

JBoss® Seam

This page intentionally left blank

JBoss® Seam
Simplicity and Power Beyond Java™ EE

Michael Yuan
Thomas Heute

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book but make no expressed or implied warranty of
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals, mar-
keting focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data:

Yuan, Michael Juntao.

JBox seam : simplicity and power beyond Java EE / Michael Yuan, Thomas Heute. — 1st ed.

p. cm.

ISBN 0-13-134796-9 (pbk. : alk. paper) 1. JBoss. 2. Web servers—Management. 3. Java (Computer program lan-
guage) I. Heute, Thomas. II. Title.

TK5105.8885.J42Y83 2007

005.2’762—dc22

2007005043

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458
Fax: (201) 236-3290

ISBN 0-13-134796-9
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, April, 2007

www.prenhallprofessional.com
http://www.prenhallprofessional.com/safarienabled

Michael dedicates the book to Ju.

Thomas dedicates the book to Isabelle.

This page intentionally left blank

Table of Contents
About This Book .. xv
About the Authors .. xvi
Acknowledgments .. xvii

I. GETTING STARTED .. 1

1. What Is Seam .. 3
1.1. Integrate and Enhance Java EE Frameworks .. 3
1.2. A Web Frameworks That Understands ORM 5
1.3. Designed for Stateful Web Applications .. 5
1.4. Web 2.0 Ready .. 7
1.5. POJO Services via Dependency Bijection .. 7
1.6. Configuration by Exception .. 8
1.7. Avoid XML Abuse .. 8
1.8. Designed for Testing .. 9
1.9. Great Tools Support .. 10
1.10. Let’s Start Coding! .. 10

2. Seam Hello World .. 11
2.1. Create a Data Model .. 13
2.2. Map the Data Model to a Web Form .. 14
2.3. Handle Web Events .. 15
2.4. More on the Seam Programming Model .. 17

2.4.1. Seam POJO Components .. 17
2.4.2. Seam Built-in Components .. 19
2.4.3. Ease of Testing .. 20
2.4.4. Getter/Setter-Based Bijection .. 20
2.4.5. Avoid Excessive Bijection .. 21
2.4.6. Page Navigation in JSF .. 22
2.4.7. Access Database via the EntityManager 23

2.5. Configuration and Packaging .. 23
2.5.1. The WAR file .. 26
2.5.2. The Seam Components JAR .. 28

2.6. How Is This Simple? .. 30

3. Recommended JSF Enhancements .. 31
3.1. An Introduction to Facelets .. 32

3.1.1. Why Facelets? .. 32
3.1.2. A Facelets Hello World .. 34
3.1.3. Use Facelets as a Template Engine .. 35
3.1.4. Data List Component .. 39

3.2. Seam JSF Enhancements .. 40
3.2.1. Seam UI Tags .. 40
3.2.2. Seam JSF EL Enhancement .. 42
3.2.3. Use EL Everywhere .. 43
3.2.4. Seam Filter .. 44
3.2.5. Stateful JSF .. 44

3.3. Add Facelets and Seam UI Support .. 44
3.4. PDF, Email, and Rich Text .. 47

3.4.1. Generate PDF Reports .. 48
3.4.2. Template-Based Email .. 50
3.4.3. Display Rich Text .. 53

4. Rapid Application Development Tools .. 55
4.1. Prerequisites .. 55
4.2. A Quick Tutorial .. 56

4.2.1. Set Up Seam Gen .. 56
4.2.2. Generate a Skeleton Application .. 60
4.2.3. Understand the Profiles .. 61
4.2.4. Develop the Application .. 63
4.2.5. Build and Deploy .. 63
4.2.6. Run Test Cases .. 64

4.3. Work with IDEs .. 65
4.3.1. NetBeans .. 65
4.3.2. Eclipse .. 69

4.4. Generate CRUD Application from Database 71

II. STATEFUL APPLICATIONS MADE EASY .. 75

5. An Introduction to Stateful Framework .. 77
5.1. Correct Usage of ORM .. 77
5.2. Better Performance .. 80
5.3. Better Browser Navigation Support .. 81
5.4. Less Memory Leak .. 82
5.5. High Granularity Component Lifecycle .. 83
5.6. Reduce Boilerplate Code .. 84

JBoss Seam: Simplicity and Power Beyond Java EE 5.0

viii

6. A Simple Stateful Application .. 87
6.1. Stateful Components .. 88

6.1.1. Stateful Entity Bean .. 91
6.1.2. Stateful Session Bean .. 91
6.1.3. Stateful Component Lifecycle .. 93
6.1.4. Factory Methods .. 94

6.2. Page Navigation Flow .. 95

7. Conversations .. 99
7.1. The Default Conversation Scope .. 100

7.1.1. Display JSF Messages .. 102
7.2. Long Running Conversations .. 103

7.2.1. Define a Long-Running Conversational Component 107
7.2.2. Start a Conversation .. 108
7.2.3. Inside the Conversation .. 109
7.2.4. End the Conversation .. 111
7.2.5. Links and Buttons .. 114

7.3. New Frontiers .. 116

8. Workspaces and Concurrent Conversations .. 117
8.1. What Is a Workspace? .. 117
8.2. Workspace Switcher .. 120
8.3. Carry a Conversation Across Workspaces .. 123
8.4. Managing the Conversation ID .. 124

9. Transactions .. 127
9.1. Managing a Transaction .. 128
9.2. Forcing a Transaction Rollback .. 130

9.2.1. Rolling Back Transactions via Checked Exceptions 130
9.2.2. Rolling Back Transactions via Return Values 131

9.3. Atomic Conversation (Web Transaction) .. 132
9.3.1. Manual Flush of the Persistence Context 132
9.3.2. One Transaction per Conversation .. 133

III. INTEGRATING WEB AND DATA COMPONENTS .. 135

10. Validating Input Data .. 137
10.1. Form-Validation Basics .. 137
10.2. Validation Annotations on the Entity Bean 139
10.3. Triggering the Validation Action .. 142
10.4. Display Error Messages on the Web Form 145
10.5. Use JSF Custom Validators .. 147

JBoss Seam: Simplicity and Power Beyond Java EE 5.0

ix

11. Clickable Data Tables .. 149
11.1. Implement a Clickable Data Table .. 150

11.1.1. Display the Data Table .. 150
11.1.2. Inject Selected Object into Event Handler 152
11.1.3. Use Extended EL in Data Table .. 153

11.2. Seam Data-Binding Framework .. 154

12. Bookmarkable Web Pages .. 157
12.1. Using Page Parameters .. 158
12.2. The Java-Centric Approach .. 162

12.2.1. Obtaining Query Parameters in an HTTP GET Request 163
12.2.2. Load Data for the Page .. 164

12.2.2.1. The @Factory Method .. 164
12.2.2.2. The @Create Method .. 165

12.2.3. Further Processing from the Bookmarked Page 166

13. The Seam CRUD Application Framework .. 169
13.1. Data Access Objects (DAOs) .. 169
13.2. Seam CRUD DAOs Are POJOs .. 170
13.3. The Declarative Seam DAO Component .. 171

13.3.1. Use Simpler Names for the Entity Object 173
13.3.2. Retrieving and Displaying an Entity Object 174
13.3.3. Initializing a New Entity Instance 175
13.3.4. Success Messages .. 175

13.4. Queries .. 176
13.4.1. Dynamic Queries .. 177
13.4.2. Displaying Multipage Query Results 179

14. Failing Gracefully .. 183
14.1. Why Not Standard Servlet Error Pages? .. 184

14.3. Annotate Exceptions .. 186
14.4. Use pages.xml for System Exceptions .. 188
14.5. Debug Information Page .. 190

14.5.1. The Facelets Debug Page .. 190
14.5.2. The Seam Debug Page .. 192

IV. AJAX SUPPORT .. 195

15. Custom and AJAX UI Components .. 197
15.1. Partial Form Submission Example .. 199
15.2. Auto-complete Text Input Example .. 202

JBoss Seam: Simplicity and Power Beyond Java EE 5.0

x

14.2. Set Up the Exception Filter .. 185

15.3. Use ICEfaces with Seam .. 205
15.4. Other JSF Component Libraries .. 208

16. Enabling AJAX for Existing Components .. 211
16.1. AJAX Validator Example .. 212
16.2. Programatic AJAX .. 214
16.3. AJAX Buttons .. 217
16.4. AJAX Containers .. 219
16.5. Other Goodies .. 220
16.6. Configuring Ajax4jsf .. 221
16.7. Pros and Cons .. 223

17. Direct JavaScript Integration .. 225
17.1. AJAX Name Validation Example (Reloaded) 225

17.1.1. Server-Side Component .. 226
17.1.2. Triggering a JavaScript Event on the Web Page 228
17.1.3. Making an AJAX Call .. 229

17.2. The AJAX Progress Bar .. 232
17.2.1. Seam Components .. 232
17.2.2. Accessing Seam Components from JavaScript 234

17.3. Integrating the Dojo Toolkit .. 236
17.3.1. Visual Effects .. 236
17.3.2. Input Widgets .. 238

V. BUSINESS PROCESSES AND RULES .. 243

18. Managing Business Processes .. 245
18.1. jBPM Basics and Vocabulary .. 246
18.2. Application Users and jBPM Actors .. 249
18.3. Creating a Business Process .. 251

18.3.1. Defining the Process .. 252
18.3.2. Creating a Business Process Instance 254
18.3.3. Binding Data Objects in Process Scope 255

18.4. Managing Tasks .. 257
18.4.1. Implementing Business Logic for Tasks 257
18.4.2. Specifying a Task to Work On .. 259
18.4.3. Selecting a Task in the UI .. 260

18.4.3.1. The pooledTaskInstanceList Component 261
18.4.3.2. The pooledTask Component 261
18.4.3.3. The taskInstanceList Component 262
18.4.3.4. The taskInstanceListByType Component 262

18.5. jBPM Libraries and Configuration .. 263

JBoss Seam: Simplicity and Power Beyond Java EE 5.0

xi

19. Stateful Pageflows .. 267
19.1. Stateful Navigation Rules in pages.xml .. 267
19.2. Associating a Business Process with a Web Page 270
19.3. Pageflow and Stateful Conversation .. 274
19.4. Configuration .. 275

20. Rule-Based Security Framework .. 277
20.1. Authentication and User Roles .. 277
20.2. Declarative Access Control .. 280

20.2.1. Web Pages .. 280
20.2.2. UI Components .. 281
20.2.3. Method-Level Access Control .. 282

20.3. Rule-Based Access Control .. 283
20.3.1. Simple Access Rules .. 283
20.3.2. Per Instance Access Rules .. 286
20.3.3. Configuring JBoss Rules .. 287

VI. TESTING SEAM APPLICATIONS .. 289

21. Unit Testing .. 291
21.1. A Simple TestNG Test Case .. 293
21.2. Simulating Dependency Bijection .. 295
21.3. Mocking the Database and Transaction .. 297
21.4. Loading the Test Infrastructure .. 299

22. Integration Testing .. 303
22.1. A Complete Test Script .. 304

22.1.1. Simulating JSF Interactions .. 304
22.1.2. Using JSF EL Expressions .. 306

22.2. Accessing Seam Components Without the EL 307
22.2.1. Obtaining a Seam Component .. 307
22.2.2. Binding Values to the Component 308
22.2.3. Invoking UI Event Handler Method 308
22.2.4. Checking the Response .. 309

VII. PRODUCTION DEPLOYMENT .. 311

23. Java EE 5.0 Deployment .. 313
23.1. JBoss AS 4.0.5 .. 313
23.2. JBoss AS 4.2.x and 5.x .. 314
23.3. GlassFish .. 315

JBoss Seam: Simplicity and Power Beyond Java EE 5.0

xii

24. Seam Without EJB3 .. 319
24.1. Seam POJO with JPA .. 320

24.1.1. A Seam POJO Example .. 320
24.1.2. Configuration .. 322
24.1.3. Packaging .. 325

24.2. Using Hibernate POJOs and API .. 327
24.2.1. Using the Hibernate API .. 328
24.2.2. Configuration .. 329

25. Tomcat Deployment .. 333
25.1. Packaging a POJO Application for Tomcat 335

25.1.1. Bundling Support JARs .. 335
25.1.2. Configuring the Transactional DataSource 337
25.1.3. Bootstrapping the JBoss MicroContainer 339

25.2. Packaging an EJB3 Application for Tomcat 339
25.2.1. Bundling Necessary JARs in the WAR File 340
25.2.2. Bundling Embeddable EJB3 Configuration Files 341
25.2.3. Bootstrapping the JBoss MicroContainer 342
25.2.4. Using an Alternative Data Source 343

26. Using a Production Database .. 345
26.1. Installing and Setting Up the Database .. 345
26.2. Installing Database Driver .. 347
26.3. Defining a DataSource .. 347
26.4. Configuring the Persistence Engine .. 348

27. Performance Tuning and Clustering .. 351
27.1. Tuning Performance on a Single Server .. 352

27.1.1. Avoid Call by Value .. 352
27.1.2. JVM Options .. 353
27.1.3. Reducing Logging .. 354
27.1.4. Tuning the HTTP Thread Pool .. 355
27.1.5. Choosing between Client- and Server-Side State Saving .. 356
27.1.6. Using a Production Data Source .. 357
27.1.7. Using a Second-Level Database Cache 358
27.1.8. Using Database Transactions Carefully 360

27.2. Clustering for Scalability and Failover .. 361
27.2.1. Sticky Session Load Balancing .. 362
27.2.2. State Replication .. 363
27.2.3. Failover Architectures .. 363

JBoss Seam: Simplicity and Power Beyond Java EE 5.0

xiii

A. Installing and Deploying JBoss AS .. 365
A.1. JDK 5.0 Is Required .. 365
A.2. Installing JBoss AS .. 366
A.3. Deploying and Running Applications .. 369

B. Using Example Applications as Templates .. 371
B.1. Simple EJB3-Based Web Applications .. 371
B.2. POJO-Based Web Applications .. 378
B.3. Tomcat Applications .. 383
B.4. More Complex Applications .. 385

Index .. 387

JBoss Seam: Simplicity and Power Beyond Java EE 5.0

xiv

About This Book
Six months after its initial release, JBoss Seam has already become one of the hottest frame-
works in enterprise Java, with more than 10,000 downloads per month. Seam integrates stan-
dard Java EE technologies with several nonstandard but interesting technologies into a con-
sistent, unified, programming model. Those technologies include JSF, EJB3, JPA, Hibernate,
Facelets, jBPM, JBoss Rules (Drools), iText, and more. Seam runs on almost all leading Java
application servers, including but not limited to the JBoss AS and Tomcat.

This book is the first comprehensive guide on Seam written by developers inside the Seam
team. We bring you the latest on Seam, explain the rationales behind its design, and discuss
alternative approaches in Seam. We also give you tips and best practices on how to use Seam
from our real-world experiences.

Of course, given the fast-evolving nature of Seam, the book will be playing catch-up with
new Seam releases, which come out almost every month. This book covers Seam Release
1.2.0. Future releases of Seam should be at least compatible with 1.2.0 in the foreseeable
future. But for readers who want to stay on the bleeding edge, we maintain a blog for the
book at http://www.michaelyuan.com/blog/, to bring you the latest updates on Seam. Come
visit us there!

This book uses a series of example applications to illustrate how to write Seam applications.
To download the source code for those sample applications, visit the book’s web site at
http://www.michaelyuan.com/seam/.

http://www.michaelyuan.com/blog/
http://www.michaelyuan.com/seam/

Acknowledgments
First of all, we would like to thank the entire JBoss Seam community for the great work. As
with many other successful open-source projects, Seam is a collaborative effort. It would not
have been possible without a very active and dedicated user community. We have learned a
great deal from Seam users on discussion forums, blogs, and mailing lists. Thanks, guys, and
keep up the good work!

Gavin King, Seam’s creator and lead developer, deserves special thanks. Seam would not
have existed if not for his vision, brilliance, and hard work. Gavin was very supportive of the
book from the very beginning. He patiently helped us with many of our newbie questions,
helped us review the content, and offered encouragement all along the way. Besides Gavin,
other Seam developers, including Norman Richards, Emmanuel Bernard, Max Andersen,
Shane Bryzak, James Williams, Christian Bauer, and Steve Ebersole, are also very helpful.
Seam is truly a team effort under the spirit of Open Source.

We’d also like to thank the following people for reviewing early editions of this book and
giving us great feedback: Ian White, Tony Herstell, Rich Rosen, Wes Boudville, Bil Lewis,
Gregory Pierce, David Geary, Bruce Scharlau, Kito Mann, Daniel Brum, and Chris Mills.
Thank you all for the help!

Our editorial team at Prentice Hall was extremely professional and supportive throughout the
process. Our editors, Greg Doench and Kristy Hart, put up with our numerous delays and
guided us through the complex publishing process. The book would not have been possible
without their dedication.

Finally, and most important, we would like to thank our families for their love and support.
They are truly the unsung heroes behind any achievement we might have.

About the Authors
Michael Yuan is a product manager and technical evangelist at Red Hat Inc. working on
Seam, JBoss Application Server, and other middleware products. He contributes code to the
Seam project and writes about Seam in his blog (http://www.michaelyuan.com/blog/).
Before joining JBoss, Michael was a software consultant for mobile end-to-end applications.
He published three books on mobile technologies, including Enterprise J2ME and Nokia
Smartphone Hacks.

After being a contributor to the pre-JBoss Portal project, Thomas Heute was hired by JBoss
Inc. in 2004. He started as a software developer in the JBoss Portal team, and then became
the colead of the JBoss Seam project in 2005, with the vision to bring EJB3 closer to JSF.
At the end of 2006 Thomas came back to pursue his duty among the JBoss Portal team to
work on various tasks.

http://www.michaelyuan.com/blog/

This page intentionally left blank

I
Getting Started

In this part, we provide an overview of JBoss Seam and its key features and benefits. A
simple Hello World example illustrates how Seam ties together the database, the web UI, and
the transactional business logic to form an application. We discuss the JSF enhancements
Seam and Facelets provide that make JSF one of the best web application frameworks around
and ideal for Seam applications. For readers who do not want to waste time setting up
common Seam/Java EE configuration files, we introduce a tool called Seam Gen. Seam Gen
generates projects with complete Eclipse and NetBeans IDE support. It's the best way to
jump-start your Seam application.

This page intentionally left blank

1
What Is Seam?

According to the official JBoss web site, JBoss Seam is a "lightweight framework for Java
EE 5.0." What does that mean? Isn't Java EE (Enterprise Edition) 5.0 itself a collection of
"frameworks?" Why do you need another one that is outside the official specification? Well,
we view Seam as the "missing framework" that should have been included in Java EE 5.0. It
sits on top of Java EE 5.0 frameworks to provide a consistent and easy-to-understand pro-
gramming model for all components in an enterprise web application. It also makes stateful
applications and business process-driven applications a breeze to develop. In other words,
Seam is all about developer productivity and application scalability.

In this book, we show you how Seam can make development easier for you. We cover sever-
al web application examples to make our case. But before we get into concrete code ex-
amples, let's first explain what exactly Seam does and introduce its key design principles.
This will help you better understand how Seam works in applications throughout the book.

1.1. Integrate and Enhance Java EE Frameworks

The core frameworks in Java EE 5.0 are EJB (Enterprise JavaBeans) 3.0 and JSF (JavaServer
Faces) 1.2. EJB 3.0 (EJB3, hereafter) is a lightweight framework based on Plain Old Java Ob-
jects (POJO) for business services and database persistence. JSF is a Model-View-Controller
(MVC) component framework for web applications. Most Java EE 5.0 web applications have
both EJB3 modules for business logic and JSF modules for the web front end. However, al-
though EJB3 and JSF are complementary to each other, they are designed as separate frame-
works, each with its own philosophy. For instance, EJB3 uses annotations to configure ser-
vices, whereas JSF makes use of XML files. Furthermore, EJB3 and JSF components are not
aware of each other at the framework level. To make EJB3 and JSF work together, you need
artificial facade objects (i.e., JSF backing beans) to tie business components to web pages,
and boilerplate code (a.k.a. plumbing code) to make method calls across framework boundar-
ies. Gluing those technologies together is part of Seam's responsibilities.

Seam collapses the artificial layer between EJB3 and JSF. It provides a consistent, annota-
tion-based approach to integrate EJB3 and JSF. With a few simple annotations, the EJB3
business components in Seam can now be used directly to back JSF web forms or handle web
UI events. Seam enables developers to use annotated POJOs for all application components.
Compared with applications developed in other web frameworks, Seam applications are con-
ceptually simple and require significantly less code (in both Java and XML) for the same
functionalities. If you are impatient and want a quick preview of how simple a Seam applica-
tion is, you can look at the Hello World example in Chapter 2, Seam Hello World.

Seam also makes it easy to accomplish tasks that were "difficult" on JSF. For instance, one of
the major complaints about JSF is that it relies too much on HTTP POST. It is hard to book-
mark a JSF web page and then get it via HTTP GET. Well, with Seam, generating a book-
markable RESTful web page is very easy (see Chapter 12, Bookmarkable Web Pages). Seam
provides a number of JSF component tags and annotations that increase the "web friendli-
ness" and web page efficiency of JSF applications. In Chapter 3, Recommended JSF En-
hancements, we introduce various Seam JSF enhancements and the Facelets view framework
for JSF. Then in Part III, “Integrating Web and Data Components”, we discuss specific topics
such as end-to-end validation (Chapter 10, Validating Input Data) and custom exception page
(Chapter 14, Failing Gracefully). In Chapter 19, Stateful Pageflows, we discuss how to use
jBPM business processes to improve the JSF page flow.

At the same time, Seam expands the EJB3 component model to POJOs (see Section 2.4.1.,
“Seam POJO Components”) and brings the stateful context from the web tier to the business
components (see Chapter 5, An Introduction to Stateful Framework). Furthermore, Seam in-
tegrates a number of other leading open source frameworks, such as jBPM, JBoss Rules
(a.k.a. Drools), iText, and Spring. Seam not only "wires them together," but also enhances the
frameworks in similar ways that it does to the JSF + EJB3 combination.

Although Seam is rooted in Java EE 5.0, its application is not limited to Java EE 5.0 servers.
In fact, in this book, we show you how Seam applications can be deployed in J2EE 1.4 ap-
plication servers (see Chapter 24, Seam Without EJB3) as well as in plain Tomcat servers (see
Chapter 25, Tomcat Deployment). That means you can obtain production support for your
Seam applications today.

1 + 1 > 2

It would be a mistake to think that Seam is just another integration
framework that wires various frameworks together. Seam provides

1.1. Integrate and Enhance Java EE Frameworks

4

its own managed stateful context that allows the frameworks to
deeply integrate with others via annotations, Expression Language
(EL) expressions, etc. That level of integration comes from the
Seam developer's intimate knowledge of the third-party frame-
works. Read on to Section 1.2., “A Web Framework That Under-
stands ORM” for an example.

1.2. A Web Framework That Understands ORM

Object Relational Mapping (ORM) solutions are widely used in today's enterprise applica-
tions. However, most current business and web frameworks are not designed for ORM. They
do not manage the persistence context over the entire web interaction lifecycle from when the
request comes in to when the response is fully rendered. That has resulted in all kinds of
ORM errors, including the dreaded LazyInitializationException, and gave rise to ugly
hacks such as the Data Transfer Object (DTO).

Seam was invented by Gavin King, the inventor of the most popular ORM solution in the
world, Hibernate. It was designed from the ground up to promote ORM best practices. With
Seam, there are no more DTOs to write, lazy loading just works, and ORM performance can
be greatly improved because the extended persistence context acts as a natural cache to re-
duce database round-trips. Read more on this topic in Chapter 5, An Introduction to Stateful
Framework.

Furthermore, because Seam integrates the ORM layer with the business and presentation lay-
ers, we can display ORM objects directly (see Chapter 11, Clickable Data Tables), use data-
base validator annotations on input forms (see Chapter 10, Validating Input Data), and redir-
ect ORM exceptions to custom error pages (see Chapter 14, Failing Gracefully).

1.3. Designed for Stateful Web Applications

Seam was designed for stateful web applications. Web applications are inherently multiuser
applications, and e-commerce applications are inherently stateful and transactional. However,
most existing web application frameworks are geared toward stateless applications. You have
to fiddle with the HTTP session objects to manage user states. That not only clutters your

1.2. A Web Framework That Understands ORM

5

application with code that is unrelated to the core business logic, but it also brings on an array
of performance issues.

In Seam, all the basic application components are inherently stateful. They are much easier to
use than the HTTP session because Seam declaratively manages their states. No need exists
to write distracting state-management code in a Seam application—just annotate the compon-
ent with its scope, lifecycle methods, and other stateful properties, and Seam takes over the
rest. Seam stateful components also provide much finer control over user states than the plain
HTTP session does. For instance, you can have multiple "conversations," each consisting of a
sequence of web requests and business method calls, in an HTTP session. For more on Seam
stateful components, refer to Chapter 5, An Introduction to Stateful Framework.

Furthermore, database caches and transactions can be automatically tied with the application
state in Seam. Seam automatically holds database updates in memory and commits to the
database only at the end of a conversation. The in-memory cache greatly reduces database
load in complex stateful applications. Refer to Chapter 9, Transactions, for more on conver-
sation-based database transactions.

In addition to everything we've mentioned, Seam takes state management in web applications
a big step further by supporting integration with the open source JBoss jBPM business pro-
cess engine. You can now specify the work flows of different people in the organization
(customers, managers, technical support, etc.) and use the work flow to drive the application
instead of relying on the UI event handlers and databases. See Chapter 18, Managing Busi-
ness Processes, for more on Seam and jBPM integration.

Declarative Contextual Components

Each stateful component in Seam has a scope or context. For in-
stance, a shopping cart component is created at the start of a shop-
ping conversation and is destroyed at the end of the conversation
when all items are checked out. Hence, this component lives in a
conversation context. Your application simply declares this context
via annotations on the component, and Seam automatically manages
the component creation, state, and removal.

Seam provides several levels of stateful contexts, ranging from a
single web request to a multipage conversation, an HTTP session,
or a long-running business process.

1.4. Web 2.0 Ready

6

1.4. Web 2.0 Ready

Seam is fully optimized for Web 2.0 style applications. It provides multiple ways for AJAX
(Asynchronous JavaScript and XML, a technology to add interactivity to web pages) support,
from drop-in JavaScript-less AJAX components (see Chapter 15, Custom and AJAX UI Com-
ponents), to AJAX-enabling existing JSF components (see Chapter 16, Enabling AJAX for
Existing Components), to a custom JavaScript library (see Chapter 17, Direct JavaScript In-
tegration) that provides direct access to Seam server components from the browser. Intern-
ally, Seam provides an advanced concurrency model to efficiently manage multiple AJAX re-
quests from the same user.

A big challenge for AJAX applications is the increased database load. An AJAX application
makes much more frequent requests to the server than its non-AJAX counterpart does. If all
those AJAX requests had to be served by the database, the database would not be able to
handle the load. The stateful persistence context in Seam acts as an in-memory cache. It can
hold information throughout a long-running conversation and, hence, help to reduce the data-
base round-trips.

Web 2.0 applications also tend to employ complex relational models for data (e.g., a social
network site is all about managing and presenting the relationships between "users"). For
those sites, lazy loading in the ORM layer is crucial. Otherwise, a single query could cascade
to loading the entire database. As we discussed earlier, Seam is the only web framework
today that supports lazy loading correctly for web applications.

1.5. POJO Services via Dependency Bijection

Seam is a "lightweight framework" because it promotes the use of Plain Old Java Objects
(POJO) as service components. No framework interfaces or abstract classes exist to "hook"
components into the application. The question, of course, is, how do those POJOs interact
with each other to form an application? How do they interact with container services (e.g., the
database persistence service)?

Seam wires POJO components together using a popular design pattern known as dependency
injection (DI). Under this pattern, the Seam framework manages the lifecyle of all the com-
ponents. When a component needs to use another, it declares this dependency to Seam using
annotations. Seam determines where to get this dependent component based on the applica-
tion's current state and "injects" it into the asking component.

1.5. POJO Services via Dependency Bijection

7

Expanding on the dependency injection concept, Seam component A can also create another
component B and "outject" the created component B back to Seam for other components,
such as C, to use later.

This type of bidirectional dependency management is widely used in even the simplest Seam
web applications (e.g., the Hello World example in Chapter 2, Seam Hello World). In Seam
terms, we call this dependency bijection.

1.6. Configuration by Exception

The key design principle that makes Seam so easy to use is configuration by exception. The
idea is to have a set of common-sense default behavior for the components. The developer
needs to configure the component explicitly only when the desired behavior is not the default.
For instance, when Seam injects component A as a property of component B, the Seam name
of component A defaults to the recipient property name in component B. Many little things
like that are true in Seam. The overall result is that configuration metadata in Seam is much
simpler than that in competing Java frameworks. As a result, most Seam applications can be
adequately configured with a small number of simple Java annotations. Developers benefit
from reduced complexity and, in the end, fewer lines of code for the same functionalities de-
veloped in competing frameworks.

1.7. Avoid XML Abuse

As you have probably noticed, Java annotations play a crucial role in expressing and man-
aging Seam configuration metadata. That is done by design to make the framework easier to
work with.

In the early days of J2EE, XML was viewed as the "holy grail" for configuration manage-
ment. Framework designers threw all kinds of configuration information, including Java class
and method names, in XML files without much thought about the consequence to developers.
In retrospect, that was a big mistake. XML configuration files are highly repetitive. They
have to repeat information already in the code to connect the configuration to the code. Those
repetitions make the application prone to minor errors (e.g., a misspelled class name would
show up as a hard-to-debug error at runtime). The lack of reasonable default configuration
settings further compounds this problem. In fact, in some frameworks, the amount of boiler-
plate code disguised as XML might rival or even exceed the amount of actual Java code in

1.6. Configuration by Exception

8

the application. For Java developers, this abuse of XML is commonly known as the "XML
hell" in J2EE.

The enterprise Java community recognizes this problem with XML abuse and has success-
fully attempted to replace XML files with annotations in Java source code. EJB3 is the effort
by the official Java standardization body to promote the use of annotations in enterprise Java
components. EJB3 makes XML files completely optional, and it is definitely a step in the
right direction. Seam adds to EJB3 annotations and expands the annotation-based program-
ming model to the entire web application.

Of course, XML is not entirely bad for configuration data. Seam designers recognize that
XML is well suited to specifying web application pageflows or defining business process
work flows. The XML file enables us to centrally manage the work flow for the entire applic-
ation, as opposed to scattering the information around in Java source files. The work flow in-
formation has little coupling with the source code—hence, the XML files do not need to du-
plicate typed information already available in the code. For more details on this subject, see
Chapter 19, Stateful Pageflows.

1.8. Designed for Testing

Seam was designed from ground up for easy testing. Because all Seam components are just
annotated POJOs, they are easy to unit-test. You can just create instances of the POJOs using
the regular Java new keyword and then run any methods in your testing framework (e.g.,
JUnit or TestNG). If you need to test interaction among multiple Seam components, you can
instantiate those components individually and then set up their relationships manually (i.e.,
use the setter methods explicitly instead of relying on Seam's dependency injection features).
In Chapter 21, Unit Testing, we explain how to set up unit tests for your Seam applications,
and how to mock database service for the test cases.

Integration testing in Seam is perhaps even simpler than unit testing. With the Seam testing
framework, you can write simple scripts to simulate web user interaction, and then test the
outcome. You can use the JSF Expression Language (EL) to reference Seam components in
the test script just as you do on a JSF web page. Like unit tests, the integration tests run dir-
ectly from the command-line in the Java SE environment. There is no need to start the applic-
ation server just to run the tests. Refer to Chapter 22, Integration Testing for more details.

1.8. Designed for Testing

9

1.9. Great Tools Support

Tools support is crucial for an application framework that focuses on developer productivity.
Seam is distributed with a command-line application generator called Seam Gen (see
Chapter 4, Rapid Application Development Tools). Seam Gen closely resembles the tools
available in Ruby on Rails. It supports features such as generating complete CRUD applica-
tions from a database, quick developer turnaround for web applications via the edit/
save/reload browser actions, testing support, and more.

But more importantly, Seam Gen-generated projects work out of the box with leading Java
IDEs such as Eclipse and NetBeans. With Seam Gen, you can get started with Seam in no
time.

1.10. Let's Start Coding!

In a nutshell, Seam simplifies the developer overhead for Java EE applications and, at the
same time, adds powerful new features beyond Java EE 5.0. But do not take our word for it.
Starting with the next chapter, we show you some real code examples to illustrate how Seam
works.

You can find the source code download for all example applications in the book from the
book's web site http://www.michaelyuan.com/seam/.

1.10. Let's Start Coding!

10

http://www.michaelyuan.com/seam/

2
Seam Hello World

The most basic and widely used functionality of JBoss Seam is to be the glue between EJB3
and JSF. Seam allows seamless (no pun intended!) integration between the two frameworks
through managed components. It extends the EJB3 annotated Plain Old Java Objects (POJO)
programming model to the entire web application. There's no more artificially required JNDI
lookup, verbose JSF backing bean declaration, excessive facade business methods, or
painstakingly passing objects between tiers.

Continue to Use Java EE Patterns in Seam

In traditional Java EE applications, some design patterns, such as
JNDI lookup, XML declaration of components, value objects, and
business facade, are mandatory. Seam eliminates those artificial re-
quirements with annotated POJOs. However, you are still free to
use those patterns when your Seam applications truly need them.

Writing a Seam web application is conceptually very simple. You just need to code the fol-
lowing components:

• Entity objects represent the data model. The entity objects could be entity beans in the
Java Persistence API (JPA, a.k.a. EJB3 persistence) or Hibernate POJOs. They are auto-
matically mapped to relational database tables.

• JSF web pages display the user interface. The pages capture user input via forms and dis-
play result data. The data fields on the page are mapped to the backend data model via the
JSF Expression Language (EL).

• EJB3 session beans or annotated Seam POJOs act as UI event handlers for the JSF web
pages. They update the data model based on the user input.

Seam manages all these components and automatically injects them into the right pages/ob-
jects at runtime. For instance, when the user clicks a button to submit a JSF form, Seam auto-
matically parses the form fields and constructs an entity bean. Then Seam passes the entity
bean into the event handler session bean, which Seam also creates, for processing. You do not
need to manage component lifecycles and relationships between components in your own
code. There is no boilerplate code and no XML file for dependency management.

In this chapter, we use a Hello World example to show exactly how Seam glues together a
web application. The example application works like this: The user can enter her name on a
web form to "say hello" to Seam. After she submits this, the application saves her name to a
relational database and displays all the users who have said hello to Seam. The example
project is in the helloworld folder in the source code download for this book. To build it,
you must have Apache ANT 1.6+ (http://ant.apache.org/) installed. Enter the hello-

world directory and run the command ant. The build result is the build/

jars/helloworld.ear file, which you can directly copy into your JBoss AS instance's
server/default/deploy directory. Now start JBoss AS; the application is available at the
URL http://localhost:8080/helloworld/.

Install JBoss AS

To run examples in the book, we recommend that you use the JBoss
Enterprise Middleware Suite (JEMS) GUI installer to install a
Seam-compatible version of JBoss AS. You can download the
JEMS installer from http://labs.jboss.com/portal/

jemsinstaller/downloads. Refer to Appendix A, Installing and
Deploying JBoss AS, if you need further help on JBoss AS installa-
tion and application deployment.

You are welcome to use the sample application as a template to jump-start your own Seam
projects (see Appendix B, Using Example Applications as Templates). Or you can use the
command-line tool Seam Gen (see Chapter 4, Rapid Application Development Tools) to auto-
matically generate project templates, including all configuration files, for you. In this chapter,
we do not spend much time explaining the details of the directory structure in the source code
project. Instead, we focus on the code and configuration artifacts a developer must write or
manage to build a Seam application. This way, you can apply the knowledge to any project
structure without being confined to our template.

12

http://ant.apache.org/
http://labs.jboss.com/portal/jemsinstaller/downloads
http://labs.jboss.com/portal/jemsinstaller/downloads

Source Code Directories

A Seam application consists of Java classes and XML/text configur-
ation files. In the book's example projects, the Java source code files
are in the src directory, the web pages are in the view directory, and
all configuration files are in the resources directory. See more in
Appendix B, Using Example Applications as Templates.

2.1. Create a Data Model

The data model in the Hello World application is simply a Person class with a name and an id

property. The @Entity annotation tells the container to map this class to a relational database
table, with each property a column in the table. Each Person instance corresponds to a row of
data in the table. Because Seam is "configuration by exception," the container simply uses
the class name property name for the table name and column name. The @Id and
@GeneratedValue annotations on the id property indicate that the id column is for the
primary key and that the application server automatically generates its value for each Person

object saved into the database.

@Entity
@Name("person")
public class Person implements Serializable {

private long id;
private String name;

@Id @GeneratedValue
public long getId() { return id;}
public void setId(long id) { this.id = id; }

public String getName() { return name; }
public void setName(String name) {
this.name = name;

}
}

The most important annotation in the Person class is the @Name annotation. It specifies the
string name the Person bean should be registered by under Seam. In other Seam components

2.1. Create a Data Model

13

(e.g., JSF web pages and session beans), you can reference the managed Person bean for this
component using the person name.

2.2. Map the Data Model to a Web Form

In the JSF page, we use the Person bean to back the form input text field. The
#{person.name} symbol refers to the name property on the Seam component named person,
which is an instance of the Person entity bean as we just discussed. The #{...} notation to
reference Java objects is called JSF Expression Language (EL). It is widely used in Seam.

<h:form>
Please enter your name:

<h:inputText value="#{person.name}" size="15"/>

<h:commandButton type="submit" value="Say Hello"

action="#{manager.sayHello}"/>
</h:form>

Below the entry form, the JSF page displays all people who have said "hello" to Seam in the
database. The list of people is stored in a Seam component named fans. The fans component
is a List <Person> object. The JSF dataTable iterates through the list and displays each
Person object in a row. The fan symbol is the iterator for the fans list. Figure 2.1., “The
Hello World web page” shows the web page.

<h:dataTable value="#{fans}" var="fan">
<h:column>
<h:outputText value="#{fan.name}"/>

</h:column>
</h:dataTable>

2.2. Map the Data Model to a Web Form

14

Figure 2.1. The Hello World web page

When the user clicks on the Say Hello button to submit the form, Seam creates the person

managed component with the input data. It then invokes the sayHello() method on the Seam
component named manager (i.e., EL notation #{manager.sayHello} references the UI event
handler for the form submit button), which saves the person object to the database and re-
freshes the fans list. The manager component is an EJB3 session bean, which we discuss in
the next section.

2.3. Handle Web Events

The manager component in Seam is the ManagerAction session bean, as specified by the
@Name annotation on the class. The ManagerAction class has person and fans fields annot-
ated with the @In and @Out annotations.

@Stateless
@Name("manager")
public class ManagerAction implements Manager {

@In @Out
private Person person;

2.3. Handle Web Events

15

@Out
private List <Person> fans;

The @In and @Out annotations are at the heart of the Seam programming model. Let's look at
exactly what they do here.

• The @In annotation tells Seam to assign the person component, which is composed from
the JSF form data, to the person field (dependency injection) before executing any meth-
od in the session bean. You can specify an arbitrary name for the injected component in
@In(value="anyname"). But if no name is specified, as it is here, Seam just injects the
component with the same type and same name as the receiving field variable.

• The @Out annotations tell Seam to assign values of the fans and person fields to the man-
aged components of the same names after any method execution. We call this action de-
pendency outjection in Seam. This way, in the ManagerAction.sayHello() method, we
simply need to update the fans and person field values to make them automatically avail-
able on the web page.

What is Bijection

Seam documentation sometimes includes the term bijection. That
refers to the two-way injection and outjection interaction between
Seam components and the Seam managed context.

Because the person field already contains the form data via injection, the sayHello() method
simply saves it to the database via the JPA EntityManager, which is injected via the
@PersistenceContext annotation. Then it refreshes the fans and person objects, which are
outjected after the method exits. The sayHello() method returns null to indicate that the
current JSF page will be redisplayed with the most up-to-date model data after the call.

@PersistenceContext
private EntityManager em;

public String sayHello () {
em.persist (person);
person = new Person ();

2.3. Handle Web Events

16

fans = em.createQuery("select p from Person p")
.getResultList();

return null;
}

We're almost done, except for one little thing. As you probably noticed, the ManagerAction

bean class implements the Manager interface. To conform to the EJB3 session bean specifica-
tion, we need an interface that lists all public methods in the bean. The following is the code
for the Manager interface. Fortunately, it is easy to automatically generate this interface from
any modern IDE tool.

@Local
public interface Manager {
public String sayHello ();

}

That's all the code you need for the Hello World example. In the next two sections, we cover
alternative ways to do things and the configuration of Seam applications. You can skip the
rest of the chapter for now if you want to jump right into the code and customize the hello-

world project for your own small database application.

2.4. More on the Seam Programming Model

Now we have rushed through the Hello World example application. But we have left off
some important topics, such as alternative ways to do things and important features not
covered by the previous code. In this section, we go through those topics; they help you gain
a deeper understanding of Seam. But for the impatient, you can skip this section and come
back later.

2.4.1. Seam POJO Components

In the previous example, we used an EJB3 session bean to implement the application logic.
But we're not limited to using EJB3 components in Seam. In fact, in Seam, any POJO with an
@Name annotation can be turned into a managed component.

2.4. More on the Seam Programming Model

17

For instance, we can make ManagerAction a POJO instead of an EJB3 session bean.

@Name("manager")
public class ManagerAction {

@In (create=true)
private EntityManager em;

... ...
}

Using POJOs to replace EJB3 beans has pros and cons. POJOs are slightly simpler to pro-
gram because they do not require EJB3-specific annotations and interfaces (see preceding
code listing). If all your business components are Seam POJOs, you can run your Seam ap-
plication outside the EJB3 application server (see Chapter 24, Seam Without EJB3).

However, POJOs also have fewer features than EJB3 components because POJOs cannot get
EJB3 container services. Examples of EJB3 services that you lose in non-EJB3 Seam POJOs
include the following.

• The @PersistenceContext injection no longer works in POJOs. To obtain an EntityMan-

ager in a Seam POJO, you must initialize the EntityManager in the Seam configuration
file and then use the Seam @In annotation to inject it into the POJO. See Chapter 24,
Seam Without EJB3, for more details.

• No support exists for declarative method-level transaction in POJOs. Instead, you can
configure Seam to demarcate a database transaction from when the web request is re-
ceived until the response page is rendered. See Section 9.3., “Atomic Conversation (Web
Transaction)” for more details.

• Seam POJOs cannot be message-driven components.

• No support for @Asynchronous methods exists.

• No support for container managed security exists.

• No transaction or component level persistence context exists. All persistence contexts in
Seam POJOs are "extended" (see Section 7.1., “The Default Conversation Scope” for
more details).

2.4.1. Seam POJO Components

18

• No integration into the container's management architecture (ie. JMX console services)
exists.

• No Java remoting (RMI) into Seam POJO methods exists.

• Seam POJOs cannot be @WebService components.

• No JCA integration exists.

So why would anyone want to use POJO components when deploying in an EJB3 container?
Well, POJO components are good for pure "business logic" components, which delegate data
access, messaging, and other infrastructure functionalities to other components. For instance,
we can use POJO components to manage Seam data access objects, discussed in Chapter 13,
The Seam CRUD Application Framework. The "business logic" POJO is useful because it can
be reused in other frameworks. But the application of POJO components is much smaller than
EJB3 components, especially in small to middle-size applications. So in most examples
throughout this book, we use EJB3 components.

2.4.2. Seam Built-in Components

Aside from named application components (i.e., classes with @Name annotation), Seam main-
tains a set of built-in components to provide the application access to the runtime context and
infrastructure. The @In annotation injects Seam's built-in components, and the JSF EL en-
ables you to reference Seam built-in components from a web page.

For instance, the Seam FacesMessages component provides access to the JSF messages
(displayed by the <h:messages> tags) in the current JSF context. You can inject the
FacesMessages component into any Seam component.

@Name("manager")
public class ManagerAction implements manager {

@In
Person person;

@In
FacesMessages facesMessages;

public String sayHello () {

try {
//

2.4.2. Seam Built-in Components

19

} catch (Exception e) {
facesMessages.add(

"Has problem saving #{person.name}");
return null;

}
... ...

}
}

Another example is the Seam conversation list component, which gives the user an easy way
to switch between workspaces. All you need is to reference the #{conversationList} com-
ponent from the web page. See Chapter 8, Workspaces and Concurrent Conversations, for
more details.

You can initialize and configure Seam built-in components in the components.xml file. We
discuss configuration files later in this chapter, and you can see more elaborate component
configuration examples in Chapter 13, The Seam CRUD Application Framework, and
Chapter 24, Seam Without EJB3.

2.4.3. Ease of Testing

As we mentioned in Chapter 1, What Is Seam?, Seam was built from ground up to enable
easy and out-of-the-container testing. In the helloworld example project, we included two
test cases, for unit testing and integrated JSF testing respectively, in the test folder. The
Seam testing infrastructure mocks the database, JSF, Seam context, and other application
server services in plain Java SE environment. Just run ant test to run those tests. To learn
more about how to test Seam applications, refer to Chapter 21, Unit Testing, and Chapter 22,
Integration Testing.

2.4.4. Getter/Setter-Based Bijection

In the Hello World example, we demonstrated how to biject Seam components against field
variables. You can also biject components against getter and setter methods. For instance, the
following code would work just fine.

private Person person;
private List <Person> fans;

2.4.3. Ease of Testing

20

@In
public void setPerson (Person person) {
this.person = person;

}
@Out
public Person getPerson () {
return person;

}
@Out
public List <Person> getFans () {
return fans;

}

Although these getter/setter methods are trivial, the real value of bijection via getter/setter
methods is that you can add custom logic to manipulate the bijection process. For instance,
you can validate the injected object or retrieve the outjected object on the fly from the
database.

2.4.5. Avoid Excessive Bijection

Dependency bijection is a very useful design pattern. However, as with any other design pat-
tern, there is always a danger of overusing it. Too much dependency bijection can make the
code harder to read because the developer must mentally figure out where each component is
injected from. Too much bijection could also add performance overhead because the bijection
happens at runtime.

In the Hello World example, there's a simple way to reduce and even eliminate the bijection:
Just make the data components properties of the business component. This way, in the JSF
pages, we need only reference the business component; no bijection is needed to tie together
the business and data components. For instance, we can change the ManagerAction class to
the following.

@Stateless
@Name("manager")
public class ManagerAction implements Manager {

private Person person;
public Person getPerson () {return person;}
public void setPerson (Person person) {
this.person = person;

}

2.4.5. Avoid Excessive Bijection

21

private List <Person> fans;
public List<Person> getFans () {return fans;}

... ...
}

Then, on the web page, we reference the bean properties as follows.

<h:form>
Please enter your name:

<h:inputText value="#{manager.person.name}"/>

<h:commandButton type="submit" value="Say Hello"

action="#{manager.sayHello}"/>
</h:form>
... ...
<h:dataTable value="#{manager.fans}" var="fan">
<h:column>
<h:outputText value="#{fan.name}"/>

</h:column>
</h:dataTable>

The bottom line is that Seam is versatile when it comes to dependency management. It's gen-
erally a good practice to encapsulate the data component within its data access component.
This is especially the case for stateful business components (see more in Section 6.1.2.,
“Stateful Session Bean”).

2.4.6. Page Navigation in JSF

In this example, we have a single-page application. After each button click, JSF rerenders the
page with updated data model values. Obviously, most web applications have more than one
page. In JSF, an UI event handler method can determine which page to display next by re-
turning the string name of a navigation rule. For instance, you can define the following navig-
ation rule in the navigation.xml file (see Section 2.5., “Configuration and Packaging”).

<navigation-case>
<from-outcome>anotherPage</from-outcome>
<to-view-id>/anotherPage.jsp</to-view-id>

</navigation-case>

2.4.6. Page Navigation in JSF

22

Then if the sayHello() method returns the string value anotherPage, JSF would display the
anotherPage.jsp page next. This gives us programmatic control over which page to display
next from inside the UI event handler method. For a more detailed example, see Section 6.2.,
“Page Navigation Flow”, or refer to the JSF documentation.

2.4.7. Access Database via the EntityManager

The Java Persistence API (JPA, a.k.a. EJB3 Entity Bean Persistence) EntityManager man-
ages the mapping between relational database tables and entity bean objects. The EntityMan-

ager is created by the application server at runtime. You can inject an EntityManager in-
stance using the @PersistenceContext annotation.

The EntityManager.persist() method saves an entity bean object as a row in its mapped
relational table. The EntityManager.query() method runs an SQL-like query to retrieve data
from the database in the form of a collection of entity bean objects. Refer to the JPA docu-
mentation for more on how to use the EntityManager and the query language. In this book,
we only use the simplest queries.

By default, the EntityManager saves data to the embedded HSQL database. If you are run-
ning the application in JBoss AS on the local machine, you can open a GUI console for the
HSQL database via the following steps: Go to the page http://localhost:8080/

jmx-console/, click on the database=localDB,service=Hypersonic MBean, and then click
on the Invoke button under the startDatabaseManager method. You can execute any SQL
commands against the database from the console. See Chapter 26, Using a Production Data-
base, for how to use databases other than the HSQL with your Seam application.

2.5. Configuration and Packaging

Next, let's move on to configuration files and application packaging. You can actually gener-
ate almost all the configuration files and build script via the Seam Gen command-line utility
(see Chapter 4, Rapid Application Development Tools), or you can simply reuse the ones in
the sample application source project (see Appendix B, Using Example Applications as Tem-
plates). So if you want to learn Seam programming techniques first and worry about config-
uration/deployment later, that's fine. You can safely skip this section and come back later
when you need it.

2.4.7. Access Database via the EntityManager

23

In this section, we focus on the Seam EJB3 component configuration. For Seam POJO con-
figuration (and to potentially deploy outside JBoss AS), see Chapter 24, Seam Without EJB3.
Most Seam configuration files are XML files. But wait! Hadn't we just promised that Seam
would get us out of the XML hell in J2EE and Spring? Why does it have XML files, too?
Well, as it turns out, XML files have some good uses. XML files are good for deployment
time configuration (e.g., the root URL of the web application and the location of the back-end
database) because they enable us to make deploy-time changes without changing and recom-
piling the code. They're also good for gluing together different subsystems in the application
server (e.g., to configure how JSF components interact with Seam EJB3 components), and
they're good for presentation-related content (e.g., web page and page-navigation flow).

What we try to avoid is replicating information that already exists in the Java source code to
XML files. We do not want to repeat the same information in both Java source code and
XML files. We just need one place to express the information so that it is easier to maintain.
As you will soon see, this simple Seam application has several XML configuration files. All
of them are very short, and none concerns information that is already available in the Java
code. In other words, no "XML code" exists in Seam.

Furthermore, most content in those XML files is fairly static, so you can easily reuse those
files for your own Seam applications. Refer to Appendix B, Using Example Applications as
Templates, for instructions on how to use the sample application as a template for your own
applications.

We use the next several pages to detail the configuration files and packaging structure of the
sample application. If you are impatient and are happy with the application template, you can
skip those.

JBoss AS 4.2.x and 5.x

The information given in this section applies to deployment in
JBoss AS 4.0.5. For JBoss AS 4.2.x and 5.x., see changes you need
to make in Section 23.2., “JBoss AS 4.2.x and 5.x”.

Without further ado, let's look into how the Hello World example application is configured
and packaged. To build a deployable Seam application for JBoss AS, we have to package all
the previous Java classes and configuration files in an Enterprise Application aRchive (EAR)
file. In this example, the EAR file is helloworld.ear. It contains three JAR files and two
XML configuration files.

2.5. Configuration and Packaging

24

helloworld.ear
|+ app.war // Contains web pages etc.
|+ app.jar // Contains Seam components
|+ jboss-seam.jar // The Seam library
|+ META-INF

|+ application.xml
|+ jboss-app.xml

Source Code Directories

In the source code project, the resources/WEB-INF directory
contains the configuration files that go into app.war/WEB-INF, the
resources/META-INF directory contains files that go into
app.jar/META-INF and helloworld.ear/META-INF, the resources

directory root has files that go into the root directory of app.jar.
See more in Appendix B, Using Example Applications as
Templates.

The application.xml file lists the JAR files in the EAR and specifies the root URL for this
application.

<application>
<display-name>Seam Hello World</display-name>

<module>
<web>
<web-uri>app.war</web-uri>
<context-root>/helloworld</context-root>

</web>
</module>

<module>
<ejb>app.jar</ejb>

</module>

<module>
<java>jboss-seam.jar</java>

</module>

</application>

2.5. Configuration and Packaging

25

The jboss-app.xml file specifies the class loader for this application. Each EAR application
should have a unique string name for the class loader. Here, we use the application name in
the class loader name to avoid potential conflicts (see Appendix B, Using Example Applica-
tions as Templates for more on this).

<jboss-app>
<loader-repository>
helloworld:archive=helloworld.ear

</loader-repository>
</jboss-app>

The jboss-seam.jar file is the Seam library JAR file from the Seam distribution. The
app.war and app.jar files are built by us; let's look them next.

2.5.1. The WAR File

The app.war file is a JAR file packaged to the Web Application aRchive (WAR) specifica-
tion. It contains the web pages as well as standard JSF/Seam configuration files. You can also
put JSF-specific library files in the WEB-INF/lib directory (e.g., the jboss-seam-ui.jar —
see Chapter 7, Conversations).

app.war
|+ hello.jsp
|+ index.html
|+ WEB-INF

|+ web.xml
|+ faces-config.xml
|+ components.xml
|+ navigation.xml

All Java EE web applications require the web.xml file. JSF uses it to configure the JSF con-
troller servlet and Seam uses it to intercept all web requests. The configuration in this file is
pretty standard.

<web-app version="2.4"
xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="..."

2.5.1. The WAR File

26

xsi:schemaLocation="...">

<!-- Seam -->
<listener>
<listener-class>
org.jboss.seam.servlet.SeamListener

</listener-class>
</listener>

<!-- MyFaces -->
<listener>
<listener-class>

org.apache.myfaces.webapp.StartupServletContextListener
</listener-class>

</listener>

<context-param>
<param-name>
javax.faces.STATE_SAVING_METHOD

</param-name>
<param-value>client</param-value>

</context-param>

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>
javax.faces.webapp.FacesServlet

</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<!-- Faces Servlet Mapping -->
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.seam</url-pattern>

</servlet-mapping>

<context-param>
<param-name>javax.faces.CONFIG_FILES</param-name>
<param-value>/WEB-INF/navigation.xml</param-value>

</context-param>

</web-app>

The faces-config.xml file is a standard configuration file for JSF. Seam uses it to add the
Seam interceptor into the JSF lifecycle.

<faces-config>
<lifecycle>

2.5.1. The WAR File

27

<phase-listener>
org.jboss.seam.jsf.SeamPhaseListener

</phase-listener>
</lifecycle>

</faces-config>

The navigation.xml file contains JSF page navigation rules for multipage applications.
Because the Hello World example has only a single page, this file is empty here (see
Section 6.2., “Page Navigation Flow”, for more on this).

The components.xml file contains Seam-specific configuration options. It is also pretty much
application-independent with the exception of the jndi-pattern property, which must in-
clude the EAR file's base name for Seam to access EJB3 beans by their full JNDI name.

<components ...>

<core:init
jndi-pattern="helloworld/#{ejbName}/local"
debug="false"/>

<core:manager conversation-timeout="120000"/>

</components>

2.5.2. The Seam Components JAR

The app.jar file contains all EJB3 bean classes (both entity beans and session beans), as well
as EJB3-related configuration files.

app.jar
|+ Person.class // entity bean
|+ Manager.class // session bean interface
|+ ManagerAction.class // session bean
|+ seam.properties // empty file but needed
|+ META-INF

|+ ejb-jar.xml
|+ persistence.xml

2.5.2. The Seam Components JAR

28

The seam.properties file is empty here but it is required. The Seam runtime searches for
this file in all JAR files. If it is found, Seam would load the classes in the corresponding JAR
file and process all the Seam annotations.

The ejb-jar.xml file contains extra configurations that can override or supplement the an-
notations on EJB3 beans. In a Seam application, it adds the Seam interceptor to all EJB3
classes. We can reuse the same file for all Seam applications.

<ejb-jar>
<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>
org.jboss.seam.ejb.SeamInterceptor

</interceptor-class>
</interceptor-binding>

</assembly-descriptor>
</ejb-jar>

The persistence.xml file configures the back-end database source for the EntityManager.
In this example, we just use the default HSQL database embedded inside JBoss AS (i.e., the
java:/DefaultDS data source). Refer to Chapter 26, Using a Production Database, for more
details on this file and how to change to another database backend (e.g., MySQL).

<persistence>
<persistence-unit name="helloworld">
<provider>
org.hibernate.ejb.HibernatePersistence

</provider>
<jta-data-source>java:/DefaultDS</jta-data-source>
<properties>
<property name="hibernate.dialect"

value="org.hibernate.dialect.HSQLDialect"/>
<property name="hibernate.hbm2ddl.auto"

value="create-drop"/>
<property name="hibernate.show_sql"

value="true"/>
</properties>

</persistence-unit>
</persistence>

2.5.2. The Seam Components JAR

29

So that's all the configuration and packaging a simple Seam application needs. We cover
more configuration options and library files as we move to more advanced topics in this
book. Again, the simplest way to start your Seam application is not to worry about those con-
figuration files at all and start from a ready-made application template (see Chapter 4, Rapid
Application Development Tools, or Appendix B, Using Example Applications as Templates).

That's it for the Hello World application. With three simple Java classes, a JSF page, and a
bunch of largely static configuration files, we have a complete database-driven web applica-
tion. The entire application requires fewer than 30 lines of Java code and no "XML code."
However, if you are coming from a PHP background, you might still be asking, "How is this
simple? I can do that in PHP with less code!"

Well, the answer is that Seam applications are conceptually much simpler than PHP (or any
other scripting language) applications. The Seam component model enables us to add more
functionalities to the application in a controlled and maintainable manner. As you will soon
see, Seam components make it a breeze to develop stateful and transactional web applica-
tions. The object-relational mapping framework (i.e., entity beans) enables us to focus on the
abstract data model without having to deal with database-specific SQL statements.

In the rest of this book, we discuss how to develop increasingly complex Seam applications
using Seam components. In the next chapter, we start with improving the Hello World
example with Facelets and Seam UI libraries.

2.6. How is this Simple?

30

2.6. How Is This Simple?

3
Recommended JSF Enhancements

The Hello World example in Chapter 2, Seam Hello World, demonstrates how to build a
Seam application on standard EJB3 and JSF. Seam chooses JSF for its "web framework" for
many reasons. JSF is the standard technology in Java EE 5.0 and has a large ecosystem of
users and vendors. All Java application servers support it. JSF is fully component based and
has a vibrant vendor community for components. JSF also has a powerful and unified expres-
sion language (EL—e.g., the #{...} notation) that can be used in web pages, work flow de-
scription, and component configuration files throughout the application. JSF also has great
support for visual GUI tools in leading Java IDEs.

However, JSF also has its share of problems and awkwardness. JSF has been criticized for
being too verbose and too "component centric" (i.e., not transparent to HTTP requests). Being
a standard framework, JSF innovates more slowly than grass-root open source projects such
as Seam itself and, hence, is less agile when it comes to correcting design issues and adding
new features. As such, Seam works with other open source projects to improve and enhance
JSF. For Seam applications, we strongly recommend that you use the following JSF
enhancements.

• Use the Facelets framework for web pages. Write your web pages in Facelets XHTML
files instead of JSP files. Facelets provides many benefits over the standard JSP in JSF.
Please see Section 3.1.1., “Why Facelets?” for more details.

• Use the Seam JSF component library for special JSF tags that take advantage of Seam-
specific UI features, as well as Seam's extended EL for JSF.

• Setup Seam filters to capture and manage JSF redirect, error messages, debugging in-
formation etc.

Throughout the rest of the book, we assume that you already have these three JSF enhance-
ments installed and enabled (see Section 3.3., “Add Facelets and Seam UI Support” for in-
structions). In Section 7.1., “The Default Conversation Scope”, we explain how Seam

supports lazy loading in JSF page rendering and expands the use of JSF messages beyond
simple error messages. In Part III, “Integrating Web and Data Components”, we cover how to
integrate the data components directly into the JSF web pages. Such direct integration allows
Seam to add important features to JSF, such as end-to-end validators (see Chapter 10, Valid-
ating Input Data), easy-to-use data tables (see Chapter 11, Clickable Data Tables), book-
markable URLs (see Chapter 12, Bookmarkable Web Pages), and custom error pages (see
Chapter 14, Failing Gracefully). In Part IV, “AJAX Support”, we discuss how to incorporate
third-party AJAX UI widgets in Seam applications. In Chapter 19, Stateful Pageflows, we
discuss how to use the jBPM business process to manage pageflows in JSF/Seam applica-
tions. This enables us to use EL expressions in page navigation rules and have navigation
rules that are dependent on the application state.

In this chapter, we first explain how those additional frameworks improve your JSF develop-
ment experience. We show you how to develop applications with Facelets and Seam UI lib-
raries. Then in Section 3.3., “Add Facelets and Seam UI Support”, we list changes you need
to make from the Hello World example to support the Facelets and Seam UI components.
The new example is in the betterjsf project in the book's source code bundle. Feel free to
use it as a starting point for your own applications.

3.1. An Introduction to Facelets

JavaServer Pages (JSP) is the de-facto "view" technology in JavaServer Faces (JSF). In a
standard JSF application, the web pages containing JSF tags and visual components are typic-
ally authored in JSP files. However, JSP is not the only choice for authoring JSF web pages.
An open source project called Facelets (https://facelets.dev.java.net/) enables us to
write JSF web pages in XHTML files with significantly improved page readability, developer
productivity, and runtime performance, compared with equivalent pages authored in JSP. Al-
though Facelets is not yet a Java Community Process (JCP) standard, we highly recommend
that you use it in your Seam applications whenever possible.

3.1.1. Why Facelets?

First, Facelets improves JSF performance by 30 percent to 50 percent by bypassing the JSP
engine and using XHTML pages directly as the view technology. By avoiding JSP, Facelets
also avoids potential conflicts between JSF 1.1 and JSP 2.4 specifications, which are the spe-
cifications supported in JBoss AS 4.x (see the accompanying sidebar for more).

3.1. An Introduction to Facelets

32

https://facelets.dev.java.net/

The Potential Conflict between JSF and JSP

In our Hello World series of examples, we used JSP files (e.g., the
hello.jsp file) to create the web pages in the JSF application. The
JSP container processes those files at the same time they are pro-
cessed by the JSF engine. That raises some potential conflicts
between the JSP 2.0 container and JSF 1.1 runtime in JBoss AS 4.x.
For a detailed explanation of the problems and examples, refer to
Hans Bergsten's excellent article "Improving JSF by Dumping JSP"
(see www.onjava.com/pub/a/onjava/2004/06/09/jsf.html).

