Preface

Authors Note

In the winter of 1997 | was working on a distributed object project using Java RMI. Not surprisingly, the project failed
miserably because Java RMI didn’t address performance, scalability, fail-over, security, and transactions; qualities of
service that are so vital in a production environment. Although that |esson was not new for me—I had seen the same
thing happen with CORBA —the timing of the project was especially interesting. It was at that same time Enterprise
JavaBeans was firstintroduced by Sun Microsystems— had Enterprise JavaBeans been avail able earlier, that same
project probably would have succeeded.

At thetime | was working on that ill-fated Java RMI project, | was also writing a column for JavaReport Online called
the “ The Cutting Edge” . The column covered what were then, new Java technologies like Java Naming and Directory
Interface (JNDI) and the JavaMail API. | was actually looking for anew topic for the 3 edition of “ The Cutting
Edge”, when | discovered the first public draft of Enterprise JavaBeans, version 0.8. | had first heard about this
technology in 1996, but this was the first time anything public has been available. Having worked on CORBA, Java
RMI and other distributed object technologies, | knew a good thing when | saw it and immediately began writing an
article about this new “Enterprise JavaBeans’. Although the article in question haslong since been lost in the ether
of the Internet, it was at that time the first article ever written on Enterprise JavaBeans.

That seems like eons ago. Since | published that article in March 1998, literally hundreds of articles have been written
on Enterprise JavaBeans and several books have come and gone on the subject. Over the past three years this book
has kept pace with three versions of the EJB specification and in its 3“ edition is considered by many, to my
enormous satisfaction, to be the best book on Enterprise JavaBeans. Asthe newest version of the specification
takes flight and a slew of new books on the subject daybew | can’t help but remember the days when the words
“Enterprise JavaBeans’ drew blank looks from just about everyone. I’'m glad those days are over.

What |s Enterprise JavaBeans?

When Java™ was first introduced in the summer of 1995, most of the IT industry focused on its graphical user
interface characteristics and the competitive advantage it offered in terms of distribution and platform independence.
Those were interesting times. The Applet was king, and only afew of uswere attempting to useit on the server side.
| reality we spent about half our time coding and the other half trying to convince management that Javawas not a
fad.

Today, the focus has broadened considerably: Java has been recognized as an excellent platform for creating
enterprise solutions, specifically for developing distributed server-side applications. This shift has much to do with
Java s emerging role as auniversal language for producing i mplementation-independent abstractions for common
enterprise technologies. The IDBC™ API isthefirst and most familiar example. JDBC provides a vendor-independent

Copyright (c) 2001 O'Reilly & Associates

Javainterface for accessing SQL relational databases. This abstraction has been so successful that it’s difficult to
find arelational database vendor that doesn’t support JDBC. Java abstractions for enterprise technol ogies have
expanded considerably to include INDI (Java Naming and Directory Interface™) for abstracting directory services,
JTA (JavaTransaction API) for abstracting access to transaction managers, IMS™ (Java Messaging Service) for
abstracting access to different message-oriented middleware products, and so on.

Enterprise JavaBeans™ was first introduced as a draft specification in late 1997 and has since established itself as
one of the most important Java enterprise technol ogies provided by Sun Microsystems. Enterprise JavaBeans (EJB)
provides an abstraction for component transaction monitors (CTMs). Component transaction monitors represent the
convergence of two technologies: traditional transaction processing monitors, such as CICS, TUXEDO, and Encina,
and distributed object services, such as CORBA (Common Object Request Broker Architecture), DCOM, and native
JavaRMI. Combining the best of both technologies, component transaction monitors provide arobust, component-
based environment that simplifies distributed devel opment while automatically managing the most complex aspects
of enterprise computing, such as object brokering, transaction management, security, persistence, and concurrency.

Enterprise JavaBeans (EJB) defines a server-side component model that allows business objects to be developed and
moved from one brand of EJB container to another. A component (an enterprise bean) presents a simple programming
model that allows the developer to focus on its business purpose. An EJB server is responsible for making the
component adistributed object and for managing services such as transactions, persistence, concurrency, and
security. In addition to defining the bean’ s business logic, the developer defines the bean’ s runtime attributesin a
way that is similar to choosing the display properties of visual widgets. The transactional, persistence, and security
behaviors of acomponent can be defined by choosing from alist of properties. The end result is that Enterprise
JavaBeans makes devel oping distributed component systems that are managed in arobust transactional environment
much easier. For developers and corporate | T shops that have struggled with the complexities of delivering mission-
critical, high-performance distributed systems using CORBA, DCOM, or Java RMI, Enterprise JavaBeans provides a
far simpler and more productive platform on which to base development efforts.

When Enterprise JavaBeans 1.0 was finalized in 1998, it quickly become a de facto industry standard. Many vendors
announced their support even before the specification was finalized. Since that time Enterprise JavaBeans has been
enhanced twice: The specification was first updated in 1999 to version 1.1, which was covered by the 2™ edition. The
most recent revision to the specification, version 2.0, is covered by this, the 3" edition of O’ Reilly’s EJB book. This
3 edition also covers EJB 1.1, which isfor the most part a subset of functionality offered by EJB 2.0.

Products that conformto the EJB standard have come from every sector of the I T industry, including the TP monitor,
CORBA ORB, application server, relational database, object database, and web server industries. Some of these
products are based on proprietary models that have been adapted to EJB; many more wouldn’t even exist without
EJB.

In short, Enterprise JavaBeans 2.0 and 1.1 provides a standard distributed component model that greatly simplifies
the development process and allows beans that are developed and deployed on one vendor’s EJB server to be easily
deployed on a different vendor’s EJB server. This book will provide you with the foundation you need to develop
vendor-independent EJB solutions.

Who Should Read This Book?

This book explains and demonstrates the fundamentals of the Enterprise JavaBeans 2.0 and 1.1 architecture.
Although EJB makes distributed computing much simpler, it is still acomplex technology that requires a great deal of
time to master. Thisbook provides a straightforward, no-nonsense explanation of the underlying technology, Java
classes and interfaces, component model, and runtime behavior of Enterprise JavaBeans. It includes material that is
backward compatible with EJB 1.1 and provides special notes and chapters when there are significant differences
between 1.1 and 2.0.

Copyright (c) 2001 O'Reilly & Associates

Although this book focuses on the fundamentals, it's no “dummies’ book. Enterprise JavaBeans embodies an
extremely complex and ambitious enterprise technology. While using EJB may be fairly simple, the amount of work
required to truly understand and master EJB is significant. Before reading this book, you should be fluent with the
Javalanguage and have some practical experience developing business sol utions. Experience with distributed object
systemsis not amust, but you will need some experience with JIDBC (or at least an understanding of the basics) to
follow the examplesin this book. If you are unfamiliar with the Java language, | recommend that you pick up acopy of
Learning Java™ by Patrick Neimeyer and Jonathan Knudsen, formerly Exploring Java™, (O’ Rellly). If you are
unfamiliar with JDBC, | recommend Database Programming with JDBC™ and Java™, 2™ Edition by George Reese
(O’ Reilly). If you need a stronger background in distributed computing, | recommend Java™ Distributed Computing
by Jm Farley (O’ Reilly).

Organization

Here' s how the book is structured. Thefirst three chapters are largely background material, placing Enterprise
JavaBeans 2.0 and 1.1 in the context of related technologies, and explaining at the most abstract level how the EJB
technology works and what makes up an enterprise bean. Chapters 4 through 13 go into detail about devel oping
enterprise beans of various types. Chapters 14 and 15 could be considered “ advanced topics,” except that transac-
tions (Chapter 14) are essential to everything that happens in enterprise computing, and design strategies
(Chapter 15) help you deal with a number of real-world issues that influence bean design. Chapter 16 describes in
detail the XML deployment descriptorsused in EJB 2.0 and 1.1. Finally, Chapter 17 is an overview of the Java™ 2,
Enterprise Edition (J2EE) includes Servlets, JSP and EJB.

Chapter 1, Introduction
This chapter defines component transaction monitors and explains how they form the underlying technology of
the Enterprise JavaBeans component model.

Chapter 2, Architectural Overview
This chapter defines the architecture of the Enterprise JavaBeans component model and examines the difference
between the three basic types of enterprise beans: entity beans, session beans, and message-driven beans.

Chapter 3, Resource Management and the Primary Services
This chapter explains how the EJB-compliant server manages an enterprise bean at runtime.
Chapter 4, Developing Y our First Enterprise Beans
This chapter walks the reader through the development of some simple enterprise beans.
Chapter 5, The Client View
This chapter explainsin detail how enterprise beans are accessed and used by aremote client application.

Chapter 6, EJB 2.0 CMP: Basic Persistence
This chapter provides an explanation of how to develop basic container-managed entity beansin EJB 2.0

Chapter 7, EJB 2.0 CMP: Entity Relationships
This chapter picks up where Chapter 6 |eft off, expanding your understanding of contai ner-managed persistence
to complex bean-to-bean relationships

Chapter 8, EJB 2.0 CMP: EJB QL
This chapter addresses the Enterprise JavaBeans Query Language (EJB QL), which is used to query EJBs and
locate specific entity beansin EJB 2.0 container-managed persistence.

Chapter 9, EJB 1.1: Container-M anaged Persistence

This chapter covers EJB 1.1 contai ner-managed persistence, which is supported in EJB 2.0 for backward
compatibility. Read this chapter only if you need to support legacy EJB applications.

Chapter 10, Bean-Managed Persistence
This chapter coversthe development of bean-managed persistence beans including when to store, load, and
remove data from the database.

Copyright (c) 2001 O'Reilly & Associates

Chapter 11, Entity-Container Contract
This chapter covers the general protocol between an entity bean and its container at runtime and applies to
container-managed persistencein EJB 2.0 and 1.1, as well as bean-managed persistence.

Chapter 12, Session Beans
This chapter shows how to develop statel ess and stateful session beans.

Chapter 13, Message-Driven Beans
This chapter shows how to devel op message-driven beansin EJB 2.0.

Chapter 14, Transactions
This chapter provides an in-depth explanation of transactions and describes the transactional model defined by
Enterprise JavaBeans.

Chapter 15, Design Strategies
This chapter provides some basic design strategies that can simplify your EJB development efforts and make
your EJB system more efficient.

Chapter 16, XML Deployment Descriptors
This chapter provides an in-depth explanation of the XML deployment descriptors used in EJB 1.1 and 2.0.

Chapter 17, Java 2, Enterprise Edition
This chapter provides an overview of the Java 2, Enterprise Edition 1.3 and explains how 2.0 fitsinto this new
platform.

Appendix A, The Enterprise JavaBeans API
This appendix provides a quick reference to the classes and interfaces defined in the EJB packages.

Appendix B, State and Sequence Diagrams
This appendix provides diagramsthat clarify the life cycle of enterprise beans at runtime.

Appendix C, EJB Vendors
This appendix providesinformation about the vendors of EJB servers.

Software and Versions

This book covers Enterprise JavaBeans version 2.0 and version 1.1, including all optional features. It uses Java
language features from the Java 1.2 platform and JDBC. Because the focus of this book isto develop vendor-
independent Enterprise JavaBeans components and solutions, | have stayed away from proprietary extensions and
vendor- dependent idioms. Any EJB-compliant server can be used with this book; you should be familiar with that
server’s specific installation, deployment, and runtime management procedures to work with the examples.

Thisbook covers both EJB 2.0 and EJB 1.1. These two versions have alot in common, but when they differ, chapters,
or text with in achapter, that specific to each version is clearly marked. Feel free to skip version-specific sections that
do not concern you. Unless indicated, the source code in this book has been written for both EJB 2.0 and 1.1

Examples developed in this book are available from ftp://ftp.oreilly.com/pub/examples/java/ejb. The examples are
organized by chapter.

Example Workbooks

Although EJB applications themselves are portable, the manor in which you install and run EJB products vary wildly
fromone vendor to the next. For thisreason its nearly impossible to cover all the EJB products available, so we have
chosen aradical but very effective way to address these differences: Workbooks.

Copyright (c) 2001 O'Reilly & Associates

To help you deploy the book examplesin different EJB products, the author will publish several free “workbooks”
which are used along with this book to run the examples on specific commercial and non-commercial EJB servers.
The workbook for a specific product will address that products most advanced server. So for example, if the vendor
supports EJB 2.0, then the examplesin the workbook will address EJB 2.0 features. If, on the other hand, the vendor
only supports EJB 1.1, then the examplesin the workbook will be specific to EJB 1.1.

Although there are plans to publish workbooks for as many different EJB server, at least two workbooks will be made
available immediately. These workbooks are free on-line in PDF format. The workbooks are al available at
http://mwww.oreilly.convcatal og/entjbeans3/ or http://www.monson-haefel.com.

Conventions

Italicisused for:

?? Filenames and pathnames
?? Hostnames, domain names, URLSs, and email addresses

?? New termswhere they are defined
Const ant wi dt h isusedfor:

?? Code examples and fragments
?? Class, variable, and method names, and Java keywords used within the text
?? SQL commands, table names, and column names

?? XML elements and tags

Const ant wi dt h bol d isused for emphasisin some code examples.

Constant width italic is usedtoindicatetextthat isreplaceable. For example, inBeanNanePK, you
would replace BeanNarme with a specific bean name.

An Enterprise JavaBean consists of many parts; it’s not asingle object, but a collection of objects and interfaces. To
refer to an Enterprise JavaBean as awhole, we use the name of its business name in Roman type followed by the
acronym, EJB (Enterprise JavaBean). For example, we will refer to the Customer EJB when we want to talk about the
enterprise bean in general. If we put the name in a constant width font, we are referring explicitly to the bean’s remote
interface. So Cust onmer Renot e isthe remote interface that defines the business methods of the Customer EJB.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

Copyright (c) 2001 O'Reilly & Associates

Y ou can also send us messages electronically. To be put on our mailing list or to request a catalog, send email to:
info@oreilly.com

To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have aweb site for the book, where we'll list errata and any plans for future editions. Y ou can access this page at:
http://mww.or eilly.com/catal og/entjbeans2/

For more information about this book and others, see the O’ Reilly web site at:
http://www.oreilly.com/

The author maintains aweb site for the discussion of EJB and related distributed computing technologies
(http://www.€jbnow.com). EIBNow.com provides news about this book as well as code tips, articles, and an
extensivelist of linksto EJB resources.

Acknowledgments

Whilethereis only one name on the cover of this book, the credit for its development and delivery is shared by many
individuals. Michael Loukides, my editor, was pivotal to the success of every edition of this book. Without his
experience, craft, and guidance, this book would not have been possible.

Many expert technical reviewers hel ped ensure that the material was technically accurate and true to the spirit of
Enterprise JavaBeans. Of special note are David Chappell of David Chappell & Associates, Jim Farley, author of
Java™ Distributed Computing (O’ Reilly, 1998), Greg Nyberg of ObjectPartners, Prasad Muppirala and Shannon
Pieper of BORN Information Services, They contributed greatly to the technical accuracy of this book and
brought a combination of industry and real-world experience to bear, hel ping to make this one of the best books on
Enterprise JavaBeans published today.

Special thanks also go to Sriram Srinivasan of BEA, Anne Thomas of Sun Microsystems, and lan McCallion of IBM
Hurdley, Tim Rohaly of jGuru.com, James D. Frentress of ITM Corp., Andrzej Jan Taramina of Accredo Systems,
Marc Loy, co-author of Java™ Swing (O’ Reilly, 1998), Don Weiss of Step 1, Mike Slinn of The Dialog Corporation,
and Kevin Dick of Kevin Dick & Associates. The contributions of these technical expertswere critical to the
technical and conceptual accuracy of earlier editions of thisbook. Others| would like to thank include Maggie
Mezquita, Greg Hartzel, John Klug and Jon Jamsa of BORN Information who all suffered though the first draft of the
first edition so long ago to provide valuable feedback.

Thanks also to Vlad Matena and Mark Hapner of Sun Microsystems, the primary architects of Enterprise JavaBeans,
Linda DeMichiel, EJB 2.0 specification lead; and Bonnie Kellett J2EE Program Manager — they were all willing to
answer several of my most complex guestions. Thanksto al the participantsin the EJB-INTEREST mailing list hosted
by Sun Microsystems for their interesting and sometimes controversial, but always informative, postings over the
past four years.

Finally, the most sincere gratitude must be extended to my wife, Hollie, for supporting and assisting me through three

years of painstaking research and writing which were required to produce three editions of this book. Without her
unfailing support and love, this book would not have been completed.

Copyright (c) 2001 O'Reilly & Associates

1

| ntroduction

This book is about Enterprise JavaBeans 1.1 and 2.0 the second and third versions of the Enterprise JavaBeans
specification. Just as the Java platform has revol utionized the way we think about software development, Enterprise
JavaBeans has revol utionized the way we think about devel oping mission-critical enterprise software. It combines
server-side components with distributed object technol ogies and asynchronous messaging to greatly simplify the
task of application development. It automatically takes into account many of the requirements of business systems:
security, resource pooling, persistence, concurrency, and transactional integrity.

This book shows you how to use Enterprise JavaBeans to develop scalable, portable business systems. But before
we can start talking about EJB itself, we'll need a brief introduction to the technol ogies addressed by EJB, such as
component models, distributed objects, component transaction monitors (CTMs), and asynchronous messaging. It's
particularly important to have a basic understanding of component transaction monitors, the technology that lies
beneath EJB. In Chapters 2 and 3, we'll start looking at EJB itself and see how enterprise beans are put together. The
rest of this book is devoted to devel oping enterprise beans for an imaginary business and discussing advanced
issues.

It isassumed that you’ re already familiar with Java; if you're not, Exploring Java™ by Patrick Niemeyer and Josh
Peck is an excellent introduction. This book also assumes that you' re conversant in the JIDBC API, or at least SQL. If
you' re not familiar with JDBC, see Database Programming with JDBC™ and Java™, 2™ Edition, by George Reese.

One of Java' s most important featuresis platform independence. Since it was first released, Java has been marketed
as “write once, run anywhere.” While the hype has gotten alittle heavy-handed at times, code written with Sun’s
Javaprogramming language is remarkably platform independent. Enterprise JavaBeansisn't just platform indepen-
dent—it’s also implementation independent. If you’ ve worked with JDBC, you know alittle about what this means.
Not only can the IDBC API run on a Windows machine or on a Unix machine, it can also access relational databases
of many different vendors (DB2, Oracle, Sybase, SQL Server, etc.) by using different JDBC drivers. Y ou don't have to
code to a particular database implementation; just change JDBC drivers and you change databases. It’ s the same
with Enterprise JavaBeans. |deally, an Enterprise JavaBeans component, an enterprise bean, can run in any
application server that implements the Enterprise JavaBeans (EJB) specification.' This means that you can develop

1 Provided that the bean components and EJB servers comply with the specification and no proprietary functionality is used in
development.

Copyright (c) 2001 O'Reilly & Associates

and deploy your EJB business system in one server, such as Orion , and later move it to adifferent EJB server, such
as Pramati, BEA’s WebL ogic, IBM’s WebSphere, or open source projects like OpenEJB, JOnAS, and JBoss.

I mplementation independence means that y our business components are not dependent on the brand of server,
which means there are more options before you begin devel opment, during development, and after deployment.

Setting the Stage

Before defining Enterprise JavaBeans more precisely, let’s set the stage by discussing a number of important
concepts: distributed objects, business objects, and component transaction monitors and asynchronous messaging.

Distributed Objects

Distributed computing allows a business system to be more accessible. Distributed systems allow parts of the system
to be located on separate computers, possibly in many different locations, where they make the most sense. In other
words, distributed computing allows business |ogic and data to be reached from remote |ocations. Customers,
business partners, and other remote parties can use a business system at any time from almost anywhere. The most
recent development in distributed computing isdistributed objects. Distributed object technol ogies such as Java
RMI, CORBA, and Microsoft’s .NET allow objects running on one machine to be used by client applications on
different computers.

Distributed objects evolved from alegacy form of three-tier architecture, which isused in TP monitor systems such
as|BM’s CICSor BEA’s TUXEDO. These systems separate the presentation, business | ogic, and database into three
distinct tiers (or layers). In the past, these legacy systems were usually composed of a*“green screen” or dumb
terminals for the presentation tier (first tier), COBOL or PL/1 applications on the middletier (second tier), and some
sort of database, such as DB2, as the backend (third tier). The introduction of distributed objectsin recent years has
givenriseto anew form of three-tier architecture. Distributed object technologies make it possible to replace the
procedural COBOL and PL/1 applications on the middle tier with business objects. A three-tier distributed business
object architecture might have a sophisticated graphical or web based interface, business objects on the middletier,
and arelational or some other database on the backend. More complex architectures are often used in which there are
many tiers: different objects reside on different servers and interact to get the job done. Creating these n- tier
architectures with Enterprise JavaBeansisrelatively easy.

Server-Side Components

Object-oriented languages, such as Java, C++, and Smalltalk, are used to write software that is flexible, extensible, and
reusable—the three axioms of object-oriented development. In business systems, object-oriented languages are used
to improve development of GUIs, to simplify access to data, and to encapsul ate the business logic. The encapsula-
tion of business logic into business objects has becomeis afairly recent focusin the information technology
industry. Businessis fluid, which meansthat a business’ s products, processes, and objectives evolve over time. If
the software that model s the business can be encapsul ated into business objects, it becomes flexible, extensible, and
reusable, and therefore evolves as the business evolves.

A server-side component model may define an architecture for developing distributed business objects. They
combine the accessihility of distributed object systemswith the fluidity of objectified businesslogic. Server-side
component models are used on the middle-tier application servers, which manage the components at runtime and
make them available to remote clients. They provide a baseline of functionality that makesit easy to develop
distributed business objects and assemble them into business solutions.

Copyright (c) 2001 O'Reilly & Associates

Server-side components can also be used to model other aspects of a business system, such as presentation and
routing. The Java Servlet for example is a server-side component that is used to generate HTML and XML datafor
presentation layer of athree-tier architecture. The EJB 2.0 message-driven beans, which are discussed later, are a
server-side components that is used for routing asynchronous messages from one source to another.

Server-side components, like other components, can be bought and sold asindependent pieces of executable
software. They conform to a standard component model and can be executed without direct modification in a server
that supports that component model. Server-side component models often support attribute-based programming,
which allows the runtime behavior of the component to be modified when it is deployed, without having to change
the programming code in the component. Depending on the component model, the server administrator can declare a
server-side component’ s transactional, security, and even persistence behavior by setting these attributes to specific
values.

As an organization’s services, products and operating procedures evolve, server-side components can be
reassembled, modified, and extended so that the business system refl ects those changes. |magine a business system
as acollection of server-side components that model concepts like customers, products, reservations, and
warehouses. Each component islike aLego block that can be corrbined with other componentsto build a business
solution. Products can be stored in the warehouse or delivered to a customer; a customer can make areservation or
purchase a product. Y ou can assemble components, take them apart, use them in different combinations, and change
their definitions. A business system based on server-side componentsis fluid because it is objectified, and it is
accessibl e because the components can be distributed.

Component Transaction Monitors

A new breed of software called application servers has recently evolved to manage the complexities associated with
developing business systemsin today’s Internet world. An application server is often made up of some combination
of several different technologies, including web servers, ORBs, MOM (message-oriented middleware), databases,
and so forth. An application server can also focus on one technology, such as distributed objects. Application
serversthat are based on distributed objects vary in sophistication. The simplest facilitate connectivity between the
client applications and the distributed objects and are called object request brokers (ORBs). ORBs allow client
applications to locate and use distributed objects easily. ORBs, however, have frequently proven to be inadequatein
high-volume transactional environments. ORBs provide a communication backbone for distributed objects, but they
fail to provide the kind of robust infrastructure that is needed to handle larger user populations and mission-critical
work. In addition, ORBs provide afairly crude server-side component model that places the burden of handling
transactions, concurrency, persistence, and other system-level considerations on the shoulders of the application
developer. These services are not automatically supported in an ORB. Application devel opers must explicitly access
these services (if they are available) or, in some cases, devel op them from scratch.

Early in 1999, Anne Manes’ coined the term component transaction monitor (CTM) to describe the most
sophisticated distributed object application servers. CTMs evolved as a hybrid of traditional TP monitors and ORB
technologies. They implement robust server-side component models that make it easier for developers to create, use,
and deploy business systems. CTMs provide an infrastructure that can automatically manage transactions, object
distribution, concurrency, security, persistence, and resource management. They are capable of handling huge user
populations and mission-critical work, but also provide value to smaller systems because they are easy to use. CTMs
are the ultimate application server. Other terms for these kinds of technology include object transaction monitor
(OTM), component transaction server, distributed component server, COMware, and so forth. This book uses the
term “component transaction monitor” because it embraces the three key characteristics of thistechnology: the use

2 At the time that Ms. Manes coined the term she worked for the Patricia Seybold Group under her maiden name, Anne Thomas.
Ms. Manes is now the Directory of Business Strategy for Sun Microsystems, Sun Software division.

Copyright (c) 2001 O'Reilly & Associates

of acomponent model, the focus on transactional management, and the resource and service management typically
associated with monitors.

Enter prise JavaBeans. Defined

Sun Microsystems' definition of Enterprise JavaBeansis.

The Enterprise JavaBeans architecture is a component architecture for the development and deployment of component-
based distributed business applications. Applications written using the Enterprise JavaBeans architecture are scalable,
transactional, and multi-user secure. These applications may be written once, and then deployed on any server platform
that supports the Enterprise JavaBeans specification.®

Wow! Now that’s amouthful and not atypical of how Sun defines many of its Java technol ogies—have you ever
read the definition of the Javalanguage itself? It’ s about twice aslong. This book offers a shorter definition:

Enterprise JavaBeans is a standard server-side component model for component transaction monitors.

We have already set the stage for this definition by briefly defining the terms distributed objects, server-side
components, and component transaction monitors. To provide you with a complete and solid foundation for learning
about Enterprise JavaBeans, this chapter will now expand on these definitions.

If you already have a clear understanding of distributed objects, transaction monitors, CTMs, and asynchronous
messaging feel free to skip the rest of this chapter an move on to chapter 2.

Distributed Object Architectures

EJB is acomponent model for component transaction monitors, which are based on distributed object technologies.
Therefore, to understand EJB you need to understand how distributed objects work. Distributed object systems are
the foundation for modernthree- tier architectures. In athree-tier architecture, as shown in Figure 1-1, the
presentation logic resides on the client (first tier), the business logic on the middletier (second tier), and other
resources, such as the database, reside on the backend (third tier).

[FGURE]
Figure 1-1: Three-tier architecture

All distributed object protocols are built on the same basic architecture, which is designed to make an object on one
computer ook likeit's residing on adifferent computer. Distributed object architectures are based on a network
communication layer that isreally very simple. Essentially, there are three parts to this architecture: the business
object, the skeleton, and the stub.

The business object is the business object that resides on the middletier. It's an instance of an object that models the
state and business | ogic of some real-world concept, like person, order, account. Every business object class has
matching stub and skeleton classes built specifically for that type of business object. So, for example, adistributed
business object called Per son would have matching Per son_St ub and Per son_Skel et on classes. As
shown in Figure 1-3, the business object and skeleton reside on the middle tier, and the stub resides on the client.

3 Sun Microsystems' Enterprise JavaBeans™ Specification, v2.0, Copyright 2001 by Sun Microsystems, Inc.

Copyright (c) 2001 O'Reilly & Associates

The stub and the skeleton are responsible for making the business object, which lives on the middletier, ook asif it
isrunning locally on the client machine. Thisis accomplished through some kind of remote method invocation (RMI)
protocol. An RMI protocol is used to communicate method invocations over a network. CORBA, Java RMI, and
Microsoft .NET all use their own RMI protocol.” Every instance of the business object on the middle tier is wrapped
by an instance of its matching skeleton class. The skeleton is set up on aport and |P address and listens for requests
from the stub, which resides on the client machine and is connected via the network to the skeleton. The stub acts as
the business object’ s surrogate on the client and is responsible for communicating requests from the client to the
business object through the skeleton. Figure 1-3 illustrates the process of communicating a method invocation from
the client to the server object and back. The stub and the skeleton hide the communication specifics of the RM|
protocol from the client and the implementation class, respectively.

[FGURE]
Figure 1-2: RMI loop

The business object implements a public interface that declares its business methods. The stub implements the same
interface as the business object, but the stub’s methods do not contain business logic. Instead, the business
methods on the stub implement whatever networking operations are required to forward the request to the business
object and receive the results. When aclient invokes a business method on the stub, the request is communicated
over the network by streaming the name of the method invoked, and the val ues passed in as parameters, to the
skeleton. When the skeleton receives the incoming stream, it parses the stream to discover which method is
requested, and then invokes the corresponding business method on the business object. Any value that is returned
from the method invoked on the business object is streamed back to the stub by the skeleton. The stub then returns
the value to the client application asif it had processed the business logic locally.

Rolling Your Own Distributed Object

The best way to illustrate how distributed objects work isto show how you can implement a distributed object
yourself, with your own distributed object protocol. Thiswill give you some appreciation for what atrue distributed
object protocol like CORBA does. Actual distributed object systems such as DCOM, CORBA, and JavaRMI are,
however, much more complex and robust than the simple example we will develop here. The distributed object system
we develop in this chapter isonly illustrative; it is not areal technology, nor isit part of Enterprise JavaBeans. The
purpose isto provide you with some understanding of how a more sophisticated distributed object system works.

Here' savery simple distributed business object called Per sonSer ver that implementsthe Per son interface. The
Per son interface captures the concept of a person business object. It has two business methods: get Age() and
get Nanme() . Inareal application, we would probably define many more behaviorsfor the Per son business object,
but two methods are enough for this example:

public interface Person {
public int getAge() throws Throwabl €;
public Sring getNane() throws Throwabl €;

}

Theimplementation of thisinterface, Per sonSer ver , doesn’t contain anything at all surprising. It definesthe
business logic and state for aPer son:

public class PersonServer inplenents Person {
int age;
Sring nang;

4 The acronym RMI isn't specific to Java RMI. This section uses the term RMI to describe distributed object protocols in general.
Java RMI is the Java language version of a distributed object protocol.

Copyright (c) 2001 O'Reilly & Associates

publ i c PersonServer (Sring nane, int age){
this.age = age;
thi s. nane = nang;

}

public int getAge(){
return age;

}

public Sring get Nane(){
return nane;

}

}

Now we need some way to make the Per sonSer ver availableto aremote client. That’'s the job of the

Per son_Skel et on and Per son_St ub. The Per son interface describes the concept of a person independent
of implementation. Both the Per sonSer ver and the Per son_St ub implement the Per son interface because
they are both expected to support the concept of a person. The Per sonSer ver implements the interface to
provide the actual businesslogic and state; the Per son_St ub implementsthe interface so that it can look likea
Per son business object on the client and relay requests back to the skeleton, which in turn sends them to the
object itself. Here' swhat the stub looks like:

inport java.io.jectQut putSream
inport java.io.jectlnputSXream
inport java. net. Socket ;

public class Person Sub inpl enents Person {
Socket socket ;

public Person_Sub() throws Throwabl e {
/* Qreate a network connection to the skel eton.
Wse "l ocal host” or the | P Address of the skel eton
if it's onadifferent nachine. */
socket = new Socket ("1 ocal host", 9000) ;
}
public int getAge() throws Throwabl e {
/!l Wen this nethod i s i nvoked, streamthe nethod nane to the
/1 skel eton.
oj ect Qut put S reamout X ream=
new (hj ect Qut put St reanf socket . get Qut put Sreant));
out Sreamw iteChj ect ("age");
out Sreamf | ush();
(oj ect I nput S reaminStream=
new (j ect | nput S rean{socket . get | nput S reant));
return inSreamreadint();
}
public Sring getNane() throws Throwabl e {
/1 Wen this nethod is invoked, streamthe nethod nane to the
/1 skel eton.
(oj ect Qut put Stream out Sream =
new (bj ect Qut put S r eanfsocket . get Qut put Sreant)) ;
out treamwitedject ("nane");
out Streamfl ush();
(oj ect I nput X reaminSream=
new (oj ect | nput S r eang socket . get | nput Sreant));
return (String)i nSreamreadj ect ();

Copyright (c) 2001 O'Reilly & Associates

[} |

When amethod isinvoked onthe Per son_St ub, aSt ri ng token is created and streamed to the skeleton. The
token identifies the method that was invoked on the stub. The skeleton parses the method-identifying token, invokes
the corresponding method on the business object, and streams back the result. When the stub reads the reply from
the skeleton, it parses the value and returnsit to the client. From the client’ s perspective, the stub processed the
request locally. Now let’slook at the skeleton:

inport java.io. (oj ect Qut put Sream
inport java.io.ject|nputSream
inport java. net. Socket ;

inport java. net. Server Socket ;

public class Person Skel eton extends Thread {
Per sonServer nyServer;

publi ¢ Person_Skel et on(Per sonSer ver server){
/1 Get a reference to the business object that this skel eton waps.
this. nyServer = server;
}
public void run(){
try {
/1 Geate a server socket on port 9000.
Server Socket server Socket = new Ser ver Socket (9000) ;
/1 Vdit for and obtain a socket connection fromstub.
Socket socket = server Socket . accept();
while (socket != null){
/]l Qreate an input streamto recei ve requests fromstub.
oj ect I nput S reaminSream=
new (oj ect | nput S r eanf socket . get | nput X reant));
/1 Read next nethod request fromstub. B ock until request is
/'l sent.
Sring nethod = (Sring)inSreamreadj ect();
/1 Bval uate the type of nethod request ed.
if (nethod. equal s("age")){
/1 I'nvoke busi ness net hod on server obj ect.
int age = nyServer. get Age();
/1l Qreate an output streamto send return val ues back to
/1 stub.
oj ect Qut put S ream out S ream =
new (bj ect Qut put S r eanf{socket . get Qut put Sreant)) ;
/1 Send results back to stub.
out Sreamwitelnt(age);
out Streamfl ush();
} el se if(nethod. equal s("nane")){
/1 I'nvoke busi ness net hod on server obj ect.
Sring nane = nyServer. get Nane();
/1 Geate an output streamto send return val ues back to
/1 the stub.
(oj ect Qut put Stream out Sream =
new (j ect Qut put S r eanfsocket . get Qut put Sreant)) ;
/1 Send results back to stub.
out Sreamw itej ect (nane) ;
out Streamfl ush();
}

}
} catch(Throwabl e t) {t.printSackTrace(); Systemexit(0); }

Copyright (c) 2001 O'Reilly & Associates

}

public static void nain(Sring args []){
/1 btain a uni que i nstance Person.
Per sonServer person = new PersonServer ("R chard", 36);
Per son_Skel et on skel = new Person_Skel et on(per son) ;
skel . start();

}

ThePer son_Skel et on routes requests received from the stub to the business object, Per sonSer ver .
Essentially, the Per son_Skel et on spends all itstime waiting for the stub to stream it arequest. Once arequest is
received, it is parsed and delegated to the corresponding method on the Per sonSer ver . Thereturn value from the
business object is then streamed back to the stub, which returnsit asif it was processed locally.

