
 
    

  Table of 
Contents  

Real-Time Java™ Platform Programming 

By Peter C. Dibble 

    

Publisher : Prentice Hall PTR 

Pub Date : March 11, 2002 

ISBN : 0-13-028261-8 

Pages : 352 

 

Written for experienced Java platform developers, this practical guide provides a solid 
grounding in real-time programming. Dibble, a member of the RTSJ expert group, starts 
with an overview of real-time issues unique to the Java platform. He then explains how to 
use each major feature of the RTSJ. 

From broad real-time principles to detailed programming pitfalls, Real-Time Java 
Platform Programming covers everything you need to know to build effective RT 
programs. Key topics include:  

• Interoperability with non-RT code, tradeoffs in real-time development, and RT 
issues for the JVMtm software  

• Garbage collection, non-heap access, physical and "immortal" memory, and 
constant-time allocation of non-heap memory  

• Priority scheduling, deadline scheduling, and rate monotonic analysis  
• Closures, asynchronous transfer of control, asynchronous events, and timers 

 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 

http://www.informit.com/safari/author_bio.asp?ISBN=0130282618


 ii

Table of Content  
Table of Content...................................................................................................................i 
Copyright ..............................................................................................................................v 
Preface ................................................................................................................................vi 
Introduction ........................................................................................................................vii 
Chapter 1. Landscape ........................................................................................................1 

Java Technology and Real Time..................................................................................1 
Definition of Real Time ..................................................................................................3 
Java's Problem Domain.................................................................................................8 
Real-Time Java's Problem Domain .............................................................................9 
Summary........................................................................................................................10 

Chapter 2. Architecture of the Java Virtual Machine ...................................................11 
Write Once, Run Anywhere—Maybe.........................................................................11 
JVM Components .........................................................................................................12 
Interpreter Implementation ..........................................................................................23 

Chapter 3. Hardware Architecture..................................................................................28 
Worst-Case Execution of One Instruction.................................................................28 
Management of Troublesome Hardware ..................................................................32 
Effects on the JVM .......................................................................................................33 

Chapter 4. Garbage Collection .......................................................................................35 
Reference Counting .....................................................................................................35 
Basic Garbage Collection............................................................................................35 
Copying Collectors .......................................................................................................39 
Incremental Collection .................................................................................................41 
Generational Garbage Collection...............................................................................44 
Real-Time Issues..........................................................................................................45 

Chapter 5. Priority Scheduling ........................................................................................46 
Scheduling Terms.........................................................................................................46 
Execution Sequences ..................................................................................................46 
Preemption ....................................................................................................................47 
Fixed versus Dynamic Priority ....................................................................................49 
Priority Inversion ...........................................................................................................49 
Why 32 Priorities? ........................................................................................................52 
Problems with Priority Scheduling .............................................................................53 

Chapter 6. Scheduling with Deadlines...........................................................................55 
Underlying Mechanism ................................................................................................55 
Scope of the Scheduler ...............................................................................................56 
Some Systems ..............................................................................................................56 
Timing Is Usually Probabilistic ....................................................................................63 

Chapter 7. Rate Monotonic Analysis..............................................................................65 
Theorems.......................................................................................................................65 
Restrictions ....................................................................................................................71 

Chapter 8. Introduction to the Real-Time Java Platform ............................................74 
A Brief History of Real-Time Java..............................................................................74 
Major Features of the Specification ...........................................................................76 
Implementation .............................................................................................................80 
RTSJ Hello World .........................................................................................................80 

Chapter 9. Closures..........................................................................................................82 
The Language Construct .............................................................................................82 
Java Closures ...............................................................................................................82 
Limitations of Closures ................................................................................................84 

Chapter 10. High-Resolution Time.................................................................................87 
Resolution ......................................................................................................................87 



 iii

The "Clock" ....................................................................................................................87 
HighResolutionTime Base Class................................................................................88 
Absolute Time ...............................................................................................................89 
Relative Time ................................................................................................................90 
Rational Time ................................................................................................................90 

Chapter 11. Async Events ...............................................................................................92 
Binding a Happening to an Event ..............................................................................92 
Basic Async Event Operation .....................................................................................93 
Async Events without Happenings ............................................................................95 
Implementation Discussion .......................................................................................100 

Chapter 12. Real-Time Threads ...................................................................................102 
Creation........................................................................................................................102 
Scheduling ...................................................................................................................106 
Periodic Threads without Handlers..........................................................................110 
Periodic Threads with Handlers ...............................................................................115 
Interactions with Normal Threads ............................................................................122 
Changing the Scheduler ............................................................................................123 

Chapter 13. Non-Heap Memory ...................................................................................131 
The Advantage of Non-Heap Memory.....................................................................131 
The Allocation Regimes.............................................................................................132 
Rules.............................................................................................................................133 
Mechanisms for Allocating Immortal Memory ........................................................134 
Mechanisms for Allocating from Scoped Memory .................................................136 
Using Nested Scoped Memory.................................................................................142 
Using Shared Scoped Memory ................................................................................154 
Fine Print......................................................................................................................165 
Quick Examples ..........................................................................................................166 

Chapter 14. Non-Heap Access .....................................................................................169 
Interaction with Scheduler .........................................................................................169 
Rules.............................................................................................................................170 
Samples .......................................................................................................................171 
Final Remarks .............................................................................................................174 

Chapter 15. More Async Events ...................................................................................176 
Async Events and the Scheduler .............................................................................176 
The createReleaseParameters Method ..................................................................176 
Bound Async Event Handlers ...................................................................................177 
Async Event Handlers and Non-Heap Memory .....................................................177 
No-Heap Event Handlers vs. No-Heap Threads ...................................................177 
Scheduling ...................................................................................................................178 
Async Event Handlers and Threads ........................................................................179 
Special Async Events ................................................................................................179 

Chapter 16. Reusing Immortal Memory ......................................................................180 
Using Fixed-Object Allocators ..................................................................................180 
Recycling RT Threads ...............................................................................................181 
Recycling Async Event Handlers .............................................................................186 

Chapter 17. Asynchronous Transfer of Control..........................................................189 
Thread Interrupt in Context .......................................................................................190 
Asynchronous Interrupt Firing ..................................................................................191 
Rules for Async Exception Propagation..................................................................197 
Noninterruptible Code ................................................................................................206 
Legacy Code ...............................................................................................................209 
Use of ATC for Thread Termination ........................................................................209 

Chapter 18. Physical Memory.......................................................................................211 
Physical and Virtual Memory ....................................................................................212 



 iv

Physical Memory Manager........................................................................................212 
Immortal Physical Memory........................................................................................215 
Scoped Physical Memory..........................................................................................216 

Chapter 19. Raw Memory Access................................................................................217 
Security ........................................................................................................................218 
Peek and Poke............................................................................................................218 
Get/Set Methods .........................................................................................................219 
Mapping .......................................................................................................................221 
The RawMemoryFloatAccess Class........................................................................222 

Chapter 20. Synchronization without Locking ............................................................224 
Principles of Wait-Free Queues ...............................................................................226 
The Wait-Free Write Queue......................................................................................227 
The Wait-Free Read Queue......................................................................................229 
The Wait-Free Double-Ended Queue......................................................................230 
No-Wait Queues and Memory ..................................................................................231 
Implementation Notes ................................................................................................232 

Chapter 21. Recommended Practices.........................................................................233 
Powerful and Easy-to-Use Features of the RTSJ .................................................233 
Very Powerful and Dangerous Features of the RTSJ...........................................234 
Very Powerful and Finicky Features of the RTSJ..................................................235 
Selection of Priorities .................................................................................................236 

Index .................................................................................................................................239 
Symbol ..........................................................................................................................239 
A....................................................................................................................................239 
B ....................................................................................................................................239 
C ....................................................................................................................................240 
D....................................................................................................................................240 
E ....................................................................................................................................241 
F.....................................................................................................................................241 
G....................................................................................................................................241 
H....................................................................................................................................242 
I .....................................................................................................................................242 
J .....................................................................................................................................242 
K....................................................................................................................................242 
L ....................................................................................................................................242 
M ...................................................................................................................................242 
N....................................................................................................................................243 
O....................................................................................................................................243 
P.....................................................................................................................................244 
R ....................................................................................................................................244 
S.....................................................................................................................................244 
T ....................................................................................................................................246 
V....................................................................................................................................246 
W...................................................................................................................................246 

 



 v

Copyright 
© 2002 Sun Microsystems, Inc.— 

Printed in the United States of America. 

901 San Antonio Road, Palo Alto, California 

94303 U.S.A. 

All rights reserved. This product and related documentation are protected by copyright and 
distributed under licenses restricting its use, copying, distribution, and decompilation. No part of 
this product or related documentation may be reproduced in any form by any means without prior 
written authorization of Sun and its licensors, if any. 

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States 
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 
52.227-19. 

The products described may be protected by one or more U.S. patents, foreign patents, or pending 
applications. 

TRADEMARKS—HotJava, Java, Java Development Kit, Solaris, SPARC, SunOS, and Sunsoft 
are trademarks of Sun Microsystems, Inc. 

The publisher offers discounts on this book when ordered in bulk quantities. For more information, 
contact Corporate Sales Department, Prentice Hall PTR , One Lake Street, Upper Saddle River, 
NJ 07458. Phone: 800-382-3419; FAX: 201- 236-7141. Email: corpsales@prenhall.com. 

Editorial/production supervision: Jan H. Schwartz 

Cover design director: Jerry Votta 

Cover designer: Anthony Gemmellaro 

Cover illustration: Karen Strelecki 

Manufacturing manager: Alexis R. Heydt-Long 

Marketing manager: Debby vanDijk 

Associate editor: Eileen Clark 

Editorial assistant: Brandt Kenna 

Sun Microsystems Press Publisher: Michael Llwyd Alread 

10 9 8 7 6 5 4 3 2 1 

Sun Microsystems Press 

A Prentice Hall Title 

mailto:corpsales@prenhall.com


 vi

 

Preface 
Real-time computing—computing with deadlines—is a field that involves every programmer, but 
almost nobody gives it serious attention. The machine tool that controls a flying saw blade is a 
real-time problem. So is a web site that guarantees to respond to queries within two seconds, or 
the text editor that must respond to each keystroke within a tenth of a second to keep its user 
comfortable. In the broadest sense, even the biweekly payroll run is a real-time system. 

To the extent that typical programmers worry about timeliness, they think in terms of high-
performance algorithms, optimizing compilers, and fast processors. Those are important 
considerations, but they ignore the question of consistent performance. There are a whole family 
of things that can make timing undependable, and avoiding those problems is the province of real-
time programming. 

Over the years I've been working on this book, the fastest Java Virtual Machines have improved to 
the point where the performance of the Java platform can reliably match or exceed the 
performance of C++, but that is material for a different book. A real-time programmer is certainly 
interested in the time it takes to complete a computation, but the important question is whether it 
will always complete on time. Are all the factors that could delay completion properly accounted 
for? 

The Real Time Specification for Java (RTSJ) focuses on the factors that matter to systems that 
must meet deadlines, primarily time itself and things that could cause unexpected delays. This 
book focuses on the same things. 

This book has to be dedicated to the other members of the real time for Java Expert Group. Others 
contributed—family, editors, employers, and friends—but the six other "experts" who saw the 
effort through are special. Thank you Greg Bollella, Ben Brosgol, Steve Furr, James Gosling, 
David Hardin, and Mark Turnbull. Without you the spec would not be there, this book would not 
be here, and I would have missed what may have been the most exciting spec-writing exercise in 
history. By my count, we spent more than a thousand hours together arguing, problem solving, 
building concepts and tearing them down. Greg (our spec lead for most of the effort) was 
demanding and a tireless example for us. We worked hard, but we had glorious fun. What could 
be more fun than working with a group of supremely-qualified friends to complete a difficult 
piece of work? 

I found one aspect of the process particularly interesting. We were all sent as representatives of 
companies. Nevertheless, in almost every case, we operated as if our companies had instructed us 
to ignore all commercial motivations and build a good specification. Perhaps it is Sun's fault. They 
sent us James Gosling. Not only is he highly qualified, and revered in the Java world, he is also a 
scrupulously honest scientist. Did that example motivate other companies to send similar people? 
Or perhaps we can trace it back to IBM, who set the ground rules that selected us all. However it 
was done, it was good. All specifications should be created this way! 

The main players on the reference implementation team also deserve special mention. Doug Locke, 
Pratik Solanki, and Scott Robbins wrote lots of code and participated in Expert Group conference 
calls in the last year of the specification's development. Not only did they bring the spec to life in 
code, they also helped us redesign some facilities. 

I started writing this book long before the specification was complete. The original goal was to 
have a set of books ready near the time the specification became final. There would be a 
specification, a reference implementation and a selection of "how to use it" books all at about the 
same time. This required a big head start, but things did not work exactly as planned. 
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The specification grew in a fairly organized way until the release of the preliminary specification. 
Then the work got bumpy. The implementation of the reference implementation and my 
experiences writing this book caused major upheavals in the most complex parts of the 
specification. The Expert Group had been uncertain as to the implementability of our designs for 
scoped memory management, physical memory, and asynchronous transfer of control. We agreed 
to put fairly aggressive designs in the preliminary specification, and see how the reference 
implementation team dealt with them. It turned out that we had to tighten the rules for 
asynchronous transfer of control slightly, and increase the constraints on scoped memory a lot. 
Then we discovered that interaction between scoped memory and threads made starting threads in 
non-heap memory painful nearly to the point of uselessness. We fixed these problems, and I wrote 
and rewrote chapters. 

Every specification that is released before it has been used extensively needs an author who tries 
to explain the specification, and write code that uses the specification. That person finds problems 
that are invisible to implementers and the test suite. But the author had better love the 
specification. A chapter about a feature that is broken will naturally get long and complicated as it 
tries to show the power and rationale behind the design. Finally it reaches the point of, "this is not 
complex and wonderful. It is broken!" Then the chapter becomes trash, and a new chapter appears 
to explain the new design. 

Happily, the Expert Group and the reference implementation team were with me. The final 
specification went up on www.rtj.org in late 2001, the reference implementation appeared there in 
early 2002, and this, the "how to use it" book should be on the shelves in March 2002. We did OK. 

 

Introduction 
You can treat this book as two closely-related books. Chapters 1 through 7 are background that 
might help understand the RTSJ. The remainder of the book is about the RTSJ itself. If you 
already understand real-time scheduling, or you don't care about scheduling and want to get 
directly to the code, you can start at Chapter 8 and read from that point on. Other than possibly 
skipping the first seven chapters, I do not recommend skipping around. Few of the chapters can 
stand by themselves. After you've skimmed the book once, it can work as reference material, but I 
suggest that you start by reading the book sequentially. 

This book is intended to serve as part of a set comprising three elements: the RTSJ specification, 
the reference implementation, and this book. You can find the specification and the reference 
implementation through www.phptr.com/dibble or www.rtj.org. The preliminary RTSJ document 
is part of the Addison-Wesley Java Series. It is available in hard copy through your favorite book 
store. However, the preliminary RTSJ has been superseded by the final, version 1.0, version. At 
this time, the final specification is only available as downloadable PDF and HTML. 

The reference implementation is a complete and usable implementation of the RTSJ for Linux. 
Almost every example in this book was tested on the reference implementation. I have used the 
reference implementation on PCs running Red Hat Linux and TimeSys Linux, and it should work 
with other versions of X86 Linux as well, but the reference implementation relies on the 
underlying operating system for scheduling, so you will find that features like priority inversion 
avoidance will depend on the version of Linux you use. 

The source code for the reference implementation is available. Some of it is descended from the 
Sun CVM. That is available under the Sun community source license. The parts of the reference 
implementation that are not related to Sun code are covered under a less restrictive open source 
license. 

http://www.rtj.org/
http://www.phptr.com/dibble
http://www.rtj.org/
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Although the reference implementation is excellent for experimentation, it is not designed for 
commercial use. It does not take the care with performance or memory use that you'd expect from 
a commercial product. 

You can find links to important web sites, corrections and extensions to this book, and probably 
other useful things like source code at www.phptr.com/dibble. 

http://www.phptr.com/dibble
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Chapter 1. Landscape 
• Java Technology and Real Time 
• Definition of Real Time 
• Java's Problem Domain 
• Real-Time Java's Problem Domain 
• Summary 

The Java platform seems an unusual choice for real-time programming: garbage collection freezes the 
system whenever it likes, giving Java technology terrible timing behavior, and performance from one to 30 
times slower than the same program written in C++, depending on the program and the details of the Java 
platform. If the real-time community were not desperate for better tools, the Java platform would be 
summarily rejected. 

The benefits of Java technology are attractive enough that the standard Java platform has been used in a 
few real-time systems, and its promise justified the effort to design and build real-time extensions—the 
RTJava platform. 

 

Java Technology and Real Time 

Programmers of embedded real-time systems are the most obvious members of the real-time community, 
but nearly every programmer deals with real time some of the time. Everybody who codes user interfaces 
should worry about consistent response time. Telecommunication equipment has deadlines imposed by 
regulations. Trains, airplanes, elevators, trucks, packages in a delivery system, programming on television, 
packets flowing through a network, children preparing to meet the school bus—all of these systems 
involve timing constraints, and all of them (except, probably, getting children to the bus on time) are likely 
to involve computers. 

Real-time programming is like any other kind of programming, but arguably harder. Like an ordinary 
program, a real-time program must produce correct results; it also has to produce the results at the correct 
time. Traditionally, real-time programming has been practiced in antique[1] or arcane[2] languages. Real-
time Java gives real-time programmers access to a modern, mainstream language designed for productivity. 

[1] Assembly language itself may not be antique, but the practice of programming in assembly language is 
being obsoleted by RISC processors and sophisticated optimizing compilers. 

[2] FORTH is a relatively popular arcane language. The defense department has a whole stable of other 
arcane languages for real-time systems. 

Java puts programmer productivity before everything else. The famous Java slogan, Write Once, Run 
Anywhere, is just a specialization of programmer productivity—it is clearly inefficient for a programmer 
to rewrite a program for each target platform. 

Those who criticize the willingness of the designers of the Java platform to sacrifice performance for 
productivity face two arguments. 

1. A compiler should be able to optimize out much of the cost of Java's programmer-friendly features. 
2. Moore's law has processors speeding up so fast that any reasonable constant-factor overhead 

introduced by Java will quickly be covered by processor improvements. 
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If you feel that strongly about performance, use C or assembler, but a Java application would be designed, 
written, and debugged before the C application is coded. Real-time Java is designed with the same theme. 

Note 

For this book, we stipulate that the Java platform is slow and has garbage collection delays. These 
problems are not necessarily permanent. Tricks in the Java virtual machine (JVM) make execution 
faster and garbage collection less intrusive, but those workarounds are not the focus of this book. 

Real time does not necessarily mean "real fast." Computing speed is not the problem for a computer that 
controls a needle that zips into a $200 glass test tube and stops abruptly a millimeter before it slams 
through the bottom of the tube. If the system is slow, the solutions are well known: profile, improve the 
algorithms, tweak the code, and upgrade the hardware. Inconsistent behavior is harder to address. It can 
only be fixed by finding and removing the underlying cause, which, by definition, appears sporadically. 
Boosting performance until the problem disappears often does more harm than good. The system may stop 
failing under test but still fail after it is deployed. 

 

 

Real-Time Programming Requirements 

The real-time programmer needs predictability. If the program stops the needle in time under test, it must 
never smash the tube unless there is a hardware problem. The worst debugging problem is software that 
works correctly almost every time. Removing a timing bug that won't appear reliably during testing is an 
exercise in imagination. Convincing yourself that the repair worked is an exercise in faith—you cannot 
make the defect appear in the defective software, and it still doesn't appear after you apply the fix. It must 
be gone. Right? 

Real-time programmers work in the usual engineering environment. The design has to optimize several 
goals: correctness, low cost, fast time to market, compelling feature set. Real time is not the only concern. 
Predictability helps to achieve a correct implementation quickly. That helps with correctness and time to 
market, but cost is also an issue. Speed and low memory footprint amount to efficiency. They contribute to 
cost reduction and expanded feature set. If some tool or technique makes the software faster, it can do the 
following as a result: 
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• Let the system use a lower-performance (less expensive) processor 
• Let some operations move from dedicated hardware to software 
• Free some processor bandwidth for additional features 

When the cost of a faster processor or special-purpose hardware is prohibitive, the real choice is to 
optimize the software or quit. Prohibitive cost is a flexible term. In some fields, it is sensible to expend 
years of engineering to reduce hardware costs by a few cents per unit. In other fields, it is normal to spend 
hundreds of thousands of dollars on hardware to save months of engineering time for each software project. 

How Big Is Java? 

Based on implementations at Microware, the minimum RAM and ROM required for a JDK-
style runtime environment is more than 16 megabytes of ROM and 16 megabytes of RAM. 

A PersonalJava system with an e-mail client, address book, and other similar applications can 
run with four megabytes of ROM and four megabytes of RAM. This is enough memory for 
applications, class libraries, the JVM, the operating system, and supporting components. 

EmbeddedJava can be configured much larger and smaller than PersonalJava, but its lower limit 
would be hard to push below half a megabyte of ROM and half a megabyte of RAM. 

The KJava virtual machine promises to run in less than 128 kilobytes. 

RTJava doesn't do anything for Java's performance. If anything, RTJava is a little slower than ordinary 
Java, and ordinary (interpreted) Java is slower than C. (see The Case for Java as a Programming 
Language, by Arthur van Hoff in Internet Computing, January 1997 and An Empirical Comparison of 
Seven Programming Languages, by Lutz Prechelt in IEEE Computer, October 2000.) For now, that 
shortcoming has to be accepted: Java is slower than the alternatives, and it requires a daunting amount of 
memory to run a trivial program. (see sidebar, "How Big Is Java?"). 

Java and Embedded Real Time 

Java is not likely to drive C out of the traditional embedded market soon. Embedded programmers are as 
conservative as cats. This caution is well founded. Software defects in embedded systems can have 
spectacular, physical effects manifested in fire and crushed metal, and updating embedded software is 
usually expensive. 

Embedded programmers feel uncomfortable shipping technology that hasn't been thoroughly tested in 
many deployed systems. The barrier to adoption of new technology is subject to a minor tunneling effect. 
A few adventurous groups will try Java in embedded real-time systems. They will talk about the results. If 
real-time Java proves that it is a good tool for embedded real time, it could become a common embedded 
programming tool in five to ten years. 

 

Definition of Real Time 

Real-time problems are those for which timeliness, "Occurring at a suitable or opportune time,"[3] is a 
correctness criterion. If the process finishes late, it is wrong, or at least noticeably less satisfactory than a 
process that completes on time. 

[3] The American Heritage Dictionary of the English Language, Third Edition, Houghton Mifflin Company, 
1992. 
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Timeliness always matters. Few people would call a word processor, a compiler, or a payroll system a real-
time system, but perhaps they should. If a word processor takes more than a few tenths of a second to echo 
a character, its user may become concerned about the competence of the programmers. If a compiler takes 
much longer than expected to compile a program, its user will fear that it has seized up. Timeliness is 
especially important for payroll. Late paychecks cause fear and anger in the people waiting for them. 

The set of real-time problems is large and diverse, but a few standard tools and techniques work across 
them all: tools that are optimized for predictability, schedulers that optimize timeliness (instead of 
throughput), and analysis techniques that consider time constraints. 

The space of real-time problems has at least three useful dimensions: the precision with which time is 
measured, the importance of consistency, and the shape of the utility curve around the deadline. 

Precision of Measurement 

The precision of the units a real-time system design uses to measure time helps characterize the system 
(see Figure 1-1). Does it express a second as one second, a thousand milliseconds, or a billion nanoseconds? 

Figure 1-1. Time-scale pyramid 

 

Submicrosecond 

Some computer problems are expressed with times measured in units smaller than a microsecond (a 
millionth of a second.) That level of precision can be attained by a general-purpose processor dedicated to 
a repetitive task or by special-purpose hardware. Someday we may be able to handle such problems on a 
general-purpose system, but not today. (See Chapter 3 for reasons why it is hard to predict the execution 
time of a few instructions without tightly controlling the environment.) 

Ten Microseconds 

Software commonly handles specifications expressed in tens of microseconds, but coding to specifications 
this precise requires care and deep knowledge of the underlying hardware. This level of precision coding 
often appears in carefully written device driver code, and contrary to general principle, the goal is usually 
to complete a computation in a precise and short interval. 

Millisecond 

General real-time software usually deals with time measured in milliseconds. Most well-known real-time 
systems fall into this range. These systems can be programmed with normal tools, provided that the 
programmer demonstrates healthy caution about timing artifacts of the hardware, the compiler, and the 
system software. 
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Hundredths of a second 

Distributed real-time programming sees time in hundredths of a second. The atomic unit of time is network 
communication, and the network environment is dynamic. If you cannot tolerate timing that jitters badly at 
the millisecond level, don't distribute that part of your application. 

Tenths of a second 

Programs that interact with people see time specified in tenths of a second at the command and response 
level. This is the precision of the specification for response when a user strikes a key, clicks a mouse, 
pushes a button, crosses a photodetector, touches a touch-screen, or gives a computer directions in some 
other way. These systems are usually programmed without any consideration for real-time discipline. 
Performance problems are fixed with faster hardware or by normal profiling and tuning methods. In a real-
time sense, these systems routinely "fail" under load. 

Consistency 

We're dealing with computers. Although there is randomness at the subatomic level, the electrical 
engineers have eliminated most of the unpredictable behaviors before the computer ships. Any random 
behavior that remains is a hardware bug. If we assume bug-free hardware, everything is predictable. 
However, it may be so difficult to account for all the factors influencing execution time that on many 
processors and software platform systems, execution time is effectively unpredictable. 

In the real-time field, the term determinism means that timing is predictable at the precision required by the 
problem without heroic effort. Determinism is a good thing. Part of the design process for a real-time 
system involves drawing timelines with events and responses to those events. Without a deterministic 
operating system and processor, the analyst cannot even predict whether an event will reach the event 
handler before its deadline, much less whether the event handler will complete a computation before the 
deadline. 

Consistency is better than mere determinism. It is useful to know that an urgent event will reach your 
program at sometime between 10 and 200 microseconds. It is better to know that the time interval will be 
between 50 and 70 microseconds. A real-time system can be designed to operate in any deterministic 
environment, but it has to assume that the system will always deliver the worst possible performance. 
Designing to that assumption is wasteful since typical times are usually near the best case. A consistent 
system reduces the difference between the expected performance and the worst possible performance, 
ideally by improving the worse-case performance instead of only degrading the typical performance. 

Consistency costs performance. A system that needs to bring its best-case (the fastest it can go) and worst-
case (the worst possible) performance as close together as possible cannot use hints or heuristics and 
cannot rely on the "80/20" rule. A dynamically constructed binary tree can degenerate into a structure with 
linear search time. A quicksort can take O(n2) time. Hints can be wrong, forcing the program to check the 
hint, then execute the fallback strategy. The real-time approaches to these problems are as follows, 
respectively: use a self-balancing binary tree, use a different sorting algorithm (mergesort is slower than 
quicksort on average, but predictable), and do not use hints. The resulting software's typical performance is 
at least 15 percent worse than the performance of a system that is designed to optimize typical performance, 
but its worst-case performance may be orders of magnitude better than such a conventional design. 

Utility Function Curve 

What happens when the real-time system is late? It misses its deadline … then what? The answer to that 
question determines where the system falls on the continuum from hard real time through soft real time to 
not real time. 
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Hard real-time systems cannot tolerate late results. Something unrecoverable happens: a person dies, a 
wing falls off the airplane, a million barrels of hot petroleum squirt onto the tundra, or something else 
unspeakable occurs. 

Hard real-time systems are difficult to code but simple to specify. You have to establish that they will meet 
all their deadlines, but you do not have to decide what to do when the systems miss a deadline. It is like the 
question, "In the computer that sits in a bomb and tells it when to explode, what instruction do you put 
after the one that explodes the bomb?" 

There are two questions when a system misses a deadline: 

1. Should we bother to produce the result even though it will be late? 
2. Should we execute a recovery routine? 

If the result of the computation is worthless after the deadline, it makes no sense to waste computer time 
on it. Since the system might have missed the deadline because it was overloaded, wasting time could 
cause the system to miss other deadlines and convert the failure to meet a single deadline into a total 
shutdown. 

A missed deadline might require a response. Failing to shut off the valve that fills a water tank on time 
could call for another valve to let some water out of the tank. Not responding to a database query on time 
could put up a "please wait" message on the user's screen. A mistake in milling a part could call a human 
supervisor or kick the part into a scrap bin. 

Utility is the economists' term for how valuable something is. Economists like to draw graphs, for example, 
the utility of a commodity as a function of how much you have of it. A graph (Figure 1-2) showing the 
utility of completion around the deadline characterizes some classes of real-time systems. 

Figure 1-2. Punctuality utility functions 
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The first graph in Figure 1-2 shows a utility function that would represent a non-real-time system. The 
value of completion declines slowly after the deadline, but there is barely a difference between completing 
on deadline and being seriously late. Think of mowing the lawn. Getting it done earlier is better, but there 
isn't any point at which it suddenly becomes urgent. 

The second graph shows a utility function for a soft real-time system. The value of completion has an 
inflection point at the deadline. Late completion is worse than on-time completion, but the value stays 
positive for a while after the deadline. Think of fixing lunch for your children on a relaxed summer day. 
The children know the time they should be fed, and if you are late, they get fussy. The level of hungry 
complaints gradually increases after the deadline, but nothing really bad will happen. On time is best, and 
the value of the computation drops significantly when the deadline is missed. 

The third graph represents a real-time problem with a serious time constraint. After the deadline the value 
of completion quickly goes negative, but it does not become catastrophic. In this case, the slope of the 
curve decreases because the system can take remedial action. Think of a child flushing a T-shirt down the 
toilet. The deadline for action is the moment before the child flushes. You would much rather stop him 
before he flushes. If you are late, you might be able to reach in and snag the shirt; that is unappealing, but 
not disastrous. Still later there is a good chance you can recover the shirt with a plumber's snake, but we 
are deep in negative utility. Still, nothing terrible has happened. 

The last graph represents classic hard real time. A tiny interval after the deadline, the utility of completion 
goes to negative infinity. There probably is a utility value for a late result, but it is so negative that the 
creators of the system requirements don't want the engineer to consider the option of occasionally missing 
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the deadline. Sticking with the children analogy, this is grabbing the child before she runs into traffic. Late 
is not an acceptable alternative. 

Note 

The utility function graphs in Figure 1-2 show various behaviors before the deadline. The utility of 
early results is a whole different question. The functions show that early is the same as on time, early 
is a little worse than on time, and early is much worse than on time. Since it is easy to delay the effect 
of an early computation, worrying about early results is generally not interesting. 

 

Java's Problem Domain 

The Java programming language is not the language for problems that require plain speed. In an academic 
world that assertion would not matter, but many real problems push the performance limits of their 
hardware. Some programming tools and practices are focused on performance. Good optimizing compilers 
and profiling tools are prized because they wring better performance out of a system, and brute assembly 
optimization is still practiced. 

From the real-time perspective, Java's biggest problem isn't its performance, but its garbage collector. 
Unless you use it carefully, Java will pause at unpredictable moments and collect garbage for milliseconds. 
Better garbage collectors make long garbage collection pauses much less frequent or make the pauses 
shorter, but even with the best technology, only Java code that pays careful attention to the garbage 
collector can give predictable performance (see Figure 1-3). 

Figure 1-3. Timelines 

 

The execution of programs on Java platforms is slow, and garbage collection makes it effectively 
nondeterministic, but it is still useful in real-time systems. The simplest way to manage Java's problems is 
to avoid them. Most real-time systems have large components with loose deadlines. A system that has to 
service interrupts in 30 microseconds or lose them and must respond in 2 milliseconds or suffer serious 
degradation probably uses a few thousand lines of code for that part of the system. Another 50,000 lines 
might support a user interface, a logging system, system initialization, and error handling. Those 
components need to communicate with the serious real-time components, but they are soft real time. They 
can probably tolerate nondeterministic delays of a second or more. 

Java technology needs at least a medium-performance processor and a few megabytes of memory to run 
well.[4] This makes it particularly well suited to systems that have aggressive deadlines with long intervals 
between them. The system designers will select a powerful processor to let it meet the deadlines, and in the 
intervals between deadlines it will have lots of time to run Java programs. 
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[4] Java Card and KJava can run satisfactorily on less powerful processors and in less memory than ordinary 
Java. 

It is inconvenient to use multiple languages to build a system. Using C for the demanding real-time 
components and Java for the bulk of the components justifies the inconvenience with productivity. 

1. Java code is unusually portable. This portability lets most of the development cycle take place on 
the engineer's workstation. 

2. Programmers seem to be more productive in the Java language than in other common languages. 
3. The Java class libraries contain many prewritten classes. 
4. The Java platform works well in heterogeneous distributed systems. 
5. Java applications on the real-time system communicate easily with Java applications in other 

systems, such as management, supervisory, and diagnostic systems. 

Java probably cannot do all the work in a real-time system, but it can do the bulk of the work. See Chapter 
8 for an overview. 

 

Real-Time Java's Problem Domain 

Real-time Java (RTJava) can handle some real-time systems by itself. It is not the best language to use for 
an MPEG decoder or an image processing system, but it should nicely fit less demanding real-time 
applications. For applications that leave enough spare processor time to cover the JVM's overhead, real-
time Java promises to make real-time programming easier. 

RTJava is designed to stretch the platform slightly in the direction of real time without losing compatibility 
with existing Java code. The design does not make Java faster—it probably makes it a little slower (see 
"Consistency" on page 6)—but faster hardware or improved algorithms can compensate for Java's fixed 
overhead. This is the standard Java tradeoff extended to real time: processor overhead for robust software 
and faster development. 

The class of embedded real-time systems that are stamped out like pennies are not likely early adopters of 
RTJava. Per-unit costs on those systems are reduced mercilessly. The companies that build them would 
rather spend years of extra engineering than upgrade the processor or pay the license fee for a JVM. 

RTJava is more attractive for systems where the cost of the processor is a small part of the total cost. This 
set includes commercial and industrial applications. The cost of adding Java to the system that controls a 
scientific instrument, a manufacturing system, or an ATM could be lost in the noise. When the product 
costs tens of thousands of dollars and ten thousand units would be a good year's production, the advantages 
in flexibility and time to market of RTJava can justify the cost of a faster processor. 

RTJava may prove most useful to programmers who write interactive applications. There is an informal, 
but important, deadline when a person is waiting. Handling customer service, processing insurance claims, 
validating credit card transactions, and similar systems account for millions of programmer years of TSO, 
CICS, Complete, VMS, CMS, UNIX, ACP, Mac, and Windows interactive programs. Fast response is 
important, but fast and consistent is better. An interactive system that responds in half a second most of the 
time but sometimes takes five seconds is maddening. Non-real-time tools and methodologies can improve 
all performance by some factor, but that misses the point. Improving the typical response to three-tenths of 
a second and the occasional glitch to three seconds is nice, but the problem is still there. The accountable 
administrator wants to be able to summon a programmer and say "A customer told me that it took more 
than two seconds to validate a credit card this morning. Check the error logs. Tell me why it happened and 
how to make sure it doesn't happen again." with the same confidence he'd tell the programmer to check 
into a division by zero error. 
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Systems handling money may be even more constrained to consistently meet deadlines than are systems 
handling people. Real-time software might make it reasonable for a stock brokerage to promise that all 
trades will complete within 100 milliseconds. 

 

Summary 

All real-time systems need consistent performance. They differ in the precision they require and how 
offended they are at a missed deadline. The Real Time Specification for Java does not require that a 
conforming Java platform be unusually fast. It adds tools to Java to make it possible for a programmer to 
get consistent performance. 

Nearly all systems benefit from consistent performance. This generalization includes the usual real-time 
systems. It also includes most commercial, industrial, recreational, and personal systems. 
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Chapter 2. Architecture of the Java Virtual Machine 
• Write Once, Run Anywhere—Maybe 
• JVM Components 
• Interpreter Implementation 

The Java virtual machine (JVM) is a software implementation of a computer architecture. Since Java 
programs target the JVM, compiled Java programs should be portable. They execute the same instructions 
and use support libraries with standard APIs and identical (or at least similar) behavior whether they 
execute on an embedded system with an arcane processor or on a multiprocessor server. 

 

Write Once, Run Anywhere—Maybe 

In some respects, the JVM specification has done an admirable job. All the basic operations do the same 
thing on every correct JVM. That is not a small achievement; for instance, every processor or floating-
point support library seems to have slight differences in the way it implements floating-point arithmetic. 
Even implementations of IEEE standard floating point turn out to be subtly different. The JVM puts a 
consistent interface over such differences. Simple programs run, and give the same results, on all JVMs. 

Parts of the specification for the JVM are peculiarly loose. The specification seems to be a compromise 
between strict specifications to support portable code, and loose specifications to make it easy to port the 
JVM to diverse architectures. For instance: 

• The Java Language Specification, JLS, does not insist that the JVM have multiple priorities. It 
requires— 

When there is competition for processing resources, threads with higher priority are generally 
executed in preference to threads with lower priority. Such preference is not, however, a guarantee 
that the highest priority thread will always be running, and thread priorities cannot be used to 
reliably implement mutual exclusion.[1] 

[1] The Java Language Specification, James Gosling, Bill Joy and Guy Steele, Addison Wesley, 
2000, page 415. 

—which can be interpreted to mean that higher priorities are scheduled exactly like lower 
priorities. 

• Garbage collection is not required anywhere in the JLS. It is perfectly acceptable to create a JVM 
with no garbage collection system provided that you don't add an explicit way to free memory. 

• The specifications for Java's drawing primitives are similarly loose. They permit Motif-style or 
Windows-style rectangle borders and fills, which give noticeably different results. 

Even the real-time Java extensions are not magic. The JVM may let an MC68000 execute the same Java 
programs as an Alpha, but it does not make them run at the same speed. Technically, a real-time program 
should not depend on the performance of the platform once the platform is fast enough to meet all its 
deadlines, but blind reliance on write-once-run-anywhere is a mistake. For real time it is better to think 
WOCRAC (Write Once Carefully, Run Anywhere Conditionally).[2] 

[2] This phrase was coined by Paul Bowman at the 1999 Mendocino, California meeting of the Real Time 
Java Expert Group. 
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JVM Components 

A given JVM might be implemented as a monolithic program, but it is designed as a set of components. 
The coarse-grained components are class loader, bytecode interpreter, security manager, garbage collector, 
thread management, and graphics. Each of these components—except perhaps graphics—has a significant 
influence on the real-time performance of the JVM. 

Class Loading 

The first time a Java program uses a class, the JVM finds the class and arranges to have it integrated with 
the rest of the Java environment. 

Class loading includes the following steps. 

1. Find the class in a file with a name derived from the fully qualified name of the class by 
converting dots to file delimiters (slash on UNIX, backslash on DOS-descended systems) and 
adding the suffix class to it. The JVM can search extensively for the file. It looks in each directory 
named in the CLASSPATH environment variable and possibly in every directory in the trees rooted 
in a directory on the class path. 

2. Read the class file into a buffer. 
3. Digest the class file into JVM internal data structures that reflect the data defined by the class file, 

the constants used by it, the classes in it, and the methods in it. 
4. Run the verifier over the class. The verifier is a "theorem prover" algorithm that proves that the 

bytecode in the class obeys various rules; for instance, the verifier will not permit the JVM to load 
a class that includes code that uses uninitialized data. 

Note 

Things that the verifier can guarantee don't need to be checked at runtime. It is better to check 
as much as possible once at load time than to repeat checks every time the code is used. The 
verifier uses a relatively long time to make powerful general guarantees, but the bytecode 
interpreter gains considerable efficiency when problems like uninitialized data cannot happen. 

5. Before the first use of the class, the JVM must initialize static data for the classes in the file. It 
does not actually have to initialize the static data when the class is loaded; it could initialize the 
static data any time before the static data is accessed. 

6. The JVM is allowed to load classes that can be used by the classes in this file. This can cause the 
first reference to a class that is not built into the JVM to load all the classes that could possibly be 
used by the transitive closure of that class. 

7. The JVM may choose to compile some of the newly loaded methods. 

How it's done and how the time consumed by the load operation (and the time it happens) can vary among 
JVM implementations. Ordinary JVMs are optimized for throughput and can choose to defer potentially 
expensive operations like initialization as long as possible—perhaps until a method that uses the field in 
question is actually called. A real-time JVM cannot use that class of optimization because the programmer 
would have to assume that each method call would incur initialization costs unless he could prove that the 
initialization had already taken place; for example, it was the second call to the method in straight-line 
code. 

Bytecode Interpreter 
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The JVM uses one-byte operation codes called bytecodes. The maximum possible number of one-byte 
codes is 256, and the JVM defines nearly the full set. The set of standard opcodes is given in Table 2-1. 

Table 2-1. Java opcodes 
Code  Op Code Op Code Op
0  noop          

Push specific constants 
1  aconst_null  2  iconst_m1  3  iconst_0  
4  iconst_1  5  iconst_2  6  iconst_3  
7  iconst_4  8  iconst_5  9  lconst_0  
10  lconst_1  11  fconst_0  12  fconst_1  
13  fconst_2  14  dconst_0  15  dconst_1  

Sign extend and push literal  
16  bipush  17  sipush      

Push item from constant pool  
18  ldc  19  ldc_w  20  ldc2_w  

Push item from local variable  
21  iload  22  lload  23  fload  
24  dload  25  aload  26  iload_0  
27  iload_1  28  iload_2  29  iload_3  
30  lload_0  31  lload_1  32  lload_2  
33  lload_3  34  fload_0  35  fload_1  
36  fload_2  37  fload_3  38  dload_0  
39  dload_1  40  dload_2  41  dload_3  
42  aload_0  43  aload_1  44  aload_2  
45  aload_3          

Push item from array  
46  iaload  47  laload  48  faload  
49  daload  50  aaload  51  baload  
52  caload  53  saload      

Pop and store in local variable  
54  istore  55  lstore  56  fstore  
57  dstore  58  astore  59  istore_0  
60  istore_1  61  istore_2  62  istore_3  
63  lstore_0  64  lstore_1  65  lstore_2  
66  lstore_3  67  fstore_0  68  fstore_1  
69  fstore_2  70  fstore_3  71  dstore_0  
72  dstore_1  73  dstore_2  74  dstore_3  
75  astore_0  76  astore_1  77  astore_2  
78  astore_3          

Pop and store in array  
79  iastore  80  lastore  81  fastore  
82  dastore  83  aastore  84  bastore  
85  castore  86  sastore      

Stack manipulation  
87  pop  88  pop2  89  dup  
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90  dup_x1  91  dup_x2  92  dup2  
93  dup2_x1  94  dup2_x2  95  swap  

Arithmetic and logic  
96  iadd  97  ladd  98  fadd  
99  dadd  100  isub  101  lsub  
102  fsub  103  dsub  104  imul  
105  lmul  106  fmul  107  dmul  
108  idiv  109  ldiv  110  fdiv  
111  ddiv  112  irem  113  lrem  
114  frem  115  drem  116  ineg  
117  lneg  118  fneg  119  dneg  
120  ishl  121  lshl  122  ishr  
123  lshr  124  iushr  125  lushr  
126  iand  127  land  128  ior  
129  lor  130  ixor  131  lxor  
132  iinc          

Conversions  
133  i2l  134  i2f  135  i2d  
136  l2i  137  l2f  138  l2d  
139  f2i  140  f2l  141  f2d  
142  d2i  143  d2l  144  d2f  
145  i2b  146  i2c  147  i2s  

Simple flow control  
148  lcmp  149  fcmpl  150  fcmpg  
151  dcmpl  152  dcmpg  153  ifeq  
154  ifne  155  iflt  156  ifge  
157  ifgt  158  ifle  159  if_cmpeq  
160  if_cmpne  161  if_cmplt  162  if_cmpge  
163  if_cmpgt  164  if_cmple  165  if_acmpeq  
166  if_acmpne  167  goto  168  jsr  
169  ret  170  tableswitch  171  lookupswitch  
172  ireturn  173  lreturn  174  freturn  
175  dreturn  176  areturn  177  return  

Operations on objects  
178  getstatic  179  putstatic  180  putfield  
181  getfield  182  invokevirtual  183  invokespecial  
184  invokestatic  185  invokeinterface  186  no op assigned  
187  new  188  newarray  189  anewarray  
190  arraylength  191  athrow  192  checkcast  
193  instanceof          

Miscellaneous  
194  monitorenter  195  monitorexit  196  wide  
197  multianewarray  198  ifnull  199  ifnonnull  
200  goto_w  201  jsr_w      
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Java specifies a fascinating mix of bytecodes. Most of them are nearly trivial. Many opcodes are expended 
on load, store, and basic operations for each supported data type. The JVM instruction set also optimizes 
the use of small constants with shorthand operations that push constants, and load and store from small 
offsets in local storage. 

Some JVM instructions are wildly complex: create an array of objects, invoke a method, and two different 
single-instruction switch statements. 

A typical bytecode interpreter is structured as a loop: 

op = byteCode[pc] 
switch(op){ 
  case 0: /* noop */ 
    pc += 1; 
    break 
  case 1: /* aconst_null */ 
  ... 
} 

There are many ways to accelerate this interpreter. First, brute force: almost all interpreters have been 
rewritten in hand-coded assembly language. Sometimes the assembly language is generated by hand-
tuning of the output of a C compiler. Sometimes it is written from scratch. In either case, a careful, but 
uninspired, assembly language implementation of the interpreter usually gets about a 30 percent 
performance improvement over the C implementation of the interpreter. 

There are probably hundreds of tricks that go beyond "uninspired" and yield a better than average 
performance improvement. Three are presented below. 

Deep Processor-Specific Optimization. Modern high-performance processors have multiple functional 
units that can execute concurrently. These processors work best if the instruction stream is organized so the 
processor can keep all the functional units busy. Some processors can reorder the instruction stream to 
keep their units busy, but even those processors work better if the instruction stream is organized to help 
them. 

Keeping the state of each functional unit in mind while writing code is tedious, but that level of 
craftmanship can generate big performance improvements. 

This isn't generally a good investment for the bytecode interpreter. First, the optimizations are specific to a 
particular version of the processor. An interpreter tuned for the PowerPC 604e might run worse than an 
untuned interpreter on a PowerPC 603. Second, the available performance improvement depends on the 
number of functional units, and the processors with the most functional units are often the ones with the 
most ingenious systems for reordering their own instruction streams.[3] Third, most Java opcodes require 
only a few machine instructions. There is not much room for reorganization. 

[3] Very Long Instruction Word (VLIW) processors are an exception to this rule. They have several functional 
units and insist that the instruction stream schedule them all. 

Cache Optimization. Processors run faster when their code and data are in the cache, but cache is a limited 
resource. It is possible to write the bulk of the Java interpreter in less than 64 kilobytes, but a 64-kilobyte 
instruction cache is huge (in 1999) and the interpreter should share the cache with other code. 

The amount of acceleration available for cache optimization depends on the difference between cache 
speed and memory speed. Cache could be more than 10 times faster than main memory on systems with 
slow memory. 
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The trick to this optimization is to track which memory falls into the same cache line or way. These 
addresses will contend for the same cache line or small group of cache lines. Code that has "hot" cache 
lines will frequently wait while the processor loads the cache with data from a new address. 

Cache optimization is particularly appropriate for real-time systems because cache faults are a major cause 
of nondeterministic timing behavior. Systems that control cache faults reduce this nondeterminism—but 
they cannot eliminate time variations caused by the cache unless they completely control the cache. 

Register Optimization. A simple port of the Java bytecode interpreter from C to assembly language usually 
gets much of its performance improvement by using registers for nonlocal context that C compilers cannot 
easily track. An inspired port goes to the next step in register usage. 

The Java virtual machine is a stack machine. That means that it doesn't have general-purpose registers, but 
keeps all its work on a stack or in various types of named fields. The bytecode interpreter that is part of the 
Sun Java platform distribution and simple assembly language interpreters keep the Java stack in memory, 
but this approach is inefficient. Nearly every bytecode accesses the stack once or twice. If the top few 
entries on the stack were usually in registers, the interpreter could run about twice as fast.[4] It would be 
easy to treat a group of registers as part of the stack if processors let you index through registers the way 
you can index through an array in memory, but that would be an unusual architectural feature. 

[4] Expected speedup figures like this are wildly approximate. They depend on how good the interpreter is 
before the optimization and how well suited the hardware architecture is to the optimization. In this case, 
approximately two means that 1.5 and 4.0 are equally likely. 

One viable approach is to dedicate some registers to a window on the top of the stack and to code separate 
implementations of each opcode for each feasible arrangement of the stack in that window. If four registers 
are dedicated to the top of the stack, the top of the stack could be at any of those four, and the window 
could contain from zero through four stack entries. That gives 20 possible arrangements and 20 
implementations of each opcode.[5] 

[5] There is little point in letting the stack window go empty, so a 4-register window would probably implement 
cases for a depth of two, three, and four. 

The opcode dispatcher changes from a lookup of the handler function in a single-dimensional table with 
the opcode as the index, to a lookup in a two-dimensional table with the opcode as one index and the 
register arrangement as the other. 

Security Manager 

The SecurityManager class can prevent untrusted code from violating security constraints. The best-
known security manager is the sandbox, which wraps a security wall around applets. Every time an applet 
uses a Java platform service that might impact the security or integrity of the underlying system, the 
service asks the security manager for permission. Many services include code snippets like: 

SecurityManager security = System.getSecurityManager(); 
if (security != NULL) 
  security.checkXXX(...) 

where checkXXX is replaced with the name of one of the methods in SecurityManager. The security 
manager either returns normally or it throws SecurityException to signify that the operation violates 
security constraints.[6] 

[6] To be painfully accurate, the checkTopLevelWindow method in the security manager returns a 
boolean. All other checkXXX methods in the Java 2 security manager return void. 
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The current security manager is determined by the class loader that loaded (or more precisely, defined) the 
executing class. Applets are the standard example. They are loaded by a special loader that loads applets 
from a web site, so they always operate in the sandbox, which is the security manager associated with the 
applet loader. 

Every class loader can be associated with a security manager that protects the system from nefarious 
operations attempted by classes it brings into the system. 

Security Checking Methods. The security checking methods in the security manager are summarized in 
Table 2-2. 

Real-Time Issues. The security manager makes the performance of applications depend on the class loader 
that brings them into the system. Every checked operation includes a path through the security manager, 
and the security manager depends on the class loader that loaded the real-time code. The possibility that 
the security manager might reject an operation is not a uniquely real-time issue, but the time it spends 
deciding whether to permit an operation matters to real-time programmers. 

Table 2-2. SecurityManager check methods 
Method Name  Arguments  

checkCreateClassLoader  None  
checkAccess  Thread t  
checkAccess  ThreadGroup g  
checkExit  Int status  
checkExec  String cmd  
checkPropertiesAccess  None  
checkPropertyAccess  String key  
checkLink  String libName  
checkRead  Int fd  
checkRead  String file  
checkWrite  Int fd  
checkWrite  String file  
checkDelete  String file  
checkConnect  String host, int port  
checkListen  Int port  
checkAccept  String host, int port  
checkSetFactory  None  
public boolean checkTopLevelWindow  None  
checkPackageAccess  String packageName  
checkPackageDefinition  String packageName  

Applications under development are normally loaded by the default class loader. That class loader 
normally uses a trusting security manager that checks nothing and consequently uses little time. If the 
system can be deployed under a less credulous security manager, it may execute checked functions more 
slowly than it did under test. 

It's difficult to predict timing for the checked operations even without the contribution of the security 
manager. Only a few of the check functions are associated with operations for which timing might 
normally be easily characterized: 

• checkAccess — Checks operations that modify a thread. 
• checkPropertyAccess — Checks security on operations that get the value of a system property. 
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• checkPropertiesAccess — Checks security on operations that get or set the system properties data 
structure. 

• checkPackageAccess — Checks whether the caller is allowed to access a package. Since the 
default implementation of checkPackageAccess always throws SecurityException, the 
performance of this method should not be an issue. 

The other check methods implemented by the security manager are associated with I/O or other similarly 
complex operations. 

Garbage Collector 

Java does not technically require a garbage collector, but it is painfully restricted without one. If there is no 
garbage collector, the JVM cannot detect memory that is no longer in use, and the programmer has to 
adopt a coding style that creates only objects that should exist "forever." For general use, a JVM requires a 
garbage collector that detects objects that are no longer in use and returns them to the free pool. 

It would be nice if the Java garbage collector would collect all forms of garbage—memory, open I/O paths, 
other I/O resources, and classes that cannot be reached without a major effort—but most JVMs just collect 
unused memory. 

Garbage collection is not a new idea. Languages like LISP and SmallTalk have used garbage collection for 
decades. There are even a few tools that add garbage collection to C and C++. If the language runtime can 
identify pointers and chunks of allocated memory (in an object-oriented language all those chunks are 
objects), it can go through each allocated chunk and see if any other chunk points to it. If a chunk of 
memory can be reached by following pointers from something the runtime knows is in use (like a variable 
on the stack), it is alive. If it cannot be reached, it is dead and can be freed. Stated like that, garbage 
collection looks like it takes time proportional to the square of the amount of memory the program is using. 

Advanced garbage collection algorithms use heuristics to run much faster than, O(n2) but worst-case 
performance drops back here. The impact of garbage collection on real-time performance is enough to take 
Java completely out of consideration for many real-time projects. Rejecting Java for real time because it 
includes a garbage collector is not always justified. 

Note 

Big O notation is a common notation for algorithm analysis. Technically it means "at most some 
constant times." Informally it works pretty well to think of it as "order of." 

For instance, the code fragment 

for(i = 0; i< n; ++) 
  for(j = 0; j < i; ++j) 
    <stuff> 

executes <stuff> exactly n x (n-1)times. Execution takes some amount of time that depends on the 
quality of the compiler and the underlying architecture, but it is often enough for us to simply 
characterize the execution time as O(n2). 

The JVM collects garbage at three times: 

• On request — The System.gc method suggests to the JVM that this would be a good time to 
collect garbage. It does not require garbage collection, but, in fact, it generally causes collection to 
start immediately. The exact operation of the method is JVM dependent. 
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• On demand — The only thing that demands garbage collection is the new function. If new needs 
memory, it calls the garbage collector with a request to free at least enough memory to satisfy the 
current allocation request. 

• Background — The JVM has a low-priority thread that detects idleness. It spends most of the time 
sleeping. Each time it runs, it sees whether other threads have run since it last looked. When the 
JVM has been idle for a few periods, the idle-detection thread triggers garbage collection. The 
assumption is that if nothing but the idle detector has run for a while, nothing important will want 
to run for a while. This approach is also called asynchronous garbage collection. 

On-demand garbage collection is always a problem because it runs when the JVM is nearly out of memory. 
If the JVM could postpone demand garbage collection, it would be operating with a partially crippled 
ability to allocate objects. As a rule, the JVM stops everything until demand garbage collection frees some 
memory. Incremental garbage collectors may free some memory fairly soon (see Chapter 4), but in the 
worst case they fall back to a roughly O(n2) algorithm. Garbage collection time depends on the exact 
algorithm, the number of objects in the system, and the speed of the processor, so there is no specific time 
penalty, but systems that otherwise run Java at a reasonable speed can take a large fraction of a second to 
complete garbage collection. 

Background and request garbage collection run when the system can survive if they don't complete. Under 
these circumstances, any garbage collection can be preempted whenever preemption will leave the JVM's 
data structures consistent. The delay before a garbage collector can be preempted (see "Mark and sweep is 
not preemptable" on page 50) can be as much as an order of magnitude less than the delay before it 
completes. 

On-request garbage collection is the programmer's weapon against on-demand collection. A programmer 
presumably knows when the system will be idle for at least a few milliseconds and can request garbage 
collection at that time. If the program requests garbage collection frequently enough, garbage will not 
accumulate and the JVM will never be forced to demand garbage collection. 

Background garbage collection is the JVM's attempt to automate on-request collection. The JVM doesn't 
have any way to know when the system has time to pause for garbage collection, so it guesses. A real-time 
programmer would worry that background garbage collection would run at exactly the wrong time, but 
fortunately it can be disabled when the JVM is started. When background garbage collection is disabled, 
the JVM is left with on-demand and on-request garbage collection. The program must request collection 
often enough to prevent on-demand collection; otherwise, it has to assume that every new will include a 
full garbage collection. 

Finalizers. Garbage collection must run finalizers on objects that have them before it disposes of them. 
This is a serious problem. Finalizers are designed as a tool to clean up resources associated with an object. 
They can close an I/O path, change a GUI element, release a lock, or any other housekeeping chore that 
needs to be executed when an object is no longer in use. If they are used this way, finalizers should execute 
quickly and should not reanimate the object. 

The JVM enforces only one rule for good behavior by finalizers. A finalizer can execute for a long time 
and even add a reference to its object from some other object. Finalizers are run at the end of garbage 
collection, and their effect on performance is an important real-time issue; for example, see Example 2-1. 

• First, any finalizer will cause the garbage collector to reevaluate the liveness of the object and 
every object it references. That could cost O(n2) time since the finalized object could reanimate 
itself, which would reanimate all the objects referenced by it, etc., traversing a reference graph 
that could have as many as n2 edges. 

• If there are slow finalizers, they could run during any garbage collection; the system design must 
allow for that extra time on every garbage collection. 

• The Java platform protects itself from objects that reanimate themselves in their finalizer by 
storing a reference to themselves. Reanimation is permitted, but only once. The next time the 
system garbage collects the object, it does not run the finalizer. 
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Example 2-1 A finalizer with bad real-time behavior 

protected void finalize() throws Throwable { 
    class IDontWantToDie extends Thread { 
        public void run() { 
            System.out.println("Reanimating"); 
        } 
    }; 
    //  Burn lots of time 
    IDontWantToDie th = new IDontWantToDie(); 
    th.start(); 
    try {th.join();} catch(InterruptedException e){} 
    KeepAlive.ref = this; //  Bring me back to life 
    super.finalize(); 
} 

The best strategy is to avoid finalizers if possible and absolutely avoid finalizers that could execute at any 
length. 

Defragmentation. The garbage collector operates on live memory while it frees unreachable memory. The 
memory that remains allocated after the garbage collector finishes might be defragmented. 

If memory is obliviously allocated by new and freed by the garbage collector, it will soon leave free 
memory fragmented into numerous small extents. There may be tens of megabytes of free memory, but if 
it has been fragmented such that the largest contiguous free chunk is 24 kilobytes, then no object bigger 
than 24 kilobytes can be allocated no matter how aggressively the garbage collector works. 

The drawing on the left shows an extent of memory before and after defragmentation. Before 
defragmentation, the largest possible allocation was about a quarter the size of the total amount of free 
memory. The defragmentation process packs all allocated memory together. After defragmentation, all the 
free memory could be used by a single object. 
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The trick to defragmentation is how to update every reference to the objects that are moved. If the system 
just moves an object, every pointer (reference in Java) to that object will point to the old address. It can be 
time consuming to track down every reference to an object, but during garbage collection the JVM has 
already done just that. It can move objects such that all free memory is contiguous for a cost O(number of 
references to all objects + size of memory). 

Thread Management 

A thread encapsulates concurrency. On a multiprocessor system, each thread can execute on a separate 
processor. If there is only one processor or if the JVM doesn't support multiple processors, all the threads 
will execute on one processor. Threads will act nearly the same whether they are actually executing 
concurrently on multiple processors or sharing one processor. The software that supports threads puts the 
same interface around concurrency whether it is real or virtual. 

Threads are conceptually simple. The data for a thread is little more than an execution context; that is, a set 
of CPU registers, a processor stack, and a Java stack. Java APIs start threads, stop them, change their 
priority, and interrupt them. The dispatcher switches control from one thread to another (when there aren't 
enough physical processors to run all of them), and the scheduler decides when to run each thread. The 
locking mechanism hidden under the synchronized keyword gives programs more precise control over 
concurrency than does adjusting priorities. A vast body of wisdom has grown up concerning proper use 
and implementation of threads, but the principle is simple. 

The mechanism that supports threads can be included in the operating system (relatively sophisticated 
system software) or kernel (relatively simple system software), or it can be implemented in a library that is 
linked directly to the JVM. 

Kernel Threads. Threads or processes are a basic service of the system software. Since simple kernels are 
often linked directly to application software and never provide protection domains like processes, the 
distinction between kernel and library threads is only meaningful for operating systems. Nevertheless, 
threads implemented in the operating system are usually called kernel threads. 

If the operating system provides threads that meet the JVM's requirements, it makes good sense to use 
them. The major advantages of this approach are these: 

• It can easily extend to multiple processors. 
• Threads become visible outside the process that forks them. This may make them possible targets 

of signals from other processes and lets thread priorities change independently of the priorities of 
other threads in their process. 

• Kernel scheduling mechanisms can be complex and wonderful. If the JVM uses kernel threads, it 
gets "free" access to these services. 

Library Threads. If the system software doesn't provide thread support or if the support doesn't meet the 
JVM's requirements, the JVM can provide the support itself or use an existing library to support threads. 

Note 

The Sun JVM comes with a threads package called Greenthreads. This package was originally 
implemented because although Sun's UNIX supported threads, it they did not meet the JVM's 
requirements. The Solaris JVM no longer uses Greenthreads, but it is still part of the JVM source 
distribution from Sun. 

The major advantages of library threads are the following: 
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• The threads do not necessarily need to call the operating system for every thread operation. This is 
particularly significant for context switching. Kernel threads need to enter and leave the OS for 
every context switch. Library threads can context-switch with a function like longjmp. 

• Java priorities are contained within a single process. This helps prevent rogue Java applications 
from interfering with other activities in the system. 

• The garbage collector has to freeze all the threads in the JVM before it can operate on memory. 
Ordinary threading implementations may not include a way to selectively freeze threads, but it is 
severely antisocial to freeze threads that are not involved with the JVM. An operating system 
keeps code in one process from interfering with other processes; this mechanism makes it 
impossible for library threads to freeze unrelated threads.[7] 

[7] Kernel threads don't automatically lock the entire system for each garbage collection, but it is 
possible to lock up the system during garbage collection if the JVM is carelessly implemented. 

Input/Output 

Java programs have two paths to I/O. The usual path runs though the JVM to libraries that bind it to the 
operating system's I/O services. The performance of these services is similar to that of the same services 
from C. Most of the elapsed time for I/O passes while the system is in control. It makes little difference 
that the JVM adds another layer of wrapping around the basic service. 

The standard JVM is imperfectly adapted to asynchronous I/O. The base Java specification supports 
asynchronous user interface I/O through AWT, and asynchronous network I/O through the networking 
packages. These sources of asynchronous I/O are specifically handled in the JVM. The mechanisms for 
handling this asynchrony are tightly bound to the glue code that uses it. It is not accessible from Java 
applications. 