Those conflicts are resolved in JBoss AS 5.x, which supports JSP
2.1+ and JSF 1.2+. But if you need to use JBoss 4.x for now, the
best solution is to avoid JSP altogether and use Facelets instead.

Second, you can use any XHTML tags in Facelets pages. It eliminates the need to enclose
XHTML tags and free text in the f:verbatim tags. The f:verbatim tags are tedious to write
and they make JSP-based JSF pages hard to read.

Third, Facelets provides nice debugging support from the browser. If an error occurs when
Facelets renders a page, it gives you the exact location of that error in the source file and
provides context information around the error (see Section 14.5., “Debug Information Page”).
It is much nicer than digging into stack trace when a JSP/JSF error occurs.

Last, and perhaps more important, Facelets provides a template framework for JSF. With
Facelets, you can use a Seam-like dependency injection model to assemble pages, instead of
manually including page header, footer, and sidebar components in each page.

The Case for JSP

If Facelets is this good, why do we bother to use JSP with JSF at
all? Well, JSP is a standard technology in the Java EE stack, where-
as Facelets is not yet a standard. That means JSP is supported every-
where, while Facelets might have integration issues with third-party
JSF components. In the meantime, the JSP spec committee is cer-
tainly learning lessons from Facelets. The next-generation JSPs will
work a lot better with JSF.

3.1.2. A Facelets Hello World

33

www.onjava.com/pub/a/onjava/2004/06/09/jsf.html

3.1.2. A Facelets Hello World

As we discussed, the basic Facelets XHTML page is not all that different from the equivalent
JSP pages. To illustrate this point, we ported the Hello World sample application (see
Chapter 2, Seam Hello World) from JSP to Facelets. The new application is in the betterjsf

project. Below is the JSP version of the hello.jsp page.

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<html>
<body>
<f:view>

<f:verbatim>
<h2>Seam Hello World</h2>
</f:verbatim>

<h:form>
<f:verbatim>
Please enter your name:

</f:verbatim>

<h:inputText value="#{person.name}" size="15"/>

<h:commandButton type="submit" value="Say Hello"

action="#{manager.sayHello}"/>
</h:form>

<f:subview id="fans"
rendered="#{!empty(fans)}">

<f:verbatim>
<p>The following fans have said "hello" to JBoss Seam:</p>
</f:verbatim>

<h:dataTable value="#{fans}" var="fan">
<h:column>
<h:outputText value="#{fan.name}"/>

</h:column>
</h:dataTable>
</f:subview>

</f:view>
</body>
</html>

Now, let's compare it with the Facelets XHTML version of the hello.xhtml page.

3.1.2. A Facelets Hello World

34

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"

xmlns:f="http://java.sun.com/jsf/core">
<body>

<h2>Seam Hello World</h2>

<h:form>
Please enter your name:

<h:inputText value="#{person.name}" size="15"/>

<h:commandButton type="submit" value="Say Hello"

action="#{manager.sayHello}"/>
</h:form>

<f:subview id="fans"
rendered="#{!empty(fans)}">

<p>The following fans have said "hello"
to JBoss Seam:</p>

<h:dataTable value="#{fans}" var="fan">
<h:column>
<h:outputText value="#{fan.name}"/>

</h:column>
</h:dataTable>
</f:subview>

</body>
</html>

It is pretty obvious that the Facelets XHTML page is cleaner and easier to read than the JSP
page since the XHTML page does not get cluttered up with <f:verbatim> tags. The
namespace declaration in the Facelets XHTML page conforms to the XHTML standard. But
other than that, the two pages look similar. All the JSF component tags are identical.

3.1.3. Use Facelets as a Template Engine

For most developers, the ability to use XHTML templates is probably the most appealing fea-
ture of Facelets. Let's see how it works.

A typical web application consists of multiple web pages with a common layout. They typic-
ally have the same header, footer, and sidebar menu. Without a template engine, you must re-
peat all those elements in each page. That's a lot of duplicated code with complex HTML

3.1.3. Use Facelets as a Template Engine

35

formatting tags. Worse, if you need to make a small change to any of the elements (e.g.,
change a word in the header), you have to edit all pages. From all we know about the soft-
ware-development processes, this type of copy-and-paste editing is very inefficient and error
prone.

The solution, of course, is to abstract out the layout information into a single source and,
hence, avoid the spread and duplication of the same information on multiple pages. In Face-
lets, the template page is a single source of layout information. The template.xhtml file in
the Seam Hotel Booking example (the booking project in source code) is a template page.

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html">

<head>
<title>JBoss Suites: Seam Framework</title>
<link href="css/screen.css"

rel="stylesheet" type="text/css" />
</head>
<body>

<div id="document">
<div id="header">
<div id="title">...</div>
<div id="status">
... Settings and Log in/out ...

</div>
</div>
<div id="container">
<div id="sidebar">
<ui:insert name="sidebar"/>

</div>
<div id="content">
<ui:insert name="content"/>

</div>
</div>
<div id="footer">...</div>

</div>
</body>
</html>

The template.xhtml file defines the layout of the page header, footer, sidebar, and main con-
tent area (see Figure 3.1., “The template layout”). Obviously, the sidebar and main content
area have different contents for each page, so we use the <ui:insert> tags as placeholders in
the template. In each Facelets page, we tag UI elements accordingly to tell the engine how to
fill contents into the template placeholders.

3.1.3. Use Facelets as a Template Engine

36

Figure 3.1. The template layout

Multiple Template Pages

Actually, we were not entirely accurate when we mentioned that the
template is a "single" source for layout knowledge in the applica-
tion. Facelets is flexible in managing template pages. In a Facelets
application, you can have multiple template pages for alternative
themes (or for different sections) of the web site. Yet the basic idea
of abstracting layout information to avoid duplicated code still
applies.

3.1.3. Use Facelets as a Template Engine

37

Extensive use of CSS

All pages in the Seam Hotel Booking example, including the tem-

plate.xhtml page, are styled using CSS. We highly recommend us-
ing CSS in Seam/Facelet applications because it's concise and easy
to understand. Even more important, CSS separates the styling from
the page content. With CSS, the web designer does not need to un-
derstand the JSF/Seam symbols and tags in the page.

Of course, if you still prefer to use XHTML tables to lay out your
page, you can still do so in the template.xhtml file. Just make sure
that you place the <ui:insert> tags in the right places in the nested
tables.

Each Facelets page corresponds to a web page. It "injects" contents for the <ui:insert>

placeholders in the template. Below is the main.xhtml page in the Seam Hotel Booking ex-
ample application.

<ui:composition
xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
template="template.xhtml">

<ui:define name="content">
<ui:include src="conversations.xhtml" />

<div class="section">
<h:form>

<h1>Search Hotels</h1>
... ...

</h:form>
</div>

<div class="section">
<h:dataTable value="#{hotels}" ...>
... ...

</h:dataTable>
</div>

<div class="section">
<h1>Current Hotel Bookings</h1>

</div>

3.1.3. Use Facelets as a Template Engine

38

<div class="section">
<h:dataTable value="#{bookings}" ...>
... ...

</h:dataTable>
</div>

</ui:define>

<ui:define name="sidebar">
<h1>Stateful and contextual components</h1>
<p>... ...</p>

</ui:define>

</ui:composition>

At the beginning of the main.xhtml file, the code declares that the template.xhtml template
is used to format the layout. The <ui:define> elements correspond to the <ui:insert>

placeholders of the same names in the template. You can arrange those <ui:define> ele-
ments in any order, and the Facelets engine renders the web pages according to the template
at runtime.

3.1.4. Data List Component

One of the biggest omissions in the current JSF specification is that it lacks a standard com-
ponent to iterate over a data list. The <h:dataTable> component displays a data list in an
HTML table, but it is not a generic iteration component.

Facelets remedies this problem by providing a <ui:repeat> component to iterate over any
data list. For instance, the following Facelets page snippet displays a list in a table-less
format.

<ui:repeat value="#{fans} var="fan">
<div class="faninfo">#{fan.name}</div>

</ui:repeat>

In Section 3.4.1., “Generate PDF Reports” and Section 3.4.2., “Template-Based Email”, you
will see that the Facelets <ui:repeat> component can be used in completely non-HTML
environments.

3.1.4. Data List Component

39

In this section, we just scratched the surface of what Facelets can do. We encourage you to
explore Facelets (https://facelets.dev.java.net/) and make the most out of this excel-
lent framework.

3.2. Seam JSF Enhancements

Seam provides its own JSF enhancements that work with both Facelets XHTML and JSP
pages. You can use Seam UI tags in your JSF view pages, use Seam's special extension to the
JSF EL, and use the Seam filter to make Seam work better with the JSF URL redirecting and
error-handling mechanisms. Those Seam JSF components work with Seam framework fea-
tures not yet discussed in the book. In this section, we just provide an overview of those en-
hancements and leave the details to later chapters of the book. Impatient readers can safely
skip to Section 3.3., “Add Facelets and Seam UI Support”, for instructions on how to install
those Seam JSF components.

3.2.1. Seam UI Tags

The Seam UI tags give regular JSF UI components access to Seam managed runtime inform-
ation. They help integrate Seam business and data components more tightly with the web UI
components. Seam UI tags can be roughly divided into the following categories.

• Validation — The Seam validation tags enable us to use Hibernate validator annotations
on entity beans to validate JSF input fields. They also enable us to decorate the entire in-
valid (or valid) fields when the validation fails. See Chapter 10, Validating Input Data,
for more on how use those components.

• Conversation management — A key concept in Seam is the long-running web conversa-
tion (see Chapter 7, Conversations). Normally, the web pages in a conversation are con-
nected via hidden fields in HTTP POST operations. But what if you want to click on a
regular hyperlink and still stay in the same conversation? Seam provides tags that can
generate conversation-aware proper hyperlinks. See Section 7.2.5., “Links and Buttons”,
and Section 8.3., “Carry a Conversation Across Workspaces”, for more.

• Business process management — Seam provides tags that can associate web page content
with business processes in the background (see Chapter 18, Managing Business
Processes).

3.2. Seam JSF Enhancements

40

https://facelets.dev.java.net/

• Performance — The <s:cache> tag encloses page content that should be cached on the
server. When the page is rendered again, the cached region is retrieved from the cache in-
stead of being dynamically rendered (see Chapter 27, Performance Tuning and
Clustering).

• JSF replacement tags — Some Seam tags are a direct replacement for JSF tags to fix cer-
tain deficiencies in JSF. Right now, the only such tag is <s:convertDateTime>, which
fixes JSF's annoying default time zone problem.

• Alternative display output — In addition to the standard HTML output, Seam provides
JSF tags that render PDF and email outputs based on Facelets templates. It also provides
tags to render wiki text snippets into HTML elements. Refer to Section 3.4., “PDF, Email,
and Rich Text”, for more details on those alternative display technologies supported by
the Seam tag library.

Later chapters cover the use of these Seam UI tags when we discuss specific Seam features
related to them. Here, we use the <s:convertDateTime> tag as an example to demonstrate
how Seam UI tags are used. The <s:convertDateTime> tag replaces JSF's convertor tag
<f:convertDateTime> to convert the back-end Date or Time objects to formatted output/input
strings in the server's local time zone. The JSF tag is insufficient because it converts the time
stamp to the UTC time zone by default. The sensible default time zone in the Seam tag makes
life a lot easier for developers. To use the Seam UI tags in a web page, you need to declare
the Seam taglib namespace, as follows.

<html xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:s="http://jboss.com/products/seam/taglib">

... ...

The old hello date is:

<h:outputText value="#{manager.helloDate}">

<s:convertDateTime/>
</h:outputText>

Please enter a new date:

<h:inputText value="#{manager.helloDate}">

<s:convertDateTime/>
</h:inputText>

</html>

3.2.2. Seam JSF EL Enhancement

41

3.2.2. Seam JSF EL Enhancement

Chapter 2, Seam Hello World, showed that the JSF #{...} EL notation is highly useful.
However, in standard JSF EL, the "property" (value expression) and "method" (method ex-
pression) on the back-end component are the same. The problem here is that the EL method
expression cannot take any call arguments. For instance, the name property on the person

component is expressed as follows:

<h:inputText value="#{person.name}" size="15"/>

The event handler method sayHello() on the manager component also is expressed the same
way, as follows. The method cannot take any call arguments. All the objects the method
needs to operate on must be injected into the component before the method is called.

<h:commandButton type="submit" value="Say Hello"
action="#{manager.sayHello}"/>

With the Seam EL extension, you can now express any component method with the () to im-
prove readability.

#{component.method()}

The method can now take call arguments as well. So with the following example, you no
longer need to inject the person component into the manager component. That reduces the
need for dependency injection and makes the application easier to read.

<h:commandButton type="submit" value="Say Hello"
action="#{manager.sayHello(person)}"/>

The new ManagerAction class with the new sayHello() method is as follows.

3.2.2. Seam JSF EL Enhancement

42

@Stateless
@Name("manager")
public class ManagerAction implements Manager {

@Out
private Person person;

@Out
private List <Person> fans;

@PersistenceContext
private EntityManager em;

public String sayHello (Person p) {
person = p;
em.persist (person);

person = new Person ();
fans = em.createQuery("select p from Person p")

.getResultList();
return null;

}
}

The enhanced EL allows multiple call arguments separated by commas as well. If the
backend method takes a String argument, you can pass it directly in the EL, as follows.

... action="#{component.method('literal string')}"/>

The new Seam JSF EL makes your code more readable and more elegant. Use it!

3.2.3. Use EL Everywhere

Seam not only expands the syntax of JSF EL but also makes the EL available beyond JSF
web pages. In a Seam application, you can use JSF expressions to substitute static text in con-
figuration files (see Section 8.2., “Workspace Switcher”), test cases (see Chapter 21, Unit
Testing, and Chapter 22, Integration Testing), JSF messages (see Section 7.1.1., “Display JSF
Messages”), and jBPM processes (see Chapter 18, Managing Business Processes).

The expanded use of JSF EL greatly simplifies application development.

3.2.3. Use EL Everywhere

43

3.2.4. Seam Filter

Seam provides a very powerful servlet filter. The filter does additional processing before the
web request is processed by JSF and after the web response is generated. It improves integra-
tion between Seam components and JSF.

• It preserves the conversation context during JSF URL redirects. That allows the Seam de-
fault conversation scope to span from the request page to the redirected response page
(see Chapter 7, Conversations).

• It captures any uncaught runtime error and redirects to custom error pages or the Seam
debug page, if necessary (see Chapter 14, Failing Gracefully).

• It provides support for the file upload JSF component in Seam UI.

• It allows any non-JSF servlet or JSP page to access Seam components via the Seam
Component class.

Please see Section 3.3., “Add Facelets and Seam UI Support”, for how to install the Seam fil-
ter in your web.xml.

3.2.5. Stateful JSF

Perhaps the most important feature of Seam is that it is a stateful application framework. The
stateful design has great implications for JSF. For instance, it enables much tighter integration
between JSF and ORM solutions such as Hibernate (Section 5.1., “Correct Usage of ORM”),
and it allows JSF messages to propagate across different pages (Section 7.1.1., “Display JSF
Messages”). Throughout the rest of this book, we will cover how the Seam stateful design im-
proves web application development.

3.3. Add Facelets and Seam UI Support

To support the Facelets and Seam UI frameworks, you must first bundle necessary library
JAR files in the application. Three JAR files go into the app.war archive's WEB-INF/lib dir-
ectory because they contain tag definitions. Facelets requires the jsf-facelets.jar file.
Seam needs the jboss-seam-ui.jar and jboss-seam-debug.jar files. Two additional JAR

3.2.5. Stateful JSF

44

files, el-api.jar and el-ri.jar, go into the EAR file mywebapp.ear to support the JSF ex-
pression language (EL) in both the web module (app.war) and the EJB3 module (app.jar).

mywebapp.ear
|+ app.war

|+ web pages
|+ WEB-INF

|+ web.xml
|+ faces-config.xml
|+ other config files
|+ lib

|+ jsf-facelets.jar
|+ jboss-seam-ui.jar
|+ jboss-seam-debug.jar

|+ app.jar
|+ el-api.jar
|+ el-ri.jar
|+ jboss-seam.jar
|+ META-INF

|+ application.xml
|+ other config files

You have to make the two EL JARs available on the entire EAR application's classpath. So,
you need the following declaration in mywebapp.ear/META-INF/application.xml (in the
resources/META-INF directory in the project source).

<application>

... ...

<module>
<java>el-api.jar</java>

</module>

<module>
<java>el-ri.jar</java>

</module>

</application>

To use Facelets and Seam's enhancements to JSF EL, you need to load a special view handler
in the faces-config.xml file, which is located in the WEB-INF directory in the app.war (or in
the resources/WEB-INF directory in the project source). The view handler renders HTML

3.3. Add Facelets and Seam UI Support

45

web pages from Facelets template and pages. This is the relevant snippet from the
faces-config.xml file.

<faces-config>

... ...

<application>
<view-handler>

org.jboss.seam.ui.facelet.SeamFaceletViewHandler
</view-handler>

</application>
<faces-config>

Facelets and Ajax4jsf

The Ajax4jsf framework requires special configuration to avoid
conflicts with the Facelets view handler. Please see Section 16.6.,
“Configuring Ajax4jsf”, for more details.

In a Facelets application, we typically use the .xhtml file suffix for web pages since they are
now XHTML files, not JSP pages. We have to tell the JSF runtime this change in the web.xml

file (in the same directory as the faces-config.xml file).

<web-app>

... ...

<context-param>
<param-name>
javax.faces.DEFAULT_SUFFIX

</param-name>
<param-value>.xhtml</param-value>

</context-param>
</web-app>

Finally, let's set up the Seam filter and resource servlet in the same web.xml. The SeamFilter

provides support for error pages, JSF redirect, and file upload. The Seam resource servlet
provides access to images and CSS files in jboss-seam-ui.jar, which are required by Seam

3.3. Add Facelets and Seam UI Support

46

UI components. The resource servlet also enables direct JavaScript access to Seam compon-
ents (see Chapter 17, Direct JavaScript Integration).

<web-app>

... ...

<servlet>
<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>
org.jboss.seam.servlet.ResourceServlet

</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</servlet-name>
<url-pattern>/seam/resource/*</url-pattern>

</servlet-mapping>

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>
org.jboss.seam.web.SeamFilter

</filter-class>
</filter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

</web-app>

3.4. PDF, Email, and Rich Text

So far, we have discussed JSF enhancements provided by Facelets and the jboss-

seam-ui.jar library. Those are important usability and integration features required by al-
most all Seam web applications. In this section, we discuss several additional UI features
Seam provides. To use those features, you need to bundle more library JAR files in your ap-
plication and provide extra configuration as described below. You can choose and mix the UI
feature sets you want in the application while keeping the footprint/configuration complexity
to a minimum.

3.4. PDF, Email, and Rich Text

47

3.4.1. Generate PDF Reports

The Facelets XHTML files generate HTML web pages by default. But a real-world web ap-
plication sometimes need to generate PDF output for printer-ready documents such as reports,
legal documents, tickets, receipts, etc. The Seam PDF library leverages the open source iText
toolkit to generate PDF documents. Below is a simple Facelets file, hello.xhtml, to render a
PDF document.

<p:document
xmlns:p="http://jboss.com/products/seam/pdf"
title="Hello">

<p:chapter number="1">
<p:title>
<p:paragraph>Hello</p:paragraph>

</p:title>
<p:paragraph>Hello #{user.name}!</p:paragraph>
<p:paragraph>The time now is
<p:text value="#{manager.nowDate}">
<f:convertDateTime style="date"

format="short"/>
</p:text>

</p:paragraph>
</p:chapter>

<p:chapter number="2">
<p:title>
<p:paragraph>Goodbye</p:paragraph>

</p:title>
<p:paragraph>Goodbye #{user.name}.</p:paragraph>

</p:chapter>
</p:document>

While the hello.xhtml file has the xhtml suffix, it is really an XML file with Seam PDF UI
tags. When the user loads the hello.seam URL, Seam generates the PDF document, and re-
directs the browser to hello.pdf. The browser then displays the hello.pdf file in its PDF
reader plugin or prompts the user to save the PDF file. By passing the pageSize HTTP para-
meter to the URL, you can specify the page size of the generated PDF document. For in-
stance, the hello.seam?pageSize=LETTER URL produces a letter-sized hello.pdf document.
Other pageSize options include A4, LEGAL and more.

You can use any JSF EL expression in the xhtml page; the EL expressions are resolved on-
the-fly when the PDF document is rendered, just as EL expressions on web pages. You can

3.4.1. Generate PDF Reports

48

also use JSF convertors to control text formating, the <f:facet> tag to control table format-
ting, or the Facelets <ui:repeat> tag to render a list or PDF table from dynamic data. Refer
to the Seam reference documentation for more details on the tags.

To use the Seam PDF tags, you need to include the jboss-seam-pdf.jar and
itext-x.y.z.jar files in the WEB-INF/lib directory of your WAR application archive.

mywebapp.ear
|+ app.war

|+ web pages
|+ WEB-INF

|+ web.xml
|+ faces-config.xml
|+ other config files
|+ lib

|+ jsf-facelets.jar
|+ jboss-seam-ui.jar
|+ jboss-seam-debug.jar
|+ jboss-seam-pdf.jar
|+ itext-x.y.z.jar

|+ app.jar
|+ el-api.jar
|+ el-ri.jar
|+ jboss-seam.jar
|+ META-INF

Then, you need to configure the PDF-related Seam component in the components.xml file.
The useExtensions property indicates whether the hello.seam URL should redirect to the
hello.pdf URL. If the useExtensions property is set to false, the redirection would not
happen and the web application would serve PDF data directly to the browser from a .seam

URL, which could cause usability problems in some browsers.

<components
xmlns:pdf="http://jboss.com/products/seam/pdf"
xmlns:core="http://jboss.com/products/seam/core">

<pdf:documentStore useExtensions="true"/>

... ...

</components>

3.4.1. Generate PDF Reports

49

Finally, you need to set up servlet filters for the .pdf files. Those filters are only needed
when you have the useExtensions property set to true in the components.xml configuration
shown previously.

<web-app ...>

... ...

<filter>
<filter-name>Seam Servlet Filter</filter-name>
<filter-class>
org.jboss.seam.servlet.SeamServletFilter

</filter-class>
</filter>

<filter-mapping>
<filter-name>Seam Servlet Filter</filter-name>
<url-pattern>*.pdf</url-pattern>

</filter-mapping>

<servlet>
<servlet-name>
Document Store Servlet

</servlet-name>
<servlet-class>
org.jboss.seam.pdf.DocumentStoreServlet

</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>
Document Store Servlet

</servlet-name>
<url-pattern>*.pdf</url-pattern>

</servlet-mapping>
</web-app>

The Seam PDF library supports generating digitally signed PDF documents. The public key
configuration, however, is beyond the scope of this book. Refer to the Seam reference docu-
mentation and iText documentation for more details.

3.4.2. Template-Based Email

Sending email from your web application is not hard but it can be a messy task. The standard
JavaMail API requires developers to embed the email messages as literal strings inside Java

3.4.2. Template-Based Email

50

code. That makes it very difficult to write rich email (i.e., HTML email with elaborate text
formatting and embedded images), and makes it nearly impossible for non-developers to
design and compose the email messages. The lack of design and branding in email messages
is a major weakness in many web applications.

In Seam, we provide a template-based approach to handle email. A business person or a page
designer writes the email as if it is a web page. Here is an example email template page
hello.xhtml.

<m:message xmlns="http://www.w3.org/1999/xhtml"
xmlns:m="http://jboss.com/products/seam/mail"
xmlns:h="http://java.sun.com/jsf/html">

<m:from name="Michael Yuan"
address="myuan@redhat.com"/>

<m:to name="#{person.firstname} #{person.lastname}">
#{person.address}

</m:to>
<m:subject>Try out Seam!</m:subject>
<m:body>

<p>Dear #{person.firstname},</p>
<p>You can try out Seam by visiting

http://labs.jboss.com/jbossseam

.</p>
<p>Regards,</p>
<p>Michael</p>

</m:body>
</m:message>

When a web user needs to send out the hello.xhtml message, she clicks on a button or a link
to invoke a Seam backing bean method to render the hello.xhtml page. Below is an example
method to send the hello.xhtml email. The message recipient is dynamically determined at
runtime via the #{person.address} EL expression. Similarly, you can dynamically determ-
ine the sender address, or any content in the message via EL expressions.

public class ManagerAction implements Manager {

@In(create=true)
private Renderer renderer;

public void send() {
try {
renderer.render("/hello.xhtml");

3.4.2. Template-Based Email

51

facesMessages.add("Email sent successfully");
} catch (Exception e) {
facesMessages.add("Email sending failed: "

+ e.getMessage());
}

}
}

If a message has multiple recipients, you can repeat multiple <m:to> tags within the Facelets
<ui:repeat> tag. You can also use the Facelets <ui:insert> tag to compose messages from
a template.

To use the Seam email support tags, you first bundle the jboss-seam-mail.jar file in the
WEB-INF/lib directory of your WAR archive.

mywebapp.ear
|+ app.war

|+ web pages
|+ WEB-INF

|+ web.xml
|+ faces-config.xml
|+ other config files
|+ lib

|+ jsf-facelets.jar
|+ jboss-seam-ui.jar
|+ jboss-seam-debug.jar
|+ jboss-seam-mail.jar

|+ app.jar
|+ el-api.jar
|+ el-ri.jar
|+ jboss-seam.jar
|+ META-INF

Then, you need to configure an SMTP server to actually send the email. That is done via the
Seam mailSession component in components.xml. You can specify the host name, port
number, and login credentials for the SMTP server. The following listing is an example
SMTP configuration.

<components
xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmlns:mail="http://jboss.com/products/seam/mail">

3.4.2. Template-Based Email

52

<mail:mailSession host="smtp.example.com"
port="25"
username="myuan"
password="mypass" />

... ...

</components>

3.4.3. Display Rich Text

A community oriented web application often needs to display user contributed content (e.g.,
forum posts, comments etc.). However, a big issue is how to allow rich text formatting in user
contributed content. Allowing the web user to submit arbitrary HTML formatted text is out of
the question, as un-sanitized HTML is insecure and prone to various cross-site scripting
attacks.

One solution is to use a WYSIWYG rich text editor widget to capture user input. The widget
transforms its content to sanitized HTML when the form is submitted to the server. Refer to
Section 17.3.2., “Input Widgets”, for more on this subject.

Another solution, which we cover here, is to provide the web user a simple set of non-HTML
markup tags they can use to format the content. When the application displays the content, it
automatically converts the markup to HTML tags. A popular non-HTML text markup lan-
guage is Wikitext. Wikitext is widely used on wiki community sites (e.g., the Wikipedia.com

site). The Seam <s:formattedText> UI component converts Wikitext to HTML formatted
text. For instance, suppose that the #{user.post} Seam component contains the following
text.

It's easy to make *bold text*, /italic text/,
|monospace|, -deleted text-, super^scripts^
or _underlines_.

UI element <s:formattedText value="#{user.post}"/> would produce the following
HTML text on the web page.

3.4.3. Display Rich Text

53

<p>
It's easy to make bold text,
<i>italic text</i>, <tt>monospace</tt>
deleted text, super^{scripts}
or <u>underlines</u>.
</p>

Support for the <s:formattedText> tag is already included in the jboss-seam-ui.jar file.
But it depends on the ANTLR (ANother Tool for Language Recognition, see
http://www.antlr.org/) parser to process the Wikitext grammar. In order to use the
<s:formattedText> tag, you need to bundle the ANTLR JAR in your WAR archive.

mywebapp.ear
|+ app.war

|+ web pages
|+ WEB-INF

|+ web.xml
|+ faces-config.xml
|+ other config files
|+ lib

|+ jsf-facelets.jar
|+ jboss-seam-ui.jar
|+ jboss-seam-debug.jar
|+ antlr-x.y.z.jar

|+ app.jar
|+ el-api.jar
|+ el-ri.jar
|+ jboss-seam.jar
|+ META-INF

With the ANTLR parser, Seam would potentially support other markup languages beyond the
Wikitext. For instance, it might support sanitized HTML (i.e., HTML text with all potential
security loopholes removed), BBCode (widely used in online forms), and others. Refer to
Seam documentation for the latest update on this subject.

3.4.3. Display Rich Text

54

http://www.antlr.org/

4
Rapid Application Development Tools

In the previous two chapters, we have seen that Seam applications are very easy to code but
there are several configuration files to manage. To be fair, the configuration files are simple
(i.e., no "XML code") and they are about 90% the same across different projects. But still, the
developers need to keep track of them. That is where development tools can really help us!

Seam Gen is a rapid application generator shipped with Seam distribution. With a few com-
mand line commands, Seam Gen generates an array of artifacts for Seam projects. In particu-
lar, we often use Seam Gen to do the following.

• Automatically generate an empty Seam project with common configuration files, a build
script, and directories for Java code and JSF view pages.

• Automatically generate complete Eclipse and NetBeans project files for the Seam project.

• Reverse-engineer entity bean objects from relational database tables.

• Generate template files for common Seam components.

The command-line script-based approach allows Seam Gen to work in any development en-
vironment, in much the same successful approach Ruby on Rails took. But the difference is
that Seam Gen also works with IDEs. In particular, it provides excellent integration support
for Eclipse and NetBeans. In this chapter, we show you how to start a project with Seam Gen.

4.1. Prerequisites

Seam Gen requires Apache Ant 1.6+. In fact, all the build scripts in this book's examples re-
quire Apache Ant. Please download Ant and install it from http://ant.apache.org/, if you
have not done so.

http://ant.apache.org/

Seam Gen generates code and configuration files for deployment in the ejb3 profile of the
JBoss Application Server 4.0.5+ (see Appendix A, Installing and Deploying JBoss AS, for in-
stallation instructions). It does not work with J2EE 1.4 or plain Tomcat deployment options
(see more in Chapter 24, Seam Without EJB3, and Chapter 25, Tomcat Deployment).

Seam Gen projects use Facelets (see Section 3.1., “An Introduction to Facelets”) as the view
framework. You must author your JSF web pages in XHTML files.

4.2. A Quick Tutorial

The seam (Linux, Unix and Mac) and seam.bat (Windows) scripts in the Seam distribution
are the main scripts for Seam Gen. On a Linux/Unix machine, you might need to adjust the
permission of the seam file to make it executable from the command line.

In the rest of this section, we will go over the steps to use Seam Gen to generate and build the
complete betterjsf example application we discussed in Chapter 3, Recommended JSF En-
hancements.

4.2.1. Set Up Seam Gen

First, you need to tell Seam Gen about the project you are about to generate. Just type the
following in your Seam distribution's root directory.

seam setup

The script asks you a few questions about the project, such as the project name, JBoss AS
location, Eclipse workspace, and database server. Following is an example conversation. You
can simply enter RETURN to accept the default value in the square brackets for each
question.

[echo] Welcome to seam-gen :-)
[input] Enter your Java project workspace

[C:/Projects]
/home/juntao/projects

[input] Enter your JBoss home directory

4.2. A Quick Tutorial

56

[C:/Program Files/jboss-4.0.5.GA]
/usr/local/jboss-4.0.5-GA

[input] Enter the project name [myproject]
helloseamgen

[input] Is this project deployed as an EAR
(with EJB components) or a WAR
(with no EJB support) [ear] (ear,war,)

ear

[input] Enter the Java package name for your
session beans [com.mydomain.MyFirstProject]

book.helloseamgen

[input] Enter the Java package name for your
entity beans [com.mydomain.MyFirstProject]

book.helloseamgen

[input] Enter the Java package name for your
test cases [com.mydomain.MyFirstProject.test]

book.helloseamgen.test

[input] What kind of database are you using? [hsql]
(hsql,mysql,oracle,postgres,mssql,db2,sybase,)

[input] Enter the Hibernate dialect for your database
[org.hibernate.dialect.HSQLDialect]

[input] Enter the filesystem path to the
JDBC driver jar [lib/hsqldb.jar]

[input] Enter JDBC driver class for your database
[org.hsqldb.jdbcDriver]

[input] Enter the JDBC URL for your database
[jdbc:hsqldb:.]

[input] Enter database username [sa]

[input] Enter database password []

[input] Enter the database schema name
(it is OK to leave this blank) []

[input] Enter the database catalog name
(it is OK to leave this blank) []

[input] Are you working with tables that already
exist in the database? [y] (y,n,)

n
[input] Do you want to drop and recreate the

4.2.1. Set Up Seam Gen

57

database tables and data in import.sql
each time you deploy? [n] (y,n,)

y

Below are some tips and hints on how to answer the previous questions. Many of the choices
deal with the database server. For beginners, it is fastest to start with the embedded HSQL
database inside JBoss AS, and then refer to Chapter 26, Using a Production Database, for
other database options when you are ready to test or deploy the application.

• The "Java Project Workspace" is really an Eclipse term. If you do not use Eclipse, you
should simply enter a directory where you want to store your Seam projects. You can
have multiple Seam projects co-exist in the same "workspace". If you enter a relative path
here, the directory would be created under the seam-gen directory.

• The "JBoss Home" directory is the directory where you installed the JBoss AS. Again, the
ejb3 or ejb3-clustering profile must be installed if you are running JBoss AS 4.0.5 (see
Appendix A, Installing and Deploying JBoss AS).

• The "Project Name" is the name of your project. The generated project directory has the
same name as the project name. The build script builds the application to project-

name.jar, projectname.war, and projectname.ear files.

• You can choose whether you want to build an EAR archive or a WAR archive for your
application. We recommend the EAR archive for most scenarios since it provides EJB3
support in JBoss AS. The WAR archive can be used if your application uses Seam POJOs
instead of EJB3 session beans (see Section 2.4.1., “Seam POJO Components”), and you
plan to deploy the application in a J2EE 1.4 server (see Chapter 24, Seam Without EJB3).
Notice that the WAR file generated by Seam Gen is not deployable on plain Tomcat. You
need to read Chapter 25, Tomcat Deployment, for Tomcat deployment.

• The "Java package names" are used for later Seam Gen code-generation tasks, such as
generating the entity beans from database tables, generating forms and actions, etc. If you
do not plan to use Seam Gen for those tasks, the package names do not matter here—just
accept the default value. Even if you do use Seam Gen to generate some skeleton classes
later, you can easily change the package name by hand or via refactoring support in IDEs,
so don't worry too much here.

• The database type selection enables you to choose a relational database to go with your
application. For default deployment inside the JBoss AS, just accept the default hsql,

4.2.1. Set Up Seam Gen

58

which is the embedded HSQL database in JBoss AS and maps to JNDI name
java:/DefaultDS by default. Of course, for production applications, you would probably
choose a more robust database server, such as MySQL. To learn more about production
databases, refer to Chapter 26, Using a Production Database.

• The "Hibernate Dialect" choice depends on your database choice. For the default
HSQL, it is org.hibernate.dialect.HSQLDialect; for MySQL, it is
org.hibernate.dialect.MySQLDialect. Note that you have to enter the full Hibernate
class name. Refer to the Hibernate documentation for more on database dialects.

• The "JDBC driver" choice depends on the database of choice. For the default HSQL, the
driver is already bundled in JBoss AS, so just enter an empty line here. For MySQL or
other databases, you must download their JBDC drivers and enter the path to the JAR file
here.

• The "JDBC driver class" is the JDBC driver class for the database you choose. For the de-
fault HSQL, it is org.hsqldb.jdbcDriver; for MySQL, it is com.mysql.jdbc.Driver.
Again, refer to you JDBC documentation if you are using another database.

• The "JDBC URL" tells the application how to connect to your particular database. For the
default HSQL, it is jdbc:hsqldb:.; for MySQL, it is jdbc:mysql://host:3306/dbname,
where dbname refers to the database name.

• The database username and password are specific to your database server. For the default
HSQL, the username is simply sa and the password is empty.

• The database schema and catalog names are used for reverse engineering database tables
into entity beans. We do not use those features here.

• The last two questions ask you how you want to manage the database tables. They control
how the hbm2ddl attribute in the Hibernate persistence engine is set. If you are in develop-
ment mode, you probably should answer y to the last question. It sets hbm2ddl to create-

drop (i.e., tables are created when the application is deployed and dropped when un-
deployed). If you answer n to the last question and y to the second to last, hbm2ddl is set
to update. Otherwise, hbm2ddl is set to validate.

The answers to the seam setup questions are stored in the the seam-gen/build.properties

file. You can edit the file directly if you need to change some settings but do not wish to go
through all the questions again.

4.2.2. Generate a Skeleton Application

59

4.2.2. Generate a Skeleton Application

To generate the skeleton application template with configuration files and a build script,
simply run the following command in the Seam distribution directory.

seam new-project

A new project directory is now generated in your Eclipse workspace. The directory name is
the same as your project name. In our case, we get the /home/juntao/projects/

helloseamgen directory with the following initial structure. As we can see, the project direct-
ory layout is very similar to the book's example applications (see Appendix B, Using Ex-
ample Applications as Templates) and the official Seam example applications. The directory
also contains support files for NetBeans and Eclipse IDE integration, which we will discuss
later in this chapter.

helloseamgen
|+ .classpath // Eclipse support
|+ .exploded.launch // Eclipse support
|+ .project // Eclipse support
|+ nbproject // NetBeans support
|+ build.properties // JBoss Home etc.
|+ build.xml // Build script
|+ embedded-ejb // For Tomcat deployment
|+ exploded-archives // Exploded deployment
|+ lib // Library JARs
|+ src // Java source code
|+ test // Test cases
|+ view // Facelets XHTML files
|+ resources // Configuration files

The Project Name

The example project here is helloseamgen, but we use project-

name to refer to a generic project name generated by Seam Gen.

Each Seam Gen-generated project is completely self-contained. You can build, test, deploy
the application without any referencing or linking to any JAR files outside of the project
directory.

4.2.2. Generate a Skeleton Application

60

To try the skeleton application, just enter the projectname directory and type ant. It should
build the projectname.ear file in the dist directory and then deploy it to your JBoss AS.
Start JBoss AS and point your browser to http://localhost:8080/projectname/; you
should see a nice welcome page.

4.2.3. Understand the Profiles

Borrowing a page in Ruby On Rails' playbook, Seam Gen supports the concept of "profile".
The idea is that the application probably needs different database settings in the development,
test, and production phases. So, the project provides alternative database configuration files
for each of the three scenarios. In the resources directory, there are the following database
configuration files.

projectname
|+
|+ resources

|+ projectname-dev-ds.xml
|+ projectname-prod-ds.xml
|+ import-dev.sql
|+ import-prod.sql
|+ import-test.sql
|+
|+ WEB-INF

|+ persistence-dev.xml
|+ persistence-prod.xml
|+ persistence-test.xml
|+

The *-dev-* files are database configuration files for development time (i.e., the dev profile).
When an EAR or WAR archive is built for the dev profile, the persistence-dev.xml and
import-dev.sql files are packaged in the archive as persistence.xml and import.sql files.
The projectname-dev-ds.xml file is copied to the server's deploy directory as projectname-
ds.xml to configure the development HSQL database.

At development time, you probably want to use the embedded HSQL database, and a simple
set of imported data for quick turn-around development. Below is an example
projectname-dev-ds.xml file. It just maps the embedded HSQL data source to JNDI name
projectnameDatasource, which is essentially the same as the default java:/DefaultDS

already available in JBoss AS.

4.2.3. Understand the Profiles

61

<datasources>

<local-tx-datasource>
<jndi-name>projectnameDatasource</jndi-name>
<connection-url>jdbc:hsqldb:.</connection-url>
<driver-class>
org.hsqldb.jdbcDriver

</driver-class>
<user-name>sa</user-name>
<password></password>

</local-tx-datasource>

</datasources>

Similarly, the *-prod-* files are for production time configuration (the prod profile). When
the project is first generated, the *-prod-* files are the same as the *-dev-* files. They are all
generated based on your answers in seam setup. But you should probably modify the
-prod- files to use a real production database such as MySQL here. Refer to Chapter 26,
Using a Production Database, for details.

The *-test-* files are database configuration for out-of-the-container tests. It typically uses
an HSQL database bootstrapped by the test runner. Refer to Part VI, “Testing Seam Applica-
tions”, for more details.

To change the build profile for the project, edit the build.xml file and change the value of
the profile property as follows.

<project ...>

<!-- development (default) -->
<property name="profile" value="dev" />
<!-- production
<property name="profile" value="dev" />

-->
<!-- test
<property name="profile" value="test" />

-->

</project>

4.2.4. Develop the Application

62

4.2.4. Develop the Application

Now it's time to fill out the skeleton template with Java code, XHTML pages, and other ap-
plication-specific configuration. For the helloseamgen example, it's very simple: Just copy
everything from the betterjsf project's src/ and view/ directories to corresponding direct-
ories in the helloseamgen project. The Seam Gen-generated project is set up to support Face-
lets as the view framework (see Section 3.1., “An Introduction to Facelets”).

Because we spend most of the book covering how to develop Seam applications, we do not
get into details of the helloseamgen example here. Interested readers should read Chapter 2,
Seam Hello World, and Chapter 3, Recommended JSF Enhancements.

To run complex examples in Seam Gen, you need a little more than moving over the src/

and view/ contents. For instance, to run the Booking example (see Chapter 7,
Conversations), you should copy the resources/WEB-INF/navigation.xml, resources/

WEB-INF/pages.xml, and resources/import.sql files to the Seam Gen project as well.
Make sure that you answer y to the last question in Seam Gen setup to make sure that the
demo application properly initializes the database tables.

4.2.5. Build and Deploy

Building and deploying the application is a simple matter of executing command ant in the
project directory. In this section, we discuss how to build and deploy the EAR archive. If you
selected to build a WAR archive at seam setup, the packaging structure would be slightly
different but the process is the same.

The ant command compiles all the Java classes; packages the classes, XHTML files, and
configuration files together in dist/projectname.ear, which, in turn, contains project-

name.jar and projectname.war; and then deploys projectname.ear into JBoss AS. The
projectname.ear application uses the data source (i.e., database connection) defined in the
resources/projectname-ds.xml file, so the *-ds.xml file is also deployed into JBoss AS.

Deploy into JBoss AS

To deploy projectname.ear and projectname-ds.xml in JBoss
AS, you just need to copy those two files in to the
$JBOSS_HOME/server/default/deploy directory.

4.2.5. Build and Deploy

63

If you just want to build the projectname.ear file but do not want to deploy it, you can run
the ant archive task.

The build.xml script can also build and deploy the application in the "exploded" format. An
exploded JAR is a directory that contains the same content as the JAR file. The exploded
projectname.jar/war/ear archives are in the exploded-archives directory in your project.
The Ant task ant explode deploys the exploded projectname.ear to JBoss AS.

Fast-Turn-Around Development with Exploded Deployments

The benefit of exploded deployment is that it supports incremental
changes to the application without restarting the JBoss AS every
time you make changes. If you make any changes to the XHTML
files or Java source code, you simply run the ant restart task,
which copies only the changed files to the exploded archives in
JBoss AS, and update the time stamp on the application.xml to
make JBoss AS redeploy the updated application. You can then see
your updated application by refreshing your browser.

The Seam Gen-built application has all the necessary library JARs for JBoss AS deployment.
That includes all the JBoss Rules (see Chapter 20, Rule-Based Security Framework) and
jBPM support JARs (see Chapter 18, Managing Business Processes), but it does not include
Hibernate and other JARs that might be needed for deployment on other application servers
(see Chapter 23, Java EE 5.0 Deployment, and Chapter 24, Seam Without EJB3).

4.2.6. Run Test Cases

In the Seam Gen-generated project, you put test classes and TestNG configuration files in the
test directory. The TestNG configuration files must have the *Test.xml names. You can
learn more about the Seam testing frameworks in Part VI, “Testing Seam Applications”.

To run those tests, you can execute the ant test task. The test results are available in the
testng-report directory.

If you are trying to replicate the book's example application in a Seam Gen-generated project,
you can copy everything from the example's test directory to the Seam Gen project's test

directory, and then rename the testng.xml file to myTest.xml.

4.2.6. Run Test Cases

64

Persistence Context Name

If you need to unit test the mock database (see Chapter 21, Unit
Testing), you will need to change the persistence context name in
your test case class to match the Seam Gen projectname.

4.3. Work with IDEs

The Seam Gen-generated projects work well with leading Java IDEs. In particular, we
provide built-in support for the open source NetBeans and Eclipse IDEs.

4.3.1. NetBeans

The Seam Gen-generated project has an nbproject/project.xml file, which defines a Net-
Beans project. You can open the project by selecting the project directory in NetBeans' Open
Project Wizard. Figure 4.1., “The Seam Gen-generated project in NetBeans” shows what a
Seam Gen project looks like in NetBeans. All the Java source files in the src directory are
ready for NetBeans introspection. The files under the view and resources directories are also
available in the project along with the build.xml. You can open any of the Java source,
XHTML, and XML files in the NetBeans editor. NetBeans automatically attempts syntax
highlighting and syntax checking. You can also use NetBeans's built-in visual wizards to edit
those files (e.g., web.xml).

4.3. Work with IDEs

65

Figure 4.1. The Seam Gen-generated project in NetBeans

Editor Support for Facelets XHTML Files

We recommend you install the NetBeans Facelets support module
(must be snapshot 04 or later) because it provides tag completion,
syntax checking, formatting, and other support for editing Facelets
XHTML files in the NetBeans editor. You can download the mod-
ule from https://nbfaceletssupport.dev.java.net/.

If you do not have the Facelets module installed, your Facelets
XHTML file opens either as a regular text file or a regular XHTML
file without Facelets tag support.

To compile, build, and deploy the project, you can right-click on the project name and select
the Deploy Project menu item (see Figure 4.2., “Build and deploy action menu items for the
project”; on some platforms, it is sometimes labeled Redeploy Project). When the application

4.3.1. NetBeans

66

https://nbfaceletssupport.dev.java.net/

is deployed and running, you can make changes to any of the files in the project, save it, and
then use the Deploy Project menu to push only the changed files to the server. You can im-
mediately see the effect by refreshing the web browser.

Figure 4.2. Build and deploy action menu items for the project

Now, you probably noticed a Debug Project item in the project pop-up menu. Yes, you can
actually use the NetBeans debugger to debug Seam applications. But you face some limita-
tions: You cannot set break points or watches inside EJB3 session bean components. The
reason is that Seam generates a runtime proxy to invoke session bean methods, and that con-
fuses the debugger. However, you can debug Seam POJO components (see Section 2.4.1.,
“Seam POJO Components”) and entity beans. Of course, if your session bean makes calls to
other objects, you can set break points and watches in those objects.

4.3.1. NetBeans

67

To debug an application, you must first run the application server JVM in debugging mode
on port 8787 (see the accompanying sidebar). Then you can set break points and watches in
the source code editor, build the application, and deploy it. Right-click on the project and se-
lect the Debug Project menu item to launch the debugger. Now you can use a web browser to
access the deployed application. When you hit the break point, the application pauses (i.e.,
the browser waits) and NetBeans displays the current debug information. Figure 4.3.,
“Debugging a Seam POJO”, shows the IDE display when the debugger reaches a break point
in an UI event handler method in a Seam POJO.

Figure 4.3. Debugging a Seam POJO

Run JBoss AS in Debugging Mode

On Windows, edit the bin/run.bat file and un-comment the fol-
lowing line (a single line).

set JAVA_OPTS=-Xdebug -Xrunjdwp:transport=
dt_socket,address=8787,server=y,suspend=y %JAVA_OPTS%

4.3.1. NetBeans

68

On Unix/Linux/Max OS X, we need to manually add the following
line to the bin/run.sh script (a single line).

JAVA_OPTS="-Xdebug -Xrunjdwp:server=y,transport=
dt_socket,address=8787 $JAVA_OPTS"

If you are running debugger at a port other than 8787, or if you are
debugging a JVM on a remote machine, you should alter the nbpro-

ject/debug-jboss.properties file in the Seam Gen-generated
project accordingly.

jpda.host=localhost
jpda.address=4142
jpda.transport=dt_socket

With excellent Facelets/JSF support and built-in support for debugging, NetBeans is our IDE
of choice for Seam applications. But Seam Gen-generated projects work very well in the
Eclipse IDE as well.

4.3.2. Eclipse

To open the Seam Gen-generated project in Eclipse, start Eclipse with the workspace set to
the workspace directory you entered in the setup task. Then you click on the File, New, Java
Project menu to start a new Java project. In the New Project Wizard, enter the project name
as shown in Figure 4.4., “Add the project to Eclipse”, and click Finish.

4.3.2. Eclipse

69

Figure 4.4. Add the project to Eclipse

The project opens, as Figure 4.5., “The Seam Gen-generated project in Eclipse”, shows. You
can add Java source files to the src directory, add Facelets XHTML pages into the view dir-
ectory, and edit the configuration files in the resources directory. You have to scroll to see
the view and resources directories.

4.3.2. Eclipse

70

Figure 4.5. The Seam Gen-generated project in Eclipse

Like NetBeans, Eclipse can also attach its debugger to a running application server. But you
have to set it up yourself. Refer to the NetBeans section for connection parameters.

4.4. Generate CRUD Application from Database

The Seam Gen utility can reverse-engineer existing tables in a database and generate a com-
plete Create, Retrieve, Update, and Delete (CRUD) web application for the database. This
feature is very much like what Ruby on Rails offers—only more powerful. When you execute
the seam generate-entities command, Seam Gen reads the table schema from the database
and generates the following artifacts.

4.4. Generate CRUD Application from Database

71

• EJB3 entity beans that map to the tables. Each table has a corresponding bean with the
same name as the table name. The associations and relationships between the tables are
properly generated in the entity bean classes. Refer to Hibernate or JPA documentation on
how relational associations are expressed in the entity objects via annotations. All the NOT

NULL constraints on data columns are also translated into Hibernate validators (see
Chapter 10, Validating Input Data).

• Seam POJOs to access the database. Those Data Access Objects (DAOs) are based on
Seam's built-in CRUD component framework (see Chapter 13, The Seam CRUD Applica-
tion Framework). Each generated entity bean has a corresponding DAO. The DAO
provides methods for CRUD operations using the EntityManager. In Chapter 24, Seam
Without EJB3, we explain how to use the EntityManager from Seam POJOs.

• Facelets XHTML files for presentation. Each table has a corresponding XHTML file to
search and display rows in the table, an XHTML file to display a row of data, as well as
an XHTML file to edit a selected row or create a new row. For each "edit" XHTML file,
there is also a *.page.xml file to define page parameters so that RESTful URLs can be
supported for those view files (see Chapter 12, Bookmarkable Web Pages).

Figure 4.6., “The Seam Gen-generated CRUD application home page”, to Figure 4.8., “The
Seam Gen-generated row edit page”, show an example Seam CRUD application generated
from a database. All the pages have a default CSS-based style. You can easily alter the look
and feel by changing the CSS or editing the XHTML files directly in your favorite IDE.

Figure 4.6. The Seam Gen-generated CRUD application home page

4.4. Generate CRUD Application from Database

72

Figure 4.7. The Seam Gen-generated table content search and display page

Figure 4.8. The Seam Gen-generated row edit page

4.4. Generate CRUD Application from Database

73

The Seam Gen generate-entities task is really powerful and fun to use. Try it on one of
your databases and see how well it works!

4.4. Generate CRUD Application from Database

74

II
Stateful Applications Made Easy

A key innovation in Seam is the declarative management of POJO-based stateful compon-
ents. In this part, we explain why stateful components are crucial for today's database-driven
web applications. We show how the components are constructed and how their lifecycles are
managed. We cover useful features such as multiple conversations in an HTTP session and
multiple independent workspaces for a single user. Finally, we discuss how to perform data-
base transactions for Seam conversations.

This page intentionally left blank

5
An Introduction to Stateful Framework

In the previous part, we have demonstrated how Seam simplifies Java EE 5.0 application de-
velopment by integrating annotated EJB3 session beans (Chapter 2, Seam Hello World) into
JSF. However, as you learn more about Seam, you will realize that the simple Java EE 5.0 in-
tegration just barely scratches the surface of what Seam can do. The real jewel of Seam is its
support for sophisticated application state management that is not available in any other web
application frameworks today. That is what we mean when we call Seam the "next genera-
tion" web application framework.

The state management facility in Seam is independent of JSF or EJB3. That makes Seam
useful in a variety of environments. For instance, Chapter 17, Direct JavaScript Integration
discusses how to use client JavaScript to access Seam objects directly. Those AJAX UI ex-
amples work outside of the JSF framework yet they can still take advantage of Seam's
stateful components.

Since state management is such a crucial feature in Seam, we dedicate this short chapter to
explain why you should seriously consider using it in your applications. We will focus on the
concepts in this chapter and you will see ample code examples in the next several chapters!

5.1. Correct Usage of ORM

Consider that Seam is invented by Gavin King—of the Hibernate ORM (Object-Relational
Mapping) framework fame. It is not surprising that one of the primary goals of Seam is to
make it work better with ORM solutions. And a stateful framework is key to the correct usage
of an ORM solution.

One of the chief challenges of ORM is to bridge the paradigm rift between the object world
and the relational world. A key concept here is "lazy loading". When the framework loads an
object from the relational database, it does not necessarily loads all its associated objects. To
understand lazy loading, let's look at an example. Below is the code snippet from a typical

data model: A Teacher object might be associated with a number of Student objects, and
each Student object might be associated with a number of Assignment objects, etc.

@Entity
public class Teacher implements Serializable {

protected Long id;
protected String name;
protected List <Student> students;

// getter and setter methods
}

@Entity
public class Student implements Serializable {

protected Long id;
protected List <Assignment> assignments;

// getter and setter methods
}

@Entity
public class Assignment implements Serializable {
//

}

If the ORM framework loads all associated Student and Assignment objects when it loads a
Teacher object (known as "eager loading"), it would issue 2 SQL JOIN commands and might
end up loading a sizable chunk of the database into this single object. But of course, when the
application actually uses the Teacher object, it might not use the students property at all. It
might change the teacher's name and save the object right back to the database. Eager loading
is a huge waste of resources in this case.

The ORM framework deals with this problem by "lazy loading" the Teacher object. That is
not to load any of the Student objects at all initially. Then, when the application calls Teach-
er.getStudents() explicitly, it goes back to the database to load the students list.

Okay, so far so good. But the real problem arises when the data access layer of the web ap-
plication is "stateless". For instance, let's look at how the data is loaded in the very popular
Spring framework. When the HTTP request comes in, it is dispatched to the Spring / Hibern-
ate integration template and Hibernate lazy loads the Teacher object, which is returned to the
web presentation layer. Now, if the web page displays a list of student names associated with

5.1. Correct Usage of ORM

78

the teacher, the web presentation layer will need to lazy load the students list as it renders
the page. But here is the problem: since Spring is a stateless framework, it destroys the per-
sistence context when the Teacher object is passed back to the presentation layer in prepara-
tion for the next "stateless" data query. As far as Spring is concerned, the data loading is
done. If the web presentation layer attempts to lazy load associated objects after Spring
returns, an exception will be thrown. In fact, this lazy loading exception is one of the most
encountered Hibernate exceptions of all time.

To avoid the nasty lazy loading exceptions, developers have to work around the framework
using hacks like the Data Transfer Objects (DTO) or messing with the database query /
schema.

But with a stateful framework like Seam, this lazy loading problem is solved once and for all.
By default, a Seam component keeps the persistence context valid from the time when the
HTTP request is submitted to the time when the response page is fully rendered (see Sec-
tion 7.1., “The Default Conversation Scope”). If needed, we can configure the Seam compon-
ent to keep the persistence context valid across an entire HTTP session or even beyond. Seam
can do that because it is stateful and remembers which request / response cycle or HTTP ses-
sion it is associated with.

So, in a Seam application, we can focus our attention and effort working with objects rather
than messing with the data queries or massaging the database schema. We can pass entity ob-
jects (i.e., EJB3 entity beans) directly across the business layer and the presentation layer
without the need to wrap them in DTOs. Those are significant productivity gains from the
simple fact that Seam finally allows us to use ORM in the "correct" way.

In the Relational World ...

The lazy loading versus eager loading problem does not exist in the
relational world since you can always tweak your JOIN statement to
select only the data you know the application would actually use.
But in the object world, the data query has no concept of "join"
(those are objects, not relational tables after all). This problem rep-
resents a fundamental rift between the two worlds.

5.2. Better Performance

79

5.2. Better Performance

A nice "side effect" of keeping the persistence context valid beyond a single stateless method
call is improved database performance. Now we already know that lazy loading saves the
database performance, but we are talking about another performance improvement in a some-
what opposite direction here: the reduction of database round trips.

A major performance problem with database driven web applications is that many of those
applications are "chatty". A chatty web application saves information to the database whenev-
er the user changes anything as opposed to queue database operations and execute them in a
bench. Since a round trip to the database, potentially over the network, is much slower than a
method call inside the application server, it slows down the application significantly.

For instance, a shopping cart application can save every order into the database as the user
adds products into the cart. But then, if the user abandons the shopping cart, the application
would have to clean up the database. Wouldn't it be much better if the orders are never saved
into the database in the first place? The application should only save orders in a bench when
the user checks out the shopping cart.

Before Seam, application developers needed to develop a rather sophisticated caching mech-
anism to hold the database updates for each user session in memory. But with the extended
persistence context in Seam, you get all that for free! A Seam stateful component can stay
valid across several web pages (i.e., a web wizard or a shopping cart). It is known as a "long
running conversation" in Seam. The component only dirty checks objects and flushes changes
to the database from its persistence context at the end of the conversation.

Those are all accomplished with no explicit API calls or elaborate XML files. Just a few an-
notations on your component class would do the trick. Please see Section 7.2.,
“Long-Running Conversations”, for the exact syntax on how to define a long running conver-
sation, and Section 9.3., “Atomic Conversation (Web Transaction)”, on how such bench data-
base update works.

But I Heard Stateful Frameworks Are Not Scalable ...

To be fair, the argument has its merits: The more state data you
have, the more work the server must do to replicate it to other nodes
in a cluster environment (see Chapter 27, Performance Tuning and
Clustering). However, the argument is only true if Seam requires

5.2. Better Performance

80

you to manage substantially more state data than other "stateless"
frameworks. In fact, in most so-called "stateless" architecture, the
application simply puts all the state data in an HTTP session, which
requires the exact same amount of work in clusters as the equivalent
state data Seam manages. Seam does not necessarily increase your
stateful data. It just makes your existing state data a lot easier to
manage.

Furthermore, the HTTP session approach is prone to memory leak
(see later in this chapter). Once the memory leaks, the scalability of
the "stateless" + HTTP session approach would be much much
worse than Seam.

5.3. Better Browser Navigation Support

Before Seam, almost all web application frameworks save the per-user application state in
HTTP sessions. It works fine until the user clicks on the browser's BACK button or simply
opens up another browser window / tab for the same application. Why? Because the view dis-
played in the browser is now out of sync with the application state on the server!

What is an HTTP Session

The HTTP protocol used in web applications is fundamentally state-
less. Each HTTP request is independent from other requests. In or-
der to distinguish requests from multiple users, the server will gen-
erate a unique session ID for each user and ask the user (i.e., the
web browser) to embed the ID in all subsequent HTTP requests.
The web browser can choose to append the ID at the end of the re-
quest URL or embed it in the Cookie field of the HTTP header. On
the server side, each session ID is associated with an HttpSession

object, which holds the application state data as properties. This
setup allows the server to provide stateful services to each individu-
al user. Session scoped Seam components have the same lifecycle
as the HttpSession object in the servlet container.

5.3. Better Browser Navigation Support

81

In the case of the browser BACK button, the displayed page might come from the browser
cache and does not reflect the current state on the server. For instance, the user might click on
BACK after she adds an item to the shopping cart and feel that the item is now properly re-
moved from the cart ...

In the case of multiple browser windows / tabs, the problem is that you might do something
in one window that is totally not reflected in the other since the second window is not being
manually refreshed. For instance, the user might open two browser windows at the checkout
screen. She might checkout on window #1 but then change her mind and go to window #2 to
abort the shopping cart. She would leave knowing that the "last action" she did was to abort
the cart while the server would have a different record.

Those kinds of things can really cause trouble in your web applications and you cannot blame
the user since she only responds to what she sees in the browser. In many cases, the applica-
tion would simply throw up an error to prevent this from happening. Web application de-
velopers go to great length to prevent those confusions but still, web applications are much
less intuitive than desktop applications because of those erratic behaviors.

Seam, on the other hand, is a perfect fit for such applications due to its stateful design. Inside
a Seam conversation, you can go back to any previous page and have the server state auto-
matically restored. So, you can go back, click on a different button, and have the process star-
ted in another direction (see Section 7.2., “Long-Running Conversations”). Seam also
provides an independent context (i.e., workspace, Chapter 8, Workspaces and Concurrent
Conversations) for each browser window / tab. In case of a shopping cart application, you can
checkout two shopping carts independently in parallel in two browser tabs.

Of course, the best news is that Seam does all the above out-of-the-box. The correct browser
behaviors come free with Seam stateful conversations. All you need is a few annotations to
define where the conversation starts and ends.

5.4. Less Memory Leak

It is a myth to think that Java applications are free of memory leaks simply because of the
Garbage Collector in the JVM. In fact, server side Java applications have memory leaks all
the time! The biggest source of potential memory leak is the HTTP session.

Prior to Seam, HTTP session is the only place to store the application state. So, developers
have to put all kinds of user-related objects into HTTP session. However, since we do not

5.4. Less Memory Leak

82

want our users to login too often, we typically set the HTTP session to expire after a long
time. That means all the objects in the session are not garbage collected in a long time, poten-
tially after the user is already long gone. The symptom of such memory leak is that the ap-
plication eats up more and more memory as more users access the site but it does not free the
memory as the user leaves. Eventually, the site crashes due to insufficient memory. Such
oversized HTTP sessions also have major implications in clustered environments where the
HTTP session data must be replicated between server nodes.

Traditionally, web application developers must monitor objects in the HTTP session very
closely and remove any object that is no longer needed. That is extra work for the developer,
and worse, programming errors do happen when the developer needs to track complex state
objects.

Seam takes the pain out of manual memory management in HTTP sessions. Since each Seam
component can be associated with a "conversation", which is defined as a series of web pages
and user actions in a session (e.g., a multi-page shopping cart checkout process is a conversa-
tion), it can be automatically removed from the session and garbage collected once the user
completes the conversation (e.g., confirms an order). Since defining a Seam conversation is
very easy and can be incorporated into the business logic (see Section 7.2., “Long-Running
Conversations”), Seam could greatly cut down memory leak bugs in complex
applications.

5.5. High Granularity Component Lifecycle

The reduction of memory leaks is just one benefit from a deeper change Seam introduces to
the application component infrastructure: Seam provides multiple stateful contexts beyond
the HTTP session and hence makes stateful object management much easier. As we have
already seen, the conversation context has a shorter lifecycle than the HTTP session context,
and hence is less prone to memory leak.

A web application is inherently stateful. Most so-called "stateless" web frameworks rely on
the HTTP session in the view layer (in servlet or JSP container) or the static application scope
to maintain the application state. By making stateful components first-class constructs in the
framework, Seam supports stateful contexts of finer granularity and longer lifecycle than HT-
TP sessions and / or the static application scope. Below is a list of stateful contexts in Seam.

