertissement sur un comportement d’exécution douteux.

SyntaxWarning
Avertissement sur une syntaxe douteuse.

En un mot...
Les primitives du langage sont les fonctionnalités les plus importantes à maîtriser et à
retenir car elles fournissent toutes les manipulations de base des objets.

« Readability counts ». Tim Peters, The Zen of Python

« La lisibilité est essentielle »

— Tim Peters, « Le Zen de Python »

Avant de présenter les principaux modules et de se plonger dans les exercices, il est
nécessaire d’aborder un dernier thème : les conventions de codage, ou style guide.

Adopter des conventions pour l’écriture du code est indispensable pour assurer la
bonne homogénéité d’un projet, surtout lorsque plusieurs développeurs travaillent
sur les mêmes portions de code. Ce chapitre est un guide qui fournit les recomman-
dations les plus communément adoptées. Il présente dans un premier temps la mise
en page du code, puis les conventions de nommage et la structure d’un module. La
dernière partie propose des bonnes pratiques pour le choix des noms.

7
Conventions de codage

Éléments du langage
DEUXIÈME PARTIE

198

Mise en page du code

Indentation
Nous avons vu au chapitre 4 que l’une des originalités du langage Python est de
rendre obligatoire l’indentation du code dans les structures algorithmiques. En cas de
non-respect de cette règle, la sanction est immédiate :

Non-respect de l’indentation

Cette règle, souvent vécue comme une contrainte par les développeurs qui décou-
vrent le langage, s’avère être agréable à l’usage : l’indentation étant l’élément structu-
rant du code, celui-ci se trouve allégé des accolades et autres begin...end qui parsè-
ment les autres langages.

Le nombre d’espaces ou de tabulations qui constituent l’indentation est libre, la seule
obligation étant de ne pas mélanger les deux. Le premier réflexe est d’utiliser la
touche Tab pour minimiser le nombre de frappes, mais les espaces sont en général
préférés pour la bonne et simple raison que le code obtenu conservera la même allure
d’un éditeur de code à l’autre.

La recommandation est d’utiliser quatre espaces par niveau d’indentation. Il est donc
conseillé d’utiliser un éditeur de texte qui remplace automatiquement les tabulations
par des espaces pour faciliter la frappe.

Taille maximum d’une ligne
La taille maximum d’une ligne de code doit être de 79 caractères. Cette raison est
historique puisque les écrans en mode texte, avant l’avènement des modes graphi-
ques, étaient en général de 80 caractères de large.

>>> for i in range (2):
... print(str(i))
 File "<stdin>", line 2
 print str(i)
 ^
IndentationError: expected an indented block
>>> for i in range (2):
... print(str(i))
...
0
1

Conventions de codage
CHAPITRE 7

199

Sur le matériel actuel, les développeurs qui travaillent avec des éditeurs comme
Emacs ou Vim alignent généralement deux terminaux.

Cette taille limite de 80 caractères reste de toute manière un standard immuable et
défini par défaut dans la plupart des éditeurs Python.

Pour les lignes dépassant la limite, il est nécessaire d’utiliser :
• un saut de ligne dans une séquence d’éléments entre parenthèses, accolades ou

crochets ;
• des antislash (\) ou des parenthèses supplémentaires;

puis d’indenter correctement le code passé à la ligne.

Exemples de passage à la ligne

Commentaires
La bonne quantité de commentaires est en général assez difficile à trouver et dépend
de plusieurs facteurs :
• la personnalité du développeur ;
• la nature du code ;
• le rythme du projet.

Le développeur qui entame un projet est toujours plus bavard dans ses commentaires
que celui qui essaye de terminer dans les temps.

Enfin, l’utilisation de plus en plus fréquente des doctests, décrits au chapitre 12, qui
donnent directement des exemples d’utilisation du code, réduit considérablement le
besoin de certains types de commentaires.

def _layout_modified(self, REQUEST, RESPONSE, type_id,
 layout_index=1, is_flexible=False):
 """Modifie le layout à la volée."""

 if layout_index == 1 and is_flexible and self.step == 12 and \
 type_id != 4:
 self._modify(type_id)
 elif layout_index == 1 and is_flexible and (self.step == 13
 X and type_id = 3):
 self._modifyAll(type_id)
 else:
 self._modifyAll(13)

À SAVOIR Éditeurs Python

Les éditeurs qui gèrent Python proposent parfois une gestion automatique du passage à la ligne.

Éléments du langage
DEUXIÈME PARTIE

200

Commentaires simples
Les commentaires simples sont des lignes insérées dans la continuité du code et
constituant des phrases complètes. Le point de fin de phrase est retiré.

Commentaires simples

Commentaires en fin de ligne
Les commentaires en fin de ligne sont distants d’au moins deux espaces de la fin du
code et commencent par un caractère dièse (#) suivi d’un espace. Ils sont en général
très courts et doivent avoir une valeur ajoutée, c’est-à-dire ne pas se contenter de
répéter en français ce que le code de la ligne fait.

Ils sont préférés aux commentaires simples pour des remarques concernant l’implé-
mentation.

Utilisation d’un commentaire en ligne

Blocs de commentaires
Un bloc de commentaires est en général utilisé pour expliquer le fonctionnement et
l’objectif de la portion de code. Si le texte est constitué de plusieurs paragraphes, une
ligne de commentaire vide les sépare. Un saut de ligne est inséré avant et parfois
après le bloc lorsqu’il est nécessaire d’accentuer l’importance de ce commentaire.

Exemple d’utilisation d’un bloc

Préparation des données du XF4 et normalisation
datas = get_datas(2)
normalized_datas = normalize_xf4(datas)

resultat = resultat.strip() # des espaces en trop altèrent la lisibilité

à éviter:
resultat = resultat * 2 # le résultat est multiplié par deux

if kw.has_key('autolayout'):

 # Mise en place d'un affichage auto
 # pour l'instant sur trois colonnes
 #
 # Pourra être plus perfectionné
 # par la suite.

Conventions de codage
CHAPITRE 7

201

Les blocs servent aussi comme en-têtes des modules pour insérer les informations de
licence, de copyright et autres éléments spécifiques et communs à tous les fichiers du
projet, comme nous le verrons dans la structure d’un module en fin de chapitre.

Enfin, les notes de développement sont souvent des commentaires avec un préfixe
particulier (FIXME:, TODO: ou XXX:).

Commentaire de développement

Documentation strings ou docstrings
Il est recommandé de fournir un docstring pour tous les éléments de code, exceptés
les méthodes privées. La raison est que l’interpréteur Python lit ces docstrings et les
associe pour chaque élément commenté à un attribut spécial __doc__. Cet attribut est
utilisé dans certains cas lors d’interactions entre l’utilisateur et le programme et
devient parfois obligatoire. Par exemple, dans une application Zope 2, une méthode
d’une classe sans docstring ne pourra pas être appelée par le biais de l’interface web.

 layoutdef = {'ncols': 1, 'rows': []}
 rows = []
 for item in layout.objectIds():
 element = {}
 element['widget_id'] = item[3:] # retrait du préfixe "w__"
 element['ncols'] = 1
 rows.append([element])
 layoutdef['rows'] = rows

 # appel au moteur de rendu
 layout.set_layout_definition(layoutdef)

[...]
def afficher(self, taille):
 """ affichage """
 # FIXME: A quoi sert cette variable ?
 i = 12
 for u in range(taille):
 print str(u)
[...]

BONS USAGES Soigner les commentaires

Un soin tout particulier doit être apporté aux commentaires pour la valorisation à long terme du code.
Lors d’étapes de refactoring ou d’outsourcing, qui peuvent survenir des mois, voire des années après la
création initiale, les modules peu ou mal commentés sont en général très rapidement jetés aux oubliettes.

Éléments du langage
DEUXIÈME PARTIE

202

De la même manière, tous les logiciels de création automatique de documentation de
code se basent sur cette fonctionnalité.

Les docstrings peuvent être écrits sur une seule ligne ou sur plusieurs lignes et sont
entourés de triples guillemets, et suivis d’un saut de ligne :

Exemple de docstring

Lorsqu’il est nécessaire d’écrire un texte un peu plus élaboré, il est en général con-
seillé de commencer le docstring par un résumé du texte, puis de laisser un saut de
ligne entre ce titre et le corps du texte :

Exemple de docstring sur plusieurs lignes

Le corps du texte est aligné sur les triples guillemets et une ligne entière est réservée
au triple guillemet final.

Espacement du code
Les sauts de lignes sont un facteur de lisibilité du code non négligeable. Ils doivent
donc être utilisés à bon escient et combinés aux commentaires pour mettre en valeur
la structure du code. Dans les algorithmes complexes, un saut de ligne judicieuse-
ment placé avant et après une boucle permet de mieux suivre le rythme, comme le
fait la ponctuation dans une phrase.

def mimetype_to_icon(mimetype):
 """Transforme un type mime en nom de fichier icône."""
 if mimetype.strip() == '':
 return 'unknown.png'
 return mimetype.replace('/', '_') + '.png'

def mimetype_to_icon(mimetype):
 """Transforme un type mime en nom de fichier icône.

 Utilisé pour les fichiers attachés. Si le type
 est inconnu, renvoie 'unknown.png'.
 """
 mimetype = mimetype.strip()
 if mimetype == '' or mimetype notin kown_types:
 return 'unknown.png'
 return mimetype.replace('/', '_') + '.png'

À SAVOIR Docstring sur plusieurs lignes

Cette structure permet aux outils de documentation de différencier le titre, comparable à un docstring
sur une seule ligne, des informations complémentaires. Si elle n’est pas respectée, les documentations
générées ne seront pas très claires.

Conventions de codage
CHAPITRE 7

203

Exemple et contre-exemple

Espaces dans les expressions et définitions
Les espaces dans les expressions et définitions doivent respecter un certain nombre
de règles :
1 toujours placer un espace après une virgule, un point-virgule ou deux-points ;
2 ne jamais placer d’espace avant une virgule, un point-virgule ou deux-points ;
3 toujours placer un espace de chaque coté d’un opérateur, sauf lorsque cet opérateur

est le signe égal (=) utilisé dans l’affectation par défaut dans une liste d’arguments ;
4 ne pas placer d’espace après une accolade, un crochet ou une parenthèse ouvrante ;
5 ne pas placer d’espace entre le nom d’une fonction et sa liste d’arguments, ou le

nom d’un dictionnaire et un index.

code nécessitant un effort de lecture supplémentaire
def reverse_text(text):
 size = len(text)
 result = []
 for i in range(size).reverse():
 result.append(text[i])
 return ''.join(result)

code mettant en relief le rythme de l'algorithme
def reverse_text(text):
 """Fonction qui renvoie un texte à l'envers."""
 size = len(text)
 result = []

 for i in range(size).reverse():
 result.append(text[i])

 return ''.join(result)

À RETENIR Ligne vide en fin de fichier

Les fichiers Python doivent toujours se terminer par une ligne vide, pour éviter d’éventuels problèmes
avec certains outils de lecture de source.
La commande cat de certains shells Unix n’affiche jamais la dernière ligne d’un fichier par exemple. Les
systèmes de version CVS ou Subversion affichent en général un avertissement dans ce cas de figure.

Éléments du langage
DEUXIÈME PARTIE

204

Exemples et contre-exemples d’espacement

Conventions de nommage
Les conventions de nommage des différents éléments de code sont aussi importantes que
la mise en page vue dans la partie précédente, car elles donnent des informations supplé-
mentaires aux développeurs quant à la nature de certains attributs ou certaines variables.

Les conventions de nommage sont les conventions qui diffèrent le plus. Elles sont
souvent inhérentes à certains frameworks. Ces outils tiers imposent leur propre style,
et il est en général conseillé, lorsque l’on travaille avec un environnement basé sur ces
outils, de respecter leurs conventions.

Règle 1
à éviter :
def foo(param1 , param2 ,param3):
 ...
préférer :
def foo(param1, param2, param3):
 ...

Règle 2
à éviter :
def foo(param1, param2, param3 = 2):
 if a=b or c=d:
 ...
préférer :
def foo(param1, param2, param3=2):
 if a = b or c = d:
 ...

Règle 3
à éviter :
dictionnary = { 'key' : 1 }
préferer :
dictionnary = {'key' : 1}

Règle 4
à éviter :
self.method (3, 'a')
dictionnary ['key'] = 12
préferer :
self.method(3, 'a')
dictionnary['key'] = 12

Conventions de codage
CHAPITRE 7

205

Avant de présenter les différentes conventions, voici quelques définitions :
• CapitalizedWords : nom composé d’un ou plusieurs mots attachés dont chaque

première lettre est en majuscules ;
• mixedCase : CapitalizedWords dont la première lettre est en minuscules ;
• lowercase : nom composé d’un ou plusieurs mots attachés dont toutes les lettres

sont en minuscules ;
• lowercase_words : nom composé d’un ou plusieurs mots séparés par des espaces

soulignés, dont toutes les lettres sont en minuscules ;
• UPPERCASE_WORDS : nom composé d’un ou plusieurs mots séparés par des

espaces soulignés, dont toutes les lettres sont en majuscules.

Ces différentes écritures peuvent êtres appliquées à trois familles de noms :
• les modules ;
• les classes ;
• les fonctions et variables globales d’un module, les méthodes et attributs d’une

classe.

Modules
Les modules doivent êtres écrits en lowercase. Il faut cependant veiller à ne pas utiliser
des noms de plus de huit caractères pour éviter par exemple, que votre code qui fonc-
tionne parfaitement sous GNU/Linux, ne marche plus sous certaines versions de
MS-DOS à cause de problèmes d’importation.

La recommandation précédente était de nommer les modules de deux manières dif-
férentes suivant leur appartenance à une des deux sous-familles de modules :
• les bibliothèques ;
• les modules de classe.

Les bibliothèques sont des modules contenant un certain nombre de fonctions et de
classes. C’est le cas par exemple d’imaplib, de smtplib, ou encore de gzip.

Les modules de classe sont des modules qui ne contiennent qu’une seule classe et
quelques éléments supplémentaires comme des définitions de constantes. Le module
porte en général le même nom que la classe qu’il contient et utilise une notation
CapitalizedWords.

Il est préconisé aujourd’hui, outre le fait d’abandonner la notation CapitalizedWords, de
ne plus créer un module par classe mais de préférer un regroupement logique des classes,
à différencier du regroupement fonctionnel proposé par les modules de type bibliothè-
ques. Ce regroupement est en général défini par les relations entres classes : une classe de
base et ses classes dérivées, les classes en charge du même lot de fonctionnalités, etc.

Éléments du langage
DEUXIÈME PARTIE

206

Cette organisation simplifie grandement l’écriture et la compréhension des clauses
d’importation, qui ont tendance à représenter un nombre conséquent de lignes quand
le code grossit. Par exemple, toute les classes d’un objet concernant les connexions vers
des bases de données peuvent être regroupées dans un module nommé bdaccess.

Classes
Les noms des classes sont toujours en CapitalizedWords, et préfixés si nécessaire d’un ou
deux espaces soulignés. Le choix d’un nom de classe doit être le plus descriptif possible
et si possible avoir une racine commune au nom de la classe parente s’il y a héritage.

Fonctions et variables globales d’un module, méthodes et attributs
d’une classe

Les fonctions et variables globales d’un module sont en lowercase_words, et préfixées
si nécessaire d’un espace souligné. De même, les méthodes et attributs d’une classe
doivent être en lowercase_words, et préfixés si nécessaire d’un ou deux espaces souli-
gnés. Cette convention prévaut dans la plupart des cas, mais certains frameworks
comme Zope préconisent une autre convention pour le nommage des méthodes, qui
a tendance à être de plus en plus pratiquée : le mixedCase.

À RETENIR Les parties privées, protégées et publiques d’une classe en Python

Avant de présenter les conventions de nommage pour les classes, il est nécessaire de faire un rapide
résumé des différents niveaux de visibilité des méthodes et attributs d’une classe.
Contrairement à la plupart des langages objet, le langage Python ne définit pas de sections privées, pro-
tégées ou publiques.
Ces distinctions sont laissées à la charge du développeur qui doit utiliser une convention particulière qui
consiste à préfixer d’un espace souligné le nom des méthodes et des attributs protégés, et de deux espa-
ces soulignés ceux destinés à être privés.
Le chapitre 14 couvre plus en détail la programmation orientée objet.

B.A.-BA Nommage de classes

Prenons l’exemple d’un ensemble de classes destinées à gérer des flux de données. Une classe de base
définit une certaine abstraction du fonctionnement des flux et une classe dérivée implémente cette abs-
traction pour des flux RSS. Les noms pourraient être :
• BaseDataStream
• RSSDataStream

Conventions de codage
CHAPITRE 7

207

Constantes
Les constantes sont, comme dans la plupart des langages, en
UPPERCASE_WORDS, préfixées si nécessaire par un ou deux espaces soulignés.

Structure d’un module
Un module respecte toujours la même organisation, soit :
• un en-tête ;
• des clauses d’importations ;
• des variables globales ;
• des fonctions et classes.

En-tête
L’en-tête est composé d’un bloc de commentaires commun à tous les modules d’un
projet, avec quelques éléments spécifiques :
• l’interpréteur ;
• l’encodage ;
• la balise Id CVS ou SVN, appelée tag.

Interpréteur
Pour les plates-formes Unices, il est de coutume de commencer ce bloc par une ligne
indiquant au système l’endroit où se trouve l’interpréteur python.

Directive

Cette ligne permet d’exécuter directement le module en ligne de commande. Elle s’avère
inutile pour les modules qui ne sont pas exécutés directement, mais n’est pas gênante.

Encodage
Les modules Python étant chargés par défaut en ASCII par l’interpréteur, les carac-
tères spécifiques dépassant les 128 premiers signes posent des problèmes lorsqu’il est
nécessaire d’écrire des chaînes unicode. Jusqu’à la version 2.2 de Python, l’écriture de
ces caractères n’était possible qu’en utilisant leurs équivalents en unicode-escape, ou
par exemple é s’écrit \xe9.

#!/usr/bin/python

Éléments du langage
DEUXIÈME PARTIE

208

Python 2.3 a introduit une nouvelle directive à placer en première ou deuxième ligne
du fichier, qui permet de spécifier l’encoding. L’encodage en général utilisé par les
programmeurs francophones est l’utf-8.

Directive d’encodage

Copyright et licence
Les lignes suivantes peuvent concerner le copyright, ainsi que la licence du fichier.
La structure de ces informations est libre.

Tags
Si vous utilisez CVS ou SVN (Subversion), la dernière ligne du commentaire peut
être utilisée pour mettre en place un tag de version, utilisé par le système de version-
ning pour placer un certain nombre d’informations.

Tag vierge

Ce tag sera renseigné lors du premier commit.

Tag après commit

Docstring de module
Le docstring général au module vient se placer juste après le bloc de commentaire et
contient un descriptif complet de tous les éléments et de leur utilisation. Il peut aussi
contenir des informations relatives aux dépendances, c’est-à-dire à l’ensemble des
programmes et modules tiers nécessaires. En outre, si le module est directement exé-
cutable, on retrouvera dans ce docstring la liste des paramètres d’exécution.

-*- encoding: utf8 -*-

À SAVOIR Encodage d’un fichier Python

Les éditeurs de code Python recherchent généralement cette ligne pour déterminer l’encodage du fichier,
s’il diffère de celui du système.

$Id: $

$Id: test_mailmessageeditview.py,v 1.2 2005/02/09 10:44:06 tziade Exp $

Conventions de codage
CHAPITRE 7

209

Variables globales spécifiques
Un ensemble de variables globales spécifiques peut suivre le bloc de commentaire.
Toutes ces variables sont optionnelles et en général préconisées par des outils tiers de
génération automatique de documentation, la référence étant celles utilisées par le
module pydoc.

Les variables utilisées par pydoc

Clauses d’importations
Chaque clause d’importation doit être sur une ligne distincte, en évitant de réunir plu-
sieurs clauses sur la même ligne, sauf lorsque les éléments importés appartiennent au
même module. Pour ce dernier cas, une écriture explicite est tout de même préférable.

Cette notation facilite la lecture, surtout lorsque les clauses d’importation sont nom-
breuses.

Exemples et contre-exemples

Les jokers
Comme vu au chapitre 4, Python permet de faire des importations avec des jokers
pour avoir accès à l’ensemble des fonctions, classes et méthodes d’un module, dans
votre espace de noms.

__author__ = "Tarek Ziadé <tarek@ziade.org>"
__date__ = "26 February 2005"
__version__ = "$Revision: 1.5 $"
__credits__ = """Thanks to my mother."""

écriture incorrecte :
import smtplib, imaplib

écriture correcte :
import smtplib
import imaplib

plusieurs éléments du même module, souvent utilisé :
from smtplib import SMTP, SMTP_PORT

plusieurs éléments du même module, préférable :
from smtplib import SMTP
from smtplib import SMTP_PORT

Éléments du langage
DEUXIÈME PARTIE

210

Importation de l’ensemble des éléments d’un module

Cette écriture est à proscrire sauf cas particuliers car les éléments utilisés ne sont pas
clairement identifiés et entraînent une perte de visibilité des dépendances entre
modules. Préférez une écriture complète vers l’élément utilisé.

Importations explicites

Organisation des clauses
Les clauses d’importation doivent être regroupées par niveaux séparés par un saut de
ligne, le plus bas niveau étant placé en premier :
1 importations d’éléments des bibliothèques standards ;
2 importations d’éléments de bibliothèques utilitaires ;
3 importations spécifiques au projet.

Exemple

Si les niveaux ne contiennent qu’une seule clause, ils peuvent être regroupés.

Exemple 2

from smtplib import *

accès à une classe du module :
from smtplib import SMTP

accès au module complet
SMTP sera atteint par smtplib.SMTP
import smtplib

import os
import sys

from smtplib import SMTP
from smtplib import SMTP_PORT
from imaplib import IMAP4

from MonProjet.MonModule1 import MaClasseA
from MonProjet.MonModule2 import MaClasseB
from MonProjet.MonModule2 import MaClasseC

import os
from smtplib import SMTP
from MonProjet.MonModule2 import MaClasseB

Conventions de codage
CHAPITRE 7

211

Variables globales
Les variables globales suivent les clauses d’importation et peuvent être réunies par
thèmes séparés par un saut de ligne.

Exemple

Fonctions et classes, le corps du module
Le reste du module est bien sûr réservé aux différentes fonctions et classes qui le
composent. L’ordre de ces éléments est en général guidé par la logique des
interactions : une classe de base est toujours placée au dessus de ses classes héritées.
De la même manière, une fonction qui doit être appelée pour toutes les classes d’une
application se placera toujours juste après cette classe.

Organisation logique des classes et fonctions

Structuration d’une classe
Une dernière partie importante en terme de structuration concerne l’organisation d’une
classe. Lorsqu’une classe implémente beaucoup de méthodes, c’est en général une bonne
idée de faire des regroupements logiques séparés par des blocs de commentaires.

TIMEOUT = 12
SLEEP = 2

DEFAULT_SERVER = 'localhost'
DEFAULT_PORT = 25

class BaseDataStream:
 """Classe de base pour les flux."""

 def read_stream(self):
 """Lecture d'un flux."""
 raise NotImplementedError

class RSSDataStream(BaseDataStream):
 """Classe pour les flux RSS."""

 def read_stream(self):
 """Lecture d'un flux RSS."""
 ...

registerClass(RSSDataStream)

Éléments du langage
DEUXIÈME PARTIE

212

Structuration d’une classe

Cette notation permet de renforcer la visibilité lorsque les modules commencent à
faire une certaine taille.

Quoi qu’il en soit, des méthodes ou des modules anormalement longs sont bien sou-
vent le témoin d’une mauvaise architecture, et un éclatement est en général à envisager.

Conseils pour le choix des noms
Le choix des noms, que ce soit pour les classes, variables, méthodes, ou tout autre
élément du code, doit être fait en gardant à l’esprit que le programme n’est pas des-
tiné à être lu par des ordinateurs, mais par des développeurs ou des clients.

L’ordinateur n’attache aucune importance aux noms choisis pour les variables, le
développeur en charge de la correction du module quant à lui peut vivre un véritable
cauchemar si les variables trouvées dans le programme s’appellent toujours a, b et c.

Règles générales

Du sens
Un nom doit être porteur de sens. Hormis quelques exceptions comme le nom de
certaines variables utilisées dans des boucles, un nom doit informer sur la nature de
l’élément qu’il désigne.

class RPCDataStream(BaseDataStream):
 """Classe pour les flux RPC."""

 def _fonction_interne1(self):
 ...

 def _fonction_interne2(self):
 ...

 #
 # API public
 #
 def read_stream(self):
 """Lecture d'un flux RPC."""
 ...

Conventions de codage
CHAPITRE 7

213

Choix de la langue
Python est un langage écrit en anglais et tous ses éléments sont des mots anglais.
L’anglais étant de plus la langue universelle de l’informatique, il est vivement con-
seillé de l’adopter pour tous les noms si le contexte le permet.

Il est aussi nécessaire de maîtriser l’anglais utilisé pour éviter des franglismes ou des
fautes d’orthographe qui peuvent prêter à confusion sur le sens des noms.

Unicité des noms
Une fois un nom choisi, il doit être utilisé et écrit de la même manière dans tout le
programme, dans la documentation et dans les spécifications techniques. Il faut
absolument éviter d’utiliser plusieurs noms différents pour parler de la même chose.

La bonne longueur
Utiliser des abréviations pour les noms n’est pas une bonne idée. Les noms trop
courts perdent du sens et deviennent vite anonymes. Lorsque l’on recherche une
variable nommée cpt dans le code, on risque d’être noyé sous les résultats.

Des noms trop longs ne sont pas non plus conseillés, à l’instar des noms à rallonge
que l’on trouve en Java.

La bonne longueur est donc un nom court mais précis, et non abrégé.

Éviter le mélange domaine/technique
Les termes techniques de Python peuvent être : dictionnaire, dico, liste, collection,
tuple, etc.

Les termes du domaine peuvent être : article, rayon, catalogue, etc.

Pour éviter de rendre le code illisible, il ne faut jamais mélanger les deux ensembles
pour composer des noms comme : dico_article, tuple_rayon, etc.

Règles pour chaque type

Modules
Le nom d’un module doit informer sur son contenu et rester homogène, lorsque le
cas se présente, aux autres modules du même paquet ou du même thème.

Un module de client sftp s’appellera logiquement sftplib, en continuité avec
ftplib, httplib, imaplib, etc.

Éléments du langage
DEUXIÈME PARTIE

214

Classes
Le nom d’une classe doit toujours indiquer ses objectifs et parfois ses origines.

Sans documentation supplémentaire, il doit être possible de savoir ce que fait la
classe, uniquement par son nom.

Le nom d’une classe doit s’inscrire dans une certaine continuité avec les classes du
même ensemble.

Dans un framework complet, cette règle peut s’étendre à l’utilisation de racines com-
munes dans le nom de la classe, indiquant par exemple le niveau de dérivation et
l’appartenance à une famille de classes, c’est-à-dire l’origine.

Les racines communes sont toujours à droite du nom et le préfixe est modifié ou
enrichi dans les classes dérivées.

Par exemple :
• StreamRequestHandler

• BaseHTTPRequestHandler

• SimpleHTTPRequestHandler

Ces trois classes utilisent un tronc commun RequestHandler, puis se spécialisent en
Stream, BaseHTTP et enfin SimpleHTTP.

D’une manière plus générale, si un bon nom ne peut pas être trouvé pour une classe, il
y a certainement un problème d’analyse et les abstractions sont probablement à revoir.

Méthodes et fonctions
Tous les conseils présentés ci-dessous s’appliquent également aux fonctions.

Les méthodes doivent indiquer ce qu’elles font ou ce qu’elles retournent.

On peut séparer quelques types de méthodes :
• Les booléens : il est bon de préfixer les méthodes qui renvoient un booléen par
has ou is.

• Les get et set : ces méthodes ont comme objectif de retourner ou de modifier une
valeur donnée. Elles sont toujours préfixées, comme leur nom l’indique, de set et
get, suivi du nom de la valeur.

• Les actions : même principe que get et set mais plus général. Toutes les métho-
des qui font quelque chose commencent par un verbe court, suivi d’un nom.
Exemples : add_alias(), remove_codec(), etc.

Conventions de codage
CHAPITRE 7

215

Variables
Les variables doivent informer sur la valeur. Lorsque ces variables sont des collec-
tions de valeurs, une forme plurielle doit être utilisée.

Les variables booléennes doivent être préfixées par has ou is.

En un mot...
Un guide de recommandations a comme unique objectif de rendre homogène
l’ensemble du code source d’un projet. Il est issu de pratiques éprouvées. Il est néces-
saire d’adopter les conventions décrites dans ce guide pour les projets publics, à savoir
les projets ouverts dont les licences permettent à des développeurs externes à l’orga-
nisation de modifier le code.

Le prochain chapitre est le premier d’une série de trois chapitres consacrés aux
modules les plus importants de la bibliothèque standard.

TROISIÈME PARTIE

La bibliothèque
standard

Un des souhaits principaux de Guido van Rossum était de faire de Python un outil
complet, apte à répondre aux besoins communs de programmation. Cette philosophie,
appelée batteries included, est à l’origine de la richesse de la bibliothèque standard.

La majorité des programmes écrits en Python peuvent la plupart du temps être
conçus sans avoir à rechercher des fonctionnalités supplémentaires dans des librai-
ries tierces, même si certains domaines sont volontairement écartés et simplement
couverts par des abstractions, comme les connecteurs aux bases de données.

La clarté et l’efficacité des API de la bibliothèque standard jouent aussi un rôle
important dans la simplicité de programmation et participent au succès du langage.
Un module d’extension prend toujours en modèle les modules existants, pour être le
plus pythonique possible.

Cette troisième partie regroupe trois chapitres qui présentent une sélection de
modules de la bibliothèque standard, agrémentés de nombreux exemples et
regroupés par thèmes, à savoir :
• interaction avec l’interpréteur ;
• accès au système ;
• utilitaires fichiers ;
• outils de compression ;
• programmation réseau ;
• persistance ;
• conversion, transformation de données ;

La bibliothèque standard
TROISIÈME PARTIE

218

• calculs numériques ;
• structures de données ;
• utilitaires divers.

L’objectif de cette partie est simple : avant de se plonger dans la conception d’un
nouveau module d’extension, une petite vérification de l’existant dans les modules de
la bibliothèque standard peut éviter de tomber dans le syndrome du Not Invented
Here, ou Réinvention de la roue, très fréquent dans le monde de l’OpenSource.

Le dernier chapitre regroupe une série d’exercices de mise en pratique de Python
dans des conditions plus réalistes que les exemples égrainés dans les premières parties
du livre.

La philosophie de Python est de proposer un langage batteries included, c'est-à-dire
de fournir, de base, toutes les fonctionnalités utiles au développeur. Ce chapitre pré-
sente une sélection de modules de la bibliothèque standard, susceptibles de répondre
aux besoins de programmation les plus courants.

Les modules présentés sont regroupés en cinq thèmes. Chaque module est résumé et
présenté avec une liste de ses fonctionnalités les plus importantes, accompagnée
d’exemples d’utilisation ou de liens vers les exercices du chapitre 11, et quelques fois
de liens vers des modules annexes.

Les thèmes sont :
• interaction avec l’interpréteur ;
• accès au système ;
• utilitaires fichiers ;
• outils de compression ;
• programmation réseau.

8
Principaux modules

La bibliothèque standard
TROISIÈME PARTIE

220

Interaction avec l’interpréteur

sys
Le module sys contient la plupart des informations relatives à l’exécution en cours,
mises à jour par l’interpréteur, ainsi qu’une série de fonctions et d’objets de bas
niveau.

argv
argv contient la liste des paramètres d’exécution d’un script. Le premier élément de
la liste est le nom du script et est suivi de la liste des paramètres.

executable
Renvoie le chemin de l’interpréteur Python.

exc_info()->infos
Donne des informations sur l’exception en cours, soit le type d’exception, l’instance
de l’exception, et l’objet traceback.

Informations sur l’exception en cours

exit()
Quitte l’interpréteur en levant une exception SystemError. Prend en paramètre un
entier qui sera utilisé comme code de retour fourni au système en suivant la norme :
• 0 si le programme a fonctionné correctement.
• > 0 en cas d’erreur.

Si un autre type d’objet est fourni, il est affiché et l’interpréteur utilise 0 comme code
de retour. Voir l’exception SystemError du chapitre 7 pour plus d’informations.

>>> import sys
>>> try:
... 3 / 0
... except:
... print(sys.exc_info())
...
(<class exceptions.ZeroDivisionError at 0xb7c5ba1c>,
<exceptions.ZeroDivisionError instance at 0xb7c2b2ec>, <traceback
object at 0xb7c227ac>)

Principaux modules
CHAPITRE 8

221

modules
Dictionnaire contenant l’ensemble des modules chargés par l’interpréteur par le biais
de directives d’importation. Lorsqu’un module est importé, l’interpréteur se réfère à
ce dictionnaire pour ne pas recharger le module s’il est déjà présent dans la liste des
clés. Ce dictionnaire peut être manipulé à la volée dans un programme.

Modifier modules peut être relativement pratique dans le cadre de tests unitaires
pour remplacer un module déjà chargé par une autre version de ce module, spéciale-
ment codé pour les tests.

last_type, last_value, last_traceback
Disponibles uniquement dans le prompt interactif, ces trois objets donnent des
informations sur la dernière exception non interceptée, levée par l’interpréteur.

Informations sur la dernière exception

path
Liste contenant tous les répertoires dans lesquels l’interpréteur recherche des modules
lorsque la directive import est utilisée, ou lorsque des noms de fichiers sont utilisés sans
leur chemin complet. path peut être modifiée à la volée dans un programme.

platform
Informe sur le système d’exploitation.

Quelle plate-forme ?

>>> import sys
>>> 3 / 0
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>> sys.last_type
<class exceptions.ZeroDivisionError at 0xb7c5ba1c>
>>> sys.last_value
<exceptions.ZeroDivisionError instance at 0xb7c2bb8c>
>>> sys.last_traceback
<traceback object at 0xb7c2a1bc>

>>> import sys
>>> sys.platform
'linux2'

La bibliothèque standard
TROISIÈME PARTIE

222

sys.platform est souvent préféré à os.name car plus précis. Par exemple, sous
Mac OS X, il permettra de différencier Mac de Linux.

Appels sous Mac OS X

Appels sous Linux

stdin, stdout et stderr
Objets fichiers pointant respectivement sur l’entrée standard, la sortie standard et la
sortie standard pour les erreurs.

Manipulation du flux de sortie standard

Accès au système
Ce thème réunit les modules os, subprocess et platform.

Le module os fournit un certain nombre de fonctions de manipulations du système.
Il se place au-dessus de modules spécifiques à une plate-forme, comme les modules
posix ou nt, et permet de garantir une portabilité du code.

Le module subprocess, introduit récemment, propose des fonctions alternatives de
manipulations des processus.

Le module os définit également os.path qui est un alias vers le module posixpath,
ntpath ou macpath, en fonction de la plate-forme en cours et qui fournit des utili-
taires de manipulation des noms de fichiers et répertoires.

>>> import os
>>> os.name
'posix'
>>> sys.platform
'darwin'

>>> import os
>>> os.name
'posix'
>>> sys.platform
'linux2'

>>> import sys
>>> sys.stdout
<open file '<stdout>', mode 'w' at 0xb7c64068>
>>> sys.stdout.write("Dans quel flux j'erre")
Dans quel flux j'erre>>>

Principaux modules
CHAPITRE 8

223

Enfin, platform est un module qui réunit toutes les informations que le système
d’exploitation a pu fournir, du type d’architecture matérielle, au nom de version du
système d’exploitation, en passant par le type de processeur.

os
Le module os regroupe quelques 200 fonctions ou objets qui sont dans certains cas
des alias vers des éléments d’autres modules.

On peut regrouper ces éléments en quatre sous-ensembles :
• opérations sur les descripteurs de fichiers ;
• manipulation des fichiers et répertoires ;
• manipulation des processus ;
• informations sur le système.

Opérations sur les descripteurs de fichiers
Lorsqu’un fichier est ouvert, un numéro unique est attribué au flux jusqu’à ce qu’il
soit fermé. Ce numéro est un entier et est appelé descripteur du fichier.

Le module os fournit une fonction open() qui retourne un descripteur de fichier qui
peut ensuite être utilisé avec certaines fonctions, qui sont présentées dans cette partie.

open(nom, flags, [, mode=0777]) -> fd

Ouvre le fichier nom et renvoie un descripteur de fichier. flags définit le mode
d’ouverture et est construit avec les constantes suivantes (associées avec des opéra-
teurs OR) :
• O_RDONLY ;

• O_WRONLY ;

• O_RDWR ;

• O_APPEND ;

• O_CREAT ;

• O_EXCL ;

• O_TRUNC.

À SAVOIR Gestion des fichiers

Pour des manipulations classiques sur les fichiers, il n’est pas préconisé d’utiliser ces fonctions, qui sont
plus complexes à mettre en œuvre, mais de préférer les objets de haut niveau de type file, générés par
la primitive open() ou file().
Ces objets conservent le descripteur de fichier dans l’attribut fileno et implémentent une partie des
fonctions présentées ci-dessous en méthodes.

La bibliothèque standard
TROISIÈME PARTIE

224

Il existe des constantes supplémentaires spécifiques à chaque plate-forme.

Pour Windows :
• O_BINARY ;

• O_NOINHERIT ;

• O_SHORT_LIVED ;

• O_TEMPORARY ;

• O_RANDOM ;

• O_SEQUENTIAL ;

• O_TEXT.

Pour GNU/Linux et Macintosh :
• O_DSYNC ;

• O_RSYNC ;

• O_SYNC ;

• O_NDELAY ;

• O_NONBLOCK ;

• O_NOCTTY.

close(fd)

Ferme le descripteur de fichier fd. Similaire à la méthode close() de la classe file.

fstat(fd)

Renvoie le statut d’un fichier pointé par le descripteur fd. Équivalente à os.stat()
définie dans la section suivante, qui prend pour sa part le nom du fichier.

fsync(fd)

Force l’écriture du fichier sur le disque pointé par le descripteur fd. Les objets de type
file implémentent en outre la méthode flush() qui vide les tampons internes. Pour
une écriture complète et sécurisée, flush() peut être appelée juste avant fsync().

ftruncate(fd, longueur)

Tronque le fichier pointé par le descripteur fd à la taille longueur, exprimée en octets
(non disponible sous MS-Windows). Similaire à la méthode truncate() de la classe
file.

lseek(fd, position, comment) -> nouvelle position

Déplace le curseur du descripteur de fichier à position. comment définit si le curseur
est déplacé par rapport au début du fichier (0), à la fin (2), ou à la position courante
(1). On retrouve cette fonction en méthode seek() des objets de type file.

Principaux modules
CHAPITRE 8

225

read(fd, taille_buffer) -> chaîne

Lit dans le flux pointé par le descripteur de fichiers un maximum de taille_buffer
bytes, renvoyés dans un objet de type string. Similaire à la méthode read() de la
classe file.

write(fd, str) -> nombre d’octets écrits

Écrit la chaîne de l’objet string str dans le flux pointé par le descripteur fd. Similaire
à la méthode write() de la classe file.

Les opérations sur les descripteurs de fichiers peuvent s’avérer intéressantes pour des
implémentations spécifiques de lecture-écriture de fichiers.

Lecture-écriture bas niveau dans le module tarfile

Manipulation des fichiers et répertoires
Cette section regroupe toutes les fonctions de manipulation du système de fichiers.
Certaines sont spécifiques aux plates-formes Unix et Macintosh qui possèdent un
système de fichiers aux fonctionnalités plus poussées que celui de MS-Windows,
comme les fonctions de création de liens symboliques.

class _LowLevelFile:
 """Low-level file object. Supports reading and writing.
 It is used instead of a regular file object for streaming
 access.
 """

 def __init__(self, name, mode):
 mode = {
 "r": os.O_RDONLY,
 "w": os.O_WRONLY | os.O_CREAT | os.O_TRUNC,
 }[mode]
 if hasattr(os, "O_BINARY"):
 mode |= os.O_BINARY
 self.fd = os.open(name, mode)

 def close(self):
 os.close(self.fd)

 def read(self, size):
 return os.read(self.fd, size)

 def write(self, s):
 os.write(self.fd, s)

La bibliothèque standard
TROISIÈME PARTIE

226

access(chemin, mode) -> booléen

Utilise les droits courants pour contrôler que l’accès au chemin est possible et auto-
risé. mode définit le type de test et peut prendre une ou plusieurs des valeurs ci-des-
sous, combinées avec des OR :

• F_OK : teste l’existence du chemin.
• R_OK : teste le droit de lecture.
• W_OK : teste le droit d’écriture.
• X_OK : teste le droit d’exécution.

chdir(chemin)

Modifie le répertoire de travail en cours par celui pointé par chemin.

getcwd() -> répertoire de travail

Renvoie le répertoire de travail en cours, sous la forme d’un objet string.

chroot(chemin)

Permet de changer le répertoire root du processus courant par celui pointé par
chemin (non disponible sous MS-Windows).

chmod(chemin, mode)

Modifie les droits d’accès du chemin chemin. mode peut prendre une valeur octale ou
une des constantes définies dans le module stat :
• S_ISUID ;

• S_ENFMT ou S_ISGID ;

• S_ISVTX ;

• S_IRWXU ;

• S_IREAD ou S_IRUSR ;

• S_IWRITE ou S_IWUSR ;
• S_IEXEC ou S_IXUSR ;

• S_IRWXG ;

• S_IRGRP ;

• S_IWGRP ;

• S_IXGRP ;

• S_IRWXO ;

• S_IROTH ;

• S_IWOTH ;

• S_IXOTH.

Principaux modules
CHAPITRE 8

227

chown(chemin, uid, gid)

Modifie le propriétaire et le groupe du chemin chemin, avec les valeurs numériques
fournies dans uid et gid (non disponible sous MS-Windows).

link(src, dst)

Crée un lien direct nommé dst vers src (non disponible sous MS-Windows).

listdir(chemin) -> liste de noms

Renvoie une liste contenant le nom des fichiers et répertoires trouvés dans le réper-
toire pointé par le chemin chemin, à l’exception des entrées « . » et « .. ».

Une modification a été apportée dans la version 2.3, pour les plates-formes
MS-Windows et Unix : si le chemin fourni est un objet unicode, la liste renvoyée
sera composée d’objets unicode.

lstat(chemin) -> stat

Identique à os.stat(), mais ne suit pas les liens symboliques (non disponible sous
MS-Windows).

mkdir(chemin, [mode=0777])

Crée un répertoire de nom chemin. Si le répertoire ne peut pas être créé, une OSError
est levée. mode est ignoré sous MS-Windows.

Création de répertoire

makedirs(chemin, [mode=0777])

Fonctionne comme mkdir() mais permet de créer récursivement tous les sous-réper-
toires éventuellement fournis dans le chemin. Si le dernier répertoire existe, une
erreur est levée.

Création récursive de répertoires

>>> import os
>>> os.mkdir('test')
>>> os.mkdir('test')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
OSError: [Errno 17] File exists: 'test'

>>> import os
>>> os.makedirs('la/route/est/longue')
>>> os.makedirs('la/route/est/courte')
>>>

La bibliothèque standard
TROISIÈME PARTIE

228

pathconf(chemin, nom) -> entier

Renvoie les informations de configuration système pour le chemin chemin.

nom définit le type d’informations à récupérer. C’est une chaîne de caractères ou un
entier récupéré respectivement dans la liste des clés et des valeurs du dictionnaire
os.pathconf_names. La liste fournie n’est pas exhaustive et il est possible sur certains
systèmes d’utiliser d’autres valeurs avec pathconf.

De plus, si le système ne connaît pas une des constantes fournies dans le dictionnaire,
une erreur sera levée au moment de son utilisation (pathconf n’est pas disponible
sous MS-Windows).

Récupération d’informations de configuration

readlink(lien) -> chemin

Récupère le chemin pointé par un lien. Provoque une OSError si le chemin fourni
n’est pas un lien (non disponible sous MS-Windows).

Recherche du fichier originel d’un lien

[tziade@Tarek ~]$ ls la/
route/
[tziade@Tarek ~]$ ls la/route
est/
[tziade@Tarek ~]$ ls la/route/est
courte/longue/

>>> import os
>>> os.pathconf_names
{'PC_MAX_INPUT': 2, 'PC_VDISABLE': 8, 'PC_SYNC_IO': 9, 'PC_SOCK_MAXBUF':
12, 'PC_NAME_MAX': 3, 'PC_MAX_CANON': 1, 'PC_PRIO_IO': 11,
'PC_CHOWN_RESTRICTED':6, 'PC_ASYNC_IO': 10, 'PC_NO_TRUNC': 7,
'PC_FILESIZEBITS': 13, 'PC_LINK_MAX': 0, 'PC_PIPE_BUF': 5,
'PC_PATH_MAX': 4}
>>> os.pathconf('/usr/lib/python2.4/tarfile.py', 'PC_FILESIZEBITS')
64

$ touch fichier.py
$ ln -s fichier.py lien.py
$ python
Python 2.6.1 (r261:67515, Dec 6 2008, 16:42:21)
[GCC 4.0.1 (Apple Computer, Inc. build 5370)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.readlink('lien.py')
'fichier.py'

Principaux modules
CHAPITRE 8

229

remove(chemin)

Supprime le fichier pointé par son chemin. Équivalente à unlink(path). Si le fichier
ne peut pas être retiré (par exemple, lorsque le fichier est en cours d’utilisation pour
les systèmes MS-Windows) ou si le chemin pointe sur un répertoire, une erreur sys-
tème est levée.

removedirs(chemin)

Supprime chemin récursivement. Commence par supprimer le répertoire le plus pro-
fond et remonte le chemin. Si un répertoire rencontré n’est pas vide, removedirs
s’arrête silencieusement, sauf dans le cas du répertoire le plus profond où une erreur
est générée.

rename(ancien, nouveau)

Renomme le fichier ancien en nouveau.

Attention : sous Unix, si un fichier nommé nouveau existe déjà et si l’utilisateur a les
droits en écriture sur ce fichier, il sera écrasé silencieusement. En cas de problème,
une erreur système est levée.

renames(ancien, nouveau)

Renomme le fichier ancien en nouveau de la même manière que rename(). Si les
répertoires intermédiaires du chemin nouveau n’existent pas, ils sont créés. Si l’opéra-
tion réussit, un appel à removedirs() est ensuite effectué sur l’ancien chemin.

Dans l’exemple ci-dessous, le fichier fichier.txt qui est contenu dans le répertoire
sous_dossier, est renommé en fichier2.txt et déplacé dans sous_dossier2.
Comme ce fichier est le seul du répertoire sous_dossier, ce dernier est supprimé.

Renommage d’arborescence

>>> import os
>>> os.listdir('/home/tziade/testrenames')
['sous_dossier']
>>> os.listdir('/home/tziade/testrenames/sous_dossier')
['fichier.txt']
>>> os.renames('/home/tziade/testrenames/sous_dossier/fichier.txt',
 '/home/tziade/testrenames/sous_dossier2/fichier2.txt')
>>> os.listdir('/home/tziade/testrenames')
['sous_dossier2']
>>> os.listdir('/home/tziade/testrenames/sous_dossier2')
['fichier2.txt']

La bibliothèque standard
TROISIÈME PARTIE

230

rmdir(chemin)

Supprime le répertoire pointé par chemin. Si le répertoire en question n’est pas vide,
ou si ce n’est pas un répertoire, une erreur système est levée.

stat(chemin) -> objet stat_result

Renvoie un objet stat_result dont les attributs contiennent des informations sur le
chemin, à savoir :
• st_mode : permissions ;
• st_ino : numéro d’inode ;
• st_dev : périphérique ;
• st_nlink : numéro de lien si lien direct ;
• st_uid : ID du propriétaire ;
• st_gid : ID du groupe ;
• st_size : taille du fichier en octets ;
• st_atime : date de dernier accès ;
• st_mtime : date de dernière modification ;
• st_ctime : date de création sous MS-Windows et date de dernière modification

des méta-données sous Unix.

Certains attributs supplémentaires sont accessibles pour certaines plates-formes:
• st_blocks : nombre de blocs alloués au fichier (GNU/Linux) ;
• st_blksize : taille d’un bloc d’allocation (GNU/Linux) ;
• st_rdev : type de périphérique pour les périphériques inode (GNU/Linux) ;
• st_rsize : taille réelle du fichier (Mac) ;
• st_creator : créateur du fichier (Mac) ;
• st_type : type de fichier (Mac).

Lorsqu’un appel à stat() est effectué, il est possible d’accéder aux résultats sous la
forme d’un tuple qui renvoie une partie des attributs de l’objet, pour assurer une
compatibilité avec les anciennes versions.

Pour toutes les valeurs de temps, stat() fait appel à os.stat_float_times(). Si
cette fonction renvoie vrai, les temps sont renvoyés en secondes dans des objets float.
Dans le cas inverse, des secondes entières sont renvoyées. Par défaut,
stat_float_times() renvoie False, pour assurer une compatibilité avec les
anciennes versions de Python, mais il est possible de modifier cette valeur en appe-
lant stat_float_times() avec la valeur booléenne de renvoi souhaitée en paramètre.
Cette modification sera conservée pour tous les appels suivants du programme.

Principaux modules
CHAPITRE 8

231

stat() sur socket.py

symlink(src, dst)

Spécifique à Unix, crée un lien symbolique dst, pointant vers src.

unlink(chemin)

Similaire à remove(chemin).

walk(top[, topdown=True[, onerror=None]])

Permet de parcourir récursivement l’arborescence des répertoires, en utilisant le
chemin top comme racine. walk() renvoie un itérateur dont chaque entrée est un
tuple composé de trois éléments :
• Le premier élément est le chemin du répertoire.
• Le second fournit la liste des sous-répertoires de ce répertoire par un appel à
os.listdir().

• Le troisième élément est la liste des fichiers.

Sur les systèmes supportant les liens symboliques, ces derniers seront affichés dans la liste
des sous-répertoires mais les liens ne seront pas suivis pour éviter les boucles infinies.

>>> import os
>>> os.stat('socket.py')
posix.stat_result(st_mode=33188, st_ino=2598207L, st_dev=234881026L,
st_nlink=1, st_uid=501, st_gid=80, st_size=17974L, st_atime=1234532028,
st_mtime=1232790848, st_ctime=1232790848)
>>> stats = os.stat('socket.py')
>>> for attribut in dir(stats):
... if attribut.startswith('st_'):
... print('%s: %s' % (attribut, getattr(stats, attribut)))
...
st_atime: 1234532028.0
st_blksize: 4096
st_blocks: 40
st_ctime: 1232790848.0
st_dev: 234881026
st_flags: 0
st_gen: 0
st_gid: 80
st_ino: 2598207
st_mode: 33188
st_mtime: 1232790848.0
st_nlink: 1
st_rdev: 0
st_size: 17974
st_uid: 501

La bibliothèque standard
TROISIÈME PARTIE

232

L’ordre de parcours de l’arborescence est défini par le paramètre topdown. Lorsqu’il
est à True, l’arbre est parcouru de bas en haut, et chaque branche est suivie jusqu’à sa
feuille. Si topdown est à False, l’arbre est parcouru dans l’ordre inverse et les nœuds
enfants se présentent toujours avant leurs parents.

Dans le cas où topdown est à True, l’itérateur renvoyé par walk() se base sur la liste
des sous-répertoires renvoyée dans le tuple pour un répertoire donné, pour continuer
son parcours dans la branche. Cette liste peut être modifiée à la volée pour influencer
le fonctionnement de l’algorithme de parcours.

L’exemple ci-dessous parcourt l’arborescence d’une installation Python, pour afficher
tous les fichiers Python exceptés les fichiers __init__.py, en excluant à la volée les
répertoires aux noms spéciaux.

Parcours des sources de Python

L’option onerror, lorsqu’elle est spécifiée, permet d’associer une fonction à toute erreur
système survenue lors du parcours des répertoires, ces erreurs étant rendues silencieuses
par walk() par défaut. L’erreur est alors passée à la fonction, qui devient en quelque
sorte le bloc except et peut décider de provoquer un raise ou de laisser passer l’erreur.

Lecture du répertoire /var/log

>>> for root, dirs, files in os.walk('/usr/lib/python2.5'):
... for dir_ in dirs:
... if (dir_.startswith('_') or
... dir_ in ('demos', 'docs', 'doc', 'test')):
... dirs.remove(dir_)
... for f in files:
... if f.endswith('.py') and f != '__init__.py':
... print(os.path.join(root, f))
...
/usr/lib/python2.5/BaseHTTPServer.py
/usr/lib/python2.5/Bastion.py
/usr/lib/python2.5/CGIHTTPServer.py
/usr/lib/python2.5/ConfigParser.py
/usr/lib/python2.5/Cookie.py
/usr/lib/python2.5/DocXMLRPCServer.py
…
/usr/lib/python2.5/xml/sax/handler.py
/usr/lib/python2.5/xml/sax/saxutils.py
/usr/lib/python2.5/xml/sax/xmlreader.py

>>> import os
>>> def print_error(e):
... print("Lecture impossible %s" % e)
...

Principaux modules
CHAPITRE 8

233

Manipulation des processus
Les fonctions ci-dessous permettent de créer et de gérer des processus annexes au
processus principal. Ce besoin peut aller du simple appel à un exécutable du système
à des interactions plus complexes mettant en œuvre des protocoles d’échanges de
données entre processus.

abort() -> ne retourne pas !

Envoie un signal SIGABRT au processus en cours. Le processus stoppe immédiate-
ment son exécution et renvoie un code de sortie à 3.

Sous Unix, un fichier core dump est généré avant la sortie du processus.

exec*([chemin|fichier], [args|arg0, arg1, ..., argn], [env])

Il existe huit fonctions qui permettent d’exécuter un programme sous Python, avec un
même préfixe exec. Ces fonctions lancent l’exécution d’un programme dans un pro-
cessus qui vient remplacer le processus en cours. Lorsque le programme a achevé son
exécution, il n’y a pas de retour au processus précédent (voir dans ce cas spawn*()) :

path est le chemin vers l’exécutable. La série des argx représente les paramètres
passés à l’exécutable, sachant que arg0 correspond au nom de l’exécutable, de la
même manière que sys.argv. Le nouveau processus récupère les variables d’environ-
nement du processus précédent.

>>> for root, dirs, files in os.walk(top='/var/log',
... onerror=print_error):
... for f in files:
... print(os.path.join(root, f))
...
/var/log/CDIS.custom
/var/log/OSInstall.custom
…
/var/log/cups/page_log
Lecture impossible [Errno 13] Permission denied: '/var/log/krb5kdc'
/var/log/samba/log.nmbd
Lecture impossible [Errno 13] Permission denied: '/var/log/samba/cores'

execl(chemin, arg0, arg1, ..., argn)

execle(chemin, arg0, arg1, ..., argn, env)

La bibliothèque standard
TROISIÈME PARTIE

234

Même fonctionnement qu’execl, avec un paramètre supplémentaire env. env est un
mapping qui contient les variables d’environnement pour le processus.

Même fonctionnement qu’execl, excepté que le nom de l’exécutable n’est pas fourni
par un chemin mais par un nom relatif. L’interpréteur recherche alors l’exécutable
dans les répertoires définis dans la variable d’environnement PATH.

Même fonctionnement qu’execlpe, excepté que l’environnement est fourni dans env,
comme pour execle.

Même fonctionnement qu’execl, sauf que les arguments sont passés dans la
séquence arg.

Même fonctionnement qu’execv, avec les variables d’environnement fournies dans
env comme pour execle.

Même fonctionnement qu’execv, excepté que le nom de l’exécutable n’est pas fourni
par un chemin mais par un nom relatif, comme pour execlp.

Même fonctionnement qu’execvp, les variables d’environnement en plus.

Voir aussi : le module subprocess.

execlp(fichier, arg0, arg1, ..., argn)

execlpe(fichier, arg0, arg1, ..., argn, env)

execv(chemin, args)

execve(chemin, args, env)

execvp(fichier, args)

execvpe(fichier, args, env)

FONCTIONS OS.EXEC* disparition programmée

Le module subprocess a été ajouté pour supprimer un jour les fonctions os.exec*. Sachant que
chacune de ces fonctions a une équivalence dans subprocess, une bonne pratique est de ne plus les
utiliser.

Principaux modules
CHAPITRE 8

235

fork() -> PID

Permet de créer un processus enfant. fork() renvoie le PID (Process ID) du nouveau
processus dans le processus père, et 0 dans le processus enfant (non disponible sous
MS-Windows).

Le principe du forking est de créer un deuxième processus qui continue à exécuter la suite
du programme, en parallèle du processus original. Le code doit donc être en mesure de
différencier les deux processus dans la suite du programme. Il peut le faire grâce au retour
de la fonction fork(), qui est différente suivant le processus où l’on se trouve.

L’exemple ci-dessous est un squelette possible de mise en œuvre de fork().

Implémentation de fork() dans un module fork.py

L’exécution de ce programme entraînera la création de deux processus.

-*- coding: utf8 -*-
import os
import time
import sys
import warnings

child_pid = os.fork()

if child_pid == 0:
 # code enfant
 print('enfant: je suis le processus enfant')
 try:
 print('enfant: je travail')
 time.sleep(2)
 print("enfant: j'ai fini")
 except:
 # le code du processus enfant
 # ne doit pas générer une erreur ici
 # qui risquerait de le faire remonter
 # et de lui faire exécuter
 # du code prévu pour le processus parent
 lerr = '%s: %s' % (sys.exc_info()[0], sys.exc_info()[1])
 warnings.warn('Erreur dans le processus enfant:\n %s' % lerr)
else:
 # code parent
 print('pere: je suis le processus pere')
 print("pere: j'attends le processus enfant")
 os.wait()
 print('pere: le processus enfant a terminé')

La bibliothèque standard
TROISIÈME PARTIE

236

Exécution de fork.py

Pour sortir d'un processus enfant, il existe une fonction exit() spécifique :
os._exit().

Cette fonction fonctionne comme la fonction standard sys.exit() et peut être
appelée depuis la version 2.3 avec un code de sortie optionnel en paramètre, pour les
plates-formes non MS-Windows. Parmi les codes existants, nous trouvons :
• EX_OK : sortie normale ;
• EX_OSERR : erreur système.

kill(PID, sig)

Tue un processus avec un signal sig. Le module signal fournit les constantes dispo-
nibles pour le signal et contient, entres autres : SIGKILL, SIGQUIT, SIGABRT (non dis-
ponible sous MS-Windows).

nice(inc) -> nouvelle priorité

Réduit la priorité d’ordonnancement du processus en cours en incrémentant sa valeur
de gentillesse de la valeur inc.

La priorité d’un processus varie de -20 (le plus prioritaire) à 19 (le moins prioritaire)
et est fixée à 0 par défaut. Seuls les utilisateurs root peuvent augmenter la priorité en
fournissant des valeurs négatives (non disponible sous MS-Windows).

popen*(cmd[, mode[, bufsize]])

La série des fonctions popen() permet de lancer une commande cmd sur le système
dans un processus enfant et d’ouvrir un tunnel de communication (un pipe) entre le
processus courant et ce processus enfant.

$ python fork.py
enfant: je suis le processus enfant
enfant: je travail
pere: je suis le processus pere
pere: j'attends le processus enfant
enfant: j'ai fini
pere: le processus enfant a terminé

SUBPROCESS un fork portable

Le module subprocess, introduit dans Python 2.6, et présenté dans le chapitre 10, offre un système
de création et de gestion de processus portable, beaucoup plus simple qu’un appel bas niveau à
os.fork.

Principaux modules
CHAPITRE 8

237

Ce tunnel prend la forme d’un fichier ouvert dans lequel le processus peut lire les
éventuelles données renvoyées par le processus enfant et écrire des données si le
mode d’ouverture mode le permet. mode est à r par défaut mais peut prendre toute les
valeurs de mode d’ouverture de fichier.

Enfin, bufsize détermine la taille du tampon d’entrée-sortie du fichier. Comme
pour la primitive open(), bufsize peut prendre la valeur 0 (pas de tampon), 1
(tampon de la taille d’une ligne), n (entier supérieur à 1, déterminant la taille du
tampon en caractères).

Lorsque le fichier est fermé par le biais de la méthode close(), le sous-processus
renvoie le code de retour sous la forme d’un entier. S’il n’y a eu aucune erreur,
close() renvoie None en lieu et place du code de retour 0.

Cette fonctionnalité est disponible sous quatre formes, avec un retour différent pour
chacune d’entre elles.

Renvoie un fichier ouvert vers le sous-processus.

Renvoie un tuple composé de deux fichiers ouverts vers le sous-processus. Le pre-
mier est le flux d’entrée standard du processus, le second le flux de sortie.

Comme popen2 mais ajoute un troisième fichier pour le flux standard d’erreurs.

Comme popen3 mais regroupe les flux de sortie et d’erreur dans le même flux.

L’exemple ci-dessous utilise popen() pour appeler la commande shell ls.

Appel de ls

popen(cmd[, mode[, bufsize]])

popen2(cmd[, mode[, bufsize]])

popen3(cmd[, mode[, bufsize]])

popen4(cmd[, mode[, bufsize]])

>>> pipe = os.popen('ls -lh /usr/lib/python2.4')
>>> pipe.readline()
'total 9,2M\n'
>>> pipe.readline()
'-rw-r--r-- 1 root root 33K f\xe9v 12 2005 aifc.py\n'
>>> pipe.readline()
'-rw-r--r-- 1 root root 28K f\xe9v 12 2005 aifc.pyc\n'
>>> pipe.readline()
'-rw-r--r-- 1 root root 28K f\xe9v 12 2005 aifc.pyo\n'

La bibliothèque standard
TROISIÈME PARTIE

238

Voir aussi : le module subprocess.

spawn*(mode, [chemin|fichier], [args], ..., [env])

La série des fonctions spawn() est basée sur le même principe que les exec() à
l’exception près que le programme appelé est exécuté dans un nouveau processus.
mode permet de déterminer si le processus principal se met en attente de fin d’exécu-
tion du processus enfant (P_WAIT) et récupère directement le code de sortie, ou s’il
lance le processus en parallèle (P_NOWAIT) et récupère le pid du processus enfant. Les
autres paramètres fonctionnent sur le même modèle d’exec(), à savoir :
• spawnl(mode, chemin, arg0, arg1, ..., argn) ;

• spawnle(mode, chemin, arg0, arg1, ..., argn, env) ;

• spawnlp(mode, fichier, arg0, arg1, ..., argn) ;

• spawnlpe(mode, fichier, arg0, arg1, ..., argn, env) ;

• spawnv(mode, chemin, args) ;

• spawnve(mode, chemin, args, env) ;

• spawnvp(mode, fichier, args) ;

• spawnvpe(mode, fichier, args, env).

Les fonctions contenant p ne sont pas disponibles sous MS-Windows.

Voir aussi : le module subprocess.

system(commande) -> code de retour

Permet de lancer une commande dans un sous-shell et renvoie le code de retour de la
commande. La sortie standard de la commande est liée à la sortie standard du pro-
cessus principal.

Utilisation d’os.system

Le code de retour est fortement lié au type de système et varie d’une version à l’autre,
car cette fonction appelle la fonction system(), cmd.exe ou encore command.com.

Voir aussi : le module subprocess.

>>> pipe.readline()
'-rw-r--r-- 1 root root 2,6K f\xe9v 12 2005 anydbm.py\n'
>>> pipe.close()

>>> coderet = os.system('ls /')
backups boot dev home lib mnt opt root service
src sys usr
bin command etc initrd lost+found proc sbin srv tmp var
>>> coderet
0

Principaux modules
CHAPITRE 8

239

wait() -> (PID, statut)

Attend la fin de l’exécution d’un processus enfant et renvoie le PID du processus ter-
miné ainsi que son statut de retour.

Le statut est un entier sur 16 bits. Les 7 bits de poids faible représentent le signal qui
a tué le processus. Le 8ème bit est à 1 lorsqu’un fichier core dump a été créé, et les 8
bits de poids fort représentent le code de sortie.

waitpid(PID, options) -> (PID, statut)

Même fonctionnement que wait() mais permet d’attendre un processus enfant par-
ticulier, en fournissant son PID.

PID peut aussi prendre des valeurs particulières sous Unix :
• 0 : attente de n’importe lequel des processus du groupe auquel appartient le pro-

cessus courant ;
• -1 : attente de n’importe quel enfant du processus courant ;
• -n : pour n < -1, attente de n’importe lequel des processus du groupe de proces-

sus n.

Les options sont à prendre dans les constantes suivantes, qui peuvent être associées
avec des OR :
• 0 : aucune option ;
• WNOHANG : évite un blocage si aucun statut n’est disponible.

Informations sur le système

environ -> dictionnaire

Renvoie un dictionnaire contenant l’ensemble des variables d’environnement. Ce
dictionnaire peut être directement modifié. Les fonctions putenv() et getenv() sont
alors automatiquement appelées par l’interpréteur.

Modification de la variable TMP

>>> import os
>>> os.environ['TMP']
'/home/tziade/tmp'
>>> os.environ['TMP'] = '/home/tziade/tmp2'
>>> os.environ['TMP']
'/home/tziade/tmp2'

La bibliothèque standard
TROISIÈME PARTIE

240

getloadavg() -> tuple de trois réels

Renvoie une moyenne du nombre de processus gérés par la queue d’exécution du sys-
tème les 1, 5 et 15 dernières minutes. Correspond à l’information affichée dans
l’écran de la commande top sous Linux et Mac OS X.

Appel de getloadavg

Si cette information de charge ne peut pas être obtenue, lève une erreur système.

getuid() -> uid, getgid() -> gid et getlogin() -> login

Récupère, pour les plates-formes Unix, le user id, group id et le login correspondant,
pour le processus en cours.

Lecture des informations user

name -> type de système

Renvoie le type de système.

Peut prendre les valeurs suivantes :
• posix (Unix et affiliés) ;
• nt (Windows) ;
• mac ;
• riscos ;
• os2 ;
• ce ;
• java.

Voir aussi : sys.platform.

setuid(uid) et setgid(gid)

Permet de spécifier pour le processus en cours, l’utilisateur et le groupe. Uniquement
pour Unix.

>>> import os
>>> os.getloadavg()
(0.5380859375, 0.62841796875, 0.6630859375)

>>> import os
>>> print('uid: %d, gid: %d, login: %s' %
... (os.getuid(), os.getgid(), os.getlogin()))
uid: 501, gid: 501, login: tziade

Principaux modules
CHAPITRE 8

241

sysconf(nom) -> entier

Renvoie une valeur de configuration du système. Le dictionnaire os.sysconf_names
contient l’ensemble des noms pouvant être utilisés pour le paramètre nom sur le sys-
tème courant (non disponible sous MS-Windows).

Récupération du nombre de processeurs

uname() -> (sysname, nodename, release, version, machine)

Disponible uniquement pour les Unix récents, renvoie les identifiants du système.

Identifiants du système sous Linux

subprocess
Ce module, introduit à la version 2.4 de Python, offre des fonctions de très haut niveau,
permettant de créer de nouveaux processus. L’objectif de subprocess est de remplacer à
terme la série des fonctions popen*() et spawn*(), et autres créateurs de processus
enfants, pour fournir une interface unifiée plus simple d’utilisation et plus souple.

call(*args, **kwargs) -> code de retour
Lance sur le système une commande avec des arguments, attend que la commande
s’achève, et renvoie le code de retour. Équivalente à os.system().

class Popen
La classe Popen encapsule un processus enfant et fournit des méthodes et des attri-
buts pour manipuler ce processus :
• poll() : vérifie si le processus enfant est toujours vivant.
• wait() : attend que le processus enfant se termine.
• communicate(input=None) : communique avec le processus enfant. Si input est

fourni, il est écrit dans l’entrée standard du processus enfant. Renvoie un tuple
(stdout, stderr) après avoir attendu la fin du processus enfant.

>>> import os
>>> nbproc = os.sysconf('SC_NPROCESSORS_CONF')
>>> print 'Nombre de processeurs: %d' % nbproc
Nombre de processeurs: 1

>>> os.uname()
('Linux', 'Tarek', '2.6.11-6mdk-i686-up-4GB', '#1 Tue Mar 22 15:51:40
CET 2005', 'i686')

La bibliothèque standard
TROISIÈME PARTIE

242

• stdin : attribut pointant sur l’entrée standard du processus enfant.
• stdout : comme stdin, pour la sortie standard.
• stderr : comme stdin, pour la sortie d’erreur standard.
• pid : pid du processus enfant.
• returncode : code de retour du processus enfant. Si returncode vaut None, le

processus enfant n’a pas terminé. Renvoie -n sous Unix pour le code de retour n.

La création d’une instance de Popen peut prendre une multitude d’options :

args contient la commande à lancer et est sous la forme d’un objet string ou une
séquence d’objets string en fonction du paramètre shell.

Si le paramètre shell est à False, args doit être une séquence dont le premier élé-
ment est la commande à lancer et les suivants les paramètres de la commande. Une
string sera alors automatiquement traduite en une séquence d’un élément.

Si le paramètre shell est à True, la commande complète peut être contenue dans un
objet string. Si une séquence est passée, le premier élément sera pris comme com-
mande et les suivants comme arguments shell supplémentaires.

MS-Windows fonctionne différemment pour la lecture de la commande : si args est
une séquence, et ce quelle que soit la valeur de shell, le système demandera une con-
version vers un objet string avec la méthode list2cmdline.

bufsize fonctionne de la même manière que la primitive open() :
• 0 : pas de tampon ;
• 1 : tampon ligne ;
• n : avec n > 1, taille du tampon.

executable permet de définir le programme à exécuter et se place en amont de args.
Reste à None en général, ou contient le chemin vers un shell particulier. Popen utilise
en temps normal le shell par défaut, soit /bin/sh sous Unix et celui spécifié dans la
variable d’environnement COMSPEC sous MS-Windows.

stdin, stdout et stderr définissent les trois flux standards du processus, à savoir
l’entrée, la sortie et la sortie d’erreur.

Peuvent prendre une des valeurs suivantes pour la redirection :
• subprocess.PIPE : création d’un nouveau pipe ;
• un descripteur de fichier ;
• un objet fichier ;

Popen(args, bufsize=0, executable=None, stdin=None, stdout=None,
stderr=None, preexec_fn=None, close_fds=False, shell=False, cwd=None,
env=None, universal_newlines=False, startupinfo=None, creationflags=0)

Principaux modules
CHAPITRE 8

243

• None : aucune redirection.

stderr peut aussi prendre la valeur subprocess.STDOUT. Elle est alors redirigée vers
le flux stdout.

Popen en action

os.path
Ce module réunit des fonctions de manipulation de noms de chemins.

abspath(chemin) -> chemin

Renvoie un chemin absolu en fonction du chemin relatif et du chemin de travail cou-
rant renvoyé par os.getcwd().

basename(chemin) -> chemin

Renvoie le dernier élément du chemin.

commonprefix(list) -> chemin

Retourne le préfixe le plus long, commun à tous les chemins fournis dans la liste.

defpath -> liste de chemins

Objet string contenant une liste de répertoires séparés par des « : ». Cette liste est
utilisée par les fonctions exec() et spawn() lorsqu’un exécutable est recherché et
qu’aucune variable d’environnement PATH n’a été trouvée. Peut être modifié.

dirname(chemin) -> répertoire

Renvoie le répertoire du chemin. Correspond au premier élément retourné par un
appel à split().