Now that we' ve created all the machinery, let’slook at asimple client that makes use of the Per son:

public class Persondient {
public static void main(Sring [] args){

try {
Per son person = new Person S ub();
int age = person. get Age();
Sring nane = person. get Nane() ;
Systemout. printl n(nane+" is "+aget+" years ol d");

} catch(Throwabl e t) {t.printSackTrace();}

}

Thisclient application shows how the stub is used on the client. Except for the instantiation of the Per son_St ub
at the beginning, the client is unaware that the Per son business object is actually anetwork proxy to thereal
business object on the middletier. In Figure 1-5, the RMI loop diagram is changed to represent the RMI process as
applied to our code.

[FGURE]
Figure 1-3: RMI Loop with Person business object

Asyou examine Figure 1-5, notice how the RMI loop was implemented by our distributed Per son object. RMI isthe
basis of distributed object systems and is responsible for making distributed objectslocation transparent. Location
transparency means that a server object’ s actual location—usually on the middle tier—is unknown and unimportant
totheclient using it. In this example, the client could be located on the same machine or on a different machine very
far away, but the client’ s interaction with the business object is the same. One of the biggest benefits of distributed
object systemsislocation transparency. Although transparency is beneficial, you cannot treat distributed objects as
local objectsin your design because of the performance differences. This book will provide you with good
distributed object design strategies that take advantage of transparency while maximizing the distributed system’s
performance.

When this book talks about the stub on the client, we will often refer to it as aremote reference to the business
object. Thisallows usto talk more directly about the business object and its representation on the client.

Distributed object protocols such as CORBA, DCOM, and Java RMI provide alot more infrastructure for distributed
objects than the Per son example. Most implementations of distributed object protocols provide utilities that
automatically generate the appropriate stubs and skeletons for business objects. This eliminates custom
development of these constructs and allows alot more functionality to be included in the stub and skeleton.

Copyright (c) 2001 O'Reilly & Associates

Even with automatic generation of stubs and skeletons, the Per son example hardly scratches the surface of a
sophisticated distributed object protocol. Real world protocolslike Java RMI and CORBA [1OP provide error and
exception handling, parameter passing, and other services like the passing of transaction and security context. In
addition, distributed object protocols support much more sophisticated mechanisms for connecting the stub to the
skeleton; the direct stub-to-skeleton connection in the Per son exampleisfairly primitive.

Real distributed object protocols, like CORBA, also provide an Object Request Broker (ORB), which allows clientsto
locate and communi cate with distributed objects across the network. ORBs are the communication backbone, the
switchboard, for distributed objects. In addition to handling communications, ORBs generally use a naming system
for locating objects and many other features such as reference passing, distributed garbage collection, and resource
management. However, ORBs are limited to facilitating communication between clients and distributed business
objects. While they may support services like transaction management and security, use of these servicesis not
automatic. With ORBs, most of the responsibility for creating system-level functionality or incorporating services
falls on the shoulders of the application devel oper.

Component Models

The term “component model” has many different interpretations. Enterprise JavaBeans specifies a server-side
component model. Using a set of classes and interfaces fromthej avax. ej b package, developers can create,
assemble, and deploy components that conform to the EJB specification.

The original JavaBeans™, is also a component model, but it’ s not a server-side component model like EJB. In fact,
other than sharing the name “ JavaBeans,” these two component models are completely unrelated. In the past, alot of
the literature had referred to EJB as an extension of the original JavaBeans, but this is a misrepresentation. Other than
the shared name, and the fact that they are both Java component models, the two APIs serve very different purposes.
EJB does not extend or use the original JavaBeans component model.

JavaBeansisintended to be used for intraprocess purposes, while EJB is designed to be used for interprocess
components. In other words, the original JavaBeans was not intended for distributed components. JavaBeans can be
used to solve avariety of problems, but is primarily used to build clients by assembling visual (GUI) and nonvisual
widgets. It's an excellent conmponent model, possibly the best component model for intraprocess devel opment ever
devised, but it’ s not a server-side component model. EJB is designed to address issues involved with managing
distributed business objectsin athree-tier architecture.

Given that JavaBeans and Enterprise JavaBeans are completely different, why are they both called component
models? In this context, acomponent model defines a set of contracts between the component devel oper and the
system that hosts the component. The contracts express how a component should be devel oped and packaged.
Once acomponent is defined, it becomes an independent piece of software that can be distributed and used in other
applications. A component is devel oped for a specific purpose but not a specific application. In the original
JavaBeans, a component might be a push button or spreadsheet that can be used in any GUI application according to
the rules specified in the original JavaBeans component model. In EJB, acomponent might be a customer business
object that can be deployed in any EJB server and used to devel op any business application that needs a customer
business object. Other types of Java component models include Servlets, JSPs, and Applets.

Component Transaction Monitors

The CTM industry grew out of both the ORB and the transaction processing monitor (TP monitor) industries. The
CTM isreally ahybrid of these two technologies that provides a powerful, robust distributed object platform. To
better understand what a CTM is, we will examine the strengths and weakness of TP monitors and ORBs.

Copyright (c) 2001 O'Reilly & Associates

TP Monitors

Transaction processing monitors have been evolving for about 30 years (CICS was introduced in 1968) and have
become powerful, high-speed server platforms for mission-critical applications. Some TP products like CICS and
TUXEDO may be familiar to you. TP monitors are operating systems for business applications written in languages
like COBOL. It may seem strangeto call a TP monitor an “ operating system,” but because they control an
application’ s entire environment, it’ s afitting description. TP monitor systems automatically manage the entire
environment that a business application runsin, including transactions, resource management, and fault tolerance.
The business applications that run in TP monitors are written in procedural programming languages (e.g. COBOL and
C) that are often accessed through network messaging or remote procedure calls (RPC). Messaging alows aclient to
send amessage to a TP monitor requesting that some application be run with certain parameters. It'ssimilar in
concept to the Java event model. M essaging can be synchronous or asynchronous, meaning that the sender may or
may not be required to wait for aresponse. RPC, which isthe ancestor of RMI, is adistributed mechanism that allows
clients to invoke procedures on applicationsin a TP monitor asif the procedure was executed locally. The primary
difference between RPC and RMI isthat RPC isused for procedure-based applications and RMI is used for
distributed object systems. With RMI, methods can be invoked on a specific object identity, a specific business
entity. In RPC, aclient can call procedures on a specific type of application, but thereis no concept of object identity.
RMI is object oriented; RPC is procedural.

TP monitors have been around for along time, so the technology behind them is as solid as arock; that iswhy they
are used in many mission-critical systemstoday. But TP monitors are not object oriented. Instead, they work with
procedural code that can perform complex tasks but has no sense of identity. Accessing a TP monitor through RPC is
like executing static methods; there’ s no such thing as a unique object. In addition, because TP monitors are based
on procedural applications, and not objects, the businesslogic in a TP monitor is not asflexible, extensible, or
reusable as business objectsin adistributed object system.

Object Request Brokers

Distributed object systems allow unique objects that have state and identity to be accessed across a network.
Distributed object technologies like CORBA and Java RMI grew out of RPC with one significant difference: when
you invoke a distributed object method, it’s on an object instance, not an application procedure. Distributed objects
are usually deployed on some kind of ORB, which isresponsible for helping client applications find distributed
objectseasily.

ORBs, however, do not define an “ operating system” for distributed objects. They are simply communications
backbones that are used to access and interact with unique remote objects. When you devel op a distributed object
application using an ORB, all the responsibility for concurrency, transactions, resource management, and fault
tolerance falls on your shoulders. These services may be supported by an ORB, but the application developer is
responsible for incorporating them into the business objects. In an ORB, there isno concept of an “ operating
system,” where system-level functionality is handled automatically. The lack of implicit system-level infrastructure
places an enormous burden on the application developer. Developing the infrastructure required to handle
concurrency, transactions, security, persistence, and everything else needed to support large user populationsisa
Herculean task that few corporate devel opment teams are equipped to accomplish.

CTMs. TheHybrid of ORBsand TP Monitors

Asthe advantages of distributed objects became apparent, the number of systems deployed using ORBs increased
very quickly. ORBs support distributed objects by employing a somewhat crude server-side component model that
allows distributed objects to be connected to a communication backbone, but don’t implicitly support transactions,
security, persistence, and resource management. These services must be explicitly accessed through APIs by the

Copyright (c) 2001 O'Reilly & Associates

distributed object, resulting in more complexity and, frequently, more development problems. In addition, resource
management strategies such as instance swapping, resource pooling, and activation may not be supported at all.
These types of strategies make it possible for a distributed object system to scale, improving performance and
throughput and reducing latency. Without automatic support for resource management, application developers must
implement homegrown resource management sol utions, which requires a very sophisticated understanding of
distributed object systems. ORBsfail to address the complexities of managing a component in a high-volume,
mission-critical environment, an areawhere TP monitors have always excelled.

With three decades of TP monitor experience, it wasn't long before companieslike IBM and BEA began developing a
hybrid of ORBs and TP monitor systems, which we refer to as component transaction monitors. These types of
application servers combine the fluidity and accessibility of distributed object systems based on ORBs with the
robust “ operating system” of a TP monitor. CTMs provide acomprehensive environment for server- side
components by managing concurrency, transactions, object distribution, load balancing, security, and resource
management automatically. While application developers still need to be aware of these facilities, they don't have to
explicitly implement them when usingaCTM.

The basic features of aCTM are distributed objects, an infrastructure that includes transaction management and
other services, and a server-side component model. CTMs support these featuresin varying degrees; choosing the
most robust and feature-rich CTM isnot always as critical as choosing one that best meets your needs. Very large
and robust CTMs can be enormously expensive and may be overkill for smaller projects. CTMs have come out of
several different industries, including the relational database industry, the application server industry, the web server
industry, the CORBA ORB industry, and the TP monitor industry. Each vendor offers products that reflect their
particular area of expertise. However, when you' re getting started, choosing a CTM that supports the Enterprise
JavaBeans component model may be much more important than any particular feature set. Because Enterprise
JavaBeans is implementation independent, choosing an EJB CTM provides the business system with the flexibility to
scaleto larger CTMs as needed. We will discuss the importance of EJB as a standard component model for CTMs
later in this chapter.

Analogies to Relational Databases

This chapter spent alot of time talking about CTMs because they are essential to the definition of EJB. The
discussion of CTMsis not over, but to make thingsas clear as possible before proceeding, we will use relational
databases as an analogy for CTMs.

Relational databases provide a simple development environment for application devel opers, in combination with a
robust infrastructure for data. As an application developer using arelational database, you might design the table
layouts, decide which columns are primary keys, and define indexes and stored procedures, but you don’t develop
the indexing algorithm, the SQL parser, or the cursor management system. These types of system- level functionality
are left to the database vendor; you simply choose the product that best fits your needs. Application developers are
concerned with how business data is organized, not how the database engine works. It would be waste of resources
for an application devel oper to write arelational database from scratch when vendors like Microsoft, Oracle, and
others aready provide them.

Distributed business objects, if they are to be effective, require the same system-level management from CTMs as
business data requires from relational databases. System- level functionality like concurrency, transaction
management, and resource management is necessary if the business system is going to be used for large user
populations or mission-critical work. It isunrealistic and wasteful to expect application developersto reinvent this
system-level functionality when commercial solutions already exist.

CTMs areto business objects what relational databases areto data. CTMs handle all the system-level functionality,
allowing the application developer to focus on the business problems. With a CTM, application devel opers can

Copyright (c) 2001 O'Reilly & Associates

focus on the design and devel opment of the business objects without having to waste thousands of hours
developing the infrastructure that the business objects operatein.

EJB 2.0: Asynchronous Messaging

An asynchronous messaging system allows two or more applications to exchange information in the form of
messages. A message, in this case, is a self-contained package of business data and network routing headers. The
business data contained in a message can be anything—depending on the business scenario—and usually contains
information about some business transaction. In enterprise messaging systems, messages inform an application of
some event or occurrence in another system.

M essages are transmitted from one application to another on a network using message-oriented middleware (MOM).
MOM products ensure that messages are properly distributed among applications. In addition, MOMs usually
provide fault tolerance, load balancing, scalability, and transactional support for enterprises that need to reliably
exchange large quantities of messages.

MOM vendors use different message formats and network protocols for exchanging messages, but the basic
semantics are the same. An API is used to create amessage, give it apayload (application data), assign it routing
information, and then send the message. The same API is used to receive messages produced by other applications.

In all modern enterprise messaging systems, applications exchange messages through virtual channels called
destinations. When sending a message, it's addressed to a destination, not a specific application. Any application
that subscribes or registers an interest in that destination may receive that message. In thisway, the applications
that receive messages and those that send messages are decoupled. Senders and receivers are not bound to each
other in any way and may send and receive messages as they seefit.

Java M essage Service

Each MOM vendor implements its own networking protocols, routing, and administration facilities, but the basic
semantics of the developer API provided by different MOMs are the same. It'sthis similarity in APIs that makes the
Java Message Service possible.

The Java Message Service (JMS) is a vendor-agnostic Java APl that can be used with many different MOM vendors.
JMSisvery similar to JDBC in that application developer reuses the same API to access many different systems. If a
vendor provides acompliant service provider for IM S, then the IMS API can be used to send and receive messages
to that vendor. For example, you can use the same JM S API to send messages using Progress' SonicMQ as you do
IBM’s MQSeries.

M essage-Driven Beans

All IMS vendors provide application devel opers with the same API for sending and receiving messages, and
sometimes they provide a component model for developing routers that can receive and send messages. These
component models, however, are proprietary and not portable across MOM vendors.

Enterprise JavaBeans 2.0 introduces a new kind of component, called a message-driven bean, which isakind of
standard JMS bean. It can receive and send asynchronous JM S messages, because it’ s co-located with other kinds
of RMI beans (entity and session beans) it can also interact with RMI components.

M essage-driven beansin EJB 2.0 act as an integration point for a EJB application, allowing other applicationsto

asynchronous messages which can be captured and processed by an EJB application. Thisisan extremely important
feature that will allow EJB applications to better integrate with legacy and other proprietary systems.

Copyright (c) 2001 O'Reilly & Associates

M essage-driven beans are also transactional and required all the infrastructure associated with other RM| based
transactional server-side components. Like other RM| based components, message-driven beans are considered
business objects, which full fill an important role of routing and interpreting requests and coordinating the
application of those requests against other RM| based components, namely enterprise beans. M essage-driven beans
are agood fit for the component transaction manager |andscape and are an excellent addition to the Enterprise
JavaBeans platform.

CTMsand Server-Side Component M odels

CTMsrequire that business objects adhere to the server-side component model implemented by the vendor. A good
component model iscritical to the success of a development project because it defines how easily an application
developer can write business objects for the CTM. The component model is a contract that defines the
responsibilities of the CTM and the business objects. With a good component model, a devel oper knows what to
expect from the CTM and the CTM understands how to manage the business object. Server-side component models
are great at describing the responsibilities of the application developer and CTM vendor.

Server-side component models are based on a specification. Aslong as the component adheres to the specification,
it can be used by the CTM. The relationship between the server-side component and the CTM islike the relationship
between a CD-ROM and a CD player. Aslong as the component (CD-ROM) adheres to the player’ s specifications,
you can play it.

A CTM'’srelationship with its component model is also similar to the relationship the railway system has with trains.
The railway system manages the train’s environment, providing alternate routes for load balancing, multiple tracks for
concurrency, and atraffic control system for managing resources. The railway provides the infrastructure that trains
run on. Similarly, aCTM provides server-side components with the entire infrastructure needed to support
concurrency, transactions, load balancing, etc.

Trainson therailway are like server-side components: they all perform different tasks but they do so using the same
basic design. Thetrain, like a server-side component, focuses on performing atask, such as moving cars, not
managing the environment. For the engineer, the person driving the train, the interface for controlling thetrainis
fairly simple: abrake and throttle. For the application developer, the interface to the server-side component is
similarly limited.

Different CTMs may implement different component models, just as different railways have different kinds of trains.
The differences between the component models vary, like railway systems having different track widths and different
controls, but the fundamental operations of CTMs are the same. They all ensure that business objects are managed
so that they can support large populations of usersin mission-critical situations. This means that resources,
concurrency, transactions, security, persistence, load balancing, and distribution of objects can be handled
automatically, limiting the application devel oper to asimple interface. This allows the application devel oper to focus
on the businesslogic instead of the enterprise infrastructure.

Microsoft’s .NET Framework

Microsoft was the first vendor to ship aCTM. Originally called the Microsoft Transaction Server (MTYS), it was later
renamed COM+. Microsoft’s COM+ is based on the Component Object Model (COM), originally designed for useon
the desktop but eventually pressed into service as a server-side component model. For distributed access, COM+
clientsuse DCOM (Distributed Component Object Model).

When MTS wasintroduced in 1996, it was exciting becauseit provided a very comprehensive environment for
business objects. With MTS, application developers could write COM components without worrying about system-

Copyright (c) 2001 O'Reilly & Associates

level concerns. Once a business object was designed to conform to the COM model, MTS (and now COM+) would
take care of everything else, including transaction management, concurrency, resource management—everything!

Recently, COM+ has become part of Microsoft’s new .NET Framework. The core functionality provided by COM+
services remains essentially the samein .NET, but the way it’'s appears to a devel oper changes significantly. Rather
than writing components as COM objects, applications written for the .NET Framework are built asmanaged objects.
All managed objects, and in fact all code written for the .NET Framework, depends on a Common Language Runtime
(CLR). For Java-oriented developers, the CLR is much like a Java VM, and a managed object is very analogousto an
instance of aJavaclass, i.e., to a Java object.

Although .NET Framework provides many interesting features, as anopen standard, it falls short. The COM+
servicesinthe .NET Framework are Microsoft’s proprietary CTM, which means that using this technology binds you
to the Microsoft platform. This may not be so bad, because .NET promises to work well, and the Microsoft platformis
pervasive. In addition, the NET Framework’s support for SOAP (Simple Object Access Protocol) will enable business
objectsin the .NET world to communicate with objects on any other platform written in any language. This can
potentially make business objectsin .NET universally accessible, afeature that is not easily dismissed.

If, however, your company is expected to deploy server-side components on a non-Microsoft platform, .NET isnot a
viable solution. In addition, the COM+ servicesin the .NET Framework are focused on statel ess components; there’s
no built-in support for persistent transactional objects. Although stateless components can offer higher performance,
business systems need the kind of flexibility offered by CTMsthat include stateful and persistent components.

EJB and CORBA CTMs

Until thefall of 1997, non-Microsoft CTMs were pretty much nonexistent. Promising products from IBM, BEA, and
Hitachi were on the drawing board, while MTS was already on the market. Although the non-M TS designs were only
designs, they all had one thing in common: they all used CORBA as a distributed object service.

Most non-Microsoft CTMs were focused on, what was at the time, the more open standard of CORBA so that they
could be deployed on non-Microsoft platforms and support non-Microsoft clients. CORBA is both language and
platform independent, so CORBA CTM vendors could provide their customers with more implementation options.
The problem with CORBA CTM designs was that they all had different server-side component models. In other
words, if you developed a component for one vendor’s CTM, you couldn’t turn around and use that same
component in another vendor’s CTM. The component models were too different.

With Microsoft’ sMTSfar in the lead by 1997 (it had already been around ayear), CORBA -based CTM vendors
needed a competitive advantage. One problem CTMs faced was a fragmented CORBA market where each vendor’s
product was different from the next. A fragmented market wouldn’t benefit anyone, so the CORBA CTM vendors
needed a standard to rally around. Besides the CORBA protocol, the most obvious standard needed was a
component model, which would allow clients and third-party vendors to develop their business objectsto one
specification that would work in any CORBA CTM. Microsoft was, of course, pushing their component model asa
standard—which was attractive because MTS was an actual working product—but Microsoft didn’t support
CORBA. The OMG (Object Management Group), the same people who devel oped the CORBA standard, were

5 Recently, the introduction of SOAP (Simple Object Access Protocol) brings into question the future of the CORBA 11OP
protocol (Internet-InterOperability Protocol). It's obvious that these two protocols are competing to become the standard
language-independent protocol for distributed computing. |1OP has been around for several years and is therefore far more mature,
but as alate entry SOAP may quickly catch up by leveraging lessons learned in the development of [10P.

Copyright (c) 2001 O'Reilly & Associates

defining a server-side component model. This held promise because it was sure to be tailored to CORBA, but the
OMG was slow in developing a standard—at | east too slow for the evolving CTM market®.

In 1997, Sun Microsystems was devel oping the most promising standard for server-side components called
Enterprise JavaBeans. Sun offered some key advantages. First, Sun was respected and was known for working with
vendors to define Java-based and vendor-agnostic APIsfor common services. Sun had a habit of adopting the best
ideas in the industry and then making the Javaimplementation an open standard—usually successfully. The Java
database connectivity API, called JIDBC, was a perfect example. Based largely on Microsoft’s own ODBC, JDBC
offered vendors a more flexible model for plugging in their own database access drivers. In addition, developers
found the IDBC API much easier to work with. Sun was doing the same thing in its newer technologies like the
JavaMail™ API and the Java Naming and Directory Interface (JNDI). These technologies were still being defined, but
the collaboration among vendors was encouraging and the openness of the APIswas attractive.

Although CORBA offered an open standard, it attempted to standardize very low-level facilities like security and
transactions. Vendors could not justify rewriting existing products such as TUXEDO and CICSto the CORBA
standards. EJB got around that problem by saying it doesn’t matter how you implement the low-level services; all
that mattersisall the facilities be applied to the components according to the specification—a much more pal atable
solution for existing and prospective CTM vendors. In addition, the Java language offered some pretty enticing
advantages, not all of them purely technical. First, Javawas a hot and sexy technology and simply making your
product Java-compatible seemed to boost your exposure in the market. Java also offered some very attractive
technical benefits. Javawas more or less platform independent. A component model defined in the Javalanguage
would have definite marketing and technical benefits.

Asit turned out, Sun had not been idle after it announced Enterprise JavaBeans. Sun’s engineers had been working
with several |eading vendors to define aflexible and open standard to which vendors could easily adapt their existing
products. Thiswas atall order because vendors had different kinds of serversincluding web servers, database
servers, relational database servers, application servers, and early CTMs. It’ s likely that no one wanted to sacrifice
their architecture for the common good, but eventually the vendors agreed on amodel that was flexible enough to
accommodate different implementations yet solid enough to support real mission-critical development. In December
of 1997, Sun Microsystems released the first draft specification of Enterprise JavaBeans, EJB 1.0, and vendors have
been flocking to the server-side component model ever since.

Benefits of a Standard Server-Side Component M odel

So what does it mean to be a standard server-side component model ? Quite simply, it means that you can develop
business objects using the Enterprise JavaBeans (EJB) conponent model and expect them to work in any CTM that
supports the complete EJB specification. Thisis a pretty powerful statement because it largely eliminates the biggest
problem faced by potential customers of CORBA -based CTM products: fear of vendor “lock-in.” With a standard
server-side component model, customers can commit to using an EJB-compliant CTM with the knowledge that they
can migrate to abetter CTM if one becomes available. Obviously, care must be taken when using proprietary
extensions developed by vendors, but thisis nothing new. Even inrelational database industry— which has been
using the SQL standard for a couple of decades—optional proprietary extensionsabound.

Having a standard server-side component model has benefits beyond implementation independence. A standard
component model provides avehicle for growth in the third- party products. If numerous vendors support EJB, then
creating add-on products and component libraries is more attractive to software vendors. The I T industry has seen
thistype of cottage industry grow up around other standards like SQL, where hundreds of add-on products can be

5 Eventually, CORBA’s CTM component model was released and called CCM, for CORBA Component Model. It has seen
lackluster acceptance is general, and was forced to adopt Enterprise JavaBeans as part of its component model just to be viable
and interesting.

Copyright (c) 2001 O'Reilly & Associates ol

purchased to enhance business systems whose datais stored in SQL-compliant relational databases. Report
generating tools and data warehouse products are typical examples. The GUI component industry has seen the
growth of its own third-party products. A healthy market for component libraries already exists for GUI component
models like Microsoft’ s ActiveX and Sun’s original JavaBeans component models.

There are many examples of third-party product for Enterprise JavaBeans today Add-on products that provide
servicesto EJB-compliant systems like credit card processing, legacy database access, and other business services
have been introduced. These types of products make development of EJB systems simpler and faster than the
alternatives, making the EJB component model attractive to corporate |S and server vendors alike. The industry has
market grow for prepackaged EJB componentsin several domainsincluding sales, finance, education, web content
management, collaboration and other areas.

Titan Cruises. An Imaginary Business

To make things alittle easier, and more fun, we will attempt to discuss all the conceptsin this book in the context of
oneimaginary business, acruiselinecaled Titan. A cruise line makes a particularly interesting example because it
incorporates several different businesses: a cruise has cabins that are similar to hotel rooms, serves mealslikea
restaurant, offers various recreational opportunities, and needs to interact with other travel businesses.

Thistype of businessisagood candidate for adistributed object system because many of the system’s users are
geographically dispersed. Commercial travel agents, for example, who need to book passage on Titan ships, will need
to access the reservation system. Supporting many—jpossibly hundreds—of travel agents requires a robust
transactional system to ensure that agents have access and reservations are completed properly.

Throughout this book we will build afairly simple slice of Titan’s EJB system that focuses on the process of making a
reservation for acruise. Thiswill give us an opportunity to devel op enterprise beans like Ship, Cabin, Travel Agent,
ProcessPayment, and so forth. In the process, you will need to create relational database tablesfor persisting data
used in the example. It is assumed that you are familiar with relational database management systems and that you
can create tables according to the SQL statements provided. EJB can be used with any kind of database or legacy
application, but relational databases seem to be the most commonly understood database so we have chosen this as
the persistence layer.

What's Next?

In order to devel op business objects using EJB, you have to understand the life cycle and architecture of EJB
components. This means understanding conceptually how EJB’ s components are managed and made available as
distributed objects. Developing an understanding of the EJB architecture is the focus of the next two chapters.

Copyright (c) 2001 O'Reilly & Associates 2

2

Architectural Overview

Asyou learned in Chapter 1, Enterprise JavaBeans is a component model for component transaction monitors, the
most advanced type of business application server available today. To effectively use Enterprise JavaBeans, you
need to understand the EJB architecture, so this book includestwo chapters on the subject. This chapter exploresthe
core of EJB: how enterprise beans are distributed as business objects. Chapter 3 explores the services and resource
management techniques supported by EJB.

To betruly versatile, the EJB component design had to be smart. For application developers, assembling enterprise
beansis simple, requiring little or no expertise in the complex system-level issues that often plague three-tier
development efforts. While EJB makesit easy for application developers, it also provides system devel opers (the
people who write EJB servers) with agreat deal of flexibility in how they support the EJB specification.

The similarities among different component transaction monitors (CTMs) allow the EJB abstraction to be a standard
component model for al of them. Each vendor’s CTM isimplemented differently, but they all support the same
primary services and similar resource management techniques. The primary services and resource management tech-
niques are covered in more detail in Chapter 3, but some of the infrastructure for supporting them is addressed in this
chapter.

The Enterprise Bean Component

Enterprise JavaBeans server-side components come in three fundamentally different types: entity, session, and
message-driven beans. Both session and entity beans are RMI based server-side components that are accessed
using distributed object protocols. The message-driven bean, which isnew to EJB 2.0, is an asynchronous server-
side component that responds to JM S asyncrhonous messages.

A good rule of thumb isthat entity beans model business concepts that can be expressed as nouns. For example, an
entity bean might represent a customer, a piece of equipment, an item in inventory, or even aplace. In other words,
entity beans model real-world objects; these objects are usually persistent records in some kind of database. Our
hypothetical cruise line will need entity beans that represent cabins, customers, ships, etc.

Session beans are an extension of the client application and are responsible for managing processes or tasks. A Ship
bean provides methods for doing things directly to a ship but doesn’t say anything about the context under which

Copyright (c) 2001 O'Reilly & Associates 73

those actions are taken. Booking passengers on the ship requires that we use a Ship bean, but also requires alot of
things that have nothing to do with the Ship itself: we'll need to know about passengers, ticket rates, schedules, and
so on. A session bean isresponsible for thiskind of coordination. Session beans tend to manage particular kinds of
activities, for example, the act of making areservation. They have alot to do with the relationships between different
enterprisebeans. A Travel Agent session bean, for example, might make use of a Cruise, a Cabin, and a Customer—all
entity beans—to make areservation.

Similarly, the message-driven beansin EJB 2.0 are responsible for coordinating tasks involving other session and
entity beans. The major difference between a message-driven bean and a session bean is how they are accessed.
While a session bean provides aremote interface that defines which methods can be invoked, a message-driven bean
does not. Instead, the message driven bean subscribes or listens for specific asynchronous messages to which it
responds by processing the message and managing the activities of other beansin response to those messages. For
example, a Travel Agent message-driven bean would receive to a asynchronous messages—perhaps from alegacy
reservation system—from which it would coordinate the interactions of the Cruise, Cabin, and Customer beansto
make a reservation.

The activity that a session or message-driven bean representsis fundamentally transient: you start making a
reservation, you do a bunch of work, and then it’ s finished. The session and message-driven beans do not represent
things in the database. Obviously, session and message-driven beans have lots of side effects on the database: in
the process of making areservation, you might create a new Reservation by assigning a Customer to a particular
Cabin on aparticular Ship. All of these changes would be reflected in the database by actions on the respective
entity beans. Session and message-driven beans like Travel Agent, which are responsible for making areservation on
acruise, can even access a database directly and perform reads, updates, and deletes to data. But there’ s no

Travel Agent record in the database—once the bean has made reservation is, it waits to process another.

What makes this distinction difficult isthat it's extremely flexible. The relevant distinction for Enterprise JavaBeansis
that an entity bean has persistent state; the session and message-driven beans model interactions but do not have
persistent state.

Classes and I nterfaces

A good way to understand the design of enterprise beansisto look at how you’ d go about implementing one. To
implement entity and session enterprise beans, you need to define the component interfaces, abean class, and a

primary key:

There are basically two kinds of component interfaces, remote and local. The remote interfaces are supported by both
EJB 2.0 and 1.1 while thelocal component interfaces are new in EJB 2.0 and are not supported by EJB 1.1.

Remoteinterface
The remote interface for an enterprise bean defines the bean’ s business methods that can be accessed from
applications outside the EJB container: the business methods a bean presents to the outside world to do its
work. It enforces conventions and idioms that are well suited for distributed object protocols. The remote
interface extendsj avax. ej b. EJBObj ect , whichinturn extendsj ava. r mi . Renot e. Theremote
interface is one of the bean’s component interfaces and is used by session and entity beans in conjunction with
the remote home interface.

Remote Home interface
The home interface defines the bean’ slife cycle methods that can be accessed from applications outside the EJB
container: the life-cycle methods for creating new beans, removing beans, and finding beans. It enforces
conventions and idioms that are well suited for distributed object protocols. The home interface extends
j avax. ej b. EJBHone, which in turn extendsj ava. r m . Renot e. The remote home interfaceis one of the
bean’ s component interfaces and is used by session and entity beansin conjunction with the remote interface.