5.5. High Granularity Component Lifecycle

83

• Stateless: Components in this context are completely stateless and do not hold any state
data of their own.

• Event: This is the "narrowest" stateful context in Seam. Components in this context main-
tain their states throughout the processing of a single JSF request.

• Page: Components in this context are tied to a specific page. You can have access to
those components from all events emitted from this page.

• Conversation: In Seam, a conversation is a series of web requests to accomplish a certain
task (e.g., to checkout the shopping cart). Components tied to a conversation context
maintain their state throughout the conversation. The conversation context is the most im-
portant context in Seam and it is discussed in more detail in Chapter 7, Conversations.

• Session: Components in the session context are managed in an HTTP session object.
They maintain their states until the session expires. You can have multiple conversations
in a session.

• Business process: This context holds stateful components associated with a long running
business process managed in the JBoss jBPM (Business Process Manager) engine. While
all the previously discussed contexts manage stateful components for a single web user,
the business process components can actually span across several users. We will explain
this in more detail in Chapter 18, Managing Business Processes.

• Application: This is a global context that holds static information. There is no concept of
web users in this context.

Of all those contexts, the conversation context is the most important and most widely used.

5.6. Reduce Boilerplate Code

With "stateless" frameworks, there is an artificial gap between the web presentation layer and
business logic layer of the application. The web presentation layer is always "stateful" with
access to the HTTP session object. The business layer, however, is "stateless" and has to wipe
the slate clean after each service request. As a result, you need all kinds of "wrapper objects"
to move data from one layer to the next. For instance, you often need to explicitly wrap ob-
jects for the following occasions.

5.6. Reduce Boilerplate Code

84

• To transport complex database query results (the DTOs, which we discussed earlier)

• To build data objects into display components (i.e., to build JSF DataModel components)

• To propagate exceptions (e.g., data validation errors, transaction errors, etc.) from the
business layer to the presentation layer

Those wrapper codes amount to boilerplate code since their existence is solely needed to
make the frameworks happy. Seam breaks the artificial barrier between the web presentation
layer and the "stateless" business layer. It is now possible to share important state information
between the two layers without extra code. With a few annotations you can transparently
wrap objects. We already noted that DTOs are largely unnecessary in Seam applications. In
this book, we will cover how to transparently generate JSF DataModel (Chapter 11, Clickable
Data Tables), how to associate Hibernate validators (database validation annotation) directly
to user input fields (Chapter 10, Validating Input Data), and how to redirect to any custom er-
ror page upon any exception (Chapter 14, Failing Gracefully). To give you a taste of what
Seam is capable of, let's look at an example of Hibernate validator. You can use annotations
to specify the validation constraints you need on each database field.

@Entity
@Name("person")
public class Person implements Serializable {

... ...

@NotNull
@Email
// Or, we can use
// @Pattern(regex="^[\w.-]+@[\w.-]+\.[a-zA-Z]{2,4}$")
public String getEmail() { return email; }

//
}

Then, on the user input page, you simply place the <s:validate/> tag in the input fields
mapping to the entity bean fields.

<h:inputText id="email" value="#{person.email}">
<s:validate/>

</h:inputText>

5.6. Reduce Boilerplate Code

85

The input field is now automatically validated in the same manner as a regular JSF input val-
idator. It saves you the trouble to "repeat yourself" and write a separate JSF validator for the
input field. For more details on how the validation works, please refer to Chapter 10, Validat-
ing Input Data.

Furthermore, Seam's declarative approach eliminates the boilerplate code associated with
state management itself. In other frameworks, state management usually involves a lot of
boilerplate code. For instance, to manage objects in an HTTP session, you often have to re-
trieve the HTTP session object and then put / get application objects into / from it. In Seam,
however, the boilerplate code is completely eliminated by annotations. For instance, you can
simply declare an application object as SESSION scope, and it will automatically be placed in
the HTTP session. When you reference this object by its Seam name, Seam automatically
gets it from the HTTP session.

@Name("manager")
@Scope (SESSION)
public class ManagerAction implements Manager {
//

}

As we mentioned, Seam extends this annotation approach to conversation and other stateful
contexts as well. State management has never been so easy and powerful at the same time!

Once you get used to the Seam approach to state management, you will probably find that
today's stateless architectures are very awkward and hard to use. It is time to deprecate the
stateless architecture!

5.6. Reduce Boilerplate Code

86

6
A Simple Stateful Application

In Chapter 5, An Introduction to Stateful Framework, we discussed the benefits of automatic
state management in Seam. We mentioned that the "conversation" stateful context is probably
the most important for most web application developers. However, the conversation context
is also a little difficult to grasp for beginners. To make the learning curve as gentle as
possible, let's start from the stateful context everyone is already familiar with—the HTTP
session context. In this chapter, we describe how a Seam stateful component is declared,
constructed, and managed.

To illustrate how a stateful component works, we refactor the hello world example from
Chapter 2, Seam Hello World, into a stateful three-page application. The hello.xhtml page
displays the form to enter your name. After you click on the "say hello" button, the applica-
tion checks whether the name matches the "firstname lastname" pattern. If so, it saves your
name to the database and forwards the browser to the fans.xhtml page. If not, it displays the
warning.xhtml page asking you to confirm the name you just entered. You can now confirm
the name or go back to the hello.xhtml page to edit it. If you do confirm, the name is saved
to the database and the fans.xhtml page is shown. The fans.xhtml page displays the name
you just entered and all the names in the database. Figure 6.1., “The three-page stateful Hello
World”, shows the application in action. The source code for this example is in the stateful

directory of the source code bundle.

Figure 6.1. The three-page stateful Hello World

6.1. Stateful Components

For an application like stateful, the backend components must maintain their state across
multiple pages. For instance, the person component is referenced on all three web pages. It
must retain its value across multiple HTTP page requests so that all pages for the same user
can display the same person.

< -- Snippet from hello.xhtml -->
Please enter your name:

<h:inputText value="#{person.name}" size="15"/>

6.1. Stateful Components

88

... ...

< -- Snippet from warning.xhtml -->
<p>You just entered the name
<i>#{person.name}</i>
... ...

< -- Snippet from fans.xhtml -->
<p>Hello,
#{person.name}</p>
... ...

Similarly, the manager component must also track whether the user has previously confirmed
that she wants to input an "invalid" name: The manager.sayHello method is invoked directly
or indirectly on both hello.xhtml and warning.xhtml pages. The outcome of the method
(i.e., which page to display next) depends on the confirmed field variable inside manager. All
pages must access the same object instance when they reference the manager component.

public class ManagerAction implements Manager {

@In @Out
private Person person;

private boolean confirmed = false;

... ...

// Called from the hello.xhtml page
public String sayHello () {
if (person.getName()

.matches("^[a-zA-Z.-]+ [a-zA-Z.-]+")
|| confirmed) {

em.persist (person);
confirmed = false;
find ();
return "fans";

} else {
return "warning";

}
}

// Called from the warning.xhtml page
public String confirm () {

6.1. Stateful Components

89

confirmed = true;
return sayHello ();

}
}

Multi-page Navigation

If the sayHello() method returns fans, JSF renders the fans.xhtml

page to the user. If it returns warning, JSF navigates the user to the
warning.xhtml page. More explanations on the JSF page naviga-
tion rules are provided in Section 6.2., “Page Navigation Flow”.

Experienced web developers know that we probably need to store the person and manager

objects inside the HTTP session to retain states across page requests from the same user. That
is exactly what we are going to do here (in fact, we store proxies of those Seam components
in the HTTP session, but that is functionally equivalent to storing those components them-
selves in the session). Seam allows us to declaratively manage the HTTP session, and hence
eliminate the boilerplate code for getting objects into/out of the HTTP session. Seam also
supports lifecycle methods in stateful components, which allow us to properly instantiate and
destroy those components with minimal effort.

Beyond HTTP Session

Stateful management is a core feature in Seam. Seam supports sev-
eral stateful contexts beyond the HTTP session, which truly distin-
guish it from previous generations of web frameworks. In this ex-
ample, we discuss the HTTP session scope since it is already a fa-
miliar concept for most web developers. We will discuss additional
Seam stateful contexts later in this chapter, and then in Chapter 7,
Conversations, and Chapter 18, Managing Business Processes.

6.1.1. Stateful Entity Bean

90

6.1.1. Stateful Entity Bean

To declare the person component in the session context, all we need is to annotate the entity
bean class with the @Scope annotation. All the injection and outjection of this component will
automatically happen in the session context.

import static org.jboss.seam.ScopeType.SESSION;

... ...

@Entity
@Name("person")
@Scope (SESSION)
public class Person implements Serializable {

... ...

}

6.1.2. Stateful Session Bean

To declare the manager component in the session context, you have to first declare the
ManagerAction class as a stateful session bean via the @Stateful annotation, and then spe-
cify the scope via the @Scope annotation. Now, since the manager component is stateful, it
can expose its state as properties to the JSF web pages. To illustrate this point, we use the
manager.fans property to represent the list of Seam fans who said "hello." This way, we no
longer need to outject the fans component. See more in Section 2.4.5., “Avoid Excessive
Bijection”.

@Stateful
@Name("manager")
@Scope (SESSION)
public class ManagerAction implements Manager {

private List <Person> fans;

public List <Person> getFans () {
return fans;

}

... ...

}

6.1.2. Stateful Session Bean

91

Seam POJO Component

If we use a Seam POJO component to replace the EJB3 session
bean here (see Chapter 24, Seam Without EJB3), we would not need
the @Stateful annotation on the POJO. Seam POJO components
are stateful by default. And it has the default conversation scope
(see Chapter 7, Conversations) if the @Scope is not specified.

In the fans.xhtml page, you can just reference the stateful manager component.

<h:dataTable value="#{manager.fans}" var="fan">
<h:column>
#{fan.name}

</h:column>
</h:dataTable>

How to Decouple Seam Components

The stateful session bean component integrates data and business
logic in the same class. In this example, we just showed that the
fans list is now a property in the manager component and no longer
needs to be outjected.

But what about the person data field in the ManagerAction class?
Should we make it a property of the manager component as well
(i.e., #{manager.person}, see Section 2.4.5., “Avoid Excessive
Bijection”)? Well, we could do that but we decide not to. The reas-
on is that we'd like to decouple the person component from the
manager component. This way, we can update the person value
without involving the manager. The person and manager can have
different scopes and lifecycles. And we do not need to create
person instance in the ManagerAction constructor (the instance is
created by Seam and then injected).

The moral is that you can choose the level of coupling between
stateful components in Seam. With stateful session beans and

6.1.2. Stateful Session Bean

92

bijection, you have the ultimate flexibility to archive the optimal
coupling between components in the application.

6.1.3. Stateful Component Lifecycle

One of the challenges to use stateful components is to make sure that the component has the
proper state when it is created. For instance, in our example, a user might load the
fans.xhtml page as the first page in the session to see who has said hello. A manager com-
ponent would be created for this user session. However, since the sayHello() method had
never been invoked on this component, the manager.fans property would be null even if
there were people in the database. To fix this problem, we need to run the database query
right after the manager component is created. In a Seam stateful component, any method
marked with the @Create annotation would be executed right after the component creation.
So, below is the fix we need for manager to behave correctly.

@Stateful
@Name("manager")
@Scope (SESSION)
public class ManagerAction implements Manager {

private List <Person> fans;

@Create
public void find () {
fans = em.createQuery("select p from Person p")

.getResultList();
}

... ...
}

Why Not Use the Class Constructor?

The class constructor is called before the component object is
created while the @Create method is called after the component
creation. The constructor would not have access to Seam injected
objects such as the EntityManager.

6.1.3. Stateful Component Lifecycle

93

If you can customize the creation of a Seam component, you can, of course, customize its de-
struction as well. The method annotated with @Destroy is invoked by Seam when the com-
ponent is removed from the context (e.g., in case of an HTTP session timeout for the manager

component in this example). You can implement this method to handle the component re-
moval event (e.g., to save the current bean state to a database at the timeout). For stateful ses-
sion beans, you will also need a method annotated with @Remove to let the container know
which method to invoke when removing the bean object from the memory. In most common
scenarios, the same bean method is annotated with both @Remove and @Destroy annotations.

In fact, the @Remove and @Destroy annotated method is mandatory for stateful session beans.
In our example, we just let the manager component expire with the HTTP session and leave
the @Remove method empty.

@Stateful
@Name("manager")
@Scope (SESSION)
public class ManagerAction implements Manager {

... ...

@Remove @Destroy
public void destroy() {}

}

Seam POJO Component

If we use a Seam POJO component to replace the EJB3 session
bean here (see Chapter 24, Seam Without EJB3), we would not need
the empty @Remove @Destroy method in the POJO. Such method is
mandated by the EJB3 specification.

6.1.4. Factory Methods

The @Create annotated method is handy for a stateful session bean. But what about the fans

component in Chapter 2, Seam Hello World? It does not have an associated class. If we were
to outject the fans component in this example, instead of using the manager.fans property,
can we still initialize it at creation time?

6.1.4. Factory Methods

94

The answer is yes. That is what the @Factory annotation is for. Below is the ManagerAction

class refactored to outject the fans component.

@Stateful
@Name("manager")
@Scope (SESSION)
public class ManagerAction implements Manager {

@Out (required=false)
private List <Person> fans;

@Factory("fans")
public void find () {
fans = em.createQuery("select p from Person p")

.getResultList();
}

... ...
}

When the user loads fans.xhtml at the beginning of a session, Seam looks for the fans

component from the context. Since Seam cannot find fans, it calls the @Factory("fans")

annotated method, which constructs and outjects the fans component.

The @Out(required=false) is used here because the manager component must first be con-
structed before the fans factory method can be called. So, when the manager component is
constructed, there is no valid value for the fans component and hence the default bijection
annotations might complain. In general, you should use the required=false bijection attrib-
ute if you are bijecting and factorying the same component in the same class.

6.2. Page Navigation Flow

We have seen that the string return value of the ManagerAction.sayHello() method determ-
ines which JSF page the application displays next. For developers who are not familiar with
JSF page navigation mechanisms, in this section, let's have a quick look at how it works. At
the end of this section, we will also discuss how Seam improves the standard JSF page flow.

You first define a set of navigation rules in XML in JSF's navigation.xml file, which is
located in the resources/WEB-INF directory in the source code bundle. A navigation rule
(navigation-rule element) applies to one or several web pages (from-view-id element). It

6.2. Page Navigation Flow

95

contains one or several navigation cases (navigation-case element). Each navigation case
has a unique string name (from-outcome element) and it specifies a possible page transition
(to-view-id element) from the rule's target pages (from-view-id element). Then, in the web
UI event handler method (i.e., the EJB3 session bean method), you can return the string name
for a case (from-outcome element). JSF uses this case to determine which page to forward to
next.

In the stateful application, we define one rule that applies to all pages. It has three naviga-
tion cases. According to those cases, the server forwards to the fans.xhtml page if the event
handler method returns "fans", to the warning.xhtml page for return value "warning", and
to the hello.xhtml page for return value "hello". The redirect element makes sure that the
browser displays the URL of the forwarded page.

<faces-config>

... ...

<navigation-rule>
<from-view-id>*</from-view-id>

<navigation-case>
<from-outcome>fans</from-outcome>
<to-view-id>/fans.xhtml</to-view-id>
<redirect />

</navigation-case>

<navigation-case>
<from-outcome>hello</from-outcome>
<to-view-id>/hello.xhtml</to-view-id>
<redirect />

</navigation-case>

<navigation-case>
<from-outcome>warning</from-outcome>
<to-view-id>/warning.xhtml</to-view-id>
<redirect />

</navigation-case>
</navigation-rule>

</faces-config>

6.2. Page Navigation Flow

96

Visual Navigation Rule Editor

You can develop very complex navigation rules for JSF using the
XML language. But writing all that XML by hand can be tedious.
What happens to Seam's promise of getting rid of the XML hell?
Well, in reality, you do not need to write those page flow XML files
by hand! Many modern Java IDEs (e.g., NetBeans and Eclipse)
provide support for a visual editor for JSF navigation rules. You can
develop the page navigation flow on a diagram and then have the
tool export to an XML file.

Then, in the web UI event handler methods, we simply return the string names for the applic-
able navigation cases.

... ...
@Name("manager")
public class ManagerAction implements Manager {

// Event handler for the
// "Say Hello" button on the hello.xhtml page
// and the
// "Yes ..." button on the warning.xhtml page
public String sayHello () {
// If the person name matches pattern
// Or, the user confirmed the spelling
em.persist (person);
... ...
return "fans";

// If the person name does not match pattern
// and the user has not confirmed
return "warning";

}

// Event handler for the "Go to Hello page"
// button on the fans.xhtml page
public String startOver () {
person = new Person ();
return "hello";

}
... ...

}

6.2. Page Navigation Flow

97

The above event handler methods use the current application state to determine the next nav-
igation case. However, the JSF navigation rules themselves are static and stateless. The deep
root of stateful components in the Seam framework makes it possible to integrate state ob-
jects into the navigation flow as well. For instance, we can capture all the page flow informa-
tion, including transition conditions based on the application state, in a single declarative doc-
ument known as the jBPM Pageflow Definition Language (jPDL) document. The jPDL docu-
ment replaces both the static navigation rules in navigation.xml and the UI event handler
method return values.

The jPDL is probably too complex for small applications and it is most useful in the conver-
sation context. It is an advanced feature in Seam. It is probably best for you to learn jPDL
after you are familiar with Seam conversations, workspaces, and jBPM. So, we will cover the
jPDL later in Chapter 19, Stateful Pageflows.

6.2. Page Navigation Flow

98

7
Conversations

In the previous chapter, we discussed session-scoped Seam stateful components. In most web
frameworks, the application state is completely managed in the HttpSession object and,
hence, session scope is the only stateful scope. However, for most applications, the session
scope is also too coarsely grained for effective state management. We already covered most
of the reasons in Chapter 5, An Introduction to Stateful Framework. Let's quickly recap the
key points here:

• To manage complex application state in an HTTP session, you must write a lot of code
yourself to manually shuffle objects into and out of the session. If you forget to save a
modified state object back into the session, the application will exhibit hard-to-debug be-
havior errors at runtime.

• A single timeout parameter controls the HTTP session. Objects in the session have no no-
tions of lifecycle. As a result, the HTTP session is a major source of memory leak in web
applications when developers forget to manually clean out objects from a long-running
session.

• The state objects in the HTTP session have no notion of scope. They are shared among all
browser windows/tabs in the same user session. That makes web applications behave un-
expectedly when the user opens multiple browser tabs for the same application. You can
read more about this problem in Chapter 8, Workspaces and Concurrent Conversations.

Seam sets out to solve those HTTP session shortcomings by supporting declarative state man-
agement and finely grained stateful scopes. With declarative state management, there is no
more need to programmatically track objects in the HTTP session. You saw declarative state
management in action in the last chapter. In this chapter, we focus on the most important
stateful scope in Seam: the conversation scope.

In Seam, a conversation simply refers to a user action that takes several pages to complete. A
web wizard and a shopping cart are obvious examples of conversations. But each web

request/response cycle is also a conversation because it involves two pages: the form page
submitted as request and the response page. Multiple conversations can exist in the same HT-
TP session. Actually, Seam even supports multiple concurrent conversations, each contained
inside its own browser window or tab (see Chapter 8, Workspaces and Concurrent Conversa-
tions). Seam database transactions can also be tied to conversations (see Chapter 9, Transac-
tions).

Stateful conversation is a core concept in Seam. Let's see how it works.

7.1. The Default Conversation Scope

By default (i.e., if you omit the @Scope annotation on the component class), a Seam stateful
component has a conversation scope. The default conversation scope spans only two pages:
The component is instantiated when the first page is submitted, and it is destroyed after the
response page is fully rendered. Consider the following stateful session bean class.

@Stateful
@Name("manager")
public class ManagerAction implements Manager {

@In @Out
private Person person;

private String mesg;

@PersistenceContext (type=EXTENDED)
private EntityManager em;

public String sayHello () {
// save person
// update mesg

}

@Remove @Destroy
public void destroy() {}

public String getMesg () {
return mesg;

}
public void setMesg (String mesg) {
this.mesg = mesg;

}
}

7.1. The Default Conversation Scope

100

When the user submits the form, the ManagerAction object is instantiated with the user input
captured in its person property. JSF invokes the sayHello() method as the UI event handler.
The sayHello() method saves the person object to the database and updates the mesg prop-
erty. Now, on the response page, we display the mesg to inform the user that person has been
successfully saved to the database. After the response page is completely rendered, the Man-

agerAction component is removed from the stateful context and is garbage-collected.

Notice that the ManagerAction object stays valid after the sayHello() method exists so that
the mesg property can propagate back to the response page; that is a major difference between
Seam and stateless frameworks. In addition, we gave the EntityManager an EXTENDED type,
which allows it to lazy load more data from the database as needed when the sayHello()

method exists (see a discussion on lazy loading in Section 5.1., “Correct Usage of ORM”).

HTTP GET Request

An HTTP GET request also breaks out a new conversation. Com-
ponents associated with this conversation last only one page; they
are destroyed after the GET response page is rendered.

Redirect

In JSF, you can choose to redirect the response page to its own URL
instead of using the request page's URL. With the Seam filter (see
Section 3.2.4., “Seam Filter”), Seam conversation components can
live until the redirect page is fully rendered.

Seam POJO Component

Without any annotations (except for @Name), a Seam POJO compon-
ent is stateful and has the default conversation scope. Refer to Sec-
tion 2.4.1., “Seam POJO Components”, and Chapter 24, Seam
Without EJB3, for more on Seam POJO components.

7.1. The Default Conversation Scope

101

The default conversation scope should suffice for most web interactions. But the power of the
conversation concept is that it can be easily expanded to handle more than two pages. Seam
provides a very clever mechanism to declaratively manage stateful components across a
series of related pages (e.g., a wizard or a shopping cart). In the rest of the chapter, we discuss
how to manage such long-running conversations.

7.1.1. Display JSF Messages

Besides correct ORM lazy loading, the Seam default conversation scope helps improve JSF
by expanding JSF support for error messages.

One of the most useful features in JSF is its message facility. When an operation fails, the
JSF backing bean method could add a message to the JSF context and return null. The JSF
runtime then can redisplay the current page with error messages added to the page. In Seam,
such operation is simplified because you can directly inject a FacesMessages object into the
Seam component. Thus, you can easily add JSF error messages from a Seam event handler
using the FacesMessages.add() method. You can add global JSF messages or messages to
JSF components with specific IDs. The error message is displayed anywhere on the page
where you have the <h:messages> tags. With Seam, you can even use the EL expressions in
the messages. The following is an example.

@Name("manager")
public class ManagerAction implements manager {

@In
Person person;

@In
FacesMessages facesMessages;

public String sayHello () {

try {
//

} catch (Exception e) {
facesMessages.add(

"Has problem saving #{person.name}");
return null;

}
return "fans";

}
}

7.1.1. Display JSF Messages

102

However, if the operation succeeds, the message system in plain JSF cannot display the "suc-
cess message" on the next page. That is because the next page is out of the current JSF re-
quest context (as with lazy-loaded entity objects) and often requires a redirect. But in Seam,
the next page is still within the default conversation scope, so Seam can easily display a suc-
cess message through the JSF message system as well. That is a great enhancement to JSF.
The following is an example on how to add a success message to a Seam UI event handler.

@Name("manager")
public class ManagerAction implements manager {

@In
Person person;

@In
FacesMessages facesMessages;

public String sayHello () {
//

facesMessages.add(
"#{person.name} said hello!");

return "fans";
}

}

7.2. Long-Running Conversations

In a web application, a long-running conversation usually consists of a series of web pages
the user must go through to accomplish a business task. The application data generated from
the task is permanently committed to the database at the end of the conversation. For in-
stance, in an e-commerce application, the checkout process is a conversation, with a page for
order confirmation, a page for billing information, and a final page for the confirmation code.

The example application we use in this chapter is the Seam Hotel Booking example in the
booking project in the book's source code bundle. The Hotel Booking example directory is
set up the same way as the directory for the hello world examples in the previous chapters
(see Appendix B, Using Example Applications as Templates, for the application template).

7.2. Long-Running Conversations

103

Figure 7.1., “main.xhtml — click on Find Hotels to start a conversation”, to Figure 7.5.,
“confirm.xhtml — click on the Confirm button to end the conversation”, show a conversation
in action. On the main.xhtml page, the user clicks the Find Hotels button to start a conversa-
tion. In the conversation, you can click on any of the View Hotel links in the search result list
to view the hotel details on the hotel.xhtml page. Click on the Book Hotel button to load the
book.xhtml page to enter booking dates and credit card information. Click on the Proceed
button to load the confirmation page confirm.xhtml. Click the Confirm button to confirm the
booking and end the conversation. Seam then loads the confirmed.xhtml page to display the
confirmation number.

Figure 7.1. main.xhtml — click on Find Hotels to start a conversation

7.2. Long-Running Conversations

104

Figure 7.2. main.xhtml — click on View Hotel for any item in the search result

Figure 7.3. hotel.xhtml — click on the Previous Hotel or Next Hotel button to navigate
the search result. Click on the Book Hotel button to move ahead with the conversation.

7.2. Long-Running Conversations

105

Figure 7.4. book.xhtml — enter dates and a 16-digit credit card number

Figure 7.5. confirm.xhtml — click on the Confirm button to end the conversation

7.2. Long-Running Conversations

106

The Back Button Just Works

Within the conversation, you can use the browser's Back button to
navigate to any previous page; the application state then reverts to
that page. For instance, from the confirmed.xhtml page, you can
click the Back button several times and go back to the hotel.xhtml

page. From there, you can select another hotel and book it. No "in-
valid state" error is thrown. You can back into an interrupted con-
versation or a finished conversation. The incomplete bookings are
not saved to the database, and no booking is saved twice by acci-
dent. Later in this chapter and in Chapter 8, Workspaces and Con-
current Conversations, we include more sidebars to discuss various
Back button scenarios that are hard to deal with in pre-Seam state-
less web frameworks.

The search results, current hotel selection, reservation dates, and credit card number are all
associated with the conversation. Stateful objects that hold that data have the conversational
scope. They are automatically created when conversation starts and are destroyed when the
conversation ends. You do not need to manage them in the long-running HTTP session. As
you will see in Chapter 8, Workspaces and Concurrent Conversations, you can even have
multiple concurrent conversations in a same session. Now let's dig into the code and see how
the conversation is implemented.

7.2.1. Define a Long-Running Conversational Component

In the Hotel Booking conversation described earlier, the HotelBookingAction bean is the
long-running conversation component and the following listing shows its structure.

@Stateful
@Name("hotelBooking")
@Conversational(ifNotBegunOutcome="main")
@LoggedIn
public class HotelBookingAction

implements HotelBooking, Serializable {

@Begin(join=true)
public String find() {
// Initialize the conversation state

}

7.2.1. Define a Long-Running Conversational Component

107

@End
public String confirm() {
// Save data and end the conversation

}

// Other stateful objects and methods
}

The conversational component requires at least a method annotated with @Begin and another
method annotated with @End. They are used to manage the conversation context. We discuss
the @Conversational annotation later in this chapter.

7.2.2. Start a Conversation

When an @Begin method is invoked, Seam creates a bean instance and a new conversation
context associated with it. So in this example, the HotelBookingAction.find() method is
invoked when the user clicks on the Find button on the main.xhtml page to start the
conversation.

<h:inputText
value="#{hotelBooking.searchString}"/>

<h:commandButton value="Find Hotels"
action="#{hotelBooking.find}"
styleClass="button" />

The @Begin find() method initializes all the conversation state. It retrieves the search results
from the database and populates the stateful list variable hotels, which is outjected to the
Seam context under the name hotels.

public class HotelBookingAction
implements HotelBooking, Serializable {

@PersistenceContext(type=EXTENDED)
private EntityManager em;

private String searchString;
// Getter and setter for searchString property

@DataModel
private List <Hotel> hotels;

7.2.2. Start a Conversation

108

@Begin(join=true)
public String find() {
hotel = null;
String searchPattern =
searchString==null ? "%" : '%' +

searchString.toLowerCase().replace('*','%')+'%';

hotels = em.createQuery("from Hotel where " +
"lower(name) like :search or " +
"lower(city) like :search or " +
"lower(zip) like :search or " +
"lower(address) like :search")

.setParameter("search", searchPattern)

.setMaxResults(pageSize)

.getResultList();

return "main";
}
//

}

DataModel

The @DataModel annotation here implies @Out. This is a Seam an-
notation to help turn a list into a clickable data table. See
Chapter 11, Clickable Data Tables, for more details.

The join=true attribute on the @Begin annotation tells Seam to merge two conversations if
find() is invoked from inside a conversation. Otherwise, an exception is thrown if you call a
@Begin method from inside a conversation.

7.2.3. Inside the Conversation

When you are inside a conversation, you can call any bean method to manipulate the stateful
data in the conversation context. For instance, the hotel.xhtml page displays the contents of
the hotel component in the conversation context. If you click on the Next Hotel or Last
Hotel buttons, the nextHotel() or lastHotel() method in the HotelBookingAction bean is
invoked to move the hotel component up or down the search result list. If you click on the
Book Hotel button, Seam invokes the bookHotel() method to create a new Booking object
from the current hotel component.

7.2.3. Inside the Conversation

109

<div class="section">
<div class="entry">
<div class="label">Name:</div>
<div class="output">#{hotel.name}</div>

</div>
<div class="entry">
<div class="label">Address:</div>
<div class="output">#{hotel.address}</div>

</div>
... ...

</div>

<div class="section">
<h:form>
<fieldset class="buttonBox">
<h:commandButton
action="#{hotelBooking.lastHotel}"
value="Previous Hotel"
class="button"/>

<h:commandButton
action="#{hotelBooking.nextHotel}"
value="Next Hotel" class="button"/>

<h:commandButton
action="#{hotelBooking.bookHotel}"
value="Book Hotel" class="button"/>

<h:commandButton action="main"
value="Back to Search" class="button"/>

</fieldset>
</h:form>

</div>

The bookHotel() method creates a new Booking object for this conversation. The booking
object has default reservation dates and is displayed on the booking.xhtml page for you to
edit.

public class HotelBookingAction
implements HotelBooking, Serializable {

@Out(required=false)
private Hotel hotel;

@In(required=false)
@Out(required=false)
@Valid
private Booking booking;

public String bookHotel() {

7.2.3. Inside the Conversation

110

booking = new Booking(hotel, user);
Calendar calendar = Calendar.getInstance();
booking.setCheckinDate(calendar.getTime());
calendar.add(Calendar.DAY_OF_MONTH, 1);
booking.setCheckoutDate(calendar.getTime());

return "book";
}
//

}

Except for the @Begin find() method, all the bean methods in HotelBookingAction are de-
signed to be invoked after the long-running conversation starts. However, in real life, there is
no guarantee of that. The user might load the hotel.seam page first and then click on the
Book Hotel button. Because no valid conversation context exists here, the application would
fail. To avoid this, we have this @Conversational(ifNotBegunOutcome="main") tag on the
bean class. That means if any bean method is invoked outside an active long-running conver-
sation, the application should forward to the page corresponding to the navigation destination
"main" (i.e., the main.xhtml page in our example).

@Stateful
@Name("hotelBooking")
@Conversational(ifNotBegunOutcome="main")
@LoggedIn
public class HotelBookingAction

implements HotelBooking, Serializable {
... ...

}

This is why you are forwarded to main.xhtml when you move back to a conversation page
after the conversation has ended and you click on a button on that page.

7.2.4. End the Conversation

When the @End method is called, Seam destroys the stateful session bean instance. You can
save the conversation data to the database and clean up any loose ends here. In this example,
we have two @End methods for two possible endings of the conversation. The confirm()

method is invoked after the user creates a reservation and clicks on the Confirm button on the
confirm.xhtml page.

7.2.4. End the Conversation

111

<h:form>
<fieldset>
<div class="entry">
<div class="label">Name:</div>
<div class="output">#{hotel.name}</div>

</div>

... Hotel and reservation details ...

<div class="entry">
<div class="label"> </div>
<div class="input">
<h:commandButton value="Confirm"
action="#{hotelBooking.confirm}"
class="button"/>

<h:commandButton value="Revise"
action="back" class="button"/>

</div>
</div>

</fieldset>
</h:form>

Before the conversation ends, the confirm() method saves the booking object into the data-
base and reduces the hotel room inventory from the database to reflect the booking. In fact,
the two database operations must be performed in an atomic transaction to ensure database
integrity. That is the topic for Chapter 9, Transactions.

public class HotelBookingAction
implements HotelBooking, Serializable {

@End
public String confirm()

throws InventoryException {
if (booking==null || hotel==null)
return "main";

em.persist(booking);
hotel.reduceInventory();

if (bookingList!=null)
bookingList.refresh();

return "confirmed";
}
//

}

7.2.4. End the Conversation

112

Reduce Database Round-trips

In a complex application, you might need to perform multiple data-
base operations in a conversation. We recommend that you cache all
database updates in in-memory objects in the conversation and then
synchronize them to the database at the end of the conversation in
the @End tagged method. That helps reduce database round-trips and
preserve database integrity (see Chapter 9, Transactions, for more
details).

The clear() method, on the other hand, is called when the user wants to end the conversation
without booking anything. It clears up the conversation context and redirects back to the
main.xhtml page.

public class HotelBookingAction
implements HotelBooking, Serializable {

@End
public String clear() {
hotels = null;
hotel = null;
return "main";
}
//

}

Use the Back Button to Back Into an Ended Conversation

After you complete a conversation by calling the @End method, you
can still use the Back button to view any page in the ended conver-
sation. But if you click on any link or button on the page, you are
redirected to the main.xhtml page because a valid conversation
context no longer exists for that page.

In a Seam application, the conversational state is tied to the business logic. That is, all pos-
sible methods to exit the conversation should be tagged with @End. Thus, it is unlikely that a

7.2.4. End the Conversation

113

user would exit a conversation without calling an @End method. But what if the user abandons
the current conversation and loads a new site/conversation with a manual HTTP GET request
(see the next section on HTTP GET)? Or what if we simply make a coding error and forget to
tag an exiting method with @End? Well, in those cases, the current conversation times out
when a preset conversation timeout is reached or the current HTTP session times out.

You can set the global conversation timeout in the components.xml configuration file (see
Appendix B, Using Example Applications as Templates). The unit is milliseconds.

<components ...>

... ...

<core:manager conversation-timeout="120000"/>

</components>

Alternatively, you can specify a timeout for each individual conversation in the pages.xml

configuration file (see Chapter 8, Workspaces and Concurrent Conversations, and
Chapter 19, Stateful Pageflows).

Based on discussions earlier in this chapter, the abandoned conversation does pose a potential
risk for memory leak. But it is not nearly as error prone as manually managing the HTTP ses-
sion. In addition, the Seam user can actually go back to the abandoned conversation later and
pick up where she left off using the conversation switcher (see Chapter 8, Workspaces and
Concurrent Conversations) or simply using the browser's Back button.

7.2.5. Links and Buttons

So far, our conversation has been driven by a series of button clicks (i.e., regular HTTP POST

operations). That is because Seam uses hidden form fields in those POST requests to maintain
the conversation context for the user. If the user clicks on a regular link in the middle of a
conversation, the browser issues a simple HTTP GET request to get the page, and the current
conversation context is lost; Seam then simply starts a new conversation following the link
(see Chapter 8, Workspaces and Concurrent Conversations, for multiple concurrent conver-
sations for the same user session). But sometimes we want to use hyperlinks to navigate in-
side a conversation. For instance, we might want to allow the user to right-click on the link
and open the subsequent pages in a separate browser tab or window.

7.2.5. Links and Buttons

114

An obvious solution is to use the <commandLink> component instead of <commandButton> in
JSF. However, the JSF <commandLink> is not really a regular link. When you click on it, JSF
internally uses JavaScript to post the request back to the server. That breaks the normal right-
click behavior of links. To fix this problem with JSF links, Seam provides its own conversa-
tion-aware link component: <s:link>. See Chapter 3, Recommended JSF Enhancements, for
more on how to install and use Seam UI tags.

The <outputLink> Component

The JSF <outputLink> component renders a regular link in the
browser. However, it is not very useful in a Seam conversation be-
cause you cannot attach event-handler methods to an <outputLink>.

In the following example, we declare the <s:> namespace for the Seam tags.

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:s="http://jboss.com/products/seam/taglib">

With the namespace declared, it is easy to use the <s:link> tag to build links in your conver-
sation. You can specify an event-handler method for the link or give a direct JSF view ID as
the link destination. The rendered link maintains the conversational context and behaves like
a regular HTML link.

<s:link view-id="/login.xhtml" value="Login"/>
<s:link action="#{login.logout}" value="Logout"/>

The <s:link> component does more than just provide HTML links for navigation inside con-
versations. You can actually control the conversation from the links. For instance, if you click
on the following link, Seam leaves the current conversation when the main.xhtml page is
loaded, just as a regular HTTP GET request would do. The propagation attribute can take
other parameters, such as begin and end, to force the beginning or ending of the current
conversation.

7.2.5. Links and Buttons

115

<s:link view-id="/main.xhtml" propagation="none"/>

Bookmarks

Another implication of using HTTP POST is that it is difficult to
bookmark pages from POST result pages. But in fact, it is fairly easy
to build bookmarkable pages in Seam applications (see Chapter 12,
Bookmarkable Web Pages).

Now, the <s:link> component actually has richer conversation-management capabilities than
the plain JSF <commandButton>, which simply propagates the conversation context between
pages. What if you want to exit, begin, or end a conversation context from a button click?
You need the Seam <s:conversationPropagation> tag. The following example shows a but-
ton that exits the current conversation context.

<h:commandButton action="main" value="Abandon session">
<s:conversationPropagation type="none"/>

</h:commandButton>

7.3. New Frontiers

Now you've seen how the Seam conversation component simplifies stateful application
development. But Seam goes well beyond simplifying the development of traditional web
applications.

The fully encapsulated conversation components enable us to tie the user experience and the
application's transactional behavior with conversations. That has opened new frontiers in web
application development. Seam makes it possible to develop advanced web applications that
are either too complex or even impossible in older web frameworks. We cover those new
scenarios in Chapter 8, Workspaces and Concurrent Conversations, and Chapter 9, Transac-
tions.

7.3. New Frontiers

116

8
Workspaces and Concurrent Conversations
As we discussed in the previous chapter, you can have multiple conversations in an HTTP
session. It's easy to see how a user can have several consecutive conversations in a session.
For instance, in the Hotel Booking example, you can book several hotels in a row, with each
booking in its own conversation. But what makes Seam truly unique is its support for mul-
tiple concurrent conversations in a session. The concurrent conversations can each run in a
separate browser window or tab. That gives rise to the concept of a workspace. In this
chapter, we discuss what a Seam workspace is and how to work with workspaces in your web
application. Again, we use the Hotel Booking example application in the booking source
project.

8.1. What Is a Workspace?

A workspace is actually a common concept in desktop applications. For instance, in a word
processor or spreadsheet program, each document is a workspace. In an IDE, each project is a
workspace. You can make a change in one workspace without affecting other workspaces. In
general, a workspace is a set of self-contained application contexts.

However, most of today's web applications do not support workspaces. The reason is that
most web applications manage all their application contexts in HTTP sessions. An HTTP ses-
sion does not have the granularity to differentiate between browser windows. To best under-
stand this, let's revisit the Seam Hotel Booking application. Let's open two browser tabs and
select different hotels to book in each of those tabs. For instance, imagine that you first select
the Marriott San Francisco hotel in tab #1. Then you select the Ritz Carlton Atlanta hotel in
tab #2. Now, go back to tab #1 and click on the Book Hotel button. The question is, which
hotel will be booked? You can see the process in Figure 8.1., “Step 1: Load the Marriott San
Francisco hotel in tab #1.” and Figure 8.2., “Step #2: Load the Ritz Carlton Atlanta hotel in
tab #2.”

Figure 8.1. Step 1: Load the Marriott San Francisco hotel in tab #1.

Figure 8.2. Step #2: Load the Ritz Carlton Atlanta hotel in tab #2.

8.1. What Is a Workspace?

118

If the application were based on an older-generation web framework and saved states in the
HTTP session, you would end up booking the Ritz Carlton Atlanta hotel. The reason is that
the Ritz hotel in tab #2 was recently put into the HTTP session, and the button action in either
tab #1 or tab #2 would perform the booking operation on that hotel. An HTTP session-based
web application does not properly support multiple browser windows/tabs. Those workspaces
interfere with each other via the shared application state.

Seam, on the other hand, was designed from the ground up to support stateful application
contexts. Seam web applications automatically support workspaces by default. So in our
Seam Hotel Booking example, the Book Hotel button in each browser tab works as expec-
ted—the button in tab #1 always books the Marriott hotel, and the button in tab #2 always
books the Ritz hotel, no matter what order they're invoked in. The conversation in each win-
dow is completely independent, although all conversations are tied to the same user. The best
way to understand workspace is to try it yourself. You can open several browser windows (or
tabs) and load the hotel.xhtml page in each of them. You can then book hotels in parallel in
all windows.

Figure 8.3. Step #3: Switch to tab #1 and click on the Book Hotel button. The
application books the Marriott San Francisco hotel. This is a common-sense result, but
only Seam, with its support for multiple workspaces, can deliver.

8.1. What Is a Workspace?

119

In a Seam application, a workspace maps one-to-one to a conversation. So a Seam application
with multiple concurrent conversations has multiple workspaces. As we discussed in
Chapter 7, Conversations, the user starts a new conversation via an explicit HTTP GET re-
quest. Thus, when you open a link in a new browser window/tab or manually load a URL in
the current browser tab, you start a new workspace. Seam then provides you a means of ac-
cessing the old workspace/conversation (see the next section).

The Back Button Works Across Conversations/Workspaces

If you interrupt a conversation via an HTTP GET request (e.g., by
manually loading the main.xhtml page in the middle of a conversa-
tion), you can go back to the interrupted conversation. When you
are backed to a page inside the interrupted conversation, you can
simply click on any button and resume the conversation as if it had
never been interrupted.

8.2. Workspace Switcher

Seam maintains a list of concurrent conversations in the current user session in a component
named #{conversationList}. You can iterate through the list to see the descriptions of the
conversations, their start times, and last access times. The #{conversationList} component
also provides a means of loading any conversation in the current workspace (browser window
or tab). Figure 8.4., “A list of concurrent conversations/workspaces in the current user ses-
sion”, shows an example of the conversation list in the Seam Hotel Booking example. Click
on the description link to load the selected conversation in the current window.

8.2. Workspace Switcher

120

Figure 8.4. A list of concurrent conversations/workspaces in the current user session

Below is the JSF page code behind the workspace switcher. It is in the conversations.xhtml

file in the example source code.

<h:dataTable value="#{conversationList}"
var="entry">

<h:column>
<h:commandLink action="#{entry.select}"

value="#{entry.description}"/>
<h:outputText value="[current]"

rendered="#{entry.current}"/>
</h:column>

<h:column>
<h:outputText value="#{entry.startDatetime}">
<f:convertDateTime type="time"

pattern="hh:mm"/>
</h:outputText>
-
<h:outputText value="#{entry.lastDatetime}">

8.2. Workspace Switcher

121

<f:convertDateTime type="time"
pattern="hh:mm"/>

</h:outputText>
</h:column>

</h:dataTable>

The #{entry} object iterates through conversations in the #{conversationsList} compon-
ent. The #{entry.select} property is a built-in JSF action for loading the conversation in an
#{entry} in the current window. Similarly, the #{entry.destroy} JSF action destroys an ex-
isting conversation. What's interesting is the #{entry.description} property, which con-
tains a string description of the current page in the conversation. How does Seam figure out
the "description" of a page? That requires another XML file.

The WEB-INF/pages.xml file in the app.war archive file (it is the resources/WEB- INF/

pages.xml file in the source code bundle) specifies the page descriptions. This pages.xml file
can also be used to replace the WEB-INF/navigation.xml file for jBPM-based page flow con-
figuration (see Chapter 19, Stateful Pageflows, for more details). You can also learn more
about pages.xml in Chapter 12, Bookmarkable Web Pages. The following is the content of
the pages.xml file in the Seam Hotel Booking example.

<pages>
<page view-id="/main.xhtml" timeout="3000">
Search hotels: #{hotelBooking.searchString}

</page>
<page view-id="/hotel.xhtml" timeout="3000">
View hotel: #{hotel.name}

</page>
<page view-id="/book.xhtml" timeout="6000">
Book hotel: #{hotel.name}

</page>
<page view-id="/confirm.xhtml" timeout="6000">
Confirm: #{booking.description}

</page>
</pages>

We can reference Seam components by name in the pages.xml file. Each web page in the
conversation also has a timeout value; if a workspace is idle for too long, the conversation
automatically expires.

The conversation switcher shown earlier displays conversations in a table. Of course, you can
customize how the table looks. But what if you want a switcher in a drop-down menu? The

8.2. Workspace Switcher

122

drop-down menu takes less space on a web page than a table, especially if you have many
workspaces. However, the #{conversationList} component is a DataModel and cannot be
used in a JSF menu. So Seam provides a special conversation list to use in a drop-down
menu, as follows. It has a similar structure as the data table.

<h:selectOneMenu
value="#{switcher.conversationIdOrOutcome}">

<f:selectItems value="#{switcher.selectItems}"/>
</h:selectOneMenu>
<h:commandButton action="#{switcher.select}"

value="Switch"/>
<h:commandButton action="#{switcher.destroy}"

value="Destroy"/>

8.3. Carry a Conversation Across Workspaces

As we discussed earlier, Seam creates a new workspace for each HTTP GET request. By
definition, the new workspace has its own fresh conversation. So what if we want to do an
HTTP GET and still preserve the same conversation context? For instance, you might have a
pop-up browser window that shares the same workspace/conversation as the current main
window. That's where the Seam conversation ID comes to help.

If you look at the URLs of the Seam Hotel Booking example application, every page URL is
appended with a cid URL parameter. This cid stays constant within a conversation. If the
conversation is long running, the URL has an additional clr=true parameter. For instance, a
URL in the booking application could look like the this: http://localhost:8080/
booking/hotel.seam?cid=10&clr=true.

To GET a page without disrupting the current conversation, you can append the same cid and
clr name/value pairs in your HTTP GET URL.

Appending the cid value in URL can be risky business. What if you pass in a wrong value for
the cid parameter? Will the application just throw an error? Well, you can also configure the
components.xml file to set a default page to forward to when the URL has an unavailable cid

value.

8.3. Carry a Conversation Across Workspaces

123

<components ...>

... ...

<core:pages
no-conversation-view-id="/main.xhtml"/>

</components>

Of course, manually entering the cid and clr parameters is still not desirable. So to go back
to the original question of opening the same workspace in a new window, you need to dy-
namically render a link with the right parameters already in place. The following example
shows you how to build such a link. The Seam tags nested in <h:outputLink> generate the
right cid and clr parameters to the link.

<h:outputLink value="main.seam" target="_blank">
<s:conversationId/>
<s:conversationPropagation

propagation="join"/>
<h:outputText value="Open New Tab"/>

</h:outputLink>

Use the <s:link> Tag

You can use the Seam <s:link> tag discussed in Section 7.2.5.,
“Links and Buttons”, to open new browser windows/tabs within the
same conversation.

8.4. Managing the Conversation ID

In the previous section, we mentioned that each Seam conversation has a unique ID (i.e., the
cid HTTP parameter). By default, Seam automatically increases the ID value by one for each
new conversation. The default setting is good enough for most applications, but it can be
improved for applications that have many workspaces. The numeric number is not very
informative, and it is hard to remember which workspace is in what state by looking at the ID

8.4. Managing the Conversation ID

124

numbers. Furthermore, if you have many workspaces in tabs, you might open two different
workspaces to perform the same task, and that can get confusing very quickly.

To solve these problems, Seam provides a mechanism for customizing the conversation IDs.
All you need is to pass a parameter in the @Begin annotation for the long-running conversa-
tion. For instance, the following example generates conversation IDs based on the hotel you
select to start a conversation. This is obviously more informative than a simple numeric
number.

@Begin(id="hotel#{hotel.id}")
public String selectHotel() {
...

}

If you open two workspaces for the same hotel, Seam automatically detects the same conver-
sation ID and redirects the second workspace to the current state of the existing workspace
without executing the @Begin method. This helps users avoid workspace confusion.

In addition to the conversation ID values, Seam enables you to customize the cid and clr

HTTP parameters. Those HTTP parameter names are configured in the components.xml file.
The following shows our configuration in the Hotel Booking example to use the cid and clr

names as HTTP parameters.

<components ...>

... ...

<core:manager conversation-timeout="120000"
concurrent-request-timeout="500"
conversation-id-parameter="cid"

conversation-is-long-running-parameter="clr"/>

</components>

If you don't configure those, Seam uses the verbose conversationId and conversation-

IsLongRunning names by default.

Workspaces and conversations are key concepts in Seam, setting Seam apart from previous
generations of stateless web frameworks. It's easy to develop multiworkspace web

8.4. Managing the Conversation ID

125

applications via the rich set of Seam annotations and UI tags. However, web pages in a Seam
conversation are typically not bookmarkable because they are tied together by HTTP POST

requests with a lot of hidden field data. In the next chapter, we discuss how to build
bookmarkable RESTful URLs into your Seam application.

8.4. Managing the Conversation ID

126

9
Transactions

Transactions are an essential feature for database-driven web applications. In each conversa-
tion, we typically need to update multiple database tables. If an error occurs in the database
operation (e.g., a database server crashes), the application needs to inform the user, and all
the updates this conversation has written into the database must be rolled back to avoid par-
tially updated records (i.e., corrupted records). In other words, all database updates in the
conversation must happen inside an atomic operation. Transactions enable you to do exactly
that.

In a Seam application, we typically assemble and modify database entity objects throughout a
conversation. At the end of the conversation, we commit all those entity objects into the data-
base. For instance, in the Hotel Booking example (the booking project in the source code
bundle), the HotelBookingAction.confirm() method at the end of the conversation (i.e., the
method with the @End annotation) uses a single transaction to save the booking object in the
database and then deduct the hotel room inventory from the database.

public class HotelBookingAction
implements HotelBooking, Serializable {

@End
public String confirm()

throws InventoryException {
if (booking==null || hotel==null)
return "main";

em.persist(booking);
hotel.reduceInventory();

if (bookingList!=null)
bookingList.refresh();

return "confirmed";
}
//

}

If anything goes wrong, the entire transaction fails and the database remains unchanged. The
user then receives an error message instead of a confirmation number.

9.1. Managing a Transaction

Transactions are enabled by default for all EJB3 session bean methods in a Seam application,
so you don't need to do anything special to put the confirm() method under a transaction.
Seam starts the transaction manager when an event-handler thread starts (e.g., when the con-

firm() method is invoked). The transaction manager commits all the updates to the database
at the end of the thread. Because the transaction manager tracks the thread, it manages the
event-handler method and all the nested method calls from inside the event handler.

If any database operation in the confirm() method fails and throws a RuntimeException, the
transaction manager rolls back all database operations. For instance, if the hotel inventory-re-
duction operation fails due to a database connection error, the booking saving operation,
which already happened, would be cancelled as well. The database is returned to the state be-
fore the conversation. Seam displays an error message instead of the confirmation number to
the user (see Figure 9.1., “The RuntimeException Error Page”). We discuss how to display a
custom error page for the RuntimeException in Section 14.4., “Use pages.xml for System
Exceptions”. If you do not set up the custom error page, the server just displays the error
stack trace in JBoss's standard error page.

Figure 9.1. The RuntimeException Error Page

9.1. Managing a Transaction

128

The stack trace displayed in Figure 9.1., “The RuntimeException Error Page”, does not show
the root cause of RuntimeException because the root exception is being wrapped around and
rethrown from the JSF and Seam runtime. That has made debugging harder—you have to
look in the server log file to see the complete stack trace of the exception. Custom error pages
specifically tailored to each exception would definitely improve the application usability here
(Section 14.4., “Use pages.xml for System Exceptions”).

For a Seam POJO (Section 2.4.1., “Seam POJO Components”), its methods are also managed
by the transaction manager by default, assuming that you configured the Transaction-

alSeamPhaseListener in faces-config.xml (see Chapter 24, Seam Without EJB3). If you do
not have the right listener configured, you can still configure any POJO method to be transac-
tional using the @Transactional annotation.

Seam Managed Transaction for Non-EJB3 POJOs

Unlike the EJB3 transaction manager, which starts a transaction
when a session bean method is called, the Seam managed transac-
tion manager starts the transaction when a web request comes in. In
fact, the Seam transaction manager uses two transactions per re-
quest. The first spans the beginning of the update model values
phase until the end of the invoke application phase; the second
spans the render response phase.

Transaction Attributes

In EJB3 session beans, you can set the transaction attribute for any
method using the @TransactionAttribute annotation. For instance,
you can start a new transaction in the middle of a call stack or ex-
clude any particular method from the current transaction. Refer to
the EJB3 documentation for more.

In Seam POJOs, method-level transaction demarcation is not
available.

9.2. Forcing a Transaction Rollback

129

9.2. Forcing a Transaction Rollback

In a Java application, a RuntimeException or an unchecked exception indicates an unexpec-
ted runtime error (e.g., a network problem or database crash). By default, the transaction is
automatically rolled back only when an unchecked exception is thrown.

However, that is not enough. Transactions are much more useful if we can tell the transaction
manager to roll it back when certain conditions occur in the application. Seam provides two
easy ways to forcefully roll back a transaction: exceptions and method return values.

9.2.1. Rolling Back Transactions via Checked Exceptions

You can also choose to roll back the transaction when a certain checked exception is thrown.
For instance, you could throw checked exceptions to indicate a logic error in the application
(e.g., the reserved hotel is not available). The trick is to tag the check exception class with the
@ApplicationException(rollback=true) annotation. The following is the code for the
InventoryException, which is used to indicate that the hotel has no available room.

@ApplicationException(rollback=true)
public class InventoryException

extends Exception {

public InventoryException () { }

}

The Hotel.reduceInventory() method could throw this exception.

@Entity
@Name("hotel")
public class Hotel implements Serializable {

//

public void reduceInventory ()
throws InventoryException {

if (inventory > 0) {
inventory--;
return;

9.2.1. Rolling Back Transactions via Checked Exceptions

130

} else {
throw new InventoryException ();

}
}

}

Inventory Reduction

In a real-world hotel booking application, we would reduce the
hotel room inventory by the booking dates and room type. In this
example, we simply reduce the available number of rooms for the
booked hotel. That is, of course, oversimplified. But then, the Seam
Hotel Booking example is meant only as an example. For instance,
we do not even have a daily rate for each hotel and do not calculate
a total bill amount at the end of the conversation.

When an InventoryException is thrown from Hotel.reduceInventory() in the Hotel-

BookingAction.confirm() method, the booking saving operation is rolled back when the
method aborts. Seam then displays an error message page to the user. Again, in Section 14.3.,
“Annotate Exceptions”, we discuss how to display a custom error page for this particular
exception.

9.2.2. Rolling Back Transactions via Return Values

If certain conditions in your application are not as serious as an exception, but you still want
to roll back the transaction (e.g., rolling back is part of the business logic), you can use the
@Rollback annotation on any transactional method.

For instance, the following annotation indicates that the transaction on the confirm() method
needs to be rolled back if the method returns the string failure or not-valid. After the
transaction is rolled back, JSF displays the navigation target page associated with the return
string value, which could well be your error page.

@Rollback(ifOutcome={"failure", "not-valid"})
public String confirm () {
... ...

}

9.2.2. Rolling Back Transactions via Return Values

131

In this case, you do not need to configure a custom error page for the transaction failure be-
cause one of your "rollback" outcomes could be associated with a navigation rule to display
an error message.

9.3. Atomic Conversation (Web Transaction)

The Seam/EJB3 transaction is tied to a Java thread. It can manage operations only within a
method call stack. It flushes all updates to the database at the end of each call stack. That be-
havior has two problems in a web conversation:

First, it can be inefficient to make multiple round-trips to the database in a conversation when
all the updates are closely related.

Second, when a certain operation in the conversation fails, you must manually roll back the
already-committed transactions in the conversation to restore the database to its state prior to
the conversation.

A much better way is for the application to hold all database updates in memory and flush
them all at once at the end of the conversation. If an error occurs in any step in the conversa-
tion, the conversation just fails without affecting the database. From the database point of
view, the entire conversation either succeeds or fails—hence, atomic conversation. The atom-
ic conversation behavior is also known as a web transaction. Seam makes it easy to imple-
ment atomic conversations. In the following sections, we discuss two approaches. The first is
for Seam POJOs, and the second is for EJB3 session beans.

9.3.1. Manual Flush of the Persistence Context

If you use a Seam-managed EntityManager (i.e., an EntityManager injected via @In, see
Chapter 24, Seam Without EJB3), you can specify the transactional behavior for a conversa-
tion in the @Begin annotation. Setting the flushMode attribute to MANUAL stops the transaction
manager from flushing any updates to the database at the end of each transaction. The data-
base updates are cached in the EntityManager during the entire conversation. Then, in the
@End method, you call EntityManager.flush() to send the updates to the database all at
once. The following is an example Seam POJO to show how this is done.

public class HotelBookingPojo Serializable {

//

9.3. Atomic Conversation (Web Transaction)

132

@In (create=true)
private EntityManager em;

@Begin(join=true, flushMode=MANUAL)
public String find() {
//

}

public String bookHotel()
throws InventoryException {

//
hotel.reduceInventory ();

}

@End
public String confirm() {
//
em.persist (booking);
em.flush();

}
}

EntityManager Flush and Database Query Results

In some applications, you might update the database first and then
query it in the same conversation. If we manually flush the Entity-

Manager at the end of the conversation, as described in this section,
the query result does not reflect the update in the middle of the con-
versation. Be sure to keep this in mind.

This approach requires the underlying JPA provider to be Hibernate. So it works in any JBoss
environment but might not work in other Java EE 5.0 application servers.

9.3.2. One Transaction per Conversation

Another alternative is to disable the transaction manager on all methods except for the @End

method. Because this approach requires method-level transaction demarcation, it can be used
only on EJB3 session bean components with an EJB3-managed EntityManager (i.e., an
EntityManager injected via @PersistenceContext).

9.3.2. One Transaction per Conversation

133

This method is not as outrageous as it might sound. The transaction manager is not flushing
anything to the database before the end of the conversation, so there is nothing to "roll back"
if an error occurs. At the @End method, the data is automatically flushed to the database in a
properly managed transaction. This is done by declaring all nontransactional methods in a
conversation with the @TransactionAttribute annotation. Consider this example:

public class HotelBookingAction
implements HotelBooking, Serializable {

//

@PersistenceContext (type=EXTENDED)
private EntityManager em;

@Begin(join=true)
@TransactionAttribute(
TransactionAttributeType.NOT_SUPPORTED)

public String find() {
//

}

@TransactionAttribute(
TransactionAttributeType.NOT_SUPPORTED)

public String bookHotel()
throws InventoryException {

//
hotel.reduceInventory ();

}

@End
@TransactionAttribute(
TransactionAttributeType.REQUIRED)

public String confirm() {
//
em.persist (booking);

}
}

Because this approach uses only EJB3 standard annotations, it works in all EJB3-compliant
application servers.

9.3.2. One Transaction per Conversation

134

III
Integrating Web and Data Components

Seam makes life easier for web developers by acting as the "glue" between the web UI and
the back-end data model. It provides annotations to streamline the communication between
the UI and model, and, hence, reduces redundant information in the application source code.
As a side effect, Seam fixes some of the most nagging problems in JSF development. In this
part, we introduce those powerful Seam UI tags, annotations, and ready-to-use components.
We show how to enhance the JSF validator infrastructure with Hibernate validators, how to
expose data collections directly as JSF data tables, how to build bookmarkable URLs, how to
manage custom error pages and debug pages, and how to write simple CRUD database
applications with ready-made Seam components.

This page intentionally left blank

10
Validating Input Data

A key value proposition of Seam is to unify EJB3 and JSF component models. Through the
unified components, we can use EJB3 entity beans to back data fields in JSF forms and then
use EJB3 session beans as JSF UI event handlers. But Seam does much more than that. Seam
enables us to develop data components that have UI-related "behaviors." For instance, the en-
tity beans can have validators that behave like JSF validators.

In this chapter, we cover the Seam enhanced end-to-end validators that take advantage of Hi-
bernate validator annotations on entity beans as well as Seam UI tags (see Section 3.2.,
“Seam JSF Enhancements”). We refactor the stateful Hello World example to show how to
use this Seam feature. The new application is in the integration directory in the source code
bundle. We use the integration application in the next two chapters as well.

AJAX Validators

In this chapter, we cover only the "standard" method of validation
via a form submission. In Part IV, “AJAX Support”, we discuss
how to use AJAX-based validators. But the Seam annotations and
tags discussed in this chapter are highly relevant for later AJAX-
based validators.

10.1. Form-Validation Basics

Form data validation is a task that almost every web application must implement. As an ex-
ample, the integration application has four data fields on the hello.xhtml page, and all of
them need to be validated before the person object can be saved into the database. For in-
stance, the name must conform to a "Firstname Lastname" pattern with no nonalphabetical
characters, the age must be between 3 and 100, the email address must contain an @ and only

other legitimate email characters, and the comment must be shorter than 250 characters. If the
validation fails, the page redisplays with all the data you already entered and the problem
fields highlighted with images and error messages. Figure 10.1., “The web form before sub-
mission”, and Figure 10.2., “Validation errors in the web form”, show what happens when
you try to submit a web form with invalid data.

Figure 10.1. The web form before submission

Figure 10.2. Validation errors in the web form

10.1. Form-Validation Basics

138

Validating on the Server

The built-in form-validation mechanism in Seam validates the user
input data on the server side. You should always validate your data
on the server side because a malicious user can tamper with any cli-
ent-side validation mechanism, such as JavaScripts in the browser.

Form validation may sound easy, but in reality, it can be a nuisance to implement. The web
application must manage the validation conditions, handle multiple round-trips between the
browser and server, and partially update the entry form for alerts. It could easily take several
hundred lines of code to implement the previous validation in previous-generation web
frameworks. In Seam, on the other hand, all it takes is a couple of annotations and JSF tags.

Validation in the Seam Hotel Booking Example

In the Seam Hotel Booking example application, the
register.xhtml form is backed by the User entity bean and is
validated by Hibernate validators. So you can use that for an ex-
ample as well.

10.2. Validation Annotations on the Entity Bean

Because all JSF forms in Seam are backed by EJB3 entity beans, the first thing we do is an-
notate the validation constraints directly on the entity bean fields. The following is what the
Person entity bean looks like in the example project.

public class Person implements Serializable {

... ...