>>> from subprocess import *
>>> pipe = Popen('ls -l /usr/lib/python2.5',
... shell=True, stdout=PIPE).stdout
>>> pipe.readline()
'total 9388\n'
>>> pipe.readline()
'-rw-r--r-- 1 root root 33330 f\xe9v 12 2005 aifc.py\n'
>>> pipe.readline()
'-rw-r--r-- 1 root root 28568 f\xe9v 12 2005 aifc.pyc\n'
>>> pipe.readline()
'-rw-r--r-- 1 root root 28568 f\xe9v 12 2005 aifc.pyo\n'
>>> pipe.close()

La bibliothèque standard
TROISIÈME PARTIE

244

exists(chemin) -> booléen

Renvoie True si le chemin existe. Pour les liens symboliques, vérifie aussi que le
chemin pointé par le lien existe toujours et retourne False dans le cas de liens cassés.
Une nouvelle version a été introduite dans Python 2.4, qui fonctionne de la même
manière mais qui retourne True sur les liens symboliques qui sont cassés : lexists().
Cette version reste bien sûr équivalente à exists() pour les systèmes sans liens sym-
boliques, comme MS-Windows.

getsize(chemin) -> taille

Renvoie la taille en octets du chemin.

isfile(chemin) -> booléen

islink(chemin) -> booléen

isdir(chemin) -> booléen

ismount(chemin) -> booléen

Permet de savoir si le chemin est un fichier (isfile()), un répertoire (isdir()), un
point de montage (ismount()) et/ou un lien symbolique (islink()). islink() ren-
voie toujours False sur les systèmes sans liens.

Utilisation des API sur /tmp

join(chemin1 [, chemin2[, …]]) -> chemin concaténé

Permet de concaténer plusieurs parcelles de chemins en un chemin unique, en utili-
sant le séparateur du système conservé dans os.sep.

Jointure

>>> from os import path
>>> path.isdir('/tmp')
True
>>> path.isfile('/tmp')
False
>>> path.ismount('/tmp')
False
>>> path.ismount('/')
True

>>> import os
>>> os.path.join('home', 'tziade', 'Documents')
'home/tziade/Documents'

Principaux modules
CHAPITRE 8

245

Le code utilisant join() reste ainsi portable.

split(chemin) -> (chemin, dernier élément)

Sépare un chemin en deux composants, le deuxième est le dernier élément du
chemin et le premier le reste. Si le chemin n’a aucun séparateur, head est vide.

Extraction du nom de fichier avec split

platform
Le module platform réunit des informations sur le système hôte. Seules les informa-
tions communes à toutes les plates-formes sont présentées ici.

architecture(executable=sys.executable, bits='', linkage='') -> (bits, linkage)

Scanne l’exécutable fourni pour récupérer des informations d’architecture.
executable est par défaut le binaire de l’interpréteur Python. bits représente le type
d’architecture (16, 32 ou 64 bits) et linkage le format de liaison (ELF, etc.) Si le
fichier fourni n’est pas un exécutable, renvoie ('32bits', '') ou les valeurs fournies
en paramètres.

machine() -> type de machine

Renvoie le type de machine sous forme de string, soit i686, i586...

node() -> nom réseau

Renvoie le nom réseau de la machine. Renvoie une chaîne vide si le nom de la
machine n’a pas pu être obtenu.

platform(aliased=False, terse=False) -> informations plate-forme

Récupère et concatène des informations sur le système. Le résultat n’est pas destiné à
être parsé par du code car il peut varier d’un système à l’autre. Si aliased est à True,
platform() tente d’appliquer la fonction plateform.system_alias() au triplet
(system, release, version) s’il est trouvé. system_alias() tente de trouver un
nom commun correspondant au triplet.

processor() -> informations sur le processeur

Renvoie le nom du processeur. Ce nom contient en général le nom du fondeur, le
modèle, et la fréquence, en fonction de la manière dont Python a été compilé

>>> import os
>>> os.path.split('/Users/tarek/.vimrc')
('/Users/tarek', '.vimrc')

La bibliothèque standard
TROISIÈME PARTIE

246

Appel sous Mac OS X, avec Python 2.6

python_build(), python_compiler() et python_version()

Renvoient les informations sur l’interpréteur Python, le numéro et la date de build, le
compilateur utilisé, la version.

release() -> info de release

Renvoie le numéro de release du système.

system() -> nom du système

Renvoie le nom du système.

version() -> version de release

Renvoie la version de release du système.

uname() -> (system, node, release, version, machine, processor)

Renvoie un tuple composé de résultats d’appels à diverses fonctions présentées dans
cette section. Ajoute le nom du processeur, par rapport à os.uname().

Script d’exemple d’utilisation du module platform

>>> import platform
>>> platform.processor()
'i386'

-*- coding: utf8
from platform import *

system, node, release, version, machine, processor = uname()
pbuild = python_build()
pversion = python_version()

print('Système: %s %s (%s)' % (system, release, version))
print('Architecture: %s' % machine)
print('Processeur: %s' % processor)
print('Nom réseau: %s' % node)
print('Version Python: %s build %s (%s)' %
 (pversion, pbuild[0], pbuild[1]))

[...]

$ python infos.py
Système: Darwin 9.6.0 (Darwin Kernel Version 9.6.0: Mon Nov 24 17:37:00
PST 2008; root:xnu-1228.9.59~1/RELEASE_I386)

Principaux modules
CHAPITRE 8

247

Utilitaires fichiers
Ce thème est un complément au thème précédent et contient trois modules :
• shutil : fournit des fonctions de copie et suppression de fichiers.
• dircache : implémente une lecture de répertoires avec cache.
• filcmp : offre des fonctions de comparaison de répertoires et fichiers.

shutil
shutil encapsule des appels au module os pour fournir des fonctionnalités de plus
haut niveau, concernant la copie et la suppression de fichiers ou de groupes de
fichiers.

copy(src, dst)
Copie le fichier de chemin src vers dst. Si dst est un fichier existant, il est écrasé. Si
dst est un répertoire, la fonction copie le fichier dans ce répertoire. copy() recopie
les données mais également les droits d’accès.

copy2(src, dst)
Similaire à copy() mais copie également les dates de dernière modification et
d’accès.

copytree(src, dst[, symlinks [, ignore]])
Recopie récursivement l’arborescence de racine src vers dst en utilisant copy2(). dst
est un chemin qui ne doit pas encore exister.

L’option symlinks permet de spécifier si les liens symboliques sont recopiés comme
liens symboliques (symlinks=True) ou si les ressources pointées sont recopiées en lieu
et place des liens (symlinks=False ou non défini).

L’option ignore permet de filtrer certains fichiers à ne pas recopier. Cette option est
par défaut à None.Lorsqu’elle est spécifiée, ignore doit être un callable qui reçoit
pour chaque répertoire traversé le nom du répertoire et la liste de ses éléments.

Architecture: i386
Processeur: i386
Nom réseau: MacZiade
Version Python: 2.6.1 build r261:67515 (Dec 6 2008 16:42:21)

La bibliothèque standard
TROISIÈME PARTIE

248

Dans l’exemple ci-dessous (repris de la documentation officielle de Python), un log
est émis à chaque copie.

Logging des copies

shutil fourni aussi une fonction d’exemple ignore_patterns, qui prend une liste de
motifs de type glob pour représenter les fichiers à filtrer.

Dans l’exemple ci-dessous, les fichiers d’extension « .txt » et « .tmp » sont omis.

Recopie conditionnelle

rmtree(chemin, [ignore_errors[, onerror]])
Supprime une arborescence complète. Si ignore_errors est à True, les erreurs de
suppression seront silencieuses. Si ignore_errors est à False ou non défini, les
erreurs sont passées à la fonction fournie dans onerror. Si onerror n’est pas spécifié,
l’erreur est levée normalement. onerror doit pointer sur une fonction qui définit trois
paramètres : function, path et excinfo.
• function détermine quelle fonction du module os a provoqué l’erreur

(listdir(), remove() ou rmdir()).
• path rappelle le chemin passé à la fonction.
• excinfo est un appel à sys.exc_info().

La fonction implémentée pour onerror peut ensuite décider de provoquer un raise
ou de laisser passer l’erreur.

move(src, dst)
Déplace une arborescence complète.

from shutil import copytree
import logging

def _logpath(path, names):
 logging.info('Working in %s' % path)
 return [] # nothing will be ignored

copytree(source, destination, ignore=_logpath)

from shutil import copytree, ignore_patterns
copytree(source, destination, ignore=ignore_patterns('*.txt', 'tmp*'))

AVERTISSEMENT Perte d’informations sous plate-forme Mac

Pour toutes ces fonctions, certaines métadonnées ne sont pas recopiées sous Mac, et les informations
comme le créateur sont perdues.

Principaux modules
CHAPITRE 8

249

dircache
Ce module implémente une version spécifique de listdir(), similaire à
os.listdir() mais dont le résultat est trié, puis sauvegardé en mémoire, dans le dic-
tionnaire cache, global au module dircache.

Les appels suivants se basent alors sur la date de modification du répertoire pour
éviter de relire l’arborescence si rien n’a changé. Cette approche permet d’augmenter
très sensiblement les performances des programmes qui accèdent régulièrement au
système de fichiers.

Utilisation du cache

dircache fournit aussi une fonction reset() pour vider le dictionnaire cache.

filecmp
Permet de comparer des fichiers et des répertoires complets.

cmp(f1, f2[, shallow=True[, use_statcache]]) ->booléen
Compare le fichier nommé f1 avec le fichier f2. Si shallow est à True, les fichiers
sont considérés égaux si un appel à os.stat() est identique pour les deux. Si shallow
est à False, une lecture du fichier est effectuée pour la comparaison. Lorsqu’une
comparaison par lecture est effectuée, le résultat est systématiquement mis en cache
et n’est recalculé que si les dates des fichiers changent. use_statecache est obsolète
depuis la version 2.3.

class dircmp(a, b[, ignore[, hide]]) -> instance
Crée un objet de type dircmp, qui permet de comparer les répertoires a et b. ignore
est une liste de noms à ignorer et est par défaut initialisée à ['RCS', 'CVS',

'tags']. hide est une liste de noms à ne pas afficher et est par défaut initialisée à
[os.curdir, os.pardir], soit ['.', '..'] sous Unix et MS-Windows.

>>> import dircache
>>> dircache.listdir('/')
['.autofsck', '.rnd', '.thunderbird', 'backups', 'bin', 'boot',
'command', 'dev', 'etc', 'home', 'initrd', 'lib', 'lost+found', 'mnt',
'nohup.out', 'opt','proc', 'root', 'sbin', 'service', 'slapd.log',
'src', 'srv', 'sys', 'tmp', 'usr', 'var']
>>> dircache.cache
{'/': (1124398584, ['.autofsck', '.rnd', '.thunderbird', 'backups',
'bin', 'boot', 'command', 'dev', 'etc', 'home', 'initrd', 'lib',
'lost+found', 'mnt', 'nohup.out', 'opt', 'proc', 'root', 'sbin',
'service', 'slapd.log', 'src', 'srv', 'sys', 'tmp', 'usr', 'var'])}

La bibliothèque standard
TROISIÈME PARTIE

250

dircmp fournit ensuite un certain nombre de méthodes :
• report() : affiche sur la sortie courante un comparatif entre a et b.
• report_partial_closure() : affiche sur la sortie courante un comparatif entre a

et b et entre les sous-répertoires communs.
• report_full_closure() : affiche sur la sortie courante un comparatif entre a et b

et entre les sous-répertoires communs, de manière récursive.

Outre ces rapports, dircmp possède des attributs qui permettent de récupérer des
informations sur la comparaison effectuée, soit :
• left_list : fichiers et sous-répertoires de a, filtrés par hide et ignore ;

• right_list : fichiers et sous-répertoires de b, filtrés par hide et ignore ;

• common : fichiers et sous-répertoires communs ;
• left_only : fichiers et sous-répertoires communs uniquement présents dans a ;

• right_only : fichiers et sous-répertoires communs uniquement présents dans b ;

• common_dirs : sous-répertoires communs ;
• common_files : fichiers communs ;
• common_funny : éléments communs mais dont les types diffèrent, ou éléments

ayant provoqué une erreur dans os.stat() ;

• same_files : fichiers communs et de contenus identiques ;
• diff_files : fichiers communs mais de contenus différents ;
• funny_files : fichiers communs qui n’ont pas pu être comparés ;
• subdirs : dictionnaires contenant des objets de type dircmp associés aux élé-

ments de la liste common_dirs.

Comparaison des versions 2.3 et 2.4 de Python

>>> import filecmp
>>> comp = filecmp.dircmp('/usr/lib/python2.4', '/usr/lib/python2.3')
>>> nouveautes = comp.left_only
>>> disparus = comp.right_only
>>> modifies = comp.diff_files
>>> inchanges = comp.same_files
>>> nouveautes
['_LWPCookieJar.py', 'cookielib.py', 'subprocess.py', 'decimal.py',
'_MozillaCookieJar.py', '_threading_local.py']
>>> disparus
['TERMIOS.py', 'FCNTL.py', 'pre.py']
>>> modifies
['weakref.py', 'ihooks.py', 'pydoc.py',..., 'whichdb.py', 'string.py']
>>> inchanges
['Cookie.py', 'MimeWriter.py', ..., 'user.py', 'uu.py']

Principaux modules
CHAPITRE 8

251

Outils de compression
Python inclut dans sa bibliothèque standard un module zlib qui encapsule la biblio-
thèque système zlib. Cette dernière, distribuée par gzip, fournit un algorithme de
compression utilisé dans la plupart des formats de fichiers archives.

C’est le cas bien sûr du format gzip mais aussi du format zip, sachant que les fichiers
zip peuvent être compressés en suivant plusieurs méthodes, dont zlib.

Enfin, le format tar utilise aussi la compression zlib pour construire et lire des
archives de type tar gzipped.

Cette section présente les modules qui permettent de travailler avec des archives gzip
et zip, sachant que les modules bz2 et tarfile sont respectivement basés sur le
même mode opératoire.

gzip
Le format gzip permet de compresser des données dans un fichier archive. Il est en
général utilisé avec les utilitaires GNU gzip et gunzip, qui prennent en paramètre un
fichier et le compressent dans une archive d’extension .gz.

Le module gzip fournit une classe similaire à une classe de type file, qui permet
d’accéder de façon transparente aux données d’une archive gzip, en lecture et en écri-
ture, comme si le fichier n’était pas compressé.

class GzipFile([filename[, mode[, compresslevel[, fileobj]]]])
La classe GzipFile peut être instanciée avec un objet fileobj représentant les don-
nées. fileobj peut être un objet de type file ouvert, un objet StringIO, ou tout autre
objet qui puisse simuler les méthodes des objets de type fichier (read(), write(),
seek(), etc.). filename est ensuite utilisé pour stipuler le nom de fichier qui est placé
dans l’en-tête du fichier gzip dans le cas d’une écriture.

Si filename est à None, le nom renvoyé par filobj.name est utilisé. S’il est non spécifié,
mode est récupéré dans fileobj lorsqu’il est disponible. S’il ne l’est pas, il est fixé à rb par
défaut. Le mode de travail peut prendre les valeurs r, rb, pour les lectures et a, ab, w ou wb
pour les écritures, bien qu’il soit conseillé de toujours utiliser les modes binaires.

À SAVOIR Combiner dircmp et difflib

Cet outil peut être combiné à difflib, pour afficher précisément les différences entre les fichiers com-
muns dont le contenu varie.

La bibliothèque standard
TROISIÈME PARTIE

252

Lorsque fileobj est passé en paramètre, son ouverture et sa fermeture sont à la
charge du développeur, en amont et en aval. Ce fonctionnement autorise la récupéra-
tion de flux compressés sans pour autant forcer une écriture de fichier sur le système.

Dans le cas ou filobj n’est pas spécifié ou à None, la classe utilise le nom de fichier
fourni dans filename pour ouvrir un nouvel objet file, en utilisant le mode fourni
ou par défaut, rb.

compresslevel permet de spécifier le niveau de compression pour les écritures et est
fixé à 9 par défaut, soit le niveau de compression le plus fort et le plus gourmand en
temps CPU. Les niveaux varient de 0 (le moins compressé mais le plus rapide) à 9.

open(fichier[, mode[, compresslevel]])
Raccourci direct permettant d’instancier un nouvel objet de type GzipFile sur le
fichier, à la manière de la primitive open().

open() est utilisée dans l’exemple ci-dessous, pour simuler le fonctionnement de base
des outils gzip et gunzip.

Module gzipper.py

#!/usr/bin/python
-*- coding: ISO-8859-15 -*-
""" Ce module simule le fonctionnement
 de base de gzip et gunzip
"""
import sys
import os
from optparse import OptionParser
from gzip import open as gzopen

option_1 = {'noms': ('-c', '--compress'), 'dest': 'compress',
 'action': 'count', 'help': 'fichier à compresser'}

option_2 = {'noms': ('-d', '--decompress'), 'dest': 'decompress',
 'action': 'count', 'help': 'fichier à décompresser'}

options = [option_1, option_2]

def _compress(filename, compresslevel=9):
 """ compresse un fichier en une archive gzip

 attention, écrase un éventuel fichier filename+".gz"
 et ne crée que des archives par lecture binaire
 """
 original = open(filename, mode='rb')

Principaux modules
CHAPITRE 8

253

 try:
 compressed = gzopen(filename+'.gz', mode='wb')
 try:
 for line in original.readlines():
 compressed.write(line)
 finally:
 compressed.close()
 os.remove(filename)
 finally:
 original.close()

def _decompress(filename):
 """ décompresse une archive gzip

 attention, écrase un éventuel fichier "resultfile"
 """
 archive = gzopen(filename)
 try:
 if filename.endswith('.gz'):
 resultfile = filename[:-3]
 else:
 resultfile = '%s.uncompressed' % filename

 uncompressed = open(resultfile, mode='w')
 try:
 for line in archive.readlines():
 uncompressed.write(line)
 finally:
 uncompressed.close()
 os.remove(filename)
 finally:
 archive.close()

def main(options, arguments):
 if len(arguments) != 1:
 print 'usage: %s' % parser.usage
 sys.exit(2)

 compress = options.compress isnot None
 decompress = options.decompress isnot None

 if (compress and decompress) or (not compress and not decompress):
 print 'usage: %s' % parser.usage
 sys.exit(2)

 filename = arguments[0]
 if compress:
 _compress(filename)
 else:
 _decompress(filename)

La bibliothèque standard
TROISIÈME PARTIE

254

zipfile
Le format zip est plus complet que gzip car il permet de compresser dans une même
archive plusieurs fichiers. Le module zipfile fournit une classe ZipFile de manipu-
lation d’une archive zip.

class ZipFile(fichier[, mode[, compression]])
La classe est instanciée avec fichier, qui peut être le nom d’un fichier ou un fichier
de type file ou assimilé, comme pour le cas de gzip.

Le mode par défaut est r et peut être fixé à r, w ou a suivant les cas (si b est ajouté, il
est automatiquement retiré).

Le mode de compression peut être ZIP_STORED (pas de compression, valeur par défaut)
ou ZIP_DEFLATED (compression zlib, avec un niveau de compression par défaut).

if __name__ == '__main__':
 parser = OptionParser()
 parser.usage = 'gzipper [-cd] [fichier]'
 for option in options:
 param = option['noms']
 del option['noms']
 parser.add_option(*param, **option)
 options, arguments = parser.parse_args()
 sys.argv[:] = arguments
 main(options, arguments)

[..]

tziade@Tarek:~/Desktop$ python gzipper.py -c started.py
tziade@Tarek:~/Desktop$ ls started.py.gz
started.py.gz
tziade@Tarek:~/Desktop$ python gzipper.py -d started.py.gz
tziade@Tarek:~/Desktop$ ls started.py
started.py

BON À SAVOIR gzip et directive with

Le module gzip a récemment été étendu pour supporter la directive with.
Ainsi, un fichier pourra être traité avec:
with gzip.open(fichier) as f:
 ...

Principaux modules
CHAPITRE 8

255

Une fois l’instance créée, une série de méthodes est disponible :

close()

Ferme l’archive. Doit obligatoirement être appelée pour valider des écritures.

getinfo(nom) -> objet Zipinfo

Renvoie des informations concernant l’élément nom de l’archive dans un objet de type
ZipInfo.

infolist() -> liste d’objets ZipInfo

Renvoie une liste ordonnée d’objets ZipInfo, pour chaque entrée de l’archive.

namelist() -> liste d’entrées

Renvoie une liste ordonnée des noms des entrées de l’archive.

printdir()

Affiche sur la sortie standard le contenu de l’archive.

read(name) -> data

Renvoie le contenu de l’entrée name, pour une archive ouverte en mode r ou a.

testzip() -> None ou le premier fichier défectueux

Passe en revue toutes les entrées de l’archive, et teste les codes CRC. Renvoie le nom
de la première entrée défectueuse ou None si tout est correct.

write(fichier[, arcname[, compress_type]])

Ajoute à l’archive, ouverte en mode w ou a, le fichier. S’il est fourni, le paramètre
arcname sera utilisé pour le nom de l’entrée. compress_type permet de spécifier un
mode de compression différent de celui général à l’archive si nécessaire.

writestr(zinfo_or_arcname, bytes)

Écrit les données contenues dans l’objet stringbytes dans l’archive ouverte en mode
w ou a, en utilisant comme nom d’entrée celui fourni dans zinfo_or_arcname (objet
string ou objet ZipInfo).

debug

Attribut spécifiant le niveau de débogage utilisé. À 0 (par défaut), ne donne aucune
information. De 1 à 3 : informations de débogage, de plus en plus complètes, sur la
sortie standard.

La bibliothèque standard
TROISIÈME PARTIE

256

class ZipInfo([fichier[, date_time]])
Classe complémentaire à ZipFile contenant des informations sur une entrée
d’archive. Peut être utilisée en entrée de la méthode writestr() ou retournée par
getinfo() ou infolist().

Peut être construite avec deux paramètres optionnels. fichier est le nom de l’entrée
et date_time un tuple de six valeurs entières : Année, Mois, Jour, Heures,

Minutes, Secondes, représentant la date de dernière modification de l’entrée.

Les autres attributs intéressants de ZipInfo sont :
• compress_type : type de compression de l’entrée ;
• comment : commentaires sur l’entrée ;
• volume : numéro de volume de l’entrée ;
• CRC : CRC-32 des données décompressées ;
• compress_size : taille compressée des données de l’entrée ;
• file_size : taille décompressée des données de l’entrée.

is_zipfile(fichier) -> booléen
Renvoie True si le fichier est une archive de type zip.

Programmation réseau
Toute la programmation réseau sous Python repose sur le module bas niveau socket,
qui encapsule les primitives système d’accès à la couche réseau.

Le module masque toute la complexité de la programmation réseau dans une
approche objet, en fournissant une fonction socket() qui génère des objets de type
socket. Ces objets publient des méthodes simples pour toutes les opérations réseau
et prennent en charge, entres autres, la création et la destruction des tampons asso-
ciés aux ressources réseau.

L’exemple ci-dessous utilise un objet socket, pour se connecter sur la machine locale,
sur le port 25, pour vérifier qu’un serveur SMTP est actif.

ALLER PLUS LOIN Exemple d’utilisation de ZipFile

Pour un exemple complet d’utilisation de ZipFile, voir l’exercice 7 du chapitre 10.

Principaux modules
CHAPITRE 8

257

Test SMTP

Cette simplicité ne supprime pas pour autant les possibilités et toutes les fonctionna-
lités de la couche réseau restent accessibles en Python. Pour plus d’informations sur
le module socket, l’exercice 13 du chapitre 10 implémente un client/serveur TCP.

Quoi qu’il en soit, à moins d’implémenter un protocole réseau exotique ou un serveur
particulier, il est très rare de devoir utiliser directement le module socket. La biblio-
thèque standard fournit des modules pour la plupart des protocoles réseau connus.

Cette section présente deux modules qui implémentent des clients pour les proto-
coles HTTP(S) et FTP (RFC 959).

Les autres protocoles sont accessibles via les modules imaplib, smtplib, nntplib, et
consorts.

urllib2
Le module urllib2, version plus avancée qu’urllib, utilise le module httplib, pour
proposer des fonctionnalités d’accès à des URL (Universal Ressource Locator). Les
URL sont en général les adresses de pages web.

urllib2 gère tous les aspects du protocole HTTP, comme l’authentification, les coo-
kies, les redirections, ou encore les flux sécurisés.

Pour des appels simples, urllib2 fournit une fonction urlopen() qui permet de
récupérer sous la forme d’un flux de type fichier le contenu de la ressource.

Lorsqu’il est nécessaire de mettre en œuvre des options particulières du protocole
HTTP, comme l’authentification, la gestion des redirections, ou les GET et POST,
urllib2 fournit un système de handlers. Chaque option du protocole est alors gérée par
une classe spécialisée, appelée handler. (HTTPBasicAuthHandler pour l’authentification,
HTTPRedirectHandler pour les redirections, HTTPHandler pour les GET et POST).

Ces handlers sont regroupés dans un objet appelé OpenerDirector, généré par la
fonction build_opener(), et mis en place pour être utilisé par urlopen(), par le biais
de la fonction install_opener(). OpenDirector invoque alors le bon handler, au bon
moment, en fonction des besoins.

>>> import socket
>>> s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
>>> s.connect(('', 25))
>>> data = s.recv(1024)
>>> data
'220 localhost ESMTP\r\n'
>>> s.close()

La bibliothèque standard
TROISIÈME PARTIE

258

urlopen(url [, data]) -> objet de type fichier

Ouvre l’URL pointée par url et renvoie un objet de type fichier, qui possède deux
méthodes supplémentaires par rapport à un objet file classique. geturl(), qui ren-
voie l’URL, et info(), qui renvoie un dictionnaire contenant des métadonnées con-
cernant la ressource ouverte.

url peut être un objet string qui pointe directement sur la ressource, comme la ver-
sion du module urllib, mais aussi un objet Request, qui peut contenir des informa-
tions de requêtage plus étendues.

Lecture d’une page web CPS

Pour certaines ressources HTTP, data peut contenir des données à envoyer au ser-
veur. Ces données doivent être au format application/x-www-form-urlencoded qui
est obtenu en appelant url.urlencode() avec un mapping. Cette fonction forme une
chaîne de requête cle0=valeur0&cle1=valeur1&..., similaire à celle que l’on peut
retrouver sur certaines URL. urlopen() concatène data à url au moment de l’appel.

Création d'une chaîne application/x-www-form-urlencoded

>>> import urllib2
>>> result = urllib2.urlopen('http://localhost:8080/cps')
>>> for line in result.readlines():
... print line[:-1]
...
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en"
 xml:lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=ISO-8859-15" />
 <meta name="generator" content="Nuxeo CPS http://www.cps-project.org/
" />
 <title>CPS Portal</title>
 <base href="http://localhost:8080/cps/" />

...

 </body>
 </html>

>>> import urllib
>>> data = {'clientno': '12', 'theme': 13}
>>> urllib.urlencode(data)
'theme=13&clientno=12'

Principaux modules
CHAPITRE 8

259

class OpenDirector()

Classe gérant une collection de handlers. Les instances sont construites par un appel
à build_opener(). Présente une méthode open() similaire à openurl(), pouvant être
utilisée pour invoquer les handlers contenus dans l’objet. Cette méthode appelle tour
à tour chaque handler de sa collection et renvoie le résultat dès qu’un handler a
accepté de prendre en charge la demande.

install_opener(opener)

Définit l’objet opener de type OpenDirector comme l’objet utilisé par défaut par tout
appel à openurl(). C’est la méthode open() de l’objet opener qui est appelée dans ce cas.

build_opener([handler, …]) -> instance OpenDirector

Raccourci pour créer un objet OpenDirector garni. Renvoie un objet de type
OpenDirector qui contient une collection ordonnée de handlers :
• ProxyHandler : handler de proxy.
• UnknownHandler : gère toutes les URL de protocole inconnu.
• HTTPHandler : gère les URL HTTP.
• HTTPDefaultErrorHandler : gère les erreurs renvoyées par le serveur.
• HTTPRedirectHandler : gère les redirections.
• FTPHandler : gère les accès à des URL de type ftp.
• FileHandler : gère les accès aux URL fichiers.
• HTTPSHandler : gestion du protocole HTTPS si la version de Python le permet.
• HTTPErrorProcessor : gère les erreurs.

La fonction peut prendre en paramètre des handlers supplémentaires, qui viennent
remplacer les handlers de la liste prédéfinie, en fonction de leurs types. Les handlers
sont conservés dans l’ordre fourni, sauf dans le cas où la valeur de l’attribut
handler_order du handler est modifiée. Cet attribut est fixé à 500 par défaut pour
tous les handlers, sauf celui pour ProxyHandler qui est à 100.

class HTTPBasicAuthHandler([password_mgr])

Handler de gestion d’authentification. Si password_mgr est fourni, doit être un objet
de type HTTPPasswordMgr. Les objets HTTPPasswordMgr sont des objets qui conservent
des couples (nom d’utilisateur, mot de passe), associés à des couples (realms, urls).

class HTTPPasswordMgr()

Permet de conserver des couples (nom d’utilisateur, mot de passe), associés à des clés
(realms, urls). Cette classe peut être utilisée pour mémoriser les paramètres de con-
nexion à des pages qui nécessite une authentification.

La bibliothèque standard
TROISIÈME PARTIE

260

class Request(url[, data][, headers][, origin_req_host][, unverifiable])

Request permet de regrouper des informations pour une requête à effectuer avec
urlopen(). url est l’URL à ouvrir, data les éventuelles données annexes à trans-
mettre, headers un dictionnaire contenant les en-têtes de la requête.

origin_req_host et unverifiable permettent de gérer certains aspects de fonction-
nement des cookies. origin_req_host définit le request-host à l’origine de la requête,
qui sera utilisé par le serveur distant dans les cookies. Le request-host est le nom
d’hôte racine de l’URL appelée. Il est par défaut obtenu par l’extraction de la racine
d’url. unverifiable, par défaut à False, permet de spécifier si la requête n’est pas
vérifiable. Une requête non vérifiable est une requête qui est déclenchée sans l’aval
manuel de l’utilisateur. Par exemple, la requête qui récupère une image sur une page
web est unverifiable.

L’exemple ci-dessous accède à la page de gestion sécurisée d’un serveur web local
Zope écoutant sur le port 8080.

Accès avec authentification

ftplib
Le module ftplib fournit une classe FTP qui implémente un client ftp complet.

Une session FTP est en général composée de ces étapes :
• connexion ;
• authentification ;

>>> import urllib2
>>> handler = urllib2.HTTPBasicAuthHandler()
>>> handler.add_password('Zope', 'localhost:8080', 'demo', 'demo')
>>> opener = urllib2.build_opener(handler)
>>> urllib2.install_opener(opener)
>>> result = urllib2.urlopen('http://localhost:8080/manage')
>>> for line in result.readlines():
... print line[:-1]
...
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "http://
www.w3.org/TR/REC-html40/loose.dtd">
<html>
<head>
<title>Zope on http://localhost:8080</title>

...

</html>

Principaux modules
CHAPITRE 8

261

• manipulations ;
• déconnexion.

class FTP([host[, user[, passwd[, acct]]]])

Lorsque host est fourni, la méthode connect() est aussi appelée avec. Si le para-
mètre user est fourni, un appel à la méthode login() est ensuite effectué. passwd et
acct sont ajoutés à l’appel si fournis. acct est un paramètre qui permet de choisir un
compte ftp particulier, si le serveur implémente cette commande (ACCT).

Les méthodes principales accessibles dans un objet de type FTP, sont :

abort()

Stoppe un transfert en cours (réussite non garantie).

close()

Ferme une connexion sans envoyer de commande QUIT au serveur. L’objet devient
alors inutilisable.

connect(host[, port]) -> résultat

Tente une connexion de l’objet au serveur host et renvoie la réponse reçue sous forme
de string. Un seul appel est nécessaire au début de la session. port est par défaut à 21.
Si l’objet a été préliminairement créé avec le paramètre host, il n’est pas nécessaire
d’utiliser connect(). Dans le cas contraire, cette méthode est la première à appeler.

cwd(pathname) -> résultat

Change le répertoire en cours sur le serveur et affiche le résultat de l’opération.

delete(filename) -> résultat

Supprime le fichier filename sur le serveur et renvoie le résultat de l’opération. Une
erreur est levée en cas d’échec.

dir(argument[, …]) -> listing

Récupère un listing du répertoire en cours, par le biais de la commande LIST. Le
résultat est envoyé dans la sortie standard. Des arguments supplémentaires peuvent
être fournis, et sont concaténés à la commande envoyée au serveur (comme le nom
d’un sous-répertoire à lister). Si le dernier argument fourni est une fonction, elle est
appelée pour chaque entrée du listing, pour pouvoir être parsée.

La bibliothèque standard
TROISIÈME PARTIE

262

login([user[, passwd[, acct]]])

Se connecte au serveur FTP en utilisant les paramètres user et passwd s’ils sont
fournis. Si user n’est pas fourni, anonymous est utilisé. Si user est à anonymous et
que le passwd n’est pas fourni, anonymous@ est utilisé pour ce deuxième champ.
login() ne doit pas être appelée si l’objet a été préliminairement initialisé avec use.
Dans le cas inverse, doit toujours être appelée après la connexion. Les opérations sur
le serveur ne peuvent être effectuées pour la plupart qu’après un appel à login().

mkd(pathname) -> chemin absolu

Crée un nouveau répertoire sur le serveur, et renvoie son chemin complet.

nlst(argument[, …]) -> liste de fichiers

Équivalente à dir(), mais renvoie les fichiers sous forme de liste et ne gère pas de
fonction callback.

pwd() -> chemin courant

Renvoie le chemin courant sur le serveur.

quit()

Envoie le signal QUIT au serveur, et ferme la connexion. close() doit ensuite être
appelée.

rename(ancien_nom, nouveau_nom) -> résultat

Renomme le fichier distant ancien_nom en nouveau_nom.

retrbinary(commande, callback[, maxblocksize[, rest]])

Récupère un fichier en mode binaire, par le biais de la commande, de la forme « RETR

nom de fichier ». callback est une fonction appelée à chaque bloc de données
reçu, maxblocksize permet de définir la taille maximale des blocs en octets.

rest est une chaîne de caractères optionnelle et qui sera utilisée en paramètre de la
commande RESTART par le serveur au cas où le transfert est interrompu. C’est un
marqueur qui détermine la position où reprendre le chargement.

retrlines(commande [, callback])

Récupère les données en ligne, par le biais de la commande, de la forme « RETR nom de

fichier ». callback est une fonction appelée à chaque bloc de données reçu. Si
callback n’est pas fournie, la ligne est imprimée par le biais de
ftplib.print_line().

Principaux modules
CHAPITRE 8

263

rmd(dirname) -> résultat

Supprime le répertoire dirname.

storbinary(commande, file[, blocksize])

Envoie un fichier pointé par un objet file ouvert en lecture. commande est de la
forme « STOR nom fichier », blocksize détermine la taille du tampon de lecture
(8192 par défaut). Le fichier est envoyé en mode binaire.

storlines(commande, file)

Équivalente à storbinary, pour les fichiers texte. Envoie le contenu du fichier ligne
à ligne.

Session FTP

En un mot...
Cette première série de modules constitue une bonne trousse à outils pour la pro-
grammation système. Le prochain chapitre aborde des modules plus orientés sur la
programmation.

>>> import ftplib
>>> ftp = ftplib.FTP('localhost')
>>> ftp.getwelcome()
'220 ProFTPD 1.2.10 Server (ProFTPD Default Installation) [127.0.0.1]'
>>> ftp.login('tziade', 'xxx')
'230 User tziade logged in.'
>>> ftp.dir()
-rw-r--r-- 1 (?) tziade 4704 Jul 27 19:58 5505.tgz
-rw-rw-r-- 1 (?) tziade 473 Feb 15 2005 backup.sh
-rw-r--r-- 1 (?) tziade 292694 Mar 27 22:09
enigmail-0.91.0-tb-linux.xpi
-rw-rw-r-- 1 (?) tziade 10315 Jan 3 2005 install.py
-rw-r--r-- 1 (?) tziade 9269 May 3 14:05 log.txt
drwxr-xr-x 13 (?) tziade 4096 Jul 11 23:37 server
drwxr-xr-x 2 (?) tziade 4096 Jul 11 23:37 www
>>> ftp.quit()
'221 Goodbye.'

Ce chapitre présente les modules majeurs de la bibliothèque standard couvrant les
thèmes suivants :
• persistance ;
• conversion, transformation de données ;
• calculs numériques ;
• structures de données ;
• utilitaires divers.

Persistance
Python fournit dans sa bibliothèque standard des outils de sérialisation d’objets de
très haut niveau, qui peuvent permettre à un programme de sauvegarder des données
et de les recharger sans avoir à mettre en place un système de sauvegarde plus poussé,
comme une base de données.

Les modules cPickle et shelve offrent des fonctionnalités de sauvegarde totalement
transparentes qui mémorisent l’état des attributs d’un objet quelconque. Cette
approche générique permet de bénéficier directement de ce mécanisme sans avoir à
mettre au point du code spécifique.

9
Principaux modules, partie 2

La bibliothèque standard
TROISIÈME PARTIE

266

cPickle
cPickle offre un mécanisme de sérialisation des objets très puissant : tout objet en
mémoire peut être sauvegardé sur le système de fichiers puis rechargé par la suite.
cPickle est le grand frère du module pickle : il implémente à peu de choses près les
mêmes fonctionnalités mais est codé en C, donc beaucoup plus rapide.

cPickle est supérieur au module de fonctionnalités similaires marshal car il permet
de sérialiser de manière transparente tout type de classe.

Le mécanisme de sérialisation ne sauvegarde pas le code des fonctions ni les
paramètres : une simple référence est conservée et il est nécessaire de pouvoir
retrouver ces définitions lorsqu’un objet est dé-sérialisé.

Les rares types d’objets ne pouvant être sérialisés par cPickle sont dits unpickable et
sont les instances de socket, les pointeurs de fichiers et les threads. Les objets compa-
tibles sont dit pickable.

cPickle fournit deux types de fonctions pour sérialiser les objets :
• dump() et load(), pour une écriture et une lecture directe dans un objet de type

fichier ;
• dumps() et loads(), pour récupérer et fournir les flux sous forme de string.

dump(objet, fichier[, protocol])
Sérialise l’objet. fichier est un objet qui doit présenter une méthode write(), uti-
lisée par dump(). C’est en général un objet de type fichier (ouvert en écriture) ou assi-
milé, comme StringIO.

protocol est un paramètre qui permet de déterminer la structure créée pendant la
sérialisation. Avec une valeur à 0 par défaut, cette structure reste la même pour toutes
les versions de Python passées ou à venir et assure ainsi une compatibilité ascendante.
1 détermine une structure plus efficace et 2 la meilleure structure possible.

Pour Python 2.4 et supérieur, la valeur 2 peut être récupérée par la variable
cPickle.HIGHEST_PROTOCOL, qui détermine la valeur maximum pour la version cou-
rante, sachant que les prochaines versions introduiront certainement des valeurs sup-
plémentaires. Une valeur négative est équivalente à cPickle.HIGHEST_PROTOCOL.

load(fichier) -> objet
Utilise l’objet fichier pour reconstruire l’objet sérialisé. fichier est un objet de type
file ou assimilé qui doit fournir les méthodes read() et readlines().

Principaux modules, partie 2
CHAPITRE 9

267

dumps(objet[, protocole]) -> chaîne
Similaire à dump(), mais renvoie le résultat de la sérialisation dans un objet de type str.

loads(chaîne [, protocole]) -> objet
Similaire à load() mais utilise un objet de type str plutôt qu’un fichier.

Utilisation de loads et dumps

Plusieurs objets peuvent être sérialisés dans le même flux, grâce à la classe Pickler,
qui permet de gérer un fichier et d’y accumuler des objets, et à la classe Unpickler qui
renvoie les objets reconstruits.

class Pickler(fichier [, protocole])

Pickler s’instancie avec un objet de type file comme dump() et offre deux
méthodes :
• dump(object) : sérialise l’objet dans le fichier. Peut être appelée plusieurs fois

pour stocker plusieurs objets.
• clear_memo() : permet d’initialiser le cache interne, qui contient l’ensemble des

objets visités par les sérialisations. Utile lorsque l’objet est réutilisé.

class Unpickler(fichier)

Unpickler fournit une interface de désérialisation :
• load() : lit le flux et retourne un objet. Peut être appelée plusieurs fois pour récu-

pérer les objets stockés dans le flux. Lorsque la fin des données est atteinte, une
erreur EOFError est levée.

• Noload() : similaire à load() mais ne charge pas les objets en mémoire (des
objets None sont renvoyés). Permet de parcourir la structure.

>>> from cPickle import loads, dumps
>>> class MyClass(object):
... def __init__(self):
... self.data = [1, 2, 3]
...
>>> instance_of = MyClass()
>>> instance_of.data.append(56)
>>> serialisation = dumps(instance_of)
>>> serialisation
"ccopy_reg\n_reconstructor\np1\n(c__main__\nMyClasse\np2\nc__builtin__\
nobject\np3\nNtRp4\n(dp5\nS'data'\np6\n(lp7\nI1\naI2\naI3\naI56\nasb."
>>> more = loads(serialisation)
>>> more.data
[1, 2, 3, 56]

La bibliothèque standard
TROISIÈME PARTIE

268

Utilisation de Pickler et Unpickler

shelve
Le module shelve se base sur cPickle pour fournir un système de dictionnaire per-
sistent. Ce dictionnaire est utilisé comme tout autre dictionnaire dans le programme
et peut contenir tout objet pickable. Les données sont sauvegardées dans une base de
données sur le système de fichiers.

Le type de base de données utilisé est choisi automatiquement et dépend des biblio-
thèques installées sur le système, et peut être :
• une base dbm sous Unix ;
• une base GNU/dbm sous Unix ;
• une base Berkeley DB sous Unix et Windows.

shelve fournit une fonction open() qui retourne une instance d’un tel dictionnaire.

>>> from cPickle import Pickler, Unpickler
>>> class MyClass(object):
... def __init__(self, name):
... self.data = [1, 2, 3]
... self.name = name
...
>>> def load(objects):
... f = Pickler(open('datas', 'w'))
... for obj in objects:
... f.dump(obj)
...
>>> def unload():
... f = Unpickler(open('datas', 'r'))
... objects = []
... while 1:
... try:
... objects.append(f.load())
... except EOFError:
... break
... return objects
...
>>> load([MyClass('1'), MyClass('2')])
>>> objects = unload()
>>> for obj in objects:
... print(obj.name)
...
1
2

Principaux modules, partie 2
CHAPITRE 9

269

open(nom_fichier[, flag[, protocole[, writeback]]])
Ouvre un dictionnaire persistent contenu dans le fichier nom_fichier. flag déter-
mine le type d’ouverture, à savoir :
• r : lecture seule ;
• w : lecture-écriture ;
• c : création si base de donnée inexistante, puis accès en lecture-écriture (valeur

par défaut).

protocole, s’il est fourni et différent de None, est passé directement à cPickle, et
détermine la structure de sérialisation (voir la section précédente).

Lorsque writeback est fourni et différent de True, shelve conserve en mémoire tous
les éléments modifiables du dictionnaire et les réécrit dans le fichier au moment de la
fermeture. Cette option permet de mettre à jour automatiquement ces éléments mais
peut devenir relativement gourmande en mémoire.

Utilisation de shelve

>>> import shelve
>>> import __builtin__
>>> documentation = shelve.open('primitives.db')
>>> for element in dir(__builtin__):
... if element.startswith('_'):
... continue
... doc = getattr(__builtin__, element).__doc__
... try:
... documentation[element] = doc
... except TypeError:
... print 'impossible de pickler %s' % str(doc)
...
>>> documentation.close()
>>> documentation = shelve.open('primitives.db')
>>> for element in documentation:
... print('primitive %s:\n%s\n\n' % \
... (element, documentation[element]))
...
[...]
primitive getattr:
getattr(object, name[, default]) -> value

Get a named attribute from an object; getattr(x, 'y') is equivalent to
x.y.
When a default argument is given, it is returned when the attribute
doesn't
exist; without it, an exception is raised in that case.

La bibliothèque standard
TROISIÈME PARTIE

270

Conversion, transformation de données
Les algorithmes les plus fréquemment utilisés pour l’encodage de données, que ce
soit pour leur transport ou leur hachage, sont fournis dans la bibliothèque standard
sous forme de fonctions très simples d’usage.

Cette section présente base64 et hashlib.

base64
base64 fournit des fonctions d’encodage et de décodage de données binaires au for-
mats définis par la norme RFC3548, à savoir base16, base32 et base64. Cet encodage
fait correspondre à chaque valeur un signe de l’alphabet base16, 32 ou 64. Il est uti-
lisé pour transformer des données binaires en données texte qui peuvent être trans-
portées dans certains protocoles d’échanges qui ne supportent que du texte, comme
HTTP ou IMAP4.

b64encode(chaîne[, altchars]) -> chaîne
Encode les données contenues dans l’objet string chaine. Si altchars est spécifié et
est différent de None, c’est un objet string de longueur 2, qui définit un caractère spé-
cifique pour les caractères + et /. Cette variation permet de définir des flux base64
compatibles avec certains formats, comme les URL.

b64decode(chaîne[, altchars]) -> chaîne
Décode les données contenues dans chaine.

Les autres formats sont rarement utilisés, et le module base64 fournit des fonctions
raccourcis pour encoder et décoder en base64, à savoir :
• encodestring(s) : équivalente à b64encode(s) ;
• decodestring(s) : équivalente à b64decode(s) ;
• encode(input, output) : encode le contenu pointé par l’objet input vers l’objet
output. input et output sont des objets de type fichier ou assimilés, et doivent
être ouverts dans les bons modes ;

• decode(input, output) : équivalente à encode(), mais pour le décodage.

Encodage d’un fichier binaire

>>> from base64 import encode, decode
>>> fichier_pdf = open('CPS.pdf', 'r')
>>> fichier_pdf_b64 = open('CPS.pdf.b64', 'w')
>>> encode(fichier_pdf, fichier_pdf_b64)

Principaux modules, partie 2
CHAPITRE 9

271

haslib
haslib fournit, par une série de fonctions, une interface à 6 algorithmes de hashage,
à savoir :
• md5

• sha1

• sha224

• sha256

• sha384

• sha512

Tous ces algorithmes peuvent être manipulés par des objets retournés par chacune de
ces fonctions, et respectent la même interface.

Prenons l’exemple des deux algorithmes les plus utilisés : md5 et sha1.

haslib.md5
md5 fournit une implémentation de l’algorithme de hachage de la RSA, le Message
Digest 5. Cet algorithme permet de créer une clé (quasi-)unique de 128 bits, à partir
des données fournies. Revenir aux données originelles depuis une clé de hachage est
(quasi-)impossible.

Ce genre de signature permet de garantir de manière sécurisée l’intégrité des données
dans certaines situations :
• Lorsque l’on télécharge une archive sur Internet, la clé MD5 qui peut l’accompagner

permet de garantir que le fichier n’est pas corrompu : une fois le téléchargement ter-
miné, la clé est recalculée sur le système local et comparée avec la clé originelle.

• Les systèmes d’authentification stockent bien souvent des clés de hachage MD5
au lieu des mots de passe en clair : au moment de l’authentification d’un utilisa-
teur, ce n’est pas le mot de passe saisi qui est comparé mais sa clé de hachage.

>>> fichier_pdf_b64.close()
>>> fichier_pdf_b64 = open('CPS.pdf.b64', 'r')
>>> for i in range(5):
... fichier_pdf_b64.readline()

...
'JVBERi0xLjQNCiXk9tzfDQoxIDAgb2JqDQo8PCAvTGVuZ3RoIDIgMCBSDQogICAvRmlsdGVyIC9G\n'
'bGF0ZURlY29kZQ0KPj4NCnN0cmVhbQ0KeJyVWtuqZMcNfT9w/mE/G9Ku+wVMII7HkEeDIR+QxAnB\n'
'J8F+ye+nSlpLpd09nhAMnlarSpcllUql0+H6z/vbL1e4fhce8epp/7+W/f9f/3b9+avrX+9v8dr/\n'
'/fr397ewWdfH+9taJx9/3juu/S//r9/+4/3tp6/e3364frnqCI9+9dGu2PpjXHk88pG9FMXeyhUe\n'
'ofRQ179lhjhFWx1xmTFieMyts44Msi4NddT176aiUG0pOVR/NK7cGwekbNZ4lEXFtVyo9TlBoG7K\n'

La bibliothèque standard
TROISIÈME PARTIE

272

• Des systèmes de cache mémoire peuvent utiliser MD5 pour identifier une don-
née, etc.

haslib.md5() fournit un objet md5, décrit ci-dessous.

class md5([chaîne])
Les objets de type md5 peuvent être initialisés avec un objet de type string. Ils four-
nissent quatre méthodes :
• update(s) : concatène l’objet de type string à la chaîne déjà stockée.
• digest() : calcule et renvoie la clé correspondant à la chaîne stockée.
• hexdigest() : calcule et renvoie la clé comme digest(), mais sous la forme d’une

représentation hexadécimale. C’est la forme la plus utilisée.
• copy() : renvoie un clone de l’objet md5. Permet d’optimiser les calculs MD5 qui

sont relativement coûteux : si la chaîne stockée est une sous-chaîne d’une autre
chaîne à calculer, l’objet peut être réutilisé par ce biais.

Calcul de la clé MD5 d’un fichier

hashlib.sha
Les clés MD5 peuvent être cassées en quelques jours, moyennant une puissance de
calcul importante et des techniques complexes. La recherche des collisions est une de
ces techniques et tente de trouver deux données différentes qui génèrent la même clé
de hachage.

L’algorithme SHA-1 offre une clé de hachage moins sensible aux collisions et plus
difficile à casser. Il est implémenté par le module sha, qui fournit exactement la
même interface que md5.

Calcul de la clé SHA-1 d’un fichier

>>> import hashlib
>>> cle = hashlib.md5()
>>> with open('Plone.pdf') as f:
... cle.update(f.read())
...
>>> digest = cle.hexdigest()
>>> digest
'5e6ff71b1791f645cfbfd0d6f8d8e522'

>>> import hashlib
>>> cle = hashlib.sha()
>>> with open('zasync .pdf') as f:
... cle.update(f.read())

Principaux modules, partie 2
CHAPITRE 9

273

Calculs numériques
Python fournit des fonctions mathématiques de base, regroupées dans le module math.
Le module cmath fournit les mêmes fonctionnalités pour les nombres complexes.

math
Le module math fournit un certain nombre de fonctions mathématiques courantes. Ces
dernières accèdent directement aux fonctions de la bibliothèque C et sont très rapides.

Elle peuvent être regroupées en trois ensembles :
• fonctions de conversion ;
• fonctions trigonométriques ;
• constantes.

fonctions de conversion

ceil(x) -> réel

Renvoie, sous forme de réel, la première valeur entière supérieure au réel x.

exp(x) -> réel

Renvoie e**x. e est la constante mathématique de valeur arrondie 2.72.

fabs(x) -> réel

Renvoie la valeur absolue de x. x peut être un entier ou un réel. Équivalente à abs()
mais renvoie toujours un réel.

floor(x) -> réel

Renvoie, sous forme de réel, la première valeur entière inférieure au réel x.

fmod(x, y) -> réel

Renvoie x modulo y. Cette fonction peut renvoyer un résultat différent de x % y pour
les réels, à cause du fonctionnement des réels dans Python. fmod(x, y) est préco-
nisée pour les réels et x % y pour les entiers.

...
>>> digest = cle.hexdigest()
>>> digest
'1332e8e7c13c700d132babf392216c7495a1e1a1'

La bibliothèque standard
TROISIÈME PARTIE

274

frexp(x) -> (m, e)

Décompose x en (m, e), tel que x est égal à m * (2**e).

ldexp(m, e) -> x

Renvoie m * (2**e), soit l’inverse de frexp().

log(x[, base]) -> réel

Renvoie le logarithme de x. Si base n’est pas spécifié, c’est le logarithme de base e
(logarithme naturel) qui est calculé.

log10(x) -> réel

Équivalente à log(x, 10).

pow(x, y) -> réel

Renvoie x**y.

modf(x) -> (fraction, entier)

Décompose le réel en ses parties fractionnaire et entière, sous la forme d’un tuple de
deux réels.

fonctions trigonométriques

acos(x) -> réel

Renvoie l’arc cosinus de x en radians.

asin(x) -> réel

Renvoie l’arc sinus de x en radians.

atan(x) -> réel

Renvoie l’arc tangente de x en radians.

atan2(y, x) -> réel

Équivalente à atan(y/x).

cos(x) -> réel

Renvoie le cosinus de x en radians.

cosh(x) -> réel

Renvoie le cosinus hyperbolique de x en radians.

Principaux modules, partie 2
CHAPITRE 9

275

degrees(radians) -> degrés

Convertit en degrés un angle exprimé en radians.

hypot(x, y) -> réel

Renvoie sqrt(x*x + y*y). Soit la norme euclidienne.

radians(degrés) -> radians

Convertit en radians un angle exprimé en degrés.

sin(x) -> réel

Renvoie le sinus de x en radians.

sinh(x) -> réel

Renvoie le sinus hyperbolique de x en radians.

sqrt(x) -> réel

Renvoie la racine carrée de x.

tan(x) -> réel

Renvoie la tangente de x en radians.

tanh(x) -> réel

Renvoie la tangente hyperbolique de x en radians.

constantes

e

Constante mathématique e (constante d’Euler).

pi

Constante mathématique π.

Calcul d’angles

>>> degres = 55
>>> degres * math.pi / 360.0
0.47996554429844063
>>> math.sin(degres)
-0.99975517335861985

La bibliothèque standard
TROISIÈME PARTIE

276

Structures de données
Il est possible d’utiliser dans certains cas précis des types de données spécialisés.
• array permet de gérer des listes de valeurs de type homogène ;
• abc définit des classes de base abstraites ;
• collections offre des conteneurs haute performance ;
• cStringIO fournit une chaîne de caractères qui fonctionne comme un type file ;

• decimal permet de travailler avec des nombres décimaux.

array
Le module array définit une structure de données équivalente aux listes mais pour
des éléments du même type. Les éléments sont convertis et placés dans un
conteneur C, ce qui rend certaines manipulations beaucoup plus rapides qu’avec une
liste.

array(typecode[, initializer]) -> tableau
typecode détermine le type des éléments stockés, et correspond aux types C.
typecode peut prendre les valeurs suivantes :
• c : string de longueur 1 stocké dans un char ;
• u :unicode de longueur 1 ;
• b : entier stocké dans un signed char ;
• B : entier stocké dans un unsigned char ;
• h : entier stocké dans un short int ;
• H : entier stocké dans un unsigned short int ;
• i : entier stocké dans un signed int ;
• I : entier stocké dans un unsigned int ;
• l : entier long stocké dans un signed long ;
• L : entier long stocké dans un unsigned long ;
• f : réel stocké dans un float ;
• d : réel stocké dans un double.

initializer, si fourni, est une séquence contenant des éléments à placer dans le
conteneur. Les objets de type array fournissent des méthodes de manipulation des
éléments et des méthodes de conversion.

Principaux modules, partie 2
CHAPITRE 9

277

Méthodes de manipulation

Toutes ces méthodes supposent, lorsqu’un élément est fourni, qu’il est du type cor-
respondant au tableau, sans quoi une erreur de type TypeError est levée :
• count(x) : renvoie le nombre d’occurrences de l’élément x dans le tableau.
• extend(array or iterable) : ajoute les éléments de l’array ou de la séquence

passée.
• index(x) : renvoie l’index de la première occurrence de x dans le tableau. Si x

n’est pas présent dans le tableau, une erreur ValueError est levée.
• insert(i, x) : ajoute l’élément x avant l’élément de position i. Si i est négatif, il

correspond à l’index longueur – i.
• pop([i]) : renvoie l’élément d’index i et l’enlève du tableau. Si i n’est pas fourni,

c’est le dernier élément qui est renvoyé.
• remove(x) : retire la première occurrence de x du tableau. Si x n’est pas présent

dans le tableau, une erreur ValueError est levée.
• Reverse() : retourne le tableau, tel que le premier élément se retrouve en der-

nière position, et ainsi de suite.

Méthodes de conversion

Les méthodes de conversion permettent de transformer le contenu du tableau en un
autre objet, et inversement d’importer un objet dans le tableau :
• tofile(f) : sérialise le tableau dans l’objet de type fichier ou assimilé f.
• tolist() : convertit le tableau en objet list.
• tostring() : convertit le tableau en objet string. Le contenu de l’objet string

correspond au contenu brut en octets du tableau.
• tounicode() : équivalente à tostring() mais renvoie un objet unicode et ne

fonctionne qu’avec un array de type u.
• fromfile(f, n) : lit n éléments de l’objet de type fichier (et non assimilés). Si

moins de n items sont disponibles, une erreur EOFError est levée.
• fromlist(list) : ajoute les éléments de la liste en fin de tableau. Si un des élé-

ments n’est pas du bon type, l’opération est annulée et une erreur de type
TypeError est levée.

• fromstring(s) : ajoute les éléments de la chaîne de caractères en fin de tableau.
Les caractères sont interprétés comme contenu brut, comme pour tostring().

• fromunicode(s) : équivalente à fromstring(), mais ajoute des caractères uni-
code. Le tableau doit être de type u.

La bibliothèque standard
TROISIÈME PARTIE

278

Array en action

abc
Le module abc introduit un concept de classe abstraite, décrit dans le PEP 3119
(voir http://www.python.org/dev/peps/pep-3119).

Une classe abstraite est une classe qui permet de définir un certain nombre de
méthodes dites abstraites. Une méthode abstraite est une méthode qui n’est pas réel-
lement utilisée dans un programme, mais qui sert de guide à l’ensemble des classes
dérivées.

Prenons l’exemple d’une classe Sized, qui définit la méthode abstraite __len__.
Définir une méthode abstraite en Python peut se faire en levant une l’exception
NotImplementedError dans le code.

Classe abstraite Sized

Ainsi, elle ne peut pas être utilisée directement, et il faut implémenter __len__ dans
une classe dérivée appelée classe concrète.

Classe Data

>>> import array
>>> tableau = array.array('c', 'Oh, mon tableau, o, OOoO')
>>> tableau.count('o')
3
>>> tableau.extend(', tu es le plus beau des tableaux')
>>> tableau.insert(0, 'Ô')
ÔOh, mon tableau, o, OOoO, tu es le plus beau des tableaux
>>> entiers = array.array('i', [1, 2, 3, 4, 5])
>>> entiers.tostring()
'\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x05\x
00\x00\x00'

>>> class Sized(object):
... def __len__(self):
... raise NotImplementedError
...

>>> class Data(Sized):
... def __init__(self):
... self._data = []
... def add(self, data):
... self._data.append(data)

Principaux modules, partie 2
CHAPITRE 9

279

La classe Data peut évidemment se passer de Sized pour fonctionner dans cet
exemple, mais cette couche d’abstraction permet d’utiliser Sized comme un mar-
queur indiquant qu’un objet implémente __len__. Le test d’appartenance ci-dessous,
indique qu’il est possible d’utiliser len() sur d.

Test de l’appartenance de d à Sized

On peut traduire isinstance(d, Sized) par « Est-ce que je peux utiliser len sur d ? ».

abc sert à formaliser ce mécanisme. Une métaclasse ABCMeta est implémentée dans ce
module, ainsi qu’un décorateur abstractmethod.

Sized avec abc

Sized utilise dans ce cas ABCMeta comme métaclasse et marque __len__ avec le déco-
rateur abstractmethod pour indiquer que c’est une méthode abstraite.

Cette méthode devra obligatoirement être implémentée, et toute tentative d’instan-
ciation d’une classe contenant encore des méthodes abstraites provoquera une erreur.
L’utilisation explicite de NotImplementedError n’est donc plus requise.

Création de Data au-dessus de Sized

... def __len__(self):

... return len(self._data)

...
>>> d = Data()
>>> d.add('data')

>>> isinstance(d, Sized)
True
>>> len(d)
1

>>> from abc import ABCMeta, abstractmethod
>>> class Sized(object):
... __metaclass__ = ABCMeta
... @abstractmethod
... def __len__(self):
... return 0

>>> class Data(Sized):
... pass
...

La bibliothèque standard
TROISIÈME PARTIE

280

Le problème de cette implémentation est qu’il reste nécessaire de faire dériver Data
de Sized pour pouvoir bénéficier du mécanisme. À terme, les arbres de dérivation
deviennent très complexes et l’héritage multiple fréquent.

Pour éviter ce problème, ABCMeta ajoute une fonction register à la classe abstraite. Ceci
permet de lui associer une classe arbitraire sans que cette dernière ne doive en dériver.

Utilisation de register

Cette fonctionnalité désolidarise les classes des classes abstraites et rapprochent ces
dernières du concept d’interface. Un programme peut alors marquer des classes
comme implémentatrices de méthodes définies dans des classes abstraites.

Il est aussi possible d’exprimer cette association explicite de manière implicite en
implémentant au niveau de Sized une méthode de classe __subclasshook__, qui sera
invoquée à chaque appel de issubclass.

>>> d = Data()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Data with abstract methods
__len__
>>> class Data(Sized):
... def __init__(self):
... self._data = []
... def add(self, data):
... self._data.append(data)
... def __len__(self):
... return len(self._data)
...
>>> d = Data()
>>> issubclass(Data, Sized)
True

>>> class Data(object):
... def __init__(self):
... self._data = []
... def add(self, data):
... self._data.append(data)
... def __len__(self):
... return len(self._data)
...
>>> Sized.register(Data)
>>> issubclass(Data, Sized)
True

Principaux modules, partie 2
CHAPITRE 9

281

Utilisation de __subclasshook__

Pour chaque appel issubclass(C, Sized), cette méthode doit retourner True si la
classe C implémente __len__ et NotImplemented (ou False) si elle ne l’implémente pas.

Il n’est donc plus utile lorsque __subclasshook__ est implémentée, d’appeler
register : toute classe testée par le biais de issubclass sera validée par cette méthode.

Test du hook sur des classes arbitraires

Le module collections, présenté ci-dessous, fournit une série d’ABC (Abstract Base
Classes).

collections
Ajouté dans la version 2.4, le module collections introduit des conteneurs de don-
nées très performants, à savoir :
• deque : une file à double entrée ;
• defaultdict : un mapping avec valeur par défaut ;
• namedtuple : un tuple avec des accesseurs nommés.

Enfin, collections introduit un certain nombre d’ABC.

Le type deque
Le type deque est un conteneur qui fonctionne comme une file, mais permet d’ajouter et
de récupérer des données des deux cotés de la file, avec les mêmes performances.

>>> class Sized(object):
... __metaclass__ = ABCMeta
... @abstractmethod
... def __len__(self):
... return 0
... @classmethod
... def __subclasshook__(cls, C):
... if cls is Sized:
... if any("__len__" in B.__dict__ for B in C.__mro__):
... return True
... return NotImplemented
...

>>> issubclass(list, Sized)
True
>>> issubclass(object, Sized)
False

La bibliothèque standard
TROISIÈME PARTIE

282

deque([iterable])

Renvoie un objet deque, initialisé avec la séquence iterable si elle est fournie. Les
objets de type deque fournissent un certain nombre de méthodes, à savoir :
• append(x) : ajoute l’élément x à droite de la file.
• appendleft(x) : ajoute l’élément x à gauche de la file.
• clear() : supprime tous les éléments de la liste.
• extend(iterable) : ajoute un à un les éléments de la séquence iterable à droite

de la file.
• extendleft(iterable) : ajoute un à un les éléments de la séquence iterable à

gauche de la file.
• pop() : renvoie le dernier élément de la file et le retire. Si la file est vide, une

erreur IndexError est levée.
• popleft() : renvoie le premier élément de la file et le retire. Si la file est vide, une

erreur IndexError est levée.
• rotate(n) : effectue une rotation de n pas vers la droite de la file. Une rotation

passe le dernier élément en premier, n fois.

Utilisation d’un deque

Le type defaultdict
Type hérité de dict, defaultdict permet d’attribuer automatiquement une valeur
lors de la première utilisation d’une clé. Un callable passe en paramètre du construc-
teur et renvoie la valeur à appliquer par défaut. On appelle cela un factory.

Dans l’exemple suivant, les clés sont initialisées par défaut à 0. En effet, int crée un
entier qui vaut 0 s’il est appelé sans paramètre.

Utilisation de la factory

>>> from collections import deque
>>> d = deque("Le saut à l'élastique")
>>> d.pop()
'e'
>>> d.popleft()
'L'
>>> d.rotate(4)
>>> d.pop()
's'

>>> from collections import defaultdict
>>> d = defaultdict(int)
>>> d['a']

Principaux modules, partie 2
CHAPITRE 9

283

Ce comportement permet de s’affranchir du code d’initialisation lorsque les diction-
naires sont utilisés pour des calculs sur des séries.

Occurrences de lettres dans un texte

0
>>> d
defaultdict(<type 'int'>, {'a': 0})

>>> from string import lowercase
>>> from collections import defaultdict
>>> sentence = "Ceci est un texte. Banal, certes. Mais c'est un texte"
>>> counter = defaultdict(int)
>>> for car in sentence:
... if car not in lowercase:
... continue
... counter[car] += 1
...
>>> for car in lowercase:
... print('%s: %s' % (car, counter[car]))
...
a: 3
b: 0
c: 3
d: 0
e: 9
f: 0
g: 0
h: 0
i: 2
j: 0
k: 0
l: 1
m: 0
n: 3
o: 0
p: 0
q: 0
r: 1
s: 4
t: 7
u: 2
v: 0
w: 0
x: 2
y: 0
z: 0

La bibliothèque standard
TROISIÈME PARTIE

284

Ainsi, l’initialisation automatique de chaque clé simplifie la conception d’un comp-
teur d’occurrence des lettres dans un texte.

La fonction namedtuple
namedtuple est une fonction qui génère des tuples nommés dont les fonctionnalités
sont étendues. namedtuple prend en paramètre un nom de type et une chaîne qui
contient des noms d’attributs séparés par des espaces ou des virgules. Ce nouveau
type est comparable aux structures nommées du C++.

Création d’un tuple User

L’intérêt des tuples nommés est de fonctionner exactement comme des tuples classi-
ques tout en étant plus faciles à manipuler grâce aux libellés attribués à chaque posi-
tion de séquence. Si nous reprenons notre exemple, pour récupérer la valeur du mot
de passe, joe.password est beaucoup plus explicite que joe[-1].

La méthode de classe _make(iterable) génère également une instance de tuple
nommé et lui assigne les valeurs fournies dans l’itérable.

Utilisation de _make

Les Abstract Base Classes
collections propose pas moins de seize Abstract Base Classes ou ABC. Elles se
basent sur l’implémentation des méthodes spéciales existantes en Python comme
__len__ ou __iter__, et permet d’associer un nom de classe abstraite à un certain
nombre de concepts déjà existants.

La liste des ABC est accessible à l’adresse suivante :

http://docs.python.org/library/collections.html#abcs-abstract-base-classes.

>>> from collections import namedtuple
>>> User = namedtuple('User', 'first_name last_name login password')
>>> joe = User('joe', 'biden', 'jbiden', 'obama2009')
>>> joe
User(first_name='joe', last_name='biden',
 login='jbiden', password='obama2009')
>>> joe.password
'obama2009'

>>> values = ['tarek', 'ziadé', 'tziade', 'poupoum']
>>> User._make(values)
User(first_name='tarek', last_name='ziad\xc3\xa9',
 login='tziade', password='poupoum')

Principaux modules, partie 2
CHAPITRE 9

285

decimal
Introduit dans la version 2.4, le module decimal crée des objets de type Decimal afin
de représenter des nombres décimaux. Les objets de type Decimal s’instancient avec
un objet string, un entier, ou un tuple, représentant le nombre décimal.

class Decimal([value [, context]])
value peut être :
• un objet string, qui représente un décimal en respectant la syntaxe numérique ;
• un entier ;
• un tuple de trois éléments :

– le signe (0 pour positif, 1 pour négatif) ;
– un tuple contenant tous les chiffres qui composent le décimal ;
– un entier exposant, qui place la virgule.

Lorsque value n’est pas fourni, le décimal est initialisé à 0.

context est un objet Context, qui spécifie un environnement particulier pour l’objet.

Par rapport aux entiers réels classiques, ce nouveau type présente un avantage
intéressant : sa représentation reste exacte.

Représentation décimale

Il est en outre possible de définir le degré de précision, qui est réglé à 28 chiffres
significatifs par défaut , par le biais des objets Context.

Un objet Context détermine un environnement d’exécution. Il contient :
• prec : degré de précision, par défaut à 28 ;
• rounding : définit le fonctionnement de l’arrondi et peut prendre entre autres

valeurs :
– ROUND_CEILING : arrondi supérieur ;
– ROUND_DOWN : arrondi vers zéro ;
– ROUND_FLOOR : arrondi inférieur.

Chaque thread possède un contexte qui peut être récupéré par getcontext() et écrit
par setcontext(contexte).

>>> 5.75 / 2.5
2.2999999999999998
>>> from decimal import Decimal
>>> Decimal('5.75') / Decimal('2.5')
Decimal("2.3")

La bibliothèque standard
TROISIÈME PARTIE

286

Degré de précision

cStringIO
Ce module fournit, comme le module StringIO, une classe StringIO qui implé-
mente les mêmes interfaces que le type file mais travaille avec une chaîne de carac-
tères en mémoire. cStringIO est une implémentation rapide de l’objet StringIO.

class StringIO([buffer])
StringIO s’initialise avec un objet string ou unicode. Cependant, et contrairement à
StringIO.StringIO, les méthodes de lecture de données retournent toujours des objets
de type string et il est donc déconseillé de manipuler de l’unicode avec cet objet.

Toutes les méthodes de l’objet sont équivalentes aux objets de type file exceptée la
méthode close() qui libère le contenu en mémoire.

Manipulation d’un fichier mémoire

Utilitaires divers
Cette section présente une série de modules utilitaires, à savoir :
• atexit : permet de gérer la fin du programme ;
• pdb : débogueur interactif ;
• getpass : saisie interactive d’identité ;

>>> from decimal import Decimal, getcontext
>>> Decimal('5.9')/Decimal('3.4')
Decimal("1.735294117647058823529411765")
>>> getcontext().prec = 2
>>> Decimal('5.9')/Decimal('3.4')
Decimal("1.7")

>>> from cStringIO import StringIO
>>> donnes = StringIO('Répète après moi: Python est le meilleur
langage\n'*100000)
>>> print donnes.readline()
Répète après moi: Python est le meilleur langage

>>> donnes.seek(0)
>>> fichier = open('hypnose.txt', 'w')
>>> fichier.write(donnes.getvalue())
>>> fichier.close()

Principaux modules, partie 2
CHAPITRE 9

287

• copy : recopie d’objets ;
• difflib : module de comparaison de textes ;
• time et datetime : modules de manipulation de temps ;
• random : module de génération aléatoire.

atexit
Le module atexit fournit une fonction unique qui permet d’empiler des fonctions à
exécuter lorsque le programme se termine. Une fois le code principal exécuté, atexit
dépile les fonctions de la dernière ajoutée à la première.

Ce mécanisme peut être pratique pour nettoyer des éléments ou pour effectuer des
sauvegardes en fin d’exécution de programme.

Dans l’exemple ci-dessous, atexit permet de s’assurer que les threads sont bien tous
arrêtés en sortie de programme.

Nettoyage de threads

import atexit
from threading import Thread
from time import sleep
from sys import stdout

class Work(Thread):

 def run(self):
 sleep(1)

def cleanup():
 for worker in workers:
 stdout.write('.')
 worker.join()
 print('\nEnd')

workers = []

if __name__ == '__main__':
 atexit.register(cleanup)

 for i in range(100):
 workers.append(Worker())

 for worker in workers:
 worker.start()

La bibliothèque standard
TROISIÈME PARTIE

288

pdb
Python fournit par le biais du module pdb un débogueur interactif qui permet au
développeur d’exécuter le code en mode interactif ou en mode pas-à-pas.

Le mode pas-à-pas
Le mode pas-à-pas est disponible nativement dans la plupart des EDI pour les lan-
gages compilés, et permet d’observer le déroulement du programme en maîtrisant
chaque étape d’exécution. Ce mode s’active en insérant des points d’arrêt, qui sont
des lignes de code marquées sur lesquelles l’interpréteur s’arrête, pour attendre une
décision du programmeur.

Avec pdb, les points d’arrêt explicites sont définis par un appel à la fonction
set_trace(). Lorsque l’interpréteur rencontre cette commande, le mode interactif
est alors enclenché et l’interpréteur se met en attente d’une instruction.

La commande h ou help affiche la liste complète des commandes disponibles.