Copyright (c) 2001 O'Reilly & Associates 24

EJB 2.0: Locd interface
Thelocal interface for an enterprise bean defines the bean’ s business methods that can be used by other beans
co-located in the same EJB container: the business methods a bean presents other beans in the same address
space. It allows beans to interact without the overhead of a distributed object protocol, which makes them more
performant. The local interface extendsj avax. ej b. EJBLocal Obj ect . Thelocal interface isone of the
bean’s component interfaces and is used by session and entity beans in conjunction with the local home
interface.

EJB 2.0: Local Homeinterface
The home interface defines the bean’ slife cycle methods that can be used by other beans co-located in the same
EJB container: that is, the life-cycle methods a bean presents to other beans in the same address space. It allows
beans to interact without the overhead of a distributed object protocol, which improvestheir performance. The
local homeinterface extendsj avax. ej b. EJBLocal Hore. Thelocal homeinterfaceis one of the bean’s
component interfaces and is used by session and entity beansin conjunction with the local interface.

Bean class
The session and entity bean classes actually implement the bean’ s business and life-cycle methods. Note,
however, that the bean class for session and entity beans usually does not implement any of the bean’s
component interfaces directly. However, it must have methods matching the signatures of the methods defined
in the remote and local interfaces and must have methods corresponding to some of the methodsin the both the
remote and local home interfaces. If this sounds perfectly confusing, it is. The book will clarify this aswe go
along. An entity bean must implementj avax. ej b. Ent i t yBean; a session bean must implement
j avax. ej b. Sessi onBean. TheEnt i t yBean and Sessi onBean extend
j avax. ej b. Ent er pri seBean.

The message-driven bean in EJB 2.0 does not use any of the component interfaces, because it is never accessed
by method calls from other applications or beans. Instead, the message-driven bean contains a single method,
onMessage(), whichiscalled by the container when a new message arrives. So the message-driven bean
does not have a component interface as does the session and entity beans, it only needs the bean class to
operate. The message-driven bean classimplementsthej avax. ej b. MessageDr i venBean and

j avax.j nms. MessagelLi st ener interfaces. TheJMSMessageli st ener interfaceiswhat makesa
message-driven bean specific to IMS, instead of some other protocol. EJB 2.0 requires the use of IM S, but future
versions may allow other messaging systems. The MessageDr i venBean, liketheEnt i t yBean and

Sessi onBean, extendsthej avax. ej b. Ent er pri seBean interface.

Primary key
The primary key isavery simple class that provides a pointer into the database. Only entity beans need a
primary key; the only requirement for this classisthat it implementsjava.io.Serializable.

EJB 2.0 addsthe crucial distinction between remote and local interfaces. Local interfaces provide away for beansin
the same container to interact efficiently; calls to methodsin the local interface don’t involve RMI; the methodsin
the local interfaces don’t need to declare that they throw Renot eExcept i on, and so on. An enterprise beanisn’t
required to provide alocal interface, if you know when you’ re devel oping the enterprise bean that it will only interact
with remote clients. Likewise, an enterprise bean doesn’'t need to provide aremoteinterfaceif it knowsit will only be
called by enterprise beansin the same container. Y ou can provide local or remote component interface or both.

The complexity—particularly all the confusion about classes implementing the methods of an interface but not
implementing the interface itself—comes about because enterprise beans exist in the middle between some kind of
client software and some kind of database. The client never interacts with a bean class directly; it always uses the
methods of the entity or session bean’s component interfaces to do its work, interacting with stubs that are gen-
erated automatically. (For that matter, a bean that needs the services of another bean isjust another client: it usesthe
same stubs, rather than interacting with the bean class directly.)

Although the local component interfaces (local and local home) in EJB 2.0 represent session and entity beansin the
same address space and do not use distributed object protocols, they still represent a stub or proxy to the bean class.

Copyright (c) 2001 O'Reilly & Associates 25

Whilethereis no network between co-located beans, the stubs allow the container to monitor the interactions
between co-located beans and apply security and transactions as appropriate.

Its important to note, that EJB 2.0’ s message-driven bean doesn’t have any component interfaces, but it may become
the client of other session or entity beans and interact with those beans through their component interfaces. The
entity and session beans with which the message-driven bean interacts may be co-located, in which caseit usestheir
local component interfaces, or they may belocated in a different address space and EJB container, in which case the
remote component interfaces are used.

There are also lots of interactions between an enterprise bean and its server. These interactions are managed by a
“container,” which is responsible for presenting a uniform interface between the bean and the server. (Many people
use the terms “container” and “server” interchangeably, which is understandabl e because the difference between
themisn’t clearly defined.) The container isresponsible for creating new instances of beans, making sure that they
are stored properly by the server, and so on. Tools provided by the container’ s vendor do a tremendous amount of
work behind the scenes. At least one tool will take care of creating the mapping between entity beans and recordsin
your database. Other tools generate alot of code based on the component interfaces and the bean classitself. The
code generated does things like create the bean, storeit in the database, and so on. This code (in addition to the
stubs) iswhat actually implements the component interfaces, and is the reason your bean class doesn’t have to.

Before going on, let’ sfirst establish some conventions. When we speak about an enterprise bean as awhole, its
component interfaces, bean class, and so forth, we will call it by its common business name, followed by the word
“bean.” For example, an enterprise bean that is developed to model a cabin onaship will be called the “Cabin EJB.”
Notice that we didn’t use a constant width font for “ Cabin.” We do this because we are referring to all the parts of
the bean (the component interfaces, bean class, etc.) as awhole, not just one particular part like the remote interface
or bean class. Theterm enterprise bean denotes any kind of bean including entity, session, or message-driven
beans. Similarly, entity bean denotes a entity type enterprise bean; session bean a session type enterprise bean; and
message-driven bean a message-driven type enterprise bean. It's popular to use the acronym EJB for enterprise bean,
astyle adopted in this book to distinguish an enterprise bean as awhole from its component parts.

We will also use suffixes to distinguish between local component interfaces and remote component interfaces. When
we are talking about the remote interface of the Cabin EJB we will use combine the common business name with the
word Remote. For example, the remote interface for the Cabin EJB is calledthe Cabi nRenpt e interface. In EJB 2.0,
thelocal component interface of the Cabin EJB would bethe Cabi nLocal interface. The homeinterfacesfollow the
convention by adding the word Home to the mix. The remote and local home interfaces for the Cabin EJB would be
Cabi nHoneRenpt e and Cabi nHoneLocal respectively. The bean classis always the common business name
followed by the word Bean. For example, the Cabin EJB’ s bean class would be named Cabi nBean.

Theremoteinterface

Having introduced the machinery, let’slook at how to build an entity or stateful enterprise bean with remote
component interfaces. In this section, we will examine the Cabin EJB, an entity bean that models a cabin on acruise
ship. Let’s start with its remote interface.

We'll define the remote interface for a Cabin bean using the interface called Cabi nRenot e, which defines business
methods for working with cabins. All remote-interface types extend thej avax. ej b. EJBObj ect interface.

inport java.rm . Renot eExcepti on;

public interface Cabi nRenot e extends j avax. ej b. EJBOyj ect {
public Sring get Nane() throws RenoteException;
public void setNane(Sring str) throws RenoteException;
public int getDeckLevel () throws Renot eExcepti on;
public voi d set DeckLevel (int |evel) throws RenoteException;

Copyright (c) 2001 O'Reilly & Associates 2%

These are methods for naming the cabin and methods for setting the cabin’s deck level; you can probably imagine
lots of other methods that you’ d need, but thisis enough to get started. All of these methods declare that they throw
Renot eExcept i on, whichisrequired of all methods on remote component interfaces, but not EJB 2.0'slocal
component interfaces. EJB requires the use of Java RMI-I1OP conventions with remote component interfaces,
although the underlying protocol can be CORBA [10P, Java Remote Method Protocol (JRMP), or some other
protocol. Java RMI-11OP will be discussed in more detail in the next chapter.

Theremote homeinterface

The remote home interface defines life-cycle methods used by clients of entity and session bean for locating
enterprise beans. The remote home interface extendsj avax. ej b. EJBHone. We'll call the homeinterface for the
Cabin bean Cabi nHomeRenot e and defineit like this:

inport java.rm.Renot eExcepti on;
i nport javax. ej b. O eat eException;
i nport javax. ej b. A nder Excepti on;

public interface Cabi ntbneRenot e ext ends j avax. e b. EJBHone {
publ i c Gabin create(lnteger id)
throws Q eat eException, RenoteException;
public Gabi n findByPrinaryKey(Integer pk)
throws H nder Exception, RenoteException;

}

Thecr eat e() method will beresponsible for initializing an instance of our bean. If your application needsit, you
can provide other cr eat e() methods, with different arguments.

Inadditiontothef i ndByPr i mar yKey() , you are free to define other methods that provide convenient waysto
look up Cabin beans—for example, you might want to define amethod calledf i ndBy Shi p() that returnsall the
cabins on a particular ship. Find methods like these are only used inentity beans and are not used in session beans --
and obviously not message-driven beans.

EJB 2.0: The bean class

EJB 2.0: Thebean class

Now let’slook at an actual entity bean. Here' sthe code for the Cabi nBean; it’s a sparse implementation, but it will
show you how the piecesfit together:

inport javax.ejb. EntityGontext;

public abstract class Cabi nBean inpl enents javax. ef b. EntityBean {

// BEIB1.0: return void

publ i ¢ Gabi nPK ej bCreat e(I nteger id){
setld(id);
return nul l;

}

public void ej bPost Qeate(int id){
/1 do not hi ng

}

public abstract Sring get Nane();
public abstract void setNane(Sring str);

Copyright (c) 2001 O'Reilly & Associates 27

public abstract int getDeckLevel ();
publ i c abstract voi d setDeckLevel (int |evel);

public abstract Integer getld();
public abstract void setld(Integer id);

public void setEntityQontext(EntityCntext ctx){
/1 not inplenented

publ i ¢ voi d unset EntityQGont ext (){
/1 not inplenented

public void ej bActivate(){
/1 not inplenented

public voi d e bPassi vat e(){
/1 not inplenented

publ i c voi d ej bLoad(){
/1 not inplenented

public void ej bSore(){
/1 not inplenented

publ i ¢ voi d ej bRenove() {
/1 not inplenented

Y ou will have noticed that the Cabi nBean classis declared as abstract, as are several of its methods that access or
update the EJB’ s persistent state. Also notices that there are no instance fields that hold the state information that
these methods access. Thisis because we are working with a container-managed entity bean, which has its abstract
methods implemented by the container system automatically—thiswill be explained in detail later in the book. EJB
2.0 container-managed entity beans are the only beans that are declared as abstract with abstract accessor methods.
Y ou won't see abstract classes and methods with other types of entity beans, session beans, or message-driven
beans.

EJB 1.1: Thebean class

Here' s the code for the Cabi nBean inEBJ1.1:

inport javax.ejb. EntityGontext;
public class Cabi nBean i npl enents j avax. gj b. EntityBean {

public Integer id;
public Sring nang;
public int deckLevel;

// BB 1.0: return void

public Integer e bCeate(lnteger id){
setld(id);
return nul | ;

}

public voi d e bPost G eat e(l nteger id){
/1 do nothi ng

}

Copyright (c) 2001 O'Reilly & Associates 28

public Sring get Nane(){

return nang,
} public void setNane(Sring str){
nane = str;

}

public int getDecklLevel (){
return deckLevel ;

}
publ i ¢ voi d set DeckLevel (int |evel){
deckLevel = |evel;

}

public Integer getld(){
return id;

}

public void setld(Integer id){
this.id =id;

}

public void set EntityContext(EntityGntext ctx){
/1 not inplenented
}
public voi d unset EntityQGontext (){
/1 not inplenented
}
public void ej bActivate(){
/1 not inplenented
}
publ i c voi d ej bPassi vat e() {
/1 not inplenented
}
publ i ¢ voi d ej bLoad(){
/1 not inplenented
}
public void e bSore(){
/1 not inplenented
}
publ i c voi d ej bRenove() {
/1 not inplenented

}

}
EJB 2.0and 1.1: Thebean class

The set and get methods for the cabin’s name and deck level are the Cabi nBean’s business methods; they match
the business methods defined by the EJB’ s remote interface, Cabi nRenpt e. The Cabi nBean class has state and
business behavior that models the concept of a cabin. The business methods are the only methods that are visible to
the client application; the other methods are visible only to the EJB container or the bean classitself. For example, the
set 1 d()/getld() methodsare defined in the bean class but not the remote interface, which means they can not
be called by the entity bean’s client. The other methods are required by the EJB component model and are not really

part of the bean class's public business definition.

Theej bCreat e() andej bPost Cr eat e() methodsinitialize the instance of the bean class when anew cabin
record isto be added to the database. The last seven methodsin the Cabi nBean are defined in the

j avax. e] b. Enti t yBean interface. These methods are state management callback methods. The EJB container
invokes these callback methods on the bean class when important state management events occur. Theej bRe-

Copyright (c) 2001 O'Reilly & Associates

nove() method, for example, notifies an entity bean that its datais about to be deleted from the database. The

ej bLoad() andej bSt or e() methods notify the bean instance that its state is being read or written to the
database. Theej bAct i vat e() andej bPassi vat e() methods notify the bean instance that it is about to be
activated or deactivated, a process that conserves memory and other resources. set Ent i t yCont ext () provides
the bean with an interface to the EJB container that allows the bean class to get information about itself and its
surroundings. unset Ent i t yCont ext () iscalled by the EJB container to notify the bean instance that it is about
to be dereference for garbage collection.

All these callback methods provide the bean class with notifications of when an action is about to be taken, or was
just taken, on the bean class’' s behalf by the EJB server. These notifications simply inform the bean of an event, the
bean doesn’t have to do anything about it. The callback notificationstell the bean whereitisduring itslife cycle,
when it is about to be loaded, removed, deactivated, and so on. Most of the callback methods pertain to persistence,
which can be done automatically for the bean class by the EJB container. Because the callback methods are defined
inthej avax. ej b. Enti t yBean interface, the entity bean class must implement them, but it isn’t required to do
anything meaningful with the methodsif it doesn’t need to. Our bean, the Cabi nBean, won’t need to do anything
when these callback methods are invoked, so these methods are empty implementations. Details about these callback
methods, when they are called and how a bean should react, are covered in Chapter 116.

Theprimary key

The primary key is apointer that helpslocate data that describes a unique record or entity in the database; it is used
inthef i ndByPri mar yKey() method of the homeinterface to locate a specific entity. Primary keys are defined by
the bean devel oper and must be some type of serializable object. The Cabin EJB usesasimple

java. |l ang. | nt eger typeasitsprimary key. Itsalso possible to define custom primary keys, called compound
primary keys, which represent complex primary keys consisting of several different fields. Primary keys are covered
in detail in Chapter 110.

What about session beans?

Cabi nBean isan entity bean, but a session bean wouldn’t be all that different. It would extend Sessi onBean
instead of Ent i t yBean; it would have anej bCr eat e() method that would initialize the bean’ s state, but no

ej bPost Cr eat e() . Session beansdon’t haveanej bLoad() orej bSt or e() because session beansare not
persistent. While session beans have aset Sessi onCont ext () method, they don’'t have an

unset Sessi onCont ext () method. Finally, asession bean would provide anej bRenove() method, which
would be called to notify the bean that the client no longer needs it. However, this method wouldn't tell the bean that
its data was about to be removed from the database, because a session bean doesn’t represent datain the database.

Session beans don’t have aprimary key. That’ s because session beans are not persistent themselves, so thereis no
need for key that mapsto the database. Session beans are covered in detail in Chapter 12.

EJB 2.0: What about message-driven beans?

M essage-driven beans do not have component interfaces so there would not be aremote, local, or home interface
defined for amessage-driven bean. Instead the message-driven bean would define only afew callback methods, and
not business methods. The callback methodsincludetheej bCr eat e() method which is called when the bean
classisfirst created, theej bRemove() method when the bean instance is about to be discarded from the system—
usally when the container doesn’t need it any longe—the set MessageDr i venBeanCont ext () andthe
onMessage() method. TheonMessage() methodiscalled every time a new asynchronous message is delivered
to the message-driven bean. The message-driven bean doesn’t defineej bPasi vat e() /ej bActi vat e() or

ej bLoad() /ej bSt or e() methods because it doesn’t need them.

Copyright (c) 2001 O'Reilly & Associates 30

M essage-driven beans don’t have a primary key, for the same reason that session beans don’t. They are not
persistent, so there isno need for akey to the database. Message-driven beans are covered in detail in Chapter 13.

Deployment Descriptorsand JAR Files

Much of the information about how beans are managed at runtimeis not addressed in the interfaces and classes
discussed previously. Y ou may have noticed, for example, that we didn’t talk about how beans interact with security,
transactions, naming, and other services common to distributed object systems. Asyou know from prior discussions,
these types of primary services are handled automatically by the EJB CTM server, but the EJB container still needsto
know how to apply the primary servicesto each bean class at runtime. To do this, we use deployment descriptors.

Deployment descriptors serve afunction very similar to property files. They allow usto customize behavior of
software (enterprise beans) at runtime without having to change the software itself. Property files are often used with
applications, but deployment descriptors are specific to a class of enterprise bean. Deployment descriptors are also
similar in purpose to property sheets used in Visual Basic and PowerBuilder. Where property sheets allow usto
describe the runtime attributes of visual widgets (background color, font size, etc.), deployment descriptors alow us
to describe runtime attributes of server-side components (security, transactional context, etc.). Deployment
descriptors allow certain runtime behaviors of beansto be customized, without altering the bean class or its
interfaces.

When a bean class and its interfaces have been defined, a deployment descriptor for the bean is created and
populated with data about the bean. Frequently, IDEs (integrated development environments) that support
development of Enterprise JavaBeans will alow developersto graphically set up the deployment descriptors using
visual utilities like property sheets. After the developer has set all the properties for a bean, the deployment
descriptor is saved to afile. Once the deployment descriptor is complete and saved to afile, the bean can be
packaged in a JAR file for deployment.

JAR (Javaarchive) filesare ZIPfiles that are used specifically for packaging Java classes (and other resources such
asimages) that are ready to be used in some type of application. JARs are used for packaging applets, Java
applications, JavaBeans, Web applications (Servlets & JSPs), and Enterprise JavaBeans. A JAR file containing one or
more enterprise beans includes the bean classes, component interfaces, and supporting classes for each bean. It also
contains one deployment descriptor, which isused for all the beansin the JAR files. When a bean is deployed, the
JAR’s path is given to the container’ s deployment tools, which read the JAR file. The container uses the deployment
descriptor to learn about the beans contained in the JAR file.

When the JAR fileisread at deployment time, the container tools read the deployment descriptor to learn about the
bean and how it should be managed at runtime. The deployment descriptor tells the deployment tools what kind of
beansareinthe JAR file (Sessi onBean or Ent i t yBean), how they should be managed in transactions, who has
access to the beans at runtime, and other runtime attributes of the beans. The person who is deploying the bean can
alter some of these settings, like transactional and security access attributes, to customize the bean for aparticular
application. Many container tools provide property sheets for graphically reading and altering the deployment
descriptor when the bean is deployed. These graphical property sheets are similar to those used by bean devel opers.

The deployment descriptors hel p the deployment tools to add beans to the EJB container. Once the beanis
deployed, the properties described in the deployment descriptors will continue to be used to tell the EJB container
how to manage the bean at runtime.

When Enterprise JavaBeans 1.0 was rel eased serializable classes were used for the deployment descriptor. Starting
with Enterprise JavaBeans 1.1, the serializable deployment descriptor classes used in EJB 1.0 were dropped in favor
of amoreflexiblefile format based on XML (Extensible Markup Language). The XML deployment descriptors are text
files structured according to a standard EJB DTD (Document Type Definition) that can be extended so the type of
deployment information stored can evolve as the specification evolves. Chapter 16 provides a detailed description of
EJB 2.0 deployment descriptors. This section provides a brief overview of XML deployment descriptors.

Copyright (c) 2001 O'Reilly & Associates 31

EJB 2.0: Deployment Descriptor

<?xnh version="1.0"?>

<! DOCTYPE e b-jar PLBLI C "-//Sun M cr osyst ens,
"http://java.sun.contj 2ee/dtds/ejb-jar_2 0.dtd">

<gj b-jar>
<ent er pri se- beans>
<entity>
<gj b- nane>Cabi nEJB</ €j b- nane>
<hone>Cabi nHoneRenot e</ hone>
<r enot e>Cabi nRenot e</ r enot e>
< ocal - honme>Cabi nHoneLocal </ | ocal - hone>
<l ocal >Cabi nLocal </ | ocal >
<gj b-cl ass>j ava. | ang. | nt eger </ pri m key- cl ass>
<per si st ence-t ype>ont ai ner </ per si st ence-t ype>
<reentrant >Fal se</reent rant >
<entity>
</ enterpri se-beans>
<ejb-jar>

EJB 1.1: Deployment Descriptor

The following deployment descriptor might be used to describe the Cabin bean:

<?xnh version="1.0"?>

<! DOCTYPE e b-jar PUBLI C "-//Sun M cr osyst ens,
"http://java. sun.contj 2ee/ dtds/ejb-jar 1 1.dtd">

<gjb-jar>
<ent er pri se- beans>
<entity>
<gj b- nane>Cabi NEJB</ €] b- nane>
<hone>Cabi nHoneRenot e</ hone>
<r enot e>Cabi nRenot e</ r enot e>

<per si st ence-t ype>ont ai ner </ per si st ence-t ype>
<reentrant >Fal se</reentrant >
<entity>
</ enterpri se- beans>
<ejb-jar>

EJB 2.0 and 1.1: Elements of the XML Deployment Descriptor

Inc.//DID

Inc.//DID

<gj b- cl ass>Cabi nBean</ gj b- cl ass> <pri mkey- cl ass>j ava. | an

Ent er pri seJavaBeans

Ent er pri seJavaBeans

0. | nt eger </ pri mkey- cl ass>

The deployment descriptor for areal bean would have alot more information; this example simply illustrates the type

of information that you' Il find in an XML deployment descriptor.

The second element in any XML document is! DOCTYPE. This element describes the organization that defined the
DTD for the XML document, the DTD’ s version, and a URL location of the DTD. The DTD describes how a

particular XML document is structured.

All the other elementsin the XML document are specific to EJB. They do not represent all the elements used in
deployment descriptors, but they illustrate the types of elements that are used. Here' s what the elements mean:

Copyright (c) 2001 O'Reilly & Associates

2.0/

Lu/

ej b-jar
Theroot of the XML deployment descriptor. All other elements must be nested below this one. It must contain
oneent er pri se- beans element aswell as other optional elements.

enterprise-beans
Contains declarations for all the enterprise beans described by this XML document. It may containentity,

sessi on ornessage- dri ven (EJB 2.0) elements, which describe entity, session and message-driven
entrprise beans respectively.

entity
Describes an entity bean and its deployment information. There must be one of these elements for every entity

bean described by the XML deployment descriptor. Thesessi on element isused in the same way to describe
asession bean. Thenessage- dri ven element isdifferent asit doesnot define any component interfaces.

ej b- nane
The descriptive name of the enterprise bean. It’ s the name we use for the enterprise bean in conversation, when
talking about the bean component asawhole.

hone

Thefully qualified class name of the remote home interface. Thisistheinterface that definesthelife-cycle
behaviors (create, find, remove) of the enterprise bean to its clients outside the container system.

renote
Thefully qualified class name of the remote interface. Thisistheinterface that defines the enterprise bean’s
business methods to its clients outside the container system.

EB 20:1 ocal - home
The fully qualified classname of the local home interface. Thisistheinterface that definesthelife-cycle
behaviors (create, find, remove) of the enterprise bean to other co-located enterprise beans.

EB 20:1 ocal

Thefully qualified class name of the local interface. Thisisthe interface that defines the enterprise bean’s
business methods to other co-located enterprise beans.

ej b-cl ass
Thefully qualified class name of the bean class. Thisisthe class that implements the business methods of the
bean.

pri m key-cl ass

Thefully qualified class name of the enterprise bean’s primary key. The primary key is used to find the bean data
in the database.

The last two elements in the deployment descriptor, the persistence-type and reentrant elements, express the
persistence strategy and concurrency policies of the entity bean. These elements are explained in more detail later in
the book.

Asyou progress through this book, you will be introduced to the elements that describe concepts we have not
covered yet, so don’t worry about knowing all of the things you might find in a deployment descriptor.

EJB objects and EJB home

The entity and session beans both declare the component interfaces that their clients will use to access them. Clients
outside the container system, like Servlets or Java applications, will always use the enterprise bean’s remote
component interfaces, while clients that are other enterprise beans in the same container system will usually use local
component interfacesto interact. This section explainsin logical terms how the component interfaces are connected
to instances of the bean class at runtime.

Copyright (c) 2001 O'Reilly & Associates 33

While this discussion hel ps you understand entity and session beans, it doesn’t apply to EJB 2.0's message-driven
beans at all, because they do not declare component interfaces. Message-driven beans are avery different kind of
animal and afull description of message-driven beansis left to Chapter 13.

Now that you have a basic understanding of some of the enterprise beans parts (component interfaces, bean class,
and deployment descriptor) it stimeto talk alittle more precisely about how these parts come together inside an EJB
container system. Unfortunately, we can't talk as precisely aswe' d like. There are anumber of waysfor an EJB
container to implement these rel ationships; we' Il show some of the possibilities. Specifically, we'll talk about how the
container implements the component interface of entity and session beans, so that clients, applications outside the
container or other co-located enterprise beans, can interact with and invoke methods on the bean class.

The two missing pieces are the EJB object itself and the EJB home. Y ou will probably never see the EJB home and
EJB object classes because their class definitions are proprietary to the vendor’ s EJB implementation and are
generally not made public. Thisis good because it represents a separation of responsibilities along areas of expertise.
As an application developer, you are intimately familiar with how your business environment works and needsto be
modeled, so you will focus on creating the applications and beans that describe your business. System-level
developers, the people who write EJB servers, don’t understand your business, but they do understand how to
develop CTMs and support distributed objects. It makes sense for system-level developersto apply their skillsto
mechanics of managing distributed objects but leave the business logic to you, the application developer. Let’ stalk
briefly about the EJB object and the EJB home so you understand the missing piecesin the big picture.

The EJB object

This chapter has said alot about a bean’ s remote and local interfaces, which extendsthe EJBObj ect and, for EJB
2.0,theEJBLocal Obj ect interfacesrespectively. Who implements these interfaces? Clearly, the stub: we
understand that much. But what about the server side?

On the server side, an EJB object is an object that implements the remote and/or local interfaces of the enterprise
bean. Local interface are only available to EJB 2.0 container systems. It wraps the enterprise bean instance—that is,
the enterprise bean class you' ve created (in our example, the Cabi nBean)—on the server and expands its
functionality toincludej avax. ej b. EJBObj ect and/orj avax. ej b. EJBLocal Obj ect behavior.

Y ou will have noticed that “and/or” is used alot when talking about which interface the EJB object implements.

That’ s because enterprise beansin EJB 2.0 can declare either the local interface, remoteinterface, or both! Local
interfaces dot apply to EJB 1.1, so if you are working with that version, ignore references to them; they are only
relevant to EJB 2.0 container systems.

In EJB 2.0, regardless of which interfaces the bean implements, we can think of the EJB object as implementing both.
In reality there may be aspecial EJB object for the remote interface and another special EJB object for the local
interface of each enterprise bean; that depends on the how the vendor choose to implement it. For our purposes the
term EJB object will be used to talk about the implementation of either local or remote interfaces or both. The
functionality of these interfacesis so similar from the EJB object’ s perspective that discussing separate EJB object
implementations wouldn’t be beneficial.

The EJB object is generated by the utilities provided by the vendor of your EJB container and is based on the bean
classes and the information provided by the deployment descriptor. The EJB object wraps the bean instance and
works with the container to apply transactions, security, and other system- level operations to the bean at runtime.
Chapter 3 talks more about the EJB object’ srole with regard to system-level operations.

There are anumber of strategies that a vendor can use to implement the EJB object; Figure 2-1 illustrates three

possibilities using the Cabi nRenot e interface. The same implementation strategies apply to the Cabi nLocal
andj avax. e] b. EJBLocal Obj ect interfaces.

Copyright (c) 2001 O'Reilly & Associates Y

[FGURE]
Figure2-1: Threewaysto implement the EJB object

In Figure 2-1(a), the EJB object is aclassic wrapper because it holds areference to the bean class and del egates the
requests to the bean. Figure 2-1(b) shows that the EJB object class actually extends the bean class, adding
functionality specific to the EJB container. In Figure 2-1(c), the bean classis no longer included in the model. In this
case, the EJB object has both a proprietary implementation required by the EJB container and bean class method
implementations that were copied from the bean class's definition.

The EJB object design that is shown in Figure 2-1(a) is perhaps the most common. Throughout this book, particularly
in the next chapter, we will explain how EJB works with the assumption that the EJB object wraps the bean class
instance as depicted in Figure 2-1(a). But the other implementations are used; it shouldn’t make a difference which
one your vendor has chosen. The bottom lineisthat you never really know much about the EJB object: its
implementation is up to the vendor. Knowing that it exists and knowing that its existence answers alot of questions
about how enterprise beans are structured, should be sufficient. Everything that any client (including other
enterprise beans) really needs to know about any bean is described by the remote and home interfaces.

The EJB home

The EJB homeisalot like the EJB object. It's another classthat’s generated automatically when you install an
enterprise bean in a container. It implements all the methods defined by the home interfaces (Ilocal and remote) and is
responsible for hel ping the container in managing the bean’ slife cycle. Working closely with the EJB container, the
EJB home is responsible for locating, creating, and removing enterprise beans. This may involve working with the
EJB server’s resource managers, instance pooling, and persistence mechanisms, the details of which are hidden from
the developer.

For example, when a create method isinvoked on a home interface, the EJB home creates an instance of the EJB
object which references a bean instance of the appropriate type. Once the bean instance is associated with the EJB
object, the instance’ s matchingej bCr eat e() method is called. In the case of an entity bean, anew recordis
inserted into the database. With session beans the instance is simply initialized. Oncetheej bCr eat e() method
has conpleted, the EJB home returns aremote or local reference (i.e., astub) for the EJB object to the client. The
client can then begin to work with the EJB object by invoking business methods using the stub. The stub relaysthe
methods to the EJB object; in turn, the EJB object delegates those method calls to the bean instance.

In EJB 2.0, how does the EJB home know which type of EJB object reference (local or remote) to return? It depends
on which home interfaceis being used. If theclient invokesacr eat e() method on the remote home interface, the
EJB home will return aremote interface reference. If the client isworking with alocal home interface, the EJB home will
return areference implementing the local interface. EJB 2.0 requires that the return type of remote home interface
methods be remote interfaces, and that the return type of the local home interface methods be local interfaces.

/1 The Gabin EIJB s renote hone interface
public interface Cabi ntbneRenot e ext ends j avax. ej b. EJBHone {
publ i ¢ CGabi nRenot e creat e(l nteger id)
throws O eat eException, RenoteException;
publ i ¢ Cabi nRenot e fi ndByPri nar yKey(I nt eger pk)
throws H nder Exception, RenoteException;

/1 The Gabin EJB s |ocal hone interface
public interface Cabi ntbnelLocal extends javax. ej b. EJB-bne {
publ i ¢ Gabi nLocal create(lnteger id)
throws Q eat eException, RenoteException;
publ i ¢ Gabi nLocal fi ndByPri naryKey(I nt eger pk)

Copyright (c) 2001 O'Reilly & Associates 35

throws H nder Exception, RenoteException;

}

Figure 2-3 illustrates the architecture of EJB with the EJB home and EJB object implementing the home interface and
remote or local interface respectively. The bean classis also shown as being wrapped by the EJB object.

[FIGURE]
Figure 2-1: EJB architecture

Deploying a bean

The EJB objects and EJB homes are generated during the deployment process. After the files that define the bean
(the component interfaces, and the bean classes) have been packaged into aJJAR file, the bean is ready to be
deployed: that is, added to an EJB container so that it can be accessed as a distributed component. During the
deployment process, tools provided by the EJB container vendor generate the EJB object and EJB home classes by
examining the deployment descriptor and the other interfaces and classesin the JAR file.

EJB 2.0: Local vs. Remote Support

Throughout this book we will consider the EJB object and EJB home as constructs that support both the remote and
local component interfaces. In reality, we have no idea how the vendor chose to implement the EJB object and EJB
home since they are only logical constructs and may not have equivalent software counterparts. It'simportant to
remember that EJB object and EJB home are simply terms to describe the EJB container’ s responsibilities for
supporting the component interfaces. We have chosen to give them a more concrete description in this book purely
for instructional purposes, the EJB object and EJB home implementations discussed throughout this book are to be
considered illustrative and a true representation of how these terms may be implemented.

Using Enterprise Beans

Let’slook at how aclient would work with an enterprise bean to do something useful. We'll start with the Cabin EJB
that was defined earlier. A cabin isathing or place whose description is stored in adatabase. To make the example a
little bit more real, imagine that there are other entity beans, including a Ship, Cruise, Ticket, Customer, Employee, and
SO on.