@NotNull
@Pattern(regex="^[a-zA-Z.-]+ [a-zA-Z.-]+",

message="Need a firstname and a lastname")

public String getName() { return name; }
public void setName(String name) {
this.name = name;

10.2. Validation Annotations on the Entity Bean

139

}

// @Min(value=3) @Max(value=100)
@NotNull
@Range(min=3, max=100,

message="Age must be between 3 and 100")
public int getAge() { return age; }
public void setAge(int age) { this.age = age; }

// @Pattern(regex="^[\w.-]+@[\w.-]+\.[a-zA-Z]{2,4}$")
@NotNull
@Email
public String getEmail() { return email; }
public void setEmail(String email) {
this.email = email;

}

@Length(max=250)
public String getComment() { return comment; }
public void setComment(String comment) {
this.comment = comment;

}
}

Do Not Repeat Yourself

Seam validator annotations are specified on entity bean properties.
They are enforced all the way from the JSF form to the database
fields. You need to specify the validation condition only once in the
entire application. No duplicated configuration is necessary for the
presentation and database layers.

Those validation annotations have self-explanatory names. Each data property can have mul-
tiple annotations. Each annotation can take a message attribute, which holds the error mes-
sage to display on the web form if this validation condition fails. If the message attribute is
missing, a default error message is used for the annotated field. The @Pattern annotation can
match the input field to an arbitrary regular expression. The following is a list of validation
annotations supported out of the box in Seam.

• @Length(max=,min=) applies to a String property to check whether the string length is in
the range.

10.2. Validation Annotations on the Entity Bean

140

• @Max(value=) applies to a numeric (or a string representation of a numeric value) prop-
erty to check that the property value is less than the specified max value.

• @Min(value=) applies to a numeric (or a string representation of a numeric value) prop-
erty to check that the property value is greater than the specified min value.

• @NotNull applies to any property to check that the property is not null.

• @Past applies to a Date or Calendar property to check whether the date is in the past.

• @Future applies to a Date or Calendar property to check whether the date is in the future.

• @Pattern(regex="regexp", flag=) applies to a String property to check whether the
string matches the regular expression. The flag attribute specifies how the matching
should be done (e.g., whether to ignore cases).

• @Range(max=,min=) applies to a numeric (or a string representation of a numeric value)
property to check that the property value is inside the given range.

• @Size(max=,min=) applies to a collection or array property to check whether the number
of elements in the property is inside the given range.

• @Email applies to a String property to check whether the string conforms to the email ad-
dress format.

• @Valid applies to any property. It performs validation recursively on the associated ob-
ject. If the object is a Collection or an array, the elements are validated recursively. If the
object is a Map, the value elements are validated recursively.

If you need custom validation conditions in your applications, you can also implement your
own validator annotations. Refer to the documentation for more details.

Hibernate Validators

Seam validator annotations are the same thing as Hibernate validat-
or annotations. The error messages can easily be internationalized
(see the Hibernate annotations documentation). The EJB3 entity
bean implementation in JBoss is based on the Hibernate framework.
Seam links the validators on the entity bean to UI elements on the
JSF form.

10.3. Triggering the Validation Action

141

10.3. Triggering the Validation Action

By default, the entity bean validation process is triggered by database operations. The entity
bean objects are validated right before they are saved into the back-end database. When the
EntityManager tries to save an invalid entity object, Seam throws a RuntimeException,
which could lead to an error page or a generic HTTP 500 error (see Chapter 14, Failing
Gracefully).

However, for web form validation, we want the validation to happen immediately after the
form is submitted, before even the event-handler method is invoked or any database operation
occurs. If the validation fails, we want to display an error page on the form, with all input
data still in the fields, instead of being redirected to a special error page. In this section, we
discuss how to trigger Hibernate validator actions from a form submission; in Section 10.4.,
“Display Error Messages on the Web Form”, we discuss how to display the error messages.

To trigger validator actions from a form submission, you need to insert the Seam
<s:validate/> tag inside the input data field elements. When the form is submitted, Seam
validates tagged data fields using the corresponding validator on the backing entity bean ob-
ject. If the validation fails, Seam redisplays the form with error messages (see Section 10.4.,
“Display Error Messages on the Web Form”). The following listing shows an example for the
integration example project.

<h:form>

... ...

<h:inputText value="#{person.name}">
<s:validate/>

</h:inputText>

... ...

<h:inputText value="#{person.age}">
<s:validate/>

</h:inputText>

... ...

<h:inputText value="#{person.email}">
<s:validate/>

</h:inputText>

... ...

10.3. Triggering the Validation Action

142

<h:inputTextarea
value="#{person.comment}">

<s:validate/>
</h:inputTextarea>

<h:commandButton type="submit" value="Say Hello"
action="#{manager.sayHello}"/>

</h:form>

Using Seam UI tags

As we discussed in Chapter 3, Recommended JSF Enhancements,
you need to bundle the jboss-seam-ui.jar file in your app.war

file's WEB-INF/lib directory to use the Seam UI tags.

The <s:validate/> tag enables you to specify each input field to be validated. But in most
cases, we want to validate all fields in a form, and the <s:validate/> tags become too verb-
ose. To do that, we can enclose multiple fields in a <s:validateAll/> tag. For instance, the
following code is equivalent to the previous listing:

<h:form>

... ...

<s:validateAll>
<h:inputText value="#{person.name}"/>

... ...

<h:inputText value="#{person.age}"/>

... ...

<h:inputText value="#{person.email}"/>

... ...

<h:inputTextarea
value="#{person.comment}"/>

</s:validateAll>

10.3. Triggering the Validation Action

143

<h:commandButton type="submit" value="Say Hello"
action="#{manager.sayHello}"/>

</h:form>

Validation in the UI Event Handler

Alternatively, you can skip the Seam validation tags and specify the
validation action on the session bean that handles the form submis-
sion button. With this approach, you do not need the jboss-

seam-ui.jar file if you do not have other Seam UI tags in the ap-
plication. But for most applications, we strongly recommend that
you use validator tags.

To trigger validation in a Seam session bean, you need two annota-
tions. The @Valid annotation validates the person object injected
from the JSF web form. The @IfInvalid(outcome=REDISPLAY) an-
notation tells the Say Hello button's event handler to redisplay the
current page with error messages if the injected person object is
invalid.

public class ManagerAction implements Manager {

@In @Out @Valid
private Person person;

... ...

@IfInvalid(outcome=REDISPLAY)
public String sayHello () {
em.persist (person);
find ();
return "fans";

}

... ...
}

10.4. Display Error Messages on the Web Form

144

10.4. Display Error Messages on the Web Form

As we discussed earlier, when the validation fails, we want to redisplay the form with the in-
put data intact and error messages for each invalid field. You can do this in two ways: with
the standard JSF error display or with the enhanced Seam decorator approach. The Seam dec-
orator is slightly more complex but offers much richer UI features.

Because the <s:validate/> tag incorporates the Hibernate validator as a JSF validator for
the form, we can use the standard JSF mechanism to display the error message for each inval-
id input field. This is done by adding a JSF message element for each input field. Those mes-
sage elements render the error messages in case of a validation failure. Make sure that the for

attribute on the message tag matches the input field's id tag.

<s:validateAll>
<h:inputText id="name"

value="#{person.name}"/>
<h:message for="name" />

... ...

</s:validateAll>

However, the problem with the standard JSF validation messages is that they are not very
flexible. Although you can assign CSS classes to customize the look of the error message it-
self, you cannot alter the appearance of the input field that contains the invalid input. For in-
stance, in plain JSF, you cannot add an image in front of the invalid field, and you cannot
change the size, font, color, or background of the invalid field. The Seam decorator enables
you to do all those, and it gets rid of the id/for nuisance.

To use a Seam decorator, you first define how the decorator behaves using special named JSF
facets. The beforeInvalidField facet defines what to display in front of the invalid field; the
afterInvalidField facet defines what to display after the invalid field, and the <s:messge>

tag shows the error message for the input field; and the aroundInvalidField facet defines a
span or div element that encloses the invalid field and the error message. You also can use
the aroundField facet (not shown in the example here) to decorate the appearance of valid
(or initial) input fields.

10.4. Display Error Messages on the Web Form

145

<f:facet name="beforeInvalidField">
<h:graphicImage styleClass="errorImg"

value="error.png"/>
</f:facet>
<f:facet name="afterInvalidField">
<s:message/>

</f:facet>
<f:facet name="aroundInvalidField">
<s:span styleClass="error"/>

</f:facet>

Then you can just enclose each input field in a pair of <s:decorate> tags. The result is
shown in Figure 10.2., “Validation errors in the web form”.

... Set up the facets ...

<s:validateAll>

... ...

<s:decorate>
<h:inputText value="#{person.name}"/>

</s:decorate>

... ...

<s:decorate>
<h:inputText value="#{person.age}"/>

</s:decorate>

... ...

<s:decorate>
<h:inputText value="#{person.email}"/>

</s:decorate>

... ...

<s:decorate>
<h:inputTextarea id="comment"

value="#{person.comment}"/>
</s:decorate>

... ...

</s:validateAll>

10.4. Display Error Messages on the Web Form

146

There is no more messing around with the id and for attributes as we did with the JSF mes-
sage tags because the <s:message> tag "knows" which input field it is associated with
through the parent <s:decorate> tag.

You can also customize the Seam decorator on a per-input-field basis. For instance, if the
name input field needs a different highlight, we can custom it as follows:

<s:decorate>
<f:facet name="beforeInvalidField">
<h:graphicImage src="anotherError.gif"/>

</f:facet>
<f:facet name="afterInvalidField">
<s:message styleClass="anotherError"/>

</f:facet>
<f:facet name="aroundInvalidField">
<s:span styleClass="error"/>

</f:facet>

<h:inputText value="#{person.name}"/>
</s:decorate>

The Seam <s:validate> and <s:decorate> tags greatly simplify form validation in the web
tier. We highly recommend that you take advantage of them.

10.5. Use JSF Custom Validators

As we discussed, a great benefit of the Seam validator is to minimize repeated configurations
in both the presentation and database layers. But in some cases, validation is needed only in
the presentation layer. For instance, we might want to make sure that the user enters a valid
credit card number for the transaction, and the credit card number might not even get saved in
the database when the transaction is finished. For those purposes, you can also use plain JSF
validators in Seam applications.

JSF provides only a couple simple validators out of the box. But third-party JSF component
libraries provide plenty of custom validators. For instance, the following example shows the
use of the Apache Tomahawk validator for credit card numbers. Refer to the Tomahawk doc-
umentation for how to install the component library.

<h:outputText value="Credit Card Number" />
<s:decorate>

10.5. Use JSF Custom Validators

147

<h:inputText id="creditCard" required="true"
value="#{customer.creditCard}">

<t:validateCreditCard />
</h:inputText>

</s:decorate>

You can easily use the <s:decorate> tag to enhance the error message display for any JSF
custom validators as well.

10.5. Use JSF Custom Validators

148

11
Clickable Data Tables

Besides the validated entity objects, another example of Seam behavioral data components is
the clickable data table. A regular JSF data table displays a list of data objects, with each ta-
ble row showing the contents of an object. A clickable data table has additional "action"
columns in the table. Each action column contains buttons (or links) that enable you to oper-
ate on the entity data object corresponding to each row.

For instance, the fans.xhtml page in the integration example application shows an ex-
ample of the clickable data table (see Figure 11.1., “Clickable data table in the fans.xhtml
page”). The table displays all persons in the database, with each row representing a person.
Each row also contains a clickable button that enables the user to delete the person represen-
ted by the row. In a general clickable data table, you can have multiple action buttons/links
for each row.

Figure 11.1. Clickable data table in the fans.xhtml page

In the Hotel Booking example application (the booking project), the main.xhml page displays
a clickable data table containing all previous reservations that you booked and provides but-
tons to delete any of those reservations (see Figure 11.2., “Clickable data table in the
main.xhtml page in the Hotel Booking example”).

Figure 11.2. Clickable data table in the main.xhtml page in the Hotel Booking example

For clarity and simplicity, we use the integration example to illustrate the implementation
of a clickable data table in this chapter.

11.1. Implement a Clickable Data Table

In plain JSF, clickable tables are difficult to implement because there is no clean way to asso-
ciate the row ID with the event handlers for the action buttons in that row. Seam, however,
provides two very simple ways to implement those highly useful clickable tables.

11.1.1. Display the Data Table

The JSF page to display the clickable data table is simple. You just need a regular JSF
<h:dataTable> UI element. The <h:dataTable> element iterates over a Java List typed
component with the @DataModel annotation. The following listing shows the code in the

11.1. Implement a Clickable Data Table

150

integration example. The @DataModel turns the fans component into a JSF DataModel ob-
ject, and it already implies the @Out annotation.

public class ManagerAction implements Manager {

... ...

@DataModel
private List <Person> fans;

@DataModelSelection
private Person selectedFan;

@Factory("fans")
public void findFans () {
fans = em.createQuery("select p from Person p")

.getResultList();
}

... ...
}

Each property in the Person bean is presented in a column of the table. The Delete buttons
occupy their own column and all have the same event-handler method: #{manager.delete}
method. We explain how the #{manager.delete} method works in the next two sections.

<h:dataTable value="#{fans}" var="fan">
<h:column>
#{fan.name}

</h:column>
<h:column>
#{fan.age}

</h:column>
<h:column>
#{fan.email}

</h:column>
<h:column>
#{fan.comment}

</h:column>
<h:column>
<h:commandButton value="Delete"

action="#{manager.delete}"/>
</h:column>

</h:dataTable>

11.1.1. Display the Data Table

151

In this example, we showed the Delete button in <commandButton>. Of course, we can render
an action link for each row in a clickable table with the JSF <commandLink> or the Seam
<s:link> component—those link components can take Seam event-handler methods in the
action attribute. The Seam <s:link> is recommended here because it supports normal
browser behavior such as the right-click pop-up menu (see Section 7.2.5., “Links and But-
tons” for more details).

But still, since all rows have the same button event handler, how does the
#{manager.delete} method know which Person object to operate on? You can either inject
the selected object to the #{manager} component or use Seam extended EL to reference the
selected object.

11.1.2. Inject Selected Object into Event Handler

We define a selectedFan field in the ManagerAction class and annotate it with the
@DataModelSelection annotation. When you click on a button (or link) in any row in the
clickable table, Seam injects the Person object represented by that row into the selectedFan

field before invoking the event-handler method. At last, we implement the event handler for
the Delete button on each row. The event handler merges the injected Person object into the
current persistence context and deletes it from the database.

public class ManagerAction implements Manager {

... ...

@DataModel
private List <Person> fans;

@DataModelSelection
private Person selectedFan;

... ...

public String delete () {
Person toDelete = em.merge (selectedFan);
em.remove(toDelete);
findFans ();
return null;

}

}

11.1.2. Inject Selected Object into Event Handler

152

The merge is needed because the ManagerAction component has the default conversation
scope: the component and its persistence context are destroyed when the data table is com-
pletely rendered. So when the user clicks on the data table, a new ManagerAction component
is constructed for the new conversation. The selectedFan object is out of the new persistence
context and, hence, needs to be merged.

Merge Data Objects into Persistence Context

If we manage data objects in a long-running conversation, there is
less need to merge the persistence context from time to time.

11.1.3. Use Extended EL in Data Table

The injection via @DataModelSelection decouples the presentation from the event handler. It
is the standard "JSF way" of doing things. However, with the Seam extended EL (see Sec-
tion 3.2.2., “Seam JSF EL Enhancement”), there is a simpler alternative. You can directly ref-
erence the object in the selected row.

<h:dataTable value="#{fans}" var="fan">
<h:column>
#{fan.name}

</h:column>
... ...
<h:column>
<h:commandButton value="Delete"

action="#{manager.delete(fan)}"/>
</h:column>

</h:dataTable>

In the ManagerAction class, you need a delete() method that takes the Person argument.

public class ManagerAction implements Manager {

... ...

@DataModel
private List <Person> fans;

... ...

11.1.3. Use Extended EL in Data Table

153

public String delete (Person selectedFan) {
Person toDelete = em.merge (selectedFan);
em.remove(toDelete);
findFans ();
return null;

}

}

The clickable data table is an excellent example of the tight integration between data and UI
components in Seam applications.

11.2. Seam Data-Binding Framework

The @DataModel and @DataModelSelection annotations are just concrete use cases of the
Seam data-binding framework, which provides a generic mechanism for turning any data ob-
jects into JSF UI components and capturing the user input on the component. For instance,
the @DataModel annotation simply turns a Map or Set into a JSF DataModel component, and
the @DataModelSelection annotation passes in any selection the user made on the
DataModel.

The generic data-binding framework enables third-party developers to extend Seam and write
custom annotations to give UI behaviors to arbitrary data model objects. For instance, one
might write an annotation to expose an image as a map widget on the web page and capture
the user selection as a location on the map. The data-binding framework opens the door for
some extremely interesting use cases from the community in the future.

The data-binding framework is an advanced topic because it requires knowledge of the
internal workings of Seam and JSF. This is a little beyond the scope of this book; in this
section, we just give a brief overview of different components in the framework and leave
interested readers to investigate the Seam source code yourselves.

The DataBinder and DataSelector interfaces in the org.jboss.seam.databinding package
define the methods you have to implement for your own data binding classes. The DataMod-

elBinder and DataModelSelector classes in the same package provide example implementa-
tions. Then, in the @DataModel and @DataModelSelection annotations, we simply pass the
task to those implementation classes.

11.2. Seam Data-Binding Framework

154

@Target({FIELD, METHOD})
@Retention(RUNTIME)
@Documented
@DataBinderClass(DataModelBinder.class)
public @interface DataModel {

String value() default "";
ScopeType scope() default ScopeType.UNSPECIFIED;

}

@Target({FIELD, METHOD})
@Retention(RUNTIME)
@Documented
@DataSelectorClass(DataModelSelector.class)
public @interface DataModelSelection {

String value() default "";
}

For more details on how the DataModelBinder and DataModelSelector classes are imple-
mented, refer to the Seam source code.

11.2. Seam Data-Binding Framework

155

This page intentionally left blank

12
Bookmarkable Web Pages

One of the loudest criticisms of JSF (and other component-based web frameworks) is its reli-
ance on HTTP POST requests. JSF uses HTTP POST to match user actions (e.g., button clicks)
with UI event-handler methods on the server side (i.e., in Seam stateful session beans). It also
uses hidden fields in the HTTP POST requests to keep track of the user's conversational state.

In an HTTP POST request, the URL does not contain the complete query information about
the request. It is impossible to bookmark a web page dynamically generated from an HTTP
POST. However, in many web applications, it is highly desirable to have bookmarkable web
pages (a.k.a. RESTful URLs—REST stands for Representational State Transfer). For in-
stance, for an e-commerce web site, you probably want to display information via URLs such
as http://mysite.com/product.seam?pid=123; for a content site, you probably want to dis-
play articles via URLs such as http://mysite.com/article.seam?aid=123. The chief bene-
fit of the bookmarkable URLs is that they can be saved for later access and emailed/messaged
(i.e., they can be bookmarks).

In plain JSF, bookmarkable pages are somewhat difficult to construct: When the page is
loaded from an HTTP GET, it is cumbersome to pass request parameters to backing beans and
then automatically start bean method to process the parameters and load page data. However,
with Seam, the barrier is easy to overcome. In this chapter, we discuss two approaches: using
Seam page parameters and using request parameter injection with component lifecycle
methods.

The example application is in the integration project in the source code bundle. It works
like this: After people enter their names and messages in the hello.seam page, you can load
any individual's personal details and comments via the http://localhost:8080/

integration/person.seam?pid=n URL, where n is the unique ID of that individual. You can
then make changes to any of the details and submit them back to the database (see Fig-
ure 12.1., “The bookmarkable individual person information edit page in the integration ex-
ample project”).

http://mysite.com/product.seam?pid=123
http://mysite.com/article.seam?aid=123

Figure 12.1. The bookmarkable individual person information edit page in the
integration example project

When to Use Bookmarkable URLs

We believe that bookmarkable URLs and POST URLs both have
their places. For instance, you probably do not want the user to
bookmark a temporary page inside a conversation (e.g., the credit
card payment submission page). In that case, a nonbookmarkable
POST page is more appropriate.

12.1. Using Page Parameters

The easiest way to pass HTTP GET request parameters to back-end business components is to
use Seam page parameters. Each Seam web page can have zero to several page parameters,
which are HTTP request parameters bound to properties on back-end components.

Seam page parameters are defined in the pages.xml file in the app.war/WEB-INF/ directory.
You have already seen this file in Section 8.2., “Workspace Switcher”, where we used it to
store the description of each web page for the conversation list. In the following example,

12.1. Using Page Parameters

158

when the person.xhtml page is loaded, the HTTP GET request parameter pid is converted to
a Long value and bound to the #{manager.pid} property. Notice that we can use JSF EL and
the converter here, although the pages.xml file is not a JSF web page; it is the power of
Seam's expanded use of JSF EL.

<pages>

<page view-id="/person.xhtml">
<param name="pid" value="#{manager.pid}"

converterId="javax.faces.Long"/>
</page>

</pages>

So when you load a URL such as person.seam?pid=3, Seam automatically invokes the
ManagerAction.setPid(3) method. In the setter method, we initialize the person object and
outject it.

@Stateful
@Name("manager")
public class ManagerAction implements Manager {

@In (required=false) @Out (required=false)
private Person person;

@PersistenceContext (type=EXTENDED)
private EntityManager em;

Long pid;

public void setPid (Long pid) {
this.pid = pid;

if (pid != null) {
person = (Person) em.find(Person.class, pid);

} else {
person = new Person ();

}
}

public Long getPid () {
return pid;

}

... ...
}

12.1. Using Page Parameters

159

The Bijection Values Are Not Required

The @In and @Out annotations on the person field have the re-

quired=false attribute. When the ManagerAction.setPid() meth-
od is called, the person component does not have a valid value. In
fact, we construct the person object in the setter and then outject it.

Of course, by setting @In(required=false), Seam could also inject
a null value for person when you invoke any event-handler method
in the ManagerAction component. If any of the event-handler
methods does not provide a valid person object to outject (e.g., the
ManagerAction.delete() method), you must set the
@Out(required=false) as well.

Using similar techniques, you can have multiple page parameters binding to the same or dif-
ferent back-end components on the same page. The person.xhtml page displays the editing
form with the outjected person component.

<s:validateAll>

<table>
<tr>
<td>Your name:</td>
<td>
<s:decorate>
<h:inputText value="#{person.name}"/>

</s:decorate>
</td>

</tr>

<tr>
<td>Your age:</td>
<td>
<s:decorate>
<h:inputText value="#{person.age}"/>

</s:decorate>
</td>

</tr>

<tr>
<td>Email:</td>
<td>
<s:decorate>
<h:inputText value="#{person.email}"/>

12.1. Using Page Parameters

160

</s:decorate>
</td>

</tr>

<tr>
<td>Comment:</td>
<td>
<s:decorate>
<h:inputTextarea value="#{person.comment}"/>

</s:decorate>
</td>

</tr>

</table>

</s:validateAll>

<h:commandButton type="submit" value="Update"
action="#{manager.update}"/>

When you click on the Update button, the person object corresponding to the pid is updated.
Many readers might find this puzzling: When we first loaded the person.xhtml page via HT-
TP GET, we explicitly gave the pid parameter. Why don't we need to explicitly pass the pid in
an HTTP POST request associated with the Update button submission (e.g., as a hidden field
in the form or as a f:param parameter for the Update button)? After all, the person and man-

ager components are both in the default conversation scope (Section 7.1., “The Default Con-
versation Scope”); they have to be constructed anew when the form is submitted. So how
does JSF know which person you want to update? Well, as it turns out, the page parameter
has a PAGE scope (Section 5.5., “High Granularity Component Lifecycle”). When you submit
the page, it always submits the same pid parameter from which the page is originally loaded.
This is a very useful and convenient feature.

Page Action

When the page is loaded, the page parameter automatically triggers
the setter method on the back-end property it binds to. Seam takes
this concept one step further: You can trigger any back-end bean
method at page load time in the pages.xml file. That is called page
action. If the page action method is annotated with @Begin, the HT-
TP GET request for the page starts the long-running conversation.
Furthermore, you can specify page actions that are executed only

12.1. Using Page Parameters

161

when a JSF EL condition is met. Here are two examples of page
action:

<pages>
<page view-id="/foo.xhtml">
<action execute="#{barBean.startConv}"/>

</page>

<page view-id="/register.xhtml">
<action if="#{validation.failed}"

execute="#{register.invalid}"/>
</page>

... ...

</pages>

You can check out Section 19.1., “Stateful Navigation Rules in
pages.xml”, for more on how to use the pages.xml file.

The Seam page parameter is an elegant solution for bookmarkable pages. You will see its ap-
plication again in Chapter 13, The Seam CRUD Application Framework.

12.2. The Java-Centric Approach

The page parameter is not the only solution for bookmarkable pages. For one thing, a lot of
developers dislike putting application logic in XML files. The pages.xml file can also get too
verbose in some cases. For instance, you might have the same HTTP request parameter on
multiple pages (e.g., editperson.seam?pid=x, showperson.seam?pid=y etc.) or have mul-
tiple HTTP request parameters for the same page. In either case, you then must repeat very
similar page parameter definition in the pages.xml file.

Furthermore, the page parameter does not work correctly if the page is loaded from a servlet,
which is the case for some third party JSF component libraries. Those libraries use their own
special servlets to do more processing/rendering of the page. For an example, see Sec-
tion 15.3., “Use ICEfaces with Seam”.

12.2. The Java-Centric Approach

162

To resolve those issues, Seam provides a mechanism for processing HTTP request parameters
in a "pure Java" way. This is more involved than the page parameter approach, but the benefit
is that at more points you can add your own custom logic. In this section, we show you how.

12.2.1. Obtaining Query Parameters in an HTTP GET Request

Our first challenge is to pass the HTTP GET query parameter to the business component that
provides contents and supports actions for the page. Seam provides a @RequestParameter an-
notation to make this happen. The @RequestParameter annotation is applied to the String

variable in a Seam component. When the component is accessed at runtime, the current HT-
TP request parameter matching the variable name is automatically injected into the variable.
For instance, we could have the following code in the ManagerAction stateful session bean to
support URLs such as person.seam?pid=3. Notice that the HTTP request parameter is a
String object, but the injected value is a Long type. Seam converts the String to a Long dur-
ing injection. Of course, you can inject a String value and convert it yourself.

@Stateful
@Name("manager")
public class ManagerAction implements Manager {

@RequestParameter
Long pid;

//
}

Whenever a method (e.g., a UI event handler, a property accessor, or a component lifecycle
method) inside the ManagerAction class is accessed, Seam first injects the request parameter
pid into the field variable with the same name. If your request parameter and field variable
have different names, you must use the value argument in the annotation. For instance, the
following code injects the pid request parameter into the personId field variable.

@RequestParameter (value="pid")
Long personId;

12.2.1. Obtaining Query Parameters in an HTTP GET Request

163

12.2.2. Load Data for the Page

Getting the request query parameter is only the first step. When the person.seam?pid=3 page
is loaded, it has to also trigger Seam to actually retrieve the person's information from the
database. For instance, the person.xhtml page simply displays data from the person com-
ponent. So how do we instantiate the person component with the pid parameter at the HTTP
GET?

12.2.2.1. The @Factory Method

As we discussed in Section 6.1.4., “Factory Methods”, we can use a factory method to initial-
ize any Seam component. The factory method for the person component is located in the
ManagerAction bean. Seam calls ManagerAction.findPerson() when it instantiates the
person component. The factory method uses the injected pid to retrieve the Person object
from the database.

@Stateful
@Name("manager")
public class ManagerAction implements Manager {

@In (required=false) @Out (required=false)
private Person person;

@PersistenceContext (type=EXTENDED)
private EntityManager em;

@RequestParameter
Long pid;

... ...

@Factory("person")
public void findPerson () {
if (pid != null) {
person = (Person) em.find(Person.class, pid);

} else {
person = new Person ();

}
}

}

12.2.2. Load Data for the Page

164

In summary, the whole process works like this: When the user loads the person.seam?pid=3

URL, the person.xhtml page is processed and Seam finds it necessary to instantiate the
person component to display data on the page. Seam injects the pid value into the
ManagerAction object and then calls the ManagerAction.findPerson() factory method to
build and outject the person component. The page is then displayed with the person

component.

12.2.2.2. The @Create Method

The person component can be constructed with a factory method. But what if the page data
comes from a business component? For instance, the page could display data from
#{manager.person} instead of #{person}. In this case, we need to initialize the person prop-
erty in the manager component when Seam instantiates the manager component. According to
Section 6.1.3., “Stateful Component Lifecycle”, we can do it via the @Create lifecycle meth-
od in the ManagerAction class.

@Stateful
@Name("manager")
public class ManagerAction implements Manager {

@RequestParameter
Long pid;

// No bijection annotations
private Person person;

@PersistenceContext(type=EXTENDED)
private EntityManager em;

public Person getPerson () {return person;}
public void setPerson (Person person) {
this.person = person;

}

@Create
public String findPerson() {
if (pid != null) {
person = (Person) em.find(Person.class, pid);

} else {
person = new Person ();

}
}

//
}

12.2.2. Load Data for the Page

165

Event-Handler Methods

The @Factory and @Create methods can also be used as UI event-
handler methods in regular JSF HTTP POST operations. They also
can use the injected HTTP request parameter if the POST request has
such parameters (see Section 12.2.3., “Further Processing from the
Bookmarked Page”).

12.2.3. Further Processing from the Bookmarked Page

Without the PAGE scoped page parameter, we must include the HTTP request parameter in all
subsequent requests. For instance, the person.xhtml page loads the manager and person

components only in the default conversation scope (see Section 7.1., “The Default Conversa-
tion Scope”), so the components expire when the page is fully rendered. When the user clicks
on the Say Hello button to edit the person's information, a new set of manager and person

components must be constructed for the new conversation. Thus, the JSF POST for the Say
Hello button submission must also include the pid parameter. The pid is injected into the
ManagerAction class, which uses it to build the person component before the event-handler
method ManagerAction.sayHello() is invoked. To do that, we use a hidden field in the
form.

<h:form>

<input type="hidden" name="pid"
value="#{person.id}"/>

<s:validateAll>
... ...

</s:validateAll>

<h:commandButton type="submit" value="Update"
action="#{manager.update}"/>

</h:form>

If you annotate the @Factory or @Create methods with the @Begin annotation, you can start a
long-running conversation from a bookmarked page. For instance, in an e-commerce web
site, you can start a shopping cart conversation when the user loads a bookmarked product

12.2.3. Further Processing from the Bookmarked Page

166

page with a productId. The REST-loaded product component stays available throughout the
conversation until the user checks out or aborts the shopping session. There is no need to load
the product component again from the productId as long as the conversation stays valid.

The Hidden Field Hack

The hidden field in the web form is really a hack. We do not recom-
mend it because it could confuse code maintainers in the future. If
you need a hidden field to make your RESTful page work, you are
probably better off injecting the page parameter via the pages.xml

file instead of using the @RequestParameter. But in Section 15.3.,
“Use ICEfaces with Seam”, we will see that this hack is sometimes
necessary with third party JSF component libraries.

Seam provides great REST support for JSF applications. This is one of the most compelling
reasons to use Seam with JSF.

12.2.3. Further Processing from the Bookmarked Page

167

This page intentionally left blank

13
The Seam CRUD Application Framework

Without Seam, a plain JSF application has at least four layers: the UI page, the backing beans
for the page data and event handlers, the session beans for business and data access logic, and
the entity beans for the data model. Seam now has eliminated the artificial gap between JSF
backing beans and EJB3 session beans. But there's more. Seam comes with a built-in frame-
work for Create, Retrieve, Update, and Delete (CRUD) data operations. With this framework,
we can make JSF applications even simpler by reusing much of the standard event-handler
methods. For small projects, we can even completely eliminate the need for session beans.
Too good to be true? Well, read on ...

The Seam CRUD application framework essentially provides prepackaged Data Access Ob-
jects (DAOs). Let's start this chapter with a brief introduction to DAOs.

13.1. Data Access Objects (DAOs)

One of the most useful design patterns in enterprise Java is the Data Access Object (DAO)
pattern. The DAOs typically support CRUD operations on the ORM entity objects. In Seam
applications, the DAO is an EJB3 session bean or a Seam POJO component holding reference
to a managed EntityManager object.

In many small database-driven applications, the CRUD data access logic is the business logic.
The web UI simply provides the user access to the database. In a JSF CRUD application, the
web pages reference DAOs directly to operate on the data. For those applications, the back-
end programming primarily consists of coding the DAOs. For instance, in the series of Hello
World examples we have seen so far in this book, the ManagerAction session bean primarily
functions as a DAO for the Person entity bean.

In large enterprise applications, the benefit of the DAO pattern is that it abstracts out the data
access logic from the business logic. The business components contain only the domain spe-
cific "business logic" and no data access-specific API calls (e.g., no EntityManager

references). Hence, the business components are more portable and lightweight, in that they
are less attached to the underlying frameworks. That is certainly a good thing, from an archi-
tectural point of view.

On the other hand, DAOs are highly repetitive. The DAOs for each entity class are largely the
same. They are ideal for code reuse. Seam provides an application framework with built-in
generic DAO components. You can develop simple CRUD web applications in Seam without
writing a single line of Java "business logic" code. Don't believe me? Well, read on and we
show you how. The example application in this chapter is in the crud project in the book's
source code bundle. In terms of functions, the crud example is roughly equivalent to the
integration example used in the previous chapters.

13.2. Seam CRUD DAOs Are POJOs

Because the DAO is responsible for only data access and does not need any other EJB3 con-
tainer services, we should be able to use Seam POJOs instead of EJB3 session beans (see
Section 2.4.1., “Seam POJO Components”). The benefit of Seam POJOs is that they are sim-
pler than EJB3 session beans and can deploy in older J2EE 1.4 application servers, but they
do need a little extra configuration (see Chapter 24, Seam Without EJB3). If you use Seam
Gen (Chapter 4, Rapid Application Development Tools) to generate your configuration files,
the POJO settings are enabled by default. If you write your own configuration files from the
Hello World examples, you need to pay attention to a couple places. The idea here is to boot-
strap a Seam-managed EntityManager for the DAO POJOs because the POJOs cannot dir-
ectly use the EJB3-managed EntityManager.

First, in the faces-config.xml file in app.war/WEB-INF, you need to use the Transaction-

alSeamPhaseListener instead of the standard SeamPhaseListener used in typical Seam
EJB3 applications. The TransactionalSeamPhaseListener provides a Seam-managed trans-
action manager for the EntityManager.

<faces-config>

<lifecycle>
<phase-listener>

org.jboss.seam.jsf.TransactionalSeamPhaseListener
</phase-listener>

</lifecycle>

... ...

</faces-config>

13.2. Seam CRUD DAOs Are POJOs

170

In the persistence.xml file in app.jar/META-INF, you need to register the persistence con-
text unit under a JNDI name unique to your application.

<persistence>
<persistence-unit name="helloworld">
... ...
<properties>
... ...
<property

name="jboss.entity.manager.factory.jndi.name"
value="java:/crudEntityManagerFactory"/>
</properties>

</persistence-unit>
</persistence>

Finally, in the components.xml file in app.war/WEB-INF, you need to define the Seam-
managed EntityManager component so that it can be injected into other Seam POJO
components.

<components ...>

... ...

<core:managed-persistence-context name="em"
persistence-unit-jndi-name=

"java:/crudEntityManagerFactory"/>

... ...

</components>

That's it for the EntityManager configuration. The Seam DAO components themselves are
also defined in the components.xml file. Let's check out how they work next.

13.3. The Declarative Seam DAO Component

A useful feature of Seam DAO components is that they can be declaratively instantiated in
the Seam components.xml file, so you do not even need to write any data access code. Let's

13.3. The Declarative Seam DAO Component

171

look at an example for the Person entity bean adopted from previous examples. Because the
DAO now manages the entity bean, you no longer need the @Name annotation on the entity
bean.

@Entity
public class Person implements Serializable {

private long id;
private String name;
private int age;
private String email;
private String comment;

... Getter and Setter Methods ...
}

To instantiate a DAO component for the Person entity bean, you simply need an entity-

home element in components.xml. The DAO component can be referenced in JSF pages or in-
jected into other Seam components via the Seam name personDao. The #{em} references the
Seam-managed EntityManager we defined in the previous section. The DAO uses this
EntityManager to manage the Person object.

<components ...
xmlns:fwk="http://jboss.com/products/seam/framework"

...>

... ...

<fwk:entity-home name="personDao"
entity-class="Person"
entity-manager="#{em}"/>

... ...

</components>

You can now reference the Person instance that personDao manages via
#{personDao.instance}. The following is an example JSF page that uses the DAO to add a
new Person object to the database.

<s:validateAll>
<table>

13.3. The Declarative Seam DAO Component

172

<tr>
<td>Your name:</td>
<td>
<s:decorate>
<h:inputText
value="#{personDao.instance.name}"/>

</s:decorate>
</td>

</tr>

... ...

</table>
</s:validateAll>

<h:commandButton type="submit" value="Say Hello"
action="#{personDao.persist}"/>

The #{personDao.persist} method returns the String value "persisted" after the object is
successfully saved in the database. You can then define navigation rules for "persisted" to
decide which page JSF should display next, etc. Besides the persist() method, the DAO
component supports remove() and update() methods, which return the String values
"removed" and "updated", respectively.

13.3.1. Use Simpler Names for the Entity Object

Using #{personDao.instance} to reference the managed Person instance in the DAO is not
as elegant as using #{person}, as we did for the previous example. Fortunately, the compon-
ent factory in Seam makes it very easy to map #{personDao.instance} to #{person}. Just
add the factory element in the components.xml file as follows:

<components ...
xmlns:fwk="http://jboss.com/products/seam/framework"

...>

... ...

<factory name="person"
value="#{personDao.instance}"/>

<fwk:entity-home name="personDao"
entity-class="Person"
entity-manager="#{em}"/>

13.3.1. Use Simpler Names for the Entity Object

173

... ...

</components>

You can now use #{person} to back the data fields on the page and #{personDao} to back
the actions on the #{person} data.

<s:validateAll>
<table>

<tr>
<td>Your name:</td>
<td>
<s:decorate>
<h:inputText
value="#{person.name}"/>

</s:decorate>
</td>

</tr>

... ...

</table>
</s:validateAll>

<h:commandButton type="submit" value="Say Hello"
action="#{personDao.persist}"/>

13.3.2. Retrieving and Displaying an Entity Object

A CRUD application typically uses HTTP GET request parameters to retrieve entity objects
for a page. The DAO must receive the HTTP request parameter, query the database, and
make the retrieved entity object available for the page. In Chapter 12, Bookmarkable Web
Pages, we discussed how to bind the HTTP request parameter to back-end components. In
the Seam DAO objects, all you need is to bind the HTTP request parameter to the DAO's id

property.

For instance, in the crud example application, we want to load individual persons via
URLs such as person.seam?pid=3. You can use the following element in the
app.war/WEB-INF/pages.xml file to accomplish this.

13.3.2. Retrieving and Displaying an Entity Object

174

<pages>

<page view-id="/person.xhtml">
<param name="pid" value="#{personDao.id}"

converterId="javax.faces.Long"/>
</page>

</pages>

Now when you load the person.seam?pid=3 URL, the DAO automatically retrieves the
Person object with an ID equal to 3. You can then reference the entity object via the JSF EL
expression #{person}.

13.3.3. Initializing a New Entity Instance

When a new DAO is created, the DAO instantiates its managed entity object. If the id prop-
erty in the DAO is not set, it just creates a new entity object using the entity bean's default
constructor. You can initialize the newly created entity object in the entity-home component.
The new-instance property allows Seam to inject an existing entity object, which is also cre-
ated in the components.xml as a component, into the DAO. The following is an example. No-
tice that the property values in the newPerson component can also be JSF EL expressions.

<fwk:entity-home name="personDao"
entity-class="Person"
entity-manager="#{em}"
new-instance="#{newPerson}"/>

<component name="newPerson" class="Person">
<property name="age">25</property>

</component>

13.3.4. Success Messages

As we discussed in Section 7.1.1., “Display JSF Messages”, Seam enhances the JSF mes-
saging system to display success messages after an operation. In the entity-home compon-
ent, you can customize the success messages for the CRUD operations. You can now simply
use the <h:message> components on any page to display the messages. This is a great time
saver in simple CRUD applications.

13.3.3. Initializing a New Entity Instance

175

<fwk:entity-home name="personDao"
entity-class="Person"
entity-manager="#{em}">

<fwk:created-message>
New person #{person.name} created

</fwk:created-message>
<fwk:deleted-message>
Person #{person.name} deleted

</fwk:deleted-message>
<fwk:updated-message>
Person #{person.name} updated

</fwk:updated-message>
</fwk:entity-home>

Handling Failures

Obviously, the success messages are not sent to the JSF messaging
system when the CRUD operation fails. In this case, we can redirect
to a custom error page (see Chapter 14, Failing Gracefully).

13.4. Queries

Data querying is a key feature in database-driven applications. The Seam application frame-
work provides query components in addition to the basic CRUD DAO components. You can
use the query component to declare queries in components.xml without writing a line of Java
code.

The declarative approach to data queries helps us manage all queries in a central location and
allows the Java code to reuse queries. It is a proven approach similar to the NamedQuery in
Hibernate or Java Persistence API.

For instance, the following element defines a Seam query component named fans. When the
query is executed, it retrieves all Person objects from the database.

<components ...>

... ...

13.4. Queries

176

<fwk:entity-query name="fans"
entity-manager="#{em}"
ejbql="select p from Person p"/>

</components>

On a JSF web page, you can execute the query and reference its result list via
#{fans.resultList}.

<h:dataTable value="#{fans.resultList}" var="fan">
<h:column>
<f:facet name="header">Name</f:facet>
#{fan.name}

</h:column>
<h:column>
<f:facet name="header">Age</f:facet>
#{fan.age}

</h:column>
<h:column>
<f:facet name="header">Email</f:facet>
#{fan.email}

</h:column>
<h:column>
<f:facet name="header">Comment</f:facet>
#{fan.comment}

</h:column>
<h:column>
Edit

</h:column>
</h:dataTable>

You can use the WHERE clause to constrain the query results in the ejbql property. However,
you cannot use parameterized query constraints because no Java code explicitly calls the
Query.setParameter() method at runtime. To use dynamic queries, you must declaratively
bind user input to the query. We discuss that technique in the next section.

13.4.1. Dynamic Queries

Static database queries are useful. But in real-world applications, most queries are dynamic-
ally constructed from user input. For instance, the user might search for all persons under age
35 who have a redhat.com email address.

13.4.1. Dynamic Queries

177

Dynamic querying binds user input values (search criteria) to placeholders in the constraint
clause of the query. The query API in the EntityManager enables you to place parameters
(i.e., the placeholders) in the query string and then use the setParameter() method to set the
parameter value at runtime before the query is executed. The Seam query component enables
you to do similar things.

The Seam query component is defined in components.xml, so we can declaratively bind the
user input to query constraints. You do so by using the JSF EL to capture user input in
components.xml. For instance, let's assume that you have a #{search} component that backs
the input fields on the search query page. The age constraint in the query is bound to
#{search.age}, and the email constraint is bound to #{search.email}. The following is the
query example in the components.xml file.

<fwk:entity-query name="fans"
entity-manager="#{em}"
ejbql="select p from Person p"
order="name">

<fwk:restrictions>
<value>age < #{search.age}</value>
<value>

lower(email) like lower('%' + #{search.email})
</value>

</fwk:restrictions>
</fwk:entity-query>

Although it is possible to bind any JSF EL expression to the query constraint, the most com-
mon pattern is to use an example entity component to capture the user input. It provides a
more structured way to manage the data fields. In the following example, notice that you can
use the order property to order the query results.

<component name="examplePerson" class="Person"/>

<fwk:entity-query name="fans"
entity-manager="#{em}"
ejbql="select p from Person p"
order="name">

<fwk:restrictions>
<value>age < #{examplePerson.age}</value>
<value>

lower(email) like lower('%'+#{examplePerson.email})
</value>

</fwk:restrictions>
</fwk:entity-query>

13.4.1. Dynamic Queries

178

The web page for the query form and results list follows. Notice that the form submission
button for the page is not bound to any back-end event-handler method; it simply submits the
user input search criteria to the #{search} component. When JSF renders the #{fans}

component later in the page, Seam invokes the query with the parameters in the #{search}

component, as shown earlier.

<h:form>
Search filters:

Max age:
<h:inputText value="#{examplePerson.age}"/>
Email domain:
<h:inputText value="#{examplePerson.email}"/>
<h:commandButton value="Search" action="/search.xhtml"/>
</h:form>

<h:dataTable value="#{fans.resultList}" var="fan">
<h:column>
<f:facet name="header">Name</f:facet>
#{fan.name}

</h:column>
<h:column>
<f:facet name="header">Age</f:facet>
#{fan.age}

</h:column>
<h:column>
<f:facet name="header">Email</f:facet>
#{fan.email}

</h:column>
<h:column>
<f:facet name="header">Comment</f:facet>
#{fan.comment}

</h:column>
<h:column>
Edit

</h:column>
</h:dataTable>

13.4.2. Displaying Multipage Query Results

If your query has a long list of results, you usually want to display those results across mul-
tiple pages with links to navigate between pages. The Seam query component has built-in
support for paged data tables. First, you specify how many result objects you want to display
on each page via the max-results property.

13.4.2. Displaying Multipage Query Results

179

<fwk:entity-query name="fans"
entity-manager="#{em}"
ejbql="select p from Person p"
order="name"
max-results="20"/>

Then on the JSF page, you use the firstResult HTTP request parameter to control which
part of the result set to display. The firstResult parameter is automatically injected into the
query component (i.e., fans) when the page loads, and no more coding is needed. For in-
stance, the URL fans.seam?firstResult=30 for the following page displays query result ob-
jects numbered 30 to 49.

<h:dataTable value="#{fans.resultList}" var="fan">
<h:column>
<f:facet name="header">Name</f:facet>
#{fan.name}

</h:column>

... ...
</h:dataTable>

The entity-query component also provides built-in support for pagination links. That makes
it easy to add Next/Prev/First/Last links on the data result page.

<h:dataTable value="#{fans.resultList}" var="fan">
<h:column>
<f:facet name="header">Name</f:facet>
#{fan.name}

</h:column>

... ...
</h:dataTable>

First Page
<a href=
"fans.seam?firstResult=#{fans.previousFirstResult}">
Previous Page

<a href=
"fans.seam?firstResult=#{fans.nextFirstResult}">
Next Page

13.4.2. Displaying Multipage Query Results

180

<a href=
"fans.seam?firstResult=#{fans.lastFirstResult}">
Last Page

The static HTML pagination links appear even if the query result is only one page; for mul-
tiple-page results, they appear regardless of whether the user is already on the first/last page.
A better approach is to use the Seam <s:link> component to render the links (see Sec-
tion 3.2.1., “Seam UI Tags”). This way, you can control when the pagination links are
rendered. Consider this example:

<h:dataTable value="#{fans.resultList}" var="fan">
<h:column>
<f:facet name="header">Name</f:facet>
#{fan.name}

</h:column>

... ...
</h:dataTable>

<s:link view="/fans.xhtml"
rendered="#{fans.previousExists}"
value="First Page">

<f:param name="firstResult" value="0"/>
</s:link>

<s:link view="/fans.xhtml"
rendered="#{fans.previousExists}"
value="Previous Page">

<f:param name="firstResult"
value="#{fans.previousFirstResult}"/>

</s:link>

<s:link view="/fans.xhtml"
rendered="#{fans.nextExists}"
value="Next Page">

<f:param name="firstResult"
value="#{fans.nextFirstResult}"/>

</s:link>

<s:link view="/fans.xhtml"
rendered="#{fans.nextExists}"
value="Last Page">

<f:param name="firstResult"
value="#{fans.lastFirstResult}"/>

</s:link>

13.4.2. Displaying Multipage Query Results

181

With the Seam CRUD framework, you can write an entire database application declaratively.
But if you are not comfortable with coding in XML, you can also extend the Seam POJO
classes behind the entity-home and entity-query components to accomplish the same.
Refer to the Seam reference documentation for more details.

13.4.2. Displaying Multipage Query Results

182

14
Failing Gracefully

Like input validation, error handling is a very important aspect of web applications, but it is
hard to get done right. Without proper error handling, uncaught exceptions in the application
(e.g., a RuntimeException or a transaction-related exception) would propagate out of the web
framework and cause a generic "Internal Server Error" (HTTP error code 500). The user
would see a page full of technical jargon and a partial stack trace of the exception itself (see
Figure 14.1., “An uncaught exception from the Seam event handler method”). That is cer-
tainly unprofessional. Instead, we should try to fail gracefully and display a nice custom error
page for the user.

Figure 14.1. An uncaught exception from the Seam event handler method

With the tight integration between the business components and presentation components,
Seam makes it easy to "convert" any business-layer exception to a custom error page. In this
chapter, we go back to the booking example discussed in Chapter 7, Conversations, to
Chapter 9, Transactions, and show how errors are handled from the transactions.

Before we discuss the Seam approach, we present a quick overview on the "standard" error-
handling mechanism in Java EE and why it is insufficient.

14.1. Why Not Standard Servlet Error Pages?

Java EE (the servlet specification) uses a standard mechanism for handling servlet or JSP ex-
ceptions. Using the error-page element in web.xml, you can redirect to a custom error page
upon any exception or HTTP error code. The following is an example that redirects to the /

error.html page when an uncaught error is thrown from the application or to the /

notFound.html page when an HTTP 404 error is encountered.

<web-app>

... ...

<error-page>
<exception-type>
java.lang.Throwable

</exception-type>
<location>/error.html</location>

</error-page>

<error-page>
<error-code>
404

</error-code>
<location>/notFound.html</location>

</error-page>

</web-app>

However, a problem with this approach is that the JSF servlet wraps around the exception
from the business layer and throws a generic ServletException instead, before the server
captures the exceptions and redirects to the error page. So in the exception-type attribute,
you cannot accurately specify the actual exception in the business layer. Some people would

14.1. Why Not Standard Servlet Error Pages?

184

just capture a very generic java.lang.Throwable and redirect to a generic error page. That is
not satisfactory because you would probably want to display different error messages for dif-
ferent error causes and present remedy action choices to the user.

In the JSP world, a workaround exists: You can simply redirect to a JSP error page. From that
page, you can access the JSP built-in variable: exception. Then you can programmatically
drill down to the root cause of the exception and display the appropriate message. Unfortu-
nately, the exception variable does not work properly in JSF-rendered JSP pages or Facelets
XHTML pages.

Seam provides a much better solution and enables you to integrate the error page directly into
your existing JSF view. Better yet, Seam enables you to declare whether the exception should
end the current conversation, if it were thrown from inside a long-running conversation.

14.2. Set Up the Exception Filter

Seam uses a servlet filter to capture uncaught exceptions and then render the appropriate cus-
tom error page (or error code). Make sure that the following elements are present in your
app.war/WEB-INF/web.xml file (see Section 3.3., “Add Facelets and Seam UI Support”):

<web-app ...>

... ...

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>
org.jboss.seam.web.SeamFilter

</filter-class>
</filter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

</web-app>

With the Seam filter properly set up, you can now specify custom error pages for exceptions
via one of the following two ways: For application-defined exceptions, you can use annota-
tions, and for system or framework exceptions, you can use the pages.xml file. We discuss
both approaches in this chapter.

14.2. Set Up the Exception Filter

185

14.3. Annotate Exceptions

If your application throws its own exceptions, you can use three annotations to tell Seam
what to do when the annotated exception is uncaught.

The @Redirect annotation instructs Seam to display the error page specified in the viewId at-
tribute when this exception is thrown. The end attribute specifies whether this exception ends
the current long-running conversation; by default, the conversation does not end. The follow-
ing example was taken from the Hotel Booking sample application (see Chapter 9, Transac-
tions). This exception is thrown when the requested hotel is not available. It rolls back the
database transaction but does not end the conversation, to enable the user to use the browser
Back button to go back and select another hotel to book.

@ApplicationException(rollback=true)
@Redirect(viewId="/inventoryError.xhtml")
public class InventoryException

extends Exception {

public InventoryException () { }

}

The error page inventoryError.xhtml is just a regular JSF view page (Figure 14.2., “The er-
ror page showing unavailable room inventory”). Notice that it still has access to the conversa-
tion scoped components (i.e., #{hotel}) and the user can use the browser Back button to
book another hotel in the same conversation.

<ui:composition
template="template.xhtml">

<ui:define name="content">
<div class="section">
<h1>Insufficient Inventory</h1>
<p>The #{hotel.name} hotel
in #{hotel.city} does not have any room left.
Please use your browser's BACK button to
go back and book another hotel!</p>

</div>
</ui:define>

... ...

</ui:composition>

14.3. Annotate Exceptions

186

Figure 14.2. The error page showing unavailable room inventory

No Stack Trace

Notice that we do not display the exception stack trace in the cus-
tom error page here. You should never display the stack trace on a
product web site. If you are debugging the application and want to
see the stack trace, you can enable Seam debugging (Section 3.3.,
“Add Facelets and Seam UI Support”) and go to /debug.seam.

The @HttpError annotation causes Seam to send an HTTP error code back to the browser
when the annotated exception propagates out of the Seam runtime. The message attribute
takes the HTTP message to be sent to the browser, and the end attribute specifies whether the
current long-running conversation should end here.

@HttpError(errorCode=404, end=true)
public class SomeException extends Exception {
...

}

14.4. Use pages.xml for System Exceptions

187

14.4. Use pages.xml for System Exceptions

The annotation approach applies only to application-defined exceptions. Of course, that is in-
adequate because many runtime errors are system- or framework-level exceptions. For in-
stance, when a database connection occurs, the application throws a RuntimeException,
which is not defined by the application and, hence, cannot be annotated.

In a Seam application, you can configure how to deal with system or framework exceptions
via the pages.xml file we discussed earlier in the book (e.g., see Section 12.1., “Using Page
Parameters”). This file should be packaged in the app.war file's WEB-INF directory together
with web.xml, components.xml, etc. Similar to the annotations, we can redirect to a custom
JSF page, send HTTP error code, and end the current long-running conversation when such
exceptions are thrown.

The following pages.xml is from the Hotel Booking sample application. It configures custom
error pages for the RuntimeException and other system exceptions. When Seam redirects to
an error page, it sends along a JSF message that can be displayed via <h:messages/> UI ele-
ment on the error page.

<pages>

... Page actions and parameters ...

<exception
class="javax.persistence.EntityNotFoundException">

<http-error error-code="404"/>
</exception>

<exception
class="javax.persistence.PersistenceException">

<end-conversation/>
<redirect view-id="/generalError.xhtml">
<message>Database access failed</message>

</redirect>
</exception>

<exception class="java.lang.RuntimeException">
<redirect view-id="/generalError.xhtml">
<message>Unexpected failure</message>

</redirect>
</exception>

</pages>

14.4. Use pages.xml for System Exceptions

188

When a RuntimeException is thrown from the application, Seam redirects to the /

generalError.xhtml page with the JSF error message, but without ending the current long-
running conversation. The generalError.xhtml page is as follows; Figure 14.3., “The gen-
eralError.xhtml page for RuntimeException” shows it in a browser.

<ui:composition ...>

<ui:define name="content">
<div class="section">
<h1>General</h1>
<p>The following general error has occurred</p>

<p><h:messages/></p>

<p>Please come back and try again! Thanks.</p>
</div>
</ui:define>

<ui:define name="sidebar">
<h1>Custom Error page</h1>
... ...
</ui:define>

</ui:composition>

Figure 14.3. The generalError.xhtml page for RuntimeException

14.4. Use pages.xml for System Exceptions

189

Error Message with @Redirect

The @Redirect annotation can also take a message attribute to send
a JSF message to the error page it redirects to.

Use Error Page with Seam Security

It is easy to redirect to a custom login page when an un-
authenticated user tries to access a restricted web page protected by
the Seam security framework (see Chapter 20, Rule-Based Security
Framework). You just need to capture and redirect the
org.jboss.seam.security.NotLoggedInException.

14.5. Debug Information Page

The custom error pages are nice for production systems. However, when we develop the ap-
plication, we do not know when and what kinds of errors might come up. Seam and Facelets
provide generic mechanisms to capture any error during development and redirect to the de-
bug information page so that you can accurately pinpoint the error source.

14.5.1. The Facelets Debug Page

To enable the Facelets debug page, you need to set Facelets in development mode in the
app.war/WEB-INF/web.xml file, as follows:

<web-app ...>
... ...

<context-param>
<param-name>facelets.DEVELOPMENT</param-name>
<param-value>true</param-value>

</context-param>
</web-app>

14.5. Debug Information Page

190

If an error occurs when Facelets renders a page, Facelets displays a professional-looking error
page with accurate debugging information pinpointing the line number in the Facelets
XHTML file (see Figure 14.4., “The Facelets debug page”). The source file line number is
useful because the standard JSF stack trace gives you the useless line numbers on the servlet
compiled from the view page.

Figure 14.4. The Facelets debug page

The debug page also gives information about the current internal state of the JSF rendering
engine. For instance, you can view the complete JSF component tree associated with the cur-
rent page. You can actually launch the debug page as a pop-up from any Facelets page; you
just need to put the <ui:debug hotkey="d"/> element in your Facelets page. At runtime, the
user presses the Ctrl+Shift+d hot key combination to launch the debug pop-up. You can
choose any hot key besides the d shown here. Of course, if there is no error at this moment,
the debug page shows only the component tree and scoped variables, without the stack trace.

14.5.2. The Seam Debug Page

191

14.5.2. The Seam Debug Page

If an error occurs outside the JSF Facelets page-rendering operation (e.g., an error from the
UI event-handler method), the Facelets debug page will not catch it. We can use the Seam de-
bug page for this type of error.

To use the Seam debug page, you need the following instructions in Section 3.3., “Add Face-
lets and Seam UI Support” to bundle the jboss-seam-debug.jar and set up the Seam Excep-
tion Filter. Then in the app.war/WEB-INF/components.xml file, you must enable debugging
on the core:init component.

<components ...>

<core:init
jndi-pattern="booking/#{ejbName}/local"
debug="true"/>

... ...

</components>

Now any uncaught error will be redirected to the /debug.seam page, which displays the con-
text information as well as the stack trace (Figure 14.5., “An uncaught exception without a
custom error page is redirected to /debug.seam”).

14.5.2. The Seam Debug Page

192

Figure 14.5. An uncaught exception without a custom error page is redirected to
/debug.seam

Again, the Seam /debug.seam page works even if there is no error. You can load that page at
any time to look at the current Seam runtime context information.

Seam integrates exceptions in the business layer right into custom error pages in the presenta-
tion layer. This is yet another benefit of the unified component approach Seam uses. You
have no more excuse for ugly error pages!

14.5.2. The Seam Debug Page

193

This page intentionally left blank

IV
AJAX Support

Leveraging JavaServer Faces (JSF), Seam offers excellent support for cutting-edge web tech-
nologies. In this part, we discuss several different ways to make your web pages more dy-
namic, more responsive, and more user friendly using the AJAX (Asynchronous JavaScript
and XML) technology. You can easily add AJAX features in Seam applications and access
Seam back-end components using a specialized asynchronous JavaScript library.

This page intentionally left blank

15
Custom and AJAX UI Components

Asynchronous JavaScript and XML (AJAX) is a rich web UI approach pioneered by Google.
The term itself was coined by Jesse James Garret of Adaptive Path in 2005. The idea is to use
JavaScript to retrieve dynamic content from the server and then update related UI compon-
ents in the web page without refreshing the entire page. For instance, on a Google Maps
(http://maps.google.com/) web page, you can use the mouse to move and zoom the map
without page reload. The map display page captures the user's mouse events via JavaScript
and then makes AJAX calls back to the server to retrieve new maps to display based on the
mouse event. The user simply sees that the map gets updated as she moves the mouse.
Another well-known AJAX example is Google Suggest (http://www.google.com/
webhp?complete=1&hl=en). The search box in Google Suggest makes an AJAX call to the
server whenever you type something in the box. The server returns a list of suggested search
phrases based on the current content in the box, and the page displays the selectable list as a
pop-up window underneath the box. This instant search-and-update action happens in real
time as the user types, so it feels like the smart text field is "guessing" the user's intention all
the time.

AJAX allows a web page to become a rich application by itself. From the user perspective,
AJAX web pages are responsive and intuitive to use. In fact, most Web 2.0 sites today have
some AJAX elements. The AJAX UI is essentially a dynamic UI rendered by network-aware
JavaScript in the browser.

So what are the challenges to use AJAX with JSF and Seam web applications? After all, JSF
and Seam enable you to use arbitrary HTML tags and JavaScripts on the web page. You can
certainly use any JavaScript library to build whatever web UI you want. Well, the real chal-
lenge is how to integrate those JavaScript-rendered UI with back-end business components.
For instance, you might be able to use an off-the-shelf JavaScript library to render a rich-text
editor on the web page, but how do you bind the user input text in the editor box to a back-
end component (e.g., a string property on a Seam EJB3 entity bean)? The JavaScript-rendered
dynamic UI is not a JSF component, and it does not interpret the JSF EL (i.e., the
#{obj.property} notation) for backing bean references.

http://www.google.com/webhp?complete=1&hl=en
http://www.google.com/webhp?complete=1&hl=en
http://maps.google.com/

A naive approach is to write a special HTTP servlet to handle AJAX requests from the
JavaScripts. The servlet can then interact with objects in the FacesContext or HttpSession

to save the user input or generate AJAX response to the JavaScript. However, the problem
with this approach is that it includes a lot of manual coding on both the client-side JavaScript
and the server-side Java Servlet. The AJAX servlet developer must be very careful with the
states of the server-side objects. This is obviously not the ideal solution. Is there an easier,
simpler way to support AJAX in JSF and Seam applications?

Fortunately, as a cutting-edge web framework, JSF and Seam provide several elegant ways to
integrate AJAX support in your web applications. In this book, we primarily cover the fol-
lowing three approaches:

• The first approach is to reuse AJAX-enabled JSF UI components. The benefits of this ap-
proach are simplicity and power: You do not need to write a single line of JavaScript or
AJAX servlet code, yet the component itself knows how to render JavaScript and AJAX
visual effects; the JavaScript and back-end communication mechanism are encapsulated
in the component itself. AJAX services are implemented in Seam back-end components
bound to the UI component. We cover this approach later in this chapter.

• The second approach is to use a generic AJAX component library for JSF, such as the
Ajax4jsf library. The benefit is that it enables you to add AJAX functionality to any exist-
ing JSF component. Again, it does not require any JavaScript or AJAX servlet code, but it
cannot render visual effects beyond rerendering certain JSF components. Because all the
Ajax requests happen within the JSF component lifecycle, the back-end value binding just
works without any additional code. We cover this approach in Chapter 16, Enabling
AJAX for Existing Components.

• The last approach is to use the Seam Remoting JavaScript library to access back-end
Seam components directly when a page event happens. You can access the back-end
components via JSF EL in the JavaScript calls. This approach works with any third-party
JavaScript library and provides the most flexibility. We cover this approach in
Chapter 17, Direct JavaScript Integration.