Activation du mode pas-à-pas

>>> import pdb
>>> def sub_function():
... for i in range(3):
... print('12')
...
>>> def main_function():
... pdb.set_trace()
... for i in range(2):
... sub_function(i)
...
>>> main_function()
> <stdin>(3)main_function()
(Pdb) h

Documented commands (type help <topic>):
==
EOF break condition disable help list q step w
a bt cont down ignore n quit tbreak whatis
alias c continue enable j next r u where
args cl d exit jump p return unalias
b clear debug h l pp s up

Miscellaneous help topics:
==========================
exec pdb

Principaux modules, partie 2
CHAPITRE 9

289

Le mode interactif de pdb est visualisé par le changement de prompt :
>>> devient (Pdb).

Les commandes disponibles sont :
• a ou args : affiche les arguments de la fonction en cours, lorsqu’il y en a.
• alias[name [command]] : permet d’associer à un nom une séquence de code. Si
command est omis, alias affiche le contenu de la commande. Si alias est appelé
sans paramètres, tous les alias définis sont affichés. Un alias devient une nouvelle
commande du débogueur (présenté en détail à la prochaine section) et il peut éga-
lement porter le même nom qu’une commande native et dans ce cas la surcharger.

• b ou break([file:]lineno | function) [, condition] : permet d’ajouter un
point d’arrêt dans le code. Il y a deux façons de localiser le code pour la mise en
place du point d’arrêt : par numéro de ligne avec lineno ou par nom de fonction
avec function.
Si le point d’arrêt est à placer dans un autre fichier, il est possible de préfixer la
localisation par le nom du fichier suffixé de « : ».
Enfin, condition est une éventuelle expression, sous la forme d’une chaîne de
caractères qui est évaluée pour savoir si l’arrêt est marqué. Une variante de break
est tbreak, qui est automatiquement retirée après un premier passage. Si break
est appelée sans paramètre, il liste les points d’arrêt existants, avec pour chacun un
numéro unique.

• c ou cont ou continue : relance l’exécution de la suite du programme. Le déve-
loppeur ne récupère la main qu’au prochain point d’arrêt s’il existe.

• cl ou clear [bpnumber [bpnumber ...]] | [[filename:]lineno

[filename:]lineno...]] : permet de supprimer les points d’arrêt, en fournissant
leurs numéros ou leurs localisations. Si aucun paramètre n’est fourni, clear sup-
prime tous les points d’arrêt définis par break, après confirmation.

• condition bpnumber str_condition : permet d’associer au point d’arrêt de
numéro bpnumber l’expression conditionnelle str_condition. Si cet argument
n’est pas fourni, le point d’arrêt n’a plus de condition associée.

• Debug : permet de lancer un nouveau débogueur, qui s’exécute dans l’environne-
ment du débogueur originel.

• disable bpnumber [bpnumber ...] : désactive les points d’arrêt, qui restent
cependant toujours associés au code.

Undocumented commands:
======================
retval rv

(Pdb)

La bibliothèque standard
TROISIÈME PARTIE

290

• d ou down : déplace le débogueur d’un niveau plus bas dans la pile d’appel.
• enable bpnumber [bpnumber ...] : réactive les points d’arrêt précédemment

désactivés.
• exit ou q ou quit : quitte le débogueur, puis le programme.
• h ou help : affiche l’écran d’aide.
• ignore bpnumber count : associe à un point d’arrêt un entier positif count. À

chaque passage sur le point d’arrêt, cet entier est décrémenté et l’arrêt n’est pas
marqué, tant que count n’a pas atteint 0.

• j ou jumplineno : permet de définir la prochaine ligne à exécuter.
• l ou list [first[, last]] : affiche le code source entre la ligne first et la ligne
last du code courant. Si ces paramètres ne sont pas fournis, affiche les 11 lignes
suivantes. Si seul first est fourni, affiche les 11 lignes en partant de first. Enfin,
si last est inférieur à first, il est utilisé comme le nombre de lignes à afficher.

• n ou next : exécute la ligne courante et s’arrête à la suivante, dans la fonction cou-
rante.

• p ou ppexpression : affiche la valeur de l’expression. pp est une variante qui uti-
lise le module pprint pour afficher l’expression en pretty print, c’est-à-dire en
affichant de manière lisible et indentée les structures complexes comme les listes
imbriquées sur plusieurs niveaux.

• r ou return : exécute le code jusqu’à la fin de la fonction courante.
• s ou step : exécute la ligne courante et s’arrête à la suivante. Contrairement à
next, si la ligne exécutée appelle une autre fonction, step passe alors à la première
ligne de cette fonction.

• u ou up : déplace le débogueur d’un niveau plus haut dans la pile d’appel.
• unalias name : supprime l’alias name.
• w ou where ou bt : affiche la pile d’appel, du plus haut au plus bas niveau.
• whatisarg : affiche le type de l’argument arg.

Exemple de session pas-à-pas

def sub_function(text):
 for i in range(3):
 print(text)

def main_function():
 import pdb
 pdb.set_trace()
 for i in range(2):
 sub_function(str(i))

Principaux modules, partie 2
CHAPITRE 9

291

Outre ces commandes, le prompt (Pdb) reste un prompt Python tout à fait fonc-
tionnel et il est possible de l’utiliser pour appeler du code à exécuter, afficher des
valeurs, ou effectuer toute autre manipulation. L’environnement d’exécution est dans
ce cas celui de la fonction dans laquelle le débogueur est arrêté.

main_function()

[...]

tziade@Tarek:~/Desktop$ python scripts/debugging.py
> /home/tziade/Desktop/scripts/debugging.py(9)main_function()
-> for i in range(2):
(Pdb) w
 /home/tziade/Desktop/scripts/debugging.py(12)?()
-> ma_fonction()
> /home/tziade/Desktop/scripts/debugging.py(9)main_function()
-> for i in range(2):
(Pdb) n
> /home/tziade/Desktop/scripts/debugging.py(10)main_function()
-> sub_function(str(i))
(Pdb) n
0
0
0
> /home/tziade/Desktop/scripts/debugging.py(9)main_function()
-> for i in range(2):
(Pdb) n
> /home/tziade/Desktop/scripts/debugging.py(10)main_function()
-> sub_function(str(i))
(Pdb) s
--Call--
> /home/tziade/Desktop/scripts/debugging.py(2)sub_function()
-> def sub_function(text):
(Pdb) n
> /home/tziade/Desktop/scripts/debugging.py(3)sub_function()
-> for i in range(3):
(Pdb) n
> /home/tziade/Desktop/scripts/debugging.py(4)sub_function()
-> print(text)
(Pdb) whatis text
<type 'str'>
(Pdb) c
1
1
1

La bibliothèque standard
TROISIÈME PARTIE

292

Exécution de code dans le prompt Pdb

La seule précaution dans l’exécution de code est de garnir de parenthèses les variables
portant le même nom qu’une commande pdb ou un alias, afin d’éviter une collision
de noms au moment de l’interprétation, comme dans le cas de next ci-dessus.

Alias et fichier .pdbrc
Au premier chargement de pdb, si un fichier nommé .pdbrc se trouve dans votre
répertoire personnel (variable HOME dans les variables d’environnement de votre sys-
tème) ou dans le répertoire courant, il est interprété par le débogueur et peut contenir
des commandes pdb.

Ce fichier permet de créer des macros de commandes, associées à des alias, pour ne
pas avoir à les retaper à chaque session de débogage.

Exemple de fichier .pdbrc

tziade@Tarek:~/Desktop$ python scripts/debugging.py python
> /home/tziade/Desktop/scripts/debugging.py(9)main_function()
-> for i in range(2):
(Pdb) n
> /home/tziade/Desktop/scripts/debugging.py(10)main_function()
-> sub_function(str(i))
(Pdb) i
0
(Pdb) import time
(Pdb) time.asctime()
'Wed Oct 5 13:23:22 2005'
(Pdb) (next) = 12
(Pdb) print next
12
(Pdb) next
0
0
0
> /home/tziade/Desktop/scripts/debugging.py(9)main_function()
-> for i in range(2):
(Pdb) c
1
1
1

fichier d'alias pour pdb
print("alias charges")

affiche la liste des variables de l'instance objet
alias obvars pp %1.__dict__

Principaux modules, partie 2
CHAPITRE 9

293

Les commandes peuvent récupérer des paramètres en entrée, suivant le modèle des
scripts shell : %1 est le premier paramètre, %2 le second, etc. %* renvoie tous les para-
mètres, à l’image de *args. Les commandes peuvent bien sûr utiliser d’autres alias
s’ils ont été définis avant.

Utilisation des alias

Le mode post mortem
Le mode post mortem, comme son nom l’indique, permet d’utiliser pdb après la mort
du programme. En d’autres termes, lorsque le programme lève une exception, il est
possible d’étudier la dernière pile d’appel, et même de remonter les niveaux. Ce mode
s’obtient par la fonction pm().

Le retour du code vivant

détermine si l'instance passée est une new-style cass
alias nsc issubclass(%1.__class__, object)

>>> class T(object):
... def __init__(self):
... self.t = 12
...
>>> t = T()
>>> import pdb; pdb.set_trace()
--Return--
alias charges
> <stdin>(1)?()->None
(Pdb) obvars t
{'t': 12}
(Pdb) nsc t
True

def sub_function(texte):
 for i in range(3):
 raise TypeError('affreux plantage')
 print(text)

def main_function():
 for i in range(2):
 sub_function(str(i))

[...]

>>> from debugging import ma_fonction
>>> main_function()

La bibliothèque standard
TROISIÈME PARTIE

294

getpass
Le module getpass récupère par le biais de la fonction getpass() un mot de passe de
manière interactive. Il se base sur les bibliothèques disponibles du système hôte pour
faire cette demande, soit :
• avec msvcrt sous MS-Windows ;
• avec EasyDialogs.AskPassword sous Mac ;
• dans le terminal, avec le mode echo à off, sous Unix.

getpass fournit aussi une fonction getuser(), qui renvoie le nom de l’utilisateur
courant, en le recherchant dans les variables d’environnement du système (respecti-
vement LOGNAME, USER, LNAME et USERNAME).

getpass à l’usage

Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "debugging.py", line 9, in main_function
 sub_function(str(i))
 File "debugging.py", line 4, in sub_function
 raise TypeError('affreux plantage')
TypeError: affreux plantage
>>> import pdb;pdb.pm()
alias charges
> /home/tziade/Desktop/scripts/debugging.py(4)sub_function()
-> raise TypeError('affreux plantage')
(Pdb) i
0
(Pdb) up
> /home/tziade/Desktop/scripts/debugging.py(9)main_function()
-> sub_function(str(i))
(Pdb) l
 4 raise TypeError('affreux plantage')
 5 print(text)
 6
 7 def main_function():
 8 for i in range(2):
 9 -> sub_function(str(i))
(Pdb)

>>> import getpass
>>> getpass.getuser()
'tziade'
>>> getpass.getpass('Entrez un mot de passe :')
Entrez un mot de passe :
'unmotdepasse'

Principaux modules, partie 2
CHAPITRE 9

295

copy
copy fournit deux fonctions, copy() et deepcopy(), qui permettent de recopier le
contenu d’un objet dans un clone. La première effectue une shallow copy et la seconde
une deep copy.

Une shallow copy crée un second objet et y recopie les liens vers les objets qui com-
posent les attributs de l’objet originel. En d’autres termes, ces deux objets partagent
les mêmes attributs en mémoire.

Une deep copy, quant à elle, recopie complètement les objets. Le nouvel objet
devient donc totalement indépendant.

copy, comme pickle, est basée sur une lecture de __dict__. Elle est donc réservée
aux manipulations d’instances de données et ne permet pas de recopier les objets de
types fonctionnels comme :
• les modules ;
• les classes ;
• les fonctions ;
• les fichiers ;
• les sockets, ...

copy() et deepcopy() sont dans un bateau

>>> class T(object):
... def __init__(self):
... self.t = [1, 2]
...
>>> t = T()
>>> from copy import copy, deepcopy
>>> t2 = copy(t)
>>> t2.t
[1, 2]
>>> t2.t.append(3)
>>> t2.t
[1, 2, 3]
>>> t.t
[1, 2, 3]
>>> t3 = deepcopy(t)
>>> t3.t.append(4)
>>> t3.t
[1, 2, 3, 4]
>>> t.t
[1, 2, 3]

La bibliothèque standard
TROISIÈME PARTIE

296

difflib
Le module difflib fournit un certain nombre d’utilitaires pour comparer deux
textes. Les fonctionnalités sont équivalentes à ce que des outils de versioning comme
CVS ou SVN peuvent fournir.

difflib offre des fonctions pour :
• afficher les différences entre deux textes ;
• restaurer un texte avec les différences.

Affichage des différences
Les fonctions context_diff() et unified_diff() calculent les différences entre les
deux textes passés en paramètres sous forme de listes de lignes, et renvoient un
generator qui contient le texte des différences.

Pour chaque sous-partie de texte qui contient une différence, context_diff() ren-
voie un bloc préfixé des numéros des lignes concernées dans le texte, avec la version 1
suivie de la version 2.

unified_diff() quant à elle regroupe les différences dans un même texte.

Comparaison de textes

>>> text_1 = """
... Lorsque les mouette volent à basse altitude,
... Il faut se méfier du temps qu'il fera demain.
...
... Car l'adage dit:
... "Mouette basse, orage haut"
... """
>>> text_2 = """
... Lorsque les mouettes volent à basse altitude,
... Il faut se méfier du temps qu'il fera le lendemain.
...
... Car l'adage dit:
... "Mouette basse, orage haut"
... (Auteur: ???)
... 5/20
... """
>>> text_1 = text_1.splitlines(1)
>>> text_2 = text_2.splitlines(1)
>>> res = difflib.context_diff(text_1, text_2)
>>> print(''.join(list(res)))

*** 1,6 ****

Principaux modules, partie 2
CHAPITRE 9

297

Chaque ajout ou retrait de texte est signifié par les caractères +, – ou ! selon les cas.
L’interprétation des résultats reste cependant relativement difficile car les lignes sont
signalées différentes mais sans plus de détail, et un post-traitement est nécessaire
pour ne pas avoir à rechercher les écarts.

La classe Differ joue ce rôle, en se plaçant au-dessus de ces fonctions. Elle fournit une
fonction compare() qui affiche le résultat avec plus de précision : chaque caractère
ajouté, supprimé, ou modifié est notifié par un caractère +, - ou ^, placé sur une ligne
dédiée. Differ.compare() peut aussi être appelée directement par la fonction ndiff().

Utilisation de Differ

! Lorsque les mouette volent à basse altitude,
! Il faut se méfier du temps qu'il fera demain.

 Car l'adage dit:
 "Mouette basse, orage haut"
--- 1,8 ----

! Lorsque les mouettes volent à basse altitude,
! Il faut se méfier du temps qu'il fera le lendemain.

 Car l'adage dit:
 "Mouette basse, orage haut"
+ (Auteur: ???)
+ 5/20

>>> res = difflib.unified_diff(text_1, text_2)
>>> print(''.join(list(res)))

+++
@@ -1,6 +1,8 @@

-Lorsque les mouette volent à basse altitude,
-Il faut se méfier du temps qu'il fera demain.
+Lorsque les mouettes volent à basse altitude,
+Il faut se méfier du temps qu'il fera le lendemain.

Car l'adage dit:
 "Mouette basse, orage haut"
+(Auteur: ???)
+5/20

>>> from difflib import Differ, ndiff
>>> res = Differ().compare(text_1, text_2)
>>> print ''.join(list(res))

La bibliothèque standard
TROISIÈME PARTIE

298

Restauration
Les différences renvoyées par les fonctions précédentes peuvent être utilisées pour
offrir des fonctions de restauration. Le texte renvoyé par ndiff() contient toutes les
informations nécessaires pour reconstruire les deux textes comparés.

difflib fournit pour cette opération la fonction restore() qui prend en premier
paramètre les différences issues d’un appel à ndiff(),Differ() ou compare(), et en
deuxième paramètre un entier qui définit quel texte doit être renvoyé. Pour une dif-
férence issue d’une comparaison ndiff(a, b), si 1 est fourni en deuxième paramètre
de restore(), c’est a qui est renvoyé. Si 2 est fourni, c’est b qui est renvoyé.

Restauration

- Lorsque les mouettes volent à basse altitude,
? -
+ Lorsque les mouettes volent à basse altitude,
? +
- Il faut se méfier du temps qu'il fera demain.
+ Il faut se méfier du temps qu'il fera le lendemain.
? ++++++

 Car l'adage dit:
 "Mouette basse, orage haut"
+ (Auteur: ???)
+ 5/20
>>> res = ndiff(text_1, text_2)
>>> print(''.join(list(res)))

- Lorsque les mouettes volent à basse altitude,
? -
+ Lorsque les mouettes volent à basse altitude,
? +
- Il faut se méfier du temps qu'il fera demain.
+ Il faut se méfier du temps qu'il fera le lendemain.
? ++++++

 Car l'adage dit:
 "Mouette basse, orage haut"
+ (Auteur: ???)
+ 5/20

>>> diffs = ndiff(text_1, text_2)
>>> diffs = list(diffs)
>>> from difflib import restore
>>> rtext_1 = restore(diffs, 1)
>>> rtext_1 = list(rtext_1)

Principaux modules, partie 2
CHAPITRE 9

299

time
Le module time fournit des fonctions de manipulation de temps, basé sur deux
représentations différentes : le temps écoulé depuis l’Epoch, et le temps UTC (Coor-
dinated Universal Time).

Epoch
L’Epoch correspond à une date particulière, fixée par le système, qui est la date de
référence à partir de laquelle le temps est compté en secondes écoulées. Cette date est
fixée au 1er Janvier 1970 sur la plupart des systèmes et est représentée en Python sous
la forme d’un réel.

UTC/GMT
L’UTC (Universal Time Coordinate), ou Greenwich Mean Time représente quant à lui
le temps sous la forme d’une date complète et est représenté en Python sous la forme
d’un tuple composé d’entiers :
• l’année (entre 1 et 9999) ;
• le mois (1-12) ;
• le jour (1-31) ;
• l’heure (0-23) ;
• les minutes (0-59) ;

>>> rtext_2 = restore(diffs, 2)
>>> rtext_2 = list(rtext_2)
>>> print(''.join(rtext_1))

Lorsque les mouette volent à basse altitude,
Il faut se méfier du temps qu'il fera demain.

Car l'adage dit:
 "Mouette basse, orage haut"

>>> print(''.join(rtext_2))

Lorsque les mouettes volent à basse altitude,
Il faut se méfier du temps qu'il fera le lendemain.

Car l'adage dit:
 "Mouette basse, orage haut"
(Auteur: ???)
5/20

La bibliothèque standard
TROISIÈME PARTIE

300

• les secondes (0-59) ;
• le jour de la semaine (0-6) ;
• le jour de l’année (1-366) ;
• DST : un drapeau pour l’heure d’été (-1, 0 ou 1).

Le temps UTC courant renvoyé par localtime()

Lorsque le drapeau DST vaut 1, le temps renvoyé est ajusté en fonction de l’heure
d’été ou d’hiver. Pour 0, le temps est conservé sans modification.

Fonctions de manipulation
Les fonctions fournies par time sont :
• asctime([utc]) : convertit le temps UTC en sa représentation string. Si utc

n’est pas fourni, asctime() utilise le temps courant. Cette fonction ne contrôle
pas la cohérence calendaire des données fournies : si le jour de la semaine fourni
ne correspond pas au jour de l’année fournie, aucune erreur n’est levée.

• clock() : renvoie le temps cpu pris par le processus courant depuis son démar-
rage. Cette méthode est très précise (de l’ordre de la microseconde) .

• ctime([seconds]) : renvoie, sous forme de string, la représentation UTC des
secondes depuis Epoch définies par seconds. Si seconds n’est pas fourni, le nom-
bre de secondes courant est utilisé.

• gmtime([seconds]) : convertit le temps seconds, écoulé depuis Epoch, en sa
représentation UTC. Si seconds n’est pas fourni, le nombre de secondes courant
est utilisé. Ne gère pas le drapeau DST.

• localtime([seconds]) : comme gmttime() mais gère le drapeau DST.
• mktime(utc) : convertit le temps UTC en secondes depuis Epoch.
• sleep(seconds) : place l’interpréteur en attente pendant le nombre de secondes

fournies sous forme de float.
• time() : renvoie le temps en secondes écoulées depuis Epoch.

Manipulation de dates

>>> import time
>>> time.localtime()
(2009, 3, 8, 1, 56, 11, 5, 281, 1)

>>> import time
>>> time.time()
1128869880.906467

Principaux modules, partie 2
CHAPITRE 9

301

Formatage des dates
Pour pouvoir afficher les dates sous un format particulier, time fournit la fonction
strftime(format, utc), qui renvoie une date sous la forme d’une chaîne de carac-
tères, en appliquant le formatage fourni.

Le fonctionnement est similaire au formatage des chaînes classiques, et se base sur
un ensemble de directives dédiées, à savoir :

>>> time.localtime()
(2005, 10, 9, 16, 47, 33, 6, 282, 1)
>>> time.asctime((1976, 12, 24, 12, 10, 0, 4, 360, 0))
'Fri Dec 24 12:10:00 1976'
>>> date_epoch = time.mktime((1976, 12, 24, 12, 10, 0, 4, 360, 0))
>>> date_epoch
220273800.0
>>> time.ctime(date_epoch)
'Fri Dec 24 12:10:00 1976'
>>> time.gmtime()
(2005, 10, 9, 14, 49, 35, 6, 282, 0)

Tableau 9–1 Directives de formatage des dates

Directive Description Exemple

%a Renvoie l’abrévation locale du jour. >>> strftime('%a', gmtime())
'Sun'

%A Comme %a mais nom complet. >>> strftime('%A', gmtime())
'Sunday'

%b Renvoie l’abréviation locale du mois. >>> strftime('%b', gmtime())
'Oct'

%B Équivalente à %b, sans abréviation. >>> strftime('%B', gmtime())
'October'

%c Renvoie une représentation locale complète. >>> strftime('%c', gmtime())
'Sun Oct 9 15:17:40 2008'

%d Renvoie le jour du mois. >>> strftime('%d', gmtime())
'09'

%H Renvoie l’heure au format 24h. >>> strftime('%H', gmtime())
'15'

%I Renvoie l’heure au format 12h. >>> strftime('%I', gmtime())
'03'

%j Renvoie le jour de l’année. >>> strftime('%j', gmtime())
'282'

%m Renvoie le mois de l’année, en version numérique. >>> strftime('%m', gmtime())
'10'

La bibliothèque standard
TROISIÈME PARTIE

302

L’opération inverse est possible grâce à la fonction strptime(string[, format]),
qui transforme la date passée sous la forme d’une chaîne de caractère en date UTC.
Si le format n'est pas spécifié, '%a %b %d %H:%M:%S %Y' est utilisé par défaut.

Transformation inverse

%M Renvoie les minutes. >>> strftime('%M', gmtime())
'24'

%p Renvoie AM ou PM, en fonction de l’heure. >>> strftime('%p', gmtime())
'PM'

%S Renvoie les secondes. >>> strftime('%S', gmtime())
'34'

%U Renvoie le numéro de semaine, en se basant sur le dimanche
comme premier jour de la semaine.

>>> strftime('%U', gmtime())
'41'

%w Renvoie le jour de la semaine sous forme numérique (0 cor-
respond à Dimanche)

>>> strftime('%w', gmtime())
'0'

%W Comme %U mais Lundi est pris en référence comme premier
jour de la semaine.

>>> strftime('%W', gmtime())
'40'

%x Comme %c mais version courte sans jour ni heure. >>> strftime('%x', gmtime())
'10/09/08'

%X Renvoie la représentation locale de l’heure. >>> strftime('%X', gmtime())
'15:31:33'

%y Renvoie les deux derniers chiffres de l’année. >>> strftime('%y', gmtime())
'05'

%Y Renvoie l’année. >>> strftime('%Y', gmtime())
'2008'

%Z Renvoie la timezone. >>> strftime('%Z', gmtime())
'CET'

Tableau 9–1 Directives de formatage des dates (suite)

Directive Description Exemple

>>> from time import strftime, strptime, gmtime
>>> temps = strftime('%c', gmtime())
>>> temps
'Sun Oct 9 21:21:42 2005'
>>> strptime(temps)
(2005, 10, 9, 21, 21, 42, 6, 282, -1)

À SAVOIR Changer la localisation

Dans les exemples précédents, toutes les dates sont en anglais car la machine utilisée est installée dans
cette langue. Il est possible d’influer sur ce paramétrage depuis Python, par le biais du module locale,
en modifiant par code les paramètres locaux.

Principaux modules, partie 2
CHAPITRE 9

303

datetime
datetime complète le module time en fournissant des objets de plus haut niveau,
soit :
• une classe date, pour gérer les dates sans heures ;
• une classe datetime, pour gérer les dates avec heures ;
• une classe time, pour gérer les heures simples ;
• une classe timedelta, pour gérer les écarts de temps entres instances des classes

précédentes.

class timedelta(weeks, days, minutes, hours, seconds, microsecondes,
milliseconds)
La classe timedelta sert à représenter une durée.

Les instances de cette classe supportent entre elles l’addition, la soustraction, le chan-
gement de signe et l’opérateur abs(), et peuvent être utilisées dans des opérations
avec les classes time, date et datetime.

Opérations ferroviaires

>>> from datetime import timedelta, datetime
>>> tgv_dijon_paris = timedelta(hours=1, minutes=40)
>>> tgv_dijon_paris
datetime.timedelta(0, 6000)
>>> # 10 minutes de retard
...
>>> tgv_dijon_paris + timedelta(minutes=10)
datetime.timedelta(0, 6600)
>>> # 5 mn d'avance (!)
...
>>> tgv_dijon_paris - timedelta(minutes=5)
datetime.timedelta(0, 5700)
>>> - tgv_dijon_paris
datetime.timedelta(-1, 80400)
>>> abs(-tgv_dijon_paris)
datetime.timedelta(0, 6000)
>>> # calcul trajet
...
>>> depart = datetime.now()
>>> depart.ctime()
'Mon Oct 10 11:59:11 2005'
>>> arrivee = depart + tgv_dijon_paris
>>> arrivee.ctime()
'Mon Oct 10 13:39:11 2005'

La bibliothèque standard
TROISIÈME PARTIE

304

class date
La classe date représente une date et est instanciée avec un jour, un mois et une
année. Ces informations se retrouvent ensuite comme attributs de l’objet.

Création d’objets date

Les valeurs possibles pour les instances de date sont bornées par deux constantes
définies dans le module, à savoir MINYEAR et MAXYEAR.

Fourchette des dates possibles

date fournit également des méthodes de classe qui permettent d’instancier des objets
particuliers, à savoir :
• today() : renvoie un objet date pour la date courante.
• fromtimestamp(seconds) : renvoie un objet date pour la date correspondant au

nombre de secondes écoulées depuis Epoch.
• fromordinal(ordinal) : renvoie un objet date pour la date correspondante au

nombre de jours écoulés depuis la plus petite date possible.

>>> from datetime import date
>>> date(2004, 12, 3)
datetime.date(2004, 12, 3)
>>> my_date = date(2004, 12, 3)
>>> my_date.year
2004
>>> my_date.month
12
>>> my_date.day
3

>>> import datetime
>>> datetime.MINYEAR
1
>>> datetime.MAXYEAR
9999
>>> # date la plus petite
...
>>> datetime.date(datetime.MINYEAR, 1, 1)
datetime.date(1, 1, 1)
>>> # date la plus grande
...
>>> datetime.date(datetime.MAXYEAR, 12, 31)
datetime.date(9999, 12, 31)

Principaux modules, partie 2
CHAPITRE 9

305

Méthodes de classe de date

Les méthodes d’instances permettent de manipuler la date et utilisent en interne les
fonctions fournies par le module time :

• __str__() : renvoie une représentation sous forme de chaîne de caractères, calcu-
lée par isoformat().

• ctime() : similaire à date.ctime() pour la date.
• isoweekday() : renvoie le numéro de semaine, avec lundi en référence (calendrier

ISO 8601).
• isocalendar() : renvoie un tuple (année, numéro de semaine, numéro de jour).
• isoformat() : renvoie la date au format ISO 8601.
• replace(year, month, day) : renvoie une instance de date, en appliquant au

préalable une modification sur les valeurs. Chacun des paramètres de remplace-
ment est optionnel.

• strftime(format) : appelle la fonction time.strftime() pour la date.
• timetuple(): renvoie la date au format UTC.
• toordinal() : convertit la date en nombre de jours écoulés depuis la date mini-

male.
• weekday() : renvoie le jour de la semaine, avec lundi = 0.

Manipulation de date

>>> datetime.date.today()
datetime.date(2009, 3, 1)
>>> datetime.date.fromtimestamp(270000000)
datetime.date(1978, 7, 23)
>>> datetime.date.fromordinal(7)
datetime.date(1, 1, 7)

À SAVOIR La norme ISO 8601

Le calendrier utilisé pour les méthodes préfixées de « iso » est basé sur la norme ISO 8601, qui définit les
règles suivantes :
• lundi est le premier jour de la semaine et vaut 1.
• dimanche est le dernier jour de la semaine et vaut 7.
• La première semaine de l’année est la première semaine contenant un jeudi.

>>> my_date = datetime.date(1976, 12, 24)
>>> str(my_date)
'1976-12-24'

La bibliothèque standard
TROISIÈME PARTIE

306

class time
La classe time gère une heure, construite avec les éléments suivants :
• heures (de 0 à 23) ;
• minutes (optionnel, de 0 à 59) ;
• secondes (optionnel, de 0 à 59) ;
• microsecondes (optionnel, de 0 à 999 999) ;
• tzinfo (optionnel).

tzinfo est une instance de la classe de base tzinfo fournie par le module, qui permet de
définir des règles particulières sur l’heure, comme le décalage heure d’été/heure d’hiver,
ou l’information de zone locale (Europe/Berlin, Europe/Paris, Australia/Sidney, etc.).

La classe tzinfo ne peut pas être instanciée directement et ses méthodes nécessitent
d’être implémentées dans des classes concrètes.

Un objet tzinfo doit fournir trois méthodes :
• tzname() : le nom de la zone qui sera utilisé dans les affichages.
• utcoffset(dt) : renvoie le décalage de zone à appliquer à dt, exprimé en objet de

type timedelta.
• dst(dt) : renvoie le décalage heure d’été/heure d’hiver, à appliquer à dt, exprimé

en objet de type timedelta.

Implémentation de tzinfo pour Paris

>>> my_date.ctime()
'Fri Dec 24 00:00:00 1976'
>>> my_date.isocalendar()
(1976, 52, 5)
>>> my_date.toordinal()
721712
>>> my_date.replace(day=28)
datetime.date(1976, 12, 28)

#!/usr/bin/python
-*- coding: utf8 -*-
from time import altzone, timezone, mktime, localtime
from datetime import tzinfo, timedelta, datetime

class TZParis(tzinfo):

 def __init__(self):
 self.ofsset_summer = timedelta(seconds=-altzone)
 self.ofsset_zone = timedelta(seconds=-timezone)
 self.ofsset = self.ofsset_summer - self.ofsset_zone

Principaux modules, partie 2
CHAPITRE 9

307

Les méthodes de manipulation fournies par la classe time sont :
• __str__() : renvoie le résultat de la méthode isoformat().
• dst() : renvoie tzinfo.dst(None) si tzinfo a été défini. Renvoie None dans le

cas inverse.
• isoformat(): renvoie une chaîne de caractères représentant l'heure au format

ISO 8601.
• replace(hour, minute, second, microsecond, tzinfo) : renvoie une instance

de time, après avoir remplacé les éléments fournis. Chaque élément est optionnel.
• Utcoffset() : renvoie tzinfo.utcoffset(None) si tzinfo a été défini. Renvoie
None dans le cas inverse.

• Tzname() : renvoie tzinfo.tzname() si tzinfo a été défini. Renvoie None dans le
cas inverse.

 def _dt_local(self, dt):
 """Détermine la nature de l'objet datetime fourni."""
 # ne peut utiliser timetuple() ici car
 # provoquerait un appel récursif sans fin
 tuple_ = (dt.year, dt.month, dt.day, dt.hour,
 dt.minute, dt.second, dt.weekday(), 0, -1)
 return localtime(mktime(tuple_)).tm_isdst > 0

 def utcoffset(self, dt):
 if self._dt_local(dt):
 return self.ofsset_summer
 else:
 return self.ofsset_zone

 def tzname(self, dt):
 return "Europe/Paris"

 def dst(self, dt):
 if self._dt_local(dt):
 return self.decalage
 else:
 return timedelta(0)

if __name__ == '__main__':

 # exemple d'utilisation
 my_date = datetime(1976, 12, 24, 12, 00, 00, tzinfo=TZParis())
 print(my_date.isoformat())

[...]

tziade@Tarek:~/Desktop/scripts$ python timezone.py
1976-12-24T12:00:00+01:00

La bibliothèque standard
TROISIÈME PARTIE

308

class datetime
datetime est en quelque sorte une combinaison des classes date et time. Cette classe
fournit la plupart des méthodes des deux classes précédentes et quelques méthodes
supplémentaires, comme la méthode combine(). combine(date, time) fusionne un
objet date et un objet time en objet datetime.

Date importante

random
Le module random fournit des fonctions de génération de valeurs pseudo-aléatoires,
basées sur une implémentation en C de l’algorithme déterministe Mersenne Twister.

Les fonctions les plus couramment utilisées sont :
• choice(sequence) : renvoie un élément au hasard de la séquence fournie.
• randint(a, b) : renvoie un nombre entier compris entre a et b.
• random() : renvoie un réel compris entre 0.0 et 1.0.
• sample(sequence, k) : renvoie k éléments uniques de la séquence.
• seed([salt]) : initialise le générateur aléatoire.
• shuffle(sequence[, random]) : mélange l’ordre des éléments de la séquence

(dans l’objet lui-même). Si random est fourni, c’est un callable qui renvoie un réel
entre 0.0 et 1.0. random() est pris par défaut.

• uniform(a, b) : renvoie un réel compris entre a et b.

Correction copies

>>> from datetime import date, time, datetime
>>> my_date = datetime(2005, 12, 21)
>>> my_time = time(20, 50)
>>> the_date = datetime(2005, 12, 21)
>>> print('\nRediffusion de Columbo "le Milliardaire psychopathe" '
... 'sur France 1\n %s'
... % the_date.combine(my_date, my_time).ctime()

Rediffusion de Columbo "le Milliardaire psychopathe" sur France 1
Wed Dec 21 20:50:00 2005'

>>> import random
>>> good_work = ['Excellent travail!',
... 'Très bonne analyse',
... 'Les résultats sont là !']
>>> bad_work = ["J'ai gratté la copie pour mettre des points",
... 'Vous filez un mauvais coton',
... 'Que se passe-t-il ?']

Principaux modules, partie 2
CHAPITRE 9

309

En un mot...
Les modules présentés dans ce chapitre fournissent des outils de programmation qui
peuvent être utilisés dans des applications variées.

Le chapitre 10 complète cette collection par la présentation de quelques modules
additionnels : itertools, re, Tkinter et lib2to3.

>>> ok_work = ['Bonne première partie mais soignez la présentation',
... 'Petites erreurs, dommage !',
... 'Des progrès']
>>> class Work(object):
... def __init__(self, student):
... self.student = student
... self.auto_corrector()
... def auto_corrector(self):
... self.note = random.randint(1, 20)
... if self.note < 8:
... self.appreciation = random.choice(bad_work)
... elif self.note < 14:
... self.appreciation = random.choice(ok_work)
... else:
... self.appreciation = random.choice(good_work)
... def __str__(self):
... return '%s: %s, %s' %(self.student, self.note,
self.appreciation)
...
>>> students = ['Bernard', 'Robert', 'René', 'Gaston',
... 'Églantine', 'Aimé', 'Robertine']
>>> works = [Work(student) for student in students]
>>> for work in works:
... print work
...
Bernard: 20, Très bonne analyse
Robert: 13, Des progrès
René: 1, Vous filez un mauvais coton
Gaston: 13, Des progrès
Églantine: 20, Très bonne analyse
Aimé: 2, J'ai gratté la copie pour mettre des points
Robertine: 11, Petites erreurs, dommage !

Ce chapitre termine la présentation des principaux modules par :
• itertools : utilitaires pour itérateurs;
• re : module sur les expressions régulières ;
• tkinter : module de création d’interfaces Tk ;
• Lib2to3 et 2to3 : scripts de conversion de code Python 2 vers Python 3.

Le module itertools
Ce module fournit des fonctions rapides pour générer des itérateurs, et remplacer
directement certaines primitives comme map(), filter(), reduce() et zip().

chain(*itérables) -> itérateur
chain() renvoie un itérateur composé de tous les éléments fournis dans les itérables
passés en paramètre.

chain concatène des itérables par exemple dans une boucle.

10
Principaux modules, partie 3

La bibliothèque standard
TROISIÈME PARTIE

312

Composition par chaîne

count([premier_entier]) -> itérateur
Retourne un itérateur qui renvoie des entiers incrémentés par pas de 1. Si
premier_entier est fourni, il est le premier entier renvoyé. Sinon count() utilise 0.

Un compteur

Cet itérateur est pseudo-infini : une fois sys.maxint atteint, il continue sur des
valeurs de type long sous Python 2.

D’int à long

cycle(itérable) -> itérateur
Renvoie un itérateur qui parcourt indéfiniment les éléments de l’itérable.

>>> from itertools import chain
>>> seq1 = [1, 2, 3]
>>> def seq2():
... return (a for a in [4, 5])
...
>>> for elm in chain(seq1, seq2()):
... print elm
...
1
2
3
4
5

>>> import itertools
>>> iter = itertools.count(10)
>>> [iter.next() for i in range(5)]
[10, 11, 12, 13, 14]

>>> import sys
>>> iter = itertools.count(sys.maxint-1)
>>> iter.next()
2147483646
>>> iter.next()
2147483647
>>> iter.next()
2147483648L
>>> iter.next()
2147483649L

Principaux modules, partie 3
CHAPITRE 10

313

Cycle infini

Au premier passage, chaque élément parcouru est sauvegardé en interne, puis l’itéra-
teur boucle indéfiniment sur les éléments sauvegardés.

La mémoire maximum utilisée par cette fonction est donc le double de la taille de
l’itérable passé en paramètre.

dropwhile(prédicat, itérable) -> itérateur
Fournit un itérateur qui fonctionne en deux temps :
• il parcourt les éléments de l’itérable et envoie chaque élément au callable
prédicat. La boucle s’arrête dès que prédicat renvoie False ou que la séquence
se termine. Dans le cas où prédicat renvoie False, l’élément déclencheur est le
premier renvoyé par l’itérateur.

• Il fournit ensuite un itérateur classique sur tous les éléments suivants de la boucle.

Déclencheur

Cette forme d’itérateur permet de travailler avec une sous-séquence.

groupby(itérable[, keyfunc]) -> itérateur
Renvoie un itérateur qui récupère des couples (clé, groupe). keyfunc est une fonc-
tion qui doit renvoyer la clé pour l’élément courant. groupe est un itérable qui réunit
les éléments regroupés par clé.

>>> import itertools
>>> iter = itertools.cycle('abc')
>>> [iter.next() for i in range(8)]
['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b']

>>> import itertools
>>> def watcher(element):
... return element != "c'est lui!"
...
>>> iter = itertools.dropwhile(watcher,
... ["c'est moi", "c'est eux",
... "c'est lui!", "c'est nous"])
>>> iter.next()
"c'est lui!"
>>> iter.next()
"c'est nous"
>>> iter.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>?
StopIteration

La bibliothèque standard
TROISIÈME PARTIE

314

Regroupement

ifilter(prédicat, itérable) -> itérateur
Renvoie un itérateur qui contient les éléments de l’itérable fourni, lorsque le callable
prédicat renvoie vrai.

Si prédicat vaut None, les valeurs sont testées avec bool().

Filtre sur iterator

ifilterfalse(prédicate, itérable) -> itérateur
Fonction inverse de ifilter().

Filtre sur iterator

>>> import itertools
>>> def odd_even(element):
... if element % 2 == 0:
... return 'pair'
... return 'impair'
...
>>> for key, group in itertools.groupby([2, 7, 68, 3, 6], odd_even):
... print('%s: %s' % (key, str(list(group))))
...
pair: [2]
impair: [7]
pair: [68]
impair: [3]
pair: [6]

>>> import itertools
>>> elements = [1, 2, 3, 4, 5, 6]
>>> def filter(element):
... return element % 2 == 0
...
>>> filtered = itertools.ifilter(filter, elements)
>>> list(filtered)
[2, 4, 6]

>>> import itertools
>>> elements = [1, 2, 3, 4, 5, 6]
>>> def filter(element):
... return element % 2 == 0
...
>>> filtered = itertools.ifilterfalse(filter, elements)
>>> list(filtered)
[1, 3, 5]

Principaux modules, partie 3
CHAPITRE 10

315

imap(fonction, *itérables) -> itérateur
Renvoie un itérateur qui appelle fonction avec les éléments des itérables fournis,
concaténés pour former la liste des paramètres.

Si fonction vaut None, renvoie les paramètres préparés.

Appels en cascade

islice(itérable, [start,] stop [, step]) -> itérateur
Renvoie un itérable qui est une sous-séquence de l’itérable fourni. start, stop et
step s’utilisent comme les tranches.

Tranche d’itérable

izip(*itérables) -> itérateur
Fonctionne comme zip(), pour agréger les éléments des itérables fournis.

Combinaisons de séquences

Lorsque les itérateurs sont de longueurs différentes, izip s’arrête dès que l’itérateur le
plus petit est consommé.

>>> import itertools
>>> def sum(a, b, c):
... return a + b + c
...
>>> iter = itertools.imap(sum, [1, 2, 3], [4, 5, 6], [7, 8, 9])
>>> list(iter)
[12, 15, 18]

>>> import itertools
>>> iter = itertools.islice([1, 2, 3, 4], 2, 4)
>>> list(iter)
[3, 4]

>>> import itertools
>>> iter = itertools.izip(['a', 'b', 'c'], [1, 2, 3], ['A', 'B', 'C'])
>>> list(iter)
[('a', 1, 'A'), ('b', 2, 'B'), ('c', 3, 'C')]

La bibliothèque standard
TROISIÈME PARTIE

316

izip_longest(*itérables, [fillvalue=None]) -> itérateur
izip_longest est une variation d’izip, qui continue tant que tous les itérateurs ne
sont pas vidés. Lorsqu’un itérateur ne fournit plus d’éléments, c’est fillvalue qui est
utilisé. Par défaut, il est à None.

Combinaisons de séquences avec izip_longest

repeat(élément, nb_occurences) -> itérateur
Génère un itérateur qui répète élément nb_occurences fois. Si nb_occurences n’est
pas fourni, devient un itérateur infini qui renvoie toujours element.

3 fois 3

starmap(fonction, séquence) -> itérateur
Comparable à imap() mais le deuxième argument doit être une séquence de tuples.
À chaque itération n, l’itérateur renvoie le résultat de fonction(*séquence[n]).

Tuples prêts à l’emploi

>>> import itertools
>>> iter = itertools.izip_longest('abc', 'def', 'g', 'hijk')
>>> list(iter)
[('a', 'd', 'g', 'h'), ('b', 'e', None, 'i'), ('c', 'f', None, 'j'),
(None, None, None, 'k')]
>>> iter = itertools.izip_longest('abc', 'def', 'g', 'hijk',
 fillvalue='z')
>>> list(iter)
[('a', 'd', 'g', 'h'), ('b', 'e', 'z', 'i'),
('c', 'f', 'z', 'j'), ('z', 'z', 'z', 'k')]

>>> import itertools
>>> iter = itertools.repeat('3', 3)
>>> list(iter)
['3', '3', '3']

>>> import itertools
>>> def fonc(*elements):
... print(str(elements))
...
>>> st = itertools.starmap(fonc, [('a',), (1, 2), (None,)])
>>> st.next()
('a',)

Principaux modules, partie 3
CHAPITRE 10

317

takewhile(prédicat, itérable) -> itérateur
Renvoie les éléments de itérable tant que prédicate(element) renvoie True.

Un garde

tee(itérable[, n=2]) -> tuple d’itérateurs
Découpe itérable en n itérables, renvoyés sous la forme d’un tuple. Chaque itérable
renvoie ensuite les éléments de itérable.

Duplication

Le module re
Le module refournit des fonctionnalités d’expressions régulières, similaires à ce qui
existe en Perl.

Expressions régulières ?
Les expressions régulières, ou expressions rationnelles, permettent de rechercher
dans un texte des éléments correspondants à un motif. L’expression régulière (regexp)
utilise une grammaire pour décrire ce motif, qui est ensuite interprétée dans un auto-
mate de parcours de texte.

>>> st.next()
(1, 2)
>>> st.next()
(None,)

>>> import itertools
>>> def guard(element):
... return element != 'stop'
...
>>> elements = [1, 2, 'a', 'stop', 12]
>>> it = itertools.takewhile(guard, elements)
>>> list(it)
[1, 2, 'a']

>>> [list(el) for el in itertools.tee(['a', 'b', 'c'], 3)]
[['a', 'b', 'c'], ['a', 'b', 'c'], ['a', 'b', 'c']]

La bibliothèque standard
TROISIÈME PARTIE

318

Un des tout premiers programmes informatiques qui aient bénéficié de ce système,
issu des travaux du mathématicien Kleene, est grep sous GNU/Linux : les recherches
dans les fichiers peuvent être réalisées avec des regexp.

Recherche dans les sources de Python 2.4

Toute la puissance de ce système réside dans la grammaire utilisée dans les expres-
sions, qui est de type 3 dans la classification de Chomsky, c’est-à-dire apte à décrire un
langage complet.

En d’autres termes, il n’y a aucune limite dans la recherche de texte basée sur ce sys-
tème, même si les expressions deviennent vite complexes à mettre au point. Il existe
dans ce cas un programme de débogage d’expressions régulières pour Python, appelé
Kodos (http://kodos.sourceforge.net/), qui permet de travailler en mode essai-erreur
sans avoir à concevoir un programme.

$ cd python2.4
$ grep -ri "bicycle.*man.*emacs" .
./site-packages/bikeemacs.py:# Bicycle Repair Man integration with
(X)Emacs

Figure 10–1
Kodos en action

Principaux modules, partie 3
CHAPITRE 10

319

Notation pour les expressions régulières
Même si les expressions régulières ne sont pas propres à un langage, chaque implé-
mentation introduit généralement des spécificités pour leur notation.

L’antislash (\) tient un rôle particulier dans la syntaxe des expressions régulières
puisqu’il permet d’introduire des caractères spéciaux. Comme il est également inter-
prété dans les chaînes de caractères, il est nécessaire de le doubler pour ne pas le
perdre dans l’expression.

Expressions régulières

Cette écriture n’est cependant pas très lisible, et l’utilisation de chaînes brutes (raw
strings) qui ne sont pas interprétées par le compilateur évite le doublement des antislashs.

Expression régulière en raw string

Syntaxe des expressions régulières
La syntaxe des expressions régulières peut se regrouper en trois groupes de symboles :
• les symboles simples ;
• les symboles de répétition ;
• les symboles de regroupement.

Symboles simples
Les symboles simples sont des caractères spéciaux qui permettent de définir des
règles de capture pour un caractère du texte et sont réunis dans le tableau ci-dessous.

EN SAVOIR PLUS Les expressions régulières

Pour plus d’informations sur les expressions régulières, lire Les expressions régulières par l’exemple de
Vincent Fourmond, aux éditions H&K

>>> expression = "\btest\b"
>>> print(expression)
test
>>> expression = "\\btest\\b"
>>> print(expression)
\btest\b

>>> expression = r"\btest\b"
>>> print(expression)
\btest\b

La bibliothèque standard
TROISIÈME PARTIE

320

Tableau 10–1 Symboles expressions régulières

Symbole Fonction Exemple

. Remplace tout caractère sauf le saut
de ligne.

>>> re.findall(r'.', ' test *')
[' ', 't', 'e', 's', 't', ' ', '*']
>>> re.findall(r'.', 'test\n')
['t', 'e', 's', 't']
>>> re.findall(r'.', '\n')
[]

^ Symbolise le début d’une ligne. >>> re.findall(r'^le', "c'est le début")
[]
>>> re.findall(r'^le', "le début")
['le']

$ Symbolise la fin d’une ligne. >>> re.findall(r'mot$', 'mot mot mot')
['mot']

\A Symbolise le debut de la chaîne. >>> re.findall(r'\Aparoles', 'paroles,
paroles, paroles,\nparoles, encore des
parooooles')
['paroles']

\b Symbolise le caractère d’espace-
ment. Intercepté seulement au début
ou à la fin d’un mot. Un mot est ici
une séquence de caractères alphanu-
mériques ou espace souligné.

>>> re.findall(r'\bpar\b', 'parfaitement')
[]
>>> re.findall(r'\bpar\b', 'par monts et par
veaux')
['par', 'par']

\B Comme \b mais uniquement lorsque
ce caractère n’est pas au début ou à
la fin d’un mot.

>>> re.findall(r'\Bpar\B', "imparfait")
['par']
>>> re.findall(r'\Bpar\B', "parfait")
[]

\d Intercepte tout chiffre. >>> re.findall(r'\d', '1, 2, 3, nous irons au
bois (à 12:15h)')
['1', '2', '3', '1', '2', '1', '5']

\D Intercepte tout caractère sauf les
chiffres.

>>> print ''.join(re.findall(r'\D', '1, 2, 3,
nous irons au bois (à 12:15h)'))
, , , nous irons au bois (à :h)

\s Intercepte tout caractère
d’espacement :
- tabulation horizontale(\t) ;
- tabulation verticale(\v) ;
- saut de ligne (\n) ;
- retour à la ligne (\r) ;
- form feed (\f).

>>> len(re.findall(r'\s', "combien d'espaces
dans la phrase ?"))
5
>>> len(re.findall(r'\s',
"latoucheespaceestbloquée"))
0
>>> phrase = """Lancez
... vous!"""
>>> len(re.findall(r'\s', phrase))
1

Principaux modules, partie 3
CHAPITRE 10

321

Le fonctionnement de chacun de ces symboles est affecté par les options suivantes :
• S ou DOTALL : le saut de ligne est également intercepté par le symbole \b.
• (M)ULTILINE : dans ce mode, les symboles ^ et $ interceptent le début et la fin de

chaque ligne.
• (L)OCALE : rend les symboles \w, \W, \b et \B dépendants de la configuration de

langue locale. Pour le français, les caractères comme « é » sont alors considérés
comme des caractères alphanumériques.

• (U)NICODE : les symboles \w, \W, \b, \B, \d, \D, \s et \S se basent sur de l’unicode.
• (I)GNORECASE : rend les symboles insensibles à la casse du texte.
• X ou VERBOSE : autorise l’insertion d’espaces et de commentaires en fin de ligne,

pour une mise en page de l’expression régulière plus lisible.

Symboles de répétition
Les symboles simples peuvent être combinés et répétés par le biais de symboles de
répétition :

\S Symbole inverse de \s >>> len(re.findall(r'\S', "combien de lettres
dans la phrase ?"))
29

\w Intercepte tout caractère alphanumé-
rique et espace souligné.

>>> ''.join(re.findall(r'\w', '*!mot-clé_*'))
'motclé_'

\W Symbole inverse de \w. >>> ''.join(re.findall(r'\w', '*!mot-clé_*'))
'*!-*'

\Z Symbolise la fin de la chaîne. >>> re.findall(r'end\Z', 'The end will come')
[]
>>> re.findall(r'end\Z', 'This is the end')
['end']

Tableau 10–1 Symboles expressions régulières (suite)

Symbole Fonction Exemple

Tableau 10–2 Symboles de répétition

Symbole Fonction Exemple

* Répète le symbole précédent de 0 à n
fois (autant que possible).

>>> re.findall(r'pois*', 'poisson pois
poilant poi')
['poiss', 'pois', 'poi', 'poi']

+ Répète le symbole précédent de 1 à n
fois (autant que possible).

>>> re.findall(r'pois+', 'poisson pois
poilant poi')
['poiss', 'pois']

La bibliothèque standard
TROISIÈME PARTIE

322

Le regroupement de caractères accepte aussi des caractères d’abréviation, à savoir :
• - : définit une plage de valeurs. [a-z] représente par exemple toutes les lettres de

l’alphabet en minuscules.
• ^ : placé en début de jeu, définit la plage inverse. [^a-z] représente par exemple

tous les caractères sauf les lettres de l’alphabet en minuscules.

Les symboles de répétition ?, * et + sont dits gloutons ou greedy : comme ils répètent
autant de fois que possible le symbole précédent, des effets indésirables peuvent sur-

? Répète le symbole précédent 0 ou 1
fois (autant que possible).

>>> re.findall(r'pois?', 'poisson pois
poilant poi')
['pois', 'pois', 'poi', 'poi']

{n} Répète le symbole précédent n fois. >>> re.findall(r'pois{2}', 'poisson pois
poilant poi')
['poiss']

{n,m} Répète le symbole précédent entre n
et m fois inclus. n ou m peuvent être
omis comme pour les tranches de
séquences. Dans ce cas ils sont rem-
placés respectivement par 0 et *.

>>> re.findall(r'pois{2,4}',
'poissssssssssssson pois poilant poi')
['poissss']
>>> re.findall(r'pois{,4}',
'poissssssssssssson pois poilant poi')
['poissss', 'pois', 'poi', 'poi']
>>> re.findall(r'pois{2,}',
'poissssssssssssson pois poilant poi')
['poisssssssssssss']

{n,m}? Équivalent à {n,m} mais intercepte
le nombre minimum de caractères.

>>> re.findall(r'pois{2,4}?',
'poissssssssssssson pois poilant poi')
['poiss']
>>> re.findall(r'pois{2,}?',
'poissssssssssssson pois poilant poi')
['poiss']
>>> re.findall(r'pois{,4}?',
'poissssssssssssson pois poilant poi')
['poi', 'poi', 'poi', 'poi']

e1|e2 Intercepte l’expression e1 ou e2.
(OR)

>>> re.findall(r'Mr|Mme', 'Mr et Mme')
['Mr', 'Mme']
>>> re.findall(r'Mr|Mme', 'Mr Untel')
['Mr']
>>> re.findall(r'Mr|Mme', 'Mme Unetelle')
['Mme']
>>> re.findall(r'Mr|Mme', 'Mlle Unetelle')
[]

[] Regroupe des symboles et caractères
en un jeu.

>>> re.findall(r'[abc]def', 'adef bdef cdef')
['adef', 'bdef', 'cdef']

Tableau 10–2 Symboles de répétition (suite)

Symbole Fonction Exemple

Principaux modules, partie 3
CHAPITRE 10

323

venir. Dans l’exemple suivant, l’expression régulière tente d’extraire les balises html
du texte sans succès : le texte complet est intercepté car il correspond au plus grand
texte possible pour le motif. La solution est d’ajouter un symbole ? après le symbole
greedy, pour qu’il n’intercepte que le texte minimum.

Effet greedy

Symboles de regroupement
Les symboles de regroupement offrent des fonctionnalités qui permettent de com-
biner plusieurs expressions régulières, au-delà des jeux de caractères [] et de la fonc-
tion OR, et d’associer à chaque groupe un identifiant unique. Certaines d’entre elles
permettent aussi de paramétrer localement le fonctionnement des expressions.

>>> import re
>>> re.findall(r'<.*>', '<div>le titre</div>')
['<div>le titre</div>']
>>> re.findall(r'<.*?>', '<div>le titre</div>')
['<div>', '', '', '</div>']

Tableau 10–3 Symboles de regroupement

Symbole Fonction Exemple

(e) Forme un groupe avec l’expression e. Si
les caractères « (» ou «) » sont utilisés
dans e, ils doivent être préfixés de « \ »

>>> re.findall(r'(\(03\))(80)(.*)',
'(03)80666666')
[('(03)', '80', '666666')]

(?FLAGS) Insère directement des flags d’options
dans l’expression. S’applique à l’expres-
sion complète quel que soit son position-
nement.

>>> re.findall(r'(?i)AAZ*', 'aaZzzRr')
['aaZzz']

(?:e) Similaire à (e) mais le groupe intercepté
n’est pas conservé.

>>>
re.findall(r'(?:\(03\))(?:80)(.*)',
'(03)80666666')
['666666']

(?P<name>e) Associe l’étiquette name au groupe. Ce
groupe peut ensuite être manipulé par ce
nom par le biais des API de re, ou même
dans la suite de l’expression régulière.

>>> match =
re.search(r'(03)(80)(?P<numero>.*)',
'0380666666')
>>> match.group('numero')
'666666'

(?#comment) Insère un commentaire, qui sera ignoré. Le
mode verbose est plus souple pour l’ajout
direct de commentaires en fin de ligne.

>>> re.findall(r'(?# récupération des
balises)<.*?>',
'<h2>hopla</h2>')
['<h2>', '', '', '</h2>']

La bibliothèque standard
TROISIÈME PARTIE

324

Exemples plus complets
Voici une série d’exemples plus complets, mettant en œuvre les différentes mécani-
ques. L’expression est optionnellement accompagnée de flags.

(?=e) Similaire à (e) mais le groupe n’est pas
consommé.

>>> re.findall(r'John(?= Doe)',
 'John Doe')
['John']
>>> re.findall(r'John(?= Doe)',
 'John Minor')
[]

(?!e) Le groupe n’est pas consommé et est
intercepté uniquement si le pattern (le
motif) n’est pas e. (?!e) est le symbole
inverse de (?=e)

>>> re.findall(r'John(?! Doe)',
 'John Doe')
[]
>>> re.findall(r'John(?! Doe)',
 'John Minor')
['John']

(?<=e1)e2 Intercepte e2 à condition qu’elle soit pré-
fixée d’e1.

>>> re.findall(r'(?<=John)Doe',
 'John Doe')
['Doe']
>>> re.findall(r'(?<=John)Doe',
 'John Minor')
[]

(?<!e1)e2 Intercepte e2 à condition qu’elle ne soit
pas préfixée d’e1.

>>> re.findall(r'(?<!John)Doe',
 'John Doe')
[]
>>> re.findall(r'(?<!John)Doe',
 'Juliette Doe')
['Doe']

(?(id/name)
e1|e2)

Rend l’expression conditionnelle : si le
groupe d’identifiant id ou name existe,
e1 est utilisée, sinon e2. e2 peut être
omise, dans ce cas e1 ne s’applique que si
le groupe id ou name existe.
Dans l’exemple <123> et 123 sont inter-
ceptés mais pas 123>.

>>>
re.match(r'(?P<one><)?(\d+)(?(one)>)'
, '123>')
>>>
re.match(r'(?P<one><)?(\d+)(?(one)>)'
, '123')
<_sre.SRE_Match object at 0xb7dea7b8>
>>>
re.match(r'(?P<one><)?(\d+)(?(one)>)'
, '<123>')
<_sre.SRE_Match object at 0xb7dea770>

Tableau 10–3 Symboles de regroupement (suite)

Symbole Fonction Exemple

Principaux modules, partie 3
CHAPITRE 10

325

Fonctions et objets de re
Le module re contient un certain nombre de fonctions qui permettent de manipuler
des motifs et les exécuter sur des chaînes :
• compile(pattern[, flags]) : compile le motif pattern et renvoie un objet de

type SRE_Pattern.
• escape(string) : ajoute un antislash (\) devant tous les caractères non alphanu-

mériques contenus dans string. Permet d’utiliser la chaîne dans les expressions
régulières.

• findall(pattern, string[, flags]) : renvoie une liste des éléments intercep-
tés dans la chaîne string par le motif pattern. Lorsque le motif est composé de
groupes, chaque élément est un tuple composé de chaque groupe.

• finditer(pattern, string[, flags]) : équivalente à findall(), mais un itéra-
teur sur les éléments est renvoyé. flags est un entier contenant d’éventuels flags,
appliqués au motif complet.

• match(pattern, string[, flags]) : renvoie un objet de type MatchObject si le
début de la chaîne string correspond au motif. flags est un entier contenant
d’éventuels flags, appliqués au motif complet.

• search(pattern, string[, flags]) : équivalente à match() mais recherche le
motif dans toute la chaîne.

• split(pattern, string[, maxsplit = 0]) : équivalente au split() de l’objet
string. Renvoie une séquence de chaînes délimitées par le motif pattern. Si
maxsplit est fourni, limite le nombre d’éléments à maxsplit, le dernier élément
regroupant la fin de la chaîne lorsque maxsplit est atteint.

• sub(pattern, repl, string[, count]) : remplace les occurrences du motif
pattern de string par repl. repl peut être une chaîne ou un objet callable qui
reçoit un objet MatchObject et renvoie une chaîne. Si count est fourni, limite le
nombre de remplacements.

Tableau 10–4 Exemples

Expression[, flags] Objectif Explication

\w+@\w+\.\w{2,4} Intercepte les e-mails L’e-mail est composé de trois parties séparées par
« @ » et « . ». La dernière partie fait entre deux et qua-
tres caractères. (com, fr, biz, etc.)

(<body.*>)(.*)(</body>),
IGNORECASE

Intercepte le corps d’un
fichier HTML.

Les éléments sont regroupés en trois parties, et seul le
deuxième groupe sera utilisé.

(?<=\s"{3}).*?(?="{3}\s) Intercepte tous les com-
mentaires triple-quoted
d’un texte.

Utilise des assertions sur le texte précédent et suivant
(trois guillemets). Le ? suffixant le .* permet d’arrêter
dès qu’un deuxième triple-quote est atteint.

La bibliothèque standard
TROISIÈME PARTIE

326

• subn(pattern, repl, string[, count]) : équivalente à sub() mais renvoie un
tuple (nouvelle chaîne, nombre de remplacements) au lieu de la chaîne.

Classe SRE_Pattern

La classe SRE_Pattern, contient une expression régulière compilée, et accélère les
traitements lorsqu’elle est utilisée plusieurs fois. Cette classe fournit en méthodes
toutes les fonctions ci-dessus, et le paramètre pattern n’est plus à fournir.

Pour les méthodes de recherche, rappelées ci-dessous, deux paramètres optionnels sup-
plémentaires, pos et endpos, servent à délimiter une sous-chaîne de recherche. Il n’est
également plus nécessaire de définir les flags, puisqu’ils sont donnés à compile() :
• match(string[, pos[, endpos]]) ;
• search(string[, pos[, endpos]]) ;

• findall(string[, pos[, endpos]]) ;

• finditer(string[, pos[, endpos]]).

Compilation de motif

Classe MatchObject

La classe MatchObject, quant à elle, est retournée par les fonctions ou méthodes
match() et search(), et est utilisée dans sub() et subn().

Elle offre un certain nombre de méthodes :
• group([group1, ...]) : renvoie un ou plusieurs groupes du résultat de l’expres-

sion régulière. group() peut recevoir en paramètre des indices de groupes, ou leurs
noms lorsqu’ils ont été définis. Sans aucun paramètre, renvoie toute la chaîne.

• groups([default]) : renvoie un tuple contenant tous les groupes. Si defaut est
fourni, c’est le nom ou l’indice d’un groupe qui n’a pas participé au motif.

• groupdict([default]) : équivalente à groups(), mais renvoie uniquement les grou-
pes nommés, sous la forme d’un dictionnaire dont les clés sont les noms des groupes.

• start([group]) : renvoie l’indice du premier caractère intercepté dans la chaîne.
Si group est fourni, c’est un entier ou un nom qui identifie le groupe dans lequel
chercher. start() recherche dans toute la séquence.

>>> import re
>>> motif = re.compile(r'\d{2}')
>>> motif.findall('voici 32 bananes et 125 carottes, de quoi faire 3
gloubiboulga')
['32', '12']
>>> motif.findall('rajoute quand même 18 navets')
['18']

Principaux modules, partie 3
CHAPITRE 10

327

• end([group]) : renvoie l’indice du dernier caractère intercepté dans la chaîne. Si
group est fourni, c’est un entier ou un nom qui identifie le groupe dans lequel
chercher. end() recherche dans toute la séquence par défaut.

• pos : renvoie le paramètre pos fourni à search() ou match(). 0 par défaut.
• endpos : renvoie le paramètre endpos fourni à search() ou match(). Indice du

dernier caractère par défaut.
• expand(template) : équivalente à sub, où template est la chaîne de substitution.
• lastgroup : renvoie le nom du dernier groupe intercepté, ou None si inexistant ou

non nommé.
• lastindex : renvoie l’indice du dernier groupe intercepté, ou None si inexistant.
• re : renvoie l’objet SRE_Pattern qui a été utilisé.
• string : renvoie la chaîne qui a été recherchée.
• span([group]) : renvoie le tuple correspondant à (self.start(group),

self.end(group)).

Les backreferences

Pour toutes les fonctions ou méthodes de substitution, il est possible d’insérer dans la
chaîne de substitution les valeurs interceptées par des groupes. Chaque séquence corres-
pondant à un groupe peut être insérée par le biais de marqueurs appelés backreferences.

Les backreferences ont trois écritures possibles :
• \i : où i est l’indice du groupe, l’indice du premier groupe étant 1.
• \g<i> : où i est l’indice du groupe.
• \g<name> : où name est le nom du groupe.

Backreferences

>>> import re
>>> motif = re.compile('(Mr|Mme|Mlle)\s([A-Za-z]+)\s([A-Za-z]+)')
>>> print(motif.sub(r'Nom: \3, Prénom: \2', 'Mr John Doe'))
Nom: Doe, Prénom: John
>>> print(motif.sub(r'Mon nom est \g<3>, \g<2> \g<3>', 'Mr Jean Bon'))
Mon nom est Bon, Jean Bon
>>> motif = re.compile('(Mr|Mme|Mlle)\s(?P<prenom>[A-Za-
z]+)\s(?P<nom>[A-Za-z]+)')
>>> print(motif.sub(r'\g<prenom>, de la lignée des \g<nom>',
... 'Mr Pif LeChien'))
Pif, de la lignée des LeChien

La bibliothèque standard
TROISIÈME PARTIE

328

Le module Tkinter
Le module Tkinter fournit des outils de construction d’interfaces de type Tcl/Tk, indé-
pendantes de la plate-forme. Pour la programmation d’interfaces graphiques en Python,
le toolkit Tcl/Tk est aujourd’hui avantageusement remplacé par d’autres systèmes
d’interface comme wxPython, qui permet d’utiliser wxWindows, ou encore PyQt/
PyKDE, qui seront détaillés dans l’annexe sur les bibliothèques tierces. Ces outils tiers
sont aujourd’hui plus largement répandus que Tcl/Tk et offrent une meilleure intégra-
tion au système hôte ainsi qu’un panel de composants beaucoup plus riche.

Il reste bien sûr possible de composer une interface graphique complète avec Tcl,
mais au prix d’un effort supérieur et d’un rendu final au look un peu « vieillot ».
Cependant pour des besoins très limités en interfaces, Tkinter offre l’énorme avan-
tage d’être entièrement intégré à Python et les système hôtes ont généralement une
installation standard de Tk. Tkinter reste dans ce cas un excellent choix. Cette sec-
tion présente une simple introduction à Tkinter, avec le minimum d’informations
nécessaires à la conception d’interfaces basiques.

Programmation événementielle
Un programme doté d’une interface graphique base son fonctionnement sur les évé-
nements qui lui sont envoyés par le système via cette interface. Les événements
regroupent, entre autres, toutes les actions souris ou clavier de l’utilisateur sur l’inter-
face. En d’autres termes, lorsque le programme est lancé, il n’exécute pas une
séquence de code comme un script classique, mais se met en attente d’événements
dans une boucle sans fin.

Chaque événement reçu par le programme est alors envoyé puis traité par un ges-
tionnaire spécial, qui exécute tout code éventuellement associé à l’événement. Con-
cevoir une interface graphique consiste donc à associer à des événements l’exécution
de portions de code.

La classe Tk
La classe Tk est un widget spécial qui, lorsqu’elle est instanciée, génère un nouvel
interpréteur Tcl et représente la fenêtre principale de l’application, sur laquelle on
peut greffer d’autres widgets.

EN SAVOIR PLUS Python et Tkinter

Le lecteur intéressé pourra approfondir en lisant Python and Tkinter Programming de John Grayson, aux
éditions Hanning.

Principaux modules, partie 3
CHAPITRE 10

329

Instanciée dans l’interpréteur, elle s’affiche directement à l’écran.

Application Tk minimale

Les widgets de base de Tkinter
Tkinterfournit un certain nombre de classes appelées widgets, qui permettent de
composer une interface graphique. Toutes ces classes savent s’afficher et gèrent un
certain nombre d’événements et un nombre relativement important de méthodes (en
général plus d’une centaine).

Les 15 widgets de base de Tkinter sont :
• Button : un bouton simple, qui permet de lancer une commande ;
• Canvas : un widget générique, qui offre une surface de dessin ;
• Checkbutton : une case à cocher ;
• Entry : un champ texte ;
• Frame : un widget qui peut contenir d’autres widgets (une fiche) ;
• Label : affiche un texte ou une image ;
• Listbox : une liste de choix déroulante ;
• Menu : un menu ;
• Menubutton : un élément de menu, qui permet de lancer une commande ;
• Message : un label évolué ;
• Radiobutton : un sélecteur ;
• Scale : une réglette qui permet de modifier une valeur ;
• Scrollbar : un ascenseur, généralement associé à la bordure d’un autre widget pour

se déplacer ;
• Text : peut contenir du texte éditable, et des éléments supplémentaires comme du

texte ;
• Toplevel : équivalent au widget Frame, mais permet de gérer une fenêtre modale

autonome.

>>> from Tkinter import *
>>> Tk()
<Tkinter.Tk instance at 0xb7a9ffcc>

CULTURE Fenêtre modale

Une fenêtre modale est une fenêtre qui s’affiche et attend une interaction de l’utilisateur par le biais du
clavier ou de la souris. Pendant cette attente, toute autre action avec ces derniers est impossible hors de
la fenêtre modale dans la même application.

La bibliothèque standard
TROISIÈME PARTIE

330

Chacun de ces widgets présente des options et méthodes communes, qui permettent
de spécifier les propriétés de positionnement, de forme ou de fonctionnement, ainsi
que des éléments spécifiques.

Positionnement d’un widget
Le positionnement d’un widget dans un widget conteneur se fait par le biais de la
méthode pack(), qui rend en outre le widget visible.

Ce système est disponible par défaut et remplit la plupart des besoins de mise en
page, même s’il reste possible d’utiliser des systèmes géométriques plus complets,
basés sur des grilles. Voici les cas d’utilisation les plus communs.

Remplir entièrement le conteneur

Utilisé avec fill à BOTH et expand à 1, pack() utilise tout l’espace directement dispo-
nible du conteneur, en prenant en compte les propriétés d’extensibilité du widget. Si
la taille de la fiche est modifiée, le widget suit les modifications.

Une fiche avec une liste

Placer les widgets en pile

fill à X permet de signaler que le widget prend toute la largeur disponible. Ajouter
séquentiellement des widgets dans un conteneur les place en pile, les uns au-dessus
des autres.

Pile de boutons

Placer les widgets sur une même ligne

Le paramètre side permet de caler un widget à gauche (LEFT) ou à droite (RIGHT).
Pour placer plusieurs widgets sur la même ligne, il suffit de tous les caler du même coté.

>>> from Tkinter import *
>>> racine = Tk()
>>> liste = Listbox(racine)
>>> liste.insert(END, 'coucou')
>>> liste.pack(fill=BOTH, expand=1)

>>> from Tkinter import *
>>> racine = Tk()
>>> for i in range(10):
... bouton = Button(racine)
... bouton['text'] = str(i)
... bouton.pack(fill=X)
...

Principaux modules, partie 3
CHAPITRE 10

331

Widgets sur la même ligne

Options et méthodes d’un widget
Chaque widget possède un certain nombre de propriétés, appelées options, qui sont
utilisées par le système pour sa manipulation et son affichage.

Les options peuvent être lues et configurées comme des éléments de dictionnaire, ou
spécifiées en paramètres du constructeur.

Manipulation des options d’un widget

Les docstrings des constructeurs de chaque classe permettent de s’informer sur ses
options disponibles.