If a program wants to support asynchronous I/O from a new device, it has a choice of finding a way to 
push it through AWT or appointing a service thread to wait on the device. 

Some Java implementations, notably JavaOS, use Java code for most OS services. They even write device 
drivers in the Java programming language. 

Note 

Device drivers cannot be written in pure standard Java programming language. The registers that 
control and monitor I/O devices are mapped into either regular memory or a special I/O address space. 
In either case, they are accessed with pointers to primitive data types. References to objects supported 
by the Java bytecode instruction set do not suffice. Interrupts are also commonly used for I/O, and the 
Java platform has no direct access to interrupts or interrupt masking. 

Java device drivers either include a layer compiled to native code or they use an "extended" JVM 
instruction set that adds limited support for pointers. 

Graphics 

The abstract windowing toolkit (AWT) is the Java platform's graphics API. Swing and Truffles extend 
AWT toward greater functionality and a touch-screen interface, respectively. Nobody would characterize 
AWT as fast, but like many real-time systems, it is an event-driven system. It has pushed improved event 
handling facilities into the Java programming language and libraries. 

Polling. Programs with user interfaces need to know when something like a mouse click or a key press 
happens in the real world. These events don't happen when an application asks for them; they happen when 
the user chooses to move something. The program could keep checking (or polling) for each event that 
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interests it, but doing so would be tedious, and since users are slow compared to computers, it would waste 
time. 

Imagine yourself sitting at a traffic light. If it is a long light, you might consider reading a newspaper or 
catching up on e-mail while you wait for it, but if you get involved in another activity, you need to 
remember to check (or poll) the light every few seconds. If you check it too often, you don't get much 
reading done. If you leave too long an interval between polls, you may not respond to a green light 
promptly and the cars behind you may (um …) notify you shortly after the light changes. 

Software has the same dilemma. If it polls frequently, it does not accomplish much else; if it polls 
infrequently, it is unresponsive. 

Events. Wouldn't it be nice if the traffic light made a polite noise when it was about to turn green? You 
could then give most of your attention to e-mail and only switch attention to the light when it is about to 
change color. That is what events do for software.[8] 

[8] The full treatment of real-world events requires the real-time Java enhancements to events and 
asynchronous interrupts discussed in Chapters 11 and 17. 

The Java event system allows a program to register an object, called a listener, with the event system, as 
shown in Example 2-2. 

This tiny AWT application puts up a little window with a button in it, then it loops forever, sleeping. When 
the user asks the window to close, AWT calls the windowClosing method in the listener object 
registered for that frame. In this case, the windowClosing method just shuts down the whole application. 

The important thing is that AWT reaches in and calls windowClosing while the test object is busy 
sleeping. The application doesn't need to poll the frame while it waits to see a "closing" flag asserted. 

Events are tied to AWT. The event system classes are part of the AWT package, but the tools are in the 
Java programming language. Other specialized event systems can be implemented outside the AWT, but it 
is sometimes easier to feed all real-world input through AWT (forcing hardware like switches, valves, and 
thermocouples to conform to an interface designed for keystrokes and mouse movements). 

 

Interpreter Implementation 

The core of the JVM is a loop that interprets the Java bytecodes. There are between 200 and 256 bytecodes, 
depending on how the JVM has enhanced the standard set with optimizing extensions. Most of the 
operations are nearly trivial: pushing literal values, performing simple arithmetic and logic on stacked data, 
and flow control. Other operations are complex; it takes only one opcode to allocate an array of objects, 
execute a switch statement, or invoke a method. 

Standard Interpreter 

A completely untuned JVM uses a bytecode interpreter written in C. Such implementations are nicely 
portable, but such JVMs established that Java programs run up to 40 times slower than do C++ programs. 
These JVMs are no longer taken seriously as anything but a hack to get a quick JVM port. 

Example 2-2 AWT events 

import java.awt.*; 
import java.awt.event.*;    // This brings in WindowAdapter 
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public class test { 
    public static void main(String [] args){ 
        Frame fr = new Frame("test frame"); 
        /* 
            Create an anonymous class that implements 
            the WindowListener interface. 
            Use Frame's addWindowListener to register it. 
            AWT will now call methods in WindowAdaptor whenever 
            something interesting happens to the frame. 
        */ 
        fr.addWindowListener(new WindowListener() { 
            //  Exit when the window starts closing 
            public void windowClosing   (WindowEvent e){ 
                 System.exit(0); 
            } 
            //  Ignore all other events. 
            public void windowOpened    (WindowEvent e){} 
            public void windowClosed    (WindowEvent e){} 
            public void windowActivated (WindowEvent e){} 
            public void windowDeactivated(WindowEvent e){} 
            public void windowIconified (WindowEvent e){} 
            public void windowDeiconified(WindowEvent e){} 
        }); 
 
        //  Put a button on the frame and make it appear 
        fr.add(new Button("button"), BorderLayout.CENTER); 
        fr.setSize(100, 100); 
        fr.setVisible(true); 
        fr.setLocation(200, 200); 
        //  Wait until killed by an "outside force" 
        while(true){ 
            try { 
                Thread.sleep(100); 
            } catch (InterruptedException e) {} 
        } 
    } 
} 

Optimized Interpreter 

Recoding the bytecode interpreter into assembly language is fruitful. Humans make better decisions about 
global register conventions than do compilers. A simple job of recoding keeps a global instruction pointer 
and stack pointer. More careful work will keep at least the top entry in the stack in a register, and perhaps 
the top four or more. (See "Bytecode Interpreter" on page 16.) The most highly optimized interpreter is 
still slower than code that is compiled to native machine instructions, but the gap might be closed to less 
than a factor of four. 

From the real-time point of view, optimized interpreters are nearly entirely a good thing. Optimizations 
that don't keep more than one stack position in a register give a performance improvement without making 
performance hard to predict. Interpreters that keep the top few stack entries in registers are still predictable, 
but the execution time of a single instruction depends on whether it is able to execute entirely from 
registers, and that depends on the instructions that are executed before it. This complexity makes 
performance prediction difficult, but it is still under control, and the speedup is worth the added difficulty 
in predicting the performance of small groups of instructions. 

JIT 
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A JIT is a just-in-time compiler. Classes are loaded into the JVM in bytecode form, but the JIT compiles 
the bytecodes into native code some time after they are loaded. A JIT might compile all the methods in the 
class as part of the loading process, or it might not compile a method until it has established that the 
method is "hot" by calling it a few times. 

A JIT generates native code. In theory, a JIT can execute benchmarks at least as fast as code that is 
compiled with a conventional compiler, but a JIT poses serious problems for real-time programs. Under a 
JIT: 

1. a method runs zero or more times, using the standard interpreter, 
2. then it is compiled, and 
3. then it runs much faster. 

Under a JIT, the longest execution time for a method is probably the time to compile the method, plus the 
time to execute the compiled code. A fast compiler will lessen the damage, but it will probably generate 
poorly optimized code. 

Every JIT is designed on two related compromises: 

1. Compile early and get the speed of compiled code immediately, or compile late and lessen the risk 
of compiling a method that will seldom be used. 

2. Optimize compiled code carefully to maximize performance on code that calls compiled methods 
frequently, and maximize the pause while each method is compiled. 

If the JIT uses a simple rule—for example, compile each method the first time it is executed—the program 
can control the point at which it subjects itself to the JIT overhead. The system has to be designed to 
compile all methods before they are needed for real-time operation. Such a design requires care, and the 
code that calls each time-critical method before it is needed surely needs explicit documentation to keep 
some future programmer from removing the superfluous calls. 

Note 

A JIT is often a less expensive way to increase performance than a faster processor. A simple JIT 
generally gives applications roughly five times better performance than does an interpreter. Systems 
for which a few dollars in production cost are worth a struggle may find it less expensive to add a JIT 
license and RAM to hold compiled code than to upgrade the CPU. 

All common JITs share a problem. They compile methods to native code and put the compiled code in a 
buffer, but they are not good at removing compiled code from the buffer. With a static environment, all the 
live methods are soon compiled and the system runs in a steady state. If the system runs different 
applications over a span of days, a compost of old methods will build up in the native code buffer until the 
system runs out of memory and chokes. 

Most JITs are written for desktop systems. That class of hardware has plenty of memory for a big code 
buffer, and the JVM seldom runs for more than a few hours at a time. On such systems, overflowing the 
code buffer is unlikely and JIT builders concentrate on performance. 

Many real-time systems are short on memory, but they are still expected to run smoothly until the 
hardware wears out or power fails. Fortunately, most real-time systems also run the same set of methods 
for their whole lifetime. Such systems do better with a JIT that never loses the output of the JIT. A JIT that 
flushed old code out of the compiled code buffer would make it hard to control the time at which methods 
were compiled. 

Snippets 
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Early versions of Sun's Hotspot JVM used a snippet compiler. Snippet compilation is well suited to 
dynamic code like the collections of classes that make up a Java application. A snippet compiler is hard to 
drive to worst-case behavior, but that worst-case behavior is abysmal. 

A snippet compiler compiles blocks of Java bytecode much smaller than a method. It uses insanely 
aggressive assumptions when converting the bytecodes to native code. For instance, it feels able to inline 
nonfinal methods. Those methods could be wrong the next time the snippet is used, but chances are they 
will be right. The snippet includes code which verifies that the snippet is still valid. If it is not, the snippet 
is discarded and execution reverts to the original bytecode. The same type of trick works for any code that 
has variable behavior; for example, locking and conditional branches. It also lets the compiler freeze the 
addresses of objects into code. When the garbage collector relocates those objects, it discards snippets that 
might refer to them. The JVM regenerates the snippets with new addresses when it needs them. 

With a carefully contrived benchmark, snippets can give arbitrarily good speedup. Build a nest of accessor 
methods as deep as you like; the snippet compiler will convert n method invocations and one field 
reference into one field reference. Since the speedup is proportional to the number of nested accessor 
methods, this trick can generate any speedup you want to claim, but the speedup is not totally specious. 
Real Java code sometimes includes deep nests of trivial methods. A conventional compiler cannot inline 
ordinary methods, so a snippet compiler can easily outperform optimized C++ on a benchmark that 
features virtual method invocation. 

The basic assumption of a snippet compiler is that the cost of compiling tiny bits of code is small and the 
likelihood of needing to recompile any particular snippet is low enough that the ongoing cost of 
maintaining the snippets is far less than the speedup they offer. It is a demonstrably good assumption. The 
Sun Hotspot JVM gives good performance without obvious JIT performance glitches. 

Real-time performance analysis asks how bad it can get: every snippet could become invalid immediately. 
If the JVM makes snippets aggressively, the worst-case performance is a little worse than a JVM that 
works by generating native code for every block of bytecode, executing it, and discarding it. That situation 
would probably result in performance less than a quarter as good as an ordinary interpreter. Using that 
rough guess and assuming that a JVM with a snippet compiler runs about 20 times faster than an 
"ordinary" interpreter, the worst-case performance of a JIT is 80 times worse than its typical performance. 

Many real-time applications can tolerate the worst-case behavior of a normal JIT because they can control 
it. They don't need to design for worst-case behavior because they can force the compilation to take place 
when it suits them. The same trick is possible for a snippet compiler, but the rules for generating and 
discarding snippets are comparatively subtle and depend on aspects of the Java environment that 
programmers like to ignore. Worse, the rules are undocumented and likely to change at each release of the 
JVM. 

The real-time parts of an application could be written so no reasonable JVM would need to discard 
snippets. It takes more effort, however, than controlling a conventional JIT, and the performance 
improvement for moving from a conventional JIT to a snippet compiler is not as great as the improvement 
for moving from an interpreter to a JIT. 

Compilation to Independent Process 

Adding a JVM to a system does not suddenly eliminate the system's ability to run native code, and Java 
programs have several facilities for interacting with processes outside the JVM. These separate processes 
might be legacy applications, highly tuned code to handle some tight timing situation, or code that uses 
low-level hardware facilities that cannot easily be reached from Java classes. 

The important observation here is that the JVM is just a process. Operating systems can run many 
processes and manage interactions among them. This is old technology. Although handling real-time 
constraints in a mix of high-level languages and assembly language is sometimes difficult, real-time 
programmers can do it. The Java language and JVM add new tools to this collection. 
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A native process can be coded in the Java language. Several Java compilers[9]can create binary images that 
execute without the services of a JVM. A programmer can use these compilers to capitalize on many of the 
strengths of the Java language without accepting the overhead of an interpreter or even a JIT. 

[9] A few examples of Java compilers that can generate stand-alone programs are the Java compiler from the 
Free Software Foundation, the cooperative Java effort between Edison Design Group and Dinkum Software, 
and Symantic Visual Cafe. 

Native Methods 

A native method is native code that is bound into the Java environment. It is invoked from Java code and 
can call back into the JVM. If it avoids references to Java objects, a native method can perform like any 
other native code except that it is subject to the Java runtime (including garbage collection.) 

Compilation to a Native Method 

Compilers that compile Java classes directly into native code have been developed. If these binary objects 
are to be used by ordinary Java applications running in a JVM, the obvious path is JNI, the Java Native 
Interface. 

The native method interface, JNI, is designed to be used by programmers. It does not require the 
programmer to make heroic efforts to bring parameters from the Java stack to the programmer's 
environment or to access objects that were created by the JVM. The usability features of the JNI slow it 
down. The cost of moving between the JVM and a native method depends on the hardware architecture 
and the implementation of the JVM, but it is typically equivalent to dozens of lines of C. Furthermore, 
every time a native method wants to reference an object controlled by the JVM, it must first tell the JVM 
to tie down the object. Some garbage collectors might free objects that are only referenced by a native 
method and not tied down, and any garbage collector might relocate such objects. 

This all amounts to a significant performance penalty for native methods. They will give good 
performance for a length function that does not need much access to objects maintained by the JVM. They 
may perform worse than interpreted bytecode for short methods that use objects maintained by the JVM. 

Compilation to the JIT Interface 

The JIT interface can also call native code, but it assumes the native code was generated by a JIT attached 
to the JVM. The JVM has no qualms about asking a JIT to generate code that carries the load of operating 
with JVM internal conventions. This interface is relatively undocumented, unforgiving, and tedious to use, 
but it is relatively efficient. 
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Chapter 3. Hardware Architecture 
• Worst-Case Execution of One Instruction 
• Management of Troublesome Hardware 
• Effects on the JVM 

The software engineer for a real-time system should not ask how fast a processor can go, but how much it 
can be slowed down by unfortunate circumstances. From this point of view, it is unfortunate that modern 
processor architecture optimizes for throughput. It makes excellent sense for most systems to trade a rare 
factor of 100 slowdown for a performance doubling everywhere else. 

This design philosophy is a major part of the reason you are probably using a desktop computer several 
hundred times faster than a departmental minicomputer built ten years ago, but it leaves real-time 
programs with a choice of obsolete processors or processors with scary real-time characteristics. 

Many hardware architects' tricks are aimed at making the best of slow memory. Memory can be made very 
fast, but lightning-fast memory is expensive. Slower memory is orders of magnitude less expensive than 
the stuff that nearly keeps up with modern processors. The clever trick is to keep a copy of the most 
recently used memory in high-speed memory cache, and have the processor look there before it goes to 
slow memory. It turns out that just a few kilobytes of cache are enough to satisfy most memory loads and 
stores from the cache. So how long does a load instruction take? If it is loading from cache, the instruction 
might take one cycle.[1] If the load is not satisfied from the cache, we have what is called a cache miss, and 
the processor will have to go to slow memory. It might even have to write some data from the cache to 
make space for the new data. It could take a hundred cycles or more before the load instruction completes. 
If the processor went directly to the memory, all memory access would take about a tenth as long as a 
cache miss. A real-time programmer would like the opportunity to choose a factor of ten slowdown 
everywhere over a factor of 100 slowdown at hard-to-predict intervals. 

[1] Talking about a one-cycle instruction is an oversimplification. It may take three or five or even seven 
cycles to work its way through the processor pipeline, but it is called a single-cycle instruction because it 
doesn't need more than one a cycle at any stage of the pipeline. 

Note 

Seymour Cray solved the cache problem the other way. He didn't put cache into Cray computers. He 
made all the memory run at cache speeds. 

Demand paging is another memory optimization that everyone but real-time programmers love. Demand 
paging makes disk space behave like stunningly slow memory. All the computer's RAM acts as a cache for 
the disk-based memory. Provided that the software running on the computer acts like typical software, the 
system's throughput will degrade slowly as it needs more and more memory until it hits a point where it 
starts to thrash and suddenly slows to a crawl. It is a fine thing to be able to effectively buy RAM for the 
price of hard-disk space, but a real-time programmer sees that memory access has now slowed from one 
cycle for a cache access to about 10 milliseconds for a disk access. 

Memory access is a particularly rich vein of performance variation, but the CPU itself can cause trouble. 
Branch prediction causes the processor to execute a branch instruction faster if it goes the same way it has 
been going in the recent past. This gives the instruction a significant variation in execution time, depending 
on its past history. 

 

Worst-Case Execution of One Instruction 
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Consider 

ld r0,r7,12 

—an assembly language instruction that means load register r0 from the memory 12 bytes off the address 
in register r7. To give us a starting point, let's say that the processor is rated at 100 MIPS. We would 
expect this instruction to take about a hundredth of a microsecond, or 10 nanoseconds. 

Most of the time the instruction will take about 10 nanoseconds, but if everything conspires to hurt the 
performance of this single instruction, it could take as much as 100 milliseconds to get to the next 
instruction. That represents a performance difference of about a factor of ten million between the most 
likely execution time for the instruction and the longest time it could take. 

Worst-Case Scenario 

First, the processor reads the instruction. 

If the processor is lucky, the instruction will be in the instruction cache. Reading the instruction from the 
instruction cache takes just a cycle or two. 

If the instruction is not in the cache, the processor must read it from memory. 

Reading from memory takes much longer than reading from the cache. In the best case, it can take just a 
few cycles. In the worst case, the processor finds that the instruction falls in a page that is not in its address 
translation cache (also called a translation lookaside buffer, or TLB). 

An address translation cache miss requires more memory accesses. 

To discover how it should treat the address of the instruction, the processor has to find a page table entry in 
the page table. A CISC processor would find and read a page table entry invisibly—except that it would 
read memory several times as it found the data in a search tree. Many RISC processors generate an 
exception when a page table entry is not cached and let the TLB fault exception handler find the page table 
entry and make a place for it in the address translation cache. 

At least the exception handler will not generate a translation fault. That would cause recursion that would 
quickly crash the system. The OS ensures that the code and data for handling address translation faults will 
not cause translation faults. 

A typical address translation fault handler might be around 30 instructions long. Each of those instructions 
has some execution time. All of them have to read the instruction from cache or memory. Some of them 
also read data, and some of them write data. 

The instruction might be in demand paged memory. 

The page table might indicate that the page is not in RAM but rather in secondary storage, probably a disk 
file. 

The OS has to read the page from disk into RAM, and it may have to write a page to the disk to free a 
place to read the page into. Disks are getting faster, but a disk read takes on the order of 10 milliseconds. 
The instruction execution and memory access times up to this point have been measured in nanoseconds. 

Next, the processor reads the data. 
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The procedure follows the same path as reading the instruction except that when the processor loads the 
instruction cache, it can simply replace other instructions in the cache. Since the data cache holds data that 
may have been changed since it was loaded, the processor may have to store data from the cache to make 
space for the new data. 

Both the store of the cache line and the load of the cache line can generate address translation cache faults 
and even demand paging. 

Exceptions happen. 

We don't have to worry about software exceptions. They indicate things like division by zero. You can 
predict when that will happen, and we'll make sure it doesn't. (Furthermore, division by zero would be 
remarkable for a load instruction.) 

Hardware interrupts will occur from time to time. An interrupt could occur directly before or after this 
instruction. Another interrupt could take place before the first one is fully serviced, then another and 
another…. Control might never return to this instruction stream. 

It is safe to assume that things will not get that bad. An interrupt load so heavy that the system spends all 
its time servicing interrupts is either a sign of a serious defect or an unusual system design. The intervals 
between interrupts are usually distributed in a bell-curve-like fashion. The likelihood of getting even one 
interrupt between two instructions is low. The chance of getting two is much lower. Unless one of the 
interrupt sources can generate interrupts as fast as you can service all the system's interrupt sources, the 
worst case is that every device in the system that can generate an interrupt will choose this moment to raise 
its interrupt. 

On a 100 MIPS RISC machine, interrupt service tends to take about 10 microseconds if the cache behaves 
terribly for the interrupt code. If we have a system with ten sources of interrupts, all the interrupts together 
will use 100 microseconds. 

Memory timing is worse than it looks. 

The specified access time for a memory chip is the best you can do. If the memory is DRAM, it needs to 
be refreshed from time to time. Many systems use direct memory access (DMA), which uses memory 
bandwidth and gets in the way of the processor. If you let it, DMA can use all the memory bandwidth. 
Then, the processor will not be able to access memory until the DMA completes. A big DMA across a bus 
could take 10 milliseconds 

If our processor is rated at 100 MIPS, we would expect the typical instruction to take 10 nanoseconds. 
When we've considered all the major factors that can slow the instruction down, the time could be worse 
than 30 milliseconds. 

Table 3-1 summarizes this horror story in nanoseconds. 

Table 3-1. Worst-case instruction timing 
Event  Time Estimate (nanoseconds) 

Execute instruction  10 
Instruction cache miss  50 
Instruction ATC miss  500 
Data cache miss  100 
Dirty data cache write ATC miss  500 
Data cache read ATC miss  500 
Demand paging for instruction read (write dirty page)  20000000 
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Demand paging for dirty data cache write (read page)  10000000 
Demand paging for data cache write (write dirty page)  20000000 
Demand paging for data cache write (read page)  10000000 
Demand paging for data cache read (write page)  20000000 
Demand paging for data cache read (read page)  10000000 
Interrupts  100000 
One big DMA  10000000 
Total  100101660 

Figure 3-1 represents the numbers in Table 3-1 graphically. 

Figure 3-1. Factors in nondeterminism for one instruction (log scale) 

 

Practical Measures 

You can prevent the worst case from getting this bad. To start with, real-time systems usually try to keep 
time-critical code in page-locked memory. That means that the operating system will always keep those 
pages in real memory, not off in the page file on disk. That cuts 90 million nanoseconds off the worst-case 
time. 

Getting DMA under control reduces worst-case degradation by another two orders of magnitude. Systems 
designed for real time usually have tunable DMA. The DMA can be throttled back to a percentage of the 
memory bandwidth and even made to stop entirely while the system services interrupts. We can still slow 
the completion of a single instruction from 10 nanoseconds to 203,310 nanoseconds, a factor of twenty 
thousand, even after throttling DMA down to 50 percent of bus bandwidth and page locking the instruction 
and data memory. 

This kind of worst-case scenario is an exercise in balancing risk. Every possible type of system overhead 
has to land on a single instruction to degrade its performance as shown in Table 3-1. Bad luck on that scale 
is extremely unlikely for a single instruction and approaches impossibility for two instructions in a row. At 
some point, you have to say that it is more likely for the processor to spontaneously disassemble into a 
pinch of sand than to degrade a substantial piece of code by more than 50 percent or so. The careful 
programmer worries about it; most others just assume that everything will continue to work fine. 
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Massive performance perturbation is like Brownian motion. It is visible and sometimes significant in the 
microscopic frame of reference. At a large scale, it is so unlikely that it is universally ignored. 

The rule-of-thumb figures in Table 3-2 seem to work well for normally careful code on modern 32-bit 
processors with fast memory. Oddly, the performance variability on a processor doesn't seem to depend 
strongly on the performance of the processor. Note that you should never assume better than 10-
microsecond precision unless you understand and control the entire state of the machine. Performance 
variability (measured in microseconds) worsens with execution time for intervals longer than 100 
microseconds, but the effect diminishes rapidly enough that ordinary engineering care should be enough to 
accommodate likely variation. 

Table 3-2. Timing jitter with no interrupts, translation faults, or demand paging 
Typical Time  Worst-case degradation  

Up to 10 µs  10 µs  
Up to 100 µs  factor of 2  
Above 100 µs  200 µs  
 
 

Management of Troublesome Hardware 

Programmers who are willing to exert themselves need not be troubled by any of the factors in the 
previous section. 

Managing Demand Paging 

The huge performance degradation caused by demand paging is the first to go. Real-time programmers 
avoid demand paging. Real-time programs run in either pinned or page locked memory, which the 
operating system leaves in real memory. Often the memory used by a real-time program is page locked by 
default because the program is running under an operating system that does not support demand paging. 

Managing DMA 

Direct memory access is too useful for real-time systems to ignore, but it can be controlled. Many DMA 
controllers can be throttled such that they use no more than a specified fraction of memory bandwidth, or 
they can be configured to get off the memory bus entirely when the processor is servicing interrupts. 
Depending on system requirements, these mechanisms can convert DMA from a crippling problem to a 
minor inconvenience. 

Some systems have multiple memory buses. One bus is used for DMA and the other is reserved for high-
performance memory access. Sometimes entire pools of memory are isolated to prevent unexpected 
interference with access to the memory. 

In any case, DMA hurts a program's performance only when the program attempts to access memory, not 
when the program is run from the cache. 

Managing Cache 

Cache is usually hidden from application programmers. At most, they are given instructions that flush or 
invalidate caches. These instructions are required if the program deals with DMA or self-modifying code. 
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Processors are beginning to support caches whose contents can be controlled by software. The simplest 
such mechanism just lets part of the cache be configured as cache-speed memory. The address and size of 
the high-speed memory can be set with system configuration registers. Of course, the cache that has been 
configured as memory no longer behaves as cache, thus slowing down everything except the code that uses 
the cache-speed memory. This is a bad plan for most systems, but real-time programmers should know 
what code needs to have consistent high performance. 

More sophisticated caches allow chunks of the cache to be dedicated to specified processes or regions of 
memory. All the cache continues to operate as a cache, but some of the cache is taken out of the general 
pool and dedicated to code or data that needs predictable performance. The dedicated cache may still fault, 
so its performance is not consistent, but access to the dedicated part of the cache is controlled. It can be 
analyzed and each cache fault can be predicted. Code that uses a dedicated cache partition may take cache 
faults; although its performance is not consistently optimal, it knows when the faults will occur, so its 
performance is predictable. 

The operating system can take some measures to make the cache more predictable. For instance, on 
processors that support it, the cache can be considered part of a process state and preserved across context 
switches. 

Managing Address Translation Cache 

The address translation cache (ATC, also called a translation lookaside buffer or TLB) is a cache. It would 
make no sense to convert an ATC to memory, but dedicating parts of the ATC to software components is 
common practice, and preloading the ATC at process startup and context switch time is not common, but it 
is done; e.g., Microware's OS-9 operating system preloads the ATC on most processors that support it. 

Managing Interrupts 

Some systems just don't use interrupts. That removes the timing uncertainty caused by interrupts, but it 
surrenders a powerful tool. 

To some extent interrupts can be predicted—not exactly when they will occur, but about how often they 
should be expected. This predictability lets the designer for a real-time system calculate how likely a block 
of code is to experience a given number of interrupts. 

In desperation, a program can mask interrupts. Interrupts can only be masked by system privileged code, 
and it increases interrupt response time (which is a critical performance figure), but interrupt masking 
absolutely prevents interrupt overhead while the mask is in place. 

 

Effects on the JVM 

A JVM can do little to control its worst-case performance. Like all real-time programs, a JVM running 
real-time software should not use demand paged memory. The most efficient JVMs also take cache 
residency into account. They can keep in the cache the parts of the bytecode interpreter that the JVM 
designer expects to be most popular. Beyond this, Java programs are helpless. 

Even if a Java program could control the way hardware details affect their performance, Java religion 
(Write Once, Run Anywhere, or WORA) dictates that they shouldn't try. There is a contradiction in even 
trying to use hardware-aware techniques to control the performance of a Java program without introducing 
hardware dependencies. 
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Java programs are software. If the programmer is willing to sacrifice enough, Java software can surely 
achieve time precision like that of similar C programs, but it would require heroic efforts, and it is the 
wrong approach. 

1. It is hard to document hardware dependencies in Java programs. How do you express cache line 
alignment of data when Java won't even expose the size of data structures? 

2. The programmer is left using low-level inspection tools or "tweak and benchmark" techniques for 
hardware-dependent optimizations. These techniques work, but imagine the documentation 
required to explain a field inserted in a class to adjust the alignment of subsequent fields. 

3. Just thinking about it is enough to make a committed Java programmer feel sweaty and a little 
faint. 

There are several ways to escape from Java into native code. These mechanisms are included specifically 
to enable programmers to connect code written in other languages to Java programs. It is relatively easy to 
perform machine-dependent optimization on C or assembly language code, and native methods and 
processes are inherently machine dependent. 

Further discouraging news: native methods look like they let machine-dependent optimizations work, but 
like all timing work on advanced processors, micro-scale optimizations that work reliably are harder than 
they seem. Native code supports optimization for throughput, but performance cannot be predictable on the 
microsecond scale unless the code can control the cache and the other factors mentioned in "Worst-Case 
Execution of One Instruction" on page 39. 

The RTSJ does not try to micro-optimize the performance of the JVM. It targets problems that cause 
programs to miss deadlines by tens or hundreds of milliseconds such as: 

• Garbage collection 
• Priority inversion 
• Uncontrolled asynchronous events 

Predictability on the microsecond scale is a hardware problem. 
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Chapter 4. Garbage Collection 
• Reference Counting 
• Basic Garbage Collection 
• Copying Collectors 
• Incremental Collection 
• Generational Garbage Collection 
• Real-Time Issues 

The Java specification does not require garbage collection; it just provides no other mechanism to return to 
the free pool the memory that is no longer in use. Like the base Java specification, the RTSJ does not 
require a garbage collection. It does require the implementation to include the class GarbageCollector 
which formalizes communication with the garbage collection mechanism, but no garbage collection works 
fine with GarbageCollector. 

The two obvious choices for managing unused memory in a JVM are to dictate that no application may 
allocate objects that it does not intend to keep around forever, or to find unused objects and recover their 
memory. 

The process of identifying unused objects and recovering their memory is called garbage collection. 

The JVM will recover garbage when it thinks the system is idle, when the program requests garbage 
collection, and when there is not enough free memory to meet the memory request for a new object 
allocation. 

 

Reference Counting 

If each object contains a counter that tracks the number of references to that object, the system can free an 
object as soon as the reference counter goes to zero. This forces every operation that creates or deletes a 
reference to an object to maintain the reference count, but it amortizes the cost of garbage collection over 
all those operations and it frees memory at the earliest possible moment. Garbage collection by reference 
counting is simple and reliable, except for one problem. 

Reference counting cannot easily detect cycles. If A contains a reference to B, and B contains a reference 
to A, they both have a reference count of one. The garbage collector will not be able to free them even 
though there is no way to reach A or B. If reference counting were inexpensive it would be a nice primary 
garbage collection algorithm backed by another system that could run occasionally to free cycles that 
reference counting left behind. Unfortunately, garbage collection is expensive in both time and space. It 
adds complexity to every operation that can store a reference, and it adds a reference count field to every 
object.[1] 

[1] Since all of memory could be full of objects that reference the a single object, the reference count must be 
able to accommodate reference counts comparable to the size of memory. 

 

Basic Garbage Collection 

If you have some way to find all the objects in a system and some way to identify object references, 
garbage collection is simple. 
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• You select a root set, the set of objects and scalar references that you know the program can reach. 
This contains static fields, local variables, parameters, and other data such as JVM internal 
pointers. 

• The root set and every object that can be reached on a path from the root set is live. All the other 
objects are dead and can be freed. 

History of Garbage Collection 

The LISP language is a well-known early application for garbage collection. It has no memory 
management facility other than the ability to create a cell, so like Java it needs garbage 
collection. 

There is a strong connection between LISP and Java. The primary inventor of Java, James 
Gosling, is also the person responsible for Gosling emacs, an implementation of emacs that is 
interpreted by a built-in LISP interpreter. 
 

The Reference Classes 

The Reference classes were added to the standard Java class library at version 1.2. They give the 
programmer an interesting level of interaction with the garbage collector. 

All the classes derived from the abstract Reference base class contain a special reference to 
another object. 

The reference in a PhantomReference will not prevent the garbage collector from deciding that 
an object is unreachable. If an object has a PhantomReference, the garbage collector will place 
that PhantomReference object on a special queue when it cannot be reached except through 
phantom references. This allows the application to respond to the object's release in more 
elaborate ways than a finalize method could support. 

The reference in a WeakReference object will not prevent the referenced object from being 
garbage collected, but the garbage collector sees the reference and makes it null when the 
referenced object is ready to finalize. It may also place the WeakReference object in a queue. 
This is good for data structures like the WeakHash structure. It makes it easy to find objects, but 
the application does not need to remove objects from a weak hash. When objects they cannot be 
reached except through the hash table, they are automatically removed. 

A SoftReference object is like a WeakReference object except that the reference in a 
SoftReference object will discourage the garbage collector from freeing the referenced object. 
The garbage collector will only free objects that are softly referenced if it would otherwise be 
out of memory. This is good for caches. The application can cache objects in memory with the 
understanding that the cache will only use memory that would otherwise go unused. 

Mark and Sweep 

The simplest algorithm for garbage collection is mark and sweep. It is a straightforward conversion of the 
preceding outline into an algorithm. 

Since the algorithm does not free any memory until control reaches the last for loop, it makes no progress 
if it is preempted. 

The net effect of all this is that mark and sweep must grab complete control of the JVM for an amount of 
time that depends on the number of objects in the system, the number of links between objects, the 
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performance of the processor, and the quality of the garbage collector's code. This shuts down execution of 
everything but garbage collection for an interval somewhere between a tenth of a second and several 
seconds. 

These long pauses are terrible for real-time computation, and there is no known way to escape garbage 
collection's time cost without paying a high price somewhere else. There are garbage collection algorithms 
that greatly decrease the cost of garbage collection except for pathological cases (see the discussion on 
page 55), but the pathological cases happen and they take as long as conventional garbage collection. If the 
application is willing to commit to a memory budget (e.g., "I will allocate no more than 10 kilobytes per 
second"), garbage collection can be made part of each memory allocation request. The problems with the 
budgeting strategy are that it falls apart if a thread exceeds its budget and that it degrades the performance 
of memory allocation substantially. 

Algorithm 4–1 Mark and Sweep 
Mark: 
add every object referenced from the root set to the work queue 
and set the "live" flag on those objects 
while the work queue is not empty 
      dequeue an object from the work queue 
      for each reference in the object 
           if the referenced object is not "live" 
                  set the "live" flag 
                  add the object to the work queue 
Sweep: 
for every object in the system 
     if the "live" flag is not set 
            the object is garbage, free it 
     else 
            clear the "live" flag 

That is it. It takes time proportional to the number of live object references in the system plus the number 
of objects (live and dead) in the system. 

Mark and sweep is simple, but it is hostile to real time. You can implement mark and sweep to be 
preemptable at many points, but it cannot be preempted and resumed. (See Demonstration 4-1 and Figure 
4-1.) 

Figure 4-1. Garbage collection preemption timeline 
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Demonstration 4–1 Mark and sweep is not preemptable 

Imagine what could happen if mark and sweep were preempted and resumed: 

Initial conditions: 

Let field x in object D contain the only reference to object B. 

Object D is alive, but the garbage collector has not reached it yet. 

Object A contains no reference to B, and the garbage collector has already reached A and 
cleared its dead flag. 

Garbage collection is preempted by thread t. 

Thread t assigns the value in x (from D) to a field in A. 

Thread t clears x 

Thread t allows the garbage collector to resume. 

The garbage collector completes its scan of live objects. 

It sees no reference to B. 

(Thread t moved the only reference to B from object D to an object that the garbage collector 
had already processed.) 
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The garbage collector sees that B is still flagged as dead and frees it. 

This is an error. 

Mark and sweep is not preemptable. 

A JVM that supports the Real Time Java specification may support advanced garbage collection, but for 
real-time performance it allows code to avoid garbage collection altogether. (See Chapter 13.) 

Defragmentation 

After allocation and garbage collection proceed for a while, memory will tend to be a stable state with 
blocks of allocated memory scattered between blocks of free memory. This is called fragmentation because 
the free memory is in fragments instead of one contiguous extent. 

Fragmentation causes two problems: 

1. The memory allocator has to search for an extent of free memory big enough to accommodate the 
allocation request. Popular allocation algorithms either use the first chunk they find (that 
algorithm is called first fit) or look for the free extent that most nearly fits the allocation (best fit.) 
The worst-case performance of both first fit and best fit is 0(n), where n is the number of 
fragments. If there was just one extent of free memory, allocation time would be 0(1) . 

2. Allocation requests can only be satisfied if the allocator can find an extent of free memory big 
enough to satisfy the request. You cannot satisfy a request for 200 bytes with two 100-byte extents. 

Moreover, once memory is fragmented, the standard fix is drastic: shut everything down, free all memory, 
and restart the best you can. Just moving allocated objects around so free memory is contiguous would 
require the system to locate every reference to each object it moves, and update them. With a normal C-
based system, this can only be done with the classic computer programmer's trick of "adding one more 
level of indirection."[2] This technique is best known for its heavy use in the Mac OS and is common for 
disk file systems. 

[2] I don't know where the saying originated, but it is commonplace among programmers (at least the 
operating systems type) that almost every algorithm problem can be solved with one more level of indirection. 

If programs are not allowed to hold pointers to memory, but only pointers to pointers to memory, 
defragmentation can move memory objects and only update the single system pointer to the object. That 
sounds wonderfully simple, but an actual implementation requires more infrastructure. The program must 
be able to hold pointers to objects at least briefly unless it has an instruction set that lets it handle double 
indirection as easily as single indirection. 

Garbage collection has a convenient interaction with defragmentation. A garbage collector must be able to 
identify pointers, and by the end of most garbage collection algorithms, all the pointers to live objects have 
been followed. The garbage collector has already accomplished the work that makes defragmentation 
difficult. It would be sad to waste all this good information by not defragmenting memory as part of the 
garbage collection process. 

Defragmentation is not a natural part of mark and sweep collection, and it is not generally attached to it 
since it would make a protracted process even longer. Other garbage collection algorithms defragment as 
part of the process. 

 

Copying Collectors 
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Copying collectors find garbage like mark and sweep collectors do but take a fundamentally different 
approach to returning unreferenced memory to the free pool. Mark and sweep garbage collection works by 
identifying live data, then freeing everything else. Copying collectors copy all live objects out of a region 
of memory, then free the region. An outline of the algorithm is shown in Algorithm 4–2. 

As each live object is identified, it is copied into the new region. The old version of the object is given a 
forwarding address. As the garbage collector traverses the graph of live objects, it gives objects with 
forwarding addresses special treatment: 

1. It updates the reference in the current object to point to the new copy of the target object. 
2. The forwarding address marks the object as the beginning of a cycle, so the traversal moves to 

another branch. 

When the traversal completes, every live node has been copied to the new region and every reference has 
been updated to point directly to the copied instance of its target. 

The region that objects have been copied into contains only live objects, and the live objects are all 
allocated from contiguous memory. There is no fragmentation. 

The region that objects have been copied from contains no live objects. It is ready to be the target for a 
future iteration of collection. 

Copying collectors have four advantages over mark and sweep: 

1. Every cycle through the collector defragments memory at no additional cost. 
2. Allocation is trivial. Free memory is never fragmented, so allocation involves no searching. The 

allocator just returns a pointer to the beginning of the free extent and moves the beginning of the 
free extent by the size of the allocated object. 

3. It is easier to make a copying collector preemptable. 
4. All the residue in a region can be freed in one operation. 

The last advantage doesn't apply unconditionally to the Java environment. Java objects may have finalizers 
that are expected to run before objects are freed. 

A region can still be returned to free memory in a single block, but any finalizers in the region have to be 
found and executed first. 

A copying collector needs a free region as big as the region being collected. The system can never use 
more than half of its total memory. For large-scale real-time systems this might be an ineligible cost, but 
for many systems it is enough to rule out a simple copying collector. 

Algorithm 4–2 Cheney's copying collection algorithm 
void * FromSpace; 
void * ToSpace; 
 
void flip() {          
     void * scan, free;          
     swap FromSpace and ToSpace pointers          
 
     scan = ToSpace;          
     free = ToSpace;          
 
     // Copy all the objects in the root set into the new space     
     for each RtPtr in root set                  
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          RtPtr = copy(RtPtr);          
 
     //  while there is anything in the new region that we          
     // haven't looked at          
     while scan < free {                   
          x = object at offset scan in the new region               
          for each reference p in x                           
               *p = copy (*p)                   
          scan += sizeof(x); 
} 
 
void * copy(void *ptr) {         
 
     // if the object has already been copied, it has to be zapped 
with         
     // a forwarding address         
     if ptr is forwarded                   
           return forwarding address of ptr         
     else                   
           void * tmp = free;                   
           copy *ptr to *free;                   
           free += sizeof *ptr;                   
           mark *ptr with a forwarding address of tmp;              
           return tmp; 
} 

 
 

Incremental Collection 

Long pauses while garbage collection completes are painful. Even systems that are not normally 
considered real time appear broken if they stop responding for noticeable intervals. 

Any garbage collector can be made slightly preemptable. The collector notices a preemption request, 
proceeds backward or forward to a point where the memory system is consistent and there is no resource 
leakage, and allows itself to be preempted. If garbage collection makes some progress when it is 
preempted, it is an incremental collector. Unfortunately, when it is preempted, the reference graph that the 
garbage collector works from becomes obsolete and invalid. 

If a garbage collector were able to concentrate on finding garbage directly instead of finding live objects 
(everything that is not alive is dead) it would be easy to make it incremental. A dead object cannot come 
back to life,[3] so each time the garbage collector finds a piece of garbage, it can immediately free it and 
make progress. 

[3] To make a dead object Y come back to life, routine X would have to place a reference to it in the root set 
or in some live object. But, routine X cannot place a reference to Y anywhere unless it has that reference. If 
routine X is holding a reference to Y, then Y is not dead. 

Consider the following (hideously inefficient) garbage collector: 

Algorithm 4–3 Trivial incremental collector 
for each object x in the system {         
     referenced = false        
     for each object y in the system {                 
           if (y contains a reference to x) {                       
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                  referenced = true                           
                  break                 
 
           }         
     }         
     if (referenced == false)                  
           free object x} 

This algorithm can be preempted with no delay, though it has to restart at the beginning. Unfortunately, it 
permits garbage to survive through many iterations of the entire algorithm, and cycles are never reclaimed. 

Imagine a linked list of 1000 nodes that has just been made inaccessible. The nodes in this list happen to be 
ordered such that the collector sees the tail of the list first, then iterates back to the head. 

The trivial incremental collector will reclaim one node of the list each time it executes. 

Algorithm 4–3 fails because it has to restart each time it is preempted. A high priority thread that wakes up 
every millisecond or so would never let this algorithm get beyond the beginning of its list of objects. 

Here's a completely different approach: 

Algorithm 4–4 Different trivial incremental collector 
Loop:     
  Atomically copy all collectable memory to GC_Private memory.     
  Run any garbage collection algorithm on the GC_Private copy.     
  Instead of freeing the copies of memory, free the originals.     
  Clean the GC data structures.     
  Repeat. 

The insight behind Algorithm 4–4 is that a garbage collector can do all its computation on a snapshot of 
memory. Any object that was garbage when the snapshot was made will still be garbage when the garbage 
collector detects it. Each time the garbage collector detects a dead object, it tells the system to free the 
corresponding object in active memory. It doesn't matter whether it frees the object in the snapshot. When 
the garbage collection algorithm terminates, the entire buffer used for the memory snapshot is cleared and 
used for the next cycle. 

Except for the long lock while it makes a private image of collectable memory, this algorithm is even more 
preemptable than Algorithm 4–3. After the copy operation, it can be preempted and resumed at any point. 
Copying all memory is a 0(n) time operation, where n is the size of memory, but it can still be quite fast. 
First, this is a straightforward copy. It should run as fast as memory can handle the loads and stores. 
Second, on a machine with an MMU, the memory can be copied with MMU lazy-copy techniques. The 
MMU can be used to map the pages to two addresses and mark them read-only. It need only actually copy 
pages that are written after it "makes a copy." 

Algorithm 4–4 is in most ways an attractive incremental collector. Its only serious problems are its heavy 
memory requirement for its working buffer and the way it shuts down writes to memory while it makes its 
working copy. 

Incremental Garbage Collection in Practice 

There are many incremental garbage collection algorithms, most of them developed for multiprocessor 
LISP machines.[4] 



 43

[4] A garbage collection running on a second processor is the ultimate in incremental garbage collection. 
Interleaving between the garbage collector and the mutator cannot get finer. If no locks are required, 
interleaving is at the level of references to memory. 

Incremental garbage collection uses some new terms: 

Mutator 

Incremental garbage collection is analyzed like a concurrent algorithm. The garbage collector is faced with 
a mutator, a thread that allocates, accesses, and modifies memory. A correct algorithm must behave 
correctly no matter what the mutator does. 

Conservative 

A garbage collector must never free memory that is still live. It is less harmful if it fails to recognize some 
garbage; especially if the failure is timing related and the floating garbage will be collected on the next 
pass. The more conservative a garbage collection algorithm is, the more likely it is to leave floating 
garbage. 

Accurate 

In the context of garbage collection, accuracy is the opposite of conservatism. An accurate garbage 
collector will collect all objects that are unreachable at the time the garbage collector completes. 

Read barrier 

This mechanism informs the garbage collector when the mutator reads an object. Barriers are generally 
attached to specific objects, not used to monitor all reads. 

Write barrier 

This mechanism informs the garbage collector when the mutator writes into an object. The garbage 
collector generally cares only about writes of references, so the barrier can safely ignore all write 
operations except the operations that store references. 

A correct garbage collector must never free a live object. The collection algorithm can guarantee this if it 
ensures that a mutator never writes a reference to an object the garbage collector has not considered into an 
object that the garbage collector will not visit again. 

There is no other dangerous operation. 

Incremental garbage collection must prevent reclamation of live objects. Retention of garbage is 
bad, but not harmful. 

The garbage collector will only reclaim a live object if it has seen no reference to the object. 

This is only possible if the mutator changes the reference graph. 

There is no way a read from the mutator can change the reference graph by reading. 

There is no way the mutator can change the reference graph by writing anything but references. 

Writes to nodes the garbage collector has not yet considered cannot cause harm. 
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That leaves only writes of references to objects the garbage collector has already considered as 
potentially harmful. 

Only operations that store object references can cause the garbage collector to free a live object. Figure 4-1 
at the beginning of this chapter illustrates how freeing a live object can disrupt garbage collection. The 
garbage collector can choose from two methods to prevent this disruption: 

1. When the mutator references an object the garbage collector has not yet considered, immediately 
add it to the garbage collector's pending list. This is done with a read barrier around all 
unconsidered objects. 

2. When the mutator writes a reference to an unconsidered object into an object that has been 
considered, cause the garbage collector to revisit the object the reference was stored into. This 
technique uses a write barrier around all the reference fields the garbage collector has already 
traversed. 

Algorithm 4–4 is an extreme instance of method two. A garbage collector that implements Algorithm 4–4 
either locks out writes from the mutator during its copy stage or uses a write barrier to capture all writes 
during the copy and reflect them in the snapshot. Other garbage collection algorithms combine barriers 
with mark and sweep or copy collectors to get more complicated, but highly preemptable, garbage 
collectors. 

 

Generational Garbage Collection 

Typical performance benefits if the garbage collector, the allocator, and the language share information. 
The size, contents, and history of an object influence the type of garbage collection that should be used on 
it. For instance, copying takes time proportional to the size of an object to move the object to the live set. 
The performance of mark and sweep does not depend on the size of objects. 

The classic generational garbage collector is based on the observation that most objects die shortly after 
they are created. The older an object is, the more likely it is to remain alive. The garbage collector 
capitalizes on this heuristics by creating new objects in a special area called an eden. Frequent execution of 
a copying collector moves objects out of the eden into tenured memory regions. A complex 
implementation might have a hierarchy of tenured regions to separate adolescent objects from middle-aged 
ones. 

A simple generational collector saves the cost of copying the tenured data every time the collector runs, 
but it still has to consider references, called intergenerational references, from tenured objects. It does this 
by including all the objects in the tenured regions in the root set. Since the graph traversal to determine 
liveness in the eden has to consider whether each object is in the eden before it copies it and since there 
may be many tenured objects, generational collectors struggle to hide tenured regions when they collect 
the eden. 

Intergenerational References 

Instead of scanning the entire set of tenured objects for references to the eden, the garbage collector would 
like to just add a list of references from tenured to untenured to its root set. 

Two mechanisms can create a reference between objects in different generations: 

1. The garbage collector can cause an intergenerational reference by moving either the object 
containing the reference or the target of the reference to a new generation. It is reasonable to ask 
the garbage collector to track these references. 
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2. Application code can store an intergenerational reference. These references have to be tracked by 
the code that makes the change. This code uses a mechanism called a write barrier. If static and 
local fields are made part of the root set, the only writes that need to be tracked are reference 
stores to instance fields. The write barrier can be enforced by code added to the routines that 
implement the op codes that store references into instance fields. It might also be done by using 
the MMU to write-protect tenured storage and call a check for stores of intergenerational 
references when the MMU detects a write fault. 

The collector need not track references from the eden to tenured objects unless it wants to avoid the 
overhead of scanning the eden when it collects a tenured region. Since the eden is expected to be active, 
tracking references from it would be a relatively expensive job, and since the eden is small, requiring the 
garbage collector to collect the eden when it collects tenured regions is a minor addition. On the other hand, 
if it is expensive to exclude collection of intergenerational references from the eden, it does no harm to 
collect them. 

Large Object Store 

Large objects cause trouble for a simple generational scheme. The eden is kept small to keep down the cost 
of collecting it, but that leaves it too small for many objects. Large objects that fit into the eden fill it too 
quickly and cause too much collection. To solve this problem, the memory allocator uses a large object 
store for large objects. The large object store keeps large objects from fouling the eden, and it can use a 
mark and sweep collector, which works better than a copying collector on large objects. 

 

Real-Time Issues 

Without a processor dedicated to garbage collection, the JVM cannot guarantee that garbage collection will 
not disrupt the timing of any code that includes object creation. All nonconcurrent mechanisms are based 
on heuristics and operate by deferring expensive garbage collection. They may run for days without a 
significant garbage collection pause, but they do occasionally pause. 
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Chapter 5. Priority Scheduling 
• Scheduling Terms 
• Execution Sequences 
• Preemption 
• Fixed versus Dynamic Priority 
• Priority Inversion 
• Why 32 Priorities? 
• Problems with Priority Scheduling 

The central issue of real-time programming is getting things done on time. That breaks down into two 
separate issues: 

• Designing, coding, and analyzing real-time code so it predictably executes in the required interval. 
• Ensuring that the resources such as CPU time are allocated so real-time activities get enough time 

and resources to meet their deadlines. 

Chapters 2 and 3 dealt with issues that affect predictable performance. Scheduling addresses the allocation 
of resources. 

 

Scheduling Terms 

The part of an operating system that switches between tasks has been decomposed with an elegant 
separation of policy and mechanism. The component that actually saves one task's state and starts the next 
task executing is called the dispatcher. The component that decides which task to run next is called the 
scheduler. 

Dispatchers are traditionally simple and fast. When the system is in a hurry to get something done (stop 
calculating pi and open the door before Bones smashes his nose into it), it starts by switching to the task 
that will do the urgent work. The time used by the dispatcher looks like pure overhead. Real-time system 
software struggles to push that overhead toward zero. There is nothing clever in a dispatcher. A real-time 
programmer wants it fast and trivial. 

A scheduler is different. A non-real-time system might be content with a scheduler that hands out CPU 
time in FIFO order; most real-time systems use a fixed-priority scheduler.[1] A simple fixed-priority 
scheduler "just" ensures that the system is always executing the highest-priority task that is ready to run. 
Priorities express an "importance" measurement for real-time systems: how important each task is at a 
given moment. The major alternative for real-time systems is deadline scheduling, which schedules tasks 
according to the time when they must complete the current computation instead of according to their 
priority. 

[1] Fixed priority preemptive scheduling is the minimum required by the RTSJ. 

 

Execution Sequences 

Execution sequences are a convenient representation for concurrency. Table 5-1 is a textual version of 
what an execution sequence looks like. 
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Table 5-1. Execution sequence 
Task1  Task2  
sort(a)  sort(b)  
getInput()  doOutput()  
load x int t1    
  load x into t2  
add 1 to t1  add 1 to t2  
store t1 into x    
  store t2 into x  

If the order of execution of Task1 and Task2 does not matter or if they actually execute concurrently, they 
can appear in the same row. When ordering between two tasks matters, they do not share a row. 

In the previous example, Task1 and Task2 both do sorts, then Task1 does input and Task2 does output. The 
order of those operations does not matter, except that the execution sequence asserts that Task1 finishes 
receiving input and Task2 completes its output before Task1 loads x into t1. After Task1 finishes loading x, 
Task2 loads x into t2. Then Task1 adds one to t1 and Task2 adds one to t2 in no particular order. After those 
operations complete, Task1 stores t1 into x and then Task2 stores t2 into x. 

This execution sequence illustrates a classic race condition (a sequence of instructions in multiple 
instruction streams where the execution sequence can change the final results.) Both Task1 and Task2 think 
that they are incrementing x, and they will. Unless they get tangled as shown above. That execution 
sequence illustrates that Task1's increment can be lost. 

The execution sequence can be made more graphical and rotated, as shown in Figure 5-1 

Figure 5-1. Example execution sequence. 

 

 

Preemption 

Unless a system has at least one processor per concurrent task, the operating system may occasionally 
preempt a task to give another task access to the processor. Some operating systems permit preemption 
only at certain points; others have various sections where preemption is deferred. Real-time operating 
systems take great pains with preemption latency (the maximum duration preemption is deferred) and 
preemption service time (the length of time it takes to complete preemption after it is enabled). 
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Any system with real-time pretensions will preempt a task to start a higher-priority task that has become 
runnable. For instance, a task that is waiting for a switch to be moved will start executing very soon after 
the switch moves unless another task of the same or higher priority is already executing. This sounds 
almost like the definition of priority, but unless a scheduler specifically says it is preemptive or supports 
preemption, it probably uses priority only to select the next task when the current task offers preemption 
(usually by blocking.) 

The Seductive Charm of Nonpreemptive Scheduling 

Every competent operating system provides preemptive scheduling, but preemption is not an unmitigated 
good thing. Without preemption, a system of tasks cannot suffer a race condition unless the programmer 
almost literally asks for it. With a preemptive scheduler (or multiple processors), every time a task uses a 
shared resource it must assume that other tasks are using it at the same time. Unless cooperating tasks use 
exotic algorithms or locks, race conditions will occur. With a nonpreemptive scheduler (on a single 
processor), each task executes until it uses a system service that offers preemption. Control will never 
switch from task to task between two arbitrary instructions. 

Figure 5-2 is the nonpreemptive analog of Figure 5-1. It shows the execution sequence for a system where 
getInput, doOutput, and Yield offer preemption. Notice that where Figure 5-1 illustrated a race 
condition that caused the corruption of value of x, Figure 5-2, with no preemption, shows no race condition. 

Figure 5-2. Nonpreemptive scheduling 

 

Compared to fully preemptive or concurrent systems, a nonpreemptive scheduler almost removes the 
complexity of designing and debugging multitasking systems. 

Even for desktop systems, preemption has proved to be important. Nonpreemptive scheduling works well 
enough if every task offers preemption frequently. Unfortunately, it is easy to forget to put a yield in 
every computation loop. The program works fine without the yield; in fact it runs a little faster. Other 
programs suffer, but maybe that is acceptable for a fraction of a second. One thing leads to another, and 
you get an annoying system lockup. Then there is the problem of system crashes. What if a task encounters 
a bug that causes it to enter a tight infinite loop? The system locks up. There is no way for the operating 
system to take control away from the buggy task. Early versions of Microsoft Windows and Apple's Mac 
OS were nonpreemptive; they suffered terribly from user interfaces that froze for long periods and from 
frequent system crashes. 

First, the problem in computer terms. There are three tasks: 

Task  Priority  
A  low—10  
B  medium—15  
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C  high—20  

and one resource, X. 

1. Task A acquires a lock on X. 
2. Task B preempts A and starts a long computation. 
3. Task C preempts B and attempts to lock X, but it cannot get the lock. Task A holds a lock on X. 

C is the highest-priority activity in the computer, but it cannot progress until task A releases X, and A 
cannot release the resource until B lets it have some processor time. This scenario effectively gives task C 
the same priority as task A. (Otherwise, why does it have to wait for task B to finish its computation?) This 
priority inversion is illustrated by the timeline in Figure 5-3. 

Figure 5-3. Priority inversion 

 

This situation is called priority inversion because a high-priority process is scheduled as if it has a lower 
priority than a low-priority process. 

Priority inversion can be controlled by a careful programmer, but only if it is anticipated and designed 
around. Unfortunately, priority inversion is easy to overlook and terribly difficult to find in a deployed 
system. It occurs only when a particular sequence of events causes a low-priority task to hold a resource 
when a high-priority task wants it. That situation may require an improbable combination of events. It can 
lie dormant in a system through the testing period and emerge as an intermittent bug in the deployed 
system. 

 

Fixed versus Dynamic Priority 

A fixed-priority scheduler schedules strictly according to the priorities assigned by the programmer. The 
alternative is a dynamic-priority scheduler, which allows the scheduler to modify the priorities of tasks. 
Strictly fixed priority schedulers are becoming rare. They suffer from priority inversion. Consequently, 
fixed priority has come to mean "fixed except for priority inversion avoidance." 

 

Priority Inversion 
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The family arrives home and suddenly realizes that grandma is scheduled to visit in fifteen minutes. The 
parents ask the older child, June, to tidy and vacuum the front hall. William, the younger, and rather 
inefficient, child is assigned the playroom. As it happens, William moves fast enough to take possession of 
the vacuum cleaner before June finishes tidying the front hall. When she goes for the vacuum cleaner, she 
finds it in use. She has to wait until William finishes vacuuming the playroom. Grandma arrives long 
before William is finished vacuuming the playroom. The front hall cleaning task does not meet its deadline, 
and the parents are deeply embarrassed.[2] 

[2] Since the time June will wait for the vacuum is bounded by the time William can spend working on the 
playroom, this is bounded priority inversion. If we involved a third person who did not want the vacuum, but 
was able to prevent William from working, then we would have unbounded priority inversion. 

Literal-minded children would probably behave exactly as specified. More creative (or even cooperative) 
children would realize that William could let June borrow the vacuum cleaner for a few minutes (which 
turns out to be difficult in the computer analog), or June could have helped William vacuum the playroom 
and freed the resource to clean the front hall much sooner—maybe early enough to meet the deadline. 

This problem and its "obvious" solution are common in real-time systems. The problem is called priority 
inversion, and techniques for solving the problem are called priority inversion avoidance protocols. The 
standard priority inversion avoidance protocols are two variants of June helping William: priority 
inheritance protocol and priority ceiling emulation protocol. 

The Martian Lander 

The priority inversion problem that troubled the Martian lander transformed priority inversion 
from an esoteric topic for real-time engineers to a well-known near disaster. 

A high-priority watchdog task had to acquire a lock on a bus. Occasionally it would find that 
lock held by a low-priority task. When that happened, the watchdog would time out and the 
system would conclude that it had a serious problem and reboot. This made the lander so 
unreliable that it made national news. 

Fortunately, the engineers at the Jet Propulsion Laboratory were able to enable priority 
inheritance for the lock by patching its control block. 

The priority inversion occurred at least once in the lab while the software was under 
development, but it was not reproducible so it was classified as a hardware glitch. 

If any task waiting for a lock has a higher priority than the task that holds the lock, a lock that implements 
the priority inheritance protocol assigns the priority of the highest-priority waiting task to the task holding 
the lock until that task releases the resource. In our example, priority inheritance protocol would give Task 
A the priority of Task C from the time Task C attempted to lock X until the time Task A unlocked X. This 
would let Task A execute the block of code between the lock and then unlock without waiting for Task B. 
(See Figure 5-4). 

Figure 5-4. Priority inheritance 
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The advantage of the priority inheritance protocol is that application interfaces to locks that implement 
priority inheritance protocol are no different from those to conventional locks. Thus, one can upgrade a 
system without changing any application source code. 

Priority inheritance has the following problems: 

• Its implementation is slightly complex. Under priority inheritance, a task sometimes temporarily 
alters the priority of another task when it attempts to acquire a lock. This may happen several 
times as higher-priority tasks join the wait queue. The system must then arrange to restore the 
original priority of the task when it releases the lock. 

• The execution sequence through a lock is less likely to cause mysterious problems, but it is still 
peculiar. The priority of a task is raised, not because of anything it does, but by another task that is 
not specifically designed to change any other task's priority. 

The most common alternative to priority inheritance protocol is the priority ceiling emulation protocol. 
This protocol temporarily raises the priority of the task holding the lock above the priority of the highest-
priority task that will ever attempt to acquire the lock. Under the priority ceiling protocol, a task always 
sets its own priority when it acquires a lock and returns to its previous priority when it releases the lock. 
This behavior simplifies the implementation of the priority inversion avoidance protocol and makes it 
easier to understand the execution sequence through the lock. The section of code that holds the lock 
executes indivisibly with respect to other tasks that might want to acquire the lock, as shown in Figure 5-5. 

Figure 5-5. Priority ceiling emulation 
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Why 32 Priorities? 

"Rate monotonic scheduling requires at least 32 priorities." That assertion has become almost part of real-
time folklore. The POSIX real-time specification calls for no fewer than 32 distinct priorities, and the Real 
Time Specification for Javarequires at least 28. Most real-time operating systems support at least 256 
distinct priorities, and OS-9 supports 65,535! There is a theoretical basis for the assertion. The paper, 
"Real-Time Computing with IEEE Futurebus+" by Lui Sha, Ragunathan Rajkumar, and John Lehoczky, in 
IEEE Micro, June 1991, shows that given certain assumptions, the benefit of additional bus arbitration 
priorities diminishes rapidly above about 32. The paper addresses bus arbitration, but the computation 
applies without alteration to task priorities. 

History 

Doug Locke, a member of the RT Java Consultants Group and a hard-working member of the 
working group that defined the POSIX real-time specification, is the common thread from the 
discovery of the significance of 32 priorities, through POSIX to the RTSJ. As a new Ph.D. he 
helped write the IEEE Micro paper by supplying practical constant values for equations that the 
authors had worked out, and he supported the idea of 32 priorities as an academically 
respectable number for POSIX and the RTSJ. 