Let's begin with the first approach in this chapter. We use the open-source ICEfaces JSF com-
ponent library to illustrate how to use AJAX components in Seam applications. The example
application for this chapter is the ajax project in the book's source code bundle. This is an
AJAX-ified version of the integration example we discussed earlier in the book.

198

What Is ICEfaces?

ICEfaces is an AJAX-enabled JSF component library from ICEsoft
Technologies. It became an open-source product in November
2006. ICEsoft provides commercial support for ICEfaces users. Vis-
it the ICEfaces web site (http://www.icefaces.org/) for more de-
tails on the product and support options. The ICEfaces component
showcase web site (http://component-showcase.icefaces.org/)
has a live demo for all AJAX components in the ICEfaces library;
we highly recommend it.

ICEfaces and Seam teams are committed to making the two frame-
works work together. However, at the time of writing, both teams
are still working on some integration issues. They are expected to
be fully resolved by Q2 2007. Between now and then, use caution
when using ICEfaces on production-ready Seam applications. Also
send feedback to the teams via the discussion forums on Seam and
ICEfaces web sites.

15.1. Partial Form Submission Example

The first AJAX example we showcase here is partial submission of a web form. It allows the
application to validate the input fields immediately after the user enters data. The user does
not need to click on the Submit button to see the validation errors (see the integration ex-
ample in Chapter 10, Validating Input Data, for non-AJAX validation). Figure 15.1., “The
partial submission text field in action”, shows the validation error for the email field. The er-
ror highlight is displayed immediately after the user moves the cursor out of the email input
field.

15.1. Partial Form Submission Example

199

http://www.icefaces.org/
http://component-showcase.icefaces.org/

Figure 15.1. The partial submission text field in action

A Common AJAX Use Case

Partial form submission is a basic AJAX use case. We cover this
use case again later in this book, in Section 16.1., “AJAX Validator
Example” and Section 17.1., “AJAX Name Validation Example
(Reloaded)”.

Implementing the partial form submission in ICEfaces is easy. You can just replace the stand-
ard JSF <h:inputText> component with the ICEfaces <ice:inputText> component. Set the
partialSubmit attribute on the <ice:inputText> component to true to enable form valida-
tion after the user moves the cursor out of this field.

15.1. Partial Form Submission Example

200

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"

xmlns:s="http://jboss.com/products/seam/taglib"
xmlns:ice="http://www.icesoft.com/icefaces/component">

<head>
<link href="style.css" rel="stylesheet"

type="text/css"/>
<link rel='stylesheet' type='text/css'

href='./xmlhttp/css/xp/xp.css'/>
</head>

<body>

... ...

<h:form>

... ...

<tr>
<td>Email:</td>
<td>
<s:decorate>
<ice:inputText value="#{person.email}"

partialSubmit="true"/>
</s:decorate>

</td>
</tr>

</h:form>

</body>
</html>

Make sure that you declare the ice namespace in the html element. ICEfaces provides the ad-
ditional CSS style sheet to style the forms.

The ICEfaces form also automatically detects the connection to the server. If the connection
is lost (e.g., the server becomes unavailable or the network is disconnected), it grays out all
the controls on the form and displays a message in the browser (Figure 15.2., “Auto-detect
server connection”).

15.1. Partial Form Submission Example

201

Figure 15.2. Auto-detect server connection

15.2. Auto-complete Text Input Example

The second AJAX example we showcase in the ajax example is an auto-complete text-input
field similar to the one in Google Suggest.

The text-input field for the person name (on the hello.xhtml page) can automatically suggest
a list of popular names based on your partial input. For instance, if you type in the string
"an", names "Michael Yuan" and "Norman Richards" are suggested because they both con-
tain "an". The JavaScript associated with the text box captures every keystroke in the box,
makes AJAX calls to retrieve autocompletion suggestions, and then displays those sugges-
tions. Figure 15.3., “The AJAX autocompletion text field in action”, shows how the autocom-
pletion text field guesses a list of popular names based on the user's partial input.

15.2. Auto-complete Text Input Example

202

Figure 15.3. The AJAX autocompletion text field in action

The autocompletion text field requires some complex interaction between the browser and the
server. But with the well-encapsulated ICEfaces component, you do not need to worry about
any of those; you simply drop the <ice:selectInputText> component into your web
page as if it is a regular text-input field. The following listing shows how the
<ice:selectInputText> component works. The nested <f:selectItems> component
provides a list of suggestions from #{manager.nameHints}. The valueChangeListener at-
tribute specifies that the #{manager.updateNameHints} method is invoked every time the
user types in the field. The #{manager.updateNameHints} method updates the
#{manager.nameHints} list for a new set of suggestions based on the current input in the
field. The rows attribute specifies the maximum number of suggestions.

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"

15.2. Auto-complete Text Input Example

203

xmlns:f="http://java.sun.com/jsf/core"
xmlns:s="http://jboss.com/products/seam/taglib"
xmlns:ice="http://www.icesoft.com/icefaces/component">

... ...

<tr>
<td>Your name:</td>
<td>
<ice:selectInputText rows="10"

value="#{person.name}"
valueChangeListener=

"#{manager.updateNameHints}">
<f:selectItems value="#{manager.nameHints}"/>

</ice:selectInputText>
</td>

</tr>

</html>

The next listing shows the two bean methods to support the <ice:selectInputText> com-
ponent. These are quite self-explanatory.

@Stateful
@Name("manager")
public class ManagerAction implements Manager {

String [] popularNames = new String [] {
"Gavin King", "Thomas Heute", "Michael Yuan",
... ...

};

// Suggestions for the input text field
ArrayList <SelectItem> nameHints;
public List getNameHints () {
return nameHints;

}

// Update the suggestions when the user changes
// value in the input text field
public void updateNameHints (ValueChangeEvent e) {
String prefix = (String) e.getNewValue ();
int maxMatches =
((SelectInputText) e.getComponent()).getRows();

nameHints = new ArrayList <SelectItem> ();

int totalNum = 0;

15.2. Auto-complete Text Input Example

204

if (prefix.length() > 0) {
for (int i=0; i<popularNames.length; i++) {
if (popularNames[i].toLowerCase()

.indexOf(prefix.toLowerCase())!=-1
&& totalNum < maxMatches) {

nameHints.add(
new SelectItem (i, popularNames[i]));

totalNum++;
}

}
} else {
for (int i=0; i<maxMatches &&

i<popularNames.length; i++) {
nameHints.add(

new SelectItem (i, popularNames[i]));
}

}
}

... ...
}

That's it! Within minutes, we have an AJAX-enabled example application, and we have not
written a single line of JavaScript or DHTML code.

15.3. Use ICEfaces with Seam

To use ICEfaces with Seam, you need to bundle ICEfaces JAR files in the application and
configure ICEfaces servlets and filters. The ICEfaces JARs should be included in the app.jar

archive, as follows. Because ICEfaces provides a replacement for the standard Facelets lib-
rary, you should remove the jsf-facelets.jar from the app.war/WEB-INF/lib directory.

mywebapp.ear
|+ app.war

|+ web pages
|+ WEB-INF

|+ web.xml
|+ faces-config.xml
|+ other config files
|+ lib

|+ jboss-seam-ui.jar
|+ jboss-seam-debug.jar

|+ app.jar

15.3. Use ICEfaces with Seam

205

|+ Component classes
|+ commons-fileupload.jar
|+ icefaces.jar
|+ icefaces-comps.jar
|+ icefaces-facelets.jar

|+ el-api.jar
|+ el-ri.jar
|+ jboss-seam.jar
|+ META-INF

|+ application.xml
|+ other config files

Why Not Bundle ICEfaces JARs in app.war?

ICEfaces is a web component framework, so why don't we bundle
its JAR files in the app.war/WEB-INF/lib directory? We don't
because we might need to access the ICEfaces components from
within Seam methods in app.jar. See the
#{manager.updateNameHints} method in the previous example.

Of course, if you are building a WAR deployment of a Seam POJO
application (see Chapter 24, Seam Without EJB3), you should
bundle all library JARs in the WEB-INF/lib directory of the WAR
archive.

Next, replace the SeamFaceletViewHandler in faces-config.xml with an ICEfaces custom
view handler.

<faces-config>

... ...

<!-- Facelets support -->
<application>
<view-handler>

com.icesoft.faces.facelets.D2DSeamFaceletViewHandler
</view-handler>

</application>

</faces-config>

15.3. Use ICEfaces with Seam

206

Then, in the web.xml file, remove the Seam view handler for Facelets. Add two ICEfaces ser-
vlets in the web.xml file to handle non-JSF AJAX requests.

<web-app ...>

... ...

<context-param>
<param-name>
com.icesoft.faces.actionURLSuffix

</param-name>
<param-value>.seam</param-value>

</context-param>

... ...

<servlet>
<servlet-name>Persistent Servlet</servlet-name>
<servlet-class>

com.icesoft.faces.webapp.xmlhttp.PersistentFacesServlet
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Persistent Servlet</servlet-name>
<url-pattern>*.seam</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>Persistent Servlet</servlet-name>
<url-pattern>/xmlhttp/*</url-pattern>

</servlet-mapping>

<servlet>
<servlet-name>Blocking Servlet</servlet-name>
<servlet-class>

com.icesoft.faces.webapp.xmlhttp.BlockingServlet
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Blocking Servlet</servlet-name>
<url-pattern>/block/*</url-pattern>

</servlet-mapping>

</web-app>

15.3. Use ICEfaces with Seam

207

Seam Page Parameters in ICEfaces

In Section 12.1., “Using Page Parameters”, we discussed Seam page
parameters for RESTful URLs. However, with ICEfaces, the page
parameters in the pages.xml file do not always work. For instance,
in the ajax example, when the user submits the person.xhtml page,
the page is submitted to the ICEfaces block servlet; the pid para-
meter defined for person.xhtml would be lost in the submission.
For this reason, we use the @RequestParameter approach discussed
in Section 12.2., “The Java-Centric Approach”, to manage RESTful
pages in ICEfaces applications.

15.4. Other JSF Component Libraries

By standardizing the web component architecture in Java EE, JSF has fostered a common
marketplace for component libraries. Besides ICEfaces, more than a dozen commercial and
open-source vendors are competing in this marketplace, providing a decent selection of
high-quality JSF components for web developers. Following is the partial list of some of the
well-known third-party JSF component packages. JSF community web sites, such as
jsfcentral.com and java.net, maintain updated lists of component vendors.

• Exadel (see http://www.exadel.com/) is a Java development tool vendor. Its main
product is an Eclipse-based IDE for JSF. The IDE bundles proprietary AJAX-based JSF
components, which you can drag and drop in the IDE UI designer to assemble JSF
applications.

• The Apache MyFaces Tomahawk project (http://myfaces.apache.org/tomahawk/) de-
velops rich web UI components such as advanced data tables, tabbed panels, calendars,
and color pickers, etc., as well as input data validators beyond the standard ones. Toma-
hawk components are all released under the Apache open-source license.

• Oracle Application Development Framework (ADF) Faces is one of the first commercial
JSF component suites. It provides more than 80 UI components, including alternatives to
all standard components. The ADF components have a great look-and-feel, and they can
all be skinned to different themes. ADF components are also high performance because

15.4. Other JSF Component Libraries

208

http://www.exadel.com/
http://myfaces.apache.org/tomahawk/

each component is rendered via partial page updates (AJAX style, without page reload).
Oracle has denoted the ADF Faces source code to the open-source Trinidad project (ht-
tp://incubator.apache.org/adffaces/) in the Apache foundation.

• The Woodstock project (see https://woodstock.dev.java.net/) is an open-source
project to develop AJAX-based enterprise-ready JSF web UI components. It already has
more than a dozen components available.

• The Sun blueprint catalog (see https://bpcatalog.dev.java.net/) provides AJAX-
enabled JSF components under the BSD license. Those components are primarily
provided for educational purposes.

• The ILOG JView JSF components (see http://www.ilog.com/products/jviews/)
render professional-looking business charts from data models. This is one of the leading
business data visualization products.

• Otrix (see http://www.otrix.com/) provides commercial AJAX JSF components for
trees, menus, data grids, etc.

Most JSF component libraries include both UI components as well as validator components.
As we discussed in Chapter 10, Validating Input Data, custom JSF validators are useful when
corresponding Seam validators are not available. The following example shows how to use
the credit card validator component in the Apache Tomahawk library:

Credit Card Number:
<h:inputText id="creditCard" required="true"

value="#{customer.creditCard}">
<t:validateCreditCard />

</h:inputText>
* <h:message for="creditCard"

styleClass="error"/>

Custom JSF component libraries help Seam applications stay at the cutting edge of web
presentation technologies. As developers, we should leverage them to build better
applications.

15.4. Other JSF Component Libraries

209

http://www.ilog.com/products/jviews/
http://www.otrix.com/
http://incubator.apache.org/adffaces/
http://incubator.apache.org/adffaces/
https://woodstock.dev.java.net/
https://bpcatalog.dev.java.net/

This page intentionally left blank

16
Enabling AJAX for Existing Components

In the previous chapter, we showed how easy it is to use repackaged AJAX JSF components.
However, developing those components is not a trivial exercise; it requires not only
JavaScript/AJAX skills, but also deep knowledge of how JSF works. In most cases, it is not
cost-effective to write your own AJAX JSF components unless you plan to reuse them ex-
tensively. Most developers are limited to the components third-party vendors already offer.

But what if the existing components do not do exactly what you want? What if the available
components are simply too expensive? Those situations occur often in real-world enterprise
applications. We need an AJAX solution that is not only easy to use, but also flexible enough
to address different customization requirements. In this chapter, we introduce Ajax4jsf, which
provides flexible and customizable AJAX support for JSF components. This is the second
AJAX approach discussed at the beginning of Chapter 15, Custom and AJAX UI Components.

Ajax4jsf is an open-source JSF component library developed by Exadel as the basis of
Exadel's own proprietary AJAX JSF components. The unique feature that sets Ajax4jsf apart
from other AJAX JSF frameworks is that Ajax4jsf adds AJAX functionalities to any existing
JSF component. In fact, it can turn any JSF operation already in your application into an
AJAX operation and then display the result via a partial page update (i.e., no page reload). If
you want to learn more about Ajax4jsf, visit its web site at
https://ajax4jsf.dev.java.net/.

Ajax4jsf works by submitting JSF requests via AJAX and then rerendering specific elements
on the page based on the updated state of the back-end components. To demonstrate how it
works, we use a revised Hello World example again. The sample code is available in the
ajax4jsf project. The project uses the Facelets + Seam + Ajax4jsf stack of technologies.

https://ajax4jsf.dev.java.net/

16.1. AJAX Validator Example

One of the simplest and most useful examples for showcasing the capability of Ajax4jsf is
AJAX validation on input fields. In Chapter 10, Validating Input Data, you saw how Hibern-
ate validator annotations and Seam JSF tags work together to validate form inputs according
to database constraints and display nice-looking error messages. However, the error messages
are displayed only after you submit the form. AJAX can greatly improve the validation
workflow: The JavaScript on the web page could send the user input in each field back to the
server for validation immediately after the field loses focus; if the validation fails, the error
message is immediately displayed without the page being submitted.

However, it is very difficult to add AJAX support into the Seam JSF validation process
through "regular" AJAX techniques. The Seam JSF validation process is almost completely
declarative, and no "hook" exists for the client-side JavaScript to trigger the server-side valid-
ation functions or access the validation messages. Ajax4jsf solves this problem by integrating
AJAX support right into existing JSF components and the standard JSF lifecycle.

The following is an example of an AJAX-validated input field (see Figure 16.1., “AJAX val-
idation of input field”). The <s:validate/> tag indicates that this input field should be valid-
ated by the @NotNull @Email Hibernate validator on Person.getEmail(), and the
<s:decorate> tag highlights the input field with images, background, and border when a val-
idation error occurs. See Chapter 10, Validating Input Data, for more on how those tags
work. What's important here is the <a4j:support> tag, which we discuss shortly.

Please enter your Email:

<a4j:outputPanel id="emailInput">
<s:decorate>
<h:inputText value="#{person.email}" size="15">
<s:validate/>
<a4j:support event="onblur"

reRender="emailInput"/>
</h:inputText>

</s:decorate>
</a4j:outputPanel>

16.1. AJAX Validator Example

212

Figure 16.1. AJAX validation of input field

Compared with the non-AJAX version of <h:inputText, the AJAX-enabled JSF component
encloses a <a4j:support element. That's it! The event attribute specifies the JavaScript
event upon which the AJAX call is invoked. In this case, whenever the input text field loses
focus (i.e., onblur), Ajax4jsf submits the text in the field to the component's back-end bind-
ing property (i.e., the #{person.email} property) via a JSF POST operation. The AJAX sub-
mission goes through the regular Seam JSF validation process. After the AJAX request is
processed, Ajax4jsf rerenders the component with the emailInput ID, which is the entire
decorated input component itself. If any error occurs, it shows up in the rerendering (see Fig-
ure 16.1., “AJAX validation of input field”). We need an <a4j:outputPanel> element here to
give the entire decorated input field a JSF ID.

Of course, using the reRender attribute, you can rerender any component on the page upon
completing the AJAX call. You can even rerender multiple components: Just assign multiple
component IDs separated by commas to the reRender attribute. The rerendered components
reflect the new state of the server-side components after the AJAX call.

The <a4j:outputPanel> Component

Why do we need the <a4j:outputPanel> element here? Can't we
just use <s:decorate id="emailInput">? Well, the problem is that
the <s:decorate> element is not rendered when there is no error

16.1. AJAX Validator Example

213

(i.e., when the form is first loaded). So no emailInput HTML ele-
ment exists for the Ajax4jsf JavaScript to rerender without a page
refresh.

The <a4j:outputPanel id="emailInput"> element guarantees that
the HTML element with the proper JSF ID will be in the page. This
is very useful in wrapping page elements (e.g., a piece of free
XHTML text in a Facelets page) that do not have proper JSF IDs.
You can enclose multiple JSF components and other XHTML text
in the <a4j:outputPanel> element, and they will all be rerendered
together after the AJAX call is completed. Indeed, we recommend
that you use the <a4j:outputPanel> element to wrap all your
Ajax4jsf reRender components.

In the previous example, the a4j:support component rerenders a JSF component after the
AJAX call returns. You can also tell the browser to execute arbitrary JavaScript upon the
completion of the AJAX response. Just add the JavaScript function call to the oncomplete at-
tribute of the a4j:support tag. Consider this example:

<h:inputText value="#{person.email}" size="15">
<s:validate/>
<a4j:support event="onblur"

reRender="emailInput"
oncomplete="alertUser()"/>

</h:inputText>

16.2. Programmatic AJAX

The validator example is nice and simple, but it does not really involve any programming be-
cause everything is declarative. For most innovative AJAX applications, however, we want to
execute our own application-specific code in the AJAX interaction.

For instance, in the following example, we use an AJAX call to check whether a new person's
name is already in the database as soon as the user types something in the input field (see Fig-
ure 16.2., “AJAX interaction with custom logic”). The database query here is the custom lo-
gic that is not easily handled by any existing validation framework. This feature is often im-
plemented to support an on-time username/email availability check on site registration forms.

16.2. Programmatic AJAX

214

Figure 16.2. AJAX interaction with custom logic

In Ajax4jsf, the custom code (i.e., to check the database in this example) is executed in JSF
backing component methods. Those methods are invoked in the standard JSF lifecycle when
an Ajax4jsf request is submitted. We use them to control what is displayed in the AJAX rer-
endered component after the call is completed. Now let's check out how it works.

The JSF component for the name input field follows:

Please enter your name:
... ...
<h:inputText value="#{manager.name}" size="15">
<a4j:support event="onblur"

reRender="nameInput"/>
</h:inputText>

Again, the a4j:support element indicates that whenever the input text field loses focus (i.e.,
onblur), Ajax4jsf submits the value of this component to its back-end binding property (i.e.,
the #{manager.name} property). When the AJAX request is processed, Ajax4jsf rerenders the
component with the nameInput ID. The following is the nameInput component. The
#{manager.nameErrorMsg} backing bean property controls the display of the nameInput

component. If the property is not an empty string, the component highlights the text field
with an error icon and message. So in the AJAX interaction, we need to add code to alter the
#{manager.nameErrorMsg} value at the back end before the AJAX call returns.

16.2. Programmatic AJAX

215

<a4j:outputPanel id="nameInput">
<f:subview

rendered="#{!empty(manager.nameErrorMsg)}">
<f:verbatim><div class="error"></f:verbatim>
<h:graphicImage styleClass="errorImg"

value="error.png"/>
</f:subview>

<h:inputText value="#{manager.name}" size="15">
<a4j:support event="onblur"

reRender="nameInput"/>
</h:inputText>

<f:subview
rendered="#{!empty(manager.nameErrorMsg)}">

<h:outputText styleClass="errorMsg"
value="#{manager.nameErrorMsg}"/>

<f:verbatim></div></f:verbatim>
</f:subview>

</a4j:outputPanel>

At the onblur event, the AJAX request causes JSF to invoke the setName() method on the
manager component to bind the component value. The setName() method contains the cus-
tom logic for this AJAX interaction: It checks whether the name is already available in the
database. If the name already exists, the setName() method sets the nameErrorMsg property,
which is then displayed when the nameErrorMsg component is rerendered when the AJAX
call is returned asynchronously.

@Stateful
@Name("manager")
public class ManagerAction implements Manager {

... ...

String name;
public void setName (String name) {

this.name = name;

List <Person> existing = em.createQuery(
"select p from Person p where name=:name")
.setParameter("name", name)
.getResultList();

if (existing.size() != 0) {

16.2. Programmatic AJAX

216

nameErrorMsg = "Warning: \"" + name +
"\" is already in the system.";

} else {
nameErrorMsg = "";

}
return;

}
public String getName () {
return name;

}

String nameErrorMsg;
public void setNameErrorMsg (String nameErrorMsg) {
this.nameErrorMsg = nameErrorMsg;

}
public String getNameErrorMsg () {
return nameErrorMsg;

}

}

16.3. AJAX Buttons

Ajax4jsf can turn any JSF commandButon or commandLink operation into an AJAX operation.
The AJAX buttons or links submit the form via a JavaScript call and rerender specified com-
ponents on the page based on new back-end state after the server-side JSF event-handler
method for the button is invoked.

To demonstrate this feature, let's AJAX-enable the delete buttons in the data table for fans.
When you click on any of those buttons, the current fan is removed from the database and the
dataTable component is rerendered to reflect the change. But the page update is done in
AJAX fashion: No page reload occurs. That is especially useful when you have a very long
dataTable. A whole page refresh would have lost the current scrollbar position, and you
would have had to scroll from the top again (see Figure 16.3., “AJAX deletion of a table
row”).

16.3. AJAX Buttons

217

Figure 16.3. AJAX deletion of a table row

To use an AJAX submission button, you just need to replace the h:commandButton (or
h:commandLink) with a4j:commandButton (or a4j:commandLink). As is the case with the
a4j:support component, the a4j components take a reRender property to specify which
components are to be updated when the AJAX call returns. So here is our new AJAX
dataTable:

<h:form>
<h:dataTable id="fans"

value="#{fans}" var="fan">
<h:column>
<f:facet name="header">

16.3. AJAX Buttons

218

<h:outputText value="Name" />
</f:facet>
<h:outputText value="#{fan.name}"/>

</h:column>

... ...

<h:column>
<f:facet name="header">
<h:outputText value="Action" />

</f:facet>
<a4j:commandButton type="submit"

value="Delete"
reRender="fans"
action="#{manager.delete}"/>

</h:column>
</h:dataTable>
</h:form>

That's it; you have no more back-end code to write. When a user clicks on the Delete button,
the back-end component sees only a standard JSF form submission. It goes through the stand-
ard JSF lifecycle. The Ajax4jsf framework automatically takes care of the AJAX plumbing.

Via the onclick and oncomplete attributes, you can specify arbitrary JavaScript functions to
be executed before the AJAX call is made and after the AJAX call is completed. In the fol-
lowing example, we change the cursor shape to a "waiting" symbol when we start the AJAX
call and restore it when the AJAX response is received and the components are updated.

<a4j:commandButton type="submit"
value="Delete"
reRender="fans"
onclick="showWaitCursor()"
oncomplete="restoreCursor()"
action="#{manager.delete}"/>

16.4. AJAX Containers

In standard JSF, a button click submits the entire form to the server and then triggers the
event-handler method. The full-form submission is often not necessary in AJAX requests. We
sometimes need to submit only one or two related input components to the back end for the

16.4. AJAX Containers

219

AJAX call to function correctly. Submitting the entire form would be a waste of bandwidth in
this case. Ajax4jsf provides a special tag a4j:region to limit the part of the form you want to
submit. Only components included in the <a4j:region>...</a4j:region> element are sub-
mitted when a user clicks on an AJAX button inside the region. So the a4j:region compon-
ent is also known as an AJAX container because it contains the AJAX activity in parts of the
page. Other AJAX container tags include a4j:form and a4j:page. Refer to the Ajax4jsf doc-
umentation for their use.

The AJAX container tags take an optional ajaxListener property, which points to a back-
end method that is to be invoked whenever an AJAX event happens on any component in the
region. So we can trigger back-end event-handler methods directly from a JSF input compon-
ent, without manually clicking on a button.

16.5. Other Goodies

Besides AJAX input components and AJAX buttons/links, the Ajax4jsf library provides some
other important tags/components to facilitate AJAX development.

The a4j:poll component periodically polls the server and rerenders specified components
based on the current state of the server. For instance, you might want a progress bar display
for a long-running server process: The page would periodically poll the server to partially up-
date a progress bar based on the server process's current progress.

The a4j:mediaOutput component enables us to use a server-side method to paint an image
and then display it in the browser. The server-side paint() method can use any of the Java
SE 2D and Swing drawing APIs. That enables us to render dynamic custom graphics in the
browser. This is great for simple visual effects associated with AJAX calls (e.g., the progress
bar mentioned earlier would be a good fit).

The a4j:include component can include an external JSF page in the current page. The in-
cluded page can update itself and navigate from one page to another without affecting its host
page. Think of it as an embedded HTML frame without the hassles associated with frames.
That enables us to write in-page AJAX wizards.

The a4j:status and a4j:log components display AJAX interactions between the client and
server in real time. These are very useful for debugging purposes.

The Ajax4jsf library has more cool components. Refer to its documentation for more details.

16.5. Other Goodies

220

16.6. Configuring Ajax4jsf

In this section, we discuss how to configure Ajax4jsf to work with Seam and Facelets (see
Section 3.1., “An Introduction to Facelets”). Note that some problems have been observed
when Ajax4jsf is used with Seam + JSP (without Facelets), so we highly recommend Facelets
here.

To configure Ajax4jsf, you must add an Ajax4jsf filter in your web.xml file (in
app.war/WEB-INF/).

<web-app>

<!-- Ajax4jsf setup -->
<filter>
<display-name>Ajax4jsf Filter</display-name>
<filter-name>ajax4jsf</filter-name>
<filter-class>
org.ajax4jsf.Filter

</filter-class>
</filter>
<filter-mapping>
<filter-name>ajax4jsf</filter-name>
<servlet-name>Faces Servlet</servlet-name>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>
<dispatcher>INCLUDE</dispatcher>

</filter-mapping>
<context-param>
<param-name>
org.ajax4jsf.VIEW_HANDLERS

</param-name>
<param-value>

org.jboss.seam.ui.facelet.SeamFaceletViewHandler
</param-value>

</context-param>

</web-app>

Notice that the Ajax4jsf filter loads the Facelets view handler, to avoid a potential conflict
between Facelets and Ajax4jsf. You no longer need the Facelets view handler definition in
the faces-config.xml file (in app.war/WEB-INF/). Let's comment it out here:

16.6. Configuring Ajax4jsf

221

<faces-config>

<lifecycle>
<phase-listener>
org.jboss.seam.jsf.SeamPhaseListener

</phase-listener>
</lifecycle>

<!-- Facelets support.
DO NOT use it with ajax4jsf,
which loads SeamFaceletViewHandler
in web.xml

<application>
<view-handler>

org.jboss.seam.ui.facelet.SeamFaceletViewHandler
</view-handler>

</application>
-->

</faces-config>

Next, in each web page that uses Ajax4jsf components, you must declare the a4j XML
namespace.

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:a4j="https://ajax4jsf.dev.java.net/ajax">

... ...
</html>

Finally, you must package the Ajax4jsf library JAR files in the application. The
ajax4jsf.jar is the main Ajax4jsf component library, and the oscache-xxx.jar is a de-
pendent library that Ajax4jsf requires. We put both files in the WAR file (i.e., the app.war).
This is the packaging structure for the JAR files in ajax4jsf.ear:

ajax4jsf.ear
|+ META-INF
|+ jboss-seam.jar
|+ el-ri.jar

16.6. Configuring Ajax4jsf

222

|+ el-api.jar
|+ app.war
| |+ WEB-INF
| | |+ lib
| | | |+ ajax4jsf.jar
| | | |+ oscache-2.3.2.jar
| | | |+ jboss-seam-ui.jar
| | | |+ jboss-seam-debug.jar
| | | |+ jsf-facelets.jar
|+ app.jar

16.7. Pros and Cons

Ajax4jsf turns regular JSF components into AJAX-enabled components. It works with exist-
ing JSF applications and requires little change to existing code. Ajax4jsf is easy to learn, easy
to understand, and much more versatile than the prepackaged component approach discussed
in Chapter 15, Custom and AJAX UI Components.

However, Ajax4jsf also has some limitations. Because the AJAX update is based on rerender-
ing JSF components, it is difficult to add fancy JavaScript effects; you must make extensive
changes to the components themselves, which, as we discussed, is not an easy task. Sure, you
can use the a4j:mediaOutput component to render custom graphics, but it is slow to do an-
imations and other visual effects from the server side. Also, because Ajax4jsf uses the same
lifecycle as regular JSF, it has to submit all JSF state information in each AJAX call. That
results in excessive bandwidth usage and slow response when you use client-side state saving
in JSF.

To fully resolve those issues, we must look at solutions that provide tighter integration to
JavaScript. That is the topic for the next chapter.

16.7. Pros and Cons

223

This page intentionally left blank

17
Direct JavaScript Integration

So far, we have discussed two approaches for supporting AJAX in Seam applications. Both
require zero JavaScript or XML communication code—but they also have some drawbacks.

The componentized AJAX UI approach (see Chapter 15, Custom and AJAX UI Components)
is easy, but you are limited to what the vendor offers. You face quite a steep learning curve if
you want to implement an AJAX-enabled JSF component to render your own custom visual
effects or back-end logic. The Ajax4jsf approach (see Chapter 16, Enabling AJAX for Exist-
ing Components) works well in the JSF context, but it is difficult to implement components
with visual effects (e.g., drag-and-drops, fades, pop-ups) beyond the standard HTML widgets
already supported in existing JSF components. In addition, it is bandwidth intensive to wrap
JSF requests in AJAX calls, especially if you use client-side state saving.

With so many high-quality free JavaScript libraries available, it seems silly not to take ad-
vantage of them just because you are limited by JSF component vendors, right? Well, Seam
provides a JavaScript remoting framework that enables you to access any Seam back-end
component from the JavaScript UI. Thus, you can easily bind user input captured in a
JavaScript UI widget to the back end, and use the back-end component to generate AJAX
data to alter the web page display dynamically.

In this chapter, we demonstrate how to use the Seam remoting JavaScript library to tie Seam
server-side components with HTML/JavaScript UI elements. In the last section, we give
concrete examples on how to integrate the popular Dojo JavaScript toolkit into Seam
applications.

17.1. AJAX Name Validation Example (Reloaded)

In Chapter 16, Enabling AJAX for Existing Components, we showed how to validate a user
input name via AJAX in the Seam Hello World example. The user input name is sent to the
server as the user fills out the web form, and the name is checked against the database. If the

name already exists in the database, a warning message is displayed next to the text input
field—all without a page submission. In the first example in this chapter, we reimplement this
feature using the Seam remoting approach. The example code in this section is in the remote

project in the source code bundle. When the application is running, you can access it via the
http://localhost:8080/remote/ URL.

To use Seam remoting, make sure that the jboss-seam-remoting.jar file is included in your
app.war/WEB-INF/lib directory like this:

mywebapp.ear
|+ app.war

|+ web pages
|+ WEB-INF

|+ web.xml
|+ faces-config.xml
|+ other config files
|+ lib

|+ jsf-facelets.jar
|+ jboss-seam-ui.jar
|+ jboss-seam-debug.jar
|+ jboss-seam-remoting.jar

... ...

17.1.1. Server-Side Component

First, we need a method in the back-end Seam component to check the input name against the
database. We add a checkName() in the ManagerAction class:

@Stateful
@Scope(SESSION)
@Name("manager")
public class ManagerAction implements Manager {

... ...

public boolean checkName (String name) {
List <Person> existing = em.createQuery(

"select p from Person p where name=:name")
.setParameter("name", name)
.getResultList();

if (existing.size() != 0) {
return false;

} else {

17.1.1. Server-Side Component

226

return true;
}

}
}

Now comes the important part: In the session bean interface, you must tag the method with
the @WebRemote annotation for it to be accessible through the Seam remoting JavaScript.

@Local
public interface Manager {

... ...

@WebRemote
public boolean checkName (String name);

}

The Seam resource servlet handles all AJAX calls from the client side JavaScript to
the @WebRemote annotated methods. The AJAX calls are routed via the
seam/resource/remoting/* URL. AJAX-related resource files (e.g., dynamically generated
JavaScript—see later) are also served via this special URL. In Section 3.3., “Add Facelets
and Seam UI Support”, we already explained how to configure the resource servlet. You just
need to add the following lines in your web.xml file.

<servlet>
<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>
org.jboss.seam.servlet.ResourceServlet

</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</servlet-name>
<url-pattern>/seam/resource/*</url-pattern>

</servlet-mapping>

17.1.2. Triggering a JavaScript Event on the Web Page

227

17.1.2. Triggering a JavaScript Event on the Web Page

With the back-end method ready, let's check out how the AJAX call is triggered on the web
page.

<h:inputText id="name"
value="#{person.name}"
onfocus="hideCheckNameError()"
onblur="checkName()"
size="15"/>

You have already said hello! :)

<h:message for="name" />

The onblur property on h:inputText indicates the JavaScript method to invoke when the
text field loses focus. So when the user finishes the input and clicks outside the field, the
checkName() JavaScript method is invoked. The JavaScript method takes the input text in the
field and then invokes the ManagerAction.checkName() method on the server side via an
AJAX call. The return value of the AJAX call determines whether the error message in the
 element should be shown. Let's look at how the JavaScript checkName() method
works next.

Hiding and Showing the span Element

The style="display:none" property indicates that the span ele-
ment for the error message is not displayed initially. JavaScript can
display it if the ManagerAction.checkName() method returns
false. The JavaScript hideCheckNameError() method makes sure
that the error message is hidden when the text field is activated
again. The following are the hideCheckNameError() and show-

CheckNameError() methods for manipulating the span element:

function showCheckNameError () {
var e = document.getElementById("nameError");
if (!(e === null)) {
e.style.visibility = "inherit";
e.style.display = "";

}

17.1.2. Triggering a JavaScript Event on the Web Page

228

}

function hideCheckNameError () {
var e = document.getElementById("nameError");
if (!(e === null)) {
e.style.visibility = "hidden";
e.style.display = "none";

}
}

17.1.3. Making an AJAX Call

The heart of the AJAX operation involves making the AJAX call and then getting the result
asynchronously. In the page where you need to make AJAX calls, load the seam/re-

source/remoting/resource/remote.js JavaScript. The Seam resource servlet assembles
and then serves this script on the fly. For each Seam component that contains @WebRemote an-
notated methods, Seam generates a custom JavaScript for accessing this component as well.
In our example, we load the interface.js?manager JavaScript for accessing the Seam back-
end component named manager.

<script type="text/javascript"
src="seam/resource/remoting/resource/remote.js">

</script>

<script type="text/javascript"
src="seam/resource/remoting/interface.js?manager">

</script>

Now you can get a JavaScript version of the manager component via a
Seam.Component.getInstance("manager") call. The call to the JavaScript
manager.checkName() method is then translated into an AJAX call to the server-side
manager.checkName() method. We get the text from the text field and then use the
manager.checkName() method to check whether it already exists in the server-side database.

17.1.3. Making an AJAX Call

229

<script type="text/javascript">
// Seam.Remoting.setDebug(true);

// don't display the loading indicator
Seam.Remoting.displayLoadingMessage = function() {};
Seam.Remoting.hideLoadingMessage = function() {};

// Get the "manager" Seam component
var manager =

Seam.Component.getInstance("manager");

// Make the async call with a callback handler
function checkName () {
var e = document.getElementById("form:name");
var inputName = e.value;
manager.checkName(inputName, checkNameCallback);

}

... ...

</script>

Creating a JavaScript Object for an Entity Bean or JavaBean
POJO Component

The Seam.Component.getInstance() method obtains a singleton
stub object for a Seam session bean. You can make AJAX method
calls against the session bean. But for Seam entity bean or simple
JavaBean components, you need to create corresponding JavaScript
objects using the Seam.Component.newInstance() method. All the
getter and setter methods on the entity bean (JavaBean) are avail-
able in the JavaScript object. You can edit the entity objects and
then pass them as call arguments in AJAX calls against session bean
components.

The JavaScript and server-side manager.checkName() methods take the same call arguments.
As we mentioned in the previous sidebar, you can even construct entity bean instances in
JavaScript and then pass them to a remote AJAX method as a call argument. However, there's
one more twist: The JavaScript method takes an additional asynchronous callback handler as
a call argument: The manager.checkName() call is invoked asynchronously so that the

17.1.3. Making an AJAX Call

230

JavaScript does not block the UI waiting for the response, which could potentially take a long
time because the call goes through the network. So instead of waiting for the return value
from the remote call, we pass in a JavaScript callback handler, checkNameCallback, and let
the JavaScript method call manager.checkName() return immediately. The checkNameCall-

back() method is invoked with the server-side method's return value when the server method
finishes. The callback handler then decides whether to display the error message based on the
return value.

<script type="text/javascript">

... ...

function checkNameCallback (result) {
if (result) {
hideCheckNameError ();

} else {
showCheckNameError ();

}
}

... ...

</script>

In an earlier sidebar, we discussed how the hideCheckNameError() and showCheckNameEr-

ror() methods hide and display the span element for the error message.

So that's it for the simple example. Of course, the server-side name validation is hardly excit-
ing—we already did it with no JavaScript in Chapter 16, Enabling AJAX for Existing Com-
ponents. But it does serve as an example for more complex use cases. In the next section, we
look at a more complex example.

The Comment Field

As you probably noticed in the remote/hello.seam form, the user
comment field is not a regular HTML text area. You click on the
text to edit it and then click on the Save button to persist the new
comment. That is done with the Dojo inline editing widget. We dis-
cuss it in Section 17.3.2., “Input Widgets”.

17.2. The AJAX Progress Bar

231

17.2. The AJAX Progress Bar

The Seam AJAX progress bar example is a more sophisticated AJAX example for Seam re-
moting. We use it to demonstrate how to use AJAX widgets that are completely unrelated to
JSF components and how to poll for AJAX content. The source code is in the ProgressBar

directory in the source code bundle. After you build it and deploy the progressbar.ear into
your JBoss AS, you can access the application at the http://localhost:8080/progressbar/

URL. On the progressbar.seam page, click on the Go button to start the progress bar (Fig-
ure 17.1., “The AJAX Progress Bar in Seam”). When the progress bar reaches 100 percent,
the server redirects to the complete.seam page.

Figure 17.1. The AJAX Progress Bar in Seam

17.2.1. Seam Components

When you click on the Go button, the progressBarAction.doSomething Seam method is in-
voked as the event handler.

<h:commandButton value="Go!"
action="#{progressBarAction.doSomething}"/>

17.2.1. Seam Components

232

The progressBarAction.doSomething method performs whatever the task that takes a long
time to complete and, in the process, updates the progress component stored in the session
context.

@Stateless
@Name("progressBarAction")
@Interceptors(SeamInterceptor.class)
public class ProgressBarAction implements ProgressBar {

@In(create = true)
Progress progress;

public String doSomething() {
Random r = new Random(System.currentTimeMillis());
try {
for (int i = 0; i < 100;)
{
Thread.sleep(r.nextInt(200));
progress.setPercentComplete(i);
i++;

}
}
catch (InterruptedException ex) {
}

return "complete";
}

public Progress getProgress() {
return progress;

}
}

The progress component is just a JavaBean with properties related to the progress bar.

@Name("progress")
@Scope(ScopeType.SESSION)
public class Progress {

private int percentComplete;

public int getPercentComplete() {
return percentComplete;

}

public void setPercentComplete(int percentComplete) {

17.2.1. Seam Components

233

this.percentComplete = percentComplete;
}

}

Now we provide a mechanism for the client JavaScript to access the progress component via
AJAX calls by tagging the getProgress() method with the @WebRemote annotation.

@Local
public interface ProgressBar {
String doSomething();
@WebRemote Progress getProgress();

}

17.2.2. Accessing Seam Components from JavaScript

Now load the necessary JavaScript for accessing the progressBarAction component.

<script type="text/javascript"
src="seam/resource/remoting/resource/remote.js">

</script>

<script type="text/javascript"
src="seam/resource/remoting/interface.js?progressBarAction">

</script>

<script type="text/javascript">
//<![CDATA[
// Seam.Remoting.setDebug(true);

// don't display the loading indicator
Seam.Remoting.displayLoadingMessage = function() {};
Seam.Remoting.hideLoadingMessage = function() {};

// Get the progressBarAction Seam component
var progressBarAction =
Seam.Component.getInstance("progressBarAction");

... used the progressBarAction object ...

//]]>
</script>

17.2.2. Accessing Seam Components from JavaScript

234

You can now invoke the progressBarAction.getProgress method with a callback. The cur-
rent progress object is passed to the callback when the server-side AJAX method exists. The
progressCallback() function uses the progressBar object defined in the slider.js file to
actually draw the updated progress bar. Finally, because we need to obtain the progress peri-
odically to update the progress bar, we wrap the asynchronous progressBarAc-

tion.getProgress() call in a setTimeout() JavaScript function, which calls the wrapped
function every time the timeout elapses (i.e., 250 milliseconds, in our case).

<script type="text/javascript">
//<![CDATA[

... ...

// Make the async call with a callback handler
function getProgress() {
progressBarAction.getProgress(progressCallback);

}

// The callback function for receiving the AJAX response
// and then update the progress bar
function progressCallback(progress) {
progressBar.setPosition(progress.percentComplete);
if (progress.percentComplete < 100)
queryProgress();

}

// Wrap the async call in timeout so that it is
// called again and again to update the progress bar
function queryProgress() {
setTimeout("getProgress()", 250);

}

//]]>
</script>

This JSF snippet ties together the commandButton component, the server-side progress-

BarAction.doSomething method, and the queryProgress() JavaScript method for AJAX
interactions:

<h:form onsubmit="queryProgress();return true;">

<h:commandButton value="Go!"
action="#{progressBarAction.doSomething}"/>

</h:form>

17.2.2. Accessing Seam Components from JavaScript

235

When the user clicks on the Go button, the browsers sends in a request to start the progress-

BarAction.doSomething method on the back end and, at the same time, starts the queryPro-

gress() JavaScript function. While the browser is waiting for the progressBarAc-

tion.doSomething method to complete, the queryProgress() method keeps updating the
progress bar via AJAX calls to the progressBarAction.getProgress() method.

17.3. Integrating the Dojo Toolkit

Now you have seen how to use Seam remoting to develop vanilla AJAX applications. But in
reality, many fancy AJAX web applications use third-party JavaScript libraries to add rich UI
widgets and effects. In this section, we examine how to integrate third-party JavaScript librar-
ies into Seam applications. We use the popular Dojo toolkit as an example here. Again, the
sample application is in the remote source code project.

What Is Dojo?

Dojo is an open-source JavaScript library for rich web applications.
AJAX developers use it widely. You can learn more about Dojo
from its web site, http://dojotoolkit.org/.

Aside from communication and data-modeling utilities, third-party JavaScript libraries typic-
ally provide two types of UI widgets: visual effects and enhanced user input controls.

17.3.1. Visual Effects

The first type of widgets are for rich UI effects. They include the visual effects functions such
as animation, fade in/out, drag-and-drops, etc., as well as navigation/layout widgets, such as
tabs, accordion, trees, etc. The Dojo JavaScript functions retrieve XHTML elements by their
IDs or types and then operate on those elements to create the desired visual effects. For those
functions and widgets, Seam applications are no different than other HTML web applications.
You just need to enclose content segment in Dojo <div> tags with the appropriate IDs. That
is especially easy with Facelets (see Section 3.1., “An Introduction to Facelets”) because
Facelets pages are simply XHTML pages with JSF components. To make our point, let's look

17.3. Integrating the Dojo Toolkit

236

http://dojotoolkit.org/

at two simple Dojo examples. The following listing shows how to create a three-tab panel in
Dojo. The contents in the first two tabs are loaded when the page is loaded, and the third tab
content is loaded from another page when you click on it.

<div id="mainTabContainer"
dojoType="TabContainer"
selectedTab="tab1">

<div id="tab1" dojoType="ContentPane"
label="Tab 1">

<h1>First Tab</h1>
... HTML and JSF component tags

for tab content ...
</div>

<div id="tab2" dojoType="ContentPane"
label="Tab 2">

... More HTML and JSF component tags
for tab content ...

</div>

<a dojoType="LinkPane" href="somepage.seam"
refreshOnShow="true">Tab 3

... ...
</div>

Another example is to use Dojo JavaScript functions to fade in and fade out the part of the
web page enclosed in the <div> tags.

<a href="javascript:void(
dojo.lfx.html.fadeOut('fade', 300).play())">

Fade out |
<a href="javascript:void(

dojo.lfx.html.fadeIn('fade', 300).play())">
Fade in |
<a href="javascript:void(

dojo.html.setOpacity(
document.getElementById('fade'), 0.5))">

Set opacity = 50%

<div id="fade">
... XHTML and JSF components to be faded in/out

by the above links ...
</div>

17.3.1. Visual Effects

237

As you can see, these examples use nothing specific to Seam. You can enclose any number of
Seam JSF components between those <div> tags, and the Dojo JavaScript will work just fine.

It gets more complicated when the Dojo JavaScript function needs to directly operate on a
JSF component. For most cases, you can just enclose the JSF component in a pair of Dojo
<div> tags. If that is not possible, you must manually figure out the ID of the rendered JSF
component. That is typically pretty easy; you just need to look at the HTML source of the
generated page. But those generated IDs do change from one JSF implementation to the next.

17.3.2. Input Widgets

The second type of Dojo widgets are input widgets that replace the standard HTML input
fields. For instance, Dojo provides a rich-text editor, an inline text editor, a GUI date/time
picker, and many other useful input widgets. Because those widgets are not JSF components,
we cannot directly bind their values to a backing bean property. Seam remoting can really
help here. Figure 17.2., “Dojo Rich-Text Editor”, shows a Dojo rich-text editor in the
hello.xhtml form. It generates HTML-styled comments.

Figure 17.2. Dojo Rich-Text Editor

17.3.2. Input Widgets

238

The following is the relevant code for the web page. Most of it is just standard Dojo. When
the form submits, the comment in the rich-text editor is not submitted to JSF because the
Dojo rich-text widget does not have any JSF back-end value binding. So we invoke the
JavaScript function submitComment() to submit the comment separately when the user clicks
on the Submit button.

<script src="dojo-0.3.1-editor/dojo.js"
type="text/javascript">

</script>
<script type="text/javascript">

dojo.require("dojo.widget.Editor");
</script>

... ...

Comment:

<div id="comment" dojoType="Editor"></div>

<h:commandButton type="submit"
value="Say Hello"
onclick="submitComment()"
action="#{manager.sayHello}"/>

The is the code for the submitComment() JavaScript function. Notice that I do not pass in a
callback function to the Seam remoting call here because I do not need to process the return
value.

<script language="javascript">

... ...

// Get the "manager" Seam component
var manager =

Seam.Component.getInstance("manager");

... ...

function submitComment () {
var ed = dojo.widget.byId("comment");
manager.setComment (ed.getEditorContent());

// This works too
// var eds = dojo.widget.byType("Editor");
// manager.setComment (
// eds[0].getEditorContent());

}
</script>

17.3.2. Input Widgets

239

Of course, as we mentioned earlier, the #{manager.setComment} method must be a Seam
@WebRemote method. It simply sets the submitted value to the person component.

@Local
public interface Manager {

... ...

@WebRemote
public void setComment (String comment);

}

... ...
@Name("manager")
public class ManagerAction implements Manager {

... ...

public void setComment (String comment) {
person.setComment (comment);

}
}

An Alternative

An alternative way to use the Dojo rich-text component is to render
it into an HTML textarea instead of a div. The rich text in the
textarea is submitted as an HTTP request parameter when the user
submits the form. Although you still cannot directly bind a Dojo
textarea with a Seam component, you can at least retrieve the
HTTP request parameter at the back end via the
@RequestParameter injection (see Chapter 12, Bookmarkable Web
Pages). This is probably easier than the Seam remoting approach, in
most cases.

The rich-text editor is simple. Now let's take a look at a more complex example: the Dojo in-
line editor on the hello.xhtml form. The idea is that comment appears to be normal text until
you click on it; then it becomes an editable text field, where you can change the comment and
save it to the back end.

17.3.2. Input Widgets

240

Figure 17.3. Dojo Inline Editor

The JavaScript code is a little more involved here. We give the inline editor widget an onSave

handler method submitComment(), which saves its current content to the back end via Seam
remoting. As you can see, even with this widget, a single line of Seam remoting code handles
the back-end communication.

17.3.2. Input Widgets

241

<script src="dojo-0.3.1-editor/dojo.js"
type="text/javascript">

</script>
<script type="text/javascript">

dojo.require("dojo.widget.InlineEditBox");
dojo.require("dojo.event.*");

</script>

<script language="javascript">
... ...

// Get the "manager" Seam component
var manager =

Seam.Component.getInstance("manager");

function submitComment (newValue, oldValue) {
manager.setComment (newValue);

}

function init () {
var commentEditor =

dojo.widget.byId("comment");
commentEditor.onSave = submitComment;

}

dojo.addOnLoad(init);
</script>

... ...

<tr>
<td>Comment</td>
<td>
<div id="comment" dojoType="inlineEditBox">
Hello Seam
</div>

</td>
</tr>

Although the examples we gave here are Dojo examples, Seam remoting can work with any
third-party JavaScript library. The possibilities are limitless!

17.3.2. Input Widgets

242

V
Business Processes and Rules

Besides data-driven web applications, Seam supports business process-driven web applica-
tions via the jBPM business process engine and also supports business rules via the JBoss
Rules engine (formerly known as Drools). With several simple annotations, you can attach
Seam stateful components to business processes that require actions from multiple users and
can survive multiple server reboots. Each user automatically is presented with the tasks the
process requires. Business processes and rules are integrated into the very heart of the Seam
framework: Seam leverages jBPM workflow to manage the JSF pageflow in a stateful man-
ner, and the Seam security framework makes heavy use of the JBoss Rules engine to manage
access security rules. We cover all these important use cases in this part of the book.

This page intentionally left blank

18
Managing Business Processes

In previous chapters, we showed that Seam is a great framework for developing stateful web
applications. However, all our stateful application examples so far have dealt with only ses-
sion states that are associated with a single web user, and those sessions have lasted only
minutes to hours. In real-world business applications, the application state is often defined in
long-running business processes involving multiple tasks and multiple actors. For instance,
let's examine a simple use-case scenario: An author edits a document that a manager must ap-
prove before sending it to the publisher. This very simple example involves several tasks
(writing, approving, sending the manuscript, and publishing) and several actors (author, man-
ager, publisher). To manage the long-running process manually, you must carefully design
your web UI, business logic methods, and database schema to work together. You must keep
track of many little pieces of information throughout the application. This is tedious and res-
ults in hard-to-maintain applications.

Business process frameworks alleviate those problems by capturing all the process informa-
tion in a single document and then integrating the process into the application code. Those
frameworks have become very popular among enterprise developers these days. The JBoss
jBPM product is the leading open-source business process framework for Java developers.
The remarkable thing about Seam is that it provides a consistent state-management frame-
work for everything from conversation states to jBPM business process states. Seam makes it
easy to attach jBPM processes to Seam stateful components (e.g., EJB3 stateful session
beans).

This chapter doesn't cover the details of the jBPM framework. Instead, we focus on showing
you how to integrate business processes into Seam applications. The sample application for
this chapter is the Ticketing project in the source code bundle. If you don't know anything
about jBPM, fear not: The first part of this chapter gives you the jBPM basics so you can start
writing your business processes. If you are familiar with jBPM basics and vocabulary, you
can skip the first section of this chapter.

18.1. jBPM Basics and Vocabulary

The key concepts in a business process are states and tasks. The system generally is at various
states waiting for the user actions (i.e., through a series of web pages and event handlers) to
accomplish a task associated with the state. When the task is completed, the system moves on
to another state, as defined by the process-definition document, waiting for the user to com-
plete another associated task. Figure 18.1., “A simple business process”, shows a very simple
business process.

Figure 18.1. A simple business process

In jBPM, a process is defined in a process-definition XML file. Whenever you want to use a
process definition, you must create a process instance to hold and save data related to that
particular instance. In a sense, the process definition is analogous to a Java class, and the pro-
cess instance is like a Java object.

18.1. jBPM Basics and Vocabulary

246

You can create a process definition XML file by hand, or you can visually create it using the
JBoss Eclipse IDE. Figure 18.2., “Designing a process definition”, shows an example order-
fulfillment process in the JBoss Eclipse IDE's visual process designer. The process describes
how to approve (or reject) an order based on certain conditions. To create a process, you first
define each potential application state as a node (either a graphical node element in the de-
signer or an XML element in the actual process-definition file). Then, for each node, you
define transition rules to move the system from the current state to another state represented
by another node.

Figure 18.2. Designing a process definition

18.1. jBPM Basics and Vocabulary

247

The JBoss Eclipse IDE generates the following XML file for the process definition shown in
Figure 18.2., “Designing a process definition”. As you can see, the XML file is intuitive and
highly readable. It is not difficult to create it by hand.

<process-definition name="OrderManagement">

<start-state name="start">
<transition to="decide"/>

</start-state>

<decision name="decide"
expression="#{orderApproval.howLargeIsOrder}">

<transition name="large order" to="approval"/>
<transition name="small order" to="process"/>

</decision>

<task-node name="approval" end-tasks="true">
<task name="approve" description="Review order">
<assignment pooled-actors="reviewers"/>

</task>
<transition name="cancel" to="cancelled"/>
<transition name="approve" to="process"/>
<transition name="reject" to="cancelled"/>

</task-node>

<task-node name="process">
<task name="ship" description="Ship order">
<assignment
pooled-actors="#{shipperAssignment.pooledActors}"/>

</task>
<transition name="shipped" to="complete">
<action expression="#{afterShipping.log}"/>

</transition>
</task-node>

<end-state name="complete"/>
<end-state name="cancelled"/>

</process-definition>

You can probably guess what this process does. Basically, we defined an initial state and a fi-
nal state; in the middle, we added a decision node to let the system pick the right way to take
in our graph, depending on a Seam expression. We also defined two task nodes and trans-
itions between those nodes and other nodes. If the system is in a task node, it must complete
the task first and then transit to another state node, depending on the task outcome. The

18.1. jBPM Basics and Vocabulary

248

assignment tag lets us pass the process to other actors. Finally, we used action to call a
method whenever the shipped transition is triggered. If you want to learn more about jBPM
and its process-definition language, refer to the official jBPM documentation at
http://www.jboss.org/products/jbpm/docs.

Referencing Seam Components in a Process Definition

You bind Seam components directly to jBPM process-definition
documents using the #{} notation, much like what we use in JSF
pages. The process can reference values from Seam data compon-
ents to automatically invoke Seam session bean methods as trans-
ition actions.

In the next section, for the sake of simplicity and clarity, we provide a new example for a
ticketing process commonly found on customer service web sites. The example project is in
the ticketing directory in the book's source code bundle. It integrates a business process for
employees to assign open support tickets to themselves and then answer and close the as-
signed tickets.

18.2. Application Users and jBPM Actors

As we mentioned, a business process typically involves multiple collaborators. The process
definition spells out which tasks can be assigned to whom. The jBPM runtime maintains a list
of actors that can be assigned to tasks. For instance, in the ticketing example, the answer

task, which requires the user to reply to a ticket, should be visible (and accessible) only to the
admin actor.

<task-node name="process">
<task name="answer"

description="#{ticket.title}">
<assignment pooled-actors="admin" />

</task>
... ...

</task-node>

18.2. Application Users and jBPM Actors

249

http://www.jboss.org/products/jbpm/docs

To integrate a business process into your web application, the first challenge is to map your
web users to jBPM actors. Multiple web users can have the same jBPM actor role. For in-
stance, multiple web users (i.e., every employee in the company) can be the admin actor in
the ticketing example. So the jBPM actor is similar to a permission group in traditional
role-based authorization systems.

The Seam jBPM API makes it easy to assign jBPM actor roles to web users. The
login.xhtml page in the ticketing example enables the user to log in either as a user, to
raise tickets, or as an admin, to answer tickets. We need to assign different jBPM actors, de-
pending on whether the user clicks on the As User or As Admin buttons to log in. This is the
relevant code snippet on the login.xhtml page:

<h:inputText value="#{user.username}" />
... ...
<h:commandButton type="submit" value="As User"

action="#{login.loginUser}"/>
<h:commandButton type="submit" value="As Admin"

action="#{login.loginAdmin}"/>

Seam maintains the jBPM actor role for the current user in a built-in component called
#{actor}. The application can choose its desired user-authentication mechanism. After the
user is authenticated, the application updates the actor component for the actor role of the
user who just logged in. Because the actor component is session-scoped, the actor role is
maintained as long as the user is logged in. The following is the Seam event-handler method
for the Log In as User button in the ticketing example application. When we call
#{login.loginUser}, we tell the jBPM actor component that the current user has the user

role. The jBPM engine then figures out which tasks or processes should be available for this
user.

@Stateful
@Name("login")
@Scope(ScopeType.SESSION)
public class LoginAction implements Login {

@In(create = true)
private Actor actor;

@In
private User user;

public String loginUser() {

18.2. Application Users and jBPM Actors

250

// Check user credentials etc.
actor.setId(user.getUsername());
actor.getGroupActorIds().add("user");
return "home";

}

//
}

We can also assign multiple actor roles to the user currently logged in. For instance, when the
user logs in as admin in the ticketing example, we tell jBPM that the current user has both
the user and admin roles so that process tasks for both actors become available to the user.

public String loginAdmin() {
// Check user credentials etc.
actor.setId(user.getUsername());
actor.getGroupActorIds().add("user");
actor.getGroupActorIds().add("admin");
return "home";

}

In Section 18.4.3.2., “The pooledTask Component”, we discuss how to assign tasks to users
with jBPM actor roles.

18.3. Creating a Business Process

Earlier in Chapter 6, A Simple Stateful Application, you saw that Seam defines a Process

scope. The process instance itself clearly defines the lifecycle of this scope. Any state inform-
ation attached to this process instance survives after the machine reboots. The process in-
stance can be shared among user sessions because you can assign tasks to different users.

In this section, we discuss how to create a business process definition, start it in your applica-
tion, and create data components associated with the process.

18.3. Creating a Business Process

251

18.3.1. Defining the Process

As an example, let's try to define the business process in the Ticketing example. The system
works like this: A user enters questions into a system and waits for the administrators to re-
spond (see Figure 18.3., “The process for the user: log in and create a ticket”); when an ad-
ministrator logs in, he can assign tasks to himself and reply to the question (see Figure 18.4.,
“The process for the administrator: log in, assign tickets to self, and reply to the tickets”).

Figure 18.3. The process for the user: log in and create a ticket

18.3.1. Defining the Process

252

Figure 18.4. The process for the administrator: log in, assign tickets to self, and reply to
the tickets

The following is the business process definition in the ticketProcess.jpdl.xml file. Imme-
diately after the process starts, it transitions to the process node and waits in that state. When
an admin user logs in, that user must complete the answer task to move forward. When the
answer task is completed, the system transitions to the complete node while executing the ac-
tion method myLogger.myLog(). The process ends, and the process instance is destroyed at
the complete state.

<process-definition name="TicketProcess">

<start-state name="start">
<transition to="process"/>

</start-state>

18.3.1. Defining the Process

253

<task-node name="process">
<task name="answer" description="#{ticket.title}">
<assignment pooled-actors="admin" />

</task>
<transition name="done" to="complete">
<action expression="#{myLogger.myLog}" />

</transition>
</task-node>

<end-state name="complete"/>
</process-definition>

18.3.2. Creating a Business Process Instance

A business process must be triggered by a user action. In our example, when the user clicks
on the New Ticket button on the web page, the system creates a new business process for that
ticket, with the ticket object attached in the Process scope. The process ends when the ad-
ministrator replies to the ticket and the system logs the reply. To implement this, we annot-
ated the New Ticket button event-handler method with a @CreateProcess annotation. Each
process definition has a name that is the unique parameter to pass to the @CreateProcess

annotation.

@Stateless
@Name("ticketSystem")
public class TicketSystemAction

implements TicketSystem {

@CreateProcess(definition="TicketProcess")
public String newTicket() {
return "home";

}

... ...
}

Now whenever the user invokes the newTicket() method, a process instance based on the
TicketProcess process definition is created. One business process instance exists for each
new ticket created. The web user can select which business process she wants to work on by
passing the taskId HTTP request parameter to the web pages (see Section 18.4.2.,
“Specifying a Task to Work On”, for more).

18.3.2. Creating a Business Process Instance

254

What About Stateful Session Beans?

In this example, we put the business logic in the stateless session
bean TicketSystemAction and use POJO components for the state-
ful data associated with the process (see Section 18.3.3., “Binding
Data Objects in Process Scope”). We do this for clarity: It enables
us to first discuss how to implement the business logic in the busi-
ness process and then to cover how the state is maintained in the
process.

When you understand how the system works, you can easily mesh
the two and use business process-scoped stateful session beans to
implement both business logic and application state. We leave this
as an exercise for the reader.

18.3.3. Binding Data Objects in Process Scope

A business process always has data associated with it. In the ticketing example, a Ticket

object is associated with each process instance. Using #{ticket}, you can refer to the Ticket

object associated with the current process in both the process-definition document and the
JSF page. In Section 18.4.3., “Selecting a Task in the UI”, we discuss how to select a busi-
ness process as "current." In this section, we focus on how to bind a data object with a busi-
ness process instance.

To bind a value to the business process scope, you can directly use
@Out(scope=BUSINESS_PROCESS) for all primitives and Strings. If you want to store more
complex objects, you must make sure they are serializable. Having POJOs stored as serialized
objects in your database is probably not the best way; instead, you can store those objects as
entity beans and just store the ID of the bean to the process instance. This example merely
shows you that storing serializable objects in the process instance is possible. Another linked
problem is that because the object is serialized, you can't retrieve a variable if you have to
change the class definition. In a real-world scenario, only the entity bean identifier is linked
to the business process, and modifying the entity bean definition usually affects only the data-
base table definition.