Options de Text

>>> from Tkinter import *
>>> racine = Tk()
>>> ok = Button(racine)
>>> ok['text'] = 'OK'
>>> cancel = Button(racine)
>>> cancel['text'] = 'Cancel'
>>> ok.pack(side=LEFT)
>>> cancel.pack(side=LEFT)

>>> import Tkinter
>>> mon_texte = Tkinter.Text()
>>> mon_texte['font']
'-*-*-medium-r-normal--14-*-*-*-c-*-iso8859-15'
>>> mon_texte['state']
'normal'
>>> mon_texte['height']
'24'
>>> mon_texte['height'] = '50'

>>> import Tkinter
>>> Tkinter.Text.__doc__
'Text widget which can display text in various forms.'
>>> print(Tkinter.Text.__init__.__doc__)
Construct a text widget with the parent MASTER.

 STANDARD OPTIONS

 background, borderwidth, cursor,
 exportselection, font, foreground,
 highlightbackground, highlightcolor,

La bibliothèque standard
TROISIÈME PARTIE

332

Les fonctionnalités spécifiques des widgets sont ensuite disponibles par le biais d’une
poignée de méthodes. La section suivante présente pour chaque widget de base un
exemple d’utilisation.

Button

Le widget button est très simple à utiliser, puisqu’il suffit de fournir dans l’option
command un objet callable, qui sera appelé lorsque l’utilisateur appuiera sur le bouton.

Dans l’exemple suivant, lorsque l’utilisateur clique sur le bouton, le texte du bouton
est modifié par la fonction click().

Exemple de bouton

Il existe deux méthodes spécifiques à la class Button :
• flash() : fait clignoter le bouton en le redessinant plusieurs fois.
• invoque() : appelle la commande associée au bouton.

Canvas

Le widget canvas est un widget générique qui offre des possibilités génériques de
tracé et permet de créer des widgets personnalisés. Le canvas présente une surface de
dessin avec son propre système de coordonnées.

 highlightthickness, insertbackground,
 insertborderwidth, insertofftime,
 insertontime, insertwidth, padx, pady,
 relief, selectbackground,
 selectborderwidth, selectforeground,
 setgrid, takefocus,
 xscrollcommand, yscrollcommand,

 WIDGET-SPECIFIC OPTIONS

 autoseparators, height, maxundo,
 spacing1, spacing2, spacing3,
 state, tabs, undo, width, wrap,

>>> from Tkinter import *
>>> racine = Tk()
>>> bouton = Button(racine, text='Click')
>>> def click():
... bouton['text'] = 'bien recu'
...
>>> bouton['command'] = click
>>> bouton.pack()

Principaux modules, partie 3
CHAPITRE 10

333

Les éléments placés sur le canvas sont appelés canvas items et sont nommés :
• arc : une corde ;
• image : une image ;
• line : une ligne ;
• oval : un cercle ou une ellipse ;
• polygon : un polygone ;
• rectangle : un rectangle ou un carré ;
• text : un texte ;
• window : un widget quelconque.

Chacun de ces éléments peut être créé par le biais de la méthode create_xx(), où xx
est le nom de l’élément.

Création d’un canvas avec une ligne

Checkbutton

Le widget Checkbutton fonctionne avec une variable définie dans l’option variable,
dont il synchronise l’état avec celui affiché à l’écran.

Les classes de variables en Tkinter sont :
• IntVar, pour les entiers et les entiers longs ;
• BooleanVar, pour les booléens ;
• DoubleVar, pour les réels ;
• StringVar pour les chaînes de caractères.

Pour CheckButton, la variable est une classe de type IntVar, et prendra les valeurs 0
ou 1, ou de type BooleanVar, pour les valeurs True ou False.

Exemple de Checkbutton

>>> from Tkinter import *
>>> racine = Tk()
>>> canvas = Canvas(racine)
>>> ligne = canvas.create_line(0, 0, 100, 100)
>>> canvas.pack()

>>> from Tkinter import *
>>> racine = Tk()
>>> variable = IntVar()
>>> check = Checkbutton(racine, variable=variable)
>>> check['text'] = 'check'
>>> check.pack()

La bibliothèque standard
TROISIÈME PARTIE

334

Il est également possible d’associer des valeurs différentes de 0 et 1 par les options
onvalue et offvalue. La classe de variable doit avoir un type compatible avec ces valeurs.

Exemple de Checkbutton avec StringVar

Dans cet exemple, la variable a également été placée en attribut de l’objet check.

Entry

Le widget Entry affiche une ligne unique de saisie de texte. La méthode get() récu-
père le texte saisi. Il est également possible d’associer cette valeur, par le biais de
l’option textvariable, à une variable de type StringVar.

Dans l’exemple ci-dessous, le texte saisi est affiché sur la sortie standard, lorsque
l’utilisateur appuie sur le bouton.

Exemple de saisie de texte

Entry fournit également des méthodes de manipulation du texte, comme :
• delete(first, last=None) : supprime le texte, partant de la position first à
last. Si last est omis, un seul caractère est supprimé.

• icursor(index) : positionne le curseur à la position index.
• insert(index, string) : insère string à la position index.
• selection_range(start, end) : sélectionne le texte de la position start à end.
• selection_clear() : annule toute sélection, etc.

>>> from Tkinter import *
>>> racine = Tk()
>>> variable = StringVar()
>>> check = Checkbutton(racine, variable=variable,
... onvalue='oui', offvalue='non',
... text='voulez-vous recevoir nos promotions ?')
>>> check.pack()

>>> from Tkinter import *
>>> racine = Tk()
>>> valeur = StringVar()
>>> entree = Entry(racine, textvariable=valeur,
... text='Saisissez votre nom')
>>> def saisie():
... print(valeur.get())
...
>>> bouton = Button(racine, command=saisie, text='OK')
>>> entree.pack()
>>> bouton.pack()

Principaux modules, partie 3
CHAPITRE 10

335

Utilisation d’insert

Frame

Le widget Frame représente une région rectangulaire utilisée pour contenir d’autres
widgets et pour organiser la mise en page.

Un objet Frame peut être construit avec le paramètre master qui définit le widget
parent. S’il est omis, c’est le widget racine qui est utilisé.

Des options supplémentaires peuvent être fournies en keywords, comme :
• background ou bg : couleur du fond ;
• borderwidth ou bd : largeur de la bordure ;
• height : hauteur en pixels ;
• width : largeur en pixels.

Deux frames côte à côte

Label

Le widget Label affiche un texte ou une image, et gère en interne un double buffer.
Ce mécanisme permet de modifier le contenu de l’objet à l’écran sans aucun clignote-
ment puisque c’est une version en mémoire qui est mise à jour avant affichage.

Affichage d’un texte

from Tkinter import *
racine = Tk()
entree = Entry(racine, text='Saisissez votre nom')
def saisie():
 entree.insert(0, 'Bonjour, ')

bouton = Button(racine, command=saisie, text='OK')
entree.pack()
bouton.pack()

>>> from Tkinter import *
>>> racine = Tk()
>>> frame_1 = Frame(width=100, height=100, bg="blue")
>>> frame_1.pack(side=LEFT)
>>> frame_2 = Frame(width=100, height=100, bg="red")
>>> frame_2.pack(side=LEFT)

>>> from Tkinter import *
>>> racine = Tk()
>>> mon_texte = Label(racine, text="C'est le texte")
>>> mon_texte.pack()

La bibliothèque standard
TROISIÈME PARTIE

336

Lorsque l’objet est utilisé pour afficher une image, un objet de type PhotoImage
(images au format gif) ou BitmapImage (images au format x11 Bitmap) doit être
fourni dans l’option image.

Affichage d’une image

Listbox

Ce widget affiche une liste d’éléments. Chaque élément de la liste est un texte, et peut
être ajouté par le biais de la méthode insert(), et retiré par la méthode delete().

insert() prend deux paramètres : la position d’insertion qui est un indice entier ou
les valeurs spéciales END (dernière position) ou ACTIVE (indice de l’élément sélec-
tionné), et le texte.

delete() prend l’indice de l’élément à supprimer, et de façon optionnelle un
deuxième indice, pour supprimer une série d’éléments.

Liste de trois éléments

Menu

Menu sert à concevoir un menu, contextuel ou général. Le widget fournit une
méthode add_command(), qui permet d’ajouter une entrée de menu, et une méthode
add_cascade(), pour greffer un sous-menu, qui est lui-même un widget Menu.

Un menu général est associé et affiché à la fenêtre par le biais de la méthode
config() de la fenêtre.

Menu général « Fichier »

>>> from Tkinter import *
>>> racine = Tk()
>>> image = PhotoImage(file='/home/tziade/fade.gif')
>>> texte = Label(racine, image=image)
>>> texte.pack()

>>> from Tkinter import *
>>> racine = Tk()
>>> choix = Listbox(racine)
>>> for element in ('un', 'deux', 'trois'):
... choix.insert(END, element)
...
>>> choix.pack()

>>> racine = Tk()
>>> menu = Menu(racine)
>>> def action1():
... print('action 1')

Principaux modules, partie 3
CHAPITRE 10

337

Pour les menus contextuels, la méthode post() du menu est utilisée pour un affi-
chage direct, et associée à l’événement clic droit.

Menu contexuel

Les événements sont couverts dans la prochaine section.

Message

Équivalente à Label mais affiche un texte multiligne, avec un passage à la ligne auto-
matique. L’option width sert à définir la largeur du widget, la hauteur s’adaptant
automatiquement.

Texte multiligne

Radiobutton

Le widget RadioButton affiche un sélecteur, associé à une variable et une valeur.
Lorsque l’utilisateur sélectionne le sélecteur, la variable se voit attribuer la valeur.

Plusieurs widgets Radiobutton peuvent être associés à une même variable : un seul
sélecteur peut être sélectionné à la fois.

...
>>> menu_fichier = Menu(menu)
>>> menu_fichier.add_command(label="Action 1", command=action1)
>>> menu.add_cascade(label="Fichier", menu=menu_fichier)
>>> racine.config(menu=menu)

>>> racine = Tk()
>>> menu = Menu(racine)
>>> def action1():
... print('action 1')
...
>>> menu.add_command(label="action 1", command=action1)
>>> def popup(event):
... menu.post(event.x_root, event.y_root)
...
>>> racine.bind("<Button-3>", popup)
'1210676212popup'

>>> from Tkinter import *
>>> racine = Tk()
>>> message = Message(text="Voici un texte qui devrait s'adapter à la
fenêtre")
>>> message.pack()

La bibliothèque standard
TROISIÈME PARTIE

338

Sélecteur

Scale

Le widget Scale est une glissière qui sert à définir une valeur entière dans un inter-
valle donné. L’intervalle est fourni par les options from_ et to. La méthode get()
permet ensuite de récupérer la valeur.

Glissière

Scrollbar

Le widget Scrollbar fournit des ascenseurs à des widgets dont la taille est susceptible
de dépasser la taille affichée. C’est le cas par exemple des widgets Canvas ou Listbox.

La méthode set() du widget définit la position de la glissière de l’ascenseur, et un cal-
lable peut être associé à la modification de la position à l’option command, par le biais de
la fonction config().

Pour concevoir par exemple une liste avec un ascenseur vertical, ces deux méthodes
peuvent être respectivement liées aux propriétés yscrollcommand et yview du widget
Listbox.

Liste avec ascenseur vertical

>>> from Tkinter import *
>>> racine = Tk()
>>> variable = IntVar()
>>> elements = (('un', 1), ('deux', 2), ('trois', 3))
>>> for texte, valeur in elements:
... bouton = Radiobutton(text=texte, variable=variable, value=valeur)
... bouton.pack(anchor=W)
...

>>> from Tkinter import *
>>> racine = Tk()
>>> glissiere = Scale(from_=0, to=100)
>>> glissiere.pack()

>>> from Tkinter import *
>>> racine = Tk()
>>> ascenseur = Scrollbar(racine)
>>> ascenseur.pack(side=RIGHT, fill=Y)
>>> liste = Listbox(racine, yscrollcommand=ascenseur.set)
>>> for i in range(100):
... liste.insert(END, str(i))
...
>>> liste.pack(side=LEFT, fill=BOTH)
>>> ascenseur.config(command=liste.yview)

Principaux modules, partie 3
CHAPITRE 10

339

Text

Le widget Text affiche du texte formaté, qui peut contenir des images et gérer des
marqueurs.

Toplevel

Le widget TopLevel est un widget de type Frame, utilisé pour afficher des fenêtres
modales. Typiquement, une application se sert de ce widget pour les dialogues de
l’application.

Affichage d’une fenêtre modale

Binding d’événements
Lorsque l’application est en attente d’événements, chaque widget peut associer une
fonction Python à un événement qu’elle reçoit, par le biais de la méthode bind().

Les événements majeurs qui peuvent être interceptés, sont des événements clavier ou
des événements souris.

Événements clavier :
• <Alt_L> : touches Alt (L pour Left, gauche et R pour Right, droite) ;
• <BackSpace> : retour arrière (backspace) ;
• <Cancel> : combinaison des touches Ctrl+C ;

• <Caps_Lock> : verrouillage majuscules ;
• <Control_L> : touches Ctrl (L pour Left, gauche et R pour Right, droite) ;
• <Up> : flèche haut ;
• <Left> : flèche gauche ;
• <Down> : flèche bas ;
• <Right> : flèche droite ;
• <Delete> : touche Suppression ;
• <End> : touche Fin ;
• <Enter> : touche Entrée ;
• <Escape> : touche Échappement ;
• <FN> : touches de fonctions F1, F2, F3... ;

>>> from Tkinter import *
>>> racine = Tk()
>>> modale = Toplevel()
>>> fermer = Button(modale, text="Fermer", command=modale.destroy)
>>> fermer.pack()

La bibliothèque standard
TROISIÈME PARTIE

340

• <Home> : touche Home ;
• <Insert> : touche Insertion ;

• <Key> : touche quelconque ;
• <Num_Lock> : touche verrouillage numérique ;
• <Next> : touche Page down ;
• <Pause> : touche Pause ;
• <Prior> : touche Page up ;
• <Print> : touche Impression ;
• <Return> : touche Entrée ;
• <Shift_L> : touches Shift (L pour Left, gauche et R pour Right, droite) ;
• <Scroll_Lock> : touche Verrouillage défilement ;
• <Tab> : touche Tabulation.

Intercepte les événements clavier

Événements souris :
• <[Button|ButtonPress]-n> : un des boutons de la souris est appuyé. n vaut 1

(bouton gauche), 2 (bouton du centre) ou 3 (bouton de droite). Les préfixes
Button ou ButtonPress peuvent être utilisés, ou n seul.

• <Bn-Motion> : la souris est déplacée au dessus du widget, avec un bouton appuyé
(n vaut 1, 2 ou 3).

• <ButtonRelease-n> : le bouton n est lâché.
• <Configure> : la taille du widget est modifiée.
• <Double-Button-n> : équivalent à Button, mais pour un double-clic.
• <Enter> : la souris entre sur le widget.
• <Leave> : la souris sort du widget.
• <Triple-Button-n> : équivalent à Button, mais pour un triple-clic.

>>> from Tkinter import *
>>> racine = Tk()
>>> def evenement(event):
... print 'evenement clavier'
...
>>> racine.bind('<Key>', evenement)
'1213559236evenement'

Principaux modules, partie 3
CHAPITRE 10

341

Intercepte le clic gauche

Lorsque l’événement est intercepté, un appel à la méthode est effectué avec un objet
Event, qui contient un certain nombre d’attributs :
• char : le code du caractère sous forme de chaîne (événement clavier) ;
• height : la nouvelle hauteur (événement configuration) ;
• keysym : le symbole de touche (événement clavier) ;
• keycode : le code de touche (événement clavier) ;
• num : le numéro de bouton (événement souris) ;
• type : le type d’événement ;
• widget : un lien vers l’instance de widget liée à l’événement ;
• width : la nouvelle largeur (événement configuration).
• X : la position horizontale de la souris ;
• x_root : la position horizontale de la souris, relative au coin supérieur gauche ;
• y : la position verticale de la souris ;
• y_root : la position verticale de la souris, relative au coin supérieur gauche.

Interception clavier, exemple 2

Application type avec Tkinter
Une application type en Tkinter, en dehors du prompt, doit appeler la méthode
mainloop() de la fenêtre racine après son instanciation, pour que l’interpréteur se
place en attente des événements.

Une classe Application peut servir à regrouper ces éléments.

>>> from Tkinter import *
>>> racine = Tk()
>>> def evenement(event):
... print 'click!'
...
>>> racine.bind('<Button-1>', evenement)
'1213558996evenement'

>>> from Tkinter import *
>>> racine = Tk()
>>> def evenement(event):
... print('evenement clavier: %s' % event.keycode)
...
>>> racine.bind('<Key>', evenement)
'1213559796evenement'

La bibliothèque standard
TROISIÈME PARTIE

342

Classe Application

En général, pour des mises en page élaborées, les widgets sont regroupés dans des
classes dérivées de Frame. Chacune des instances de Frame gère ses widgets comme
attributs et se positionne sur la fenêtre principale.

Application peut aussi proposer une méthode d’ajout de Frame pour associer l’ins-
tance à un nom d’attribut. La manière la plus élégante est de fournir la classe de
Frame à la méthode, et la laisser gérer l’instanciation.

Exemple de création de frames

from Tkinter import *

class Application(object):
 """ classe application """
 def __init__(self):
 self._tk = Tk()

 def mainloop(self):
 self._tk.mainloop()

if __name__ == '__main__':
 Application().mainloop()

from Tkinter import *

class Application(object):
 """ classe application """
 def __init__(self):
 self._tk = Tk()

 def mainloop(self):
 self._tk.mainloop()

 def add_frame(self, name, class_, **pack_options):
 instance = class_(self._tk)
 setattr(self, name, instance)
 instance.pack(**pack_options)

class ButtonFrame(Frame):
 """ barre de boutons """
 def __init__(self, racine=None):
 Frame.__init__(self, racine)
 self.boutton_quitter = Button(self, text="Quitter",
 command=self.quit)
 self.boutton_quitter.pack(side=LEFT)

Principaux modules, partie 3
CHAPITRE 10

343

Cette organisation permet de conserver un mapping logique et des dépendances
cohérentes, puisque chaque élément peut être atteint en fonction de sa position réelle
dans un conteneur :
• app.boutons.boutton_quitter ;
• app.centrale, etc.

Extensions pour Tkinter
Des modules de la bibliothèque standard viennent compléter Tkinter, à savoir :
• ScrolledText : widget texte doté d’ascenseurs ;
• Tix : widgets supplémentaires pour Tk ;
• tkColorChooser : implémente un dialogue de sélection de couleur ;
• tkCommonDialog : classe de base utilisée par tous les dialogues ;
• tkFileDialog : implémente des dialogues de sélection de fichier ;
• tkFont : utilitaires pour travailler avec les polices de caractères ;
• tkMessageBox : dialogues standards d’affichage de messages ;
• tkSimpleDialog : utilitaires et dialogues de base ;
• Tkdnd : implémente le drag’n’drop ;
• turtle : fournit des primitives de tracé turtle.

Le module lib2to3 et le script 2to3
Le module lib2to3 fournit des fonctionnalités de traduction de code Python 2 en
code Python 3. Installé par Python, le script 2to3 convertit des modules Python 2.x
en modules Python 3.

class TopFrame(Frame):
 """ barre de boutons """
 def __init__(self, racine=None):
 Frame.__init__(self, racine)
 self['height'] = 200
 self['width'] = 200
 self['bg'] = 'red'

if __name__ == '__main__':
 app = Application()
 app.add_frame('centrale', TopFrame, fill=X)
 app.add_frame('boutons', ButtonFrame)
 app.mainloop()

La bibliothèque standard
TROISIÈME PARTIE

344

Invocation de 2to3

Le script peut être lancé une première fois à vide dans le répertoire qui contient le
code source, puis appliqué avec -w.

Test puis application de 2to3

$ 2to3 --help
Usage: refactor.py [options] file|dir ...

Options:
 -h, --help show this help message and exit
 -d, --doctests_only Fix up doctests only
 -f FIX, --fix=FIX Each FIX specifies a transformation; default:
all
 -x NOFIX, --nofix=NOFIX
 Prevent a fixer from being run.
 -l, --list-fixes List available transformations (fixes/
fix_*.py)
 -p, --print-function Modify the grammar so that print() is a
function
 -v, --verbose More verbose logging
 -w, --write Write back modified files
 -n, --nobackups Don't write backups for modified files.

$ 2to3 *
RefactoringTool: Skipping implicit fixer: ws_comma
RefactoringTool: Files that need to be modified:
RefactoringTool: processing/__init__.py
RefactoringTool: processing/connection.py
RefactoringTool: processing/finalize.py
RefactoringTool: processing/forking.py
RefactoringTool: processing/heap.py
RefactoringTool: processing/managers.py
RefactoringTool: processing/pool.py
RefactoringTool: processing/process.py
…
$ 2to3 -w *
RefactoringTool: Skipping implicit fixer: ws_comma
RefactoringTool: Files that need to be modified:
RefactoringTool: processing/__init__.py
RefactoringTool: processing/connection.py
RefactoringTool: processing/finalize.py
RefactoringTool: processing/forking.py
RefactoringTool: processing/heap.py
RefactoringTool: processing/managers.py
RefactoringTool: processing/pool.py
RefactoringTool: processing/process.py
…

Principaux modules, partie 3
CHAPITRE 10

345

En un mot...
Ce chapitre clôt la présentation des modules principaux de la bibliothèque standard.
L’annexe B présente une liste complémentaire de bibliothèques tierces, qui répon-
dent à des besoins plus spécifiques.

Le chapitre suivant présente des exercices corrigés, basés sur les modules standards et
complète également la présentation de la bibliothèque standard en présentant quel-
ques modules secondaires.

Please ! I can defeat them ! There’s only a hundred-and-fifty of them !

— The Holy Grail

« S’il vous plaît ! Je peux les battre ! Ils ne sont que cent cinquante ! »

— Sacré Graal

Ce chapitre met en pratique, à travers des exemples concrets, les modules les plus utilisés
de la bibliothèque standard de Python. Le souhait est de présenter la solution la plus
concise possible en employant des techniques éprouvées de programmation Python.

Mode d’emploi du chapitre
Chaque exercice de ce chapitre est présenté sous la forme de fiches avec :
• une description du problème ;
• la liste des points techniques abordés dans l’exercice, sous forme de mots-clés ;
• la solution détaillée ;
• une discussion sur la solution présentée ;
• les extensions ou parallèles possibles, ainsi que d’éventuelles références à d’autres

exercices.

11
Exercices corrigés

La bibliothèque standard
TROISIÈME PARTIE

348

Les exercices sont présentés regroupés dans des thématiques qui sont :
• programme : création de programmes paramétrables ;
• texte : manipulation et transformation de texte ;
• fichiers : manipulation du système de fichiers ;
• threads et processus : programmation multithreads et multiprocessus ;
• persistance : sauvegarde de données ;
• Web et réseau : communication ;
• divers : inclassables.

Programme
Cette section contient un seul exercice, qui présente une technique qui pourra être
réutilisée, pour formaliser la lecture des paramètres fournis au programme lorsqu’il
est exécuté en ligne de commande.

Exercice 1 : programme paramétrable

Description
L’objectif de ce premier exercice est de mettre au point un squelette de programme exé-
cutable en ligne de commande. Le squelette doit fournir une gestion automatique de la
lecture des éventuels paramètres et faciliter l’ajout de paramètres par le développeur.

Points abordés
sys.argv, optparse, __main__

Solution

Squelette de programme

#!/usr/bin/python
-*- coding: utf8 -*-
from optparse import OptionParser
import sys

paramètres du programme
options = {}
options[('-p', '--print')] = {'dest': 'print',
 'help': 'lance l\'impression',
 'action': 'count'}

Exercices corrigés
CHAPITRE 11

349

Discussion
Lorsqu’un programme Python est exécuté en ligne de commande, c’est-à-dire fourni
en argument à l’interpréteur, l’objet module se voit attribuer la valeur __main__ dans
sa variable globale __name__. Ce mécanisme permet de différencier ce module des
autres modules chargés au gré des importations. if __name__ == '__main__' permet
donc de lancer le module comme programme principal.

Le module optparse permet ensuite de lire automatiquement tous les paramètres
d’une manière standardisée, conformément au modèle getopt() d’Unix. Un pro-
gramme qui utilise ce formalisme laisse l’utilisateur fournir des paramètres libres,
appelés arguments, et des paramètres nommés, appelés options.

Les options sont déclarées sous la forme -o valeur ou --option valeur. La pre-
mière notation, préfixée par un tiret, est appelée notation courte, et le nom de
l’option ne doit être défini que par un caractère. La deuxième notation, la notation
longue, préfixée par deux tirets, est un mot complet. En général, chaque notation
courte a son équivalent en notation longue.

Chaque option peut être configurée avec des arguments :
• action : définit l’action exécutée par optparse. La valeur par défaut est store et

indique qu’il faut récupérer la ou des valeurs qui suivent l’option dans la variable
définie dans dest. Lorsque action prend la valeur count, le module compte le
nombre d’occurrences de l’option.

• type : définit le type de la ou des valeurs fournies avec l’option. Par défaut à
string. Valeurs possibles :
– string ;

– int ;
– long ;

options[('-n', '--printer')] = {'dest': 'printer',
 'help': 'nom de l\'imprimante'}

def main(options, arguments):
 print('options %s' % options)
 print('arguments %s' % arguments)

if __name__ == '__main__':
 parser = OptionParser()
 for param, option in options.items():
 parser.add_option(*param, **option)
 options, arguments = parser.parse_args()
 main(options, arguments)

La bibliothèque standard
TROISIÈME PARTIE

350

– float ;
– complex ;
– choice.

• dest : définit le nom de la variable dans laquelle la ou les valeurs vont êtres stoc-
kées.

• default : valeur(s) par défaut.
• nargs : nombre d’arguments à fournir avec l’option.
• choices : liste de choix possibles.
• help : phrase d’aide.
• ...

L’option -h, --help est générée automatiquement par défaut et affiche la liste des
arguments avec pour chacun d’entre eux la phrase d’aide si elle a été fournie.

Page d’aide

Sous Mac OS X et Linux, il n’est pas nécessaire d’appeler l’interpréteur Python
explicitement si la première ligne du fichier fournit au système son chemin, et si le
fichier Python est paramétré comme étant exécutable.

Sous Windows, un double-clic sur le fichier l’exécutera dans l’environnement IDLE
dans une installation par défaut. Pour pouvoir l’exécuter dans l’invite de commande,
il est nécessaire de préfixer le nom du fichier par l’interpréteur.

Exécution sous Windows

$./ex1.py -h
usage: ex1.py [options]

options:
 -h, --help show this help message and exit
 -p, --print lance l'impression
 -n PRINTER, --printer=PRINTER
 nom de l'imprimante

$ python.exe ex1.py -h
usage: ex1.py [options]

options:
 -h, --help show this help message and exit
 -p, --print lance l'impression
 -n PRINTER, --printer=PRINTER
 nom de l'imprimante

Exercices corrigés
CHAPITRE 11

351

Il existe un module équivalent à optparse, plus ancien, appelé getopt, mais qui ne
propose que des fonctions de lecture bas niveau, sans laisser la possibilité au déve-
loppeur d’automatiser certains contrôles et certaines tâches comme optparse le fait.

Ce squelette de programme laisse le développeur définir ses options dans un diction-
naire qui est ensuite fourni au module de parsing. Il appelle enfin la fonction
main(options, arguments), qui est le point d’entrée du programme.

L’intérêt de séparer les options dans un dictionnaire en tête de fichier est de les
rendre plus lisibles. Elles sont détachées du reste de code et facilement modifiables.

Extension
Le module optparse n’est malheureusement pas internationalisé et les messages
d’erreur sont définis en dur dans le code du module. L’affichage de messages comme
« at least one option string must be supplied » au moment de l’exécution du
programme peut être perturbant si le reste des messages est en français.

Une extension possible consisterait à mettre en place une internationalisation. La
méthode la plus rapide est d’intercepter les erreurs et traduire les messages à la volée.
La solution la plus élégante et portable est de créer une version internationalisée du
module.

Texte
Cette partie propose trois exercices de manipulations basiques de chaînes de carac-
tères, de la saisie de texte à la recherche de motifs par expressions régulières, en pas-
sant par les méthodes de tri.

Exercice 2 : le chiffrement de César

Description
Le chiffrement de César est une manipulation basique qui consiste à décaler tous les
caractères alphabétiques d’un texte de 13 rangs (algorithme ROT13). Ainsi le mot
« bonjour » devient « obawbhe », ou la phrase « Je programme en Python. » devient
« Wr cebtenzzr ra Clguba. ».

L’objectif de l’exercice est de laisser l’utilisateur saisir un texte et d’afficher le résultat
du chiffrement à l’écran.

La bibliothèque standard
TROISIÈME PARTIE

352

Points abordés
Tableaux alphabétiques, list comprehension, string.maketrans,

string.translate, input() et raw_input(), opérateurs % et in, manipulation de
l’objet list.

Solution

Chiffrement de César

Discussion
Le décalage est basé sur l’utilisation de la fonction translate de l’objet de type str.
Cette fonction prend en paramètre un tableau de traduction de longueur 256 qui
correspond aux nouvelles valeurs à utiliser pour chacun des caractères de la table
ASCII. Python utilise ici des fonctions rapides écrites en C.

La fonction maketrans permet de générer automatiquement ce tableau lorsque le
développeur travaille avec un sous-ensemble de la table ASCII. Il prend en paramè-
tres deux séquences et renvoie le tableau correspondant. L’intérêt de ces fonctions est
qu’elles sont très rapides.

#!/usr/bin/python
-*- coding: utf8 -*-
from string import ascii_lowercase as letters
from string import ascii_uppercase
from string import maketrans

préparation du tableau de traduction
def _rot13(car):
 new_pos = (letters.find(car) + 13) % len(letters)
 return letters[new_pos]

CAESAR = ''.join([_rot13(car) for car in letters])

gestion des minuscules et majuscules
CAESAR = CAESAR + CAESAR.upper()
letters = letters + ascii_uppercase

génération d'un tableau de traduction
TRANS = maketrans(letters, CAESAR)

if __name__ == '__main__':
 text = raw_input('Saisissez une phrase: ')
 print(text.translate(TRANS))

Exercices corrigés
CHAPITRE 11

353

L’utilisation d’une list comprehension rend plus compact le code nécessaire à la
construction de CAESAR : une liste est formée avec les caractères décalés, puis la
séquence reformée avec join().

L’écriture explicite aurait été :

Sans list comprehension

Extension
Les caractères en dehors de la chaîne ascii_lowercase ne sont pas traités et renvoyés
directement. Les caractères accentués sont donc laissés tels quels et une extension
intéressante serait d’étendre la chaîne ascii_letters avec la plage des caractères
ISO-8859-15 ou UTF8, n’en déplaise à César.

Exercice 3 : transformer les adresses e-mails et les URL d’un texte en
liens

Description
Le but de ce troisième exercice est de concevoir un algorithme concis de transforma-
tion de texte, chargé de remplacer toute occurrence d’e-mails et d’URL par son équi-
valent HTML.

Par exemple :
• tarek@ziade.org

devient
tarek@ziade.org

• http://www.afpy.org
devient
http://www.afpy.org

préparation du tableau de traduction
def _rot13(car):
 new_pos = (letters.find(car) + 13) % len(letters)
 return letters[new_pos]

CAESAR = []
for car in letters:
 CAESAR.append(_rot13(car))

CAESAR = ''.join(CAESAR)

La bibliothèque standard
TROISIÈME PARTIE

354

Il faut concevoir un programme qui transforme un fichier texte en un deuxième
fichier texte, en appliquant cette modification. Le programme affiche aussi sur la
sortie standard les modifications effectuées.

Points abordés
Expressions régulières, traitement de fichiers, directive with.

Solution

Remplace e-mails et URL

Discussion
Lorsque la manipulation de texte devient un peu plus complexe que de simples
recherches de sous-séquences constantes de caractères, les expressions régulières sont
alors incontournables. Elles recherchent des motifs grâce à un langage de description
complet qui décrit les motifs de texte à retrouver.

#!/usr/bin/python
-*- coding: utf8 -*-
import re
import sys

FIND_LINK = r'(?P<link>https|ftp|http+://+[^ \t\n\r\f\v\<]*)'
FIND_MAIL = r'(?P<mail>[\w\-][\w\-\.]+@[\w\-][\w\-\.]+)'
FIND = re.compile(r'%s|%s' % (FIND_LINK, FIND_MAIL), re.I | re.M)
IS_LINK = re.compile(FIND_LINK, re.I)
REPLACE_LINK= r'%(link)s'
REPLACE_MAIL = r'%(mail)s'

def _replace(match):
 value = match.group()
 if IS_LINK.search(value) is not None:
 res = REPLACE_LINK % match.groupdict()
 else:
 res = REPLACE_MAIL % match.groupdict()
 print('%s -> %s' % (value, res))
 return res

if __name__ == '__main__':
 filename = sys.argv[1]
 text = open(filename).read()

 with open('res_%s' % filename, 'w') as result:
 result.write(FIND.sub(_replace, text))

Exercices corrigés
CHAPITRE 11

355

Le module re fournit une fonction de substitution sub qui remplace toutes les occur-
rences d’un motif par une autre valeur, en fournissant une chaîne de caractères ou
une fonction à appeler, comme c’est le cas dans l’exemple.

Toute la difficulté d’un tel exercice réside dans la conception des expressions régu-
lières. Un programme comme Kodos (http://kodos.sourceforge.net) aide à retrouver la
bonne expression par une série d’essais et d’erreurs.

Extension
Le programme part du principe que le texte fourni n’a aucune balise HTML. Si c’est
le cas, et si certains liens sont déjà garnis de balises <a>, la transformation aura un
effet pervers.

Limites du script

$ more text.txt
Mon e-mail est tarek@ziade.org et mon site http://programmation-python.org.

$ python ex3.py text.txt
tarek@ziade.org -> tarek@ziade.org
http://programmation-python.org. -> <a href="http://programmation-
python.org." target="_blank">http://programmation-python.org.

$ more res_text.txt
Mon e-mail est tarek@ziade.org et
mon site <a href="http://programmation-pytho
n.org." target="_blank">http://programmation-python.org.

$ python ex3.py res_text.txt
tarek@ziade.org -> tarek@ziade.org
tarek@ziade.org -> tarek@ziade.org
http://programmation-python.org." -> <a href="http://programmation-
python.org."" target="_blank">http://programmation-python.org."
http://programmation-python.org. -> <a href="http://programmation-
python.org." target="_blank">http://programmation-python.org.

$ more res_res_text.txt
Mon e-mail est <a
href="mailto:tarek@ziade.or
g">tarek@ziade.org et mon site <a href="<a href="http://
programmation-python.org."" target="_blank">http://
programmation-python.org." target="_blank"><a href="http://
programmation-python.org." target="_blank">http://pr
ogrammation-python.org.

La bibliothèque standard
TROISIÈME PARTIE

356

Une extension possible serait d’enrichir l’expression régulière pour ajouter des condi-
tions sur le texte situé avant et après le lien.

Exercice 4 : trier des phrases suivant le nombre de mots

Description
L’objectif de l’exercice 4 est de trier des phrases en fonction du nombre de mots qu’elles
contiennent, sans compter la ponctuation, ni les mots de taille inférieure ou égale à
2 lettres. Le tri obtenu doit rester constant, c’est-à-dire que deux phrases contenant le
même nombre de mots doivent toujours être ordonnées de la même manière.

Points abordés
Tri et le module itertools.

Solution

Tri en fonction du poids des phrases

#!/usr/bin/python
-*- coding: utf8 -*-
from string import punctuation
from string import maketrans
from itertools import imap

NO_PUNCT = maketrans(punctuation, ' ' * len(punctuation))

def clean_line(line):
 """Nettoie la phrase, et renvoie son 'Poids'"""
 line = line.translate(NO_PUNCT)
 cleaned_line = []
 for word in line.split():
 word = word.strip()
 if len(word) < 2:
 continue
 cleaned_line.append(word)
 numwords = len(cleaned_line)
 return numwords, ' '.join(cleaned_line)

def cmp_lines(line1, line2):
 """Compare les poids des phrases.

 En cas d'égalité, l'ordre alphanumérique.
 """

Exercices corrigés
CHAPITRE 11

357

Discussion
Dès qu’une même opération doit être appliquée à une séquence, imap() est un bon
moyen de réduire la complexité du code. Il renvoie un generator sur chaque élément
d’une séquence après lui avoir appliqué la fonction clean_line.

Ici, le fait d’utiliser un generator n’apporte rien de plus qu’une liste comprehension,
si ce n’est que la taille mémoire utilisée pour le traitement reste basse et stable, quelle
que soit la taille du tableau en entrée. Mais utiliser imap dans une directive for amé-
liore considérablement la lisibilité et la longueur du code.

La fonction sorted() réduit également le code nécessaire à un tri efficace, puisque
dans notre cas, seule la fonction de comparaison est fournie et le reste est pris en
charge par la primitive. Cette dernière utilise la primitive cmp, qui renvoie 0, -1 ou 1
à sorted(), qui se base sur l’algorithme de tri rapide quicksort.

Enfin string.maketrans utilise ici string.punctuation pour nettoyer les phrases
efficacement, avant d’en extraire les mots.

Extension
Sans objet

 same_size = cmp(line1[0], line2[0])
 if same_size == 0:
 return cmp(line1[1], line2[1])
 return same_size

def print_sorted_text(text):
 """ renvoie un tri en fonction du nombre de mots """
 print('Résultat:')
 for numwords, line in sorted(imap(clean_line, text), cmp=cmp_lines):
 print('%s (%d)' % (line, numwords))

def get_text():
 print('Saisissez des phrases (une ligne vide pour terminer): ')
 text = []
 while True:
 line = raw_input()
 if line == '':
 break
 text.append(line)
 return text

if __name__ == '__main__':
 print_sorted_text(get_text())

La bibliothèque standard
TROISIÈME PARTIE

358

Fichiers

Exercice 5 : recherche et remplacement de texte

Description
L’objectif de cet exercice est de rechercher et remplacer un texte dans un fichier texte
donné. Le texte à rechercher peut apparaître plusieurs fois dans le fichier et est fourni
sous la forme d’une expression régulière.

Points abordés
Expressions régulières, lecture et écriture de fichiers, with.

Solution

Search and replace

#!/usr/bin/python
-*- coding: utf8 -*-
import sys
import os
import re

usage = """\
Utilisation :

 %(prog)s <fichier> <expression> <substitut>

Par exemple:

 %(prog)s pim.txt pam poum

Remplacera toutes les occurences de "pam" en "poum"
"""

def sub_text(path, expr, repl):
 """ remplace un texte dans un fichier """
 # remplacement
 with open(path) as source:
 with open('%s.tmp' % path, 'w') as target:
 target.write(re.sub(expr, repl, source.read()))

 # renommage si tout s'est bien passé
 os.rename(path, '%s~' % path)
 os.rename('%s.tmp' % path, path)

Exercices corrigés
CHAPITRE 11

359

Discussion

Lecture des arguments

Le module sys contient un attribut global argv de type liste qui est initialisé
lorsqu’un script Python est exécuté depuis le shell. argv contient tous les arguments
passés en paramètres lorsque le script est exécuté. Si l’on sauvegarde un script dans
un fichier nommé argv.py qui contient :

fichier argv.py

Son exécution affichera tous les arguments fournis au script, le premier étant le nom
du fichier lui-même :

Exécution de argv.py

with pour la manipulation de fichiers

Lorsqu’un objet fichier est généré par le biais de la primitive open() ou file(), il est
nécessaire d’appeler la méthode close() à la fin du traitement.

Le pattern qui convient pour manipuler des fichiers est donc :

Manipulation de fichier avec try..finally

if __name__ == '__main__':
 if len(sys.argv) != 4:
 print(usage % {'prog': sys.argv[0]})
 sys.exit(0)

 sub_text(*sys.argv[1:4])

import sys
print(sys.argv)

$ python argv.py
['argv.py']
$ python argv.py un deux trois
['argv.py', 'un', 'deux', 'trois']

f = open(path, 'w')
try:
 f.write(content)
finally:
 f.close()

La bibliothèque standard
TROISIÈME PARTIE

360

Mais with offre un mécanisme équivalent et plus concis. Il se charge de fermer l’objet
fichier quoi qu’il advienne.

Manipulation de fichier avec with

Extension
Un mode interactif de remplacement et un mode qui ne donne que la liste des élé-
ments interceptés dans le texte sans le modifier peuvent rendre l’utilisation de ce pro-
gramme plus souple.

Exercice 6 : recopie conditionnelle et récursive de fichiers

Description
L’objectif de l’exercice 6 est de recopier une arborescence de fichiers et de dossiers, en
parcourant récursivement les sous-dossiers. De plus, les fichiers dont l’extension est
.pyc ne doivent pas être copiés.

Points abordés
Le module shutil.

Solution

Recopie conditionnelle

with open(path) as f:
 f.write(content)

#!/usr/bin/python
-*- coding: utf8 -*-
import shutil
import sys

def copytree(src, dst):
 """Recopie une arborescence, en ignorant les fichiers .pyc"""
 shutil.copytree(src, dst, ignore=shutil.ignore_patterns('*.pyc'))

if __name__ == '__main__':
 copytree(sys.argv[1], sys.argv[2])

Exercices corrigés
CHAPITRE 11

361

Discussion
shutil.copytree est une fonction très puissante pour recopier une arborescence de
fichiers. Le paramètre ignore prend une fonction qui reçoit, pour chaque dossier traversé
par copytree, la liste des éléments. Elle doit retourner les éléments à ne pas recopier.

ignore_patterns est une fonction fournie dans shutil qui peut être utilisée pour
ignore. Elle filtre les fichiers qui correspondent aux expressions fournies, les expres-
sions étant de type glob-style.

Il vaut mieux préférer cette technique à une boucle basée sur os.walk.

Exercice 7 : ajout d’un fichier dans une archive zip

Description
L’objectif de l’exercice 7 est de créer un utilitaire qui liste les fichiers contenus dans
une archive zip fournie en argument, et ajoute un fichier dans l’archive lorsqu’il est
passé en deuxième argument.

Points abordés
Le module zipfile et la variable globale __doc__.

Solution

Manipulations de fichiers zip

#!/usr/bin/python
-*- coding: ISO-8859-15 -*-
"""\
Deux utilisations possibles:

 o si seule l'archive est fournie en argument,
 la liste des fichiers contenus est affichée

 o si un fichier est aussi fourni, il est inséré dans l'archive
 si l'archive ne possède pas déjà un fichier sous ce nom puis
 affiche la liste des fichiers

Utilisation: %(prog)s <nom de l'archive> [nom du fichier]
"""
import sys
import os
from zipfile import ZipFile, is_zipfile

La bibliothèque standard
TROISIÈME PARTIE

362

Discussion
Lorsqu’aucun fichier à ajouter n’est fourni, le programme se contente de fournir la
liste des fichiers de l’archive.

Le module zipfile fournit, outre la classe ZipFile, une petite fonction utilitaire
is_zipfile() qui permet de tester un fichier pour savoir si c’est une archive zip.
L’information est lue dans les premiers octets du fichier.

def add_to_zip(zip, path):
 """Ajoute un fichier dans une archive zip."""
 zip = ZipFile(zip, mode="a")
 try:
 if path not in zip.namelist():
 zip.write(path, path)
 return True
 return False
 finally:
 zip.close()

def print_zip(zip):
 """Affiche le contenu d'un fichier zip."""
 zip = ZipFile(zip)
 try:
 print 'Contenu de %s:\n' % zip.filename
 zip.printdir()
 print '%d fichier(s)' % len(zip.filelist)
 finally:
 zip.close()

if __name__ == '__main__':
 if len(sys.argv) < 2:
 print(__doc__ % {'prog': sys.argv[0]})
 sys.exit(0)

 zip = sys.argv[1]
 if not is_zipfile(zip):
 print('"%s" n\'est pas un fichier zip' % zip)
 sys.exit(0)

 if len(sys.argv) > 2:
 if not add_to_zip(zip, sys.argv[2]):
 print('Fichier avec le même nom déjà existant')
 else:
 print('Fichier ajouté')
 else:
 print_zip(zip)

Exercices corrigés
CHAPITRE 11

363

Enfin, le docstring du module, accessible dans les variables globales avec __doc__, a
ici un double rôle : il documente le module et s’affiche lorsque le nombre d’argu-
ments passés au script est insuffisant.

Extension
La méthode printdir() du module zipfile définit en dur le nom des en-têtes du
tableau de fichiers affichés :

Méthode printdir() de la classe ZipFile

La mise en page ne fonctionne pas avec des fichiers dont le chemin complet fait plus
de 46 caractères.

Sans entrer dans les détails des mécanismes de l’internationalisation, on peut d’ores
et déjà utiliser une version personnalisée de la classe ZipFile pour afficher les
en-têtes en français et en profiter pour y intégrer la dernière ligne qui affiche le
nombre de fichiers, ainsi qu’une mise en page un peu plus robuste.

Version française de ZipFile

def printdir(self):
 """Print a table of contents for the zip file."""
 print "%-46s %19s %12s" % ("File Name", "Modified ", "Size")
 for zinfo in self.filelist:
 date = "%d-%02d-%02d %02d:%02d:%02d" % zinfo.date_time
 print "%-46s %s %12d" % (zinfo.filename, date, zinfo.file_size)

FILENAME = 'Nom fichier'
MODIFIED = 'Modifié'
SIZE = 'Taille'
FILES = 'fichier(s)'
HEADER = '%-46s %19s %12s' % (FILENAME, MODIFIED, SIZE)

class ExtendedZipFile(ZipFile):
 def printdir(self):
 """Print a table of contents for the zip file."""
 print(HEADER)
 print(len(HEADER) * '-')
 for zinfo in self.filelist:
 date = '%d-%02d-%02d %02d:%02d:%02d' % zinfo.date_time
 filename = zinfo.filename
 if len(filename) > 40:
 filename = '...%s' % filename[-40:]
 print('%-46s %s %12d' % (filename, date, zinfo.file_size))
 print(len(HEADER) * '-')
 print('%d %s' % (len(self.filelist), FILES))

La bibliothèque standard
TROISIÈME PARTIE

364

Threads et processus

Exercice 8 : Tkinter, recherche d’un texte dans des fichiers en tâche de
fond

Description
Cet exercice propose d’aborder l’utilisation des threads avec un problème récurrent
dès lors que l’on aborde la programmation d’interfaces graphiques : certains traite-
ments prennent trop de temps pour que l’on puisse se permettre de laisser l’interface
utilisateur inactive et bloquée.

L’objectif de l’exercice est de concevoir une petite interface basée sur Tkinter qui per-
mette à l’utilisateur de saisir un chemin et un texte (expression régulière). Le pro-
gramme doit parcourir récursivement tous les fichiers du chemin et afficher dans la
fenêtre graphique les fichiers qui contiennent le texte saisi.

Ces fichiers doivent apparaître au fur et à mesure que le programme les trouve.

Points abordés
Interface Tkinter, les threads

Solution

Recherche en tâche de fond avec interface Tkinter

#!/usr/bin/python
-*- coding: utf8 -*-
import os
from os import walk
from re import compile
from threading import Thread

from Tkinter import *
from Tkconstants import *

DEFAULT_BUFSIZE = 8*1024

#
Thread de recherche
#
class SearchThread(Thread):
 """ Thread de recherche de texte
 """

Exercices corrigés
CHAPITRE 11

365

 def __init__(self, path, text, percent, callback):
 Thread.__init__(self)
 self.path = path
 self.text = text
 self.percent = percent
 self.callback = callback
 self.buffer = DEFAULT_BUFSIZE
 self.running = False
 self.exts = ('.txt', '.py')

 def stop(self):
 """Arrête le thread."""
 if self.running:
 self.running = False

 def run(self):
 """Méthode lancée par start()."""
 path = self.path
 text = self.text
 found = 0
 self.running = True
 for root, reps, files in walk(path):
 if not self.running:
 break
 for index, file_ in enumerate(files):
 ext = os.path.splitext(file_)[-1]
 if ext not in self.exts:
 continue
 if not self.running:
 break
 self.percent('Recherche %d/%d: %s/%s' \
 % (index, len(files), root, file_))
 fullname = '%s/%s' %(root, file_)
 if self.text_in_file(fullname, text):
 self.callback('%s' % fullname)
 found += 1
 if found == 0:
 self.callback('Aucun fichier')
 self.percent('%d fichiers(s) trouvé(s)' % found)

 def text_in_file(self, file_, text):
 """Renvoie vrai si le file_ contient le text.

 Lis le text par morceaux pour limiter la taille
 mémoire."""
 ctext = compile(text)
 try:
 f = open(file_, 'r', buffering=self.buffer)
 except IOError: # en cas de pb d'accès (droits, etc.)
 return False

La bibliothèque standard
TROISIÈME PARTIE

366

 with f:
 line = None
 while line != '':
 if not self.running:
 return False
 line = f.readline(self.buffer)
 if ctext.match(line) is not None:
 return True
 return False
#
Frames
#
class FramePath(Frame):
 def __init__(self, root):
 Frame.__init__(self)
 label = Label(self, text="Chemin de recherche")
 label.pack(fill=X, expand=1)
 self.path = Entry(self, name="path")
 self.path.pack(fill=BOTH)
 self.path.insert(0, os.path.expanduser('~'))
 self.path.select_range(0, END)

class FrameText(Frame):
 def __init__(self, root):
 Frame.__init__(self)
 self.label = Label(self, text="Texte à rechercher")
 self.label.pack(fill=X, expand=1)
 self.text = Entry(self, name="text")
 self.text.pack(fill=BOTH)
 self.text.insert(0, '')
 self.text.select_range(0, END)

class FrameButton(Frame):
 def __init__(self, root):
 Frame.__init__(self)

 def create_elements(self, stop_command, search_command,
 close_command):
 self.button = Button(self,text="Stop",
 command=stop_command)
 self.button.pack(side=RIGHT, padx=5, pady=5)
 self.button = Button(self,text="Rechercher",
 command=search_command)
 self.button.pack(side=RIGHT, padx=5, pady=5)
 self.button3 = Button(self,text="Fermer",
 command=close_command)
 self.button3.pack(side=RIGHT)

Exercices corrigés
CHAPITRE 11

367

class FrameResult(Frame):
 def __init__(self, root):
 Frame.__init__(self)
 self.results_window = Listbox(self)
 self.resultats_ascenseur = Scrollbar(self, orient=VERTICAL,
 command=self.results_window.yview)
 self.results_window.config(yscrollcommand=\
 self.resultats_ascenseur.set)

 self.results_window.pack(side=LEFT, expand=1, fill=BOTH)
 self.resultats_ascenseur.pack(side=RIGHT, fill=Y)

#
Application
#
class Application(object):
 """ Frame contenant l'interface de recherche
 et d'affichage des résultats
 """
 def __init__(self):
 self._tk = Tk()

 # création des 4 frames
 options = {'expand': 1, 'fill': BOTH}
 self.add_frame('frm_path', FramePath, **options)
 self.add_frame('frm_text', FrameText, **options)

 self.add_frame('frm_bouton', FrameButton, **options)
 self.frm_bouton.create_elements(self.stop_search,
 self.search,
 self.close)

 self.add_frame('frm_result', FrameResult, **options)
 #, 'relief': RIDGE
 self.searcher = None

 # titre fenêtre application
 self._tk.wm_title('Recherche')

 def mainloop(self):
 self._tk.mainloop()

 def add_frame(self, name, class_, **pack_options):
 instance = class_(self._tk)
 setattr(self, name, instance)
 instance.pack(**pack_options)

 def _callback(self, msg):
 """Appelée par le thread."""
 self.frm_result.results_window.insert(END, msg)

La bibliothèque standard
TROISIÈME PARTIE

368

Discussion
Le code est séparé en deux parties distinctes, à savoir :
• Une classe de thread appelée SearchThread, en charge de la recherche sur le dis-

que, qui pourrait être utilisée dans un autre contexte.
• La couche supérieure qui gère l’interaction avec l’utilisateur, et pilote une instance

du thread de recherche.

Le thread renvoie les résultats pour affichage au fur et à mesure qu’il les trouve. Il n’y
a pas de précaution nécessaire dans notre cas, car seul le thread en cours de recherche
manipule la méthode d’affichage.

Extension
Lorsqu’une application graphique a un besoin récurrent de traitements asynchrones,
il peut être intéressant de mettre en place un pattern producteur-consommateur

 def _percent(self, msg):
 """ appelée par le thread """
 self._tk.wm_title(msg)

 def search(self):
 """Lance une recherche."""
 self.stop_search()

 self.frm_result.results_window.delete(0, END)
 path = self.frm_path.path.get()
 text = self.frm_text.text.get()

 # lance le thread de recherche
 self.searcher = SearchThread(path, text, self._percent,
 self._callback)
 self.searcher.start()

 def stop_search(self):
 """Stoppe une éventuelle recherche en cours."""
 if self.searcher is not None:
 self.searcher.stop()

 def close(self):
 """Demande de fermeture, arrêt d'une éventuelle recherche."""
 self.stop_search()
 self._tk.destroy()

if __name__ == '__main__':
 app = Application()
 app.mainloop()

Exercices corrigés
CHAPITRE 11

369

appelé producer-consumer. Le principe de ce design pattern est de fournir à l’applica-
tion une file d’attente pour les traitements : chaque traitement à exécuter en tâche de
fond est ajouté dans la file d’attente et un ou plusieurs threads, nommés workers, se
chargent de la tâche.

En plus de rendre l’interface à l’utilisateur, cette parallélisation multiple accélère le
traitement.

Exercice 9 : Un web spider rapide

Description
L’objectif de cet exercice est de mettre en place le modèle producteur-consomma-
teur, présenté dans l’extension de l’exercice précédent, en utilisant des processus.

Le programme doit lancer en parallèle 4 processus en charge de trouver des pages web
qui contiennent un mot. Le système est amorcé avec une dizaine de pages que les pro-
cessus visitent. À chaque page visitée, le processus suit les liens et visite au maximum
50 pages. Si une page a déjà été visitée par un autre processus, elle ne le sera pas de nou-
veau. Un système de journal doit aussi afficher les URL scannées au fur et à mesure.

Points abordés
Les modules multiprocessing, urllib2 et module logging.

Solution

Producteur-consommateur

#!/usr/bin/python
-*- coding: ISO-8859-15 -*-
import os
import urllib2
import sys
import logging
from multiprocessing import Pool
from multiprocessing import TimeoutError
from multiprocessing import Manager

processed_urls = Manager().dict()

mise en place du logger
logger = logging.getLogger('WebLogger')
logger.setLevel(logging.INFO)

La bibliothèque standard
TROISIÈME PARTIE

370

mise en place du handler
handler = logging.StreamHandler()
logger.addHandler(handler)

def get_page(url):
 """Extrait le contenu et les liens"""
 # VOIR EXERCICE 12
 return '', []

def process_url(query, url):
 """Traite une page et ses liens"""
 logger.info('Processing %s' % url)

 if len(processed_urls) >= 100:
 return
 if url in processed_urls:
 return
 try:
 content, links = get_page(url)
 processed_urls[url] = query in content
 for link in links:
 process_url(query, url)
 except TimeoutError:
 pass

def launch_work(query, urls):
 logger.info('Launching process')
 pool = Pool(4)
 try:
 results = [pool.apply_async(process_url, (query, url))
 for url in urls]
 for res in results:
 res.get()
 finally:
 pool.close()
 pool.join()
 logger.info('Done.')

URLS = ['http://python.org',]

if __name__ == '__main__':
 launch_work(sys.argv[1], URLS)

 for url, found in processed_urls.items():
 if not found:
 continue
 print url

Exercices corrigés
CHAPITRE 11

371

Discussion
Ajouté à la version 2.6, le module multiprocessing gère les processus aussi souple-
ment que des threads. Les API disponibles sont équivalentes aux API du module
threading. En outre, multiprocessing propose une classe Pool qui gère automati-
quement les processus et les tâches à réaliser.

Dans la fonction launch_work, une instance de Pool est créée et chaque URL à
traiter est passée à cette classe avec la requête de recherche.

Le travail consiste ensuite à programmer la fonction qui traite l’URL de manière
isolée sans se soucier de l’aspect multiprocessus. Une fois l’instance de classe Pool
remplie, chaque tâche est exécutée par l’appel get.

processed_url est un dictionnaire partagé entre les différents processus, qui liste les
URL déjà traitées, de manière à ne pas repasser par les mêmes pages.

La suite est une programmation classique, où les pages sont lues avec
urlllib2.urlopen et les logs émis avec logging. La lecture des pages n’est pas
décrite ici, car cette fonctionnalité est détaillée dans l’exercice 12.

Extension
La programmation parallèle est utile lors qu’un programme manipule des ressources
distantes, comme des pages web. Mais si ce modèle accélère grandement les traite-
ments, pour un volume conséquent de données, il atteint ses limites car il n’est pas
possible de lancer une quantité infinie de processus sur la même machine.

Le fait d’isoler le travail de recherche dans une fonction unique permet assez facile-
ment de passer à des modèles distribués plus robustes. Le programme ci-avant peut
par exemple évoluer vers un programme qui s’exécute en parallèle sur plusieurs
machines (appelés nœuds). Dans ce modèle, le pool devient le nœud maître, et
l’ensemble est appelé cluster. Le nœud maître envoie des travaux indépendants à
chaque nœud du cluster et récupère les résultats.

L’algorithme le plus célèbre de modèle distribué de ce type est MapReduce (http://
fr.wikipedia.org/wiki/MapReduce) de Google. Côté implémentation, la plus célèbre est
Hadoop en Java. Notons que quelques implémentations existent en Python, comme
Disco (http://discoproject.org/).

La bibliothèque standard
TROISIÈME PARTIE

372

Persistance

Exercice 10 : rendre persistants tous les objets d’un programme

Description
L’objectif de cet exercice est de mettre en place un mécanisme qui rende persistantes,
de manière transparente, toutes les instances de classes dérivées d’une même classe de
base dans un programme.

À chaque fois que le programme se termine, les objets sont sauvegardés sur le sys-
tème de fichiers. Ils peuvent ensuite être rechargés grâce à un identifiant unique qui
leur est attribué.

Points abordés
shelve, atexit

Solution

Programme persistant

#!/usr/bin/python
-*- coding: utf8 -*-
import shelve
import atexit

data = None
objects = []

def _load_objects():
 print('Loading...')
 global data
 data = shelve.open('objects.bin')

def _save_objects():
 print('Saving...')
 for ob in objects:
 data[ob._id] = ob.__dict__
 data.close()

class Persistent(object):

 def __new__(cls, id_):
 ob = super(Persistent, cls).__new__(cls)

Exercices corrigés
CHAPITRE 11

373

Discussion
Au chargement du module, shelve charge les données sauvegardées, puis les rend
disponibles à chaque instance. La classe de base Persistent charge les données sau-
vegardées dans son attribut __dict__, puis s’enregistre comme instance.

Lorsque le programme se termine, les données de chaque instance sont sérialisées
grâce à un appel provoqué par atexit.

Exemple de programme utilisateur

Chaque instance de MyClass est associée à un identifiant unique, et sérialisée par
shelve.

 if id_ in data:
 ob.__dict__ = data[id_]
 objects.append(ob)
 return ob

 def __init__(self, id_):
 self._id = id_

chargement des objets
_load_objects()

_save_objects sera appelée à la fermeture du programme
atexit.register(_save_objects)

from ex10 import Persistent
import random

class MyClass(Persistent):

 def some_code(self, value):
 self.value = value

test = MyClass('the id')

try:
 print('ancienne valeur %s' % test.value)
except AttributeError:
 print('ancienne valeur : aucune')

test.some_code(random.randint(1, 1000))
print('nouvelle valeur %s' % test.value)

La bibliothèque standard
TROISIÈME PARTIE

374

Exécutions du programme

Extension
Le mécanisme présenté ne sauvegarde les données qu’à la fermeture du programme.
Cependant, dans certaines situations, il peut être intéressant de provoquer cette sauve-
garde à chaque modification de données. En outre, aucune protection n’est mise en
place pour les objets qui ne peuvent pas être sérialisés, comme les locks ou les threads.
Dans ce cas, une exception sera levée par shelve. Enfin, ce système de sauvegarde
n’est fonctionnel que si le code de la classe associé aux instances ne change pas. En cas
de modification, la sauvegarde sera caduque, et il faudra prévoir une migration.

Une autre extension possible est de conserver l’état précédent de l’objet au moment
d’une nouvelle sauvegarde et d’être ainsi en mesure de revenir en arrière dans l’histo-
rique des modifications.

Ces principes peuvent être étendus par la mise en place d’un système de transaction,
global au programme.

La ZODB (Zope Object Database, la base de données objet de Zope) est un bon
exemple de cette mécanique.

Web et réseau

Exercice 11 : vérificateur de liens

Description
L’objectif de l’exercice est de fournir un outil qui vérifie qu’une adresse URL donnée
est valide, et renvoie la date de dernière modification et le type de contenu.

$ python exemple_ex10.py
Loading...
ancienne valeur : aucune
nouvelle valeur 255
Saving...

$ python exemple_ex10.py
Loading...
ancienne valeur 255
nouvelle valeur 402
Saving...

Exercices corrigés
CHAPITRE 11

375

Points abordés
urllib2.

Solution

Vérificateur de liens

Discussion
urllib2 récupère directement les en-têtes d’une URL pour analyse. Il le fait sans
récupérer le contenu intégral de l’URL, ce qui permet de rendre la récupération du
contenu conditionnelle. Par exemple, si la page est régulièrement récupérée, le pro-
gramme peut vérifier si la date de modification a changé avant de récupérer le nou-
veau contenu.

Extension
Ce genre de fonctionnalité peut être couplé avec le prochain exercice, pour fournir un
système de mise à jour de page, où le contenu n’est rapatrié que s’il diffère d’un con-
tenu récupéré au préalable.

Exercice 12 : aspirateur de page web

Description
Un aspirateur de page web doit :
• récupérer la page ;
• parcourir son contenu et récupérer toutes les composantes nécessaires à l’affichage

de la page (images, feuilles de style, etc.).

#!/usr/bin/python
-*- coding: utf8 -*-
import urllib2

def check_url(url):
 req = urllib2.Request(url)
 try:
 url_handle = urllib2.urlopen(req)
 except urllib2.URLError:
 return None, None

 headers = url_handle.info()
 return headers['Content-Type'], headers['Date']

La bibliothèque standard
TROISIÈME PARTIE

376

Les liens ne sont pas suivis et laissés tels quels.

Points abordés
urllib2, SGMLParser, création de fichiers.

Solution

Aspirateur

#!/usr/bin/python
-*- coding: utf8 -*-
import sys
import os
import urllib2
import logging
from urlparse import urlsplit
from urlparse import urlunsplit
from os.path import join
from HTMLParser import HTMLParser
from sgmllib import SGMLParser

class PageParser(SGMLParser):
 """Parse une page web et collecte ses liens
 """
 def __init__(self, on_attribute_visited, tags_to_remove=('base',)):
 SGMLParser.__init__(self)
 self.on_attribute_visited = on_attribute_visited
 self.tags_to_remove = tags_to_remove

 def unknown_starttag(self, tag, attrs):
 if tag.lower() in self.tags_to_remove:
 return None
 final_tag = '<%s' % tag
 for nom_attr, val_attr in attrs:
 val_attr = self.on_attribute_visited(tag, nom_attr, val_attr)
 final_tag += ' %s="%s" ' % (nom_attr, val_attr)
 final_tag += '>'
 self._result.append(final_tag)

 def unknown_endtag(self, tag):
 if tag.lower() in self.tags_to_remove:
 return None
 self._result.append('</%s>' % tag)

 def parse(self, data):
 self._result = []
 self.feed(data)

Exercices corrigés
CHAPITRE 11

377

 return ''.join(self._result)

 def handle_data(self, data):
 self._result.append(data)

 def handle_comment(self, comment):
 self._result.append('<!-- %s -->' % comment)

 def handle_entyref(self, ref):
 x = ';' * ref in self.entitydefs
 self._result.append('&%s%s' % (ref, x))

 def handle_charref(self, ref):
 self._result.append('&#%s' % ref)

class WebPage(object):
 """Pointe une page web et permet sa sérialisation
 """
 def __init__(self, url):
 self.url = url

 def _get_content(self, url):
 req = urllib2.Request(url)
 try:
 return urllib2.urlopen(req).read()
 except urllib2.URLError:
 return ''

 def _clean_url(self, url):
 scheme, netloc, path, query, fragment = urlsplit(url)
 if scheme == '':
 scheme = 'http'
 return urlunsplit((scheme, netloc, path, query, fragment))

 def _replace_source(self, source):
 source = self._clean_url(source)
 if source not in self._media:
 filename = join('_files', 'file_%s' % self._count)
 self._media[source] = filename
 content = self._get_content(source)
 with open(filename, 'w') as f:
 f.write(content)
 self._count += 1
 return self._media[source]

 def _media_needed(self, tag, attribut, valeur):
 """Téléchargement et modification du lien si nécessaire."""
 if (tag.lower() in ('img', 'link', 'script') and
 attribut.lower() in ('href', 'src')):
 return self._replace_source(valeur)

La bibliothèque standard
TROISIÈME PARTIE

378

Discussion
La classe PageParser dérive de sgmlib.SGMLParser qui est un simple parseur
SGML, compatible avec tout texte contenant des balises. Ce parseur a été choisi
pour ne pas souffrir des restrictions des parseurs HTML classiques comme

 return valeur

 def download(self, filename=None):
 """Récupère la page web et les pièces dépendantes"""
 self._count = 0
 self._media = {}
 scheme, netloc, path, query, fragment = urlsplit(self.url)
 self.urlbase = '%s://%s' % (scheme, netloc)

 logging.info('Récupération de %s' % self.url)
 try:
 content = self._get_content(self.url)
 except urllib2.URLError:
 logging.info("Impossible de lire l'url %s" % self.url)
 raise

 # création d'un sous-dossier
 if not os.path.exists('_files'):
 os.mkdir('_files')

 # parcours de la page pour remplacer et télécharger
 # les images
 parser = PageParser(self._media_needed)
 content = parser.parse(content)

 # sauvegarde de la page
 if filename is None:
 filename = path.split('/')[-1]
 if filename == '':
 filename = '%s.htlm' % netloc
 with open(filename, 'w') as f:
 f.write(content)

 logging.info('Fichier "%s" créé' % os.path.basename(filename))

if __name__ == '__main__':
 if len(sys.argv) != 2:
 print('Utilisation: %s <url>' % sys.argv[0])
 sys.exit(0)
 url = sys.argv[1]
 my_page = WebPage(url)
 my_page.download()

Exercices corrigés
CHAPITRE 11

379

HTMLParser, qui ne sont compatibles qu’avec le XHTML strict, c’est-à-dire qui ne
supportent pas qu’une balise ne soit pas correctement fermée.

Le principe du parseur est de parcourir le contenu et de provoquer un appel à des
méthodes de la classe à chaque fois qu’une balise est rencontrée.

PageParser surcharge ces méthodes et alimente en interne une liste qui contient le con-
tenu de la page. Elle fournit en outre un point d’entrée on attribute_visited, pour
qu’une classe extérieure (un visiteur), puisse modifier à la volée un attribut d’un tag.

La classe PageWeb joue ce rôle de visiteur et gère les échanges avec le serveur, en télé-
chargeant à la volée les différentes composantes qui affichent une page, comme les
images et les feuilles de style.

Un petit cache interne évitent de télécharger le même fichier plusieurs fois, et un
sous-dossier est créé pour contenir ces éléments.

Extension
La première extension qui vient à l’esprit est de créer un aspirateur récursif, en sui-
vant les liens de la page.

Une autre extension intéressante consiste à utiliser ce genre d’outil pour filtrer le con-
tenu des fichiers, puisque le parseur nous permet de parcourir facilement les tags. Un
serveur proxy peut par exemple utiliser cet outil pour remplacer toutes les URL vers
des sites non autorisés par un lien vers une page interne d’avertissement.

Exercice 13 : récupération d’un résumé des nouveaux e-mails reçus

Description
L’objectif de l’exercice 13 est de fournir un utilitaire capable de se connecter à un ser-
veur IMAP pour récupérer la liste des nouveaux e-mails reçus et afficher le sujet et
l’auteur des 5 derniers e-mails non lus.

Points abordés
imaplib.

Solution

Les 5 derniers e-mails

#!/usr/bin/python
-*- coding: ISO-8859-15 -*-
from optparse import OptionParser

La bibliothèque standard
TROISIÈME PARTIE

380

import sys
import imaplib
import socket
from email import Message
from email.Errors import HeaderParseError
from email.Header import decode_header as decoder
from email.Header import make_header
from encodings import exceptions as exceptions_codage

options = []

def decode_header(header, encoding='utf8'):
 """Renvoie un en-tête encodé avec le même codec."""
 try:
 header_decode = decoder(header)
 except HeaderParseError:
 return header

 unified = [(decoded, encoding) for decoded, charset in
header_decode]
 return unicode(make_header(unified))

class TextMessage(object):
 """Permet de renvoyer le texte à l'envers, en utilisant
 un séparateur de ligne spécifique en lecture et \n en sortie.
 """
 def __init__(self, text):
 self.lines = text.split('\015\012')
 self.lines.reverse()

 def readline(self):
 try:
 return '%s\n' % self.lines.pop()
 except IndexError:
 return ''

def get_mails(server, user, password):
 """Renvoie le sujet et l'auteur des 5 derniers e-mails non lus"""
 imap = imaplib.IMAP4_SSL(server)
 imap.login(user, password)
 try:
 imap.select('INBOX')

 status, uids = imap.uid('search', 'UNSEEN')
 if status != 'OK':
 logging.debug('Impossible de récupérer les informations')
 sys.exit(0)

 uids = uids[0].split(' ')

Exercices corrigés
CHAPITRE 11

381

Discussion
À chaque connexion, le système liste les messages marqués non lus du serveur, dans
l’ordre chronologique inverse.

L’affichage du sujet et de l’expéditeur nécessitent un traitement préalable car les
en-têtes peuvent être encodés, lorsque les données contiennent par exemple des
accents. C’est le rôle de decode_header.

 for index, uid in enumerated(reversed(uids)):
 uid = uid.strip()
 if index == 5:
 break
 if uid == '':
 continue
 status, res = imap.uid('fetch', uid,
 '(BODY.PEEK[HEADER.FIELDS (From Subject)])')
 if status != 'OK':
 logging.debug('Impossible de lire le mail n°%s' % uid)
 continue
 message = Message(TextMessage(res[0][1]), 0)
 subject = decode_header(message['subject'])
 from_ = decode_header(message['from'])
 yield '%s (%s)' % (subject, from_)
 finally:
 imap.close()

def main(options, arguments, parser):
 if len(arguments) != 3:
 print(parser.usage)
 sys.exit(0)
 server = arguments[0]
 user = arguments[1]
 password = arguments[2]
 for mail_info in get_mails(server, user, password):
 print(mail_info)

if __name__ == '__main__':
 parser = OptionParser()
 parser.usage = 'usage: server user pass'

 for option in options:
 param = option['noms']
 del option['noms']
 parser.add_option(*param, **option)

 options, arguments = parser.parse_args()
 sys.argv[:] = arguments
 main(options, arguments, parser)

La bibliothèque standard
TROISIÈME PARTIE

382

yield est utilisé pour demander un à un les e-mails au serveur IMAP. De cette
manière, l’affichage du premier e-mail est instantané et seuls les e-mails affichés sont
consommés dans la boucle. Ainsi, si l’argument num_display (par défaut à 5) est
augmenté, et si le programme offre à l’utilisateur une option pour afficher les e-mails
en mode pas-à-pas et arrêter le processus, le nombre de messages n’aura pas d’impact
sur les performances de la fonction get_mails.

Extension
Ce système de prélecture peut être couplé à un système local de filtres, en charge de
déplacer sur le serveur les messages dans des sous-dossiers en fonction de règles sur le
contenu du message.

Divers
Cette série d’exercices s’achève par la section Divers, qui contient un exercice de
création d’un système de documentation en ligne, capable d’introspecter le code des
modules pour afficher l’aide d’une classe ou d’une fonction.

Exercice 14 : système de documentation en ligne des modules

Description
L’objectif de l’exercice 14 est de fournir un outil d’affichage des docstrings des
fonctions et classes contenus dans un module python, dans l’esprit du module pydoc.

Points abordés
Paquet compiler.