It is not practical to compute the value of additional priorities for application-specific assignment of 
priorities, but rate monotonic analysis defines a rule for assigning priority to tasks. Rate monotonic 
analysis (see Chapter 7) assigns each task a priority according to how frequently the task needs service (see 
Chapter 5). 

Simple application of rate monotonic analysis falls apart if there are not enough distinct priorities to go 
around. Tasks have to share priorities. A good strategy for sharing is to assign priorities in groups 
according to constant ratios; for instance, given a constant ratio, r , of 2, this algorithm would give tasks 
with a period less than one millisecond priority n (the highest priority), tasks with periods between one and 
two milliseconds priority n-1, tasks with periods between two and four milliseconds priority n-2, and so 
forth. 

Lehoczky and Sha[3] have computed the loss in efficiency caused by folding priorities together this way: 

[3] J. P. Lehoczky and L. Sha, "Performance of Real-Time Bus Scheduling Algorithms," ACM Performance 
Evaluation Review, Special Issue, Vol 14, No. 1, May, 1986. 

Equation 1  

 

Equation 2  

 

where r is the constant ratio. 

The next step is to determine the ratio r that will give just enough groups of periods to exactly cover the 
available priority values. This involves two assumptions: 
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1. Assume that the system contains more different periods than there are priorities. This is just a 
restatement of the point of this exercise. We're trying to figure out how few priorities we can get 
away with. Strict rate monotonic scheduling wants separate priorities for each period, but we're 
hoping that we'll find that fewer priorities are almost as good. 

2. Assume that periods range from 1 millisecond to 100,000 milliseconds. This choice was based on 
the range of periods in systems that Doug Locke was implementing at that time. 

Now we calculate the loss in scheduling efficiency we get by squeezing the priority assignments down to 
256 priorities. 

1. Priority zero will be assigned to activities with a period of one millisecond, or L0 = 1ms. 
2. Priority 255 will be assigned to activities with a period of 100,000 milliseconds, or 

L255=100000ms 
3. Other periods will be distributed across the other 245 priorities such that the ratio, r, of the range 

of each priority to the one before it is a constant. 
4. Starting from L0 we have, L1 = L0 • r, L2 = L1•r or L2 = L0•r2 and finally L255 = L0 • r256. 
5. So r = (L255/L0(0))1/256 = 1.046. 
6. Filling this value for r into Eq 1 gives Loss = 0.0014. 

So, cramming a wide range of periods into only 256 priorities gives about a tenth of a percent loss in 
scheduling efficiency. Figure 5-6 demonstrates that the range of periods changes the way scheduling loss 
increases as the number of priorities decreases, but even for large changes in the range of periods, about 32 
priorities allows efficient scheduling. 

Figure 5-6. Change in scheduling efficiency with number of priorities 

 

Fifty or sixty priority levels would be better, but 32 priorities is comfortably before the point in the graph 
that indicates rapid loss in scheduling efficiency. 

 

Problems with Priority Scheduling 

Priorities can be a good scheduling paradigm if they are not loaded with meaning beyond their design. A 
task with higher priority will be given preference over lower-priority tasks when competing for system 
resources. If a system has to update a status display, log historical information, and control the feed rate 
into a band saw, the priority assignments are clear: 
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Control  high  
Display  medium  
Logging  low  

The intuition here is that seriously bad things happen if the control function does not complete on time, 
that it is inconvenient if the status display is sluggish, and that there is no harm at all if the logging 
function runs late. The priority attribute expresses how important activities are, nothing about the actual 
timing of the tasks. 

This expression of importance is important; if a system is going to fail to accomplish all its tasks, it should 
fail in the least harmful way. For real-time systems, priority is an odd choice of scheduling parameter. In a 
theoretical sense, priority is only a useful parameter if the system is trying to minimize the damage from 
failing to meet deadlines. If the system is not failing, priority is, at best, an obscure way of telling the 
scheduler about deadlines. 

It might be life-or-death important to load the dishwasher between dinner and bedtime, but it only takes 
five minutes and it can be done any time between 6:30 and 9:00 P.M. There is no need to fail to answer the 
telephone at 6:30 (which is not nearly as important as loading the dishwasher but has a much narrower 
time window). A priority scheduler would load the dishwasher first and miss the telephone. A better 
scheduler would answer the telephone at 6:30 and defer loading the dishwasher until 6:35. It would 
complete both tasks in plenty of time. 

A skilled real-time programmer can do amazing things with priorities and locks. We are surrounded by 
systems that use priorities and locks to display marvelous feats of real-time programming, but scheduling 
should not be that hard. 

It seems more sensible to tell the system when a task needs to complete and what resources it needs. Those 
are the facts that matter to a real-time system. Meeting deadlines is the goal, not doing the most important 
thing first. 

An entire real-time scheduling discipline is based on this idea. The basic idea is dynamic priority, or 
deadline scheduling. Deadline schedulers have nearly magical potential, and the Real Time Specification 
for Java enables, but does not require, support for these advanced schedulers. See Chapter 6 for a more 
detailed discussion of deadline scheduling. 
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Chapter 6. Scheduling with Deadlines 
• Underlying Mechanism 
• Scope of the Scheduler 
• Some Systems 
• Timing Is Usually Probabilistic 

Since a real-time system is driven by deadlines, perhaps programmers should communicate those deadlines 
to the operating system. That is the basic idea behind deadline scheduling. It is a good idea. Scheduling 
using deadlines works beautifully when 

• The program's scheduling is primarily driven by deadlines; 
• The programmer can accurately characterize the processor time requirements of the application; 
• The scheduler can meet all deadlines. 

Scheduling with deadlines gets harder to use and harder to implement if it is expected to help the system 
degrade gracefully under overload. 

Deadline scheduling is a form of dynamic priority scheduling. This term distinguishes the fixed priority 
scheduling algorithm where priority is controlled by the programmer from algorithms where priority is 
controlled by the scheduler. 

 

Underlying Mechanism 

Real-time tasks must meet deadlines. Sometimes the deadline is expressed in terms of a time sequence that 
includes program events and real-world events—the control program must turn the current off before the 
wire overheats. Those are certainly deadlines in a strict sense of the word, but deadline scheduling requires 
deadline times. 

First, applications need a way to communicate their timing requirements to the scheduler. The scheduler 
must know the next deadline for each task. This communication could use function calls like this: 

setDeadline(time); 

If all applications pass the scheduler the time of their next deadline and a ceiling on the processor time 
required to reach that deadline, the scheduler can tell the application whether it can guarantee that it will 
meet the deadline. This is called feasibility analysis. In the extreme case, the scheduler may refuse to 
accept a deadline unless it can guarantee to meet it; this is called admission control. 

if(setDeadline(deadlineTime, cpuBudget) != SUCCESS) 
  handleAdmissionControlFailure(); 

If the scheduler is going to make guarantees, it needs accurate information. A task that asked for two 
milliseconds, then computes for five milliseconds may use processor time that was intended for another 
task. If a task uses more than its allotted time, the scheduler's plans are no longer useful, and other tasks 
may fail to meet their deadlines because of the overrun. A scheduler with enforcement can preempt the 
overrunning task when it exceeds its budget. 

Enforcement could take the form of simple preemption: on overrun a task would be preempted in favor of 
other tasks, but when the preempted task is next scheduled, it continues as if it were not interrupted. This is 
easy for the scheduler and the application, and it is harmless if the preempted task is rescheduled in time to 
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meet its deadline. If the preempted task does not meet its deadline, it becomes an example of a more 
general problem. Should the scheduler tell tasks when they fail to meet their deadlines, and if so, how? 

• It might be fair to say that real-time programs should be able to tell through their interaction with 
physical reality when they miss a deadline. By definition, something seriously bad will happen if a 
task in a hard real-time system misses a deadline, so tasks should simply look to the "real world" 
for notification of failure. 

• The program can poll the scheduler from time to time asking whether it has missed its deadline yet. 
• The scheduler can asynchronously execute a deadline miss handler on the task's behalf—like a 

UNIX-style signal. 
• The scheduler can permanently alter the task's control flow. It could, for instance, stop execution 

and restart it back at the beginning of some main cycle in the task. 

None of these are faultless solutions, but in this kind of failure-recovery strategy, the goal is a usable 
solution that does not cost so much that it overloads a system into cascading failures. 

The scheduler accepts requirements from the system and builds the best schedule it can. The schedule can 
be viewed as a timeline showing when each task will run (or use resources other than the processor), but 
the role of the scheduler in a system is specifically to tell the dispatcher which task to release from a wait 
queue. 

 

Scope of the Scheduler 

The scheduler does not control everything. It is surrounded and filled with nonschedulable entities: 
interrupt service routines, tasks that aren't scheduled by the deadline scheduler, DMA, and other overhead. 
The hardware issues identified in Chapter 3 are only a few of the nonschedulable entities a deadline 
scheduler might have to live with. 

A deadline scheduler has to tolerate nonschedulable entities. Deadline scheduling practitioners struggle to 
bring every activity under the control of the scheduler, then they leave slack in their time budget to 
accommodate the worst damage they expect. 

In the context of the Java platform the garbage collector is a major nonschedulable entity. A programmer 
can bring it under control by forcing garbage collection at convenient moments, and a scheduler can do 
something similar, but when the garbage collector needs to run, it is above all rules including those of the 
scheduler. 

There is a deep similarity between garbage collection and "rest" stops for children on a road 
trip. You schedule them at convenient moments, but additional stops are required at the least 
convenient moments … and they are not optional. 
 

Preview 

The Real Time Specification for Java escapes the garbage collection nonschedulable entity by 
letting the programmer take certain threads out of the garbage collection domain. See Chapter 
13. 

 
 

Some Systems 
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Real-time scheduling is the chosen field of a whole subcommunity of the computer science systems 
discipline. Its adherents have invented dozens of deadline scheduling algorithm variants. This section 
touches on a few representative algorithms. 

Earliest Deadline First (EDF) 

If a schedule can meet all deadlines, then the schedule that always runs the task with the earliest deadline 
will succeed. 

Earliest Deadline First 

Consider just the interval, a, between the current time and the next deadline. 

The task for the next deadline, task A, must be executed in that interval or it will not meet its deadline. 

Executing task A at the beginning of the interval gives it the best chance of meeting its deadline. 

If there is time left over in interval a, it doesn't matter to the following deadline where in interval a it is 
allowed to execute. 

Earliest deadline first does not care about CPU time budgets. This is a wonderfully simplifying factor, but 
simple earliest deadline first is not a serious scheduling algorithm. It is mainly a good demonstration that 
deadline scheduling can succeed. 

The following are faults of earliest deadline first scheduling: 

1. It has no admission control. 
2. It works if there is a successful schedule, but it may fail spectacularly if no schedule will meet all 

deadlines. EDF has no way to know a schedule will fail or to search for the least damaging way to 
fail when failure is inevitable. 

The simplicity of earliest deadline first can lead it to total failure. Any execution sequence that fully 
utilizes the CPU is fragile. Such schedules are certain to miss at least one deadline if anything takes longer 
than expected. EDF's blind adherence to policy is illustrated in Figure 6-1, which shows an execution 
sequence that misses every deadline. 

Figure 6-1. Total failure by EDF 

 

The scheduler could have met all but the first deadline by sacrificing the first computation (which is going 
to fail anyway) and distributing its time among the other tasks, as demonstrated in Figure 6-2. 
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Figure 6-2. Alternate schedule for the problem from Figure 6-1 

 

Earliest deadline first scheduling has no way to execute this principle. Extended versions of earliest 
deadline first scheduling, such as Robust Earliest Deadline (see "Handling Overload" on page 82) can 
handle overload situations if they have enough information to plan for the overloads. 

Least Laxity 

Laxity is the amount of time between the time a computation would complete if it started now and the 
deadline for the computation. Slack time is another term for the same thing. Scheduling the task with the 
least laxity first has many of the same characteristics as EDF scheduling. Least laxity needs both a 
deadline and compute time for each task, whereas a deadline suffices for EDF. Like EDF, least laxity will 
generate an optimal schedule for any load that can be scheduled. The basic least laxity algorithm does not 
explicitly manage overload situations, but it fails less catastrophically. 

The major failing of a straightforward implementation of a least laxity scheduler is that the scheduler will 
rapidly flip tasks in and out of the processor if they have nearly the same laxity. Imagine the situation 
illustrated in Figure 6-3 where Task A has 50 milliseconds slack time, Task B has 49 milliseconds slack 
time, and Task C has 47 milliseconds slack time. After Task C has executed for three milliseconds, it will 
still have 47 milliseconds slack time, but Task A will have 47 milliseconds and Task B will have 46 
milliseconds. Since Task B now has the least laxity, the scheduler will switch to Task B. Two milliseconds 
later, Tasks A and C will both have 45 milliseconds slack time, so the scheduler will switch to one of them. 
From here on the scheduler will call for a change in control every time it calculates slack times. Assuming 
that context switching is not free (and it usually takes at least the equivalent of a few dozen instructions), 
this frantic jittering between tasks will degrade performance. 

Figure 6-3. Excessive context switching under least Laxity 
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The solution to this problem is to make the least laxity scheduler a little less mechanical about following 
the least laxity rule. If least laxity only causes a change in control on some event other than the passage of 
time or when the change will affect the deadlines that are met, it will let the tasks continue to execute even 
when another task's laxity passes theirs. 

The major disadvantage of least laxity scheduling when compared to EDF is that least laxity must know 
the cost of each task. Least laxity's major advantage is that it does not go into total collapse when a task 
does not meet a deadline. This does not mean that least laxity handles failure well. (See "Handling 
Overload" on page 82.) It could be argued that ungraceful degradation is acceptable in a real-time system 
since those systems should never miss any deadlines. 

Periodic Scheduling 

If a large part of a system's load can be expressed as "do x every y microseconds," then the periodic 
scheduling algorithm may be useful. Constraining the problem to periodic tasks greatly simplifies the 
scheduling problem. The load can be characterized by a list of tasks, each with its period and cost. 
Compare this to the aperiodic problem where each event has a deadline and cost. 

The most celebrated algorithm for scheduling periodic tasks is not a deadline scheduler or some other form 
of dynamic priority scheduling algorithm. It is the rate monotonic scheduling algorithm discussed in 
Chapter 7. Briefly, rate monotonic scheduling depends on a proof that it is optimal to assign static 
priorities to periodic tasks such that tasks with shorter periods get higher priorities. That means that if it is 
possible to schedule a set of periodic tasks by means of static priority assignments, a rate monotonic 
priority assignment will work. The problem with rate monotonic scheduling is that it can not guarantee 
success unless between about a tenth and about a third of the processor time is left idle.[1] 

[1] Normal rate monotonic analysis cannot fully utilize the processor, but an alternate, more complicated 
analysis technique can reach 100 percent utilization with rate monotonic priority assignments. 

Dynamic priority schedulers can schedule sets of periodic tasks up to full processor utilization. 

Aperiodic Servers 

Many inputs from the physical world are aperiodic. They do not occur at predictable intervals. At best, 
occurrences of an aperiodic event may fit a normal statistical distribution. At worst, they are just random. 
Unless the distribution of aperiodic events is constrained, the system cannot guarantee to meet associated 
deadlines. This only matters for schedulers that offer feasibility analysis. A scheduler like EDF can 
schedule service for each aperiodic event when it occurs and work nicely until it reaches overload. 

A system with a periodic component and an aperiodic component can use a periodic scheduling algorithm 
by doing the following: 

• Calling the aperiodic tasks "nonschedulable entities" and letting them preempt all scheduled 
activities. The maximum processor consumption by non-schedulable entities in any period has to 
be determined and subtracted from the time the scheduler is allowed to manage. 

• Forcing the aperiodic tasks to fit a period schedule by assigning a period and a cost to them. This 
kind of system usually handles all aperiodic events with a single task called a server, but there 
could be several servers for aperiodic events with different scheduling characteristics. 

Removing aperiodic tasks from the scheduler's control gives service for every aperiodic event higher 
priority than all periodic tasks. If that is an accurate model of the system, then this strategy is barely 
acceptable, but it gives terrible processor utilization unless the worst-case load of nonschedulable events is 
light. If the worst-case load of aperiodic events could hit the system with ten milliseconds of work in 
twenty milliseconds, then the scheduler can safely build only schedules that use no more than half the 
processor time. The maximum length of time nonschedulable entities can remove from the scheduler 
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matters too. If a sequence of events can consume ten contiguous milliseconds, the scheduler has to assume 
that short tasks need at least ten milliseconds more than they've asked for. At a minimum, this means 
periodic events with periods less than ten milliseconds cannot be scheduled. 

Servicing aperiodic events with a periodic server brings service of the aperiodic events under the control of 
the scheduler. This system lets the scheduler delay service for an aperiodic event while a periodic task 
completes a scheduled activity. Aperiodic events are serviced on a best-effort basis in the dedicated slots. 
This technique amounts to polling for events. 

Figure 6-4 illustrates the periodic server. 

Figure 6-4. Aperiodic server 

 

Deadlines for aperiodic events are measured from the occurrence of the event. The usual measure for this 
service is response time, the interval between the event and completion of the associate routine. Unless the 
aperiodic load in any period is known in advance, a server's execution of aperiodic events can only be soft 
real time. The worst-case response time for aperiodic events will be at least the period of the task that 
services aperiodic events. If events crowd together beyond what the server can handle in its allocated time 
slot, response time may exceed a multiple of the server's period. 

If the period of the aperiodic server is short and the cost is high, the server delivers good response time but 
requires a large part of the CPU time. Given the statistical nature of most aperiodic events, most of this 
huge allowance usually goes to waste. If the period is long or the cost is low, the scheduler will be able to 
devote more time to periodic tasks, but the response time of the aperiodic server will deteriorate. 

Scheduling theorists, naturally, don't like to solve a problem by removing aperiodic events from the control 
of the scheduler. Their goal has been to build a scheduling model for the aperiodic server that delivers 
good response time without using an unreasonable share of the schedule. 

A strict periodic scheduler is too structured for a high-performance aperiodic server. Imagine that two 
aperiodic events take place in one period of the aperiodic server, one at the beginning of the period and the 
other in the middle. If the server is scheduled at the beginning of its period, it will give good response time 
for the event at the beginning of the period and bad response time for the event in the middle of the period. 
At first it seems that this problem could be solved if we ran several servers configured so that the aperiodic 
server time is divided into small, frequent chunks, but that approach makes the problem worse. The 
numerous executions of the aperiodic server add context switching overhead to the system, and if there is 
not enough time for an instance of the server to handle the load, it needs to pass some events forward to the 
next iteration. Those events get poor response time. 

Succinctly stated, we need the aperiodic server to work well with ordinary periodic tasks but to use its time 
as nearly as possible on demand. 
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Priority Exchange Server One algorithm, called the priority exchange algorithm, lets the periodic server 
"bank" time in light periods by trading it with another periodic task. The periodic debt is per deadline, so 
each time a task reaches a deadline, any time debt associated with that deadline disappears. 

Take an aperiodic server, S, with period Ts and capacity Cs. At the start of period i with deadline d the 

scheduler gives the aperiodic server a capacity, or time allowance, of . Each periodic deadline d 
that appears in period i is given an initial aperiodic capacity of zero. Any given periodic task might have 
no deadlines that fall in this period of the aperiodic server, or it may have many deadlines. No matter. 
Capacity holders are distributed per deadline, not per task. 

The scheduler selects tasks to run in a standard EDF fashion, except that ties are broken in favor of 
aperiodic service. 

If the aperiodic server is scheduled to run and has no work, the scheduler runs the next-most-eligible task 

and increments the aperiodic capacity, , of the computation by the amount of time it uses. Now this 
computation will carry a debt to the aperiodic server until it reaches its deadline. This exchange of time 
takes place without changing the deadline (or the corresponding execution eligibility/priority) of either the 
aperiodic server or the other task. The tasks have not really exchanged processor time, since the aperiodic 
server may not use the stored capacity. They have exchanged priorities; thus, the name priority exchange 
server. 

Total Bandwidth Server The total bandwidth server puts service for each aperiodic event on the schedule 
when the event occurs, but it regulates that service so it does not conflict with other commitments already 
in place. 

The total bandwidth server's budget is expressed as a fraction of the total CPU time. For tasks serving 
asynchronous events, the server must not assign deadlines that would cause the tasks to demand more than 
the asynchronous server's budget. If an event occurs that would need a millisecond of CPU time to service 
and the server's budget is one-tenth of the processor, it would assign service for the event a deadline ten 
milliseconds in the future. Service for asynchronous events cannot be allowed to overlap, so the ten 
milliseconds is measured from the occurrence of the event or the last deadline assigned by the 
asynchronous server, whichever is later. 

The total bandwidth server assigns deadlines as if the asynchronous server were executing in a fraction of 
the processor. It can be a little more aggressive at the cost of additional complexity. If the scheduler admits 
a deadline from the asynchronous server, it has committed to complete the task by the deadline. It may 
well complete the task before the deadline. If the total bandwidth server can learn the estimated completion 
time of the last asynchronous event's service, it can schedule the next event's service starting after the 
estimated completion time instead of after the last event's assigned deadline. 

Handling Overload 

If a scheduler cannot meet all its deadlines, it is overloaded. Hard real-time scheduling theorists might feel 
justified in ignoring overload since, by definition, missing hard real-time deadlines is unthinkable. Still, a 
scheduler should have some defined behavior when it cannot meet all deadlines. EDF blindly tries to meet 
the earliest deadline even if it is impossible and will cause domino failures stretching far into the future. A 
slack-time scheduler will not waste time on hopeless cases, but it will concentrate on tasks with large 
processor requirements, using time that could have met many lighter-weight deadlines. 
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Scheduling algorithms designed for graceful degradation under overload conditions tend to add some 
measure of importance to the description of each deadline. The most sophisticated algorithms can manage 
an overloaded schedule for the least damage. For instance, if a traffic control system were given the choice 
of one of the following— 

1. Hanging if the load of airplanes to track becomes too great, 
2. Failing to update tracking information on random airplanes at random times, or 
3. Losing tracking information on airplanes that are not near other airplanes or the runways, 

—the system would probably specify Option 3. 

Unfortunately the scheduling algorithms with the most attractive behavior under overload use a lot of 
processor time. When the system is already short on processor time, it could spend more time computing 
the schedule than executing it. 

We can eliminate one problem from consideration. No optimal online algorithm can be constructed for 
recovering from overload in a system with aperiodic input. If the scheduler were clairvoyant, it would 
stand a chance, but without knowledge of the future, the scheduler cannot schedule for the least damage. 
Figure 6-5 through Figure 6-7 illustrate the problem. 

Figure 6-5. Online scheduling failure (initial schedule) 

 

Figure 6-7. Online scheduling failure (better schedule) 
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The scheduler has two tasks waiting to run: 

task a 

has a value of 10, a deadline in 60 milliseconds, and a processor requirement of 20 milliseconds. 

task b 

has a value of 30, a deadline in 50 milliseconds, and a processor requirement of 30 milliseconds. 

The scheduler will meet both deadlines by running task a before or after task b. Assume it chooses to run 
task b first, as shown in Figure 6-5. When 

task c 

with a value of 100, a deadline in 40 milliseconds, and a processor requirement of 30 milliseconds 

appears in 10 milliseconds, the scheduler will be forced to preempt task b and run task c (as shown in 
Figure 6-6) Although the scheduler is able to complete task c on time, it doesn't meet either of the other 
two deadlines. If it knew that task c was about to be scheduled (as it would if it were clairvoyant), the 
scheduler would have started running task a immediately (as shown in Figure 6-7). That would let it 
complete task a and task c before their deadlines. No cycles would be wasted on task b. 

Figure 6-6. Online scheduling failure (disrupted by task c) 

 

If the nonclairvoyant scheduler had chosen to run task a first, we could have let task c appear at 40 
milliseconds and run for 10 milliseconds. That would let task a and task c meet their deadlines, but task b, 
which has a value three times as high as that of task a, would fail to meet its deadline. 

The scheduler cannot do a good job if an opponent keeps throwing work into the schedule that is designed 
to disrupt every scheduling decision. That may not sound fair, but it is enough to prove that the scheduler 
cannot make an optimum schedule unless it knows all the scheduling events before it builds the schedule. 

 

Timing Is Usually Probabilistic 
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As this chapter points out, execution time on modern processors is extravagantly variable. Even if demand 
paging is ruled out, the execution time of a brief routine can occasionally be at least two orders of 
magnitude worse than its typical time. This is not good news for primitive deadline schedulers. It makes 
some form of failure inevitable. A primitive scheduler will blindly follow its algorithm, letting important 
deadlines fail in favor of trivial deadlines or allowing chain reactions that leverage a single missed 
deadline into a long sequence of missed deadlines. 

Reacting to nondeterministic hardware is an issue for every scheduling algorithm, but priority scheduling 
is inherently tolerant of variable execution time. By its nature, priority scheduling shuffles failure to the 
lowest-priority tasks, provided that priority means priority (e.g., priority has not been overloaded with 
periods as is the case with rate monotonic analysis). Deadline scheduling focuses on CPU time and as a 
consequence is relatively delicate. 

A scheduler that detects the failure and finds the least harmful damage control can isolate and control the 
effect of nondeterministic processors. This class of scheduler is harder to use and difficult to test, but any 
other class of deadline scheduler should be used only in systems that are tolerant of large-scale failures. 
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Chapter 7. Rate Monotonic Analysis 
• Theorems 
• Restrictions 

A monotonic sequence of numbers always goes one way. If it is monotonically increasing, it never 
decreases. Rate monotonic scheduling analysis sorts all periodic tasks by their frequency, then assigns 
priorities so the lowest frequency task gets the lowest priority and the highest frequency task gets the 
highest priority. There is never a time when a higher frequency task should get a lower priority than a 
lower frequency task. For a certain class of systems, this simple rule works at least as well as any other 
way of assigning fixed priorities. 

If the scheduler is fixed-priority preemptive and the load is periodic with independent tasks, rate 
monotonic analysis applies. Rate monotonic analysis is based on a wonderful little theorem that says you 
can schedule a load without worrying about how important each task is or without drawing careful 
timelines. It proves that if a periodic load can be scheduled by a fixed-priority preemptive scheduler, it can 
be scheduled by assigning priority based on frequency—the higher the frequency, the higher the priority. 

Basic rate monotonic analysis requires the right type of scheduler and the right type of problem. It is easy 
to find fixed-priority-preemptive schedulers. They are the rule for real-time system software, and the Real 
Time Specification for Java requires one. Problems with an entirely periodic load and independent tasks 
are not so common. A desire to analyze more realistic problems has caused analysts to stretch rate 
monotonic analysis into methods for formal analysis of many types of real-time systems. 

 

Theorems 

This section describes three theorems for formal analysis of real-time systems. The seminal Liu and 
Layland theorem is presented first because it can be called the beginning of formal real-time analysis. The 
other two theorems are for a graphical approach to scheduling heavier loads than Liu and Layland's 
theorem permit, and a computational approach to scheduling heavier loads. 

Liu and Layland's Theorem 

This theorem quantifies what might be called the efficiency of rate monotonic analysis. If everything fit 
together neatly, rate monotonic analysis could schedule work until every processor cycle was full. But 
what if the tasks have periods and processor demands that interfere with one another? How bad can it get? 

Theorem 7-1. Liu and Layland 1 

The conditions: 

• The scheduler is a A fixed-priority preemptive scheduler. 
• Tasks are strictly periodic and noninteracting. 
• The deadlines are equal to the periods; that is, a task can complete any time in each 

period. It does not need to meet a more precise deadline. 
• Task priorities are assigned such that tasks with shorter periods get higher priorities. 

The result: For all cases of task phasing, a set of n tasks will always meet its deadlines if  
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Equation 1  

 

 

Where 

Ci  The execution time (cost) for task i during one of its periods  
Ti  The period of task i  
Ci/Ti  Relative use of task i  
U(n)  The utilization at which RMA will guarantee a successful schedule  

In the perfect case, the sum of the relative uses of all the tasks would give a utilization of 1, but as Figure 
7-1 shows, the maximum RMA utilization rapidly drops to about 70 percent (more precisely, 0.779.) 

Figure 7-1. RMA efficiency 

 

A Graphical Approach 

The Liu and Layland theorem in the previous section sets a utilization bound below which it proves that all 
conforming loads are schedulable. The analysis is simple, but it could require the analysis to specify about 
30 percent too much processor power. That does not mean that assigning priorities according to the rate 
monotonic algorithm automatically wastes 30 percent of CPU time. 

The most intuitive way to prove that a load can be scheduled is to draw the timeline for that load and 
observe that it all fits. Liu and Layland contributed to this process too. 
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Theorem 7-2. Critical Zone 

If a set of independent, periodic tasks is started synchronously and each task meetsits first 
deadline, then all future deadlines will be met. 

The idea is that the worst time to start a task's period is at the same time a higher-priority task is started. If 
all tasks are started at the same time and each of them meets its first deadline, then all future deadlines will 
be met because the situation will never be worse than it was at the start. 

The critical zone theorem shows that if we can draw a timeline that successfully starts all tasks at the same 
time and meets all deadlines until every task has met its deadline at least once, the system is feasible. The 
timeline will have to be as long as the longest task period, but no longer. 

The process here is fairly straightforward. You assign priorities according to period, then generate a 
timeline by simulating the scheduler. Compute the detailed timeline until the first deadline for the lowest-
priority task. If that timeline shows that all deadlines are met, then by the critical zone theorem, the set of 
tasks is feasible under rate monotonic priority assignments. 

Example 1. Three tasks use 96 percent of the processor's capacity, as shown in Table 7-1. This is far more 
than simple RMA can permit, so we have to resort to somewhat more painful analysis. 

Table 7-1. Tasks for Example 1 
Task  Execution Time  Period  Priority  
1  50  100  High  
2  90  300  Medium  
3  55  350  Low  

The timeline in Figure 7-2 shows these three tasks all completing by their deadlines. Each time a low-
priority task is preempted, the timeline shows in parentheses the amount of time it has remaining. 

Figure 7-2. Timeline for Example 1 

 

In Figure 7-2, Task 1 meets its deadline three times and is set to meet it again. Task 2 and Task 3 meet 
their deadlines once. By the critical zone theorem, this timeline is enough analysis. This system is feasible 
even though it uses nearly all the processor resources. 

It might seem intuitive that if the lowest-priority task meets its deadline, all thehigher-priority 
tasks must have. That intuition is wrong. You have to check them all. 
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Lehoczky, Sha, and Ding's Theorem 

Lehoczky, Sha, and Ding added a tool (called the scheduling point test) that can show computationally that 
a particular load can be scheduled even though it is above Liu and Layland's bound. 

The scheduling point test is more demanding than Liu and Layland's theorem and less intuitive than the 
critical zone theorem, but it works all the way to 100 percent utilization and it does not require a timeline. 

Theorem 7-3. Scheduling Point Test 

A set of independent tasks scheduled by the rate monotonic algorithm meets its deadlines if the 
following conditions are satisfied:  

Equation 2  

 

 

Equation 3  

 

 

Equation 4  

 

 

Where 

n  The number of tasks in the set. The tasks are ordered by 
decreasing priority  

i  One of the tasks in the set.  
k  Another task in the set. By Equation 4, k must be less than i.  
l  The number of periods of task k being analyzed. By Equation 4, 

l can take on integer values from 1 to the floor of the period of 
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task i divided by the period of task k. (Since the tasks are sorted 
by decreasing priority and k is less than i, Ti/Tk cannot be less 
than 1.)  

 

The number of times task j executes in l periods of task k.  

 

The time required for task j to execute within l periods of task k. 

For every task, i, you pick values for k and l that obey Equation 4. If there are values for k and l for which 

, then task i passes. If every task passes, the system can be 
scheduled.[1] 

[1] Analyzing a system with the scheduling point test is suitable work for a computer. 

Example 2. We can algebraically evaluate the same system that was attacked graphically in Example 1. 

First we check the total load by summing 

 

This is more than the Liu and Layland bound of 0.779 (see Figure 7-1), so we need to employ a more 
complicated tool, the scheduling point test. 

The procedure for using the scheduling point test runs in three nested loops: 

Algorithm 7-1 Scheduling Point Test 
for i = 1 to number of tasks 
           for k = 1 to i 
                      for l = 1 to lower bound of 
period(task[i])/period(task[k]) 
                                 if(Equation 2 gives success) 
                                           break to next value of i 
                      if we get here 
                                fail 
succeed 

Since we have three tasks, the outer loop will execute three times: 

For i = 1: 

 

So: 
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For i = 2: 

 

Now we start looking for a combination of k and l that will satisfy Equation 2. For k = 1 and l = 1, the 
equation gives: 

 

That relation is not true, so try l = 2 

 

which works. 

So now we look for value for k and l that will satisfy Equation 2 for i = 3 

For i = 3: 

 

For k = 1 and l = 1, the equation gives: 

 

which is not true (since 195 is not less than or equal to 100,) so try l = 2: 

 

which is not true, so we try l = 3: 
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which works. 

That gives us values of k and l that satisfy Equation 2 for all values of i. By the Scheduling Point Test, the 
load in Table 7-1 is feasible. 

 

Restrictions 

This section describes restrictions that apply to independent tasks, deadlines, and multiprocessors. 

Independent Tasks 

RMA breaks down if tasks depend on one another. If the specification includes a statement like: 

every twenty minutes, after waiting for the traffic light to turn green, roll a green croquet ball across the 
street. 

the rolling task cannot complete until after the traffic-light control task sets the color of the light to green. 
Nothing the scheduler does to the croquet task will cause it to complete until the traffic light completes. 
Simply assigning priorities according to frequency is no longer enough. Fortunately, if the system 
implements a priority inversion avoidance algorithm that lets us bound the length of time a task might wait 
for another task, we can adjust Theorem 7-1 and Theorem 7-3. so they account for blocking. 

Theorem 7-4. Theorem 7-1 with Dependencies 

The conditions: 

• The scheduler is a A fixed-priority preemptive scheduler. 
• Tasks are strictly periodic blocking time is bounded. 
• The deadlines are equal to the periods; that is, a task can complete any time in each 

period. It does not need to meet a more precise deadline. 
• Task priorities are assigned such that tasks with shorter periods get higher priorities. 

The result: For all cases of task phasing, a set of n tasks will always meet its deadlines if  

Equation 5  
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Where Bi is the maximum time task i is blocked in one cycle. 

Theorem 7-5. Scheduling Point Test with Dependencies 

A set of tasks scheduled by the rate monotonic algorithm meets its deadlines if the following 
conditions are satisfied:  

Equation 6  

 

 

Equation 7  

 

 

Equation 8  

 

 

Deadlines Equal to Periods 

Straight RMA uses deadlines and periods interchangeably. If a task needs to complete 60 times a second, 
we assume that any time in each sixtieth of a second is a good time to complete a computation. What if the 
timing requirement is more demanding? Perhaps the data for the computation arrives at the specified 
frequency, but the computation must complete by seven-eighths of the way through the period. 
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Basic rate monotonic analysis can easily adapt to this new requirement. Instead of scheduling according to 
rate, schedule according to deadlines: 

The shortest deadline gets the highest priority. 

If tasks have equal deadlines, the higher frequency gets the higher priority. 

In this case, deadlines are not absolute times but are the interval between the start of the period and the 
deadline. 

Since deadline monotonic scheduling is a more general version of rate monotonic scheduling (where the 
deadline always falls at the end of the period), it is the more powerful tool, but techniques like the 
scheduling point test only work for rate monotonic priority assignment. 

Try assigning rate monotonic priorities, and analyze the system. If feasible, reassign priorities by using a 
deadline monotonic rule. Since deadline monotonic performs better than rate monotonic, the system 
remains feasible. 

Multiprocessor Systems 

Simple RMA doesn't work for multiprocessor systems. If the processors are scheduled independently and 
their interactions can be characterized, the system can be analyzed piecewise, but if one scheduler (simply) 
runs the n highest-priority tasks, RMA falls apart. 

Sorry. 

If you want to pursue RMA and advanced real-time scheduling further, try: 

Practitioner's Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time 
Systems by Mark H. Klein, Ray Obenza, Thomas Ralya, and Bill Pollak published by Klewer Academic 
Publishers, 1993. 

Meeting Deadlines in Hard Real-Time Systems by Loic Briand and Daniel Roy, published by the IEEE 
Computer Society Press, 1999. 

Real-Time Systems Symposium Compendium - CD-ROM, from IEEE Computer Society Press. 

Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications by Giorgio C. 
Buttazzo, and Giorgio Buttanzo, published by Kluwer Academic Publishers, 1997. 
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Chapter 8. Introduction to the Real-Time Java Platform 
• A Brief History of Real-Time Java 
• Major Features of the Specification 
• Implementation 
• RTSJ Hello World 

A real-time specification for Java is a rather remarkable idea. Java programs running on a JVM are, as a 
rule, much slower than similar programs written in C and compiled to the target processor. Even worse for 
real time, garbage collection stops everything else from time to time. These are not the characteristics of a 
good real-time platform. The promise of the Java platform for real time is that Java specifies a complete 
platform, and the charter of the Real Time Java Expert Group allowed it a free hand with the entire scope 
of the Java platform.[1] The Java platform includes aspects of the system from a robust class library and 
language specification all the way down to the instruction set of the virtual processor and many details of 
the multitasking runtime. 

[1] The permission to change Java was not as open as it sounds. As James Gosling pointed out at an early 
Expert Group meeting, if we crossed some undefined line in our changes, it would not matter what we called 
it. It would not be Java. 

Previous attempts at real-time standards have struggled with limited scope. The most significant previous 
effort was the POSIX real-time specification. That specification had to be UNIX-like, and it could specify 
only a library API. Its control of the language was limited to "calling out" the ANSI C specification, and 
POSIX says nothing about the underlying machine's instruction set. 

 

A Brief History of Real-Time Java 

Many people contributed to the idea and its realization. Gallons of rhetorical blood and sweat were 
invested in a brief specification. Kelvin Nilsen deserves credit for starting the process. Years before Java 
appeared in public, Kelvin invented a garbage collection algorithm with good real-time characteristics. 
First, he embedded most of his garbage collection system in hardware, then he built software-only 
implementations. Kelvin promoted his idea at academic conferences and in the marketplace, but it did not 
catch on. One problem may have been that it required a specially instrumented compiler. Java was just 
what Kelvin needed, a new language with no legacy code, which generated interpreted bytecode and which 
needed garbage collection. He could fit his garbage collector into the JVM, and the JVM needed an 
improved garbage collector. Kelvin started a real-time Java working group to discuss ways to improve 
Java's real-time characteristics. 

IBM and Sun were also interested in a real-time version of Java. They started efforts to build interest in 
real-time Java about the same time Kelvin did. It all came together in a grand meeting where Sun, IBM, 
and NIST (National Institute of Standards and Technology) jointly blessed a working group. It commenced 
meeting under the aegis of NIST and the leadership of Lisa Carnahan. After several months of meetings, 
the group produced a document called Requirements for Real-Time Extensions for the Java™ Platform: 
Report from the Requirements Group for Real-Time Extensions for the Java™ Platform. The report lists 53 
groups as joint authors. 

Around September of 1998, Sun announced the Java Community Process, a new process for maintaining 
and extending the Java specification. IBM promptly submitted a request for a real-time Java specification 
based partly on the NIST requirements document. The request, the first Java Specification Request (JSR-
000001), was accepted in December of 1998. 
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Greg Bollella from IBM was selected as the JSR-000001 Specification Lead, and he formed an Expert 
Group with two tiers to help him create the specification. The primary group would do most of the work. 
Table 8-1 lists the members of the Expert Group. 

Table 8-1. Real-Time Specification for Java Primary Expert Group 
Greg Bollella  IBM  
Paul Bowman  Cyberonics  
Ben Brosgol  Aonix/Ada Core Technologies  
Peter Dibble  Microware Systems Corporation/ TimeSys  
Steve Furr  QNX System Software Lab  
James Gosling  Sun Microsystems  
David Hardin  Rockwell-Collins/aJile  
Mark Turnbull  Nortel Networks  

The Consultant Group would provide advice and participate in the major iterations of the specification. 
Table 8-2 lists the members of the Consultant Group. 

Table 8-2. Real-Time Specification for Java Consultant Group 
Rudy Belliardi  Schneider Automation  
Alden Dima  National Institute of Standards and Technology  
E. Douglas Jensen  MITRE  
Alexander Katz  NSICom  
Masahiro Kuroda  Mitsubishi Electric  
C. Douglass Locke  Lockheed Martin/TimeSys  
George Malek  Apogee  
Jean-Christophe Mielnik  Thomson-CSF  
Ragunathan Rajkumar  CMU  
Mike Schuette  Motorola  
Chris Yurkoski  Lucent  
Simon Waddington  Wind River Systems  

The combined Expert Groups first met at the Spring 1999 Embedded Systems Conference and started 
serious work in March 1999. 

In September of 1999, the specification was published for "participant review." This is a formal stage in 
the Java Community Process in which the Expert Group shows a preliminary specification to other people 
who are involved in the process. In this case, the Expert Group decided to publish the specification on an 
open Web site. Formally, it was a participant review, but the document was visible to the world. 
Comments came in and the specification was improved. The official public review stage started in 
December 1999. More comments arrived and the specification was further improved. Finally, after about a 
year of steady work, the Expert Group released the preliminary edition of The Real-Time Specification for 
Java, which was printed and ready to be distributed in June 2000 at JavaOne. 

The first edition of the specification was not an official specification. The Java Community Process 
requires three things before a specification is accepted: the specification, a reference implementation, and a 
test suite. Not only are the reference implementation and test suite required before anyone can write 
products that claim conformance, they also serve to prove that the specification can be implemented and is 
generally sane. The specification book was published before the other tasks were complete, to make it 
readily available to people tracking the standard and to draw more public interest and comment. 
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Through 2000 and most of 2001, the Expert Group continued to meet in frequent conference calls. Late in 
2000, TimeSys volunteered to create the reference implementation, and they delivered a preliminary 
reference implementation to the group in April 2001. Naturally, a usable implementation of the 
preliminary specification focused attention on some areas that needed improvement. The sections of the 
specification on asynchronous transfer of control and scoped memory, in particular, were carefully studied. 
A revised specification, a reference implementation that conformed to the revised specification, and a test 
suite were submitted to the JCP Executive Committee for approval in October 2001. 

 

Major Features of the Specification 

The Real-Time Specification for Java enhances the Java specification in six ways: 

1. It adds real-time threads. These threads have scheduling attributes that are more carefully defined 
than is the scheduling for ordinary Java threads. 

2. It adds tools and mechanisms that help programmers write Java code that does not need garbage 
collection. 

3. It adds an asynchronous event handler class and a mechanism that associates asynchronous events 
with happenings outside the JVM. 

4. It adds a mechanism called asynchronous transfer of control that lets a thread change control flow 
in another thread. It is, essentially, a carefully controlled way for one thread to throw an exception 
into another thread. 

5. It adds mechanisms that let the programmer control where objects will be allocated in memory. 
6. It adds a mechanism that lets the programmer access memory at particular addresses. 

What the Real-Time Java does not change may be as important as the things it changes. Ordinary Java 
programs will run on an implementation of the Real-Time Specification. They can even run while the JVM 
is executing real-time code. There is no magic that will cause ordinary Java programs to become more 
timely when they run on a JVM that implements the Real-Time Specification, but they won't behave any 
worse than they did. 

Furthermore, non-real-time code will not interfere with real-time code unless they share resources. 

Threads and Scheduling 

Whether it is by priority scheduling, periodic scheduling, or deadline scheduling, the way tasks are 
scheduled on the processor is central to real-time computing. Non-real-time environments (like a standard 
JVM) can be casual about the details of scheduling, but a real-time environment must be much more 
precise. The specification treads a line between being specific enough to let designers reason about the way 
things will run but still flexible enough to permit innovative implementation of the RTSJ. For instance, 
there is only one method for which the RTSJ requires every implementation to meet a particular 
performance goal: allocation from an LTMemory area. 

LTMemory Performance 

The RTSJ specifies a high standard for the performance of LTMemory allocation because that 
allocation mechanism is intended for use in the tightest time-critical code. The specification is 
trying to assure designers that allocation of LTMemory is safe for critical real-time code. 

Allocation from an LTMemory area must need time that is linear in the size of the allocation 
memory. That is the best possible allocation performance. Memory allocation in the JVM has 
several stages: first the right amount of free memory is allocated, then the memory is initialized 
in various stages under the control of the JVM and the class constructors. Every field in the 
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object must be initialized before that field is used. In some cases, some initialization can be 
deferred, but ultimately every byte in the object is initialized. 

The implementor can use any allocation algorithm that has asymptotically better performance 
than initialization of the allocated memory. 

The RTSJ includes priority scheduling because it is almost universally used in commercial real-time 
systems and because all legacy Java applications use priority scheduling. The RTSJ requires at least 28 
real-time priorities in addition to the 10 priorities called for by the normal JVM specification. The RTSJ 
calls for strict fixed-priority preemptive scheduling of those real-time priorities. That means that a lower-
priority thread must never run when a higher-priority thread is ready. The RTSJ also requires the priority 
inheritance protocol as the default for locks between real-time threads, permits priority ceiling emulation 
protocol for those situations, and provides a hook for other protocols. 

The RTSJ provides room for implementors to support other schedulers. The specification does not define 
the way new schedulers will be integrated with the system; it only says that an implementor may provide 
alternate schedulers and defines scheduler APIs that are general enough to support a wide variety of 
scheduling algorithms. 

Sock Scheduling 

While the Expert Group was refining the scheduling interfaces, we, to prevent ourselves from 
designing interfaces that would only accommodate known schedulers, we invented a series of 
sock schedulers that would schedule according to various properties of socks. 

Garbage Collection 

The standard JVM specification does not require garbage collection. It requires dynamic memory 
allocation and has no mechanism for freeing memory, but the Java Language Specification does not 
require any particular solution for this massive memory leak. Almost every JVM has a garbage collector, 
but it is not required. 

GC-less JVM 

David Hardin (on the Expert Group) had extensive experience with the Rockwell Collins JEM 
chip. It is a hardware implementation of Java and has no garbage collector. Programming with 
no garbage collector requires discipline, and many standard Java idioms become convoluted, 
but it works well enough that the JEM has become a modestly successful Java platform. 

The RTSJ continues the policy of the original Java specification. The RTSJ discusses interactions with a 
garbage collector at length, but a Java runtime with no garbage collector could meet the specification. 

The RTSJ, although it does not require a garbage collector, specifies at least one API that provides for a 
particular class of garbage collection algorithm. Incremental garbage collectors that pace their operation to 
the rate at which threads create garbage are promising for real-time systems. Garbage collection can be 
scheduled as an overhead charge on the threads that create garbage and execute in brief intervals that do 
not disrupt other activities. The RTSJ has a constructor for real-time threads; the constructor includes a 
memory-parameters argument that can specify the allocation rate the garbage collector and scheduler 
should expect from the thread. 

The Expert Group did not feel comfortable requiring a magical garbage collector and relying on it to make 
all the real-time problems with garbage collection disappear. Instead, we took the attitude that even the 
best-behaved garbage collector may sometimes be more trouble than it is worth to the real-time 
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programmer. An implementation can provide any (correct) garbage collection algorithm it likes, and users 
will certainly appreciate a good one, but for real-time programming, the RTSJ provides ways to write Java 
code that will never be delayed by garbage collection. 

The first tool for avoiding garbage collection is no-heap, real-time threads. These threads are not allowed 
to access memory in the heap. Since there is no interaction between no-heap threads and garbage collection 
or compaction, no-heap threads can preempt the garbage collector without waiting for the garbage 
collector to reach a consistent state. Ordinary threads and heap-using, real-time threads can be delayed by 
garbage collection when they create objects in the heap, and they have to wait for the garbage collector to 
reach a consistent state if they are activated while the garbage collector is running. No-heap, real-time 
threads are protected from these timing problems. 

Asynchronous Event Handlers 

Many real-time systems are event driven. Things happen and the system responds to them. It is easy to 
code an event-driven system structured so that each event is serviced by a thread created for that particular 
event, and it makes the scheduling attributes of each event clear to the scheduler. The idea sounds obvious. 
Why isn't it common practice? The time between an event and the service of the event is overhead on real-
time responsiveness. Thread creation is slow. It is a resource-allocation service, and real-time 
programmers avoid resource allocation when they are concerned about time. 

Asynchronous event handlers are an attempt to capture the advantages of creating threads to service events 
without taking the performance penalty. 

Event-driven programming needs events. The standard Java platform has extensive mechanisms for input 
from its GUI, but no general-purpose mechanism for associating things that happen outside the Java 
environment with method invocation inside the environment. The RTSJ introduces happenings as a 
pathway between events outside the Java platform and asynchronous event handlers. 

Asynchronous Transfer of Control 

Asynchronous transfer of control was a late addition to the RTSJ, and it was much harder to invent than 
you might think. 

Asynchronous transfer of control (ATC) is a mechanism that lets a thread throw an exception into another 
thread. Standard Java includes a similar mechanism, thread.interrupt, but it is weak. 

Why is ATC so important? 

1. It is a way to cancel a thread in a forcible but controlled way. 
2. It is a way to break a thread out of a loop without requiring the thread to poll a "terminate me" 

variable. 
3. It is a general-purpose timeout mechanism. 
4. It lets sophisticated runtimes take scheduler-like control of execution. People interested in 

distributed real time have powerful requirements for this control. 

Why is ATC so hard? 

1. Code that is not written to be interrupted may break badly if the JVM suddenly jumps out of it. 
2. You cannot just jump from the current point of execution to the "right" catch block. The platform 

has to unwind execution through catches and, finally, clauses in uninterruptible methods until it 
has fully serviced the exception. 

3. Nested methods may be waiting for different asynchronous exceptions. The runtime has to make 
certain that the exceptions get to the right catch blocks. 
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Memory Allocation 

By itself, support for no-heap, real-time threads would be useless. The thread would be restricted to 
elementary data types. It would not even be able to access its own thread object. The RTSJ created two 
new memory allocation domains to give no-heap threads access to objects: immortal memory and scoped 
memory. 

Immortal memory is never garbage collected and would make no-heap threads thoroughly usable even 
without scoped memory. Immortal memory fits the large class of real-time programs that allocate all their 
resources in an initialization phase and then run forever without allocating or freeing any resources. Even 
systems written in C and assembly language use this paradigm. Even without garbage collection, resource 
allocation often has tricky timing characteristics and nasty failure modes. It makes sense to move it out of 
the time-critical part of an application. 

Immortal memory is simple to explain and implement, but it leads to unnatural use of the Java language: 

• The Java Platform does not encourage reuse of objects. In some cases, properties of objects can 
only be set by their constructor, and the Java language's strong typing makes it impossible to reuse 
an object as anything other than exactly its original type. (The Java language has no union.) 

• The Java class libraries freely create objects. A programmer who called innocuous methods in the 
collections classes or the math classes could quickly find immortal memory overflowing with 
throwaway objects created in the class libraries. Real-time code is not compelled to use standard 
class libraries, but those class libraries are a major attraction of Java and the effort involved in 
recoding them all to real-time standards would be staggering. 

Scoped memory isn't as simple as immortal memory, but it goes a long way toward addressing the 
problems with immortal memory. In simple applications, scoped memory works like a stack for objects. 
When the thread enters a memory scope, it starts allocating objects from that scope. It continues allocating 
objects there until it enters a nested scope or exits from the scope. After the thread exits the scope, it can no 
longer access objects allocated there and the JVM is free to recover the memory used there. 

If a thread enters a scope before calling a method in a standard class library and leaves the scope shortly 
after returning, all objects allocated by the method will be contained in the scope and freed when the thread 
leaves the scope.[2] Programmers can safely use convenience objects by enclosing the object creation and 
use in a scope. The mechanism (called a closure) for using scopes is a little ungainly, but an RTSJ 
programmer uses closures so much that they soon feel natural. 

[2] Using standard libraries in scoped memory is not always as simple as it sounds. The most likely problem 
is that the library method will get a runtime exception when it tries to access heap memory. 

Performance is the most important cost of immortal and scoped memory. The RTSJ has access rules for 
no-heap, real-time threads and rules that govern the storage of references to objects in heap and scoped 
memory. These rules must be enforced by the class verifier or the execution engine. Unfortunately, it 
seems likely that the execution of the bytecodes that store references will have to do some part of that work. 
That necessity will hurt the JVM's performance. 

Memory Access 

Special types of memory, I/O devices that can be accessed with load and store operations, and 
communication with other tasks through shared memory are important issues for embedded systems. It 
takes a bit of a stretch to call these real-time issues, but the RTSJ makes that stretch. 

Special types of memory are closely related to performance (slow memory, cached memory, high-speed 
nonsnooped access to sharable memory, etc.) Whereas performance is not a real-time issue in the strictest 
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sense, predictable performance is a real-time issue and some memory attributes like cacheable, sharable, 
and pageable have a large impact on the predictability of code that uses the memory. 

The RTSJ "raw" memory access classes give something like "peek and poke" access to memory. They run 
through the JVM's security and protection mechanisms, so this introduction of pointer-like objects does not 
compromise the integrity of the Java platform, but it does give enough direct access to memory to support 
device drivers written in Java and Java programs that share memory with other tasks. 

The raw memory classes do nothing to improve the real-time performance of the Java platform. They are 
there because some of the most enthusiastic early supporters of a real-time Java specification wanted to use 
Java to write device drivers. It was a painless addition to the specification and it greatly increases the 
usefulness of Java for the embedded real-time community. 

 

Implementation 

An implementation of the RTSJ must include the javax.realtime packages. It will almost certainly 
include a special JVM, and it might include a compiler that can help find memory reference errors. 

Any compiler can make classes that use the RTSJ, and special classes on an ordinary Java platform can 
pretend to conform to the RTSJ. Those were important design goals. We wanted RTSJ users to be able to 
do a lot of development on standard IDEs. 

Class libraries can implement the RTSJ APIs and provide some of the RTSJ functions, but they cannot 
provide all the services. A true RTJS implementation includes enhancements to the JVM. There are no 
new bytecodes, but it would be difficult or impossible to enforce memory access rules without enhancing 
the implementation of the bytecodes that handle references. Asynchronous transfer of control also seems to 
require changes to bytecode interpretation, this time to the bytecodes that move between methods. The 
RTSJ also adds new priorities and far stricter scheduling rules than those of the standard JVM. 

A special RTSJ compiler would be useful. A compiler cannot always identify memory reference violations, 
but it can find enough of them to justify trying. It would be far better to find a reference violation as a 
compile-time error than as a runtime exception. 

 

RTSJ Hello World 

Working with the TimeSys reference implementation of the RTSJ installed on a Linux system in 
/usr/local/timesys and with the Sun JDK tools, we show here a step-by-step procedure for creating 
and running a hello world program for real time. 

Hello world doesn't have significant timeliness constraints, so Example 8-1 will just run the standard hello 
world in a real-time thread. 

Example 8-1 RT hello world program 

import javax.realtime.*; 
 
public class Hello1 { 
  public static void main(String [] args){ 
    RealtimeThread rt= new RealtimeThread(){ 
      public void run() { 
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        System.out.println("Hello RT world"); 
      } 
    }; 
 
    if(!rt.getScheduler().isFeasible()) 
      System.out.println("Printing hello is not feasible"); 
    else 
      rt.start(); 
  } 
} 

The program shown in Example 8-1 is a complete program. Since it prints "Hello RT world" from a real-
time thread, that part of its execution can take advantage of priority inheritance and strictly defined, fixed-
priority, preemptive scheduling. Those scheduling properties do not make much difference to the output of 
one short string, but they are there. 

To test the program: 

1. If you are developing from the command line, you might use a command like this to compile 
Hello1: 

javac -classpath /usr/local/timesys/rtsj-ri/lib/foundation.jar 
Hello1.java 

2. If the real-time JVM is on your execution path and the classpath is set to your real-time Java class 
libraries, a simple command line will run the program: 

tjvm Hello1 

More likely, you'll need a command line like this: 

tjvm -Djava.class.path=/home/dibble/javaprogs/hello1 
-Xbootclasspath=/usr/local/timesys/rtsj-ri/lib/foundation.jar Hello1 

3. The output will be: 

Hello RT world! 
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Chapter 9. Closures 
• The Language Construct 
• Java Closures 
• Limitations of Closures 

Much of the RTSJ involves changing some part of the JVM's state in a controlled way, then being 
absolutely sure to restore the previous state in an organized way. Method invocation changes several parts 
of the JVM's state and then restores them on return. Opening curly braces change the name resolution state, 
and closing braces restore it. The RTSJ needed to add a new mechanism to the Java language so it could 
control memory allocation and the propagation of asynchronously interrupted exceptions. 

We could have extended the language, but on reflection we did not want to stick our heads into that meat 
grinder. Instead, we used a programing construct, called a closure, well known to Scheme and SmallTalk 
programmers. 

 

The Language Construct 

A closure associates some code with some of the environment in which the closure was created. This 
sounds like an odd concept. Code is created by the compiler. Right? 

The ancestor of a closure is a pointer to a function. In the lexically scoped C world, where the way in 
which variables are resolved in the function does not depend on the environment in which the function 
pointer is used, the idea of a closure is not compelling. If the language is dynamically scoped, it resolves 
names by looking up its call stack. In a dynamically scoped language, function pointers are tricky. When a 
pointer to function foo is passed from one function to another, the location of variables visible to foo 
may change. Sometimes you can do clever things with this behavior, but generally it is uncomfortable for 
the programmer. 

A closure lets a programmer say about a function pointer, "when this function pointer is used, resolve its 
references as if I were using it." The closure can be passed around. Its behavior will still depend on its 
internal state and on parameters that are passed to it, but these are relatively easy for a programmer to 
control. 

 

Java Closures 

There was no tidy way to implement a closure in a Java program until Java support for inner classes was 
added in Java 1.1. 

Closure Structure 

The structure of a closure in the Java language is shown in Example 9-1. 

Example 9-1 Java closure 

public class ClosureExample1 { 
    int remote = 0; 
    OtherClass c = new OtherClass(); 
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    public void bar(){ 
        c.foo(new BazClass() { 
            public void doIt(){ 
                remote += 1; 
                local = remote; //  local is in BazClass 
            } 
        }); 
    } 
 
    static void main(String args[]){ 
        (new ClosureExample1()).bar(); 
    } 
} 

The bar method creates an instance of an anonymous local inner class and passes that object to the foo 
method. When the foo method uses the object by calling baz.doIt, the doIt method executes in the 
environment of the bar method where it was created, as shown in Example 9-2. 

Example 9-2 Using a closure 

public class OtherClass{ 
    public void foo(BazClass baz){ 
        baz.doIt(); 
        baz.doIt(); 
        System.out.println("baz.getState()=" + baz.getState()); 
    } 
} 

If you create the BazClass definition, shown in Example 9-3, 

Example 9-3 BazClass definition 

public abstract class BazClass { 
    int local; 
    abstract public void doIt(); 
 
    public int getState(){ 
        return local; 
    } 
} 

and run the program, the output will be: 

baz.getState()=2 

If you then go back to the ClosureExample object and check, the value of the remote instance variable 
is indeed 2. 

Closures in the RTSJ 

Closures are intended to be passed elsewhere for use, but the RTSJ arranges to call them right back so they 
act very much like a block of code marked off by curly braces. 

The RTSJ uses closures to give a block of code an invisible prolog and epilog to provide a storage area for 
the invisible code. The instance variable storage that comes with the Java closure is a nice extra. 
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Example 9-4 presents a version of OtherClass with some RTSJ-like infrastructure: 

Example 9-4 RTSJ-like use of a closure 

public class OtherClass2{ 
    //  Store saved state here. 
    public void foo(BazClass baz){ 
        prolog(baz); 
        baz.doIt(); 
        epilog(baz); 
    } 
    private void prolog(BazClass baz){ 
        //  Setup environment for doIt() 
    } 
 
    private void epilog(BazClass baz){ 
        //  Clean up and prepare to return 
    } 
} 

Starting at bar in Example 9-1, the easy reading of the code ignores the line starting with c.foo. The 
bulk of bar executes in a special kind of scope that is crudely labeled by the call to c.foo and the 
creation of a BazClass object. For most purposes, when the RTSJ uses this type of mechanism, you can 
just read the code in the inner class as executing inline. 

What really happens is that control moves over to OtherClass2, where it calls the prolog method, and 
then returns to the doIt method back in bar. When that method returns, control passes back to foo and it 
calls the epilog method. Control then returns to bar and continues without further excitement. 

 

Limitations of Closures 

The way RTSJ implements and uses closures in the Java language has several limitations. Some limitations 
are related to local inner classes; those we have to live with. Some only apply to anonymous local inner 
classes. Those are a matter of choice. Sometimes anonymous classes are much easier to understand. Other 
times it is better to use named classes. 

Readability 

The standard recommendation is not to use anonymous inner classes with more than about six lines of code 
in them, but the RTSJ-style usage can safely be used for any amount of code. In general use of anonymous 
inner classes, once they get bigger than about six lines it is too easy to forget that the code is just a class 
definition and is passed elsewhere for execution. In the case of the RTSJ usage, the code will be executed 
right where it stands. The code in the inner class executes almost as if it were inline. 

Local Variables 

The illusion of simplicity falls apart when a local inner class tries to access local variables or method 
parameters from the surrounding method. Those references are only valid for variables and parameters that 
are declared final. This limitation is annoying if you have convinced yourself that the code in the inner 
class really is executing inline, but it is easy enough to work around: 

• Pass values from local variables into the doIt method as parameters. 
• Make local variables that need to be visible in the inner class final. 
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• Copy local variables into final variables. 
• Use instance variables. 

Modifying local variables is a problem since the only ones the inner class can see are final. The 
infrastructure can be set up so the inner block can pass back a parameter. (Imagine that doIt returned a 
value to foo, which passed it back to bar.) Other than that, only static and instance variables are 
available for two-way communication. 

Constructors 

Anonymous inner classes cannot have constructors. (Constructors have the same name as the class. What 
would the constructor for an anonymous class be named?) The limitation is not as big a problem as you 
might expect. First, when inner classes are used as closures by the RTSJ, they should not need constructors. 
If they need nondefault initialization, they can use initializers and initialization blocks. Those mechanisms 
do not offer a way to pass parameters when the object is constructed, but since it is an inner class, it can 
reach out and use values from the surrounding scope. That is probably bad style, but putting something that 
complex in an anonymous class was probably the mistake. 

Nesting 

No limit is enforced on nesting of inner classes, but at some point they become hard to read. At that point, 
stop using anonymous classes. Get the code out of line, then proceed as before. Example 9-5 revises the 
code from Example 9-1 to use a named local inner class. 