Getting Information from an Entity Bean

Imagine that a GUI client needsto display information about a particular cruise including the cruise name, the ship
name, and alist of cabins. Using the cruise ID obtained from atext field, we can use some of our beans to populate
the GUI with data about the requested cruise. Here' s what the code would look like:

Q ui seHoneRenot e crui setbne = ... use JND to get the hone
/Il Get the cruise id froma text field.

Sring cruiselD = textH el dsl. get Text () ;

/1l Geate an BEIB prinary key fromthe cruise id.

Integer pk = new java.lang. | nteger. parselnt(cruiselD;
/1 Wse the prinary key to find the cruise.

Q ui seRenot e crui se = crui setbne. fi ndByPri nar yKey(pk);
/1 Set text field 2 to show the crui se nane.

text H el d2. set Text (crui se. get Nang()) ;

/1 Gt arenote reference to the ship that will be used
/1 for the cruise fromthe crui se bean.

Shi pRenot e ship = crui se. get Ship();

/1 Set text field 3 to showthe ship' s nane.

Copyright (c) 2001 O'Reilly & Associates 36

text H el d3. set Text (shi p. get Nane()) ;

Il Gt alist of all the cabins on the ship as renote references
/1 to the cabin beans.

@l [ection cabi ns = ship. get Gabi ns();

Iterator cabinltr = cabins.iterator();

/1 1terate through the enuneration, adding the nane of each cabin
/1 to a list box.
whi I e(cabinltr.hasNext())

Gabi nRenot e cabi n = (CGabi nRenot €) cabi nltr. next ();

|'i st Box1. addl t enf cabi n. get Nane()) ;

}

Let’ s start by getting aremote reference to the EJB home for an entity bean that represents a cruise. We are using a
remote reference instead of alocal one, because the client isa GUI Java application located outside the EJB container.
In EJB 1.1, we don’t have a choice because only remote component interfaces are supported anyway. It’ s not shown
in the example, but references to the EJB home are obtained using JNDI. Java Naming and Directory Interface (JNDI)
isapowerful API for locating resources, such as remote objects, on networks. It’ s alittle too complicated to talk
about here, but rest assured that it will be covered in subsequent chapters.

Weread acruise ID from atext field, useit to create a primary key, and use that primary key together with the EJB
hometo get aCr ui seRenpt e reference, the object that implements the business methods of our bean. Once we
have the appropriate Cruise EJB, we can ask the Cruise EJB to give us aremote reference to a Ship EJB that will be
used for the cruise. We canthen get aCol | ect i on of remote Cabin EJB references from the Ship EJB and display
the names of the Cabin EJBsin the client.

Entity beans model data and behavior. They provide a system with areusable and consistent interface to datain the
database. The behavior used in entity beansis usually focused on applying business rules that pertain directly to
changing data. In addition, entity beans can model relationships with other entities. A ship, for example, has many
cabins. We can get alist of cabins owned by the ship by invoking theshi p. get Cabi ns() method.

Entity beans are shared by many clients. An exampleisthe Ship EJB. The behavior and data associated with a Ship
EJB will be used concurrently by many clients on the system. There are only three shipsin Titan’sfleet, soit’s easy
to imagine that several clientswill need to access these entities at the same time. Entity beans are designed to service
multiple clients, providing fast, reliable access to data and behavior while protecting the integrity of data changes.
Because entity beans are shared, we can rest assured that everyoneis using the same entity and seeing the same
data asit changes. In other words, we don’t have duplicate entities with different representations of the same data.”

Modeling Wor kflow with Session Beans

Entity beans are useful for objectifying data and describing business concepts that can be expressed as nouns, but
they’ re not very good at representing a process or atask. A Ship bean provides methods and behavior for doing
things directly to aship, but it does not define the context under which these actions are taken. The previous example
retrieved data about cruises and ships; we could also have modified thisdata. And if we had gone to enough effort,
we could have figured out how to book a passenger—perhaps by adding a Customer bean to a Cruise bean or adding
acustomer to alist of passengers maintained by the ship. We could try to shove methods for accepting payment and
other tasks related to booking into our GUI client application, or even into the Ship or Cabin beans, but that’s a
contrived and inappropriate solution. We don’t want business logic in the client application—that’ s why we went to
amultitier architecture in thefirst place. Similarly, we don’t want thiskind of logic in our entity beans that represent

7 Thisis dependent on the isolation level set on the bean’s data, which is discussed in more detail in Chapter 8.

Copyright (c) 2001 O'Reilly & Associates 37

ships and cabins. Booking passengers on a ship or scheduling a ship for a cruise are the types of activities or
functions of the business, not the Ship or the Cabin bean, and are therefore expressed in terms of a process or task.

Session beans act as agents for the client managing business processes or tasks; they’ re the appropriate place for

businesslogic. A session bean is not persistent like an entity bean; nothing in a session bean maps directly into a
database or is stored between sessions. Session beans work with entity beans, data, and other resources to control
workflow. Workflow is the essence of any business system because it expresses how entities interact to model the
actual business. Session beans control tasks and resources but do not themselves represent data.

The following code demonstrates how a session bean, designed to make cruise line reservations, might control the
workflow of other entity and session beans to accomplish thistask. Imagine that a piece of client software, in this
case a user interface, obtains aremote reference to a Travel Agent session bean. Using the information entered into
text fields by the user, the client application books a passenger on a cruise

/1 Get the credit card nunber fromthe text field.
Sring creditCard = textF el dl. get Text ();

int cabinlD = Integer.parselnt(textH el d2. get Text());
int cruiselD= Integer.parselnt(textH el d3.getText());

/]l Qreate a new Reservation session passing in a reference to a
/1 custoner entity bean.
Travel Agent travel Agent = Travel Agent Hone. creat e(cust oner) ;

/1 Set cabin and cruise |Ds.
travel Agent . set Gabi nl D(cabi nl D ;
travel Agent . set ui sel O(crui sel D ;

/1 Wsing the card nunber and price, book passage.
/1 This nethod returns a Ticket object.
Ticket ticket = travel Agent. bookPassage(creditCard, price);

Thisisafairly coarse-grained abstraction of the process of booking a passenger on a cruise. Coarse-grained means
that most of the details of the booking processare hidden from the client. Hiding the fine-grained details of workflow
isimportant because it provides us with more flexibility in how the system evolves and how clients are allowed to
interact with the EJB system.

Thefollowing listing shows some of the codeincluded inthe Tr avel Agent Bean. ThebookPassage() method
actually works with three entity beans, the Customer, Cabin, and Cruise beans, and another session bean, the
ProcessPayment bean. The ProcessPayment bean provides several different methodsfor making a payment including
check, cash, and credit card. In this case, we are using the ProcessPayment session to make a credit card purchase of
acruiseticket. Once payment has been made, aserializable Ti cket object is created and returned to the client
application.

public class Travel Agent Bean i npl enents j avax. ej b. Sessi onBean {

publ i ¢ Qust oner cust oner;
public Quise cruise;
publ i ¢ Gabi n cabin;

publ i c voi d ej bQ eat e(Qust oner cust) {
cust oner = cust;

}

publ i c Ticket bookPassage(QeditCard card, double price)
throws | nconpl et eConversati onal Sate {

if (custoner = null || cruise = null || cabin = null) {
t hrow new | nconpl et eConver sati onal S at e() ;

Copyright (c) 2001 O'Reilly & Associates 33

}

try {
Reser vat i ontbneRenot e resHone = (Reservati onHbne)

get Hone(" Reser vat i ontbne", Reser vat i ontbne. cl ass) ;
Reser vat i onRenot e reservation =

reskone. creat e(cust oner, cruise, cabin, price);
Pr ocessPaynent HoneRenot e ppHone =

(ProcessPaynent Hone) get Hone(" Pr ocessPaynent Hone",

Pr ocessPaynent Hone. cl ass) ;

Pr ocessPaynent Renot e process = ppHone. create();
process. byQedi t (custoner, card, price);

Ticket ticket =
new Ti cket (cust oner, crui se, cabi n, price);
return ticket;
} cat ch(Exception e){
t hr ow new EJBException(e);
}
}

/1 Mre business nethods and EJB state nanagenent nethods fol | ow

}

This example leaves out some details, but it demonstrates the difference in purpose between a session bean and an
entity bean. Entity beans represent the behavior and data of a business object, while session beans model the
workflow of beans. The client application usesthe Travel Agent EJB to perform atask using other beans. For example,
the Travel Agent EJB uses a ProcessPayment EJB and a Reservation EJB in the process of booking a passage. The
ProcessPayment EJB processes a credit card and the Reservation EJB records the actual reservation in the system.
Session beans can also be used to read, update, and del ete data that can’t be adequately captured in an entity bean.
Session beans don’t represent records or datain the database like entity beans but can access datain the database.

All the work performed by Travel Agent session bean could have been coded in the client application. Having the
client interact directly with entity beansis a conmmon but troublesome design approach because it ties the client
directly to the details of the business tasks. Thisistroublesome for two reasons: any change in the entity beans and
their interaction require changesto the client, and it’ s very difficult to reuse the code that models the workflow.

Session beans are coarse-grained components that allow clientsto perform tasks without being concerned with the
details that make up the task. This allows developers to update the session bean, possibly changing the workflow,
without impacting the client code. In addition, if the session bean is properly defined, other clients that perform the
same tasks can reuse it. The ProcessPayment session bean, for example, can be reused in many other areas besides
reservations, including retail and wholesale sales. For example, the ship’s gift shop could use the ProcessPayment
EJB to process purchases. As aclient of the ProcessPayment EJB, the Travel Agent EJB doesn’t care how
ProcessPayment works; it’s only interested in the ProcessPayment EJB’ s coarse-grained interface, which validates
and records charges.

Moving workflow logic into a session bean also helps to thin down the client applications and reduce network traffic
and connections. Excessive network traffic is actually one of the biggest problems in distributed object systems.
Excessive traffic can overwhelm the server and clog the network, hurting response times and performance. Session
beans, if used properly, can substantially reduce network traffic by limiting the number of requests needed to perform
atask. In distributed objects, every method invocation produces network traffic. Distributed objects communicate
requests using an RMI loop. Thisrequires that data be streamed between the stub and skeleton with every method
invocation. With session beans, the interaction of beansin aworkflow is kept on the server. One method invocation
on the client application results in many method invocations on the server, but the network only seesthe traffic
produced by one method call on the session bean. In the Travel Agent EJB, the client invokesbookPassage() ,
but on the server, the bookPassage() method produces several method invocations on the component interfaces

Copyright (c) 2001 O'Reilly & Associates 39

of other enterprise beans. For the network cost of one method invocation, the client gets several method invocations.
In EJB 2.0 we would have used the local component interfaces because they are much more efficient.

In addition, session beans reduce the number of network connections needed by the client. The cost of maintaining
many network connections can be very high, so reducing the number of connections that each client needsis
important in improving the performance of the system as awhole. When session beans are used to manage workflow,
the number of connections that each client has to the server is substantially reduced, which improves the EJB
server’s performance. Figure 2-5 compares the network traffic and connections used by aclient that only uses entity
beans to that used by a client that uses session beans.

[FGURE]
Figure 2-3: Session beans reduce network traffic and thin down clients

Session beans also limit the number of stubs used on the client, which saves the client memory and processing
cycles. This may not seem like abig deal, but without the use of session beans, a client might be expected to manage
hundreds or even thousands of remote references at one time. In the Travel Agent EJB, for example, the book Pas-
sage() method workswith several remote references, but the client is only exposed to the remote reference of the
Travel Agent EJB.

Stateless and stateful session beans

Session beans can be either stateful or stateless. Stateful session beans maintain conversational state when used by
aclient. Conversational stateis not written to adatabase; it’ s state that is kept in memory while aclient usesa
session. Maintaining conversational state allows aclient to carry on a conversation with an enterprise bean. As each
method on the enterprise bean isinvoked, the state of the session bean may change, and that change can affect
subsequent method calls. The Travel Agent session bean, for example, may have many more methods than the
bookPassage() method. The methods that set the cabin and cruise IDs are examples. These set methods are
responsible for modifying conversational state. They convert the IDs into remote references to Cabin and Cruise
EJBsthat arelater used inthebookPassage() method. Conversational stateisonly kept for aslong as the client
application is actively using the bean. Once the client shuts down or releases the Travel Agent EJB, the
conversational stateislost forever. Stateful session beans are not shared among clients; they are dedicated to the
same client for the life of the enterprise bean.

Statel ess session beans do not maintain any conversational state. Each method is cormpletely independent and uses
only data passed in its parameters. The ProcessPayment EJB is a perfect example of a stateless session bean. The
ProcessPayment EJB doesn’t need to maintain any conversational state from one method invocation to the next. All
the information needed to make a payment is passed into the by Cr edi t Car d() method. Stateless session beans
provide the highest performance in terms of throughput and resource consumption compared to entity and stateful
session beans because only afew stateless session bean instances are needed to serve hundreds, possibly
thousands of clients. Chapter 12 talks more about the use of statel ess session beans.

EJB 2.0: Accessing EJB with M essage-Driven Beans

M essage-driven beans are integration points for other applications interested in working with EJB applications. Java
applications or legacy systems that need to access an EJB application can send messages viaJM S to message-driven
beans. The message-driven beans can then process those messages and perform tasks using other entity and
session beans.

In many ways, message-driven beans fulfill the same role as session beans by managing the workflow of entity and
session beans to complete a given task. The task to be completed isinitiated by an asynchronous message, which
has been sent by an application using IMS. Unlike session beans, which respond to business methods invoked on
their component interfaces, a message-driven bean responds to asynchronous messages, which are delivered to the

Copyright (c) 2001 O'Reilly & Associates 40

message-driven bean through itsonMessage() method. The fact that the messages are asynchronous means the
client that send message doesn’t expect and is not waiting for areply. The messaging client simply sends the
message and forgets about it.

As an example, we can recast the Travel Agent EJB developed earlier as a message-driven bean:

public class Travel Agent MCBean
i npl enent s j avax. ej b. Messagelx i venBean, j avax.j ns. Messageli st ener {

Qust oner HbneLocal cust oner Hone,

Q ui setbneLocal crui setone;

Cabi ntHbneLocal cabi nHone;

Reser vat i ontoneLocal reser vat i onHone;
Pr ocessPaynent HonelLocal paynent Hone;

publ i c voi d onMessage(Message nsg) {

try {

MapMessage nessage = (MapMessage) nsg;
I nteger custonerlD =

(I'nteger) nessage. get (pj ect (“custoner _id");
Integer cruiselD=

(I'nteger) nessage. get (hj ect (“cruise id");
Integer cabinlD =

(I'nt eger) nessage. get (j ect (“cabin_i d");
doubl e price = nessage. get Doubl e(“price”);

Qust oner Local custoner =
cust oner Hone. fi ndByPri nar yKey(cust oner| D) ;
Q ui seLocal crui se=
crui setone. fi ndByPri naryKey(crui sel D ;
Cabi nLocal cabi n = cabi nHone. fi ndByPri nar yKey(cabi n_id);

Reservat i onLocal reservation =
reservat i onHone. creat e(cust oner, crui se, cabin, price);

ProcessPaynent Local process = paynent Hone. create();
process. byQredi t (custoner, card, price);

} catch(Exception e){
t hr ow new EJBExcepti on(e);

}
}

/1 More business nethods and EJB state nanagenent nethods fol | ow

}

Notice that all the information about the reservation is obtained from the message delivered to the message-driven
bean. In JM S messages can take many forms, one of whichisthej avax. j ns. MapMessage used in thisexample,
which carries name-value pairs. Once the information is obtained from the message and the enterprise bean
references are obtained, the reservation is processed the same as it was in the session bean. The only differenceis
thataTi cket isnot returned to the caller, because message-driven beans don’t have to respond to the caller, the
process is asynchronous.

M essage-driven beans, like statel ess session beans, do not maintain any conversational state. The processing of
each new message isindependent from the previous for subsequent messages.

Copyright (c) 2001 O'Reilly & Associates 41

Aswas mentioned before the message-driven bean is very different in many respects from entity and session beans,
soit'sabit unclear don’'t worry it will be explained in detail in Chapter 13, Message-Driven Beans

The Bean-Container Contract

The environment that surrounds the beans on the EJB server is often referred to as the container. The container is
more a concept than a physical construct. Conceptually, the container acts as an intermediary between the bean class
and the EJB server. The container manifests and manages the EJB objects and EJB homes for a particular type of

bean and hel ps these constructs to manage bean resources and apply primary services like transactions, security,
concurrency, naming, and so forth at runtime. Conceptually, an EJB server may have many containers, each of which
may contain one or more types of enterprise beans. Asyou will discover alittle later, the container and the server are
not clearly different constructs, but the EJB specification defines the component model in terms of the container’s
responsibilities, so we will follow that convention here.

Enterprise beans components interact with the EJB container through awell-defined component model. The

Enti t yBean, Sessi onBean, and MessageDr i venBean (EJB 2.0) interfaces are the bases of this conponent
model. Aswe learned earlier, these interfaces provide callback methods that notify the bean class of state
management eventsinitslife cycle. At runtime, the container invokes the callback methods on the bean instance
when appropriate state management events occur. When the container is about to write an entity bean instance’s
state to the database, for example, it first calls the bean instance’sej bSt or e() method. This provides the bean
instance with an opportunity to do some clean up on its state just before it’ s written to the database. The

ej bLoad() methodiscalled just after the bean’s state is populated from the database, providing the bean

devel oper with an opportunity to manage the bean’s state before the first business method is called.? Other callback
methods can be used by the bean classin asimilar fashion. EJB defineswhen these various callback methods are
invoked and what can be done within their context. This provides the bean devel oper with a predictable runtime
component model.

While all the callback methods are declared in bean interfaces, a meaningful implementation of the methodsis not
mandatory. In other words, the method body of any or al of the callback methods can be left empty in the bean class.
Beans that implement one or more callback methods are usually more sophisticated and access resources that are not
managed by the EJB system. Enterprise beans that wrap legacy systems often fall into this category. The only
exception to thisistheonMessage() method, whichisdefinedinthe MessageDr i venBean interface. This
method must be implemented if the message-driven bean isto do anything useful.

j avax. e] b. EJBCont ext isaninterfacethat isimplemented by the container and is also a part of the bean-
container contract. Entity beans use asubclassof | avax. ej b. EJBCont ext caled

j avax. ej b. Enti t yCont ext . Session beans use asubclass called thej avax. ej b. Sessi onCont ext .
Message-driven beans use the subclassj avax. ej b. MessageDri venCont ext . These EJBCont ext types
provide the bean class with information about its container, the client using the enterprise bean, and the bean itself.
They also provide other functionality that is described in more detail in Chapters 119, 12 and 13. The important thing
about the EJBCont ext typesisthat they provide the enterprise bean with information about the world around it,
which the enterprise bean can use while processing requests from both clients and callback methods from the
container.

In addition to the EJBCont ext , EJB 1.1 and 2.0 have expanded the enterprise bean’ s interface with the container to
include a JNDI name space, called the environment context, which provides the bean with a more flexible and
extensible bean-container interface. The INDI environment context is discussed in detail later in this book.

8 The ej bLoad() and ej bStore() behavior illustrated here is for container-managed persistence. With bean-managed
persistence the behavior is slightly different. Thisis examined in detail in Chapter 9.

Copyright (c) 2001 O'Reilly & Associates 42

The Container-Server Contract

The container-server contract is not defined by the Enterprise JavaBeans specification. This was done to facilitate
maximum flexibility for vendors defining their EJB server technologies. Other than isolating the beans from the server,
the container’ s responsibility in the EJB system isalittle vague. The EJB specification only defines a bean-container
contract and does not define the container-server contract. It is difficult to determine, for example, exactly where the
container ends and the server begins when it comes to resource management and other services.

In the first few generations of EJB servers this ambiguity has not been a problem because most EJB server vendors
also provide EJB containers. Since the vendor provides both the container and the server, the interface between the
two can remain proprietary. In future generations of the EJB specification, however, some work may be done to define
the container-server interface and delimit the responsibilities of the container.

One advantage of defining a container-server interfaceisthat it allows third-party vendors to produce containers that
can plug into any EJB server. If the responsibilities of the container and server are clearly defined, then vendors who
specialize in the technologies that support these different responsibilities can focus on devel oping the container or
server as best matches their core competency. The disadvantage of aclearly defined container-server interface is that
the plug-and-play approach could impact performance. The high level of abstraction that would be required to clearly
separate the container interface from the server, would naturally lead to looser binding between these large
components, which could result in lower performance. The following rule of thumb best describes the advantages
and disadvantages associated with a contai ner-server interface: the tighter the integration, the better the
performance; the higher the abstraction, the greater the flexibility. The biggest deterrent to defining a container-
server interfaceisthat it would require the definition of low-level facilities, which was one of the problems that estab-
lished CTM vendors had with CORBA. Allowing vendors to implement low-level facilities like transactions and
security asthey seefit isone of EJB’s biggest attractions for vendors®.

Many EJB-compliant servers actually support several different kinds of middleware technologies. It's quite common,
for example, for an EJB server to support the vendor’ s proprietary CTM model aswell as EJB, Servlets, web server
functionality, JIMS provider, and other server technologies. Defining an EJB container concept is useful for clearly
distinguishing that part of the server that supports EJB from all the other servicesit provides.

This said, we could define the responsibilities of containers and servers based on current implementations of the EJB
specification. In other words, we could examine how current vendors are defining the container in their servers and
use this asaguide. Unfortunately, the responsibilities of the container in each EJB server largely depend on the core
competency of the vendor in question. Database vendors, for example, implement containers differently from TP
monitor vendors. The strategies for assigning responsibilities to the container and server are so varied that it would
provide little value in understanding the overall architecture to discuss the container and server separately. Instead,
this book addresses the architecture of the EJB system asif the container and server were one conponent.

The remainder of this book treats the EJB server and the container as the same thing and refers to them collectively
asthe EJB server, container, system, or environment.

Summary

This chapter covered alot of ground describing the basic architecture of an EJB system. At this point you should
understand that beans are business object components. The home interfaces define life-cycle methods for creating,

9 Of all the commercial and open source EJB servers available today only one has experimented with defining a container-server
interface, OpenEJB. OpenEJB is an open source EJB container system developed by Richard Monson-Haefel, the author of this
book.

Copyright (c) 2001 O'Reilly & Associates 43

finding, and destroying beans and the remote and local interfaces define the public business methods of the bean.
M essage-driven beans do not have component interfaces. The bean classiswhere the state and behavior of the
bean are implemented.

There are three basic kinds of beans: entity, session, and message-driven. Entity beans are persistent and represent a
person, place, or thing. Session beans are extensions of the client and embody a process or aworkflow that defines
how other beansinteract. Session beans are not persistent, receiving their state from the client, and they live only as
long as the client needs them. Message-driven beansin EJB 2.0 are integration points that allow other applicationsto
interact with EJB applications using JM S asynchronous messaging. M essage-driven beans, like statel ess session
beans, are not persistent and do not maintain conversational state.

The EJB object and EJB home are conceptual constructs that del egate method invocations to session and entity
beans from the client and help the container to manage the enterprise bean at runtime. The clients of entity and
session beans do not interact with the instances of the bean class directly. Instead, the client software interacts with
EJBObj ect and EJBHome stubs, which are connected to the EJB object and EJB homes respectively. The EJB
object implements the remote interface and expands the bean class' s functionality. The EJB homeimplementsthe
home interface and works closely with the container to create, locate, and remove beans.

Beansinteract with their container through the well-defined bean-container contract. This contract provides callback
methods, the EJBCont ext , and the INDI environment context. The callback methods notify the bean classthat it is
involved in state management event. The EJBCont ext and JNDI environment context provides the bean instance
with information about its environment. The container-server contract is not well defined and remains proprietary at
thistime. Future versions of EJB may specify the container-server contract.

Copyright (c) 2001 O'Reilly & Associates 44

3

Resource Management and the Primary Services

Chapter 2 discussed the basic architecture of Enterprise JavaBeans (EJB), including the relationship between the
bean class, component interfaces, the EJB object and EJB home, and the EJB container. These architectural
components define acommon model for distributed server-side components in component transaction monitors
(CTMs).

One of the reasons CTMs are such great distributed object platformsisthat they do more than just distribute objects:
they manage the resources used by distributed objects. CTMs are designed to manage thousands, even millions, of
distributed objects simultaneously. To be this robust, CTMs must be very smart resource managers, managing how
distributed objects use memory, threads, database connection, processing power, etc. EJB recognizes that some of
the resource management techniques employed by CTMs are very common, and it defines interfaces that help

devel opers create beans that can take advantage of these common practices.

EJB CTMsare also great distributed object brokers. Not only do they help clients locate the distributed objects they
need, they also provide many servicesthat make it much easier for a client to use the objects correctly. CTMs
commonly support six primary services: concurrency, transaction management, persistence, object distribution,
naming, and security. These services provide the kind of infrastructure that is necessary for a successful three-tier
system.

With the introduction of message-driven beansin EJB 2.0, Enterprise JavaBeans goes beyond most CTMs by
expanding the platforms responsibility to include managing asynchronous messaging conponents. CTMs have
historically been responsible only for managing RMI-based distributed objects. While the method of accessis
different for message-driven beans, EJB is still responsible for managing the primary services for message-driven
beans just asit does for session and entity beans.

This chapter discusses both the resource management facilities and the primary services that are available to
Enterprise JavaBeans.

Resour ce M anagement

One of the fundamental benefits of using EJB serversisthat they are able to handle heavy workloads while
maintaining a high level of performance. A large business system with many users can easily require thousands of

Copyright (c) 2001 O'Reilly & Associates 45

objects—even millions of objects—to be in use simultaneously. As the number of interactions among these objects
increase, concurrency and transactional concerns can degrade the system’ s response time and frustrate users. EJB
servers increase performance by synchronizing object interactions and sharing resources.

There isarelationship between the number of clients and the number of distributed objects that are required to
service them. Asclient populations increase, the nurmber of distributed objects and resources required increases. At
some point, the increase in the number of clients will impact performance and diminish throughput. EJB explicitly
supports two mechanisms that make it easier to manage large numbers of beans at runtime: instance pooling and
activation.

| nstance Pooling

The concept of pooling resources is nothing new. A commonly used techniqueisto pool database connections so
that the business objects in the system can share database access. This trick reduces the number of database
connections needed, which reduces resource consump tion and increases throughput. Pooling and reusing database
connectionsisless expensive than creating and destroying connections as needed. Some CTMs also apply resource
pooling to server-side components; this technique is calledinstance pooling. Instance pooling reduces the number
of component instances, and therefore resources, needed to service client requests. In addition, it isless expensive to
reuse pooled instances than to frequently create and destroy instances.

Asyou aready know, EJB clients of session and entity beans interact with these types of enterprise beans through
the remote, and for EJB 2.0, the local interfaces that are implemented by EJB objects. Client applications never have
direct access to the actual session or entity bean. Instead, they interact with EJB objects, which wrap bean instances.
Similarly, IMS clientsin EJB 2.0 never interact with message-driven beans directly. They send messages which are
routed to the EJB container system. The EJB container then delivers these messages to the proper message-driven
bean.

Instance pooling leverages indirect access to enterprise beans to provide better performance. In other words, since
clients never access beans directly, there’ s no fundamental reason to keep a separate copy of each enterprise bean
for each client. The server can keep amuch smaller number of enterprise beans around to do the work, reusing
enterprise bean instance to service different requests. Although this sounds like a resource drain, when done
correctly, it greatly reduces the resources actually required to services all the client requests.

Theentity bean lifecycle

To understand how instance pooling works for RM| components (session and entity beans), let’s examine the life
cycle of an entity bean. EJB definesthelife cycle of an entity bean in terms of its relationship to the instance pool.
An entity bean existsin one of three states:

No state

When a bean instance isin this state, it has not been instantiated yet. We identify this state to provide a
beginning and an end for the life cycle of abean instance.

Pooled state

When an instance isin the pooled state, it has been instantiated by the container but has not yet been
associated with an EJB object.

Ready State

A bean instance in this state has been associated with an EJB object and is ready to respond to business
method invocations.

Copyright (c) 2001 O'Reilly & Associates 46

Overview of statetransitions

Each EJB vendor implementsinstance pooling for entity beans differently, but all instance pooling strategies attempt
to manage collections of bean instances so that they are quickly accessible at runtime. To create an instance pool,
the EJB container creates several instances of abean class and then holds onto them until they are needed. Ascli-
ents make business method requests, bean instances from the pool are assigned to the EJB objects associated with
the clients. When the EJB object doesn’t need the instance any more, it’ s returned to the instance pool. An EJB
server maintains instance pools for every type of bean deployed. Every instance in an instance pool isequivalent;
they are all treated equally. Instances are selected arbitrarily from the instance pool and assigned to EJB objects as
needed.

Soon after the bean instance isinstantiated and placed in the pool, it’ s given areferenceto a

j avax. e] b. EJBCont ext provided by the container. The EJBCont ext provides an interface that the bean can
use to communicate with the EJB environment. ThisEJBCont ext becomes more useful when the bean instance
moves to the Ready State. Enterprise beans also have a INDI context called the environment naming context. The
function of the environment naming context is not critical to this discussion and will be addressed in more detail later
in the chapter.

When a client uses an EJB home to obtain aremote or local interface to a bean, the container responds by creating an
EJB object. Once created, the EJB object is assigned a bean instance from the instance pool. When abean instance is
assigned to an EJB object, it officially enters the Ready State. From the Ready State, a bean instance can receive
reguests from the client and callbacks from the container. Figure 3-1 shows the sequence of eventsthat result in an
EJB object wrapping a bean instance and servicing aclient.

[FIGURE]
Figure 3-1: A bean moves fromthe instance pool to the Ready State

When a bean instance moves into the Ready State, the Ent i t yCont ext takeson new meaning. The

Entit yCont ext providesinformation about the client that is using the bean. It also provides the instance with
access to its own EJB home and EJB object, which is useful when the bean needs to pass references to itself to other
instances, or when it needs to create, locate, or remove beans of itsown class. Sothe Ent i t yCont ext ishota
static class; it isan interface to the container and its state changes as the instance is assigned to different EJB
objects.

When the client is finished with abean’ s remote reference, either the remote reference passes out of scope or one of
the bean’ sremove methods is called.™® Once a bean has been removed or is no longer in scope, the bean instanceis
disassociated from the EJB object and returned to the instance pool. Bean instances can al so be returned to the
instance pool during lulls between client requests. If aclient request is received and no bean instance is associated
with the EJB object, an instance isretrieved from the pool and assigned to the EJB object. Thisis calledinstance
swapping.

After the bean instance returns to the instance pool, it is again available to service anew client request. Figure 3-3
illustrates the life cycle of abean instance.

[FGURE]
Figure 3-2: Life cycle of abean instance

10 The EJBHone, EJBLocal Honme, EJBObj ect, and EJBLocal Obj ect interfaces all define methods that can be used to
remove a bean.

Copyright (c) 2001 O'Reilly & Associates 47

The number of instances in the pool fluctuates as instances are assigned to EJB objects and returned to the pool.
The container can also manage the number of instances in the pool, increasing the count when client activity
increases and lowering the count during less active periods.

I nstance swapping

Statel ess session beans offer a particularly powerful opportunity to leverage instance pooling. A stateless session
bean does not maintain any state between method invocations. Every method invocation on a statel ess session bean
operates independently, performing its task without relying on instance variables. This meansthat any statel ess ses-
sion instance can service requests for any EJB object of the proper type, allowing the container to swap bean
instances in and out between method invocations made by the client.

Figure 3-5 illustrates this type of instance swapping between method invocations. In Figure 3-5(a), instance A is
servicing a business method invocation delegated by EJB object 1. Once instance A has serviced the request, it
moves back to the instance pool (Figure 3-5(b)). When a business method invocation on EJB object 2 isreceived,
instance A is associated with that EJB object for the duration of the operation (Figure 3-5(c)). Whileinstance A is
servicing EJB object 2, another method invocation isreceived by EJB object 1 from the client, which is serviced by
instance B (Figure 3-5(d)).

[FIGURE]
Figure 3-3: Stateless session beansin a swapping strategy

Using this swapping strategy allows afew statel ess session bean instances to serve hundreds of clients. Thisis
possible because the amount of time it takes to perform most method invocationsis substantially shorter than the
pauses between method invocations. The periodsin abean instance’ slife when it is not actively servicing the EJB
object are unproductive; instance pooling minimizes these inactive periods. When a bean instance is finished
servicing arequest for an EJB object, it isimmediately made available to any other EJB object that needsit. This
allows fewer stateless session instances to service more requests, which decreases resource consumption and
improves performance.

Statel ess session beans are declared stateless in the depl oyment descriptor. Nothing in the class definition of a
session bean is specific to being stateless. Once abean class is deployed as statel ess, the container assumes that no
conversational state is maintained between method invocations. So a statel ess bean can have instance variables, but
because bean instances can be servicing several different EJB objects, they should not be used to maintain
conversational state.