18.3.3. Binding Data Objects in Process Scope

255

Do Not Intercept

The example uses the Ticket class as a Seam component annotated
with @Intercept(InterceptionType.NEVER). This means that
Seam will not intercept this Java bean. As of this writing, intercept-
able Java beans cannot be bound to a business process because they
cannot be unserialized after a server shutdown.

import java.io.Serializable
import org.jboss.seam.*;

@Name("ticket")
@Intercept(InterceptionType.NEVER)
@Scope(ScopeType.BUSINESS_PROCESS)
public class Ticket implements Serializable {

private String title;
private String content;
private String answer;

public String getContent() {
return content;

}
public void setContent(String content) {
this.content = content;

}

public String getTitle() {
return title;

}
public void setTitle(String title) {
this.title = title;

}

public String getAnswer() {
return answer;

}
public void setAnswer(String answer) {
this.answer = answer;

}
}

This object can be attached to a business process instance and "lives" with it.

18.4. Managing Tasks

256

18.4. Managing Tasks

Tasks are central elements in a business process. After a business process is created, it waits
for the user to complete the tasks defined in the process. Whenever the user completes a task,
the process moves forward and decides which task the user needs to do next. To support busi-
ness processes in web applications, Seam provides a mechanism for associating web actions
(e.g., button clicks) with tasks. In this section, we explain how this works.

18.4.1. Implementing Business Logic for Tasks

The tasks in the jBPM business process definition file are just nodes in the XML file. The
process itself does not specify what actions are needed for each task and how the task is com-
pleted (i.e., the business logic). It just needs to know when the user starts and completes a
task so that the process can move on to the next task node waiting.

In a Seam jBPM application, the business logic for each task is implemented in Java and JSF
code. The user starts and completes a task by going through several web pages. Hence, we
need to tell the application which web UI event starts a task and which event ends the task.
For instance, in the Ticketing example application, the Reply button should start the answer

task. To do that, we annotate the UI event-handler method of the Reply button (i.e., the
TicketSystemAction.reply() method) with the @BeginTask annotation. In this example, the
reply() method simply redirects to the reply page. The ticket information on that page is
available in the Seam #{ticket} component associated with this business process instance
(see Section 18.3.3., “Binding Data Objects in Process Scope”). In a stateful session bean, the
@BeginTask annotated method usually fetches and initiates data for the task.

@Stateless
@Name("ticketSystem")
public class TicketSystemAction

implements TicketSystem {

... ...

@BeginTask
public String reply() {
return "reply";

}

... ...
}

18.4.1. Implementing Business Logic for Tasks

257

The #{ticketSystem.reply} method returns reply, which directs JSF to display the
reply.xhtml page. A task can take several web pages to complete. Hence, it spans multiple
Seam session bean methods. The @BeginTask annotation declares the first method to invoke
to start a task. From there, the user can go over multiple pages and session bean methods to
complete the task. At the end of the task, the @EndTask annotation declares the last method in
the task. In our example, the Answer button event handler sends out the reply, completes the
task, and causes the process to move to the next state. If more than one transition from the
current task node exists, you must specify which transition to pass by giving the transition
name to the @EndTask annotation (@EndTask("approve"), for example).

@Stateless
@Name("ticketSystem")
public class TicketSystemAction

implements TicketSystem {

... ...

@EndTask
public String sendAnswer() {
// send the answer to user
return "home";

}

... ...
}

When the task is completed, the process moves to the next task. The web user can then assign
the task and work on it until the process completes.

Tasks with Multiple Transitions

The following example, taken from the DVD demo store available
within the Seam distribution, shows how to handle multiple trans-
itions in a task node. During the task, the Seam stateful session bean
component determines which transition to invoke and then guides
the user to click on the appropriate @EndTask method to finish the
task.

@BeginTask
public String viewTask() {

18.4.1. Implementing Business Logic for Tasks

258

order = (Order) em.createQuery("from Order o " +
"join fetch o.orderLines " +
"where o.orderId = :orderId")
.setParameter("orderId", orderId)
.getSingleResult();

return "accept";
}

@EndTask(transition="approve")
public String accept() {

order.process();
return "admin";

}

@EndTask(transition="reject")
public String reject() {

order.cancel();
return "admin";

}

The transition to trigger is defined in the @EndTask annotation, and
the returned string is the JSF outcome to display the next view page.

18.4.2. Specifying a Task to Work On

The @BeginTask and @EndTask annotations do not take parameters. So how does the applica-
tion know that the #{ticketSystem.reply()} method is supposed to start an answer task,
not some other task defined in the process? Furthermore, because the application has multiple
business processes running at the same time, multiple answer tasks are waiting in different
processes (i.e., different tickets) at any given time. How does the system know which of those
answer tasks it is supposed to begin in response to a particular Reply button?

The answer here is to use the taskId HTTP request parameter. In jBPM, each task in the
"waiting" state has a unique ID. If multiple tasks exist in a process, only the one that is cur-
rently waiting for user action has a valid ID. You can apply @BeginTask, @EndTask, or other
methods to a task with a specific ID. For instance, the following Reply button applies to the
waiting task with ID 123. The taskId is conceptually similar to the conversationId we dis-
cussed in Chapter 8, Workspaces and Concurrent Conversations.

18.4.2. Specifying a Task to Work On

259

<h:commandLink action="#{ticketSystem.reply}">
<h:commandButton value="Reply"/>
<f:param name="taskId" value="123"/>

</h:commandLink>

Using this technique, we can associate any button or link to the task it intends to operate on.
Furthermore, we can associate a web page to a specific task or business process. For instance,
when you load the reply.seam?taskId=123 URL, the #{ticket} component on the
reply.xhtml page is already loaded with the business process scoped #{ticket} component
associated with taskId 123. So the reply.xhtml page is really simple.

Title: #{ticket.title}
...
Content: #{ticket.content}
...
Answer: <h:inputTextarea value="#{ticket.answer}"/>
...
<h:commandLink action="#{ticketSystem.sendAnswer}">
<h:commandButton value="Reply"/>
<f:param name="taskId" value="#{param.taskId}"/>

</h:commandLink>

When the user clicks on the Reply button, the current taskId for the page is passed on to the
#{ticketSystem.sendAnswer} method. The sendAnswer() method also knows which task it
is operating on. As we discussed before, it ends the task and causes the business process to
move on.

Of course, in the real world, we do not hard-code the taskId (e.g., 123) into the web pages.
Instead, we ask the system to dynamically generate taskIds for the tasks available for the
currently logged-in user. That is the topic in Section 18.4.3., “Selecting a Task in the UI”.

18.4.3. Selecting a Task in the UI

Earlier in Section 18.4.2., “Specifying a Task to Work On”, we explained that web actions
are associated with jBPM tasks via the taskId parameter. Each available task in the waiting
state has a taskId. But how do users determine the available taskIds, and how do they as-
sign tasks to users? They can do that via built-in Seam jBPM components.

18.4.3. Selecting a Task in the UI

260

Business Processes and Conversations

We can draw an analogy here between business processes and long-
running conversations. When a user has multiple long-running con-
versations, she can choose one to join by switching the browser
window or selecting from the #{conversationList}. Business pro-
cesses are not tied to browser windows. The Seam components in
this section are the business process equivalents to
#{conversationList}.

18.4.3.1. The pooledTaskInstanceList Component

The pooledTaskInstanceList component finds all the task instances that can be assigned to
the logged-in user. This can be used in a ticketing system, for example, where an admin gets
the list of unassigned tasks he can work on. This example code could be used (i.e., the
assignableTickets.xhtml page):

<h:dataTable value="#{pooledTaskInstanceList}"
var="task">

<h:column>
<f:facet name="header">Id</f:facet>
#{task.id}

</h:column>
<h:column>

<f:facet name="header">
Description

</f:facet>
#{task.description}

</h:column>
</h:dataTable>

As we defined in the process-definition file (see Section 18.3., “Creating a Business
Process”), the #{task.description} is the #{ticket.title} in the task's process scope.

18.4.3.2. The pooledTask Component

This component is typically used inside a #{pooledTaskInstanceList} data table. It has a
unique method of assigning a task to the current logged-in actor. The id of the task to assign

18.4.3. Selecting a Task in the UI

261

must be passed as a request parameter so that the action method (i.e., the @BeginTask meth-
od) can determine which task it starts for. To use this component, you can write the following
code. The #{task.id} comes from the #{pooledTaskInstanceList} iterator (see previous
section).

<h:commandLink
action="#{pooledTask.assignToCurrentActor}">
<h:commandButton value="Assign"/>
<f:param name="taskId" value="#{task.id}"/>

</h:commandLink>

18.4.3.3. The taskInstanceList Component

This component's goal is to get all the task instances that have been assigned to the logged-in
user. In the Ticketing example, this component is used in the assignedTickets.xhtml page
to show a list of processes/tickets already assigned to the user.

<h:dataTable value="#{taskInstanceList}"
var="task">

<h:column>
<f:facet name="header">Id</f:facet>
#{task.id}

</h:column>
<h:column>

<f:facet name="header">
Description

</f:facet>
#{task.description}

</h:column>
</h:dataTable>

18.4.3.4. The taskInstanceListByType Component

This component can be seen as a filtered version of the previous component. Instead of re-
turning the whole list of task instances, this component returns only the task instances of a
certain type.

<h:dataTable
value="#{taskInstanceListByType['todo']}"

18.4.3. Selecting a Task in the UI

262

var="task">
<h:column>

<f:facet name="header">Id</f:facet>
#{task.id}

</h:column>
<h:column>

<f:facet name="header">
Description

</f:facet>
#{task.description}

</h:column>
</h:dataTable>

In a nutshell, you can use jBPM to define the process, use Seam stateful session beans to
handle the tasks and transitions in the process, and then use Seam built-in components to tie
the process actions to UI elements on the JSF page.

18.5. jBPM Libraries and Configuration

To use jBPM components, you must bundle the jbpm-x.y.z.jar file in your application JAR
file (i.e., the app.jar inside the EAR file). We recommend JBPM 3.1.2 or above.

You also must add the following configuration files to the root of your EAR file: *.jpdl.xml
defines the business processes, jbpm.cfg.xml configures the jBPM engine, and
hibernate.cfg.xml configures the database that stores the process states.

ticketing.ear
|+ ticketProcess.jpdl.xml
|+ hibernate.cfg.xml
|+ jbpm.cfg.xml
|+ app.war
|+ app.jar
| |+ class files
| |+ jbpm-3.1.2.jar
| |+ seam.properties
| |+ META-INF
|+ jboss-seam.jar
|+ el.api.jar
|+ el-ri.jar
|+ META-INF

18.5. jBPM Libraries and Configuration

263

The jbpm.cfg.xml file overrides the default attributes in the jBPM engine. Primarily, you
must disable the jBPM transaction manager for persistent data because Seam now manages
database access.

<jbpm-configuration>

<jbpm-context>

<service name="persistence">
<factory>
<bean class=

"org.jbpm.persistence.db.DbPersistenceServiceFactory">
<field name="isTransactionEnabled">
<false/>

</field>
</bean>

</factory>
</service>

</jbpm-context>

</jbpm-configuration>

The jBPM engine stores the process state in a database to make the process long lived—even
after the server reboots. The hibernate.cfg.xml file configures which database to store
jBPM state data and loads jBPM data-mapping files to set up database tables. In this example,
we just save the jBPM state data in the embedded HSQL database at java:/DefaultDS.
Many jBPM mapping files exist; we do not fully list them here. You can refer to the
hibernate.cfg.xml file in the ticketing project to find out more.

<hibernate-configuration>
<session-factory>
<property name="dialect">
org.hibernate.dialect.HSQLDialect

</property>
<property name="connection.datasource">
java:/DefaultDS

</property>
<property name="transaction.factory_class">

org.hibernate.transaction.JTATransactionFactory
</property>
<property
name="transaction.manager_lookup_class">

18.5. jBPM Libraries and Configuration

264

org.hibernate.transaction.JBossTransactionManagerLookup
</property>
<property
name="transaction.flush_before_completion">
true

</property>
<property name="cache.provider_class">
org.hibernate.cache.HashtableCacheProvider

</property>
<property name="hbm2ddl.auto">update</property>

<mapping resource=
"org/jbpm/db/hibernate.queries.hbm.xml"/>

<mapping .../>
</session-factory>

</hibernate-configuration>

In addition, you must tell the Seam runtime where to find the *.jpdl.xml files. You do this
by adding a core:Jbpm component in the components.xml file.

<components>

... ...

<core:Jbpm
processDefinitions="ticketProcess.jpdl.xml"/>

</components>

Overall, Seam greatly simplifies the development of process-driven web applications. Tradi-
tional web developers might find the business process concepts a little confusing initially. But
when you get past the basic syntax, you will find it extremely easy to use and very powerful.
Seam lowers the bar for applying business processes in web applications.

18.5. jBPM Libraries and Configuration

265

This page intentionally left blank

19
Stateful Pageflows

In Chapter 18, Managing Business Processes, you saw that Seam does an excellent job of in-
tegrating business processes into web applications. The user can create, assign, switch, and
end tasks via regular web actions (i.e., button clicks, page loads), and Seam automatically
loads all the process-scoped data for the current task. In addition to application-level integra-
tion with jBPM, Seam deeply integrates business processes into the framework itself. One of
the most useful use cases for jBPM in Seam is to use business processes to manage the page-
flows of the web application.

In a standard JSF application, the page-navigation rules are defined in the navigation.xml or
faces-config.xml files. You can reference those rules from links/buttons on web pages to
specify which page to display when the link/button is clicked. When an event-handler method
is invoked from a link/button, the method returns a literal string value that matches one of the
navigation rules to determine which page to display next. That works well in simple applica-
tions. However, as web applications grow more complex, many potential outcomes could res-
ult from an event-handler method, and multiple navigation rules might point to the same tar-
get page. The navigation.xml or faces-config.xml files could quickly become bloated and
hard to debug. Seam provides an alternate way to manage the navigation rules. Instead of re-
lying on the event-handler methods to return the exact literal strings, a Seam application can
automatically determine the next page to display based on the actual state of the application.
To understand how this works, let's look at an example.

19.1. Stateful Navigation Rules in pages.xml

In Section 8.2., “Workspace Switcher”, and Section 12.1., “Using Page Parameters”, we dis-
cussed the use of the pages.xml file, which is an important element in making Seam more
"web friendly." You can put page-specific parameters and actions in pages.xml and also use
it to support navigation rules for each page. The following is an example pages.xml file from
the Hotel Booking example in the Seam distribution (i.e., the examples/booking project).

<pages no-conversation-view-id="/main.xhtml">

<page view-id="/register.xhtml">
<action if="#{validation.failed}"

execute="#{register.invalid}"/>

<navigation>
<rule if="#{register.registered}">
<redirect view-id="/home.xhtml"/>

</rule>
</navigation>

</page>

This rule indicates that, after the user submits the register.xhtml page, Seam checks wheth-
er the #{register.registered} property is true. If so, it displays the home.xhtml page; if
not, it redisplays the register.xhtml page. Of course, the #{register.register} method,
which is the event-handler method for the Register button, sets the #{register.registered}

property. Notice that the user can submit the register.xhtml page through any button/link
with any event-handler method—not just the Register button. The application state in the
#{register.registered} property solely determines the navigation outcome.

<page view-id="/confirm.xhtml"
conversation-required="true">

<description>
Confirm booking: #{booking.description}

</description>

<navigation
from-action="#{hotelBooking.confirm}">

<redirect view-id="/main.xhtml"/>
</navigation>

</page>

When the user submits the confirm.xhtml page and invokes the #{hotelBooking.confirm}

method, the next page is main.xhtml, as long as the method is successfully executed (i.e., no
exception is thrown). The #{hotelBooking.confirm} method does not need to return any
string value.

19.1. Stateful Navigation Rules in pages.xml

268

<page view-id="/main.xhtml">

<action execute="#{login.validateLogin}"/>

<navigation
from-action="#{login.validateLogin}">

<rule if="#{not login.loggedIn}">
<redirect view-id="/home.xhtml"/>

</rule>
</navigation>

<navigation from-action=
"#{hotelBooking.selectHotel(hot)}">

<redirect view-id="/hotel.xhtml"/>
</navigation>

</page>

When the main.xhtml page is loaded, Seam first executes the #{login.validateLogin}

method to check whether the current user is logged in. The #{login.validateLogin} method
sets the login status in the property #{login.loggedIn}. Immediately after the
#{login.validateLogin} method is executed, Seam checks #{login.loggedIn} and redir-
ects to home.xhtml if the user is not logged in.

A Better Way to Manage Security

In the example in this chapter, we use a home-grown #{login}

component to manage security. The Seam security framework
provides a much better way to manage security. Refer to
Chapter 20, Rule-Based Security Framework, for more details.

After the user submits the main.xhtml page with the Select Hotel button that invokes the
#{hotelBooking.selectHotel} method, Seam redirects to the hotel.xhtml page if the
method is successfully executed.

<page view-id="*">

<navigation from-action="#{login.logout}">
<redirect view-id="/home.xhtml"/>

</navigation>

19.1. Stateful Navigation Rules in pages.xml

269

<navigation
from-action="#{hotelBooking.cancel}">

<redirect view-id="/main.xhtml"/>
</navigation>

</page>

... ...

</pages>

Finally, you can specify navigation rules that apply to multiple pages. The previous rule in-
dicates that if the #{login.logout} method is invoked on any page, Seam redirects to the
home.xhtml page after the method is successfully executed.

With navigation rules in pages.xml, event-handler methods do not need to return arbitrary lit-
eral strings, and the navigation outcome completely depends on the application's internal
state.

Still, how does that have anything to do with business processes? As it turns out, the
pages.xml file can take not only navigation rules, but also business process definitions.

19.2. Associating a Business Process with a Web
Page

A navigation rule dictates the next page to display. But a business process specifies a flow of
web pages following the current page. To best illustrate how a business process works, check
out the numberguess example in the book's source code bundle. The application has two pro-
cesses attached to the numberGuess.xhtml and confirm.xhtml pages, respectively.

<pages>
<page view-id="/numberGuess.xhtml">
<begin-conversation join="true"

pageflow="numberGuess"/>
</page>
<page view-id="/confirm.xhtml">
<begin-conversation nested="true"

pageflow="cheat"/>

19.2. Associating a Business Process with a Web Page

270

</page>
</pages>

The numberGuess.xhtml page displays a form for you to guess a random number generated
by the application. After you enter a guess, the application tells you whether it is too high or
too low and asks you to guess again until you reach the right guess. This is the
numberGuess.xhtml page:

<h:outputText value="Higher!"
rendered= "#{numberGuess.randomNumber gt

numberGuess.currentGuess}"/>
<h:outputText value="Lower!"

rendered="#{numberGuess.randomNumber lt
numberGuess.currentGuess}"/>

I'm thinking of a number between
#{numberGuess.smallest} and
#{numberGuess.biggest}. You have
#{numberGuess.remainingGuesses} guesses.

Your guess:
<h:inputText value="#{numberGuess.currentGuess}"

id="guess" required="true">
<f:validateLongRange

maximum="#{numberGuess.biggest}"
minimum="#{numberGuess.smallest}"/>

</h:inputText>

<h:commandButton value="Guess" action="guess"/>
<s:button value="Cheat" view="/confirm.xhtml"/>
<s:button value="Give up" action="giveup"/>

The Guess and Give Up buttons map to guess and giveup transitions in the business process
associated with the page. The giveup transition is simple: It just redirects to the
giveup.xhtml page, from which you can click on buttons mapped to yes or no actions. The
guess transition is slightly more complex: Seam first executes the #{numberGuess.guess}

method, which compares the user's guess against the random number and saves the current
guess. Then the process goes on to the evaluateGuess decision node. The
#{numberGuess.correctGuess} method compares the current guess with the random num-
ber. If the outcome is true, the process moves to the win node and displays the win.xhtml

page.

19.2. Associating a Business Process with a Web Page

271

<pageflow-definition name="numberGuess">

<start-page name="displayGuess"
view-id="/numberGuess.xhtml">

<redirect/>
<transition name="guess" to="evaluateGuess">
<action expression="#{numberGuess.guess}"/>

</transition>
<transition name="giveup" to="giveup"/>

</start-page>

<decision name="evaluateGuess"
expression="#{numberGuess.correctGuess}">

<transition name="true" to="win"/>
<transition name="false"

to="evaluateRemainingGuesses"/>
</decision>

<decision name="evaluateRemainingGuesses"
expression="#{numberGuess.lastGuess}">

<transition name="true" to="lose"/>
<transition name="false" to="displayGuess"/>

</decision>

<page name="giveup" view-id="/giveup.xhtml">
<redirect/>
<transition name="yes" to="lose"/>
<transition name="no" to="displayGuess"/>

</page>

<page name="win" view-id="/win.xhtml">
<redirect/>
<end-conversation/>

</page>

<page name="lose" view-id="/lose.xhtml">
<redirect/>
<end-conversation/>

</page>

</pageflow-definition>

The following are the #{numberGuess.guess} and #{numberGuess.correctGuess} methods
we discussed earlier. With the support of business processes, those methods need to contain
only business logic code—they do not need to couple it with the navigation logic.

19.2. Associating a Business Process with a Web Page

272

@Name("numberGuess")
@Scope(ScopeType.CONVERSATION)
public class NumberGuess {

... ...

public void guess() {
if (currentGuess > randomNumber) {
biggest = currentGuess - 1;

}
if (currentGuess < randomNumber) {
smallest = currentGuess + 1;

}
guessCount ++;

}

public boolean isCorrectGuess() {
return currentGuess == randomNumber;

}
}

If the user loads the confirm.xhtml page, the cheat process starts. If you click on the button
mapped to the yes action, the #{numberGuess.cheated} is invoked to mark you as a cheater,
and the process moves to the cheat node to display the cheat.xhtml page.

<pageflow-definition name="cheat">

<start-page name="confirm"
view-id="/confirm.xhtml">

<transition name="yes" to="cheat">
<action expression="#{numberGuess.cheated}"/>

</transition>
<transition name="no" to="end"/>

</start-page>

<page name="cheat" view-id="/cheat.xhtml">
<redirect/>
<transition to="end"/>

</page>

<page name="end" view-id="/numberGuess.xhtml">
<redirect/>
<end-conversation/>

</page>

</pageflow-definition>

19.2. Associating a Business Process with a Web Page

273

The Back Button

When navigating using a stateful pageflow model, you make sure
that the application decides what is possible. Think about the trans-
itions: If you passed a transition, you cannot go backward unless
you make it possible in your pageflow definition. If a user decides
to press the Back button of her browser, it could lead to an incon-
sistent state. Fortunately, Seam automatically brings the user back
to the page that he should be seeing. This enables you to make sure
that a user will not twice confirm his $1 million order just because
he accidentally pressed the Back button and submitted it again.

19.3. Pageflow and Stateful Conversation

The jBPM pageflow can be tightly integrated with Seam conversations. You can start a long-
running conversation when the process (or a node in the process) starts, and end the conversa-
tion when a process node is reached. That amounts to declarative management of Seam con-
versations. No more need exists for the @Begin and @End annotations when conversations are
defined in the pages.xml and *.jpdl.xml files.

In the previous example, the conversation starts when the numberGuess.xhtml page is loaded.

<pages>
<page view-id="/numberGuess.xhtml">
<begin-conversation join="true"

pageflow="numberGuess"/>
... ...

</pages>

The conversation ends when the win or lose node in the process is reached.

<pageflow-definition name="numberGuess">

... ...

19.3. Pageflow and Stateful Conversation

274

<page name="win" view-id="/win.xhtml">
<redirect/>
<end-conversation/>

</page>

<page name="lose" view-id="/lose.xhtml">
<redirect/>
<end-conversation/>

</page>

</pageflow-definition>

Between the start and end of the conversation, the #{numberGuess} component keeps all the
application information associated with the conversation (i.e., the application-generated ran-
dom number, the current guess, the number of remaining guesses, etc.).

19.4. Configuration

To use the jBPM-based pageflows, you must bundle the jBPM library JAR (3.1.2+) and the
process-definition files (i.e., the *.jpdl.xml files) in your application. This is the structure of
the numberguess.ear application:

numberguess.ear
|+ pagefolow.jpdl.xml
|+ cheat.jpdl.xml
|+ app.war
|+ app.jar
| |+ class files
| |+ jbpm-3.1.2.jar
| |+ seam.properties
| |+ META-INF
|+ jboss-seam.jar
|+ el.api.jar
|+ el-ri.jar
|+ META-INF

Because we do not need to persist the business process state into a database, you do not need
to bundle the hibernate.cfg.xml and jbpm.cfg.xml files in the application. However, you
do need to declare the pageflow definition files to Seam via the core:Jbpm component in the
components.xml file.

19.4. Configuration

275

<components ...>

... ...

<core:Jbpm>
<property name="pageflowDefinitions">
<value>pageflow.jpdl.xml</value>
<value>cheat.jpdl.xml</value>

</property>
</core:Jbpm>

</components>

No Extra Configuration Needed for Rules in pages.xml

If you just need to use navigation rules in the pages.xml file and do
not need full jBPM-based pageflow support, you do not need to in-
stall the jBPM library JAR in your application.

19.4. Configuration

276

20
Rule-Based Security Framework

Business process is closely related to business rules. Seam integrates the JBoss Rules
(formerly known as Drools) engine to support sophisticated rules. In fact, Seam itself uses
JBoss Rules to implement an innovative security framework for web applications. In this
chapter, we introduce the Seam security framework and showcase how business rules are
used to manage security.

Managed security is one of those "half-measure solutions" in enterprise Java. The standard
Java EE security model works okay for the simplest cases (e.g., to require login to access part
of the site). But more often than not, developers struggle against the standard Java EE secur-
ity schemes and work around it rather than using it.

The Seam security model, on the other hand, is based on rules. You can specify who is per-
mitted to access which page, which UI element, and which bean method. As with everything
else in Seam, all Seam security rules are stateful. That means each rule's outcome depends on
the current state of the application context. Hence, you can give certain users access to certain
application features only when some runtime conditions are met. The Seam security
framework offers great power and flexibility for almost every use case a web application
encounters.

20.1. Authentication and User Roles

The most important aspect of a security framework is user authentication. Each user must log
in with a username and password combo to access restricted parts of the web application.

Each user also has one or several security roles. For instance, on an e-commerce web site,
user johndoe might have the visitor role. He can perform tasks such as changing his own
address, checking out the shopping cart, and paying for the purchase. The user bigshot might
have the admin role. He can manage inventories and answer customer support queries.

First, you need to write a login form for the user to enter username and password. In the login
form, you should bind the user credentials and actions to the Seam built-in #{identity}

component as follows:

<div>
Username:
<h:inputText value="#{identity.username}"/>

</div>

<div>
Password:
<h:inputSecret value="#{identity.password}"/>

</div>

<div>
<h:commandButton value="Login"

action="#{identity.login}"/>
</div>

The #{identity} component is scoped to the HTTP session. Once a user is logged in, she
stays logged in until the session expires. The #{identity.login} method in turn invokes an
"authenticator" method in your session beans or Seam POJOs to perform the actual authentic-
ation work. We will discuss how to write and configure the authenticator method shortly. If
the login succeeds, the #{identity.login} method returns the string value loggedIn, which
you can use in the navigation rules to determine the next age to display. If the login fails, the
#{identity.login} method returns null to redisplay the login form with an error message.

Logout

The #{identity.logout} method provides a simple mechanism for
logging out a user from a Seam application. It simply invalidates the
current session and causes Seam to reload the current page—to be
redirected to the login page if the current page is restricted.

The authentication method, invoked from #{identity.login}, checks the username and
password combo from the injected identity. If it is valid, the method returns true; other-
wise, the method returns false. After the username and password are verified, the authentica-
tion method optionally retrieves the security roles for the user and adds those roles to the
identity component via identity.addRole(). The following

20.1. Authentication and User Roles

278

login() method is an example authentication method. It checks the User table in the database
to authenticate the user and retrieves the user's roles from the same database upon successful
authentication.

@Stateless
@Name("authBean")
public class AuthBean implements Auth {
@In
Identity identity;

@PersistenceContext
EntityManager em;

public boolean login () {
try {
User user = (User) em.createQuery(

"from User where username = :username "
+ "and password = :password")

.setParameter("username", username)

.setParameter("password", password)

.getSingleResult();

if (user.getRoles() != null) {
for (UserRole mr : user.getRoles())
identity.addRole(mr.getName());

}
return true;

} catch (NoResultException ex) {
FacesMessages.instance().add(

"Invalid username/password");
return false;

}
}
... ...

}

Because you can put any Java code in the authentication method, it is easy to authenticate
against a LDAP server or any other data store. For Seam to know that the login() method is
the authentication method for the application, you must declare it in the components.xml file,
as follows:

<components
xmlns="http://jboss.com/products/seam/components"
xmlns:security=

"http://jboss.com/products/seam/security"
xmlns:core="http://jboss.com/products/seam/core">

... ...

20.1. Authentication and User Roles

279

<security:identity authenticate-method=
"#{authBean.login}"/>

</components>

20.2. Declarative Access Control

Authentication by itself is not very useful; it must be combined with an authorization scheme
to grant access to the application based on the user's identity. Seam makes it easy to declare
access constraints on web pages, UI components, and Java methods via XML tags, annota-
tions, and JSF EL expressions.

20.2.1. Web Pages

One of the most common access-control scenarios involves displaying certain web pages only
when the user is logged in. That can be easily done with the pages.xml file. The following
example shows that only logged-in users can access the checkout.xhtml page, as well as any
page with the /members/* URL pattern. If the user is not logged in, the login.xhtml page is
displayed instead.

<pages login-view-id="/login.xhtml">

... ...
<page view-id="/checkout.xhtml" login-required="true"/>
<page view-id="/members/*" login-required="true"/>

</pages>

If you want to redirect the user to the page she originally requested after the login, add the
following elements in your components.xml file.

<event type="org.jboss.seam.notLoggedIn">
<action expression="#{redirect.captureCurrentView}"/>

</event>

<event type="org.jboss.seam.postAuthenticate">
<action expression="#{redirect.returnToCapturedView}"/>

</event>

20.2. Declarative Access Control

280

Using simple EL expressions in the <restrict> tag, we can also limit access to a page to
users with a certain security role. For instance, the following example indicates that the
inventory.xhtml page is accessible only by logged-in users with the admin role.

<pages>

... ...

<page view-id="/inventory.xhtml">
<restrict>#{s:hasRole('admin')}</restrict>

</page>

</pages>

When access is denied for the page, Seam throws the NotLoggedInException or the
AuthorizationException, depending on whether the user is currently logged in. You can use
the techniques described in Chapter 14, Failing Gracefully, to redirect to custom error pages
when those exceptions occur.

20.2.2. UI Components

Besides controlling access to entire web pages, you can use EL expressions to selectively dis-
play UI elements on a page to different users. That is done via the rendered attribute on JSF
components. The login status of the current user is available from the #{identity.loggedIn}

property. The following listing shows a user information panel on a web page that is dis-
played only when the user is logged in.

<s:div rendered="#{identity.loggedIn}">
<s:link value="Your Profile"

action="#{user.edit}"/>
<s:link value="Previous Orders"

action="#{user.history}"/>
<s:link value="Logout"

action="#{identity.logout}"/>
</s:div>

The next example shows a link in the panel that is available only to users with the admin role.

<s:div rendered="#{identity.loggedIn}">
<s:link value="Check Inventory"

action="#{manager.checkInventory}"
rendered="#{s:hasRole('admin')}"/>

20.2.2. UI Components

281

... ...
</s:div>

20.2.3. Method-Level Access Control

Access control on the UI is easy to understand, but it is not sufficient. A clever cracker might
be able to get past the UI layer and access methods on Seam components directly. It is im-
portant to secure individual Java methods in the application as well. Fortunately, you can eas-
ily declare method-level access constraints with Seam annotations and EL expressions. The
following example shows a checkout() method that is accessible only to logged-in users.

@Stateful
@Name("manager")
public class ManagerAction implement Manager {

public String addToCart () {
// code

}

@Restrict("#{identity.loggedIn}")
public String checkout () {
// code

}
}

Similarly, you can tag methods to be accessible only by users with a certain role. The follow-
ing example shows that the checkInventory() method can be executed only by users with
the admin role.

@Stateful
@Name("manager")
public class ManagerAction implement Manager {

... ...

@Restrict("#{s:hasRole('admin')}")
public String checkInventory () {
// code

}
}

20.2.3. Method-Level Access Control

282

When access is denied for the method, Seam throws the NotLoggedInException or the
AuthorizationException, depending on whether the user is currently logged in. You can use
the techniques described in Chapter 14, Failing Gracefully, to redirect to custom error pages
when those exceptions occur.

20.3. Rule-Based Access Control

So far, you have seen how the Seam built-in #{identity} component is used for authentica-
tion and how the Restrict tag/annotation works with EL expressions to provide role-based
access control. Those features by themselves are already quite impressive, but we have not
touched business rules yet. Business rules take access control to a whole new level, unseen in
previous generations of Java security frameworks.

• Using business rules, you can put all security configuration in one file and simplify the
Restrict tags/annotations. That is a huge plus when you have a large web site with many
user roles and many potential entry points because all access rules can be reviewed and
analyzed at once. It also allows nonprogrammers to develop rules using GUI tools that the
JBoss Rules project provides.

• Business rules give you "per instance" access controls based on the current state of the ap-
plication. Refer to Section 20.3.2., “Per Instance Access Rules”, for more details.

Of course, the downside of using access rules is that you must bundle the JBoss Rules JAR
files and configuration files in the application (see Section 20.3.3., “Configuring JBoss
Rules”). But that is a small price to pay for such advanced features.

Let's begin by reimplementing the role-based access-control scheme in rules.

20.3.1. Simple Access Rules

Before we discuss the access rules, let's first explain how the Restrict tag/annotation really
works under the hood. When you have an empty Restrict, it is equivalent to making a call to
the #{identity.hasPermission} method. The shorthand version of the EL is
#{s:hasPermission(...)}. To understand how this works, let's look at an annotation ex-
ample we mentioned earlier:

20.3. Rule-Based Access Control

283

@Stateful
@Name("manager")
public class ManagerAction implement Manager {

... ...

@Restrict
public String checkInventory () {
// code

}
}

The empty @Restrict annotation is equivalent to the following.

@Restrict#{s:hasPermission('manager',
'checkInventory', null)}

The first call parameter is the component name (the name), and the second parameter is the
method name (the action). They form the basis of the security rule. We ignore the third null

parameter for now. To allow only users with the admin role to access this method, we have
the following rule in the JBoss Rules configuration file:

package MyApplicationPermissions;

import org.jboss.seam.security.PermissionCheck;
import org.jboss.seam.security.Role;

rule CanUserCheckInventory
when
c: PermissionCheck(name == "manager",

action == "checkInventory")
Role(name == "admin")

then
c.grant()

end;

The name of the rule can be arbitrary. The important point is that the rule is triggered when
the #{manager.checkInventory} method is called, and access is granted when the current
user has the admin role.

20.3.1. Simple Access Rules

284

Check for Logged-In Users

If you want to grant access to all logged-in users, regardless of their
roles, you can check whether the Principal object exists. The
Principal object is created in the login process. To do that, use
exists Principal() to replace the Role(name == "admin") line in
the rule we discussed earlier.

The <Restrict> tag rules for web pages are similar. Because no component name and meth-
od name exist here, the default name is the JSF view-id of the page, and the default action is
render. For instance, the following page configuration results in a
#{s:hasPermission('/inventory.xhtml', 'render', null)} call when the
inventory.xhtml page is accessed.

<pages>

... ...

<page view-id="/inventory.xhtml">
<restrict/>

</page>

</pages>

This is the security rule for admin-only access to the page:

rule CanUserViewInventory
when
c: PermissionCheck(name == "/inventory.xhtml",

action == "render")
Role(name == "admin")

then
c.grant()

end;

20.3.2. Per Instance Access Rules

285

20.3.2. Per Instance Access Rules

So far, we have not mentioned the third argument on the #{s:hasPermission(...)} method
call. By passing an object from the Seam stateful context to the security check method, you
can make rules that grant access only when certain runtime conditions are met. For instance,
in an e-commerce web site, the administrator might give a regular user one-time authorization
to view the store inventory. The user has access to the inventory until an expiration time. The
one-time authorization is stored in the User object in the current Seam session context. This
is an example of the User class:

@Entity
public class User {

// Returns whether one-time authentication
// has been granted
@Transient
public boolean getAuth () {
//

}
public void setAuth (boolean auth) {
//

}

// Returns whether the one-time authentication
// has expired
@Transient
public boolean getAuthExp () {
//

}

}

In the following example, the current User object in the session is passed to the security
check.

@Stateful
@Name("manager")
public class ManagerAction implement Manager {

... ...

@In
User user;

20.3.2. Per Instance Access Rules

286

@Restrict ("#{s:hasPermission('manager',
'checkInventory', user)}")

public String checkInventory () {
// code

}
}

Then in the rule, we check the one-time authorization and expiration time before granting the
access.

package MyApplicationPermissions;

import org.jboss.seam.security.PermissionCheck;
import org.jboss.seam.security.Role;
import myapp.User;

rule CanUserCheckInventory
when
c: PermissionCheck(name == "manager",

action == "checkInventory")
User(auth == "true", authExp == "false")

then
c.grant()

end;

Per-instance access rules enable developers to control the application behavior dynamically.
These are very useful in many applications.

20.3.3. Configuring JBoss Rules

If you just want to use the basic Seam security features such as user authentication and role-
based access control, you do not need any additional libraries or configurations besides the
ones listed in Chapter 3, Recommended JSF Enhancements. But if you need to use rule-based
security features (i.e., to use the simple or per-instance security rules), you need to set up
JBoss Rules support in Seam.

To use the JBoss Rules engine, you must bundle the JBoss Rules JARs, as well as the
security.drl file, which is a plain-text file containing the security rules you saw earlier in
this chapter, in the application EAR.

20.3.3. Configuring JBoss Rules

287

mywebapp.ear
|+ app.war
|+ app.jar
|+ drools-*.jar
|+ el-*.jar
|+ antlr-*.jar
|+ commons-jci-*.jar
|+ janino-*.jar
|+ jbpm-x.y.z.jar
|+ stringtemplate-x.y.z.jar
|+ jboss-seam.jar
|+ security.drl
|+ META-INF

Then you must tell Seam where to find the security rules. The following configuration in the
components.xml file indicates that the security rules are in the /security.drl file in the
EAR archive.

<components
xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmlns:drools="http://jboss.com/products/seam/drools"
xmlns:security="http://jboss.com/products/seam/security">

... ...

<drools:rule-base name="securityRules">
<drools:rule-files>
<value>/security.drl</value>

</drools:rule-files>
</drools:rule-base>

<security:identity authenticate-method=
"#{authenticator.authenticate}"/>

</components>

That's it for configuring the JBoss Rules engine. The template projects Seam Gen generated
already have the JBoss Rules-based security configured and provide a skeleton security.drl

file for you to enter your own rules.

20.3.3. Configuring JBoss Rules

288

VI
Testing Seam Applications

Developer testing has become a crucial component in modern software-development pro-
cesses. As a POJO framework, Seam was designed from the ground up for easy testability.
Seam goes beyond and above what other POJO frameworks do when it comes to testing.
Seam actually provides its own testing framework based on TestNG, which makes it easy to
write automated, out-of-the-container units and integration tests for Seam applications. In the
next two chapters, you learn how easy it is to write test cases for Seam applications. We also
explain how to set up the proper testing environment for out-of-the-container testing.

This page intentionally left blank

21
Unit Testing

The wide adoption of agile software-development methods, such as Test Driven Develop-
ment (TDD), has made unit testing a central task for software developers. An average-sized
web project can have hundreds, if not thousands, of unit test cases. Hence, testability has be-
came a core feature for software frameworks.

Plain Old Java Objects (POJOs) are easy to unit test. You just instantiate a POJO using the
standard Java new keyword, and run its methods in any unit-testing framework. It is no coin-
cidence that the spread of agile methodologies and POJO-based frameworks happened at the
same time in the last couple years. Seam is a POJO-based framework designed for easy unit
testing.

Enterprise POJOs do not live in isolation. They must interact with other POJOs and infra-
structure services (e.g., a database) to perform their tasks. The standard TDD and agile prac-
tice is to "mock" the service environment in the testing environment—that is, to duplicate the
server APIs without actually running the server. However, the mock services are often diffi-
cult to set up and depend on the testing framework you choose. To address this challenge,
Seam comes with a SeamTest class that greatly simplifies the mocking tasks. The SeamTest

facility is based on the popular TestNG framework, and it mocks all Seam services in your
development environment.

In this chapter, we discuss how to use the SeamTest class to write TestNG unit tests. Our test
cases are written against the stateful example application discussed in Chapter 6, A Simple
Stateful Application. To run the tests, enter the stateful project folder and run the command
ant test. The build script runs all tests we have in the test directory and reports the results
in the command console as follows:

$ant test

... ...

[testng] PASSED: simulateBijection

[testng] PASSED: unitTestSayHello2
[testng] PASSED: unitTestSayHello
[testng] PASSED: testSayHello
[testng] PASSED: unitTestStartOver

[testng] ===
[testng] HelloWorld
[testng] Tests run: 5, Failures: 0, Skips: 0
[testng] ===

The test results are also available in HTML format in the build/testout directory (see
Figure 21.1., “The test results for the stateful project”).

Figure 21.1. The test results for the stateful project

As we discuss in Appendix B, Using Example Applications as Templates, you can use the
stateful project as a template and place your own test cases in the test directory. This way,
you can reuse all configuration files, library JARs, and the build script. But for the curious,
we explain exactly how the build script sets up the classpath and configuration files to run the
tests in Appendix B, Using Example Applications as Templates.

292

What Is TestNG?

TestNG is a "next-generation" testing framework after JUnit. It sup-
ports many categories of developer tests, including unit tests, integ-
ration tests, end-to-end tests, etc. Compared with JUnit, TestNG
tests are more flexible and easier to write.

Like Seam, TestNG makes extensive use of Java annotations to sim-
plify the code. That makes it a natural choice for Seam application
developers. But more importantly, TestNG provides superior built-
in support for mock objects, which are crucial for testing frame-
work-managed applications. Seam takes advantage of this capability
and comes with a custom mock framework in the SeamTest class.
We cover the use of the SeamTest class in this chapter and the next.

In this chapter, we provide a basic introduction to TestNG, to get
you started with TestNG. All the examples should be fairly self-
explanatory. If you are interested in learning more about TestNG,
refer to the TestNG web site, http://testng.org/.

21.1. A Simple TestNG Test Case

Let's start with a simple method in the ManagerAction class to illustrate key elements in a
TestNG unit test case.

public class ManagerAction implements Manager {

public String startOver () {
person = new Person ();
confirmed = false;
return "hello";

}

... ...

}

21.1. A Simple TestNG Test Case

293

http://testng.org/

The following method tests the ManagerAction.startOver() method. It instantiates a
ManagerAction POJO, runs the startOver() method, and checks the return value is the
string hello. It is extremely simply, but it has all the basic elements of a unit test.

public class HelloWorldTest extends SeamTest {

@Test
public void unitTestStartOver() throws Exception {
Manager manager = new ManagerAction ();
assert manager.startOver().equals("hello");

}

... ...

}

Notice the @Test annotation on the unitTestStartOver() method. It tells TestNG that this
method is a test case and should be executed by the test runner. The HelloWorldTest class in-
herits from SeamTest, which gives test methods access to mock facilities built inside
SeamTest. We do not use any mock service in this simple test case, but you will see its use-
fulness in the next section.

TestNG enables you to have multiple test classes and multiple test run configurations. In each
test run configuration, you can choose to run one or several test classes. A test configuration
is defined in an XML file in the classpath. In the testing.xml test configuration file, we tell
TestNG that it should run the test cases in the HelloWorldTest class.

<suite name="HelloWorld" verbose="2" parallel="false">

<test name="HelloWorld">
<classes>
<class name="HelloWorldTest"/>

</classes>
</test>

</suite>

Now we use TestNG's built-in ANT task to run the test configuration. With the correct
classpath set up, we just need to pass in the test configuration file. This is a snippet from the
stateful project's build.xml file:

21.1. A Simple TestNG Test Case

294

<target name="test" depends="compile">

<taskdef resource="testngtasks"
classpathref="lib.classpath"/>

... ...

<testng outputdir="${build.testout}">
<classpath refid="lib.classpath"/>
<classpath path="${build.test}"/>
<xmlfileset dir="${test}"

includes="**/*.xml"/>
</testng>

</target>

The test results appear on the console, as well as in HTML format in the build/testout dir-
ectory, as we described before.

21.2. Simulating Dependency Bijection

Dependency bijection (see Chapter 1, What Is Seam?) is extensively used in Seam applica-
tions. Although bijection is easy for developers, it poses challenges for unit tests. Seam de-
pendency bijection annotations can work directly on private data fields. Without getter/setter
methods (or constructor methods), the test framework does not have access to those private
fields and, hence, cannot wire together POJOs and services for testing. An example is the
person field in the ManagerAction class; it is annotated with both @In and @Out, but it does
not have getter/setter methods. How can the unit test case in TestNG manipulate the
ManagerAction.person field?

@Stateful
@Name("manager")
@Scope (SESSION)
public class ManagerAction implements Manager {

@In @Out
private Person person;

... ...
}

21.2. Simulating Dependency Bijection

295

This is where the mock facilities in the SeamTest class become useful. The SeamTest class
provides the getField() and setField() methods to simulate bijection and operate directly
on Seam component's private fields. The following example shows how to use the get-

Field() and setField() methods. We first inject a Person object and test whether the injec-
tion succeeds. Then we run the ManagerAction.startOver() method, which refreshes the
person field, and test the result to be outjected. It is important to cast the getField() result
to the proper object type.

public class HelloWorldTest extends SeamTest {

@Test
public void simulateBijection() throws Exception {
Manager manager = new ManagerAction ();
Person in = new Person ();
in.setName ("Michael Yuan");

// Inject the person component
setField (manager, "person", in);
Person out = (Person) getField(manager, "person");
assert out != null;
assert out.getName().equals("Michael Yuan");

// Run a test method that updates and outjects
// the person component
assert manager.startOver().equals("hello");

// Check the new person component outjected
out = (Person) getField(manager, "person");
assert out != null;
assert out.getName() == null;

}

... ...
}

Accessing Private Fields?

The Java specification does not allow access to private fields from
outside the class. How does SeamTest do it, then? The SeamTest

class runs its own embedded Seam runtime, which instruments the
class bytecode to get around the regular JVM restriction.

21.3. Mocking the Database and Transaction

296

21.3. Mocking the Database and Transaction

Almost all Seam applications store their data in relational databases. Developers must unit-
test database-related functionalities. However, database testing outside the server container is
difficult. You must mock all the persistence-related container services, including creating a
fully functional EJB3 EntityManager, connecting to an embedded database, and managing a
database transaction. The SeamTest class, together with the JBoss Embeddable EJB3 mod-
ules, makes it easy to mock the database services. See Section 21.4., “Loading the Test Infra-
structure”, for more details on how to set up the test environment to load the proper
infrastructure.

The first thing you need to do is create an EntityManager. The resources/

META-INF/persistence.xml file contains information on how to connect to the embedded
database (see Chapter 25, Tomcat Deployment, for more details).

<persistence>
<persistence-unit name="helloworld">

<provider>
org.hibernate.ejb.HibernatePersistence
</provider>
<jta-data-source>java:/DefaultDS</jta-data-source>
<properties>
... ...
</properties>

</persistence-unit>
</persistence>

You should first create an EntityManagerFactory by passing the persistence unit name in the
persistence.xml file to a static factory method. From the EntityManagerFactory, you can
create an EntityManager and then inject it into your Seam component using the
SeamTest.setField() method discussed in the previous section.

EntityManagerFactory emf =
Persistence.createEntityManagerFactory("helloworld");

EntityManager em = emf.createEntityManager();

Manager manager = new ManagerAction ();
setField(manager, "em", em);

21.3. Mocking the Database and Transaction

297

Persistence Context Name

In a Seam Gen-generated project, the persistence unit name defaults
to the project name itself. So if you are porting the book's example
applications to a Seam Gen-generated project, don't forget to change
the persistence unit name for the createEntityManagerFactory()

method before you run the tests.

Now you can test any database methods in your Seam POJO. All database operations are per-
formed against an embedded HSQL database bundled in the test environment. You do not
need to set up this database yourself if you use the project template in the book's source code
bundle (see Appendix B, Using Example Applications as Templates and Chapter 25, Tomcat
Deployment). The only catch is that if you write any data into the database, you must enclose
the EntityManager operations inside a transaction such as the following:

em.getTransaction().begin();
String outcome = manager.sayHello ();
em.getTransaction().commit();

The following is a complete listing of the unitTestSayHello() test case, which tests the
ManagerAction.sayHello() method in stateful. It ties together everything we've discussed.

public class HelloWorldTest extends SeamTest {

@Test
public void unitTestSayHello() throws Exception {

Manager manager = new ManagerAction ();

EntityManagerFactory emf =
Persistence.createEntityManagerFactory("helloworld");

EntityManager em = emf.createEntityManager();
setField(manager, "em", em);

Person person = new Person ();
person.setName ("Thomas Heute");
setField(manager, "person", person);
setField(manager, "confirmed", false);

em.getTransaction().begin();

21.3. Mocking the Database and Transaction

298

String outcome = manager.sayHello ();
em.getTransaction().commit();

assert outcome.equals("fans");

List <Person> fans = manager.getFans();
assert fans!=null;
assert fans.get(fans.size()-1)

.getName().equals("Thomas Heute");

person = (Person) getField (manager, "person");
assert person != null;
assert person.getName().equals("Thomas Heute");

em.close();
}

... ...
}

21.4. Loading the Test Infrastructure

As we discussed in Section 21.1., “A Simple TestNG Test Case”, we define the tests in the
test/testng.xml file and run the tests in the testng ANT task. The Java source code for all
the test cases is located in the test directory.

To run the tests, especially the mock database tests (see Section 21.3., “Mocking the Data-
base and Transaction”) and integration tests (see Chapter 22, Integration Testing), the testng
test runner must first load the JBoss Embeddable EJB3 container and the Seam runtime. All
the Seam configuration files for the application must be on the classpath (or in META-INF and
WEB-INF directories on the classpath), just as they would be in a real application server.

Using Seam Gen

Projects that Seam Gen generates already have the test infrastruc-
ture properly set up. You just need to put the *Test.xml (i.e., the
testng.xml equivalent) files and the test case source files in the
test directory and run ant test. You can use the EntityManager

and other EJB3 services in the test cases.

21.4. Loading the Test Infrastructure

299

You can use the same configuration files for testing as for deployment, except for the
WEB-INF/components.xml file. The test/components.xml file is copied to the test classpath.
Consider the following example; it differs from the deployment version in two aspects. First,
you do not need the EAR name prefix in the EJB3 bean JNDI name pattern because no EAR
file exists in the tests. Second, you need an additional core:ejb component so that Seam can
load the JBoss Embedded EJB3 container when it starts up.

<components ...>

... same as deployment ...

<core:init
jndi-pattern="#{ejbName}/local"
debug="false"/>

<core:ejb installed="true"/>

</components>

To load the JBoss Embeddable EJB3 container, you also need to put its support library JARs
and configuration files on the test classpath. Those files are located in the lib/embeddedejb3

and lib/embeddedejb3/conf directories in the sample code bundle. Obviously, we also need
JSF, Hibernate, and Seam JARs on the classpath. These are the relevant parts of the
build.xml file for running the tests:

<property name="lib" location="../lib" />
<property name="testlib"

location="../lib/embeddedejb3" />
<property name="applib" location="lib" />
<path id="lib.classpath">
<fileset dir="${lib}" includes="*.jar"/>
<fileset dir="${testlib}" includes="*.jar"/>
<fileset dir="${applib}" includes="*.jar"/>

</path>

<target name="test" depends="compile">

<taskdef resource="testngtasks"
classpathref="lib.classpath"/>

<mkdir dir="${build.test}"/>

<javac destdir="${build.test}"
debug="true">

21.4. Loading the Test Infrastructure

300

<classpath>
<path refid="lib.classpath"/>
<pathelement location="${build.classes}"/>

</classpath>
<src path="${test}"/>

</javac>

<copy todir="${build.test}">
<fileset dir="${build.classes}"

includes="**/*.*"/>
<fileset dir="${resources}"

includes="**/*.*"/>
<fileset dir="${testlib}/conf"

includes="*.*"/>
</copy>

<copy todir="${build.test}/WEB-INF"
overwrite="true">

<fileset dir="${test}"
includes="components.xml"/>

</copy>

<testng outputdir="${build.testout}">
<classpath refid="lib.classpath"/>
<classpath path="${build.test}"/>
<xmlfileset dir="${test}"

includes="testng.xml"/>
</testng>

</target>

The beauty of this test setup is that the test runner bootstraps the entire runtime environment
for Seam. Thus, you can run not only unit tests, but also integration tests that fully utilize the
JSF EL to simulate real-world web interactions.

21.4. Loading the Test Infrastructure

301

This page intentionally left blank

22
Integration Testing

Unit tests are useful, but they have limitations. By definition, unit tests focus on POJOs and
their methods. All the mock infrastructure was there to make it possible to test those POJOs
in relative isolation. That means we do not get to test whether the POJO interacts correctly
with the framework itself. For instance, how do you test whether an outjected component has
the correct value in Seam runtime context? How do you know that the JSF interactions and
EL expressions have the desired effects? Here is where we need integration testing to test live
POJOs inside the Seam and JSF runtime. Unlike the white-box unit tests, the integration tests
test the application from the user's point of view.

Integration tests can also be much simpler than unit tests, especially when the tests involve
database operations and other container services. In integration tests, we test live Seam com-
ponents instead of the test-instantiated POJOs in unit test cases. An embedded Seam runtime
started by SeamTest manages those live Seam components. The embedded Seam runtime
provides the exact same services as the Seam runtime in JBoss AS servers. You do not need
to mock the bijection or manually set up the EntityManager and transaction for database
access.

If you use the book's example projects as a template (e.g., the stateful example) or use Seam
Gen to generate your projects, you are ready to go with the integration tests. You can just add
your own test cases, as described shortly, to the test directory and run ant test. No extra
configuration and setup is needed. If you choose to set up your own project from scratch, you
need to bootstrap the JBoss Embeddable EJB3 container, as we did in Section 21.4.,
“Loading the Test Infrastructure”.

In and out of Server Container Testing

A simple form of integration testing is to just deploy the application
in JBoss AS and run the tests manually through a web browser. But
for developers, the keyword for easy testability is automation.

Developers should be able to run integration tests unattended and
view the results in a nicely formatted report. Ideally, the tests should
run directly inside the development environment (i.e., JDK 5.0 or
directly inside an IDE) without starting any server or browser.

The biggest challenge in testing live Seam components is to simulate the JSF UI interactions.
How do you simulate a web request, bind values to Seam components and then invoke event-
handler methods from the test case? Fortunately, the Seam testing framework has made all
those easy. In the next section, we start from a concrete test example. As in Chapter 21, Unit
Testing, we use the stateful sample application as an example.

22.1. A Complete Test Script

In a Seam web application, we access Seam components through #{} EL expressions in JSF
pages. To access those components from TestNG test cases, the Seam test framework does
two things: First, it provides a mechanism to simulate (or "drive") the entire JSF interaction
lifecycle from the test code. Second, it binds test data to Seam components via JSF EL ex-
pressions or reflective method calls. Let's check out those two aspects in our test code.

22.1.1. Simulating JSF Interactions

In each web request/response cycle, JSF goes through several steps (phases) to process the re-
quest and render the response. Using the Script inner classes inside SeamTest, you can simu-
late test actions in each JSF phase by overriding the appropriate methods. The test runner
then just calls those lifecycle methods in the order of JSF lifecycle phases. The following
snippet shows the basic structure of a typical script to test the submission of a web form.

public class HelloWorldTest extends SeamTest {

@Test
public void testSayHello() throws Exception {

new Script() {

@Override
protected void updateModelValues()

throws Exception {

22.1. A Complete Test Script

304

// Bind simulated user input data objects
// to Seam components

}

@Override
protected void invokeApplication() {
// Invoke the UI event handler method for
// the HTTP POST button or link

}

@Override
protected void renderResponse() {
// Retrieve and test the response
// data objects

}

}.run();

}

... ...
}

The updateModelValues() method updates Seam data components based on the values in the
user input fields. The invokeApplication() method invokes the event-handler method for
the form submission button. It makes use of the data component constructed in the update-

ModelValues() stage. The renderResponse() method checks the outcome of the event-
handler method, including any component that is to be outjected. In the next several sections,
we look at those methods in more detail.

JSF Lifecycle Phases

JSF has five phases in a request/response cycle. You can refer to a
JSF book to understand exactly what the server does in each phase.
In this chapter, we demonstrate the three most commonly used JSF
phases. Each JSF lifecycle phase has a corresponding method in the
SeamTest.Script class. You need to override a lifecycle method
only if you need to perform tasks in its corresponding lifecycle
phase.

22.1.2. Using JSF EL Expressions

305

22.1.2. Using JSF EL Expressions

But how exactly do you "bind the test data to Seam components" and "invoke Seam event-
handler methods"? In regular JSF, we use EL expressions to bind data and actions, which JSF
resolves when the form is submitted. In the test script, we can also use JSF EL expressions.
The Seam testing framework resolves these.

You can use the getValue() and setValue() methods in SeamTest to bind value objects to
Seam components via EL expressions. The SeamTest.invokeMethod() method invokes a
Seam component method specified in an EL expression. The following example shows the
complete test script. In updateModelValues(), we bound the string "Michael Yuan" to the
#{person.name} component. In invokeApplication(), we invoke the #{manager.sayHello}

event-handler method. Then, in the renderResponse() method, we retrieve the
#{manager.fans} component and verify its content.

public class HelloWorldTest extends SeamTest {

@Test
public void testSayHello() throws Exception {

new Script() {

@Override
protected void updateModelValues()

throws Exception {
setValue("#{person.name}", "Michael Yuan");

}

@Override
protected void invokeApplication() {
assert getValue ("#{person.name}")

.equals("Michael Yuan");
assert invokeMethod("#{manager.sayHello}")

.equals("fans");
}

@Override
protected void renderResponse() {
List <Person> fans =

(List<Person>) getValue(
"#{manager.fans}");

assert fans!=null;
assert fans.get(fans.size()-1)

.getName().equals("Michael Yuan");

assert getValue("#{person.name}")

22.1.2. Using JSF EL Expressions

306

.equals("Michael Yuan");
}

}.run();

}

... ...
}

That's it for the test script. The EL expression enables us to write test cases that closely re-
semble the JSF page. We can test Seam components and EL expressions all together.
However, in some cases, we just want to test the behavior of Seam components without the
EL binding. In that case, we can access Seam components directly through a reflective API.

22.2. Accessing Seam Components Without the EL

In this section, we rewrite the earlier test script to use Seam API calls instead of EL
expressions.

22.2.1. Obtaining a Seam Component

In a Seam test case, we can retrieve any Seam component by its name via the static Compon-

ent.getInstance() method. The Boolean parameter indicates whether Seam should try to
create the component if it does not exist yet.

@Override
protected void updateModelValues()

throws Exception {
Person person =

(Person) Component.getInstance("person", true);
assert person!=null;
... ...

}

In this test, Seam instantiates a new Person object and makes it available under the compon-
ent name person.

22.2. Accessing Seam Components Without the EL

307

22.2.2. Binding Values to the Component

When we have a component object, we can bind test values to it via the regular setter
methods:

@Override
protected void updateModelValues()

throws Exception {
Person person =

(Person) Component.getInstance("person", true);
assert person!=null;
person.setName("Michael Yuan");

}

The updateModelValues() method asserts that the person component is not null and then
sets its property using the simulated user input.

22.2.3. Invoking UI Event Handler Method

After the data component is updated with the data in the current request, Seam invokes the UI
event-handler method to process the request. At this phase, the test script invokes the invoke-

Application() method. In this example, we obtain the manager stateful session bean and call
its sayHello() method. Notice that the person component is already injected into the
manager component at this stage.

@Override
protected void invokeApplication() {
Manager manager =

(Manager) Component.getInstance("manager", true);
String outcome = manager.sayHello();
assert outcome.equals("fans");

}

We assert that with the input name "Michael Yuan", the manager.sayHello() method suc-
cessfully returns the "fans" string to direct JSF to display the fans.xhtml page according to
the navigation rules.

22.2.3. Invoking UI Event Handler Method

308

22.2.4. Checking the Response

After the manager.sayHello() event-handler method exits, the fans property in the manager

component should be updated with the newly saved person name. Then Seam performs any
necessary outjection. In our example, the person component is outjected, although it is not
altered in the sayHello() method. Here we test those component states when the next JSF
page is rendered.

@Override
protected void renderResponse() {

Manager manager =
(Manager) Component.getInstance("manager", false);
List <Person> fans = manager.getFans();
assert fans!=null;
assert fans.get(fans.size()-1)

.getName().equals("Michael Yuan");

Person person =
(Person) Component.getInstance("person", false);
assert person!=null;
assert person.getName().equals("Michael Yuan");

}

Because both the person and manager components were already created in the previous
phases, we pass the false argument to the Component.getInstance() methods here.

Do Not Use getField()/setField() in Integration Tests

In the integration test script, Seam components such as person and
manager are real, live components in the embedded Seam runtime.
They are not POJOs instantiated by the test case. Thus, you cannot
use the getField() and setField() methods to access their data
fields, as we did in Chapter 21, Unit Testing. But then, you do not
need those methods to get around bijection here, either—injection
happens automatically, and you can get any outjected component
via a simple Component.getInstance() call. In other words, in the
integration test script, we should use Seam components the same
way we would use them from a JSF page.

22.2.4. Checking the Response

309

This page intentionally left blank

VII
Production Deployment

Seam applications can deploy in all Java EE 5.0- and J2EE 1.4-compliant application servers,
as well as the Tomcat servlet/JSP server. In this part, we show you how to deploy Seam ap-
plications in JBoss AS 4.x (with or without the EJB3 module), JBoss AS 5.x, Glassfish 1.x,
WebLogic 9.x, and Tomcat 5.5.x. We also cover important deployment issues such as how to
use a production database, how to tune for performance and scalability, and how to set up a
server cluster.

This page intentionally left blank

23
Java EE 5.0 Deployment

As developers, you have a variety of choices when it comes to the deployment environment
for Seam applications.

If you can deploy in a Java EE 5.0-compliant application server, you have no problem. Seam
is designed to work in that environment. The book examples are fully tested on the EJB3 pro-
file of JBoss AS 4.0.5+. With minimal modifications to configuration files and JAR files,
your Seam application could easily run in JBoss AS 5.0 and Sun's GlassFish Application
Server.