Example 9-5 Named local inner class 

Example  Named local inner class 
public class ClosureExample2 { 
    int remote = 0; 
    OtherClass c = new OtherClass(); 
    public void bar(){ 
        class Bazzer extends BazClass { 
            public void doIt(){ 
                remote += 1; 
                local = remote; //  local is in BazClass 
            } 
        } 
        c.foo(new Bazzer()); 
    } 
    static void main(String args[]){ 
        (new ClosureExample1()).bar(); 
    } 
} 

It is even better if the class can be made into a simple inner class (nonlocal), as shown in Example 9-6. 

Example 9-6 Named inner class 

public class ClosureExample3 { 
    int remote = 0; 
    OtherClass c = new OtherClass(); 
 
    class Bazzer extends BazClass { 
        public void doIt(){ 
            remote += 1; 
            local = remote; //  local is in BazClass 
        } 



 86

    } 
 
    public void bar(){ 
        c.foo(new Bazzer()); 
    } 
 
    static void main(String args[]){ 
        (new ClosureExample1()).bar(); 
    } 
} 
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Chapter 10. High-Resolution Time 
• Resolution 
• The "Clock" 
• HighResolutionTime Base Class 
• Absolute Time 
• Relative Time 
• Rational Time 

As you might expect, time is an important feature of many real-time systems. The RTSJ needed a more 
powerful notion of time than the java.util.Date class provides. The HighResolutionTime class 
and its three subclasses— AbsoluteTime, RelativeTime, and RationalTime—do two things for 
the RTSJ. They give it a polymorphic representation of time that let the RTSJ APIs (and the programs that 
use them) use intervals in time, points in time, and an interesting representation of frequency. The RTSJ 
time classes also give it a representation of time that has nanosecond resolution and millions of years of 
range. 

 

Resolution 

This year (2002), a timer resolution of tenths of microseconds would be sufficient for almost any software 
purpose. No current processor can execute quickly enough to make a microsecond seem like a long time. 
But processors are still getting faster, and we hope the RTSJ will have a useful life longer than two or three 
years. Nanosecond measurement is the next stopping place. It seems likely to remain a useful timer 
resolution for at least a decade. (That sounds a lot like "640K should be enough for anyone" doesn't it?) 
Specifying a timer resolution of picoseconds seems absurd. 

Given nanosecond resolution, a 32-bit integer was definitely too small. It would only represent an interval 
of about plus or minus 2 seconds. A 64-bit long integer expands the range to about 292 years. Not bad, but 
someone launching an interstellar probe might want to handle intervals longer than that. 

The final HighResolutionTime representation works out to about 84 bits. It has nanosecond resolution, 
but it is represented in two parts: a 64-bit millisecond value and 32-bits of nanoseconds that are added to 
the milliseconds. Since there are only a million nanoseconds per millisecond, the high order 12 bits of the 
nanosecond value are actually milliseconds. They could serve to slightly increase the range of a timer, but 
not enough to increase the time range by a whole bit. The range is about 292 million years. That should 
suffice even for an interstellar probe. 

 

The "Clock" 

The RTSJ supports the notion of multiple clocks. It is not obvious why a system would want more than 
one clock. In fact, systems with multiple clocks often go to great pains to get the effect of a single clock. If 
there are multiple clocks and that fact is visible to software, you have to know which clock is associated 
with any given time and you have to take great care never to compare times that are associated with 
different clocks. 

Pick one good clock and stick with it unless hardware restrictions force you to use multiple 
clocks. 
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Here are some excuses for making multiple clocks visible to the Java runtime: 

• Battery-backed clocks that keep calendar time whether the system is on or off are slow to read or 
write and seldom generate good interrupts for high-resolution time. They are mainly useful for 
setting higher-performance timers at system initialization. Software may refer to a battery-backed 
calendar from time to time, but it would be painful to be forced to use that clumsy device for all 
timing services. We address this potential problem by giving the calendar and the real-time clock 
separate clock IDs. 

• Some timer hardware cannot be reset. Once it is started, it will run until it "goes off." Then it can 
be set for a new interval. This kind of timer can either generate a steady pulse (putting a steady 
load on the system), or it can support one timer at a time. This type of timer was popular in the 
1980s and lost popularity in the 1990s, but it still appears from time to time. If this type of clock is 
used in its one timer per clock mode, the supporting software needs to make numerous clocks 
accessible. 

Every RTSJ system has at least one clock. You get a reference to it with the class method: 

Clock.getRealTimeClock() 

Any other clocks are system dependent. 

 

HighResolutionTime Base Class 

The HighResolutionTime class is abstract. It cannot be instantiated, but it stores the millisecond and 
nanosecond fields for all the other high-resolution time classes and provides the methods that are common 
to all its subclasses. The methods for HighResolutionTime (and therefore all its subclasses) are listed 
below: 

AbsoluteTime absolute(Clock clock) 
AbsoluteTime absolute(Clock clock, AbsoluteTime dest) 
int compareTo(HighResolutionTime time) 
int compareTo(java.lang.Object object) 
boolean equals(java.lang.Object object) 
boolean equals(HighResolutionTime object) 
long getMilliseconds() 
int getNanoseconds() 
int hashCode() 
RelativeTime relative(Clock clock) 
RelativeTime relative(Clock clock, RelativeTime time) 
void set(HighResolutionTime time) 
void set(long millis) 
void set(long millis, int nanos) 
static void waitForObject(java.lang.Object target, 
            HighResolutionTime time) throws 
            InterruptedException 

Some of these methods—compareTo(Object), equals(Object), and hashCode—are required for 
any well-behaved object. The other methods apply more or less reasonably to all the subclasses of 
HighResolutionTime. 

Neither HighResolutionTime, nor any of the derived classes specified in the RTSJ perform any 
synchronization. If these objects are subject to change and shared among multiple threads, the application 
must provide its own synchronization. 
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Absolute Time 

The string 2:55:05.000 AM on the 5th of July 2010 represents an absolute time. 

Absolute times could be specified relative to any fixed starting time, but for practical (RTSJ and 
java.util.Date) purposes absolute times are specified as an offset from 00:00:00.000 GMT on the 1st 
of January, 1970. 

AbsoluteTime adds the following methods to HighResolutionTime— 

AbsoluteTime add(long millis, int nanos) 
 AbsoluteTime add(long millis, int nanos, AbsoluteTime 
               destination) 
 AbsoluteTime add(RelativeTime time) 
 AbsoluteTime add(RelativeTime time, AbsoluteTime destination) 
 java.util.Date getDate() 
 void set(java.util.Date date) 
 RelativeTime subtract(AbsoluteTime time) 
 RelativeTime subtract(AbsoluteTime time, RelativeTime 
               destination) 
 AbsoluteTime subtract(RelativeTime time) 
 AbsoluteTime subtract(RelativeTime time, AbsoluteTime 
               destination) 
 java.lang.String toString() 

—that is, the methods enable addition, subtraction, conversion between high-resolution time and Date 
formats, and conversion to a printable format. 

The AbsoluteTime class offers a service that is common throughout the RTSJ. The methods that return 
an object reference can allocate that object, or they can use an object that is passed to them. The most 
interesting case for these methods is that of passing a reference to the AbsoluteTime object itself as the 
destination parameter, for example, 

newTime = newTime.add(100, 950, newTime); 

adds 0.100000950 seconds to newTime without creating a new object. 

The methods allow you to add an interval to the absolute time or subtract an interval from it. Technically, 
methods that subtract relative times from absolute times are not necessary—subtraction is just adding a 
negative—but since it isn't convenient to negate a RelativeTime object, the AbsoluteTime class 
provides both addition and subtraction of RelativeTime. Because integers are easy to negate, the class 
does not provide subtraction for milliseconds and nanoseconds. 

You cannot add two absolute times together, (It makes no sense to add 4 July 1999 to 15 December 2021.) 
but you can subtract them. That gives you the time interval between the two points in time, a 
RelativeTime. 

The getDate and setDate methods convert back and forth between this highly precise representation of 
time and the somewhat looser representation in java.util.Date. 

The toString method returns the ASCII representation of the time in a form that matches the format 
returned by java.util.Date.toString with the sub-second time attached as a postfix. 
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Relative Time 

Relative time is always a duration. It can be positive, negative, or zero. 

RelativeTime adds the following methods to HighResolutionTime: 

RelativeTime add(long millis, int nanos) 
RelativeTime add(long millis, int nanos, RelativeTime 
              destination) 
RelativeTime add(RelativeTime time) 
RelativeTime add(RelativeTime time, RelativeTime destination) 
void addInterarrivalTo(AbsoluteTime destination) 
RelativeTime getInterarrivalTime() 
RelativeTime getInterarrivalTime(RelativeTime destination) 
RelativeTime subtract(RelativeTime time) 
RelativeTime subtract(RelativeTime time, RelativeTime 
              destination) 
java.lang.String toString() 

The function of the arithmetic operations is clear, but the methods that deal in interarrival time introduce a 
new concept. Interarrival time is basically another word for period. For the base RelativeTime class, 
interarrival time is exactly equal to the interval specified by the time. These methods are here not because 
they are particularly useful for the RelativeTime class, but because they make it compatible with the 
RationalTime class that extends RelativeTime. 

 

Rational Time 

The RationalTime class extends the RelativeTime class by adding a frequency. It represents 
frequency occurrences of something per interval. Only the methods from RelativeTime dealing with 
interarrival times need to be overridden. The following methods are added: 

int getFrequency() 
 
void setFrequency(int frequency) 

More important, the addInterarrivalTo and getInterarrivalTime methods reveal their purpose 
in this class. In RelativeTime they were just placeholders so methods that want to deal in interarrival 
times can easily use either RationalTime or RelativeTime. Here, interarrival time is roughly the 
interval represented by the millisecond and nanosecond values divided by the frequency. 

This class is provided for those applications that care more about the number of times an event occurs in an 
interval of time than about the period of the event. If you want a time that will make an event fire every 
50th of a second, you use a RelativeTime object and set it to 20 milliseconds. If you want to be certain 
that an event fires 50 times in every second but you mind very much if the interval between events varies a 
bit, use a RationalTime object with the interval set to 1 second and the frequency set to 50. 

The difference is in what you want the system to concentrate on. If you fix the period by using 
RelativeTime, the system will make its best effort to follow the specified period accurately, but if it 
runs a microsecond long 30 times in a row and the 20-millisecond period will only deliver 49 events in a 
particular second, that is not a problem. A RationalTime specification would not worry about letting 
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some intervals be a bit long or short, but would make every effort not to let a second go by without exactly 
50 events. 

It does not do to think too hard about RationalTime. If you think of it as a commitment to maintain the 
frequency over every interval, it becomes a tight control on the period and a commitment to deliver the 
frequency. This is not the idea. RationalTime with an interval of 1 second and a frequency of 50 is not 
instructions to deliver 50 events between 0 seconds and 1 second, and between 0.0001 and 1.0001 seconds 
and between 0.0002 and 1.0002 seconds, etc. It applies only between the start time and integer multiples of 
the interval after that. 

Rational time addresses the problem of periods that cannot be accurately represented because they are an 
irrational number in binary. The nanosecond precision of high-resolution time would seem to make 
concern with rounding to the nearest nanosecond rather fanatical, but realize that the implementation may 
not be using a clock anywhere close to that precision. If the actual clock rounds to the nearest tenth of a 
millisecond, rounding could cause real trouble. 

The discussion up to here would lead you to think that the time interval for RationalTime is fixed at one 
second. It is not. The interval has the full range and precision of RelativeTime. One could adjust the 
RationalTime that specified 50 events per second to call for 50 events in 0.990 seconds. The interval 
can also get very long. Imagine calling for a device to charge its batteries twice a week, or instructing an 
interstellar probe to check for nearby stars five times every million years. 
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Chapter 11. Async Events 
• Binding a Happening to an Event 
• Basic Async Event Operation 
• Async Events without Happenings 
• Implementation Discussion 

Some of the first people to see drafts of the RTSJ immediately saw that async event handlers were the tool 
they had been waiting for. They pictured systems with a handful of real-time threads, and hundreds or even 
tens of thousands of async event handlers. 

Much of the processing in a real-time system is triggered by internal and external events: a packet arrives, 
the temperature reaches a significant value, the dog scratches at the door, an alarm rings, a car pulls out 
into traffic, someone presses a button, the JVM runs out of memory, a thread misses its deadline, and so 
forth. These events do not occur on schedule, but the software needs to respond to them. 

The first problem is nomenclature. Most embedded real-time literature uses the term event to refer to the 
asynchronously occurring … mmm … event. Event is also used to refer to the software mechanism for 
handling asynchronous events. Java APIs like AWT include events as a fundamental software component. 
The RTSJ needed to support events, and the event support already in Java technology was not quite right, 
so we needed a new mechanism and a new name. 

The RTSJ refers to external events as happenings. (That has a lovely 60s beads-and-flowers ring to it.) The 
software to handle happenings is contained in the classes AsyncEventHandler and 
BoundAsyncEventHandler, known as AEH and bound AEH. 

 

Binding a Happening to an Event 

The RTSJ specifies a three-layer mechanism for binding an external happening to an asynchronous event 
handler: 

• Interface layer — A platform-specific mechanism informs the Java runtime of an external 
happening. On UNIX-like operating systems, this would probably be a signal intercept handler. 
On JVMs that run without the help of an operating system, happenings are probably hardware 
interrupts and the glue is an interrupt service routine. 

Each happening is given a name. The way names are chosen and assigned is not specified in the 
RTSJ. Perhaps they are automatically generated, perhaps the names are a permanent part of the 
Java runtime, or perhaps they are specified in the Java resources. 

• Async event layer — Objects from the AsyncEvent class bind to external happenings with the 
bindTo method: 

aEvent.bindTo("signal 5"); 

This tells the interface layer to direct happenings with the specified name to this AsyncEvent 
object. 
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The logic of the AsyncEvent object is fixed. The interface layer calls its fire method when the 
happening occurs, and the AsyncEvent starts all the AEHs and bound AEHs that have been 
associated with it. 

• Async event handler layer — AsyncEventHandler objects connect themselves to one or 
more AsyncEvent objects with the addHandler or setHandler methods. When the event is 
fired, it starts all the handlers attached to it. 

An AEH can connect to more than one async event, but that is not wise. A multiply connected 
handler cannot tell why it is running. 

• The async event causes the run method in the AEH to execute. The run method calls the 
handleAsyncEvent method once for every time the event was fired. The content of the 
handleAsyncEvent method is the code that the developer thinks of as the actual async event 
handler. 

 

Basic Async Event Operation 

An async event has three major method groups: 

• Bind event to trigger. This group (of one) handles the connection between the async event and 
the trigger for the event. 

• Bind event to handlers. Most of AsyncEvent's public methods manage the set of event handlers 
associated with the event. 

• Fire the event. This increments the fire count for each async event handler associated with the 
async event. Any of the handlers not already active are started. 

The fire count is an async event handler's hedge against overload problems. An async event handler has 
five phases: 

1. The Java runtime starts the schedulable object the handler will run in. 
2. The async event handler sets up to handle an event. 
3. The async event handler handles the event. 
4. The async event handler does cleanup processing. 
5. The Java runtime stops the schedulable object and puts it away. 

The RTSJ hints that a quality implementation will minimize the cost of Steps 1 and 5, but that cost may 
still be comparatively large, especially if the actual activity in Step 3 is something as simple as 
incrementing a counter. 

The infrastructure in the async event handler class checks the handler's fire count. If it is greater than zero, 
the infrastructure just increments it each time the async event is fired. If it is zero, the infrastructure 
increments the fire count and starts the event handler running. This avoids Steps 1 and 5 when the event 
handler is being heavily used. 

Example 11-1 demonstrates async event handling for a happening (a UNIX signal). It also demonstrates an 
aggressive approach to the use of the fire count. Instead of relying on the AsyncEventHandler 
infrastructure to manage the fireCount, the handleAsyncEvent method in Example 11-1 manages 
the counter itself. 

Example 11-1 Async event handler for a signal 
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import javax.realtime.*; 
 
class SigHandler extends AsyncEventHandler{ 
  public void handleAsyncEvent(){ 
    int pending; 
    while((pending = getAndDecrementPendingFireCount()) >= 1) 
      if(pending > 1) 
        System.out.println("Signal. " + pending + " pending"); 
      else 
        System.out.println("Signal"); 
  } 
} 

SigHandler is a subclass of AsyncEventHandler with a handleAsyncEvent method. The method 
handles events by looping once for every pending fire. The programmer could have used the 
getAndClearPendingFireCount method to make any number of pending fires go away: for example, 
if whatever the programmer was doing to handle one signal was sufficient to handle any number of waiting 
signals, or if just knowing how many there were was enough to handle them. Perhaps like this: 

count = getAndClearPendingFireCount(); 
System.out.println(count); 

The code that demonstrates signal events is unexpectedly complicated. Signals are happenings. In the 
implementation they may be fired by a no-heap async event handler, so the async event and the async 
event handler must be created in non-heap memory, as shown in Example 11-2. 

Example 11-2 Set up and fire a signal AEH 

import javax.realtime.*; 
 
public class SigEvt extends RealtimeThread { 
  public void run() { 
    MemoryArea immortal = ImmortalMemory.instance(); 
    AsyncEventHandler handler = null; 
    AsyncEvent event = null; 
    try { 
      handler = (AsyncEventHandler)immortal.newInstance(SigHandler.class); 
      event = (AsyncEvent)immortal.newInstance(AsyncEvent.class); 
    } catch (InstantiationException e){ 
       e.printStackTrace(); 
    } catch (IllegalAccessException e){ 
       e.printStackTrace(); 
    } 
 
    event.addHandler(handler); 
    event.bindTo("25");         // Signal number 25 
 
    //  Pretend to signal 
    event.fire();event.fire();event.fire(); 
    try { 
      Thread.sleep(1000); //Let the AEH run 
    } catch(Exception e) { 
    } 
 
    event.removeHandler(handler); 
    System.exit(0); 
  } 
 
  public static void main(String [] args) { 
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    SigEvt rt = new SigEvt(); 
    rt.start(); 
    try { 
      rt.join(); 
    } catch (InterruptedException e) { 
    } 
 
    System.exit(0); 
  } 
} 

Stepping through Example 11-2, which creates the AEH in Example 11-1 and demonstrates its use, we see 
the following: 

1. The example creates an instance of SigHandler, 
2. creates an async event, 
3. adds the handler created in Step 1 to the new async event, 
4. connects the event to signal 25 by using bindTo("25"). (The reference implementation 

identifies signals this way.) 
5. Now the event would fire automatically every time the Java runtime thought it received a signal 

25 that was directed at this async event, but instead of sending a real signal, the example simulates 
three signals by firing the event three times. 

6. The thread sleeps to let the async event handler run. 
7. Since the async event handler has the scheduling parameters of the thread that created it, it will not 

preempt the main thread, and it doesn't run until the main thread sleeps. Then the handler has three 
pending fires to handle. 

 

Async Events without Happenings 

Although the original motivation for async events was external happenings, it is also a useful tool for 
things that happen entirely within the Java environment. Such happenings are no problem. Anything that 
can call the fire method on an async event can cause its handlers to run. Firing an async event just 
releases a group of threadlike entities that registered for that event. 

Time Triggering 

Many real-time systems are full of the software equivalent of alarm clocks and timers. The RTSJ addresses 
these needs with the combination of async events and the Timer class. The RTSJ provides two types of 
timers: OneShotTimer and PeriodicTimer. 

A OneShotTimer will execute its handleAsyncEvent method once at the specified time (or 
immediately if the specified time is in the past). A PeriodicTimer will execute its 
handleAsyncEvent method repeatedly at the specified interval. 

Periodic Timers. An AEH triggered by a periodic timer is roughly equivalent to a periodic thread (see 
"Periodic Threads without Handlers" in Chapter 12) and even more roughly equivalent to: 

while(true){ 
  do something 
  sleep until absolute time start of next period 
} 
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Periodic execution versus Thread.sleep 

Periodic execution will cycle once per period. A loop that uses sleep to execute once per period 
will cycle too slowly since every iteration of the loop uses sleep time plus the time it takes to 
execute the code in the loop. This can be nearly corrected by use of using a high-resolution 
timer to compute the execution time of the code in the loop, but that is a lot of trouble. The loop 
It will still drift by the interval between reading the high-resolution timer and starting to sleep, 
and it can be way off if the code in the loop is preempted. 

You will seldom see real-time code use a loop with a sleep in it to drive periodic execution. 

The handler runs once every time the timer fires. It will fire at the specified pace until the timer is disabled 
(by the disable method.) The pace can be modified while the timer is running with the setInterval 
method.) 

Example 11-3 creates an async event handler that just prints "tick" to its output. The code first attaches that 
handler to a timer that ticks every 1.5 seconds (1500 milliseconds) and then starts the timer. The main 
thread sleeps for a while. If it didn't, the application would exit immediately and the async event would 
never run. 

Example 11-3 Periodic timer-triggered async event handler 

import javax.realtime.*; 
 
public class PTimer { 
  public static void main(String [] args){ 
    AsyncEventHandler handler = new AsyncEventHandler() { 
      public void handleAsyncEvent(){ 
        System.out.println("tick"); 
      } 
    }; 
 
    PeriodicTimer timer = new PeriodicTimer( 
      null, // Start now 
      new RelativeTime(1500, 0), // Tick every 1.5 seconds 
      handler); 
 
    timer.start(); 
    try { 
      Thread.sleep(20000);  // Run for 20 seconds 
    } catch(Exception e){} 
    timer.removeHandler(handler); 
    System.exit(0); 
  } 
} 

If you run this example, it will print "tick" every 1.5 seconds for 20 seconds, then exit. 

One-Shot Timers. Time-outs are one of the main purposes of one-shot timers. This timer can take many 
forms, including the following: 

• Watchdog timer — The event handler for a watchdog timer usually initiates massive error 
recovery—like resetting the computer. While the system is running correctly, it calls the 
reschedule method on the watchdog timer from time to time, rescheduling the timer for a 
future time. If enough time passes without someone rescheduling the watchdog timer, the 
watchdog's event handler runs and drastic recovery takes place. 
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The watchdog is set (as shown in Example 11-4) and reset to an interval that is much longer than 
the longest time the system should spend between calls to reschedule. 

Example 11-4 Watchdog timer setup 

import javax.realtime.*; 
 
public class Dog { 
  static final int TIMEOUT=2000; // 2 seconds 
  public static void main(String [] args){ 
    double d; 
    long n; 
    AsyncEventHandler handler = new AsyncEventHandler() { 
      public void handleAsyncEvent(){ 
        System.err.println("Emergency reset!!!"); 
        System.exit(1); 
      } 
    }; 
    RelativeTime timeout = new RelativeTime(TIMEOUT, 0); 
 
    OneShotTimer dog = new OneShotTimer( 
      timeout, // Watchdog interval 
      handler); 

If the watchdog timer ever goes off, it means that the system has jammed somewhere and needs a 
kick. The code in Example 11-5 uses a random amount of time that has a small chance of being 
greater than the watchdog interval, then resets the watchdog, and does it again. If you let it run 
long enough, the watchdog will eventually trip. 

• Time-out — It takes a long time to start the motor on a floppy disk drive and close the heads on 
the disk. The drive would keep the motor running and the heads loaded all the time, except that the 
motor and the disk would both wear out too soon. Instead, there is a time-out in the system. After 
the drive sits idle for a while (maybe a minute), a one-shot timer fires and the drive is put to sleep. 
Every time the software accesses the floppy, it reschedules the time-out counter so it can be used 
continuously for days without ever shutting down, but will turn the motor off a minute after it goes 
idle. Programmatically, this is like a watchdog, except that the action when the timer fires is to 
adjust some hardware, not to restart the system. 

Example 11-5 Watchdog timer use 

dog.start(); 
while(true){ 
  d = java.lang.Math.random(); 
  n = (long)(d * TIMEOUT + 400); 
  System.out.println("Running t=" + n); 
  try { 
    Thread.sleep(n); 
  } catch(Exception e){} 
  dog.reschedule(timeout); 
} 

Other time-outs start a computation: ten seconds after the car is fully inside the garage start 
closing the garage door, turn on the inside light, and turn off the outside light. That could be 
expressed as three async event handlers attached to a one-shot timer. 

Some time-outs stop a computation. Real-time software can often afford to spend some preset 
interval at some activity. A one-shot timer can be used to stop the computation after it has run for 
the allowable interval. Example 11-6 illustrates this. 
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The async event handler is constructed as usual, but this one just writes a volatile instance variable. 
The handler is attached to a one-shot timer that will go off ten seconds after it is started. 

After it starts the timer, the program loops. It will loop until it sees stopLooping equal to true. 

When the one-shot goes off, stopLooping is set to true, and the main thread will complete the 
loop iteration it is in, then gracefully exit. 

If the loop were more complicated, and there was a requirement to respond to the timer quickly, 
polling a stop flag would not be as elegant as it looks here. The timed code would be full of 
checks. It would look ugly and degrade performance. The asynchronously interrupted exception 
(see Chapter 17) was designed for those situations. That mechanism lets the async event handler 
attached to the timer throw an exception into the thread. 

Volatile 

The one-shot timer example works fine on my system whether stopLooping is volatile or not. If 
your compiler has a better optimizer than mine, it will require volatile. 

Volatile makes the compiler recheck the value of stopLoop each time it uses it. A really good 
optimizer would probably change the while statement into while(true). 

Example 11-6 One-shot timer triggered async event handler 

import javax.realtime.*; 
 
public class OSTimer { 
  static boolean stopLooping = false; 
  public static void main(String [] args){ 
    AsyncEventHandler handler = new AsyncEventHandler() { 
      public void handleAsyncEvent(){ 
        stopLooping = true; 
      } 
    }; 
 
    OneShotTimer timer = new OneShotTimer( 
      new RelativeTime(10000, 0), // Fire in 10 seconds 
      handler); 
 
    timer.start(); 
    while(!stopLooping){ 
      System.out.println("Running"); 
      try { 
        Thread.sleep(1000); 
      } catch(Exception e){} 
    } 
    System.exit(0); 
  } 
} 

Enable/Disable. Disabling a timer is like putting your hand on an old-fashioned alarm clock's bell to 
muffle its sound. A disabled timer is still ticking. If you reenable the timer before it goes off, it will behave 
exactly as if you had never disabled it. If it goes off while it is disabled, that event is silently lost. If a 
periodic timer is disabled through the end of one or more periods, the events for all the disabled periods are 
lost, but the clock is still running and it will fire on schedule on the next period. 
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If you do not want the services of a timer for a while, you have two alternatives: 

1. Set a variable, visible to the timer's handlers, that tells them to count periods but otherwise ignore 
events. When you want the timer to work again, reset the variable. The system has to be designed 
for this since the code that wants to ignore the timer has to know how to communicate with the 
timer's async event handlers. 

2. Disable the timer when you want it quiet, and enable it when you want it to work again. 

The functional difference between these two methods is that the first method counts timer events so it can 
handle them when it is enabled whereas the second one completely ignores the passage of time when it is 
disabled. 

Fault Triggering 

Java programmers normally pass faults to other scopes in the following ways: 

• Throwing an exception 
• Returning an error code 
• Calling an error-handling method in some object they know of. (Probably the object was passed to 

them as a parameter.) 

Async event handlers offer an interesting new alternative. The programmer can fire an async event. This 
has two novel characteristics: 

1. The fault handling code runs asynchronously with the code that reports the fault. 
2. Anyone, even code executing on other threads (subject to security constraints), can register an 

AEH with the async event. This gives fault handling a dynamic character. 

The RTSJ uses async event handlers to inform threads when the scheduler has determined that they have 
missed a deadline or used more processor time than they expected. 

Another application of a fault-triggered async event might be to log minor problems. The application 
would fire async events at each minor problem. If the system wanted to know about those faults, it would 
attach AEHs to those async events that would log them. If it wasn't interested, it would leave the async 
events empty. 

The handler could be low priority. It would log events only when there were no other real-time activities, 
but it would not miss faults because of the event counting aspect of async events. 

Let us look at Example 11-7, an example of fault-triggered async event handlers. 

Example 11-7 Fault-triggered async event handlers 

public void run() { 
  AsyncEventHandler handler = new AsyncEventHandler() { 
    public void handleAsyncEvent(){ 
      System.err.println("Run method: notified"); 
    } 
  }; 
  AsyncEvent event = new AsyncEvent(); 
  RealtimeThread thisThread = 
      RealtimeThread.currentRealtimeThread(); 
 
  handler.setSchedulingParameters((SchedulingParameters) 
      (new PriorityParameters(maxPriority-3))); 
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  event.addHandler(handler); 
  process1(event); 
  event.removeHandler(handler); 
} 
 
private void process1(AsyncEvent notify){ 
  AsyncEventHandler p2Handler = new AsyncEventHandler() { 
    public void handleAsyncEvent(){ 
      System.err.println("process1 method: notified"); 
    } 
  }; 
  p2Handler.setSchedulingParameters((SchedulingParameters) 
    (new PriorityParameters(maxPriority-4))); 
  notify.addHandler(p2Handler); 
  process2(notify); 
  notify.removeHandler(p2Handler); 
} 
 
private void process2(AsyncEvent notify){ 
  //... something bad happened 
  // fire the notification async event. 
  { 
     notify.fire(); 
     return; 
  } 
} 

Example 11-7 shows some unspecified fault occurring in process2. The code responds by firing the 
async event it was passed, and then it returns. (It happens to return; for other faults, the code might 
continue execution after reporting the problem.) 

Every method that touched the async event had the opportunity to add one or more async event handlers 
for the fault. They could also set the priority of the handler they added to reflect the urgency of that routine. 
In the example, each routine removes its handler when it is no longer on the call stack, but that is not 
necessary. Since the handlers execute in their own context, they can attach handlers to the event and leave 
them there if they like. 

When process2 fires the event, its handlers execute in priority order, first the handler from the run 
method, then the handler from the process1 method. 

Software Event Triggering 

Faults are not the only kind of software event that might be a good trigger for an asynchronous event. For 
example, an asynchronous event handler can be one of the following: 

1. An easy substitute for real-time threads. Since AEHs do not have thread objects permanently 
associated with them, they do not have the memory leak potential of real-time thread objects. 

2. A distribution facility for occurrences that are not faults but still might be of broad interest. For 
instance, a system might use async events to spread the word each time a cache is cleared or when 
the class loader brings in a new class. 

3. A general notification mechanism. Asynchronous event handlers might be a good general-purpose 
replacement for AWT events, and they can serve as AWT-like events that can be used outside the 
AWT environment. 

 

Implementation Discussion 
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The RTSJ wants asynchronous event handlers to behave like threads, but it wants them tuned for a 
different performance profile. 

A thread is designed to execute for a long time, and it is expected to wait for resources, sleep, change its 
priority, and generally take full advantage of the available support services. A production system might see 
dozens, or even a few hundred active threads. (Very large systems may see thousands of active threads.) 
There is nothing wrong with creating threads to execute a few lines of code, but it may not be a good 
performance choice. 

An asynchronous event handler is designed to execute a few lines of code, then exit. It is not expected to 
wait, block, sleep, or change its scheduling parameters. Even a small system should expect to see 
thousands of asynchronous event handlers in a dormant state and a fraction of that number active. 

A simple system (like the RTSJ reference implementation) might just create a thread for an async event 
handler each time it is fired. That works perfectly but it has poor performance. The system would gain a 
big performance improvement if it created a thread for each async event handler. That also works perfectly, 
but each thread uses a few kilobytes. 

There are lots of clever ways to make the kind of ultralight threads that are a good fit for async events. The 
following sample gives you an idea of the kind of support async events might have. Let me reemphasize: 
This is not a description of an actual implementation. It's only the most obvious way to implement async 
events without just creating threads for them. 

The RTSJ runtime maintains a pool of real-time threads. It makes certain that there is at least one real-time 
thread in the pool for each priority that has an async event. That is, when you create an async event and 
give it priority 22, the RTSJ runtime will add a priority 22 thread to the pool if one is not there already. 

The threads in the async event pool are basically part of the scheduler. In normal operation they are either 
waiting for work or running a list of async events.They understand that each routine they call is a separate 
Schedulable entity, and they do housekeeping between them. Provided that the events do nothing that 
would cause a scheduling point (like sleeping or overrunning a cost estimate), running the events at any 
given priority in sequence has the same effect as placing each event in a separate thread, but they all share 
the same thread overhead. 

If any async event causes a scheduling point—changes its priority, sleeps, tries to acquire a lock that is not 
free, does blocking I/O, etc.—the RTSJ runtime will create a new thread and transfer all the async events 
left unexecuted on the blocked thread to the new thread. 

The above design has little overhead per async event. The fixed memory cost for async event handlers that 
are not in use is only the memory required to describe the events and form them into a doubly linked list. 
The time to switch between async events is even less than context switching time. The tradeoff is that the 
first time an async event causes a scheduling point, it incurs the thread creation overhead that it has 
avoided. This mechanism runs simple async events beautifully, but it surprises async events that are not 
simple by taking much longer than usual the first time the async event does something "interesting." 
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Chapter 12. Real-Time Threads 
• Creation 
• Scheduling 
• Periodic Threads without Handlers 
• Periodic Threads with Handlers 
• Periodic Threads with Handlers 
• Interactions with Normal Threads 
• Changing the Scheduler 

The work of real-time Java takes place in real-time threads and in asynchronous event handlers (which are 
a lot like real-time threads.) The javax.realtime. RealtimeThread class extends 
java.lang.thread so real-time threads can be used wherever a thread is required, but many of the 
features of the RTSJ are only available from real-time threads: 

• Extended priorities 
• Scoped memory 
• Service for asynchronously interrupted exceptions 
• Periodic scheduling 
• Any nonpriority scheduling supplied by the platform 

Other features of the RTSJ will probably appear in ordinary threads, but the specification does not require 
them there: 

• Strict priority scheduling 
• Priority inheritance protocol for mutual exclusion locks 

Wait-free queues (see Chapter 20) will definitely be available everywhere. That mechanism was included 
in the RTSJ precisely to support convenient communication between code with different timeliness 
constraints, and conventional threads are the extreme case of code that is not concerned with timeliness. 

 

Creation 

Example 12-1 may be the simplest possible complete program that executes something in a 
RealtimeThread. 

Example 12-1 Creating a Basic RealtimeThread creation 

import javax.realtime.*; 
 
public class Hello1 { 
  public static void main(String [] args){ 
    RealtimeThread rt= new RealtimeThread(){ 
      public void run() { 
        System.out.println("Hello RT world"); 
      } 
    }; 
    rt.start(); 
  } 
} 
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This example creates and starts a default RealtimeThread object that should be sufficient for most 
purposes unless a nonpriority scheduler is active. 

Since this RealtimeThread is started by an ordinary thread, it is a special case. It cannot inherit RTSJ 
attributes from its parent. So, since nothing is specified in its constructor, the new thread gets default 
values. The most interesting default value is NORM_PRIORITY. This is a priority value one-third of the 
way up from the bottom of the range from the minimum real-time priority to the maximum real-time 
priority. The only specified use of NORM_PRIORITY is as the default priority for a RealtimeThread 
started by a non-real-time thread. 

If the new thread was started by a real-time thread, it would use a copy of its parent's scheduling 
parameters. In particular, it would inherit its parent's priority. It is significant that the new thread gets a 
copy of the scheduling parameters. It does not just use the same scheduling parameters. 

RealtimeThread objects are not placed in a special memory area unless the application specifically 
allocates them there. They can be created in heap memory or in scoped memory. The significance of this 
property will become clearer in Chapter 13 when we discuss the NoheapRealtimeThread class, but the 
crux is that it is easy to create thread objects that other threads cannot even reference. The solution to this 
problem is to create all thread objects in immortal memory, but that constitutes a serious memory leak 
unless the set of threads is static. 

It is even possible to create a thread object that the thread itself cannot use. This misdeed 
shows up quickly in testing, but it is annoying nevertheless. 

The parameter defaults for RealtimeThread (and other classes that implement Schedulable) are as 
follows: 

• Inherit values from the parent thread. 
• If the parent thread does not have a value for the parameter, the default value is the responsibility 

of the scheduler that will manage the object. 

The parameterless RealtimeThread constructor called from an ordinary thread and operating under the 
default priority scheduler creates a thread with the values shown in Table 12-1. 

Table 12-1. Default state when a real-time thread state is when created by an ordinary 
thread 

Field  Default  
memoryArea  Memory will be allocated from the heap.  
memoryParameters  Memory allocation is not budgeted or restricted.  
processingGroupParameters The thread is not a member of a processing group.  
releaseParameters  There are no release parameters. The thread is not periodic 

and admission control cannot evaluate feasibility if this thread is 
eligible for scheduling.  

scheduler  The thread is schedulable by the default scheduler.  
schedulingParameters  NORM_PRIORITY.  
logic  The run method in the object.  

There are two sets of rules when a real-time thread creates a RealtimeThread. 

1. If the constructor does not include a parameter for the value, it is inherited from the current thread, 
as detailed in Table 12-2. 
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2. If the constructor passes a null value for the parameter, the current thread is ignored and the value 
is assigned by the scheduler that will handle the new thread. For null parameter values, the 
defaults are as listed in Table 12-1. 

Table 12-2. Default state when a real-time thread state is when created by a 
RealtimeThread 

Field  Default  
memoryArea  The memory area that contains the thread object  
memoryParameters  A copy of the memory parameters in effect when the thread was 

constructed  
processingGroupParameters The processing group in effect when the thread was created  
releaseParameters  The release parameters in effect when the thread was created 
scheduler  The scheduler in effect when the thread was created  
schedulingParameters  A copy of the scheduling parameters in effect when the thread 

was constructed  
logic  The run method in the object  

The most elaborate constructor for a RealtimeThread object has six parameters: 

public RealtimeThread(SchedulingParameters scheduling, 
              ReleaseParameters release, 
              MemoryParameters memory, 
              MemoryArea area, 
              ProcessingGroupParameters group, 
              java.lang.Runnable logic) 

• Scheduling parameters — For the default priority scheduler, this parameter refers to an object 
that has the priority with which the new process should start. 

• Release parameters — For the priority scheduler, release parameters come into play when the 
thread uses the waitForNextPeriod method and when admission control is desired. Using 
release parameters, the real-time tasks can be characterized as follows: 

o periodic – The task uses release parameters of type PeriodicParameters. The 
parameter must have a period and a start –time. If its deadline is not equal to its period, it 
can specify a separate deadline interval. If feasibility analysis is going to be useful, the 
release parameters must include a cost, that is, the maximum time the task will require in 
any period. 

If the scheduler notices that a task has not completed its computation by its deadline, it 
will call the asynchronous event handler (see Chapter 11) designated as the task's 
missHandler. 

Cost is platform specific. The application may include code to estimate costs with some 
startup benchmarks, or determining costs can be a manual operation. This is an important 
instance of WOCRAC (Write Once Carefully, Run Anywhere Conditionally.) 

• Overrun is not the same thing as a miss. A thread can overrun its cost estimate in a period and still 
meet its deadline by using surplus processor resources. Overruns are not failures, but they are a 
sign of impending trouble. If a thread has set an overRunHandler, it will be notified each time 
it overruns its cost estimate. 

• If neither a miss handler nor an overrun handler is specified, the scheduler reports these failures 
through waitForNextPeriod. The next call to waitForNextPeriod after the deadline miss 
or overrun will immediately return false. If the thread is so late that it passes more than one of 
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its deadlines, waitForNextPeriod will immediately return false, once for each missed 
deadline. 

• aperiodic – Aperiodic tasks have no preset period, but they do have predictable deadlines and 
costs. Aperiodic tasks are released by some event, are perhaps released by another task, or may be 
released by an event external to the JVM. Keystrokes would be an example. They appear to the 
computer to occur at random intervals, but the designer can estimate the cost of servicing each 
keystroke and set a deadline for completing the service. 

Aperiodic release parameters have no required fields, but if there is no deadline, the scheduler will 
use a value approximately equal to infinite time; if a cost is not provided, the scheduler will 
assume that it needs no time to complete its computation. 

Since there is no limit on how frequently aperiodic tasks can run, there is no limit on their CPU 
consumption. When an aperiodic task enters the schedule, feasibility analysis becomes less 
meaningful. Aperiodic tasks can be brought under control by being put into processing groups 
with aggregate limits, or by being classified as sporadic instead of aperiodic 

• sporadic – Sporadic tasks (or thread groups) are like aperiodic tasks with a limited frequency. The 
scheduler can assume that the sporadic task will run with a period equal to its minimum 
interarrival time and can do meaningful feasibility analysis based on that assumption. 

It can also refuse to run the sporadic task more often than indicated by the minimum interarrival 
time. 

Aperiodic threads 

Aperiodic and sporadic scheduling doesn't make sense for threads. The thread can have 
aperiodic or sporadic release parameters, but there is no way for the scheduler and thread to 
communicate about scheduling events. The waitForNextPeriod method does not make sense 
here. 

The nonperiodic release parameters are intended for async event handlers (see Chapter 11). The 
AEH system includes suitable APIs for asynchronous and sporadic events. 

• Memory parameters — Memory parameters set various limits on the thread's use of the memory 
allocator. They can restrict the thread's use of scoped memory. They can also, separately, limit the 
thread's use of immortal memory. (If the thread's default memory allocation area is the immortal 
pool, the effective limit is the minimum of the two limits.) 

Systems with garbage collectors that pace themselves by (for example) running a little each time a 
thread uses new can regulate the pace of garbage to a thread's requirements if the thread uses 
memory parameters with a positive allocation rate value. The allocation rate is a hint to the 
garbage collector, but it is also significant to the scheduler. The scheduler may control the 
execution rate of a thread such that it does not allocate memory faster than specified in its 
allocation rate field. 

• Memory area — Real-time threads allocate their memory from the system heap by default, but 
they can be directed to use another memory pool. The options are heap, immortal, or scoped (see 
Chapter 13). 

The memory area is an important RTSJ concept. You'll read a lot more about it in subsequent 
chapters, but for now we'll ignore it and concentrate on threads that allocate from the heap. 
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• Processing group — Processing groups are intended to bring aperiodic activities under control. 
Processing groups have all the attributes of periodic release parameters. The scheduler can use any 
of several mechanisms to schedule the group (see "Aperiodic Servers" in Chapter 6.) The result is 
that the resource consumption of all activities in the thread group cannot total more than the 
budget of the processing group in any processing group period. 

• Logic — The logic field refers to an instance of a class that implements the Runnable 
interface. This class creates the thread object with the runnable class preattached. If no logic 
parameter is specified, the thread defaults to a run method that does nothing. As with ordinary 
threads, the RealtimeThread can be subclassed to override the default run method. 

Example 12-2 shows how a real-time thread might be built and started with a constructor that specifies 
everything but a processing group. 

Example 12-2 Building and starting a real-time thread 

import javax.realtime.*; 
 
public class FullConstr { 
  public static void main(String [] args){ 
    SchedulingParameters scheduling = 
      new PriorityParameters(PriorityScheduler.MIN_PRIORITY+20); 
    ReleaseParameters release = 
      new AperiodicParameters(null, null, null, null); 
    MemoryParameters memory = 
      new MemoryParameters(MemoryParameters.NO_MAX, // Heap 
        0);                      //Immortal memory 
    MemoryArea area = HeapMemory.instance(); 
    ProcessingGroupParameters group =null; 
    Runnable logic = new MyThread(); 
 
    RealtimeThread rt= new RealtimeThread(scheduling, 
        release, 
        memory, 
        area, group, 
        logic); 
    rt.start(); 
    try { 
      rt.join(); 
    } catch(Exception e){} 
  } 
} 
 
 

Scheduling 

The RTSJ permits other schedulers, but it requires a fixed-priority preemptive scheduler with at least 28 
distinct priorities. (See Chapter 5 for explanations of these terms and most other scheduling terminology in 
this chapter.) 

In addition to at least 28 real-time priorities, 10 non-real-time priorities are maintained for compatibility 
with applications written for platforms that do not implement the RTSJ. The RTSJ does not call for 
improvements in the behavior of the non-real-time priorities, but it does insist that the scheduler treat them 
all as lower priorities than the lowest real-time priority. 

The scheduler has many features that real-time programmers like: 
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• There are at least 28 priorities. Sometimes, real-time systems want more than 28 priorities, but 
they seldom suffer serious performance degradation until they are forced to get by with fewer than 
about 32. Furthermore, the RTSJ requires at least 28, but uses a full 32-bit integer to represent 
priorities. If the scheduler can support four billion priorities, the RTSJ permits it. 

• Tasks at higher priorities will always run in preference to tasks with lower priorities. 
• Tasks with higher priorities will preempt lower-priority tasks. The maximum delay between the 

time a higher-priority task becomes ready to run and the time it gets control is a characteristic of 
the JVM, the processor, and the supporting operating system. It does not depend on cooperation 
from the lower-priority task. 

• Locks applied to real-time threads always use a priority inversion avoidance mechanism. 

Inversion Handling 

Every implementation of the RTSJ must support priority inheritance protocol (see "Priority Inversion" in 
Chapter 5) for all synchronized objects. Priority ceiling emulation protocol is described by the standard 
but is not required. 

Technically, the operation of the synchronized primitive must ensure "that there is no unbounded priority 
inversion." Then it requires that the implementation include priority inheritance and, moreover, that 
priority inheritance be the default monitor control mechanism. 

If the implementation supports only priority inheritance protocol, priority inversion avoidance is just part 
of the background. Programmers have no control over its operation. 

If the implementation also provides priority ceiling emulation or some other priority boosting mechanism, 
the RTSJ offers interfaces that can change the default mechanism for all real-time threads, as shown in 
Example 12-3. 

It can also change the mechanism or alter its parameters for synchronization on a particular object, as 
shown in Example 12-4. 

Setting a single global priority ceiling is fundamentally different from setting separate ceilings for each 
lock. The single global ceiling must be set at a priority at least as high as any thread that will ever try to 
synchronize on an object. To be safe, the priority for a global ceiling should be the highest available 
priority, and no thread should ever set its priority that high. This strategy makes analysis rela tively easy 
since any thread that holds a lock will run without preemption until it releases the lock. The analyst does 
not need to consider the possibility that a higher-priority thread might preempt a thread that is holding a 
lock. The disadvantage of the global ceiling is that high-priority threads cannot preempt a thread that is 
holding a lock even if the high-priority thread has no interest in the lock and needs to run. 

Example 12-3 Changing Change the default priority boosting protocol 

import javax.realtime.*; 
 
public class ToPcep { 
  public static void main(String [] args){ 
    PriorityCeilingEmulation pce = 
           new PriorityCeilingEmulation(27); 
    //      Change default control for all sync locks 
    MonitorControl.setMonitorControl(pce); 
  } 
} 

Example 12-4 Changing Change the priority boosting protocol for an object 

import javax.realtime.*; 
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public class ToPcep2 { 
  public synchronized int foo(){ 
    return 1; 
  } 
  public static void main(String [] args){ 
    ToPcep2 obj = new ToPcep2(); 
    PriorityCeilingEmulation pce = 
           new PriorityCeilingEmulation(27); 
    //      Set PCEP for just one object 
    MonitorControl.setMonitorControl(obj, pce); 
    System.out.println(obj.foo()); 
  } 
} 

A global priority ceiling may be appropriate for an application that uses synchronization sparingly, but not 
for a typical multithreaded application for the Java platform. Since multithreaded Java programs tend to 
synchronize liberally, a global ceiling will cause threads to run at the maximum priority a large part of the 
time. That effectively reduces the RTSJ to a single priority. 

Priority ceiling emulation protocol is more appropriate for individual objects. There you can choose a 
priority that seizes the entire system or a priority that takes into account the priorities of the threads that are 
known to compete for that particular object. 

Priority ceiling emulation is dangerous as a global default protocol. Use it with care.  

Fixed Priority 

The RTSJ default fixed-priority scheduler has limited ability to reorder the priorities of threads. It can 
make temporary adjustments to avoid priority inversion, but it cannot otherwise alter thread priorities. 
Threads can, however, alter their own priorities, and subject to the JVM's security mechanisms, threads can 
alter the priority of other threads. 

Adjusting thread priorities is not a debugging technique! Bugs that disappear when 
priorities are adjusted are not really gone. 

The priority of a thread is controlled by the PriorityParameters object associated with the thread. 
That gives two ways to alter a thread's priority: 

1. Change the value of the priority in its PriorityParameters object, as shown in Example 12-5. 

Example 12-5 Changing thread priority by modifying the priority object 

public class RunMe implements Runnable { 
  public void run() { 
    RealtimeThread me = RealtimeThread.currentRealtimeThread(); 
    int initialPriority; 
    PriorityParameters pp; 
 
    pp = (PriorityParameters)me.getSchedulingParameters(); 
    initialPriority =pp.getPriority(); 
    System.out.println("Initial priority=" + initialPriority); 
    pp.setPriority(initialPriority+1); 
    System.out.println("New priority=" + pp.getPriority()); 

2. Replace its PriorityParameters object with a different one, as shown in Example 12-6 
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Example 12-6 Changing thread priority with object replacement 

pp = new PriorityParameters(initialPriority + 2); 
me.setSchedulingParameters((SchedulingParameters)pp); 
System.out.println("New priority=" + 
  pp.getPriority()); 

Either technique achieves the same result, but they are not interchangeable. 

The RealtimeThread object keeps references to the objects that control its behavior, not copies of those 
objects. If the programmer chooses to reuse a PriorityParameters object for multiple threads, 
changing the priority in that object will alter the priority of all the threads that use that object. This may be 
an advantage if it is done intentionally, but it can give rise to interesting bugs. 

Replacing a thread's PriorityParameters object will not have unexpected side effects on the priorities 
of other threads, but it involves allocating an object. If the reference conditions for the thread are such that 
its parameters must be allocated in immortal memory, the PriorityParameters objects must be 
managed carefully to prevent memory leaks (see Chapter 16). 

Feasibility 

Feasibility analysis is an optional feature for RTSJ schedulers. Threads can ask to be admitted to the 
feasible set by using 

public boolean addIfFeasible() 

which asks the scheduler to admit this thread if it has enough resources to satisfy the resource requirements 
in the thread's scheduling parameters, release parameters, memory parameters, and processing group 
parameters. If the scheduler cannot spare the resources, it returns false and does not admit the thread. 

public boolean addToFeasibility() 

forces the scheduler to admit the thread even if it cannot spare the resources. The call will return false if 
admitting the thread caused the scheduler to become over-extended. 

Feasibility analysis is really nothing more than budgeting. Since the scheduler cannot "unadmit" a thread, 
it just keeps track of uncommitted resources and rejects any thread that causes it to overflow. 

A scheduler that implements feasibility analysis but not cost enforcement is slightly useful, but what you 
really want from a scheduler with feasibility analysis is admission control and a guarantee. The guarantee 
says that once a thread has been admitted, the scheduler guarantees it the resources it asked for. The 
scheduler can only do that if it can enforce limits: 

• Admission control — The scheduler will only run entities that have passed admission control. In 
most cases, this requirement is impossible to meet perfectly since the system has "nonschedulable 
entities" that must be executed: page fault handlers, interrupt service routines, and the like. A 
practical system allocates a liberal allowance for nonschedulable entities and limits admitted 
entities to the remaining resources. 

• Enforcement — The scheduler must not permit entities to use more resources than they requested 
when they were admitted. There are options that will let the scheduler tell a thread when it exceeds 
a limit, but even if the scheduler does not tell the thread, the scheduler must not permit anything to 
use resources faster than it is supposed to. Otherwise, other threads would miss their deadlines. 
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Periodic Threads without Handlers 

Although the default scheduler is fixed-priority preemptive, the RTSJ includes periodic scheduling 
services in the default priority scheduler (see Chapter 7). Several features of the priority scheduler support 
periodic scheduling, as listed in Table 12-3. 

Table 12-3. Optional features of periodic scheduling 
Feature  Description  

Feasibility analysis  The implementation may implement feasibility analysis algorithms to 
support the feasibility methods of the PriorityScheduler class: 
addToFeasibility, changeIfFeasible, isFeasible, and 
removeFromFeasibility. If feasibility analysis is not implemented, 
all loads are treated as feasible.  

Deadline aware  The scheduler may notice when threads miss their deadlines. If the 
scheduler is not able to offer this service, deadlines are not enforced. 

Miss handler  When a thread misses its deadline, an asynchronous event handler 
may be invoked.  

Overrun handler  If the JVM is tracking the amount of time a thread uses per period, it 
may invoke an asynchronous event handler when threads use more 
processor time than they reserved. This function is not required for a 
minimal RTSJ implementation.  

ImportanceParameters Support for importance is another optional feature of implementations 
of the RTSJ. ImportanceParameters can be used as the 
SchedulingParameters property of a RealtimeThread. When 
priority is used to reflect period (for periodic scheduling), importance 
can be used to pass information to the scheduler that will help it 
choose which deadlines to miss when it is overloaded and trying to fail 
gracefully.  

Periodic threads have a standard structure. Most of the scheduling characteristics of a periodic thread are 
passed to the constructor through the release parameter as shown in Example 12-7, or it could be done in 
the RealtimeThread itself, as shown in Example 12-9. 

Example 12-7 Setting up a simple periodic thread 

import javax.realtime.*; 
 
public class Periodic1 { 
  public static void main(String [] args){ 
    SchedulingParameters scheduling = 
      new PriorityParameters(PriorityScheduler.MIN_PRIORITY+10); 
    ReleaseParameters release = 
      new PeriodicParameters( 
        new RelativeTime(),//Start at .start() 
        new RelativeTime(1000, 0), // 1 second period 
        null,  //cost 
        new RelativeTime(500,0),// deadline=period/2 
        null,  // no overrun handler 
        null);  // no miss handler 
 
    RealtimeThread rt= new MyThread(scheduling, 
        release); 
    rt.start(); 
    try { 
      rt.join(); 
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    } catch(Exception e){}; 
  } 
} 

The release parameter specifies the following: 

• start — When the periodic thread should start execution. This can be either an absolute time 
like 2:30 AM January 1, 2004, or a relative time like 200 milliseconds after I invoke the start 
method on the thread. 

The example shows the simplest form of relative time. The empty constructor is shorthand for 
immediately. 

• period — The period has to be a relative time since it is the time between iterations of the loop. 
It is the time from start to start (see Figure 12-1), not from end to start (as shown in Figure 12-2). 

Figure 12-1. True periodic thread 

 

Figure 12-2. Inaccurate periodic thread 
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• cost — The example shows a null cost. This causes the cost value to go to the default. The 
default value is the deadline value. This is the maximum possible cost for the thread since any 
higher cost would necessarily miss deadlines. If the deadline is equal to the period, the default cost 
means that this thread uses 100 percent of available CPU time. 

• deadline — In Example 12-7 the deadline is set to a tenth of the period. That means that the 
thread should cycle once per second, but needs to finish its computation within the first tenth of 
the second. The period is the default value for the deadline. 

• overrunHandler — This could specify an asynchronous event handler that would be invoked 
when the thread used more processor time than the specified cost, but the example supplies a null. 

• missHandler — This could specify an asynchronous event handler to be invoked if the thread 
misses its deadline. The example only supplies null, so the platform has nothing to call. 

The periodic thread (in Example 12-8) shows the structure of any simple periodic thread that does not use 
miss or overrun handlers. Control enters the thread at the start time specified in its release parameters and 
executes its first iteration. It runs until it gets to the waitForNextPeriod call, then stops until it is time 
to compute for the next period. 

As long as everything is working correctly, control just runs round the inner do-while loop, but the 
example is rigged with a steadily expanding load so it will eventually miss its deadline or, perhaps, overrun 
its cost. At that point, since no handlers are associated with this thread, waitForNextPeriod will return 
false immediately—without waiting for the start of the next period. If the thread's timing is seriously off, 
the thread may execute so long that it misses a deadline and the deadlines for subsequent periods. In this 
case, waitForNextPeriod may return immediately several times in succession. The thread can respond 
to a false return from waitForNextPeriod in several ways: 

• Good citizen — If the thread has overrun its time or missed its deadline, it is probably cutting into 
another thread's time. Without using the miss and overrun handlers there is no easy way to tell 
what is wrong, but the thread should try to lighten its load a little if it can (as the thread in 
Example 12-8 does by decreasing bound.) The thread should also invoke waitForNextPeriod 
until it returns true to make certain that the next iteration will start with a fresh period where it 
stands a chance of succeeding, and not start partway through one where it will cause ungraceful 
degradation. 

Example 12-8 Body of a simple periodic thread 

import javax.realtime.*; 
 
public class MyThread extends RealtimeThread { 
  volatile double f; 
  public MyThread(SchedulingParameters sched, 
       ReleaseParameters release){ 
    super(sched, release); 
  } 
  public void run(){ 
    RealtimeThread me = currentRealtimeThread(); 
    int bound; 
 
    bound = 0; 
    while(true){ 
      do { 
        for(f=0.0; f < bound; f += 1.0);// Use some time 
        bound += 10000;// Use more next time 
        System.out.println("Ding! " + bound); 
      } while(me.waitForNextPeriod()); 
      //Recover from miss or overrun 
      System.out.println("Scheduling error"); 
        bound -= 15000; 
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      while(!me.waitForNextPeriod())//Eat errors 
        System.out.print("."); 
      System.out.println(); 
    } 
  } 
} 

• Desperate outlaw — If the deadline is equal to the period, a periodic thread can consider ignoring 
the return from waitForNextPeriod. 

The thread will then start computing for the next iteration immediately. The thread missed one 
deadline and is already starting late for the next deadline. This sounds like a way to push the 
system from missing one deadline to total collapse, but if those deadlines are important, maybe it's 
a good strategy. 

This only makes even marginal sense for a thread where the deadline equals the period. If the 
deadline is less than the period, the thread that misses its deadline may be released for what it 
thinks is its next period before the next period starts. Consider the thread with a period of one 
second and a deadline of a tenth of a second. If it completes its computation two-tenths of a 
second after the start of a period, it is very late, but if it then starts on the next computation, it will 
be starting eight-tenths of a second early. 

Perhaps the desperate thread might try raising its priority when it detects a miss. 

Feasibility and cost 

The minimum implementation of the RTSJ can ignore cost and implement feasibility analysis 
by accepting any load as feasible. Programs designed for this class of Java platform are unlikely 
to migrate smoothly to a platform that implements overrun detection and feasibility analysis. 

Consider, for instance, the examples of periodic threads without miss and overrun handlers. 
Those threads They are barely adequate for the base RTSJ implantation because since when 
waitForNextPeriod returning returns false it signifies a deadline miss. If it could also signify a 
cost overrun, The desperate citizen strategy is seriously flawed, and the good citizen strategy 
should include raising the cost estimate. 

Feasibility Analysis 

The class in Example 12-9 demonstrates two techniques. It is a periodic thread that sets its own release 
parameters, thus converting itself from an ordinary priority-scheduled thread to a periodic thread. Compare 
this with the way the thread in Example 12-7 is configured by its constructor. Example 12-9 also 
demonstrates the easiest way to cooperate with feasibility analysis. It creates the new 
ReleaseParameters object for itself, gets a reference to the Scheduler object, and invokes 
setReleaseParametersIfFeasible method on its thread object. This method atomically checks to 
see whether the new scheduling attributes are feasible and updates them if they are. 

Example 12-9 Thread that configures its own periodic behavior 

import javax.realtime.*; 
 
public class MyThread2 extends RealtimeThread { 
  volatile double f; 
  public MyThread2(SchedulingParameters sched){ 
    super(sched); 
  } 
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  private ReleaseParameters mkRelease(){ 
       return new PeriodicParameters( 
         new RelativeTime(),//Start at .start() 
         new RelativeTime(1000, 0), // 1 second period 
         null,  //cost 
         new RelativeTime(100,0),// deadline=period/10 
         null,  // no overrun handler 
         null);  // no miss handler 
  } 
  public void run(){ 
    ReleaseParameters release = mkRelease(); 
    RealtimeThread me = currentRealtimeThread(); 
    Scheduler scheduler = getScheduler(); 
    SchedulingParameters sched = getSchedulingParameters(); 
    System.out.println(sched); 
 
    if(me.setReleaseParametersIfFeasible(release)){ 
      int bound = 0; 
      int limit = 50; 
 
      while(true){ 
        do { 
          for(f=0.0; f < bound; f += 1.0); // Use some time 
          bound += 10000;// Use more next time 
          System.out.println("Ding! " + bound); 
          if(--limit <= 0) return; 
        } while(waitForNextPeriod()); 
        //Recover from miss or overrun 
        System.out.println("Scheduling error"); 
          bound -= 15000; 
        while(!waitForNextPeriod())//Eat errors 
          System.out.print("."); 
        System.out.println(); 
      } 
    } else 
      System.out.println("Load is not feasible"); 
  } 
} 

The RealtimeThread class provides two sets of methods to change scheduling parameters. One set of 
methods sets a parameter or set of parameters if the result is feasible; the other set alters the parameters 
without considering admission control. Table 12-4 compares the two sets. 

The multiple-parameter setIfFeasible methods atomically set several parameters that need admission 
control. This avoids race conditions in which a thread might get different sets of resources depending on 
execution sequences. 

There are other ways to update a thread's scheduling attributes, but they are not safe: 

• If a thread tries to add itself to feasibility with new properties, it may be represented twice. That 
would be disastrous. 

Table 12-4. Thread methods that change scheduling parameters 
Respects Admission Control Ignores Admission Control 
addIfFeasible addToFeasibility 
setIfFeasible with several different collections of 
parameters 
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setMemoryParametersIfFeasible setMemoryParameters 
setProcessingGroupParametersIf Feasible setProcessingGroupParameters
setReleaseParametersIfFeasible setReleaseParameters 
setSchedulingParametersIfFeasible setSchedulingParameters 

• Remove the thread from the feasible set with removeFromFeasibility, and add it back in 
with its new attributes with addIfFeasible. If the thread is successfully admitted, all is well. If 
the thread is not admitted, it might be possible to get back into the feasible set with the original 
scheduling attributes, but some other thread might have grabbed the resources. This mechanism is 
acceptable if going back to the original attributes would not have been acceptable in any case. 

Use changeIfFeasible() to update scheduling parameters, release parameters, and memory 
parameters. 

 
 

Periodic Threads with Handlers 

Periodic threads without async event handlers for overruns and missed deadlines are operating with 
incomplete information or control. Without handlers, the RTSJ runtime just returns false from 
waitForNextPeriod and makes the thread ready to schedule again. With async event handlers, the 
scheduler starts the appropriate event handler and does not run the periodic thread again until it is 
instructed to do so, as shown in Example 12-10. 

Example 12-11 is a simple example of an overrun handler. It is invoked when the scheduler detects that a 
thread has overrun the time it reserved. This handler is totally permissive about the overrun. It does not try 
to figure out why the thread used too much processor time. It just increases the thread's allowance and 
starts the thread running again. 