Solution

Doc en ligne

#!/usr/bin/python
-*- coding: utf8 -*-
import os.path
import sys

from compiler import parse
from compiler import walk

Exercices corrigés
CHAPITRE 11

383

Discussion
Grâce à sa fonction parse, le paquet compiler construit un AST (Abstract Syntax
Tree) à partir de code Python. Très rapide, cette opération lit le contenu d’un module
sans avoir à l’importer.

walk offre ensuite la possibilité de traverser l’AST, en fournissant une classe qui dérive de
la classe compiler.visitor.ASTVisitor. Chaque nœud de l’AST est passé à la méthode
visitTypeNoeud de la classe si elle existe, où TypeNoeud est le type de nœud visité.

from compiler.visitor import ASTVisitor
from compiler.ast import Stmt, Class, Function

class DisplayVisitor(ASTVisitor):
 """Visite l'AST"""
 def __init__(self, name):
 self.name = name

 def _visit_node(self, node):
 """Appelle sur les nodes"""
 if (isinstance(node, Stmt) or
 (hasattr(node, 'name') and node.name != self.name)):
 for subnode in node.getChildNodes():
 self._visit_node(subnode)
 return

 if not (isinstance(node, Class) or isinstance(node, Function)):
 return

 print('Trouvé ligne %d' % node.lineno)
 if node.doc is None:
 print('\n\tAucun docstring\n')
 else:
 print('\n\t%s\n' % node.doc)

 visitClass = _visit_node
 visitFunction = _visit_node
 visitStmt = _visit_node

def print_module(path, element, verbose=False):
 """Permet l'affichage d'un doctstring de classe ou de fonction"""
 with open(path) as f:
 ast = parse(f.read())

 walk(ast, DisplayVisitor(element))

if __name__ == '__main__':
 print_module(sys.argv[1], sys.argv[2])

La bibliothèque standard
TROISIÈME PARTIE

384

Extension
En partant de ce mécanisme d’introspection, il est possible de concevoir un outil de
recherche rapide équivalent à grep, mais orienté pour le code Python.

En un mot...
Cette série d’exercices a permis d’appréhender Python dans des exemples plus con-
crets et complets que les simples extraits de code des chapitres précédents.

L’objectif était de restreindre l’intégralité des exercices à la bibliothèque standard pour
montrer son aspect batteries included. Évidemment, il existe des bibliothèques tierces
qui offrent parfois des fonctionnalités plus poussées ou des solutions plus élégantes
pour résoudre certains problèmes. Nous en présentons certaines à la fin de ce livre.

Soulignons enfin que les exercices ont été conçus par le biais de la programmation
dirigée par les tests, qui est présentée au chapitre suivant.

QUATRIÈME PARTIE

Techniques
avancées

C’est officiel, à ce stade du livre, les lecteurs assidus sont devenus des développeurs
Python chevronnés, capables d’écrire en quelques lignes des fonctionnalités simples
et puissantes.

Cependant, dès que les programmes grossissent, un nouvel enjeu apparaît : le
besoin d’efficacité dans les méthodes de programmation pour ne pas se faire
déborder par le code.

Un développeur efficace sait :
• livrer des programmes fiables, même lorsqu’ils deviennent conséquents ;
• résoudre les problématiques de performance ;
• gérer l’organisation du code et rendre le programme modulaire.

Cette dernière partie regroupe trois chapitres dédiés à des techniques avancées de
programmation, qui permettent de gérer ces problématiques, à savoir :
• la programmation dirigée par les tests ;
• les bonne pratiques ;
• la programmation orientée objet.

No tests, no commit

« Code non testé, code invalide »

Python est un langage de programmation agile, propice à la mise en œuvre de
méthodes de développement réactives, comme la programmation dirigée par les
tests. Cette méthode éprouvée permet d’améliorer de manière drastique la qualité du
code et l’agilité avec laquelle les développeurs peuvent le modifier, et est très facile à
mettre en œuvre en Python.

Culturellement, Guido van Rossum et toutes les personnes qui ont participé à la
création du langage sont tous des convaincus de cette technique et les outils qui sont
présentés dans ce chapitre existent depuis toujours dans Python. Ce chapitre pré-
sente ces outils, après avoir défini les principes des tests et surtout levé la barrière cul-
turelle que notre cerveau dresse naturellement lorsque l’on découvre pour la première
fois cette technique.

12
Programmation

dirigée par les tests

Techniques avancées
QUATRIÈME PARTIE

388

À quoi servent les tests ?
Dans le cycle de création d’un logiciel, il arrive inévitablement qu’un programmeur
teste le code qu’il a écrit, pour vérifier qu’il se comporte comme prévu. Ces tests sont
préférablement effectués avant de livrer le logiciel ou la fonctionnalité, et font partie
intégrante du travail de développement.

Tester un logiciel comme le ferait le client, pour valider point par point que tout
fonctionne peut devenir relativement fastidieux, car il faut en toute logique recom-
mencer à chaque insertion ou modification de code.

La première idée de la programmation dirigée par les tests est donc d’écrire des
scripts de tests pour automatiser cette tâche.

La deuxième idée qui en découle est de se prémunir de toute régression. La régres-
sion est le fait d’introduire ou de modifier du code pour ajouter une fonctionnalité A
et de provoquer indirectement un dysfonctionnement dans une fonctionnalité B qui
se comportait jusqu’alors très bien : si la batterie de tests contient un test qui vérifie la
fonctionnalité B et si les tests sont relancés au moment de l’introduction de A, le
problème sera alors tout de suite décelé.

Ce principe est d’autant plus important que le logiciel grossit : il est de plus en plus
difficile pour un développeur d’avoir une vision globale au moment de l’introduction
d’une nouvelle fonctionnalité, pour éviter ces effets de bords.

La programmation dirigée par les tests consiste à écrire des scripts de tests en paral-
lèle et au même moment que le code, pour chaque nouvelle fonctionnalité introduite
dans le programme.

Enfin, l’action même d’écrire un test au moment de la conception d’une fonctionna-
lité augmente de manière considérable la qualité du code : réfléchir à un test valide la
pertinence des paramètres d’entrée, de sortie et le fonctionnement logique du code et
force à une relecture avec plus de recul. Le nombre de bogues ou de défauts de con-
ception est divisé par cinq par cette action. En outre, ces tests constituent la
meilleure documentation possible pour le code.

Barrière culturelle
« Écrire un test à chaque nouvelle fonction ? Je n’ai pas le temps ! »

Le seul frein réel à ce type d’approche est culturel : il est très difficile pour un déve-
loppeur et/ou son chef de projet d’admettre que 60 % du temps de développement
est voué habituellement à déboguer du code écrit. Il est même fréquent, pour ne pas

Programmation dirigée par les tests
CHAPITRE 12

389

dire systématique, que le temps prévu au débogage soit bien en-dessous de la réalité
dans la planification d’un projet.

Les développeurs sceptiques deviennent en général adeptes le jour où ils sont chargés
d’introduire ou modifier une fonctionnalité de bas niveau dans un gros logiciel en
production : les tests deviennent dans ce cas pour le développeur ce que le filet de
sécurité est au trapéziste.

Les chefs de projet qui émettent des réserves le font car il est très difficile de quantifier
les gains de temps obtenus par ce genre d’approche : ils dépendent fortement de la per-
sonnalité de chaque composante de l’équipe, du type de projet, et des situations.

Principes
Les eXtrémistes (adeptes de l’eXtreme Programming) préconisent d’écrire les tests
avant le code, pour former une sorte de mini-cahier des charges pour le développe-
ment. Le code peut ensuite être bâti pour faire fonctionner chacun des tests. S’ensuit
un cycle itératif pour faire grossir tour après tour tests et code.

Cette approche est la plus pure mais dans la réalité les développeurs alternent en général
l’ordre de conception (code puis test ou test puis code) en fonction des situations.

L’essentiel reste d’alterner chacun des deux exercices : le plus dur en général pour un
développeur est de réussir à s’arrêter de coder pour passer côté tests.

On peut séparer les tests en deux catégories complémentaires :
• les tests unitaires ;
• les tests fonctionnels.

Tests unitaires
Les tests unitaires testent de manière isolée les fonctionnalités d’un module ou pac-
kage, sans se soucier du reste du logiciel, pour vérifier qu’ils répondent bien aux cas
d’utilisation (use cases).

EN SAVOIR PLUS La gestion de projet, eXtreme Programming

La lecture de Gestion de projet – eXtreme Programming, par Bénard, Bossavit, Médina et Williams chez
le même éditeur, donnera plus d’informations sur ce sujet au lecteur intéressé.

Techniques avancées
QUATRIÈME PARTIE

390

Construction d’un test unitaire
Prenons l’exemple d’une fonction en charge de calculer une moyenne.

Cette fonction prend en paramètre un nombre indéfini de valeurs entières et renvoie
la moyenne, basée sur une division entière.

Les premiers tests qui peuvent être effectués sur cette fonction sont de valider qu’elle ren-
voie bien les résultats attendus, en proposant quelques cas basiques qui viennent à l’esprit.

Écrivons ces tests dans un fichier Python, avec la directive assert(), qui lève une
exception si l’assertion passée en paramètre est fausse.

Use cases pour la nouvelle fonction

Ces tests échoueront bien sûr dès la première ligne car la fonction n’existe pas encore,
mais guident le développeur pour la conception.

Première implémentation

Cette première version remplit plutôt bien ses objectifs puisqu’elle valide les trois cas
proposés.

#!/usr/bin/python
-*- coding: utf8 -*-

cas simples
assert moyenne(5) == 5
assert moyenne(5, 8, 9) == 7
assert moyenne(5, 8, 9, 78, 43) == 28

#!/usr/bin/python
-*- coding: utf8 -*-

def moyenne(*nombres):
 taille = len(nombres)
 somme = 0
 for nombre in nombres:
 somme += nombre
 return somme / taille

cas simples
assert moyenne(5) == 5
assert moyenne(5, 8, 9) == 7
assert moyenne(5, 8, 9, 78, 43) == 28

Programmation dirigée par les tests
CHAPITRE 12

391

Évolution des use cases
Lorsqu’un nouveau bogue ou un fonctionnement non souhaité est découvert, le che-
minement qui l’a provoqué devient un nouveau use case et le test unitaire correspon-
dant doit être modifié pour en tenir compte.

L’ajout de ce nouveau cas doit faire échouer le test sur l’ancien code. Ce n’est qu’après
avoir validé que le test provoquait bien le problème à corriger que le code est modifié.

Pour notre fonction de moyenne, un cas spécial a été rapporté par un utilisateur : si
aucun paramètre n’est fourni, une erreur de division par zéro est provoquée. L’utilisa-
teur souhaite que la fonction renvoie None dans ce cas.

Un nouveau test correspondant à ce use case est ajouté.

Ajout d’un use case

Le développeur valide dans un premier temps que ce test provoque bien l’erreur indi-
quée...

Test de la division par zéro

... puis corrige son implémentation pour que le test passe.

#!/usr/bin/python
-*- coding: utf8 -*-

def moyenne(*nombres):
 taille = len(nombres)
 somme = 0
 for nombre in nombres:
 somme += nombre
 return somme / taille

cas simples
assert moyenne(5) == 5
assert moyenne(5, 8, 9) == 7
assert moyenne(5, 8, 9, 78, 43) == 28

aucun paramètre en entrée
assert moyenne() == None

[tziade@Tarek Desktop]$ python tests_unitaires.py
Traceback (most recent call last):
 File "tests_unitaires.py", line 15, in ?
 assert(moyenne() == None)
 File "tests_unitaires.py", line 9, in moyenne
 return somme / taille
ZeroDivisionError: integer division or modulo by zero

Techniques avancées
QUATRIÈME PARTIE

392

Seconde version

Non-régression
L’accumulation de tests au fur et à mesure de l’évolution du code permet d’assurer la
non-régression de ce dernier. Si tous les tests sont bien rejoués à chaque modifica-
tion, la nouvelle version du code est assurée de continuer à faire fonctionner tous les
use cases précédents.

Toujours sur notre exemple de moyenne, notre utilisateur a remarqué que la fonction
levait bien une erreur de type TypeError lorsque l’un des paramètres n’était pas un
entier, mais sans spécifier lequel. Il souhaiterait que le message d’erreur soit plus
explicite, en indiquant le paramètre qui pose problème.

Un test est ajouté pour proposer un message d’erreur plus explicite.

Message TypeError explicite

#!/usr/bin/python
-*- coding: utf8 -*-

def moyenne(*nombres):
 taille = len(nombres)
 if taille == 0:
 return None
 somme = 0
 for nombre in nombres:
 somme += nombre
 return somme / taille

cas simples
assert moyenne(5) == 5
assert moyenne(5, 8, 9) == 7
assert moyenne(5, 8, 9, 78, 43) == 28

aucun paramètre en entrée
assert moyenne() == None

#!/usr/bin/python
-*- coding: utf8 -*-

def moyenne(*nombres):
 taille = len(nombres)
 if taille == 0:
 return None
 somme = 0
 for nombre in nombres:
 somme += nombre
 return somme / taille

Programmation dirigée par les tests
CHAPITRE 12

393

Le développeur modifie ensuite la fonction pour gérer ce nouveau cas.

Troisième version

Si la batterie de tests est à nouveau exécutée pour valider la modification, le premier
test ne fonctionne plus.

cas simples
assert moyenne(5) == 5
assert moyenne(5, 8, 9) == 7
assert moyenne(5, 8, 9, 78, 43) == 28

aucun paramètre en entrée
assert moyenne() == None

message d'erreur de type plus explicite
try:
 moyenne(5, 'u', 8)
except TypeError, e:
 assert str(e) == "'u' n'est pas un entier"

#!/usr/bin/python
-*- coding: utf8 -*-

def moyenne(*nombres):
 taille = len(nombres)
 if taille == 0:
 return None
 somme = 0
 for nombre in nombres:
 if not isinstance(nombre, int):
 raise TypeError("'%s' n'est pas un entier" % str(nombre))
 somme += nombre
 return somme / taille

cas simples
assert moyenne(5) == 5
assert moyenne(5, 8, 9) == 7
assert moyenne(5, 8, 9, 78, 43) == 28

aucun paramètre en entrée
assert moyenne() == None

message d'erreur de type plus explicite
try:
 moyenne(5, 'u', 8)
except TypeError, e:
 assert str(e) == "'u' n'est pas un entier"

Techniques avancées
QUATRIÈME PARTIE

394

Régression

La modification, qui est valide pour le nouveau use case, a ajouté un bogue qui a pro-
voqué une régression sur un autre use case, décelée par le test unitaire.

Dans notre cas, il s’agit d’une erreur d’indentation classique : la ligne somme +=

nombre qui suit le raise a été indentée par mégarde.

Troisième version corrigée

Regroupement des tests
En termes de découpage, on associe généralement un ensemble de tests par module
de code Python. Ce procédé permet de valider que les différentes classes, constantes
et fonctions regroupées dans un même module représentent une brique logique du
programme : si les éléments regroupés ne se testent pas de manière simple et homo-
gène dans l’ensemble de tests, il y a fort à parier que leur regroupement n’est pas bon.

En reprenant l’exemple précédent, si la fonction moyenne() fait partie d’un module
utils.py, on peut regrouper le code de test dans un module test_utils.py.

Tests plus complexes : raconter une histoire
Pour des tests plus longs qu’un simple appel à une fonction, la méthode la plus simple
consiste à raconter des petites histoires, qui correspondent à des scenarii d’utilisation.
Ces histoires sont des mélanges de commentaires, lignes de code et assertions.

L’exemple ci-contre est un test possible pour le module cPickle.

[tziade@Tarek Desktop]$ python tests_unitaires.py
Traceback (most recent call last):
 File "tests_unitaires.py", line 16, in ?
 assert moyenne(5) == 5
AssertionError

def moyenne(*nombres):
 taille = len(nombres)
 if taille == 0:
 return None
 somme = 0
 for nombre in nombres:
 if not isinstance(nombre, int):
 raise TypeError("'%s' n'est pas un entier" % str(nombre))
 somme += nombre
 return somme / taille

Programmation dirigée par les tests
CHAPITRE 12

395

Scénario de test de cPickle

Les tests écrits de cette manière constituent aussi une documentation pour le module
testé.

Les bouchons
Idéalement, un module de test ne doit concerner que le module testé et doit pouvoir
s’exécuter sans dépendre d’une ressource externe qui n’est pas forcément présente sur
la machine de tests.

Les dépendances de ce genre, fréquentes dans les applications web ou de gestion,
peuvent être évitées grâce à la technique du bouchon.

#!/usr/bin/python
-*- coding: ISO-8859-15 -*-
import cPickle

une classe basique pour nos tests
class T:
 a = 0
 b = 0

voici un objet à sauvegarder
o = T()
o.a = 1
o.b = 2

créons un fichier en écriture
fic = open('/home/tziade/pickled.bin', 'w')

écrivons l'objet o dans le flux avec la méthode dump de cPickle
cPickle.dump(o, fic)

fermons le fichier
fic.close()

ouvrons le fichier en lecture
fic = open('/home/tziade/pickled.bin')

cPickle.load permet de recharger un objet après une sauvegarde par
dump
o2 = cPickle.load(fic)

vérifions l'objet renvoyé
assert(isinstance(o2, object))
assert(o2.a == 1)
assert(o2.b == 2)

Techniques avancées
QUATRIÈME PARTIE

396

Cette technique consiste à modifier à la volée, au moment du test, la portion de code
qui accède à une ressource externe pour la remplacer par du code qui se contente de
renvoyer un résultat convenable pour la suite des tests. L’objectif est de faire croire au
code appelant que tout s’est bien déroulé, et de lui renvoyer un résultat correct. La
qualité d’imitation du résultat renvoyé dépend de l’utilisation qui en est faite dans le
code et peut parfois être grossière.

Python est un langage suffisamment souple pour permettre de modifier les défini-
tions de modules, classes et fonctions à la volée, et cette technique peut être appli-
quée à tous les étages du code.

Modification de fonctions et méthodes

L’exemple ci-dessous modifie temporairement la fonction urlopen d’urllib2 avant
de démarrer les tests, pour qu’elle renvoie un résultat même si la machine de test ne
peut pas se connecter à l’URL indiquée.

Bouchon pour urllib

Le test d’exemple ne sert qu’à valider que le patch a bien été appliqué. Dans cette
zone, tout accès à la fonction urlopen, exécutera le patch, sauf si la directive reload
est appelée sur le module unittest.

#!/usr/bin/python
-*- coding: utf8 -*-
import urllib
import StringIO

fonction de remplacement
def fakeopen(url, data=None):
 res = StringIO.StringIO('<html><body>Dummy Page</body></html>')
 return res

monkey patching
original_urllib = urllib.urlopen
urllib.urlopen = fakeopen

test d'exemple
res = urllib.urlopen('http://google.fr')
assert(res.readlines(),
 ['<html><body>Dummy Page</body></html>'])

...

retrait du patch
urllib.urlopen = original_urllib

Programmation dirigée par les tests
CHAPITRE 12

397

Le code contenu dans le patch peut ensuite être modifié, voire varier en fonction des
appels, afin de flouer tout code appelant.

Modification de classes

Il est parfois nécessaire de modifier une classe entière. C’est le cas par exemple de la
quasi-totalité des classes qui implémentent des clients réseaux. Si l’on teste une
application qui est en charge d’envoyer des e-mails, il est nécessaire de créer une
fausse classe smtplib.SMTP complète, appelée fake pour simuler l’envoi des e-mails.

La construction d’un fake doit se faire de manière itérative, afin de ne coder que ce
qui est vraiment nécessaire à la simulation. La première étape consiste à créer une
classe totalement vide et un test qui envoie un e-mail. Au moment de la relance des
tests, l’interpréteur affichera toutes les erreurs dues à la non-disponibilité de la res-
source réseau, à savoir le serveur SMTP.

Le fake pourra alors être complété en fonction des erreurs, au fur et à mesure des
essais, jusqu’à ce que la simulation fonctionne.

Version 1

L’exécution de ce code provoque une erreur de constructeur.

#!/usr/bin/python
-*- coding: utf8 -*-
import smtplib

class FakeSMTP:
 pass

mise en place du bouchon
original_SMTP = smtplib.SMTP
smtplib.SMTP = FakeSMTP

séquence classique d'appel à SMTP
sender = smtplib.SMTP('mon.serveur.smtp')
message = 'mon message bidon'
destinataires = ['alfred@mlksnc.com', 'marie@zertceo.com']
sender.sendmail('bill@hou.com', destinataires, message)
sender.quit()

retrait du patch
smtplib.SMTP = original_SMTP

Techniques avancées
QUATRIÈME PARTIE

398

Erreur version 1

Il est nécessaire de rajouter un constructeur à notre fake, le plus large possible, pour
couvrir tout type d’initialisation. Reprendre comme modèle le constructeur de la
classe réelle est le choix le plus précis, mais un modèle générique suffit amplement.

Version 2

L’exécution repousse l’erreur un peu plus loin dans la mécanique d’envoi d’e-mails.

Test version 2

La fonction sendmail() n’a pas besoin de renvoyer de résultat, sa simulation est donc
aussi simple que le constructeur. Même observation pour quit().

Version 3

Le test est à présent validé et le fake fonctionnel pour l’envoi d’e-mails.

[tziade@Tarek Desktop]$ python test_imaplib.py
Traceback (most recent call last):
 File "test_imaplib.py", line 13, in ?
 sender = smtplib.SMTP('mon.serveur.smtp')
TypeError: this constructor takes no arguments

class FakeSMTP:
 def __init__(*args, **kw):
 pass

[tziade@Tarek Desktop]$ python test_imaplib.py
Traceback (most recent call last):
 File "test_imaplib.py", line 17, in ?
 sender.sendmail('bill@hou.com', destinataires, message)
AttributeError: FakeSMTP instance has no attribute 'sendmail'

class FakeSMTP:
 def __init__(*args, **kw):
 pass

 def sendmail(*args, **kw):
 pass

 def quit(self):
 pass

Programmation dirigée par les tests
CHAPITRE 12

399

Dans l’exemple, le protocole d’envoi d’un e-mail est connu et a été mis dans le test du
patch, mais le principe de construction par essai-erreur peut s’appliquer en aveugle
pour des objets non connus, en appelant directement le code client dans le test.

Simulation d’un module complet

Il est parfois nécessaire de simuler un module complet pour couper toute dépendance
à des bibliothèques liées par des directives import. L’interpréteur gère un diction-
naire où il conserve tous les modules importés. À chaque nouvelle importation, ce
dictionnaire est contrôlé et si le nom (sans chemin) du module apparaît dans la liste
des clés, l’objet de type module n’est pas recréé.

Remplacer un module par un autre module réservé aux tests consiste donc à sup-
primer l’entrée de ce module dans le dictionnaire et à en recréer une avec le module
de remplacement.

Il est fortement déconseillé d’utiliser le même nom que le module original : dans cer-
tains cas le patch peut s’activer lorsque ce n’est pas souhaité. Cette situation peut se
produire lorsque le code appelant rencontre le module de patch avant le module réel,
par le jeu des chemins de recherche.

Un nom préfixé par fake_ par exemple, est plus explicite.

Exemple de patch pour le module imaplib :

Bouchon (fakeimaplib.py)

Unité de test

""" ** Bouchon IMAP **
"""
class IMAP4:
 def login(sef, user, password):
 return True

#!/usr/bin/python
-*- coding: ISO-8859-15 -*-
import sys

déchargement du vrai module imap si nécessaire
if 'imaplib' in sys.modules.keys():
 original_imap = sys.modules['imaplib']
 del sys.modules['imaplib']
else:
 original_imap = None

Techniques avancées
QUATRIÈME PARTIE

400

Test coverage
Lorsque la batterie de tests est exécutée, le ratio entre le nombre de lignes parcourues
et le nombre de lignes totales du programme, appelé test coverage, doit être dans
l’idéal égal à 1. Si ce ratio est inférieur, cela signifie que certaines lignes de l’applica-
tion ne sont jamais testées.

Deux actions sont possibles :
• Les tests sont complétés pour couvrir les cas non explorés.
• Les lignes de code en question sont retirées car mortes. Les lignes mortes sont des

résidus de code qui ne peuvent jamais être appelés.

Qualité des tests
Le facteur clé de réussite de ce type de programmation tient dans la pertinence des
tests écrits. Mal employée, la technique peut s’avérer beaucoup moins efficace.

Voici quelques conseils pratiques :
• N’inventez pas de use cases dans les tests, seuls ceux définis dans les spécifications

importent.
• Chaque test doit raconter une petite histoire, du début jusqu’à la fin. Si l’histoire

s’interrompt, le découpage des tests est mauvais.

chargement du fake
import fakeimaplib as imaplib
sys.modules['imaplib'] = sys.modules['fakeimaplib']

utilisation du fake
print imaplib.__doc__

[...]

déchargement du fake
del sys.modules['imaplib']

rechargement du vrai module imap si nécessaire
if original_imap isnot None:
 sys.modules['imaplib'] = original_imap

À RETENIR Primitive reload() et objet module

• La primitive reload() permet de forcer le rechargement d’un module. Si elle est appelée pendant
les tests, le patch saute.

• L’objet module peut être remplacé par n’importe quel type d’objet, du moment qu’il couvre les
appels qui lui sont faits.

Programmation dirigée par les tests
CHAPITRE 12

401

• Rythmez continuellement les séquences de test et de codage, ne reportez jamais
l’écriture de certains tests à plus tard si vous êtes côté code.

• Pour un refactoring, c’est-à-dire une modification en profondeur d’un code exis-
tant, essayez de segmenter au maximum le travail de réécriture pour pouvoir
relancer la batterie de tests complète régulièrement et modifier si nécessaire cer-
tains tests.

Un développeur qui débute dans cette technique dérape facilement vers des tests trop
longs ou incomplets. La pertinence des tests s’acquiert par expérience et goût.

Tests fonctionnels
Les tests fonctionnels ont le même objectif que les tests unitaires, mais imitent un
utilisateur qui se sert de l’applicatif.

L’objectif n’est plus dans ce cas de couvrir systématiquement chaque ajout de code,
mais plutôt de valider globalement que les fonctionnalités demandées sont bien cou-
vertes par le logiciel.

Ces tests peuvent être utilisés au moment de la recette pour vérifier avec le client que
le produit livré correspond bien à ses attentes. Ils deviennent une sorte de checklist,
où chaque point du cahier des charges est vérifié.

Dans certains cas, et si les outils le permettent, ces tests peuvent même être conçus
par le client lui-même.

Ces tests constituent un excellent outil commercial pour prouver la qualité du code
au client. Ils permettent aussi la prévention de régressions qui apparaissent au cours
de l’évolution du développement d’une application.

La question à se poser est donc :

« Que m’apportent de plus les tests fonctionnels que les tests unitaires à moi,
développeur ? »

Tests de l’interface
Les tests fonctionnels doivent opérer sur le logiciel de la même manière qu’un utilisa-
teur. Ils doivent donc utiliser l’interface du logiciel.

Dans le cas de programmes utilisés en ligne de commande, l’interface entre le pro-
gramme et l’utilisateur est très étroite, et les tests fonctionnels s’apparentent plus à
des tests d’intégration en mode boîte noire : on vérifie que les différents composants
de l’application fonctionnent correctement pour un ensemble de paramètres d’entrée
qui correspondent aux différents scenarii d’utilisation.

Techniques avancées
QUATRIÈME PARTIE

402

Pour tous les programmes à interface graphique, les tests fonctionnels permettent de
valider des portions de code de très haut niveau concernant la mécanique d’affichage,
qui ne sont pas toujours couvertes par les tests unitaires, et d’emprunter les mêmes
chemins que l’utilisateur, pour couvrir des combinaisons qui ne se retrouvent pas for-
cément dans les tests unitaires.

Enfin, pour les applications web, les tests fonctionnels qui ne travaillent que par
l’intermédiaire des pages web calculées puis envoyées au navigateur, permettent de
vérifier, dans les limites des outils disponibles, le bon rendu des pages.

Tests de l’ergonomie
Lorsqu’une application graphique est manipulée par un utilisateur, il est guidé par la
logique de présentation des informations. Les tests fonctionnels suivent les mêmes rails.

Pour chaque fonctionnalité complexe du logiciel, qui nécessite des enchaînements
d’écrans, des saisies de données, etc., la conception d’un test fonctionnel peut per-
mettre de déceler un certain nombre de problématiques d’ergonomie, comme :
• des enchaînements d’écrans incompréhensibles ;
• un chemin trop long, pouvant être raccourci ;
• un dose d’informations par écran trop pauvre ou trop riche, etc.

Dépendance forte à l’outil utilisé et au type d’interface
Contrairement aux tests unitaires, les tests fonctionnels sont fortement dépendants de
l’outil utilisé. Pour les interfaces graphiques, les développeurs utilisent fréquemment
des logiciels tiers, qui implémentent leurs propres mécanismes de scripts et parfois ne
proposent que d’enregistrer les actions souris pour les rejouer sur l’applicatif.

La suite de ce chapitre ne portera donc que sur les outils et techniques relatives aux
tests unitaires, applicables dans tout contexte.

On peut citer, pour le lecteur intéressé, certains outils libres pour les tests fonction-
nels, qui s’adaptent bien à un environnement Python :
• Les projets mechanize (http://wwwsearch.sourceforge.net/mechanize/) et WebUnit

(http://webunit.sourceforge.net/) fournissent des objets Python sans interface gra-
phique qui simulent le comportement d’un navigateur web avec gestion des for-
mulaires, des cookies, des redirections...

• Le logiciel Selenium (http://selenium.thoughtworks.com/) permet de jouer des sce-
narii programmés dans un véritable navigateur web tel qu’Internet Explorer ou
Mozilla Firefox.

• Le logiciel FunkLoad (http://funkload.nuxeo.org/) offre un système de benchmark
et de reporting étendu.

Programmation dirigée par les tests
CHAPITRE 12

403

Outils
Python fournit dans la bibliothèque standard un framework de tests pour faciliter
l’écriture et l’utilisation des tests unitaires. Comme pour la plupart des langages
actuels, ce framework est inspiré des travaux de Kent Beck, qui a conçu un premier
outil sous Smalltalk, porté par la suite sous Java, sous le nom de JUnit.

La version Python, PyUnit, offre les fonctionnalités standards d’un outil de test, à
savoir :
• préparation d’un contexte d’exécution particulier pour une série de tests, appelé

test fixture.
• création de séries de tests, comprenant un test fixture et des tests : les test cases.
• création de collections de test cases, les test suites.
• lancement des test suites et affichage des résultats, par le test runner.

Cette implémentation est faite dans le module unittest de Python.

Certains puristes trouvent que cette implémentation n’est pas très pythonique, car les
API sont calquées sur l’outil Java, mais elle s’avère très souple à l’usage et a le mérite
de faciliter l’utilisation des tests unitaires aux développeurs venant d’autres langages.

Un deuxième outil plus original et plus spécifique à Python permet d’insérer des tests
directement dans le code source. Ces tests, insérés dans les commentaires, sont col-
lectés par l’outil et exécutés. Ce mode de fonctionnement permet d’illustrer in situ le
code avec des exemples d’utilisation.

Enfin, un outil supplémentaire, non présent dans la bibliothèque standard, permet
de scanner le code pour repérer les lignes qui ne sont pas couvertes par les tests.

unittest
Le module unittest fournit toutes les composantes nécessaires à la création des
tests, à savoir :
• des classes pour la définition des test cases ;
• une classe pour la collecte des résultats ;
• une classe pour définir des test suites ;
• des utilitaires de lancement des tests.

En utilisation classique, les seules étapes nécessaires à l’utilisation d’unittest sont :
• la définition des tests cases ;
• l’organisation et l’utilisation des modules de tests.

Techniques avancées
QUATRIÈME PARTIE

404

Définition des test cases
Le module unittest fournit deux classes pour définir des test cases :
• TestCase : classe de base servant de socle pour toute classe implémentant des

tests.
• FunctionTestCase : classe dérivée de TestCase qui permet d’encapsuler une

fonction de test existante pour la rendre compatible avec le framework PyUnit.

La classe TestCase

Ces classes de définitions sont utilisées par le framework, par le biais d’un certain
nombre de méthodes :
• setUp() : appelée avant l’exécution de chaque méthode de test, elle sert à initiali-

ser le contexte d’exécution du test suivant. Cette méthode peut être surchargée
par les classes dérivées pour définir le test fixture. Ne fait rien par défaut.

• run([result]) : lance la batterie de tests de la classe, en collectant toutes les
méthodes de la classe dont le suffixe est « test » et en les exécutant dans l’ordre
trouvé. Si result est fourni, il doit être un objet de type TestResult et est rempli
avec les résultats des tests. Si result est omis ou à None, les résultats sont collectés
dans un objet interne à la méthode mais ne seront pas renvoyés.

• Debug() : exécute les méthodes de test de la classe sans collecter les résultats. Ces
appels se font directement, ce qui permet de récupérer d’éventuelles erreurs.

• TearDown() : appelée après l’exécution de chaque méthode de test (réussie ou
non). Permet d’effectuer d’éventuels nettoyages (fermeture de connexion réseau,
de fichier, etc.). Cette méthode est appelée uniquement en cas de succès de
setUp(). Cette méthode ne fait rien par défaut et peut être surchargée dans les
classes dérivées.

Pour adapter TestCase, il suffit de créer une nouvelle classe dérivée, d’y ajouter des
méthodes de test et si besoin d’y implémenter setUp() et tearDown().

Module de test

Chaque classe de test est écrite dans un module Python dédié, portant le nom du
module testé, préfixé de test_ ou test.

Si l’on utilise cette structure pour le test précédent du module cPickle, on obtient le
module test_cPickle.py ci-contre.

Programmation dirigée par les tests
CHAPITRE 12

405

test_cPickle.py

Tout nouveau scénario de test pour cPickle pourra être implémenté dans une nou-
velle méthode de cette classe, en préfixant son nom par « test ».

#!/usr/bin/python
-*- coding: utf8 -*-
import cPickle
import unittest

une classe basique pour nos tests
class T:
 a = 0
 b = 0

class cPickleTestCase(unittest.TestCase):

 def _genere_instance(self):
 """ renvoi un objet """
 o = T()
 o.a = 1
 o.b = 2
 return o

 def test_dump_et_load(self):
 """ test l'E/S de cPickle """
 # objet de test
 o = self._genere_instance()

 # créons un fichier en écriture
 fichier = open('/home/tziade/pickled.bin', 'w')

 # écrivons l'objet o dans le flux avec la méthode dump de cPickle
 cPickle.dump(o, fichier)

 # fermons le fichier
 fichier.close()

 # ouvrons le fichier en lecture
 fichier = open('/home/tziade/pickled.bin')

 # cPickle.load permet de recharger un objet après une sauvegarde
par dump
 o2 = cPickle.load(fic)

 # vérifions l'objet renvoyé
 assert(isinstance(o2, object))
 assert(o2.a == 1)
 assert(o2.b == 2)

Techniques avancées
QUATRIÈME PARTIE

406

Méthodes d’assertion de TestCase

Dans le code de test, la directive assert() qui permet de valider un résultat, lève en cas
de problème une erreur de type AssertionError, qui est interceptée par le framework.

Cette erreur n’apporte pas explicitement d’explications sur le problème rencontré et
nécessite de toujours fournir une expression qui renvoie une valeur booléenne.

TestCase fournit une batterie de méthodes d’assertions qui couvrent tous les types de
tests et clarifient le code, par leurs noms explicites. Chacune de ces méthodes fournit
un message d’erreur standard pour le test effectué :
• assert_(expr, msg=None) : équivalente à la directive assert(). Lève une excep-

tion si l’expression fournie ne vaut pas True. Si msg est fourni, il est associé à
l’exception. Synonymes : assertTrue, failUnless.

• assertFalse(expr, msg=None) : similaire à assert_() mais teste si l’expression
renvoie False. Synonyme : failIf.

• assertRaises(excClass, callableObj, *args, **kwargs) : permet de valider
que l’objet callableObj lève bien une erreur de type excClass lorsqu’il est appelé
par un appel excClass(*args, **kwargs). args et kwargs étant optionnels.
Synonyme : failUnlessRaises.

• assertAlmostEqual(first, second, places=7, msg=None) : permet de tester
que round(second-first, places) renvoie 0. places détermine donc la puis-
sance de l’arrondi appliqué au moment de la comparaison. Cette méthode est
utile pour les tests manipulant des objets de type float. Si msg est fourni il est
associé à l’exception. Un message par défaut est utilisé dans le cas contraire.
Synonymes : assertAlmostEquals, failUnlessAlmostEqual.

• assertNotAlmostEqual(first, second, places=7, msg=None) : équivalente à la
méthode précédente mais teste que round(second-first, places) ne renvoie
pas 0. Si msg est fourni il est associé à l’exception. Un message par défaut est utilisé
dans le cas contraire. Synonymes : assertNotAlmostEquals, failIfAlmostEqual.

• assertEqual(first, second, msg=None) : teste que first est égal à second. Si
msg est fourni il est associé à l’exception. Un message par défaut est utilisé dans le
cas contraire. Synonymes : assertEquals, failUnlessEqual

• assertNotEqual : équivalente à la méthode précédente, mais teste l’inégalité.
Synonymes : assertNotEquals, failIfEqual.

On peut donc remplacer les trois assertions par le code suivant.

Programmation dirigée par les tests
CHAPITRE 12

407

Utilisation des méthodes d’assertion

Utilisation directe d’une classe TestCase

Il y a plusieurs manières d’utiliser cette classe de test, la plus simple étant d’appeler la
fonction main() du module unittest, en ajoutant à la fin du module contenant la
classe une section __main__.

Ajout d’un appel au framework

main() se charge de collecter les tests, de les exécuter et d’afficher les résultats dans la
sortie standard.

Exécution du module

Dans ce mode d’affichage, chaque petit point correspond à un test réussi, un F indi-
querait un test raté (F pour FAIL) et un E une erreur différente d’une erreur de type
AssertionError.

Cet appel permet de valider rapidement un module de test mais ne constitue pas une
campagne de tests en soi, qui intègre généralement plusieurs modules de tests.

Organisation d’une campagne de tests
Pour pouvoir lancer une campagne de tests, qui inclut tous les modules de tests du
programme, il est nécessaire de mettre en place un script qui collecte et exécute
l’ensemble des modules de tests disponibles dans un répertoire donné.

 [...]
 # vérifions l'objet renvoyé
 self.assert_(isinstance(o2, object),
 "l'objet renvoyé par dump n'est pas du même type")
 self.assertEqual(o2.a, 1,
 "l'objet renvoyé par dump n'a pas la même valeur a")
 self.assertEqual(o2.b, 2,
 "l'objet renvoyé par dump n'a pas la même valeur b")
 [...]

if __name__ == '__main__':
 unittest.main()

[tziade@Tarek Desktop]$ python test_cPickle.py
.
--
Ran 1 test in 0.002s

OK

Techniques avancées
QUATRIÈME PARTIE

408

Ce script se base sur la classe TextTestRunner d’unittest, instanciée lors de l’appel
de la fonction de lancements de tests main().

Cette classe est une implémentation par défaut d’une campagne de test, qui collecte
dans un objet TestResult interne tous les résultats des tests et qui les affiche sur la
sortie d’erreur standard.

Une instance de classe TextTestRunner récupère des TestSuite et les exécute dans
un TestSuite global, par le biais de la méthode run().

TestSuite est une classe basique regroupant des objets de type TestCase, fournis à la
construction, ou ajoutés par le biais des méthodes addTest() ou addTests(). Cette
classe possède aussi une méthode run().

Ces deux classes vont permettre au script d’exécuter les tests contenus dans les diffé-
rents modules.

Organisation des modules de tests

Pour faciliter la tâche du script de tests, tous les modules de tests de l’application doi-
vent nécessairement :
• avoir un nom avec un préfixe test et un suffixe .py ;

• se trouver dans un dossier nommé tests, réservé à ce type de scripts. Il peut y
avoir plusieurs dossiers tests dans l’arborescence de l’application ;

• contenir une fonction globale get_test_class(), qui renvoie la classe de type
TestCase à utiliser. Cette fonction peut aussi renvoyer une séquence de plusieurs
classes à utiliser.

Script de lancement des tests

Notre script de lancement de tests prend en paramètre un répertoire et effectue une
recherche dans tous les répertoires tests de l’arborescence. Un TestSuite est
fabriqué pour chaque module de test rencontré dans ces répertoires. Le script lance
ensuite ces tests par le biais d’un TestRunner.

Script tester.py

#!/usr/bin/python
-*- coding: utf8 -*-
import sys
from os import getcwd, walk, chdir
import os.path
from optparse import OptionParser
import unittest
from warnings import warn

Programmation dirigée par les tests
CHAPITRE 12

409

options = [{'noms': ('-r', '--repertoire'), 'dest': 'rep',
 'help': ('Spécifie le répertoire à utiliser, si non fourni, '
 'le chemin courant est utilisé ')}]

def _print_line():
 print('-' * 70)

def main(options, arguments, parser):
 if options.rep isnot None:
 chemin = options.rep
 else:
 if len(arguments) > 0:
 print parser.usage
 sys.exit(2)
 chemin = getcwd()

 chemin = os.path.normpath(chemin)
 if chemin.endswith(os.path.sep):
 chemin = chemin[:-1]

 print('Parcours du répertoire')
 test_modules = []
 for racine, reps, fichiers in walk(chemin):
 dossier = os.path.basename(racine)
 if dossier == 'tests':
 for fichier in fichiers:
 if (fichier.startswith('test') and
 fichier.endswith('.py') and
 fichier != 'test.py'):
 nom_complet = os.path.join(racine, fichier)
 test_modules.append((nom_complet, fichier[:-3]))
 sys.stdout.write('.')
 sys.stdout.flush()

 print('\n%d module(s) de test trouvé(s)\n' % len(test_modules))

 suite = unittest.TestSuite()
 dernier_contexte = None
 added_paths = []

 for module in test_modules:
 module_path = os.path.dirname(module[0])

 # chargement d'un script si nécessaire
 contexte = os.path.join(module_path, 'contexte.py')
 if os.path.exists(contexte) and dernier_contexte != contexte:
 execfile(contexte)
 dernier_contexte = contexte

Techniques avancées
QUATRIÈME PARTIE

410

Quelques fonctionnalités annexes ont été ajoutées :
• Le programme exécute un éventuel script contexte.py s’il est présent dans le

répertoire tests en cours. Ce script peut servir à mettre en place un environne-
ment de test global sans avoir à le répéter dans chaque module de test. Il peut
contenir entre autres des manipulations du chemin de recherche de l’interpréteur,
ou des variables d’environnement.

• Un warning est affiché pour chaque module de test qui n’a pas de fonction
get_test_class().

 if module_path notin sys.path:
 sys.path.append(module_path)
 added_paths.append(module_path)

 m = __import__(module[1])
 if 'get_test_class' in m.__dict__:
 class_type = m.get_test_class()
 test_suite = unittest.TestSuite((
 unittest.makeSuite(class_type),))
 suite.addTest(test_suite)
 else:
 warn("%s n'a pas de fonction get_test_class" % module[0])

 nb_test_case = suite.countTestCases()
 if nb_test_case == 0:
 print('Aucun test.')
 sys.exit(2)

 print('\nLancement de %d test(s)...' % nb_test_case)
 _print_line()
 campagne = unittest.TextTestRunner(verbosity=2)
 campagne.run(suite)

 for added_path in added_paths:
 sys.path.remove(added_path)

if __name__ == '__main__':
 parser = OptionParser()
 parser.usage = 'tester [-r repertoire]'
 for option in options:
 param = option['noms']
 del option['noms']
 parser.add_option(*param, **option)
 options, arguments = parser.parse_args()
 sys.argv[:] = arguments
 main(options, arguments, parser)

Programmation dirigée par les tests
CHAPITRE 12

411

doctests
Les doctests offrent une approche complémentaire très intéressante pour l’écriture
des tests unitaires : il est possible de les insérer directement dans le code à tester.
Contenus dans les docstrings de toute fonction, méthode, classe ou module, les tests
sont récupérés par un outil spécialisé, défini dans le module doctest.

Pour être reconnus par l’outil, ces tests doivent être écrits sous la forme de petites
sessions de code ressemblant à des séquences d’un prompt Python interactif.

Exemple de doctest

L’outil vérifie alors que toutes ces séquences, qui sont indépendantes les unes des
autres, fonctionnent en les exécutant.

Exécution des doctests
Le module doctest fournit une fonction similaire à la fonction main() de unittest,
qui permet d’exécuter les tests unitaires contenus dans les docstrings d’un module
donné.

Module de code avec appel à testmod

À SAVOIR Scripts de tests des frameworks

Les frameworks de développement Python, comme Twisted ou Zope, proposent généralement leurs pro-
pres scripts de tests, plus ou moins similaires à l’implémentation présentée et plus ou moins pratiques.

def somme(a, b):
 """ renvoie a + b

 >>> somme(2, 2)
 4
 >>> somme(2, 4)
 6
 """
 return a + b

import doctest

def somme(a, b):
 """ renvoie a + b

 >>> somme(2, 2)
 4

Techniques avancées
QUATRIÈME PARTIE

412

Appelée avec l’argument -v, cette fonction détaille dans la sortie standard le travail
effectué.

Session de test

Un appel sans paramètre sera totalement silencieux dans cet exemple où le test n’aboutit
pas à une erreur. En cas de problème, un message est affiché avec ou sans l’option -v.

Syntaxe des doctests
Nous l’avons vu dans l’exemple précédent, les doctests sont à peu de chose près des
copiers-collers de sessions du prompt interactif de Python. Ils doivent donc con-
server les même caractéristiques, et respecter quelques règles particulières, à savoir :
• Respect de l’indentation, sachant que toutes les tabulations sont modifiées à la

volée par des espaces, en utilisant la même règle que l’analyseur syntaxique de
l’interpréteur.

• Séquençage correct des lignes, qui doivent commencer par >>> ou par ... pour le
code et aucun caractère particulier pour une sortie attendue.

 >>> somme(2, 4)
 6
 """
 return a + b

if __name__ == "__main__":
 doctest.testmod()

[tziade@Tarek tests]$ python test_doctests.py -v
Trying:
 somme(2, 2)
Expecting:
 4
ok
Trying:
 somme(2, 4)
Expecting:
 6
ok
1 items had no tests:
 __main__
1 items passed all tests:
 2 tests in __main__.somme
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

Programmation dirigée par les tests
CHAPITRE 12

413

• Lorsqu’un saut de ligne est renvoyé dans les résultats d’une commande, il ne peut
pas être comparé à un véritable saut de ligne, interprété par l’outil comme la fin
d’une séquence. Une ligne contenant la chaîne <BLANKLINE> permet d’indiquer à
l’outil qu’un saut de ligne est attendu à cet endroit.

• Un docstring étant une chaîne de caractères, il est nécessaire de prendre des pré-
cautions lorsque le caractère antislash (« \ ») est utilisé. Pour qu’il soit pris en
compte sans être interprété au moment de la lecture de la chaîne par l’outil, il est
nécessaire de définir la chaîne comme étant de type raw.

Dans l’extrait de code ci-dessous, la première version de docstring provoque une
erreur SyntaxError à cause de l’antislash. La deuxième version utilise une chaîne de
caractères de type raw pour résoudre ce problème.

Gestion des antislash

docstring de type string
def test():
 """
 >>> ligne = 'f\n\nf'
 >>>
 f
 <BLANKLINE>
 f
 """
 pass

[tziade@Tarek tests]$ python test_doctests.py -v
[...]
File "test_doctests.py", line 22, in __main__.test
Failed example:
 ligne = 'f
Exception raised:
 Traceback (most recent call last):
 File "/usr/lib/python2.4/doctest.py", line 1243, in __run
 compileflags, 1) in test.globs
 File "<doctest __main__.test[0]>", line 1
 ligne = 'f
 ^
 SyntaxError: EOL while scanning single-quoted string
[...]

docstring de type raw
def test():
 r"""
 >>> ligne = 'f\n\nf'
 >>> 2
 2
 """

Techniques avancées
QUATRIÈME PARTIE

414

Une autre particularité de ce type de test unitaire est liée à son fonctionnement
intrinsèque : la réussite du test se basant sur la sortie de l’interpréteur, il est nécessaire
de prendre des précautions lorsque le retour est susceptible de varier.

C’est le cas par exemple pour les affichages de dictionnaires : l’ordre de sortie n’est pas
garanti, et peut varier d’une exécution à l’autre. Il convient dans ce cas de trier le dic-
tionnaire avant affichage ou de faire des tests sur chaque membre de manière explicite.

Précautions d’usage pour les dictionnaires

Les objets de type float sont également à manipuler avec précaution, car les valeurs
retournées varient d’un système à l’autre. Le plus simple étant d’arrondir les valeurs
comparées par le biais de round() ou de conserver une fraction dont le résultat est à
coup sûr identique sur tous les systèmes, à savoir de la forme x/2.0**y.

Les adresses mémoire qui peuvent s’afficher lorsque l’on manipule des objets sont
aussi susceptibles de varier. Un appel à la primitive id() par exemple a toutes les
chances de retourner un entier différent à chaque fois que le test est lancé puisqu’il
est calculé en fonction de l’adresse mémoire. Ces valeurs ne peuvent donc pas être
employées telles quelles dans les tests.

Pour pouvoir s’affranchir de ce problème, il est possible dans ce cas de remplacer la
valeur hexadécimale par des points de suspension (...) représentant une ellipse et
d’activer une option pour le signaler. Cette option est à ajouter en fin de ligne, par un
marqueur ELLIPSIS.

 pass
[tziade@Tarek tests]$ python test_doctests.py -v
[...]
Trying:
 2
Expecting:
 2
ok

def mon_dico():
 """
 >>> mon_dico()['b'] # test explicite
 2
 >>> liste = mon_dico().items()
 >>> liste.sort()
 >>> liste # test nécessitant un ordre constant
 [('a', 1), ('b', 2), ('c', 3)]
 """
 return {'a': 1, 'b': 2, 'c': 3}

Programmation dirigée par les tests
CHAPITRE 12

415

Marqueur Ellipsis

Ce marqueur fait partie d’un ensemble de drapeaux présentés ci-dessous.

Environnement et options d’exécution
Pour chaque docstring parcouru, un environnement d’exécution est créé à partir d’une
copie des variables globales du module parcouru, renvoyée par globals(). Cette copie
est abandonnée à la fin du docstring, afin d’éviter tout impact sur les tests suivants.

Il est aussi possible de faire varier le fonctionnement des doctests par le biais
d’options d’exécution, appelées marqueurs. Chaque marqueur peut être ajouté aux
lignes des doctests, pour une action locale, ou passé en paramètre lorsque tous les
tests sont lancés, pour une action globale.

Ajouter un marqueur localement se fait en insérant un commentaire en fin de ligne,
avec le nom du marqueur précédé du signe plus (+).

Les marqueurs globaux quant à eux sont concaténés par des opérateurs OR et forment
le paramètre optionflags de la fonction testmod().

Insertion d’un marqueur

Les marqueurs disponibles sont :
• DONT_ACCEPT_TRUE_FOR_1 : les versions 2.2 et précédentes de Python affichent 0

et 1 pour le retour d’une fonction booléenne. Le module doctest accepte donc ces
valeurs en lieu et place de True et False pour que la transition vers des versions
plus récentes de l’interpréteur ne se fasse pas brutalement. Cette option, qui ne
peut être utilisée que globalement, permet de forcer un contrôle strict.

• DONT_ACCEPT_BLANKLINE : empêche l’utilisation de <BLANKINE>. S’utilise globa-
lement.

def mon_objet():
 """
 >>> mon_objet() #doctest: +ELLIPSIS
 <object object at 0x...>
 """
 return object()

marqueur local
>>> error() # doctest: +IGNORE_EXCEPTION_DETAIL

marqueur global
importdoctest
if __name__ == "__main__":
 flags = doctest.IGNORE_EXCEPTION_DETAIL
 doctest.testmod(optionflags=flags)

Techniques avancées
QUATRIÈME PARTIE

416

• NORMALIZE_WHITESPACE : normalise les espaces dans la comparaison du résultat.
Ce drapeau est relativement utile lorsque l’on souhaite tester un retour de fonc-
tion composé de beaucoup d’espaces, comme les séquences HTML. doctest
compare ' '.join(attendu.split()) et ' '.join(obtenu.split()) en lieu et
place de attendu et obtenu.

Normalisation des espaces

ELLIPSIS

Vu dans la section précédente pour les adresses mémoire, ce marqueur permet de
remplacer une séquence de caractères, et correspond à une chaîne indéfinie de carac-
tères.

Ellipsis

IGNORE_EXCEPTION_DETAIL

Permet d’ignorer le texte complet renvoyé par une exception et de se contenter de
comparer uniquement le type d’erreur. Ce marqueur est conseillé pour ne pas
dépendre de la pile d’appel ou du texte de l’erreur, susceptible de changer.

doctest extrait le message d’erreur minimal, à savoir :
• la première ligne : Traceback (most recent call last):

def html_bloc():
 r"""
 >>> html_bloc() #doctest: +NORMALIZE_WHITESPACE
 '<HTML>\n <BODY>\n test\n </BODY>\n </HTML>'
 """
 html = """<HTML>
 <BODY>
 test
 </BODY>
 </HTML>"""
 return html

def ellipsis():
 """
 >>> ellipsis() #doctest: +ELLIPSIS
 'a...j'
 >>> ellipsis() #doctest: +ELLIPSIS
 'abc...'
 >>> ellipsis() #doctest: +ELLIPSIS
 '...ij'
 """
 return 'abcdefghij'

Programmation dirigée par les tests
CHAPITRE 12

417

• la ligne qui contient le type d’erreur, en ne conservant que ce type.

Exception détail

REPORT_NDIFF

Si ce flag est fourni au lancement des tests, les différences entre le retour et le résultat
attendu sont affichées sous forme de différences, suivant le format renvoyé par le
module difflib, qui fournit un algorithme de comparaison intra-ligne.

Hortograffe

def error():
 """
 >>> error() #doctest: +IGNORE_EXCEPTION_DETAIL
 Traceback (most recent call last):
 ZeroDivisionError: xx
 """
 return 3 / 0

def test_orthographe():
 """
 >>> test_orthographe()
 L'orthographe de ce texte est valide.
 """
 return "L'horthografe de ce tecste est validde."

if __name__ == "__main__":
 flags = doctest.REPORT_NDIFF
 doctest.testmod(optionflags=flags)

[...]

[tziade@Tarek tests]$ python test_doctests.py
**
File "test_doctests.py", line 7, in __main__.test_orthographe
Failed example:
 test_orthographe()
Differences (ndiff with -expected +actual):
 - L'orthographe de ce texte est valide.
 ? ^^ ^
 + "L'horthografe de ce tecste est validde."
 ? + + ^ ^^ + +
**
1 items had failures:
 1 of 1 in __main__.test_orthographe
Test Failed 1 failures.

Techniques avancées
QUATRIÈME PARTIE

418

REPORT_CDIFF

Même rôle que le marqueur précédent pour afficher les différences contextuelles. Les dif-
férences contextuelles sont présentées sous la forme de deux blocs de lignes de chaque
version. Dans une version, chaque ligne peut être préfixée d’un caractère spécial :
• ! : ligne différente dans l’autre version ;
• + : ligne n’existant pas dans l’autre version ;
• - : ligne présente uniquement dans l’autre version.

Ne fonctionne que pour des textes multilignes de plus de deux lignes.

Différences contextuelles

def test_multiligne():
 """
 >>> test_multiligne()
 1
 2
 4
 5
 """
 print '\n'.join('1234')

if __name__ == "__main__":
 flags = doctest.REPORT_CDIFF
 doctest.testmod(optionflags=flags)

[...]

[tziade@Tarek tests]$ python test_doctests.py
**
File "test_doctests.py", line 7, in __main__.test_multiligne
Failed example:
 test_multiligne()
Differences (context diff with expected followed by actual):

 *** 1,4 ****
 1
 2
 4
 - 5
 --- 1,4 ----
 1
 2
 + 3
 4
**

Programmation dirigée par les tests
CHAPITRE 12

419

REPORT_UDIFF

Même rôle que le marqueur précédent pour afficher les différences unifiées. Les diffé-
rences sont affichées dans ce cas dans un même bloc unifié. Le préfixe ! n’existe donc
pas dans ce cas. Ne fonctionne que pour des textes multilignes de plus de deux lignes.

Différences unifiées

1 items had failures:
 1 of 1 in __main__.test_multiligne
Test Failed 1 failures.

def test_multiligne():
 """
 >>> test_multiligne()
 1
 2
 4
 5
 """
 print '\n'.join('1234')

if __name__ == "__main__":
 flags = doctest.REPORT_UDIFF
 doctest.testmod(optionflags=flags)

[...]

[tziade@Tarek tests]$ python test_doctests.py
**
File "test_doctests.py", line 7, in __main__.test_multiligne
Failed example:
 test_multiligne()
Differences (unified diff with -expected +actual):
 @@ -1,4 +1,4 @@

 1
 2
 +3
 4
 -5
**
1 items had failures:
 1 of 1 in __main__.test_multiligne
Test Failed 1 failures.

Techniques avancées
QUATRIÈME PARTIE

420

REPORT_ONLY_FIRST_FAILURE

Ce marqueur global permet de spécifier que pour chaque séquence, seule la première
comparaison qui échoue est reportée. Le reste de la séquence est exécutée mais plus
aucune erreur n’est reportée. Utilisé pour minimiser le retour des tests dès lors que
des problèmes sont rencontrés.

doctests dans un fichier texte séparé
Des fichiers textes peuvent aussi être dédiés aux doctests : l’outil parcourt dans ce cas
les lignes et exécute le contenu comme un seul et même docstring. Cette technique
permet de réunir tous les tests dans un seul et même module, pour revenir à un principe
similaire aux tests unitaires, mais avec toute la puissance narrative des doctests en plus.

Les exemples de code s’alternent de commentaires, dans un flux continu et directe-
ment lisible. Au fur et à mesure de l’évolution du code, des exemples de plus en plus
complexes et des cas particuliers s’ajoutent à ce fichier, qui devient une documenta-
tion complète à progression logique.

L’exemple ci-dessous reprend l’exemple des tests sur cPickle, pour une écriture équi-
valente en doctests.

test_cPickle.txt

le module cPickle permet de sauvegarder des
objets sur le système de fichiers ou dans tout autre flux.

>>> import cPickle

Prenons l'exemple d'une classe classique
et une instance de cette classe
que nous allons sauvegarder

>>> from UserDict import UserDict
>>> o = UserDict()
>>> o['a'] = 1
>>> o['b'] = 2

Pour sauver l'objet, cPickle prend en paramètre
un objet de type file, ouvert par nos soins

>>> fic = open('/home/tziade/pickled.bin', 'w')

La fonction dump se charge de la sérialisation

>>> cPickle.dump(o, fic)

fermons le fichier

Programmation dirigée par les tests
CHAPITRE 12

421

L’exécution d’un fichier de doctests se fait par la fonction testfile() de doctest.

Cette fonction prend, entre autres paramètres, module_relative, qui spécifie si les
chemins importés dans les tests sont relatifs au répertoire du module appelant ou
dépendants du système, c’est-à-dire de sys.path.

Dans l’exemple ci-dessous, ce paramètre est à False car le test est appelé depuis
l’interpréteur interactif.

verbose détermine la quantité d’informations affichée. Il est à False par défaut et
n’affiche rien sauf en cas d’erreur.

Exécution du fichier test__cPickle.txt

>>> fic.close()

Pour récupérer l'objet, il suffit d'ouvrir un
flux sur le fichier et d'utiliser la fonction load()

>>> fic = open('/home/tziade/pickled.bin')
>>> o2 = cPickle.load(fic)

Vérifions les valeurs de l'objet renvoyé

>>> isinstance(o2, UserDict)
True
>>> o2['a']
1
>>> o2['b']
2

>>> import doctest
>>> doctest.testfile('test_cPickle.txt', module_relative=False,
verbose=True)
Trying:
 import cPickle
Expecting nothing
ok
Trying:
 from UserDict import UserDict
Expecting nothing
ok
Trying:
 o = UserDict()
Expecting nothing
ok
Trying:
 o['a'] = 1

Techniques avancées
QUATRIÈME PARTIE

422

Expecting nothing
ok
Trying:
 o['b'] = 2
Expecting nothing
ok
Trying:
 fic = open('/home/tziade/pickled.bin', 'w')
Expecting nothing
ok
Trying:
 cPickle.dump(o, fic)
Expecting nothing
ok
Trying:
 fic.close()
Expecting nothing
ok
Trying:
 fic = open('/home/tziade/pickled.bin')
Expecting nothing
ok
Trying:
 o2 = cPickle.load(fic)
Expecting nothing
ok
Trying:
 isinstance(o2, UserDict)
Expecting:
 True
ok
Trying:
 o2['a']
Expecting:
 1
ok
Trying:
 o2['b']
Expecting:
 2
ok
1 items passed all tests:
 13 tests in test_cPickle.txt
13 tests in 1 items.
13 passed and 0 failed.
Test passed.
*** DocTestRunner.merge: 'test_cPickle.txt' in both testers; summing
outcomes.
(0, 13)

Programmation dirigée par les tests
CHAPITRE 12

423

Script de test
Le script de lancement des tests unitaires vu précédemment peut être modifié pour
prendre en compte les doctests des modules de code rencontrés sur le chemin, et les
fichiers textes de tests. Dans l’extension proposée, ces derniers doivent être préfixés
par test et suffixés par .txt.

doctest fournit des objets permettant de transformer les tests extraits des docstrings
en objets de type TestCase, qui peuvent être insérés dans les test suites.

Script tester.py modifié

import doctest
[...]

def main(options, arguments, parser):

 [...]

 print('Parcours du répertoire')
 test_modules = []
 for racine, reps, fichiers in walk(chemin):
 for fichier in fichiers:
 if ((fichier.endswith('.py') or fichier.endswith('.txt')) and
 fichier notin ('test.py', 'test.txt')):
 nom_complet = os.path.join(racine, fichier)
 tests = os.path.basename(racine) == 'tests'
 test_modules.append((nom_complet, fichier.split('.')[0],
 tests))
 sys.stdout.write('.')
 sys.stdout.flush()

 [...]

 for fichier, module, dossier_tests in test_modules:
 module_path = os.path.dirname(fichier)
 if module_path notin sys.path:
 sys.path.append(module_path)
 added_paths.append(module_path)

 # chargement d'un contexte si nécessaire
 if dossier_tests:
 contexte = os.path.join(module_path, 'contexte.py')
 else:
 contexte = os.path.join(module_path, 'tests_contexte.py')

 if os.path.exists(contexte) and dernier_contexte != contexte:
 execfile(contexte)
 dernier_contexte = contexte

Techniques avancées
QUATRIÈME PARTIE

424

Ce script introduit en outre une variation sur les fichiers de contexte, qui restent
nommés contexte.py dans les répertoires tests et deviennent tests_contexte.py
en dehors. Cette modification permet de lancer un script de contexte associé à des
répertoires contenant des scripts Python qui sont scannés pour les doctests.

Coverage
Le coverage est un complément utile qui permet de traquer le code non couvert par
les tests unitaires. Les implémentations existantes de scripts de coverage se basent sur
la fonction sys.settrace() qui permet d’associer une fonction à toute exécution de
code. Cette fonction sera appelée à chaque fonction ou méthode visitée, et peut être
combinée avec une deuxième fonction qui sera invoquée pour chaque ligne visitée.

Le module trace de la bibliothèque standard est un exemple d’implémentation de
settrace(). Il fournit un objet Trace, qui prend en paramètre le code à exécuter et

 # fichiers textes de type doctests
 if fichier.endswith('.txt') and dossier_tests:
 doc_file_suite = doctest.DocFileSuite(fichier,
module_relative=False)
 suite.addTest(doc_file_suite)
 continue

 # fichiers de tests unitaires
 if module.startswith('test') and dossier_tests:
 m = __import__(module)

 if 'get_test_class' in m.__dict__:
 class_type = m.get_test_class()
 test_suite = unittest.TestSuite((
 unittest.makeSuite(class_type),))
 suite.addTest(test_suite)
 else:
 warn("%s n'a pas de fonction get_test_class" % fichier)

 # parcours de tous les fichiers de code pour les doctests
 ifnot dossier_tests and fichier.endswith('.py'):
 m = __import__(module)
 try:
 doc_test_suite = doctest.DocTestSuite(m)
 except ValueError:
 # pas de doctests
 pass
 else:
 suite.addTest(doc_test_suite)

[...]

Programmation dirigée par les tests
CHAPITRE 12

425

concocte un fichier d’extension .cover, similaire au code exécuté, mais avec des
informations ajoutées à chaque début de ligne.

Exemple d’utilisation de trace

#!/usr/bin/python
-*- coding: utf8 -*-
import trace
import sys

def methode2(x):
 if x % 2:
 return 'o'
 if x == 123:
 return 'O'
 return 'x'

def methode():
 c = ''
 for i in range(100):
 c = c + methode2(i)

if __name__ == '__main__':
 traced = trace.Trace(ignoredirs=[sys.prefix,
 sys.exec_prefix,], trace=0,
 count=1)
 traced.run('methode()')

 r = traced.results()
 r.write_results(show_missing=True)

 results = open('tracer.cover', 'r')
 print(''.join(results.readlines()))
 results.close()

[...]

[tziade@Tarek Desktop]$ python tracer.py
 #!/usr/bin/python
 # -*- coding: utf8 -*-
 import trace
>>>>>> import sys

>>>>>> def methode2(x):
 100: if x % 2:
 50: return 'o'
 50: if x == 123:
>>>>>> return 'O'
 50: return 'x'

Techniques avancées
QUATRIÈME PARTIE

426

trace préfixe les lignes non exécutées du code par >>>>>> et par le nombre d’appels
pour les autres. Les lignes de la section __main__ ne sont pas à prendre en compte
car non tracées. En termes d’interprétation, ce test permet de déceler que le cas x ==
123 n’est jamais visité par le code appelant.

D’autres implémentations existent en dehors de la bibliothèque standard, comme le
module coverage.py de Gareth Rees, du projet Perforce Defect Tracking Integration
(http://www.ravenbrook.com/project/p4dti/). Le principe est identique mais cette ver-
sion est beaucoup plus intéressante dans le cadre des tests unitaires car les informa-
tions collectées sont regroupées et affichées dans un tableau où chaque module utilisé
dans les tests se voit attribuer un pourcentage de couverture.

Résultats de coverage.py

>>>>>> def methode():
 1: c = ''
 101: for i in range(100):
 100: c = c + methode2(i)

>>>>>> if __name__ == '__main__':
>>>>>> traced = trace.Trace(ignoredirs=[sys.prefix,
sys.exec_prefix,], trace=0,
>>>>>> count=1)
>>>>>> traced.run('methode()')

>>>>>> r = traced.results()
>>>>>> r.write_results(show_missing=True)

>>>>>> results = open('tracer.cover', 'r')
>>>>>> print ''.join(results.readlines())
>>>>>> results.close()

[tziade@Tarek tests]$ coverage.py -x tester.py
Parcours du répertoire
.......
7 module(s) de test trouvé(s)

[..]

Lancement de 4 test(s)...
--
test l'E/S de cPickle ... ok
test le monkey patching ... ok
test_patch2 (test_imaplib.SMTPTestCase) ... ok
test_patchR (test_imaplib.SMTPTestCase) ... ok

--
Ran 4 tests in 0.003s

Programmation dirigée par les tests
CHAPITRE 12

427

Des améliorations peuvent être apportées à ce script, notamment en filtrant les
modules des bibliothèques pour n’afficher que les modules du programme.

Intégration dans l’environnement d’un projet
Les tests constituent la principale assurance qualité du code d’un programme, et
s’intègrent facilement à la vie d’un projet, voire d’une manière plus globale, à la cul-
ture d’entreprise ou communautaire.

Les projets Open Source ont été historiquement parmi les premiers à réellement
adopter ce modèle de programmation : le nombre d’acteurs impliqués et leur éloi-
gnement géographique ont forcé à rendre les projets de plus en plus autonomes des
développeurs en termes de contrôle qualité.

Si les nouveaux arrivants proposent des modifications dans le code, les tests unitaires
qui accompagnent ces modifications facilitent considérablement le travail de sur-
veillance des développeurs principaux du projet, et font bien souvent partie de la
charte de participation au projet : « no test, no commit » (pas de test, pas de soumis-
sion de code).

OK
[tziade@Tarek tests]$ coverage -r
Name Stmts ExecCover

base64 173 30 17%
unittest 464 226 48%
test_doctests 33 12 36%
dis 179 16 8%
test_imaplib3 6 3 50%
gettext 368 119 32%
sre_compile 387 265 68%
trace 471 46 9%
sre_parse 605 320 52%
bdb 416 65 15%
__init__ 11 5 45%
warnings 183 58 31%
[...]
traceback 189 22 11%
doctest 950 143 15%
difflib 656 59 8%
__future__ 22 17 77%
inspect 474 57 12%

TOTAL 15632 3625 23

Techniques avancées
QUATRIÈME PARTIE

428

Mais ces échanges doivent être formalisés par des outils supplémentaires pour faci-
liter la gestion du code du projet, et l’accès à ces outils doit être direct pour toute per-
sonne impliquée dans le projet.

Le projet Python est un exemple flagrant de ce besoin : avant la version 2 du langage,
toutes les modifications proposées étaient envoyées à Guido van Rossum par e-mail
sous forme de fichiers diff ou python. Ce dernier acceptait ou refusait l’ajout. Dans
le premier cas, il ajoutait le code dans son CVS personnel pour le diffuser ensuite. La
boîte e-mail de Guido van Rossum était donc le goulot d’étranglement de l’avancée
du projet Python.

À l’instar de Sourceforge, un projet basé sur la programmation dirigée par les tests
peut mettre en place :
• Un gestionnaire de version, comme SVN ou CVS, qui permet aux développeurs

de mettre à jour ou récupérer le code centralisé (code repository), et au système de
conserver toutes les versions du code.

• Un système de scripts, qui permet de lancer des campagnes de tests et de cove-
rage, à l’instar des scripts présentés dans ce chapitre.

• Des scripts de contrôle qualité, comme PyLint (http://www.logilab.org/projects/
pylint), qui met entre autres en évidence les directives d’importations non utilisées
et PyChecker (http://pychecker.sourceforge.net/), qui effectue un contrôle poussé
sur le code et signale par exemple des objets instanciés mais jamais utilisés, ou des
portions de code qui ne peuvent pas être appelées.

• Un automate, comme BuildBot (http://buildbot.sourceforge.net/), qui lance à cha-
que modification du code une campagne de tests sur plusieurs environnements
d’exécution, et envoie des e-mails d’avertissement aux développeurs en cas de pro-
blème (codé en Python).

• Des outils de gestion de listes de diffusion, comme Mailman (http://www.gnu.org/
software/mailman/) (codé en Python).

• Un site permettant de visualiser le code et les modifications, comme le système
Trac (http://www.edgewall.com/trac/) (codé en Python), etc.

Le futur de PyUnit
PyUnit hérite de la lourdeur de son modèle Java. Écrire un simple test pour vérifier
une valeur nécessite beaucoup de boiler-plate code.

Programmation dirigée par les tests
CHAPITRE 12

429

Un simple test avec PyUnit

Il est nécessaire d’équiper les modules de test de code supplémentaire pour construire
des suites de tests. Enfin, pour lancer une campagne de test, un script qui collecte les
tests devient vite indispensable.

PyUnit impose des méthodes pour les assertions reprises de Java, qui sont verbeuses.
Le seul mérite de cette similitude étant de permettre à un développeur maîtrisant
Junit d’être productif directement avec PyUnit et inversement.

Toute cette infrastructure alors que le seul test tient en une ligne !

Test nu

Des projets communautaires proposent des alternatives intéressantes, qui résolvent
ces défauts de PyUnit. Nose (http://somethingaboutorange.com/mrl/projects/nose/) est
probablement le projet le plus intéressant. Il se base sur de simples conventions de
nommage pour l’écriture de tests et fournit un script qui collecte automatiquement
les modules dont le nom commence par test. Les tests en eux-mêmes peuvent être
de simples fonctions du moment qu’elles utilisent aussi un préfixe test.