Implementations of instance pooling vary, depending on the vendor. One way that instance pooling implementations
often differ isin how instances are selected from the pool. Two of the common strategiesare FIFO and LIFO. The
FIFO (firstin, first out) strategy placesinstancesin aqueue, where they wait in line to service EJB objects. The LIFO
(lastin, first out) uses more of stack strategy, where the last bean that was added to the stack isthefirst bean
assigned to the next EJB object. Figure 3-5 usesaLIFO strategy.

EJB 2.0: M essage-Driven Beans and I nstance Pooling

M essage-driven beans, like statel ess session beans, do not maintain state specific to a client request, which makes
them an excellent component for instance pooling.

In most EJB containers a pool of each type of message-driven bean is used to service incoming messages; each type
of message-driven bean hasits own instance pool. M essage-driven beans subscribe or listen to a specific message
destination, which is akind of address used when sending messages. When a JMS client sends an asynchronous
message to a specific destination, it is delivered to EJB container. The EJB container will first determine which
message-driven bean subscribes to that destination, and then it will choose an instance of that type from the
instance pool to process the message. Once the message-driven bean instance has finished processing the message

Copyright (c) 2001 O'Reilly & Associates 48

(whentheonMessage() method returns) the EJB container will return the instance to itsinstance pool. An EJB
container can process hundreds, possibly thousands, of messages concurrently by leveraging instance pools.
Figure 3-X illustrates how client requests are processed by an EJB container.

FIGURE 3-X
Figure 3-x: Message-Driven bean instance pooling

In Figure 3-X A thetop JMS client delivers a message to Destination A and the bottom JM S client delivers a message
to Destination B. The EJB container chooses an instance of MessageDrivenBean_1 to process the message
intended to Destination A, and an instance of MessageDrivenBean_2 to process the message intended for
Destination B. The bean instances are removed from the pool and assigned and used to process the messages.

A moment later the middle IM S client sends a message to Destination B, at this point the first two messages have
already been processed and the container is returning the instances to their respective pools. Asthe new message
comesin the container choose a new instance of MessageDrivenBean 2 to process the message.

Message driven beans are always deployed to process messages from a specific destination. In the above example,
instances of MessageDrivenBean_1 only process messages for Destination A, while instances of
MessageDrivenBean_2 only processes messages for Destination B. Several messages for the same destination can
be processed at the sametime. If, for example, a hundred messages for Destination A all arrived at the same time from
ahundred different IMS clients, the EJB container would simply choose a hundred instances of
MessageDrivenBean_1 to process the incoming messages; each instance is assigned a message.

The ability to concurrently process messages makes the message-driven bean an extremely powerful enterprise bean
on the same playing field with session and entity beans. They aretruly first class components, and an important
addition to the Enterprise JavaBeans platform.

The Activation M echanism

Unlike the other type of enterprise beans, stateful session beans maintain state between method invocations. Thisis
called conversational state because it represents the continuing conversation with the stateful session bean’sclient.
The integrity of this conversational state needs to be maintained for the life of the bean’ s serviceto the client.
Stateful session beans do not participate in instance pooling like statel ess session, entity, and message-driven

beans. Instead, activation is used with stateful session beansto conserve resources. When an EJB server needsto
conserve resources, it can evict stateful session beans from memory. This reduces the number of instances
maintained by the system. To passivate the bean and preserve its conversational state, the bean’ s stateis serialized
to a secondary storage and maintained relative to its EJB object. When a client invokes a method on the EJB object, a
new stateful instance isinstantiated and populated from the passivated secondary storage.

Passivation isthe act of disassociating a stateful bean instance from its EJB object and saving its state. Passivation
requires that the bean instance’ s state be held relative to its EJB object. After the bean has been passivated, it is safe
to remove the bean instance from the EJB object and evict it from memory. Clients are completely unaware of the
deactivation process. Remember that the client uses the bean’ s remoteinterface, which isimplemented by an EJB
object, and therefore does not directly communicate with the bean instance. As aresult, the client’s connection to
the EJB object can be maintained while the bean is passivated.

Activating abean isthe act of restoring a stateful bean instance’s state relative to its EJB object. When amethod on
the passivated EJB object isinvoked, the container automatically instantiates a new instance and setsits fields equal
to the data stored during passivation. The EJB object can then delegate the method invocation to the bean as normal.
Figure 3-7 shows activation and passivation of a stateful bean. In Figure 3-7(a), the bean is being passivated. The
state of instance B isread and held relative to the EJB object it was serving. In Figure 3-7(b), the bean has been
passivated and its state preserved. Here, the EJB object is not associated with a bean instance. In Figure 3-7(c), the
bean is being activated. A new instance, instance C, has been instantiated and associated with the EJB object, and is

Copyright (c) 2001 O'Reilly & Associates 49

in the process of having its state populated. Theinstance C is populated with the state held relative to the EJB
object.

[FGURE]
Figure 3-4: The activation process

The exact mechanism for activating and passivating stateful beansis up to the vendor, but all stateful beans are
serializable and thus provide at least one way of temporarily preserving their state. While some vendors take
advantage of the Java serialization mechanism, the exact mechanism for preserving the conversational state is not
specified. Aslong as the mechanism employed follows the same rules as Java serialization with regard to transitive
closure of serializable objects, any mechanism islegal. Because Enterprise JavaBeans al so supports other ways of
saving abean’s state, the transient property is not treated the same when activating a passivated bean asitisin Java
serialization. In Java serialization, transient fields are always set back to theinitial value for that field type when the
object is deserialized. Integers are set to zero, Booleanstof al se, object referencestonul | , etc. In EJB, transient
fields are not necessarily set back to their initial values but can maintain their original values, or any arbitrary value,
after being activated. Care should be taken when using transient fields, since their state following activation is
implementation specific.

The activation processis supported by the state-management callback methods discussed in Chapter 2. Specifically,
theej bActi vat e() andej bPassi vat e() methods notify the stateful bean instance that it is about to be
activated or passivated, respectively. Theej bAct i vat e() method is called immediately following the successful
activation of a bean instance and can be used to reset transient fieldsto an initial valueif necessary. The

ej bPassi vat e() method iscalled immediately prior to passivation of the bean instance. Thesetwo methods are
especially helpful if the bean instance maintains connections to resources that need to be manipulated or freed prior
to passivation and reobtained following activation. Because the stateful bean instance is evicted from memory, open
connections to resources are not maintained. The exceptions are remote references to other beans and the

Sessi onCont ext , which must be maintained with the serialized state of the bean and reconstructed when the
bean is activated. EJB also requiresthat the references to the INDI environment context, component interfaces, and
the UserTransaction be maintained through passivation.

Entity beans do not have conversational state that needs to be serialized like stateful beans; instead, the state of
entity bean instances is persisted directly to the database. Entity beans do, however, leverage the activation callback
methods (ej bAct i vat e() andej bPassi vat e()) to notify the instance when it’ s about to be swapped in or
out of theinstance pool. Theej bAct i vat e() method isinvoked immediately after the bean instance is swapped
into the EJB object, and theej bPassi vat e() method isinvokedjust beforetheinstanceis swapped out.

Primary Services

There are many value-added services available for distributed applications. The OMG (the CORBA governing body),
for example, has defined 13 servicesfor usein CORBA -compliant ORBs. This book looks at seven value-added
services that are called the primary services, because they are required to compl ete the Enterprise JavaBeans
platform. The primary services include concurrency, transactions, persistence, distributed objects, asynchronous
messaging (EJB 2.0), naming, and security.

The seven primary services are not new concepts; the OMG defined interfaces for these services specific to the
CORBA platform some time ago. In most traditional CORBA ORBS, services are add-on subsystems that are explicitly
utilized by the application code. This means that the server-side component devel oper has to write code to use
primary service APIs right alongside their businesslogic. The use of primary services becomes complicated when
they are used in combination with resource management technigues because the primary services are themselves
complex. Using them in combination only compounds the problem.

Copyright (c) 2001 O'Reilly & Associates 50

As more complex component interactions are required, coordinating these services becomes a difficult task, requiring
system-level expertise unrelated to the task of writing the application’s business logic. Application devel opers can
become so mired in the system-level concerns of coordinating various primary services and resource management
mechanisms that their main responsibility, modeling the business, isall but forgotten.

EJB servers automatically manage all the primary services. This relieves the application devel opers from the task of
mastering these complicated services. Instead, developers can focus on defining the business logic that describes
the system, and leave the system-level concernsto the CTM. The following sections describe each of the primary
services and explain how they are supported by EJB.

Concurrency

Theissue of concurrency isimportant to all the bean types, but it has a different meaning when applied to EJB 2.0
message-driven beans than it does with the RM I based session and entity beans. This because of the differencein
context: with RMI-based beans, concurrency refers to multiple clients accessing the same bean simultaneously; in
message-driven beans, concurrency refers to the processing of multiple asynchronous messages simultaneously. For
this reason we will discuss the importance of concurrency as primary services separately for these different types of
beans.

Concurrency with Session and Entity beans

Session beans do not support concurrent access. This makes sense if you consider the nature of both stateful and
statel ess session beans. A stateful bean is an extension of one client and only servesthat client. It doesn’t make
sense to make stateful beans concurrent if they are only used by the client that created them. Statel ess session beans
don’t need to be concurrent because they don’t maintain state that needs to be shared. The scope of the operations
performed by a stateless bean is limited to the scope of each method invocation. No conversational stateis

mai ntai ned.

Entity beans represent data in the database that is shared and needs to be accessed concurrently. Entity beans are
shared components. In Titan’s EJB system, for example, there are only three ships: Paradise, Utopia, and Valhalla.
At any given moment the Ship entity bean that represents the Utopia might be accessed by hundreds of clients. To
make concurrent access to entity beans possible, EJB needs to protect the data represented by the shared bean,
while allowing many clients to access the bean simultaneously.

In adistributed object system, problems arise when you attempt to share distributed objectsamong clients. If two
clients are both using the same EJB object, how do you keep one client from writing over the changes of the other? If,
for example, one client reads the state of an instance just before a different client makes a change to the same
instance, the data that the first client read becomesinvalid. Figure 3-9 shows two clients sharing the same EJB object.

[FGURE]
Figure 3-5: Clients sharing access to an EJB object

EJB has addressed the dangers associated with concurrency in entity beans by implementing asimple solution: EJB,
by default, prohibits concurrent access to bean instances. In other words, several clients can be connected to one
EJB object, but only one client thread can access the bean instance at atime. If, for example, one of the clients
invokes amethod on the EJB object, no other client can access that bean instance until the method invocation is
complete. Infact, if the method is part of alarger transaction, then the bean instance cannot be accessed at all, except
within the same transactional context, until the entire transaction is complete.

Since EJB servers handle concurrency automatically, a bean’ s methods do not have to be made thread-safe. In fact,
the EJB specification prohibits use of thesynchr oni zed keyword. Prohibiting the use of the thread
synchronization primitives prevents devel opers from thinking that they control synchronization and enhances the
performance of bean instances at runtime. In addition, EJB explicitly prohibits beans from creating their own threads.

Copyright (c) 2001 O'Reilly & Associates 51

In other words, as abean devel oper you cannot create athread within abean. The EJB container hastomaintain
complete control over the bean to properly manage concurrency, transactions, and persistence. Allowing the bean
developer to create arbitrary threads would compromise the container’ s ability to track what the bean is doing, and
thus would make it impossible for the container to manage the primary services.

Reentrance

When talking about concurrency in entity beans, we need to discuss the related concept of reentrance. Reentranceis
when athread of control attempts to reenter abean instance. In EJB, entity bean instances are nonreentrant by
default, which means that loopbacks are not allowed. Before | explain what aloopback is, it isimportant that you
understand a very fundamental concept in EJB: entity and session beans interact using each other’ s remote
references and do not interact directly. In other words, when bean A operates on bean B, it does so the same way an
application client would, by using B’ s remote or local interface asimplemented by an EJB object. Thisallowsthe EJB
container to interpose between method invocations from one bean to the next to apply security and transaction
services.

While most bean-to-bean interactions in EJB 2.0 will take place using local interfaces of co-located enterprise beans,
occasionally beans may interact using remote interfaces. Remote interfaces enforce complete location transparency.
When interactions between beans take place using remote references, the beans can be relocated—possibly to a
different server—with little or no impact on the rest of the application.

Regardless of whether remote or local interfaces are used, from the perspective of the bean servicing the call, all
clients are created equal. Figure 3-11 shows that, from abean’ s point of view, only clients perform business method
invocations. When a bean instance has a business method invoked, it cannot tell the difference between aremote
application client and a bean client.

[FIGURE modified version of figure 3-6]
Figure 3-6: Beans access each other through EJB objects

A loopback occurs when bean A invokes a method on bean B that then attempts to make a call back to bean A.
Figure 3-13 shows thistype of interaction. In Figure 3-13, client 1 invokes a method on bean A. In responseto the
method invocation, bean A invokes a method on bean B. At this point, thereis no problem because client 1 controls
access to bean A and bean A isthe client of bean B. If, however, bean B attemptsto call amethod on bean A, it
would be blocked because the thread has already entered bean A. By calling its caller, bean B is performing a
loopback. Thisisillegal by default because EJB doesn’t allow athread of control to reenter a bean instance. To say
that beans are nonreentrant by default isto say that loopbacks are not allowed.

[FIGURE]
Figure 3-7: Aloopback scenario

The nonreentrance policy is applied differently to session beans and entity beans. Session beans can never be
reentrant, and they throw aRenpt eExcept i on if aloopback is attempted. The sameistrue of a nonreentrant
entity bean. Entity beans can be configured in the deployment descriptor to allow reentrance at deployment time.
Making an entity bean reentrant, however, is discouraged by the specification. The question of reentrancy is not
relevant to EJB 2.0's message-driven beans because they do not respond to RM1 calls like session and entity beans.

Asdiscussed previously, client access to abean is synchronized so that only one client can access any given bean
at onetime. Reentrance addresses athread of control—initiated by a client request—that attempts to reaccess a bean
instance. The problem with reentrant codeis that the EJB object—which intercepts and delegates method invoca-
tions on the bean instance—cannot differentiate between reentrant code and multithreaded access within the same
transactional context. (More about transactional context in Chapter 148.) If you permit reentrance, you also permit
multithreaded access to the bean instance. Multithreaded access to a bean instance can result in corrupted data
because threads impact each other’ s work trying to accomplish their separate tasks.

Copyright (c) 2001 O'Reilly & Associates 52

It'simportant to remember that reentrant code is different from a bean instance that simply invokes its own methods
at an instance level. In other words, methodf oo() on abean instance can invoke its own public, protected, default,
or private methods directly as much asit wants. Here is an example of intra-instance method invocation that is per-
fectly legal:

publ i ¢ Hypot heti cal Bean extends EntityBean {
public int Xx;

publ i ¢ doubl e foo() {
int i =this.getX);
return this.boo(i);

}

public int getX() {
return x;

}

private double boo(int i) {
double value =i * Math.P;
return val ue;

}

In the previous code fragment, the business method, f 0o() , invokes another business method, get X() , and then
aprivate method, boo() . The method invocations made within the body of f oo() areintra-instance invocations
and are not considered reentrant.

EJB 2.0: Concurrency with M essage-Driven Beans

When we are talking about concurrency in message-driven beans we are referring to the processing of more then one
message at atime. Asmentioned already in this chapter, concurrent processing of messages makes message-driven
beans a powerful asynchronous component model. 1f message-driven beans could only process a single message at
time, they would be practically uselessin areal-world application because they couldn’t handle heavy message
loads.

Many JM S clients may be sending messages to the same destination. The ability to process all the messages by a
single message-driven bean at the same time isconcurrency. If five messages are delivered to a specific destination,
then five instances of a message driven bean that subscribes or listens to that destination can be used to process the
messages simultaneously. Figure 3-y illustrates.

[Figure 3-y]
Figure 3-y: Concurrent processing with Message-driven beans

In Figure 3-y, the same message-driven bean provides instances to process three messages from three different
clients at the same time. Thisis concurrent processing.

Thereisactually alot moreto concurrent processing in message-driven beans. There are topic and queue type
destinations and these are processed differently, but the basic value of concurrent processing isthe same. The book
will explore the details behind of the topic and queue type destinationsin Chapter 13, Message-Driven Beans

Transactions

Component transaction monitors (CTMs) were devel oped to bring the robust, scalable transactional integrity of
traditional TP monitors to the dynamic world of distributed objects. Enterprise JavaBeans, as a server-side
component model for CTMs, provides robust support for transactions for both all the bean types (session, entity and
message-driven).

Copyright (c) 2001 O'Reilly & Associates 53

A transaction is aunit-of-work or a set of tasks that are executed together. Transactions are atomic; in other words,
all thetasksin atransaction must be completed together to consider the transaction a success. In the previous
chapter we used the Travel Agent bean to describe how a session bean controls the interactions of other beans. Here
isacode snippet showing thebookPassage() method described in Chapter 2:

public Ticket bookPassage(QeditCard card, double price)
throws | nconpl et eConversational Sate {
// BEJB 1.0: also throws RenoteException

if (custoner = null || cruise = null || cabin = null) {
t hr ow new | nconpl et eConver sati onal S at e() ;

}

try {

Reser vat i onHoneRenot e resHone = (Reser vat i onHoneRenot €)

get Hone(" Reser vat i onHbne", Reser vat i onHoneRenot e. ¢l ass) ;
Reservati onRenot e reservation =
resHone. creat e(cust oner, cruise, cabin, price);
Pr ocessPaynent HoneRenot e pptbne = (Pr ocessPaynent HoneRenot €)

get Hone(" Pr ocessPaynent Hone" , Pr ocessPaynent HoneRenot e. cl ass) ;
Pr ocessPaynent Renot e process = ppHone. create();
process. byQredi t (custoner, card, price);

Ticket ticket = new Ticket(custoner, cruise, cabin, price);
return ticket;
} catch(BException e) {
/1 BB 1.0: throw new Renot eException("",e);
t hr ow new EJBExcepti on(e);

}

ThebookPassage() method consists of two tasks that must be completed together: the creation of anew
Reservation bean and processing of the payment. When the Travel Agent bean is used to book a passenger, the
charges to the passenger’ s credit card and the creation of the reservation must both be successful. It would be
inappropriate for the ProcessPayment bean to charge the customer’ s credit card if the creation of anew Reservation
bean fails. Likewise, you can’t make areservation if the customer credit card is not charged. An EJB server monitors
the transaction to ensure that all the tasks are conpleted successfully.

Transactions are managed automatically, so as a bean developer you don’t need to use any APIsto explicitly manage
abean’ sinvolvement in atransaction. Simply declaring the transactional attribute at deployment time tellsthe EJB
server how to manage the bean at runtime. EJB does provide a mechanism that allows beans to manage transactions
explicitly, if necessary. Setting the transactional attributes during deployment isdiscussed in Chapter 148, asis
explicit management of transactions and other transactional topics.

Persistence

Entity beans represent the behavior and data associated with real-world people, places, or things. Unlike session and
message-driven type beans, entity beans are persistent. That meansthat the state of an entity is stored permanently
in adatabase. This allows entitiesto be durable so that both their behavior and data can be accessed at any time
without concern that the information will be lost because of a system failure.

When abean'’ s state is automatically managed by a persistence service, the container isresponsible for
synchronizing an entity bean’sinstance fields with the datain the database. This automatic persistenceis called
container-managed persistence. When beans are designed to manage their own state, asis often the case when
dealing with legacy systems, it is called bean-managed persistence.

Copyright (c) 2001 O'Reilly & Associates 54

Each vendor gets to choose the exact mechanism for implementing contai ner-managed persistence, but the vendor’s
implementation must support the EJB callback methods and transactions. The most common mechanisms used in
persistence by EJB vendors are object-to-relational persistence and object database persistence.

Object-to-relational persistence

Object-to-relational persistenceis perhaps the most common persistence mechanism used in distributed object
systemstoday. Object-to-relational persistence involves mapping entity bean state torelational database tables and
columns.

In EJB 2.0 the abstract accessor methods represents the entity bean’ s container-managed fields, which we will just
call fields. When an entity bean is deployed the container will implement these virtual fields for the bean, so its
convient to think of the abstract accessor methods as describing persistent fields. For example, when we aretalking
about the state represented by the set Namre () /get Narme() abstract accessor method, we will refer to asthe
nane field. Smularly, theget | d() /set | d() isthei d field, andtheget DeckLevel () /set DeckLevel () is
thedeckLevel field.

In Titan's system, for example, the Cabi nBean models the business concept of aship’s cabin. The CabinBean
defined threefields: St r i ng typenane, ai nt typedeckLevel ,andanl nt eger typei d. Thefollowing code
shows an abbreviated definition of the Cabi nBean:

EJB 2.0: CabinBean

public abstract class Cabi nBean inpl enents javax. ej b. EntityBean {

public abstract Sring get Nane();
public abstract void setNane(Sring str);

public abstract int getDeckLevel ();
publ i c abstract voi d setDeckLevel (int |evel);

public abstract Integer getld();
public abstract void setld(Integer id);

}
EJB 1.1: CabinBean

public class Cabi nBean i npl enents j avax. gj b. EntityBean {
public int id;

public Sring nang;
public int deckLevel;

}

With object-to-relational database mapping, the fields of an entity bean correspond to columnsin arelational
database. The Cabin’snane fi el d, for example, mapsto the column labeled NAME in atable called CABI Nin
Titan' srelational database. Figure 3-15 shows a graphical depiction of this type of mapping.

[FIGURE 3-8 modified]
Figure 3-8: Object-to-relational mapping of entity beans

Really good EJB systems provide wizards or administrative interfaces for mapping relational database tablesto the
fields of entity bean classes. Using these wizards, mapping entitiesto tablesis afairly straightforward processand is
usually performed at deployment time. Figure 3-17 shows WebL ogic’ s object-to-relational mapping wizard.

Copyright (c) 2001 O'Reilly & Associates 55

[FIGURE]
Figure 3-9: Object-to-relational mapping wizard

Once abean’ sfields are mapped to the relational database, the container takes over the responsibility of keeping the
state of an entity bean instance consistent with the corresponding tables in the database. This processiscalled
synchronizing the state of the bean instance. In the case of Cabi nBean, bean instances at runtime will map one-to-
onetorowsin the CABI Ntable of therelational database. When achange is made to a Cabin EJB, it iswritten to the
appropriate row in the database. Frequently, bean types will map to more than one table. These are more complicated
mappings, often requiring an SQL join. Good EJB deployment tools should provide wizards that make multitable

mappings fairly easy.

In addition, EJB 2.0 container-managed persistence defines entity bean relationships fields, which allow entity beans
to have one-to-one, one-to-many, and many-to-many relationships with other beans. Entity beans can maintain
collections of other entity beans or single references. The persistence of entity beansin EJB 2.0 isagreat deal more
complex and powerful then was supported in previous versions of the specification. The new EJB 2.0 container-
managed persistence model is covered in Chapters 6, 7 and 8.

In addition to synchronizing the state of an entity, EJB provides mechanisms for creating and removing entities. Calls
to the EJB home to create and remove entitieswill result in a corresponding insertion or deletion of recordsin the
database. Because entities store their state in database tables, new records (and therefore bean identities) can be
added to tables from outside the EJB system. In other words, inserting arecord into the CABI N table— whether done
by EJB or by direct access to the database—creates a new Cabin entity. It’s not created in the sense of instantiating
aJavaobject, but in the sense that the data that describes a Cabin entity has been added to the system.

Object database persistence

Object-oriented databases are designed to preserve object types and object graphs and therefore are a much better
match for components written in an object-oriented language like Java. They offer a cleaner mapping between entity
beans and the database than atraditional relational database. However, thisis more of an advantage in EJB 1.1 than it
isin EJB 2.0. EJB 2.0 container-managed persistence provides a programming model that is expressive enough to
accommodate both object-to-relational mapping aswell as object databases.

While object databases perform well when it comesto very conmplex object graphs, they are still fairly new to
business systems and are not as widely accepted as relational databases. As aresult, they are not as standardized as
relational databases, making it more difficult to migrate from one database to another. In addition, fewer third-party
products exist that support object databases, like products for reporting and data warehousing.

Several relational databases support extended features for native object persistence. These databases allow some
objectsto be preserved in relational database tableslike other datatypes and offer some advantages over other
databases.

L egacy persistence

EJB is often used to put an object wrapper on legacy systems, systems that are based on mainframe applications or
nonrelational databases. Contai ner-managed persistence in such an environment requires a special EJB container
designed specifically for legacy data access. Vendors might, for example, provide mapping tools that allow beansto
be mapped to IMS, CICS, b-trieve, or some other legacy application.

Regardless of the type of legacy system used, container-managed persistence is preferable to bean-managed
persistence. With contai ner-managed persistence, the bean’ s state is managed automatically, which is more efficient
at runtime and more productive during bean development. Many projects, however, require that beans obtain their
state from legacy systems that are not supported by the EJB vendor. In these cases, devel opers must use bean-

Copyright (c) 2001 O'Reilly & Associates 56

managed persistence, which means that the devel oper doesn’t use the automatic persistence service of the EJB
server. Chapters 6-11 describes both contai ner-managed and bean-managed persistence in detail.

Distributed Objects

Three main distributed object services are available today: CORBA I10P, Java RMI, and Microsoft’s .NET. Each of
these platforms uses a different RMI network protocol, but they all accomplish basically the same thing: location
transparency. Microsoft’s .NET platform, which relieson DCOM, is used in the Microsoft Windows environment and
is not supported by other operating systems. Itstight integration with Microsoft products makes it a good choice for
Microsoft-only systems. This may change with the growing support for SOAP (Simple Object Access Protocol), an
XML-based protocol that is quickly becoming popular and offers interoperability with non-Microsoft applications.
CORBA 110P is neither operating-system specific nor language specific and has been traditionally been considered
the most open distributed object service of the three. It'san ideal choice when integrating systems developed in
multiple programming languages. Java RMI is a Javalanguage abstraction or programming model for any kind of
distributed object protocol. In the same way that the JIDBC API can be used to access any SQL relational database,
JavaRMI isintended to be used with almost any distributed object protocol. In practice, Java RMI has traditionally
been limited to the Java Remote Method Protocol (JRM P)—known as Java RM1 over JRM P—which can only be used
between Java applications. Recently an implementation of Java RMI over [10OP (Java RMI-I10P), the CORBA pro-
tocol, has been developed. Java RMI-11OPisa CORBA -compliant version of Java RMI, which allows devel opers to
leverage the simplicity of the Java RMI programming model, while taking advantage of the platform- and language-
independent CORBA protocol, [1OP.*

When we discuss the component interfaces, and other EJB interfaces and classes used on the client, we are talking
about the client’ s view of the EJB system. The EJB client view doesn’t include the EJB objects, the EJB container,
instance swapping, or any of the other implementation specifics. Asfar asaremote client is concerned, abeanis
defined by its remote interface and home interface. Everything elseisinvisible. Aslong as the EJB server supports
the EJB client view, any distributed object protocol can be used. However, EJB 2.0 requires that every EJB server
support Java RMI-11OP—but it doesn’t limit the protocols a EJB server can support to Java RMI-11OP.

Regardless of the protocol used, the server must support Java clients using the Java EJB client API, which means
that the protocol must map to the Java RMI-110P programming model. Using Java RMI over DCOM seems alittle far-
fetched, but Java RMI over SOAP is possible. Figure 3-19 illustrates the Java language EJB API supported by
different distributed object protocols.

[FIGURE modified 3-10]
Figure 3-10: Java EJB client view supported by various protocols

EJB also allows servers to support access to beans by clients written in languages other than Java. An example of
thisis the EJB-to-CORBA mapping defined by Sun.”” This document describes the CORBA IDL (Interface Definition
Language) that can be used to access enterprise beans from CORBA clients. A CORBA client can be written in any
language, including C++, Smalltalk, Ada, and even COBOL. The mapping also includes details about supporting the
Java EJB client view as well as details on mapping the CORBA naming system to EJB servers and distributed
transactions across CORBA aobjects and beans. Eventually, a EJB-to-SOAP mapping may be defined that will allow
SOAP client applications written in languages like Visual Basic, Delphi, PowerBuilder, and others to access beans.
Figure 3-11 illustrates the possibilities for accessing an EJB server from different distributed object clients.

11 Java RMI-IIOP is interoperable with CORBA ORBs that support the CORBA 2.3.1 specification. ORBs that support an older
specification cannot be used with Java RMI-IIOP because they do not implement the Object by Value portion of the 2.3.1
specification.
12 Sun Microsystems Enterprise JavaBeans™ to CORBA Mapping, Version 1.1, by Sanjeev Krishnan, ®pyright 1999 by Sun
Microsystems.

Copyright (c) 2001 O'Reilly & Associates 57

[FGURE]
Figure 3-11: EJB accessed fromdifferent distributed clients

Asamature, platform-independent and language-independent distributed object protocol, CORBA is currently
regarded by many as the superior of the three protocols discussed here. For all its advantages, however, CORBA
suffers from some limitations. Pass-by-value, afeature easily supported by Java RMI-110OP, was only recently
introduced in the CORBA 2.3 specification and is not well supported. Another limitation of CORBA iswith casting
remote proxies. In Java RMI-JRMP, you can cast or widen a proxy’s remote interface to a subtype or supertype of the
interface, just like any other object. Thisis a powerful feature that allows remote objects to be polymorphic. In Java
RMI-I1OP, you haveto call a special narrowing method to change the interface of a proxy to a subtype, which is cum
bersome.

However, JRMP is hasits own limitations. While JRMP may be a more natural fit for Java-to-Java distributed object
systems, it lacks inherent support for both security and transactional services—support that is a part of the CORBA
I1OP specification. Thislimits the effectiveness of JRMP in heterogeneous environments where security and transac-
tional contexts must be passed between systems.

EJB 2.0: Asynchronous Enter prise M essaging

In past versions of Enterprise JavaBeans, support for asynchronous enterprise messaging and specifically the Java
M essage Service was not considered a primary service because it wasn't necessary in order to have a complete
Enterprise JavaBeans platform. However, with the introduction of message-driven beans to Enterprise JavaBeans,
asynchronous enterprise messaging has become so important that its status must be elevated to a primary service.

Support for this serviceis complex, but basically it requires that the EJB container system reliably route messages
from JM S clients to message-driven beans. Thisinvolves more than the simple delivery semantics you associate
with e-mail or even the IMS API. With enterprise messaging, messages must be reliably delivered which means that
afailure to deliver the message should require the EJB container system to attempt redelivery. What’s more,
enterprise messages may be persistent, which means they are stored to disk or a database until it can be properly
delivered to itsintended clients. Persistent messages must survive system failures, if the EJB server crashesthe
persistent messages must still be available for delivery when the server comes back up.

Most importantly, enterprise messaging is transactional messaging. That means if for any reason a message-driven
bean fails while processing a message, that failure will abort the transaction and force the EJB container to redeliver
the message to another message-driven bean instance.

In addition to message-driven beans, any stateless, entity, or message-driven bean can also send JM S messages.
Support for sending messages is not as critical in Enterprise JavaBeans asdelivery of messages to message-driven
beans, but support for these facilities tendsto go hand in hand. In other words, its unlikely that an EJB server would
go to the trouble of supporting the consumption of JM'S messages by message-driven beans without also supporting
the sending of messages by all different types of enterprise beans.

It’ sinteresting to note that the semantics of supporting message-driven beans requires light coupling between the
EJB container system and the JM S message router, so that many EJB container systems will support alimited number
of IM S providers. This means that message-driven beans can’t consume messages from any arbitrary JM S provider
or MOM product. Only the IMS providers supported explicitly by the EJB vendor will be able to deliver messages to
message-driven beans.

Copyright (c) 2001 O'Reilly & Associates 58

Naming

All distributed object services use a naming service of some kind. Java RMI-JRMP and CORBA use their own naming
services. All naming services do essentially the same thing regardless of how they are implemented: they provide
clients with a mechanism for locating distributed objects or resources.

To accomplish this, anaming service must provide two things: object binding and alookup API. Object binding is
the association of a distributed object with a natural language name or identifier. The Cabi nHormeRenpt e object,
for example, might be bound to the name “cabin.Home” or “room.” A bindingisreally a pointer or anindex to a
specific distributed object, which is necessary in an environment that manages hundreds of different distributed
objects. A lookup API provides the client with an interface to the naming system. Simply put, lookup APIs alow
clientsto connect to adistributed service and request a remote reference to a specific object.

Enterprise JavaBeans mandates the use of the Java Naming and Directory Interface (JNDI) asalookup APl on Java
clients. INDI supports just about any kind of haming and directory service. A directory serviceis avery advanced
naming service that organizes distributed objects and other resources—printers, files, application servers, etc.—into
hierarchical structures and provides more sophisticated management features. With directory services, metadata
about distributed objects and other resources are also available to clients. The metadata provides attributes that
describe the object or resource and can be used to perform searches. Y ou can, for example, search for all the laser
printers that support color printing in a particular building.

Directory services also allow resources to be linked virtually, which means that a resource can be located anywhere
you choose in the directory services hierarchy. JINDI allows different types of directory servicesto be linked together
so that a client can move between different types of services seamlessly. It’ s possible, for example, for aclient to
follow adirectory link in aNovell NetWare directory into an EJB server, alowing the server to be integrated more
tightly with other resources of the organization it serves.