Example 12-10 Starting a periodic thread with handlers 

SchedulingParameters scheduling = 
  new PriorityParameters(PriorityScheduler.MIN_PRIORITY+10); 
ReleaseParameters release = 
  new PeriodicParameters( 
    new RelativeTime(),//Start at .start() 
    new RelativeTime(1000, 0), // 1 second period 
    null,  //cost 
    new RelativeTime(500,0),// deadline=period/2 
    new OverrunHandler(), 
    new MissHandler()); 
 
rt= new MyThread3(scheduling, release); 
rt.start(); 
try { 
  rt.join(); 
} catch(Exception e){}; 

Example 12-11 An adaptive overrun handler 

public class OverrunHandler extends AsyncEventHandler{ 
  public void handleAsyncEvent(){ 
    System.out.println("Overrun"); 
    ReleaseParameters rp = rt.getReleaseParameters(); 
    RelativeTime cost = rp.getCost(); 
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    rp.setCost(cost.add(1,0,cost)); 
    //  Mess with feasibility? 
    rt.schedulePeriodic(); 
  } 
} 

The last statement in the handler, rt.schedulePeriodic, is the most important statement in the 
handler. Before the scheduler calls an overrun handler, it effectively calls deschedulePeriodic. It 
cannot return from waitForNextPeriod again until someone calls its schedulePeriodic method. 
That statement causes the scheduler to allow the thread to be scheduled at its next period. 

This is just the skeleton of an adaptive overrun handler. A "real" one might do the following: 

• Try to find what problem made the thread overrun its time reservation. 
• Limit the amount it raises a thread's cost before it tries some other approach. 
• Handle the case in which feasibility analysis rejects an increased cost for the thread. 

Example 12-11 operates on the assumption that the periodic thread is fine. The scheduler should reserve it 
some more time and let it continue to run. 

There are three other general approaches: 

1. The load on the periodic thread is too heavy. The overrun handler should arrange to decrease the 
amount of work it has to do per period, then set it running again without changing its cost. 

2. There was some transient problem. The overrun handler should ignore the problem and try to get 
the thread running again in time to meet its deadline. 

3. The thread is in trouble. It may have a bug in it, and in any case there are other important things 
that need to be done. The overrun handler terminates the ailing thread (see Example 12-12 and 
Example 12-13). This procedure uses a mechanism called the asynchronously interrupted 
exception, which is covered in Chapter 17. 

Example 12-12 Sudden death overrun handler 

/**Define the AEH for overruns */ 
public static class OverrunHandler extends 
    AsyncEventHandler { 
  RealtimeThread th; 
 
  public void setThread(RealtimeThread th){ 
    this.th = th; 
  } 
 
  OverrunHandler(){ 
    super( 
      new PriorityParameters( 
        PriorityScheduler.MIN_PRIORITY+11), 
      null, null, null, null, null); 
  } 
 
  public void handleAsyncEvent(){ 
    System.out.println( 
      "Zapping thread that's over budget"); 
    th.interrupt();//Throw an AIE into the thread 
  } 
} 

Example 12-13 Periodic thread that interacts with the sudden death handler 
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  /**Define a RT thread that stops quickly in case 
    of an AIE. 
  */ 
  public static class PeriodicThread 
         extends RealtimeThread { 
    volatile double f; 
    public PeriodicThread(SchedulingParameters sched, 
         ReleaseParameters release){ 
      super(sched, release); 
    } 
 
    public void run() { 
      try { 
        doWork();//call an interruptible method 
      } catch (AsynchronouslyInterruptedException e){ 
        System.out.println("Thread dying"); 
        e.happened(true);//This isn't required 
              //this time but it's a good habbit 
      } 
    } 
 
    private void doWork() throws 
        AsynchronouslyInterruptedException { 
      int bound=0; 
 
      while(true){ 
        do { 
          // Use some time 
          for(f=0.0; f < bound; f += 1.0); 
          bound += 100000;// Use more next time 
          System.out.println("Ding! " + bound); 
        } while(waitForNextPeriod()); 
        //Recover from miss 
        System.out.println("Scheduling error"); 
        bound -= 150000; //Lighten load 
        while(!waitForNextPeriod())//Eat errors 
          System.out.print("."); 
        System.out.println(); 
      } 
    } 
  } 
    try { 
      rt.join();//Wait for the thread to end 
    } catch(Exception e){}; 
  } 
} 

The scheduler can detect an overrun without waiting for the thread to call a scheduler function. If the 
scheduler has overrun detection and enforcement, it is likely to preempt the thread in the middle of some 
computation loop, make it nonschedulable for the rest of the period, and start the overrun handler. Unless 
the overrun handler sends the thread an asynchronously interrupted exception, the thread will resume 
execution in its next period when its CPU budget is replenished as if it had just been preempted by a 
higher-priority thread. 

A deadline miss is similar to an overrun, and the supporting mechanism is identical. When the scheduler 
detects that the thread has missed its deadline, it makes the thread nonschedulable and fires its miss 
handler. The miss handler should take measures to deal with the missed deadline. If it wants the thread to 
resume execution, it should call the thread's schedulePeriodic method. 

The most important consideration for a miss handler is the deadline that was missed: 
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• For the hardest class of real-time system, the deadline is absolute. There is no way to recover from 
missing the deadline and no point in trying to do better next time. Missing the deadline was a 
catastrophe and that is all! Since "the world has ended," there is little point in even building a miss 
handler for this class of system. For super-hard real-time systems like these, there is little reason to 
even build a miss handler. 

• For many systems missing a deadline is bad, but not such a disaster that it is not worth trying to 
recover from and maybe prevent a recurrence. 

Handlers may lead to ungraceful degradation 

Miss and overrun handlers have a cost. They execute for some interval at a time when the 
system is already under stress. A well-designed overrun or miss handler will complete as 
quickly as possible. If it has more than a little work to do, it should try to divide the work it into 
a small part that runs in the handler and a larger part that runs in another lower-priority handler 
or under the supervision of a server. 

Missed deadline recoveries are completely application specific, but they fall into the broad classes: junk it, 
fix it, or apologize. A miss handler might relock database records for which the locks have expired. It 
might cause an assembly line to discard a part that was damaged because of the missed deadline. It might 
invoke missing packet routines for streaming media. It might dump some material out of a chemical 
reactor and start a new flow of ingredients to correct the balance of reagents. It might just display an 
apologetic message for the operator or log the failure. 

After the miss handler worries about the missed deadline, it should concern itself with the thread. First, it 
might see whether any thread suffered an overrun during this period. If one did, the thread with the overrun 
is a good place to start looking for a way to prevent the deadline from being missed again. 

Finally, the miss handler should decide on the disposition of the thread. It can choose among several 
strategies: 

1. Get the thread executing again as soon as possible by calling schedulePeriodic and returning 
from the miss handler. This may be a good strategy for systems in which the consequences of 
seriously missing a deadline are worse than the consequences of barely missing it. The problem 
with this strategy is that the scheduler did not count on any thread continuing to execute after its 
deadline. The time used to complete this computation may cause the system to miss other 
deadlines. 

2. Send the thread an asynchronously interrupted exception that causes it to abort the current 
computation, then use schedulePeriodic to reschedule it for the next period. This is a good 
strategy for systems in which a late result is worthless. By aborting the computation that is now 
too late, the miss handler minimizes the system degradation caused by the miss. 

3. If the deadline is not equal to the period, get it out of the way of other threads during the time it 
would normally be waiting, set a field that is visible to the thread to tell it that it missed a deadline, 
and then let it resume where it left off. 

Increment a field to tell the thread it missed a deadline. 
Reduce thread priority. 
SchedulePeriodic for the thread. 
Sleep until the next period start. 
Restore thread priority. 

If the missed deadline count is greater than 0, the thread needs to decrement it and skip 
waitForNextPeriod. 

This approach will let the thread complete the computation for the missed deadline as the first part 
of its computation for the next period. This strategy makes no special effort to reduce the 
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computations involved in completion of the late work, and it adds load to the next period. The 
additional load may cause the thread that misses one deadline to miss many deadlines in sequence 
as work keeps being deferred from one period to another. This is a strategy for deadlines that are 
more like recommendations. Its great advantage is that it largely prevents problems with one 
thread from impacting the performance of other threads. 

The passive approach to miss handling uses a deadline miss handler that deals with the consequences of 
the miss, then just releases the periodic thread, as shown in Example 12-14. It does not do anything to 
prevent the thread from missing again. 

Example 12-14 Passive miss handler 

import javax.realtime.*; 
 
/**Demonstrate a sudden-death overrun handler */ 
public class PassiveMissHdlr { 
  /**Define the passive AEH for Misses */ 
  public static class MissHdlr extends 
      AsyncEventHandler { 
    RealtimeThread th; 
 
    public void setThread(RealtimeThread th){ 
      this.th = th; 
    } 
 
    MissHdlr(){ 
      super( 
        new PriorityParameters( 
          PriorityScheduler.MIN_PRIORITY+11), 
        null, null, null, null, null); 
    } 
 
    public void handleAsyncEvent(){ 
      //First interact with whatever is bothered 
      //by us missing the deadline, 
 
      //then deal with the thread that missed 
      System.out.println("Recovering from a miss"); 
      th.schedulePeriodic();//Let the thread continue 
    } 
  } 
  /**Define a simple periodic RT thread */ 
  public static class PeriodicThread extends RealtimeThread { 
    volatile double f; 
    public PeriodicThread(SchedulingParameters sched, 
        ReleaseParameters release){ 
      super(sched, release); 
  } 
    public void run() { 
      int bound = 0; 
      for(int ctr = 0; ctr < 25; ++ctr){ 
        do { 
          for(f=0.0; f < bound; f += 1.0); // Use some time 
          bound += 100000; // Use more next time 
          System.out.println("Ding! " + bound); 
        } while(waitForNextPeriod()); 
        //Recover from miss 
        System.out.println("Scheduling error"); 
          bound -= 150000; 
        while(!waitForNextPeriod())//Eat errors 
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          System.out.print("."); 
        System.out.println(); 
      } 
    } 
  } 
 
  public static void main(String [] args){ 
    //Build parameters for construction 
    //of RT thread 
    MissHdlr missHdlr = new MissHdlr(); 
    ReleaseParameters release = 
      new PeriodicParameters( 
        new RelativeTime(), //Start at .start() 
        new RelativeTime(1000, 0), // 1 second period 
        null,  //cost 
        new RelativeTime(500,0),// deadline=period/2 
        null,  // no overrun handler 
        missHdlr); // miss handler 
    SchedulingParameters scheduling = 
      new PriorityParameters( 
        PriorityScheduler.MIN_PRIORITY+10); 
 
    RealtimeThread rt= new PeriodicThread(scheduling, 
        release); 
    //Give the miss handler a reference to 
    //the thread it is managing. 
    missHdlr.setThread(rt); 
 
    rt.start();//Start the periodic thread 

An aggressive miss handler needs to have a reference to the thread it is managing so it can call 
schedulePeriodic on the thread, and it needs a reference for an AIE that it can fire at the thread. 
Example 12-15 requires the application to pass those values to the AIE after the periodic thread is started. 

Example 12-15 Event handler for aggressive miss handling 

/**Define the AEH for overruns */ 
public static class MissHdlr extends 
    AsyncEventHandler { 
  AsynchronouslyInterruptedException aie; 
  RealtimeThread rtt; 
 
  public void setAIE( 
      AsynchronouslyInterruptedException aie){ 
    this.aie = aie; 
  } 
 
  public void setThread(RealtimeThread rtt){ 
    this.rtt = rtt; 
  } 
 
  MissHdlr(){ 
    super( 
      new PriorityParameters( 
        PriorityScheduler.MIN_PRIORITY+11), 
      null, null, null, null, null); 
  } 
 
  public void handleAsyncEvent(){ 
    //First manage the consequences of missing 
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    //the deadline 
    //... 
 
    System.out.println("Zapping missed computation"); 
    //Let the target thread go in case it is 
    //stuck in waitForNextPeriod() 
    rtt.schedulePeriodic(); 
    if(!aie.fire())//Throw an AIE into the thread 
      System.out.println("Fire returned false"); 
  } 
} 

The constructor for the miss handler gives this event handler higher priority than the thread it is controlling. 
(Yes, it would be better code if it didn't hard-code the literal value of the priority as it does.) 

The handleAsyncEvent method is the active part of the AEH. It contains a comment to represent the 
code that would try to ameliorate the damage caused by the missed deadline, then it makes the target 
thread schedulable in case the scheduler has already stopped it, and fires an async interrupt at it. 

Except for a little setup work, the body of this periodic thread is enclosed in a doInterruptible 
closure. 

The thread in Example 12-16 finds its miss handler (in its release parameters) and passes a reference to 
itself and its AIE to the miss handler. The miss handler will use those values to shake this thread loose 
from the scheduler and throw an exception that will cause the Interruptible object to return 
immediately. 

Example 12-16 is the aggressive approach to a missed deadline. "Stop doing the thing that missed its 
deadline." 

The bulk of the periodic thread activity is in the Interruptible class shown in Example 12-17. 

Example 12-16 Periodic thread for aggressive miss handling 

public static class PeriodicThread 
    extends RealtimeThread { 
  volatile MissHdlr missHdlr; 
 
  /** Constructor */ 
  public PeriodicThread(SchedulingParameters sched, 
      ReleaseParameters release){ 
    super(sched, release); 
    missHdlr = (MissHdlr)release. 
        getDeadlineMissHandler(); 
  } 
  /**Run method for the PeriodicThread */ 
  public void run() { 
    AsynchronouslyInterruptedException aie = 
      new AsynchronouslyInterruptedException(); 
 
    //Tell the miss handler about our AIE 
 
    aie.doInterruptible(new MyInterruptible()); 
  } 
} 

Example 12-17 Interruptible class for aggressive miss handling 
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/**This class is the executable body of the periodic 
  thread phrased as an Interruptible so it can be 
  used with doInterruptible. 
*/ 
public static class MyInterruptible 
    implements Interruptible { 
  public void run( 
      AsynchronouslyInterruptedException  e) 
    throws 
      AsynchronouslyInterruptedException { 
    int bound=0; 
    double f; 
    int ct = 0; 
    RealtimeThread rtt = 
      RealtimeThread.currentRealtimeThread(); 
 
    while(true){ 
      do { 
        if(++ct > 20) return; 
        for(f=0.0; f < bound; f += 1.0); 
        bound += 100000; 
        System.out.println("Ding! " + bound); 
        try{ 
          Thread.sleep(1); 
        } catch(Exception ie){ 
        } 
      } while(rtt.waitForNextPeriod()); 
      //Recover from overrun 
      //Miss never gets here because 
      //it causes an AIE 
      System.out.println("Overrun"); 
      bound -= 150000; 
      while(!rtt.waitForNextPeriod()) 
        //Eat errors 
        System.out.print("."); 
      System.out.println(); 
    } 
  } 
 
  public void interruptAction( 
      AsynchronouslyInterruptedException e){ 
    //Recover from missing the deadline 
    System.out.println("Recovering."); 
  } 
} 

It is the normal form for a periodic thread except for these two caveats: 

• The main loop does not expect to handle deadline misses. 
• The class has an interruptAction method that can share the job of recovering from the 

deadline miss with the miss handler 

 

Interactions with Normal Threads 

The RealtimeThread class is designed to work with threads from the Thread class, but the 
accommodation is somewhat one-sided. Ordinary threads can run without modification in a system 
containing real-time threads. Real-time threads that interact with ordinary threads will suffer performance 
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problems unless they take special care to decouple themselves from the performance of non-real-time 
threads. 

Ordinary threads have a far more limited range of priorities than do real-time threads, but the RTSJ 
requires priority boosting to operate on them. This means that an ordinary thread may find itself with a 
priority that is not conformant with the JLS. That should not ordinarily be a problem, but it is a small 
deviation from the RTSJ's intention to have no impact on ordinary threads. 

Real-time threads do everything ordinary threads do, and they provide good real-time behavior. New code 
for a real-time system should be written to use real-time threads even if the task has no real-time 
requirements. That way, if they interact with a real-time thread, they will be well behaved in the real-time 
sense. 

Four strategies can migrate a system with a large bulk of legacy Java code to a Java platform that 
implements the RTSJ: 

1. Ignore the real-time facilities. Some of the strengths of the real-time environment may leak 
through even though the RTSJ does not require any change in the behavior of ordinary threads. 

2. Use real-time threads for tasks with real-time requirements. Don't change the legacy code at all. 
The new real-time code must identify every place it might be blocked by a non-real-time thread. 
At these points it must consider the possible effect of boosting a non-real-time thread into the real-
time range. 

3. Use real-time threads for tasks with real-time requirements, and don't change the legacy code. 
Identify and avoid every place a real-time thread might be blocked by a non-real-time thread. This 
strategy is a prescription for two systems in one Java runtime. The real-time and non-real-time 
subsystems do not touch except for minor preemption delays and other overheads in the Java 
runtime and the supporting operating system. 

4. Convert all the legacy threads to real-time threads. If the legacy code was portable across the 
range of non-real-time Java runtimes, it should run in real-time threads. Even though the legacy 
code will never intentionally use any of the features of the real-time threads, they and all the other 
threads in the system will get the performance and scheduling guarantees of real-time threads. 

Nonblocking message queues (see Chapter 20) are designed for communication between different levels of 
real-time support: between real-time and non-real-time threads and between no-heap real-time threads (see 
Chapter 14) and anything else. They support limited interaction between threads without risking blocking 
or invoking a priority inversion avoidance protocol. 

 

Changing the Scheduler 

Today (2002) priority schedulers are the norm for real-time systems. A periodic scheduler with a notion of 
deadlines and feasibility might be tacked on the side, but even that much diversion from straight priority 
scheduling would be unusual. The scheduler situation is actually even less real-time than that. The RTSJ 
has taken criticism because its fairly strict definition of a fixed-priority preemptive scheduler is 
challenging for some "real-time operating systems," and very challenging for some operating systems that 
usually do not make claims about real-time performance. 

Given a goal of being implementable under every operating system or kernel that makes a reasonable 
claim of supporting real-time computing, the RTSJ requires as much as it can: a fixed-priority preemptive 
scheduler with 28 priorities (plus the 10 loosely defined priorities of the regular Java specification) and a 
periodic scheduling system that can be superimposed on that priority scheduler. If the RTSJ required a 
deadline scheduler, its implementation would require kernel work on any of the popular real-time 
platforms (such as VxWorks, OS-9, QNX, Neutrino, LynxOS, PSOS, and Linux). Instead, the RTSJ has 
scheduler APIs that are designed to accommodate dynamic priority scheduling algorithms. It even makes 
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an effort to anticipate scheduling paradigms that are unlike anything known today. The goal was to let 
OS/JVM vendors build new schedulers and make them accessible through the RTSJ APIs. 

Unfortunately, the RTSJ does not attempt to expose the interfaces that would let a programmer create a 
new scheduler. That is a job for someone with access to the internals of the JVM and the supporting 
system software. 

The JVM always starts with the default fixed-priority preemptive scheduler active, but any thread (subject 
to Java security restrictions) can change the scheduler. 

A special scheduler might be on the default class path, or you might know the full path and class name for 
the scheduler, but the general way to find a new scheduler is through the system properties, as shown in 
Example 12-18. 

Example 12-18 Finding a scheduler through system properties 

public static Scheduler findScheduler(String policy){ 
    String key = "javax.realtime.scheduler." + policy; 
    String className = System.getProperty(key); 
 
    if(className == null) 
        //  No system property for this scheduling policy 
        return null; 
 
    Class schedClass; 
    try { 
        schedClass = Class.forName(className); 
        if(schedClass == null) 
            //  The scheduler class was not found 
            return null; 
        else { 
            //  Get a reference for the scheduler's 
            //  instance() method. (with no parameters) 
            Method instance = 
                schedClass.getMethod("instance", null); 
            return (Scheduler)instance.invoke(null, null); 
        } 

The instance method in Scheduler is static, so it doesn't need an object parameter, and it takes no 
args, so the parameters for instance.invoke are null, null. 

The instance method in Scheduler will return a reference to a singleton instance of that class. 

The try clause around the code that (a) finds the Scheduler class, (b) finds the instance method in it, 
and (c) invokes the instance method can throw a large collection of exceptions. Most of them are 
various ways of saying that the class isn't there, you cannot see it, or it is not the sort of class you expected. 
For all of those, return null. 

The security exception is probably interesting to the caller, so the catch clause rethrows that. 

    } catch (ClassNotFoundException nF){ 
        //  Thrown by forName() 
        return null; 
    } catch (NoSuchMethodException nS) { 
        //  Thrown by getMethod. 
        //  This is a sign of a mal-formed Scheduler class 
        return null; 
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    } catch (SecurityException security) { 
        //  This is a runtime exception. 
        //  It is thrown by the security manager, perhaps 
        //  when it checked for our authority to load a 
        //  class. 
        throw security; 
    } catch (IllegalAccessException access){ 
        //  Thrown by forName method if the scheduler 
        //  class is not public, or by invoke() if the 
        //  method is inaccessible (which it should be.) 
        return null; 
    } catch (IllegalArgumentException arg) { 
        //  Since we don't pass arguments, and the 
        //  instance() method does not expect arguments 
        //  we should never get here. 
        return null; 
    } catch (InvocationTargetException target) { 
        //  Some exception was thrown by instance(). 
        //  That exception is wrapped by target. 
        //  instance() doesn't throw any checked exceptions 
        //  so we should never get here. 
        return null; 
    } 
} 

After finding a scheduling class, we need to tell a thread to place itself under the supervision of that 
scheduler, as in Example 12-19. 

If you happen to have a scheduler with the policy name LLaxity installed in your system, the code snippet 
in Example 12-19 does the following: 

1. Uses the findScheduler method from Example 12-18 to find the class, loads it, and gets a 
reference to the singleton instance of the least laxity scheduler. 

2. If the code found a least-laxity scheduler, it creates a thread with periodic parameters (which least 
laxity schedulers can use). 

3. Uses the setScheduler method on the real-time thread to change its scheduler from the system 
default to least laxity. 

4. Starts the thread. 

The above protocol changes the scheduler for a thread, and the static setDefaultScheduler 
method can change the default scheduler for all real-time threads created after the default is changed. 

Example 12-19 Changing Change the scheduler for a thread [6th line: scheduling 

Scheduler scheduler = FindScheduler.findScheduler("LLaxity"); 
if(scheduler == null){ 
  System.out.println("No least laxity scheduler was found"); 
} else { 
  RealtimeThread rtt = new RealtimeThread( 
    null,       //Default sceduling Parameters 
    new PeriodicParameters( 
      null,       // Begin running at start() 
      new RelativeTime(250,  0),//Period is 1/4 sec 
      new RelativeTime(25, 0),//Cost is 1/40 sec 
      new RelativeTime(200, 0),//Deadline is 1/5 sec 
      null,         //No overrun handler 
      null),        //No miss handler 
    null,       //Default memory parameters 
    null,       //Default memory area 
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    null,       //Default processing group 
    new Runnable (){//Logic 
      public void run() { 
        System.out.println("Running least laxity"); 
      } 
    }); 
  rtt.setScheduler(scheduler); 
  rtt.start(); 

There are some unresolved issues about pluggable schedulers, and they will stay unresolved until an actual 
alternative scheduler is available. 

The new scheduler must document how it will interact with other schedulers. It might be able to coexist 
with the standard priority scheduler or with other schedulers, or it might be disrupted by any threads that 
are not under its control. An alternate scheduler might be able to take control of a live thread, or it might 
insist on becoming the scheduler for a thread before it starts. 

The alternate scheduler might be as simple as a scheduler that subclasses the standard priority scheduler 
and adds feasibility analysis to a scheduler that provides promiscuous feasibility analysis. 

The final example in this chapter is a simple version of the preceding scheduler. It is a class that extends 
the trivial admission control in the reference implementation's scheduler to add very simple feasibility 
analysis. To keep the example simple, the scheduler in Example 12-20 naively assumes that the caller 
would never try to add a thread or async event handler more than once to feasibility analysis, would never 
change the attributes of a schedulable that was not already added, or would never remove a schedulable 
from feasibility analysis if it was not there. 

It is easy to write new Scheduler classes to provide different admission control policies, but remember 
that the scheduler does much more than admission control. It has hidden functions, many of them probably 
implemented as part of the JVM or the underlying operating system. Example 12-20 avoids real 
scheduling by just extending an existing scheduler. 

The synchronization of the methods in the class that manipulates the utilization is important. It keeps 
changes to the utilization instance variable atomic. It also locks the instance for the duration of the 
changeIfFeasable method. This prevents race conditions on manipulation of utilization. 

Example 12-20 Alternate scheduler class 

import javax.realtime.*; 
/** 
  * Extend an RTSJ default priority scheduler with 
  * admission control/feasibility services. 
  */ 
public class FPriorityScheduler extends PriorityScheduler{ 
 
     private double utilization = 0; 
     private final static String policy = 
      "PriortySchedulerWithFeasibility"; 
     private static FPriorityScheduler me = null; 
 
  /** 
   * The only constructor for this class is private. 
   * To get an instance of FPriorityScheduler use the 
   * instance method 
   */ 
   private FPriorityScheduler(){ 
       super.instance(); 
   } 
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   /** 
    * Add a schedulable (thread or AEH) to the feasible set. 
    * 
    * Warning, this method will happily add the same thread to the 
    * feasible set many times. 
    * 
    * Note, this class only tracks the total CPU consumption 
    * of all registered schedulable entities. 
    * 
    * @param s The schedulable (rt thread or AEH) to add to 
    * the feasible set. 
    */ 
    protected synchronized void addToFeasibility(Schedulable s){ 
        if(!check(s)) 
             return; 
         PeriodicParameters param = (PeriodicParameters) 
                 s.getReleaseParameters(); 
         RelativeTime cost = param.getCost(); 
         if (cost == null) 
             cost = param.getDeadline(); 
         utilization += calcUtilization(cost, param.getPeriod()); 
    } 
 
  /** 
   * Calculate the CPU utilization given cost and period. 
   * @param cost the cost of a schedulable 
   * @param period the period of the schedulable 
   * @return the CPU utilization for this schedulable 
   */ 
    private double calcUtilization(RelativeTime cost, 
                                RelativeTime period){ 
        double costMicros = (cost.getMilliseconds() * 1000.0) + 
                            (cost.getNanoseconds() / 1000.0); 
        double periodMicros = (period.getMilliseconds() * 1000.0) + 
                            (period.getNanoseconds() / 1000.0); 
        return costMicros / periodMicros; 
    } 
 
  /** 
   * Check a Schedulable's eligibility for admission control 
   * @param s The Schedulable to test 
   * @returnTrue if the schedulable is eligible 
   */ 
    private boolean check(Schedulable s){ 
        if(s.getReleaseParameters() instanceof PeriodicParameters){ 
             PeriodicParameters param = (PeriodicParameters) 
                     s.getReleaseParameters(); 
             if(!positive(param.getPeriod())) throw new 
                 IllegalArgumentException("period <= 0"); 
             if( param.getCost() == null && 
             param.getDeadline() == null) 
        return false; 
             return true; 
        } else 
            return false; 
    } 
 
     /** 
      * Return the name of the policy this scheduler implements. 
      * 



 128

      * @return The name of this policy 
      *         "Priority Scheduler with Feasibility" 
      */ 
 
      public java.lang.String getPolicyName(){ 
          return policy; 
      } 
      /** 
       * Return a reference to the singleton instance of this class. 
       * If the class has not yet been instanciated, construct it. 
       * 
       * @return A reference to an instance of class       * 
                         FPriorityScheduler 
       */ 
 
      public static PriorityScheduler instance() { 
          if(me == null) 
              me = new FPriorityScheduler(); 
          return me; 
      } 
      /** 
       * Return true if the set of schedulables that have been through 
       * addToFeasible, but not removeFromFeasible do not use more 
       * than 100% of CPU time 
       * 
       * @return True if the load is feasible, false otherwise 
      */ 
 
      public boolean isFeasible(){ 
          return utilization <= 1.0; 
      } 
 
      /** 
       * Change the scheduling attributes of the specified 
       * schedulable. 
       * 
       * 
       * WARNING: This method assumes that the schedulable entity is 
       * already feasible 
       * 
       * @param schedulable A reference to a rt thread or AEH that 
       *        should be changed 
       * @param release The release parameters that should be 
       *        tested for feasibility 
       * @param memory The memory parameters that should be 
       *        tested for feasibility 
       * @return true if the change is feasible, false otherwise 
       */ 
      public synchronized boolean changeIfFeasible( 
                      Schedulable schedulable, 
                      ReleaseParameters release, 
                      MemoryParameters memory){ 
          RelativeTime cost; 
          double oldUtil; 
          double newUtil; 
          if(!check(schedulable)) //  Check schedulable's attributes 
              return false;   //  Don't add ill-formed schedulables 
          if(release instanceof PeriodicParameters){ 
              PeriodicParameters param = (PeriodicParameters) 
                     schedulable.getReleaseParameters(); 
              cost = param.getCost(); 
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              if (cost == null) 
                  cost = param.getDeadline(); 
              oldUtil = calcUtilization(cost, param.getPeriod()); 
              param = (PeriodicParameters)release; 
              if(!positive(param.getPeriod())) throw new 
                  IllegalArgumentException("period <= 0"); 
 
              cost = param.getCost(); 
              if(cost == null) 
                  cost = param.getDeadline(); 
              newUtil = calcUtilization(cost, param.getPeriod()); 
              if(utilization + newUtil - oldUtil <= 1.0){ 
                  utilization += (newUtil - oldUtil); 
                  return true; 
              } else 
                  return false; 
          } else { // Not PeriodicParameters 
             throw new 
                 IllegalArgumentException( 
                         "release must be periodic"); 
          } 
      } 
      /** 
       * Remove the specified schedulable entity from 
       * feasibility analysis. 
       * 
       * WARNING: This method does not check that the schedulable is 
       * current in the feasible set. 
       * 
       * @param s A reference to a schedulable entity 
       */ 
      protected synchronized void removeFromFeasibility( 
         Schedulable s){ 
          if(!check(s)) 
              return; 
          PeriodicParameters param = (PeriodicParameters) 
                  s.getReleaseParameters(); 
          RelativeTime cost = param.getCost(); 
          if (cost == null) 
              cost = param.getDeadline(); 
          utilization -= calcUtilization(cost, param.getPeriod()); 
      } 
 
    /** Test for relative time greater than 0 
     *@param t RelativeTime value 
     *@return true iff time > 0 
     */ 
 
    private boolean positive(RelativeTime t){ 
      if(t.getMilliseconds() == 0) 
        return t.getNanoseconds() > 0; 
      else 
        return t.getMilliseconds() > 0; 
    } 
 
    /** main method to test this class */ 
    static public void main(String [] args){ 
      //**start** 
      RealtimeThread rtt = new RealtimeThread( 
        null,        //Default scheduling Parameters 
        new PeriodicParameters( 
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          null,      // Begin running at start() 
          new RelativeTime(250, 0), //Period is 1/4 sec 
          new RelativeTime(25, 0), //Cost is 1/40 sec 
          new RelativeTime(200, 0), //Deadline is 1/5 sec 
          null,      //No overrun handler 
          null),     //No miss handler 
          null,      //Default memory parameters 
          null,      //Default memory area 
          null,      //Default processing group 
          new Runnable (){//Logic 
            public void run() { 
              System.out.println("Running " + 
                RealtimeThread.currentRealtimeThread(). 
                  getScheduler().getPolicyName()); 
            } 
          }); 
        rtt.setScheduler(FPriorityScheduler.instance()); 
        rtt.start(); 
        try{ 
          rtt.join(); 
        } catch(Exception e) {} 
    } 
} 
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Garbage collection is terrible for real-time systems. Most garbage collectors cause the system to stop and 
collect garbage at hard-to-predict intervals. Others have other bad habits. Someone may come up with a 
completely satisfactory technique for real-time garbage collection, but the Real Time Java Expert Group 
went with the conservative engineering approach and did not call for magical real-time garbage collection. 
Instead, the RTSJ depends on two observations: code that does not create garbage will not cause "demand" 
garbage collection, and code that does not reference objects in the heap can preempt the garbage collector 
with no regard for normal garbage collector preemption issues. 

Allocation of objects that are not garbage collected is the topic of this chapter. Threads that permit instant 
preemption of the garbage collector because they avoid objects that are subject to garbage collection are 
covered in Chapter 14. 

 

The Advantage of Non-Heap Memory 

No competent JVM would let background garbage collection interrupt an application thread. Only demand 
garbage collection, which takes place when new cannot find enough memory, might run while application 
threads are ready to run. 

A Java application will avoid garbage collection delays in its real-time section if background garbage 
collection is disabled and if the application is structured to complete all object creation from the heap 
before it starts running real-time code. That goes a long way toward giving the application real-time 
performance, and it can be done on any JVM, but it is awkward. The Java language is not designed to work 
well without creating objects. The RTSJ's non-heap memory classes can be a little tricky to use, but they 
let programmers control garbage collection delays by allocating objects without using the heap. 

Figure 13-1. Execution with a real-time phase 
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The Allocation Regimes 

The RTSJ defines two new types of memory that are free from garbage collection: 

• Immortal memory— Contains objects that will never be garbage collected or defragmented (or 
freed.) The RTSJ platform uses immortal memory for various objects, and immortal memory is 
also shared among all threads. The only disadvantage of immortal memory is that objects in it are 
immortal. It should be used only for objects that actually are immortal—that will remain in use 
until the JVM terminates. 

• Scoped memory— Has a defined lifetime. Objects allocated from a memory scope will stay 
allocated until the scope is no longer active. At that time, all the objects in the scope can be freed. 

And the RTSJ continues support for the normal types of Java memory: 

• Heap memory— Garbage-collected at essentially unpredictable intervals. The runtime 
environment guarantees that heap memory will never free an object until it can no longer be 
reached. The heap may also be compacted from time to time. This process moves objects around 
to coalesce free memory. 

• Local variables— Allocated when control enters a method and freed when control leaves the 
method. The Java programming language does not allow objects to be stored in this type of 
memory. 

During intervals when a thread allocates only from immortal and scoped memory, it will not cause demand 
garbage collection. This greatly reduces the impact of garbage collection on that thread, as outlined below: 

• The thread may be delayed while demand garbage collection caused by a lower-priority thread is 
preempted. The worst-case value for this preemption delay is available from the garbage collector: 

• RealtimeSystem.currentGC().getPreemptionLatency() 
• If the thread waits for a lock held by a thread that is currently executing demand garbage 

collection, the normal priority boosting algorithm will operate, but nevertheless the garbage 
collection will complete before the lock is released. 

• Any higher-priority thread that is executing demand garbage collection or that is blocked by a 
thread executing demand garbage collection will affect the execution of lower-priority threads. 
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• If the threads are under the control of a dynamic priority scheduler, interactions between threads 
will be documented for that particular scheduler, but the impact of garbage collection on a thread 
that does not allocate from the heap will be limited. 

Combining the disciplined scheduling of real-time threads with non-heap allocation domains gives 
sufficiently deterministic execution to meet the needs of many real-time applications. 

 

Rules 

The JVM has to enforce certain rules to keep the new types of memory from breaking the garbage 
collector's commitment not to leave bad pointers. The underlying rule is that a reference variable cannot 
contain a reference to an object that can be freed before the reference variable. This rule is enforced by the 
JVM. Table 13-1 summarizes the assignment rules. 

Table 13-1. Assignment rules 
  Reference to Heap  Reference to Immortal  Reference to Scoped  

Heap  Yes  Yes  No  
Immortal  Yes  Yes  No  
Scoped  Yes  Yes  "Available" scopes  
Local variable  Yes  Yes  "Available" scopes  

If it must, the JVM can enforce the assignment rules when it executes the bytecode instructions that store 
object references, but since that enforcement slows execution of the JVM, a quality implementation, when 
it loads a class, will make every effort to verify that each operation which stores a reference abides by the 
assignment rules; or perhaps a trusted compiler could verify the correctness of many assignments. If the 
Java runtime catches an assignment that violates a rule in Table 13-1, it throws an 
IllegalAssignmentError. 

Table 13-1 shows that the RTSJ permits references to objects in heap or immortal memory to be stored in 
any class of memory. The garbage collector ensures that objects in the heap always survive at least as long 
as references to those objects. Since objects in immortal memory last as long as the application, no 
reference to an object in immortal memory will ever become invalid. 

References to scoped memory are not always permitted. Objects in immortal memory or the heap can 
never point to objects in a scope. Objects in a scope are freed when the scope is no longer active. If an 
object in the heap or in immortal memory contained a reference to an object in a scope, that reference 
would become invalid and one of the Java environment's basic guarantees would be violated. 

A scope can always contain objects with references that refer to other objects in that scope. The lifetime of 
those objects is the same, so references between them are always safe. Objects in scopes can also contain 
references to other scopes that the JVM knows will have a lifetime at least as long as the reference. This is 
discussed in more depth in "Mechanisms for Allocating from Scoped Memory" on page 184. 

References to objects are a primitive data type in the Java language and can be stored in local variables. 
Local variables can hold references to objects in a scope that the JVM knows will live longer than the 
references. 

Assignment rules cannot be fully enforced by the compiler. Some violations must be 
detected at runtime. 
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Mechanisms for Allocating Immortal Memory 

The RTSJ supports five mechanisms for allocating objects in immortal memory: 

• implicit. The Java runtime environment may determine that an object must be unexceptionally 
referenceable from anywhere. It turns out that only immortal memory meets that requirement. A 
high-quality implementation of the RTSJ may employ a "trick"—like memory objects that are 
supervised by a special reference-counting garbage collector—to handle some of these objects, but 
they must behave as if they were immortal. 

• newInstance. Any thread can get a reference to the immortal memory object and use its 
newInstance methods to allocate memory. This is a good technique for code that wants to 
allocate just one immortal object. It may be the best technique for all immortal allocation since it 
is a bit long-winded and makes it perfectly clear that a particular allocation is from immortal 
memory. In Example 13-1, immortal memory's newInstance method is used to create an 
exception object in immortal memory. 

Example 13-1 Creating an immortal object using newInstance 

try{ 
   e =  (IllegalArgumentException) 
     ImmortalMemory.instance().newInstance( 
      IllegalArgumentException.class); 
} catch (IllegalAccessException access) { 
  System.out.println(access); 
} catch (InstantiationException instant){ 
  System.out.println(instant); 
} 

The form of newInstance method in Example 13-1 is used with no-arg constructors for the 
objects it creates. For objects that can be created and then configured, this limitation is at worst an 
inconvenience. Another form of newInstance uses reflection and can use constructors that have 
arguments, as coded in Example 13-2. 

Example 13-2 Creating an object by using newInstance and reflection 

try{ 
   Class [] paramTypes = new Class[1]; 
   paramTypes[0] = Class.forName("java.lang.String"); 
   Class cType = Class.forName("java.lang.Integer"); 
   Constructor constructor = cType.getConstructor(paramTypes); 
   Object [] params = new Object[1]; 
   params[0] = new String("314159"); 
   n = (Integer)ImmortalMemory.instance().newInstance( 
     constructor, params); 
 
} catch (IllegalAccessException access) { 
  System.out.println(access); 
} catch (InstantiationException instant){ 
  System.out.println(instant); 
} catch (ClassNotFoundException cnf){ 
  System.out.println(cnf); 
} catch (NoSuchMethodException nsm) { 
  System.out.println(nsm); 
} 

• newArray. This method allocates an array of objects, as shown in Example 13-3. It accepts the 
type of object that will populate the array, but it does not allocate the members. 
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Example 13-3 Creating an array of objects with using newArray 

try{ 
  aeh =  (AsyncEventHandler []) 
    ImmortalMemory.instance().newArray( 
      AsyncEventHandler.class, 10); 
} catch (IllegalAccessException access) { 
  System.out.println(access); 
} catch (InstantiationException instant){ 
  System.out.println(instant); 
} 

• enter. The enter method of the immortal memory object lets a thread temporarily make 
immortal memory the default for all its allocation, as shown in Example 13-4. 

The new exception created in the run method and assigned to e is immortal. 

Example 13-4 Creating an immortal object with using enter 

ImmortalMemory.instance().enter( 
  new Runnable() { 
    public void run(){ 
      // In this scope immortal is the default for 
      // memory allocation 
      o = new Object(); // This Object is immortal 
    } 
  } 
); 

Specifying a new default memory allocation area is one of the primary uses of the closure concept 
introduced in Chapter 9. You can see how a new kind of bracketing would have been a nice way 
to define a section of code that should use immortal memory, but the closure is almost as easy to 
read and it did not require language changes. 

• New thread. A real-time thread's initial default memory allocation area can be specified when the 
thread is constructed. If ImmortalMemory.instance is used as the area parameter to the 
RealtimeThread or NoHeapRealtimeThread class (see Example 13-5), that thread will 
make all allocations from immortal memory unless the thread uses newInstance or enter to 
allocate memory from a different area. 

Example 13-5 Creating a thread that will default to immortal memory 

Runnable logic = new Runnable(){ 
  Object  o; 
  public void run() { 
    o = new Object(); 
  } 
}; 
 
RealtimeThread rt= new RealtimeThread(null, null, null, 
     // This starts the thread in immortal 
     ImmortalMemory.instance(), 
     null, logic); 
rt.start(); 
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• executeInArea. This method is called like enter and works similarly, but it has a different 
interaction with the way other memory scopes can be entered. (See "Using executeInArea" on 
page 202.) 

In most cases, objects in immortal memory should be allocated when an application is initialized. If an 
application creates objects in immortal memory as it runs, it is difficult to know in advance just how much 
immortal memory will be required to run the application. The likely consequence is that the application 
will run out of immortal memory and die. 

Ideally, the design of an application should include a list of the objects that must reside in immortal 
memory. These can be created when an application is initializing itself, and programmers can subsequently 
forget that there is any way to create immortal objects. Unfortunately, immortal objects are extremely 
convenient. It is most likely that developers will frequently discover "one more" object that should be in 
immortal memory. When possible, these new additions to immortal memory should be added to the set that 
is created at initialization time, not allocated as they are needed. 

 

Mechanisms for Allocating from Scoped Memory 

Scoped memory might be called "temporary immortal" memory. It is never garbage collected, but it has a 
limited lifetime—as long as any thread has access to it. The four types of scoped memory are summarized 
in Table 13-2: 

Table 13-2. Types of scoped memory 
Allocation Time  Name  
Linear  LTMemory  
Linear  LTPhysicalMemory  
Variable  VTMemory  
Variable  VTPhysicalMemory  

Chapter 18 shows how memory can be allocated from particular areas of physical memory. Physical 
memory is mentioned in Table 13-2, but for the purposes of this chapter, it is equivalent to its nonphysical 
analog. 

Allocation Time 

Since objects in scoped memory are all freed together, the algorithm for allocation can be simple. 

Algorithm 13–1 is a constant time algorithm, and a fast one. It is approximately the algorithm you will 
usually find supporting the LTMemory class. The class is called LTMemory (representing linear time 
allocation memory) instead of CTMemory (for constant time allocation memory) because after the memory 
for an object is allocated, the JVM is required to initialize the object. At a minimum, the object is 
initialized to constant values, so the total time to allocate the object is the constant time to get the memory 
plus an amount of time that depends on the size of the object (or is linear in the size of the object) to 
initialize it. Thus, it is called linear time memory. Since the worst-case time to create an object cannot be 
faster than some constant times the size of the object, the constant time memory allocation algorithm in 
Algorithm 13–1 could be replaced with anything up to an algorithm that takes time proportional to the size 
of the object being allocated. 

Algorithm 13–1 Constant-time allocation pseudocode 
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static long * nextPtr; 
static long * endPtr; 
 
long * ctAllocate(const int longs){ 
  nextPtr += longs;   
  if(nextPtr > endPtr)     
    return null; // Out of memory   
  else    
    return nextPtr;} 

If an implementer can think of some clever way to use the extra time, the RTSJ permits such use. 

A possible class of advanced memory allocation algorithm for LTMemory would let the 
memory area span several extents. That This would make the area easier to allocate in a system 
with fragmented memory and expanding. It would make it easier to expand the memory area if 
it overflowed would also be easier. In the worst case, the memory allocator would have to 
attempt allocation from each extent. That would make allocation time depend on the number of 
extents. 

The allocation algorithm could afford to check a number of extents— that was aa fixed multiple 
of the number of bytes it was asked it to allocate—before the cost of finding memory would 
dominate the cost of initializing memory. 

The time it takes to create an object in LTMemory is easily predictable (and will always be nearly the same 
unless the implementation gets very fancy), and although a new from LTMemory will fail if that memory 
area is exhausted, allocation from LTMemory will never provoke garbage collection. These properties 
make LTMemory an attractive place to allocate new objects when predictable performance is an issue. 

VTMemory is permitted to take any amount of time. This allows the RTSJ implementation to use any 
algorithm to manage the free memory. The implementation might choose to use this freedom to support 
VTMemory with a C malloc function. The malloc function usually takes time proportional to the 
amount of memory managed by malloc or (if malloc uses a buddy allocator) to the log of that size. The 
supporting code for this type of VTMemory implementation would allocate memory for each new object by 
using malloc and would maintain a linked list of the objects in a memory. When the scoped memory area 
became inactive, the code supporting VTMemory would walk the linked list, using the C free function to 
return each block of memory to the free pool. 

It might be possible to implement a garbage collection service in VTMemory areas that would take 
advantage of the assignment rules to run faster than standard garbage collectors. Nothing in the RTSJ 
would prevent an implementation from doing that, provided that garbage collection delays were only 
visible during allocation of new objects from the scope. 

The RTSJ does not specify any advantages that VTMemory has over LTMemory, so a designer cannot 
assume that VTMemory will be anything more than a wrapper that gives LTMemory a different name. Still, 
when an application does not need the strong object-creation performance guarantee of LTMemory, it can 
use VTMemory and give the implementation a chance to use memory more efficiently, or it can do 
whatever the RTSJ implementation chose to do with the additional freedom granted by VTMemory. 

Creating Scoped Memory 

Before a scoped memory can be used, it must be created. 

LTMemory mem = new LTMemory(1024*16, 1024*16); 
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creates a 16kilobyte memory area object named mem. 

You can create scoped memory any time with a normal new statement. The memory area object is a 
normal object, but the allocatable memory associated with the object is allocated in a special area (perhaps 
directly allocated by the JVM with malloc), so the memory used for the scope does not carry implicit 
reference restrictions. 

Where scoped memory is allocated and when it is freed 

The RTSJ requires that the memory represented by a scoped memory area "not exist on the Java 
heap, and is not subject to garbage collection." 

The scoped memory area object itself is a normal object. It can be stored in heap, immortal, or 
scoped memory. 

The integrity of the Java environment requires that the memory represented by the scoped 
memory cannot may not be freed until it contains no accessible objects and the corresponding 
memory area object is eligible to be freed. 

The constructor for scoped memory passes the initial size and maximum size of the area. In the standard 
Java environment, the size of objects is not specified and cannot even be determined without violating the 
spirit of the language. The RTSJ lets you determine the size of an object fairly easily (with 
memoryConsumed), but it does not specify the size of objects, so the size required for a given set of 
objects cannot be calculated in advance. Constant values for the initial and maximum size will work, but 
they have to be tested on each new Java platform. Alternatively, the SizeEstimator class can be used 
as a portable way to size a memory area to fit a particular mix of objects, as shown in Example 13-6. 

Example 13-6 Using SizeEstimator to set the size of a memory area 

SizeEstimator sizeEst = new SizeEstimator(); 
 
// Reserve space for four realtime thread objects 
sizeEst.reserve(RealtimeThread.class, 4); 
// and space for an Integer 
sizeEst.reserve(Integer.class, 1); 
// and a RawMemoryAccess object  sizeEst.reserve(RawMemoryAccess.class, 1); 
LTMemory mem = new LTMemory(sizeEst, sizeEst); 
System.out.println("Memory in scope " + mem.memoryRemaining()); 
// Add another rt thread  sizeEst.reserve(RealtimeThread.class, 1); 
mem = new LTMemory(sizeEst, sizeEst); 
// And see how much more memory it wants 
System.out.println("Memory in scope " + mem.memoryRemaining()); 

A scoped memory area need not be contiguous, but the memory allocated for its initial size must behave 
contiguous. If you can ever fit a set of objects into a scoped memory area, those objects will always fit. An 
interesting test object for this rule is an object that completely fills the memory scope when it is contiguous. 
If you can fit a 16-kilobyte object in a 16-kilobyte scoped memory area, the area is contiguous enough for 
practical purposes. 

The maximumSize property of LTMemory and VTMemory is for optimists. If an implementation of the 
RTSJ succeeds in creating a memory scope, it cannot fail to provide the initial size of the memory scope 
for subsequent uses of the scope. It is not obliged to do anything particular about memory beyond the 
initial size. It need not allocate memory beyond the initial allowance, and if it does honor requests beyond 
the initial memory, it need not use contiguous memory. It can also take unoccupied memory beyond the 
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initial size away from a memory area. That means that a memory scope might successfully expand to 100 
kilobytes, then fail to hold 50 kilobytes when it becomes inactive and is reused milliseconds later. 

Testing MemoryArea size 

A typical requirement would direct that a memory scope be able to hold a certain mix of objects 
with a specified safety margin. A configuration section of the application is required to find the 
required size. It would create a MemoryArea that is clearly oversized and allocate the mix of 
objects into it, then use the memoryConsumed method to find the exact amount of memory used 
for those objects. 

The above method is not portable, since objects could use different amounts of memory in 
different execution environments. The application could benchmark memory requirements at 
runtime, but it is easier and automatically portable to use SizeEstimator. The SizeEstimator 
class does not guarantee a tight fit. Since it does not know the order of allocation, it has to 
assume worst-case padding for allocation and other variables. Still, it is a portable way to 
estimate memory requirements and far better than testing a guess on a few machines and 
shipping the application. 

Variable-sized memory scopes could be used in situations in which the application can benefit from extra 
memory in a scope but can easily tolerate OutOfMemoryError. 

Allocation Mechanisms 

There is an important distinction between allocating a scoped memory object and allocating an object from 
a scoped memory object. The scoped memory object is an object of some class derived from 
ScopedMemory. One or more pointers to memory are hidden somewhere in the invisible implementation 
part of the object. This hidden memory is the memory associated with the object. It can be used to store 
objects that are allocated in that scoped memory. 

The RTSJ supports four mechanisms for allocating objects in scoped memory: 

• newInstance— The newInstance and newArray methods from MemoryArea allocate 
objects from some memory area other than the current scope. You can allocate from any memory 
area you can access, but you cannot store the object reference that is returned from 
newInstance except in fields that meet the restrictions in Table 13-1. Heap and immortal 
memory cannot hold references to objects in scoped memory. Scoped memory can hold references 
to scoped memory, but only to objects in scopes with longer lifetimes. 

You can use newInstance or newArray to create an object in the heap, in immortal memory, 
or in a surrounding scope. You can store a reference to that object in the current scoped memory 
area. References to heap or immortal objects can also be stored in outer scopes. References to 
scoped memory objects can be stored in any scope from the current scope to the one that contains 
the object. 

• enter— When a thread calls a memory area's enter method, the default allocation context for 
that thread switches to that memory area; it changes back when control returns from the enter 
method. 

Example 13-7 shows a way to use scoped memory that looks too elegant to be wrong. It works, 
but it looks like the new Runnable will be creating an object in mem. It will not. The Runnable 
is constructed before enter moves the allocation context into mem. This code snippet will create 
a new Runnable object every time around the loop, and the new objects will not be automatically 
freed each time around the loop. This is a subtle memory leak. 
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Example 13-7 Do not use this pattern; use enter in a loop 

mem = new LTMemory(8*1024, 8*1024); 
 
for(int i = 0; i < this.args.length; ++i){ 
  final int j = i; 
  // The Runnable allocated in the next 
  // line does not come from mem.  One is 
  // allocated every time around the loop 
  // and there is nothing here to free them. 
  mem.enter(new Runnable() { 
    public void run() { 
      Integer n = Integer.valueOf(args[j]); 
      intArgs[j] = n.intValue(); 
     } 
  }); 
  System.out.println(intArgs[i]); 
} 

Example 13-8 demonstrates a better way to use scoped memory in a loop. It shows a simple application of 
a nested scope. Each time around the for loop, control calls mem.'s enter method. New objects allocated in 
the run method come from mem. Each time control returns from enter, the implementation can free any 
objects allocated in mem. This loop can run forever without using up heap memory (and forcing garbage 
collection). 

Example 13-8 is not as easy to read as Example 13-7, but it creates only one Runnable to use in the loop. 

Example 13-8 A better pattern for using enter in a loop 

class Action implements Runnable{ 
  int j; 
  public void run() { 
    Integer n = Integer.valueOf(args[j]); 
    intArgs[j] = n.intValue(); 
  } 
} 
mem = new LTMemory(8*1024, 8*1024); 
Action  action = new Action(); 
 
for(int i = 0; i < this.args.length; ++i){ 
  action.j = i; 
  mem.enter(action); 
  System.out.println(intArgs[i]); 
} 

Example 13-9 is almost the same as Example 13-8, but it associates the Runnable with the memory when 
it constructs the memory area. 

Example 13-9 Another good pattern for using enter in a loop 

class Action implements Runnable{ 
  int j; 
  public void run() { 
    Integer n = Integer.valueOf(args[j]); 
    intArgs[j] = n.intValue(); 
    } 
} 
// Give  mem a Runnable when we create it. 
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Action action = new Action(); 
mem = new LTMemory(8*1024, 8*1024, action); 
 
for(int i = 0; i < this.args.length; ++i){ 
  action.j = i; 
  mem.enter(); 
  System.out.println(intArgs[i]); 
} 

• New thread — Passing a scoped memory area to a new thread will let that new thread start 
operation with the memory scope as its default memory area. This is critical for the no-heap real-
time threads that are discussed in Chapter 14 since those threads are not allowed to touch heap 
memory under any circumstances. Example 13-10 creates an LTMemory area with an initial and 
maximum size of 16K. 

Example 13-10 Shared memory scope 

LTMemory mem = new LTMemory(1024*16, 1024*16); 
System.out.println("Memory used in fresh area = " + 
  mem.memoryConsumed()); 
 
RealtimeThread 
  rt= new RealtimeThread(null, null, null, 
    mem, // The new thread will use LT Memory 
    null, 
    new MyThread()); 
System.out.println("Mem used after new thread = " + 
  mem.memoryConsumed()); 
rt.start(); 

The code in Example 13-10 prints the amount of consumed memory—0. It then creates a new 
real-time thread that will use the LTMemory area and again checks the memory consumed—0. 
Then it starts the new thread. The new thread creates an array of 100 Integer objects. 

public void run() { 
  System.out.println("Running in a scope!"); 
  Integer [] x = new Integer[100];// Use a lot of memory 
} 

After the new thread exits, we find that 444 bytes have been used in the LTMemory scope. The 
reference implementation is so coded that the scope is not cleared until it is about to be reused, so 
it continues to show 444 bytes used until the scope is passed to another real-time thread or until 
the thread calls the scope's enter method. 

• executeInArea— The executeInArea method is called like enter and works similarly, but 
it has a different interaction with the way other memory scopes can be entered. (See "Using 
executeInArea" on page 202.) 

Finalizers 

Finalizers for objects allocated in a memory scope run when those objects are freed. That can happen any 
time between the moment the memory scope becomes inactive (the reference count for the scope goes to 
zero) and the moment the scope is reentered or passed to another thread. 

If the memory scope is not reused, the finalizers for objects in the scope will run no later than the time at 
which the memory area itself is freed, as follows: 
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• If the scope object is immortal, that is no sooner than the end of the application. 
• If the scope object is in a scope, the timing is dictated by the lifetime of the enclosing scope. 
• If the scope object is on the heap, the finalizers will run no later than the time the scope object is 

garbage collected. 

The finalizer for an object will run in the memory area in which the object was created. 

 

Using Nested Scoped Memory 

A scoped memory area is activated for allocation by its enter method and becomes inactive when the 
enter method returns. When it is used this way, the scoped memory is a nested scope. 

Assignment rules (see Table 13-1) are governed by what behaves like a stack of nested memory areas. 

You can nest memory areas any way you like provided that they follow the single parent rule. The scope's 
enter method throws a ScopedCycleException if it is called on a memory area that any thread has 
already entered from a different scope. 

In its full complexity, supporting the single parent rule and the assignment rules require two types of data 
structures: a directed acyclic graph (DAG) shared by the all threads and a tree per thread. 

The Scope Stack (Tree) 

When a real-time thread is created, the constructor initializes its scope stack, as follows: 

• If the thread is constructed in scoped memory, its initial scope stack will contain a copy of the 
parent thread's scope stack at the time the child thread was constructed. 

• If the thread is constructed in heap memory, its scope stack will initially contain only heap 
memory. 

• If the thread is constructed in immortal memory, its scope stack will initially contain only 
immortal memory. 

If the thread's initial memory area (as specified in its constructor) is not already the current scope on the 
child's scope stack, the thread constructor will add it to the scope stack, following the same rules as it 
would if the child thread had entered the memory area. 

This gives each real-time thread a scope stack that the implementation uses to enforce the assignment rules. 
The implementation can access the scope stack with a collection of static methods on RealTimeThread: 

• getMemoryAreaStackDepth— Returns the size of the current thread's scope stack. 
• getOuterMemoryArea(int index)— Treats the scope stack like an array. The stack grows 

in the direction of higher indexes, so scope stack entries remain at fixed indexes as the stack grows 
and shrinks. 

• getCurrentMemoryArea— This returns the memory area that is the current allocation context. 
It works the same as getOuterMemoryArea(getMemoryAreaStackDepth() -1) 

• getInitialMemoryAreaIndex— A thread's initial memory index is the marker between 
scopes that the thread has pushed on the stack with enter and scopes that it inherited from its 
parent. This method returns the index of the current thread's stack's initial memory area in its 
scope stack.  
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One static method in MemoryArea also affects a thread's scope stack. The scope stack is actually a scope 
tree because of the executeInArea method on the MemoryArea class. The stack turns into a tree if the 
code executed by executeInArea calls enter on a memory area other than the one from which the 
thread originally entered. (See "Using executeInArea" on page 202.) 

The DAG 

The single-parent rule prevents reference cycles between memory areas, and it prevents stale references in 
memory areas. 

The single-parent rule 

Background 

Every scoped memory area that can be found on any thread's scope stack is also represented in 
the scoped memory DAG. 

The root of the scoped memory DAG is called the primordial scope. It represents heap and 
immortal memory. (And is the only node in the DAG that does not represent scoped memory.) 

A scoped memory area's parent is either the next scoped memory up a thread's scope stack or 
the primordial node if there is no scoped memory above it on the scope stack. 

The rule 

Every scoped memory node in the scoped memory DAG has one parent. 

The primordial node has no parent. 

Many less restrictive rules were proposed—insisting that the graph be a DAG was one proposal—but they 
all permitted situations that could leave a memory area containing stale references to objects in another 
area that had been freed. 

Simple Cycles. The assignment rules become ambiguous if the scoped memory graph contains cycles. 
Imposing rules on the scope stack does not help; it only makes the problem require more than one thread. 
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The illustration shows fragments of the two scope stacks and a scoped memory graph. T1 entered memory 
area D, then C, then A. Thread T2 entered B, then A, then D. The resulting graph is shown. Note that there 
is a cycle in the scoped memory graph even though no cycle is visible in either thread's scope stack. 

The problem is that the assignment rules for thread T1 will let it store references to memory area A in area 
D. If both threads now leave two scopes, objects in memory area A can be freed even though memory area 
D still contains references to those objects. This would violate "referential integrity." That must not be 
permitted. 

 



 145

 

 

DAG Is Not Enough. Forbidding cycles in the scoped memory graph (thus, a DAG) would seem to be 
enough to prevent bad references, but it is not. Pratik Solanki (part of the TimeSys reference 
implementation team) invented Pratik's problem, a way that two threads could cooperate to generate a 
reference problem even if the reference graph were required to be a DAG. 

This scoped memory graph contains no cycles, but it still generates a problem with referential integrity. 
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Let thread T1 create X in memory area C and save a reference to it in memory area A. This is legal. Now 
let T1 leave scopes A and C. The implementation is permitted to free objects in C since the memory area is 
not currently in use. (It must free the objects before C is reused, so if you want to make certain that there is 
trouble, have thread T1 reenter C.) Now thread T2 is using memory area A, which contains an invalid 
reference to X. 

But the reference to X is unreachable 

No it's not. Scoped memory areas have a device called a portal that lets which is used to let any 
thread that has access to the scope also have access to selected objects allocated in the scope. 
Thread T1 could have made X accessible through the portal. 

The Single-Parent Rule Is Enough. The single-parent rule is much more restrictive than the requirement 
that the graph be a DAG. In fact, a graph that obeys the single-parent rule is a tree with each scoped 
memory area represented at most once in the tree. It forces every thread that uses a memory area to give it 
exactly the same scoped memory parentage as any other thread. This may be more restrictive than 
necessary, but it certainly rules out any reference problems caused by threads that use memory areas in 
different reference environments. 

Heap and Immortal Are Wild Cards. Except for the primordial scope, heap and immortal memory are not 
represented in the scoped memory graph. That means that entry to heap or immortal memory is invisible to 
the single-parent rule. 
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1. A thread can always enter heap or immortal memory. 
2. A thread can enter any scope from heap or immortal memory that it could have entered from the 

last scoped memory up the stack. 
3. If there is no scoped memory on a thread's scope stack, that thread can enter any scoped memory 

area that does not have a parent (is not in use) or can enter any scope whose parent is the 
primordial scope. 

Practical Use of Nested Scopes 

Example 13-11 shows a program that uses a memory scope to prevent buildup of temporary objects 
involved in converting strings into integers 

Example 13-11 Using a nested scope 

String [] args; 
int [] intArgs; 
LTMemory mem; 
LTMemory mem2; 
 
public Nest1(String [] args){ 
  this.args = args; 
  intArgs = new int[args.length]; 
} 
 
class Action implements Runnable { 
  int i; 
  public void run() { 
    // ... compute some 
    // Now nest deeper 
    mem2.enter(new Runnable() { 
      final int j = i; 
      public void run() { 
        Integer n = Integer.valueOf(args[j]); 
        intArgs[j] = n.intValue(); 
      } 
    }); 
  } 
} 
 
public void run(){ 
  mem = new LTMemory(8*1024, 8*1024); 
  mem2 = new LTMemory(8*1024, 8*1024); 
  Action action = new Action(); 
 
  for(int i = 0; i < this.args.length; ++i){ 
    action.i = i; 
    mem.enter(action); 
    System.out.println(intArgs[i]); 
  } 
} 

Every time around the for loop, the program enters scoped memory area mem; then (just to make the 
example interesting), inside the logic argument for the enter in the for loop, it enters scope mem2. 
While it is using scope mem2, the program creates an Integer object and uses it to convert a string into 
an int. Then the program returns from the run method and leaves the mem2 scope, which permits the 
Java runtime to free the Integer object it left in mem2. Then the program leaves scope mem … thereby 
giving the runtime permission to free the Runnable for the nested enter. 
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By creating the temporary object in a memory scope, the code in Example 13-11 does not create waste 
objects that the garbage collector will need to find and free. The nested scope mechanism lets the code 
dispose of the temporary Integer objects immediately after creating them. 