If you do not have a Java EE 5.0 application server but have access to a J2EE 1.4 server, you
can write your applications in Seam POJOs instead of EJB3 beans. This approach is dis-
cussed in Chapter 24, Seam Without EJB3. But as we mentioned, Seam POJOs are not as fea-
ture rich as EJB3 components (see Section 2.4.1., “Seam POJO Components”).

Finally, Tomcat fans can deploy both EJB3-based and POJO-based Seam applications in
plain Tomcat servers. The Tomcat deployment uses the JBoss Microcontainer to load the ne-
cessary services. We discuss that approach in Chapter 25, Tomcat Deployment.

In this chapter, we focus on Java EE 5.0 deployment of Seam applications.

23.1. JBoss AS 4.0.5

Strictly speaking, JBoss AS 4.0.5 is not a Java EE 5.0-compliant application server. But it has
the important pieces: EJB3 and JSF support. To deploy Seam applications in JBoss AS 4.0.5,
you must install the server from the GUI installer and choose the EJB3 profile. See Ap-
pendix A, Installing and Deploying JBoss AS, for more details. All the examples in this book
are configured to run in the JBoss AS 4.0.5 EJB3 profile.

23.2. JBoss AS 4.2.x and 5.x

JBoss AS 4.2.x and 5.x embed the JSF reference implementation (RI) instead of the Apache
MyFaces implementation embedded in JBoss AS 4.0.5. The JSF RI implements JSF 1.2 spe-
cification. To deploy Seam applications in JBoss AS 4.2.x and 5.x, you need to configure the
web.xml file in app.war/WEB-INF/ and comment out the MyFaces listener.

<!-- MyFaces -->
<!--
<listener>
<listener-class>

org.apache.myfaces.webapp.StartupServletContextListener
</listener-class>

</listener>
-->

Next, you need to enable the SeamELResolver in order for Seam to resolve component names
correctly in web pages. To do that, add the following element in your faces-config.xml file
in app.war/WEB-INF/. Also, you need to update the XML namespaces in faces-config.xml

to JSF 1.2. Below is an example.

<faces-config version="1.2"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd">

<application>
<el-resolver>
org.jboss.seam.jsf.SeamELResolver

</el-resolver>
</application>

<lifecycle>
<phase-listener>
org.jboss.seam.jsf.SeamPhaseListener

</phase-listener>
</lifecycle>

... more config ...

</faces-config>

23.2. JBoss AS 4.2.x and 5.x

314

Finally, since the JSF 1.2 RI libraries already bundle the el-ri.jar and el-api.jar files,
you can remove those JARs from your EAR archive and remove their references from the
mywebapp.ear/META-INF/application.xml file.

23.3. GlassFish

GlassFish is Sun's open-source Java EE 5.0 application server. Every Seam release since the
1.0 GA has been tested on GlassFish. In this section, we cover what configuration files you
must change to make the book examples (and Seam Gen-generated projects) run on
GlassFish. This is more involved than running Seam applications on JBoss AS.

First, we highly recommend that you use Hibernate as the Java Persistence API (JPA) pro-
vider in GlassFish. By default, GlassFish uses TopLink Essentials (a.k.a. the watered-down
"lesser TopLink") for JPA implementation. It might be fine for basic JPA needs, but Seam
makes good use of Hibernate-specific features, such as Hibernate validators and filters. In
fact, it would be foolish not to use the Hibernate JPA with Seam, considering how easy it is
to install Hibernate JPA in GlassFish: By including Hibernate JARs in your EAR, you can
enable Hibernate JPA for a single application. Or you can simply copy Hibernate JARs to
GlassFish's lib directory and enable Hibernate JPA for all applications. To use the Hibernate
JPA, just choose the proper persistence provider in your persistence.xml, as we do later.

If you have to use the "lesser TopLink" JPA, we also have a toplink build target in the
examples/glassfish project. But be aware that you need to load the database manually for
the hotel data because TopLink does not read the import.sql file.

All the changes from a JBoss deployment to a GlassFish deployment concern the configura-
tion files and library JARs only.

Because GlassFish uses the JSF 1.2 RI not MyFaces, you should make the same changes we
discussed in Section 23.2., “JBoss AS 4.2.x and 5.x”. They include: commenting out the con-
text listener for MyFaces in web.xml, adding a SeamELResolver in faces-config.xml, and
removing the el-ri.jar and el-api.jar files from the EAR and application.xml.

GlassFish requires you to declare all EJB3 session bean reference names in the web.xml file
for the web application to access the beans. This is a rather tedious process. You must add the
following lines in web.xml for each session bean in your application.

23.3. GlassFish

315

<ejb-local-ref>
<ejb-ref-name>
projectname/ManagerAction/local

</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>Manager</local>
<ejb-link>ManagerAction</ejb-link>

</ejb-local-ref>

Then if you need to inject an EJB3 session bean (A) into another session bean (B) using the
@In annotation, you also need to declare bean A in the JAR file containing bean B. That must
be done if bean A and bean B are in the same JAR file. You must add the ejb-local-ref ele-
ment to the META-INF/ejb-jar.xml file bundled in the JAR file containing bean B. That is te-
dious and is a pretty big inconvenience of GlassFish.

<ejb-jar ...>
<enterprise-beans>
<session>
<ejb-name>BeanA</ejb-name>
<ejb-local-ref>
<ejb-ref-name>
projname/BeanB/local

</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>BeanBInterface</local>
<ejb-link>BeanB</ejb-link>

</ejb-local-ref>
</session>

... more injections ...

</enterprise-beans>

... ...

</ejb-jar>

You also need to tell Seam the session bean naming pattern you just used in web.xml so that
Seam can locate those beans. Make sure you have the following in the components.xml file:

<core:init
jndi-pattern="java:comp/env/projectname/#{ejbName}/local"
debug="true"/>

23.3. GlassFish

316

To use the Hibernate JPA with GlassFish's built-in JavaDB (Derby database), you need a
persistence.xml file similar to the following. To use other databases, refer to the GlassFish
manual.

<persistence ...>
<persistence-unit name="bookingDatabase">
<provider>
org.hibernate.ejb.HibernatePersistence

</provider>
<jta-data-source>jdbc/__default</jta-data-source>
<properties>
<property name="hibernate.dialect"

value="org.hibernate.dialect.DerbyDialect"/>
<property name="hibernate.hbm2ddl.auto"

value="create-drop"/>
<property name="hibernate.show_sql"

value="true"/>
<property name="hibernate.cache.provider_class"

value="org.hibernate.cache.HashtableCacheProvider"/>
</properties>

</persistence-unit>
</persistence>

Finally, you need to bundle the following JAR files in your EAR in addition to any library
files you already need for JBoss AS deployment:

• hibernate*.jar: Hibernate3, Annotation, EntityManager JARs

• thirdparty-all.jar: Combined third-party JARs for Hibernate JPA support outside of
JBoss AS

• jboss-archive-browsing.jar: Required for Hibernate EntityManager

• commons-beanutils-1.7.0.jar: Required by Seam outside of JBoss AS

• commons-digester-1.6.jar: Required by Seam outside of JBoss AS

Now the application should deploy in GlassFish.

23.3. GlassFish

317

This page intentionally left blank

24
Seam Without EJB3

JBoss Seam was originally designed to be a framework on top of Java EE 5.0—to bridge the
gap between JSF and EJB3. However, Seam is also highly flexible and can stand on its own.
In fact, Seam has no hard dependency on either JSF or EJB3. In Section 2.4.1., “Seam POJO
Components”, we already mentioned that you can use POJO components to replace EJB3
components. That is good news for developers who are not yet ready to move to EJB3. We
can build Seam applications solely from POJOs, and such applications can be deployed in
any J2EE 1.4 application server, such as the default configuration of JBoss AS (i.e., no AOP
or EJB3 module installed), WebLogic AS, WebSphere AS, Oracle AS, and others. With a
little help from the JBoss MicroContainer, you can easily run those non-EJB3 Seam applica-
tions in plain Tomcat servers (see Section 25.1., “Packaging a POJO Application for
Tomcat”).

Running POJOs instead of EJB3 components has two trade-offs: slightly increased configura-
tion complexity and reduced infrastructure services. The increased configuration is needed to
bootstrap and wire essential services—in particular, the EntityManager and transaction man-
ager—into the POJOs. The EJB3 container used to do this transparently. The reduced infra-
structure service is the result of POJOs that cannot consume EJB container services. See Sec-
tion 2.4.1., “Seam POJO Components”, for a more complete explanation.

In this chapter, we use two example applications to show exactly how Seam POJO applica-
tions are developed and configured. Both are ported from the integration example (see
Chapter 10, Validating Input Data, Chapter 11, Clickable Data Tables, and Chapter 12,
Bookmarkable Web Pages). Both use JSF as the web framework.

• The jpa example does not have a dependency on the EJB3 session beans or the EJB3
container. It uses Seam POJOs to replace EJB3 session bean components. But it does use
the Java Persistence API (JPA, a.k.a. EJB3 entity bean API) for database entity objects.
Because the JPA is a standalone API that can be used in Java SE, it probably can be con-
sidered as a non-EJB3 API. This example uses Hibernate JPA as the JPA provider.

• The hibernate example shows how to eliminate all dependencies on EJB3 container and
JPA. It uses the Hibernate API to access the database.

We use the simplest code examples here to focus on the configuration of Seam POJOs. You
probably already know how to develop EJB3-based Seam applications, so we primarily dis-
cuss the difference between Seam POJO configuration and EJB3 bean configuration. This
way, you can easily port your existing EJB3 examples for deployment outside the EJB3 con-
tainer. If you want to check out more complex and more complete examples, refer to
examples/jpa and examples/hibernate in the Seam distribution. Without further ado, let's
check out our new POJO-based examples.

24.1. Seam POJO with JPA

Because the JPA is the same as the EJB3 entity bean and EntityManager API, the only dif-
ference between the EJB3-based integration and the POJO-based jpa example is the
manager component, which provides UI event-handler methods. In the integration example,
the manager component is an EJB3 session bean. In the jpa example, it is a POJO.

24.1.1. A Seam POJO Example

The Seam POJO component is actually simpler than the EJB3 session bean. No interface
needs to be implemented, and the only required annotation is @Name to give it a Seam name.

@Name("manager")
public class ManagerPojo {

... ...

}

However, Seam POJO components are stateful and have a conversational scope by default
(see Chapter 5, An Introduction to Stateful Framework and Chapter 7, Conversations). That
means a new ManagerPojo object is created each time the user clicks on the Say Hello button
and is destroyed when the updated response page is fully rendered. To mimic the stateless ob-
ject behavior as in the original Hello World example, we declare the ManagerPojo object to
have an APPLICATION scope, which basically makes it a singleton in the application.

24.1. Seam POJO with JPA

320

@Name("manager")
@Scope (APPLICATION)
public class ManagerPojo {

... ...

}

Finally, the @PersistenceContext annotation in the integration example makes the EJB3
container inject an EntityManager object. But because we no longer have the EJB3 container
here, we just inject a Seam-managed JPA EntityManager using the Seam @In annotation. It
works the same way as the EJB3 container-managed EntityManager. This is the complete
code for the ManagerPojo class:

@Name("manager")
public class ManagerPojo {

@In (required=false) @Out (required=false)
private Person person;

@In (create=true)
private EntityManager em;

Long pid;

@DataModel
private List <Person> fans;

@DataModelSelection
private Person selectedFan;

public String sayHello () {
em.persist (person);
return "fans";

}

@Factory("fans")
public void findFans () {
fans = em.createQuery(

"select p from Person p")
.getResultList();

}

public void setPid (Long pid) {
this.pid = pid;

24.1.1. A Seam POJO Example

321

if (pid != null) {
person =
(Person) em.find(Person.class, pid);

} else {
person = new Person ();

}
}

public Long getPid () {
return pid;

}

public String delete () {
Person toDelete = em.merge (selectedFan);
em.remove(toDelete);
findFans ();
return null;

}

public String update () {
return "fans";

}
}

24.1.2. Configuration

Turning EJB3 session bean components into Seam POJOs is an essential step in getting rid of
the application's dependency on EJB3. However, to deploy the application outside the EJB3
container, we need to configure Seam to take over some of the essential services that the
EJB3 container handles for us. In this section, we show you how to configure the jpa POJO
application for deployment in the default J2EE 1.4-compatible profile of JBoss AS 4.0.5.

We focus on the difference between Seam POJO and EJB3 configuration here. Hence, you
can change any Seam EJB3 application from session beans to POJOs, and then make the
changes highlighted here to make it deployable in J2EE.

Seam Gen for POJO Application

If you select the WAR application option in Seam Gen setup (see
Section 4.2.1., “Set Up Seam Gen”), Seam Gen will generate the
correct default configuration files for Seam POJO deployment in-
side the JBoss AS.

24.1.2. Configuration

322

First, in the faces-config.xml file, you must use the TransactionalSeamPhaseListener to
bootstrap the Seam runtime with Seam-managed transaction manager and persistence context.
We can no longer count on the EJB3 container to manage those for us now.

<faces-config>

<lifecycle>
<phase-listener>

org.jboss.seam.jsf.TransactionalSeamPhaseListener
</phase-listener>

</lifecycle>

</faces-config>

Next, you need to set up the persistence context and EntityManager to use in a non-EJB3 en-
vironment. In the persistence.xml file (in app.jar/META-INF/), you must specify a cache
provider and a mechanism to look up the JTA transaction manager—the EJB3 container auto-
matically does that for session beans, but we are dealing with POJOs here. Note that you also
need to explicitly specify the transaction type to be JTA for Seam to work properly.

<persistence>
<persistence-unit name="helloworld"

transaction-type="JTA">
<provider>
org.hibernate.ejb.HibernatePersistence

</provider>
<jta-data-source>
java:/DefaultDS

</jta-data-source>
<properties>
<property name="hibernate.dialect"

value="org.hibernate.dialect.HSQLDialect"/>
<property name="hibernate.hbm2ddl.auto"

value="create-drop"/>
<property name="hibernate.show_sql" value="true"/>

<property name="hibernate.cache.provider_class"
value="org.hibernate.cache.HashtableCacheProvider"/>

<property
name="hibernate.transaction.manager_lookup_class"
value="org.hibernate.transaction.JBossTransactionManagerLookup"/>

</properties>
</persistence-unit>

</persistence>

24.1.2. Configuration

323

On Other Application Servers

To deploy Seam POJOs on non-JBoss application servers, you only
need to customize the persistence.xml file for the particular ap-
plication server. You typically need to change the JNDI binding for
the data source, the Hibernate dialect for the database, and, most
important, the transaction manager lookup class. For instance, for
deployment on WebLogic, you would need the WeblogicTransac-

tionManagerLookup class.

For Seam to build an EntityManager and inject it into the POJO, we must bootstrap it in the
components.xml file. The core:entity-manager-factory component scans the persist-

ence.xml files and instantiates the persistence unit named helloworld (see the previous code
listing). Then the core:managed-persistence-context component builds an EntityManager

from the helloworld persistence unit. The EntityManager is named em. That ensures that the
@In (create=true) EntityManager em; statement in ManagerPojo works because it injects
the em named EntityManager to the field variable with the same name. Because the applica-
tion has no EJB3 components, you do not need to specify the jndiPattern attribute on the
core:init component.

<components ...>

<core:init debug="true"/>

<core:manager conversation-timeout="120000"/>

<core:entity-manager-factory name="helloworld"/>

<core:managed-persistence-context name="em"
entity-manager-factory="#{helloworld}"/>

</components>

No more need exists for EJB3-specific configuration, such as ejb-jar.xml and the
jndi-pattern property in components.xml.

24.1.3. Packaging

324

24.1.3. Packaging

For J2EE 1.4 deployment, you can always package your application in EAR format as we did
in Section 2.5., “Configuration and Packaging”. However, because our jpa POJO application
does not have any EJB components, we can package it in a simple WAR file. In a WAR file,
you put all the framework JAR files, as well as app.jar, which contains the application
POJO classes and persistence.xml, in the WEB-INF/lib directory. The only caveat is that
because the J2EE-compatible profile of JBoss AS installs only the core Hibernate library,
without annotation or JPA support, we need to include distribution JAR files from Hibernate
3.2.1 GA. This is the packaging structure of the jpa.war file:

jpa.war
|+ index.html
|+ hello.xhtml
|+ fans.xhtml
|+
|+ WEB-INF

|+ lib
|+ jboss-seam.jar
|+ jboss-seam-ui.jar
|+ jboss-seam-debug.jar
|+ jsf-facelets.jar
|+ el-api.jar
|+ el-ri.jar
|+ hibernate3.jar
|+ hibernate-annotations.jar
|+ hibernate-entitymanager.jar
|+ ejb3-persistence.jar
|+ app.jar

|+ META-INF
|+ persistence.xml

|+ ManagerPojo.class
|+ Person.class
|+ seam.properties

|+ web.xml
|+ faces-config.xml
|+ components.xml
|+ jboss-web.xml
|+ navigation.xml
|+ pages.xml

24.1.3. Packaging

325

Seam Gen for POJO Application

If you select the WAR application option in Seam Gen setup (see
Section 4.2.1., “Set Up Seam Gen”), Seam Gen will generate a
project template and build script for POJO WAR deployment as we
show in the jpa.war example. The Seam Gen-built WAR applica-
tion can be deployed in JBoss AS but might lack some library JARs
for deployment in other application servers.

The jboss-web.xml file replaces the jboss-app.xml in the EAR file to configure the scoped
classloader and root URL context. The jboss-web.xml file is not required but is nice to have
when multiple applications are deployed in the same server. This is an example of the jboss-

web.xml file:

<jboss-web>
<context-root>/jpa</context-root>
<class-loading

java2ClassLoadingCompliance="false">
<loader-repository>
jpa:loader=jpa
<loader-repository-config>
java2ParentDelegation=false

</loader-repository-config>
</loader-repository>

</class-loading>
</jboss-web>

On Other Application Servers

The library JARs we listed here in jpa.war are for JBoss AS de-
ployment. If you plan to deploy your WAR file in a non-JBoss ap-
plication server, you will probably need more dependency JARs.
For instance, for WebLogic AS 9.2 deployment, you need the My-
Faces JARs, the Apache Commons JARs, and several other third-
party JARs bundled in thirdparty-all.jar in the sample code
bundle. Refer to the jpa example in the Seam official distribution
for the necessary JARs for different application servers.

24.1.3. Packaging

326

The jboss-web.xml file is obviously a JBoss-specific configuration
file. The application works fine without it, and the root URL just
defaults to the WAR filename. For other application servers, you
can refer to their manuals to find out how to configure equivalent
options in the previous jboss-web.xml.

24.2. Using Hibernate POJOs and API

If you do not want to use the JPA for persistence objects, you can use Hibernate POJOs and
data access APIs. JPA is a complete ORM solution, and Hibernate implements all JPA fea-
tures, including all optional features such as caching and filtering. The Hibernate JPA also
provides complete support for Hibernate ORM annotations beyond the JPA standard (e.g., the
Hibernate validator we discussed in Chapter 10, Validating Input Data). The Hibernate JPA
should be sufficient for most application needs. However, as an open-source framework at the
forefront of ORM innovation, some Hibernate features are not yet standardized. In particular,
JPA does not yet support these features:

• The JPA query language is not as rich as that in Hibernate. For instance, JPA does not
support Hibernate's query-by-criteria or query-by-example.

• Hibernate offers more methods to manage objects with detached state; JPA supports only
one merge() operation in the EntityManager.

• The object type system in Hibernate is much richer than that in JPA.

• Hibernate gives you more control over the size of the extended persistence context.

If you need to use those features, you must use the Hibernate API directly. You also need to
use the Hibernate API directly if you are working with legacy Hibernate code (e.g., a large
number of XML mapping files and queries in existing applications).

Using Hibernate API in EJB3 Applications

Because Hibernate is a superset of JPA, sometimes you might want
to use the Hibernate Session instead of the JPA EntityManager in

24.2. Using Hibernate POJOs and API

327

your EJB3 session bean components. Just follow the next example
to build a managed Hibernate Session and inject it into your EJB3
session bean.

A Hibernate POJO is the same as a JPA entity bean because Hibernate supports the same an-
notations as JPA. Of course, for earlier Hibernate versions, you can use XML files instead of
annotations to map POJOs to database tables. In this example, we take the annotation ap-
proach and leave the Person class unchanged from the integration example.

24.2.1. Using the Hibernate API

To use the Hibernate API to manage the database objects, we inject a Hibernate Session in-
stead of an EntityManager into the ManagerPojo class. The API methods in the Hibernate
Session is roughly equivalent to methods in the EntityManager; they have only slightly dif-
ferent method names. This is the Hibernate version of the ManagerPojo class:

@Name("manager")
@Scope (APPLICATION)
public class ManagerPojo {

@In (required=false) @Out (required=false)
private Person person;

@In (create=true)
private Session helloSession;

Long pid;

@DataModel
private List <Person> fans;

@DataModelSelection
private Person selectedFan;

public String sayHello () {
helloSession.save (person);
return "fans";

}

@Factory("fans")
public void findFans () {
fans = helloSession.createQuery(

"select p from Person p")
.list();

24.2.1. Using the Hibernate API

328

}

public void setPid (Long pid) {
this.pid = pid;

if (pid != null) {
person = (Person)
helloSession.get(Person.class, pid);

} else {
person = new Person ();

}
}

public Long getPid () {
return pid;

}

public String delete () {
Person toDelete =
(Person) helloSession.merge (selectedFan);

helloSession.delete(toDelete);
findFans ();
return null;

}

public String update () {
return "fans";

}

}

24.2.2. Configuration

When the Hibernate session helloSession component is bootstrapped (and injected), Seam
looks for the hibernate.cfg.xml file, instead of the persistence.xml file, in the JAR files
in its classpath. This is the structure for the app.jar file in the Hibernate application:

app.jar
|+ ManagerPojo.class
|+ Person.class
|+ seam.properties
|+ hibernate.cfg.xml

24.2.2. Configuration

329

The hibernate.cfg.xml file has pretty much the same options as the persistence.xml file.
It builds a Hibernate session factory and registers it under the JNDI name
java:/helloSession. Note that you must put the database entity POJO class name in a
mapping element. If you have multiple entity POJO classes in your application, use multiple
mapping elements. The mapping elements tell Hibernate to read the ORM annotations on
those classes and map them to database tables.

<hibernate-configuration>
<session-factory name="java:/helloSession">
<property name="show_sql">false</property>
<property name="connection.datasource">
java:/DefaultDS

</property>
<property name="hbm2ddl.auto">
create-drop

</property>
<property name="cache.provider_class">
org.hibernate.cache.HashtableCacheProvider

</property>
<property name="transaction.flush_before_completion">
true

</property>
<property name="connection.release_mode">
after_statement

</property>
<property name="transaction.manager_lookup_class">

org.hibernate.transaction.JBossTransactionManagerLookup
</property>
<property name="transaction.factory_class">

org.hibernate.transaction.JTATransactionFactory
</property>

<mapping class="Person"/>
</session-factory>

</hibernate-configuration>

Finally, you must bootstrap the helloSession component in the components.xml file. The
core:hibernate-session-factory component sets up the session factory, and the
core:managed-hibernate-session component creates a Hibernate session named helloSes-

sion that can be injected into ManagerPojo. Note that the Hibernate session component name
must match the JNDI name in hibernate.cfg.xml so that Hibernate knows which session
factory it is supposed to use to create the session.

24.2.2. Configuration

330

<components ...>

<core:init debug="true"/>

<core:manager conversation-timeout="120000"/>

<!-- Bootstrap Hibernate -->
<core:hibernate-session-factory/>
<core:managed-hibernate-session

name="helloSession" auto-create="true"/>

</components>

You can now package the application in a WAR format, as we discussed earlier (Sec-
tion 24.1.3., “Packaging”).

24.2.2. Configuration

331

This page intentionally left blank

25
Tomcat Deployment

Besides full-blown Java EE application servers, many developers want a simpler way to de-
ploy applications on "lightweight" servers such as the Tomcat web server. In this chapter, we
discuss how to run Seam applications on plain Tomcat servers. The approach is to use the
JBoss MicroContainer to bootstrap necessary services from your own application, much like
the Spring framework does for service wiring.

JBoss MicroContainer Is Key for Service Bootstrapping

The JBoss MicroContainer (http://www.jboss.com/
products/jbossmc) is an XML-based dependency injection frame-
work at the core of the JBoss application server. It can also be used
as a stand-alone framework. Hence, we can use the JBoss Micro-
Container to load dependency services in non-JBoss application
server environments.

To understand exactly how the JBoss MicroContainer works, refer
to its documentation. In this chapter, we cover only settings to load
Seam services.

Using the JBoss MicroContainer bootstrapping, it is possible to run Seam EJB3 applications
in Java SE without any container. This is especially useful for test-driven development of
Seam applications (see Chapter 21, Unit Testing and Chapter 22, Integration Testing). We
cover this use case at the end of the chapter.

Before we start, let's emphasize that JBoss AS is by far the best server to run Seam applica-
tions. We do not recommend that you run production Seam applications in plain Tomcat. We
discuss the Tomcat build in this chapter for educational purposes so that you can use the same
techniques to run Seam applications in other Java application servers.

http://www.jboss.com/products/jbossmc
http://www.jboss.com/products/jbossmc

"Lightweight" Containers?

Some may argue that running Seam applications on a simple Java
server, such as Tomcat, would reduce the runtime footprint and res-
ult in better performance. That is simply not true. First, JBoss AS
offers much better performance compared with plain Tomcat be-
cause JBoss AS supports sophisticated clustering and caching fea-
tures. Second, to run Seam applications outside of JBoss AS, the ap-
plication must bootstrap all necessary JBoss services itself, so you
must bundle several JBoss library JAR files inside the application.
The runtime memory footprint of a Tomcat application is not that
different from the equivalent JBoss application. Furthermore, you
cannot share those JBoss libraries between applications deployed in
Tomcat. That is a severe disadvantage if you need to run multiple
Seam applications in the same Tomcat server.

You must have JDK 5 and Tomcat 5.5+ to run Seam applications. If you have not done so,
download Tomcat from http://tomcat.apache.org/ and install it by unzipping the down-
loaded archive. You must also set the JAVA_HOME environment variable to your JDK 5 install-
ation directory.

The example projects for this chapter are adopted from the integration example discussed
earlier in the book. The tomcatjpa example shows how to build a Tomcat WAR application
for Seam POJO applications without EJB3 session beans, and the tomcatejb3 example shows
how to build a Seam EJB3 application for Tomcat. To run the examples, just build the
projects and copy the tomcatjpa.war or tomcatejb3.war files from build/jars to the
webapps directory in your Tomcat installation, and then run bin/startup.sh to start Tomcat.
The applications are then accessible from http://localhost:8080/tomcatjpa/ and
http://localhost:8080/tomcatejb3/ URLs respectively.

Seam Gen Does Not Support Tomcat Deployment

The WAR application option in Seam Gen (see Section 4.2.1., “Set
Up Seam Gen”) is designed to support Seam POJO applications in-
side JBoss AS (see Chapter 24, Seam Without EJB3) but not embed-
ded EJB3 applications in Tomcat.

25.1. Packaging a POJO Application for Tomcat

334

http://tomcat.apache.org/

25.1. Packaging a POJO Application for Tomcat

In Chapter 24, Seam Without EJB3, we covered how to build Seam POJO applications for de-
ployment in J2EE 1.4 application servers. We discussed how to build a WAR deployment
archive for the application (Section 24.1.3., “Packaging”). Of course, those WAR files are not
yet deployable in the plain Tomcat server, for two reasons: First, Seam requires a few third-
party library JARs that are bundled in JBoss AS but not in Tomcat. Second, Seam requires a
JTA-based transactional data source, which is not available in Tomcat.

In this section, we resolve those two issues. The complete example is in the tomcatjpa

project in the source code bundle.

25.1.1. Bundling Support JARs

In the WAR file, you can add all support library JARs in the WEB-INF/lib directory. As it
turns out, Tomcat requires quite a few JARs to run Seam. To see the complete list of JARs,
build the tomcatjpa project and look into the contents in build/jars/tomcatjpa.war (run
jar xvf tomcatjpa.war to expand the archive). Those JARs are divided into the following
categories:

• JSF support libraries—By default, Tomcat does not support any web framework beyond
servlets and simple JSP. We must add JSF implementation JARs such as myfaces*.jar.
If you need to use Facelets or Ajax4jsf or any other JSF component library, you must add
their JARs as well.

• Hibernate support libraries—The hibernate3.jar, hibernate-annotations.jar,
hibernate-entitymanager.jar, and ejb3-persistence.jar files are from the Hibernate
3.2 release. It supports the Hibernate core, annotations, and JPA EntityManager.

• JBoss MicroContainer libraries—The JBoss MicroContainer is used to bootstrap a JTA
data source for Seam. We need all JARs from the JBoss MicroContainer distribution, as
well as JARs for the JBoss transaction, the JDBC driver, the embedded HSQL database
engine, etc. You can find a complete list of JARs required for the MicroContainer in the
lib/microcontainer directory in the source code bundle.

• Seam libraries—The jboss-seam-*.jar file provides support for the JBoss Seam
framework.

25.1.1. Bundling Support JARs

335

• Third-party utility libraries—Seam requires a few third-party utility JARs: the Apache
Commons JARs (i.e., commons-*.jar), as well as dynamic code-generation/-manipulation
library JARs cglib.jar and javassist.jar.

tomcatjpa.war
|+ index.html
|+ hello.xhtml
|+ fans.xhtml
|+
|+ WEB-INF

|+ lib
|+ jboss-seam*.jar
|+ jsf-facelets.jar
|+ el-*.jar
|+ hibernate*.jar
|+ ejb3-persistence.jar
|+ commons-*.jar
|+ cglib.jar
|+ javassist.jar
|+ myfaces*.jar
|+ ... Microcontainer JARs ...
|+ app.jar

|+ META-INF
|+ persistence.xml

|+ ManagerPojo.class
|+ Person.class
|+ seam.properties

|+ classes
|+ jboss-beans.xml
|+ jndi.properties
|+ log4j.xml

|+ web.xml
|+ faces-config.xml
|+ components.xml
|+ jboss-web.xml
|+ navigation.xml
|+ pages.xml

The MicroContainer requires the configuration files in the WEB-INF/classes directory, as we
discuss in Section 25.1.2., “Configuring the Transactional DataSource”.

25.1.2. Configuring the Transactional DataSource

336

25.1.2. Configuring the Transactional DataSource

So far, we have included MicroContainer JARs in the WAR and instantiated the Seam com-
ponent to bootstrap the MicroContainer. But we still need a few configuration files to make
the MicroContainer load the JTA data source from the embedded HSQL database and then
register it under the JNDI name java:/DefaultDS.

The MicroContainer requires three configuration files. They must be placed in the classpath
of the application. In our example, we put those files in the WEB-INF/classes directory in the
WAR application archive. Let's now examine them one by one.

The most important MicroContainer configuration file is the jboss-beans.xml file, shown
here. It first sets up a local JNDI server because the Tomcat JNDI server is read-only. It then
sets up a JTA transaction manager and, finally, a data source with the appropriate connection
settings and JNDI name. In the following example, a HSQL data source is registered under
java:/DefaultDS for use in persistence.xml or hibernate.cfg.xml. You can easily edit
the jboss-beans.xml file to support alternate databases.

<deployment ...>

<bean name="Naming"
class="org.jnp.server.SingletonNamingServer"/>

<bean name="TransactionManagerFactory"
class="org.jboss.seam.microcontainer.TransactionManagerFactory"/>
<bean name="TransactionManager" class="java.lang.Object">
<constructor factoryMethod="getTransactionManager">
<factory bean="TransactionManagerFactory"/>

</constructor>
</bean>

<bean name="helloDatasourceFactory"
class="org.jboss.seam.microcontainer.DataSourceFactory">

<property name="driverClass">
org.hsqldb.jdbcDriver

</property>
<property name="connectionUrl">
jdbc:hsqldb:.

</property>
<property name="userName">sa</property>
<property name="jndiName">
java:/DefaultDS

</property>
<property name="minSize">0</property>
<property name="maxSize">10</property>
<property name="blockingTimeout">

25.1.2. Configuring the Transactional DataSource

337

1000
</property>
<property name="idleTimeout">
100000

</property>
<property name="transactionManager">
<inject bean="TransactionManager"/>

</property>
</bean>
<bean name="helloDatasource"

class="java.lang.Object">
<constructor factoryMethod="getDataSource">
<factory bean="helloDatasourceFactory"/>

</constructor>
</bean>

</deployment>

Next, you need to include the jndi.properties file in the application classpath (i.e.,
WEB-INF/classes) to set up a local JNDI server because the Tomcat default JNDI server is
read-only. Note that we break the file into four lines for printing convenience; in reality, each
of the two property name and value pairs should be on the same line.

java.naming.factory.initial
org.jnp.interfaces.LocalOnlyContextFactory

java.naming.factory.url.pkgs
org.jboss.naming:org.jnp.interfaces

Finally, the log4j.xml file on the classpath configures the logging for the MicroContainer.

<log4j:configuration
xmlns:log4j="http://jakarta.apache.org/log4j/"
debug="false">

<appender name="CONSOLE"
class="org.apache.log4j.ConsoleAppender">

<errorHandler class=
"org.jboss.logging.util.OnlyOnceErrorHandler"/>

<param name="Target" value="System.out"/>

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern"
value="%d{HH:mm:ss,SSS} %-5p [%c{1}] %m%n"/>

25.1.2. Configuring the Transactional DataSource

338

</layout>
</appender>

<root>
<priority value="INFO"/>
<appender-ref ref="CONSOLE"/>

</root>

</log4j:configuration>

25.1.3. Bootstrapping the JBoss MicroContainer

In the WEB-INF/components.xml file, we must instantiate the built-in core:microcontainer

component to bootstrap the MicroContainer services. Add the following element to the
components.xml file:

<components>

... ...

<core:microcontainer installed="true"/>

</components>

The whole process works like this: When Tomcat deploys the WAR file, it loads the web.xml

file, which, in turn, loads Seam as a listener. The Seam runtime looks into the
components.xml file when initializing Seam services. It finds out that it needs to load the
JBoss MicroContainer. The JBoss MicroContainer then uses configuration files in the
WEB-INF/classes directory to instantiate service objects from the bundled JAR files.

25.2. Packaging an EJB3 Application for Tomcat

So far, we have showed that you can build a Tomcat-deployable WAR file for Seam POJO
applications. Those applications do not require an EJB3 container to run. However, as we
also mentioned, without the EJB3 container, you lose access to all the great EJB3 container
services that complement Seam (Section 2.4.1., “Seam POJO Components”).

25.1.3. Bootstrapping the JBoss MicroContainer

339

So what if you want to take advantage of EJB3 container services but still do not want to run
a fully certified Java EE 5.0 application server? Well, with the JBoss Embeddable EJB3, you
can have the best of both worlds. Again, the JBoss MicroContainer does the magic.

Embeddable EJB3 for Out-of-Container Testing

Using the JBoss MicroContainer and EJB3 libraries, you can boot-
strap a complete EJB3 container in a plain Java SE environment.
This is useful when you need to test EJB3 applications outside
the application server (see more in Section 21.4., “Loading the Test
Infrastructure”).

In this section, we walk through the tomcatejb3 example to show you exactly what is needed
to run the JBoss Embeddable EJB3 with Seam.

Building Tomcat WAR files for Seam: Official Examples

The official example applications in the Seam distribution support
Embeddable EJB3-based Tomcat deployment as well. You can
build the Tomcat WAR file via the ant tomcat command.

25.2.1. Bundling Necessary JARs in the WAR File

As we described in Section 25.1.1., “Bundling Support JARs”, we need quite a few JARs to
support Seam and MicroContainer deployment in Tomcat. For the Embeddable EJB3, we
also need the complete set of JBoss EJB3 JAR files, as well as other JARs for container ser-
vices that the MicroContainer would bootstrap. To make JAR management easier, we have
consolidated the JAR files into several *-all.jar files: JBoss EJB3 JAR files, including all
MicroContainer JARs, are consolidated in a single jboss-ejb3-all.jar file; all third-party
support libraries for EJB3 (including cglib.jar and javassist.jar, as mentioned before)
are packaged in the thirdparty-all.jar file; and Hibernate libraries are packaged in
hibernate-all.jar. Additionally, Seam requires a few Apache Commons JARs and the
jstl.jar file to work. All the Embeddable EJB3-related JARs are in the lib/embeddedejb3

directory in the book's source code bundle.

25.2.1. Bundling Necessary JARs in the WAR File

340

The following listing shows the structure of the tomcatejb3.war file. All the library JAR
files are in the WEB-INF/lib directory. Of course, you must add more libraries here if you
need additional framework support (e.g., jBPM).

tomcatjpa.war
|+ index.html
|+ hello.xhtml
|+ fans.xhtml
|+
|+ WEB-INF

|+ lib
|+ jboss-seam*.jar
|+ jsf-facelets.jar
|+ el-*.jar
|+ myfaces*.jar
|+ jboss-ejb3-all.jar
|+ thirdparty-all.jar
|+ hibernate-all.jar
|+ commons-*.jar
|+ jstl.jar
|+ app.jar

|+ META-INF
|+ ejb-jar.xml
|+ persistence.xml

|+ ManagerPojo.class
|+ Person.class
|+ seam.properties

|+ classes
|+ ... files from lib/embeddedejb3/conf ...

|+ web.xml
|+ faces-config.xml
|+ components.xml
|+ jboss-web.xml
|+ navigation.xml
|+ pages.xml

Next, let's look at the Embeddable EJB3 configuration files in WEB-INF/classes.

25.2.2. Bundling Embeddable EJB3 Configuration Files

We already know that the jboss-beans.xml file loads services in the MicroContainer. For
the Embeddable EJB3, there is already a set of preconfigured jboss-beans.xml files to load
up the services available in an EJB3 container. Those files are located in the
lib/embeddedejb3/conf directory in the source code bundle and are packaged in the
WEB-INF/classes directory in tomcatejb3.war.

25.2.2. Bundling Embeddable EJB3 Configuration Files

341

• The embedded-jboss-beans.xml file is the main configuration file for the JBoss Micro-
Container, which bootstraps all the infrastructure services beneath Seam. For instance, it
constructs the initial JNDI properties, the transaction manager, the security manager, the
default data source, etc. The XML syntax in this file is rather dense. Fortunately, you do
not typically need to change this file for your applications.

• The jboss-jms-beans.xml and security-beans.xml files are also JBoss MicroContainer
configuration files to set up the JMS messaging provider (with persistent data stores) and
the JAAS security manager. Again, you do not typically need to change those files.

• The ejb3-interceptors-aop.xml file defines interceptor services that are required for
EJB3 beans. You do not need to change this file.

• The default.persistence.properties and jndi.properties files define properties for
the underlying persistence engine and the JNDI classes.

• The log4j.xml file replaces the server/default/conf/log4j.xml file in JBoss AS. It
configures how the application logs to the console and various logging files.

• The login-config.xml file is the same security authentication file in the EAR file. You
can modify it if you want to use Java EE-managed security.

Refer to the JBoss Embeddable EJB3 documentation for how to customize the configuration
files.

25.2.3. Bootstrapping the JBoss MicroContainer

With the JAR files and configuration files properly set up, you must tell the application to
start up the embedded Seam/EJB3 services when it is deployed. That is done by setting the
installed property on the core:ejb component to true in the WEB-INF/components.xml

file, as follows. Because no more EAR file exists, we no longer need the projname prefix in
the JNDI pattern for locating EJB3 beans.

<components ...>
<core:init jndi-pattern="#{ejbName}/local"

debug="true"/>

<core:manager conversation-timeout="120000"/>

<core:ejb installed="true"/>

</components>

25.2.3. Bootstrapping the JBoss MicroContainer

342

25.2.4. Using an Alternative Data Source

The embedded-jboss-beans.xml file configures the default data source, registered under the
JNDI name java:/DefaultDS, for the application. But what if you need to use an alternative
database? The standard data source configuration in JBoss AS (discussed in Chapter 26, Us-
ing a Production Database) would not work because Tomcat does not support the *-ds.xml

file for data source definition. You could edit the embedded-jboss-beans.xml file and
change the database setting in it (see Section 25.1.2., “Configuring the Transactional Data-
Source”), or you could add the jboss-beans.xml configuration file to provide an alternative
data source. The following is an example jboss-beans.xml file inside the META-INF directory
of the EJB3 JAR file (i.e., the app.jar file, in our examples). It creates a data source re-
gistered under the JNDI name java:/bookingDatasource. You can change the database
driver, connection URL, and many other settings.

<deployment xmlns:xsi=...>

<bean name="bookingDatasourceBootstrap" class=
"org.jboss.resource.adapter.jdbc.local.LocalTxDataSource">

<property name="driverClass">
org.hsqldb.jdbcDriver

</property>
<property name="connectionURL">
jdbc:hsqldb:.

</property>
<property name="userName">sa</property>
<property name="jndiName">
java:/bookingDatasource

</property>
<property name="minSize">0</property>
<property name="maxSize">10</property>
<property name="blockingTimeout">
1000

</property>
<property name="idleTimeout">
100000

</property>
<property name="transactionManager">
<inject bean="TransactionManager"/>

</property>
<property name="cachedConnectionManager">
<inject bean="CachedConnectionManager"/>

</property>
<property name="initialContextProperties">
<inject bean="InitialContextProperties"/>

</property>
</bean>

25.2.4. Using an Alternative Data Source

343

<bean name="bookingDatasource"
class="java.lang.Object">

<constructor factoryMethod="getDatasource">
<factory
bean="bookingDatasourceBootstrap"/>

</constructor>
</bean>

</deployment>

The JBoss MicroContainer automatically picks up all jboss-beans.xml files in the
application's classpath during bootstrapping. You can use those jboss-beans.xml files to
provide alternatives for other default services in embedded Seam/EJB3 as well. The JBoss
MicroContainer is flexible when it comes to services wiring, so use it!

25.2.4. Using an Alternative Data Source

344

26
Using a Production Database

Seam is an ideal solution for developing database-driven web applications. But so far in this
book, for the sake of simplicity, we have not showed how to use a production-quality rela-
tional database in our example applications. Instead, all our examples use the HSQL database
engine embedded inside the JBoss AS to store data. The advantage of using HSQL is that we
do not need extra configuration in the application; it is the default java:/DefaultDS data
source in the server environment.

However, in a real-world web application, we almost always need to use a production data-
base, such as MySQL, Oracle, Sybase, or MS SQL, to store application data. Fortunately, it is
actually very easy to configure alternative database back ends for a Seam application. In this
chapter, we show you exactly how to set up a MySQL database back end for the Seam Hotel
Booking example.

26.1. Installing and Setting Up the Database

Obviously, you have to install your favorite production database server first. The database
server can reside on its own computer or share the same computer as the JBoss AS instance.
Most database servers also support multiple databases and multiple users. Each database is a
collection of relational tables for a user or an application. Each user has a username/password
combo and has the privilege to read or write in a set of databases. For this exercise, you
should install the latest MySQL server and then create a database named seamdemo for the
Seam Hotel Booking example application. You should grant read/write privilege to the
seamdemo database for the user myuser with the password mypass.

Next, you should initialize the database. You need to create the table structures and populate
the tables with initial data (e.g., the hotel names and locations in this example). To do that for
the Seam Hotel Booking example, run the productiondb/seamdemo.sql script on the
MySQL command line against the seamdemo database. The following is a snippet from the
seamdemo.sql script file:

DROP TABLE IF EXISTS `Booking`;
CREATE TABLE `Booking` (
`id` bigint(20) NOT NULL auto_increment,
`creditCard` varchar(16) NOT NULL default '',
`checkinDate` date NOT NULL default '0000-00-00',
`checkoutDate` date NOT NULL default '0000-00-00',
`user_username` varchar(255) default NULL,
`hotel_id` bigint(20) default NULL,
PRIMARY KEY (`id`),
KEY `FK6713A0396E4A3BD` (`user_username`),
KEY `FK6713A03951897512` (`hotel_id`)

);

DROP TABLE IF EXISTS `Hotel`;
CREATE TABLE `Hotel` (
`id` bigint(20) NOT NULL auto_increment,
`address` varchar(100) NOT NULL default '',
`name` varchar(50) NOT NULL default '',
`state` char(2) NOT NULL default '',
`city` varchar(20) NOT NULL default '',
`zip` varchar(5) NOT NULL default '',
PRIMARY KEY (`id`)

);
INSERT INTO `Hotel` VALUES (...),(...)...

DROP TABLE IF EXISTS `User`;
CREATE TABLE `User` (
`username` varchar(255) NOT NULL default '',
`name` varchar(100) NOT NULL default '',
`password` varchar(15) NOT NULL default '',
PRIMARY KEY (`username`)

);
INSERT INTO `User` VALUES (...),(...)...

Automatic Initialization

The database initialization step is not absolutely necessary. For in-
stance, in the HSQL-based examples early in the book, we con-
figured Seam to automatically create the table schema based on the
entity bean annotations (see the last section in this chapter). We
then placed an import.sql file in the EJB3 JAR file. The SQL
INSERT statements in the import.sql file are automatically ex-
ecuted when the application is deployed.

26.1. Installing and Setting Up the Database

346

See the MySQL administration documentation on how to install the server, create databases,
manage users, and run SQL scripts from the command line.

In the following sections, we explain how to set up the JBoss AS to use the production data-
base. The process can be easily automated by Seam Gen (see Chapter 4, Rapid Application
Development Tools). But we recommend you read the rest of this chapter to understand ex-
actly what goes on behind the Seam Gen automated project generator.

26.2. Installing Database Driver

Next, you need to install a JDBC driver for the database. The driver allows Seam applications
to interact with the database using standard JDBC APIs, which is required for the EJB3 per-
sistence engine in Seam to function.

You can find JDBC drivers for your database on the database vendor's web site. For MySQL
database, you can download the driver for free from www.mysql.com/products/connector-j.
This is just a JAR file, which you need to copy into the server/default/lib directory of the
JBoss AS installation (replace default with any alternative server configuration you are
using).

26.3. Defining a DataSource

For the application to reference the database as a data source, you must create a data source
configuration file. Different application servers have different ways of doing it. In the Seam
Hotel Booking example, the productiondb/booking-ds.xml file configures the MySQL data
source for JBoss AS. It contains the URL to access the database server, the database name,
and the username and password of the user who would access the database on behalf of the
Java application. You must copy this file to the server/default/deploy directory of your
JBoss AS. Then all your applications can access the seamdemo database on this MySQL serv-
er via a DataSource object obtained from the java:/bookingDatasource JNDI name.

<datasources>
<local-tx-datasource>
<jndi-name>bookingDatasource</jndi-name>
<connection-url>
jdbc:mysql://localhost:3306/seamdemo

</connection-url>
<driver-class>

26.2. Installing Database Driver

347

www.mysql.com/products/connector-j

com.mysql.jdbc.Driver
</driver-class>
<user-name>myuser</user-name>
<password>mypass</password>

</local-tx-datasource>
</datasources>

Alternative Data Sources in Tomcat Deployment

Tomcat does not have a standard way of configuring data sources
because it does not support JTA data sources out of the box. To use
an alternative database in a Tomcat-deployed Seam application, you
must configure it in the Microcontainer configuration files (see Sec-
tion 25.1.2., “Configuring the Transactional DataSource” and Sec-
tion 25.2.4., “Using an Alternative Data Source”).

26.4. Configuring the Persistence Engine

The persistence.xml file in the EJB3 JAR file's META-INF directory configures the underly-
ing persistence engine for Seam. In the source code, you can find this file under the
resources/META-INF directory.

The persistence.xml file specifies that the EntityManager object in this Seam application
persists all entity beans to the java:/bookingDatasource database. Recall that this Data-
Source points to the seamdemo database on the production MySQL server. The persist-

ence.xml file also configures the EntityManager to use the MySQL dialect of the SQL lan-
guage when updating the database. The hibernate.hbm2dll.auto=none property specifies
that the table schema is not automatically created when the application is deployed. If the
property has the value create-drop, the database tables are created at application deployment
and deleted at undeployment (or server shutdown). Finally, if the value is update, the data-
base schema is updated or created, but the content is not deleted. Often on a production sys-
tem, a database user does not have the privileges to create or drop tables.

<persistence>
<persistence-unit name="bookingDatabase">
<provider>

26.4. Configuring the Persistence Engine

348

org.hibernate.ejb.HibernatePersistence
</provider>
<jta-data-source>
java:/bookingDatasource

</jta-data-source>
<properties>
<property name="hibernate.dialect"

value="org.hibernate.dialect.MySQLDialect"/>
<property name="hibernate.hbm2ddl.auto"

value="none"/>
</properties>

</persistence-unit>
</persistence>

That's it! That's all you need to set up a MySQL back-end database for the Seam Hotel Book-
ing example application. Setting up other production databases, such as Oracle and MS SQL,
is similarly easy.

26.4. Configuring the Persistence Engine

349

This page intentionally left blank

27
Performance Tuning and Clustering

Seam drastically improves application developer productivity via extensive use of annotated
POJOs, dependency bijection, and runtime service interceptors. Developers write less code
because Seam generates and executes much of the boilerplate code behind the scenes.
However, the developer "convenience" comes with a price: The more work Seam needs to
do, especially at runtime, the slower the system performs. Today, as computer hardware per-
formance continues to improve and price continues to drop, improving developer productivity
is a higher priority than raw performance.

However, for high-volume web applications, we must carefully evaluate and try to com-
pensate for the performance impacts from the Seam runtime. For starters, we should tune our
Seam applications to make the most of existing hardware. If a single server is insufficient, we
should also understand how to scale a Seam application by leveraging a server cluster. In this
chapter, we discuss how to tune and scale Seam applications.

Annotation and Performance

Different Seam annotations are processed at different stages of the
application lifecycle, and they have big implications on perform-
ance. Basic configuration annotations such as @Stateful and @Name

are processed at application deployment. They increase only the ap-
plication startup time and do not impact runtime performance. In
fact, in other enterprise Java frameworks, this type of deployment
information is specified in XML files. XML parsing is often slower
than annotation processing. Thus, Seam does not have additional
performance overhead.

However, some annotations, such as the dependency bijection an-
notations (e.g., @In and @Out), trigger Seam runtime interceptors be-
fore and after each method call or property access. They do have a
performance impact.

27.1. Tuning Performance on a Single Server

You should follow the following common JBoss best practices to tune a Seam application on
a single server.

27.1.1. Avoid Call by Value

When installing the JBoss AS from the GUI installer, you are asked whether you want to en-
able Call by Value and Deployment Isolation (see Figure 27.1., “Choose Call by Value or
Call by Reference”). Seam automatically generates dynamic proxy objects to make calls from
JSF components to EJB3 session beans. If you enable Call by Value, the call parameters and
return values are serialized in the process. The benefit is that the JSF and EJB3 tiers of the ap-
plication are properly separated. This is useful when you have multiple versions of the same
Java classes deployed in the same server or when you need to port applications from other ap-
plication servers to JBoss AS.

Figure 27.1. Choose Call by Value or Call by Reference

27.1. Tuning Performance on a Single Server

352

However, the Call by Value method is also slow. Because object serialization and deserializa-
tion are very CPU intensive, a Call by Value method call could be 10 times slower than a reg-
ular Call by Reference call. Most Seam applications are designed to run inside the same JVM
on JBoss AS, so we recommend that you not check the selection box in Figure 27.1., “Choose
Call by Value or Call by Reference”.

27.1.2. JVM Options

First, always start the JVM using the -server option. It does a number of optimizations up
front, which trades faster runtime performance for longer startup time.

Next, it is important to give the JVM as many resources as possible. The most important re-
source for the JVM is the amount of RAM. Because all server-side state data (e.g., HTTP ses-
sions and stateful session beans) are stored in the RAM, it is crucial for high-load servers
(i.e., lots of concurrent users) to have a large amount of RAM. On a typical server box, you
should allocate at least 75 percent of the physical RAM to the JVM. You can do that via JVM
startup options in the JAVA_OPTS property in the bin/run.conf file (use the bin\run.bat file
for Windows). We use the same value for the -Xmx (maximum RAM) and -Xms (minimum
RAM) options to force the JVM to use the specified amount of RAM. For instance, the
-Xmx6g -Xms6g option starts the JVM with 6GB of RAM.

Sixty-four-bit Systems

On a 32-bit system, the JVM has access to only a maximum of 2GB
of RAM. On a 64-bit system, including AMD64 and Intel EMT64,
you can allocate far more RAM to the JVM. But you must use a
64-bit JVM to take advantage of the additional RAM.

However, a too-large memory heap could also hurt performance be-
cause it takes too long for the garbage collector to sweep through it.
We have observed the JVM behaving erratically under stress when
the heap is several gigabytes big. In this case, especially when the
system has multiple CPUs, we recommend that you run multiple
JBoss AS instances or simply multiple virtual machines (e.g., VM-
Ware) on the same server. You can use a load balancer to distribute
the load to those virtual machines (see later in this chapter).

27.1.2. JVM Options

353

Modern JVMs use very sophisticated algorithms to run garbage collection. Garbage collec-
tion should run in parallel to other tasks so that the heap is continuously being cleaned up.
That avoids the long server pause when the garbage collector stops other processes to
clean up a large heap. To run the parallel garbage collector, you can specify the
-XX:+UseParallelGC -XX:+UseParallelOldGC option for the JVM.

Finally, performance tuning is often application specific and requires empirical observations.
You can tweak many other JVM options for improving performance and debugging. For in-
stance, you can fine-tune the garbage-collection algorithm in the JVM to minimize the GC
pause in your specific use case. Different JVMs (e.g., the Sun JVM, BEA JRockit JVM, and
IBM JVM) also have different options for performance tuning. We recommend that you read
a JVM tuning guide for more information.

27.1.3. Reducing Logging

By default, both Seam and MyFaces log a lot of information. Much of the information is for
application developers and has little use in a production environment. The excessive logging
I/O operations could really be the bottleneck on a high-load server. To reduce logging on a
production server, you can increase the logging level for the org.jboss classes to the INFO.
Just uncomment the following lines in the server/default/conf/log4j.xml file. That gets
rid of much of the logging from Seam.

<log4j:configuration>

... ...

<category name="org.jboss">
<priority value="INFO"/>

</category>

<category name="javax.faces">
<priority value="INFO"/>

</category>

</log4j:configuration>

27.1.3. Reducing Logging

354

27.1.4. Tuning the HTTP Thread Pool

In JBoss AS, a separate thread answers each HTTP request. When the application has many
concurrent users, much of the CPU time is spent managing those threads. Optimizing thread
management is a key in improving the application performance under high load.

To avoid excessive thread creation and termination, JBoss AS maintains a pool of threads.
When a new HTTP request comes in, the server retrieves a worker thread from the pool to
process the request. After the response is rendered, the worker thread is returned to the pool
and made available to process another HTTP request. You can specify a maximum size for
the thread pool. If all the threads in the pool are currently being used, new requests must wait
until a thread finishes its work and becomes available. To fully utilize CPU resources, the
size of the thread pool should be at least five times the number of available CPUs on the serv-
er. However, too many threads can impede performance: The CPU then must spend more
time switching contexts between threads instead of processing requests.

Another constraint on thread pool size is the number of HTTP keepalive connections (see the
associated sidebar). Each keepalive connection corresponds to an active user. You can con-
figure the maximum number of keepalive connections on the server. If all connections are
keepalive, the number of connections is essentially the number of concurrent users the server
can handle. Additional users then receive the connection timeout error. However, each
keepalive connection also ties up a worker thread, so your thread pool size must be at least as
big as the number of keepalive connections. For a high-load server, you might have a large
number of keepalive connections, which would require too many threads to be effective.

An obvious fix is to have a modest number of keepalive connections and then a modestly lar-
ger thread pool. The spare threads, which are not tied to the keepalive connections, are used
to service users overflowing the keepalive limit. This way, some users get the keepalive con-
nection and enjoy better performance, whereas others have slower regular connections but
still get service. You can optimize the right mix of threads and keepalive connections only
through trial and error for your specific server needs.

Keepalive Connections

A keepalive connection allows a web browser to reuse the same net-
work connection for multiple HTTP requests. It eliminates the over-
head for creating and destroying multiple connections. All modern
web browsers use HTTP keepalive connections by default.

27.1.4. Tuning the HTTP Thread Pool

355

However, for a connection be a keepalive, the server also must sup-
port it. As you can see here, the server has the flexibility to decide
which users get keepalive connections, depending on its own load.

The two thread-related settings just discussed are in the HTTP Connector element in the
server/default/deploy/jbossweb-tomcat55.sar/server.xml file. The maxThreads attrib-
ute determines the size of the thread pool, and the maxKeepAliveRequests attribute determ-
ines the maximum number of keepalive connections. If the maxKeepAliveRequests attribute
is -1, the server will allow an unlimited number of keepalive request until the thread pool is
exhausted.

<Server>

<Service name="jboss.web"
className="org.jboss.web.tomcat.tc5.StandardService">

<Connector port="8080"
address="${jboss.bind.address}"
maxThreads="250"
maxKeepAliveRequests="100"
strategy="ms"
maxHttpHeaderSize="8192"
emptySessionPath="true"
enableLookups="false"
redirectPort="8443" acceptCount="100"
connectionTimeout="20000"
disableUploadTimeout="true"/>

</Service>

</Server>

27.1.5. Choosing Between Client- and Server-Side State Saving

JSF can save its internal component state in the user's HTTP session (server-side state saving)
or in the browser as hidden form fields (client-side state saving). Server-side state saving con-
sumes the server's memory and is generally harder to scale because of the need to replicate
the session data in a cluster (see later in this chapter). Client-side state saving, on the other
hand, distributes the state-management load to the users' browsers.

27.1.5. Choosing Between Client- and Server-Side State Saving

356

However, when it comes to CPU performance, client-side state saving is much slower be-
cause of the need to serialize objects. Thus, you must decide whether memory or CPU is the
more likely bottleneck of your application and choose the appropriate state-saving method.
You can select the state-saving method in the application's WEB-INF/web.xml file. Make sure
that you turn off serialization when the state object is saved in the session.

<webapp>

... ...

<context-param>
<param-name>
javax.faces.STATE_SAVING_METHOD

</param-name>
<param-value>server</param-value>

</context-param>

<context-param>
<param-name>
org.apache.myfaces.SERIALIZE_STATE_IN_SESSION

</param-name>
<param-value>false</param-value>

</context-param>

</webapp>

The Server-Side State Saving Bug in MyFaces

JBoss AS 4.x uses Apache MyFaces as the default JSF implementa-
tion. However, MyFaces 1.1.3 and earlier have a bug that some-
times causes server errors when using the server-side state saving.
MyFaces 1.1.4+, which is the default in JBoss AS 4.0.5+, has
remedied this problem. If you use an earlier version of JBoss AS,
we strongly recommend that you upgrade the MyFaces module in it.

27.1.6. Using a Production Data Source

JBoss AS's default datasource java:/DefaultDS points to the embedded HSQL database
shipped with the server. Although the HSQL database is fine for application development, it

27.1.6. Using a Production Data Source

357

is unsuitable for production environments. It is a major performance bottleneck and becomes
unstable under high load. Be sure to set up a datasource with a production database for your
applications. Refer to Chapter 26, Using a Production Database, for more on how to set up
the production datasource.

Data Access Is the Bottleneck

In most real-world applications, the database access layer is likely
the performance bottleneck. Thus, you must optimize the database
access as much as possible.

27.1.7. Using a Second-Level Database Cache

Seam applications use EJB3 entity beans to model relational database tables. In most applica-
tions, only a small subset of the database records are frequently used. To improve perform-
ance, we should cache entity beans representing those frequently accessed records in the ap-
plication memory, instead of making repeated database round-trips for the same bean objects.

To use the entity bean cache, you must annotate the bean class. All bean instances from the
class are automatically cached after the first access until the EntityManager updates the un-
derlying database table.

@Entity
@Name("person")
@Cache(usage=CacheConcurrencyStrategy.READ_ONLY)
public class Person implements Serializable {

private long id;
private String name;

@Id @GeneratedValue
public long getId() { return id;}
public void setId(long id) { this.id = id; }

public String getName() { return name; }
public void setName(String name) {
this.name = name;

}
}

27.1.7. Using a Second-Level Database Cache

358

In the persistence.xml file for those entity beans, specify the distributed JBoss TreeCache
as the cache implementation.

<entity-manager>
<name>myapp</name>
<jta-data-source>java:/DvdStoreDS</jta-data-source>
<properties>
... ...
<property name="hibernate.cache.provider_class"
value="org.jboss.ejb3.entity.TreeCacheProviderHook"/>

<property
name="hibernate.treecache.mbean.object_name"
value="jboss.cache:service=EJB3EntityTreeCache"/>

</properties>
</entity-manager>

The cached objects are stored in "regions." Each region has its own size and cache expiration
settings. Instances of the Person entity bean are stored in a cache region named /Person (the
cache region name matches the fully qualified Java class name for the entity bean). The re-
gions are configured in the JBoss AS's server/default/deploy/
ejb3-entity-cache-service.xml file.

<server>
<mbean code="org.jboss.cache.TreeCache"

name="jboss.cache:service=EJB3EntityTreeCache">
<depends>jboss:service=Naming
<depends>jboss:service=TransactionManager
... ...
<attribute name="EvictionPolicyConfig">
<config>
<attribute name="wakeUpIntervalSeconds">
5

</attribute>

<region name="/_default_">
<attribute name="maxNodes">
5000

</attribute>
<attribute name="timeToLiveSeconds">
1000

</attribute>
</region>

<region name="/Person">
<attribute name="maxNodes">

27.1.7. Using a Second-Level Database Cache

359

10
</attribute>
<attribute name="timeToLiveSeconds">
5000

</attribute>
</region>

<region name="/FindQuery">
<attribute name="maxNodes">
100

</attribute>
<attribute name="timeToLiveSeconds">
5000

</attribute>
</region>

... ...

</config>
</attribute>

</mbean>
</server>

In addition to caching entity bean instances, we can cache EJB3 query results in the previ-
ously described cache regions. For instance, the following code caches the query result in the
/FindQuery cache region. For the query cache to be effective, you must cache the entity bean
of the query result as well. In this case, we must cache the Person entity bean for the query
cache to be effective:

List <Person> fans =
em.createQuery("select p from Person p")
.setHint("org.hibernate.cacheRegion",

"/FindQuery")
.getResultList();

For more information on using second-level database cache JBoss EJB3, refer to the JBoss
documentation.

27.1.8. Using Database Transactions Carefully

In Chapter 9, Transactions, we discussed both database transactions and nontransactional ex-
tended persistence context. Without a transaction manager, we typically flush the persistence

27.1.8. Using Database Transactions Carefully

360

context at the end of the conversation and send all database updates in a batch. That offers
two performance advantages to the transactional approach:

• The database updates are flushed in a batch at the end of the conversation instead of being
flushed at the end of each request/response cycle (i.e., the end of the thread). That reduces
unnecessary database round-trips during the conversation.