Test compatible Nose

L’intérêt de Nose est de lancer également les tests écrits classiquement avec
unittest.

Il est possible qu’à terme unittest soit remplacé par un outil aux fonctionnalités
proches de Nose. Des travaux communautaires laisseraient supposer que cette modi-
fication aura lieu dans les années à venir.

>>> import unittest
>>> class MyTestCase(unittest.TestCase):
... def test_one(self):
... self.assertEquals(sum((2, 3)), 5)
...

>>> assert sum((2, 3)), 5

>>> def test_one():
... assert sum((2, 3)), 5
...

Techniques avancées
QUATRIÈME PARTIE

430

En un mot...
Adopter les techniques présentées dans ce chapitre est un atout considérable pour
augmenter la qualité d’une application et la facilité avec laquelle un développeur peut
la modifier, que ce soit en Python ou dans un autre langage.

Si cette technique est combinée à de bonnes pratiques, présentées dans le prochain
chapitre, elle fait de Python un langage à l’aise dans la plupart des domaines.

Oh ! Come and see the violence inherent in the system ! — The Holy Grail

« Oh ! Venez tous voir la violence qui se cache sous ce système ! »

— Sacré Graal

Python est souvent montré du doigt comme un langage lent. Constat évident
puisqu’il est basé sur de l’interprétation et non sur de la compilation. Mais un pro-
gramme Python bien écrit base la plupart du temps son travail sur des appels les plus
directs à la couche compilée en C des bibliothèques. La vitesse d’un programme est
donc inversement proportionnelle à la couche de code Python à traverser.

Ce chapitre présente les outils et les bons réflexes à prendre pour rendre un pro-
gramme le plus performant possible. Si les performances atteintes ne sont pas encore
suffisantes, ce qui peut arriver dans certains domaines spécifiques comme les calculs
matriciels dans les jeux, des bibliothèques ou des techniques spécifiques permettent
de pallier ce problème.

Le programme est encore trop lent ? Il reste possible de passer du côté obscur de la
force, en codant tout ou partie du code dans une extension au langage en C.

13
Bonnes pratiques et

optimisation du code

Techniques avancées
QUATRIÈME PARTIE

432

Quand optimiser ?
Il est déconseillé de tenter d’optimiser son code au moment de sa première écriture,
car cette approche a pour conséquence de complexifier l’objectif premier : concevoir
un code qui fonctionne.

De plus, il est quasiment impossible d’identifier à l’avance, sauf pour les cas isolés ou
bien précis, les enchaînements de code qui provoqueront de réelles lenteurs poten-
tiellement éradicables. Calculer la complexité d’un algorithme est une chose, prévoir
toutes les combinaisons d’enchaînements et d’imbrications possibles d’un applicatif
en est une autre.

L’optimisation ne s’opère donc que lorsque l’on constate que l’une des fonctionna-
lités de l’applicatif n’est pas conforme aux attentes en termes de rapidité d’exécution,
même s’il est possible comme nous le verrons en fin de chapitre de procéder à des
tests de performance continus.

Cette optimisation se base sur une recherche du goulot d’étranglement, ou bottleneck,
et dans le meilleur des cas à son éradication par une modification d’une partie du
code. Parfois, tout ou partie de l’architecture du programme est remise en cause et
une refonte plus profonde peut être nécessaire. On parle alors de refactoring.

La recherche du goulot d’étranglement se fait par le biais du profiling, qui consiste à
mesurer les performances d’une fonctionnalité en chronométrant la durée d’exécu-
tion de chacun des acteurs. Cet exercice permet en outre de déceler d’autres types
d’anomalies.

Une fois le coupable identifié, une décision doit être prise pour améliorer les perfor-
mances.

Enfin, des tests de performance continus peuvent être mis en place, pour garantir, de
la même manière que pour les tests unitaires, qu’il n’y a pas de régression au niveau
de la rapidité de l’applicatif : chaque introduction ou modification de code pouvant
potentiellement créer un nouveau goulot d’étranglement.

Cette dernière démarche a en outre l’avantage de rendre le développeur de plus en
plus proactif sur les problèmes de performances, il les décèle dès leur introduction.

Profiling
Le profiling permet de repérer rapidement les portions de code les plus lentes pour
les modifier. D’autres anomalies peuvent être décelées par les profilers, à savoir :

Bonnes pratiques et optimisation du code
CHAPITRE 13

433

• Des erreurs logiques : certaines fonctions s’exécutent un nombre anormal de fois,
pas assez ou trop souvent.

• Des bottlenecks restés inaperçus : une fonction a priori anodine apparaît comme
une source de ralentissements importants, soit par sa lenteur, soit par un nombre
énorme d’appels.

• Des erreurs de conception : les statistiques remontées par le profiler offrent une
vision particulière du programme, et peuvent parfois attirer l’attention sur des
problèmes de conception.

Méthodes de profiling
Il existe plusieurs méthodes pour profiler le code. L’approche la plus courante con-
siste à mesurer le temps passé dans chacune des méthodes et fonctions traversées.
C’est une méthode déterministe qui se base sur les mêmes techniques que le coverage
vu dans le chapitre précédent. On dresse un tableau du code appelé, avec des infor-
mations annexes comme :
• le nombre d’appels ;
• la liste des appelants, c’est-à-dire les fonctions qui utilisent le code en cours ;
• la liste des appelés, c’est-à-dire les fonctions appelées par le code en cours.

Une autre méthode beaucoup plus abstraite et moins facile à mettre en œuvre, con-
siste à récupérer des échantillons aléatoires d’instructions exécutées et à en déduire où
l’interpréteur passe le plus de temps.

Nous l’avons vu pour le coverage, Python fournit tous les points d’entrée nécessaires
pour mettre en place facilement une solution déterministe. C’est cette approche qui
est implémentée par plusieurs modules de la bibliothèque standard. L’utilisation d’un
tel outillage allonge les temps d’exécution, mais ne remet généralement pas en cause
l’interprétation des résultats, car ce ralentissement est ridicule par rapport à la durée
d’exécution de n’importe quelle fonction.

Outils de profiling
Il existe différents outils de profiling dans la bibliothèque standard. Le plus connu est
profile.

Le module profile
profile peut être directement utilisé en ligne de commande pour tester un pro-
gramme Python.

Techniques avancées
QUATRIÈME PARTIE

434

Utilisation de profile

Le module hotshot
Un nouveau module plus rapide et complet a été introduit à la version 2.2 : hotshot.

Les fonctionnalités de hotshot sont similaires au module profile, mais réduisent
l’impact sur les performances introduites par l’outillage mis en place pour le
profiling : le code est majoritairement écrit en C.

hotshot définit une unique classe Profile, permettant de créer des instances de pro-
filer, ainsi qu’une fonction hotshot.stats.load(logfile), qui permet de charger et
renvoyer les résultats du profiler dans un objet de type Stats, du module pstats.

class Profile(logfile[, lineevents[, linetimings]])

Créer une instance de profiler se fait en fournissant un nom de fichier logfile, uti-
lisé pour stocker les données récoltées par le profiling.

lineevents détermine la granularité du profiler, à savoir si seuls les appels de
méthodes ou fonctions sont enregistrées (0 ou non défini) ou si toutes les lignes de
code sont observées (1).

$ python -m "profile" --help
Usage: profile.py [-o output_file_path] [-s sort] scriptfile [arg] ...

Options:
 -h, --help show this help message and exit
 -o OUTFILE, --outfile=OUTFILE
 Save stats to <outfile>
 -s SORT, --sort=SORT Sort order when printing to stdout, based on
 pstats.Stats class

$ python -m "profile" -s time
listbench.py
 155 function calls in 30.830 CPU seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 16.760 16.760 17.120 17.120 listbench.py:19(fonc2)
 1 11.160 11.160 13.000 13.000 listbench.py:14(fonc1)
 3 1.250 0.417 1.250 0.417 :0(range)
 2 1.030 0.515 1.030 0.515 :0(join)
 1 0.590 0.590 30.810 30.810 listbench.py:2(?)
 2 0.020 0.010 30.140 15.070 listbench.py:7(duree)
 1 0.020 0.020 0.020 0.020 :0(setprofile)
 [...]

Bonnes pratiques et optimisation du code
CHAPITRE 13

435

linetimings, à défaut à 1, détermine si les informations de temps sont enregistrées
pendant le travail de profiling.

Une fois l’objet créé, il fournit un certain nombre de méthodes décrites ci-dessous :

start()

Lance le profiler.

stop()

Stoppe le profiler.

close()

Ferme le fichier de log et termine le profiler.

run(cmd)

Lance le profiling du code cmd. cmd est une chaîne de caractères qui représente du
code Python exécutable. L’environnement d’exécution est défini par les variables glo-
bales de __main__.

runcall(func, *args, **keywords)

Appelle la fonction ou méthode func, avec des arguments si nécessaire. Le résultat
de l’exécution est renvoyé et les éventuelles erreurs levées remontent comme si le
code avait été appelé directement.

runctx(cmd, globals, locals)

Équivalente à run(), avec la possibilité de fournir un environnement d’exécution par-
ticulier.

fileno()

Renvoie le numéro de descripteur du fichier de log.

Le module cProfile
cProfile est un module équivalent à profile, mais plus rapide car codé partielle-
ment en C. Il s’utilise de la même manière.

Utilisation de cProfile

$ python -m "cProfile" --help
Usage: cProfile.py [-o output_file_path] [-s sort] scriptfile [arg] ...

Techniques avancées
QUATRIÈME PARTIE

436

Le module pstats
Chaque profiler génère ses résultats et les écrit dans un fichier, dans un format
binaire, lisible par les objets Stats du module pstats. L’affichage des résultats d’un
profiling doivent donc se faire par ce biais.

Les méthodes les plus importantes de la classe Stats sont :

print_stats([restriction, ...])

Cette méthode permet d’afficher les données de profiling. restriction représente
un certain nombre de paramètres optionnels qui permettent de filtrer la liste affichée.

Chaque paramètre peut être sous la forme :
• d’un objet string : représente une expression régulière qui permet de filtrer les

lignes en fonction de chaque nom de module affiché en début de ligne ;
• d’un entier : définit le nombre de lignes maximum à afficher ;
• d’un nombre réel compris entre 0.0 et 1.0 : définit le pourcentage de la liste à

afficher.

La classe filtre la liste en appliquant les filtres un à un.

print_callers([restriction, ...])

Permet de lister l’ensemble des fonctions appelantes du log de profiling. Chaque
fonction appelée est placée entre parenthèses. Peut être filtrée comme print_stats.

print_callees([restriction, ...])

Permet de lister l’ensemble des fonctions appelées du log de profiling. Chaque fonction à
l’origine de l’appel est placée entre parenthèses. Peut être filtrée comme print_stats.

sort_stats(key[, ...])

Permet de trier la liste en fonction du paramètre key. key est une chaîne à prendre
dans la liste suivante :
• calls : nombre d’appels (tri décroissant) ;
• cumulative : temps cumulé (tri décroissant) ;
• file : nom du fichier source (tri alphabétique) ;

Options:
 -h, --help show this help message and exit
 -o OUTFILE, --outfile=OUTFILE
 Save stats to <outfile>
 -s SORT, --sort=SORT Sort order when printing to stdout, based on
 pstats.Stats class

Bonnes pratiques et optimisation du code
CHAPITRE 13

437

• module : nom du module (tri alphabétique) ;
• pcalls : nombre d’appels primitifs (tri décroissant) ;
• line : numéro de ligne (tri décroissant) ;
• name : nom de la fonction (tri alphabétique) ;
• nfl : nom, fichier, ligne (tri alphabétique) ;
• stdname : nom standard (tri alphabétique) ;
• time : temps interne d’exécution (tri décroissant).

Plusieurs clés peuvent être fournies pour composer un tri multicritère. La méthode
reverse_order() permet également d’inverser le tri obtenu, sachant que les tris
appliqués par sort_stats() permettent de placer vers le haut de la liste les appels les
plus coûteux.

hotshot et pstats
Les deux modules présentés fournissent un outil complet de profiling. L’exemple ci-
dessous affiche la liste des méthodes appelées par le profiler, triées par nombre d’appels.

profiling.py

#!/usr/bin/python
-*- coding: utf8 -*-
import hotshot
import hotshot.stats

def methode1(chaine):
 return reversed(chaine)

def methode2(chaine):
 if len(chaine) % 2:
 return methode1(chaine)
 else:
 return chaine

def methode3(chaine):
 ch = []
 for i in range(3):
 ch.extend(methode2(chaine))
 return ''.join(ch)

def methode4():
 o = ''
 for i in range(5000):
 o += methode3(str(i))
 return methode1(o)

Techniques avancées
QUATRIÈME PARTIE

438

timeit
hotshot peut être lourd à mettre en place lorsqu’il s’agit de mesurer rapidement les
performances d’une seule fonction indépendante ou d’une séquence de code extraite.

Le module timeit, introduit à la version 2.3, répond à ce besoin en fournissant un
outil léger, beaucoup plus simple à mettre en œuvre.

timeit fournit une classe Timer, qui prend en paramètre l’expression à mesurer, et
fournit une méthode d’exécution.

class Timer([stmt='pass' [, setup='pass' [, timer=<timer function>]]])

stmt est l’expression à mesurer, setup une éventuelle deuxième expression, qui sera exé-
cutée avant stmt. Comme Timer désactive le garbage collector pour essayer de mini-
miser les différences introduites par la gestion de la mémoire qui dépend d’éléments
contenus en dehors des tests, setup peut être utilisé pour le réactiver ('gc.enable()'),
et ceci pour obtenir un test plus réaliste lorsque le code testé parcourt plusieurs niveaux.
Le temps pris par le garbage collector n’est pas négligeable dans ces cas là.

Enfin, time est une fonction qui peut être fournie pour mesurer les temps. La fonction
interne utilisée par défaut se base sur la fonction système time.clock() pour MS-
Windows et time.time() sous Unix, pour obtenir la même précision de 1/100e de

profiler = hotshot.Profile("statistiques.prf")
profiler.runcall(methode4)
profiler.close()

stats = hotshot.stats.load("statistiques.prf")

trie suivant le nombre d'appels
stats.sort_stats('calls')
stats.print_stats()

[...]

$ python profiling.py
 22732 function calls in 0.142 CPU seconds

 Ordered by: call count

 ncalls tottime percall cumtime percall filename:lineno(function)
 15000 0.046 0.000 0.059 0.000 profiling.py:10(methode2)
 5000 0.058 0.000 0.117 0.000 profiling.py:16(methode3)
 2731 0.014 0.000 0.014 0.000 profiling.py:7(methode1)
 1 0.024 0.024 0.142 0.142 profiling.py:22(methode4)
 0 0.000 0.000 profile:0(profiler)

Bonnes pratiques et optimisation du code
CHAPITRE 13

439

seconde sur les deux plates-formes. (time.time() atteint 1/60e de seconde sous
MS-Windows).

De plus, les temps renvoyés dans ce cas ne sont pas les temps de consommation CPU
mais les temps relatifs. Cela signifie que certaines variations peuvent être observées
lorsque d’autres processus sont actifs sur la machine de tests.

Pour obtenir un temps le plus proche de la réalité, il est judicieux d’exécuter trois fois
de suite la mesure par repeat() et récupérer le meilleur temps des trois.

timeit([number=1000000])

Exécute l’expression setup puis l’expression stmt fournies à la construction de l’ins-
tance. Si number est fourni, il détermine le nombre d’exécutions de stmt. Comme
timeit est orienté code patterns, c’est-à-dire qu’il est en général employé pour opti-
miser de très courtes séquences de code, number est à défaut à un million.

La méthode renvoie le temps d’exécution.

repeat([repeat=3 [, number=1000000]])

Méthode complémentaire, qui permet d’appeler timeit()repeat fois, en lui passant
si fourni, le paramètre number.

Dans l’exemple ci-dessous, timeit est utilisée pour comparer deux algorithmes qui
ont le même objectif.

Comparaison

#!/usr/bin/python
-*- coding: utf8 -*-
def algo1():
 chaine = ''
 for i in range(100000):
 chaine += '*'
 return chaine

def algo2():
 chaine = []
 for i in range(100000):
 chaine.append('*')
 return ''.join(chaine)

if __name__=='__main__':
 from timeit import Timer

 t = Timer('algo1()', 'from __main__ import algo1')
 print 'exécution algo 1: %f' % t.timeit(10)

Techniques avancées
QUATRIÈME PARTIE

440

Elle permet de constater les différences entre les deux options, et aussi pour ce cas
précis, l’évolution interne de la gestion des chaînes entre Python 2.3 et 2.4.

Exemple d’optimisations entre Pyhton 2.3 et Python 2.4

Amélioration des performances
Une fois le problème repéré par le profiler, plusieurs techniques existent pour réduire
le temps d’exécution.

La plupart du temps une légère modification du code suffit à régler le problème. Si la
solution à appliquer n’est pas flagrante, il peut être nécessaire de rechercher un code
de remplacement dans la liste des code patterns fournis ci-dessous.

Ces code patterns, ou portions de codes, sont des techniques éprouvées pour effec-
tuer un travail précis, le plus rapidement possible.

Python est un langage basé sur le langage C : chaque séquence de code résulte en une
série d’appels à des primitives de bas niveau codées en C.

Certaines fonctions sont des liens directs vers des primitives C et d’autres doivent
traverser des couches plus épaisses d’appels de code Python.

Favoriser l’usage de fonctions proches du C augmente donc de manière très impor-
tante les performances.

Si ces modifications ne permettent pas de résoudre le problème, d’autres voies sont
possibles :
• Le caching, qui consiste à conserver en mémoire les résultats d’un calcul coûteux,

pour pouvoir les resservir en cas de besoin.
• Le multithreading, qui permet d’exécuter du code en tâche de fond.
• La programmation en C d’une extension du langage.
• L’utilisation de bibliothèques de calcul spécialisées.
• L’utilisation d’outils de programmation comme Cython.

 t = Timer('algo2()', 'from __main__ import algo2')
 print 'exécution algo 2: %f' % t.timeit(10)

$ python2.3 timing.py
exécution algo 1: 14.064436
exécution algo 2: 0.703696

$ python2.4 timing.py
exécution algo 1: 0.314968
exécution algo 2: 0.482306

Bonnes pratiques et optimisation du code
CHAPITRE 13

441

Code patterns
La distinction n’étant pas toujours faite dans la littérature informatique, il est impor-
tant de préciser ici que les code patterns sont à différencier des design patterns : ils
s’apparentent plus à des petites séquences de code souvent utilisées pour répondre à
des besoins communs comme la concaténation de chaînes, le tri d’éléments, ou les
bonnes habitudes à prendre lorsque l’on manipule certains objets.

Les design patterns, présentés au prochain chapitre, concernent des éléments de code de
plus haut niveau comme des classes ou des groupes de classes, et répondent à un besoin
plus spécifique de conception, comme les générateurs d’objets, les médiateurs, etc.

Voici une liste non exhaustive de code patterns éprouvés, pouvant être réutilisés pour
les meilleures performances possibles.

Quel type de conteneur choisir ?
Lorsque des éléments doivent être regroupés dans un conteneur, plusieurs choix sont
possibles :
• Le type list offre de nombreuses fonctionnalités pour la gestion d’éléments hété-

rogènes ordonnés.
• Le type set offre un conteneur performant à condition que les éléments soient

uniques.
• Le type tuple permet de créer des séquences non modifiables, et prend moins de

place en mémoire.
• Le dictionnaire est à préférer aux séquences lorsque l’ordre des éléments regrou-

pés n’a pas d’importance. La clé peut contenir un identifiant unique, susceptible
d’être utilisé dans des recherches sur les éléments.

• Le type array est plus rapide pour des séquences d’éléments simples homogènes.

Trier des valeurs
Le tri en Python s’effectue en utilisant des objets de type list, qui disposent d’une
méthode sort(). Cette méthode trie les valeurs de la liste en les comparant et
effectue son travail inplace, c’est-à-dire en appliquant les modifications directement à
l’objet sans en renvoyer un nouveau. Ce tri est de type quicksort et implémenté en C,
donc très rapide.

À SAVOIR Remplacer le type Array

Il existe des bibliothèques tierces spécialisées qui remplacent avantageusement Array (présentées en
annexe B).

Techniques avancées
QUATRIÈME PARTIE

442

Tri simple

Le tri par défaut est croissant, mais une fonction peut être passée en paramètre pour
déterminer l’algorithme de comparaison. La fonction reçoit deux éléments de la liste
et doit renvoyer un entier pour déterminer l’ordre de ces deux objets : négative, posi-
tive ou nulle si les objets sont estimés égaux.

Tri paramétré

Cette technique permet en outre, pour des éléments de types plus complexes,
d’affiner la comparaison.

Prenons l’exemple d’une classe A qui contient un attribut titre. Trier les éléments
en fonction de cet attribut peut se faire en modifiant la fonction de comparaison.

Fonction de comparaison de classes de type A

À RETENIR Exemples à suivre

Dans les exemples qui suivent, on considère que la liste est composée uniquement d’éléments du même
type.

>>> liste = [1, 3, 2]
>>> liste.sort()
>>> liste
[1, 2, 3]

>>> liste = [1, 3, 2]
>>> def mon_tri(el1, el2):
... if el1 > el2:
... return -1
... if el2 < el2:
... return 1
... return 0
...
>>> liste.sort(mon_tri)
>>> liste
[3, 2, 1]

>>> def mon_tri(el1, el2):
... if el2.titre < el2.titre:
... return 1
... if el2.titre > el2.titre:
... return -1
... return 0
...

Bonnes pratiques et optimisation du code
CHAPITRE 13

443

Cette solution n’est cependant pas optimale et peut ralentir le code de manière con-
séquente. Pour accélérer les tris d’objets complexes, le code pattern le plus efficace
consiste à utiliser la transformation de schwartzian : utiliser le tri interne de la classe
list, en modifiant la liste pour que chaque élément devienne un tuple, composé de
l’attribut à trier puis de l’élément d’origine.

Cet attribut extrait devient la clé de tri, et permet d’obtenir le même résultat.

Tri par extraction de clé

On peut généraliser le code pattern en proposant une fonction de tri inplace, qui
prend en paramètres la séquence et l’attribut à utiliser.

Code pattern de tri inplace d’objets

>>> class A:
... def __init__(self, title):
... self.title = title
... def __str__(self):
... return 'Film: %s' % self.title
...
>>> A1 = A('Qui veut la peau de mes 64 bits ?')
>>> A2 = A('Ali Baba et les 40 valeurs')
>>> A3 = A('Placer ici un titre de film plus drôle que les précédents')
>>> mes_films = [A1, A2, A3]
>>> tri_mes_films = []
>>> for film in mes_films:
... tri_mes_films.append((film.title, film))
...
>>> tri_mes_films.sort()
>>> films_tries = []
>>> for cle_de_tri, film in tri_mes_films:
... films_tries.append(film)
...
>>> for film in films_tries:
... print str(film)
...
Film: Ali Baba et les 40 valeurs
Film: Placer ici un titre de film plus drôle que les précédents
Film: Qui veut la peau de mes 64 bits ?

>>> def tri_liste(liste, attribut):
... liste[:] = [(getattr(elem, attribut), elem) for elem in liste]
... liste.sort()
... liste[:] = [elem for cle, elem in liste]

Techniques avancées
QUATRIÈME PARTIE

444

La notation liste[:] permet d’affecter des éléments à un objet liste sans avoir à
recréer d’objet, afin d’obtenir un tri inplace.

Ce code pattern, valable pour toutes les versions de Python, peut être adapté pour
trier des séquences entre elles, en fournissant par exemple un entier qui détermine la
position de la valeur à utiliser comme clé de tri.

Concaténer des chaînes
Une opération très fréquente en Python consiste à concaténer des chaînes de carac-
tères. La raison en est relativement simple : les objets de type string étant des
séquences immuables, il est nécessaire de recréer un objet lorsque l’on souhaite modi-
fier des éléments de la chaîne.

La première idée qui vienne à l’esprit lorsque l’on concatène des chaînes est de bou-
cler sur les éléments pour les mettre bout à bout.

Concaténation

Avant la version 2.4 de Python, ce genre d’écriture était catastrophique, car chaque
itération entraînait une création d’un nouvel objet string en mémoire.

Le code pattern le plus communément adopté était d’utiliser un objet liste pour la
préparation des éléments à concaténer, puis d’appeler la méthode join() d’un objet
string vide.

Concaténation par join()

Cette méthode reste valable pour les versions de Python inférieures à la 2.4 mais est à
présent obsolète, voire légèrement plus lente qu’une concaténation classique si une
list comprehension n’est pas utilisée : le code interne de Python a été modifié pour ne
plus créer d’objets intermédiaires lorsque des chaînes sont concaténées.

>>> chaine = ''
>>> for i in range(10):
... chaine += str(i)
...
>>> chaine
'0123456789'

>>> chaine = [str(i) for i in range(10)]
>>> chaine = ''.join(chaine)
>>> chaine
'0123456789'

Bonnes pratiques et optimisation du code
CHAPITRE 13

445

La même remarque est valable pour les chaînes formatées : la technique n’apporte
plus de gain de vitesse. Il est cependant conseillé de conserver l’écriture formatée,
beaucoup plus lisible, voire d’adopter dans certains cas une écriture encore plus expli-
cite, basée sur la substitution des éléments par dictionnaire.

Formatage

Remplacer certains tests par une gestion d’exception
Lorsqu’un test coûteux doit être mis en place dans une boucle pour gérer un cas raris-
sime, il est intéressant lorsque c’est réalisable, de passer la gestion de ce cas en excep-
tion. On évite ainsi un appel systématique au test.

Gestion d’un cas par exception

>>> nom = 'bob'
>>> phrase = 'bonjour ' + nom + ' comment va ?'
>>> phrase
'bonjour bob comment va ?'
>>> phrase = 'bonjour %s comment va ?' % nom# écriture à préférer
>>> phrase
'bonjour bob comment va ?'
>>> elements = {'nom': 'bob'}
>>> phrase = 'bonjour %(nom)s comment va ?' % elements # plus explicite
'bonjour bob comment va ?'

>>> def func1():
... res = 0
... elements = [i for i in range(100000)]
... elements.append(None)
... elements.append('og')
... for element in elements:
... if element isnot None and isinstance(element, int):
... res += element
... return res
...
>>> def func2():
... res = 0
... elements = [i for i in range(100000)]
... elements.append(None)
... elements.append('og')
... for element in elements:
... try:
... res += element
... except TypeError:
... pass
... return res

Techniques avancées
QUATRIÈME PARTIE

446

Minimiser les appels et rapprocher le code
D’un point de vue interpréteur, tout appel à une fonction ou une méthode nécessite
de faire une recherche dans le contexte local et/ou global. Si cette fonction est un
attribut d’un objet du contexte, une recherche dans l’attribut __dict__ de l’objet en
question est de plus nécessaire, et ainsi de suite.

Pour résumer, plus le code est éloigné et éparpillé, plus son accès est coûteux.

Pour les hot spots, c’est-à-dire les portions de code à optimiser d’urgence, minimiser
les accès à du code externe est un exercice très rentable. Une des méthodes consiste à
regrouper des fonctions dans une seule et même fonction, en agrégeant si nécessaire
les données utilisées en un seul ensemble de paramètres.

L’exemple ci-dessous est le plus simple, mais le plus parlant : dans une fonction, une
boucle appelle à chaque itération une autre fonction. On repousse cette boucle dans
la fonction, qui prend alors en charge la séquence d’éléments au lieu de ne travailler
que sur un seul élément. On passe dans ce cas à un seul appel extérieur.

Fédération de code

...
>>> timeit.Timer('func1()', 'from __main__ import func1').timeit(100)
12.883871078491211
>>> timeit.Timer('func2()', 'from __main__ import func2').timeit(100)
7.4781858921051025

>>> import timeit
>>> def version1(element):
... return element.upper()
...
>>> def version2(elements):
... elements[:] = [element.upper() for element in elements]
...
>>> def code_appelant1():
... liste = ['azerty', 'qwerty', 'peu importe']
... for i in range(5):# pour faire une liste + grosse
... liste = liste + liste
... return [version1(phrase) for phrase in liste]
...
>>> def code_appelant2():
... liste = ['azerty', 'qwerty', 'peu importe']
... for i in range(5): # pour faire une liste + grosse
... liste = liste + liste
... version2(liste)
... return liste
...

Bonnes pratiques et optimisation du code
CHAPITRE 13

447

Cette technique a cependant tendance à rendre le code de moins en moins lisible et
de plus en plus difficile à maintenir et faire évoluer, car les fonctions agrégées peu-
vent devenir de gros blocs monolithiques illisibles.

Une autre technique pour minimiser les appels sans modifier les fonctions appelées
consiste à définir des variables locales qui pointent sur chacun des éléments extérieurs.

Variables locales de fonctions

L’écriture est encore une fois beaucoup moins explicite et ce genre de modification
est à utiliser avec parcimonie.

>>> timeit.Timer('code_appelant1()', 'from __main__ import
code_appelant1').timeit(100000)
9.484644889831543
>>> timeit.Timer('code_appelant2()', 'from __main__ import
code_appelant2').timeit(100000)
6.5702319145202637

>>> def func1():
... titres = ['qui veut la peau de mes 64 bits ?',
... 'ali baba et les 40 valeurs',
... 'placer ici un titre de film']
... liste = []
... for titre in titres:
... liste.append(str.title(titre))
... return liste
...
>>> def func2():
... titres = ['qui veut la peau de mes 64 bits ?',
... 'ali baba et les 40 valeurs',
... 'placer ici un titre de film']
... title = str.title
... liste = []
... append = liste.append
... for titre in titres:
... append(title(titre))
... return liste
...
>>> import timeit
>>> o = timeit.Timer('func1()', 'from __main__ import func1')
>>> o.timeit()
7.7832179069519043
>>> o = timeit.Timer('func2()', 'from __main__ import func2')
>>> o.timeit()
6.7249960899353027

Techniques avancées
QUATRIÈME PARTIE

448

Utiliser les list comprehensions
Depuis la version 2.4 de Python, les list comprehensions sont de loin la forme la plus
concise et la plus rapide pour manipuler des séquences.

Comparaison de rapidité

On remarque également que l’utilisation de map() n’est guère plus rapide que la
forme éclatée pour la version 2.4, et devient de plus en plus obsolète.

-*- coding: utf8 -*-
import time

def transformee_classique(liste):
 res = []
 for x in liste:
 res.append(x + 1)
 return res

def transformee_map(liste):
 return map(lambda x: x+1, liste)

def transformee_lc(liste):
 return [x+1 for x in liste]

def duree(fonction, n=10000000):
 debut = time.clock()
 fonction(range(n))
 fin = time.clock()
 return fin - debut

print "Transformée classique: %f" % duree(transformee_classique)
print "Transformée par map(): %f" % duree(transformee_map)
print "Transformée par list-comprehension: %f" % duree(transformee_lc)

[...]

$ python2.4 benchlc.py
Transformée classique: 6.010000
Transformée par map(): 5.340000
Transformée par list-comprehension: 2.600000

$ python2.3 benchlc.py
Transformée classique: 8.580000
Transformée par map(): 6.770000
Transformée par list-comprehension: 6.430000

Bonnes pratiques et optimisation du code
CHAPITRE 13

449

Utiliser les generators et les genexp
Les generators offrent une manière élégante et performante de récupérer les résultats
intermédiaires d’une fonction sans avoir à implémenter un système de callback.

Generator infini, suite de Fibonacci

Cette mécanique peut être mise en place dans tous les algorithmes de génération de
séquences.

Les generators expressions sont quant à eux l’équivalent des list comprehensions
pour les iterators et permettent des gains de mémoire.

Genexp

Préférer les fonctions d’itertools
itertools, module présenté au chapitre 10, implémente des fonctions codées en C
qui permettent de générer très rapidement des iterators pouvant être utilisés pour
remplacer certaines primitives, comme :
• map() ;
• filter() ;
• reduce() ;
• zip().

>>> def fibonacci():
... a, b = 0, 1
... while 1:
... yield b
... a, b = b, a+b
...
>>> fib = fibonacci()
>>> [fib.next() for val in range(10)]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

>>> def gen(sequence):
... for element in sequence:
... yield element + 1
...
>>> genexp = gen([1, 2, 3, 4])
>>> list(genexp)
[2, 3, 4, 5]
>>> # écriture équivalente en genexp
...
>>> genexp = (element + 1 for element in [1, 2, 3, 4])
>>> list(genexp)
[2, 3, 4, 5]

Techniques avancées
QUATRIÈME PARTIE

450

Caching
Lorsqu’une fonction très coûteuse en temps est appelée plusieurs fois, il peut être
intéressant de mettre en place un système de cache, qui conserve les résultats des cal-
culs en mémoire et les ressert en cas de besoin, afin d’éviter de les recalculer.

Cette technique n’est bien sûr applicable qu’aux fonctions dont les résultats restent
invariants en fonction des paramètres d’entrée.

Le module dircache est un bon exemple de caching : pour fournir une liste des
fichiers d’un répertoire donné, le parcours est relativement coûteux, surtout si toute
l’arborescence est demandée.

Le contenu de chaque répertoire parcouru est conservé en mémoire dans un diction-
naire, et resservi à condition que la date de modification du répertoire au moment de
la demande soit identique à celle conservée en mémoire. Dans le cas inverse, le cache
est mis à jour.

Module dircache

Si l’on généralise ce mécanisme, appelé aussi memorizing, on obtient le code pattern
suivant, qui collecte les résultats calculés, en fonction des paramètres, en fabriquant
une clé unique pour chaque combinaison.

cache = {}

def reset():
 """Reset the cache completely."""
 global cache
 cache = {}

def listdir(path):
 """List directory contents, using cache."""
 try:
 cached_mtime, list = cache[path]
 del cache[path]
 except KeyError:
 cached_mtime, list = -1, []
 mtime = os.stat(path).st_mtime
 if mtime != cached_mtime:
 list = os.listdir(path)
 list.sort()
 cache[path] = mtime, list
 return list

Bonnes pratiques et optimisation du code
CHAPITRE 13

451

Fonction avec cache

Il est possible de rendre ce fonctionnement totalement générique en concevant un
decorator, applicable à toute fonction puisqu’il externalise le mécanisme de caching.

decorator memoize

Cette mécanique ne reste efficace que si le nombre de combinaisons de paramètres
en entrée reste relativement faible et si les résultats de la fonction ne dépendent pas
d’autres facteurs externes.

import md5

cache = {}

def calcul_savant(*args):
 key = str(args)
 try:
 res = cache[key]
 except KeyError:
 res = md5.md5().hexdigest()
 cache[key] = res
 return res

#!/usr/bin/python
-*- coding: utf8 -*-
import md5

def memoize(func):
 cache = {}
 def call(*args):
 try:
 return cache[args]
 except KeyError:
 res = func(*args)
 cache[args] = res
 return res
 except TypeError:
 # paramètre unashable
 return func(*args)
 call.func_name = func.func_name
 return call

@memoize
def calcul_savant(*args):
 key = str(args)
 return md5.md5(key).hexdigest()

Techniques avancées
QUATRIÈME PARTIE

452

De plus, si les résultats renvoyés sont des éléments prenant une certaine place en
mémoire, il faut s’assurer que le mécanisme de caching, qui se charge d’écrire mais
aussi de récupérer les valeurs, ne coûte pas plus cher que le calcul lui-même.

Enfin, si la mémoire occupée par le cache devient trop importante, et si les condi-
tions le permettent, il peut être intéressant d’externaliser le stockage du cache vers un
serveur spécialisé dans la gestion de cache mémoire distribué.

Le serveur Open Source memcached (http://www.danga.com/memcached/) répond rela-
tivement bien à ce besoin.

Multithreading
Le multithreading consiste à détacher l’exécution d’une tâche de l’exécution principale
lorsque la suite immédiate du programme n’est pas dépendante des résultats. La tâche
est exécutée dans un nouveau thread et le programme devient le thread principal.

Cette situation se rencontre :
• Dans les applications interactives, lorsqu’une commande lance une tâche et ren-

voie la main immédiatement à l’utilisateur, qui peut continuer à utiliser le pro-
gramme en attendant les résultats.

• Dans les programmes de type serveur, où chaque demande client est gérée dans
un nouveau thread. Par exemple, un serveur FTP détache une session avec un
client dans un thread afin de rester disponible pour d’autres demandes.

• Dans les applications où l’on souhaite découpler la production et l’utilisation de
données, ces données pouvant être produites par une source externe non maîtrisée.
C’est le cas par exemple de programmes de téléchargement comme BitTorrent.

• etc.

Ressources partagées : difficultés de programmation
Les threads partagent le même espace mémoire, il est donc nécessaire de prendre des
précautions lorsqu’ils utilisent les mêmes éléments.

CULTURE Quelques définitions courtes

Un thread est associé par le système à un unique processus, qui représente le programme en cours d’exé-
cution en mémoire. Il peut exécuter du code comme un processus.
Un processus peut posséder un nombre indéfini de threads. Un thread est différent d’un processus, car il
partage, avec tous les threads issus du même processus, le même espace mémoire. On parle de ressour-
ces partagées.

Bonnes pratiques et optimisation du code
CHAPITRE 13

453

En effet, si un thread modifie une ressource, il doit en protéger l’accès par d’autres
threads jusqu’à la fin de son travail. Ces points de synchronisation ou sections critiques
évitent des effets de bords non maîtrisés en garantissant l’intégrité des ressources.

D’un point de vue développement, le travail consiste à rendre le code thread-safe,
c’est-à-dire à protéger toutes les parcelles de code qui modifient des données pouvant
être lues et utilisées par d’autres parcelles de code, en utilisant des lockers, véritables
verrous programmatiques.

La séquence protégée est donc :
1 lock : enclenchement du verrou ;
2 travail : code protégé ;
3 unlock : libération du verrou.

Lorsqu’un thread A atteint l’étape 1, il verrouille les ressources auxquelles il va
accéder et s’assure ainsi que l’étape 2 ne peut pas être exécutée par un autre thread en
même temps.

À la fin du travail, le thread A déverrouille les ressources. Si un deuxième thread B
atteint l’étape 1 pendant que le thread A est encore dans l’étape 2, il est bloqué et doit
attendre que le verrou soit libéré avant de pouvoir à son tour verrouiller les ressources.

Cette technique paraît relativement simple de prime abord mais entraîne des diffi-
cultés de programmation :
• Si le thread A (ou tout autre thread si cette étape est déléguée) ne passe jamais par

l’étape 3, par une exception mal gérée par exemple, le thread B reste bloqué à tout
jamais. On parle dans ce cas d’un deadlock.

• Si le thread A, dans le code protégé, verrouille à nouveau les ressources, il se blo-
que lui-même par deux appels successifs à lock.

Le deuxième cas peut être géré grâce à des verrous particuliers : les locks réentrants,
qui ne bloquent pas un thread qui tente de verrouiller à nouveau les mêmes res-
sources. Le déverrouillage doit cependant être fait par ce même thread.

Le premier problème reste entier et nécessite de bien contrôler le code protégé.

En termes de performances, il est aussi important de ne protéger que le strict néces-
saire pour éviter des latences dues à des verrous sur des portions de code trop larges.

Une dernière technique de coordination consiste à faire communiquer les threads
entre eux pour qu’ils puissent travailler de manière concertée.

Typiquement, un thread attend qu’un signal soit émis pour commencer ou continuer
son travail, ce signal étant émit par un autre thread.

Techniques avancées
QUATRIÈME PARTIE

454

Le module threading
Python fournit un module de haut niveau nommé threading, qui masque toute la
complexité de mise en œuvre des threads pour fournir :
• une classe Thread pour exécuter du code dans un nouveau thread ;
• des utilitaires de protection des ressources partagées ;
• une classe Event qui permet aux threads de communiquer entre eux.

La classe Thread permet d’exécuter du code dans un nouveau thread, en passant une
fonction ou une méthode à la construction de l’instance, ou en dérivant la classe pour
implémenter le code de la méthode run(). C’est cette méthode qui est exécutée dans
un thread séparé.

class Thread(group=None, target=None, name=None, args=(), kwargs={})

Le paramètre group n’a aucune utilité actuellement et a été introduit pour une future
implémentation des groupes de threads. target définit une fonction ou méthode qui
est appelée par la méthode run(). name détermine le nom du thread, qui peut être
ensuite lu par la méthode getname(). Ce nom n’a pas d’utilité fonctionnelle mais
peut permettre dans certains cas de différencier simplement plusieurs threads. Enfin,
args et kwargs sont les paramètres passés à target si nécessaire.

start()

Appelée une seule fois, start() permet de lancer un nouveau thread et d’y exécuter
la méthode run().

run()

Méthode exécutée dans le thread. Si target a été fourni, run() l’exécute. Dans le cas
inverse, cette méthode peut être surchargée pour contenir directement le code à exécuter.

Le thread est alive dès que cette méthode est appelée. Lorsque run() est terminé,
soit par la fin de l’exécution, soit par une levée d’exception, le thread est dead.

join([timeout])

Attend que le thread se termine. Cette méthode peut être appelée par un autre
thread qui se met alors en attente de la fin d’exécution du thread. Si timeout est
fourni, c’est un réel qui détermine en secondes le temps d’attente maximum. Passé ce
délai, le thread mis en attente est débloqué.

isAlive()

Informe sur l’état du thread. Renvoie True si la méthode run() est en cours d’exécution.

Bonnes pratiques et optimisation du code
CHAPITRE 13

455

L’exemple ci-dessous exécute une fonction dans un thread séparé et laisse le thread
principal libre. Ce dernier en l’occurrence attend que le thread annexe s’achève, en
affichant des caractères sur la sortie standard.

Exemple 1

#!/usr/bin/python
-*- coding: utf8 -*-
from threading import Thread
from time import sleep
from sys import stdout

def visiteur():
 print("C'est André, je monte !")
 sleep(5)
 print('\ntoc toc toc')

if __name__ == '__main__':
 print("Drrrrrrring")
 sleep(1)
 print('Oui ?')
 sleep(1)
 thread = Thread(target=visiteur)
 thread.start()
 sleep(1)
 print('OK, dépêche toi')

 i = 0
 while thread.isAlive():
 if i == 0:
 stdout.write('z')
 i = 1
 else:
 stdout.write('Z')
 i = 0

 stdout.flush()
 sleep(0.4)

 print("Ah, te voilà ! J'ai bien failli attendre !")

[...]

$ python threaded.py
Drrrrrrring
Oui ?
C'est André, je monte !

Techniques avancées
QUATRIÈME PARTIE

456

Lorsque le code est plus complexe qu’une simple fonction, il peut être judicieux de le
regrouper dans une classe dérivée de Thread et de surcharger run() et si nécessaire
__init__().

Dans le cas d’un nouveau constructeur, le constructeur original doit absolument être
appelé afin d’assurer l’initialisation de la mécanique interne.

Exemple 2

OK, dépêche toi
zZzZzZzZzZz
toc toc toc
Ah, te voilà ! J'ai bien failli attendre !

#!/usr/bin/python
-*- coding: utf8 -*-
from threading import Thread
from time import sleep
from sys import stdout

class Ingenieur(Thread):

 def __init__(self, resultats):
 Thread.__init__(self)
 self._resultats = resultats

 def run(self):
 """ calcul relativement complexe """
 sleep(5)
 self._resultats.extend(['je', 'sais', 'pas'])

if __name__ == '__main__':
 resultats = []
 bob = Ingenieur(resultats)
 bob.start()
 print('Bob est en train de faire les calculs')

 for i in reversed(range(5)):
 stdout.write('%s '% str(i))
 stdout.flush()
 sleep(1)
 bob.join()
 print('\nvoici Bob')
 print('Bob: %s' % ' '.join(resultats))

[...]

$ python threaded.py

Bonnes pratiques et optimisation du code
CHAPITRE 13

457

Lorsque plusieurs threads se partagent des ressources, il est nécessaire de protéger le
code par des points de synchronisation. Le module thread fournit des fonctions de
création de verrous, encapsulées par deux objets de threading : Lock et Rlock.

class Lock()

Crée une nouvelle primitive de synchronisation. Deux méthodes sont ensuite
accessibles : acquire() et release().

acquire([blocking=1])

Acquiert le verrou et renvoie True en cas de succès. Si blocking est à 1 ou n’est pas
spécifié, l’appel de cette méthode bloque le thread si le verrou est déjà locké par un
autre thread. Si blocking est à 0, acquire() se contente de renvoyer False pour
signaler que le verrou est déjà pris.

release()

Libère le verrou, autorisant d’autres threads à le reprendre. Si plusieurs threads sont
en attente de ce verrou, un seul thread est autorisé à l’acquérir. Appeler cette
méthode sur un verrou qui n’est pas fermé lève une exception.

La classe Rlock est identique mais permet au thread qui a le verrou de rappeler la
méthode acquire() sans provoquer de deadlock. Cette variation simplifie grande-
ment la conception du code, surtout lorsque des fonctions récursives entrent en jeu.
Rlock est un lock réentrant.

L’exemple ci-dessous définit une liste globale manipulée par plusieurs instances du
thread Manipe. La suppression et l’ajout d’éléments dans la liste doivent se faire de
manière protégée.

Un verrou est donc associé à la liste et le code du thread l’utilise pour protéger la
modification de la liste. Un bloc try..finally permet de s’assurer que le verrou est
toujours libéré.

Implémentation d’une section critique

Bob est en train de faire les calculs
4 3 2 1 0
voici Bob
Bob: je sais pas

#!/usr/bin/python
-*- coding: utf8 -*-
from threading import Thread, Lock
from time import sleep
from sys import stdout

Techniques avancées
QUATRIÈME PARTIE

458

Si la gestion du verrou est mise en commentaire et le code relancé, l’exécution se
passe très mal, car chaque thread manipule la liste en partant du postulat qu’elle con-
tient l’élément a. Cet élément pouvant être supprimé par un autre thread, des erreurs
apparaissent.

threads = []
locker = Lock()

liste = ['a', 'b', 'c']

class Manipe(Thread):

 def _manip(self):
 for i in range(5):
 locker.acquire()
 try:
 liste.remove('a')
 sleep(0.1)
 liste.insert(0, 'a')
 finally:
 locker.release()

 def run(self):
 threads.append(id(self))
 try:
 self._manip()
 finally:
 threads.remove(id(self))

if __name__ == '__main__':
 for i in range(10):
 Manipe().start()

 sleep(0.5)

 while len(threads) > 0:
 stdout.write('.')
 stdout.flush()
 sleep(0.1)

 stdout.write('\n')

[...]

$ python threaded.py
..

Bonnes pratiques et optimisation du code
CHAPITRE 13

459

Retrait du verrou

Outre les sections critiques, il existe un autre mécanisme qui permet de coordonner
le travail de plusieurs threads : les événements définis par des objets de type Event.

class Event()

Renvoie une instance de type Event, qui peut être considérée comme un drapeau.
Cette classe fournit des méthodes pour déterminer l’état du drapeau. Les threads
peuvent manipuler ces objets pour se coordonner. L’état interne du drapeau est à
False lorsque l’objet est instancié.

[...]
 def _manip(self):
 for i in range(5):
 #locker.acquire()
 try:
 liste.remove('a')
 sleep(0.1)
 liste.insert(0, 'a')
 finally:

 pass
 #locker.release()

[...]

$ python threaded.py
Exception in thread Thread-2:
Traceback (most recent call last):
 File "/usr/lib/python2.4/threading.py", line 442, in __bootstrap
 self.run()
 File "threaded.py", line 28, in run
 self._manip()
 File "threaded.py", line 18, in _manip
 liste.remove('a')
ValueError: list.remove(x): x notin list

Exception in thread Thread-3:
Traceback (most recent call last):
 File "/usr/lib/python2.4/threading.py", line 442, in __bootstrap
 self.run()
 File "threaded.py", line 28, in run
 self._manip()
 File "threaded.py", line 18, in _manip
 liste.remove('a')
[...]

Techniques avancées
QUATRIÈME PARTIE

460

isSet()

Renvoie l’état du drapeau.

set()

Passe le drapeau à True. Tous les threads en attente de l’événement sont débloqués.

clear()

Passe le drapeau à False. Tous les threads qui attendent l’évènement seront bloqués.

wait([timeout])

Permet d’attendre l’événement. Si le drapeau est à True, renvoie la main immédiate-
ment.

timeout permet de spécifier un temps en secondes après lequel le thread en attente
est débloqué même si l’événement n’a pas eu lieu. Lorsqu’il n’est pas spécifié, le
thread est bloqué indéfiniment.

La classe Event permet de mettre en œuvre des schémas complexes d’interactions de
threads, où chaque intervenant se réveille sur un événement particulier, exécute du
code et provoque à son tour un événement, avant de se terminer, ou d’attendre à
nouveau un événement.

L’exemple ci-dessous imite une course de relais 4 × 100 mètres où chaque athlète est
représenté par un thread. L’athlète se met à courir lorsque le précédent a terminé sa
distance. Cet événement est représenté par trois objets 100_metres, 200_metres,
300_metres.

Tous les threads sont lancés au début du programme, mais les 3 derniers attendent
leurs événements respectifs pour déclencher leurs courses.

Course 4 x 100 mètres

#!/usr/bin/python
-*- coding: utf8 -*-
from threading import Thread, Event
from time import sleep
from sys import stdout

_100_metres = Event()
_200_metres = Event()
_300_metres = Event()

class Coureur1(Thread):
 def run(self):
 for i in range(10):

Bonnes pratiques et optimisation du code
CHAPITRE 13

461

Les événements et les threads permettent de modéliser des problèmes complexes
d’interaction.

 stdout.write('.')
 stdout.flush()
 sleep(0.2)
 stdout.write('100M')
 _100_metres.set()

class Coureur2(Thread):
 def run(self):
 _100_metres.wait()
 for i in range(10):
 stdout.write('.')
 stdout.flush()
 sleep(0.2)
 stdout.write('200M')
 _200_metres.set()

class Coureur3(Thread):
 def run(self):
 _200_metres.wait()
 for i in range(10):
 stdout.write('.')
 stdout.flush()
 sleep(0.2)
 stdout.write('300M')
 _300_metres.set()

class Coureur4(Thread):
 def run(self):
 _300_metres.wait()
 for i in range(10):
 stdout.write('.')
 stdout.flush()
 sleep(0.2)
 print('400M')

if __name__ == '__main__':
 c4 = Coureur4()
 c4.start()
 Coureur3().start()
 Coureur2().start()
 Coureur1().start()
 # attente du dernier coureur
 c4.join()

Techniques avancées
QUATRIÈME PARTIE

462

Un cas récurrent, et beaucoup plus simple, d’échanges entre threads est présenté dans
la section suivante, mais avant d’aller la lire, merci de laisser nos coureurs faire leur
course, ils attendent depuis quelque temps...

La course, enfin

Le module Queue
Ce module implémente une queue FIFO (first in first out) dans laquelle des données
peuvent êtres ajoutées et récupérées. First in first out signifie que la première donnée
ajoutée est la première récupérée, à l’image d’un tuyau, en opposition aux piles LIFO
(last in first out) où le dernier élément ajouté est le premier à être servi, à l’image
d’une pile de dossiers.

Cette classe convient bien à l’échange de données entre threads car elle est
thread-safe. Les threads qui remplissent la pile sont nommés Producteurs et ceux qui
récupèrent les données Consommateurs.

class Queue(maxsize)

Un objet Queue doit être construit avec le paramètre maxsize qui détermine la taille
de la pile. Lorsque la pile est pleine, il n’est plus possible d’y ajouter des éléments. Si
maxsize est à 0 ou négatif, la pile est de taille infinie.

put(item[, block[, timeout]])

Ajoute l’élément item dans la pile. L’appel à cette méthode devient bloquant lorsque
la pile est pleine : put() rend alors la main dès que l’élément a pu être ajouté. block
peut être défini à False. Dans ce cas si la pile est pleine, put() lève une exception de
type Full.

put_nowait(item)

Raccourci pour la notation put(item, block=False).

get([block[, timeout]])

Renvoie le premier élément inséré et l’enlève de la pile. block, à défaut à True, met
en attente le code si la pile est vide, avec un timeout en secondes optionnel. Si block
est forcé à False, et si la pile est vide, une exception Empty est levée.

get_nowait()

Raccourci pour la notation get(block=False).

[tziade@Tarek Documents]$ python course.py
..........100M..........200M..........300M..........400M

Bonnes pratiques et optimisation du code
CHAPITRE 13

463

qsize()

Renvoie la taille actuelle de la pile.

empty()

Renvoie True si la pile est vide.

full()

Renvoie True si la pile est pleine.

Classiquement, un objet Queue est utilisé lorsque le Producteur de données n’est pas maî-
trisé et que le programme doit se mettre en attente de ces données pour pouvoir lancer un
traitement. Un exemple complet est implémenté dans l’exercice 8 du chapitre 11.

Le Global Interpreter Lock et multiprocessing
Le code même de l’interpréteur Python n’est pas thread-safe et un lock général existe
pour empêcher plusieurs threads de modifier des registres en même temps. Il s’agit
du Global Interpreter Lock, ou GIL.

À cause du GIL, les threads ne sont pas réellement capables de fonctionner totale-
ment en parallèle, sauf lorsqu’ils utilisent du code C ou qu’ils appellent des pro-
grammes externes.

Les performances de la programmation par threads en Python sont donc très limi-
tées, et les programmes ne sauront pas tirer parti d’une architecture multi-processus.
Cette limitation se ressent par exemple dans les serveurs d’applications codés en
Python qui tournent sur un serveur multi-processeur : ils utilisent 100 % d’un pro-
cesseur à forte charge et ne tirent pas partie du deuxième. Malgré les différents tra-
vaux de membres de la communauté pour supprimer le GIL, l’implémentation
actuelle de CPython ne changera pas car une récriture importante est à envisager.

La solution la plus simple pour contourner ce problème est d’utiliser des processus au
lieu de threads. C’est ce qu’offre le module multiprocessing. Ce module, introduit
dans Python 2.6, mais également backporté dans Python 2.4 et 2.5, permet de mani-
puler des processus avec des fonctions et des classes similaires.

La méthode la plus souple consiste à utiliser la classe Pool fournie par le module pour
y placer des travaux indépendants à réaliser. multiprocessing gère alors la création
des processus, leur gestion et la récupération des résultats de manière totalement
transparente.

Techniques avancées
QUATRIÈME PARTIE

464

Utilisation de multiprocessing.Pool

Dans l’exemple ci-dessus, un appel à async(10) est effectué dans un nouveau pro-
cessus par un appel à apply_async. Le résultat qu’il retourne est un objet intermé-
diaire de type ApplyAsync. Cet objet possède une méthode get qui se met en attente
du résultat et le renvoie. Le paramètre timeout permet de rendre la main si le pro-
cessus n’a pas fini au bout de 5 secondes.

Le côté obscur de la force : extension du langage
Caching, threading, rien n’y fait, aucune de ces méthodes ne permet de rendre le
code suffisamment rapide. Les performances ne sont tout simplement pas au
rendez-vous. Il reste une (presque) dernière alternative pour optimiser le code : coder
une extension à Python dans un autre langage de programmation, en l’occurrence
en C puisqu’il est à la base de Python, comme la plupart des langages modernes.

Il existe deux cas de figure pour concevoir un module d’extension :
• Une bibliothèque est déjà disponible en C, et l’exercice consiste à mettre en place

un pont entre Python et cette bibliothèque : un binding.
• Le module en C doit être conçu, puis lié comme dans le premier cas.

Mais avant d’aborder ces sujets, il est nécessaire de mettre en place un environne-
ment de compilation.

Environnement de compilation
Pour étendre Python, il est nécessaire de pouvoir compiler le code C. Cette opéra-
tion ne pose aucun problème sur les plates-formes GNU/Linux ou Mac OS X, où il
suffit d’installer le compilateur standard gcc (http://gcc.gnu.org/), lorsqu’il n’est pas
déjà installé.

Sous MS-Windows, deux options s’offrent à vous :
• installer MVC++ (Microsoft Visual C++ Developer Studio), sachant qu’il existe une

version Express gratuite, suffisante pour les besoins de compilation ;
• installer l’alternative libre : MingGW(http://www.mingw.org).

>>> from multiprocessing import Pool
>>> def async(value):
... return value * 2
...
>>> pool = Pool()
>>> result = pool.apply_async(async, [10])
>>> result.get(timeout=5)
20

Bonnes pratiques et optimisation du code
CHAPITRE 13

465

Pour pouvoir utiliser MingGW dans la phase de compilation, il est nécessaire :
• d’ajouter le répertoire bin de l’installation de MinGW au PATH ;
• de copier le fichier Python2x.dll dans le répertoire lib de MinGW ;
• d’ajouter un fichier distutils.cfg dans C:\python2x\lib\distutils\ avec ce

contenu décrit ci-dessous.

Fichier distutils.cfg

On obtient alors un environnement de compilation similaire à celui obtenu avec
MVC++.

Binding de bibliothèque
Pour utiliser des bibliothèques d’extensions il existe deux techniques :
• utiliser l’outil SWIG ;
• utiliser le module standard ctypes.

SWIG

L’outil SWIG (Simplified Wrapper Interface Generator) (http://www.swig.org/) permet
de connecter un programme C ou C++ à plusieurs autres langages (Perl, Python, Tcl,
Guile, Ruby, PHP, Objective Caml, Modula-3, C#, etc.).

Pour qu’un programme C ou C++ soit utilisable par SWIG, il est nécessaire de créer
un fichier interface, qui publie les éléments à lier. Ce fichier est utilisé pour générer le
module d’extension.

Prenons l’exemple du module exemple.c ci-dessous (issu de l’aide en ligne de
SWIG).

Module exemple.c

[build]
compiler=mingw32

À SAVOIR Vérification sous GNU/Linux

Si vous avez installé Python sous GNU/Linux avec des binaires, vous devez vous assurer que le paquet
python2.x-dev est installé.

#include <time.h>
double My_variable = 3.0;

Techniques avancées
QUATRIÈME PARTIE

466

Le fichier d’interface correspondant publie les éléments du module C, par une syn-
taxe déclarative particulière.

Module d’interface exemple.i

La commande swig -python exemple.i lance la lecture du fichier interface, et
génère un fichier exemple_wrap.c qui contient les API de SWIG et le code modifié.

L’installation de ce module comme extension se fait par le biais du module
distutils.core, qui compile le programme C exemple_wrap.c, et le place dans le
répertoire site-packages de Python pour le rendre disponible.

On retiendra deux éléments de distutils.core :
• la fonction setup(arguments), qui permet de compiler et installer des modules

d’extension ;

int fact(int n)
{
 if (n <= 1)
 return 1;
 else
 return n*fact(n-1);
}

int my_mod(int x, int y)
{
return (x%y);
}

char *get_time()
{
 time_t ltime;
 time(<ime);
 return ctime(<ime);
}

/* example.i */
%module exemple
%{
extern double My_variable;
extern int fact(int n);
extern int my_mod(int x, int y);
extern char *get_time();
%}

extern double My_variable;
extern int fact(int n);
extern int my_mod(int x, int y);
extern char *get_time();

Bonnes pratiques et optimisation du code
CHAPITRE 13

467

• la classe Extension, qui décrit un module d’extension C ou C++.

La fonction setup() prend en paramètres un certain nombre d’options, dont :
• name : un objet string représentant le nom du module ;
• version : un objet string contenant un numéro de version pour le module ;
• ext_modules : une liste d’objets de type Extension, à construire ;
• maintainer : le nom du développeur en charge du module ;
• maintainer_email : son e-mail ;
• description : une description courte, sous la forme d’une ligne de texte ;
• long_description : une description plus détaillée.

La classe Extension est construite quant à elle avec :
• name : le nom du module d’extension ;
• sources : la liste des fichiers sources C, C++ ;
• include_dirs : la liste des répertoires contenant des en-têtes C, C++ à inclure à

la compilation. Le répertoire contenant Python.h est automatiquement ajouté et
ce paramètre n’est à utiliser que pour ajouter de nouvelles dépendances ;

• library_dirs : la liste des répertoires contenant des bibliothèques à inclure à la
liaison, si nécessaire.

Créer un fichier d’installation consiste donc à coder un fichier Python contenant un
appel à setup(). Par convention, ce fichier est nommé setup.py.

Dans notre exemple, les fichiers nécessaires à la compilation de l’extension sont
exemple.c et exemple_wrap.c.

Fichier setup.py

Le code généré par SWIG préfixe le nom du module par le caractère _ et il est néces-
saire d’en tenir compte dans la création de setup.py.

Ce module est ensuite invoqué en ligne de commande, avec l’option build pour
compiler le module d’extension, et install pour le placer dans l’interpréteur.

from distutils.core import setup
from distutils.extension import Extension

extension = Extension(name='_exemple',
 sources=['exemple.c', 'exemple_wrap.c'])

setup(name="_exemple", ext_modules=[extension])

Techniques avancées
QUATRIÈME PARTIE

468

Compilation sous Linux

Cet appel crée un sous-répertoire build contenant une arborescence de plusieurs
répertoires. On retrouve un fichier compilé _exemple.so, prêt à être installé par un
appel à install. Sous MS-Windows, un fichier _exemple.dll est créé en lieu et
place de exemple.so.

Installation de l'extension

Il est en général nécessaire de passer en super-utilisateur pour cette étape, afin d’avoir
accès en écriture au répertoire site-packages de Python.

Le module est à présent installé et utilisable dans Python.

Essais de l’extension exemple

$ python setup.py build
running build
running build_ext
building '_exemple' extension
creating build
creating build/temp.linux-i686-2.4
gcc -pthread -fno-strict-aliasing -DNDEBUG -O2 -fomit-frame-pointer
-pipe -march=i586 -mtune=pentiumpro -g -fPIC -I/usr/include/python2.6 -c
exemple.c -o build/temp.linux-i686-2.4/exemple.o
exemple.c:22:2: warning: no newline at end of file
gcc -pthread -fno-strict-aliasing -DNDEBUG -O2 -fomit-frame-pointer
-pipe -march=i586 -mtune=pentiumpro -g -fPIC -I/usr/include/python2.6 -c
exemple_wrap.c -o build/temp.linux-i686-2.4/exemple_wrap.o
creating build/lib.linux-i686-2.4
gcc -pthread -shared build/temp.linux-i686-2.4/exemple.o build/
temp.linux-i686-2.4/exemple_wrap.o -o build/lib.linux-i686-2.4/
_exemple.so

$ su
Password:
python setup.py install
running install
running build
running build_ext
running install_lib
copying build/lib.linux-i686-2.4/_exemple.so -> /usr/lib/python2.6/
site-packages

>>> import exemple
>>> dir(exemple)

Bonnes pratiques et optimisation du code
CHAPITRE 13

469

Utilisation de ctypes

Pour du code déjà compilé, ctypes permet de l’utiliser directement depuis Python en
le chargeant dynamiquement. Il n’y a plus besoin dans ce cas d’écrire une extension.

Dans l’exemple ci-dessous, la bibliothèque libc est utilisée directement via ctypes.

Utilisation de libc via ctypes

Création d’un module d’extension
La création d’une extension pour Python se réalise en deux étapes :
• création d’un module en C, en respectant un modèle fourni par les API C de

Python ;
• installation du module comme extension de Python, par le biais du module
distutils.

Pour notre exemple, le module C met en œuvre une fonction banale max(), qui prend en
paramètres deux entiers et renvoie le plus grand. Cette fonction ne sera pas plus rapide
que son équivalent en Python mais est parfaite pour un exemple d’extension simple.

Pour mettre en œuvre max() côté C, il est nécessaire :
• de garnir la fonction pour la rendre compréhensible par l’interpréteur ;
• de définir une table de méthodes qui publie la fonction pour la rendre accessible à

l’interpréteur ;
• d’initialiser l’interpréteur pour qu’il prenne en charge le module d’extension.

['__builtins__', '__doc__', '__file__', '__name__', '_exemple',
'_newclass', '_object', '_swig_getattr', '_swig_setattr',
'_swig_setattr_nondynamic', 'cvar', 'fact', 'get_time', 'my_mod']
>>> exemple.get_time()
'Sun Sep 25 10:24:14 2005\n'
>>> exemple.fact(67)
0

À SAVOIR Construction locale d’une extension

Il est possible de construire l’extension localement pour procéder à des essais avant une installation dans
Python, en utilisant la commande python setup.py build_ext –inplace à la place
d’install. Dans ce cas, le module est accessible lorsque le répertoire de compilation est dans les che-
mins de recherche de l’interpréteur Python.

>>> import ctypes
>>> libc = ctypes.CDLL("libc.dylib")
>>> libc.printf("Ecriture dans la sortie standard via libc\n")
Ecriture dans la sortie standard via libc

Techniques avancées
QUATRIÈME PARTIE

470

Garniture de la fonction

Le code C d’une telle fonction pourrait être :

Fonction max en C

Intégrer cette fonction comme extension Python nécessite de modifier les paramètres
d’entrée et de sortie pour qu’ils deviennent utilisables par l’interpréteur. En effet,
l’interpréteur invoque toutes les fonctions C sur le même modèle d’appel générique,
en passant les paramètres dans des objets et en récupérant le résultat dans un objet.

Ces objets sont définis dans le fichier d’en-tête Python.h, qui est installé en même
temps que Python sur le système, et qui contient également des fonctions et struc-
tures annexes.

On retiendra pour transformer notre fonction C trois éléments :
• PyObject : classe de base de tout objet manipulé par l’interpréteur ;
• PyArg_ParseTuple : fonction permettant la lecture des paramètres passés à la

fonction par l’interpréteur ;
• Py_BuildValue : fonction permettant de construire un objet résultat en sortie de

méthode, qui sera récupéré par l’interpréteur.

Fonction max modifiée

static int max(int a, int b)
{
 int resultat;
 if (a > b)
 resultat = a;
 else
 resultat = b;

 return resultat;
}

static PyObject *max(PyObject *self, PyObject *args)
{
 int a;
 int b;

int resultat;

 // récupération des paramètres
 if (!PyArg_ParseTuple(args, "ii", &a, &b))
 return NULL;

 // le code C
 if (a > b)
 resultat = a;

Bonnes pratiques et optimisation du code
CHAPITRE 13

471

L’objet pointé par args correspond aux paramètres arbitraires passés à la fonction au
moment de son appel et contient un tableau de valeurs. Pour récupérer ces valeurs
côté C, il est nécessaire d’employer la fonction PyArg_ParseTuple qui alimente des
variables en fonction de args et d’un format de lecture. Chaque référence de variable
cible est fournie en paramètre supplémentaire au moment de l’appel.

Le formatage est défini par une chaîne de caractères dont chaque élément décrit le
type de transformation à opérer, d’un type Python à un type C. Les éléments peuvent
prendre les valeurs décrites dans le tableau suivant (liste non exhaustive).

 else
 resultat = b;

 // construction d'un objet de type int renvoyé à Python
 return Py_BuildValue("i", resultat);
}

Tableau 13–1 Formatage des paramètres

Format Type Python
en entrée

Type C en sortie Commentaires

s string ou unicode const char* La chaîne C est terminée par NULL.

s# string ou unicode const char*, int La chaîne C n’est pas terminée par NULL. Le
deuxième élément contient la longueur de la
chaîne.

z string ou unicode
ou None

const char* Comme s mais si None est passé renvoie un
pointeur sur NULL

z# string ou unicode
ou None

const char* Comme s# mais si None est passé renvoie un
pointeur sur NULL

u unicode const char* Comme s mais exclusivement pour les objets
unicode.

u# unicode const char*, int Comme s# mais exclusivement pour les objets
unicode.

b integer char L’entier Python est converti en tiny int.

B integer unsigned char L’entier Python est converti en tiny int, sans
vérification de dépassement. La valeur passe en
négatif dans ce cas.

h integer shortint RAS

H integer unsigned short int Comme h mais sans contrôle de dépassement.

i integer int RAS

I integer unsignedint RAS

l integer longint RAS

Techniques avancées
QUATRIÈME PARTIE

472

À ces formatages s’ajoute l’opérateur I, qui permet de spécifier que les paramètres
suivants sont optionnels. Dans notre exemple, le format ii spécifie que deux entiers
sont attendus.

La fonction Py_BuildValue permet de procéder aux mêmes conversions, dans le sens
inverse. Le résultat entier C est donc converti en objet integer par un appel à
Py_BuildValue("i", resultat).

Définition de la table des méthodes

La fonction max() est maintenant prête à être utilisée par l’interpréteur, et la pro-
chaine étape consiste à la rendre visible, en définissant la table des méthodes, tableau
de type PyMethodDef.

Chaque entrée est de la forme {nom, fonction, convention d’appel, docstring},
avec :
• nom : nom publié par l’interpréteur ;
• fonction : fonction C liée ;

k integer Unsignedlong RAS

L integer PY_LONG_LONG Convertit en entier 64 bits défini par le type
PY_LONG_LONG, lorsque la plate-forme le
supporte.

K integer unsignedPY_LONG_LONG RAS

c string char Convertit une string de 1 caractère en char.

f float float RAS

d float double RAS

D complex Py_complex Convertit un nombre complexe en une structure C
définie par Py_complex.

O objet PyObject* Fournit un pointeur de type PyObject vers
l’objet.

S string PyObject* Comme O mais si l’objet n’est pas du type string,
une erreur TypeError est levée.

U unicode PyObject* Comme O mais si l’objet n’est pas du type
unicode, une erreur TypeError est levée.

(x, x,
x, ...)

tuple éléments Chaque élément du tuple Python est converti en
élément C. Chaque x représente un des formata-
ges vu précédemment.

Tableau 13–1 Formatage des paramètres (suite)

Format Type Python
en entrée

Type C en sortie Commentaires

Bonnes pratiques et optimisation du code
CHAPITRE 13

473

• convention d’appel : prend la valeur METH_VARARGS ;
• docstring : définit la chaîne de caractères utilisée comme docstring.

Pour max(), la table des méthodes est définie comme suit, et doit être obligatoire-
ment renvoyée par la méthode d’initialisation du module, seule fonction non statique
du module, qui porte toujours le nom initnommodule().

Table des méthodes

Py_InitModule prend en paramètres le nom du module et le tableau, et renvoie un
objet de type module qui est inséré dans le dictionnaire sys.modules lorsque le
module est importé.

Initialisation du module

Une fois la table des méthodes prête, la fonction main() du module doit appeler tour
à tour :
• Py_SetProgramName(), pour passer argv[0] (le nom du programme) à

l’interpréteur ;
• Py_Initialize(), pour initialiser l’interpréteur ;
• appeler la méthode d’initialisation du module.

Module calculs.py complet

static PyMethodDef CalculsMethods[] = {
 {"max", max, METH_VARARGS, "Calcul le max de deux nombres"}
};

PyMODINIT_FUNC initcalculs(void)
{
 (void) Py_InitModule("calculs", CalculsMethods);
}

#include "Python.h"

static PyObject *max(PyObject *self, PyObject *args)
{
 int a;
 int b;
 int resultat;

 // récupération des paramètres
 if (!PyArg_ParseTuple(args, "ii", &a, &b))
 return NULL;

Techniques avancées
QUATRIÈME PARTIE

474

Installation de l’extension

L’installation de ce module comme extension se fait également par le biais du
module distutils.core.

Fichier setup.py

 // le code C
 if (a > b)
 resultat = a;
 else
 resultat = b;

 // construction d'un objet de type int renvoyé à Python
 return Py_BuildValue("i", resultat);
}

/*
 Table des méthodes du module
*/
static PyMethodDef CalculsMethods[] = {
 {"max", max, METH_VARARGS, "Calcul le max de deux nombres"},
};

PyMODINIT_FUNC initcalculs(void)
{
 (void) Py_InitModule("calculs", CalculsMethods);
}

int main(int argc, char *argv[])
{
 // argv[0] est utilisé pour initialiser le nom du module
 Py_SetProgramName(argv[0]);

 // initialisation de l'interpréteur python
 Py_Initialize();

 // initialisation de la table des méthodes
 initcalculs();
}

#!/usr/bin/python
-*- coding: utf8 -*-
from distutils.core import setup, Extension

extension = Extension(name='calculs', sources=['calculs.c'])

Bonnes pratiques et optimisation du code
CHAPITRE 13

475

Ce module est ensuite invoqué en ligne de commande, avec l’option build pour
compiler le module d’extension, et install pour le placer dans l’interpréteur.