Walkthrough. Nested scopes are not as straightforward as they sound. The reference rules in Table 13-1 
will make programming tedious unless you stay alert to where each object is stored. Let's start after the 
for loop in Example 13-11. 

1. The action.i = i statement copies i into an instance variable where the run method in action 
can easily reach it. 

2. Now we reach the enter method. It saves the old memory scope, makes the new scope current, 
then calls the run method of action. Now the memory area is mem, and control moves up to the 
run method in the Action class. 

3. The run method starts with some lines of comments, then enters another scope, but the parameter 
for enter has to be evaluated before control enters the nested scope; in this case, evaluating the 
argument means creating an object. The Runnable object is created, and any initializers execute 
in the current allocation context (which is the heap). This Runnable does not have any obvious 
instance variables, but it is going to reference the final variable j from the surrounding scope. The 
machinery of the Java compiler causes the inner class to generate a separate class and gives the 
inner class access to final variables by copying the ones it uses into invisible instance variables 
in the inner class. Code in the run method seems to reference the local j from the surrounding 
scope, but it is really referencing an instance variable copy of j that is part of the object and 
therefore allocated in mem, the allocation scope of the new that constructs the Runnable. 

4. The enter method executes. It saves the current scope (mem), and makes the mem2 scope current, 
then it calls the run method. 

5. The innermost code creates an Integer object in the mem2 memory area, uses that Integer 
object to compute the integer value of a string, then assigns the primitive int value of that integer 
to an instance variable in the outer scope, a heap variable. 

This example relies on a trick. An int value is not an object. It and the other primitive values are not in 
any memory scope. If the example had tried to store a reference to n, the Integer object created in the 
inner scope, instead of storing the primitive value returned by n.intValue, then the assignment would 
have caused an IllegalAssignmentError. 

Every Nested Scope Involves Two Memory Areas 

Step 3 above shows that nested scopes cannot easily treat the closure mechanism as a simple inner class. 
The assignment rules say that a field in an outer scope cannot contain a reference to an object from an 
inner scope. That means that Example 13-12 will generate an IllegalAssignmentError when it 
attempts to save the new Integer object reference into n. 

Example 13-12 Illegal assignment 

mem1.enter(new Runnable() { 
  Integer n; 
  public void run(){ 
    n = new Integer(1); 
  } 
}); 

The IllegalAssignmentError tar pit only applies to storing references. A nested scope can load 
references to objects in any scope it can reach. 

It is possible for nested scopes to save into their instance variables. Programmers have to realize that 
although their intuition suggests that the current object should be in the current scope, the object is in the 
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surrounding scope. Any objects they want to store in an instance variable should be created in the outer 
scope. 

Example 13-13 demonstrates two techniques. It stores an object reference in an instance variable without 
causing an exception, and it demonstrates a good way for the run method in a nested scope to return data 
to surrounding scopes. 

Return values from nested scopes use using an instance variable in the nested scope. 

The example enters a nested scope that allocates a StringBuffer object containing the string Hello 
World and leaves that object in an instance variable named s. When it returns, the surrounding scope 
looks into scope4, the object that hosted the nested scope, recovers s, and prints it. 

Example 13-13 Successfully storing into an instance variable 

// Named inner class 
class XScope4 implements Runnable { 
  StringBuffer s; 
  public void run(){ 
    int currentIdx = RealtimeThread. 
                       getMemoryAreaStackDepth() - 1; 
    int idx = currentIdx - 1; 
    MemoryArea outerScope = 
      (MemoryArea)RealtimeThread. 
                 getOuterMemoryArea(idx); 
    try { 
      // Allocate an object in the next scope out 
      // and store the reference in that scope 
      s = (StringBuffer)outerScope. 
           newInstance(StringBuffer.class); 
    } catch (InstantiationException instance){ 
    } catch (IllegalAccessException access) { 
    } 
    s.append("Hello World"); 
  } 
}; 
 
mem2.enter(new Runnable() { 
  public void run(){ 
    XScope4 scope4 = new XScope4(); 
    mem1.enter(scope4); 
    System.out.println(scope4.s.toString()); 
  } 
}); 

The code is different from previous examples of nested scopes in two ways. First, it uses a named class for 
the inner scope and stores a reference to the inner scope object in a local variable. That lets the nested 
object remain accessible long enough for the calling scope to recover s from it. Second, it uses 
newInstance to create the string buffer in a nondefault memory area: specifically, the allocation context 
of the surrounding scope. 

Pitfalls 

A few tricky aspects of using scoped memory deserve special emphasis. 
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Illegal Nesting. Example 13-14 tries to nest a use of scoped memory area mem inside itself. It doesn't do so 
directly. There's a layer of heap memory between the two layers of mem, but the mem scope is still 
reentered. This violates the single-parent rule. The RTSJ runtime catches this error and throws 

java.lang.ScopedCycleException: Entering this memory area causes a 
cycle on the memory area stack. 

Example 13-14 Illegal use of nested scopes 

mem = new LTMemory(8*1024, 8*1024); 
final int j = i; 
mem.enter(new Runnable() { 
  public void run() { 
    // ... compute some 
    HeapMemory.instance().enter(new Runnable() { 
      public void run(){ 
        // Now we're back on the heap 
        // Now try to nest again 
        mem.enter(new Runnable() { 
          // This is illegal 
          // The mem memory memory's parent is already 
          // primordial, we cannot enter it with 
          // a scoped memory area on the stack... 
          // even mem :-) 
          public void run() { 
            Integer n = Integer.valueOf(args[j]); 
            intArgs[j] = n.intValue(); 
          } 
       }); 
       } 
    }); 
  } 
}); 
System.out.println(intArgs[i]); 

The HeapMemory memory area nested between the first entry into the mem scope and the attempt to enter 
it again serves a useful purpose. If it is not there, you do not see the ScopedCycleException; instead, 
you see a ThrowBoundaryError. 

Throw Boundary. Without the heap memory interposed between the scoped memory and the attempt to 
enter a scoped memory area, the throw boundary error would have happened because a scoped cycle 
exception is thrown when the thread tries to enter mem for the second time. Since memory is being 
allocated from the mem scope, the exception is allocated there. There is no catch clause for the exception 
in the enter's run method, so the JVM tries to propagate it out to the surrounding scope. By the 
assignment rules in Table 13-1, a reference to an object (like the exception) in an inner scope (like mem) 
cannot be assigned to a field in an outer scope. If the catch clause attempted to store a reference to an 
exception allocated in an inner scope into a variable in an outer scope, it would cause an 
IllegalAssignmentError. Instead of attempting to propagate the exception into code that cannot 
catch it, the RTSJ runtime replaces the exception that is about to become inaccessible with a 
ThrowBoundaryError that is allocated from the scope that is about to catch the exception. 

A try/catch block inside the run method is the easiest way to determine the cause of the exception that 
turned into a throw boundary error. In the run method, you can diagnose the exception before it becomes 
inaccessible. 

Static Almost Equals Immortal. The RTSJ specifies that class objects[1] and class variables must behave 
like immortal memory. (They must be unexceptionally referenceable from every execution context.) 



 151

Assume that the implementation uses immortal memory unless you know otherwise and do not intend to 
run your code on a machine that does use immortal memory for this purpose. The actual implementation 
may choose to use real immortal memory to store this class-related information, or it may do something 
clever. The probable immortality of class objects has two important consequences: 

[1] A class object is the object that contains information about the properties of a class. The JVM generates 
one for each class it loads. 

1. Classes consume immortal memory. Complex classes with the corresponding large class objects 
use a relatively large amount of memory. The JVM is allowed to free memory associated with a 
class. The requirement from The Java Language Specification, Second Edition, is "A class or 
interface may be unloaded if and only if its defining class loader may be reclaimed by the garbage 
collector…" A class loader can be reclaimed, even in a system that contains immortal memory, 
but not if any object in immortal memory was loaded by it. 

2. The assignment rules for immortal memory apply to class fields. Class fields cannot refer to 
scoped memory. 

Class (static) variables can never refer to objects in scoped memory. 

Using executeInArea 

There are two ways to move the current execution context in the scope stack without otherwise changing 
the stack: the two newInstance methods—the newArray method and the executeInArea method. 

When an application uses one of the newInstance family on memory area mem, the implementation 
moves the current allocation context up the scope stack until it finds mem, allocates the object there, runs 
the constructor starting in that context, and then repositions the current allocation to its location before 
creating the new object. 

The executeInArea method is a relatively elegant tool for running arbitrary code at some location up 
the scope stack. Very likely the implementation will use executeInArea as the supporting mechanism 
for the newInstance methods: 

public void executeInArea(Runnable logic) 
 
public synchronized Object newInstance( 
              java.lang.Class type) 
 
public synchronized Object newInstance( 
              java.lang.reflect.Constructor constructor, 
              java.lang.Object [] params) 
 
public synchronized Object newArray( 
              java.lang.Class type, 
              int number) 

In summary, if the memory area is a scoped memory on the current thread's scope stack, 
executeInArea behaves as if it had moved the allocation context up the scope stack to that memory 
area before running the logic. If the memory area is heap or immortal, executeInArea executes the 
logic with an empty scope stack and the memory area as the current allocation context. If the memory area 
is a scope that is not on the scope stack, executeInArea throws an InaccessibleAreaException. 

These methods have an interesting effect on the scope stack—they can make it into a tree. When the 
current location of the stack is moved up and the code enters a memory area from that point, it creates a 
branch in the "stack," as shown in Figure 13-2. 
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Figure 13-2. executeInArea creating a scope tree 
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Heap and immortal memory could appear many times in a scope stack, and consequently the semantics of 
executeInArea cannot be simply extended to cover heap and immortal memory. Instead, they are 
overloaded such that calling the method on a scoped memory area moves the current execution context in 
the scope stack, but calling the method on heap or immortal memory starts a new scope with only the 
specified memory area in it, as shown in Figure 13-3. 

Figure 13-3. executeInArea with immortal memory 

 

The special value of executeInArea on heap or immortal memory is that the immortal or heap memory 
in executeInArea's scope stack is the primordial scope. It lets the application reach scopes that have 
already been given a parent by another thread. 

If thread1 has a scope stack containing (a, b, c) and thread2's scope stack contains (d, e, f), then thread1 
cannot enter scope d, e, or f without using executeInArea to start a new scope stack in heap or 
immortal memory and then entering d, e, and f in the same order as thread2. 
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Using Standard Classes 

Nothing prevents an application from using a library class from a non-heap memory allocation context. 
Nothing guarantees it will work either. 

Methods that have no persistent state can be used in scoped memory, but with these caveats: 

If a library function creates no objects, it will work perfectly in a scoped memory allocation 
context, but the scoped memory won't make any difference.  

If a library function creates temporary objects and perhaps returns one of them to its caller, it will 
work perfectly in a scoped memory allocation context, provided that the scope is big enough to 
hold the objects it creates. This will benefit performance substantially since all the temporary 
objects created in the library call will be automatically and efficiently freed.  

If a method stores a reference to an object it creates in a class variable or a heap object, it will 
throw an IllegalAssignmentError.  

If a new release of a library introduces persistent state, code that uses it in a scoped memory 
allocation context will stop working. Whether a class maintains persistent state is not part of its 
published "contract."  

The careful programmer will probably avoid executing any standard libraries from scoped allocation 
contexts unless they include RTSJ characteristics in their documentation. 

I suppose a careful programmer might catch illegal assignment errors and switch to heap memory if a 
library throws one. That would not be acceptable if the performance of the code were critical, but it would 
be a nice way to take advantage of the performance advantages of scoped memory but fail softly if a 
method uses persistent objects. 

Algorithm 13–2 Adaptive use of scoped memory for a 
library routine 

if useScope    //   useScope is a persistent variable particular 
               // to this method call.          
      try                  
          enter scope and call method          
      catch IllegalAssignmentError                 
          useScope = false 
if not useScope           
      call method 

 
 

Using Shared Scoped Memory 

Scopes can be shared among threads either by inheritance or by the same scopes being entered in multiple 
threads. This engages the reference-counting aspect of scoped memory. 

Objects in a scoped memory are not freed until after the reference count goes to zero. 

Objects in scoped memory are not eligible to be freed until the reference count on the scope goes to zero. 
This sounds simple, but threads are inherently asynchronous. The usage pattern of shared scopes can easily 
become complicated, and unless you check the reference of memory areas by using the 
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getReferenceCount method on ScopedMemory, the clue that the reference count did not go to zero 
when you expected is that allocations from the memory area will start throwing OutOfMemoryError. 

Remember: Until the reference count goes to zero, all the objects in the scope will remain allocated even if 
they are unreachable. The system is saved from mysterious failure by the size limit on the memory area. 
The size limit will cause memory to run out when being allocated from the scope. Memory allocation from 
other areas is not constrained by the size limit, so the out of memory errors are focused on the code that is 
exceeding its budget. 

The memory leak in a shared scope comes about something like this: 

1. Somehow, thread A believes that the reference count for memory area M has gone to zero and that 
memory area M is now empty. For instance, thread A creates threads B, C, and D and starts them 
all in memory area M. Thread C enters scoped memory N and creates thread F, which starts with a 
scope stack that includes M and N. When thread A sees that B, C, and D have completed, it 
assumes that the reference count for M has gone to zero; but if F has not exited, M is still active—
hidden below F's initial memory area on its scope stack. 

2. Since thread A believes that memory area M is empty, it reuses the memory area for a new batch 
of threads … 

3. Even if thread F exits (and decrements the use count of M), M is now being used by other threads 
so it has a positive use count and will remain active. 

4. Until M's reference count goes to zero, no objects in it can be freed. 

The Scope Stack Revisited 

The allocation context behaves like a stack. The enter method on MemoryArea objects pushes and pops 
the stack. This may not be the way memory scopes are implemented, but it is a useful and accurate model. 

Using the convention that the stack grows down, here are the rules for nested memory areas, expressed as 
if the areas were on a stack: 

1. Each thread has a scope stack. 
2. The top scope on the stack is the current allocation context. It is returned by 

getCurrentMemoryArea on the RealtimeThread class and by 
getOutMemoryArea(getMemoryAreaStackDepth() - 1). 

3. A real-time thread's initial scope stack is constructed when the thread object is allocated and 
constructed; see Figure 13-4. The scope stack is initialized as follows: 

if the allocation context is heap 
     the new thread's initial stack contains only heap 
else if the allocation context is immortal 
     the new thread's initial stack contains only immortal 
else 
     the new thread's initial stack is a copy of the parent's 
          scope stack down to and including 
          the allocation context 
if the new thread's initial memory area is 
         not the current scope 
     enter the initial memory area on behalf of the child 

Figure 13-4. Initial scope stack construction 
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4. A thread can access and create objects in any scope above the current scope in its scope stack. 

At every point a scoped memory area's reference count equals the number of threads that have 
access to that memory area. 

The objects in the area can be freed when the reference count goes to zero. 

5. Accessing and creating objects in a less deeply nested scope than the current scope is problematic 
since neither the current scope nor current local variables can hold a reference to such objects. 

Figure 13-5 shows the evolution of a scope stack as a family of threads uses it. In this example, when 
threads share common scopes, their stacks are represented in a single tree. 

Figure 13-5. Evolution of a scope stack when used by a thread family 
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Scope Portals 

A memory scope can be used by many threads. Each can allocate and use its own objects in the scope. 

The RTSJ goes to great lengths to let memory scopes be used concurrently by multiple threads. This 
supports two important uses: 

1. Threads can be created in memory scopes. If there were no support for sharing scopes between 
threads, no thread other than the one that created it would be able to access the thread object 
allocated by a thread object in a scoped memory. The new thread would not be able to access its 
own thread object! 

2. Shared memory scopes provide an object store through which real-time threads can share data. 
The lifetime of the data is managed by reference counting the memory scope. The alternatives to 
scoped memory are heap memory, which brings garbage collection problems with it, and immortal 
memory, which has no garbage collection issues but cannot contain temporary objects. 

Shared scopes would be sufficiently justified by their utility in containing thread objects, but portals are a 
useful addition. They ease inter-thread communication by letting a scoped memory object carry one object 
within it bound in a way that makes it available to any thread that has access to the memory scope. 
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A portal is really nothing more than a standard Object reference that is part of every scoped memory. 
Subject to the normal assignment rules, an application can point the portal at any object. If the application 
needs to have a portal that references multiple objects, the portal object can be an array of object references 
or an object containing references to other objects. 

While a scoped memory is in a thread's stack, it is easily available to all that thread's children, and 
references to objects in the scope can easily be passed to those child threads. Portals have limited use in 
this context. 

If multiple threads start at heap or immortal memory and build similar scope stacks, they cannot pass 
references to objects in scoped memory from one to another at birth. Heap and immortal memory cannot 
contain references to objects in scoped memory. The normal ways to pass data to and fro are to store into 
instance variables or pass data to methods that belong to an object that is used by both threads. But how 
should a thread get the reference to that shared object? A portal. 

Example 13-15 illustrates the use of a portal. The example is one of the few complete applications in this 
book. It is all here because it demonstrates the use of portals, and it is as careful with memory as a typical 
RTSJ application needs to be if it chooses to avoid heap memory. 

Example 13-15 Portal into a shared scope 

import javax.realtime.*; 
/** Demonstrate the use of a portal shared between a parent thread 
  and two children. 
*/ 
 
public class UsePortal extends RealtimeThread { 
  /** The class that will be attached to the 
    getPortal method in a VTMemory area. 
  */ 
  public class Port { 
  char [] s; 
  int counter; 
  boolean stopper; 
  } 
 
  /** Two RT threads will use this class as 
    the logic for a memory area enter method. 
    They differ in the characters they 
    store into portal.s, and in the period 
    they use. 
  */ 
class ThAction implements Runnable { 
  private Port portal; 
  private char [] tag; 
 
  /** Constructor for ThAction inner class */ 
  ThAction(char [] tag){ 
    int idx = RealtimeThread.currentRealtimeThread(). 
      getMemoryAreaStackDepth() - 1; 
    portal = (Port)((VTMemory)getOuterMemoryArea(idx)). 
         getPortal(); 
    this.tag = tag; 
  } 
 
  /** Run method for ThAction. */ 
  public void run() { 
    try { 
       synchronized(portal){ 
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         portal.s[0] = tag[0]; 
         portal.s[1] = tag[1]; 
         portal.counter++; 
       } 
    } catch (Throwable e) { 
      System.out.println("Throw in thread action" + e); 
      e.printStackTrace(); 
    } 
  } 
} 
 
/** Class used for the two threads that share the 
  shared memory area with the master thread. 
*/ 
public class TH extends RealtimeThread { 
  private char[] tag; 
 
  /** Constructor for TH */ 
  public TH(char tag1, char tag2, long period){ 
    super(null, 
      // Make this a periodic thread 
      new PeriodicParameters(null, 
      new RelativeTime(period, 0), 
      null, null, null, null) 
    ); 
    tag = new char[2]; 
    tag[0] = tag1; 
    tag[1] = tag2; 
  } 
 
  /** Run method for TH. */ 
  public void run(){ 
    ThAction action =  new ThAction(this.tag); 
 
    VTMemory mem =     new VTMemory(2048, 2048); 
    while(!action.portal.stopper){ 
      mem.enter(action);     // Wait for next period 
      while(!waitForNextPeriod()); 
    } 
  } 
} 
 
/** Run method for the UsePortal class */ 
public void run(){ 
  (new VTMemory(8*1024, 8*1024)).enter(new Runnable(){ 
    public void run(){ 
      final VTMemory outerMem = 
         (VTMemory)getCurrentMemoryArea(); 
      final Port portal = new Port(); 
      outerMem.setPortal(portal); 
      portal.s = new char[2]; 
      TH  rt1 = new TH('t', '1', 500); 
    TH rt2 = new TH('T', '2', 300); 
    rt1.start(); 
    rt2.start(); 
 
    VTMemory mem2 = new VTMemory(2048, 2048, 
      new Runnable() { 
      public void run() { 
        try{ 
          Thread.sleep(400); 
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        } catch (InterruptedException e){ 
         // Ignore these exceptions 
        } 
        synchronized(portal){ 
          String s = new String(portal.s); 
          System.out.println( 
            s + " = " + 
            portal.counter + 
            " outer mem free = " + 
            outerMem.memoryRemaining()); 
        } 
      } 
    }); 
    for(int i = 0; i < 50; ++i) 
      mem2.enter(); 
 
    portal.stopper = true; 
    try{ 
      rt1.join(); 
      rt2.join(); 
    } catch (InterruptedException e){} 
    } 
  }); 
} 
 
public static void main(String [] args){ 
   try { 
      UsePortal rt = new UsePortal(); // make a rt thread 
      rt.start(); 
      try { 
        rt.join(); 
      } catch (InterruptedException e){ 
        // Ignore the exception 
      } 
      System.exit(0); 
           } catch (Throwable e){ 
    System.out.println("Throw in main"); 
    e.printStackTrace(); 
      } 
  } 
} 

Program Layout. Reading from the end of the program up: 

• main— This executes in the ordinary thread that the JVM uses to start the application. The main 
method instantiates the object it is in, Portal, and since Portal is a subclass of 
RealtimeThread, main can just start it to get a RealtimeThread. 

• run— Almost every method in this application is named run, but the large block of code above 
main is the run method that makes Portal act like a thread. It is the run method for the 
application's main thread. 

The main thread immediately creates a VTMemory area and enters it. Just to show that it can, the 
method enters the memory area without even giving it a name. Entering a memory area right at the 
beginning of a thread's run method like this has the same effect as using a scoped memory area as 
the MemoryArea parameter to the constructor for a RealtimeThread. 

Right after not bothering to save the memory area reference anywhere, the application uses 
getCurrentMemoryArea to obtain a reference to the memory area. Then the application 
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creates and initializes a portal object in its current memory area. Still in that memory area, the 
application creates two objects and executes them as RealtimeThreads. 

Now the thread creates a VTMemory object that is bound to a Runnable class from its 
construction. The Runnable class is created in the current memory area. It sleeps for 400 ms, 
then prints some fields from the portal object. 

After that, the method enters the just-created memory area 50 times. Since the method bound a 
Runnable to the memory area when it created the memory area, each enter invokes the run 
method associated with the memory area. 

We then tell the two threads we just created to stop, and we wait for them to complete. This thread 
is now finished. 

• TH— Further up the program we get to the definition of the TH class. This is another class that 
extends RealtimeThread. This class has a constructor that stores values in instance variables 
and makes the thread into a periodic thread. 

The run method of TH creates a Runnable object, called action, and another scoped memory 
area. It loops until the stopper field in the portal object turns false. Each time around the loop, 
run invokes the action class it just created in the scoped memory class it also just created. 

The loop uses waitForNextPeriod to let it the loop execute once per period. (As discussed in 
Chapter 12.) Each time waitForNextPeriod returns true, the thread completed its 
computation by its deadline and waitForNextPeriod waited for the next period. If it 
waitForNextPeriod returns false, the thread missed its deadline and 
waitForNextPeriod did not block. 

• ThAction— Near the top of the program is the ThAction class. This is the Runnable that is 
executed in TH's main loop. It just sets three fields in the portal object and returns. 

The constructor for ThAction demonstrates the methods that are used to reach up the stack 
through nested memory areas. In this case, the method is only a complicated way to get a 
reference to the current memory area. If we wanted to get at the memory up the stack from the 
current one (which would be Heap), we could find it at getOuterMemoryArea(idx -1). 

The Portal. The application in Example 13-15 uses three real-time threads. The main thread executes a 
loop 50 times, once every four-tenths of a second. Each time around, the main thread prints the contents of 
an array of characters and an integer value that it finds in a shared memory scope. After 50 times through 
the loop, the main thread sets a boolean value in the shared scope, called stopper, to true. 

The two other real-time threads share the memory scope with the main thread. Each of these threads loops 
with a different period, and each one writes different values into the array of characters. Both of them 
increment the integer counter in the shared scope. When they see stopper become true, they exit. 

No Leaks. UsePortal has several loops that could leak memory. Its main run method runs in a memory 
scope and has a loop that creates a string and invokes System.out.println each time around the loop. 
That would probably use a few hundred bytes each time around the loop. One solution would have been to 
use SizeEstimator to make the outer memory area big enough for 50 copies of each object created in 
the loop. It is better to enter a memory area for the body of the loop. That way any memory allocated in the 
loop is freed. The memory area for the loop only has to be big enough for the objects created in a single 
pass. You'll find that trick repeated several times throughout the application. 
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Games with Portals. A portal is an Object reference. In the simple case, all the methods that use the 
portal need to know the details of the object. 

public class MyPortal { 
  AsyncEvent warning; 
  RealtimeThread logger; 
  StringBuffer title; 
}; 

This is probably the right way to code a portal object in most cases. If threads are sufficiently closely 
related to share a scoped memory area, they can both depend on a shared object layout. 

Some situations, however, require a more flexible portal. Here are some options: 

• Use a linked list of hook objects that contain a nextHook reference and a generic object 
reference. This structure can hook anything together, but it doesn't give much clue as to what the 
objects are. 

• Add a name string to the hook: 

public class Hook { 
  Hook nextHook;   // For the linked list 
  Object payLoad; 
  String name; 
}; 

• Put the hooks in a tree and make it fast for users to find an object by its name. This generalizes the 
portal into something that contains an index of objects that any method can use just by knowing 
the API for the portal object and the name of the object it wants. 

 

Fine Print 

The RTSJ refers several times to memory that can be unexceptionally referenced from any scope. Since 
"any scope" includes no-heap real-time threads (see Chapter 14), "unexceptionally referenceable" means 
something that acts like immortal memory. The specification does not actually demand immortal memory. 
That purposeful omission gives implementations the flexibility to do "something clever." For instance, it 
might be possible to use JVM-supported reference-counted objects. 

The important thing from a programmer's point of view is that many implementations are likely to use 
plain immortal memory for these things. A program might be able to get away with saving a reference to 
an object in scoped memory in a class variable on some exotic implementation of the RTSJ, but that would 
be a very nonportable practice. Not recommended! 

The RTSJ contains another bit of artful flexibility. Objects in immortal memory persist as long as the 
application that created them. This behavior is intended to be general enough to apply gracefully to 
machines that execute bytecodes in hardware and may not strictly speaking have a JVM, but it allows 
some wiggle room for an implementation to free objects in immortal memory from time to time. 

The closest I can find to a definition of application in the Java context is this quote from The Java Virtual 
Machine Specification, Second Edition, "Alternatively, the initial class could be provided by the 
implementation. In this case the initial class might set up a class loader that would in turn load an 
application, as in the Java 2 SDK, Standard Edition, v1.2." This leaves room for an RTSJ implementation 
to define a clean point at which immortal memory can be swept clean. 
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In any case, rules like "Objects created in any immortal area live for the duration of the application" apply 
to behavior, not implementation. If the implementation can delete objects in immortal memory without an 
application being able to tell that it happened, the implementer gets extra credit. 

 

Quick Examples 

This section presents seven examples of frequently-used scoped memory programming techniques. 

newInstance can be used with constructors that have arguments, but the code that demonstrates that 
procedure is a bit long-winded. See Example 13-2. 

Example 13-16 Allocating immortal memory 

  Object alsoImmortal; 
 
public void run(){ 
  // Create an immortal object using the simple 
  // form of newInstance 
  try{ 
    Object inImmortal = ImmortalMemory.instance(). 
      newInstance(Object.class); 
  } catch (IllegalAccessException access){ 
    System.out.println(access); 
  } catch (InstantiationException instant){ 
    System.out.println(instant); 
  } 
  // Enter immortal, and use it to create an immortal 
  // object 
  ImmortalMemory.instance().enter(new Runnable() { 
    public void run(){ 
      QuickImmortal.this.alsoImmortal = new Object(); 
    } 
  }); 
 
  // Create a new thread that will start with its 
  // memory allocation context == Immortal 
  RealtimeThread nRtT = new RealtimeThread(null, null, null, 
    ImmortalMemory.instance(), 
    null, 
    new NestedThread()); 
  nRtT.start(); 
  try{nRtT.join();} catch(Exception e){} 

Example 13-17 Using a simple nested memory scope 

// There are three forms of enter 
// for nested scopes: 
// Completely in-line 
LTMemory lt = new LTMemory(1024, 2048); 
lt.enter(new Runnable() { public void run(){ 
  System.out.println("Running in scoped memory"); 
}}); 
 
// Preallocated Runnable, but still 
// dynamically bound to memory area 
Runnable action = new Runnable() { public void run() { 
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  System.out.println("Running in scoped memory 2"); 
}}; 
lt.enter(action); 
 
// Preallocated Runnable bound to memory 
// at construction 
LTMemory lt2 = new LTMemory(1024, 1024, new Runnable() { 
  public void run() { 
    System.out.println("Running in scoped memory 3"); 
  } 
}); 
lt2.enter(); 

Example 13-18 Nesting a Heap memory area 

HeapMemory.instance().enter(new Runnable(){ 
  public void run(){ 
    System.out.println("Running in heap"); 
  } 
}); 

Example 13-19 Nested scope with parameters 

class ActWithParm implements Runnable { 
  public int parameter1; 
  public Integer parameter2; 
  public void run(){ 
    System.out.println("Parameter1 is " + parameter1); 
    System.out.println("Parameter2 is " + parameter2); 
  } 
}; 
ActWithParm act = new ActWithParm(); 
 
act.parameter1 = 1414; 
act.parameter2 = new Integer(3142); 
lt.enter(act); 

Example 13-20 Nested memory scope with return values 

class ActWithReturn implements Runnable { 
  int rInt; 
  Object  rObject; 
  public void run(){ 
    rInt = 707; 
    class DynamicParm implements Runnable { 
      public void run(){System.out.println("Sneaky");} 
    } 
    try{ 
      // We have to allocate the object in the 
      // scope of the caller or a scope further 
      // out than that. 
      // "this" was created by the caller, so 
      // it's a scope we can use to pass something 
      // back to the caller 
      rObject = MemoryArea.getMemoryArea(this). 
        newInstance(DynamicParm.class); 
    } catch (InstantiationException e){ 
      System.out.println(e); 
    } catch (IllegalAccessException e){ 
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     System.out.println(e); 
   } 
  } 
}; 
ActWithReturn actR = new ActWithReturn(); 
// This call returns an int and a Runnable 
lt.enter(actR); 
System.out.println("Returned " + actR.rInt); 
((Runnable)actR.rObject).run(); 

Example 13-21 Thread using a shared scope 

class ThreadAction implements Runnable { 
  public void run(){ 
    System.out.println("In a thread"); 
  } 
} 
RealtimeThread rtt = new RealtimeThread( 
  null,  // Default scheduling parameters 
  null,  // Default release parameters 
  null,  // Default memory parameters 
  new VTMemory(2048, 3000), // Initial memory area 
  null,  // Default group parameters 
  new ThreadAction()); // Runnable for the thread 
rtt.start(); 
try{rtt.join();} catch(Exception e){} 

Example 13-22 Thread using a memory area portal 

class ThreadActionWPortal implements Runnable { 
  public void run(){ 
    System.out.println("In a thread"); 
    System.out.println("Portal contains: " + 
       ((ScopedMemory)getCurrentMemoryArea()). 
         getPortal()); 
  } 
} 
final VTMemory pMem = new VTMemory(2048, 3000); 
pMem.enter(new Runnable() { public void run(){ 
  pMem.setPortal(new String("This is a portal")); 
  RealtimeThread rttp = new RealtimeThread( 
    null,  // Default scheduling parameters 
    null,  // Default release parameters 
    null,  // Default memory parameters 
    null,   // Initial memory area (pMem) 
    null,  // Default group parameters 
    new ThreadActionWPortal()); // Runnable for the thread 
  rttp.start(); 
  try{rttp.join();} catch(Exception e){} 
}}); 
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Chapter 14. Non-Heap Access 
• Interaction with Scheduler 
• Rules 
• Samples 
• Final Remarks 

The RTSJ defines a type of real-time thread that is not allowed to use objects in the heap. It cannot allocate 
them or touch them in any way. This is certainly an inconvenience, but it lets those threads behave as if 
there were no garbage collector. Most threads are delayed until the garbage collector gets to a clean point 
before they are allowed to interrupt it. A NoHeapRealtimeThread can preempt a thread that is in the 
garbage collector as quickly as it can preempt any other thread. 

Some systems will find the strictly enforced ban on access to heap objects a convenient barrier between 
real-time and non-real-time threads, but for most applications, the discipline is seldom worth the pain. 

 

Interaction with Scheduler 

A simple priority scheduler will pay no attention to whether or not a thread can use the heap. The 
programmer can freely set the priority of a heap-using thread above the priority of a no-heap thread 
(though this is not recommended practice), and the scheduler will respect the programmer's wishes. 

Unless a no-heap thread is delayed by a higher-priority (or otherwise more eligible) thread that is using the 
heap, the scheduler does not need to include any garbage collection overhead, not even the garbage 
collector's normal preemption delay, in the overhead for the no-heap thread. 

A sophisticated scheduler or a human architect working out a scheduling problem is interested in no-heap 
nature because it changes the preemption time for that thread, possibly by two or three orders of magnitude. 

When a scheduler (human or mechanical) is computing whether a thread can meet its deadline, it has to 
include overhead. The time it takes to preempt the previous thread is part of that overhead. Most real-time 
environments keep the preemption time fairly short and predictable, but a Java runtime that includes 
garbage collection suffers preemption times that lengthen at hard-to-predict intervals 

Threads that allocate from the heap need to include a time allowance for garbage collection. This can be 
such heavy overhead that it basically rules out threads that allocate from the heap for real-time purposes, 
unless the JVM uses garbage collection hardware or an incremental garbage collector. 

Note that a human scheduler can see that a real-time thread is allocating exclusively from scoped or 
immortal memory, but the scheduler. in the Java run-time cannot see that.[1] It has to assume that threads 
which can allocate from the stack will suffer garbage collection delays. The scheduler cannot even bound 
the number of garbage collections that will occur. 

[1] It may be too strong a statement to say that the scheduler cannot see that a thread will not allocate from 
the heap during a particular computation. In many cases, it could see that by inspecting the bytecode. It is 
doubtful that the scheduler it would bother since it could only make this computation when the code path was 
predictable. 

Real-time performance without RTSJ 
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Forcing garbage collection to become predictable is one of the two techniques that enabled the 
Java programming language real-time applications before the RTSJ. Although the specifications 
did not require it, on every JVM I know of the System.gc method would force a garbage 
collection on every JVM I know of. By coding System.gc at every point at which where the 
application knew it would be idle long enough to complete a garbage collection cycle and by 
sizing the memory and the CPU appropriately, a programmer system could ensure that the 
system it never ran the garbage collector at an inconvenient time. 

The other technique for making a conventional JVM run real-time code has little to do with the 
Java language—run critical tasks in native threads. Most of the code in a typical real-time 
application has timing requirements that are easy to meet in a conventional JVM (though the 
parts with tough timing requirements may use a large majority of the runtime). Code in the Java 
language the things that the Java environment can easily handle in Java, and code the rest in C. 

Incremental collectors are much easier to schedule. They do suffer garbage collection delays, and generally 
they come as slower memory allocation. This is convenient since garbage collection is part of each 
computation's normal runtime, not a nonschedulable overhead. Still, a warning: incremental collectors 
depend on an accurate estimate on the rate at which each thread will use memory. Using memory too fast 
may result in a stop-and-collect collection, or the scheduler may see it as an overrun. In either case, it 
disrupts the schedule. 

Threads that do not allocate from the stack are still subject to garbage collector preemption delays. The 
worst-case preemption latency is available from the garbage collector: 

RelativeTime n = RealtimeSystem.currentGC().getPreemptionLatency() 

Even with a simple mark-and-sweep collector, the preemption latency is much less than the worst-case 
garbage collection time, but it is still much more than normal thread preemption time. 

Table 14-1 shows times for a fictional Java runtime. They illustrate the difference between the delays 
inherent in dispatching and running threads. 

Table 14-1. Example of garbage collection delays 
Event  Time (microseconds)  
Typical preemption  20  
Worst-case preemption without garbage collection  60  
Stop-and-collect garbage collection (assuming no finalizers)  800,000  
Preempt the garbage collector  900  

 
 

Rules 

No-heap real-time threads must not touch the heap. If they did, they could cause corruption in the JVM. 
Figure 14-1 shows an example of a destructive interaction between a thread and the garbage collector it 
preempts. 

Figure 14-1. Example of an unregulated no-heap thread corrupting the JVM 
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The RTSJ does not permit a no-heap real-time thread to load or store a reference to an object in the heap. It 
is free to use objects in immortal or scoped memory. 

The specification does not insist that each load or store[2] of a reference be checked at runtime, but 
references must be checked before the load or store completes. That could possibly be done by a trusted 
compiler or a verifier that runs when the class is loaded, but you can also assume that the check will be 
done when the bytecodes execute. 

[2] An implementation need not check instructions that a store object references since the no-heap thread 
could not load get a reference to an object on the heap into a place from which it could be stored. 

There is actually one thing a no-heap thread can do with a reference to a heap object. It can, validly, 
replace it with a reference to a non-heap object or a null. At worst, such a reference can cause an 
interrupted garbage collection to treat an object as alive when the last reference to the object was just 
obliterated by the no-heap thread. The garbage collection of an object is delayed until the next pass of the 
garbage collector, but with no actual harm done. 

A no-heap thread has to be almost impossibly disciplined. Just loading a reference from a class variable 
will throw a MemoryAccessError if some thread stored a reference to a heap object in the variable. This 
is a serious problem that the RTSJ considers generally unrecoverable; it throws an error, not just an 
exception. 

Threads need access to their thread object. For a no-heap thread, this means the thread object must be in 
immortal memory or scoped memory. 

 

Samples 

Example 14-1 demonstrates creation of a NoHeapRealtimeThread that is rooted in immortal memory. 

It is probably possible to create a NoHeapRealtimeThread in a non-real-time thread, but it will be 
painful. The NoHeapRealtimeThread object and all the objects it references have to be allocated in 
non-heap memory. You can allocate in non-heap memory from a regular thread, but 
NoHeapRealtimeThread has a no-arg constructor, so you need to use the long form of newInstance 
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that uses the reflection classes. The code is much easier to write if you enter the scope you want to use, but 
you have to be in a real-time thread to use enter. 

The NoHeapRealtimeThread object will be constructed in the memory area in which the constructor is 
called. It will contain lots of references, including a reference to the initial memory area for the thread. If 
the thread object is immortal, the initial memory has to be immortal or at least be a scope created in 
immortal memory. 

Example 14-1 No-heap thread in immortal memory 

/**A little Noheap thread */ 
public static class NhRTT extends NoHeapRealtimeThread{ 
  /** Constructor for NhRTT */ 
  public NhRTT(SchedulingParameters sched, 
         MemoryArea mem){ 
    super(sched, mem); 
  } 
  public void run(){ 
    System.out.println("In NOHEAP!"); 
  } 
} 
 
/**Run method for a RealtimeThread */ 
public void run(){ 
  ImmortalMemory.instance().enter(new Runnable() { 
    public void run(){ 
      NhRTT nhrtt = new NhRTT(null, 
        ImmortalMemory.instance()); 
      nhrtt.start(); 
      try{ 
        nhrtt.join(); 
      } catch (InterruptedException e){} 
  }}); 
} 

For purposes of rooting threads, scoped memory can be thought of as temporary immortal memory. The 
scoped memory will last as long as the thread—probably longer if the scope is used by other threads. 

The main differences are these: 

• A thread that is rooted in scoped memory will inherit the scope stack from its parent. This gives it 
easy access to shared scopes. 

• Scoped memory is not viral. Scoped memory can contain references to heap (although a no-heap 
thread could not use those references), immortal, and other scoped memory with a longer lifetime. 
Immortal memory cannot hold references to scoped objects, and a no-heap thread cannot use 
references to heap. If you start in immortal memory, it is hard to get out. 

Example 14-2 creates the no-heap thread and its initial memory area in the same scope. Since mem1 is the 
current memory area when the thread is constructed, it would have been the default initial memory area for 
the new thread. It is specified only for clarity. 

Threads can share data if they have a memory area in common. Immortal memory works for everyone. 
Scoped memory works for threads with a common heritage. Example 14-3 illustrates threads that share 
data, and Example 14-4 shows how such threads are started. 

Example 14-2 No-heap thread in scoped memory 
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private VTMemory mem1;//Memory for NH thread to use 
 
/**Run method for a RealtimeThread */ 
public void run(){ 
  //Create the memory area the noheap thread 
  //will use 
  mem1 = new VTMemory(32*1024, 32*1024); 
 
  mem1.enter(new Runnable() {public void run(){ 
    NhRTT nhrtt = new NhRTT(null, 
      InScope.this.mem1); 
    nhrtt.start(); 
    try{ 
      nhrtt.join(); 
    } catch (InterruptedException e){} 
  }}); 
} 

Example 14-3 Threads that share data 

/** Something to share */ 
static class Sharable{ 
  private int value=0; 
  synchronized void modify(int x){value += x;} 
  int getValue(){ return value;} 
} 
 
/** A little Noheap thread */ 
static class NhRTT extends NoHeapRealtimeThread{ 
  Sharable foo; 
  int adder; 
  /** Constructor for NhRTT */ 
  public NhRTT(SchedulingParameters sched, 
         MemoryArea mem, 
         int adder, 
         Sharable foo){ 
    super(sched, mem); 
    this.foo = foo; 
    this.adder = adder; 
  } 
  public void run(){ 
    for(int i = 0; i < 50; ++i){ 
      foo.modify(adder); 
      try{sleep(500); 
      } catch(InterruptedException e){} 
    } 
  } 
} 

Example 14-4 Starting the threads in Example 14-3 

/**Run method for a RealtimeThread */ 
public void run(){ 
  //Create the memory area the noheap thread will use 
  VTMemory mem0 = new VTMemory(8*1024, 8*1024); 
  final VTMemory mem1 = new VTMemory(8*1024, 8*1024); 
  final VTMemory mem2 = new VTMemory(4096, 4096); 
 
  mem0.enter(new Runnable() {public void run(){ 
    //Make the things the threads will need 
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    final Sharable foo = new Sharable(); 
    NhRTT nhrtt1 = new NhRTT(null, mem1, 2, foo); 
    NhRTT nhrtt2 = new NhRTT(null, mem1, -1, foo); 
    //The threads don't need the monitor, 
    //but this is a good place to make it. 
    Runnable monitor = new Runnable() { 
      public void run(){ 
        System.out.print( 
          foo.getValue() + " "); 
        try { 
          Thread.currentThread().sleep(100); 
        } catch (InterruptedException e){}; 
      } 
    }; 
 
    //Start the threads 
    nhrtt1.start(); 
    try{//Put a little delay between the threads 
      sleep(200); 
    } catch (InterruptedException e){} 
    nhrtt2.start(); 
 
    //Watch them run for a while. 
    for(int i = 0 ; i < 100; ++i) 
      mem2.enter(monitor); 
 
    try{ 
      nhrtt1.join(); 
      nhrtt2.join(); 
    } catch (InterruptedException e){} 
  }}); 
} 

 
 

Final Remarks 

A no-heap thread is easy to use if you control object creation, but you can never relax. Any time the thread 
needs to create an object that it does not want to create forever, you must enter a scoped memory. Any 
time you want to create an object with a lifetime that is less than the lifetime of the thread but does not fit a 
scope, you must create a special-purpose allocator for that type of object. (See Chapter 16.) 

Even creation of no-heap threads can force the programmer to think too hard. All the initial parameters of 
the thread have to be accessible in the thread. That means they have to be in immortal memory, in the 
scope of the thread object, or in a scope outside the scope of the thread object. If the thread object is 
immortal, everything it references, including all the scope objects it enters, has to be created in immortal 
memory. (That does not mean you cannot use scoped memory. It does mean that you cannot enter a scoped 
memory that is created in another scoped memory. That enter will throw an error.) 

My recommendation: Until you are very comfortable with the memory rules, start with the examples in 
this chapter, and if the no-heap thread needs to communicate with other threads while it runs, use only the 
one that uses immortal memory. Even then, try to start the no-heap thread in a scope and share that. 

Memory leaks are easier to find in a little scope that is used in a small body of code than when you are 
allocating from a large immortal memory shared with all application code and the RTSJ implementation. 

Notes 
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1. The RTSJ insists that no-heap threads must be able to access static fields and class objects. That 
does not mean a no-heap thread can use references stored in static fields. Applications commonly 
create an object and store a reference to that object in a static variable (consider the normal design 
pattern for a singleton object.) A no-heap thread is permitted to load only one of those references 
if the referenced object is not in heap memory. 

2. The rules for no-heap threads do not say anything about storing references over heap references. If 
you want to store into foo.bar, you need to be certain that foo is not in heap memory, but you 
do not care what the previous value of bar is. 

3. No-heap threads should not use thread enumeration. If a no-heap thread tries to enumerate the 
threads in a group that includes thread objects that are in heap memory, it will get values it cannot 
use. 

Thread objects in scoped memory already broke thread enumeration. The RTSJ permits thread 
objects in scoped memory, but only "related" threads would be allowed to see those objects. 
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Chapter 15. More Async Events 
• Async Events and the Scheduler 
• The createReleaseParameters Method 
• Bound Async Event Handlers 
• Async Event Handlers and Non-Heap Memory 
• No-Heap Event Handlers vs. No-Heap Threads 
• Scheduling 
• Async Event Handlers and Threads 
• Special Async Events 

The discussion in Chapter 11 covers the use of basic async event handlers, but there is more. Async event 
handlers can use scoped memory, and like a NoHeapRealtimeThread, an async event handler can rise 
above the garbage collector. 

For most purposes, a no-heap async event handler is a better way to run in no-heap mode than is a no-heap 
real-time thread. 

 

Async Events and the Scheduler 

When an async event is fired, the scheduler should activate all the async event handlers bound to that 
async event and increment a fire count associated with that handler. Each handler should remain active 
until its fire count reaches zero. Normally, the handler will just complete its handleAsyncEvent method, 
drop out the end, and become inactive, but if it is fired fast enough, the fire count may become greater than 
1. In that case, some of the details of the wrapper for handleAsyncEvent become visible: 

do { 
  handleAsyncEvent(); 
} while getAndDecrementPendingFireCount() > 1) 

At first glance, it looks like the test in the while should be for > 0, or maybe even , 0, but the test is 
after a call to handleAsyncEvent, and getAndDecrementPendingFireCount returns the value of 
fire count from before the decrement. 

The scheduler has to watch all the methods on AEH that alter the value of the fire count. 

 

The createReleaseParameters Method 

Release parameters include fields like period, deadline, and cost. In the async event world, period is 
a characteristic of an async event, cost is related to each event handler, and deadline is shared between the 
event and the handler. The createReleaseParameters method on the AsyncEvent class is an aid to 
programmers. It constructs a new ReleaseParameters object (subclass, depending on the 
characteristics of the async event), fills in the values it knows, and inserts pessimistic values for things it 
does not know. The application should set values it knows before using this release parameters object for 
an async event handler. 
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Bound Async Event Handlers 

A bound async event handler is permanently associated with a thread. Depending on the details of the 
implementation, a bound async event handler might be able to respond more quickly to events. An 
implementation could implement this so all bound async event handlers were bound to one shared thread, 
but that would violate the spirit of the specification. The idea is to reserve a thread for the AEH. The 
runtime can prime the thread to execute the AEH with execution poised to enter the AEH's 
handleAsyncEvent method. When a bound AEH fires, the runtime can handle it relatively quickly and 
predictably. 

A side effect 

Async event handlers are schedulable entities. They have (by the spec) all the capabilities of 
threads, but they do not have all the methods of a thread. 

To get at those methods, the async event handler can get the current real-time thread (or no-heap 
real-time thread…depending on the heap discipline of the async event handler) and invoke its 
methods. The async event handler must be coded to expect a new thread every time it runs 
unless it is a bound async event handler. 

You have to think about the ways async event handlers might be implemented to see the value of a bound 
async event handler. If the runtime creates a new thread for every async event handler, all async events are 
bound. But since the system is supposed to expect vast numbers of async event handlers, creating a thread 
per handler would be wasteful. Telling the runtime to bind an AEH to a thread tells the system that this 
AEH is important enough to warrant a little extra memory. 

From the point of view of resource consumption, a bound async event handler is a thread, but unlike a 
thread, an AEH can be easily fired. A thread can be event driven and simulate the behavior of a bound 
async event handler, but programmers are better off using bound async event handlers. The RTSJ 
implementation has already built the mechanism for attaching them to an async event, and programmers 
can convert bound async event handlers to unbound ones and back by typing a few characters. Switching 
between thread and async event handlers is only easy if the thread duplicates the async event handler API. 

 

Async Event Handlers and Non-Heap Memory 

An async event handler can perform like a no-heap realtime thread, but the distinction is a constructor 
parameter, not a whole new class. If an AsyncEventHandler is constructed with the no-heap parameter 
true, the Java runtime will execute that AEH with the same reference tests (see "Rules" on page 229) and 
performance advantages (see "Interaction with Scheduler" on page 227) as a no-heap thread. 

An async event handler that is constructed in scoped memory inherits the scope stack of the thread that 
creates it just as if it were a thread. This becomes important when the AIE needs to communicate with 
threads. It can always communicate through immortal memory, but if it uses scoped memory, it can share 
memory areas with its thread ancestors. 

 

No-Heap Event Handlers vs. No-Heap Threads 

Async event handlers can do anything a thread can do, but only bound async events have (something like) 
a thread object of their own. 
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A no-heap real-time thread can 

• be placed in scoped memory and follow complex rules about references, 
• run in immortal memory and take pains not to leak memory, or 
• run partly in immortal and partly in scoped memory, which is easy if kept simple. 

Unlike async event handlers, threads based in immortal memory have to contort themselves to be reusable. 
There is no way to change the run method on a thread. 

Changeable run methods are a core technology for async event handlers. Somewhere under the hood, the 
system is hooking async event handlers to something like a thread and then hooking on another async 
event handler when that one handler completes. 

 

Scheduling 

Real-time threads and async event handlers are schedulable entities. They are officially equivalent from the 
point of view of the scheduler, but in fact, they have little overlap. 

Threads are good at periodic scheduling. Async events are good at aperiodic scheduling. 

The RTSJ has no way for a thread to tell the scheduler that it has finished handling an aperiodic event and 
is ready for another. There is no waitForNextTrigger. 

The waitForTrigger function is part of the basic function of async event handlers, but they have 
nothing like waitForNextPeriod. PeriodicTimer is a subclass of AsyncEvent, but it does not 
have easily accessible release parameters. It is not designed for the application to modify its release 
parameters, and it has little flexibility in how it tells the scheduler it has completed a period. 

Minimum Interarrival Time 

Strictly aperiodic events are "unanalyzable." If you don't know how often the event handler will run, even 
one that costs very little could use 100 percent of the processor time. Sporadic events are aperiodic events 
with a budget. 

Sporadic events are characterized by a minimum interarrival time (MIT.) The RTSJ platform does not have 
to service these events if they drive less than minimum interarrival time after the previous event. This sets 
a bound on the maximum processor time that can be used by the event handler, and the events become 
analyzable. 

Enforcing minimum interarrival time for sporadic events calls for two decisions: 

• What to do if the event is fired too soon: 

There are four choices. 

1. Ignore the fire. 
2. Ignore the fire and throw an exception at the thread that invoked fire. (This is 

not much use if the event is fired by a happening.) 
3. Replace the last fire. Doing so updates the deadline for handling the event to be 

relative to the new fire. This turns into ignore if the last fire has already caused 
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an AEH to run to completion. It is also the same as ignore if the system is not 
enforcing deadlines. 

4. Save the fire, but shift its completion deadline so it is one minimum interarrival 
time after the last fire. 

If the implementation is saving deadlines for MIT violations or if the deadline is greater 
than the MIT, the system may need to maintain a queue of pending deadlines. 

• What to do if the queue overflows: 
1. Ignore the overflow and discard the new fire. 
2. Ignore the overflow, discard the new fire, and throw an exception. 
3. Replace the deadline at the tail of the queue with the new deadline. 
4. Lengthen the queue so it can hold the additional deadline. (This option is difficult to 

implement, probably slow, and may possibly leak immortal memory.) 

Selection of the MIT-violation and queue-overflow policies is a graceful degradation question. The 
application cannot assume that there will be time to handle events that come faster than expected. 
Sometimes, it is not as difficult as it seems: 

• If MIT violations are caused by the equivalent of someone pressing a doorbell button so the bell 
rings twice in quick succession and you want the deadline for answering the door to be expressed 
relative to the first ring, choose ignore. 

• If you want it to be relative to the second ring, choose replace. 
• If you want to tell the doorbell ringer how you feel about frantic visitors, choose ignore and 

throw an exception. 

 

Async Event Handlers and Threads 

An async event handler is not a thread, but it is schedulable. The distinction is confusing, and it may lead 
to trouble. 

A BoundAsyncEventHandler is permanently bound to a thread. That thread must always be available 
to run the bound AEH. That may save time since the platform will not need to do anything to bind the 
AEH's state to a thread, but it may not do anything. It is an implementation detail. 

 

Special Async Events 

The RTSJ defines several internal uses for async events. 

1. If a thread (or AEH) misses its deadline, the scheduler can fire an AIE (Asynchronously 
Interrupted Exception—covered in Chapter 17). 

2. If a thread (or AEH) overruns its CPU budget, the scheduler can fire an AIE. 
3. The physical memory allocator can use async event handlers to notify callers when memory is 

inserted and removed. 
4. The PeriodicTimer and OneShotTimer classes fire async event handlers when they expire. 
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Chapter 16. Reusing Immortal Memory 
• Using Fixed-Object Allocators 
• Recycling RT Threads 
• Recycling Async Event Handlers 

Prevent immortal memory leaks with this rule: 

Do not allocate an immortal object from code that is executed more than once in the life of 
the application. 

And the corollary: 

Try to create all immortal objects in static initializers. 

These restrictions rule out actual dynamic creation of immortal objects, but they do not prevent dynamic 
use of immortal objects. This is the motivation for reuse of immortal objects. 

 

Using Fixed-Object Allocators 

The fastest class of memory allocation algorithm is the fixed-block allocator. It uses constant time for 
memory allocation and constant time to return memory to the free pool. Its only problem is that all of its 
allocations are the same size. If you use a fixed-block allocator in a language like C, you can choose a 
likely size (say, 50 bytes), create an allocator with a pool of 50-byte blocks, and use those blocks for any 
structure whose size is not greater than 50 bytes. 

The Java programming language does not support the concept of blocks of memory. The Java equivalent 
of a fixed-block allocator is an allocator that controls a pool of preallocated objects. 

Carrier Objects 

The free pool for a fixed-block allocator is normally kept in a singly linked list. When memory is returned 
to the allocator, the allocator redefines the memory as a structure with a link field in it and places that 
structure at the head of the free list. Java does not let us redefine memory in that way. If the objects in the 
free list already have a reference field that we can use to string them into a free list, excellent. If they don't, 
the allocator needs to provide little carrier objects (see the four examples below) to hold the next pointers. 

Example 16-1 Fixed-object allocator declarations 

class FreelistHook { 
    FreelistHook next; 
    StringBuffer payload; 
} 
 
private FreelistHook unusedHooks; 
private FreelistHook freeList; 

Example 16-2 Fixed-object allocator constructors 

public BufferAllocator(){ 
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    this(50); 
} 
public BufferAllocator(int num){ 
    for(int i = 0; i < num; ++i) 
        freeHook(new FreelistHook()); 
    for(int i = 0; i < num; ++i) 
        free(new StringBuffer()); 
} 

Example 16-3 Hook management 

private void freeHook(FreelistHook hook){ 
    hook.next = unusedHooks; 
    unusedHooks = hook; 
} 
 
private FreelistHook getHook(){ 
    FreelistHook hook = unusedHooks; 
    if(hook != null) 
        unusedHooks = hook.next; 
    return hook; 
} 

Example 16-4 Fixed-object allocate and free 

public synchronized void free(StringBuffer node){ 
    FreelistHook hook = getHook(); 
    if(hook == null) 
        throw new RuntimeException("Too few hooks"); 
    hook.payload = node; 
    hook.next = freeList; 
    freeList = hook; 
} 
 
public synchronized StringBuffer allocate(){ 
    FreelistHook hook = freeList; 
    freeList = hook.next; 
    StringBuffer node = hook.payload; 
    freeHook(hook); 
    if(node != null) 
        node.setLength(0); 
    return node; 
} 

Limitations 

A fixed-object allocator is nearly useless for immutable objects. The Integer class is a good example of 
a class that defines an immutable object. Integer objects are assigned a value when they are created, and 
that value is permanently fixed in the Integer. We could build an allocator for Integer objects with 
the value 42, but we could not maintain a free list of Integer objects ready to take on a value. 

The more an object can be modified after it is constructed, the more easily it can be used with a fixed-
object allocator. 

 

Recycling RT Threads 
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There is no way to give a thread a different run method after it has been created. Furthermore, there is no 
way to restart a terminated thread. In this respect threads are somewhat like the basic java.lang 
immutable objects: String, Integer, Float, etc. A RealtimeThread allocator that allows an 
application to reuse RealtimeThread objects in immortal memory needs to contend with those two 
problems. 

The run method in a thread or real-time thread is invoked by a wrapper method that is part of the 
implementation. The wrapper calls the run method, and if the run method returns, the wrapper exits the 
thread. It also catches all throwables so they don't attempt to run off the end of the thread's stack. 

The run method in a thread is fixed when the thread is constructed. There isn't any special trick for 
changing the run method for a real-time thread, but the problem can be solved with an added level of 
indirection. Instead of letting a programmer determine the run method for a thread, define a new class that 
uses a fixed run method which calls an inner run method that can be replaced. 

The implementation of a reusable real-time thread can be an extension of RealtimeThread, or it can be 
a class that includes a RealtimeThread as a member. The latter works better because it lets the 
recycleable thread be a RealtimeThread while it is in execution (not a subclass of RealtimeThread.) 
It also lets ReusableThread use method names that are final (and consequently not overrideable) in 
RealtimeThread. For instance, join on a reusable thread should return when the thread finishes 
executing and is ready to be reused. The final join method in Thread would never return since the 
thread itself never terminates. 

The unfortunate aspect of not making ReusableThread a subclass of RealtimeThread is that it 
cannot be passed to methods that expect a Thread or RealtimeThread. It does implement 
Schedulable, so it can be used anywhere that requires a Schedulable or Runnable object. 

The crux of a recycleable thread is the fixed master run method and a start method that releases the 
client thread (see Example 16-5). 

Example 16-5 Master run method for reusable RealtimeThread 

private boolean keepAlive = true; 
private boolean active = false; 
private boolean started = false; 
private boolean waitForStart = true; 
private Runnable go = null; 
private Object lock = new Object(); 
private int exitCt = 0; 
 
/** This will be the run method for the client thread */ 
public void run(){ 
  while(keepAlive){ 
    //  active is false 
 
    synchronized(lock){ 
      //  Wait until start() releases us to run 
      //  or end() releases us to exit 
      try { 
        while(waitForStart && keepAlive) 
          lock.wait(); 
        if(!keepAlive) 
          break; 
      } catch (InterruptedException e){ 
        continue; 
      } finally { 
        active = true; 
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        waitForStart = true; 
      } 
    } // end sync 
    //  active is true 
    //  Since start will throw an exception if it is 
    //  called while active is true, and it is the only 
    //  other method that writes waitForStart, 
    //  waitForStart is also true. 
 
    try { 
      if(go == null)dummyGo(); 
      else 
        go.run();  //  Run the payload in this thread 
    } catch(Exception e){ 
      //   Discard all exceptions 
    } catch(Error t){ 
      keepAlive = false; 
      throw t; 
    } finally { 
//  Wake anyone waiting in join 
       synchronized(lock){ 
         active = false; 
         exitCt += 1; 
         lock.notifyAll(); 
       } 
     } 
    } 
} 
 
/** Use this method if the logic is still unspecified */ 
  private void dummyGo(){ 
    return; 
  } 

With all the synchronization and most of the special cases left out, the master run method is just a while 
loop like this: 

while(keepAlive){ 
  try { 
    go.run(); 
  } catch (Exception e){ // ignore them 
  } catch (Error err) { // don't ignore these 
  } 
} 

The thread's actual run method is the master run method above. The RealtimeThread class offers no 
way to replace the run method of a thread. The ReusableThread class doesn't solve this problem 
direction, but the master run method dispatches control to a second run method, go.run, which can be 
changed. 

The synchronized blocks at the beginning and end of the master run method let it handshake with 
start, join, and end methods (see Example 16-6). 

Example 16-6 Methods that handshake with the master run 

/** Let the run method return next time through the loop.*/ 
 public void end(){ 
   synchronized(lock){ 
     keepAlive = false; 
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     lock.notifyAll(); 
   } 
 } 
/** wait for the run method to complete a task */ 
 public void join() throws InterruptedException { 
   int lastExitCt = exitCt; 
   synchronized(lock){ 
     if(!keepAlive) return; 
     while(exitCt == lastExitCt) 
       lock.wait(); 
   } 
} 
 
/** If the run method is executing a task or about 
 *  to execute a task, wait for it to complete. 
 */ 
public void joinIfRunning() throws InterruptedException { 
  int lastExitCt = exitCt; 
  if(active || !waitForStart) 
    join(); 
} 
 
/** Is the rt thread executing its payload? */ 
public boolean isActive(){ 
  return active; 
} 
 
 
public void start(Runnable logic){ 
  synchronized(lock){ 
    if(active) 
      throw new 
        RuntimeException( 
          "starting a running thread"); 
    if(!keepAlive) 
      throw new 
        RuntimeException( 
          "starting a dead thread"); 
    go = logic; 
    if(!started){ 
      started = true; 
      innerThread.start(); 
    } 
 
    //  Release the RT thread. 
    //  It must be waiting or active would not be false 
    waitForStart = false; 
    lock.notifyAll(); 
  } 
} 

In most respects, reusable threads act like ordinary ones. The logic running in the thread does not need to 
adapt to being in a reusable thread. The code that starts the thread needs to pass a Runnable as a 
parameter of the start method, and it needs to take extra care when using join since the thread may 
terminate multiple times. 

The join method interacts with the synchronized block at the end of the master run method. The 
start and end methods interact with the syncrhonized block at the beginning. 

The rules for interaction are as follows: 
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• start. This method will throw an exception in either of two situations: 
o If it is called on a ReusableThread that is currently running 
o If it is called on a ReusableThread that has stopped because its end method was called 

or because its client thread threw an error. 