There are many different kinds of directory and naming services; EJB vendors can choose the one that best meets
their needs, but al EJB 2.0 platforms must support the CORBA Naming service in addition to any other directory
service they choose to support.

A Javaclient application would use JNDI to initiate a connection to an EJB server and to locate a specific EJB home.
The following code shows how the JINDI API might be used to locate and obtain areference to the EJB home
Cabi nHone:

j avax. namng. Gont ext j ndi Gntext =
new j avax. nam ng. I ni ti al Gont ext (properties);
(oj ect ref = jndi Gontext. | ookup("cabi n. Hone");
Gabi nHone cabi nHone = (Gabi nHone)
Por t abl eRenot e(hj ect . narrow(ref, Gabi nHone. cl ass) ;

Cabi n cabi n = cabi nHone. creat (382, "Cabin 333", 3);
cabi n. set Nane(" Cabi n 444");
cabi n. set DeckLevel (4);

The properties passed into the constructor of | ni t i al Cont ext tell the INDI API whereto find the EJB server
and what JNDI service provider (driver) to load. The Cont ext . | ookup() method tellsthe INDI service provider
the name of the object to return from the EJB server. In this case, we are looking for the home interface to the Cabin
EJB. Once we have the Cabin EJB’s home interface, we can use it to create new cabins and access existing cabins.

Enterprise JavaBeans requires the use of the Por t abl eRenpt eOhj ect . nar r ow() method to cast remote
references obtained from JNDI into the Cabi nHoneRenot e interface type. Thisisaddressed in more detail in
Chapters 4 and 5 and is not essential to the content covered here — the use of thisfacility is not required when
enterprise beans use the local component interfaces of other co-located enterprise beans.

Copyright (c) 2001 O'Reilly & Associates 59

Security

Enterprise JavaBeans servers might support as many as three kinds of security: authentication, access control, and
secure communication. Only access control is specifically addressed by Enterprise JavaBeans.

Authentication

Simply put, authentication validates the identity of the user. The most common kind of authenticationisasimple
login screen that requires a username and a password. Once users have successfully passed through the
authentication system, they are free to use the system. Authentication can also be based on secure ID cards,
swipe cards, security certificates, and other forms of identification. While authentication is the primary safeguard
against unauthorized access to asystem, it isfairly crude because it doesn’t police an authorized user’ s access
to resources within the system.

Access control

Access control (a.k.a. authorization) applies security policies that regulate what a specific user can and cannot
do within a system. Access control ensures that users only access resources for which they have been given
permission. Access control can police auser’s access to subsystems, data, and business objects, or it can
monitor more general behavior. Certain users, for example, may be allowed to update information while others are
only allowed to view the data.

Secure communication

Communication channels between aclient and a server are frequently the focus of security concerns. A channel
of communication can be secured by physical isolation (like a dedicated network connection) or by encrypting
the communication between the client and the server. Physically securing communication is expensive, limiting,
and pretty much impossible on the Internet, so we will focus on encryption. When communication is secured by
encryption, the messages passed are encoded so that they cannot be read or manipulated by unauthorized
individuals. This normally involves the exchange of cryptographic keys between the client and the server. The
keysallow the receiver of the message to decode the message and read it.

Most EJB servers support secure communications—usually through SSL (secure socket |ayer)—and some
mechanism for authentication, but Enterprise JavaBeans only specifies access control in their server-side component
models. Authentication may be specified in subsequent versions, but secure communications will probably never be
specified. Secure communicationsisreally independent of the EJB specification and the distributed object protocol.

Although authentication is not specified in EJB, it is often accomplished using the INDI API. In other words, aclient
using JNDI can provide authenticating information using the INDI API to access a server or resourcesin the server.
Thisinformation is frequently passed when the client attempts to initiate a JNDI connection to the EJB server. The
following code shows how the client’ s password and username are added to the connection properties used to
obtain aJNDI connection to the EJB server:

properties. put (Context. SEOUR TY PR NJ PAL, userNane);
properties. put (Cont ext . SEOUR TY_CRECENTI ALS, user Passwor d) ;

j avax. namng. Gont ext j ndi Gontext =

new j avax. naming. I ni ti al Gont ext (properties);
oj ect ref=jndi Gontext.|ookup("titan. Cabi nHone");
Cabi nHone cabi nHone = (Gabi nHone)

Por t abl eRenot e(hj ect . narrow(ref, GCabi nHone. cl ass);

EJB specifiesthat every client application accessing an EJB system must be associated with a security identity. The
security identity representsthe client as either auser or arole. A user might be a person, security credential,
computer, or even asmart card. Normally, the user will be a person whose identity is assigned when he or shelogsin.
A role represents a grouping of identities and might be something like “manager,” which is agroup of user identities
that are considered managers at a company.

Copyright (c) 2001 O'Reilly & Associates 60

When aremote client logs on to the EJB system, it is associated with a security identity for the duration of that
session. Theidentity isfound in adatabase or directory specific to the platform or EJB server. This database or
directory isresponsible for storing individual security identities and their membershipsto groups.

Once aremote client application has been associated with a security identity, it is ready to use beansto accomplish
sometask. The EJB server keeps track of each client and itsidentity. When a client invokes a method on a
component interface, the EJB server implicitly passesthe client’ sidentity with the method invocation. When the EJB
object or EJB home receives the method invocation, it checks the identity to ensure that the client is allowed to
invoke that method.

Role-driven access control

In Enterprise JavaBeans, the security identity isrepresented by aj ava. security. Princi pl e object. Asa
security identity, the Pri nci pl e actsasarepresentative for users, groups, organizations, smart cards, etc., to the
EJB access control architecture. Deployment descriptors include tags that declare which logical roles are allowed to
access which bean methods at runtime. The security roles are considered logical roles because they do not directly
reflect users, groups, or any other security identitiesin a specific operational environment. Instead, security roles are
mapped to real-world user groups and users when the bean is deployed. This allows a bean to be portable; every time
the bean is deployed in a new system the roles can be mapped to the users and groups specific to that operational
environment. Hereis a portion of the Cabin EJB’ sdeployment descriptor that defines two security roles, ReadOnl y
and Admi ni strator:

<security-rol e>
<descri pti on>
This role is allowed to execute any nethod on the bean.
They are allowed to read and change any cabi n bean dat a.
</ descri pti on>
<r ol e- nane>
Adnmini strat or
</rol e- nane>
</security-rol e>

<security-rol e>
<descri ption>
This role is allowed to locate and read cabin info.
This role is not allowed to change cabi n bean data.
</ descri pti on>
<rol e- nane>
ReadOnl y
</ rol e- nane>
</security-rol e>

Therole namesin this descriptor are not reserved or special names, with some sort of predefined meaning; they are
simply logical names chosen by the bean assembler. In other words, the role names can be anything you want as
long asthey are descriptive.”®

How are roles mapped into actions that are allowed or forbidden? Oncethesecuri t y-r ol e tagsare declared,
they can be associated with methods in the bean usingnet hod- per ni ssi on tags. Eachnet hod-

perm ssi on tag containsone or morenet hod tags, which identify the bean methods associated with one or
more logical rolesidentified by ther ol e- nane tags. Ther ol e- nane tags must match the names defined by the
security-role tags shown earlier.

13 For a complete understanding of XML, including specific rules for tag names and data, see XML Pocket Reference, by Robert
Eckstein (O’ Reilly).

Copyright (c) 2001 O'Reilly & Associates 61

<net hod- per ni ssi on>
<r ol e- nane>Adni ni strat or </ r ol e- nane>
<net hod>
<gj b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per ni ssi on>
</ net hod- per ni ssi on>
<r ol e- nane>Readnl y</r ol e- nane>
<net hod>
<gj b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>get Nane</ net hod- nane>
</ net hod>
<net hod>
<ej b- nane>Cabi nEJB</ €] b- nane>
<net hod- nane>get DeckLevel </ net hod- nane>
</ net hod>
<net hod>
<gj b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>f i ndByPr i nar yKey</ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

Inthefirstnmet hod- per m ssi on,the Admi ni st r at or roleisassociated with all methods on the Cabin EJB,
which is denoted by specifying the wildcard character (*) inthenet hod- nane of thenet hod tag. In the second
nmet hod- per m ssi on theReadOnl y roleislimited to accessing only three methods: get Nane() ,get Deck-
Level (),andfi ndByPri maryKey().Any attempt by aReadOnl y roleto access a method that is not listed
inthemet hod- per mi ssi on will result in an exception. Thiskind of access control makesfor afairly fine-grained
authorization system.

Since an XML deployment descriptor can be used to describe more than one enterprise bean, the tags used to
declare method permissions and security roles are defined in a special section of the deployment descriptor, so that
several beans can share the same security roles. The exact |ocation of these tags and their relationship to other
sections of the XML deployment descriptor will be covered in more detail in Chapter 16.

When the bean is deployed, the person deploying the bean will examinethesecuri ty-r ol e information and map
each logical roleto a corresponding user group in the operational environment. The deployer need not be concerned
with what roles go to which methods; he can rely on the descriptions giveninthesecuri t y-r ol e tagsto deter-
mine matches based on the description of thelogical role. This unburdens the deployer, who may not be a devel oper,
from having to understand how the bean worksin order to deploy it.

Figure 3-23 shows the same enterprise bean deployed in two different environments (labeled X and Z). In each
environment, the user groupsin the operational environment are mapped to their logical equivalent rolesinthe XML
deployment descriptor so that specific user groups have access privileges to specific methods on specific enterprise
beans.

[FGURE]
Figure 3-12: Mapping rolesin the operational environment to logical rolesin the deployment
descriptor

Asyou can see from the figure, the ReadOnl y role is mapped to those groups that should be limited to the get
accessor methods and the find method. The Adi ni st r at or roleis mapped to those user groups that should
have privileges to invoke any method on the Cabin EJB.

Copyright (c) 2001 O'Reilly & Associates 62

The access control described here isimplicit; once the bean is deployed the container takes care of checking that
users only access methods for which they have permission. Thisis accomplished by propagating the security
identity, the Pri nci pl e, with each method invocation from the client to the bean. When a client invokes a method
on abean, theclient’'sPri nci pl e ischecked to seeif it isamember of arole mapped tothat method. If it's not, an
exception isthrown and the client is denied permission to invoke the method. If the client is a member of aprivileged
role, theinvocation is allowed to go forward and the method isinvoked.

If abean attempts to access any other enterprise beans while servicing aclient, it will pass along the client’ s security
identity for access control checks by the other beans. Inthisway, aclient’sPri nci pl e is propagated from one
bean invocation to the next, ensuring that a client’s access is controlled whether or not it invokes a bean method
directly. In EJB 2.0 this propagation can be overridden by specifying that the enterprise bean executes under a
different security identity called the runAs security identity.

EJB 2.0: TherunAs Security | dentity

In addition to specifying the Pr i nci pal sthat have access to an enterprise bean’ s methods, the deployer can also
specify therunAsPr i nci pal for the entire enterprise bean. The runAs security identity was originally specified in
EJB 1.0, but was abandoned in EJB 1.1. It has been reintroduced in EJB 2.0 and modified so that itsis easier for
vendors to implement.

Whilethenet hod- per mi ssi on elements specify whichPri nci pal shave access to the bean’ s methods, the
security-identity element specifiesunder whichPri nci pal themethod will run. In other words, the runAs
Pri nci pal isused asthe enterprise bean’ sidentity when it tries to invoke methods on other beans—this identity
isn't necessarily the same as the identity that’s currently accessing the bean.

For example, the following deployment descriptor elements declare that thecr eat e() method can only be accessed
by “JimSmith”, but that Cabin EJB always runs under an “ Administrator” Pri nci pal role.

<ent er pri se- beans>

<entity>
<gj b- nane>Enpl oyeeSer vi ce</ €] b- nane>

<security-identity>
<run-as>
<rol e- nane>Adm ni st rat or </ r ol e- nane>
</run-as>
</security-identity>

<Jentity>

</ enter pri se- beans>
<assentl er >
<security-rol e>

<r ol e- nane>Adni ni strat or </ r ol e- nane>
</security-rol e>
<security-rol e>

<rol e- nane>Ji n8n t h</ r ol e- nane>
</security-rol e>

<net hod- per m ssi on>
<rol e- nane>Ji n8m t h</r ol e- nane>
<net hod>
<gj b- nane>Cabi NEJB</ €] b- nane>
<net hod- nane>cr eat e</ net hod- nane>

Copyright (c) 2001 O'Reilly & Associates 63

</ net hod>
</ net hod- per m ssi on>

</ assenbl er>

Thisis kind of configuration is useful when the enterprise beans or resources accessed in the body of the method
requireaPr i nci pal thatisdifferent from the one used to gain accessto the method. Thecr eat e() method
might call amethod in enterprise bean X that requires the Administrator’sPr i nci pal . If we want to use enterprise
bean X inthecr eat e() method, but we only want Jim Smith to create new cabins, wewould usethesecuri ty-
i dentity andmet hod- per m ssi on elementstogether to give usthiskind of flexibility: thenet hod-

perm ssi on forcreat e() would specify that only Jim Smith can invoke the method, andthesecuri ty-

i dentity element would specify that the enterprise bean always runs under the Administrator’sPr i nci pal .

In order to specify that an enterprise bean execute under the caller’ sidentity, the security-identity role contains a
single empty element, theuse- cal | er-i dent i t y element. For example, the following declarations specify that
the Cabin EJB always execute under the callersidentity, soif imSmith invokesthecr eat e() method, the bean will
run under the JimSmith security identity.

<ent er pri se- beans>

<entity>
<ej b- nane>Enpl oyeeSer vi ce</ gj b- nane>

<security-identity>
<use-caller-identity/>
</security-identity>

<Jentity>

</ enter pri se- beans>

Figure 3-27 illustrates how the runAsPr i nci pal canchangein achain of method invocations. Notice that the
runAsPri nci pal isthePri nci pal used to test for accessin subsequent method invocations.

[FIGURE modified figure 3-14]
Figure 3-14: runAs |dentity
1. Theclient, whoisidentified as“Bill Jones’, invokes the methodf oo() on enterprise bean A.

2. Before servicing the method, enterprise bean A is checked to seeif “Bill Jones’ isincluded in the method-
permissionsfor f oo() . Itis.

3. Thesecurity-identity of enterprise bean A isdeclared asuse-cal | er-i dentity,sothefoo() method
executes under the caller'sPri nci pal , inthiscase“Bill Jones’.

4. Whilef oo() isexecuting, it invokes methodbar () on enterprise bean B using the “Bill Jones” security
identity.

5. Enterprise bean B checks methodf oo() "sPri nci pal (“Bill Jones’) against the allowed identities for method
bar () . “Bill Jones” isincluded in the method-permissions, so the method bar () of enterprisebean B is
allowed to execute.

6. Theenterprise bean B specifies the security-identity to betherun-asPri nci pal of “Administrator”.

7. Whilebar () isexecuting, enterprise bean B invokes the methodboo() on enterprise bean C.

Copyright (c) 2001 O'Reilly & Associates 64

8. Enterprise bean Cischecked and it’s determined thatbar () srunAsPri nci pal (“Administrator”) is
included in the method-permissions for methodboo() .

9. The security-identity for the enterprise bean C specifiesarunAsPri nci pal of the“System”, whichisthe
identity that theboo() method executes under.

This protocol applies equally to entity and statel ess session beans. However, message-driven beans only have a
runAsidentity, the will never execute under the caller identity, because thereisno “caller”. Message-driven beans
process asynchronous JM S messages. These messages are not considered “calls” and the IMS client that sent them
is not associated with the message. Once amessageis sent by aJMS client, is autonomous and is no longer
associated with the sending client. So incoming messages do not have a“caller”. With no caller security identity to
propagate, message-driven beans must always have arunAs security identity specified, and it will always execute
under that runAsPri nci pal .

What’'s Next?

Thefirst three chaptersgave you a foundation on which to develop Enterprise JavaBeans components and
applications. Y ou should have a better understanding of CTMs and the EJB component model.

Beginning with Chapter 4, you will develop your own beans and learn how to apply them in EJB applications.

Copyright (c) 2001 O'Reilly & Associates 65

A

Developing Y our First Enterprise Beans

Choosing and Setting Up an EJB Server

One of the most important features of EJB isthat enterprise beans should work with containers from different
vendors. That doesn’t mean that selecting a server and installing your enterprise beans on that server aretrivial
processes.™

The EJB server you choose should be compliant with the EJB 2.0 specification. The first example in this chapte—and
most of the examplesin this book— assumes that your EJB server supports entity beans and EJB 2.0 container-
managed persistence.” The EJB server you choose should also provide a utility for deploying an enterprise bean. It
doesn’t matter whether the utility is command-line oriented or graphical, aslong asit does the job. The deployment
utility should allow you to work with prepackaged enterprise beans, i.e., enterprise beans that have already been
developed and archived in aJAR file. Finally, the EJB server should support an SQL-standard relational database that
isaccessible using JDBC. For the database, you should have privileges sufficient for creating and modifying afew
simple tablesin addition to normal read, update, and delete capabilities. If you have chosen an EJB server that does
not support an SQL standard relational database, you may need to modify the examples to work with the product you
areusing.

Thisbook does not say very much about how to install and deploy enterprise beans. That task islargely server-
dependent. We give some general ideas about how to organize JAR files and create deployment descriptors, but for
a complete description of the deployment process, you' Il have to refer to your vendor’ s documentation, or look at the
workbook for your vendor (if oneisavailable).

14 To help you work with different vendor's products, free workbooks have keen created for specific EJB servers. Each
workbook shows you how to download, install, and run the examplesin this book for a specific product. We are trying to creste
a library that covers as many major vendors as possible, though with over 30 EJB servers on the market, we won't be able to
cover al of them. The workbook examples cover EJB 2.0, unless the product supports only EJB 1.1. The workbooks are
available in PDF form from http://www.oreilly.convcatal og/entjbeans3/ or http://www.monson-haefel.com. If there is sufficient
demand, we may make the workbooks available in a printed version.

15 Chapter 11 discusses EJB 1.1 container-managed persistence, which you can use if your server doesn’t support EJB 2.0
container-managed persistence.

Copyright (c) 2001 O'Reilly & Associates 66

This Chapter provides you with your first opportunity to use aworkbook. Throughout the rest of this book you will
see these callouts which direct you to an exercise in the workbook. A callout will look something like the following.

= #EXxercise 4.2, Develop and Deploy the Travel Agent EJB

Aswas mentioned in the Preface, the workbooks can be downloaded in PDF format for free from
http://mww.oreilly.convcatal og/entjbeans3/ or http://www.monson-haefel.com — some workbooks may even be
availablein paper book form and can be ordered direct from the http://www.monson-haefel .com.Setting Up Y our Java
IDE

To get the most from this chapter, it helpsto have an IDE that has a debugger and allows you to add Javafilesto its
environment. Several JavalDEs, like Symantec’s Visual Cafe, IBM’sVisualAge, Inprise’s JBuilder, and Sun’s Forte,
fulfill this simple requirement. Some EJB products, like IBM’s WebSphere, are tightly coupled with an IDE that makes
lifealot easier when it comes to writing, deploying and debugging your applications.

Onceyou have an IDE set up, you need to include the Enterprise JavaBeans package, j avax. ej b. You aso need
the INDI packages, includingj avax. nami ng,j avax. nam ng. di rect ory, andj avax. nam ng. spi . In
addition, youwill need thej avax. rm andj avax. | ns packages. All these packages can be downloaded from
Sun’s Java site (http://www. javasoft.com) in the form of ZIP or JAR files. They may also be accessible in the subdi-
rectories of your EJB server, normally under the lib directory.

Developing an Entity Bean

There seems to be no better place to start than the Cabin EJB, which we have been examining throughout the
previous chapters. The Cabin EJB is an entity bean that encapsul ates the data and behavior associated with a cruise
ship cabinin Titan’s business domain.

Cabin: The Remote Interface

When developing an entity bean, we first want to define the enterprise bean’ s remote interface. The remote interface
defines the enterprise bean’ sbusiness purpose; the methods of thisinterface must capture the concept of the entity.
We defined the remote interface for the Cabin EJB in Chapter 2; here, we add two new methods for setting and
getting the ship ID and the bed count. The ship ID identifies the ship that the cabin belongs to, and the bed count
tells how many people the cabin can accommodate.

package comtitan. cabin;
inport java.rm.Renot eExcepti on;

public interface Cabi nRenot e ext ends j avax.) b. EJB(bj ect {
public Sring getNange() throws RenoteException;
public void setNane(Sring str) throws RenoteException;
public int getDeckLevel () throws RenoteException;
publ i c voi d set DeckLevel (int |evel) throws RenoteBxception;
public int getShipld() thronws RenoteBxception;
public voi d set Shipld(int sp) throws RenoteException;
public int getBedGunt() throws RenoteException;
public voi d set BedGount (i nt bc) throws Renot eExcepti on;

}

The Cabi nRenot e interface defines four properties: thenane, deckLevel ,shi p, andbedCount . Properties
are attributes of an enterprise bean that can be accessed by public set and get methods. The methods that access

Copyright (c) 2001 O'Reilly & Associates 67

these properties are not explicitly defined inthe Cabi nRenpt e interface, but the interface clearly specifies that
these attributes are readabl e and changeable by aclient.

Notice that we have made the Cabi nRenpt e interface a part of anew package namedcom t it an. cabi n. Place
all the classes and interfaces associated with each type of bean in a package specific to the bean.*® Because our
beans are for the use of the Titan cruise line, we place these packagesinthecom t i t an package hierarchy. We
also create directory structures that match package structures. If you are using an IDE that works directly with Java
files, create a new directory somewhere called dev (for development) and create the directory structure shown in
Figure 4-1. Copy the Cabi nRenpt e interface into your IDE and save its definition to the cabin directory. Compile
the Cabi nRenot e interface to ensure that its definition is correct. The CabinRemote.classfile, generated by the
IDE’s compiler, should be written to the cabin directory, the same directory as the CabinRemote. javafile. The rest
of the Cabin bean’s classes will be placed in this same directory.

[FIGURE]

Figure 4-1. Directory structure for the Cabin bean

CabinHome: The Home Interface

Once we have defined the remote interface of the Cabin EJB, we have defined the remote view of this simple entity
bean. Next, we need to define the Cabin EJB’ s remote home interface, which specifies how the enterprise bean can be
created, located, and destroyed by remote clients; in other words, the Cabin EJB’slife-cycle behavior. Hereisa
complete definition of the Cabi nHonmeRenot e home interface:

package comtitan. cabin;

inport java.rm.Renot eExcepti on;
inport javax.ejb. O eat eException;
inport javax. ej b. FH nder Excepti on;

public interface Cabi nHoneRenot e extends j avax. ej b. EJBHone {

publ i ¢ Cabi nRenot e creat e(l nteger id)
throws Q eat eException, RenoteException;

publ i ¢ Gabi nRenot e fi ndByPri naryKey(| nteger pk)
throws H nder Exception, RenoteException;

}

The Cabi nHoneRenot e interface extendsthej avax. ej b. EJBHone and definestwo life- cycle methods:
create() andfi ndByPri mar yKey() . These methods create and locate remote references to Cabin EJBs.
Remove methods (for deleting enterprise beans) are defined inthej avax. ej b. EJBHone interface, so the
Cabi nHoneRenot e interface inherits them.

16 The examples, which can be downloaded from www.oreilly.com, provide a good guide for how to organize your code; the code
isorganized in a directory structure that’s typical for most products. The workbooks provide additional help for organizing your
development projects, and will point out any vendor-specific requirements.

Copyright (c) 2001 O'Reilly & Associates 68

CabinBean: The Bean Class

Y ou have now defined the complete client-side API for creating, locating, removing, and using the Cabin EJB. Now
we need to define Cabi nBean, the class that provides the implementation on the server for the Cabin EJB. The
Cabi nBean classisan entity bean that uses contai ner-managed persistence, so its definition will be fairly simple.

In addition to the callback methods discussed in Chapters 2 and 3, we must also define abstract accessor methods for
the methods defined in the Cabi nRenpt e interface and an implementation of the create method defined in the
Cabi nHoneRenot e interface.

EJB 2.0: The Cabin Bean

Here isthe complete definition of the Cabi nBean class:

package comtitan. cabin;

public abstract class Cabi nBean
i npl enent s javax. gj b. EntityBean {

public Integer ef bGeate(lnteger id){
this.setld(id);

}
public voi d ej bPost O eate(Sring nane){

}

public abstract void setld(Integer id);
public abstract Integer getld();

public abstract voi d setShipld(int ship);
public abstract int getShipld();

publ i c abstract voi d setNane(String nane);
public abstract Sring get Nane();

publ i c abstract voi d setBedGount (int count);
public abstract int getBedQunt();

public abstract voi d setDeckLevel (int |evel);
public abstract int getDeckLevel ();

public void setEntityContext(EntityCQontext ctx) {
/1 Not inplenented.

}
publ i c void unset EntityQontext() {
/1 Not inplenented.

}
public void ej bActivate() {

/1 Not inplenented.

}
public voi d e bPassivate() {

/1 Not inplenented.

}
public void ej bLoad() {
/1 Not inplenented.

}
public void ejbStore() {

Copyright (c) 2001 O'Reilly & Associates 69

/1 Not inplenented.

}
publ i c voi d ej bRenove() {
/1 Not inplenented.

}
}

The Cabi nBean class can be divided into four sections for discussion: declarations for the contai ner-managed
fields, theej bCr eat e() methods, the callback methods, and the remote interface implementations.

The Cabi nBean defines several abstract accessor methods that appear in pairs. For example, the abstract methods
set Name() andget Nane() areapair of abstract accessor methods. These methodswill be responsible for
setting and getting the entity bean’ s name field. When the bean is deployed, the EJB container automatically
implements all the abstract accessor methods so that the bean state can be synchronized with the database. These
implementations map the abstract accessor methods to fields in the database. Although all the abstract accessor
methods have corresponding methods in the remote interface, Cabi nRenot e, it’snot necessary that they do so.
Some accessor methods are for the entity bean’ s use only and are never exposed to the client through the remote or
local interfaces.

It's customary in EJB 2.0 to consider the abstract accessor methods as providing accessto virtual fields and to refer
to those fields by their method name, lessthe get or set prefix. For example, theget Nane() / set Nane() abstract
accessor methods define avirtual container-managed persistence field called nanme —the first letter is always
changed to lower case. Theget DeckLevel () /set DecklLevel () abstract accessor methods define avirtual
container-managed persistence field calleddeckLevel , and so on.

Thenane,deckLevel ,shi p,and bedCount virtual container-managed persistence fields represent the Cabin
EJB’ s persistent state. They will be mapped to the database at deployment time. These fields are also publicly
available through the entity bean’ sremote interface. Invoking theget BedCount () method on aCabi nRenot e
EJB object at runtime causes the container to delegate that call to the correspondingget BedCount () method on
the Cabi nBean instance. The abstract accessor methods do not throw the Renot eExcept i on like the matching
methods in the remote interface.

There is no requirement that CMP fields must be exposed. Thei d field is another container-managed field, but its
abstract accessor methods are not exposed to the client through the Cabi nRenot e interface. Thisfieldisthe
primary key of the Cabin EJB; it’' sthe entity bean’ sindex to its datain the database. It's bad practice to expose the
primary key of an entity bean so that it can be modified by aclient. You don’t want client applications changing that
index.

EJB 1.1: The Bean Class

Here isthe compl ete definition of the Cabi nBean classin EJB 1.1:
package comtitan. cabin;

inport javax.ejb. EntityQontext;

public class Cabi nBean i npl enents j avax. gj b. EntityBean {

public Integer id;
public Sring nane,
public int deckLevel;
public int shipld;
public int bedGunt;

public Integer e bCeate(lnteger id) {

Copyright (c) 2001 O'Reilly & Associates 70

this.id =id;
return nul l;
}
public void ej bPost Oeate(lnteger id) {
/1 Do nothing. Required.
}
public Sring get Nane() {
return nang;

}

public void setNane(String str) {
nane = str;

}

public int getShipld() {
return shipld;

}

public void setShipld(int sp) {
shipld = sp;

}

public int getBedQunt() {
return bedCount ;

}

publ i c voi d set BedGount (int bc) {
bedGunt = bc;

}

public int getDeckLevel () {
return deckLevel ;

}

publ i c voi d set DeckLevel (int level) {
deckLevel = |evel;

}

public void setEntityQontext(EntityCQontext ctx) {
/1 Not inplenented.

}

public void unset EntityGontext () {
/1 Not inplenented.

}

public void ej bActivate() {
/1 Not inplenented.

}

publ i c voi d ej bPassivate() {
/1 Not inplenented.

}

public void ej bLoad() {
/1 Not inplenented.

}

public void ejbSore() {
/1 Not inplenented.

}

publ i c void e bRenove() {
/1 Not inplenented.

}

}

Declared fieldsin abean class can be persistent fields and property fields. These categories are not mutually
exclusive. The persistent field declarations describe the fields that will be mapped to the database. A persistent field
is often a property (in the JavaBeans sense): any attribute that is available using public set and get methods. Of

Copyright (c) 2001 O'Reilly & Associates 71

course, a bean can have any fieldsthat it needs; they need not all be persistent, or properties. Fields that aren’t
persistent won't be saved in the database. InCabi nBean, al thefields are persistent.

Thei d field ispersistent, but it is not aproperty. In other words, i d is mapped to the database but cannot be
accessed through the remote interface.

Thename,deckLevel ,shi p, andbedCount fieldsare persistent fields. They will be mapped to the database at
deployment time. These fields are also properties because they are publicly available through the remote interface.

EJB 2.0 and 1.1: The callback methods

In the case of the Cabin EJB, therewasonly onecr eat e() method, so thereisonly one corresponding

ej bCr eat e() method and oneej bPost Cr eat e() method. When aclient invokesthecr eat e() method on
the remote home interface, it is delegated to amatchingej bCr eat e() method on the entity bean instance. The

ej bCr eat e() method initializesthefields; in the case of the Cabi nBean, it setsthe namne virtua field.

Theej bCr eat e() method always returns the primary key type; with container-managed persistence, this method
returnsthenul | value. It’ sthe container’ s responsibility to create the primary key. Why doesit return null? Simply
put, it makesit easier for a bean-managed enterprise bean to extend a contai ner-managed enterprise bean. Thisis
valuable for EJB vendors who support container-managed persistence beans by extending them with bean-managed
persistence beans implementations—it’s atechnique that was more commonin EJB 1.1. Bean-managed persistence
beans, which are covered in Chapter 10, always return the primary key type.

Oncetheej bCr eat e() method has executed, the ej bPost Cr eat e() method is called to perform any follow-up
operations. Theej bCr eat e() andej bPost Cr eat e() methods must have signatures that match the
parameters and (optionally) the exceptions of the home interface’scr eat e() method. Theej bPost Cr eat e()
method is used to perform any post processing on the bean after its created, but before it can be used by the client.
Both methods will execute, one right after the other, when the client invokesthecr eat e() method on the remote
home interface.

Thefi ndByPri mar yKey() method isnot defined in container-managed bean classes. Instead, find methods are
generated at deployment and implemented by the container. With bean-managed entity beans (entity beans that
explicitly manage their own persistence), find methods must be defined in the bean class. In Chapter 10, when you
develop bean-managed entity beans, you will define the find methods in the bean classes you develop.

The Cabi nBean classimplementsj avax. ej b. Ent i t yBean, which definesfive callback methods:
setEntityContext(),unset EntityContext(),ejbActivate(),ejbPassivate(),ejblLoad(),
ej bStore(), andej bRenove() . The container uses these callback methodsto notify the Cabi nBean of
certain eventsin itslife cycle. Although the callback methods are implemented, the implementations are empty. The
Cabi nBean issimple enough that it doesn’t need to do any special processing during itslife cycle. When we study
entity beansin more detail in Chapters 6 through 11, we will take advantage of these callback methods.

The Deployment Descriptor

Y ou are now ready to create a deployment descriptor for the Cabi n EJB. The deployment descriptor performsa
function similar to a propertiesfile. It describes which classes make up a enterprise bean and how the enterprise bean
should be managed at runtime. During deployment, the deployment descriptor is read and its properties are displayed
for editing. The deployer can then modify and add settings as appropriate for the application’ s operational environ-
ment. Once the deployer is satisfied with the deployment information, he or she usesit to generate the entire
supporting infrastructure needed to deploy the enterprise bean in the EJB server. This may include adding the

Copyright (c) 2001 O'Reilly & Associates 72

enterprise bean to the naming system and generating the enterprise bean’ s EJB object and EJB home, persistence
infrastructure, transactional support, resolving enterprise bean references, and so forth.

Although most EJB server products provide awizard for creating and editing deployment descriptors, we will create
ours directly so that the enterprise bean is defined in avendor-independent manner.' This requires some manual
labor, but it gives you a much better understanding of how deployment descriptors are created. Once the depl oyment
descriptor isfinished, the enterprise bean can be placed in aJJAR file and deployed on any EJB-compliant server of
the appropriate version.