Installation de l’extension sous GNU/Linux

Le module est à présent installé et utilisable dans le prompt.

Test de l’extension

Optimisation de l’utilisation de mémoire vive
Les problématiques de performances liées à une quantité restreinte de mémoire sont
de moins en moins fréquentes pour la bonne et simple raison que son prix est devenu
ridicule. Dans les années 1970 et 1980, optimiser la taille mémoire d’un programme

setup (name="calculs", version="0.1 beta", ext_modules=[extension],
 maintainer="Tarek Ziadé", maintainer_email="tarek@ziade.org",
 description="Exemple d'extension en C")

$ python setup.py build
running build
running build_ext
building 'calculs' extension
gcc -pthread -fno-strict-aliasing -DNDEBUG -O2 -fomit-frame-pointer
-pipe -march=i586 -mtune=pentiumpro -g -fPIC -I/usr/include/python2.4 -c
calculs.c -o build/temp.linux-i686-2.4/calculs.o
creating build/lib.linux-i686-2.4
gcc -pthread -shared build/temp.linux-i686-2.4/calculs.o -o build/
lib.linux-i686-2.4/calculs.so

$ su
Password:

python setup.py install
running install
running build
running build_ext
running install_lib
copying build/lib.linux-i686-2.4/calculs.so -> /usr/lib/python2.4/
site-packages

>>> import calculs
>>> calculs.max(9, 8)
9
>>> calculs.max.__doc__
'Calcul le max de deux nombres'

Techniques avancées
QUATRIÈME PARTIE

476

était la préoccupation majeure des développeurs et la chasse au gaspi un exercice rela-
tivement fréquent.

Pour les programmes actuels, ce problème est passé en second plan sauf pour des cas
d’utilisation particuliers, où l’on peut légitimement se poser quelques questions :
• Quelle sera la taille occupée par un programme lorsque son nombre d’utilisateurs

passera de 10 à 10 000 ?
• Quelle quantité de mémoire une fonction donnée a-t-elle besoin de consommer

dans certaines conditions d’exécution ?
• Comment être sûr que le programme ne va pas dépasser dans certains cas le point

de rupture mémoire, c’est-à-dire consommer toute la mémoire vive disponible et
faire passer le système en swapping (utilisation du disque dur comme mémoire) et
par ce biais faire chuter les performances ?

Reproduire ces problématiques dans les tests unitaires est un bon exercice, à condi-
tion de disposer d’un outil de mesure de charge mémoire.

Économie de mémoire
Économiser la mémoire consiste à diminuer le plus possible le nombre d’objets créés,
que ce soit par le biais de fonctionnalités du langage ou par des techniques de pro-
grammation. Bien souvent, le travail d’optimisation se fait au cas par cas, pour modi-
fier la consommation mémoire d’un algorithme en modifiant son fonctionnement.

Voici toutefois deux techniques qui peuvent s’appliquer pour réduire la taille
mémoire d’une classe d’objets.

__slots__

Les __slots__ des new-style classes permettent une économie substantielle de
mémoire sur les types de classes créés par le développeur, en modifiant le fonctionne-
ment interne des accesseurs : l’attribut __dict__ habituellement utilisé pour con-
server les éléments de chaque instance est retiré au profit d’un fonctionnement diffé-
rent (voir chapitre 6).

Attributs statiques

Préférer les attributs statiques permet également de minimiser la taille mémoire prise
par une classe d’objets, en essayant de partager au maximum les éléments communs
entres les instances.

Cette suppression de redondance, lorsqu’elle est possible, peut permettre des gains
considérables de mémoire lorsqu’un type d’objet possède un nombre élevé d’instances.

Bonnes pratiques et optimisation du code
CHAPITRE 13

477

Optimisation du bytecode
Lorsqu’un fichier source est utilisé par Python, l’interpréteur génère un fichier
d’extension .pyc, contenant le code source après le travail de l’analyseur syntaxique.
Ce code est appelé bytecode et c’est ce fichier qui est utilisé pendant l’exécution du
programme, afin d’éviter de refaire l’analyse à chaque utilisation.

Il est possible de passer l’option -O à l’interpréteur. Le bytecode généré est alors légère-
ment optimisé par le retrait de toutes les directives d’assertions trouvées dans le code.
L’interpréteur n’utilise plus les fichiers .pyc et compile le bytecode dans des fichiers .pyo.

L’option -OO quant à elle retire en outre les docstrings du code, pour obtenir des
fichiers bytecode plus compacts, mais cette option n’est pas recommandée car cer-
taines fonctionnalités peuvent se baser sur leur lecture.

Psyco et Cython
Psyco et Cython sont deux outils qui permettent d’optimiser les performances, par
deux approches différentes :
• Psyco travaille de manière transparente et tente d’accélérer à la volée le pro-

gramme.
• Cython (anciennement Pyrex) propose un nouveau langage de programmation

qui permet d’utiliser directement des types de données C dans du code Python.

Psyco
Psyco (http://psyco.sourceforge.net), d’Armin Rigo, est une extension pour Python qui
accélère l’exécution de certaines séquences de code. L’intérêt majeur de cet outil est
qu’il opère de manière transparente sur le code existant, sans qu’il soit nécessaire de le
modifier.

Une fois l’outil installé, le module psyco est disponible et un simple appel à
psyco.full() permet de bénéficier d’une optimisation transparente.

Psyco en action

def normal():
 a = 0
 for i in range(5000):
 a = a + 3
 return a

if __name__ == '__main__':
 import timeit

Techniques avancées
QUATRIÈME PARTIE

478

Les gains de performance sont importants sur toutes les opérations arithmétiques et
les boucles répétitives.

Psyco analyse le code à exécuter à la volée et tente, lorsque c’est possible, de rem-
placer directement ce code en mémoire par son équivalent en langage machine.

Cette mécanique a cependant des restrictions lourdes :
• inopérant lorsque map() et filter() sont utilisées dans le code ;
• impossibilité de surcharger une primitive ;
• impossibilité de modifier dynamiquement les méthodes des new-style classes ;
• incompatible avec le module rexec ;
• impossibilité de changer dynamiquement le type d’un objet (en modifiant son

attribut __class__) ;
• l’opérateur is ne fonctionne pas toujours correctement sur les objets globaux de

types non modifiables.

Il est donc conseillé de cibler son utilisation à des fonctions d’opérations algorithmi-
ques isolées.

L’usage le plus souple consiste à créer un decorator qui permette d’enclencher Psyco
pour des fonctions précises. Le module fournit une fonction proxy() qui permet
d’implémenter directement le decorator : elle renvoie une version optimisée de
n’importe quel objet callable passé en paramètre.

Decorator psycoed

 temps = timeit.Timer('normal()',
 'from __main__ import normal').timeit(10000)
 print('sans psyco: %f s' % temps)

 import psyco
 psyco.full()
 temps = timeit.Timer('normal()',
 'from __main__ import normal').timeit(10000)
 print('avec psyco: %f s' % temps)

[...]

$ python psycote.py
sans psyco: 13.725044 s
avec psyco: 0.223533 s

import psyco

decorator psycoed
def psycoed(function):

Bonnes pratiques et optimisation du code
CHAPITRE 13

479

Cython
Cython (http://www.cython.org/) est un métalangage qui permet de combiner du code
Python et des types de données C, pour concevoir des extensions compilables pour
Python.

Dans un module Cython, il est possible de définir des variables C directement dans
le code Python et de définir des fonctions C qui prennent en paramètre des
variables C ou des objets Python.

Cython contrôle ensuite de manière transparente la génération de l’extension C, en
transformant le module en code C par le biais des API C de Python.

Toutes les fonctions Python du module sont alors automatiquement publiées.

Le gain de temps dans la conception introduit par Cython est considérable : toute la
mécanique habituellement mise en œuvre pour créer un module d’extension est
entièrement gérée par Cython.

Ainsi, la fonction max() du module calculs.c précédemment présentée devient :

Fonction max en Pyrex, calculs.pyx

Les fichiers Cython ont par convention l’extension pyx, en référence à l’ancien nom.

 try:
 return psyco.proxy(function)
 except TypeError:

gère le cas où l'objet n'a pas pu être traité
 return function

@psycoed
def speedy():
 a = 0
 for i in range(5000):
 a = a + 3
 return a

cdef max(int a, int b):
 if a > b:
 return a
 else:
 return b

def maximum(a, b):
 return max(a, b)

Techniques avancées
QUATRIÈME PARTIE

480

Ce code génère un module d’extension par le biais d’un appel à distutils
particulier :

setup.py pour calculs.pyx

Cython gère aussi de manière transparente les conversions de types entre C et
Python et permet d’attaquer des modules C externes.

Cette dernière fonctionnalité fait de Cython un concurrent direct de SWIG. Cython
est bien souvent préféré à ce dernier car là où SWIG impose les API des modules C
encapsulés, Cython permet d’obtenir le même résultat tout en laissant le développeur
définir directement, et sans ajouter une couche Python lente, ses propres interfaces
pythoniques.

Cython, comme Psyco, souffre de beaucoup de limitations :
• impossible d’imbriquer des définitions de fonctions ;
• impossible d’utiliser yield et les generators ;
• impossible d’utiliser les primitives globals() et locals().

Il faut limiter son utilisation à des parties bien définies du programme pour éviter
d’éventuels problèmes.

Les tests de performance continus
Dans la logique de la programmation dirigée par les tests vue dans le chapitre précé-
dent, il est possible :
• de récupérer régulièrement des statistiques sur les performances de toutes les

fonctions et classes d’un programme ;
• d’intégrer des tests de performance ciblés au fur et à mesure de la conception,

pour garantir et surveiller que certaines parcelles critiques remplissent toujours les
conditions de performance voulues.

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

extension = Extension("calculs", ["calculs.pyx"])

setup(name="calculs", ext_modules=[extension],
 cmdclass={'build_ext': build_ext})

Bonnes pratiques et optimisation du code
CHAPITRE 13

481

Rapport sur les performances
Les tests unitaires exécutent, s’ils sont bien faits, la totalité du code d’un programme.
Un module comme hotshot peut donc s’appuyer sur ces tests pour générer un rap-
port complet sur les performances.

Ce profiling global permet de repérer les problèmes de performances ou les temps
anormaux.

Tests cPickle profilés

Dans cette version du test de cPickle du chapitre précédent, l’exécution des tests est
profilée par le biais d’un decorator spécialisé, intégrant un appel au profiler.

Tests de performance ciblés
Pour les portions du code à surveiller étroitement, des tests de performance ciblés
peuvent être mis en place.

Le principe est relativement similaire aux tests unitaires mais les assertions portent
cette fois-ci sur le temps écoulé pendant le test.

$ python auditperfs.py
 2001 function calls in 0.020 CPU seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.009 0.009 0.020 0.020
auditperfs.py:60(test_boucle)
 1000 0.007 0.000 0.011 0.000
auditperfs.py:35(test_dump_et_load)
 1000 0.004 0.000 0.004 0.000
auditperfs.py:28(_genere_instance)
 0 0.000 0.000 profile:0(profiler)

..
--
Ran 2 tests in 1.002s

OK

Techniques avancées
QUATRIÈME PARTIE

482

Test de performance d’un algorithme

Cette assertion n’est pas très précise, même si dans l’exemple repeat() est utilisée
pour prendre le meilleur de trois mesures, car les résultats varient énormément en
fonction des conditions d’exécution.

De plus, les temps dépendent de la machine utilisée et le temps maximal accordé à
un test peut être à revoir sur une machine moins puissante. Il est donc nécessaire de
calibrer les tests en fonction des machines cibles du programme et d’insérer des
plages de tolérance.

Ceci étant dit, le test remplit bien son rôle de garde-fou : une erreur est déclenchée si
le temps d’exécution d’un algorithme critique devient anormal.

decorator timed
Il existe des outils de mesure de performance ciblés comme pyUnitPerf, de Grig
Gheorghiu (http://sourceforge.net/projects/pyunitperf) qui est une adaptation de l’outil
Java JUnitPerf de Mike Clark, et qui se greffe sur une classe unittest.TestCase pour
définir un temps maximum d’exécution pour la suite de tests définie dans la classe.

Cette approche oblige cependant à ne définir qu’un nombre limité de tests dans la
classe, voire un test unique, et nécessite en outre d’ajouter du code spécifique pour sa
mise en place.

Le seul objectif des tests de performance ciblés étant de signaler qu’un test unitaire
particulier dépasse un temps maximum autorisé, une autre approche plus légère est
de concevoir un decorator.

Le decorator présenté ci-contre fonctionne sur une unité pystone. Les pystones,
fournis par le module test.pystone mesurent les performances de la machine et per-
mettent de rendre tous les tests de performance portables : on ne mesure plus dans ce
cas la durée d’exécution du code en secondes mais en pystones (Ps).

def calcul(a):
 for i in range(10):
 a = a + 3
 return a

if __name__ == '__main__':
 """ test des performances de calcul() """
 import timeit
 timer = timeit.Timer('calcul(12)', 'from __main__ import calcul')
 temps = timer.repeat()
 temps = min(temps)
 assert(temps < 4)

Bonnes pratiques et optimisation du code
CHAPITRE 13

483

Ce decorator prend en paramètre un temps maximum d’exécution en Ps et affiche
une erreur de type AssertionError en cas de dépassement de ce temps.

Decorator timedtest

TOLERANCE permet de gérer un laps de temps supplémentaire, et sert à calibrer les
tests en fonction de la puissance de la machine de test.

#!/usr/bin/python
-*- coding: utf8 -*-
from test import pystone
import time

Unité kPs
kPs = 1000

TOLÉRANCE en Ps
TOLERANCE = 0.5 * kPs

class DurationError(AssertionError): pass

def mesure_pystone():
 return pystone.pystones(loops=pystone.LOOPS)

def timedtest(max_pystones, local_pystones=mesure_pystone()):
 """ décorateur timedtest """
 ifnot isinstance(max_pystones, float):
 max_pystones = float(max_pystones)

 def _timedtest(function):
 def __timedtest(*args, **kw):
 start_time = time.time()
 try:
 return function(*args, **kw)
 finally:
 total_time = time.time() - start_time
 if total_time == 0:
 pystone_total_time = 0
 else:
 ratio = local_pystones[0] / local_pystones[1]
 temps = total_time / ratio
 if temps > (max_pystones + TOLERANCE):
 raise DurationError((('Test trop long (%.2f Ps, '
 'duree maximum: %.2f Ps)')
 % (temps,
 max_pystones)))
 return __timedtest

 return _timedtest

Techniques avancées
QUATRIÈME PARTIE

484

Le deuxième paramètre optionnel, local_pystones permet de conserver d’un test à
l’autre le calcul des pystones, qui dure quelques secondes, pour accélérer l’exécution
des tests.

L’insertion de ce decorator ajoute, lorsque les tests sont lancés, des contrôles sur les
durées d’exécution.

Dans l’exemple ci-dessous, la classe de test effectue trois tests, dont deux sont
mesurés.

Exemple d’utilisation

import unittest
import md5

mstone = mesure_pystone()

class MesTests(unittest.TestCase):

 def __init__(self, name):
 unittest.TestCase.__init__(self, name)

 @timedtest(6*kPs, mstone)
 def test_critical1(self):
 for i in range(100000):
 md5.new('ok').hexdigest()

 @timedtest(1, mstone)
 def test_critical2(self):
 time.sleep(mstone[0]/mstone[1])

 @timedtest(1*kPs, mstone)
 def test_critical3(self):
 a =''
 for i in range(50000):
 a = a + 'x' * 200

 def test_lesscrtitical(self):
 time.sleep(0.1)

suite = unittest.makeSuite(MesTests)
unittest.TextTestRunner().run(suite)

[...]

$ python perftest.py
..F.

Bonnes pratiques et optimisation du code
CHAPITRE 13

485

Cette approche permet de mettre en place des garde-fous pour se prémunir de toute
régression des performances de l’application : l’insertion de nouveau code qui entraî-
nerait une chute des performances pourrait alors déclencher un avertissement.

En un mot...
Les bonnes pratiques et les techniques d’extensions présentées dans ce chapitre, et en
particulier les code patterns, se combinent parfaitement avec la programmation
orientée objet.

Le prochain chapitre présente des design patterns orientés objet qui complètent
l’armada du développeur Python.

==
FAIL: test_critical3 (__main__.MesTests)
--
Traceback (most recent call last):
 File "perftest.py", line 35, in wrapper
 raise DurationError((('Test trop long (%.2f Ps, '
DurationError: Test trop long (1951.56 Ps, duree maximum: 1000.00 Ps)

--
Ran 4 tests in 0.319s

FAILED (failures=1)

If it quacks like a duck then it's a duck - The Holy Grail

« Si ça couac comme un canard, c’est un canard » – Sacré Graal

Lorsque Python est utilisé pour concevoir des programmes de grande taille, son
organisation interne devient relativement importante. La programmation orientée
objet est la réponse actuelle à cette problématique et rend le développeur agile,
c’est-à-dire rapidement réactif à des ajouts ou modifications du programme.

Ce chapitre présente les principes généraux de la programmation orientée objet
appliqués à Python, puis une série de recettes de programmation objet, appelés
design patterns.

Principes généraux
Les concepts de programmation orientée objet (POO) ont fait leur apparition dans
les années soixante, avec le langage Simula-67 de Dahl et Nygaard, extension du lan-
gage Algol. Simula ajoute à Algol la quasi-totalité des techniques de POO actuelles,
à savoir :
• le typage, la classification et l’encapsulation ;
• l’héritage et le polymorphisme ;
• les relations entre objets.

14
Programmation orientée objet

Techniques avancées
QUATRIÈME PARTIE

488

L’objectif originel de Simula était de fournir aux chercheurs une bibliothèque de
classes de simulation discrète, qui pouvait être modifiée dans des classes dérivées
pour mettre au point un fonctionnement particulier.

D’autres techniques complémentaires ont été introduites par la suite, dans les années
soixante-dix, par des langages comme SmallTalk, qui vont influencer fortement
Python, à savoir :
• l’héritage multiple ;
• les classes virtuelles pures ;
• les métaclasses ;
• le garbage collecting.

Typage, classification et encapsulation
La programmation orientée objet détermine que les systèmes sont définis par des
entités appelées objets, et que chacun de ces objets possède des caractéristiques défi-
nies dans un type d’objet.

Typage de Liskov
Selon la théorie des types de Liskov, un type détermine un ensemble de caractéristi-
ques que partageront les objets appartenant à ce type.

Ces caractéristiques prennent la forme de méthodes et de valeurs pour l’objet et sont
définies par une classe. Cette classe contient le code à proprement parler et tout objet
de ce type est appelé instance de classe.

Liskov stipule en outre qu’il est possible de créer une sous-classification par le biais
de l’héritage, présenté ci-après.

Enfin, cette classification introduit un mécanisme de substitution lorsque deux classes
partagent des caractéristiques communes : substituer une classe par une autre sans que
le code utilisateur ne soit impacté est appelé principe de substitution de Liskov.

Principe de substitution de Liskov

Prenons l’exemple d’une classe A, qui utilise dans sa méthode calcul(), la méthode
sous_calcul() d’une classe B. Cette dépendance fonctionnelle rend A tributaire
de B. B peut implémenter d’autres méthodes sans que cela ne gêne A car la seule
chose qui intéresse A est la méthode sous_calcul().

En d’autres termes, remplacer B par une classe C qui fournisse aussi une méthode
sous_calcul() ne dérangera pas A, qui y trouve son compte.

Cette dépendance peut donc être remontée dans une abstraction commune à B et C.

Programmation orientée objet
CHAPITRE 14

489

L’exemple ci-dessous implémente le principe de substitution de Liskov s’assurant
que l’objet passé à A est dérivé du type Base.

Substitution de Liskov en Python

Ce principe peut également être implémenté avec les ABC présentées au chapitre 9.

Implémentation avec ABC

#!/usr/bin/python
-*- coding: utf8 -*-

class Base(object):
 """ classe virtuelle pure """
 def sous_calcul(self):
 raise NotImplementedError

class A:
 """ classe utilisatrice """
 def __init__(self, sous_objet):
 ifnot isinstance(sous_objet, Base):
 raise TypeError("A ne travaille qu'avec Base ou dérivés")
 self.sous_objet = sous_objet

 def calcul(self):
 return 1 + self.sous_objet.sous_calcul()

class B(Base):
 """ classe B """
 def sous_calcul(self):
 return 1

class C(Base):
 """ classe C """
 def sous_calcul(self):
 return 2

Utilisation de A avec B ou C
print(A(B()).calcul())
print(A(C()).calcul())

>>> from abc import ABCMeta, abstractmethod
>>> class Base(object):
... __metaclass__ = ABCMeta
... @abstractmethod
... def sous_calcul(self):
... pass

Techniques avancées
QUATRIÈME PARTIE

490

Encapsulation
Quel que soit le typage utilisé, l’objectif des classes reste de séparer l’interface de
l’implémentation. L’interface est représentée par l’ensemble des méthodes et données
que les utilisateurs de la classe connaissent, et l’implémentation est représentée par
toute la mécanique interne. Cette encapsulation permet de rendre les utilisateurs de
la classe indépendants de la représentation interne.

... @classmethod

... def __subclasshook__(cls, C):

... if cls is Base:

... if any("sous_calcul" in sub.__dict__

... for sub in C.__mro__):

... return True

... return NotImplemented

...
>>> class A(object):
... def __init__(self, sous_objet):
... if not isinstance(sous_objet, Base):
... raise TypeError("A ne travaille qu'avec Base ou dérivés")
... self.sous_objet = sous_objet
... def calcul(self):
... return 1 + self.sous_objet.sous_calcul()
...
>>> class B(object):
... def sous_calcul(self):
... return 1
...
>>> class C(object):
... def sous_calcul(self):
... return 2
...
>>> class D(object):
... pass
...
>>> print(A(B()).calcul())
2
>>> print(A(C()).calcul())
3
>>> print(A(D()).calcul())
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 4, in __init__
TypeError: A ne travaille qu'avec Base ou dérivés

Programmation orientée objet
CHAPITRE 14

491

Les méthodes et données internes sont dites privées et celles faisant partie de l’inter-
face de la classe dites publiques. Dans certains langages, une visibilité intermédiaire
permet de définir que des attributs ne sont visibles que des sous-classes. On parle
alors d’attributs protégés.

Certains langages objet, comme le C++, définissent de manière stricte cette visibilité
en fournissant des mots-clés pour caractériser chaque élément d’une classe.

Python fonctionne quant à lui sur un modèle moins strict, basé sur des conventions
de nommage des attributs : un attribut privé est toujours préfixé de deux espaces sou-
lignés et un attribut protégé d’un seul espace souligné.

L’interpréteur protège les attributs privés en les préfixant en interne du nom de la
classe, les rendant inaccessibles par du code extérieur. Cette protection n’est cepen-
dant pas inviolable puisqu’il est possible d’accéder à tous les éléments en fouillant
l’attribut __dict__. Mais là n’est pas l’objectif.

Enfin, les méthodes protégées sont accessibles tout à fait normalement et le préfixe a
pour seul objectif d’informer sur leur nature.

Telephone

À RETENIR Attributs privés et protégés

En langage Python, les attributs privés sont définis en préfixant leur nom de deux espaces soulignés et
les attributs protégés d’un seul espace souligné :
__attr1, __attr2 # noms d’attributs privés
_attr3, _attr4 # noms d’attributs protégés

#!/usr/bin/python
-*- coding: utf8 -*-
class Telephone(object):

 def __init__(self):
 # données privées
 self.__numero_serie = '123NouzironAuBois456DesCerises'

 # données protégées
 self._code_pin = '1234'

 # données publiques
 self.modele ='nokai kitu 45'
 self.numero ='06 06 06 06 06'

 # méthodes protégées
 def _chercherReseau(self):
 print('Réseau FSR, bienvenue dans un monde meilleur..')

Techniques avancées
QUATRIÈME PARTIE

492

Dans l’exemple ci-dessus, la classe Telephone encapsule toute une mécanique de
fonctionnement interne dont n’a pas idée l’utilisateur qui se contente d’invoquer
allumer().

Héritage et polymorphisme
Liskov introduit le principe de l’héritage, qui stipule qu’une sous-classe B hérite de
toutes les caractéristiques d’une classe A. La classe B est une classe A, avec des élé-
ments modifiés et/ou supplémentaires. On parle de spécialisation de A, et on dit que
B est dérivée de la classe de base A.

Héritage
En reprenant l’exemple précédent, une spécialisation possible de la classe Telephone
est TelephonePhoto.

Spécialisation de Telephone

 def _recupMessage(self):
 print("Vous n'avez pas de message")
 print("Achetez les corn flakes Snapk")

 # interface
 def allumer(self, code_pin):
 print(self.modele)
 if code_pin == self.__code_pin:
 print('Tu ti Tu Ti')
 self._chercherReseau()
 self._recupMessage()
 else:
 print('mauvais code pin')

if __name__ == '__main__':
 nokai = Telephone()
 nokai.allumer('1524')
 nokai.allumer('1234')

class TelephonePhoto(Telephone):
 def prend_photo(self):
 print('clik-clak')

if __name__ == '__main__':
 nokai = TelephonePhoto()
 nokai.allumer('1234')
 nokai.prend_photo()

Programmation orientée objet
CHAPITRE 14

493

Cette nouvelle classe hérite des caractéristiques de la classe Telephone et y ajoute une
méthode supplémentaire. Seul le numéro de série n’est plus accessible dans cette spé-
cialisation.

Cette classe peut être à son tour dérivée dans une autre classe.

Spécialisation de TelephonePhoto

Ces suites de dérivations forment un arbre de dérivation.

Polymorphisme
Lorsque la classe spécialisée implémente les mêmes méthodes que la classe dont elle
dérive, on dit que les méthodes sont surchargées.

TelephonePhotoHautdeGamme modifiée

Ici, la méthode prend_photo() est surchargée et prévaut sur celle de TelephonePhoto.
La méthode est dite virtuelle (en Python, toutes les méthodes sont virtuelles).

Il reste cependant possible d’atteindre la méthode des classes héritées dans les
niveaux précédents dans l’arbre de dérivation, en appelant cette méthode directement
depuis la classe concernée, en passant l’objet dérivé en premier paramètre.

Polymorphisme

class TelephonePhotoHautdeGamme(TelephonePhoto):
 def fait_cafe(self):
 print('plik, plik, plik')

if __name__ == '__main__':
 nokai = TelephonePhotoHautdeGamme()
 nokai.allumer('1234')
 nokai.prend_photo()
 nokai.fait_cafe()

class TelephonePhotoHautdeGamme(TelephonePhoto):
 def fait_cafe(self):
 print('plik, plik, plik')

 def prend_photo(self):
 print('clik-clak deluxe')

class TelephonePhoto(Telephone):
 def __init__(self):
 Telephone.__init__(self)
 self.modele = 'nokai kitu 45 Photo+'

Techniques avancées
QUATRIÈME PARTIE

494

Les méthodes deviennent polymorphiques et il est possible de composer avec tous les
niveaux de l’arbre de dérivation.

 def prend_photo(self):
 print('clik-clak')

 def _recupMessage(self):
 Telephone._recupMessage(self)
 print("Vous n'avez pas non plus de photos")

class TelephonePhotoHautdeGamme(Telephone):

 def prend_photo(self):
 print('clik-clak de luxe')

 def allumer(self, code_pin):
 print self.modele + ' deluxe'
 if code_pin == self._code_pin:
 print('Tu ti Tu TiiiiiIIiiiIII')
 self._chercherReseau()
 self._recupMessage()
 else:
 print('baaaaaaaaaaazzzz')

 def _recupMessage(self):
 Telephone._recupMessage(self)
 print("Vous n'avez pas non plus de photos deluxe")

if __name__ == '__main__':
 nokai = TelephonePhotoHautdeGamme()
 nokai.allumer('1234')
 nokai.prend_photo()

[...]

[tziade@Tarek Desktop]$ python classes.py
nokai kitu 45 deluxe
Tu ti Tu TiiiiiIIiiiIII
Réseau FSR, bienvenue dans un monde meilleur..
Vous n'avez pas de message
Achetez les corn flakes Snapk
Vous n'avez pas non plus de photos deluxe
clik-clak de luxe

Programmation orientée objet
CHAPITRE 14

495

Duck typing et interfaces
Python n’utilisant pas de typage statique, le code peut se baser sur une philosophie de
programmation polymorphique plus souple, qui tient en une phrase : If it quacks like
a duck, then it’s a duck (littéralement : si ça fait « coin-coin », c’est un canard).

Cette citation, tirée du film Sacré Graal, signifie que le type des objets peut être
deviné par les attributs qu’ils portent. Ou plus précisément : si un objet porte un cer-
tain nombre d’attributs, il fait l’affaire.

C’est ce principe qui est appliqué dans le code qui utilise les objets de type fichier ou
assimilés, offrant ainsi la possibilité de substituer un objet de type StringIO dans du
code prévu pour un objet de type file.

Le duck typing se base sur l’utilisation de la primitive hasattr() pour analyser les
attributs d’un objet et évite les primitives isinstance(), type() ou assimilés.

Duck typing

Cette philosophie influence fortement l’orientation du programme en termes
d’architecture et modifie le rôle de l’héritage : il n’est plus forcément utilisé lorsqu’il
s’agit d’offrir le sésame à certaines fonctions pour un nouveau type de classe.

>>> import cStringIO
>>> def litdonnees(objet):
... ifnot hasattr(objet, 'readline'):
... raise TypeError("l'objet n'a pas de fonction de lecture")
... return objet.readline()
...
>>> object1 = cStringIO.StringIO('contenu')
>>> litdonnees(object1)
'contenu'
>>> class Compatible(object):
... def readline(self):
... return 'pas de pb'
...
>>> object2 = Compatible()
>>> litdonnees(object2)
'pas de pb'
>>> object3 = object()
>>> litdonnees(object3)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 3, in litdonnees
TypeError: l'objet n'a pas de fonction de lecture

Techniques avancées
QUATRIÈME PARTIE

496

On retrouve le principe strict du duck typing dans les gros frameworks comme Zope
ou Twisted : des interfaces peuvent être définies pour découpler la description des
caractéristiques que des objets doivent nécessairement avoir pour être utilisés dans
certaines fonctions. Les caractéristiques de l’objet sont automatiquement testées par
des API spécialisées.

Les interfaces selon Zope 3

Les interfaces sont comparables aux ABC, puisqu’elles permettent aussi de séparer la
signature d’un comportement du code qui l’implémente dans une ou plusieurs classes.

Relations entre objets
Sans rentrer dans les détails sémantiques, on peut considérer qu’une classe peut
former deux types de relations avec une autre classe :
• une relation de composition simple, où l’attribut d’une classe A est une instance

d’une classe B ;
• une relation multiple où la classe A gère une collection, explicite ou non, d’instan-

ces de la classe B.

L’objectif des relations entre classes est identique à celui entre fonctions : décom-
poser de manière logique le code nécessaire à l’exécution d’une tâche.

>>> import zope.interface
>>> class ILInterface(zope.interface.Interface):
... """ Mon interface """
... attribut = zope.interface.Attribute("""C'est l'attribut""")
... def methode(parametre):
... """la méthode"""
...
>>> class TresClasse(object):
... zope.interface.implements(ILInterface)
... def __init__(self, valeur=None):
... self.attribut = valeur
... def methode(self, parametre):
... return parametre, self.attribut
...
>>> def ma_fonction(objet):
... ifnot ILInterface.providedBy(ILInterface)
... raise TypeError("cet objet ne couac pas")
... print objet.attribut
...
>>> la_class = TresClasse('trop classe')
>>> ma_fonction(la_class)
'trop classe'

Programmation orientée objet
CHAPITRE 14

497

Cette décomposition permet à chaque portion de code :
• d’évoluer de manière indépendante et de se spécialiser ;
• d’être réutilisable dans d’autres tâches ;
• de découper en tâches élémentaires des tâches plus complexes.

Relation simple
Dans l’exemple ci-dessous, la classe Afficheur se sert de la classe Calculateur pour
fournir une interface à l’utilisateur.

Afficheur-Calculateur

Cette relation qui s’instaure entre l’afficheur et le calculateur permet au code d’affi-
chage des résultats d’évoluer indépendamment du code qui effectue le calcul à pro-
prement parler, et inversement.

Relation multiple
Les relations multiples peuvent être implémentées très simplement par le biais
d’objets capables de gérer des séquences d’éléments, comme les listes ou les diction-
naires.

Dans l’exemple ci-après, la classe Voiture gère une liste de quatre instances d’objet
Roue.

class Calculateur(object):
 """ classe de calculs """
 def somme(self, *args):
 resultat = 0
 for arg in args:
 resultat += arg
 return resultat

class Afficheur(object):
 """ classe de gestion de l'interface """
 def __init__(self):
 self._calculateur = Calculateur()

 def somme(self, *args):
 resultat = self._calculateur.somme(*args)
 print('le résultat est %d' % resultat)

Techniques avancées
QUATRIÈME PARTIE

498

Voiture, toutes options

La classe Roue ici est totalement indépendante de la classe Voiture : si la voiture
cesse de fonctionner, il est possible de démonter les roues pour les vendre.

Les dictionnaires permettent quant à eux de disposer d’une interface de manipulation
plus directe : chaque objet de la collection est étiqueté par la clé de dictionnaire.

Les quatre filles du docteur Mars

Héritage multiple
L’héritage multiple sert à spécifier qu’une classe peut hériter de plusieurs classes.
Lorsque des méthodes entrent en conflit car portant le même nom, la méthode
visible est la première rencontrée par l’interpréteur, qui balaye les classes de gauche à
droite au moment de l’interprétation.

class Roue(object):
 pass

class Voiture(object):
 def __init__(self):
 self.roues = [Roue() for i in range(4)]

class FilleMars(object):
 def __init__(self, prenom):
 self.prenom = prenom

 def __str__(self):
 return '%s Mars' % self.prenom

class PapaMars:
 def __init__(self):
 self.filles = {}
 self.filles['Gibouléd'] = FilleMars('Gibouléd')
 self.filles['Josiane'] = FilleMars('Josiane')
 self.filles['Rebecca'] = FilleMars('Rebecca')
 self.filles['Sébonlé'] = FilleMars('Sébonlé')

 def crie_a_table(self):
 import sys
 for nom in self.filles:
 sys.stdout.write('%s, ' % self.filles[nom])
 sys.stdout.write('à table ! Le törglut va refroidir !\n')

docteur = PapaMars()
docteur.crie_a_table()

Programmation orientée objet
CHAPITRE 14

499

Héritage multiple

En pratique, l’héritage multiple est à proscrire tant que possible car il peut être assez
délicat à gérer : la complexité et les caractéristiques de la classe se démultiplient.

Métaclasses
Les métaclasses en Python ont été introduites par le biais de la variable
__metaclass__, présentée au chapitre 5.

Garbage collecting
Comme la plupart des langages modernes, Python offre un mécanisme
ramasse-miettes, ou garbage collecting : toute référence de classe créée en mémoire est
automatiquement libérée par l’interpréteur. Le développeur n’a donc plus besoin de
gérer la libération de ses objets.

>>> class A(object):
... def a(self):
... print('A.a')
...
>>> class B(object):
... def a(self):
... print('B.a')
... def b(self):
... print('B.b')
...
>>> class C(A, B):
... def c(self):
... print('C.c')
... def Aa(self):
... A.a(self)
...
>>> ob = C()
>>> ob.a()
A.a
>>> ob.b()
B.b
>>> ob.c()
C.c
>>> ob.Aa()
A.a

Techniques avancées
QUATRIÈME PARTIE

500

Design patterns orientés objet
Le concept de design pattern orienté objet a émergé avec les travaux de Gamma,
Helm, Johnson et Vlissides (appelés Gang of Four, ou GoF). Leur ouvrage, Design
Patterns : Elements of Reusable Object-Oriented Software (Addison Wesley, 1995),
regroupe des solutions à des problèmes récurrents de programmation.

Un pattern, selon le GoF, doit :
• porter un nom unique ;
• proposer une solution à un problème clairement énoncé ;
• décrire précisément les relations entre chaque acteur ;
• déterminer les conséquences de son utilisation.

En phase d’analyse, ce vocabulaire commun entre tous les développeurs permet de
décrire et concevoir la structure d’un programme objet de manière très précise. On
parle alors de Visitor, Mediator ou autre Factory.

Conçus à l’origine pour le C++, les design patterns (que nous nommerons parfois DP
par commodité dans la suite de chapitre) du GoF s’appliquent avec plus ou moins de
facilité et de bonheur dans les autres langages.

L’objectif de cette section est de présenter les DP dans le contexte de Python et de
proposer des implémentations avec les new-style classes.

Le GoF a regroupé les design patterns en plusieurs ensembles :
• les patterns de génération d’objets : composants en charge de créer de manière

contrôlée des objets ou structures d’objets ;
• les patterns fonctionnels : composants en charge d’implémenter un mode

d’exécution ;
• les patterns structurels : composants en charge d’organiser les relations entre plu-

sieurs classes, pour constituer une structure coopérative.

Patterns de génération d’objets
Lorsqu’un programme doit instancier un objet, la manière la plus simple est
d’appeler le constructeur d’une classe. Les patterns de génération d’objets fournissent
des outils de plus haut niveau pour contrôler ces créations.

Le code utilisateur ne s’adresse plus directement aux classes mais emploie les services
de ces patterns, sauf lorsque ces outils sont implémentés de manière transparente.

Les patterns les plus communs de cet ensemble sont :
• Le pattern Singleton qui permet de s’assurer qu’un type de classe ne peut être ins-

tancié qu’une seule fois dans un programme. Une variation est le pattern Borg,

Programmation orientée objet
CHAPITRE 14

501

qui vérifie que toutes les instances d’une même classe ont toujours le même état,
sans pour autant interdire la création de plusieurs instances.

• Factory, qui propose une interface de génération d’objets sans que le code appe-
lant n’ait besoin de connaître forcément le type de classe à instancier.

Singleton et Borg

Le Singleton peut être utilisé dans tout contexte où l’on souhaite s’assurer qu’il ne
peut pas y avoir pour une classe donnée deux instances actives dans le programme.

Les connecteurs vers des ressources externes peuvent utiliser ce pattern pour s’assurer
par exemple qu’il n’existe qu’une seule instance de la classe en charge de la connexion
avec un serveur de base de données.

Ce pattern peut être programmé en Python, en se basant sur la méthode de classe
__new__(), appelée à chaque demande d’instanciation d’un objet.

Singleton

Toute classe dérivée de la classe Singleton bénéficie du mécanisme qui consiste à
contrôler, au moment de l’instanciation d’un objet, qu’il n’existe pas déjà une ins-
tance en vie, par le biais de l’attribut statique _ref. Dans ce cas, l’objet n’est pas
recréé et c’est cette instance qui est renvoyée.

Figure 14–1
Schéma UML de Singleton

>>> class Singleton(object):
... """ renvoie tjrs la même instance """
... _ref = None
... def __new__(cls, *args, **kw):
... if cls._ref is None:
... cls._ref = super(Singleton, cls).__new__(cls, *args, **kw)
... return cls._ref
...
>>> class S(Singleton):
... pass
...
>>> a = S()
>>> b = S()
>>> a is b
True

Techniques avancées
QUATRIÈME PARTIE

502

La seule faille de Singleton est qu’il n’est effectif que pour les classes dont il est
directement dérivé, car un deuxième niveau de dérivation entraîne un problème
visualisé dans l’exemple ci-dessous.

Deux niveaux de dérivation

L’instanciation de b renvoie à l’objet instancié précédemment par a et b n’est pas,
comme le code semblerait l’indiquer, du type S2, mais du type S.

Ce problème est intrinsèque au pattern Singleton mais une variante consiste à lever une
exception sur toute nouvelle tentative d’instanciation au lieu de renvoyer le premier objet
pour éviter de rendre ce mécanisme transparent et de subir les problèmes énoncés.

Strict Singleton

>>> class Singleton(object):
... """ renvoie tjrs la même instance """
... _ref = None
... def __new__(cls, *args, **kw):
... if cls._ref is None:
... cls._ref = super(Singleton, cls).__new__(cls, *args, **kw)
... return cls._ref
...
>>> class S(Singleton):
... pass
...
>>> class S2(S):
... pass
...
>>> a = S()
>>> b = S2()
>>> type(b)
<class '__main__.S'>

>>> class SingletonError(Exception):
... pass
...
>>> class Singleton(object):
... """ provoque une erreur sur la deuxième instance """
... _ref = None
... def __new__(cls, *args, **kw):
... if cls._ref isnot None:
... raise SingletonError('Une instance existe déjà: %s'
... % str(cls._ref))
... cls._ref = super(Singleton, cls).__new__(cls, *args, **kw)
... return cls._ref
...

Programmation orientée objet
CHAPITRE 14

503

Alex Martelli, dans Python Cookbook (O’Reilly, 2001), propose une autre variante de
Singleton, nommée Borg ou Monostate, qui règle aussi ce problème et répond au
besoin du Singleton de manière plus fine : il part du constat que ce n’est pas l’unicité
de l’instance qui compte mais l’unicité de l’état de l’objet.

En d’autres termes, peu importe qu’il y ait plusieurs instances du moment qu’elles
partagent toutes le même état.

Pattern Borg

Borg rend commun à toutes les instances de la classe le dictionnaire interne
__dict__, et de par ce fait l’état. Le problème lié à plusieurs niveaux de dérivations
disparaît aussi.

>>> class S(Singleton):
... pass
...
>>> class S2(S):
... pass
...
>>> a = S()
>>> b = S2()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "<stdin>", line 6, in __new__
__main__.SingletonError: Une instance existe déjà: <__main__.S object at
0xb7c32a6c>

>>> class Borg(object):
... _shared_state = {}
... def __new__(cls, *args, **kw):
... instance = super(Borg, cls).__new__(cls, *args, **kw)
... instance.__dict__ = cls._shared_state
... return instance
...
>>> class B(Borg):
... pass
...
>>> a = B()
>>> a.A = 1
>>> b = B()
>>> b.A
1
>>> b.B = 2
>>> a.B
2
>>> a is b
False

Techniques avancées
QUATRIÈME PARTIE

504

Ce pattern est cependant dépendant d’éventuelles implémentations des méthodes
__setattr__() et __getattribute__() qui peuvent court-circuiter __dict__.

D’autres variations existent, comme Flyweight, qui proposent un fonctionnement
similaire à Singleton, mais gèrent un certain nombre d’instances définies par des
combinaisons de paramètres au moment de la construction, afin d’optimiser les créa-
tions d’objets en mémoire lorsque c’est important.

Factory
Le DP Factory est une fonction ou méthode qui renvoie une ou plusieurs instances
d’objets. Factory est omniprésent en Python, et l’exemple le plus parlant est la primi-
tive type().

Exemple d’utilisation de type()

La première écriture permet de générer tout type de classe et est équivalente à la
deuxième écriture explicite. Un autre exemple de Factory est la méthode __new__()
des new-style classes, qui contrôle la génération des instances de la classe.

Le champ d’action du DP Factory est relativement large et on peut se demander si
finalement, toute fonction qui renvoie un résultat ne répond pas à ce pattern, puisque
tout est objet en Python.

Il y a cependant un exemple d’utilisation plus concret de ce DP : lorsque le type
d’objet renvoyé par le Factory varie sans que le code appelant ne soit sensible à cette
variation. On parle dans ce cas d’Abstract Factory.

Par exemple, un Abstract Factory en charge de renvoyer une instance de connecteur
de base de données peut le faire en partant du postulat que le type d’objet renvoyé
importe peu, du moment qu’il dérive de la classe BaseDB. Le code appelant ne se
basant que sur les méthodes définies par BaseDB, il reste insensible au type de l’objet,
que ce soit OracleDB ou PostGresDB.

>>> MaClasse = type('MaClasse', (object,), {'a': 1})
>>> A = MaClasse()
>>> A.a
1
>>> class MaClasse(object):
... a = 1
...
>>> A = MaClasse()
>>> A.a
1

Programmation orientée objet
CHAPITRE 14

505

Patterns fonctionnels
Les patterns fonctionnels permettent de mettre en place des modèles d’exécution du
programme, c’est-à-dire de modéliser les relations qui se mettent en place entre
objets lorsqu’ils coopèrent pour exécuter une tâche.

Il existe énormément de patterns fonctionnels et les variantes sont nombreuses. On
ne présente ici que quelques DP majeurs :
• Le pattern Visitor, qui permet de manipuler des instances d’objets depuis un

algorithme récursif ;
• Observer, qui met en place un système de notification, où des objets sont préve-

nus d’un événement sur un objet donné ;
• Memento, un système de mémorisation de l’état d’un objet ;
• Chain of responsibility, qui met en place une chaîne d’objets, utilisée pour résou-

dre un problème : le premier maillon de la chaîne qui sait résoudre le problème
prend la main ;

• State, qui permet de changer dynamiquement le type d’un objet.

Visitor

Le pattern Visitor permet d’ajouter une méthode récursive à une classe dans une
autre classe spécialisée. Cette deuxième classe, appelée visiteur, implémente une
extension qui manipule la première classe.

Visitor

Figure 14–2
Schéma UML de Visitor

class Visitor(object):
 def __call__(self, visited):
 raise NotImplementedError

class Visited(object):
 def accept(self, visitor):

Techniques avancées
QUATRIÈME PARTIE

506

Chaque visiteur dispose en entrée de la fonction __call__() l’objet visité, qu’il peut
manipuler à sa guise. La classe visitée fournit quant à elle une méthode accept()
pouvant être appelée par tout visiteur.

Cette mécanique appelant-appelé permet de mettre en place des algorithmes récur-
sifs basés sur des objets organisés en structure.

L’exemple le plus typique est le parcours d’arbres par le biais d’objets nœuds.

Dans l’exemple ci-dessous, le visiteur Tick parcourt une structure de nœuds pour
déclencher les méthodes tick() de chaque nœud.

Visitor sur MaClasse

 ifnot isinstance(visitor, Visitor):
 raise TypeError("%s n’est pas un Visitor" % visitor)
 visitor(self)

class Node(Visited):

 def __init__(self):
 self.childs = []

 def tick(self):
 print('tick at %d' % id(self))

class Tick(Visitor):
 def __call__(self, visited):
 visited.tick()
 for child in visited.childs:
 child.accept(self)

root = Node()

for i in range(2):
 node = Node()
 for y in range(4):
 node.childs.append(Node())
 root.childs.append(node)

ticker = Tick()
ticker(root)

[..]

[tziade@Tarek Desktop]$ python visitor.py
tick at -1211997076
tick at -1211995892
tick at -1211995828

Programmation orientée objet
CHAPITRE 14

507

L’intérêt de ce DP est de permettre l’extension d’une classe sans avoir à modifier son
code, et de gérer chacune des extensions en fonction des situations et des instances :
le visiteur greffe à une instance de la classe visitée une nouvelle fonctionnalité, dans le
même principe que le DP Adapter.

Chaque visiteur peut en outre gérer plusieurs types de classes visitées pour parcourir
des structures hétérogènes.

Observer

Le DP Observer définit une dépendance de 1 à n entre un objet et une liste d’objets.
Si l’objet change d’état, tous les objets associés, en l’occurrence les observateurs, sont
notifiés de cet événement.

Ce pattern est très répandu dans les systèmes d’interfaces graphiques, où chaque évé-
nement de l’utilisateur est intercepté par un objet qui est en charge de prévenir à son
tour un certain nombre d’objets.

Le pattern initialement proposé par GoF stipule que les observateurs sont sensibles à
toute modification d’état de l’objet observé. Une variation, très communément
adoptée, affine ce mécanisme en laissant chaque observateur s’inscrire à un événe-
ment précis et nommé.

tick at -1211995796
tick at -1211995764
tick at -1211995732
tick at -1211995860
tick at -1211995668
tick at -1211995636
tick at -1211995604
tick at -1211995572

Figure 14–3
Schéma UML d’Observer

Techniques avancées
QUATRIÈME PARTIE

508

Pour implémenter Observer le code doit :
• Fournir une méthode d’enregistrement pour que chaque observateur puisse s’ins-

crire à un événement donné auprès de l’objet à observer.
• Implémenter un système qui intercepte un changement d’état et prévient les

observateurs inscrits.

L’événement est logiquement une classe à laquelle une liste est associée. Cette liste
contient l’ensemble des observateurs associés à l’événement.

Pour simplifier l’écriture, __iadd__() et __isub__() sont utilisées afin de permettre à
un observateur de :
• s’inscrire en s’ajoutant à l’événement : Evenement += Observateur ;
• se désinscrire en se soustrayant : Evenement -= Observateur.

L’implémentation proposée empêche en outre un même observateur de s’inscrire
plusieurs fois à un événement.

Classe Event

class Event(object):
 """ Classe événement """
 def __init__(self, name):
 self.name = name
 self._observateurs = []

 def __iadd__(self, observateur):
 """ ajoute un observateur """
 ifnot callable(observateur):
 raise TypeError("Doit être un objet appelable")

 observateurs = self._observateurs
 if observateur notin observateurs:
 observateurs.append(observateur)

 return self

 def __isub__(self, observateur):
 """ retire un observateur """
 observateurs = self._observateurs
 if observateur in observateurs:
 observers.remove(observateur)

 return self

 def __call__(self, *args, **kw):
 """ déclenche l'événement auprès de tous les inscrits """
 [observateur(*args, **kw) for observateur in self._observateurs]

Programmation orientée objet
CHAPITRE 14

509

La classe observée instancie ces événements en attributs pour les rendre accessibles
aux observateurs.

Enfin, les événements peuvent ensuite être déclenchés en fonction des besoins dans le
code de la classe, par la biais de la méthode __call__(), avec les paramètres souhaités.

Pattern Observer

class Fenetre(object):
 def __init__(self, name):
 self.name = name
 self.titre = 'titre de la fenêtre'
 self.contenu = 'contenu de la fenêtre'
 self.titreEvent = Event('titre')
 self.contenuEvent = Event('contenu')

 globalTitreEvent = Event('titre global')

 def changeTitre(self, titre):
 self.titre = titre
 self.titreEvent(titre)
 Fenetre.globalTitreEvent(self.name, titre)

 def changeContenu(self, contenu):
 self.titre = contenu
 self.contenuEvent(contenu)

class ObservateurTitre(object):
 def __init__(self, fenetre):
 fenetre.titreEvent += self

 def __call__(self, titre):
 print ('le titre a été changé en "%s" !' % titre)

class ObservateurContenu(object):
 def __init__(self, fenetre):
 fenetre.contenuEvent += self.contenuChange

 def contenuChange(self, contenu):
 print('le contenu a été changé en "%s" !' % contenu)

class ObservateurGlobal(object):
 def __init__(self, fenetre):
 fenetre.globalTitreEvent += self

 def __call__(self, name, titre):
 print('le titre de "%s" a été changé en "%s" !' \
 % (name, titre))

Techniques avancées
QUATRIÈME PARTIE

510

Les événements peuvent être statiques à la classe, comme globalTitreEvent, ou spé-
cifiques à chaque instance.

Exécution du script

D’autres variations sont possibles, notamment :
• proposer une implémentation de base de la classe observée, pour gérer des collec-

tions d’événements ;
• rendre les observateurs actifs, c’est-à-dire déclencher les événements avant que le

code qui modifie l’état ne soit effectué, pour qu’ils puissent influer sur les paramè-
tres d’exécution, ou même empêcher la suite de l’exécution ;

• donner la possibilité à un observateur de connaître les autres observateurs ;
• gérer des priorités dans l’ordre d’appel des observateurs ;
• etc.

Memento
Le DP Memento stipule que l’état d’un objet peut être sauvegardé à tout moment, et
rechargé avec cette sauvegarde en cas de besoin. Cette mémoire permet de mettre en
place du code transactionnel.

L’exemple le plus commun de code transactionnel est l’exécution de requêtes de mise
à jour d’une base de données relationnelle : en cas de problème, un retour en arrière
(rollback) est possible, pour remettre la base dans l’état précédent le début de la mise à
jour. En cas de succès, les modifications sont validées (commit).

fenetre = Fenetre('fenetre 1')
fenetre2 = Fenetre('fenetre 2')

ob1 = ObservateurTitre(fenetre)
ob2 = ObservateurContenu(fenetre)
ob3 = ObservateurGlobal(fenetre)

fenetre.changeTitre('nouveau titre')
fenetre.changeContenu('nouveau contenu')
fenetre2.changeTitre('nouveau titre2')

[tziade@Tarek Desktop]$ python observers.py
le titre a été changé en "nouveau titre" !
le titre de "fenetre 1" a été changé en "nouveau titre" !
le contenu a été changé en "nouveau contenu" !
le titre de "fenetre 2" a été changé en "nouveau titre2" !

Programmation orientée objet
CHAPITRE 14

511

Une transaction respecte donc le modèle de code suivant :

Code transactionnel

La limite de couverture de begin_transaction() est relativement floue et dépend
fortement du contexte : quelles sont et où sont les données à sauvegarder pendant la
transaction ?

Ce problème dépend entièrement du contexte, et l’implémentation proposée ci-dessous
place la granularité des transactions au niveau des classes : chaque méthode peut devenir
transactionnelle, et les attributs de l’objet sont les cibles de la sauvegarde.

L’implémentation la plus souple dans ce cas consiste à créer un decorator de classe pour
rendre transparente la transaction : chaque méthode transactionnelle peut être annotée
avec le decorator, qui se charge alors de sauvegarder l’état de l’objet et d’exécuter la
méthode. En cas de levée d’exception, un rollback est automatiquement effectué.

Memento

begin_transaction()
try:
 ...
except:
 rollback_transaction()

raise
else:
 commit_transaction()

import copy

def get_memento(objet):
 """ récupère l'état d'un objet """
 return copy.deepcopy(objet.__dict__)

def set_memento(objet, etat):
 """ restore un objet """
 objet.__dict__.clear()
 objet.__dict__.update(etat)

def transaction(methode):
 """ decorator de classe "transaction"

 rend les méthodes transactionnelles
 """
 def capsule(objet, *args, **kw):
 etat = get_memento(objet)
 try:
 return methode(objet, *args, **kw)

Techniques avancées
QUATRIÈME PARTIE

512

Le code est basé sur le module copy, qui recopie le contenu de __dict__. Cette tech-
nique entraîne donc les mêmes limitations que Borg pour les new-style classes.

Il est possible d’implémenter une méthode __deepcopy__() dans la classe. Elle
impactera directement le fonctionnement du decorator, ce qui peut être relativement
intéressant pour filtrer les données sauvegardées pendant la transaction.

Utilisation du decorator

 except:
 set_memento(objet, etat)
 raise

 return capsule

class M(object):

 def __init__(self):
 def o():
 print('OK')
 self.a = 12
 self.b = ['a', 32]
 self.l = o

 @transaction
 def run(self):
 self.b.append('c')
 self.o = 12
 self.a = '14'
 self.a += 1

objet = M()

try:
 objet.run()
except TypeError:
 pass

print(objet.a)
print(objet.b)
objet.l()

[...]

[tziade@Tarek Desktop]$ python memento.py
12
['a', 32]
OK

Programmation orientée objet
CHAPITRE 14

513

Dans l’exemple, la méthode run() modifie les attributs de l’objet et provoque une erreur
lorsqu’elle tente d’incrémenter a. La transaction assure un retour à l’état précédent.

Une extension intéressante de ce pattern est la mise en place de l’historisation des
transactions dans un journal : chaque état de l’objet est sauvegardé et un retour en
arrière illimité devient possible. Ce principe devient cependant relativement com-
plexe lorsque plusieurs objets transactionnels sont liés entre eux. La base de données
objet de Zope (ZODB) en est un exemple d’implémentation.

Chain of responsibility

Dans le module urllib2, présenté au chapitre 9, chaque option du protocole HTTP
est gérée par une classe spécifique appelée handler. Ces handlers sont chaînés et
regroupés dans une classe OpenDirector, qui est en charge de l’ouverture de l’URL.
Cette classe passe au premier handler de la chaîne la réponse du serveur, qui la traite,
ou transmet la demande au handler suivant, jusqu’à ce qu’un handler traite la réponse
et renvoie un résultat, ou que la fin de la chaîne soit atteinte.

Cette stratégie est une implémentation du DP Chain of Responsibility, et permet
d’adapter automatiquement des situations en fonction des informations à traiter, sans
que la classe qui reçoit ces informations (le director) n’ait besoin d’avoir d’expertise :
elle se contente de déposer les données sur un tapis roulant et d’attendre que les
résultats ressortent d’une des trappes du tapis.

L’autre avantage de cette approche est de pouvoir mettre en place un système de
plug-ins, où chaque nouvelle classe peut venir se greffer dans la chaîne sans avoir à
connaître le contexte.

Enfin l’ordonnancement permet de gérer des priorités entre les handlers lorsque deux
d’entre eux sont potentiellement capables de gérer des données.

Figure 14–4
Schéma UML Chain of responsi-
bility

Techniques avancées
QUATRIÈME PARTIE

514

Une implémentation possible de ce DP est de proposer un objet director qui implé-
mente une interface de publication, et un objet handler, capable de fonctionner
comme un nœud d’une liste chaînée : il connaît son voisin de droite, mis en place par
le director, et peut lui transmettre le travail.

Chain of responsibility

class Handler(object):
 """ classe de base d’un handler """
 def __init__(self, next_handler=None):
 self._next_handler = next_handler

 def __add__(self, next_handler):
 """ handler1 + handler2, place handler2 en noeud voisin
 et renvoi le handler2 si self._next_handler est pris,
 remonte la chaîne.
 """
 current_handler = self

 while current_handler._next_handler isnot None:
 current_handler = current_handler._next_handler

 current_handler._next_handler = next_handler
 return self

 def __call__(self, *args, **kw):
 """ Si la classe provoque une exception NotImplementedError,
 le prochain noeud est appelé, si il existe, et ainsi de suite
 """
 try:
 return self._handle(*args, **kw)
 except NotImplementedError:
 if self._next_handler isnot None:
 return self._next_handler(*args, **kw)
 else:
 raise NotImplementedError

 def _handle(self, *args, **kw):
 """ méthode à surcharger """
 raise NotImplementedError

class Director(object):
 """ le director est instancié avec le premier noeud de la chaîne """
 def __init__(self, first_handler):
 self._first_handler = first_handler

 def __call__(self, *args, **kw):
 return self._first_handler(*args, **kw)

Programmation orientée objet
CHAPITRE 14

515

La méthode __add__() du handler est relativement puissante ici, car elle permet de
construire très simplement la chaîne : quand un handler B est additionné à un han-
dler A, A parcourt la chaîne en partant de son voisin de droite pour aller placer le
handler B en bout de chaîne.

Le chaînage des appels se fait par le biais de l’exception NotImplementedError :
chaque handler qui ne sait pas gérer les données qui lui sont envoyées lève l’exception
pour appeler le suivant. Si aucun handler ne peut gérer les données, l’exception sort
de la chaîne.

Dans l’exemple ci-dessous, chaque handler est spécialisé dans un type de données.

Utilisation de Chain of responsibility

class StringHandler(Handler):
 """handler de string"""
 def _handle(self, data):
 if isinstance(data, str):
 return data.lower()
 else:
 raise NotImplementedError

class IntHandler(Handler):
 """handler de int"""
 def _handle(self, data):
 if isinstance(data, int):
 return data * 2
 else:
 raise NotImplementedError

class UnicodeHandler(Handler):
 """handler de unicode"""
 def _handle(self, data):
 if isinstance(data, unicode):
 return u'%s (unicode)' % data
 else:
 raise NotImplementedError

calculator = Director(StringHandler() + IntHandler() + UnicodeHandler())

print(calculator(1))
print(calculator(u'test'))
print(calculator('test'))
print(calculator(object()))

[...]

[tziade@Tarek Desktop]$ python chain_of_responsibility.py
2

Techniques avancées
QUATRIÈME PARTIE

516

Une variante de ce DP consiste à parcourir entièrement la chaîne. Cette nuance est
relativement commune dans les logiciels de traitement du signal : les filtres qui trans-
forment les données peuvent être chaînés pour être appliqués les uns après les autres.

State
Le DP State stipule qu’un objet déjà instancié peut changer à tout moment de classe,
et donc de comportement. Cette propriété permet l’implémentation d’automates à
état fini (Finite State Machine).

Cette manipulation est impossible pour la plupart des langages de programmation
objet qui définissent une bonne fois pour toutes le type d’une instance. Python est
l’un des rares langages à le permettre car il est construit sur le principe de la
délégation : un objet donné exécute le code défini dans une classe et peut à tout
moment exécuter le code d’une autre classe. Appeler instance.x() pour un objet de
classe X est donc équivalent à l’appel de X.x(instance).

Changement de classe d’une instance

test (unicode)
test
Traceback (most recent call last):
 File "chain_of_responsibility.py", line 79, in ?
 print(calculator(object()))
 File "chain_of_responsibility.py", line 46, in __call__
 return self._first_handler(*args, **kw)
 File "chain_of_responsibility.py", line 32, in __call__
 return self._next_handler(*args, **kw)
 File "chain_of_responsibility.py", line 32, in __call__
 return self._next_handler(*args, **kw)
 File "chain_of_responsibility.py", line 34, in __call__
 raise NotImplementedError
NotImplementedError

>>> class A(object):
... def a(self):
... print('%s est passé par A' % str(self))
...
>>> class B(object):
... def b(self):
... print('%s est passé par B' % str(self))
...
>>> objet = A()
>>> objet.a()
<__main__.A object at 0xb7c268ac> est passé par A
>>> B.b(objet)
Traceback (most recent call last):

Programmation orientée objet
CHAPITRE 14

517

Le seul contrôle effectué par l’interpréteur est de vérifier que l’attribut __class__ de
l’instance corresponde à la classe traversée. Il suffit donc de le changer pour rendre
l’objet compatible.

Il est cependant nécessaire de prendre quelques précautions supplémentaires au
moment du changement d’état :
• Le constructeur de la classe doit être appelé, pour assurer l’intégrité de l’état de

l’objet.
• Les attributs privés de l’objet, stockés dans __dict__ sous la forme
_Classe_attribut, doivent être manuellement supprimés, même si ces résidus ne
peuvent pas en théorie poser de problèmes.

State

 File "<stdin>", line 1, in ?
TypeError: unbound method b() must be called with B instance as first
argument (got A instance instead)
>>> # qu'à cela ne tienne...
...
>>> objet.__class__ = B
>>> B.b(objet)
<__main__.B object at 0xb7c268ac> est passé par B
>>> objet.b()
<__main__.B object at 0xb7c268ac> est passé par B

class State(object):

 def change_state(self, class_, *args, **kw):
 """ méthode de changement dynamique de classe """

 # permet d'éviter une réinitialisation
 if self.__class__ is class_:
 return None

 # suppression des attributs privés
 # spécifiques à la classe en cours
 class_name = self.__class__.__name__
 for attribute in tuple(self.__dict__):
 if attribute.startswith('_%s__' % class_name):
 del self.__dict__[attribute]

 # passage au nouveau type
 self.__class__ = class_

 # initialisation
 if hasattr(self, '__init__'):
 self.__init__(*args, **kw)

Techniques avancées
QUATRIÈME PARTIE

518

D’autres DP peuvent implémenter ce principe mais le gros intérêt de State est que
l’objet s’auto-suffit : il n’est pas nécessaire ici d’implémenter une classe qui orchestre
les transitions, et suivre le code devient nettement plus simple.

Patterns structurels
Les patterns structurels permettent d’organiser plusieurs classes en structures, ou com-
posants. Les patterns structurels se ressemblent généralement beaucoup car ils mettent
tous en œuvre des agrégations ou des encapsulations, mais ils répondent chacun à des
problèmes précis, et leurs différences se creusent à l’usage, sur le code appelant :
• utiliser Adapter permet de recombiner des relations entre classes.
• Facade est utile pour masquer un système et limiter son accès.
• Proxy quant à lui, est un intermédiaire entre le code et un type d’objet, et diffère

d’Adapter car il permet d’implémenter une couche logique supplémentaire.

Adapter
Le DP Adapter permet d’adapter une classe pour l’utiliser dans un contexte d’exécu-
tion prévu pour d’autres classes. La classe est encapsulée dans une deuxième classe
(l’Adapter) qui se charge de fournir au contexte les interfaces attendues et de traduire
en interne les appels pour qu’ils soient compréhensibles par la classe adaptée.

Les Adapters sont de véritables liants pour la mise en place d’interactions entre com-
posants qui n’ont pas été prévus pour fonctionner ensemble au départ. Ils peuvent
aussi permettre de gérer les problématiques de versions lorsque l’interface d’un com-
posant externe évolue. On parle alors de découplage, le code spécifique au contexte
étant restreint dans la classe d’adaptation.

Il n’existe pas d’implémentation générique pour ce pattern. Le seul principe commun
entre les Adapters est la façon dont ils sont créés : l’objet adapté est un paramètre du
constructeur de l’Adapter.

La classe StringIO est un bon exemple d’Adapter : elle simule le fonctionnement
d’un objet de type file en fournissant toutes les méthodes de lecture, et travaille en
interne avec un objet de type string.

Adapter StringIO

>>> import cStringIO
>>> file = cStringIO.StringIO('contenu du fichier')
>>> file.readlines()
['contenu du fichier']
>>> file.seek(0)

Programmation orientée objet
CHAPITRE 14

519

StringIO peut donc être utilisé en lieu et place de tout type fichier, lorsqu’un flux de
lecture est attendu : le code appelant ne fait pas la différence.

Ce pattern est bien sûr sensible à tous les tests effectués sur le type de classe d’un
objet lorsque ce dernier traverse le code adapté, comme un test isinstance(objet,
classe), mais ce problème est restreint à son utilisation sur du code non maîtrisé et il
reste possible de tricher en modifiant l’attribut __class__.

Un autre exemple d’utilisation d’Adapter est l’implémentation du modèle docu-
ment-vue. En quelques mots, ce modèle stipule qu’une classe qui implémente une
certaine fonctionnalité ne doit pas, si elle est utilisée dans une interface de visualisa-
tion, être étendue pour fournir les méthodes qui permettent de l’afficher.

En d’autres termes, l’affichage est spécifique à un type d’interface et cette logique
doit être découplée de la classe car elle n’évolue pas de la même manière.

Adapter, exemple 2

>>> file.read()
'contenu du fichier'
>>> file.close()

class MaClasse(object):

 def __init__(self):
 self.a = 2
 self.b = 4
 def calcul(self):
 return self.a + self.b

class InterfaceMaClasse(object):

 def __init__(self, contexte):
 self.contexte = contexte

 def afficheCalcul(self):
 resultat = self.contexte.calcul()
 print resultat

 def saisieValeurs(self):
 a = int(raw_input('saisissez a: '))
 b = int(raw_input('saisissez b: '))

if __name__ == '__main__':

 A = MaClasse()
 interface = InterfaceMaClasse(A)
 interface.saisieValeurs()

Techniques avancées
QUATRIÈME PARTIE

520

Dans cet exemple, InterfaceMaClasse implémente toute la couche d’interaction
avec l’utilisateur : MaClasse reste indépendante de cette logique d’affichage.

Facade
Le DP Facade peut être considéré comme un Adapter multiple : lorsqu’une opéra-
tion met en œuvre un certain nombre de classes, il peut être intéressant de masquer
cette complexité dans une classe qui ne publie que l’opération.

Facade n’a de sens que si la classe qui publie l’opération est correctement nommée et
que les classes sous-jacentes ne sont pas appelées ailleurs dans le programme pour le
même type de besoin. Comme pour Adapter, il n’existe pas de modèle générique
particulier pour Facade.

Dans l’exemple ci-dessous, une archive tar est construite à partir d’un fichier et de
son empreinte MD5. Cette opération nécessite l’utilisation d’un objet de type file,
de la classe md5 du module éponyme et du module tarball.

Facade

 interface.afficheCalcul()

[...]

[tziade@Tarek Desktop]$ python adapter2.py
saisissez a: 1
saisissez a: 5
6

class Archiveur(object):

 def archive_fichier(self, nom):
 # importations locales
 import md5
 import tarfile
 import os

 # création de l'archive
 nom_archive = '%s.tgz' % nom
 archive = tarfile.TarFile(nom_archive, 'w')
 archive.add(nom)

 # ajout du fichier à l'archive
 with open(nom, 'rb') as fichier:
 # md5
 calculateur = md5.new()

Programmation orientée objet
CHAPITRE 14

521

Cet exemple pousse la logique jusqu’au bout puisque les importations sont aussi
locales à l’opération : tout est masqué.

Proxy
Le DP Proxy permet de représenter et de contrôler tous les accès à un objet par le
biais d’un deuxième objet. On compte plusieurs types de proxy, dont :
• Le Virtual Proxy, qui ne permet de gérer l’instanciation de l’objet sous-jacent que

lorsqu’on y accède réellement.
• Le Remote Proxy, qui permet l’accès à un objet distant. Ce proxy publie les métho-

des de l’objet mais ajoute le protocole réseau pour échanger avec l’objet distant.

Construits comme les Adapters, les Proxies n’ont pas à proprement parler de modèle
générique : chaque implémentation dépend du contexte.

Dans l’exemple ci-dessous, le Virtual Proxy mis en œuvre permet de manipuler des
fichiers vidéos de grande taille sans avoir à les ouvrir : seules les métadonnées sont
chargées et permettent l’utilisation du fichier. On n’accède aux données qu’en cas de
nécessité (méthode donnees()).

Virtual Proxy

 for line in fichier:
 calculateur.update(line)

 empreinte = calculateur.hexdigest()

 # création et ajout du fichier md5
 nom_empreinte = os.tmpname()
 with open(nom_empreinte, 'w') as fichier:
 fichier_empreinte.write(empreinte)

 archive.add(nom_empreinte, '%s.md5' % nom)
 archive.close()

if __name__ == '__main__':
 archiveur = Archiveur()
 archiveur.archive_fichier('memento.py')

import os
import stat

class VideoFile(object):

 def __init__(self, nom):
 self.nom = nom
 self.stats = os.stat(nom)

Techniques avancées
QUATRIÈME PARTIE

522

En un mot...
Le principe des design patterns est de déceler des schémas récurrents de programma-
tion pour les systématiser.

Seuls les designs patterns les plus fréquents ont été présentés ici, et le lecteur inté-
ressé pourra se référer, en complément du livre du GoF, à Pattern-oriented Software
Architecture, a system of patterns (Buschmann, Meunier, Rohnert, Sommerlad, Stal
aux Éditions Wiley) pour y retrouver d’autres exemples et les porter à Python.

 def derniere_modification(self):
 return self.stats[stat.ST_MTIME]

 def dernier_acces(self):
 return self.stats[stat.ST_ATIME]

 def taille(self):
 return self.stats[stat.ST_SIZE]

 def donnees(self):
 return iter(open(self.nom))

if __name__ == '__main__':

 fichier = VideoFile('/home/tziade/Capture.avi')
 print('taille: %d octets' % fichier.taille())
 print('dernier accès: %s ' % str(fichier.dernier_acces()))

 # lecture des données
 iterateur = fichier.donnees()
 for i in range(10):
 print(str(iterateur.next()))

À SAVOIR Le module weakref

Le module standard weakref permet de mettre en place des patterns équivalents à l’aide de références
faibles vers les objets, c’est-à-dire des références qui n’empêchent pas l’objet d’être détruit.

Le langage Python a été créé à la fin des années 1980 à l’Institut national de recher-
ches mathématiques et informatiques de Hollande (le CWI) par Guido van Rossum.
Par commodité, nous utiliserons le raccourci GvR pour nommer ce dernier dans la
suite de cette annexe.

Le langage ABC
GvR a rejoint le CWI en 1983 dans l’équipe en charge du développement du langage
ABC, sur lequel il a travaillé pendant 3 ans. Cette période a fortement influencé
GvR sur la conception de Python, qui hérite de certains des concepts d’ABC.

Le langage ABC est un langage de programmation interactif fortement typé, qui a
été pensé pour remplacer le Basic, largement répandu à l’époque, en fournissant un
environnement particulier ainsi que d’autres caractéristiques notables, comme le
typage spécifique des données et la syntaxe par indentation.

Environnement de développement
La particularité de l’environnement d’ABC est qu’il n’est pas nécessaire de sauve-
garder fonctions et procédures dans des fichiers sources : une fois entrées dans l’envi-
ronnement interactif, leur saisie dans l’invite de commande (le prompt, symbolisé
sous ABC par >>>) les conservent automatiquement d’une exécution à l’autre.