If start does not throw an exception, it will release the client thread to run the payload 
Runnable passed to start and return to its caller. 

• join. This method will throw InterruptedException if it returns because it was interrupted. 
Otherwise, it will wait for a client thread to complete and then unblock its caller. 

The join method will wait for the client to complete even if the master run method is idle when 
join is invoked. This is usually convenient, but it is a little dangerous. 

• joinIfRunning. This method is designed for simple start/join sequences. 
• rThread.start(logic); 
• rThread.joinIfRunning(); 

The joinIfRunning method will not block unless rThread is active or about to become active. 

• isActive. This method simply tests whether the reusable thread is busy. 
• end. This method will not interrupt the thread while it is running, but it will cause the master run 

method to exit the next time it completes a client. If the reusable thread is not busy, it will 
terminate immediately. 

A set of constructors for recycleable threads mirrors the constructors of RealtimeThread. Example 16-7 
shows a set of constructors that roughly mirrors the constructors for single-use real-time threads. 

Example 16-7 Reusable RealtimeThread constructors 

import javax.realtime.*; 
 
public class ReusableThread implements Schedulable { 
  /** A link field for the free list */ 
  public ReusableThread next = null; 
  /** The hidden client thread. */ 
  private RealtimeThread innerThread; 
 
  public ReusableThread(){ 
    create(null, null, null, null, null, go); 
  } 
 
  public ReusableThread(SchedulingParameters sched){ 
    create(sched, null, null, null, null, go); 
  } 
 
  public ReusableThread(SchedulingParameters sched, 
      ReleaseParameters release){ 
    create(sched, release, null, null, null, go); 
  } 
 
  public ReusableThread(SchedulingParameters sched, 
      ReleaseParameters release, 
      MemoryParameters memory, 
      MemoryArea area, 
      ProcessingGroupParameters group, 
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      Runnable logic){ 
    create(sched, 
        release, 
        memory, 
        area, 
        group, 
        logic); 
    } 
 
  private void create(SchedulingParameters sched, 
      ReleaseParameters release, 
      MemoryParameters memory, 
      MemoryArea area, 
      ProcessingGroupParameters group, 
      Runnable logic){ 
    if(logic != null) 
        go = logic; 
 innerThread = new RealtimeThread(sched, 
        release, 
        memory, 
        area, 
        group, this); 
} 

A large set of methods does nothing but transfer operations on the thread from the recycleable object into 
the real thread. Example 16-8 contains a few examples of the accessor methods. There are many more, but 
they all follow this pattern. 

Example 16-8 Some accessor methods 

public boolean addIfFeasible(){ 
  return innerThread.addIfFeasible(); 
} 
 
public boolean addToFeasibility(){ 
  return innerThread.addToFeasibility(); 
} 
 
public void deschedulePeriodic(){ 
  innerThread.deschedulePeriodic(); 
} 
 
public MemoryParameters getMemoryParameters(){ 
  return innerThread.getMemoryParameters(); 
} 

 
 

Recycling Async Event Handlers 

An async event handler is similar to a thread. Ideally, it will be a lighter-weight construct than a thread, so 
recycling it should generally be unnecessary unless the system moves through multiple phases each of 
which uses a separate large collection of async event handlers. 

A reusable async event handler is surprisingly different from a reusable thread. The fundamental difference 
is that the JVM executes the run method of a thread once, but the RTSJ executes the 
handleAsyncEvent method of an async event handler repeatedly. (Or, if the async event handler was 
constructed with a logic parameter, it will call the run method of that object repeatedly.) It does not 
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have a join method or a start method and turns out to be a fine candidate for implementation as a 
subclass of AsyncEventHandler. This is fortunate, since finding a way to make async events work with 
something other than async event handlers would have been difficult. 

The reusable AEH (Example 16-9) consists of a set of constructors that override all AEH constructors that 
pass logic to the AEH, a fixed handleAsyncEvent method, and a new method, setLogic, that 
changes the code that will be executed when the AEH is invoked. 

Example 16-9 A reusable async event handler 

import javax.realtime.*; 
 
public class ReusableAEH extends AsyncEventHandler { 
 
  /** A link used to put this object 
      in a free list */ 
  public ReusableAEH next; 
  private Runnable logic;  //  The resettable logic 
 
  public ReusableAEH(){ 
    super(); 
  } 
 
  public ReusableAEH(boolean nonHeap){ 
    super(nonHeap); 
  } 
 
  public ReusableAEH(boolean nonHeap, Runnable logic){ 
    //  Note: Since we override handleAsyncEvent 
    //  passing a logic parameter to the constructor 
    //  has no effect. 
    super(nonHeap); 
    setLogic(logic); 
  } 
 
  public ReusableAEH(Runnable logic){ 
    setLogic(logic); 
  } 
  public ReusableAEH(SchedulingParameters scheduling, 
      ReleaseParameters release, 
      MemoryParameters memory, 
      MemoryArea area, 
      ProcessingGroupParameters group, 
      boolean nonHeap, 
      Runnable logic){ 
     super(scheduling, release, 
      memory, area, group, nonHeap, 
      logic);  // Note: Passing in logic is harmless 
    setLogic(logic); 
  } 
 
  // ... and other constructors matching all the 
  // AEH constructors. 
 
  /** Change the logic executed by this AEH */ 
  public void setLogic(Runnable logic){ 
    this.logic = logic; 
  } 
 
  /** Call the runnable logic */ 
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  public void handleAsyncEvent(){ 
    if(this.logic != null) 
      this.logic.run(); 
  } 

The code in Example 16-10 shows a way to use a reusable async event handler. The code does the 
following: 

• Creates a reusable AEH. 
• Creates an async event (a PeriodicTimer) attached to the AEH. 
• Uses setLogic to set a Runnable to the AEH. 
• Starts the timer. 
• And sleeps for a while to show the async event working. 

Up to this point, the reusable async event handler has worked like an ordinary one except that the logic 
was passed to it with setLogic instead of through the constructor. 

If we were going to return the reusable AEH to a free list, we would want to detach it from its async events. 
That would be done with the removeHandler method on each associated async event. In the example, 
we do not need to completely free the AEH, just change its action, so the example just uses setLogic. 

Example 16-10 Using a reusable async event handler 

//  Make a reusable AEH 
ReusableAEH rAEH = new ReusableAEH(); 
//  Make a source of events and attach 
//  it to our reusable AEH 
PeriodicTimer timer = new PeriodicTimer( 
  null, // start now 
  new RelativeTime(1000, 0),// tick once per second 
  rAEH); 
//  Associate a Runnable with the AEH 
rAEH.setLogic(new Runnable() { 
  public void run(){ 
    System.out.println("tick"); 
  } 
}); 
timer.start(); 
//  Let the AEH print ticks for a while 
try { 
  Thread.sleep(10000); 
} catch(Exception e){} 
//  Attach a new Runnable that prints tocks 
rAEH.setLogic(new Runnable() { 
  public void run(){ 
    System.out.println("Tock"); 
  } 
}); 
//  Now let it print tocks for a while 
try { 
  Thread.sleep(10000); 
} catch(Exception e){} 
//  Unhook the AEH from the timer 
timer.removeHandler(rAEH); 
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Chapter 17. Asynchronous Transfer of Control 
• Thread Interrupt in Context 
• Asynchronous Interrupt Firing 
• Rules for Async Exception Propagation 
• Noninterruptible Code 
• Use of ATC for Thread Termination 

Asynchronous transfer of control (ATC) is a mechanism (broadly similar to Thread.stop) that lets one 
thread throw an exception into another thread. ATC is important for some classes of real-time applications. 
The RTSJ defines a class, called AsynchronouslyInterruptedException (AIE), for asynchronous 
exceptions, with special rules that make the exceptions safe for use with the Java programming language: 

1. The target thread will not service an asynchronously interrupted exception until it reaches a 
method that explicitly throws AsynchronouslyInterruptedException. 

2. The AIE will be asserted immediately if the target thread is in a method that throws it; otherwise, 
the AIE will remain pending until it enters such a method. 

3. When control enters a method that throws AIE and an AIE is pending, it is thrown immediately. 
4. The pending AIE remains pending until it is serviced. 
5. An AIE can be thrown at a thread that already has an AIE pending. The new AIE will replace the 

pending one if it is aimed at a less deeply nested method. 

The AIE was invented because some real-time programmers find this type of function crucial. Others find 
it repulsive. If you are in that class, don't use ATC. The RTSJ does not force you to learn to use ATC in 
order to use its other features. 

AIE is similar to longjmp from a signal handler 

The C language allows a program to jump to a saved point somewhere up the stack from the 
point of the jump. It is a powerful feature that lets a program leap instantly to a fixed location no 
matter where it has called from that function. 

The signal intercept routine is another interesting feature of C in a UNIX-like system. It is a 
function that the runtime environment calls when a signal is sent to the thread. It works as if 
something inserted a call to the signal handler function between two to instructions in the 
thread. If the signal handler returns, the interrupted thread resumes where it was interrupted. 

Since the signal handler is executed in the context of the interrupted thread, it can longjmp to 
contexts saved by that thread. This makes it easy to code things like "execute this function for 
20 seconds, then jump here," or "do what you like, but if this child process exits unexpectedly, 
jump here immediately." 

C++ added exceptions as one of its extensions to the C language. Exceptions offer all the good 
points of longjmps, except speed, and have removed most of the problems inherent in long 
uncontrolled leaps around a program. 

Many programmers (justifiably) dislike longjmp and signal intercept routines individually and 
together. 

The RTSJ uses an exception for the abrupt transfer of control and a carefully worked out 
mechanism for the insertion of exceptions inserting them in a running thread. Time will tell 
whether it is a better mix of power and safety than longjmp from a signal handler. 
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Below are some problems asynchronous transfer of control was invented to solve: 

• A system should run a computation for n microseconds. It is the type of computation (maybe 
calculating pi) that will continue to refine its result as it runs, so it is not an error for it to want to 
run forever. 

• A thread with timing constraints wants to call a blocking service. Perhaps it wants to open a file. It 
is willing to wait n milliseconds for the open method to return, then it has to continue whether the 
file is open or not. 

• A thread has gone out of control. A supervisory thread needs to terminate it. 
• A periodic thread with an overrun handler needs to change its logic as soon as an overrun is 

detected. 

 

Thread Interrupt in Context 

Thread interrupt is an old feature of the Java language. Calling a thread's interrupt method puts the 
thread into the interrupted state Blocking services that do not have effects other than blocking (like sleep, 
join, wait, waitForAll, getNextEvent, and others), unblock and throw an 
InterruptedException if interrupt is called on the blocking thread or if the thread is in interrupt 
state when the call is made. I/O calls are also supposed to unblock and throw an exception if the thread is 
interrupted. For I/O operations, the exception is InterruptedIOException, which allows the I/O 
operation to include information about how far the I/O operation got before it was interrupted. 

The Java programming language formerly included a stop method on the Thread class. It would throw a 
ThreadDeath exception into the thread immediately unless the thread was in the middle of acquiring a 
lock. The stop method was deprecated for two reasons: 

1. It suggests more than it delivers. The ThreadDeath exception is as catchable as any other 
exception; consequently, the stop method cannot stop a malicious thread or even one that 
accidentally catches and ignores the ThreadDeath exception. (It is pretty easy to ignore 
ThreadDeath accidentally—just use catch(Throwable e).) 

2. It may cause corruption of objects. Thread.stop can interrupt a thread that is holding a lock and 
maintaining a data structure. It unceremoniously releases the lock even if that leaves the data 
structure partially updated. 

So, Java has already tried a version of ATC and rejected it as a bad idea, but the language still has a 
mechanism that interrupts many blocking calls and sets a bit in the interrupted thread object that the thread 
can check. Why does the RTSJ add a new mechanism? Is it really new? 

The standard interrupt mechanism is insufficient because of the following behaviors: 

1. A conforming implementation of the JVM can completely ignore interrupts during I/O operations 
or other blocking methods. A real-time application needs a stronger assurance than this. 

2. The conforming standard JVM can even ignore interrupts during non-I/O blocking operations. 
3. The interrupt actually causes an exception (optionally) only when the thread is blocked. At other 

times the thread must poll for an interrupt. 

The worst-case response time for polling depends on the frequency of polling. A thread that needs 
to respond quickly to being interrupted will be cluttered with if(!interrupted()) and 
while(!interrupted). This is hard to read and all the extraneous tests degrade overall 
performance. It is especially hard to maintain proper polling of the interrupted attribute when the 
thread moves through methods that are shared among threads with different responsiveness 
constraints and through standard libraries that may ignore the interrupted state altogether. 
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4. Interrupts are not tagged. A standard Java platform makes no provisions for a thread that is 
interrupted while it is already in interrupted state. 

The stop method on thread objects is insufficient for these reasons: 

1. It is deprecated. The RTSJ could have restored the mechanism, but the claims against 
ThreadDeath are valid and important. 

2. ThreadDeath can be caught inadvertently by catch(Throwable e). 
3. ThreadDeath can interrupt a thread when it is not prepared to be interrupted. In particular, 

ThreadDeath can interrupt the thread in a synchronized block. This behavior is very difficult to 
program around. 

4. There is no provision for interrupting a thread that has a ThreadDeath exception "in flight." 

The RTSJ mechanism for asynchronous transfer of control addresses these difficulties, except for 
termination of malicious threads. 

• Consistent implementation. The RTSJ requires that every blocking operation be interruptible by 
an AIE. The specification does not require a particular response time, but the delay cannot be 
unbounded. I/O operations are required to unblock if they are interrupted. 

• Consistent conversion to an exception. AsynchronouslyInterruptedException cannot 
be ignored without serious effort. An application is unlikely to ignore the exception by mistake. 

• No polling. Polling for AIE is not required. As with stop, calling interrupt on a 
RealtimeThread object will throw an exception into the target thread almost immediately. 

• Hard to discard inadvertently. An AIE can be caught inadvertently, but the platform will raise 
the exception again if it is not handled according to a particular formula. That is, it can be caught 
inadvertently, but it will not stay caught. 

• Safe with legacy code. Only methods that are designed to handle asynchronous exceptions can be 
interrupted by them. Unless a method signature throws 
AsynchronouslyInterruptedException, it cannot be interrupted asynchronously. 
Methods that do not throw that exception will run to completion. By doing nothing, an application 
protects uninterruptible operations. 

• Safe with locks. Interrupting synchronized code is unwise, and the RTSJ does not do it. 
Synchronized blocks, even when they appear in methods that throw 
AsynchronouslyInterruptedException, cannot be interrupted. If an algorithm really 
wants to find out about an AIE in the middle of a synchronized block, it can poll the 
isInterrupted method for it. 

• Provides for reinterrupt. A RealtimeThread can be reinterrupted while an AIE is in flight. 
Rules in the RTSJ determine whether the new exception will replace the previous one. 

 

Asynchronous Interrupt Firing 

The RTSJ provides three ways to raise an AIE. The interrupt method on RealtimeThread throws a 
generic AIE into the thread, the fire method on AsynchronouslyInterruptedException causes 
an AIE that is directed at a particular method, and at an assigned moment a Timed object throws an AIE at 
the run method it is given. (A thread can also just throw an AIE at itself, but then it isn't actually 
asynchronous.) 

The Timed Class 

Real-time applications frequently contain specifications like 

Wait 200 milliseconds for a response, then stop the process and initiate recovery 
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or 

Spend up to 1022 microseconds refining the computation, take the best result, and pass it to the next step in 
the computation 

or 

The thread should not execute for more than 10 seconds. If it does, warm-start the subsystem by killing 
threads A, B, and C, cleaning their data structures, and restarting them. 

or other instructions that include a time limit. The forms are so common in real-time systems that the RTSJ 
includes a subclass of AsynchronouslyInterruptedException that is specialized for time-based 
exceptions. 

The Timed class is a self-firing AIE. It executes the run method of its Interruptible argument until 
its alarm goes off and then fires itself at the run method. 

This is not sophisticated code. If the Timed class were not part of the RTSJ, it would definitely be an 
example in this chapter. Since it will probably be one of the most frequently used applications of ATC, it 
deserves several pages of careful treatment, but it is also simple. Do not be misled by the numerous pages 
this chapter spends on obscure topics like seizing an exception intended for another method. Timed is 
important. 

The constructor for a Timed object includes a HighResolutionTime parameter. If the time is an 
interval, it is measured from some point between the time at which control enters doInterruptible and 
the time at which it enters the run method. If the time is an absolute time, the timer expires at the 
designated moment. 

Since it would be a shame to construct a Timed object and only get to use it once, the Timed class 
includes a resetTime method that replaces the time attribute of a Timed object. 

Reuse of a Timed object 

A Timed object can be constructed once and used many times. If its time-out value does not 
vary, it can be reused without modification. If the time-out must change, the resetTime method 
can alter the time-out. 

If you do not use the resetTime method, a Timed object that uses a relative time can be used repeatedly 
so long as the application doesn't want to change the interval. Changing the interval, or reusing the object 
if it was set with an absolute time, requires the use of resetTime. 

It is particularly easy to see the importance of the mechanism for nearly forcing AIEs to have target 
methods and propagate until they get to those methods. 

The basic timed method goes like this: 

Example 17-1 Basic timed method 

Timed timed = new Timed(new RelativeTime(1000,0)); 
timed.doInterruptible(new Interruptible() { 
    public void run( 
            AsynchronouslyInterruptedException e) 
            throws AsynchronouslyInterruptedException{ 
        while(true){ 
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            System.out.print("."); 
            try {Thread.sleep(10);}catch(Exception ie){} 
        } 
    } 
    public void interruptAction( 
            AsynchronouslyInterruptedException e){ 
     System.out.println("In interruptAction"); 
     } 
}); 

There is not much to say about this example except that the Interruptible object should not assume 
that it ran for its full allotted time. It can be interrupted by an AIE other than the one that signifies that its 
time is up—perhaps by another timer in a method somewhere on the call stack or by a non-time-based AIE. 

Many of the examples in this book include sleeps that seem unnecessary. They are there 
because of an artifact of one version of Linux. High (real-time) priorities are only accessible to 
tasks with root privileges. Without access to higher priorities for event handlers, busy wait loops 
will lock out an the event handler and the examples will run incorrectly. 

The sleeps give the event handler a chance to run even if it they areis forced down to the same 
priority as the main thread. 

If the method in Example 17-1 were called from another timed method, the timers would be kept straight. 
If the method in the example ran out of time first, it would be interrupted. The outer timed method could 
find out that this method had been interrupted, but the outer timed method would run normally until it 
completed or until its time ran out. 

If the time for the outer method ran out first, the method in the example would be interrupted but the AIE 
would continue to propagate from that Timed object until it reached the Timed object that had expired. 

This all happens automatically. It only gets nasty if you want to make it work some other way. 

The interrupt Method 

The interrupt method on RealtimeThread is largely compatible with the same method on regular 
Thread objects. Like interrupt on an ordinary thread, interrupt on a RealtimeThread sets the 
interrupted attribute of the thread. If the thread is blocked in an I/O operation and cannot be certain it will 
unblock in a bounded length of time, the system will break out of the I/O operation and throw an 
InterruptedException. 

In any case, if the thread is not ATC deferred, it is immediately thrown an 
AsynchronouslyInterruptedException. If it is ATC deferred, the AIE remains pending on the 
thread until it enters code that is not ATC deferred; then the exception is thrown immediately. 

The exception generated by the public interrupt method on RealtimeThread is called a generic AIE. 
It is not associated with a doInterruptible method. Its target is the thread itself, and it will usually kill 
the thread. 

Calling interrupt on a RealtimeThread object is an excellent way to terminate that thread. If the 
target thread is expected to catch the exception and continue execution, the fire method is a better way to 
trigger the asynchronous exception. 

The fire Method 
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The fire method on AsynchronouslyInterruptedException, together with the AIE object's 
doInterruptible method, allows asynchronous interrupts to be directed at particular methods. Unless 
the programmer takes extraordinary measures, the AIE will propagate until it reaches the target method, at 
which point it can be caught and deactivated. 

This targeting of AIEs is included in the RTSJ to let routines with various requirements for asynchronous 
interrupts be nested without requiring special cooperation between the routines. Imagine methods foo and 
bar. Each of these methods was coded with the bulk of their processing enclosed in a Timed object that 
protects them against using excessive time by firing an AIE targeted at the Timed object after a preset 
interval. 

Foo can call bar or bar can call foo without confusion. An AIE directed at the inner method will 
interrupt its timed component and be caught there. An AIE directed at the outer method will interrupt the 
inner method and be caught there, but the platform will automatically rethrow the exception until it reaches 
the outer method. 

Simple use of ATC involves the following steps: 

1. Create an AsynchronouslyInterruptedException. 

This a blatant example of the thread cooperating with the entity that will throw an 
asynchronous exception at it. 

The thread should make certain that the exception will be accessible in the thread that will 
fire it and the thread that created it. Since the exception will not propagate up the stack 
from this point in the target, it does not need to be accessible there. 

import javax.realtime.*; 
 
public class One extends RealtimeThread { 
 
  AsynchronouslyInterruptedException aie; 
 
  public void run(){ 
    One.this.aie = 
      new AsynchronouslyInterruptedException(); 

2. Write interruptible code and call it with doInterruptible. 

The doInterruptible method uses the closure idea. Code inside doInterruptible 
expects to be interrupted by its own AIE. The exception will propagate to this point and 
disappear. 

The argument to doInterruptible is a class that implements the Interruptible 
interface. The interface includes two methods: 

o public void run( 

AsynchronouslyInterruptedException ex) 

o public void interruptAction( 

AsynchronouslyInterruptedException ex) 

The run method can be written without 
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throws AsynchronouslyInterruptedException 

but that would be unusual since that would cause AIEs to remain pending during execution 
of the run method, and the point of the exercise is managing an AIE. 

One.this.aie.doInterruptible( 
       new Interruptible() { 
  private volatile int n; 
  public void interruptAction( 
      AsynchronouslyInterruptedException aie){ 
    System.out.println("Interrupted at " + n); 
  } 
 
  public void run( 
         AsynchronouslyInterruptedException aie) 
       throws 
         AsynchronouslyInterruptedException { 
    for(int i = 0; i < 10000000; ++i){ 
      try{Thread.sleep(1);} catch(Exception e){} 
      n += 1; 
    } 
    System.out.println("Something's wrong."); 
  } 
}); 

 

Interruptible methods can be interrupted by any AIE directed at their thread, not just the 
AIE from which they are called. 

3. Fire the interrupt. 

The thread could fire the exception at itself, but that would have to be called a degenerate 
case. It is more interesting when another thread or an async event handler fires the 
exception. 

If no thread is currently using the AIE's doInterruptible method, the fire method 
immediately returns false. 

if(rt1.aie.fire()) 
  System.out.println("Fire returned true"); 
else 
  System.out.println("Fire returned false"); 

If the AIE is enabled and the target thread is executing a method that throws 
AsynchronouslyInterruptedException and it is not in synchronized code, the AIE 
will be thrown immediately. 

o If control is in a method that does not throw AIE: 

The exception will remain pending until control enters a method that does throw 
AIE, then it will be thrown immediately. 

o If the AIE is disabled: 

The AIE will be flagged so an interrupt will be thrown when the AIE is reenabled. 
The AIE can be successfully fired multiple times while it is disabled. The fire will 
behave as if the AIE was not masked, and the interrupt will either be dropped or 
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replace the saved interrupt according to the same replacement rules that govern 
interrupts that are fired while one is already propagating. 

4. Deal with being interrupted. 

The exception will percolate up the call stack until it reaches the run method called by 
doInterruptible. If the interruptAction method is empty, control will quietly jump 
from the middle of the run method. 

The interruptAction method is provided for cases in which the code needs to know it has 
been interrupted and take some action: store final results, log an error, set up for a future 
run, or whatever. 

In Summary 

Methods that do not throw AIE and synchronized blocks are ATC deferred. In these lexical contexts, 
asynchronous interrupts are made pending. They remain pending until control enters an area that is not 
ATC deferred, then they are propagated. 

When an AIE is fired at a thread, when it is thrown, or when it is propagated, it transfers control to the 
nearest suitable catch or finally block. The suitable target will be in an ATC-deferred region. 

If the thread is blocked in wait, sleep, join, or in an I/O operation that throws 
InterruptedIOException, the AIE will unblock the thread. 

If control leaves an ATC-deferred region because the code throws an exception other than an AIE, the 
pending AIE will replace the thrown exception. If the thrown exception is an AIE, replacement rules apply. 

Replacement Rules 

It is possible to call the fire method on AsynchronouslyInterruptedException object aie1 
while an AIE is already "in flight" on the target thread. If the doInterruptible for aie1 is currently 
on the call stack, fire will return true, and the following actions then occur: 

1. If the AIE in flight is aie2, which is deeper on the stack than aie1, then the new exception will 
be silently ignored 
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2. If the AIE in flight targets aie3, which is less deeply nested on the call stack, then aie1 will 
replace aie3 and exception processing in the target thread will continue with the new exception. 

Rule 2 is the replacement rule. The RTSJ runtime can replace an AIE with another AIE at any time up to 
the moment when the internals of the target doInterruptible (probably a call to happened) 
recognizes the interrupt. Before that time, the runtime can replace an AIE with another one that is aimed 
farther up the stack, without disrupting operation. 

The RTSJ also specifies replacement when an AIE collides with another exception. The AIE always 
replaces other exceptions. While a thread is in an ATC-deferred state, it can throw and catch other 
exceptions, but at the moment when the thread leaves ATC-deferred state, any pending AIE will auto-
propagate, for example, if 

method x() 
  calls 
  method y throws AIE 
    calls 
    method z() throws IOException, 

and the thread receives an AIE while z is executing. Even if z throws IOException, reentry into y will 
cause the AIE to auto-propagate and the AIE will immediately be thrown into method x. It does not matter 
whether method z returns normally or throws an exception, no code in method y will execute, any 
exception will be lost, and control will land in a catch clause in x. 

 

Rules for Async Exception Propagation 

The easy way to explain AIE propagation is with two points: 

• An AsynchronouslyInterruptedException that is thrown by the interrupt method on 
a RealtimeThread object propagates all the way through the thread and causes it to terminate. 
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• An AsynchronouslyInterruptedException thrown by the fire method on an AIE object 
propagates until it reaches the doInterruptible for that AIE. There it stops. On the way to the 
stopping place, the exception will execute every appropriate catch block that catches 
AsynchronouslyInterruptedException and every appropriate finally clause. 

Oblivious catch 

Propagation is automatic if the programmer uses standard Java exception processing mechanisms and the 
fire and doInterruptible methods on the AsynchronouslyInterruptedException object. It 
can get more complicated if the application reaches into the internals of AIE processing. 

An AsynchronouslyInterruptedException has special properties, but it is in most respects an 
ordinary Java-language exception. It can be caught with a specific catch clause, 

catch (AsynchronouslyInterruptedException e){... 

or a broad catch clause, like 

catch (InterruptedException e){... 

or even, 

catch(Throwable t){... 

In any of these cases the RTSJ runtime will follow this sequence of events: 

1. Fire. Some thread or async event handler fires the AIE, and the RTSJ runtime uses an internal 
mechanism to throw an asynchronously interrupted exception aimed at one particular 
doInterruptible. 

2. Schedule. A thread almost never fires an AIE at itself. That means the first part of the AIE 
processing takes place in the thread that calls fire, and the bulk of the processing takes place in 
the target thread. The second part of the processing does not take place until the scheduler chooses 
to execute the target thread. 

3. Locate target stack frame. The Java runtime locates the target thread and finds the first catch 
clause that matches the exception or the first finally clause. Either the thread that calls fire or 
the target thread could do this, but the best performance will probably come from JVMs that find 
the target frame before the target thread is dispatched. 

Finally clauses in methods that throw AysnchronouslyInterruptedException cannot be 
trusted. They will not be executed if the method is interrupted. 

The behavior of catch clauses and finally clauses in methods that throw 
AsynchronouslyInterruptedException is deceptive. The exception never executes those clauses. 
The AIE would auto-propagate as soon as control entered a method that throws AIE. So when the JVM is 
propagating an AIE, the JVM only considers catch and finally clauses in methods that do not throw 
AIE. 

Assume that the first thing the Java runtime finds in looking up the stack is a catch(Throwable t) 
clause in a method that does not throw AIE. The following sequence then occurs: 

1. Transfer control in the target thread. The Java runtime transfers control to the catch clause 
just as if AIE was an ordinary exception. 

2. Catch. The catch clause executes to completion. 
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3. Continue. The method containing the catch clause continues until it executes a return or an 
athrow bytecode. 

4. Rethrow. The runtime support for the return and athrow bytecodes notices that the AIE has 
been caught but is still pending. It rethrows the exception without any program involvement, and 
the exception propagates up the stack to the next matching catch or finally clause. 

Nonmatching doInterruptible 

An AIE can pass through any number of doInterruptible methods before it reaches its target. Unlike 
the oblivious catch, doInterruptible understands the special properties of an asynchronous interrupt. 
Starting at the point where the AIE reaches the doInterruptible method…: 

1. catch. The AIE is caught in a 

catch (AsynchronouslyInterruptibleException e) 

clause hidden in doInterruptible. 

2. interruptAction. The catch clause calls the interruptAction method on the 
Interruptible object that was passed to doInterruptible. By default, that method does 
nothing, but it can be overridden to take application-specific action when the run method is 
interrupted. 

3. finally. The call to the interruptAction method is wrapped in a try/finally construct 
so that no matter what is thrown from interruptAction, the code in the finally clause will 
execute. 

4. happened. The finally clause contains a call to the happened(true) method on the current 
AIE object. The happened method is designed to determine whether the exception matches this 
AIE. 

5. propagate. The happened method detects that the exception is not aimed at this 
doInterruptible. Since the parameter to happened is true, it will propagate the AIE, 
which in this case amounts to rethrowing the exception. 

Matching doInterruptible 

An AIE being caught in its own doInterruptible method proceeds like one in a nonmatching 
doInterruptible until it calls happened. Starting at that point, the exception is handled differently: 

1. happened. The finally clause contains a call to the happened(true) method on the current 
AIE object. 

2. return. The happened method detects that the exception is aimed at this doInterruptible. 
For this exception it doesn't matter whether the parameter to happened was true or false. The 
method will return true, which doInterruptible ignores since happened(true) does not 
return unless the current AIE is the target. 

Control returns from doInterruptible. Since the AIE was handled in this function, the AIE is 
no longer pending and the return bytecode does not rethrow the AIE. Unless the 
interruptAction method did something that is visible to the surrounding class, the code that 
called doInterruptible cannot tell whether the Interruptible method was interrupted or 
ran to completion. 

Internals 
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The propagation of an AIE depends on a careful interaction of the bytecode interpreter and the catch 
clause in doInterruptible. 

First the bytecodes: 

• areturn, dreturn, freturn, ireturn, and return 

All of these bytecodes return from one method to another. If the AIE pending flag is set and they 
are returning to a method that throws AIE, they should immediately throw the pending AIE. 

• monitorexit 

This bytecode tells the JVM that it has reached the end of a synchronized block. This is affected 
by a pending AIE just as the return byte codes are. 

• invokeinterface, invokespecial, invokestatic, invokevirtual 

All of these bytecodes call from one method to another. If the AIE pending flag is set and they are 
invoking a method that throws AIE, the bytecodes should immediately throw the AIE that is 
pending. 

• athrow 

This bytecode has to notice when it being used to throw an AIE. For consistency, throwing an AIE 
from a context that is not ATC-deferred has to behave as if throwing an AIE was the same as 
firing it. In a context that is ATC-deferred, the athrow bytecode should act as if it were an 
ordinary exception, transferring control to the "nearest suitable catch block." 

When athrow finds a finally block or a catch clause that matches the exception, it transfers 
control to the target code. 

The runtime will ignore catch and finally blocks in methods that throw AIE when it is 
looking for the matching catch block. This includes narrowly defined catch blocks like: 

catch (AsynchronouslyInterruptedException e) 

and finally blocks 

finally { 
} 

and broadly defined catch blocks like 

catch (Throwable t) 

• monitorenter 

Save the thread AIE deferred state, and make the thread state AIE deferred. 

• monitorexit 

Restore the thread AIE deferred state, and throw an AIE if appropriate. 
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Next, the runtime reactions to an asynchronously interrupted exception (AIE) (Table 17-1 and Table 17-2): 

Table 17-1. Runtime reaction to an AIE 
State  Action  
Ordinary code: method does not 
throw AIE  

Mark the thread for pending AIE.  

Interruptible  Mark the thread for pending AIE. Immediately throw the AIE. 
Propagating an exception other 
than AIE  

Mark the thread for pending AIE. Discard the exception and 
replace it with the AIE.  

In a synchronized block  Mark the thread for pending AIE.  
Blocked in wait, sleep, or join  Mark the thread for pending AIE and throw the AIE.  
 

Table 17-2. Runtime reaction to a pending AIE 
State  Action  
Leaving a synchronized block in a method that does 
not throw AIE  

Do nothing.  

Leaving a synchronized block in a method that 
throws AIE  

Throw the AIE.  

Entering a method that does not throw AIE  Do nothing.  
Entering a method that throws AIE  Throw the AIE.  
Returning to a method that does not throw AIE  Do nothing.  
Returning to a method that throws AIE  Throw the AIE.  
In a happened method that matches the AIE  Turn off the AIE pending flag off for the 

current thread.  
In a happened method that does not match the AIE Throw the AIE if happened's parameter is 

true.  

Several methods in AsynchronouslyInterruptedException help with propagation: 

• boolean doInterruptible(Interruptible logic) 

This method is the usual fully automated way to manage asynchronously interrupted exceptions. It 
catches AIE, which it propagates only if it should. 

• boolean happened(boolean propagate) 

This is an instance method of AsynchronouslyInterruptedException. It atomically 
decides whether the current exception belongs to it. (It just compares the current exception to 
this. They match if they are the same.) The method then acts on that decision: 

if(there is no current AIE) 
  return false      // What are we doing here? 
if(match) 
  make the AIE non-pending 
  return true 
else   // not a match 
  if(propagate) 
    propagate the exception (throw it) 
  else 
    return false // leave the AIE pending 
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If we write off the null case as some nut calling happened just for fun, we're left with the 
following decision table: 

Table 17-3. Decision table for happened method. 
  propagate==true  propagate==false 

match pending off, return true pending off, return true 
no match propagate return false 

Note particularly, that if happened returns, it will return with the AIE pending flag off. 

Careless use of the happened method can lose an AIE. 

• propagate 

If there is a current/pending AIE, this method throws it. It is intended to be used from happened 
and from hand-coded handlers for AIE. One extremely convenient feature of the propagate 
method is that it does not include throws AsynchronouslyInterruptedException in its 
signature. That means that you can use it without enclosing it in a try/catch (which would 
make propagate somewhat pointless) or without including throws 
AsynchronouslyInterruptedException in the signature of the method that calls 
propagate. 

Most of the remaining methods on AsynchronouslyInterruptedException are helper methods for 
doInterruptible: 

• boolean fire() 

Normally, fire throws the AIE into the target thread, but if the AIE's doInterruptible 
method is not active, fire returns false. 

• boolean disable() 

This method is only valid while doInterruptible in the AIE is active. It defers this exception. 
If the AIE is fired while it is disabled, it is deferred until enable is called or 
doInterruptible returns. 

• boolean enable() 

This method is only valid while the doInterruptible method in the AIE is active. If the AIE 
is disabled, this method enables it. If the AIE was deferred by the disable, enable throws it. 

• boolean isEnabled() 

This method returns true if this AIE is enabled; otherwise, it returns false. 

The last method on AsynchronouslyInterruptedException is: 

• getGeneric 
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This class method returns an instance of the exception that is thrown when the interrupt 
method on RealtimeThread is called with no arguments. (Which is the only visible version of 
the interrupt method.) 

Application Handling for Asynchronous Interrupts 

The doInterruptible method is a convenience, but you can properly handle asynchronous exceptions 
by putting the right protocol in a catch block. Example 17-2 shows one way to catch the kind of AIE 
thrown by the interrupt method on RealtimeThread. 

The first two lines in the example collect a reference to the generic AIE exception thrown by interrupt 
(it always throws exactly the same exception … allocated in immortal memory) and save it in a class 
variable. Everything in the run method is part of a try/catch construct. 

1. doIt. A call to doIt is enclosed in the try clause. If doIt throws an AIE, the exception is 
caught. 

2. generic. Since fire causes the same type of exception as interrupt, the catch clause will 
be invoked for exceptions caused by fire on an AIE or interrupt on the real-time thread. 
If the AIE does not equal the generic AIE, it was caused by fire (or a specific throw statement 
in this thread). The problem is that catch clauses catch AIEs only temporarily. The exception 
will reappear as soon as the code makes a transition that notices the pending AIE. (See Table 17-2.) 

This part of the code uses the happened method to turn the pending flag off. When its argument 
is false (as it is here), the happened method does not automatically rethrow the AIE if it does 
not match. Instead, it returns false if the current AIE does not match the AIE on which 
happened was called. 

Example 17-2 Handling a nonspecific AIE 

static AsynchronouslyInterruptedException generic = 
    AsynchronouslyInterruptedException.getGeneric(); 
private int n=0; 
 
public void run() { 
  try{ 
    doIt(); 
  } catch (AsynchronouslyInterruptedException aie) { 
    // If it is generic, 
    // make this aie non-pending 
    if(generic.happened(false)){ 
      System.out.println("Run caught it. n = " + n); 
    } else { 
      System.out.println( 
        "Not generic AIE, auto-propagated"); 
      // let the exception fall out and be re-thrown 
    } 
  } 
} 

In this case, happened will clear the AIE pending flag and return true if the pending AIE (at 
the time happened is called) is the generic AIE. If happened returns true, the example 
announces that it caught an AIE and completes. 

3. Not generic. It was not caused by interrupt, so the code continues as nothing happened. 
(Just to demonstrate the alternative to propagate.) The AIE will automatically be thrown by the 
RTSJ runtime as soon as control reaches a context that throws AIE. 
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This sequence sounds ripe for race conditions, so let's look at it more closely. 

a. The happened method acquires a lock on the current thread. The value of the current 
AIE cannot change while the happened method is executing. 

b. If the current AIE changes before we call happened, the code will branch into the else 
clause, and the AIE will remain pending It will be rethrown as soon as control enters a 
method that can throw AIE. 

c. If the current AIE changes after we call happened, it will not see a pending AIE and it 
will install itself as the current AIE and set the pending flag. The new AIE will be thrown 
as soon as control reaches a method that can throw AIE. 

Example 17-3 contains the doIt method called in Example 17-2. It does not take any measures to manage 
interrupts. Such management would be pointless since doIt cannot catch an AIE even to execute a 
finally clause. 

Example 17-3 A method that throws an AIE AsynchronouslyInterruptedException 

private void doIt() 
  throws AsynchronouslyInterruptedException  { 
 
  while(true){ 
    n += 1; 
    try {sleep(1);} catch(InterruptedException e){} 
  } 
} 

In most cases, the AIE propagation should be allowed to operate without interference, preferably hidden in 
the doInterruptible or Timed infrastructure. Sometimes, however, it might be necessary to modify 
the usual propagation rules. For instance, noninterruptible methods called from doInterruptible may 
want to catch AIEs intended for the doInterruptible either temporarily or permanently (see Example 
17-4). 

Use doInterruptible to handle AIEs. 

Example 17-4 Permanently catching someone else's AIE 

/** This method is passed a reference to an AIE 
  that is aimed at a function up the stack. 
  It will intercept that AIE--not letting it 
  propagate up the stack. 
*/ 
public void nest( 
    AsynchronouslyInterruptedException pAIE){ 
  AsynchronouslyInterruptedException aie = 
    new AsynchronouslyInterruptedException(); 
 
  //...do something that might get an AIE fired 
  // at us. 
  try { 
    nestedAIE(); 
  } catch (AsynchronouslyInterruptedException cAie){ 
    if(pAIE.happened(false)){ 
      // This AIE belonged to the Timed 
      // method that called us, but we've 
      // grabbed it.  We asked if it happened, 
      // and made it non-pending. 
      // We could rethrow it with throw pAIE. 
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      // but we're just going to steal it. 
      System.out.println("Stealing"); 
    } else if(aie.happened(false)){ 
      // This aie was aimed at us. 
    } else { 
      // It belongs to someone else. 
      AsynchronouslyInterruptedException. 
        propagate(); 
    } 
  } 
} 
 
public void nestedAIE() throws 
    AsynchronouslyInterruptedException { 
  for(int i = 0; i < 30; ++i){ 
    try{ 
      Thread.sleep(10); 
    } catch (InterruptedException e){} 
  } 
} 

Example 17-5 demonstrates a method that catches someone else's AIE, then decides that it should pass the 
AIE on up to its target. 

When the method decides that it wants to let the AIE propagate, it cannot use the propagate method. 
The AIE is no longer pending, so propagate would not be able to rethrow it. Neither can nest throw 
the AIE that it caught. The compiler will see that nest does not throw 
AsynchronouslyInterruptedException and give compile-time errors. 

We have two options: 

1. Use pAIE.fire. This will throw the exception in a way that the compiler cannot detect. Using 
fire brings all the mechanism of fire into play: enable/disable and a return value. 

2. Have nest throw InterruptedException. Since AIE is a subclass of 
InterruptedException, the compiler will let us throw it, but since the method does not 
exactly throw AsynchronouslyInterruptedException, it will not become asynchronously 
interruptible. (Which would ruin the example since it would not be able to catch an AIE.) 

Example 17-5 Catch the AIE, then propagate it 

/** This method is passed a reference to an AIE 
  that is aimed at a function up the stack. 
  It will intercept that AIE--and use it, then 
  let it propagate up the stack. 
*/ 
public void nest( 
    AsynchronouslyInterruptedException pAIE){ 
  AsynchronouslyInterruptedException aie = 
    new AsynchronouslyInterruptedException(); 
 
    //...do something that might get an AIE fired 
    // at us. 
    try { 
      nestedAIE(); 
    } catch (AsynchronouslyInterruptedException cAie){ 
      if(pAIE.happened(false)){ 
         // This AIE belonged to the Timed 
         // method that called us, but we've 
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         // grabbed it.  We asked if it happened, 
         // and made it non-pending. 
         System.out.println("BorrowAIE"); 
        // Now we want to return it. 
        // It is not pending so it cannot 
        // auto-propagate, but we can throw it. 
        pAIE.fire(); 
      } else if(aie.happened(false)){ 
        // This aie was aimed at us. 
      } else { 
        // It belongs to someone else. 
        AsynchronouslyInterruptedException. 
          propagate(); 
      } 
    } 
} 

 
 

Noninterruptible Code 

Some sequences of operations cannot tolerate an asynchronous exception. Consider this code for adding a 
node at the front of a singly linked list: 

temp = List.head; 
List.head = this; 
this.next = temp 

If the code were interrupted by an AIE between the second and third lines, it would leave the list 
containing only the new entry. Any contents before the update would be unreachable. 

There are three ways to fix this problem. 

this.next = List.head 
List.head = this 

is probably the best fix. The algorithm is simpler and the intermediate state is safe, but 

private void listPush(){ 
  Object temp = List.head; 
  List.head = this; 
  this.next = temp; 
} 

works too. The first fix works by making the problem go away. The second works by hiding the delicate 
sequence in a method that is not interruptible because it does not throw 
AsynchronouslyInterruptedException. Since it does not throw the AIE, any async exception that 
attempts to interrupt the thread will remain pending until the method returns. 

Up to this point we've been ignoring the possibility that the list might be shared by multiple threads. If it is, 
it needs more protection. All the examples up to here can break if two threads try to update the list at the 
same time. A synchronized block solves both problems. 

synchronized(List.class){ 
  Object temp = List.head; 
  List.head = this; 
  this.next = temp; 
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} 

Async exceptions are always deferred during synchronized blocks, so this solution addresses async safety 
both against concurrent updates and against async exceptions. 

The synchronized block is probably the best general method for masking async exceptions. There are 
certainly cases where a block of code cannot tolerate an async exception but does not need to worry about 
concurrent access by multiple threads, but that is a special case and should be considered carefully. 

Figure 17-1 illustrates the progress of an AIE through a call stack as it interacts with various contexts: 

Figure 17-1. An AIE timeline 

 

The Tools. The following tools and techniques help manage async exceptions: 
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• Change the algorithm. In many cases, an algorithm can be modified so each state in it is safe. 
This class of algorithm does not need to mask async exceptions. 

• Use a synchronized block. There are several types of synchronized blocks. All of them defer 
async exceptions. 

The problem with synchronized blocks is that they may be too powerful for the task. Acquiring a 
lock can consume significant CPU time and can cause serialization that you do not need. 

The good thing about synchronized blocks is that there is a good chance that the code which needs 
to be protected against async interruption also needs to be serialized. 

• Enclose the code in a method that does not throw AIE. This technique protects against async 
exceptions without automatically acquiring a lock. It is sometimes difficult to phrase an algorithm 
so it neatly puts the code that must not be interrupted in a finally clause, but it is nearly always 
possible to isolate that noninterruptible code in one or more methods. 

• Disable the AIE. This is a very specialized tool. It does not prevent async exceptions, and it only 
masks one AIE. If this limited effect is sufficient, disabling an AIE is preferable to the methods 
that completely mask async exceptions since disabling an AIE is narrowly focused. 

When you consider the design of the system, the time it takes to respond to asynchronous exceptions is 
likely to be a critical performance metric for some threads. So algorithms that do not need to mask async 
exceptions are favored. 

Special Issues for Synchronized blocks 

A synchronized block is not interruptible, but if the synchronized block invokes another method, it needs 
to pay close attention to the rules. 

The synchronized code in: 

synchronized(object){ 
  // code 
} 

is simply ATC-deferred, but if bar can throw AsynchronouslyInterruptedException, the 
invocation of bar— 

synchronized(object){ 
  bar(); 
  //more code 
} 

—opens a window. If an AIE is thrown at the thread while it is in bar, or even while it is executing in the 
synchronized block before it calls bar, control will leap past more code to a hidden finally clause 
associated with the synchronized block, then on to a catch for a finally clause in some method 
that does not throw AIE. 

Even though the method that encloses the synchronized block may throw AIE, the synchronized block 
should catch the AIE. For other exceptions, a catch clause outside the synchronized block might be a 
viable way to recover from an exception thrown by a method called from the synchronized block (though it 
would be inconvenient since the catch block would not be synchronized.) Async exceptions must be 
caught inside the synchronized block, like this: 

synchronized(object){ 
  try { 
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    bar(); 
  } catch(AsynchronouslyInterruptedException e){ 
    // deal with the exception. 
    // then handle it, propagate it, 
    // rethrow it, or ignore it. 
    // If we ignore it, it will remain pending until 
    // control leaves this synchronized block. 
  } 
  // More code 
} 

 
 

Legacy Code 

The quantity of existing code in class libraries and other forms of Java components is one of the great 
assets of the Java programming language. Since most of this code was not written with any consideration 
for real-time issues, it needs to be used cautiously, but it would be foolish to insist that RTSJ applications 
start fresh. That is an important reason for the decision to make methods defer async exceptions by default. 
It is safe to throw an async exception at a method that was not written to handle it. If the method was 
coded to poll for the old-style thread interrupt, it will see the interrupted flag. If it was oblivious to 
interrupts, it will be oblivious to RTSJ interrupt. The only problem is, of course, that the async exception 
will be delayed. 

You can safely use legacy code in real-time threads that are interrupted by AIEs. 

Calling legacy code from code that handles AIEs is trivial, but most legacy code cannot use interruptible 
code without a glue layer. The legacy code does not know about 
AsynchronouslyInterruptedException, so a method that catches AIE and does not throw it must 
be used to glue the two parts together. 

Note that simply catching an AIE is enough to satisfy Java, but it leaves the exception pending. It will 
reappear as soon as control enters a method that throws AIE. 

 

Use of ATC for Thread Termination 

Calling the interrupt method on a cooperative real-time thread will terminate that thread safely and quickly. 

If a thread was written to expect AIEs and to behave well in that environment, it will frequently visit 
methods that throw AIE. Since the exception thrown by the interrupt method does not match any AIE 
on the call stack, the exception will propagate through all appropriate finally clauses, catch clauses, 
and interruptAction methods back through the thread's runnable method and the thread will 
terminate. 

Nothing happens if an application calls the interrupt method on a thread that never calls a method that 
throws AsynchronouslyInterruptedException, never polls its interrupted flag, and never 
responds to exceptions from blocking calls that signify interrupts. Since that list includes many legacy 
applications written for the Java platform, interrupt is not a reliable general-purpose way to kill threads. 

Table 17-4 summarizes some suggestions for thread termination. 

Table 17-4. Good behavior for thread termination by means of the generic AIE 
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Frequently visit methods that throw AIE.  
Catching the AIE is OK, but calling happened incautiously can cause trouble.  
Expect interruptible methods to be interrupted. Use finally and catch clauses to clean up.  
Expect interruption. Use the various mechanisms for making blocks of code noninterruptible to 
protect code that cannot tolerate interruption.  
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Chapter 18. Physical Memory 
• Physical and Virtual Memory 
• Physical Memory Manager 
• Immortal Physical Memory 
• Scoped Physical Memory 

Java programmers are allowed to ignore the fact that the underlying machine is accessing memory that is 
located at addresses. In many cases, even real-time Java programmers can ignore addresses, but on some 
embedded real-time systems, the performance attributes of memory cannot be ignored. 

There are three places where a real-time program might concern itself with the details of memory access: 

• The memory management unit. On many processors, the MMU and cache cooperate to set the 
cache attributes of each page. When there is a large mismatch between the performance of the 
processor and the memory, the cache-mode of memory can alter the effective performance of the 
memory by two orders of magnitude or more. 

The MMU's primary purposes are the control of read/write/execute access to memory, and the 
mapping of virtual addresses to physical addresses. These facilities support fundamental operating 
system services like memory protection and demand paging. 

Demand paging affects determinism so strongly that many implementations of the RTSJ simply 
disable that service for all the memory they use. If they leave demand paging enabled, 
programmers may want to use the services detailed in this chapter to position key objects in 
memory that cannot be paged. 

Although memory protection is not a real-time issue, it is important and interesting and some Java 
programs may benefit from limited control of the MMU's memory protection services. 

• The bus. The connection between the CPU and memory can run at a wide variety of clock rates. 
The connection can be as little as one bit wide, or it can transfer entire cache lines at a time. It can 
include features like support for multiprocessor cache coherency that cost performance. 

• The memory itself. It may not even be memory. I/O devices, coprocessors, even DIP switches 
can be accessed as if they were memory. 

If it is memory, it could be ROM, RAM, nonvolatile memory, flash memory, or other technology. 
Its speed can range over two orders of magnitude. It can be static or dynamic with a large number 
of interfaces giving it various streaming and bursting characteristics. It can be protected by ECC 
or parity. 

The point is that whereas many systems have many megabytes of some pretty good memory, a few 
megabytes of ROM, and maybe a bit of static memory, other systems have a spectrum of useful memory 
with widely varying performance characteristics. 

An application can get a large performance improvement by putting its most-used data in the fastest 
memory. It can get a performance boost and more deterministic behavior by keeping data off busy shared 
buses. 

For these reasons, the RTSJ includes the physical memory classes. These let it store objects in the right 
kind of memory. 
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Physical and Virtual Memory 

The raw memory access classes and the physical memory classes dig down to real memory. This is far 
below the level the JVM ordinarily exposes to its users. 

Here is one possible path from a Java-language object reference to a memory device: 

1. The object reference is converted to the index of an object descriptor. 
2. The object descriptor contains the address of the object. 
3. The JVM loads a machine register from a field in the object it finds at the address of the object 

plus (say) 40. This is called a virtual address. 
4. To load the register, the CPU places the virtual address on an address bus that carries it from the 

CPU to the memory management unit (MMU). The MMU basically strips the high-order 20 bits (a 
page number) off the address that came from the CPU and uses that value as a key to search a data 
structure called the page table. 

5. If the MMU finds the virtual page number represented in a page table entry for the JVM, it checks 
the access rights for the page. If they include read, the MMU extracts a physical page number 
from the page table entry. 

6. The MMU produces a physical address by concatenating the physical page number with the low-
order 12 bits of the virtual address. 

7. The physical address goes through logic that converts the physical address into protocols on the 
traces that connect the processor chip to the memory chip. The memory chip recovers the data 
stored at that address and returns the data to the CPU (probably on other traces). 

The MMU is the part of the above path that separates virtual addresses from physical (or real) addresses. If 
there is an MMU in the system and it is being used for address translation, then the memory that the JVM 
sees at address 0xff0c1240 may be located at another address altogether. 

If an application wants to communicate with a device at 0xf8004000, it needs access to that physical 
address. The virtual address that the operating system assigns to that physical address generally does not 
matter. 

 

Physical Memory Manager 

A running RTSJ implementation has a static PhysicalMemoryManager. It manages allocation of 
memory to physical memory allocation objects—VTPhysicalMemory, LTPhysicalMemory, 
ImmortalPhysicalMemory, RawMemoryAccess, and RawMemoryFloatAccess. It implements the 
notion of memory type and offers minimal support for removable memory. 

If the system configuration were fixed before an application was written, the application could specify the 
memory type by naming the physical address of the memory and providing some data about how the 
memory should be mapped. 

Configurations are seldom that firmly fixed, and code that identifies types of memory by their address is 
cryptic. The physical memory manager lets the programmer identify memory by its attributes. 

The physical memory allocation and raw memory access classes include constructors with memory type 
parameters. The memory type parameter is always an Object. By convention, memory types are specified 
as String values or arrays of String values. Memory can usually be specified by address, by type, or 
by address and type. This information is passed from the constructor to the physical memory manager, as 
follows: 
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• If the constructor only specifies size, then the physical memory manager finds the amount of free 
memory that the caller wants and allocates it 

• If the constructor specifies base and size, then the physical memory manager verifies that the base 
and size specifies memory that is free. If it is not, the physical memory manager throws 
MemoryInUseException. 

• If the constructor specifies type and size, then the physical memory manager tries to find enough 
free memory in the requested type of memory. 

• If the constructor specifies type, base, and size, then the physical memory manager verifies that 
the base and size specify memory that is of the requested type and free. 

o If it is of the wrong type, the physical memory manager throws 
MemoryTypeConflictException. 

o If the extent of memory is not free, the manager throws MemoryInUseException. 

The RTSJ does not (now) specify precedence for these exceptions, but I would expect 
MemoryInUseException to have the highest priority, then 
MemoryTypeConflictException, and finally SizeOutOfBoundsException. 

Memory Type 

PhysicalMemoryTypeFilter objects interpret the memory type objects passed through physical 
memory constructors. 

Memory type filters help handle removable memory, they help find a type of physical memory, and they 
concern themselves with the attributes and mapping of virtual memory. A single filter can participate in all 
three of these activities. The primary constraint on filters is that the memory manager will only accept one 
filter for any given type of memory. 

A filter is installed with the following method: 

• static final void registerFilter(java.lang.Object name 
•                   PhysicalMemoryTypeFilter filter) throws 
•                   DuplicateFilterException, 
•                   IllegalArgumentException 
•  

Figure 18-1 illustrates an interaction between a type filter and the physical memory manager. 

Figure 18-1. Interaction between the physical memory manager and a filter 
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Requests to allocate memory can come to the physical memory manager with an array of memory types. In 
this case, the physical memory manager searches for memory that passes all the filters. This means an 
application can easily request memory that is shared, fast, noncached, and nonvolatile. Asking for memory 
that is fast or nonvolatile is not easy. The application has to try to construct an object in fast memory, then 
try nonvolatile if that fails. 
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Removable Memory 

The remaining methods in the filter support removable memory: 

• public boolean contains(long base, long size) 

Does this filter describe any memory in the specified range? 

• public boolean isPresent(long base, long size) 

Is all the memory in the specified range present in the system? If any of it has been removed or not 
yet inserted, return false. 

If any of the range of memory is not covered by this filter, throw 
IllegalArgumentException. 

• public boolean isRemovable(long address, long size) 

Is any memory in the specified range removable? 

• public void onInsertion(long base, long size, AsyncEventHandler aeh) 

Set up an async event so that if any memory in the specified range is inserted, aeh will be invoked. 

• public void onRemoval(long base, long size, AsyncEventHandler aeh) 

Set up an async event so that if any memory in the specified range is removed, aeh will be 
invoked. 

The filter methods that handle removable memory are mirrored by similar methods in the physical memory 
manager. The physical memory manager determines which filter (or possibly several filters) controls the 
address range and then passes the call to the right filters. 

 

Immortal Physical Memory 

The RTSJ JVM has the ImmortalMemory class and a singleton instance of the class in place when the 
machine starts. ImmortalPhysicalMemory instances have to be created. They can be created with the 
full flexibility of the physical memory manager. An application can create an immortal physical memory 
object allocated from a megabyte of memory starting at some base address, it can just ask for the memory 
to be of a particular type (or array of types), or it can combine those options and specify the address and 
the type. 

In any of those cases, the application will get an object that controls allocations of immortal objects from a 
particular region of memory. 

Except for the constrained address range, immortal objects allocated from an 
ImmortalPhysicalMemory object behave like other immortal objects. They are never freed (or, 
technically, their lifetime exceeds the lifetime of the application), the garbage collector never tries to free 
them, they can be used by no-heap threads, and they are governed by the rules for immortal memory in 
"Assignment rules" on page 180. 
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The ImmortalPhysicalMemory object itself is an ordinary object. It could reside in heap memory, but 
if a thread cannot reach the object, the thread cannot allocate memory in the object. And if the object is 
freed, then nobody can allocate from it again (but objects allocated in the memory controlled by the object 
will remain immortal.) In most cases, ImmortalPhysicalMemory objects should be created in 
immortal memory. 

 

Scoped Physical Memory 

There are two types of scoped physical memory: LTPhysicalMemory and VTPhysicalMemory. Like 
ImmortalPhysicalMemory, these scoped physical memory classes behave like their built-in analogs 
except for their memory constraints. 

Scoped physical memory objects can be created whenever you would create a regular scoped memory 
object. In particular, they will frequently be created in other scopes. Example 18-1 shows the use of scoped 
physical memory. 

Example 18-1 Using Scoped Physical Memory 

class Action implements Runnable{ 
  int j; 
  public void run() { 
      //  Memory allocated by Integer.valueOf 
      //  will be allocated in "fast" memory 
    Integer n = Integer.valueOf(args[j]); 
    intArgs[j] = n.intValue(); 
  } 
} 
 
  //  Get 8k of fast memory 
fast = new LTPhysicalMemory("fast", 8*1024); 
Action  action = new Action(); 
 
for(int i = 0; i < this.args.length; ++i){ 
  action.j = i; 
  fast.enter(action); 
  System.out.println(intArgs[i]); 
} 
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Chapter 19. Raw Memory Access 
• Security 
• Peek and Poke 
• Get/Set Methods 
• Mapping 
• The RawMemoryFloatAccess Class 

Programs that run in the Java abstract machine see memory as a stack of primitive data for each thread and 
a bag of objects. Nothing changes type, nothing even has an address. That is a useful model for 
computations that do not involve resources outside the Java environment, but it cripples Java for 
applications that deal with memory-mapped hardware. 

Native methods are the traditional workaround for the Java language's inability to use an address. They are 
usually written in C, and sometimes in assembly language. From a linguistic point of view, native methods 
open the world of pointers to Java applications. Practically, they are an uncomfortable hack. 

None of the security and protection measures incorporated in the Java environment function in native 
methods. A correct JVM must insist that native methods come from a secure local store. If the machine's 
operating system can proscribe dangerous native methods, such proscription offers some protection against 
malicious code, but it offers no protection against trusted native methods that contain dangerous bugs. 

The probability of dangerous bugs could be near zero if the native methods contained only the few lines of 
code required to access one address in memory. They could be written that way, but that would pose an 
efficiency problem. The JVM expends a surprising amount of time preparing to call a native method. 
Especially when performance is critical, that overhead discourages trivial native methods. Programmers 
seldom write separate native methods to read and write each register of a memory-mapped device. They 
are more likely to code a few native methods that contain the bulk of a device driver for that device. 

If the Java platform offered a way to use pointers safely, then the following would ensue: 

• Classes that access memory could be downloaded. 
• They would operate within the JVM's security and protection envelope. 
• In many cases, they would perform better since they would not need to cross between native 

methods and the JVM. 
• Programmers would have less reason to include non-Java components in applications for a Java 

platform. 

Raw memory access is included in the RTSJ mainly to help make it practical to use hardware 
devices without requiring native methods. 

If the RTSJ gives Java applications reasonable real-time performance, then the only 
architectural issue that prevents Java from extending unbroken from high-level application code 
all the way to the low-level device is Java's nonsupport for pointers. Raw memory access solves 
this problem. 

There is one other problem. Most I/O hardware uses interrupts to communicate with its driver. 
Conventional Java has no notion of an interrupt. 

… I direct your attention to async event handlers and happenings. 

The RawMemoryAccess and RawMemoryFloatAcesss classes give RTSJ systems a convenient and 
secure way to access memory through pointers. This gives them direct access to memory-mapped 
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hardware that makes it relatively easy for Java applications to implement device drivers, program flash 
memory, and perform other operations usually left to operating system internals. 

The design of the raw memory access classes lets a programmer define something very similar to a C 
structure and lay it over physical memory. A crucial omission is that the raw memory access classes do not 
define a way to load or store references to Java objects. That would have constituted a serious breech in 
JVM integrity. 

 

Security 

Raw memory access is, by its nature, bad for security. The platform may refuse to permit raw access to any 
memory. It may set aside a pool of memory for raw memory access, or it may find some set of conditions 
that would qualify a thread for read or write access to memory-mapped devices or even internal operating 
system data structures. 

The operating system (if any) and the JVM (if any) together must ensure that malicious or buggy code 
cannot damage anything but itself. This doesn't mean that the security system has to prevent bugs. A 
defective device driver will still be able to bring down the entire computer. The security system only 
isolates the problems. A defective device driver will not be able to cause a protection violation in the JVM, 
disturb an object belonging to the JVM, or modify an internal JVM data structure. 

It would be unusual for a thread that is not part of the implementation of the JVM to be allowed to touch 
addresses in the JVM's code or data. 

If the supporting operating system has a notion of protection, it will automatically prevent threads in the 
JVM from accessing addresses in the I/O space or any address ranges that have not been given to the JVM. 
A JVM that wants to support device drivers written in the Java programming language, will have to come 
to an agreement with the operating system; this approach will transfer some responsibility for protecting 
the I/O devices from the operating system to the JVM. 