• The nontransactional database update is significantly faster than a transactional one.

Of course, the drawback is that if the database (or connection to the database) fails in the
middle of the update batch, the database is only partially updated.

A good compromise is to build up the database changes in stateful Seam components
throughout the conversation and then use a single transactional method at the end of the
conversation to update the EntityManager. This way, we avoid the round-trips in the
conversation and still take advantage of the transactional support when we actually access the
database. See more details on this technique in Section 9.3., “Atomic Conversation (Web
Transaction)”.

27.2. Clustering for Scalability and Failover

With proper optimization, a Seam application can handle most low- to medium-load scenari-
os on a single commodity server. However, true enterprise applications must also be scalable
and fail-tolerant.

• Scalability means that we can handle more load by adding more servers. It "future-
proofs" our applications. A cluster of X86 servers is probably much cheaper than a single
mainframe computer that handles a comparable load.

• Fail tolerance means that when a server fails (e.g., because of hardware problems), its
load is automatically transferred to a failover node. The failover node should already have
the user state data (e.g., conversational contexts); thus, the user will not experience any
disruption. Fail tolerance and high reliability are crucial requirements in many enterprise
environments.

As an enterprise framework, Seam was designed from the ground up to support clustering. In
the rest of this section, we discuss how to optimize your clustering settings. Detailed

27.2. Clustering for Scalability and Failover

361

instructions on JBoss AS clustering setup are beyond the scope of this book. You can find
more details in the "Clustering" chapter of the JBoss server guide.

Installing the Clustered Profile

Make sure that you selected the ejb3-clustered profile in the
JBoss AS installer (or JEMS installer). This profile contains the ne-
cessary library JARs and configuration files to run clustered EJB3
(and, hence, Seam) applications.

27.2.1. Sticky Session Load Balancing

All HTTP load balancers support "sticky sessions": Requests in the same session must be for-
warded to the same JBoss node unless there is a failover. You must turn on sticky sessions in
your setup. In an ideal world, all nodes in a replicated cluster have the same state; thus, the
load balancer can forward any request to any node. But in a real cluster, the network and CPU
resources are limited. It takes time to actually replicate the state from node to node. Without
sticky sessions, the user gets random HTTP 500 errors when the request hits a node that does
not yet have the latest replicated state.

Apache Tomcat Connector

Apache Tomcat Connector (a.k.a. mod_jk 1.2—see ht-

tp://tomcat.apache.org/connectors-doc/) is a popular soft-
ware-based load balancer for Tomcat (and, hence, JBoss AS). It
uses an Apache web server to receive user requests and then for-
ward on to the JBoss AS nodes via the AJP v1.3 protocol. An im-
portant setting is that the maximum number of concurrent users in
the load-balancer Apache server must match the sum of concurrent
users in the JBoss AS nodes.

We recommend that you use the worker or mpm_winnt MPM in
Apache together with mod_jk. The older prefork MPM is not
thread-based and performs poorly when there are many concurrent
users.

27.2.1. Sticky Session Load Balancing

362

http://tomcat.apache.org/connectors-doc/
http://tomcat.apache.org/connectors-doc/

27.2.2. State Replication

In a failover cluster, state replication between nodes is one of the biggest performance bottle-
necks. A JBoss AS cluster has three separate replication processes going on. All the follow-
ing configuration files are relative to the server/default/deploy directory.

• The HTTP session data replication is configured via the
tc5-cluster.sar/META-INF/jboss-service.xml file.

• The EJB3 stateful session bean (i.e., Seam stateful component) replication is configured
via the ejb3-clustered-sfsbcache-service.xml file.

• The EJB3 entity bean cache (i.e., distributed second-level cache for the database) replica-
tion is configured via the ejb3-entity-cache-service.xml file.

All three configuration files are similar: They all use the JBoss TreeCache service to cache
and replicate objects. We recommend that you set the CacheMode attribute REPL_ASYNC for
asynchronous replication. In the asynchronous replication mode, the server node does not
wait for replication to finish before it serves the next request. This is much faster than syn-
chronous replication, which blocks the system at several wait points.

The ClusterConfig element in each configuration file specifies the underlying communica-
tion protocol stack for the replication traffic. Through the JGroups library, JBoss AS supports
many network protocol stacks for ClusterConfig. It is important to optimize the stack to
archive the best performance. From our experiments, we believe that the TCP/IP NIO stack is
the best choice for most small clusters. Refer to the JBoss AS documentation for more on the
clustering protocol stack.

27.2.3. Failover Architectures

The simplest cluster architecture includes all server nodes in a single cluster and gives all
nodes an identical state through replication. Although the single-cluster architecture is simple,
it is generally a bad idea in real-world applications. Because each node replicates its state to
all other nodes in the cluster, the replication workload increases geometrically with the num-
ber of nodes in the cluster. This is clearly not a scalable architecture when the cluster grows
beyond four to eight nodes. For good performance, we recommend partitioning the cluster in-
to two node pairs.

27.2.3. Failover Architectures

363

Using the buddy replication feature in JBoss Cache 1.4.0, you can group the nodes into pairs.
You can also set up the load balancer to retry the correct failover node when a node in a pair
fails.

If the load balancer hits both nodes in the buddy pair (using sticky sessions, of course), the
failover node receives twice the traffic when the other node fails. That is not an elegant fail-
over because the user would expect congestion. An alternative architecture is asymmetric
failover: The load balancer hits only one node in each buddy pair, and the other node is re-
served as a replicated failover node. You need more redundant hardware in this setup, but the
cluster has the same computational capabilities during the failover.

Performance tuning is a complex subject, especially in a cluster. You must carefully evaluate
your application needs and devise the best strategy. The information in this chapter is inten-
ded merely to provide some simple guidelines.

27.2.3. Failover Architectures

364

A
Installing and Deploying JBoss AS

JBoss Seam is developed and tested on the latest JBoss Application Server (AS). It is built on
top of many JBoss services, such as JBoss AOP (Aspect Oriented Programming), Hibernate,
EJB3, JSF, JBoss Cache, and JBoss Transaction Manager. Seam provides a simple, unified
programming model for accessing all those heavy-duty enterprise services.

The build scripts for all example applications in this book build EAR files that can be de-
ployed in the JBoss AS (see Appendix B, Using Example Applications as Templates, on how
to build the example applications). Seam requires JBoss AS 4.0+ with the latest EJB3 module
(you'll learn how to install this shortly). You must use JDK 5.0 to run the JBoss AS.

Running Seam Applications Outside the JBoss AS

Although the JBoss AS is the best server to run Seam applications,
you can also run Seam applications outside the JBoss AS if you
have to do so. See Chapter 25, Tomcat Deployment, for more.

A.1. JDK 5.0 Is Required

You can run the java -version command from your operating system's command line to
check the version of your current JDK installation. If you are running a JDK earlier than 5.0,
you need to upgrade. Linux/UNIX and Windows users can download the latest JDK from
Sun's http://java.sun.com/j2se/1.5.0/download.jsp web site. Mac OS X users should
download the beta version of Apple JDK 5.0 from the http://www.apple.com/java/ site.

To run JBoss AS successfully, you also need to set the JAVA_HOME environment variable and
point it to your JDK 5.0 installation directory. On a Windows system, you can do that via the
system Control Panel tool (i.e., click on the following items from the desktop: Start, Control

http://www.apple.com/java/
http://java.sun.com/j2se/1.5.0/download.jsp

Panel, System, Advanced, Environment Variables). On a UNIX/Linux/Mac OS X system,
you can do it via shell scripts.

A.2. Installing JBoss AS

The easiest way to install a Seam-compatible JBoss AS with the latest JSF and EJB3 modules
is to use the JBoss Enterprise Middleware Suite (JEMS) GUI installer. You can download the
installer from the http://labs.jboss.com/portal/jemsinstaller/downloads web page.
Run the installer with the java -jar jems-version-installer.jar command. You will go
through a series of screens to consent to the license terms and select an installation directory
(see Figure A.1., “Select an installation directory.”).

Figure A.1. Select an installation directory.

When the installer prompts you to select a server configuration, select either ejb3 or ejb3

with Clustering (see Figure A.2., “Select an EJB3-compatible configuration to install.”).
Seam requires EJB3 support.

A.2. Installing JBoss AS

366

http://labs.jboss.com/portal/jemsinstaller/downloads

Figure A.2. Select an EJB3-compatible configuration to install.

JBoss AS 4.2.x and 5.x

This ejb3 profile selection only applies to JBoss AS 4.0.5. For
JBoss AS 4.2.x and 5.x, the default profile already includes EJB3
libraries.

You are asked to choose a configuration name for this installation; leave it as default (see
Figure A.3., “Use default as the configuration name.”). This way, you will be able to start the
server without extra command-line arguments.

A.2. Installing JBoss AS

367

Figure A.3. Use default as the configuration name.

The installer also gives you options to secure JMX remote invokers. Those invokers enable
remote users to look into your running server and even do things with it. Secure all those and
give a username/password combo to protect those resources (see Figure A.4., “Secure all
JMX invokers.”).

A.2. Installing JBoss AS

368

Figure A.4. Secure all JMX invokers.

What About the Seam Library?

An independent Seam container needs to be loaded for each Seam
application, so be sure to include the jboss-seam.jar file in the ap-
plication EAR file. The same goes for the jboss-seam-ui.jar file
and the jsf-facelets.jar file—you must include them in your
EAR file (in fact, in the WAR file) to support Seam-specific UI tags
and Facelets. See Appendix B, Using Example Applications as Tem-
plates, for more details.

A.3. Deploying and Running Applications

To deploy a Seam application, you only need to copy the EAR application file (i.e., the build
target from the source code) into the JBoss AS's server/default/deploy directory. To start

A.3. Deploying and Running Applications

369

the server, run bin/run.sh (or bin\run.bat on Windows). You can now access the Seam
web application URL http://localhost:8080/myapp/. Of course, replace myapp with the
application URL configured in your EAR (or WAR) file.

Ant

To build the example Seam application from source code, you
should also have Apache Ant 1.6+ installed. Refer to the Ant docu-
mentation on how to install and use it.

A.3. Deploying and Running Applications

370

B
Using Example Applications as Templates

In Chapter 4, Rapid Application Development Tools, we covered how to use Seam Gen to
generate an application template for your Seam project. The Seam Gen template contains
common configuration files, a build script, all support libraries, and even a sample applica-
tion. It supports Eclipse/NetBeans IDE integration, out-of-the-container testing, and fast edit-
save-reload development cycles. It is the best place to start building your Seam applications.

But the Seam Gen template project has a rather large footprint because it needs to include all
support library JARs inside the project. It also lacks flexibility to support non-JBoss deploy-
ments. For the readers of this book, an alternative is to use the book's sample projects as tem-
plates for your own projects. This is more involved than Seam Gen, but it gives you more
flexibility—and perhaps helps you learn more about Seam in the process. In this appendix,
we discuss how to customize the book's sample applications.

The projects in the book source code bundle rely on library JARs in the ../lib directory.
Make sure that the lib directory in the source code bundle is side by side with the project dir-
ectories of your Seam projects.

B.1. Simple EJB3-Based Web Applications

The integration example is the best starting place for a EJB3-based Seam web application.
This is the directory structure of the source project:

mywebapp
|+ src

|+ Java Source files
|+ view

|+ web pages (.xhtml), CSS, and images
|+ resources

|+ WEB-INF
|+ web.xml
|+ components.xml

|+ faces-config.xml
|+ navigation.xml
|+ pages.xml

|+ META-INF
|+ persistence.xml
|+ application.xml
|+ jboss-app.xml
|+ ejb-jar.xml

|+ seam.properties
|+ lib

|+ App specific lib JARs
|+ test

|+ components.xml
|+ testng.xml
|+ Java source for test cases

|+ nbproject
|+ NetBeans integration and support

|+ build.xml

To customize the project for your application, follow these steps:

• Add Seam components and other classes in the src directory.

• Add web pages, images, and other web resources in the view directory.

• Place required third-party library files in the lib directory. For instance, you can include
the Ajax4jsf JARs, as we did in Chapter 16, Enabling AJAX for Existing Components.
Modify the build.xml script if you need the JARs to be bundled outside of app.jar.

• Change the resources/WEB-INF/navigation.xml file to define the navigation rules (i.e.,
pageflow) in the new application.

• Edit the resources/WEB-INF/pages.xml file to include page parameters for RESTful
pages (see Chapter 12, Bookmarkable Web Pages), page actions, and stateful navigation
rules (see Chapter 19, Stateful Pageflows).

• Change the resources/META-INF/persistence.xml file to specify custom persistence
options for the new application, if any (see Chapter 26, Using a Production Database, for
some examples).

• Change the application name as follows:

B.1. Simple EJB3-Based Web Applications

372

• Change the project name "integration" in the build.xml file to your own project
name (e.g., "mywebapp").

• Change the resources/META-INF/application.xml file to reflect your application's
context root URL.

• Change the class loader name in resources/META-INF/jboss-app.xml to a unique
name that fits your application.

• Change the JNDI name pattern in the resources/WEB-INF/components.xml file to
match your application name (i.e., "mywebapp").

JSP vs. Facelets XHTML

The integration project template uses Facelets as the presentation
technology. We highly recommend using Facelets in your Seam ap-
plications (see Section 3.1., “An Introduction to Facelets”). But if
you really want to use JSP for web pages, you can use the
helloworld example as the template. The setup is similar to the
integration project setup we discuss here.

Then run ant in the project directory to build the application. The build result is in the build/

jars/mywebapp.ear file. This is the structure of the EAR archive:

mywebapp.ear
|+ app.war

|+ web pages (.xhtml), CSS, images
|+ WEB-INF

|+ web.xml
|+ components.xml
|+ faces-config.xml
|+ navigation.xml
|+ pages.xml
|+ lib

|+ jsf-facelets.jar
|+ jboss-seam-ui.jar
|+ jboss-seam-debug.jar

|+ app.jar
|+ Java classes
|+ seam.properties
|+ META-INF

B.1. Simple EJB3-Based Web Applications

373

|+ persistence.xml
|+ ejb-jar.xml

|+ el-api.jar
|+ el-ri.jar
|+ jboss-seam.jar
|+ META-INF

|+ application.xml
|+ jboss-app.xml

If you have unit tests or integration tests for the application, you can put the test cases (the
.java files) and the testng.xml file in the test directory in the project. An alternative com-

ponents.xml file is already in the test directory. The difference between test/com-

ponents.xml and resources/WEB-INF/components.xml is that the test version does not have
the application name in its JNDI pattern and it installs the embeddable EJB3 container (see
Section 21.4., “Loading the Test Infrastructure”)—because the tests are run outside the ap-
plication server container. So if you customize the resources/WEB-INF/components.xml file
in your application, you must make the same changes to the test/components.xml file. This
is an example test/components.xml file:

<components ...>

// same as resources/WEB-INF/components.xml

<core:init
jndi-pattern="#{ejbName}/local"
debug="false"/>

<core:ejb installed="true"/>

</components>

When you run ant test in the project directory, the build script runs all the tests defined in
the test/testng.xml file and outputs the test results both on the console and in the build/

testout directory.

For your reference, we list the complete build.xml script here:

<project name="Project Name"
default="main" basedir=".">

B.1. Simple EJB3-Based Web Applications

374

<description>Project Name</description>
<property name="projname" value="mywebapp" />

<property file="../build.properties"/>
<property name="jboss.deploy"

location="${jboss.home}/server/default/deploy"/>

<property name="lib" location="../lib" />
<property name="testlib"

location="../lib/embeddedejb3" />
<property name="applib" location="lib" />
<path id="lib.classpath">
<fileset dir="${lib}" includes="*.jar"/>
<fileset dir="${testlib}" includes="*.jar"/>
<fileset dir="${applib}" includes="*.jar"/>

</path>

<property name="resources"
location="resources" />

<property name="src" location="src" />
<property name="test" location="test" />
<property name="view" location="view" />

<property name="build.classes"
location="build/classes" />

<property name="build.jars"
location="build/jars" />

<property name="build.test"
location="build/test" />

<property name="build.testout"
location="build/testout" />

<target name="clean">
<delete dir="build"/>

</target>

<target name="main"
depends="compile,war,ejb3jar,ear"/>

<target name="compile">
<mkdir dir="${build.classes}"/>
<javac destdir="${build.classes}"
classpathref="lib.classpath"
debug="true">
<src path="${src}"/>

</javac>
</target>

<target name="test" depends="compile">
<taskdef resource="testngtasks"
classpathref="lib.classpath"/>

B.1. Simple EJB3-Based Web Applications

375

<mkdir dir="${build.test}"/>

<javac destdir="${build.test}"
debug="true">

<classpath>
<path refid="lib.classpath"/>
<pathelement

location="${build.classes}"/>
</classpath>
<src path="${test}"/>

</javac>

<copy todir="${build.test}">
<fileset dir="${build.classes}"

includes="**/*.*"/>
<fileset dir="${resources}"

includes="**/*.*"/>
<fileset dir="${testlib}/conf"

includes="*.*"/>
</copy>
<copy todir="${build.test}/WEB-INF"

overwrite="true">
<fileset dir="${test}"

includes="components.xml"/>
</copy>

<testng outputdir="${build.testout}">
<classpath refid="lib.classpath"/>
<classpath path="${build.test}"/>
<xmlfileset dir="${test}"

includes="testng.xml"/>
</testng>

</target>

<target name="war" depends="compile">
<mkdir dir="${build.jars}"/>
<war destfile="${build.jars}/app.war"

webxml="${resources}/WEB-INF/web.xml">
<webinf dir="${resources}/WEB-INF">
<include name="faces-config.xml" />
<include name="components.xml" />
<include name="navigation.xml" />
<include name="pages.xml" />

</webinf>
<lib dir="${lib}">
<include name="jboss-seam-ui.jar" />
<include name="jboss-seam-debug.jar"/>
<include name="jsf-facelets.jar" />

</lib>
<fileset dir="${view}"/>

B.1. Simple EJB3-Based Web Applications

376

</war>
</target>

<target name="ejb3jar" depends="compile">
<mkdir dir="${build.jars}"/>
<jar destfile="${build.jars}/app.jar">
<fileset dir="${build.classes}">
<include name="**/*.class"/>

</fileset>
<fileset dir="${resources}">
<include name="seam.properties" />

</fileset>
<fileset dir="${applib}">
<include name="*.jar" />

</fileset>
<metainf dir="${resources}/META-INF">
<include name="persistence.xml" />
<include name="ejb-jar.xml" />

</metainf>
</jar>

</target>

<target name="ear">
<mkdir dir="${build.jars}"/>
<ear destfile="${build.jars}/${projname}.ear"

appxml="${resources}/META-INF/application.xml">
<fileset dir="${build.jars}"

includes="*.jar, *.war"/>
<metainf dir="${resources}/META-INF">

<include name="jboss-app.xml" />
</metainf>
<fileset dir="${lib}">
<include name="jboss-seam.jar"/>
<include name="el-api.jar" />
<include name="el-ri.jar" />

</fileset>
</ear>

</target>

<target name="deploy">
<copy file="${build.jars}/${projname}.ear"

todir="${jboss.deploy}"/>
</target>

<target name="undeploy">
<delete

file="${jboss.deploy}/${projname}.ear"/>
</target>

</project>

B.2. POJO-Based Web Applications

377

B.2. POJO-Based Web Applications

If you want to use Seam POJOs and forgo the EJB3 session beans, you can choose the jpa or
hibernate projects as templates (see Chapter 24, Seam Without EJB3). Those projects build
applications into WAR files that are deployable in the J2EE 1.4-compliant profile of the
JBoss AS 4.0.5+. With a little tuning, you can build WAR files deployable in any J2EE 1.4
application server (e.g., WebLogic, Sun Application Server).

The following listing shows the structure of the jpa project. For the Hibernate version, just
replace resources/META-INF/persistence.xml with resources/hibernate.cfg.xml.

mywebapp
|+ src

|+ Java Source files
|+ view

|+ web pages (.xhtml), CSS, and images
|+ resources

|+ WEB-INF
|+ web.xml
|+ components.xml
|+ faces-config.xml
|+ navigation.xml
|+ pages.xml
|+ jboss-web.xml

|+ META-INF
|+ persistence.xml

|+ seam.properties
|+ lib

|+ App specific lib JARs
|+ test

|+ components.xml
|+ testng.xml
|+ Java source for test cases

|+ nbproject
|+ NetBeans integration and support

|+ build.xml

To customize the project for your application, follow these steps:

• Add Seam components and other classes in the src directory.

• Add web pages, images, and other web resources in the view directory.

B.2. POJO-Based Web Applications

378

• Place required third-party library files in the lib directory. For instance, you can include
the Ajax4jsf JARs, as we did in Chapter 16, Enabling AJAX for Existing Components.
Modify the build.xml script if you need the JARs to be bundled outside of app.jar.

• Change the resources/WEB-INF/navigation.xml file to define the navigation rules (i.e.,
pageflow) in the new application.

• Edit the resources/WEB-INF/pages.xml file to include page parameters for RESTful
pages (see Chapter 12, Bookmarkable Web Pages), page actions, and stateful navigation
rules (see Chapter 19, Stateful Pageflows).

• Change the resources/META-INF/persistence.xml file to specify custom persistence
options for the new application, if any (see Chapter 26, Using a Production Database, for
some examples). For Hibernate applications, modify the resources/hibernate.cfg.xml

file as needed.

• Change the application name as follows:

• Change the project name "jpa" in the build.xml file to your own project name (e.g.,
"mywebapp").

• Change the resources/WEB-INF/jboss-web.xml file to reflect your application's con-
text root URL as needed.

Run ant in the project directory to build the build/jars/mywebapp.war application archive.
Required application library JARs are included in the WEB-INF/lib directory. This is the con-
tent of the WAR file:

mywebapp.war
|+ web pages (.xhtml), CSS, and images
|+ WEB-INF

|+ lib
|+ jboss-seam.jar
|+ jboss-seam-ui.jar
|+ jboss-seam-debug.jar
|+ jsf-facelets.jar
|+ el-api.jar
|+ el-ri.jar
|+ hibernate3.jar
|+ hibernate-annotations.jar
|+ hibernate-entitymanager.jar
|+ ejb3-persistence.jar

B.2. POJO-Based Web Applications

379

|+ app.jar
|+ META-INF

|+ persistence.xml
|+ Java classes
|+ seam.properties

|+ web.xml
|+ faces-config.xml
|+ components.xml
|+ jboss-web.xml
|+ navigation.xml
|+ pages.xml

Running tests in the POJO project is the same as running tests in the EJB3 project. This is the
build.xml script to build the WAR application from the Seam POJO project:

<project name="My Project"
default="main" basedir=".">

<description>Project Name</description>
<property name="projname" value="mywebapp" />

<property file="../build.properties"/>
<property name="jboss.deploy"
location="${jboss.home}/server/default/deploy"/>

<property name="lib" location="../lib" />
<property name="testlib"

location="../lib/embeddedejb3" />
<property name="applib" location="lib" />
<path id="lib.classpath">
<fileset dir="${lib}" includes="*.jar"/>
<fileset dir="${testlib}" includes="*.jar"/>
<fileset dir="${applib}" includes="*.jar"/>

</path>

<property name="resources" location="resources"/>

<property name="src" location="src" />
<property name="test" location="test" />
<property name="view" location="view" />

<property name="build.classes"
location="build/classes" />

<property name="build.jars" location="build/jars"/>
<property name="build.test" location="build/test"/>
<property name="build.testout"

location="build/testout" />

B.2. POJO-Based Web Applications

380

<target name="clean">
<delete dir="build"/>

</target>

<target name="main" depends="compile,pojojar,war"/>

<target name="compile">
<mkdir dir="${build.classes}"/>
<javac destdir="${build.classes}"

classpathref="lib.classpath"
debug="true">

<src path="${src}"/>
</javac>

</target>

<target name="test" depends="compile">

<taskdef resource="testngtasks"
classpathref="lib.classpath"/>

<mkdir dir="${build.test}"/>

<javac destdir="${build.test}"
debug="true">

<classpath>
<path refid="lib.classpath"/>
<pathelement
location="${build.classes}"/>

</classpath>
<src path="${test}"/>

</javac>

<copy todir="${build.test}">
<fileset dir="${build.classes}"

includes="**/*.*"/>
<fileset dir="${resources}" includes="**/*.*"/>
<fileset dir="${testlib}/conf" includes="*.*"/>

</copy>
<copy todir="${build.test}/WEB-INF"

overwrite="true">
<fileset dir="${test}"

includes="components.xml"/>
</copy>

<testng outputdir="${build.testout}">
<classpath refid="lib.classpath"/>
<classpath path="${build.test}"/>
<xmlfileset dir="${test}"

includes="testng.xml"/>
</testng>

</target>

B.2. POJO-Based Web Applications

381

<target name="pojojar" depends="compile">
<mkdir dir="${build.jars}"/>

<jar destfile="${build.jars}/app.jar">
<fileset dir="${build.classes}">
<include name="**/*.class"/>

</fileset>
<fileset dir="${resources}">
<include name="seam.properties" />

</fileset>
<fileset dir="${applib}">
<include name="*.jar" />

</fileset>
<metainf dir="${resources}/META-INF">
<include name="persistence.xml" />

</metainf>
</jar>

</target>

<target name="war" depends="pojojar">
<mkdir dir="${build.jars}"/>

<war destfile="${build.jars}/${projname}.war"
webxml="${resources}/WEB-INF/web.xml">

<webinf dir="${resources}/WEB-INF">
<include name="faces-config.xml" />
<include name="components.xml" />
<include name="navigation.xml" />
<include name="pages.xml" />
<include name="jboss-web.xml" />

</webinf>
<lib dir="${lib}">
<include name="jboss-seam.jar" />
<include name="jboss-seam-ui.jar" />
<include name="jboss-seam-debug.jar" />
<include name="jsf-facelets.jar" />
<include name="el-api.jar" />
<include name="el-ri.jar" />
<include name="hibernate3.jar" />
<include name="hibernate-entitymanager.jar" />
<include name="hibernate-annotations.jar" />
<include name="ejb3-persistence.jar" />

</lib>
<lib dir="${build.jars}"

includes="app.jar"/>
<fileset dir="${view}"/>

</war>
</target>

<target name="deploy">
<copy file="${build.jars}/${projname}.war"

B.2. POJO-Based Web Applications

382

todir="${jboss.deploy}"/>
</target>

<target name="undeploy">
<delete

file="${jboss.deploy}/${projname}.war"/>
</target>

</project>

B.3. Tomcat Applications

If you need to deploy Seam applications to Tomcat servers, you can use the tomcatejb3 and
tomcatjpa projects as templates. The tomcatejb3 project uses the JBoss Embeddable EJB3
container to load EJB3 session beans in the Tomcat environment. The tomcatjpa project uses
the JBoss MicroContainer to bootstrap JTA data sources needed for database access in Seam
POJOs. Refer to Chapter 25, Tomcat Deployment, for more details. As with the POJO
projects (jpa and hibernate), the Tomcat projects build the application into WAR files.
Thus, they have similar setups and you can follow the same steps in Section B.2.,
“POJO-Based Web Applications” to customize a Tomcat project template. This is the struc-
ture of the tomcatejb3 project:

mywebapp
|+ src

|+ Java Source files
|+ view

|+ web pages (.xhtml), CSS, and images
|+ resources

|+ WEB-INF
|+ web.xml
|+ components.xml
|+ faces-config.xml
|+ navigation.xml
|+ pages.xml
|+ jboss-web.xml

|+ META-INF
|+ persistence.xml

|+ seam.properties
|+ lib

|+ App specific lib JARs
|+ test

|+ testng.xml
|+ Java source for test cases

B.3. Tomcat Applications

383

|+ nbproject
|+ NetBeans integration and support

|+ build.xml

The Tomcat WAR files contain more library JARs and configuration files than the J2EE
1.4-based POJO WAR files. This is the WAR file structure for a Tomcat WAR with embed-
dable EJB3 support:

tomcatjpa.war
|+ web pages (.xhtml), CSS, and images
|+ WEB-INF

|+ lib
|+ jboss-seam*.jar
|+ jsf-facelets.jar
|+ el-*.jar
|+ myfaces*.jar
|+ jboss-ejb3-all.jar
|+ thirdparty-all.jar
|+ hibernate-all.jar
|+ commons-*.jar
|+ jstl.jar
|+ app.jar

|+ META-INF
|+ ejb-jar.xml
|+ persistence.xml

|+ Java class files
|+ seam.properties

|+ classes
|+ ... files from lib/embeddedejb3/conf ...

|+ web.xml
|+ faces-config.xml
|+ components.xml
|+ jboss-web.xml
|+ navigation.xml
|+ pages.xml

We will not list the content of the build.xml file here because it is largely the same as that in
Section B.2., “POJO-Based Web Applications”.

B.4. More Complex Applications

384

B.4. More Complex Applications

The two applications we have discussed in this appendix are simple web applications. If your
application uses advanced Seam features, you must package in additional JAR files and con-
figuration files in the EAR or WAR archives.

The JBoss Rules JARs and configuration files are needed to support the rule-based web se-
curity framework in Seam. Refer to Chapter 20, Rule-Based Security Framework, for more
details.

The jBPM JAR and configuration files are needed to support business processes and stateful
pageflows in Seam applications. Refer to Chapter 18, Managing Business Processes, for
more details.

PDF support requires the jboss-seam-pdf.jar file and the itext-*.jar file in the
WEB-INF/lib directory of the WAR archive. Refer to Section 3.4.1., “Generate PDF
Reports”, for more details.

Facelets-based email template support requires the jboss-seam-mail.jar file in the
WEB-INF/lib directory of the WAR archive. Refer to Section 3.4.2., “Template-Based
Email”, for more details.

Wiki text support requires the antlr-*.jar file in the WEB-INF/lib directory of the WAR
archive. Refer to Section 3.4.3., “Display Rich Text”, for more details.

B.4. More Complex Applications

385

This page intentionally left blank

A
<a4j:include> component, 220

<a4j:log> component, 220
<a4j:mediaOutput> component, 220
<a4j:outputPanel> component, 213–214
<a4j:poll> component, 220
<a4j:region> container tag, 220
<a4j:status> component, 220
access control

declarative access control, 280–283
rule-based access control, 283–288

accessing
private fields, 296
Seam components

from JavaScript, 234–236

with JSF EL, 304–307

with Seam API calls, 307–309

actors (jBPM), assigning to web users,
245–249

ADF Faces, 208–209
AJAX, 7, 197–198

Ajax4jsf, 211–223
AJAX-enabled buttons, 217–219

benefits/limitations, 223

components in, 220

configuring, 221–223

container tags, 219–220

programmatic AJAX, 214–217

validation example, 212–214

Dojo toolkit integration, 236–242

ICEfaces, 199
auto-complete text input example,

202–205

bundling JAR files for Seam,
205–208

page parameters, 208

partial form submission example,
199–202

Seam remoting JavaScript library
AJAX progress bar example,

232–236

validation example, 225–231

AJAX calls, Seam remoting JavaScript
library example, 229–231

AJAX-enabled buttons, 217–219
AJAX progress bar example, 232–236
Ajax4jsf, 211–223

AJAX-enabled buttons, 217–219
benefits/limitations, 223
components in, 220
configuring, 221–223
container tags, 219–220
programmatic AJAX, 214–217
validation example, 212–214

alternative data sources in Tomcat envi-
ronments, 343–344

alternative display output tags, 41
annotations, 11

@ApplicationException annotation,
130

@Begin annotation, 108–109
@BeginTask annotation, 257–258

Index

Index

388

@Conversational annotation, 111
@Create annotation, 93, 165–166
@DataModel annotation, 109,

150–151, 154–155
@DataModelSelection annotation,

152, 154–155
@Destroy annotation, 94
@End annotation, 111–114
@EndTask annotation, 258
exception annotations, 186–187
@Factory annotation, 94–95, 164–165
@IfInvalid annotation, 144
@In annotation, 16, 160
@Out annotation, 16, 95, 160
performance and, 351–352
@Remove annotation, 94
@RequestParameter annotation, 163
@Restrict annotation, 283–285
@Rollback annotation, 131–132
@Scope annotation, 91
@Stateful annotation, 91
@Test annotation, 294
@Transactional annotation, 129
@TransactionAttribute annotation,

129, 134
@Valid annotation, 144
validation annotations, 139–141
@WebRemote annotation, 227
XML files replaced by, 9

Ant, 370
ANTLR (ANother Tool for Language

Recognition), 54
Apache MyFaces Tomahawk project, 208
Apache Tomcat Connector, 362
API calls, accessing Seam components,

307–309

application context, 84
Application Development Framework

Faces. See ADF Faces
@ApplicationException annotation, 130
applications

CRUD applications, generating in
Seam Gen, 71–74

deploying, 369–370
EJB3 applications, as templates,

371–377
Hello World sample application, 11–17

configuration files, 23–30

data models, creating, 13–14

data models, mapping to web
forms, 14–15

Facelets, 34–35

packaging, 23–30

testing, 20

web events, handling, 15–17

Hotel Booking example application
conversations across workspaces,

123–124

customizing conversation IDs,
124–126

defining data sources, 347–348

installing JDBC drivers, 347

installing production databases,
345–347

long running conversations,
103–116

persistence engine configuration,
348–349

rolling back transactions, 130–132

workspace switcher, 120–123

workspaces, 117–120

Index

389

Seam applications, deploying,
369–370

Seam POJO applications, as templates,
378–383

stateful applications, 5–6
stateful example application, 87–98

page navigation in, 95–98

stateful components in, 88–95

Ticketing example application
assigning jBPM actors to web

users, 245–249

binding data objects, 255–256

creating business process
instances, 254–255

defining business processes,
252–254

task management, 257–263

Tomcat applications, as templates,
383–384

Web 2.0 applications, 7
associating business processes with web

pages, 270–274
Asynchronous JavaScript and XML. See

AJAX
atomic conversations, 132–134
authentication, 277–280
auto-complete text input example,

202–205

B
Back button. See browser navigation sup-

port
@Begin annotation, 108–109
@BeginTask annotation, 257–258
bijection. See dependency bijection

binding data objects in business process
scope, 255–256

boilerplate code, reduction of, 84–86
bookmarkable web pages, 157–167

Java solution to, 162–167
page parameters, 158–162
when to use, 158

bookmarks, 116
bootstrapping JBoss MicroContainer, 339,

342
browser navigation support

in state management, 81–82
Hotel Booking example applica-

tion, 107

stateful navigation rules and, 274
built-in components, 19–20
bundling

ICEfaces JAR files, 205–208
JAR files for Tomcat, 335–336,

340–341
business process context, 84

binding data objects, 255–256
business process management tags, 40
business processes

associating with web pages, 270–274
jBPM, 245–249

actors, assigning to web users,
249–251

binding data objects, 255–256

configuring, 263–265, 275–276

creating business process
instances, 254–255

defining business processes,
252–254

task management, 257–263

Index

390

long running conversations versus, 261
page navigation and stateful

conversations, 274–275
business rules, security framework,

277–288
declarative access control, 280–283
rule-based access control, 283–288
user authentication/roles, 277–280

buttons, AJAX-enabled, 217–219

C
caches. See database caches
Call by Value, avoiding, 352–353
calls. See AJAX calls
chatty web applications, 80
checked exceptions, rolling back transac-

tions, 130–131
clickable data tables, 149–155

data-binding framework, 154–155
displaying, 150–152
event handlers, injecting selected

objects into, 152–153
Seam JSF EL in, 153–154

client-side state saving, server-side state
saving versus, 356–357

clustering, 361–364
concurrent conversations, workspace

switcher, 120–123
configuration by exception, 8
configuration files

for advanced application templates,
385

in clustering, 363
Hello World sample application, 23–30
JBoss Embeddable EJB3, 341–342
JBoss MicroContainer, 337–339

configuring
Ajax4jsf, 221–223
JBoss Rules, 287–288
jBPM, 263–265, 275–276
persistence engine, 348–349

connections, detecting, 201–202
container tags, AJAX, 219–220
contexts, 6

default conversation scope, 100–103
stateful contexts, 83–84

conversation context, 84
conversation IDs, 123–124

customizing, 124–126
conversation management tags, 40
@Conversational annotation, 111
conversations, 99–100

across workspaces, 123–124
atomic conversations, 132–134
concurrent conversations, workspace

switcher, 120–123
default conversation scope, 100–103
ending, 111–114
HTTP GET requests and, 101
interrupted conversations, resuming,

120
JSF messages, displaying, 102–103
links in, 114–116
long running conversations, 80,

103–116
business processes versus, 261

stateful navigation rules and,
274–275

POJO components and, 101
redirection and, 101
starting, 108–109
workspaces and, 119–120

Index

391

@Create annotation, 93, 165–166
Create, Retrieve, Update, and Delete

applications. See CRUD applications
CRUD application framework, 169–182

DAOs, 169–170
declarative Seam DAO components,

171–176
POJOs versus session beans, 170–171
queries, 176–182

CRUD applications
generating in Seam Gen, 71–74
Seam CRUD application framework,

169–182
DAOs, 169–170

declarative Seam DAO compo-
nents, 171–176

POJOs versus session beans,
170–171

queries, 176–182

CSS, 38
customizing conversation IDs, 124–126

D
DAOs, 169–170

declarative Seam DAO components,
171–176

Data Access Objects. See DAOs
data-binding framework, 154–155
data list components in Facelets, 39–40
data models

creating, Hello World sample applica-
tion, 13–14

mapping to web forms, Hello World
sample application, 14–15

data objects, binding in business process
scope, 255–256

data sources. See also production data-
bases

alternative data sources in Tomcat
environments, 343–344

defining, 347–348
data tables. See clickable data tables
data validation. See validation
database access with EntityManager, 23
database caches

application state and, 6
performance tuning, 358–360

database services, unit testing, 297–299
database updates, manually flushing,

132–133
databases, generating CRUD applications

from, 71–74
@DataModel annotation, 109, 150–151,

154–155
@DataModelSelection annotation, 152,

154–155
debug information page, 190–193
debug page, 192–193
debugging in NetBeans IDE, 67–69
debugging mode, JBoss AS in, 68–69
declarative access control, 280–283
declarative Seam DAO components,

171–176
declarative state management. See state

management
decorators, 145–147
decoupling Seam components, 92–93
default conversation scope, 100–103
dependency bijection, 7–8, 16

avoiding, 21–22
in bookmarkable web pages, 160
unit testing, 295–296
via getter/setter methods, 20–21

Index

392

deploying
in Java EE 5.0 environments, 313–317
Seam applications, 369–370
Seam Gen applications, 63–64
Seam POJO applications, 319–331

Hibernate API example, 327–331

JPA example, 320–327

in Tomcat environments, 333–344
EJB3 applications, 339–344

Seam POJO applications, 335–339

design patterns, 11
@Destroy annotation, 94
detecting server connections, 201–202
development tools. See Seam Gen
directory structure

for example projects, 13
in Seam Gen, 60–61

disabling transaction manager, 133–134
Dojo toolkit integration, 236–242
dynamic queries, 177–179

E
eager loading, lazy loading versus, 77–79
EAR files

Hello World sample application, 24
Seam Gen applications, 63–64

Eclipse IDE, Seam Gen in, 69–71
EJB 3.0, integration with JSF, 3–5
EJB3 applications

deployment in Tomcat environments,
339–344

as templates, 371–377
EJB3 components, POJO components

versus, 17–19, 170–171, 319. See also
session beans

EJB3 session beans, 11
EL. See Seam JSF EL
@Email annotation, 141
email messages, template-based, 50–53
email support tags, 50–53
Embeddable EJB3, 339–344
enabling Facelets debug page, 190–191
@End annotation, 111–114
ending conversations, 111–114
@EndTask annotation, 258
enhancements. See JSF enhancements
Enterprise Application aRchive. See EAR

files
Enterprise JavaBeans. See EJB 3.0
entity beans

creating JavaScript objects for, 230
stateful entity beans, 91
validation annotations, 139–141

entity objects, 11
initializing, 175
mapping, 173–174
retrieving, 174–175

EntityManager
database access with, 23
manually flushing, 132–133

error handling, 183–193
debug information page, 190–193
exception annotations, 186–187
exception filters, 185
servlet error pages, 184–185
system exceptions, 188–190
transactions, 128–129

error messages
JSF error messages, displaying,

102–103
validation error messages, displaying,

145–147

Index

393

event context, 84
event handlers, injecting selected objects

into, 152–153
Exadel, 208
exception annotations, 186–187
exception filters, 185
exceptions, system, 188–190
exploded JARs, 64
expression language. See Seam JSF EL

F
Facelets, 32–40

adding support for, 44–47
configuring Ajax4jsf, 221–223
data list components, 39–40
Hello World sample application, 34–35
JSP versus, 32–33
NetBeans support module, 66
as template engine, 35–39

Facelets debug page, enabling, 190–191
@Factory annotation, 94–95, 164–165
factory methods, 94–95, 164–165
fail tolerance of clustering, 361
failover architectures, 363–364
filters

exception filters, 185
Seam filter, 44

flushing database updates manually,
132–133

forced transaction rollbacks, 130–132
form validation. See validation
formatted text, 53–54
formatted text tags, 53–54
@Future annotation, 141

G
Garret, Jesse James, 197
getter/setter methods

dependency bijection via, 20–21
in integration testing, 309

GlassFish, deployment in, 315–317
Google Maps, 197
Google Suggest, 197

H
handling web events, Hello World sample

application, 15–17
<h:dataTable> UI tag, 150–151
Hello World sample application, 11–17

configuration files, 23–30
data models

creating, 13–14

mapping to web forms, 14–15

Facelets, 34–35
packaging, 23–30
testing, 20
web events, handling, 15–17

Hibernate API, Seam POJO application
example, 327–331

Hibernate validators, 141
hidden fields, 166–167
hiding span element, 228–229
Hotel Booking example application

conversations across workspaces,
123–124

customizing conversation IDs,
124–126

long running conversations, 103–116

Index

394

production databases
defining data sources, 347–348

installation and setup, 345–347

JDBC driver installation, 347

persistence engine configuration,
348–349

rolling back transactions, 130–132
workspace switcher, 120–123
workspaces, 117–120

HTTP GET requests
conversations and, 101
query parameters in, 163

HTTP keepalive connections, 355–356
HTTP POST requests, 157
HTTP sessions, 81. See also state manage-

ment
memory leaks, 82–83
state management versus, 99
workspaces and, 117–119

HTTP thread pool, 355–356
@HttpError annotation, 187

I
ICEfaces, 199

auto-complete text input example,
202–205

bundling JAR files for Seam, 205–208
page parameters, 208
partial form submission example,

199–202
IDEs

Eclipse IDE, Seam Gen in, 69–71
NetBeans IDE, Seam Gen in, 65–69

@IfInvalid annotation, 144
ILOG JView JSF components, 209

@In annotation, 16, 160
initializing

entity objects, 175
Seam components, 164–166

input widgets, Dojo toolkit integration
example, 238–242

installing
JBoss AS, 12, 366–369
JDBC drivers, 347
production databases, 345–347

instantiating DAOs, 172
integration testing, 9, 303–309

getter/setter methods, 309
Seam component access with JSF EL

example, 304–307
Seam component access with Seam

API calls example, 307–309
interceptable Java beans, business

processes and, 256
interrupted conversations, resuming, 120

J
JAR files

for advanced application templates,
385

bundling for Tomcat, 335–336,
340–341

bundling ICEfaces JAR files, 205–208
exploded JARs, 64
Hello World sample application, 28–30

Java EE 5.0 environments, deployment
in, 313–317

Java for bookmarkable web pages,
162–167

Java Persistence API (JPA), 23

Index

395

JavaBeans, creating JavaScript objects
for, 230

JavaScript, accessing Seam components,
234–236. See also AJAX

JavaScript events, triggering, 228–229
JavaScript objects, creating for entity

beans/JavaBeans, 230
JavaServer Faces. See JSF
JavaServer Pages. See JSP
JBoss AS

in debugging mode, 68–69
deploying into, 63–64
installing, 12, 366–369
requirements, 365–366
Tomcat versus, 334

JBoss AS 4.0.5, deployment in, 313
JBoss AS 4.2.x/5.x, deployment in,

314–315
JBoss Embeddable EJB3, 339–344
JBoss Enterprise Middleware Suite

(JEMS) installer, 12, 366
JBoss MicroContainer, 333

bootstrapping, 339, 342
configuration files, 337–339

JBoss Rules, 277. See also security frame-
work

configuring, 287–288
JBoss Seam. See Seam
jBPM, 245–249

actors, assigning to web users,
245–249

binding data objects, 255–256
configuring, 263–265, 275–276
creating business process instances,

254–255
defining business processes, 252–254

integration with, 6
task management, 257–263

jBPM Pageflow Definition Language. See
jPDL

JDBC drivers, installing, 347
JDK 5.0, 365–366
JEMS (JBoss Enterprise Middleware

Suite) installer, 12, 366
JPA (Java Persistence API), 23

Seam POJO application example,
320–327

jPDL, 98
JSF

benefits/limitations, 31
integration with EJB 3.0, 3–5
JSP conflicts with, 33
page navigation in, 22–23

JSF component libraries
Ajax4jsf. See Ajax4jsf
ICEfaces. See ICEfaces
list of, 208–209

JSF custom validators, 147–148
JSF enhancements, 31

Facelets, 32–40
adding support for, 44–47

data list components, 39–40

Hello World sample application,
34–35

JSP versus, 32–33

as template engine, 35–39

Seam email support tags, 50–53
Seam filter, 44
Seam formatted text tags, 53–54
Seam JSF EL, 42–43

in clickable data tables, 153–154

Seam PDF tags, 48–50

Index

396

Seam UI tags, 40–41
adding support for, 44–47

stateful JSF, 44
JSF lifecycle phases, 305
JSF messages, displaying, 102–103,

175–176
JSF page navigation. See navigation
JSF replacement tags, 41
JSF web pages, 11
JSP

error pages, 184–185
Facelets versus, 32–33
JSF conflicts with, 33

JVM options, performance tuning,
353–354

K
keepalive connections, 355–356
King, Gavin, 5, 77

L
lazy loading, 7

eager loading versus, 77–79
@Length annotation, 140
links in conversations, 114–116
load balancing sticky sessions, 362
loading test infrastructure, 299–301
logged-in users, checking for, 285
logging, reducing, 354
logout, 278
long running conversations, 80, 103–116

business processes versus, 261
stateful navigation rules and, 274–275

M
mapping

data models to web forms, Hello
World sample application, 14–15

entity objects, 173–174
@Max annotation, 141
memory leaks, avoiding, 82–83
merging into persistence context, 152–153
messages, displaying JSF messages,

102–103, 175–176
method-level access control, 282–283
MicroContainer. See JBoss

MicroContainer
@Min annotation, 141
multipage query results, displaying,

179–182
multiple transitions in tasks (jBPM),

258–259
MyFaces, server-side state saving in, 357

N
navigation

associating business processes with
web pages, 270–274

in JSF, 22–23
in stateful example application, 95–98
stateful navigation rules

configuring, 275–276

long running conversations and,
274–275

in pages.xml file, 267–270

navigation cases, 96
navigation rules, 95–96

Index

397

stateful navigation rules
configuring, 275–276

long running conversations and,
274–275

in pages.xml file, 267–270

visual editors for, 97
NetBeans IDE, Seam Gen in, 65–69
@NotNull annotation, 141

O
Object Relational Mapping. See ORM
ORM

Seam and, 5
state management and, 77–79

Otrix, 209
@Out annotation, 16, 95, 160

P
packaging

EJB3 applications for Tomcat,
339–344

Hello World sample application, 23–30
Seam POJO application with JPA

example, 325–327
Seam POJO applications for Tomcat,

335–339
page actions, 161–162
page context, 84
page navigation. See navigation
page parameters

for bookmarkable web pages, 158–162
in ICEfaces, 208

pages.xml file
handling system exceptions, 188–190
stateful navigation rules, 267–270

partial form submission example, 199–202
@Past annotation, 141
@Pattern annotation, 140, 141
patterns. See design patterns
PDF files, generating, 48–50
PDF tags, 48–50
per-instance access rules, 286–287
performance

annotations and, 351–352
JBoss AS versus Tomcat, 334
state management and, 80–81
tuning, 352–361

Call by Value, avoiding, 352–353

JVM options, 353–354

logging, reducing, 354

production databases, 357–358

second-level database caches,
358–360

server-side versus client-side state
saving, 356–357

thread pool, 355–356

transactions, 360–361

performance tags, 41
persistence context, merging into,

152–153
persistence engine, configuring, 348–349
Plain Old Java Objects. See POJO
POJO applications

deployment of, 319–331
Hibernate API example, 327–331

JPA example, 320–327

in Tomcat environments, 335–339

as templates, 378–383

Index

398

POJO components
conversations and, 101
EJB3 components versus, 17–19,

170–171, 319
as stateful, 92

POJO services with dependency bijection,
7–8

pooledTask component, 261–262
pooledTaskInstanceList component, 261
prerequisites for Seam Gen, 55–56
private fields, accessing, 296
process definitions (jBPM), 246

creating, 247–248
process instances (jBPM), 246

creating, 254–255
production databases

data sources, defining, 347–348
installation and setup, 345–347
JDBC driver installation, 347
performance tuning, 357–358
persistence engine configuration,

348–349
production deployment. See deploying
profiles in Seam Gen, 61–62
programmatic AJAX, 214–217
progress bar example (AJAX), 232–236

Q
queries, 176–182

dynamic queries, 177–179
multipage results, displaying, 179–182

query parameters in HTTP GET requests,
163

R
RAM, JVM options, 353–354
@Range annotation, 141
rapid application development tools. See

Seam Gen
@Redirect annotation, 186
redirection, conversations and, 101
@Remove annotation, 94
@RequestParameter annotation, 163
requirements for JBoss AS, 365–366
@Restrict annotation, 283–285
resuming interrupted conversations, 120
retrieving entity objects, 174–175
return values, rolling back transactions,

131–132
roles, 277–280
@Rollback annotation, 131–132
rolling back transactions, 130–132
rule-based access control, 283–288
rules. See business rules

S
scalability

of clustering, 361
of state management, 80–81

<s:conversationPropagation> UI compo-
nent, 116

scope. See contexts
@Scope annotation, 91
<s:decorate> UI tag, 146–147
Seam

bundling ICEfaces JAR files for,
205–208

integration of EJB and JSF, 3–5

Index

399

ORM and, 5
purpose of, 3

Seam API calls, accessing Seam compo-
nents (integration testing example),
307–309

Seam applications. See applications
Seam components

accessing from JavaScript, 234–236
accessing with JSF EL, integration

testing example, 304–307
accessing with Seam API calls, inte-

gration testing example, 307–309
AJAX progress bar example, 232–234
decoupling, 92–93
initializing, 164–166
lifecycle, 93–94

Seam CRUD application framework. See
CRUD application framework

Seam filter, 44
Seam Gen, 10

application deployment phase, 63–64
application development phase, 63
application testing phase, 64–65
CRUD application generation, 71–74
in Eclipse IDE, 69–71
loading test infrastructure, 299
in NetBeans IDE, 65–69
prerequisites, 55–56
profiles, 61–62
Seam POJO application deployment,

322, 326
setup, 56–59
skeleton application, generating, 60–61
Tomcat and, 334

Seam JSF EL, 42–43
accessing Seam components, integra-

tion testing example, 304–307
in clickable data tables, 153–154

Seam remoting JavaScript library
AJAX progress bar example, 232–236
Dojo toolkit integration, 236–242
validation example, 225–231

second-level database caches, perform-
ance tuning, 358–360

security framework, 277–288
declarative access control, 280–283
rule-based access control, 283–288
user authentication/roles, 277–280

selecting tasks (jBPM), 260–263
server connections, detecting, 201–202
server-side state saving, client-side state

saving versus, 356–357
server-side validation, 139

Seam remoting JavaScript library
example, 226–227

servlet error pages, 184–185
session beans. See also EJB3 components

POJO components versus, 170–171
stateful session beans, 91–93, 255
validation in, 144

session context, 84
setter methods. See getter/setter methods
<s:formattedText> UI component, 53–54
@Size annotation, 141
skeleton application, generating in Seam

Gen, 60–61
<s:link> UI component, 115–116
<s:message> UI tag, 145–147
span element, hiding/viewing, 228–229

Index

400

stack trace, displaying, 187
starting conversations, 108–109
state management

benefits, 77–86
boilerplate code, reduction of,

84–86

browser navigation support, 81–82

memory leaks, avoiding, 82–83

ORM usage, 77–79

performance, 80–81

stateful contexts, 83–84

conversations. See conversations
HTTP sessions versus, 99
POJO components and, 92
scalability of, 80–81
server-side state saving, client-side

state saving versus, 356–357
stateful example application, 87–98

page navigation in, 95–98

stateful components in, 88–95

state replication in clustering, 363
@Stateful annotation, 91
stateful applications, 5–6
stateful components in stateful example

application, 88–95
stateful contexts, 83–84
stateful entity beans, 91
stateful example application, 87–98

page navigation in, 95–98
stateful components in, 88–95

stateful JSF, 44
stateful navigation rules

browser navigation support, 274
configuring, 275–276

long running conversations and,
274–275

in pages.xml file, 267–270
stateful session beans, 91–93, 255
stateless context, 84
states (jBPM), 246
sticky sessions, load balancing, 362
success messages, displaying, 102–103,

175–176
Sun blueprint catalog, 209
<s:validate/> UI tag, 142–143
<s:validateAll/> UI tag, 143–144
system exceptions, 188–190

T
task IDs, 259–260
taskInstanceList component, 262
taskInstanceListByType component,

262–263
tasks (jBPM), 246

implementing business logic, 257–259
selecting in UI, 260–263
specifying, 259–260

template-based email, 50–53
template engine, Facelets as, 35–39
templates

configuration files for advanced appli-
cation templates, 385

EJB3 applications as, 371–377
Seam POJO applications as, 378–383
Tomcat applications as, 383–384

@Test annotation, 294
test infrastructure, loading, 299–301

Index

401

testing
Hello World sample application, 20
integration testing, 9, 303–309

getter/setter methods, 309

Seam component access with JSF
EL example, 304–307

Seam component access with Seam
API calls example, 307–309

Seam Gen applications, 64–65
unit testing, 9, 291–301

database services, 297–299

dependency bijection, 295–296

loading test infrastructure,
299–301

TestNG test case example, 293–295

TestNG, 293
test case example, 293–295

text input example, 202–205
third-party JavaScript libraries, Dojo

toolkit integration example, 236–242
thread pool, 355–356
Ticketing example application

assigning jBPM actors to web users,
245–249

binding data objects, 255–256
creating business process instances,

254–255
defining business processes, 252–254
task management, 257–263

timeouts for conversations, 114
Tomcat

Apache Tomcat Connector, 362
deployment in, 333–344

EJB3 applications, 339–344

Seam POJO applications, 335–339

JBoss AS versus, 334

Tomcat applications as templates,
383–384

tools support. See Seam Gen
transaction manager, disabling, 133–134
@Transactional annotation, 129
@TransactionAttribute annotation, 129,

134
transactions, 127–134

atomic conversations, 132–134
error handling, 128–129
forced rollbacks, 130–132
performance tuning, 360–361

transitions, multiple transitions in tasks
(jBPM), 258–259

triggering
JavaScript events, 228–229
validation, 142–144

tuning performance, 352–361
Call by Value, avoiding, 352–353
JVM options, 353–354
logging, reducing, 354
production databases, 357–358
second-level database caches, 358–360
server-side versus client-side state sav-

ing, 356–357
thread pool, 355–356
transactions, 360–361

U
UI components, declarative access con-

trol, 281–282
UI tags, 40–41

adding support for, 44–47
triggering validation, 142–144
validation error messages, 145–147

Index

402

unit testing, 9, 291–301
database services, 297–299
dependency bijection, 295–296
loading test infrastructure, 299–301
TestNG test case example, 293–295

URLs. See bookmarkable web pages
user authentication, 277–280
user roles, 277–280

V
@Valid annotation, 141, 144
validation, 137–148

Ajax4jsf example, 212–214
entity bean annotations, 139–141
error messages, displaying, 145–147
JSF custom validators, 147–148
partial form submission example,

199–202
Seam remoting JavaScript library

example, 225–231
server-side validation, 139
in session beans, 144
triggering, 142–144

validation tags, 40, 142–144
viewing span element, 228–229
visual editors for navigation rules, 97
visual effects, Dojo toolkit integration

example, 236–238

W
WAR files

Hello World sample application, 26–28
Seam POJO application with JPA

example, 325–327

Web 2.0 applications, 7
Web Application aRchive. See WAR files
web events, handling (Hello World sam-

ple application), 15–17
web forms, mapping data models to

(Hello World sample application),
14–15

web pages
associating business processes with,

270–274
bookmarkable web pages. See book-

markable web pages
declarative access control, 280–281

web transactions. See atomic conversa-
tions

@WebRemote annotation, 227
Wikitext, 53–54
Woodstock project, 209
workspace switcher, 120–123
workspaces, 117–120

conversations across, 123–124
customizing conversation IDs,

124–126
workspace switcher, 120–123

wrapper code, reduction of, 84–86

X
XHTML. See Facelets
XML files, 8–9

Hello World sample application, 23–30

	Table of Contents
	I. GETTING STARTED
	1. What Is Seam
	1.1. Integrate and Enhance Java EE Frameworks
	1.2. A Web Frameworks That Understands ORM
	1.3. Designed for Stateful Web Applications
	1.4. Web 2.0 Ready
	1.5. POJO Services via Dependency Bijection
	1.6. Configuration by Exception
	1.7. Avoid XML Abuse
	1.8. Designed for Testing
	1.9. Great Tools Support
	1.10. Let's Start Coding!

	2. Seam Hello World
	2.1. Create a Data Model
	2.2. Map the Data Model to a Web Form
	2.3. Handle Web Events
	2.4. More on the Seam Programming Model
	2.5. Configuration and Packaging
	2.6. How Is This Simple?

	3. Recommended JSF Enhancements
	3.1. An Introduction to Facelets
	3.2. Seam JSF Enhancements
	3.3. Add Facelets and Seam UI Support
	3.4. PDF, Email, and Rich Text

	4. Rapid Application Development Tools
	4.1. Prerequisites
	4.2. A Quick Tutorial
	4.3. Work with IDEs
	4.4. Generate CRUD Application from Database

	II. STATEFUL APPLICATIONS MADE EASY
	5. An Introduction to Stateful Framework
	5.1. Correct Usage of ORM
	5.2. Better Performance
	5.3. Better Browser Navigation Support
	5.4. Less Memory Leak
	5.5. High Granularity Component Lifecycle
	5.6. Reduce Boilerplate Code

	6. A Simple Stateful Application
	6.1. Stateful Components
	6.2. Page Navigation Flow

	7. Conversations
	7.1. The Default Conversation Scope
	7.2. Long Running Conversations
	7.3. New Frontiers

	8. Workspaces and Concurrent Conversations
	8.1. What Is a Workspace?
	8.2. Workspace Switcher
	8.3. Carry a Conversation Across Workspaces
	8.4. Managing the Conversation ID

	9. Transactions
	9.1. Managing a Transaction
	9.2. Forcing a Transaction Rollback
	9.3. Atomic Conversation (Web Transaction)

	III. INTEGRATING WEB AND DATA COMPONENTS
	10. Validating Input Data
	10.1. Form-Validation Basics
	10.2. Validation Annotations on the Entity Bean
	10.3. Triggering the Validation Action
	10.4. Display Error Messages on the Web Form
	10.5. Use JSF Custom Validators

	11. Clickable Data Tables
	11.1. Implement a Clickable Data Table
	11.2. Seam Data-Binding Framework

	12. Bookmarkable Web Pages
	12.1. Using Page Parameters
	12.2. The Java-Centric Approach

	13. The Seam CRUD Application Framework
	13.1. Data Access Objects (DAOs)
	13.2. Seam CRUD DAOs Are POJOs
	13.3. The Declarative Seam DAO Component
	13.4. Queries

	14. Failing Gracefully
	14.1. Why Not Standard Servlet Error Pages?
	14.2. Set Up the Exception Filter
	14.3. Annotate Exceptions
	14.4. Use pages.xml for System Exceptions
	14.5. Debug Information Page

	IV. AJAX SUPPORT
	15. Custom and AJAX UI Components
	15.1. Partial Form Submission Example
	15.2. Auto-complete Text Input Example
	15.3. Use ICEfaces with Seam
	15.4. Other JSF Component Libraries

	16. Enabling AJAX for Existing Components
	16.1. AJAX Validator Example
	16.2. Programatic AJAX
	16.3. AJAX Buttons
	16.4. AJAX Containers
	16.5. Other Goodies
	16.6. Configuring Ajax4jsf
	16.7. Pros and Cons

	17. Direct JavaScript Integration
	17.1. AJAX Name Validation Example (Reloaded)
	17.2. The AJAX Progress Bar
	17.3. Integrating the Dojo Toolkit

	V. BUSINESS PROCESSES AND RULES
	18. Managing Business Processes
	18.1. jBPM Basics and Vocabulary
	18.2. Application Users and jBPM Actors
	18.3. Creating a Business Process
	18.4. Managing Tasks
	18.5. jBPM Libraries and Configuration

	19. Stateful Pageflows
	19.1. Stateful Navigation Rules in pages.xml
	19.2. Associating a Business Process with a Web Page
	19.3. Pageflow and Stateful Conversation
	19.4. Configuration

	20. Rule-Based Security Framework
	20.1. Authentication and User Roles
	20.2. Declarative Access Control
	20.3. Rule-Based Access Control

	VI. TESTING SEAM APPLICATIONS
	21. Unit Testing
	21.1. A Simple TestNG Test Case
	21.2. Simulating Dependency Bijection
	21.3. Mocking the Database and Transaction
	21.4. Loading the Test Infrastructure

	22. Integration Testing
	22.1. A Complete Test Script
	22.2. Accessing Seam Components Without the EL

	VII. PRODUCTION DEPLOYMENT
	23. Java EE 5.0 Deployment
	23.1. JBoss AS 4.0.5
	23.2. JBoss AS 4.2.x and 5.x
	23.3. GlassFish

	24. Seam Without EJB3
	24.1. Seam POJO with JPA
	24.2. Using Hibernate POJOs and API

	25. Tomcat Deployment
	25.1. Packaging a POJO Application for Tomcat
	25.2. Packaging an EJB3 Application for Tomcat

	26. Using a Production Database
	26.1. Installing and Setting Up the Database
	26.2. Installing Database Driver
	26.3. Defining a DataSource
	26.4. Configuring the Persistence Engine

	27. Performance Tuning and Clustering
	27.1. Tuning Performance on a Single Server
	27.2. Clustering for Scalability and Failover

	A. Installing and Deploying JBoss AS
	A.1. JDK 5.0 Is Required
	A.2. Installing JBoss AS
	A.3. Deploying and Running Applications

	B. Using Example Applications as Templates
	B.1. Simple EJB3-Based Web Applications
	B.2. POJO-Based Web Applications
	B.3. Tomcat Applications
	B.4. More Complex Applications

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