An XML deployment descriptor for every examplein this book has already been created and is available from the
download site.

Here' saquick peek at the deployment descriptor for the Cabin EJB, so you can get afeel for how an XML
deployment descriptor is structured and the type of information it contains:

EJB 2.0: The Cabin EJB’s Deployment Descriptor
<?xmh version="1.0"?>

< DOCTYPE €j b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 1.1//BN' "http://java. sun.conij 2ee/ dtds/ejb-jar_2 O.dtd">

<gj b-jar>
<ent er pri se- beans>
<entity>
<ej b- nane>Cabi nEJB</ €j b- nane>
<hone>com ti t an. cabi n. Cabi nHoneRenot e</ hone>
<renot e>com ti t an. cabi n. Cabi nRenot e</ r enot e>
<ej b-cl ass>comti t an. cabi n. Gabi nBean</ gj b- cl ass>
<per si st ence- t ype>Qont ai ner </ per si st ence- t ype>
<pri mkey-cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>
<reent rant >Fal se</ reent r ant >
<abst r act - schena- nane>Cabi n</ abst r act - schena- nane>
<cnp-fi el d><fi el d-name>i d</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- name>nane</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>deckLevel </ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>shi pl d</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>bedCount </ fi el d- nane></ cnp-fi el d>
<prinkey-fiel d> d</ pri nkey-fiel d>
<security-identity><use-callers-identity/><security-identity>
<entity>
</ enterpri se-beans>
<assentl y- descri pt or >

</ assenbl y- descri pt or >
<ejb-jar>

EJB 1.1: The Cabin EJB’s Deployment Descriptor
<?xm version="1.0"?>

<IDOCTYPE €] b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 1.1//BN' "http://java. sun.conij2ee/dtds/ejb-jar_1 1.dtd">

17 The workbooks show you how to use the vendor’ s tools for creating deployment descriptors.

Copyright (c) 2001 O'Reilly & Associates 73

<gjb-jar>
<ent er pri se- beans>
<entity>
<ej b- nane>Cabi nEJB</ €j b- nane>
<hone>com ti t an. cabi n. Gabi nHoneRenot e</ hone>
<renot e>comtitan. cabi n. Cabi nRenot e</ r enot e>
<gj b-cl ass>comti t an. cabi n. Cabi nBean</ gj b- cl ass>
<per si st ence-t ype>Cont ai ner </ per si st ence-t ype>
<pri mkey- cl ass>j ava. | ang. | nt eger </ pri m key- cl ass>
<reentrant >Fal se</reentrant >
<cnp-fi el d><fi el d-name>i d</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>nane</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>deckLevel </ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>shi pl d</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>bedCount </ fi el d- nane></ cnp-fi el d>
<prinkey-fiel d> d</ pri nkey-fiel d>
<entity>
</ enterpri se-beans>
<assenbl y- descri pt or >

</ assenbl y- descri pt or >
<ejb-jar>

EJB 2.0and 1.1: Defining the XML elements

The <! DOCTYPE> element describes the purpose of the XML file, itsroot element, and the location of itsDTD. The
DTD isused to verify that the document is structured correctly. This element is discussed in detail in Chapter 16. One
important distinction between EJB 2.0 and EJB 1.1 isthat they use different DTD for deployment descriptors. EJB 2.0
specifiestheej b-j ar_2 0. dtd whileEJB 1.1 specifiestheej b-jar_1 1. dtd.

Therest of the XML elements are nested one within the other and are delimited by a beginning tag and ending tag.
The structureisreally not very complicated. If you have done any HTML coding you should already understand the
format. An element always starts with <name of tag> tag and ends with </name of tag> tag. Everything in
between—even other elements—is part of the enclosing element.

Thefirst mgjor element isthe<ej b- j ar > element, which isthe root of the document. All the other elements must lie
within this element. Nextisthe<ent er pri se- beans> element. Every bean declared in an XML file must be
included in this section. Thisfile only describes the Cabin EJB, but we could define several beansin one deployment
descriptor.

The<ent i t y> element shows that the beans defined within thistag are entity beans. Similarly, a<sessi on>
element describes session beans; since the Cabin EJB is an entity bean, wedon’t need a<sessi on> element. In
addition to adescription, the <ent i t y> element providesthe fully qualified class names of the remote interface,
home interface, bean class, and primary key. The<cnp- f i el d> elementslist all the container-managed fieldsin the
entity bean class. These are the fields that will be persisted in the database and are managed by the container at
runtime. The<ent i t y> dement alsoincludesa<r eent r ant > element that can be set asTr ue or Fal se
depending on whether the bean allows reentrant loopbacks or not.

EJB 2.0 specifiesanane whichisused in EJB QL to identify the entity bean in queries. Thisisn't important right
now. The 2.0 deployment descriptor also specifies<security-identity>as<use-callers-identity>,
which simply means the bean will propagate the calling clients security identity when access resources or other
beans. Thiswas covered in detail in Chapter 3.

Copyright (c) 2001 O'Reilly & Associates 74

The next section of the XML file, after the<ent er pri se- bean> element, isenclosed by the <assenbl y-
descri pt or > element, which describes the security roles and transactional attributes of the bean. This sectionis
the same for both EJB 2.0 and EJB 1.1 in this example.

<gjb-jar>
<ent er pri se- beans>

<ent er pri se- beans>
<assenfbl y- descri pt or >
<security-rol e>
<descri pti on>
This rol e represents everyone who is allowed full access
to the Gabin EIB
</ descri ption>
<r ol e- nane>ever yone</ r ol e- nane>
</security-rol e>

<net hod- per m ssi on>
<r ol e- nane>ever yone</ r ol e- nane>
<net hod>
<gj b- nane>Cabi nEIB< €j b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

<cont ai ner -t ransact i on>
<net hod>
<gj b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y- descri pt or >
<ejb-jar>

It may seem odd to separatethe <assenbl y- descri pt or > information fromthe<ent er pri se- beans>
information, sinceit clearly appliesto the Cabin EJB, but in the scheme of thingsit’s perfectly natural. A single XML
deployment descriptor can describe severa beans, which might all rely on the same security roles and transactional
attributes. To makeit easier to deploy several beanstogether, all this common information is separated into the
<assenbl y- descri pt or > element.

There is another reason (perhaps a more important reason) for separating information about the bean itself from the
security roles and transactional attributes. The Enterprise JavaBeans defines the responsibilities of different
participants in the devel opment and deployment of beans. We don’t address these development roles in thisbook
because they are not critical to learning the fundamentals of EJB. For now, it's enough to know that the person who
devel ops the bean and the person who assembl es the beans into an application have separate responsibilities and
therefore separate parts of the XML deployment descriptor. The bean developer is responsible for everything within
the<ent er pri se- beans> element; the bean assembler is responsible for everything within the <assenbl y-
descri pt or >. Throughout this book we will play both roles, devel oping the beans and assembling them. Butin a
real project, you might buy aset of beans developed by athird-party vendor, who would have no idea how you
intend to use the beans, what your security requirements are, etc. Thereisalso the role of deployer, which isthe
person who actually |oads the enterprise bean into the EJB container; and the Administrator who isresponsible for
tuning the EJB server and managing it at runtime. In some projects all these roles may befilled by on or two people,
or by several different individuals or eventeams. Again, you'll be assuming all these roles when reading this book,
whichisonly practical since you can read abook as ateam, but its also practical since you learn the responsibilities
of each role anyway.

Copyright (c) 2001 O'Reilly & Associates 75

The<assenbl y-descri pt or > containsthe<securi ty-rol e> elementsand their corresponding

<nmet hod- per m ssi on> elements, which were described in Chapter 3 under “ Security.” In this example, thereis
one security role, ever yone, which is mapped to all the methods in the Cabin EJB using the <net hod-

perm ssi on> element. (The* inthe<net hod- name> element means “all methods’). As already mentioned, for
EJB 2.0 you' Il have to specify a security-identity; in this caseit’ sthe caller’ sidentity.

The container-transaction element declares that all the methods of the Cabin EJB have aRequi r ed transactional
attribute. Transactional attributes are explained in more detail in Chapter 14, but for now it meansthat all the methods
must be executed within atransaction. The deployment descriptor ends with the enclosing tab of the<ej b-j ar >
element.

Copy the Cabin EJB’ s deployment descriptor into the same directory as the class files for the Cabin EJB files
(Cabin.class, CabinHome.class, CabinBean.class, and CabinPK. class) and save it aseb-jar.xml. Y ou have now
created all thefiles you need to package your EJB 1.1 Cabin EJB. Figure 4-3 shows all the filesthat should be in the
cabin directory.

[FIGURE]
Figure 4-2: The Cabin EJB files (EJB 1.1)

cabin.jar: TheJAR File

The JAR fileisaplatformrindependent file format for compressing, packaging, and delivering several filestogether.
Based on ZIPfile format and the ZL1B compression standards, the JAR (Java archive) packages and tool were
originally developed to make downloads of Java applets more efficient. As apackaging mechanism, however, the
JAR fileformat isavery convenient way to “shrink-wrap” components and other software for delivery to third
parties. The original JavaBeans component architecture depends on JAR files for packaging, as does Enterprise
JavaBeans. The goal in using the JAR file format in EJB isto package all the classes and interfaces associated with a
bean, including the deployment descriptor into onefile. The process of creating an EJB JAR fileisslightly different
between EJB 1.1 and EJB 1.0.

Creating the JAR file for deployment is easy. Position yourself in the dev directory that isjust above the
convtitan/cabin directory tree, and execute the command:

\dev %jar cf cabin.jar conititan/cabin/*.class META I N+ gj b-jar.xm

F\..\dev> ar cf cabin.jar comtitan\cabin*.class METAINA g b-jar.xm

Y ou might have to create the META-INF directory first and copy gb-jar.xml into that directory. The c option tellsthe
jar utility to create anew JAR file that contains the files indicated in subsequent parameters. It also tellsthe jar utility
to stream the resulting JAR file to standard output. Thef option tellsjar to redirect the standard output to anew file
named in the second parameter (cabin.jar) . It'simportant to get the order of the option letters and the command-line
parameters to match. Y ou can learn more about the jar utility and thej ava. uti | . zi p packageinJava™ in a
Nutshell by David Flanagan, or Learning Java™ (formerly Exploring Java™), by Pat Niemeyer and Jonathan
Knudsen (both published by O’ Reilly).

Thejar utility createsthefile cabin.jar in the dev directory. If you' reinterested in looking at the contents of the JAR
file, you can use any standard ZIP application (WinZip, PKZIP, etc.), or you can use the commandjar tvf cabin.jar.

Creating a CABIN Tablein the Database

One of the primary jobs of a deployment tool is mapping entity beans to databases. In the case of the Cabin EJB, we
must map itsi d, nane, deckLevel ,shi p, andbedCount container-managed fieldsto some data source. Before

Copyright (c) 2001 O'Reilly & Associates 76

proceeding with deployment, you need to set up a database and create a CABI N table. Y ou can use the following
standard SQL statement to create a CABI Ntable that will be consistent with the examples provided in this chapter:

create table CABIN
(
IDint prinary key,
SHPIDint,
BED GANT int,
NAME char (30),
DECK LEVEL int

)

This statement creates a CABI Ntable that has five columns corresponding to the container-managed fieldsin the
Cabi nBean class. Oncethetableis created and connectivity to the database is confirmed, you can proceed with
the deployment process.

Deploying the Cabin EJB

Deployment is the process of reading the bean’s JAR file, changing or adding properties to the deployment
descriptor, mapping the bean to the database, defining access control in the security domain, and generating vendor-
specific classes needed to support the bean in the EJB environment. Every EJB server product has its own
deployment tools, which may provide a graphical user interface, a set of command-line programs, or both. Graphical
deployment “wizards” are the easiest deployment tools to work with.

A deployment tool reads the JAR file and looks for the gb-jar.xml file. In agraphical deployment wizard, the
deployment descriptor elements will be presented in a set of property sheets similar to those used to customize visual
componentsin environments like Visual Basic, PowerBuilder, JBuilder, and Symantec Café. Figure 4-7 shows the
deployment wizard used in the J2EE Reference Implementation.

[FGURE]
Figure4-4. J2EE Reference Implementation’s deployment wizard

The J2EE Reference Implementation’ s deployment wizard has fields and panels that match the XML deployment
descriptor. Y ou can map security rolesto users groups, set the JINDI look up hame, map the container-managed fields
to the database, etc.

Different EJB deployment tools will provide varying degrees of support for mapping container-managed fieldsto a
data source. Some provide very robust and sophisticated graphical user interfaces, while others are simpler and less
flexible. Fortunately, mapping the Cabi nBean’s container-managed fields to the CABI Ntableisafairly straight-
forward process. The documentation for your vendor’ s deployment tool will show you how to create this mapping.
Once you have finished the mapping, you can complete the deployment of the Cabin EJB and prepare to access it
from the EJB server.

Creating a Client Application

Now that the Cabin EJB has been deployed in the EJB server, we want to access it from aremote client. When we say
remote, we are usally talking about a client application that islocated on a different computer, or a different process
on the same computer. In this section, we will create aremote client that will connect to the EJB server, locate the EJB
remote home for the Cabin EJB, and create and interact with several Cabin EJBs. The following code shows a Java
application that is designed to create anew Cabin EJB, setitsnane, deckLevel ,shi p, andbedCount
properties, and then locate it again using its primary key:

| package comtitan. cabin; |

Copyright (c) 2001 O'Reilly & Associates 77

inport comtitan. cabi n. Gabi nHbneRenot e;
inport comtitan. cabi n. Gabi nRenot €;

inport javax.naming.Initial Gontext;
inport j avax. nam ng. Cont ext ;

i nport | avax. nam ng. Nam ngExcept i on;
inport java.rm. Renot eException;
inport java.util.Properties;

i nport javax.rni. Portabl eRenot ej ect ;

public class Aient_1 {
public static void main(Sring [] args) {
try {
Gontext jndi Gontext = getlnitial Gntext();
oj ect ref = jndi Gontext. | ookup(" Cabi nHone") ;
Cabi nHoneRenot e hone = (Cabi nHoneRenot €)
Por t abl eRenot e(hj ect . nar row(r ef , Gabi nHoneRenot . ¢l ass) ;
Cabi nRenot e cabin_1 = hone. create(new I nteger(1));
cabi n_1. set Nane(" Master Suite");
cabi n_1. set DeckLevel (1);
cabin_1.setShipld(1);
cabi n_1. set BedGount (3);

Integer pk = new I nteger(1);

CGabi nRenot e cabi n_2 = hone. fi ndByP i nar yKey(pk);
Systemout . println(cabi n_2. get Nane());
Systemout . printl n(cabi n_2. get DeckLevel ());
Systemout . println(cabin_2. get Shipld());
Systemout . printl n(cabi n_2. get BedGunt ());

} catch (java.rni. Renot eException re){re.print SackTrace();}
cat ch (j avax. nami ng. Nam ngExcepti on ne){ne. print S ackTrace();}
catch (javax. g b. O eat eException ce){ce. pri nt S ackTrace();}
catch (javax. g b. FH nder Exception fe){fe.printSackTrace();}

}

public static Gontext getlnitial Context()
t hrows j avax. nanmi ng. Nam ngExcepti on {

Properties p = new Properties();
/1 ... Specify the JNO properties specific to the vendor.
return new j avax. naming. I ni tial Gontext (p);

}

To access an enterprise bean, aclient starts by using the INDI package to obtain adirectory connection to abean’s
container. INDI is an implementation-independent API for directory and naming systems. Every EJB vendor must
provide directory servicesthat are INDI-compliant. This means that they must provide a JINDI service provider,
which is apiece of software analogousto adriver in JDBC. Different service providers connect to different directory
services—not unlike JDBC, where different drivers connect to different relational databases. The method
getlnitial Cont ext () containslogic that uses JINDI to obtain a network connection to the EJB server.

The code used to obtain the INDI Cont ext will be different depending on which EJB vendor you are using. Consult

your vendor’ s documentation to find out how to obtain aJNDI Cont ext appropriate to your product. The code
used to obtain aJNDI Cont ext in WebSphere, for example, might ook something like the following:

Copyright (c) 2001 O'Reilly & Associates 78

public static Gontext getlnitial Gontext()
throws j avax. nani ng. Nam ngExcepti on {

java. util.Properties properties = new java. util.Properties();
properties. put (j avax. nam ng. Gont ext . PROADER R, “iiop:///");
properties. put (j avax. nam ng. Gont ext . | N Tl AL_GONTEXT_FACTCRY,

"comibmejs.ns.jndi.Nnitial GontextFactory");
return new I nitial Gontext (properties);

}
The same method devel oped for BEA’s WebL ogic Server would be different:

public static Gontext getlnitial Gontext()throws javax. nam ng. Nami ngException {

Properties p = new Properties();
p. put (Gont ext . | N TI AL_GONTEXT_FACTCRY,

"webl ogi c. j ndi . Tengahl ni ti al Gont ext Fact ory");
p. put (Gont ext . PROM DER LR, "t 3://1 ocal host: 7001");
return new javax. namng. I nitial Gontext(p);

}

Once a JJNDI connection is established and a context is obtained fromtheget | nti al Cont ext () method, the
context can be used to look up the EJB home of the Cabin EJB:

TheCl i ent _1 application usesthe Por t abl eRenot eObj ect . narr ow() method as prescribed in EJB 1.1:

oj ect ref = jndi Gontext. | ookup(" Cabi nHone") ;
Cabi nHone hone = (Gabi nHoneRenot €)
Por t abl eRenot eChj ect . nar row(r ef , Gabi nHoneRenot e. ¢l ass) ;

ThePor t abl eRenpt eCbj ect . nar r ow() method wasfirst introduced in EJB 1.1 and continues to be used on
remote clientsin EJB 2.0. It is needed to support the requirements of RMI over 11OP. Because CORBA supports many
different languages, casting is not native to CORBA (some languages don’t have casting). Therefore, to get aremote
reference to Cabi nHormeRenot e, we must explicitly narrow the object returned from | ookup() . Thishasthe
same effect as casting and is explained in more detail in Chapter 5.

The name used to find the Cabin EJB’s EJB home s set by the deployer using a deployment wizard like the one
pictured earlier. The INDI nameis entirely up to the person deploying the bean; it can be the same as the bean name
set in the XML deployment descriptor or something completely different.

Creating a new Cabin EJB

Once we have aremote reference to the EJB home, we can use it to create anew Cabin entity:
| Cabi nRenot e cabin_1 = hone. create(new I nteger(1)); |

We create anew Cabi n entity usingthecr eat e(| nt eger i d) method defined in the remote home interface of
the Cabin EJB. When this method isinvoked, the EJB home works with the EJB server to create a Cabin EJB, adding
its data to the database. The EJB server then creates an EJB object to wrap the Cabin EJB instance and returns a
remote reference to the EJB object to the client. Thecabi n_1 variable then contains aremote reference to the Cabin
EJB wejust created.

We don't need to use the Por t abl eRenpt eCbj ect . nar r ow() method to get the EJB object from the home
reference, because it was declared as returning the Cabi n type; no casting was required. We don’t need to explicitly

narrow remote references returned by f i ndByPr i mar yKey () for the same reason.

With the remote reference to the EJB object, we can update the nane, deckLevel , shi p, andbedCount of the
Cahin EJB:

Copyright (c) 2001 O'Reilly & Associates 79

Cabi nRenot e cabin_1 = hone. create(new I nteger(1));
cabin_1. set Nane("Master Suite");

cabi n_1. set DeckLevel (1);

cabin 1.setShipld(1);

cabi n_1. set BedGount (3);

Figure 4-11 shows how the relational database table that we created should look after executing this code. It should
contain one record.

[FGURE]
Figure 4-6: CABIN table with one cabin record

After an entity bean has been created, a client can locateit using thef i ndByPr i mar yKey() method in the home
interface. First, we create a primary key of the correct type, inthiscase | nt eger . When we invoke the finder
method on the home interface using the primary key, we get back aremote reference to the EJB object. We can now
interrogate the remote reference returned by f i ndBy Pr i nmar yKey () to get the Cabin EJB’snane, deckLevel ,
shi p, andbedCount :

Integer pk = new Integer(1);

CGabi nRenot e cabi n_2 = hone. fi ndByPi nar yKey(pk);
Systemout . println(cabi n_2. get Nane());
Systemout . printl n(cabi n_2. get DeckLevel ());
Systemout . println(cabin_2. get Shipld());
Systemout . printl n(cabi n_2. get Bed@unt ());

Y ou are now ready to create and runthe Cl i ent _1 application against the Cabin EJB you deployed in earlier.
Compilethe client application and deploy the Cabin EJB into the container system. ThenruntheCl i ent _1
application.

& #Exersize 4.1, Developing and deploying the Cabin EJB

When you runthe Cl i ent _1 application, your output should look something like the following:

Master SQuite
1
1
3

Congratulations! You just created and used your first entity bean! Of course, the client application doesn’t do much.
Before going on to create session beans, create another client that adds some test data to the database. Here we' |
createCl i ent _2 asamodification of Cl i ent _1 that populates the database with alarge number of cabins for
three different ships:

package comtitan. cabin;

inport comtitan. cabi n. Gabi nHbneRenot e;
inport comtitan. cabi n. Gabi nRenot €;

inport javax.naming.Initial Gontext;
inport j avax. nam ng. Cont ext ;

i nport j avax. nam ng. Nam ngExcept i on;

i nport javax. ej b. O eat eException;
inport java.rm. Renot eException;
inport java.util.Properties;

inport javax.rni. Portabl eRenot ej ect ;

public class Aient_2 {

Copyright (c) 2001 O'Reilly & Associates 80

public static void nain(Sring [] args) {

try {
Qontext jndi Gontext = getlnitial Context();

(oj ect ref =

j ndi Gont ext . | ookup(" Cabi nHone™) ;
Cabi nHoneRenot e hone = (Cabi nHoneRenot €)

Por t abl eRenot e(hj ect . nar row(r ef , Gabi nHoneRenot e. ¢l ass) ;

/1 Add 9 cabins to deck 1 of ship 1.
nakeCabi ns(hone, 2, 10, 1, 1);
/1 Add 10 cabins to deck 2 of ship 1.
nakeCabi ns(hone, 11, 20, 2, 1);
/1 Add 10 cabins to deck 3 of ship 1.
nakeCabi ns(hone, 21, 30, 3, 1);

/1 Add 10 cabins to deck 1 of ship 2
nakeCabi ns(hone, 31, 40, 1, 2);
/1 Add 10 cabins to deck 2 of ship 2.
nakeCabi ns(hone, 41, 50, 2, 2);
/1 Add 10 cabins to deck 3 of ship 2
nakeCabi ns(hone, 51, 60, 3, 2);

/1 Add 10 cabins to deck 1 of ship 3.
nakeCabi ns(hone, 61, 70, 1, 3);
/1 Add 10 cabins to deck 2 of ship 3.
nakeCabi ns(hone, 71, 80, 2, 3);
/1 Add 10 cabins to deck 3 of ship 3.
nakeCabi ns(hone, 81, 90, 3, 3);
/1 Add 10 cabins to deck 4 of ship 3.
nakeCabi ns(hone, 91, 100, 4, 3);

for (int i =1; i <=100; i++){
Integer pk = new Integer(i);
Cabi nRenot e cabi n = hone. fi ndByPri nar yKey(pk) ;
Systemout. printIn("PK ="+ +', Ship = "+cabi n. get Shi pl d()
+ ", Deck = "+cabi n. get DeckLevel ()
+ ", BedQount = "+cabi n. get BedGount ()
+ ", Nane = "+cabin. get Nane());
}

} catch (java. rni.RenoteException re) {re.printSackTrace();}
cat ch (j avax. nanmi ng. Nami ngException ne) {ne.printSackTrace();}
catch (j avax. g b. O eat eException ce) {ce.printSackTrace();}
catch (j avax.] b. FH nder Exception fe) {fe.printSackTrace();}
}

public static javax. namng. Gontext getlnitial Context()
throws j avax. nani ng. Nam ngExcept i on{
Properties p = new Properties();
/1 ... Specify the JNO properties specific to the vendor.
return new javax. namng. I nitial Gontext (p);

}

public static void nakeCabi ns(Gabi nHoneRenot e hone,
int fromd, int told,
int deckLevel, int shi pNunber)

Copyright (c) 2001 O'Reilly & Associates

81

throws RenoteException, O eateException {

int bc =3;

for (int i =fromd, i <=told; i+ {
Cabi nRenot e cabi n = hone. create(new I nteger(i));
int suiteNunber = deckLevel *100+(i-fronid);
cabi n. set Nane(" Sui te "+sui t eNunber) ;
cabi n. set DeckLevel (deckLevel);
bc = (bc==3)7?2: 3;
cabi n. set BedGunt (bc) ;
cabi n. set hi pl d(shi pNuriber) ;

}

}

}

Createandrunthe Cl i ent _2 application against the Cabin EJB you deployed in earlier. Cl i ent _2, produces a
lot of output that lists all the new Cabin EJBsyou just added to the database.

PK=1 Ship=1, Deck =1, BedGunt =3, Nane = Master Suite
PK =2 Ship=1, Deck =1, BedGunt =2, Nane = Suite 100
PK =3, Ship=1, Deck =1, BedGunt =3, Nane = Suite 101
PK=4, Ship=1, Deck =1, BedGunt =2, Nane = Suite 102
PK=5 Ship=1, Deck =1, BedGunt =3, Nane = Suite 103
PK=6, Ship=1, Deck =1, BedGunt =2, Nane = Suite 104
PK=7 Ship=1, Deck =1, BedGunt =3, Nane = Suite 105

Y ou now have 100 cabin records in your CABI N table, representing 100 cabin entitiesin your EJB system. This
provides agood set of test datafor the session bean we will create in the next section, and for subsequent examples
throughout the book.

Developing a Session Bean

Session beans act as agentsto the client, controlling workflow (the business process) and filling the gaps between
the representation of data by entity beans and the business | ogic that interacts with that data. Session beans are
often used to manage interactions between entity beans and can perform complex manipulations of beansto
accomplish some task. Since we have only defined one entity bean so far, we will focus on a complex manipulation of
the Cabin EJB rather than the interactions of the Cabin EJB with other entity beans. In Chapter 12, after we have had
the opportunity to devel op other entity beans, the interactions of entity beans within session beans will be explored
in greater detail.

Client applications and other beans use the Cabin EJB in avariety of ways. Some of these uses were predictable
when the Cabin EJB was defined, but many were not. After all, an entity bean represents data—in this case, data
describing a cabin. The uses to which we put that datawill change over time—hence the importance of separating
the dataiitself from the workflow. In Titan’ s business system, for example, we may need to list and report on cabinsin
ways that were not predictable when the Cabin EJB was defined. Rather than change the Cabin EJB every time we
need to look at it differently, we will obtain the information we need using a session bean. Changing the definition of
an entity bean should only be done within the context of alarger process—for example, amajor redesign of the
business system.

In Chapters 1 and 2, we talked hypothetically about a Travel Agent EJB that was responsible for the workflow of
booking a passage on a cruise. This session bean will be used in client applications accessed by travel agents
throughout the world. In addition to booking tickets, the Travel Agent EJB also provides information about which
cabins are available on the cruise. In this chapter, we will develop the first implementation of thislisting behavior in
the Travel Agent EJB. Thelisting method we develop in this example is admittedly very crude and far from optimal.

Copyright (c) 2001 O'Reilly & Associates %)

However, this exampleis useful for demonstrating how to develop avery simple statel ess session bean and how
these session beans can manage other beans. In Chapter 12, we will rewrite the listing method. This“list cabins’
behavior is used by travel agentsto provide customerswith alist of cabins that can accommodate the customer’s
needs. The Cabin EJB does not directly support the kind of list, nor should it. Thelist we need is specific to the
Travel Agent EJB, so it’sthe Travel Agent EJB’ s responsibility to query the Cabin EJBs and produce the list.

Y ou will need to create a development directory for the Travel Agent EJB, aswe did for the Cabin EJB. We name this
directory travelagent and nest it below the com/titan directory, which also contains the cabin directory (see
Figure 4-13).

[FIGURE]
Figure4-7: Directory structure for the Travel Agent EJB

You will be placing all the Javafilesand XML deployment descriptor for the Travel Agent EJB into this directory.

TravelAgentRemote: The Remote I nterface

Asbefore, we start by defining the remote interface so that our focusis on the business purpose of the bean, rather
than itsimplementation. Starting small, we know that the Travel Agent EJB will need to provide amethod for listing al
the cabins available with a specified bed count for a specific ship. We'll call that methodl i st Cabi ns() . Sincewe
only need alist of cabin names and deck levels, we'll definel i st Cabi ns() toreturnanarray of St ri ngs. Here's
the remote interface for Tr avel Agent Renot e:

package comtitan.travel agent;

inport java. rm. Renot eException;
i nport javax. ej b. A nder Excepti on;

public interface Travel Agent Renot e extends javax. e b. EJBOyj ect {
/1l Sring elenents followthe format "id, nane, deck |evel"

public Sring [] listGabins(int shiplD int bedGunt)
t hrows Renot eExcepti on;

}
TravelAgentHomeRemote: The Remote Home I nterface

The second step in the development of the Travel Agent EJB bean is to create the remote home interface. The remote
home interface for a session bean defines the create methods that initialize a new session bean for use by aclient.

Find methods are not used in session beans; they are used with entity beans to locate persistent entities for use on a
client. Unlike entity beans, session beans are not persistent and do not represent data in the database, so afind
method would not be meaningful; there is no specific session to locate. A session bean is dedicated to aclient for the
life of that client (or less). For the same reason, we don’'t need to worry about primary keys; since session beans
don’t represent persistent data, we don’t need akey to accessthat data.

package comtitan.travel agent;

inport java.rm . Renot eExcepti on;
inport javax.ejb. O eat eExcepti on;

public interface Travel Agent HoneRenot e ext ends j avax. ej b. EJB-bne {
publ i c Travel Agent Renot e create()
t hrows Renot eException, O eateException;

Copyright (c) 2001 O'Reilly & Associates 83

[} |

In the case of the Travel Agent EJB, we only need asimplecr eat e() method to get areference to the bean.
Invoking thiscr eat e() method returns a Travel Agent EJB’ s remote reference that the client can use for the
reservation process.

TravelAgentBean: The Bean Class

Using the remote interface as aguide, we can definethe Tr avel Agent Bean class that implementsthe
I i st Cabi ns() method. The following code contains the complete definition of Tr avel Agent Bean for this
example.

package comtitan. travel agent;

inport comtitan. cabi n. Gabi nRenot €;
inport comtitan. cabi n. Gabi nHoneRenot e;
inport java.rm . Renot eExcepti on;

inport javax.naming.Initial Gontext;

i nport j avax. nam ng. Cont ext ;

inport java.util.Properties;

inport java. util.\Vector;

inport javax.rm. Portabl eRenot e(hj ect ;
inport javax. ej b. EJBExcepti on.

public class Travel Agent Bean i npl enents j avax. ej b. Sessi onBean {

public void ejbQeate() {

/1 Do not hi ng.
}
public Sring [] listGabins(int shiplD int bedCunt) {
try {
javax. namng. Gntext jndi Gntext = new Initia Gntext();
(oj ect obj =

j ndi Gont ext . | ookup("j ava: conp/ env/ ej b/ Cabi nHone") ;

Cabi nHoneRenot e hone = (Gabi nHoneRenot €)
Por t abl eRenot e(hj ect . nar r ow(obj , Cabi nHoneRenot e. cl ass) ;

Vector vect = new \Vector();
for (int i =1; ; i+ {
Integer pk = new I nteger(i);
Cabi nRenot e cabi n;
try {
cabi n = hone. fi ndByPri nar yKey(pk) ;
} catch(j avax. ej b. F nder Exception fe) {
br eak;
}
/1 Check to see if the bed count and ship | D natch.
if (cabin.getShipld() = shiplD &
cabi n. get Bed@unt () == bedGount) {
Sring details =
i +', "+cabi n. get Nane() +*, " +cabi n. get DeckLevel () ;
vect . addH enent (detai |l s);

}

Copyright (c) 2001 O'Reilly & Associates 84

}

Sring [] list = new Sring[vect.size()];
vect . copylnto(list);
return list;

} catch(Exception e) {throw new EJBException(e);}
}

private javax. naning. Gontext getlnitial Gontext()

throws j avax. nani ng. Nani ngExcepti on {
Properties p = new Properties();
[l ... Secify the JIND properties specific to the vendor.
return new j avax. naming. I ni tial Gontext(p);

}

publ i ¢ voi d ej bRenove(){}

public void ej bActivate(){}

publ i c voi d ej bPassi vate(){}

publ i ¢ voi d set Sessi onCont ext (j avax. gj b. Sessi onCnt ext cnt x) {}

}

Examiningthel i st Cabi ns() method in detail, we can address the implementation in pieces, starting with the use
of INDI to locate the Cabi nHonmeRenpt e:

javax. namng. Gntext jndi Gntext = new Initia Gntext();
(bj ect obj = jndi Gontext. | ookup("java: conp/ env/ e b/ Cabi nHone") ;

Cabi nHoneRenot e hone = (Gabi nHoneRenot €)
j avax. rni. Port abl eRenot ehj ect . narrow(obj, Cabi nHoneRenot e. cl ass) ;

Beans are clients to other beans, just like client applications. This means that they must interact with other beansin
the same way that client applications interact with beans. In order for one bean to locate and use another bean, it
must first locate and obtain areference to the bean’s EJB home. Thisisaccomplished using JNDI in exactly the same
way we used JNDI to obtain areferencetothe Cabin EJBintheCl i ent _1 andCl i ent _2 applicationswe
developed earlier.