 

Peek and Poke 

Peek and poke are the names for the basic language functions that access memory by address. Peek takes 
an address as its parameter and returns the value at that address. Poke takes an address and a value as 
parameters and stores the value at the address. The RTSJ could have created analogs for peek and poke, 
but that would have required careful checking of the thread's right to access a particular address on every 
call. That is the best design if the application is not expected to revisit addresses. The RTSJ expects raw 
memory access to be used for memory-mapped I/O and regions of memory that are shared with software 
outside the JVM. These applications heavily use a few locations (or small regions) in memory. 

The first step in raw memory access is through the security portal. The RawMemoryAccess class can 
handle situations in which rights to memory locations must be rechecked every time the memory is 
accessed, but in most cases a thread's access rights will not change over time. A RawMemoryAccess 
object is bound to a range of addresses when the object is created: 

• RawMemoryAccess(java.lang.Object type, long size) 

RawMemoryAccess(java.lang.Object type, long base, long size) 
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Both constructors throw SecurityException, OffsetOutOfBoundsException, 
SizeOutOfBoundsException, UnsupportedPhysicalMemoryException, and 
MemoryTypeConfictException. 

The second constructor is easier to understand: 

o type. This parameter may be an object or an array of object. It describes the type of 
memory and the way the JVM should access it. A caller might request that some memory-
mapped device memory be mapped for noncached access. The set of supported types is 
platform dependent. 

In most cases, the type parameter should probably be left blank. 

o base. This is the starting address in physical memory for the region the caller wants to 
access. 

o size. This is the size of the region the caller wants to access. 

The first constructor does not have a base address. The system gets to select an address that meets 
the caller's type and size requirements. This sounds useless, but it may be a cleaner way to request 
access to a memory-mapped device than the more specific constructor. Consider this: 

String [] type = new String[4]; 
type[0] = new String("device"); 
type[1] = new String("ethernet"); 
type[2] = new String("Intel"); 
type[4] = new String("no cache"); 
RawMemoryAccess eDvc = new RawMemoryAccess(type, 512); 

The constructor has clearly asked for 512 bytes of memory that maps an Intel Ethernet controller 
for noncached access. If there is one in the system and the physical memory manager knows about 
it, this code will create a raw memory access object that points to that controller. The alternative, 
which includes the physical address of the device, is less portable. 

 

Get/Set Methods 

The simplest ways to access raw memory through a RawMemoryAccess object are the primitive get/set 
methods: 

• public byte getByte(long offset) 
• public void setByte(long offset, byte value) 
• public short getShort(long offset) 
• public void setShort(long offset, short value) 
• public int getInt(long offset) 
• public void setInt(long offset, int value) 
• public long getLong(long offset) 
• public void setLong(long offset, long value) 

All the methods that read and write multibyte values interact with the BYTE_ORDER static variable in the 
RealtimeSystem class. If BYTE_ORDER equals BIG_ENDIAN, then the high-order byte is at the low 
address; otherwise, the high-order byte is at the high address. 

You use these methods like this: 
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public void init(){ 
    try { 
        //  Hang on to the old value of the control 
        //  register 
        int ctrlReg = eDvc.getInt(CTRLREG); 
        //  Set an initial state 
        eDvc.setInt(CTRLREG, 0); 
        //  Turn off interrupts 
        eDvc.setInt(CTRLREG, 
            (ctrlReg & MASK_INT_FIELDS) | 
                MY_NOINT_FIELD); 
        //  Wait for device to respond 
        while(eDvc.getInt(STATREG) != 0); 
        //  Set it running 
        eDvc.setInt(CTRLREG, INIT_CTRL); 
    } catch (SizeOutOfBoundsException e){ 
        throw new RuntimeException( 
            "Size error in init"); 
    } catch (OffsetOutOfBoundsException e){ 
        throw new RuntimeException( 
            "Offset error in init"); 
    } 
} 

(This is not real device initialization code. Configuring an Ethernet device would take pages.) 

Often it makes sense to represent memory with an array. There is a choice: 

• An array of RawMemoryAccess objects involves an array object and a RawMemoryAccess 
object per chunk of memory. All those objects give it considerable memory overhead, but it can 
easily represent noncontiguous regions of memory. 

• A set of array get/set methods parallels the primitive raw memory get/set methods. Methods in the 
former are particularly good at representing large extents of memory; e.g., frame buffers. The 
other interesting application of the array access methods is redefinition of other primitives. 

o public void getBytes(long offset, byte [] bytes, int low, int 
number) 

o public void setBytes(long offset, byte [] bytes, int low, int 
number) 

o public void getShorts(long offset, short [] shorts, int low, 
int number) 

o public void setShorts(long offset, short [] shorts, int low, 
int number) 

o public void getInts(long offset, int [] ints, int low, int 
number) 

o public void setInts(long offset, int [] ints, int low, int 
number) 

o public void getLongs(long offset, long [] longs, int low, int 
number) 

o public void setLongs(long offset, long [] longs, int low, int 
number) 

Using these methods, you can do the following: 

• Access a frame buffer of 16-bit pixels. This can be done in many different ways, using 
getShort and setShort with offsets, getShorts and setShorts with an array of shorts 
that covers the entire frame buffer, or getShorts and setShorts with one entry of an array 
mapped to different offsets in the frame buffer. The following example does it all three ways: 

public void clear(){ 
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    try { 
        //  One way 
        for(int offset = 0; offset < BUFFER_SIZE; offset += 2) 
            frameBuffer.setShort(offset, BLUE_VALUE); 
        //  Another way 
        short [] filler = new short[BUFFER_DIM]; 
        for(int i=0; i< BUFFER_DIM; ++i) 
            filler[i] = BLUE_VALUE; 
        frameBuffer.setShorts(0, filler, 0, BUFFER_DIM); 
        //  Or yet another way 
        for(int i=0; i<BUFFER_DIM; ++i) 
            frameBuffer.setShorts(i, filler, 0, 1); 
     } catch (SizeOutOfBoundsException e){ 
         //  Program bug 
     } catch (OffsetOutOfBoundsException e){ 
         //  Program bug 
     } 
} 

• Play games with mapping an array over a longer data type. Java has no all-purpose 
mechanism for redefining data, nothing that takes one chunk of data and lets the programmer see 
that data as different types 

The RawMemoryAccess class does not let programmers peer into the JVM's internal data 
structures or the heap with a reinterpreting eye, but it does support reinterpretation of memory that 
can be accessed through RawMemoryAccess. 

The following example reads some memory as a short, then accesses the same memory as bytes, 
and reverses the upper and lower bytes. Finally, it reads the short again. The values in s1 and s2 
will differ in the order of their bytes. 

public void swap(int n) throws OffsetOutOfBoundsException { 
    try { 
        short s1 = frameBuffer.getShort(n*2); 
        byte [] bytes = new byte[2]; 
 
        frameBuffer.getBytes(n*2, bytes, 0, 2); 
        byte hold = bytes[0]; 
        bytes[0] = bytes[1]; 
        bytes[1] = hold; 
        frameBuffer.setBytes(n*2, bytes, 0, 2); 
        short s2 = frameBuffer.getShort(n*2); 
    } catch (SizeOutOfBoundsException e){ 
        throw new OffsetOutOfBoundsException(); 
    } catch (OffsetOutOfBoundsException e){ 
        throw e; 
    } 
} 

 
 

Mapping 

Systems that use an MMU may offer an API that lets processes ask to have blocks of physical memory 
mapped into their address space. The most general version of this mechanism lets a process specify the 
address of the physical memory, the size of the mapped region, and the virtual address it should be mapped 
to. 
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The RawMemoryAccess class includes methods that access these mapping mechanisms. Since these 
cannot be supported with MMU hardware and may not be supported by the operating system even when an 
MMU is present, the mapping methods in RawMemoryAccess should only be used in code that is clearly 
platform dependent. 

• public long getMappedAddress() 

This method returns the virtual address where the memory mapped by this raw memory access 
object can be found. 

• public long map() 

public long map(long base) 

public long map(long base, long size) 

These three methods all change the virtual address at which the memory accessed by raw memory 
object appears. If the system does not support mapping memory, these methods all do nothing but 
return the current address of the backing memory. If the operation is supported, the map 
operations map the backing memory (or part of the backing memory in the case of the method 
with a size parameter) into virtual memory. If there is no base parameter, the system chooses an 
address. 

If the memory is already mapped into the JVM's address space, the map with no parameters does 
nothing, and map methods with a base address remap it to that address. 

• public void unmap() 

This method removes the backing memory from the JVM's address space. If possible, the system 
will make the memory inaccessible to threads in the Java platform. In any case, get and set 
methods on the backing memory will fail when the object is not in the mapped state. The object 
will stay in the unmapped state until it is remapped by one of the map methods. 

Perhaps the best use of unmap and map is to disable and reenable a raw memory access object. Whether 
the underlying system has support for mapping memory or not, a raw memory access object will throw an 
exception if one of its memory access methods is called when it is in an unmapped state. 

 

The RawMemoryFloatAccess Class 

The RawMemoryFloatAccess class extends the RawMemoryAccess class. It has analogs to the 
RawMemoryAccess constructors: 

• public RawMemoryFloatAccess(java.lang.Object type, long size) 
  throws SecurityException, OffsetOutOfBoundsException, 
  SizeOutOfBoundsException, 
  UnsupportedPhysicalMemoryException, 
  MemoryTypeConflictException 
 

• public RawMemoryFloatAccess(java.lang.Object type, 
  long base, long size) 
  throws SecurityException, OffsetOutOfBoundsException, 
  SizeOutOfBoundsException, 



 223

  UnsupportedPhysicalMemoryException, 
  MemoryTypeConflictException 
 

The RawMemoryFloatAccess class passes all the base raw memory access methods through without 
modification and adds methods that get and set float and double values: 

• public double getDouble(long offset) 
• public void setDouble(long offset, double value) 
• public void getDoubles(long offset, double [] doubles, int low, int 

number) 
• public void setDoubles(long offset, double [] doubles, int low, int 

number) 
• public float getFloat(long offset) 
• public void setFloat(long offset, float value) 
• public void getFloats(long offset, float [] floats, int low, int 

number) 
• public void setFloats(long offset, float [] floats, int low, int 

number) 

Floating-point access to raw memory is an unusual requirement. Normal I/O devices do not communicate 
with their device driver by floating-point values. 

An implementation of the RTSJ is required to implement only RawMemoryFloatAccess if the 
underlying JVM supports floating-point data types (it is optional for the micro edition.) 

If the implementation does support RawMemoryFloatAccess, the format of the floating-point values 
remains unspecified. The Java specification requires the values to behave according to the IEEE floating-
point specification, but it does not specify the layout in memory of the bits making up the floating-point 
value. The RTSJ provides for the different byte orderings that might appear in short, int, and long 
numbers. When it comes to floating point, you are on your own. 

RawMemoryFloatAccess must be considered a marginal class for applications that value portability. TE
AM
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Chapter 20. Synchronization without Locking 
• Principles Of Wait-Free Queues 
• The Wait-Free Write Queue 
• The Wait-Free Read Queue 
• The Wait-Free Double-Ended Queue 
• No-Wait Queues and Memory 
• Implementation Notes 

Priority inversion avoidance mechanisms built into the RTSJ prevent some of the most insidious blocking 
problems between threads, but the structure of the RTSJ adds some new ones. The wait-free queues offer a 
programmer a mechanism that clearly exposes interactions between threads that should not engage in 
priority inversion or one of the automated mechanisms for avoiding inversion. 

For instance, if a NoHeapRealtimeThread needs to share data with a heap-using thread, it will 
probably have the potential to block the no-heap thread over an interval where the heap-using thread could 
cause garbage collection. That could cause the no-heap thread to block behind the heap-using thread. The 
scheduler will, of course, boost the priority of the heap-using thread to prevent priority inversion. That 
could be just what the programmer intended, but it means that the blocked no-heap thread and any other 
no-heap threads at lower priorities might block for garbage collection. If that is what you want, fine, but 
why use a no-heap thread if waiting for garbage collection is OK? And, are the other threads and 
intermediate priorities also prepared for garbage collection delays? 

Wait-free queues do just what they say. At least one end of the queue will never cause the thread using it to 
wait for garbage collection. They can be used for communication between heap-using and no-heap threads 
without silently bringing garbage collection into the picture. 

Wait-free queues look like "hurry up and wait" frozen in software, but it is better to look at them as 
appropriate laziness. It is much easier to write code for a heap-using thread than a no-heap thread, so good 
design will use tiny no-heap threads (and async event handlers) connected to heap-using threads that do the 
bulk of the work. 

A wait-free queue would normally be used to couple a no-heap thread to a heap-using thread. This does not 
make much sense if the producer and consumer are working on the same deadline, but they may be loosely 
coupled. 

Soft Real Time with Hard Real-Time Activities. Picture yourself walking down the sidewalk on a city 
street. You stroll down the street in no particular hurry. You can stop to look at something or even visit a 
shop. From time to time you get to a street that you need to cross. This changes the time constraint. It is 
actively dangerous to loiter in the crosswalk. The principle is illustrated in Figure 20-1. 

Figure 20-1. Soft real time with a hard real-time interval 
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Hard Real Time Feeding Soft Real Time. Consider an inspection station on an assembly line. It might 
have two seconds to inspect each part. If it misses that deadline, it either has to hold up the assembly line 
or let a part go uninspected. If it finds a defect, the rules change. It has to identify the defective part and 
reject it in the two-second window, but the defective part is shunted to a different timeline. It gets dumped 
into a bin with other suspect parts. If by some chance, the bin is not there or full, the defective part is 
dumped on the floor. The assembly line doesn't stop because junk is not being cleaned up fast enough. 
Sooner or later defective parts will be more carefully inspected. The defect will be categorized and logged. 
It might be repaired and returned to production or recycled as scrap. Meanwhile the inspection will 
continue on its two-second cycle and process hundreds of thousands of parts. The principle is illustrated in 
Figure 20-2. 

Figure 20-2. Hard real time feeding data to soft real time 

 

Hard Real Time with Soft Real-Time Input. Consider a train (or a scheduled airplane). In an ideal world, 
it stays within a few minutes of a published schedule. A stand-by passenger has a more relaxed schedule. If 
there is an empty seat, he gets it, but he may wait for hours or even days before he gets a ride. From the 
train's point of view, it picks up the passengers that can get on in the four-minute boarding window, then 
proceeds to the next station. It doesn't wait for passengers. If they are there, they can get on. If they are not, 
the train doesn't wait. The principle is illustrated in Figure 20-3. 

Figure 20-3. Hard real time with no-wait input from soft real time 
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Principles of Wait-Free Queues 

The wait-free queues are slightly unusual versions of ordinary producer/consumer queues. 

One end of the queue acts like a typical message queue: 

• It is synchronized so multiple threads can safely use it. 
• If it is a blocking read, an empty queue will block a read until a write provides data for it to read. 
• If it is a blocking write, a full queue will block a write until a read leaves an empty queue entry for 

the write to use or until the write thread is interrupted. 

The nonblocking end of the queue always returns immediately. 

A wait-free write queue either enqueues its object and returns true or it finds a full queue and returns 
false. A wait-free read queue either returns the object from the head of the queue or it returns a null to 
indicate that the queue is empty. The wait-free read queue also provides a blocking read that can result in 
the caller waiting for a lower-priority thread to complete but will not trigger the system's priority inversion 
avoidance mechanism. 

Constructors 

The constructors for wait-free queues use similar constructors: 

public WaitFreeWriteQueue(java.lang.Thread writer, 
             java.lang.Thread reader, 
             int maximumElements, 
             MemoryArea area) throws 
                 IllegalArgumentException, 
                 InstantiationException, 
                 ClassNotFoundExsception, 
                 IllegalAccessException 
 
public WaitFreeReadQueue(java.lang.Thread writer, 
             java.lang.Thread reader, 
             int maximumElements, 
             MemoryArea memory) throws 
                 IllegalArgumentException, 
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                 InstantiationException, 
                 ClassNotFoundExsception, 
                 IllegalAccessException 
 
public WaitFreeDequeue(java.lang.Thread writer, 
             java.lang.Thread reader, 
             int maximumElements, 
             MemoryArea area) throws 
                 IllegalArgumentException, 
                 InstantiationException, 
                 ClassNotFoundExsception, 
                 IllegalAccessException 

The specified reader and writer are only hints to the queue implementation since any thread can access 
either end of the queue. 

The maximum number of elements and the memory area are used by the constructor to preallocate a queue 
of Object references and do other queue initialization. 

Common Methods 

Some methods are common to the wait-free read and write queues: 

public void clear() 

Empties the queue. 

public boolean isEmpty() 

Returns true if the queue is empty. 

public boolean IsFull() 

Returns true if the queue is full. 

public int size() 

Returns the number of nonempty entries in the queue. 

 

The Wait-Free Write Queue 

Objects in this class pass a queue of data from a no-heap thread to a heap-using thread. Its write method 
never blocks for garbage collection or boosts garbage collection at the consumer end of the queue into the 
no-heap range. 

Methods 

public java.lang.Object read() 

This read method will block if the queue is empty. It removes one entry from the head of the queue and 
returns it to the caller. 
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public boolean write(java.lang.Object object) throws 
               MemoryScopeException 

This write method cannot block. With an ordinary queue, a thread that tried to add an object to a full 
queue would block until there was room in the queue for the object. If you wanted to avoid waiting in the 
write, you would first check the queue to ensure that there was room, then add an entry to the queue only if 
there was room for it. This method suffers from race conditions. Another thread can add an entry after you 
check. Now you wait even though you thought you would not. 

The nonblocking write is atomic (even though it is not synchronized) so it does not suffer from race 
conditions. 

public boolean force(java.lang.Object object) throws 
               MemoryScopeException 

When write returns false, indicating that there is not space in the queue for the new object, the writer has 
three options: 

1. Discard the object it was going to enqueue. 
2. Hang onto the object and try to write it to the queue again later. (After a while this turns into a 

separate no-wait queue feeding the first one. This is almost certainly unjustified complexity. It 
would have been easier to use a larger no-wait queue than to chain two of them together.) 

3. Discard the last object already in the queue by using force. 

The force method is not quite as simple as it seems. It always places its payload in the queue, but its 
effect on the rest of the queue is hard to deduce. It returns true if the queue was full and the last entry was 
replaced. If the queue was not full, force returns false but it still replaces the last object in the queue. If 
the queue was empty, force returns false and writes its argument to the queue. 

In the last analysis, the writer cannot tell whether it replaced an object unless force returns true. If 
force returns true, it definitely replaced the last object in the queue. If it returned false, it replaced the 
last entry in the queue unless the queue was empty. 

This only becomes a problem when the writer wants to replace the last entry in the queue. If it is using 
force because it has an object that it urgently needs to place in the queue, the normal ordering of the 
priorities of the producer and consumer should prevent trouble. 

In general, the following execution sequence could occur: 

writer  reader  
write returns false, indicating that the 
queue is full.  

  

  Preempts the writer and reads all the objects in the 
queue or calls the queue's clear method.  

Calls force to replace the last entry in the 
queue. force returns false.  

  

The writer knows that the queue was no longer full; force was called because it returned false, but the 
writer cannot tell whether the queue was entirely empty or just not full … unless the queue is one entry 
long. 

Sharing the Wait-Free Queue 
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The read operation of a WaitFreeWriteQueue and the write operation of a WaitFreeReadQueue are 
sharable. Any number of threads can contend to use the queue at that end. The methods use synchronize 
blocks to serialize access to their internal state at that end. 

Wait-free queues are not designed to have multiple threads using their wait-free end. To support multiple 
threads at the wait-free end, the wait-free queue class would need to use some sort of synchronized block 
to protect its data structures. Depending on how it was implemented and used, the synchronized block 
would certainly cause blocking and might cause serious delays. 

This does not mean that the queues cannot be shared at both ends. The wait-free end can be shared by 
means of a separate synchronized block to serialize access to it, as coded in Example 20-1. The important 
constraint is that the synchronized block must be completely independent of the other end of the queue. 

Example 20-1 Sharing the wait-free end of a wait-free queue 

WaitFreeWriteQueue queue; 
 
public synchronized boolean write(java.lang.Object obj) 
        throws MemoryScopeException { 
    return queue.write(obj); 
} 
 
 

The Wait-Free Read Queue 

WaitFreeReadQueue lets a thread accept input from another thread without waiting for the input. 

The code in Example 20-2 shows the main loop in a periodic thread that accepts new period values from a 
wait-free write queue. 

Example 20-2 Using a WaitFreeReadQueue for loose coupling 

RelativeTime newPeriod; 
RealtimeThread rt = currentRealtimeThread(); 
 
while(true){ 
    //  **** 
    //  Do some work 
    //  **** 
    //  See if a new period has 
    //  arrived on the queue. 
    newPeriod = (RelativeTime)queue.read(); 
    //  If there is a new period, 
    //  update the period in our thread 
    if(newPeriod != null){ 
        PeriodicParameters oldParam; 
        oldParam =(PeriodicParameters) 
            rt.getReleaseParameters(); 
        oldParam.setPeriod(newPeriod); 
    } 
    rt.waitForNextPeriod(); 
} 
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If this were in a real application, it would probably be better to directly set the new period from the thread 
that generates periods and avoid the added complexity of the queue. The queue might be useful in updating 
the period if the target thread needed to modify its operation to accommodate the updated period. 

The Extra Constructor 

WaitFreeReadQueue has a second constructor with an argument that the other wait-free queue 
constructors do not share: 

public WaitFreeReadQueue(java.lang.Thread writer, 
               java.lang.Thread reader, 
               int maximumElements, 
               MemoryArea memory, 
               boolean notify) throws 
               IllegalArgumentException, 
               InstantiationException, 
               ClassNotFoundExsception, 
               IllegalAccessException 

If the notify parameter is true, this constructor creates a queue that can support the waitForData 
method. If notify is false, the effect of this constructor is no different from the standard 
WaitFreeReadQueue constructor. 

Methods 

public java.lang.Object read() 

The read method does not block, so if there is no data in the queue, read must return null. 

public void waitForData() 

If the queue was created with notify enabled (see the special constructor above), waitForData blocks 
the calling thread until at least one object is in the queue. 

The trick is that waitForData does not cause the priority of the producer to be boosted. It is a form of 
priority inversion, but the implementation uses a no-heap async event handler between the producer and 
consumer. The scheduler does not see the priority inversion and so does not invoke a priority inversion 
avoidance mechanism. 

This is a suitable mechanism for the type of "soft real-time with hard real-time activities" situation 
mentioned in the first part of this chapter. 

public boolean write(java.lang.Object object) throws 
               MemoryScopeException 

This is an ordinary write method. It will block if the queue is full. There is no reason it would fail to 
place its argument in the queue, but if somehow write returned without placing its argument in the queue, 
it would return false. 

 

The Wait-Free Double-Ended Queue 
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The wait-free double-ended queue is just a class that composes a wait-free write queue with a wait-free 
read queue. This is strictly a convenience class. It offers no facilities that you would not get from the two 
separate components. 

The correct use of a WaitFreeDequeue would be to have the higher-priority end of the double-ended 
queue use force, nonBlockingRead, and nonBlockingWrite. The lower-priority end of the double-
ended queue should use blockingRead and blockingWrite. 

Methods 

public java.lang.Object blockingRead() 

Performs a read on the constituent WaitFreeWriteQueue. 

public boolean blockingWrite(java.lang.Object object) throws 
               MemoryScopeException 

Performs a write on the constituent WaitFreeReadQueue. 

public boolean force(java.lang.Object object) 

Performs a force on the constituent WaitFreeWriteQueue. 

public java.lang.Object nonBlockingRead() 

Performs a read on the constituent WaitFreeReadQueue. 

public boolean nonBlockingWrite(java.lang.Object object) throws 
               MemoryScopeException 

Performs a write on the constituent WaitFreeWriteQueue. 

 

No-Wait Queues and Memory 

Assignment rules and the reference rules for no-heap threads are important to wait-free queues. The queue 
object itself is created in some memory area. The queue itself is created in the same memory area as the 
queue object. The object references passed through the queue can be in any area allowed by the reference 
rules. 

If all objects are in heap memory, there is no problem. But a major application for wait-free queues is 
communication with no-heap threads. A no-heap thread would be unable to reference the queue object or 
any of its contents if they were in heap. 

If all objects are in immortal memory, the queue will work without a hitch and can be used by any type of 
thread. The problem here is that all resources consumed by the wait-free queue, including all the objects 
sent through the queue, must reside in immortal memory. That works easily, but it turns the queue and all 
the objects that are passed through it into a preallocated, static resource. 

The queue can be placed in scoped memory. The most convenient system is to construct the queue and all 
the objects that will pass through it in a single, scoped memory area. The thread that created the queue can 
use it, and it can let other threads it creates inherit access to the scope containing the queue. As with 
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immortal memory, the objects passed through the queue cannot be dynamically allocated carelessly, but 
the memory is freed when all the threads leave it. 

In every case except a no-wait queue in heap memory, the application must implement a system for 
recycling the objects passed through the queue. The easiest way to build a recycling system is to create a 
second no-wait queue that holds objects for recycling, as shown in Algorithm 20–1. 

Algorithm 20–1 Object recycling 
Create the a wait-free queue q, 
     and n objects of type T to go in it 
  construct the wait-free queue as required 
  construct the recycling queue, r. An n-entry wait-free 
    queue with its wait on the end opposite to q. 
  for(i = 0; i < n; ++i) 
     r.write(new T()); 
Use the recycling queue after every q.read 
  obj = q.read(); 
  r.write(obj); 
and before every q.write 
  obj = r.read(); 
  // copy data into obj 
  q.write(obj) 

Since the recycling queue is big enough to contain every object created for the queue, no write to the 
recycling queue will ever block or fail to add its data to the queue. 

Preloading the recycling queue as illustrated in Algorithm 20–1 keeps use of the queue consistent. It also 
stores references for all the preallocated objects in one convenient structure. 

 

Implementation Notes 

Implementors of wait-free queues may find that synchronized blocks are required to protect the queue data 
structure. Synchronized blocks are acceptable provided that the code in the synchronized blocks is brief 
and never allocates an object or does anything else (like calling System.gc) that could cause garbage 
collection. The synchronized block could cause the priority of the heap-using thread to be boosted to the 
level of the no-heap thread, but since the synchronized block will not run garbage collection, the priority 
boosting will be brief. 
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Chapter 21. Recommended Practices 
• Powerful and Easy-to-Use Features of the RTSJ 
• Very Powerful and Dangerous Features of the RTSJ 
• Very Powerful and Finicky Features of the RTSJ 
• Selection of Priorities 

Ideally this chapter would be full of sage advice developed over years of experience with the Real-Time 
Specification for Java. It is not. I wrote this book while the RTSJ and its reference implementation were 
solidifying into a final specification. I have the "advantage" of having spent many hours struggling with 
features that did not make it into the final specification, and I know why the features of the RTSJ were 
included. 

The RTSJ enhances the Java platform in some fundamental ways, but it is still the Java platform. The 
naming conventions, object-oriented design guidelines, and appropriate use of language features do not 
change. Even applications that make heavy use of the real-time extensions are Java programs. 

 

Powerful and Easy-to-Use Features of the RTSJ 

Most of the features of the RTSJ are safe. Any application can benefit from them, and applications that use 
multiple threads can benefit greatly. 

Real-Time Threads 

Everything that uses a thread can use a real-time thread, though the program has to contend with the more 
restricted set of constructors offered for the RealtimeThread class. Real-time threads offer priorities 
that really work, periodic scheduling, and priority boosting. (Briefly, in case you haven't read Chapter 5, 
this removes some obnoxious problems from interactions between threads at different priorities.) 

Periodic Threads 

In its simplest form, without resource limits or miss handlers, a periodic thread runs a piece of code at 
regular intervals. Whether you need to sample and save a voltage level 30,000 times a second or run a tape 
backup once a week, periodic threads are a simple, powerful tool for the job. 

Asynchronous Event Handlers 

Do not let the name mislead you. AsynchronousEventHandler is a long, complicated way to say 
reusable thread. 

The RTSJ allows, and encourages, the implementation to reduce the startup cost of asynchronous event 
handlers. 

High-Resolution Time 

Nanosecond resolution may not do much for you this year, but a time class that can represent either an 
interval or an absolute time and easily converts an interval into a date and time is certainly a convenience. 

Happenings 
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Happenings are name for events that take place outside the Java environment. The RTSJ provides a general 
interface between external events and asynchronous events inside the Java environment. 

Happenings give an implementation of the RTSJ a standard way to "see" asynchronous events outside the 
Java environment. User interface APIs already have a special-purpose ability to detect events. They use 
mechanisms like AWT events to notify an application of keystrokes and mouse activity. An interface like 
the RTSJ happening interface is already in the implementation of the GUI classes. Some part of AWT 
converts external GUI events into internal events. 

Happenings are a good way to communicate with devices that do not fit into one of the other I/O systems 
supported by a Java platform. 

 

Very Powerful and Dangerous Features of the RTSJ 

Immortal memory is the deadly seducer of the RTSJ. It is seductive because it is as easy to use as heap 
memory, but it works anywhere, and never causes garbage collection. It is dangerous because it is a limited 
resource and it runs out after you are committed to it. 

There's so much, no one will miss the little I need 

Many systems have a little bit of battery-backed static RAM. It is useful stuff because it is as 
fast and easy to use as ordinary RAM, but data stored there will survive through power failures. 
Unfortunately, it costs much more than ordinary RAM. 

The system designer tells the hardware engineer that the system will need some amount, say, 
2421 bytes of nonvolatile RAM. The hardware engineer rounds that up to some standard part; 
say, 4096 bytes. That leaves 1675 bytes free. 

If there are three software design teams, each will hear that there is more than a kilobyte of 
uncommitted nonvolatile RAM. Each team will soon require at least 1675 bytes of nonvolatile 
RAM beyond their original requirements. This leaves software requiring 3350 more bytes of 
nonvolatile RAM than the system has. 

Unit tests don't show the problem since each software team can run by itself. 

This situation sounds unlikely, but it happens again and again. It requires software teams that 
work separately, maybe in different time zones. It also depends on a sort of denial. Perhaps the 
developers in each team don't want to mention the "extra" nonvolatile RAM to the other teams 
for fear that they would want to share it if they knew about it. 

Immortal memory has a lot in common with nonvolatile RAM. Someone needs to keep and 
enforce a budget. 

Simple 

Any object can contain a reference to immortal memory, any thread or asynchronous event handler can use 
immortal objects, and the only connection between garbage collection and immortal memory is that the 
garbage collector includes objects in immortal memory in its root set. 

A chunk of code that uses only immortal memory is nearly as easy to write as code that uses only the heap. 
Code that restricts itself to immortal memory can forget garbage collection and reference rules 
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Leaky 

Objects allocated in immortal memory last at least as long as the application that created them. There is no 
garbage collection for immortal objects. If you can confidently analyze a block of code and state the 
number of objects it will allocate over the life of the application, that code is a candidate for immortal 
memory. Whether it is a good candidate depends somewhat on just how many objects it will use. 

If the number of objects a block of code will allocate is a function of some variable, the block is not a good 
candidate for immortality. It is likely to exhaust immortal memory. That is an acceptable state only if the 
application has allocated everything it intends to store in immortal memory and can run to completion 
without creating another immortal object. 

The normal and proper use of immortal memory is to allocate all immortal objects early in an application's 
execution. If all immortal objects are allocated from a single method, the implementor can easily analyze 
the consumption of immortal memory. It is also easy to test. If the method that allocates immortal objects 
returns without throwing an error, there is enough immortal memory. 

Viral 

Immortal memory cannot contain references to scoped memory. If an application attempts to mix scoped 
and immortal memory, the inclination will be to keep moving objects into immortal memory until the 
application stops taking memory reference exceptions. Careful, and sometimes awkward, programming 
can prevent all objects from migrating into immortal memory, but it is so easy to just swat each reference 
exception bug by moving the offending object into immortal memory. 

There is no easy way to blend scoped and immortal memory. The best approach is to build a small, clean 
interface between objects in immortal memory and scoped objects and then maintain the boundary. 

Other features of the RTSJ have as much destructive potential as immortal memory, but they are hard to 
use. You know you are working with a tricky tool. 

 

Very Powerful and Finicky Features of the RTSJ 

The features listed in this section are not dangerous, but they are hard to use. 

Scoped Memory 

Scoped memory is a type of memory that can be used to allocate temporary objects but that does not 
require garbage collection. The bytecode interpreter and the scoped memory classes work together to 
ensure that objects allocated in scoped memory can be allocated and freed quickly without risking 
violations of referential integrity. 

Scoped memory is an important factor in making many standard Java class libraries accessible to code that 
cannot tolerate garbage collection. The object allocations that take place in the standard methods are 
contained within the scope. It needs to have enough memory to hold all the objects allocated during an 
invocation of a method, but they are all discarded after the method returns. By use of the techniques from 
Chapter 13, values can be passed into and out of a standard method. Methods that maintain state by storing 
objects off static variables will not work. They will get an assignment error when they try to store a 
reference to a scoped object in a static variable. 

No-Heap Asynchronous Event Handlers 
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A no-heap asynchronous event handler is the kind of Schedulable that moves the problem of reusing thread 
objects into the implementation of the JVM. 

No-Heap Real-Time Threads 

If a no-heap thread is rooted in immortal memory, it has all the difficulties of immortal memory but it can 
use scoped memory. That is somewhat harder to use than immortal memory, but it is less dangerous. 

No-heap real-time threads and no-heap async event handlers can both be scheduled without consideration 
of the garbage collector. This can make them vastly more responsive. 

Asynchronously Interrupted Exceptions 

Asynchronously interrupted exceptions are a carefully crafted way for a thread or async event handler to 
reach into another thread and throw an exception. 

This exception is a good tool for aborting computations that have timed out, for stopping a progressive 
algorithm when its budget is expired, for killing a thread, for notifying a thread of an urgent fault, or for 
any other task that requires some entity in the system to abruptly change the logic of a thread. 

Asynchronously interrupted exceptions that use the doInterruptible mechanism are easy to use. The 
most difficult part is writing interruptible methods knowing that they can be interrupted so thoroughly that 
even catch and finally clauses in the method are skipped on the way to the next method that does not 
throw AIE. 

Asynchronously interrupted exceptions are harder to use if the application requires something that 
doInterruptible does not offer. 

 

Selection of Priorities 

The schedulable objects in an RTSJ system can be divided into three groups: 

1. Ordinary threads 
2. Real-time threads and asynchronous event handlers 
3. No-heap real-time threads and no-heap asynchronous event handlers 

The ordinary threads have only ten priorities available to them, and those priorities are lower than the 
priorities available to real-time threads. 

The priorities of real-time and no-heap real-time threads can be scattered in any order through the space of 
real-time priorities, but the platform is designed under the assumption that no-heap real-time threads will 
be given higher priorities than heap-using real-time threads. 
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If priorities are assigned to threads, as shown on the left, no-heap threads and event handlers will not block 
for garbage collection. 

The platform will allow heap-using threads to be given priorities above no-heap threads, but that causes 
distressing garbage collection behavior. 

The garbage collector does not actually have a priority above real-time threads. If there is a background 
garbage collection, it runs at a priority below any thread, even non-real-time threads. Demand garbage 
collection runs at the priority of the thread that needs memory. It is shown at a priority between real-time 
and no-heap threads as a memory aid. When no-heap threads are all given priorities higher than other 
threads, the system works "as it should" from the point of view of no-heap threads. 

A no-heap thread is coded in that demanding environment because that thread has tight timing 
requirements that cannot tolerate delay caused by garbage collection. If a heap-using thread has higher 
priority than the no-heap thread, the timing of no-heap thread will be impacted by garbage collection in the 
higher-priority thread. If GC delays were tolerable, the thread could have been coded to use heap memory. 

Garbage collection delays can also sneak into the no-heap priority range. If a no-heap thread waits for a 
resource held by a heap-using thread, it can be exposed to garbage collection. This is a particularly 
unfortunate race condition because the destructive case may be so rare that it never occurs under test. 
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The no-heap thread may not realize that a heap-using thread is sharing a synchronized method with it. If 
the method is brief, the disruption caused by the low-priority thread will be minimal unless it allocates a 
new object and happens to run out of memory. Unless the allocated object is exceptionally large or the 
garbage collector is an incremental garbage collector that uses a little time on each allocation, the chances 
of triggering garbage collection on a random object allocation is low. The no-heap thread could easily run 
for years, occasionally blocking and boosting the low-priority thread on the synchronized method. Garbage 
collection will hit perhaps one in a million of those rare occasions in which the high-priority thread blocks 
on the synchronized method. 

For better or worse, priority boosting applies even when it boosts the priority of garbage collection above a 
no-heap thread. Figure 21-1 shows garbage collection in a heap-using thread delaying a no-heap thread 
that is interacting with it and another no-heap thread that is an innocent bystander. 

Figure 21-1. Priority boosting garbage collection 

 

Strategies for managing "strange" interactions between heap and no-heap threads include the following: 

1. If the highest-priority activity has to allocate heap objects, try to make sure there is plenty of 
empty heap when it runs. This is a fragile situation, but you have no choice. 

2. If a no-heap thread must share a synchronized method with heap-using threads, avoid allocation of 
heap objects in that method. If the object does not allocate heap objects, it cannot trigger demand 
garbage collection. The no-heap thread will block for up to the duration of the method, but the 
execution time used for analysis will not need to include worst-case garbage collection time. 

3. Use nonblocking mechanisms, like the nonblocking queues discussed in Chapter 20, for 
communication between heap and no-heap threads. 

4. Separate heap and no-heap threads. Do not put the runtime in a position where it has to boost a 
heap-using thread to the priority of a no-heap thread. 



 239

Index 
Symbol 
26897 
    ChapTitle 
         Deadline Scheduling   
27926 
    List1+ 
         3. The run method starts with some lines of comments, the enters another   
37889 
    HeadA 
         Snippets   
46888 
    Head1 
         Legacy Code   
49837 
    Head1 
         Some Systems   
54904 
    HeadA 
         Effects on the JVM   
54926 
    HeadA 
         JIT  
 

 
A 
Address Translation Cache (ATC, also TLB)   
admission control   
    scheduling: admission control   
admission control;   
AEH.  [See async event handler;] 
allocator, special-purpose   
aperiodic event 
    scheduling: aperiodic event   
aperiodic server 
    scheduling: aperiodic server  2nd   
aperiodic servers   
aperiodic tasks;   
applet   
assignment rules   
async event 
    as a distributer   
    basic operation   
    event layer   
    fault triggering   
    fire   
    handler as a thread surrogate   
    implementation   
    infrastructure   
    interface layer   
    miss handler   
    priority   
    processing phases   
    time triggered;   
async events  2nd   
asynchronous event handler   
asynchronous I/O.   
asynchronous transfer of control   
AWT   
aysnc event 
    implementation  

 
 

B 
Bollella, Greg    



 240

branch prediction   
bytecode  2nd  3rd  4th   
    interpreter  2nd  
 
 
 

C 
cache  2nd   
cache optimization   
Carnahan, Lisa   
cats   
checkAccess   
checkPackageAccess   
checkPropertiesAccess   
checkPropertyAccess   
class 
    AbsoluteTime  2nd   
    AsyncEvent  2nd   
    AsyncEventHandler  2nd   
    AsyncEventHandler;   
    BoundAsyncEventHandler   
    GarbageCollector   
    HighResolutionTime  2nd  3rd   
    ImmortalMemory;   
    Interruptible   
    LTMemory   
    MemoryArea   
    MemoryArea;   
    MonitorControl;   
    NoheapRealtimeThread   
    NoHeapRealtimeThread  2nd   
    PeriodicParameters   
    PriorityParameters   
    RationalTime  2nd  3rd   
    RealtimeSystem   
    RealtimeThread  2nd  3rd   
    RelativeTime  2nd  3rd  4th  5th   
    ReleaseParameters   
    Scheduler   
    ScopedMemory  2nd   
    SigHandler   
    SizeEstimator   
    Timer   
    VTMemory   
    VTMemory;   
class loader  2nd  3rd  4th   
class verifier   
clocks, multiple   
closure  2nd   
    constructors   
    implementing a scope   
    limitations   
    local variables   
    nesting   
contiguous memory;   
copying collector 
    garbage collection: copying collector  2nd   
cost  2nd   
cost enforcement   
cost;  

 
 
D 
deadline  2nd   
deadline miss handler;  2nd  3rd  4th   
deadline;   
defragmentation  2nd   
    garbage collection: defragmentation   
degradation rule of thumb   
demand paging  2nd   



 241

determinism  2nd   
direct memory access (DMA)   
dispatcher   
DMA throttling  2nd   
dog   
DRAM refresh time   
dynamic priority scheduling 
    scheduling: dynamic priority   
dynamic priority scheduling;  
 
 

E 
eden 
    garbage collection: eden 
         garbage collection: tenured objects   
enforcement;   
events   
execution context   
execution sequence  2nd  
 

 
F 
feasibility analysis   
    scheduling: feasibility analysis   
feasibility analysis;  2nd  3rd   
finalizer;   
finalizers   
    garbage collection: finalizers   
frequency   
Futurebus+ 
    Sha, Lui 
         Rajkumar, Ragunathan; Lehoczky, John  
 

 
G 
garbage collection  2nd  3rd  4th  5th  6th  7th  8th   
    accurate   
    allocation rate budget   
    and non-heap memory   
    conservative   
    defragmentation   
    forwarding address   
    generational  2nd  3rd   
    incremental  2nd  3rd   
    Incremental collector   
    intergenerational references   
    preemption  2nd   
    real-time   
    with lazy copying   
garbage collection: defragmentation 
    defragmentation  2nd   
garbage collection: incremental 
    garbage collection: mutator   
    garbage collection: preemption 
         garbage collection: reference graph   
garbage collection: large object store 
    garbage collection: eden 
         garbage collection: mark and sweep   
garbage collection: mutator 
    mutator   
garbage collection: read barrier 
    read barrier   
garbage collection: root set 
    garbage collection: generational   
garbage collection: scheduling 
    scheduling: garbage collection   
garbage collection: write barrier 
    write barrier  2nd   
garbage collection:reference counting 



 242

    reference count 
         garbage collection: cycles   
garbage collection:root set 
    root set   
good citizen (handling overrun)   
graceful degradation 
    scheduling: graceful degradation  2nd  

 
 
H 
happening  2nd   
heap memory   
heap/noheap interaction   
Hello RT world   
high-resolution time  2nd   
    resolution   
    resolution;   
Hotspot  
 

 
I 
illegal nesting;   
immortal memory  2nd  3rd  4th  5th  6th   
    implicit   
    new thread;   
    newInstance   
    static memory   
immortal thread object   
interrupt service time   
interrupts  2nd  
 

 
J 
Java Community Process   
Java Native Interface (JNI)   
javax.realtime   
JIT   
    interface   
    Predictable performance   
JSR-000001   
JVM 
    Components   
    performance  
 

 
K 
kernel   
Kernel Threads  
 

 
L 
least laxity 
    slack time 
         scheduling: least laxity; scheduling: slack time   
legacy applications   
Lehoczky 
    Sha 
         Ding;   
library threads   
local variable  

 
 
M 
mark and sweep 
    garbage collection: mark and sweep  2nd  3rd   



 243

memory allocator   
memory area;   
memory locking   
memory parameters;   
memory scope 
    nesting   
    size   
method 
    add  2nd   
    addHandler   
    addIfFeasible   
    addIfFeasible;   
    addInterarrivalTo  2nd   
    bindTo;   
    createReleaseParameters   
    currentRealtimeThread;   
    disable;   
    doInterruptible   
    enter  2nd   
    enter;  2nd   
    executeInArea;  2nd  3rd  4th   
    fire;   
    getDate   
    getFrequency   
    getInitialMemoryAreaIndex;   
    getInterarrivalTime  2nd   
    getMemoryAreaStackDepth;  2nd   
    getPreemptionLatency   
    getRealTimeClock   
    handleAsyncEvent  2nd  3rd  4th  5th  6th   
    instance   
    memoryConsumed   
    newArray;   
    newInstance   
    newInstance;   
    reserve;   
    schedulePeriodic   
    setFrequency   
    setHandler   
    setIfFeasible   
    setReleaseParametersIfFeasible   
    setScheduler   
    setSchedulingParameters;   
    subtract  2nd   
    toString  2nd   
    waitForNextPeriod  2nd  3rd   
    waitForNextPeriod;   
miss handler;   
multiple memory buses   
multiprocessor  

 
N 
native code   
native process   
Nilsen, Kelvin    
NIST and the history of the RTSJ   
no-heap reference rules;  2nd   
nonblocking message queues   
NORM_PRIORITY  
 

 
O 
object 
    creation   
    finalizer;  2nd   
    immortal   
    non-heap   
    reanimation  2nd   
    waste   
objects 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



 244

    scope   
one-shot timer   
operating system   
optimized interpreter   
overload   
    graceful degradation 
            
    scheduling: overload  2nd   
overrun 
    scheduling: overrun   
overrun handler;  2nd  3rd   
Overrun;  
 

 
P 
period   
period;   
periodic thread   
periodic timer   
physical memory   
pluggable schedulers   
polling  2nd   
preemption 
    latency   
    scheduling: preemption   
    thread  2nd   
preemption: service time 
    scheduling: preemption: service time   
preemption:latency 
    scheduling: preemption: latency   
primordial scope;  2nd   
priority ceiling emulation protocol;   
priority exchange algorithm 
    scheduling: priority exchange server   
priority inheritance protocol;   
priority inversion  2nd  3rd   
    avoidance protocols  2nd   
    priority ceiling emulation protocol   
    priority ceiling emulation protocol;   
    priority ceiling, global   
    priority inheritance protocol   
    unbounded   
priority inversion avoidance   
priority inversion: priority inheritance 
    scheduling: priority inheritance   
processing group parameters;   
processing group;  

 
R 
race condition  2nd  3rd  4th   
rate monotonic analysis   
rate monotonic analysis (RMA)  2nd   
raw memory   
real-time 
    consistency   
    definition   
    garbage collection   
    hard   
    precision   
    soft   
reference cycles   
referential integrity  2nd   
register optimization   
release parameters;   
RMA with deadline not equal to period  

 
S 
sa ndbox   
scheduler  2nd   



 245

scheduling   
    28 priorities   
    admission control  2nd   
    and the heap   
    budget   
    critical zone theorem   
    deadline   
    dynamic priority   
    earliest deadline first  2nd   
    features of real-time threads   
    fixed-priority  2nd   
    fixed-priority preemptive  2nd   
    graceful degradation  2nd   
    importance   
    independent tasks (requirement for RMA)   
    multiprocessor systems;   
    periodic threads with handlers;   
    periodic threads;   
    preemption   
    priority  2nd   
    problems with priority scheduling   
    RTSJ requirements   
    scheduler replacement   
    scope   
    timeline  2nd   
    utility function   
    why 32 priorities  2nd   
    with deadlines  2nd   
scheduling point test 
    scheduling: scheduling point test   
scheduling: deadline miss handler 
    deadline miss handler   
scheduling: earliest deadline first 
    scheduling: EDF.  [See earliest deadline first] 
scheduling: enforcement 
    enforcement   
scheduling: Liu and Layland with dependencies 
    scheduling: scheduling point test with dependencies   
scheduling: non-preemptive 
    scheduling: run until block   
scheduling: nonschedulable entities 
    nonschedulable entities   
scheduling: priority ceiling emulation protocol. 
    priority inheritance: priority ceiling emulation protocol   
scheduling: rate monotonic 
    rate monotonic scheduling   
scheduling: robust earliest deadline 
    scheduling: overload   
scheduling: why 32 priorities 
    scheduling: efficiency   
scope of the RTSJ   
scope portal   
scope portal;   
scope stack   
scope stack;   
scoped memory  2nd  3rd  4th  5th  6th   
    allocation time;   
    constructor   
    enter;   
    executeInArea;  2nd   
    implementation   
    linear time allocation;   
    nested  2nd   
    newInstance;   
    portal   
    reference count   
    reference cycles   
    shared;   
    sharing among threads   
    single-parent rule;   
    thread initial memory;   



 246

    using standard classes   
security manager   
single parent rule   
single-parent rule;   
snippet compiler   
sporadic parameters;   
static data   
synchronized  
 

T 
temporary immortal memory   
temporary immortal memory;   
thrashing   
thread 
    a simple real-time thread   
    created in a memory scope   
    deadline miss handler   
    default parameters   
    defaults   
    enumeration   
    getCurrentMemoryArea;   
    getOuterMemoryArea;   
    interaction between real-time and normal   
    kernel   
    library   
    management   
    migrating to real-time threads;   
    periodic   
    periodic parameters;   
    preemption;   
    priority   
    real-time   
    release parameters;   
    scheduling parameters;   
    shared scope stack;   
    synchronization;   
Throwable 
    IllegalAssignmentError  2nd  3rd   
    IllegalAssignmentError;   
    InaccessibleAreaException   
    ScopedCycleException  2nd   
    ThrowBoundaryError   
time-out   
time-out;   
timeliness   
timer 
    enable;   
TimeSys   
total bandwidth server 
    scheduling: total bandwidth server   
Translation Lookaside Buffer (TLB)  2nd   
    Address Translation Cache (ATC).  [See Translation Lookaside Buffer (TLB)] 

 
V 
VTMemory  

 
W 
wait-free queues   
watchdog timer   
WOCRAC   
WORA   
worst-case scenario  
 

 


	sample.pdf
	sterling.com
	Welcome to Sterling Software


	Real-Time Java Platform Programming.pdf
	Table of Content
	Copyright
	Preface
	Introduction
	Chapter 1. Landscape
	Java Technology and Real Time
	Real-Time Programming Requirements
	Java and Embedded Real Time

	Definition of Real Time
	Precision of Measurement
	Figure 1-1. Time-scale pyramid

	Consistency
	Utility Function Curve
	Figure 1-2. Punctuality utility functions


	Java's Problem Domain
	
	Figure 1-3. Timelines


	Real-Time Java's Problem Domain
	Summary

	Chapter 2. Architecture of the Java Virtual Machine
	Write Once, Run Anywhere—Maybe
	JVM Components
	Class Loading
	Bytecode Interpreter
	Table 2-1. Java opcodes

	Security Manager
	Table 2-2. SecurityManager check methods

	Garbage Collector
	Example 2-1 A finalizer with bad real-time behavior

	Thread Management
	Input/Output
	Graphics

	Interpreter Implementation
	Standard Interpreter
	Example 2-2 AWT events

	Optimized Interpreter
	JIT
	Snippets
	Compilation to Independent Process
	Native Methods
	Compilation to a Native Method
	Compilation to the JIT Interface


	Chapter 3. Hardware Architecture
	Worst-Case Execution of One Instruction
	Worst-Case Scenario
	Table 3-1. Worst-case instruction timing
	Figure 3-1. Factors in nondeterminism for one instruction (log scale)

	Practical Measures
	Table 3-2. Timing jitter with no interrupts, translation faults, or demand paging


	Management of Troublesome Hardware
	Managing Demand Paging
	Managing DMA
	Managing Cache
	Managing Address Translation Cache
	Managing Interrupts

	Effects on the JVM

	Chapter 4. Garbage Collection
	Reference Counting
	Basic Garbage Collection
	Mark and Sweep
	Figure 4-1. Garbage collection preemption timeline

	Defragmentation

	Copying Collectors
	Incremental Collection
	Incremental Garbage Collection in Practice

	Generational Garbage Collection
	Intergenerational References
	Large Object Store

	Real-Time Issues

	Chapter 5. Priority Scheduling
	Scheduling Terms
	Execution Sequences
	
	Table 5-1. Execution sequence
	Figure 5-1. Example execution sequence.


	Preemption
	The Seductive Charm of Nonpreemptive Scheduling
	Figure 5-2. Nonpreemptive scheduling
	Figure 5-3. Priority inversion


	Fixed versus Dynamic Priority
	Priority Inversion
	
	Figure 5-4. Priority inheritance
	Figure 5-5. Priority ceiling emulation


	Why 32 Priorities?
	
	Figure 5-6. Change in scheduling efficiency with number of priorities


	Problems with Priority Scheduling

	Chapter 6. Scheduling with Deadlines
	Underlying Mechanism
	Scope of the Scheduler
	Some Systems
	Earliest Deadline First (EDF)
	Figure 6-1. Total failure by EDF
	Figure 6-2. Alternate schedule for the problem from Figure 6-1

	Least Laxity
	Figure 6-3. Excessive context switching under least Laxity

	Periodic Scheduling
	Aperiodic Servers
	Figure 6-4. Aperiodic server

	Handling Overload
	Figure 6-5. Online scheduling failure (initial schedule)
	Figure 6-7. Online scheduling failure (better schedule)
	Figure 6-6. Online scheduling failure (disrupted by task c)


	Timing Is Usually Probabilistic

	Chapter 7. Rate Monotonic Analysis
	Theorems
	Liu and Layland's Theorem
	Figure 7-1. RMA efficiency

	A Graphical Approach
	Table 7-1. Tasks for Example 1
	Figure 7-2. Timeline for Example 1

	Lehoczky, Sha, and Ding's Theorem

	Restrictions
	Independent Tasks
	Deadlines Equal to Periods
	Multiprocessor Systems


	Chapter 8. Introduction to the Real-Time Java Platform
	A Brief History of Real-Time Java
	
	Table 8-1. Real-Time Specification for Java Primary Expert Group
	Table 8-2. Real-Time Specification for Java Consultant Group


	Major Features of the Specification
	Threads and Scheduling
	Garbage Collection
	Asynchronous Event Handlers
	Asynchronous Transfer of Control
	Memory Allocation
	Memory Access

	Implementation
	RTSJ Hello World
	
	Example 8-1 RT hello world program



	Chapter 9. Closures
	The Language Construct
	Java Closures
	Closure Structure
	Example 9-1 Java closure
	Example 9-2 Using a closure
	Example 9-3 BazClass definition

	Closures in the RTSJ
	Example 9-4 RTSJ-like use of a closure


	Limitations of Closures
	Readability
	Local Variables
	Constructors
	Nesting
	Example 9-5 Named local inner class
	Example 9-6 Named inner class



	Chapter 10. High-Resolution Time
	Resolution
	The "Clock"
	HighResolutionTime Base Class
	Absolute Time
	Relative Time
	Rational Time

	Chapter 11. Async Events
	Binding a Happening to an Event
	Basic Async Event Operation
	
	Example 11-1 Async event handler for a signal
	Example 11-2 Set up and fire a signal AEH


	Async Events without Happenings
	Time Triggering
	Example 11-3 Periodic timer-triggered async event handler
	Example 11-4 Watchdog timer setup
	Example 11-5 Watchdog timer use
	Example 11-6 One-shot timer triggered async event handler

	Fault Triggering
	Example 11-7 Fault-triggered async event handlers

	Software Event Triggering

	Implementation Discussion

	Chapter 12. Real-Time Threads
	Creation
	
	Example 12-1 Creating a Basic RealtimeThread creation
	Table 12-1. Default state when a real-time thread state is when created by an ordinary thread
	Table 12-2. Default state when a real-time thread state is when created by a RealtimeThread
	Example 12-2 Building and starting a real-time thread


	Scheduling
	Inversion Handling
	Example 12-3 Changing Change the default priority boosting protocol
	Example 12-4 Changing Change the priority boosting protocol for an object

	Fixed Priority
	Example 12-5 Changing thread priority by modifying the priority object
	Example 12-6 Changing thread priority with object replacement

	Feasibility

	Periodic Threads without Handlers
	
	Table 12-3. Optional features of periodic scheduling
	Example 12-7 Setting up a simple periodic thread
	Figure 12-1. True periodic thread
	Figure 12-2. Inaccurate periodic thread
	Example 12-8 Body of a simple periodic thread

	Feasibility Analysis
	Example 12-9 Thread that configures its own periodic behavior
	Table 12-4. Thread methods that change scheduling parameters


	Periodic Threads with Handlers
	
	Example 12-10 Starting a periodic thread with handlers
	Example 12-11 An adaptive overrun handler
	Example 12-12 Sudden death overrun handler
	Example 12-13 Periodic thread that interacts with the sudden death handler
	Example 12-14 Passive miss handler
	Example 12-15 Event handler for aggressive miss handling
	Example 12-16 Periodic thread for aggressive miss handling
	Example 12-17 Interruptible class for aggressive miss handling


	Interactions with Normal Threads
	Changing the Scheduler
	
	Example 12-18 Finding a scheduler through system properties
	Example 12-19 Changing Change the scheduler for a thread [6th line: scheduling
	Example 12-20 Alternate scheduler class



	Chapter 13. Non-Heap Memory
	The Advantage of Non-Heap Memory
	
	Figure 13-1. Execution with a real-time phase


	The Allocation Regimes
	Rules
	
	Table 13-1. Assignment rules


	Mechanisms for Allocating Immortal Memory
	
	Example 13-1 Creating an immortal object using newInstance
	Example 13-2 Creating an object by using newInstance and reflection
	Example 13-3 Creating an array of objects with using newArray
	Example 13-4 Creating an immortal object with using enter
	Example 13-5 Creating a thread that will default to immortal memory


	Mechanisms for Allocating from Scoped Memory
	
	Table 13-2. Types of scoped memory

	Allocation Time
	Creating Scoped Memory
	Example 13-6 Using SizeEstimator to set the size of a memory area

	Allocation Mechanisms
	Example 13-7 Do not use this pattern; use enter in a loop
	Example 13-8 A better pattern for using enter in a loop
	Example 13-9 Another good pattern for using enter in a loop
	Example 13-10 Shared memory scope

	Finalizers

	Using Nested Scoped Memory
	The Scope Stack (Tree)
	The DAG
	Practical Use of Nested Scopes
	Example 13-11 Using a nested scope

	Every Nested Scope Involves Two Memory Areas
	Example 13-12 Illegal assignment
	Example 13-13 Successfully storing into an instance variable

	Pitfalls
	Example 13-14 Illegal use of nested scopes

	Using executeInArea
	Figure 13-2. executeInArea creating a scope tree
	Figure 13-3. executeInArea with immortal memory

	Using Standard Classes

	Using Shared Scoped Memory
	The Scope Stack Revisited
	Figure 13-4. Initial scope stack construction
	Figure 13-5. Evolution of a scope stack when used by a thread family

	Scope Portals
	Example 13-15 Portal into a shared scope


	Fine Print
	Quick Examples
	
	Example 13-16 Allocating immortal memory
	Example 13-17 Using a simple nested memory scope
	Example 13-18 Nesting a Heap memory area
	Example 13-19 Nested scope with parameters
	Example 13-20 Nested memory scope with return values
	Example 13-21 Thread using a shared scope
	Example 13-22 Thread using a memory area portal



	Chapter 14. Non-Heap Access
	Interaction with Scheduler
	
	Table 14-1. Example of garbage collection delays


	Rules
	
	Figure 14-1. Example of an unregulated no-heap thread corrupting the JVM


	Samples
	
	Example 14-1 No-heap thread in immortal memory
	Example 14-2 No-heap thread in scoped memory
	Example 14-3 Threads that share data
	Example 14-4 Starting the threads in Example 14-3


	Final Remarks
	Notes


	Chapter 15. More Async Events
	Async Events and the Scheduler
	The createReleaseParameters Method
	Bound Async Event Handlers
	Async Event Handlers and Non-Heap Memory
	No-Heap Event Handlers vs. No-Heap Threads
	Scheduling
	Minimum Interarrival Time

	Async Event Handlers and Threads
	Special Async Events

	Chapter 16. Reusing Immortal Memory
	Using Fixed-Object Allocators
	Carrier Objects
	Example 16-1 Fixed-object allocator declarations
	Example 16-2 Fixed-object allocator constructors
	Example 16-3 Hook management
	Example 16-4 Fixed-object allocate and free

	Limitations

	Recycling RT Threads
	
	Example 16-5 Master run method for reusable RealtimeThread
	Example 16-6 Methods that handshake with the master run
	Example 16-7 Reusable RealtimeThread constructors
	Example 16-8 Some accessor methods


	Recycling Async Event Handlers
	
	Example 16-9 A reusable async event handler
	Example 16-10 Using a reusable async event handler



	Chapter 17. Asynchronous Transfer of Control
	Thread Interrupt in Context
	Asynchronous Interrupt Firing
	The Timed Class
	Example 17-1 Basic timed method

	The interrupt Method
	The fire Method
	In Summary
	Replacement Rules

	Rules for Async Exception Propagation
	Oblivious catch
	Nonmatching doInterruptible
	Matching doInterruptible
	Internals
	Table 17-1. Runtime reaction to an AIE
	Table 17-2. Runtime reaction to a pending AIE
	Table 17-3. Decision table for happened method.

	Application Handling for Asynchronous Interrupts
	Example 17-2 Handling a nonspecific AIE
	Example 17-3 A method that throws an AIE AsynchronouslyInterruptedException
	Example 17-4 Permanently catching someone else's AIE
	Example 17-5 Catch the AIE, then propagate it


	Noninterruptible Code
	
	Figure 17-1. An AIE timeline

	Special Issues for Synchronized blocks

	Legacy Code
	Use of ATC for Thread Termination
	
	Table 17-4. Good behavior for thread termination by means of the generic AIE



	Chapter 18. Physical Memory
	Physical and Virtual Memory
	Physical Memory Manager
	Memory Type
	Figure 18-1. Interaction between the physical memory manager and a filter

	Removable Memory

	Immortal Physical Memory
	Scoped Physical Memory
	
	Example 18-1 Using Scoped Physical Memory



	Chapter 19. Raw Memory Access
	Security
	Peek and Poke
	Get/Set Methods
	Mapping
	The RawMemoryFloatAccess Class

	Chapter 20. Synchronization without Locking
	
	
	Figure 20-1. Soft real time with a hard real-time interval
	Figure 20-2. Hard real time feeding data to soft real time
	Figure 20-3. Hard real time with no-wait input from soft real time


	Principles of Wait-Free Queues
	Constructors
	Common Methods

	The Wait-Free Write Queue
	Methods
	Sharing the Wait-Free Queue
	Example 20-1 Sharing the wait-free end of a wait-free queue


	The Wait-Free Read Queue
	
	Example 20-2 Using a WaitFreeReadQueue for loose coupling

	The Extra Constructor
	Methods

	The Wait-Free Double-Ended Queue
	Methods

	No-Wait Queues and Memory
	Implementation Notes

	Chapter 21. Recommended Practices
	Powerful and Easy-to-Use Features of the RTSJ
	Real-Time Threads
	Periodic Threads
	Asynchronous Event Handlers
	High-Resolution Time
	Happenings

	Very Powerful and Dangerous Features of the RTSJ
	Simple
	Leaky
	Viral

	Very Powerful and Finicky Features of the RTSJ
	Scoped Memory
	No-Heap Asynchronous Event Handlers
	No-Heap Real-Time Threads
	Asynchronously Interrupted Exceptions

	Selection of Priorities
	
	Figure 21-1. Priority boosting garbage collection



	Index
	Symbol
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W