A
L’histoire de Python

Programmation Python
ANNEXES

524

Un système de complétion de code permet en outre de faciliter la saisie des com-
mandes. Enfin, un historique autorise de revenir en arrière sans limite.

Types de données
ABC fournit 5 types, qui permettent d’exprimer toutes formes de structures de
données :
• le type nombre, pour les entiers et les réels, sans aucune limite de taille, hormis la

mémoire physique disponible de la machine ;
• le type text, pour les chaînes de caractères ;
• le type list, pour manipuler des collections d’éléments ordonnés ;
• le type compound, équivalent au type list mais non modifiable. C’est une sorte de
recordset sans étiquette ;

• le type table, qui définit un certain nombre de clés uniques, et associe une valeur
à chacune d’entre elles. Ce type est comparable à une combinaison de deux ins-
tances de type list : les clés et les valeurs.

Exemple de manipulation de table sous ABC

Il n’est pas nécessaire ici de signaler que la variable distance_paris est de type
table, ABC le fait automatiquement lors de la première affectation.

Indentation du code
L’imbrication de code ABC n’est pas faite comme en C ou en Pascal par des acco-
lades ou des délimiteurs begin..end. C’est l’indentation des lignes qui détermine le
niveau d’imbrication du code.

Exemple de définition de la fonction message

>>> PUT {} IN distance_paris
>>> PUT 300 IN distance_paris["Dijon"]
>>> PUT 220 IN distance_paris["Lille"]
>>> PUT 770 IN distance_paris["Marseille"]
>>> WRITE distance_paris["Dijon"]
300
>>> WRITE distance_paris
{["Dijon"]: 300; ["Lille"]: 220; ["Marseille"]: 770}

HOW TO DISPLAY message:
 FOR line IN message:
 WRITE line /

L’histoire de Python
ANNEXE

525

Le projet ABC n’a malheureusement pas eu le succès escompté en dehors du cercle
du CWI et est resté relativement confidentiel.

Le projet Amoeba
GvR a rejoint en 1986 le projet Amoeba, un système d’exploitation distribué. Il a été
chargé dans ce cadre de créer un langage de script pour manipuler le système plus
facilement. Les contraintes du projet étaient relativement souples pour laisser GvR,
fort de son expérience passée, mettre au point une première version de ce qui allait
devenir le langage Python.

GvR implémenta ce langage de script en essayant de supprimer toutes les contraintes
et frustrations qu’il avait vécues avec ABC.

Par exemple, ABC ne permettait pas de lire et écrire dans un fichier, et cette fonc-
tionnalité ne pouvait pas être ajoutée facilement au langage, dénué de tout concept
de bibliothèque ou de tout système de programmation d’entrée/sortie souple.

L’extensibilité fut le premier chantier de GvR car il voulait que Python, même si son
objectif premier était de fonctionner pour Amoeba, puisse être étendu facilement par
des programmeurs tiers en se basant sur un socle commun de primitives et des points
d’entrée simples.

L’idée de rendre le langage portable, c’est-à-dire fonctionnel sur plusieurs
plates-formes comme Amoeba bien sûr, mais aussi sur MS-Windows, Unix ou Mac-
intosh, était aussi un objectif de GvR.

À un moment de l’histoire de l’informatique où les ordinateurs commençaient à
envahir les entreprises et les foyers, le manque d’extensibilité et de portabilité con-
damnait ABC à un rôle mineur, et GvR, en visionnaire, a su ouvrir les portes de son
langage de script.

GvR conçut les premières versions du langage qu’il appela Python, à la gloire des
Monty Python dont il était fan. Lorsque la liste de diffusion fut créée plus tard, il
n’était pas rare de voir régulièrement des messages de fans des Monty Python, ne
pensant pas avoir affaire à un langage de programmation.

>>> DISPLAY "ABC est l'ancêtre de Python"
ABC est l'ancêtre de Python

EN SAVOIR PLUS Le langage ABC

Pour plus d’informations sur le langage ABC, Le lecteur interessé peut se référer à l’ouvrage The ABC
Programmer’s Handbook (Geurts, Meertens, Pemberton, aux Éditions Prentice-Hall).

Programmation Python
ANNEXES

526

Dans les premières versions du langage, le système d’extension qui permettait
d’ajouter de nouveaux types d’objets à Python à partir d’un fichier de code Python ou
un fichier compilé en C, C++ ou encore en Fortran, a tout de suite été adopté et plé-
biscité par l’entourage de GvR.

Les versions de Python s’enchaînèrent jusqu’à la version 1.2 en 1995, date à laquelle
GvR quitta le CIW pour rejoindre le CNRI (Corporation of National Research Ini-
tiatives) à Reston en Virginie (USA) pour continuer ses travaux.

Le CNRI
Cet organisme finança le développement de Python pendant cinq ans, par le biais de
fonds de recherche. La Python Software Activity (PSA), le Python Consortium et des
sociétés privées apportèrent également des fonds pour soutenir l’avancée du langage.
Le travail au CNRI a permis de sortir plusieurs versions de Python, de la 1.3 à la 1.6.

En 2000, GvR prit la décision de quitter le CNRI, car les fonds alloués à Python
étaient de plus en plus maigres et les développeurs dispatchés sur d’autres projets. De
plus, l’organisme ne semblait pas très favorable au logiciel libre.

Ce départ fut relativement tendu et le CNRI insista pour modifier le texte de la
licence de Python pour garder une mainmise, en provoquant à l’époque une grande
inquiétude de la communauté sur la suite des événements.

Accompagné de 3 autres développeurs du CNRI, GvR fonda le PythonLabs, et
rejoignit la startup Californienne BeOpen.com.

PythonLabs et BeOpen.com
Avec l’arrivée à BeOpen.com, l’équipe du PythonLabs passa directement de la ver-
sion 1.6 à la 2.0, en intégrant des améliorations majeures, comme les list comprehen-
sions, le support étendu du XML, un nouveau système de ramasse-miettes cyclique,
et une nouvelle licence plus orientée Open Source.

Le projet Python 3000 était lancé en parallèle, pour accueillir la nouvelle version de
Python, vouée à contenir des modifications incompatibles avec les versions 2.x, pour
corriger des erreurs de conception du langage.

Un système d’avertissement a alors été introduit pour permettre de spécifier les com-
patibilités ascendantes et descendantes du langage.

L’histoire de Python
ANNEXE

527

En d’autres termes, toute introduction de nouvelle fonctionnalité incompatible avec
la version en cours, peut être aperçue et utilisée par le biais du module __future__, et
toute fonctionnalité qui n’existera plus dans la version suivante affiche un warning
lorsqu’elle est utilisée.

Ce système est d’ores et déjà utilisé dans la série des versions 2.x.

Python Software Foundation et Digital Creations
Moins d’un an après l’arrivée à BeOpen.com, l’équipe de PythonLabs déménage une
nouvelle fois pour rejoindre Digital Creation, la société qui allait devenir par la suite
Zope Corp.

En Mars 2001, la Python Software Foundation voit le jour et remplace la PSA,
annoncée par GvR à la neuvième conférence Python, et sponsorisée par les sociétés
Digital Creation et ActiveState, contributeurs majeurs de la communauté Python de
l’époque.

Le premier comité directeur réunissait des membres de PythonLabs et des responsa-
bles des deux sociétés, à savoir : Dick Hardt, David Ascher, Paul Everitt, Fredrik
Lundh, Tim Peters, Greg Stein, Guido van Rossum et Thomas Wouters.

Les versions de Python se sont ensuite enchaînées jusqu’à la toute dernière en 2009
au moment de l’écriture de ce livre (3.0).

Python et Zope
Python a joué un rôle fondamental pour le développement du framework Zope, et
inversement, Zope a beaucoup contribué au développement du langage.

Le texte ci-dessous est une interview de Paul Everitt, créateur de Digital Creations,
l’entreprise qui conçoit Zope, et qui répond à la question suivante :

Quelle a été la place de Python dans l’histoire de Zope et Digital Creations ?

En 1995, la société Digital Creations a été créée pour mettre en ligne des journaux.
Nous avons utilisé Python pour concevoir l’architecture de notre plate-forme de
journaux en ligne et avons beaucoup participé à la communauté Python.

Jim Fulton (ndlr : directeur technique actuel) a rejoint l’entreprise l’année suivante et
a lancé l’idée de publier des objets Python via le Web. Le framework « Bobo » était
né et distribué sous licence Open Source.

Programmation Python
ANNEXES

528

Une application commerciale nommée Principia et entièrement écrite en Python fai-
sait également partie de nos travaux.

En 1997, nous avons été sortis du consortium des journaux et conservé la propriété
intellectuelle. En 1998, Hadar Pedhazur a investi dans l’entreprise, et nous avons
concentré nos travaux Python, dans un seul et même produit Open Source : Zope.
Une large communauté de développeurs pour la plupart issus de l’Open Source s’est
construite autour du projet.

Python était dans notre sang dès le départ. Jim et moi sommes allés à la toute pre-
mière conférence Python publique (20 personnes). Jim était alors considéré comme
un, sinon le principal contributeur du noyau du langage Python.

Grâce à Python, nous étions capables de construire des systèmes web, comme des
systèmes de petites annonces électroniques très dynamiques en un temps record, ce
qui nous rendait très compétitifs.

Parallèlement, lorsque nous avons conçu Principia, le serveur d’applications proprié-
taire, nous avions décidé de cacher Python. Cette décision a eu un énorme impact
aussi bien positif que négatif, sur le fonctionnement de Zope. Les idées de gérer tout
un site à travers des interfaces d’administration en ligne, de stocker des portions de
code restreint dans une base de données (ndlr : la ZODB), et d’étendre le serveur par
des paquets d’extension, vinrent de cette décision.

Nous avons aussi apporté une nouvelle audience pour le langage Python, puisque
beaucoup de gens qui choisissaient Zope, n’avaient jamais fait de Python auparavant
(à la première conférence Zope à l’ICP8, la moitié de l’audience n’avait jamais utilisé
Python avant Zope).

Malheureusement le choix de cacher Python a également généré une confusion sur
ce qu’était Zope. La communauté Python jugeait Zope 2 comme un framework pas
très Pythonique. De plus, Zope 2 lui-même vivait une crise d’identité : était-ce un
produit destiné aux intégrateurs, ou un produit orienté développeur ?

Zope 3 a résolument pris un tournant en orientant le framework vers un outil pour
développeurs.

Des journalistes comme Jon Udell ou Edd Dumbill considèrent que Zope est l’un
des frameworks où l’Open Source a réellement vécu des innovations, pour la plupart
issues des idées de Jim Fulton. Le langage Python influença beaucoup Jim dans ses
idées, et offrit à Zope des fonctionnalités magnifiques : l’idée de publier des objets
sur le Web est devenu un sujet informatique d’actualité, 9 ans après que Jim l’ait fait.

Une base de données transactionnelle distribuée d’objets Python, utilisée dans des
sites commerciaux énormes, c’est un résultat impressionnant. L’histoire de Zope et
Python est maintenant vieille de 10 ans. Place maintenant à un nouveau chapitre :

L’histoire de Python
ANNEXE

529

Zope 3 et son souhait d’être plus pythonique que son prédécesseur et d’intéresser
d’avantage la communauté Python.

-- Paul Everitt, fondateur de Digital Creations.

BLOG L’histoire continue...

Il y a quelque temps, Guido van Rossum a initié un blog dédié à l’histoire de Python. Il contient beaucoup
plus de détails que cette annexe. Un blog à surveiller donc, pour être au fait des derniers événements liés
au langage.
B http://python-history.blogspot.com/

La philosophie Batteries Included de Python rencontre ses limites lorsque des fonc-
tionnalités très spécifiques sont recherchées. Cette limitation n’est cependant pas
bloquante grâce à la facilité d’extension du langage : il est possible de trouver des
bibliothèques tierces pour la quasi-totalité des besoins.

D’autre part, certains modules initialement présents dans la bibliothèque standard
ont été volontairement délaissés au fur et à mesure des versions du langage, pour pré-
férer des solutions externes.

Cette annexe liste un certain nombre de bibliothèques externes, les plus fréquem-
ment utilisées, organisées par thèmes :
• bases de données ;
• traitement de texte ;
• packaging, distribution ;
• tests fonctionnels et contrôle qualité ;
• MS-Windows ;
• interfaces graphiques ;
• reporting et conversion ;
• jeux et 3D ;
• audio et vidéo ;
• bibliothèques scientifiques ;
• Web.

B
Bibliothèques tierces

Programmation Python
ANNEXES

532

Chacune des bibliothèques est présentée par un court texte et une URL suit le même
schéma d’installation, présenté ci-après.

Installer une bibliothèque externe
L’ensemble des bibliothèques externes présentées dans cette annexe sont très simples
à installer car basées sur le module distutils, présenté au chapitre 13. Ces biblio-
thèques externes sont souvent livrées dans un fichier compressé sous la forme
NomDuPaquet-version.zip ou NomDuPaquet-version.tar.gz.

Installer une extension se fait en trois étapes :
1 décompression du paquet, par l’outil tar ou équivalent ;
2 construction du paquet dans le répertoire de décompression, par l’option build

du script setup.py ;
3 installation du paquet dans Python, par l’option install du script setup.py.

Lorsque la première étape est effectuée, on retrouve dans le répertoire décompressé
une structure commune à toutes ces bibliothèques, à savoir :
• Un fichier setup.py, qui contient la configuration et l’appel au framework
distutils.

• Un fichier setup.cfg, optionnellement présent, qui contient des informations
supplémentaires, lorsqu’une compilation est nécessaire.

• Des informations sur l’extension, contenues dans les fichiers INSTALL et README.
• Une certain nombre de fichiers source.

La construction du paquet prépare un sous-répertoire build qui contient les élé-
ments à fournir à Python.

Enfin, la dernière étape recopie ces fichiers dans le répertoire site-packages de
l’installation de Python. Elle peut donc nécessiter les droits d’administrateur.

Installation de lxml

$ tar -xzf lxml-0.7.tgz
$ cd lxml
$ python setup.py build
running build
running build_py
creating build
creating build/lib.linux-i686-2.4
creating build/lib.linux-i686-2.4/lxml
creating build/lib.linux-i686-2.4/lxml/tests
[...]

Bibliothèques tierces
ANNEXE

533

Une fois l’installation effectuée, le nouveau module doit être disponible dans le
prompt.

Vérification de l’installation

Lorsque le paquet est disponible sur PyPI, il est possible d’utiliser setuptools ou pip
pour procéder à une installation automatique.

Utilisation de setuptools
setuptools est une bibliothèque tierce qui fournit des fonctionnalités au-dessus de
distutils, dont un script d’installation de paquets disponibles sur PyPI.

Son installation est simplifiée par un script appelé ez_setup.py, disponible sur le site
du projet setuptools, à l’adresse : http://peak.telecommunity.com/dist/ez_setup.py.

$ sudo python setup.py install
running install
running build
running build_py
running build_ext
running install_lib
creating /usr/lib/python2.4/site-packages/lxml
creating /usr/lib/python2.4/site-packages/lxml/tests
copying build/lib.linux-i686-2.4/lxml/tests/test_etree.py -> /usr/lib/
python2.4/site-packages/lxml/tests
[...]

tziade@Tarek:/home/packages/lxml$ python
Python 2.4.1 (#2, Mar 30 2005, 21:51:10)
[GCC 3.3.5 (Debian 1:3.3.5-8ubuntu2)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import lxml
>>>

À SAVOIR Contrôler la bonne installation d’une bibliothèque

Certaines bibliothèques fournissent des tests (souvent basés sur le framework pyUnit) qui peuvent être
lancés pour vérifier que l’installation est correcte et que tout fonctionne comme prévu.

B http://peak.telecommunity.com/DevCenter/setuptools

Programmation Python
ANNEXES

534

Installation de setuptools

Une fois setuptools installé, une nouvelle commande appelée easy_install est dis-
ponible. Elle installe tout paquet disponible sur PyPi, grâce à son nom.

Installation de BeautifulSoup avec easy_install

$ wget http://peak.telecommunity.com/dist/ez_setup.py
--2009-03-05 23:12:12-- http://peak.telecommunity.com/dist/ez_setup.py
Résolution de peak.telecommunity.com... 209.190.5.234
Connexion vers peak.telecommunity.com|209.190.5.234|:80...connecté.
requête HTTP transmise, en attente de la réponse...200 OK
Longueur: 9716 (9,5K) [text/plain]
Saving to: `ez_setup.py'

100%[===================================>] 9.716 35,0K/s in 0,3s

2009-03-05 23:12:12 (35,0 KB/s) - « ez_setup.py » sauvegardé [9716/9716]
$ python ez_setup.py -U setuptools
Searching for setuptools
Reading http://pypi.python.org/simple/setuptools/
Best match: setuptools 0.6c9
Processing setuptools-0.6c9-py2.6.egg
setuptools 0.6c9 is already the active version in easy-install.pth
Installing easy_install script to /Library/Frameworks/Python.framework/
Versions/2.6/bin
Installing easy_install-2.6 script to /Library/Frameworks/
Python.framework/Versions/2.6/bin

Using /Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/
site-packages/setuptools-0.6c9-py2.6.egg
Processing dependencies for setuptools
Finished processing dependencies for setuptools

$ easy_install BeautifulSoup
Searching for BeautifulSoup
Reading http://pypi.python.org/simple/BeautifulSoup/
Reading http://www.crummy.com/software/BeautifulSoup/
Reading http://www.crummy.com/software/BeautifulSoup/download/
Best match: BeautifulSoup 3.1.0.1
Downloading http://www.crummy.com/software/BeautifulSoup/download/
BeautifulSoup-3.1.0.1.tar.gz
Processing BeautifulSoup-3.1.0.1.tar.gz
…

Bibliothèques tierces
ANNEXE

535

Bases de données
Python fournit les briques de base (DBAPI) à tout type de connecteur de base de
données et propose quelques modules d’accès à des formats ultra standards comme
BerkeleyDB. Cependant, aucun connecteur aux SGBD courants n’est intégré dans la
bibliothèque standard.

Toutes les bases de données du marché peuvent être bien évidemment attaquées
depuis Python, et cette section présente les connecteurs les plus courants. Elle inclut
également un connecteur LDAP et un ORM.

Gadfly
Codé en Python, Gadfly est un mini-système SGBD complet. L’installation de cette
extension permet de créer des fichiers de stockage qui peuvent être manipulés via le
langage SQL, en mode direct ou en mode client-serveur.

Gadfly supporte une charge relativement limitée et est en général utilisé pour le pro-
totypage d’applications client-serveur : la norme DBAPI étant respectée, ce connec-
teur peut être facilement interchangé sans modification de code.

pysqlite
pysqlite est un connecteur compatible DBAPI vers le système SQLite. Ce système
léger de SGBD (non client-serveur) est de plus en plus prisé dans les applications qui
ont des besoins de stockage simples et un accès unique aux données, comme les
applications web. sqlite est parfois plus rapide que les SGBD client-serveur classi-
ques.

mysql-python
mysql-python est un connecteur vers le célèbre SGBD MySQL.

B http://gadfly.sourceforge.net/

B http://initd.org/tracker/pysqlite

B http://sourceforge.net/projects/mysql-python

Programmation Python
ANNEXES

536

psycopg
Connecteur pour PostgreSQL.

ODBC
Certaines bases de données sous MS-Windows peuvent être accédées par le biais de
l’ODBC (Open DataBase Connectivity). La bibliothèque Python Win32 Exten-
sions fournit un certain nombre de modules dédiés à MS-Windows, dont le module
ODBC.

python-ldap
python-ldap expose les API de OpenLDAP 2.x et quelques utilitaires annexes (lec-
tures LDIF). Cette bibliothèque permet d’utiliser tout type de serveur compatible
avec le standard LDAP (OpenLDAP, ActiveDirectory, etc.).

SQLAlchemy
SQLAlchemy est un ORM (Object-Relational Mapper) très utilisé dans la commu-
nauté. Un ORM permet de manipuler une base de données à travers des objets
Python.

Traitement de texte
Le besoin le plus fréquent en traitement de texte est la gestion du format XML. La
bibliothèque standard propose des modules dédiés mais qui sont de plus en plus
délaissés par les développeurs, en raison de problèmes de performances et surtout par
un manque cruel de simplicité : manipuler un fichier XML avec ces modules néces-

B http://initd.org/projects/psycopg1

B http://www.python.org/windows/win32/

B http://python-ldap.sourceforge.net/

B http://www.sqlalchemy.org

Bibliothèques tierces
ANNEXE

537

site un effort relativement important pour un développeur Python, habitué à plus de
concision et de simplicité ou ne fournit pas de performances correctes.

Cette section présente une extension dédiée au traitement du XML, plus perfor-
mante et naturelle à utiliser car basée sur le principe des curseurs : lxml.

Un autre besoin récurrent est le traitement de fichiers HTML non stricts : ce type de
format n’est pas lisible par des bibliothèques XML et doit être traité spécifiquement.
L’extension BeautifulSoup propose un outil spécialisé.

lxml
lxml est un bind Python codé en Pyrex de libxml et libxslt qui fournit les mêmes
API qu’ElementTree. Très rapide, pythonique et puissante, probablement la
meilleure bibliothèque XML actuelle.

Beautiful Soup
Lorsqu’il s’agit de lire du contenu HTML non strict, le développeur utilise en
général les modules HTMLParser ou SGMLParser de la bibliothèque standard, ou dans
certains cas, scrute le contenu avec une expression régulière.

Beautiful Soup propose une alternative intéressante en scrutant le texte à la recherche
de balises, paramètres ou contenu.

Packaging, distribution
Outre l’outil standard distutils, il existe une extension de plus en plus utilisée pour
la distribution de programmes Python, à savoir zc.buildout.

zc.buildout est un outil qui installe un environnement de bibliothèques tierces en
se basant sur un fichier de configuration et setuptools.

B http://codespeak.net/lxml/

B http://www.crummy.com/software/BeautifulSoup/

B http://pypi.python.org/pypi/zc.buildout

Programmation Python
ANNEXES

538

Tests fonctionnels et contrôle qualité
En matière de tests, les modules unittest et doctest couvrent tous les besoins basi-
ques mais ne permettent pas de mettre en œuvre facilement des tests fonctionnels,
qui restent spécifiques au type d’interface de l’applicatif.

Les extensions qui offrent un environnement de développement de tests fonction-
nels, que ce soit pour des applications web ou desktop, fonctionnent toutes sur le
même principe : elles mettent en œuvre un pont entre les tests et l’interface utilisa-
teur. Twill et Funkload permettent de tester des applications web et guitest des
applications GTK. Enfin, PyLint et PyFlakes offrent de bons garde-fous, complé-
mentaires aux tests, pour s’assurer de la qualité du code écrit.

Twill
Twill fournit un langage de script simple qui teste une application web via des scripts
Python. L’outil effectue des requêtes vers le serveur web et analyse les résultats.

Funkload
Funkload est un outil basé sur webunit, qui écrit des tests fonctionnels en Python.
Cet outil permet également de tester la montée en charge et génère des rapports
complets. Les tests peuvent être conçus facilement via le navigateur grâce à
TCPWatch.

guitest
Cet outil fournit des classes de base pour effectuer des tests unitaires sur des applica-
tions PyGtk.

B http://www.idyll.org/%7Et/www-tools/twill.html

B http://funkload.nuxeo.org/

B http://gintas.pov.lt/guitest/

Bibliothèques tierces
ANNEXE

539

PyLint
PyLint est un outil qui teste le code à la recherche d’erreurs ou de signes de mauvaise
qualité. Ce programme est facilement configurable et extensible. Il est comparable à
PyChecker mais propose plus de tests.

Pyflakes
Cet outil contrôle le code à la recherche d’erreurs, de code mort (impossible à
appeler) ou de directives d’importation inutiles. Contrairement à PyChecker, cet
outil n’exécute pas le code testé, ce qui le rend plus rapide et plus sécurisé.

MS-Windows
Il existe des bibliothèques spécialisées dans la programmation sur plate-forme
MS-Windows et la technologie COM/ActiveX, à savoir les bibliothèques Win32
Extensions et win32com.

Win32 Extensions
La bibliothèque win32 présentée dans la section base de données pour l’ODBC, con-
tient également des modules pour :
• les API win32 (un fichier d’aide WinHelp avec la liste des méthodes est fourni) ;
• les services NT ;
• les Memory Mapped Files ;
• les API win32pipe et win32 ;
• Les timers win32, etc.

B http://www.logilab.org/projects/pylint

B http://divmod.org/projects/pyflakes

B http://www.python.org/windows/win32/

Programmation Python
ANNEXES

540

win32com
win32com sert à programmer des clients ou des serveurs COM/ActiveX.

Interfaces graphiques
Il existe plusieurs toolkits graphiques qui peuvent être utilisés par le biais de biblio-
thèques Python, pour remplacer Tkinter. Les plus répandus sont wxPython, PyQT et
PyGTK.

wxPython
wxPython est une bibliothèque d’accès au toolkit wxWidgets, qui est de loin le plus
portable des systèmes d’interface. Il existe en outre des outils de conception d’inter-
faces qui génèrent du code Python compatible avec wxPython, comme wxGlade.

PyQT
PyQT est un bind vers le toolkit graphique Qt de Trolltech. Il offre un accès à des
widgets très avancés, comme le contrôle texte Qscintilla, utilisé par certains éditeurs
comme Eric3. En outre, QT designer est l’un des plus puissants éditeurs pour la con-
ception d’interfaces graphiques. Attention cependant aux licences en fonction des cas
d’utilisation, et des plates-formes.

PyGTK
PyGTK fournit un lien entre Python et le toolkit GTK+ (Gimp toolkit), utilisé par
l’environnement Gnome. L’outil Glade peut être utilisé pour concevoir des interfaces
GTK et présente la même interface que wxGlade (qui s’en inspire).

B http://www.python.org/windows/win32com/

B http://www.wxpython.org/

B http://www.riverbankcomputing.co.uk/pyqt/

B http://www.pygtk.org/

Bibliothèques tierces
ANNEXE

541

Reporting et conversion
En termes de reporting, il existe une bibliothèque Open Source incontournable
nommée ReportLab éditée par la société éponyme. Elle génère des documents PDF
et possède des fonctionnalités très puissantes.

RML2PDF est un outil de conversion du format RML vers PDF. rest2web est une
bibliothèque de création de sites web statiques générés à partir de fichiers écrits au
format reStructuredText.

ReportLab
Le toolkit ReportLab sert à concevoir en Python des systèmes de génération de PDF
et fournit :
• un moteur de mise en page, Platypus ;
• une librairie étendue de widgets et de formes ;
• des points d’entrée pour toutes sources de données, etc.

RML2PDF
Le format Report Markup Language (RML) créé par la société ReportLab définit
simplement un document dans un fichier de description XML. Un outil de conver-
sion, nommé RML2PDF se charge ensuite de le convertir en PDF. Cet outil est
payant, mais il existe une variante Open Source éditée par Tiny ERP.

reStructuredText
reStructuredText est un format texte très utilisé pour la documentation de projets
Python et pour l’écriture des docstrings des modules de code. Il introduit une syntaxe
très simple qui permet la mise en page de texte.

Ce format est également très utilisé dans les systèmes wikiwikiweb, pour offrir aux
utilisateurs un format simple à écrire et aussi riche que le HTML. Il est facilement
convertible en rendu HTML par des outils comme rest2html.

B http://www.reportlab.org/rl_toolkit.html

B http://openreport.tiny.be/index.py/static/page/trml2pdf

B http://docutils.sourceforge.net/rst.html

Programmation Python
ANNEXES

542

rest2web
rest2web permet de générer des pages HTML statiques à partir de documents écrits
au format reStructuredText.

Jeux et 3D
En termes de programmation de jeux et plus généralement de scènes 3D, Python est
un langage de script de choix. Les toolkits Pygame et Soya 3D permettent de bénéfi-
cier de la puissance de Python dans ce domaine.

VPython propose, quant à lui, un environnement de programmation 3D temps réel
propice à l’étude de la modélisation.

Il est aussi possible de programmer en plus bas niveau en accédant directement aux
bibliothèques 3D par le biais par exemple de PyOpenGL.

Pygame
Pygame fournit des modules d’extension pour la programmation de jeux 3D et de
programmes multimédias, basés sur la bibliothèque SDL (Simple DirectMedia
Layer).

Soya 3D
Soya 3D est un moteur 3D pour Python, écrit en Pyrex et doté de toutes les fonc-
tionnalités d’un moteur professionnel.

vpython
vpython propose un environnement de programmation 3D complet, en fournissant
sa propre version d’IDLE qui permet de programmer et d’animer interactivement
des scènes 3D. Très pratique pour l’apprentissage de la mécanique.

B http://www.voidspace.org.uk/python/rest2web/

B http://www.pygame.org/

B http://home.gna.org/oomadness/fr/soya/

Bibliothèques tierces
ANNEXE

543

PyOpenGL
Module d’extension offrant l’accès aux API d’OpenGL depuis Python.

Audio et Vidéo
Le domaine multimédia n’est pas en reste grâce à des bibliothèques très complètes
comme PyMedia ou des modules spécifiques comme PyAlsa.

PyMedia
PyMedia propose un ensemble de modules pour manipuler tous les types de formats
audio et vidéo (mp3, ogg, avi, mpeg, etc.), modifier les échantillons par quelques fil-
tres et piloter le matériel.

PyAlsa
PyAlsa est un wrapper pour le système ALSA (Advanced Linux Sound Architecture)

Bibliothèques scientifiques
Cette section regroupe différentes bibliothèques scientifiques spécialisées dans les
calculs numériques comme Numerical Python et SciPy, et dans les outils dédiés à des
domaines particuliers comme Biopython.

B http://vpython.org/

B http://pyopengl.sourceforge.net/

B http://pymedia.org/

B http://respyre.org/pyalsa.html

Programmation Python
ANNEXES

544

Numerical Python
Numerical Python, qui se nomme maintenant SciPy, est une bibliothèque puissante
de fonctions de manipulation de matrices, de transformées de Fourier, et autres utili-
taires de calcul.

SciPy
SciPy complète Numerical Python en fournissant des fonctions de calculs statisti-
ques, des modules de lecture et d’écriture de matrices au format Matrix Market, etc.

Biopython
Ce projet regroupe un ensemble de modules spécialisés dans la biologie moléculaire.

Web
Pour terminer, voici une liste de frameworks de programmation web, qui proposent
des fonctionnalités plus ou moins évoluées :
• Zope : http://www.zope.org

• Quixote : http://www.mems-exchange.org/software/quixote/

• CherryPy : http://www.cherrypy.org/

• Django : http://www.djangoproject.com/

• Turbogears : http://www.turbogears.org/

• Pylons : http://pylonshq.com/

B http://sourceforge.net/projects/numpy

B http://www.scipy.org/

B http://biopython.org

Cette annexe présente une liste de liens de la planète Python, regroupés en trois
catégories :
• les sites web ;
• les flux rss ;
• les blogs (flux rss nominatifs).

Chaque lien, qui peut être en anglais ou en français, est commenté.

Flux RSS
EN Daily Python-URL! : le flux RSS du langage Python, géré par Fredrik Lundh et,
soutenu par Secret Labs AB (Pythonware).

Ce flux, mis à jour quotidiennement, est un véritable travail éditorial, mené par un
core developer du langage et qui contient une sélection des meilleures nouvelles de la
planète Python.

C
Sites, flux RSS,

blogs et autres friandises...

B http://effbot.org

B http://www.pythonware.com/daily/

Programmation Python
ANNEXES

546

EN Unofficial Planet Python : l’autre flux RSS majeur. Cette deuxième source
d’informations n’est pas une sélection qualitative comme Daily Python-URL mais
propose un agrégateur de flux ; il reste nécessaire de faire le tri.

EN PyPI recent updates : le flux des mises à jour des bibliothèques de PyPI. Garder
un œil sur ce flux peut permettre de découvrir de nouveaux outils ou de surveiller cer-
tains modules.

EN Recipes from the Python Cookbook : le flux des recettes Python saisies dans le
CookBook du site ASPN. Une lecture saine et bénéfique.

FR Planète Python Francophone : Le site de l’association francophone Python.

Il existe évidemment beaucoup d’autres flux, mais les liens fournis ci-dessus génèrent
les informations les plus intéressantes, et produisent entre 50 et 100 nouvelles par
jour, ce qui est plus que suffisant.

Blogs
EN Guido van Rossum’s Weblog : GvR bloggue relativement rarement, mais il est
important de l’avoir dans ses marqueurs.

B http://www.planetpython.org/rss20.xml

B http://www.python.org/pypi?%3Aaction=rss

B http://code.activestate.com/feeds/langs/python/

B http://www.afpy.org/planet/

B http://neopythonic.blogspot.com/

Sites, flux RSS, blogs et autres friandises...
ANNEXE

547

EN Agile Testing : le blog de Grig Gheorghiu, membre de l’alliance agile, qui parle
quasiment exclusivement des outils de tests pour Python.

Sites
FR Programmation Python : le site personnel de l’auteur, qui regroupe des éléments
relatifs à ce livre et des informations Python.

EN Site officiel de Python : sans commentaires, la référence.

FR Site de l’Association Francophone Python (AFPY) : site communautaire avec des
nouvelles, des tutoriaux Python et Zope, des forums, etc.

Et enfin, pour quelque chose de complètement différent, et afin de reprendre une
activité intellectuelle saine après la lecture de ce livre, l’incontournable site des
Monty Python :

B http://agiletesting.blogspot.com/atom.xml

B http://programmation-python.org

B http://www.python.org

B http://www.afpy.org

B http://www.pythonline.com/

Index
Symboles
.pdbrc 292
_ 112, 116, 117, 129, 132, 135,

151, 154, 156
__all__ 138
__doc__ 361
__future__ 82
__import__ 152
__slots__ 476

Numeriques
2to3 51, 343

A
ABC (Abstract Base

Class) 278, 281, 284
ABC (langage) 523
abs 125, 153
accès au système 222
actions 214
Ada 9
addition 81
administration système 10
AFPY (Association Francoph-

one Python) 547
alias 292
all 153
alphanumériques 54
Amoeba 525
antislash 55
any 153
Apache 11
apply 154
arbre de dérivation 280
argv 359
array 276
as 136

ASCII 55
AST (Abstract Syntax

Tree) 383
atexit 287, 372
attribut 111

de données 111
privé 117
statique 476

avertissement 194
DeprecationWarning 195
FutureWarning 195
OverflowWarning 195
PendingDeprecationWarning

195
RuntimeWarning 196
SyntaxWarning 196
UserWarning 195

B
base de données 535
base64 270

b64decode 270
b64encode 270

batteries included 219
Beautiful Soup 537
BeOpen.com 526
binaire 60
binding 465
Biopython 25, 544
BlackAdder 45
Bluefish 44
BoaConstructor 21
bool 65, 120
booléens 214
bottleneck 432
bouchon 395

break 91
BuildBot 428
built-ins 151
bytearray 75
bytecode 477
bytes 72

C
C# 43
caching 450
calcul numérique 273
call 12
callable 154
CapitalizedWords 205
chaîne

concaténer 444
CherryPy 544
chr 154
classe 111, 214

arbitraire 280
concrète 278
implémentrice de

méthode 280
nom 206
partie privée, protégée et

publique 206
structuration 211
Thread 454

classe d’exception de base 141
ArithmeticError 141
EnvironmentError 141
Exception 141
LookupError 141
StandardError 141
UnicodeError 142
Warning 142

Programmation Python550

classmethod 154
clause

organisation 210
cls 155
cluster 371
cmp 156
CNRI 526
code

mort 539
patterns 441

codec 68
coerce 125, 156
collections 281
commentaire 52, 199, 201

bloc 200
comparaisons complexes 87
comparatif 6

Perl 7
compile 157
compiler 382
complex 125
complexe (nombre) 62
concaténer une chaîne 444
constante 207
constructeur 116

statique 128
conteneur 441
context management

protocol 93
contexte d’exécution 98
continue 91
convention de nommage 204
copy 295
copytree 11
coverage 424
cPickle 266

dump 266
dumps 267
load 266
loads 267
Pickler 267
Unpickler 267

cProfile 435
cStringIO 286

ctypes 469
CWI 523
Cython 477

D
date 301

formatage 301
datetime 303, 308

date 304
time 306
timedelta 303

DBAPI 535
deadlock 453
decimal 285
décimal (nombre) 66
decorator 106
deepcopy 80
def 98
defaultdict 282
définition de classes 184
del 158
delattr 158
Delphi 43
deque 281
descripteurs de fichiers 223
descriptor 130
design pattern 500

Adapter 518
Borg 501
Chain of responsibility 513
Facade 520
Factory 504
Memento 510
Observer 507
Proxy 521
Singleton 501
State 516
Visitor 505

destructeur 116
dictionnaire 77
difflib 296
Digital Creations 527
dir 158
dircache 249

distutils 469
distutils.core 466
division

entière 81
réelle 82

divmod 160
Django 29, 544
docstring 105, 201, 202

de module 208
doctest 411
documentation string 105, 201
donnée

structure 276
DrPython 45
duck typing 6, 495

E
Eclipse 7, 43, 45
EDI (Environnement de

développement
intégré) 21, 42

Ellipsis 64
Emacs 45
e-mail 13
encapsulation 130, 131, 490
encodage 207
en-tête 207
entier 59

long 59
enumerate 160
ergonomie 21
Eric3 45
erreur 187

AssertionError 187
AttributeError 188
EOFError 188
FloatingPointError 188
ImportError 189
IndentationError 189
IndexError 189
IOError 188
KeyboardInterrupt 190
KeyError 189
MemoryError 190

Index 551

NameError 190
NotImplementedError 190
OSError 191
OverflowError 191
ReferenceError 191
RuntimeError 191
StopIteration 191
SyntaxError 191
SystemError 192
SystemExit 192
TabError 192
TypeError 192
UnboundLocalError 193
UnicodeDecodeError 193
UnicodeEncodeError 193
UnicodeTranslateError 194
ValueError 194
WindowsError 194
ZeroDivisionError 194

espace
dans le code 202
de noms 112
règle 203

eval 160
Event 459
Excel 24
except 142
exception 139
execfile 161
exit 161
expression régulière 19, 317,

354
externe 532
eXtreme Programming 389

F
factory 282
fake 22, 397
file 161
filecmp 249

cmp 249
dircmp 249

filter 163
finally 144

float 125
folding 43
fonction 97
for 89
franglisme 213
from 136
fromkeys 155
frozenset 72
ftplib 260

FTP 261
Funkload 402, 538

G
Gadfly 535
Gang of Four 500
garbage collector

(ramasse-miette) 53, 499
gcc 33
GenBank 24
generator 148, 449

expression 149
genexp 149, 449
get 214
getattr 164
getgid 240
getlogin 240
getpass 294
GIL (Global Interpreter

Lock) 463
Glade 21
global 98
globals 98, 164
GoF 500
GRAMPS 26
guitest 538
gzip 251

GzipFile 251

H
hachage 271
hasattr 165
hash 120, 165
hashlib.sha 272
haslib 271

help 165
héritage 113, 127, 492

multiple 114, 280, 498
hex 125, 166
hexadécimale 60
hot spot 446
hotshot 434
HTMLParser 379

I
id 166
IDLE 38, 45
IEEE 754 65
if 89
imaplib 379
implémentation 4

Cpython 4
IronPython 5
Jython 5
PyPy 5
Stackless Python 5

import 134
* 138

importation
clause 209

indentation 87, 198
informations sur le

système 239
input 167, 352
int 125, 167
interaction avec

l’interpréteur 220
interface 280, 495
intern 167
Inversion 83
IPython 41
isdir 244
isinstance 168
islink 244
ismount 244
issubclass 168
iter 123, 147, 169
itérateur 80
Iterators 147

Programmation Python552

itertools 311, 356
chain 311
count 312
cycle 312
dropwhile 313
groupby 313
ifilter 314
ifilterfalse 314
imap 315
islice 315
izip 315
repeat 316
starmap 316
takewhile 317
tee 317

J
joker 209
JUnit 403
JUnitPerf 482

K
Kate 45
Kent Beck 403
Komodo 45

L
lambda 105
langage

compilé 6
dynamique 6
interprété 6

LDAP 29
len 123, 169
lib2to3 343
license 170
ligne

taille maximum 198
vide 203

list 73, 171
comprehension 145, 352,

448
littéral 54
locals 98, 171
lock 457

réentrant 453
locker 453
logging 369
logiciel pâte à modeler 20
long 125
lowercase 205
lowercase_words 205
lxml 537

M
Mailman 428
maketrans 352
manipulation

des fichiers et
répertoires 225

des processus 233
map 171
mapping 76
maquette 20
marqueur de formatage 70
math 273

acos 274
asin 274
atan 274
atan2 274
ceil 273
cos 274
cosh 274
degrees 275
e 275
exp 273
fabs 273
floor 273
fmod 273
frexp 274
hypot 275
ldexp 274
log 274
log10 274
modf 274
pi 275
pow 274
radians 275
sin 275

sinh 275
sqrt 275
tan 275
tanh 275

max 172
md5 271, 272
mechanize 402
memorizing 450
metaclass 129
métaclasse 499
méthode 111, 214

hash 75
spéciale 119, 121, 124, 125,

128, 130, 147
__cmp__ 120
__contains__ 123
__delattr__ 122
__delitem__ 123
__eq__ 120
__ge__ 120
__getattr__ 121
__getattribute__ 121
__getitem__ 123
__gt__ 120
__hash__ 120
__iter__ 123
__le__ 120
__len__ 123
__lt__ 120
__ne__ 120
__nonzero__ 120
__repr__ 119
__setattr__ 121
__setitem__ 123
__str__ 119
__unicode__ 121

min 172
MingGW 464
minimiser (appel) 446
mixedCase 205
mode

interactif 31, 41
pas-à-pas 288
post mortem 293

Index 553

modèle
de données 52
producteur-consommateur

369
Modula-3 4
module 133, 205, 213

structure 207
Modulo 82
MRO (Method Resolution

Order) 127
multiplication 81
multiprocessing 369, 463
multithreading 452
mysql-python 535

N
name mangling 118
namedtuple 284
namespace 112
négation 83
nettoyage 287
New-style classe 126
next 147
nœud 371
nombre entier 64
nommage

bonne pratique 212
conventions 204
de classe 206

None 63
non-régression 392
norme

ISO 8601 305
RFC3548 270

Nose 429
NotImplemented 63
Numerical Python 544
numérique (littéral) 58

O
object 126
objet

hashable unique 75
immuable 52

oct 125, 173
octale 60
ODBC (Open DataBase

Connectivity) 536
open 173
opérateur 81

appartenance 83
binaire 85
d’interpolation 69
de comparaison 85

optparse 348
ord 173
ORM (Object-Relational

Mapper) 536
ORM (Object-Relational

Mapping) 28
os 223

abort 233
access 226
chdir 226
chmod 226
chown 227
chroot 226
close 224
environ 239
exec 233
execle 233
execlp 234
execlpe 234
execv 234
execve 234
execvp 234
execvpe 234
file 223
fork 235
fstat 224
fsync 224
ftruncate 224
getcwd 226
getloadavg 240
getuid 240
kill 236
link 227
listdir 227

lseek 224
lstat 227
makedirs 227
mkdir 227
name 240
nice 236
open 223
pathconf 228
popen 236
read 225
readlink 228
remove 229
removedirs 229
rename 229
renames 229
rmdir 230
setgid 240
setuid 240
spawn 238
stat 230
symlink 231
sysconf 241
system 238
uname 241
unlink 231
wait 239
waitpid 239
walk 231
write 225

os.path 243
abspath 243
basename 243
commonprefix 243
defpath 243
dirname 243
exists 244
getsize 244
isfile 244
join 244
split 245

outil de compression 251

P
PageParser 378

Programmation Python554

Paquets 137
paramètre

arbitraires 103
explicite 100
nommé 101
non explicites 102

pdb 288
PEP 3119 278
Perforce Defect Tracking

Integration 426
Perl 17
persistance 26, 265, 372
PHP 7
pickling 27
platform 245

architecture 245
machine 245
node 245
processor 245
python_build 246
release 246
system 246
uname 246
version 246

point
d’arrêt 288
de rupture mémoire 476
de synchronisation 453

Polymorphisme 116, 493
post mortem 293
pow 174
print 50
processus 452
profile 433
profiling 432
programmation

événementielle 21
réseau 256

programme paramétrable 348
prompt 39

Pdb 292
property 131, 174
prototypage rapide 20
pseudo-code 49

pstats 436
Psyco 477
psycopg 536
puissance 83
Py_BuildValue 470
Py_InitModule 473
PyAlsa 543
PyArg_ParseTuple 470
PyChecker 428
PyDev 45
pydoc 209
Pyflakes 539
Pygame 542
PyGTK 540
PyLint 428, 539
Pylons 29, 544
PyMedia 543
PyMethodDef 472
PyObject 470
PyOpenGL 543
PyQT 540
Pyrex 477
pysqlite 535
pystone 482
Python Software

Foundation 527
python_compiler 246
python_version 246
pythonique 100
PythonLabs 526
python-ldap 536
PYTHONPATH 134
PYTHONSTARTUP 40
PyUnit 403
pyUnitPerf 482

Q
QtDesigner 21
Queue 462
quicksort 357
quit 175
Quixote 544

R
ramasse-miette 53, 499
random 308
range 175
raw_input 176, 352
re 317

backreferences 327
MatchObject 326
SRE_Pattern 326

reduce 177
refactoring 401
référence relative 139
régression 388
relations entre objets 496
reload 135, 177
ReportLab 541
repr 119, 177
reraise 143
rest2web 542
reStructuredText 541
return 99
RML2PDF 541
round 178
Ruby 7
Ruby On Rails 29

S
SciPy 544
script de test 388
section critique 453
Selenium 402
self 113
séquence 66

immuable 67
modifiable 72

sérialisation 26, 265, 266, 267
set 75, 178, 214
setattr 179
settrace 424
SGMLParser 376, 378
shallow 80
shelve 268, 372

open 269
shutil 11, 247, 360

Index 555

copy 247
copy2 247
copytree 247
move 248
rmtree 248

slice 179
Slots 132
sorted 180
soustraction 81
Soya 3D 542
SPE 45
SQLAlchemy 28, 536
SQLite 28
SSH (Secure Shell) 13, 15
staticmethod 181
StopIteration 147
Storm 28
str 182
string 67
structure conditionnelle 88
subprocess 12, 241

call 241
Popen 241

sum 182
super 183
surcharge des attributs 115
SWIG (Simplified Wrapper

Interface Generator) 465
sys 220

argv 220
exc_info 220
executable 220
exit 220
last_traceback 221
last_type 221
last_value 221
modules 221
path 221
platform 221
stderr 222
stdin 222
stdout 222

T
table des méthodes 472
tag 207, 208
taille de ligne 198
test

cases 403
coverage 400
ergonomie 402
fixture 403
fonctionnel 401
performance continu 480
runner 403
suites 403
unitaire 389

TestCase 404
texte

comparaison 296
TextTestRunner 408
thread 364, 452
threading 454
thread-safe 453
time 299
timeit 438
Tkinter 328, 364

binding d’événements 339
Button 332
Canvas 332
Checkbutton 333
Entry 334
extension 343
Frame 335
Label 335
Listbox 336
Menu 336
Message 337
Radiobutton 337
Scale 338
Scrollbar 338
Text 339
Tk 328
Toplevel 339

Trac 428
trace 424
traceback 140

translate 352
transtypage 59, 151
tri 356
triple-quoted 54
try 142, 144
try..except..else 142
try..except..finally 144
try..finally 144
tuple 71

nommé 284
Turbogears 29, 544
Twill 538
Twisted 29
typage de Liskov 488
type 129, 184

à valeur unique 63
bool 65
int 64
long 65

U
unichr 185
unicode 55, 68, 121, 185
unittest 403
UPPERCASE_WORDS 205
urllib2 12, 257, 369, 375

build_opener 259
HTTPBasicAuthHandler 2

59
HTTPPasswordMgr 259
install_opener 259
OpenDirector 259
Request 260
urlopen 258

use case 389
utilitaire fichier 247

V
valeur

à virgule flottante 61
exponentielle 62
trier 441

variable 215
booléenne 215

Programmation Python556

globale spécifique 209
vars 186
Vi 45
Visual Basic 43
vpython 542

W
Wall, Larry 17
WebUnit 402
while 91
Win32

extension 539

win32com 540
WingIDE 44
with 92, 354, 358
wxPython 540

X
XML 536
xrange 186

Y
yield 148

Z
zc.buildout 537
zip 186
zipfile 254, 361

is_zipfile 256
ZipFile 254
ZipInfo 256

Zope 29, 544

Tarek Ziadé

Tarek Ziadé est directeur
technique d’Ingeniweb
(AlterWay), leader de la
gestion de contenu Open
Source. Il intervient dans
des conférences nationales
et internationales et a fondé
l’association afpy.org.
Il contribue non seulement
au développement de Python
mais également à d’autres
projets communautaires.

T.
 Z

ia
dé

C
on

ce
pt

io
n

:
N

or
d

C
om

po

T a r e k Z i a d é

P r é f a c e d e
S t e p h a n R i c h t e r

Choisi par Google comme l’un de ses langages piliers et utilisé dans des projets d’envergure tels que YouTube,
Python est omniprésent dans les applications web modernes. Open Source et portable, sa modularité et son
orientation objet permettent de créer des applications de toutes tailles, génériques et maintenables.

Python : de la syntaxe à l’optimisation

Python est tout indiqué pour le développement d’applications web : serveurs de contenu, moteurs de recherche, agents
intelligents, objets distribués… Il est également performant pour réaliser des scripts d’administration système ou
d’analyse de fichiers textuels, pour gérer l’accès à des bases de données, pour servir de langage glu entre plusieurs
applications, réaliser des applications graphiques classiques, etc.

Pour autant, le développeur n’exploitera vraiment sa puissance qu’en ayant acquis une certaine culture. C’est ce
que ce livre permet d’acquérir par la description de techniques éprouvées dans tous les grands projets de déve-
loppement en Python. Au-delà de la prise en main (installation des environnements d’exécution et de développement,
rappels de syntaxe avec les primitives et la bibliothèque standard), cet ouvrage aborde les bonnes pratiques de
développement Python, depuis les conventions de nommage et les design patterns objet les plus courants jusqu’à
la programmation dirigée par les tests et l’optimisation de code.

Enrichie en nouveaux cas pratiques et exercices, cette édition mise à jour pour Python 2.6 détaille également le
script de migration 2to3 vers Python 3 et présente la bibliothèque ctypes qui permet de manipuler les structures
de données en C/C++.

Au sommaire
Pourquoi Python? Pour quels usages ? • Administration système • Prototypage d’application : maquettes d’in-
terfaces, de bibliothèques • Applications web et de gestion • Installation des environnements d’exécution et de
développement • Installation sous Linux, MS-Windows et Mac OS X • Tests et scripts de démarrage. Mode
interactif • Choisir un éditeur • Syntaxe • Commentaires • Modèles de données • Littéraux • Types et opéra-
teurs • Indentation • Structures conditionnelles : if, for..in, while • Structures du langage • Fonctions • Contexte
d’exécution • Directives return et global • Docstrings • Classes • Espaces de noms • Héritage • Attributs pri-
vés • Méthodes de comparaison • Method Resolution Order • Constructeur statique • Surcharge de type •
Slots et decorators • Modules • Import • Reload • Paquets • Exceptions • Listes • Constructeurs et itérateurs •
Primitives du langage • Exceptions : erreurs et avertissements • Conventions de codage • Blocs et espace-
ment • Conventions de nommage • Structure d’un module • Choix des noms : longueur, unicité, expressivité •
Fonctions de la bibliothèque standard • Interaction avec l’interpréteur • Accès au système • Utilitaires fichiers •
Outils de compression • Programmation réseau • Persistance • Conversion, transformation de données • Calculs
numériques • Structures de données • Les modules itertools, re, Tkinter et lib2to3 • Cas pratiques •
Programmation dirigée par les tests • Tests unitaires et fonctionnels • Unittests, doctests et Coverage •
Intégration d’un projet dans l’environnement • Le futur de PyUnit • Optimisation du code • Profiling • Amélioration
des performances • Code Patterns, multithreading • Pool, ctypes • Tests de performance en continu •
Programmation orientée objet • Typage, classification et encapsulation • Héritage et polymorphisme • Relations
entre objets • Design patterns orientés objet • Singleton et Borg, Observer, Chain of responsability, Proxy… •
Annexes • Histoire de Python • Bibliothèques tierces • Sites, flux RSS, blogs…

À qui s’adresse cet ouvrage ?
- Au développeur souhaitant s’initier à un nouveau langage et réaliser des applications web ;
- Aux développeurs Python souhaitant aller plus loin dans les bonnes pratiques de développement (programmation

orientée objet, performances, tests unitaires…).

Programmation

Python
Conception et optimisation

2e édition

Programmation

Python

2
e

é
d
.

Téléchargez le code source
des études de cas sur le site
www.editions-eyrolles.com

@

G12483_ProgPython_3 24/03/09 16:43 Page 1

	Choisir Python
	Table des matières
	Avant-propos
	Pourquoi ce livre ?
	À qui s’adresse l’ouvrage ?
	Guide de lecture
	Remerciements

	Première partie -
Découverte de Python
	1 -
Introduction
	Python ?
	Du code de qualité
	Orienté objet
	Portable
	Facile à intégrer
	Hautement productif
	Dynamique

	Python et les autres langages
	Python et Perl
	Ruby, PHP, Java...

	2 -
Python pour quels usages ?
	Administration système
	Des API simples et efficaces
	Manipuler des fichiers et des dossiers
	Manipuler des programmes
	Envoyer et recevoir des courriers électroniques
	Échanger des informations avec d’autres systèmes

	Le match Perl-Python
	Syntaxe
	Structures de données
	Manipulation de texte
	Conclusion

	Prototypage rapide d’applications
	Objectif d’une maquette
	Maquette d’interfaces
	Maquette de bibliothèque ou Fake
	Exemple de prototype de bibliothèque

	Recherche et calcul scientifique
	Pas de paradigme imposé
	Facilité de prise en main
	Création ou utilisation d’outils spécialisés

	Applications de gestion
	Conception d’interface utilisateur
	Stockage de données
	Sérialisation des objets
	Les bases de données relationnelles

	Applications web
	En un mot...

	3 -
Environnement de développement
	Installation sous Linux
	Installation par distribution
	Paquets Debian
	Paquets RedHat
	Distributions Mandrake et Fedora Core

	Compilation des sources
	Étapes d’installation
	Options de compilation
	Compilation et installation de Python

	Gérer plusieurs versions de Python

	Installation sous MS-Windows
	Installation sous Mac OS X
	Premiers tests de Python en mode interactif
	Script de démarrage du mode interactif
	Le choix d’un éditeur
	La coloration syntaxique
	La standardisation automatique
	Les raccourcis clavier et les macros
	L’édition multiple
	Le repliement de code et la recherche
	L’autocomplétion
	L’interpréteur et le débogueur embarqués
	La licence
	Les plates-formes reconnues

	En un mot...

	Deuxième partie -
Éléments du langage
	4 -
Syntaxe du langage
	L’instruction print
	print devient fonction

	Les commentaires
	Modèle de données
	Les littéraux
	Littéraux alphanumériques
	Normes ASCII et Unicode
	Évolution de l’Unicode de Python 2 à Python 3
	Caractères spéciaux

	Littéraux numériques
	Littéraux pour les entiers
	Littéraux pour les valeurs à virgule flottante
	Littéraux pour les nombres complexes

	Les types standards
	Les types à valeur unique
	None
	NotImplemented
	Ellipsis

	Les nombres
	Les nombres entiers
	Les nombres à virgule flottante
	Les nombres complexes
	Les décimaux

	Les séquences
	Les séquences immuables
	Les séquences modifiables

	Les mappings

	Les opérateurs
	Opérateurs de base
	Autres opérateurs
	Modulo
	Négation
	Inversion
	Puissance
	Appartenance
	Opérateurs binaires

	Opérateurs de comparaison
	Principes de la comparaison

	Ordre de traitement des opérations
	Construction de comparaisons complexes

	L’indentation
	Les structures conditionnelles
	L’instruction if
	L’instruction for..in
	L’instruction while

	L’instruction with
	En un mot...

	5 -
Structuration du code
	Fonctions
	Contexte d’exécution et directive global
	Directive return
	Paramètres d’une fonction
	Paramètres explicites et valeurs par défaut
	Les paramètres non explicites
	Les paramètres arbitraires
	Collisions de paramètres
	Signatures multiples de fonctions

	Directive lambda
	Documentation strings (docstrings)
	Decorators

	Classes
	Définition
	Espace de noms
	Paramètre self
	Héritage
	Héritage multiple
	Surcharge des attributs
	Constructeur et destructeur

	Attributs privés
	Méthodes spéciales
	Représentation et comparaison de l’objet
	Utilisation de l’objet comme fonction
	Accès aux attributs de l’objet
	Utilisation de l’objet comme conteneur
	Utilisation de l’objet comme type numérique

	New-style classes
	Le nouveau Method Resolution Order
	Constructeur statique
	Surcharge de type() par metaclass
	Descriptors
	Properties
	Slots
	Decorators pour les classes

	Modules
	Directive import
	Primitive reload
	Directives from et as

	Paquets
	Organisation d’un paquet
	Import * et __all__
	Références relatives

	Exceptions
	Exceptions du langage
	Classes d’exceptions de base
	Classes concrètes

	try..except..else
	try..finally
	try..except..finally

	Les list comprehensions
	Generators et iterators
	Iterators
	Generators
	Generator expression (genexp)

	En un mot...

	6 -
Les primitives
	Primitives du langage
	__import__ : __import__(nom, globals={}, locals={}, fromlist=[], level=- 1) -> module
	abs : abs(nombre) -> nombre
	all : all(iterable) -> booléen
	any : any(iterable) -> booléen
	apply : apply(objet[, args[, kwargs]]) -> valeur
	callable : callable(objet) -> booléen
	chr : chr(code) -> caractère
	classmethod : classmethod(fonction) -> méthode
	cmp : cmp(x, y) -> entier
	coerce : coerce(x, y) -> (x1, y1)
	compile : compile(source, fichier, mode[, flags[, dont_inherit]]) -> objet code
	delattr : delattr(objet, nom)
	dir : dir([objet]) -> liste d’attributs
	divmod : divmod(x, y) -> (division entière, modulo)
	enumerate : enumerate(iterable) -> indice, élément
	eval : eval(source[, globals[, locals]]) -> valeur
	execfile : execfile(filename[, globals[, locals]])
	exit : exit -> string
	file : file(nom[, mode[, buffering]]) -> objet file
	filter : filter(fonction ou None, séquence) -> list, tuple, ou string
	getattr : getattr(objet, nom[, défaut]) -> valeur
	globals : globals() -> dictionnaire
	hasattr : hasattr(objet, nom) -> booléen
	hash : hash(objet) -> integer
	help : Fonction d’aide en ligne
	hex : hex(nombre) -> représentation hexadécimale
	id : id(objet) -> entier
	input : input([prompt]) -> valeur
	int : int(x[, base]) -> entier
	intern: intern(string) -> string
	isinstance : isinstance(objet, classe ou type ou tuple) -> booléen
	issubclass : issubclass(C, B) -> bool
	iter : iter(collection) -> iterateur ou iter(callable, sentinelle) -> iterateur
	len : len(objet) -> entier
	license : license() -> prompt interactif
	list : list() -> nouvelle liste ou list(sequence) -> nouvelle liste
	locals : locals() -> dictionnaire
	map : map(fonction, séquence[, séquence...]) -> liste
	max : max(séquence) -> valeur
	min : min(séquence) -> valeur
	oct : oct(nombre) -> représentation octale.
	open : open(nom[, mode[, buffering]]) -> objet file
	ord : ord(caractère) -> entier
	pow : pow(x, y[, z]) -> nombre
	property : property(fget=None, fset=None, fdel=None, doc=None) -> attribut propriété
	quit : quit -> string
	range : range([start,] stop[, step]) -> liste d’entiers
	raw_input : raw_input([prompt]) -> string
	reduce : reduce(fonction, séquence[, initial]) -> valeur
	reload : reload(module) -> module
	repr : repr(objet) -> représentation
	round : round(nombre[, ndigits]) -> réel
	set : set(iterable) -> objet de type set
	setattr : setattr(objet, nom, valeur)
	slice : slice([start,] stop[, step])
	sorted : sorted(iterable, cmp=None, key=None, reverse=False) -> liste triée
	staticmethod : staticmethod(fonction) -> méthode statique
	str : str(objet) -> représentation de l’objet
	sum : sum(sequence, start=0) -> valeur
	super : super(type, objet) -> objet super lié à l’objet
	type : type(objet) -> type de l’objet
	type : type(nom, bases, dict) -> nouveau type
	unichr : unichr(i) -> caractère unicode
	unicode : unicode(string [, encoding[, errors]]) -> objet
	vars : vars([objet]) -> dictionnaire
	xrange : xrange([start,] stop[, step]) -> itérateur
	zip : zip(seq1 [, seq2 […]]) -> [(seq1[0], seq2[0]...), (...)]

	Exceptions du langage
	Erreurs
	AssertionError
	AttributeError
	EOFError
	FloatingPointError
	IOError
	ImportError
	IndentationError
	IndexError
	KeyError
	KeyboardInterrupt
	MemoryError
	NameError
	NotImplementedError
	OSError
	OverflowError
	ReferenceError
	RuntimeError
	StopIteration
	SyntaxError
	SystemError
	SystemExit
	TabError
	TypeError
	UnboundLocalError
	UnicodeEncodeError
	UnicodeDecodeError
	UnicodeTranslateError
	ValueError
	WindowsError
	ZeroDivisionError

	Avertissements
	UserWarning
	DeprecationWarning
	FutureWarning
	OverflowWarning
	PendingDeprecationWarning
	RuntimeWarning
	SyntaxWarning

	En un mot...

	7 -
Conventions de codage
	Mise en page du code
	Indentation
	Taille maximum d’une ligne
	Commentaires
	Commentaires simples
	Commentaires en fin de ligne
	Blocs de commentaires
	Documentation strings ou docstrings

	Espacement du code
	Espaces dans les expressions et définitions

	Conventions de nommage
	Modules
	Classes
	Fonctions et variables globales d’un module, méthodes et attributs d’une classe
	Constantes

	Structure d’un module
	En-tête
	Interpréteur
	Encodage
	Copyright et licence
	Tags

	Docstring de module
	Variables globales spécifiques
	Clauses d’importations
	Les jokers
	Organisation des clauses

	Variables globales
	Fonctions et classes, le corps du module
	Structuration d’une classe

	Conseils pour le choix des noms
	Règles générales
	Du sens
	Choix de la langue
	Unicité des noms
	La bonne longueur
	Éviter le mélange domaine/technique

	Règles pour chaque type
	Modules
	Classes
	Méthodes et fonctions
	Variables

	En un mot...

	Troisième partie -
La bibliothèque standard
	8 -
Principaux modules
	Interaction avec l’interpréteur
	sys
	argv
	executable
	exc_info()->infos
	exit()
	modules
	last_type, last_value, last_traceback
	path
	platform
	stdin, stdout et stderr

	Accès au système
	os
	Opérations sur les descripteurs de fichiers
	Manipulation des fichiers et répertoires
	Manipulation des processus
	Informations sur le système

	subprocess
	call(*args, **kwargs) -> code de retour
	class Popen

	os.path
	platform

	Utilitaires fichiers
	shutil
	copy(src, dst)
	copy2(src, dst)
	copytree(src, dst[, symlinks [, ignore]])
	rmtree(chemin, [ignore_errors[, onerror]])
	move(src, dst)

	dircache
	filecmp
	cmp(f1, f2[, shallow=True[, use_statcache]]) ->booléen
	class dircmp(a, b[, ignore[, hide]]) -> instance

	Outils de compression
	gzip
	class GzipFile([filename[, mode[, compresslevel[, fileobj]]]])
	open(fichier[, mode[, compresslevel]])

	zipfile
	class ZipFile(fichier[, mode[, compression]])
	class ZipInfo([fichier[, date_time]])
	is_zipfile(fichier) -> booléen

	Programmation réseau
	urllib2
	ftplib

	En un mot...

	9 -
Principaux modules, partie 2
	Persistance
	cPickle
	dump(objet, fichier[, protocol])
	load(fichier) -> objet
	dumps(objet[, protocole]) -> chaîne
	loads(chaîne [, protocole]) -> objet

	shelve
	open(nom_fichier[, flag[, protocole[, writeback]]])

	Conversion, transformation de données
	base64
	b64encode(chaîne[, altchars]) -> chaîne
	b64decode(chaîne[, altchars]) -> chaîne

	haslib
	haslib.md5
	class md5([chaîne])
	hashlib.sha

	Calculs numériques
	math
	fonctions de conversion
	fonctions trigonométriques
	constantes

	Structures de données
	array
	array(typecode[, initializer]) -> tableau

	abc
	collections
	Le type deque
	Le type defaultdict
	La fonction namedtuple
	Les Abstract Base Classes

	decimal
	class Decimal([value [, context]])

	cStringIO
	class StringIO([buffer])

	Utilitaires divers
	atexit
	pdb
	Le mode pas-à-pas
	Alias et fichier .pdbrc
	Le mode post mortem

	getpass
	copy
	difflib
	Affichage des différences
	Restauration

	time
	Epoch
	UTC/GMT
	Fonctions de manipulation
	Formatage des dates

	datetime
	class timedelta(weeks, days, minutes, hours, seconds, microsecondes, milliseconds)
	class date
	class time
	class datetime
	random

	En un mot...

	10 -
Principaux modules, partie 3
	Le module itertools
	chain(*itérables) -> itérateur
	count([premier_entier]) -> itérateur
	cycle(itérable) -> itérateur
	dropwhile(prédicat, itérable) -> itérateur
	groupby(itérable[, keyfunc]) -> itérateur
	ifilter(prédicat, itérable) -> itérateur
	ifilterfalse(prédicate, itérable) -> itérateur
	imap(fonction, *itérables) -> itérateur
	islice(itérable, [start,] stop [, step]) -> itérateur
	izip(*itérables) -> itérateur
	izip_longest(*itérables, [fillvalue=None]) -> itérateur
	repeat(élément, nb_occurences) -> itérateur
	starmap(fonction, séquence) -> itérateur
	takewhile(prédicat, itérable) -> itérateur
	tee(itérable[, n=2]) -> tuple d’itérateurs

	Le module re
	Expressions régulières ?
	Notation pour les expressions régulières
	Syntaxe des expressions régulières
	Symboles simples
	Symboles de répétition
	Symboles de regroupement
	Exemples plus complets
	Fonctions et objets de re

	Le module Tkinter
	Programmation événementielle
	La classe Tk
	Les widgets de base de Tkinter
	Positionnement d’un widget
	Options et méthodes d’un widget

	Binding d’événements
	Application type avec Tkinter
	Extensions pour Tkinter

	Le module lib2to3 et le script 2to3
	En un mot...

	11 -
Exercices corrigés
	Mode d’emploi du chapitre
	Programme
	Exercice 1 : programme paramétrable
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Texte
	Exercice 2 : le chiffrement de César
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Exercice 3 : transformer les adresses e-mails et les URL d’un texte en liens
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Exercice 4 : trier des phrases suivant le nombre de mots
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Fichiers
	Exercice 5 : recherche et remplacement de texte
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Exercice 6 : recopie conditionnelle et récursive de fichiers
	Description
	Points abordés
	Solution
	Discussion

	Exercice 7 : ajout d’un fichier dans une archive zip
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Threads et processus
	Exercice 8 : Tkinter, recherche d’un texte dans des fichiers en tâche de fond
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Exercice 9 : Un web spider rapide
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Persistance
	Exercice 10 : rendre persistants tous les objets d’un programme
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Web et réseau
	Exercice 11 : vérificateur de liens
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Exercice 12 : aspirateur de page web
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Exercice 13 : récupération d’un résumé des nouveaux e-mails reçus
	Description
	Points abordés
	Solution
	Discussion
	Extension

	Divers
	Exercice 14 : système de documentation en ligne des modules
	Description
	Points abordés
	Solution
	Discussion
	Extension

	En un mot...

	Quatrième partie -
Techniques avancées
	12 -
Programmation dirigée par les tests
	À quoi servent les tests ?
	Barrière culturelle
	Principes
	Tests unitaires
	Construction d’un test unitaire
	Évolution des use cases
	Non-régression
	Regroupement des tests
	Tests plus complexes : raconter une histoire
	Les bouchons
	Test coverage
	Qualité des tests

	Tests fonctionnels
	Tests de l’interface
	Tests de l’ergonomie
	Dépendance forte à l’outil utilisé et au type d’interface

	Outils
	unittest
	Définition des test cases
	Organisation d’une campagne de tests

	doctests
	Exécution des doctests
	Syntaxe des doctests
	Environnement et options d’exécution
	doctests dans un fichier texte séparé
	Script de test

	Coverage

	Intégration dans l’environnement d’un projet
	Le futur de PyUnit
	En un mot...

	13 -
Bonnes pratiques et optimisation du code
	Quand optimiser ?
	Profiling
	Méthodes de profiling
	Outils de profiling
	Le module profile
	Le module hotshot
	Le module cProfile
	Le module pstats
	hotshot et pstats
	timeit

	Amélioration des performances
	Code patterns
	Quel type de conteneur choisir ?
	Trier des valeurs
	Concaténer des chaînes
	Remplacer certains tests par une gestion d’exception
	Minimiser les appels et rapprocher le code
	Utiliser les list comprehensions
	Utiliser les generators et les genexp
	Préférer les fonctions d’itertools

	Caching
	Multithreading
	Ressources partagées : difficultés de programmation
	Le module threading
	Le module Queue
	Le Global Interpreter Lock et multiprocessing

	Le côté obscur de la force : extension du langage
	Environnement de compilation
	Binding de bibliothèque
	Création d’un module d’extension

	Optimisation de l’utilisation de mémoire vive
	Économie de mémoire

	Optimisation du bytecode
	Psyco et Cython
	Psyco
	Cython

	Les tests de performance continus
	Rapport sur les performances
	Tests de performance ciblés
	decorator timed

	En un mot...

	14 -
Programmation orientée objet
	Principes généraux
	Typage, classification et encapsulation
	Typage de Liskov
	Encapsulation

	Héritage et polymorphisme
	Héritage
	Polymorphisme
	Duck typing et interfaces

	Relations entre objets
	Relation simple
	Relation multiple

	Héritage multiple
	Métaclasses
	Garbage collecting

	Design patterns orientés objet
	Patterns de génération d’objets
	Singleton et Borg
	Factory

	Patterns fonctionnels
	Visitor
	Observer
	Memento
	Chain of responsibility
	State

	Patterns structurels
	Adapter
	Facade
	Proxy

	En un mot...

	A -
L’histoire de Python
	Le langage ABC
	Environnement de développement
	Types de données
	Indentation du code

	Le projet Amoeba
	Le CNRI
	PythonLabs et BeOpen.com
	Python Software Foundation et Digital Creations
	Python et Zope

	B -
Bibliothèques tierces
	Installer une bibliothèque externe
	Utilisation de setuptools

	Bases de données
	Gadfly
	pysqlite
	mysql-python
	psycopg
	ODBC
	python-ldap
	SQLAlchemy

	Traitement de texte
	lxml
	Beautiful Soup

	Packaging, distribution
	Tests fonctionnels et contrôle qualité
	Twill
	Funkload
	guitest
	PyLint
	Pyflakes

	MS-Windows
	Win32 Extensions
	win32com

	Interfaces graphiques
	wxPython
	PyQT
	PyGTK

	Reporting et conversion
	ReportLab
	RML2PDF
	reStructuredText
	rest2web

	Jeux et 3D
	Pygame
	Soya 3D
	vpython
	PyOpenGL

	Audio et Vidéo
	PyMedia
	PyAlsa

	Bibliothèques scientifiques
	Numerical Python
	SciPy
	Biopython

	Web

	C -
Sites, flux RSS, blogs et autres friandises...
	Flux RSS
	Blogs
	Sites

	Index
	Symboles
	Numeriques
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