All beans have adefault INDI context called the environment context, which was discussed alittle in Chapter 3. The
default context exists in the name space (directory) called" j ava: conp/ env" and its subdirectories. When the
bean is deployed, any beans it uses are mapped into the subdirectory " j ava: conp/ env/ ej b", so that bean
references can be obtained at runtime through a simple and consistent use of the INDI default context. We'll come
back to thiswhen we take alook at the deployment descriptor for the Travel Agent EJB below.

In the case of the Cabin and Travel Agent EJBs we are working exclusively with there remote component interfaces.
Asyou learned in Chapter 2, enterprise beans may have remote and/or local component interfaces. However, to keep
things simple with thisfirst set of examples, we are working with only the remote component interfaces— Chapter 5
will explain how this example may have been implemented with local interfaces.

Once the remote EJB home of the Cabin EJB is obtained, we can useit to produce alist of cabinsthat match the
parameters passed. The following code loops through all the Cabin EJBs and produces alist that includes only those
cabins with the ship and bed count specified:

Vector vect = new Vector();

for (int i =1; ; i+ {
Integer pk = new Integer(i);
Gabi nRenot e cabi n;

Copyright (c) 2001 O'Reilly & Associates 85

try {
cabi n = hone. fi ndByPri nar yKey(pk) ;
} catch(j avax. ej b. FH nder Exception fe){
br eak;
}
/] Check to see if the bed count and ship I D natch.
if (cabin.getShipld() = shiplD & cabi n. get BedGunt () = bedCount) {
Sring details =i+","+cabi n. get Nane() +*, " +cabi n. get DeckLevel () ;
vect . addH enent (detai | s);

}

Thismethod simply iterates through all the primary keys, obtaining aremote reference to each Cabin EJB in the
system and checking whether itsshi pl d andbedCount match the parameters passed in. Thef or loop continues
until aFi nder Except i on isthrown, which would probably occur when a primary key is used that isn’t
associated with abean. (Thisisn’t the most robust code possible, but it will do for now.) Following this block of
code, we simply copy the Vect or ’s contentsinto an array and return it to the client.

Whilethisisavery crude approach to locating the right Cabin EJBs—we will define a better method in Chapter 12—it
is adequate for our current purposes. The purpose of this exampleisto illustrate that the workflow associated with
thislisting behavior is not included in the Cabin EJB nor isit embedded in aclient application. Workflow logic,
whether it’s a process like booking areservation or obtaining alist, isplaced in a session bean.

TravelAgent EJB’s Deployment Descriptor

The Travel Agent EJB uses an XML deployment descriptor similar to the one used for the Cabin entity bean. Hereis
the gb-jar.xml file used to deploy the Travel Agent. In Chapter 12, you will learn how to deploy several beansin one
deployment descriptor, but for now the Travel Agent and Cabin EJBs are deployed separately.

EJB 2.0: Deployment Descriptor
<?xnh versi on="1.0"?>

<IDOCTYPE gj b-jar PUBLIC "-//Sun Mcrosystens, |Inc.//DID Enterprise
JavaBeans 2.0//BN' "http://java. sun.conij 2ee/dtds/ejb-jar_2 0.dtd">
<gj b-jar>
<ent er pri se- beans>
<sessi on>
<gj b- nane>Tr avel Agent EJB</ g] b- nane>
<hone>comtitan. travel agent . Tr avel Agent HoneRenot e</ hone>
<renote>comtitan. travel agent. Tr avel Agent Renot e</ r enot e>
<gj b-cl ass>comtitan. travel agent. Tr avel Agent Bean</ €j b- cl ass>
<sessi on-type>S at el ess</ sessi on-type>
<transacti on-type>Cont ai ner </t ransact i on-t ype>
<ej b-ref>
<gj b-r ef - nane>ej b/ Gabi nHone</ ej b-r ef - nane>
<ej b-ref-type>Entity</ g b-ref-type>
<hone>Cabi nHoneRenot e</ hone>
<r enot e>Cabi nRenot e</ r enot e>
<ejb-ref>
<security-identity><use-callers-identity/><security-identity>
</ sessi on>
</ enterpri se- beans>
<assenbl y- descri pt or >

</ assenbl y- descri pt or >

Copyright (c) 2001 O'Reilly & Associates 86

<ejb-jar>

EJB 1.1: Deployment Descriptor
<?xnh versi on="1.0"?>

<IDOCTYPE €j b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 1.1//BN' "http://java. sun.conij 2ee/dtds/ejb-jar_1 1.dtd">
<gjb-jar>
<ent er pri se- beans>
<sessi on>
<gj b- nane>Tr avel Agent EJB</] b- nane>
<honme>comtitan. travel agent . Travel Agent HoneRenot e</ hone>
<renot e>comtitan. travel agent . Travel Agent Renot e</ r enot e>
<gj b-cl ass>comtitan. travel agent. Tr avel Agent Bean</ €j b- cl ass>
<sessi on-type>S at el ess</ sessi on-type>
<transaction-type>ont ai ner </ transacti on-t ype>
<ej b-ref>
<ej b-r ef - nane>ej b/ CGabi nHone</ gj b-r ef - nane>
<ej b-ref-type>Entity</ g b-ref-type>
<hone>com ti t an. cabi n. Cabi nHoneRenot e</ hone>
<renot e>comtitan. cabi n. Cabi nRenot e</ r enot e>
<ejb-ref>
</ sessi on>
</ enterpri se- beans>
<assenbl y- descri pt or >

</ assenbl y- descri pt or >
<ejb-jar>

EJB 2.0and 1.1: Definingthe XML elements

The only significant difference between the 2.0 and 1.1 deployment descriptors is the name of the DTD and the
additionof a<security-identity>eementinEJB 2.0, which simply propagatesthe caller’ s identity.

Other thanthe <sessi on-t ype> and<ej b- r ef > elements, the XML deployment descriptor should make sense
since it uses many of the same elements asthe Cabin EJB’s. The<sessi on-t ype> dement canbe St at ef ul or
St at el ess toindicate which type of session beanisused. Inthis case we are defining a statel ess session bean.

The<ej b-r ef > element isused at deployment time to map the bean references used within the Travel Agent EJB.
Inthiscase, the<ej b- r ef > element describes the Cabin EJB, which we already deployed. The<ej b-r ef -
nane> element specifies the name that must be used by the Travel Agent EJB to obtain areference to the Cabin
EJB’shome. The<ej b-r ef -t ype> tellsthe container what kind of beanitis, Enti t y or Sessi on. The
<home> and <r enpt e> elements specify the fully qualified interface names of the Cabin’s home and remote bean
interfaces.

When the bean is deployed, the <ej b- r ef > will be mapped to the Cabin EJB in the EJB server. Thisis avendor-
specific process, but the outcome should always be the same. When the Travel Agent doesa JNDI lookup using the
context name" j ava: conp/ env/ ej b/ Cabi nHome" it will obtain aremote reference to the Cabin EJB’s home.
The purpose of the <ej b- r ef > element isto eliminate network specific and implementation specific use of JNDI to
obtain remote bean references. This makes a bean more portable because the network |ocation and INDI service
provider can change without impacting the bean code or even the XML deployment descriptor.

Copyright (c) 2001 O'Reilly & Associates g7

However, asyou learn in Chapter 5, with EJB 2.0 it’ s always preferable to use local references instead of remote
references when beans are access each other with the same server. Local references are specified using the <ej b-
| ocal - r ef > element, which looksjust likethe<ej b- r ef > element except it isfor local references.

Theassenbl y- descri pt or section of the deployment descriptor isthe samefor EJB 2.0 and EJB 1.1.

<assentl y- descri pt or >
<security-rol e>
<descri pti on>
This rol e represents everyone who i s allowed full access
to the Gabin EIB
</ descri pti on>
<r ol e- nane>ever yone</ r ol e- nane>
</security-rol e>

<net hod- per m ssi on>
<r ol e- nane>ever yone</ r ol e- nane>
<net hod>
<gj b- nane>Tr avel Agent EJB</] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

<cont ai ner-transacti on>
<net hod>
<gj b- nane>Tr avel Agent EJB</] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y- descri pt or >
<ejb-jar>

Deploying the Travel Agent EJB

Once the XML deployment descriptor is defined you are ready to place the Travel Agent EJB in itsown JAR file and
deploy it into the EJB server.

To make your Travel Agent EJB availableto aclient application, you need to use the deployment utility or wizard of
your EJB server. The deployment utility reads the JAR file to add the Travel Agent EJB to the EJB server
environment. Unless your EJB server has special requirements, it is unlikely that you will need to change or add any
new attributes to the bean. Y ou will not need to create a database table for this example, since the TravelAgent EJB is
using only the Cabin EJB and is not itself persistent. However, you will need to map the <ej b- r ef > element in the
Travel Agent EJB’ s deployment descriptor to the Cabin EJB. You EJB server’s deployment tool will provide a
mechanismfor doing this. Deploy the Travel Agent EJB and proceed to the next section.

Use the same process to JAR the Travel Agent EJB as was used for the Cabin EJB. We shrink-wrap the Travel Agent
EJB class and its deployment descriptor into a JAR file and save to the com/titan/travelagent directory:

\dev %jar cf cabin.jar conititan/travel agent/*.class META I N €] b-j ar. xnh

F\..\dev>jar cf cabin.jar comtitan\travel agent*.class META- | N\ gj b-j ar. xnm

Y ou might have to create the META-INF directory first, and copy gb-jar.xml into that directory. The Travel Agent
EJB is now complete and ready to be deployed. Next use your EJB containers proprietary toolsto deploy the
Travel Agent EJB into the container system.

Copyright (c) 2001 O'Reilly & Associates 83

Creating a Client Application

To show that our session bean works, we'll create asimple client application that usesit. This client simply produces
alist of cabins assigned to ship 1 with abed count of 3. Itslogic is similar to the client we created earlier to test the
Cabin EJB: it creates a context for looking up Tr avel Agent HomeRenot e, creates a Travel Agent EJB, and
invokesl| i st Cabi ns() togeneratealist of the cabins available. Here' s the code:

inport comtitan. cabi n. Gabi nHoneRenot e;
i nport comtitan. cabi n. Gabi nRenot €;

inport javax.naming.Initial Gontext;
inport j avax. nam ng. Cont ext ;

i nport j avax. nam ng. Nam ngExcept i on;
inport javax.ejb. O eat eException;
inport java. rm. Renot eException;
inport java. util.Properties;

i nport javax.rni. Portabl eRenot ej ect ;

public class Aient_3 {
public staticint SHPID=1;
public static int BED GONT = 3;

public static void nain(Sring [] args) {

try {
Gontext jndi Gntext = getlnitia Gontext();

(pj ect ref = jndi Gontext. | ookup("Travel Agent Hone");
Travel Agent HoneRenot e hone = (Tr avel Agent HoneRenot e)
Por t abl eRenot e(hj ect . narrow(r ef , Tr avel Agent HoneRenot e. cl ass) ;

Travel Agent Renot e travel Agent = hone. create();

/I Get alist of all cabins on ship 1 with a bed count of 3.
Sring list [] = travel Agent.|istCabi ns(SH P_| D BED GONT);

for(int i =0; i <list.length; i++H{
Systemout. printin(list[i]);
}

} catch(java. rm. Renot eException re){re.printSackTrace();}
catch(Throwabl e t){t. printSackTrace();}
}
static public Context getlnitia Gontext() throws Exception {
Properties p = new Properties();
/1 ... Specify the JND properties specific to the vendor.
return new I nitial Context(p);
}
}

When you have successfully runCl i ent _3, the output should look like this:

1, Master Suite 1
3, uite 101 o1
5 Suite 103 1
7,ite 105 1
9, Quite 107 1
12, Quite 201 ,2

Copyright (c) 2001 O'Reilly & Associates 89

14, Suite 203
16, Suite 205)
18, Suite 207)
20, Suite 209 ,
22, Suite 301 ,
24, Suite 303 ,
26, Suite 305
28, Suite 307
30, Suite 309

WWwwNNDDNN

w

Y ou have now successfully created the first piece of the Travel Agent session bean: a method that obtains alist of
cabins by manipulating the Cabin EJB entity.

= #Exercise 4.2, Develop and Deploy the Travel Agent EIB

Copyright (c) 2001 O'Reilly & Associates 920

5

The Client View

Developing the Cabin EJB and the Travel Agent EJB should have raised your confidence, but it should also have
raised alot of questions. So far, we have glossed over most of the details involved in developing, deploying, and
accessing these enterprise beans. In this chapter and the ones that follow, we will slowly peel away the layers of the
Enterprise JavaBeans onion to expose the details of EJB application devel opment.

This chapter focuses specifically on the client’ s view of an EJB system. The client, whether it isan application or
another enterprise bean, doesn’t work directly with the beansin the EJB system. Instead, clients interact with a set of
interfaces that provide accessto beans and their businesslogic. These interfaces consist of the INDI APl and an EJB
client-side API. INDI allows us to find and access enterprise beans regardless of their location on the network; the
EJB client-side API isthe set of interfaces and classes that a devel oper uses on the client to interact with enterprise
beans.

The best approach to this chapter isto read about a feature of the client view and then try working with some of the
examplesto see the feature in action. Thiswill provide you with hands-on experience and a much clearer
understanding of the concepts. Have fun, experiment, and you’ || be sure to understand the fundamentals.

L ocating Beans with JNDI

In Chapter 4, the client application started by creating anl ni ti al Cont ext , which it then used to get aremote
reference to the homes of the Cabin and TravelAgent EJBs. Thel ni ti al Cont ext ispart of alarger API called the
JavaNaming and Directory Interface (JNDI). We use INDI to look up an EJB home in an EJB server just like you
might use a phone book to find the home number of afriend or business associate.

JNDI isastandard Java optional package that provides auniform API for accessing awide range of services. In this
respect, it is somewhat similar to JDBC, which provides uniform access to different relational databases. Just as JDBC
lets you write code that doesn’t care whether it’ s talking to an Oracle database or a Sybase database, JNDI lets you
write code that can access different directory and naming services, like LDAP, Novell Netware NDS, CORBA Naming
Service, and the naming services provided by EJB servers. EJB servers are required to support INDI by organizing
beansinto adirectory structure and providing aJNDI driver, called aservice provider, for accessing that directory
structure. Using JNDI, an enterprise can organize its beans, services, data, and other resourcesin alarge virtual
directory structure, which can provide avery powerful mechanism for binding together normally disparate systems.

Copyright (c) 2001 O'Reilly & Associates o1

The great thing about INDI isthat itisvirtual and dynamic. JNDI isvirtual because it allows one directory serviceto
be linked to another through simple URLs. The URLsin JNDI are analogousto HTML links. Clicking on alink in
HTML allows a user to load the contents of aweb page. The new web page could be downloaded from the same host
asthe starting page or from a completely different web site—the location of the linked page is transparent to the user.
Likewise, using JNDI, you can drill down through directoriesto files, printers, EJB home objects, and other resources
using linksthat are similar to HTML links. The directories and subdirectories can be located in the same host or can
be physically hosted at completely different locations. The user doesn’t know or care where the directories are
actually located. As a developer or administrator, you can create virtual directories that span avariety of different
services over many different physical locations.

JNDI isdynamic because it allows the INDI drivers (a.k.a. service providers) for specific types of directory services
to be loaded at runtime. A driver maps a specific kind of directory service into the standard JNDI classinterfaces.
Drivers have been created for LDAP, Novell NetWare NDS, Sun Solaris NIS+, CORBA Naming Service, and many
other types of naming and directory services. When alink to adifferent directory service is chosen, the driver for that
type of directory service is automatically |oaded from the directory’ s host, if it is not already resident on the user’s
machine. Automatically downloading JNDI drivers makesit possible for aclient to navigate across arbitrary directory
services without knowing in advance what kinds of servicesitislikely to find.

JNDI allowsthe application client to view the EJB server asaset of directories, like directoriesin acommon
filesystem. After the client application locates and obtains a remote reference to the EJB home using JNDI, the client
can use the EJB home to obtain an EJB object reference to an enterprise bean. In the Travel Agent EJB and the Cabin
EJB, which you worked with in Chapter 4, you used the method get | ni ti al Cont ext () togetaJNDI

I nitial Cont ext object, whichlooked asfollows:

public static Gontext getlnitial Gontext() throws javax. nam ng. Nam ngException {
Properties p = new Properties();
/1 ... Specify the JND properties specific to the vendor.
return new javax. namng. I nitial Gontext (p);

}

Aninitial context isthe starting point for any INDI lookup—it's similar in concept to the root of afilesystem. The
way you create an initial context is peculiar, but not fundamentally difficult. Y ou start with a propertiestable of type
Properti es. Thisisessentially a hash table to which you add various values that determine the kind of initial
context you get.

Of course, as mentioned in Chapter 4, this code will change depending on how your EJB vendor has implemented
JNDI. For WebSphere, get | ni t i al Cont ext () might look something likethis:

public static Gontext getlnitial Gontext()
throws j avax. nam ng. Nami ngExcepti on {

java.util.Properties properties = new java. util.Properties();
properties. put (j avax. nam ng. Gont ext . PROADER WRL, “iiop:///");
properties. put (j avax. naming. Gont ext . | N Tl AL GONTEXT _FACTCRY,

"comibmejs.ns.jndi.Nnitial GontextFactory");
return new I nitial Gontext (properties);

}
For BEA's WebL ogic Server, this method would be coded as:

public static Gontext getlnitial Gontext() throws Exception {
Properties p = new Properties();
p. put (Cont ext . I N TI AL_GONTEXT_FACTCRY,
"webl ogi c.jndi . T3l nitial GontextFactory");
p. put (Context . PROAMDER LR, "t 3://l ocal host : 7001");
return new I nitial Gontext(p);

Copyright (c) 2001 O'Reilly & Associates o2

For amore detailed explanation of INDI, see O’ Rellly’ sJava™ Enterprisein a Nutshell, by David Flanagan, Jim
Farley, William Crawford, and Kris Magnusson.

The Remote Client API

Enterprise bean devel opers are required to provide a bean class, component interfaces, and for entity beans, a
primary key. Of these types, the only the component interfaces and primary key class are visible to the client, while
the bean classis not. The component interfaces and primary key contribute to the client-side APl in EJB. The
methods defined in component interfaces as well as the methods of their supertypes provide the mechanisms that
clients use to interact with an EJB business system.

In EJB 1.1, al clients, whether they are in the same container system or not, must use the Remote Client API, which
means they must use the remote interface and remote home interface and Java RMI isall their interactions. In EJB 2.0,
remote clients must continue to use the Remote Client API, but enterprise beansthat are located in the same EJB
container system have the option of using the Local Client API. The Local Client API provideslocal component
interfaces and avoids the restrictions and overhead of the remote client API.

This section examines in more detail the remote component interfaces and the primary key, as well as other types that
make up EJB’sremote client-side API. Thiswill provide you with abetter understanding of how the remote client-side
API isused and its relationship with the bean class on the EJB server. |nthe next major section, The Local Client
AP, the use of local component interfaces will be examined.

Java RMI-I1OP

Enterprise JavaBeans 2.0 and 1.1 define an EJB’ s remote interfacesin terms of Java RMI-110P, which enforces
compliance with CORBA.. In other words, the underlying protocol used by remote clients to access enterprise beans
can be anything that the vendor wants as long as it supports the types of interfaces and arguments that are
compatible with Java RMI-11OP. EJB 1.1 only required that the wire protocol used by vendors utilize types that would
be compatible with Java RMI-I1OP. In other words, the interface types and values used in remote references had to be
compliant with the types allowed for Java RMI-11OP. This ensured that early Java RMI-11OP adopters were supported
and makes for a seamless transition for other vendors who wanted to use real Java RMI-IIOPin EJB 2.0. In EJB 2.0,
vendor can still offer other Java RMI-110P-compatible protocols, but in addition to any propritary protocols they
support, they must also support the CORBA [10OP 1.2 protocol asdefined inthe CORBA 2.3.1.

To be compliant with Java RMI-110P types, the EJB vendors have to restrict the definition of interfaces and
arguments to types that map nicely to 11OP 1.2. Theserestrictions are really not all that bad, and you probably won't
even notice them while developing your beans, but it’simportant to know what they are. The next few paragraphs
discuss the Java RM I-11OP programming model for both EJB 2.0 and EJB 1.1.

EJB 2.0’slocal component interfaces are not Java RMI interfaces and do not have to support [1OP 1.2 or use types
compliant with the Java RMI-110OP protocol. Local component interfaces are discused after remote component
interfaces.

Java RMI Return Types, Parameters, and Exceptions

The supertypes of the remote home interface and remote interface, j avax. ej b. EJBHome and
j avax. ej b. EJBObj ect , both extendj ava. r m . Renpt e. AsRenpt e interface subtypes, they are expected
to adhere to the Java RM1 specification for Renpt e interfaces.

Parametersand return types

Assubtypes of thej ava. r m . Renot e interface, the remote component interfaces must follow several guidelines,
some of which apply to the return types and parameters that are allowed. To be compatible with Java RMI, the actual

Copyright (c) 2001 O'Reilly & Associates 93

return types and parameter types used inthej ava. r m . Renpt e interfaces must be primitives, St r i ng types,
j ava. rm . Renot e types, or serializable types.

Thereisadifference between declared types, which are checked by the compiler, and actual types, which are
checked by the runtime. The types that may be used in Java RMI are actual types, which are either primitive types,
object typesimplementing (even indirectly) j ava. r mi . Renot e, or object typesimplementing (even indirectly)
java.io. Serializable.Thejava.util.Collection type, for example, which does not explicitly
extendsj ava. i o. Seri al i zabl e, isaperfectly valid return type for aremote finder methods, provided that the
concrete classimplementing Col | ect i on doesimplementj ava. i 0. Seri al i zabl e. So JavaRMI hasno
special rules regarding declared returntypes or parameter types. At runtime, atypethat isnot a

j ava. rm . Renot e typeisassumed to be serializable; if it isnot, an exception isthrown. The actual type passed
cannot be checked by the compiler, it must be checked at the runtime.

Hereisalist of the typesthat can be passed as parameters or returned in Java RMI

?? Primitives: byte, boolean, char, short, int, long, double, float.
?? Javaserializable types: any class that implements or any interface that extendsj ava. i 0. Seri al i zabl e.

?? JavaRMI remote types: any class that implements or any interface that extendsj ava. r m . Renpt e.

Serializable objects are passed by copy (a.k.a. passed by value), not by reference, which means that changesin a
serialized object on one tier are not automatically reflected on the others. Objects that implement Renot e, like
Cust oner Renot e or Cabi nRenot e, are passed as remote references—which isalittle different. A remote
referenceisaRenot e interface implemented by a distributed object stub. When aremote reference is passed asa
parameter or returned from amethod, it isthe stub that is serialized and passed by value, not the object server
remotely referenced by the stub. In the home interface for the Travel Agent EJB, thecr eat e() method takesa
reference to a Customer EJB asitsonly argument.

public interface Travel Agent HoneRenot e ext ends j avax. ej b. EJB-bne {
publ i ¢ Travel Agent Renot e cr eat e(Qust oner Renot e cust oner)
throws Renot eException, O eateBException;

}

Thecust oner argument isaremote reference to a Customer EJB that is passed into thecr eat e() method. When
aremotereference is passed or returned in Enterprise JavaBeans, the EJB object stub is passed by copy. The copy of
the EJB object stub points to the same EJB object asthe original stub. Thisresultsin both the enterprise bean
instance and the client having remote references to the same EJB object. So changes made on the client using the
remote reference will be reflected when the enterprise bean instance uses the same remote reference. Figure 5-1 and
Figure 5-3 show the difference between a serializable object and aremote reference argument in Java RMI.

[FGURE]
Figure5-1: Serializable argumentsin Java RMI

[FIGURE]
Figure5-2: Remote reference argumentsin Java RMI

Exceptions

The Java RMI specification states that every method defined in a Renot e interface must throw a

java.rm . Renot eExcepti on. TheRenpt eExcept i on isused when problems occur with the distributed
object communications, like a network failure or inability to locate the object server. In addition, Renot e interface
types can throw any application-specific exceptions (exceptions defined by the application developer) that are
necessary. The following code shows the remote interface to the Travel Agent EJB discussed in Chapter 2. This
remote interface is similar to the one defined in Chapter 4. Tr avel Agent Renpt e has several remote methods,

Copyright (c) 2001 O'Reilly & Associates oY/

including bookPassage() . ThebookPassage() method canthrow aRenpt eExcepti on (asrequired), in
addition to an application exception, | nconpl et eConver sati onal St at e.

public interface Travel Agent Renot e extends javax. e b. EJB(bj ect {
public void set Quisel 0int cruise)

throws Renot eException, H nder Exception;
public int getQuisel) throws RenoteException;

publ i ¢ voi d set Gabi nl (i nt cabi n)

t hrows Renot eException, H nder Excepti on;
public int getCabinl X) throws RenoteException;
public int getQustonerl () throws RenoteException;

publ i c Ticket bookPassage(C edit CardRenote card, doubl e price)
t hrows Renot eExcept i on, | nconpl et eGonver sati onal S at €;

public Sring [] listAvailabl eGabi ns(int bedCount)
t hrows Renot eException, | nconpl et eConver sati onal S at e

}
Java RMI-I1OP typerestrictions

In addition to the Java RMI programming model discussed earlier, Java RMI-11OP imposes additional restrictions on
the remote interfaces and value types used in the Remote Client API. These restrictions are born of limitations inherit
in the Interface Definition Language (IDL) upon which CORBA [10P 1.2 is based. The exact nature of these
limitations is outside the scope of thisbook. Here are two of the restrictions; the others, like IDL name collisions, are
so rarely encountered that it wouldn’t be constructive to mention them.™®

?? Method overloading isrestricted; aremote interface may not directly extend two or more interfaces that have
methods with the same name (even if their arguments are different). A remote interface may, however, overload
its own methods and extend a remote interface with overloaded method names. Overloading is viewed, here, as
including overriding. Figure 5-3illustrates both of these situations.

[FGURE]
Figure5-3: Overloading rulesfor Remote interface inheritance in Java RMI-I10OP

?? Serializable types must not directly or indirectly implement thej ava. r m . Renpt e interface.

Explicit narrowing using Por tableRemoteObject

In Java RMI-110P remote references must be explicitly narrowed using thej avax. rm . Port a-
bl eRenpt eObj ect . narr ow() method. Thetypical practicein Javawould be to cast the reference to the more
specific type, asfollows:

j avax. nam ng. Gnt ext j ndi Gont ext ;
CGabi nHoneRenot e hone = (Gabi nHoneRenot) j ndi Gont ext . | ookup(" Cabi nHone") ;

Thej avax. nam ng. Cont ext . | ookup() method returnsanObj ect . InEJB 2.0'sLoca Client API, we can
assumethat it islegal to cast the return argument. However, the Remote Client APl must be compatible with Java
RMI-I10P, which means that clients must adhere to limitationsimposed by the IIOP 1.2 protocol. To accommodate all

18 To learn more about CORBA IDL and its mapping to the Java language consult The Common Object Request Broker:
Architecture and Specification and The Java Language to |DL Mapping available at the OMG site (www.omg.org).

Copyright (c) 2001 O'Reilly & Associates 95

languages, many of which have no concept of casting, |1OP 1.2 does not support stubs that implement multiple
interfaces. The stub returned in 11OP implements only the interface specified by the return type of the remote method
that was invoked. If thereturn typeisQhj ect , asistheremote reference returned by thel ookup() method, the
stub will only implement methods specific to the Obj ect type.

Of course, some means for converting aremote reference from a more general type to amore specific typeis essential
in an object-oriented environment, so Java RMI-110P provides amechanism for explicitly narrowing referencesto a
specifictype. Thej avax. rmi . Port abl eRenot eObj ect . narr ow() method abstracts thisnarrowing to
provide narrowing in [1OP aswell as other protocols. Remember while the Remote Client API requires that you use
Java RMI-110P reference and argument types, the wire protocol need not be [1OP 1.2. Other protocols besides 11OP
may also require explicit narrowing. The Por t abl eRenpt eObj ect abstracts the narrowing process so that any
protocol can be used.

To narrow the return argument of the Cont ext . | ookup() method to the appropriate type, we must explicitly ask
for aremote reference that implements the interface we want:

i nport javax.rni. Portabl eRenot ej ect ;
j avax. nam ng. Gnt ext j ndi Gont ext ;
(pj ect ref = jndi Gontext. | ookup("Cabi nHone") ;

CGabi nHoneRenot e hone = (Gabi nHoneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Cabi nHoneRenot e. cl ass) ;

When the nar r ow() method has successfully executed, it returns a stub that implements the Renot e interface
specified. Because the stub is known to implement the correct type, you can then use Java' s native casting to narrow
the stub to the correct Renot e interface. Thenar r ow() method takes two arguments: the remote reference that is
to be narrowed and the type it should be narrowed to. The definition of the nar r ow() method is?*®

package j avax. rn;
publ i c class Portabl eRenot e(hj ect extends j ava. | ang. (pj ect {
public static java.lang. oj ect narrow(java.lang. (oj ect narrowF om

java.lang. d ass narrowlo)
throws java.lang. d assCast Excepti on;

}

Thenar r ow() method only needs to be used when a remote reference to an EJB home or EJB object is returned
without a specific Renpt e interface type. Thisoccursin six circumstances:

?? When aremote EJB home referenceis obtained using thej avax. nam ng. Cont ext . | ookup() method:

(pj ect ref = jndi Gontext. | ookup("Cabi nHone") ;
Cabi nHoneRenot e hone = (CGabi nHoneRenot €)
Por t abl eRenot eChj ect . narrow(ref, Cabi nHoneRenot e. ¢l ass) ;

?? When aremote EJB object referenceis obtained using thej avax. ej b. Handl e. get EJBObj ect ()
method:

Handle handle = // get handl e

(oj ect ref = handl e. get EJBMyj ect () ;

Cabi nRenot e cabi n = (Cabi nRenot €)

Por t abl eRenot e(oj ect . narrow(r ef , Gabi nRenot e. ¢l ass) ;

19 Other methods included in the Por t abl eRenmpt eObj ect class are not important to EJB application developers. They
are intended for Java RMI developers.

Copyright (c) 2001 O'Reilly & Associates %

?? When aremote EJB homereferenceis obtained usingthej avax. ej b. HomeHandl e. get EJBHone()
method:

HoneHandl e honeHdle = ... // get hone handl e
EJB-bne ref = honeHll e. get EJBHbne() ;
Cabi nHoneRenot e hone = (Gabi nHoneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Cabi nHoneRenot e. cl ass) ;

?? When aremote EJB homereferenceis obtained usingthej avax. ej b. EJBMet aDat a. get EJBHone()
method:

EJBMet aDat a net aDat a = honeHl e. get EJBMet aDat a() ;
BEIBbne ref = netalat a. get EJBHne() ;
CGabi nHoneRenot e hone = (Gabi nHoneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Cabi nHoneRenot e. cl ass) ;

?? When aremote EJB object referenceis obtained from a collection returned by aremote home interface finder
method:

Shi pHoneRenot e shi pHone = ... // get ship hone
Enuner ati on enum = shi pHone. fi ndByCapaci t y(2000) ;
vhi | e(enum hasMor eH enent s()) {
(oj ect ref = enumnextH enent () ;
Shi pRenot e shi p = (Shi pRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Shi pRenot e. cl ass);
/1 do sonething wth Ship reference

}
?? When awide remote EJB object type is returned from any business method. Here is a hypothetical example:

/1 Gficer extends G ewnan
Shi pRenot e ship = // get Ship renote reference
O ewnranRenot e crew = shi p. get @ ewnan("Burns”, "John", "1st Lieutenant");
GficerRemote burns = (G fi cer Renot €)
Port abl eRenot eCoj ect . narrow(crew, G fi cer Renot e. cl ass) ;

ThePor t abl eRenpt eCbj ect . nar r ow() method is not required when the remote typeis specified in the
method signature. Thisistrue of thecr eat e() methods and find methods in remote home interfaces that return a
single bean. For example, thecr eat e() andfi ndByPri mar yKey() methods defined in the

Cabi nHonmeRenot e interface (Chapter 4) do not require the use of nar r ow() method because these methods
aready return the correct EJB object type. Business methods that return the correct type do not need to use the
nar r ow() method either, asthe following code illustrates:

/* The Cabi nHbneRenot e. creat e() net hod speci fi es
* the Gabin renote interface as the return type
* so explicit narrowng i s not needed. */

Cabi nRenot e cabi n = cabi nHone. cr eat e(12345) ;

/* The Gabi nHoneRenot e. fi ndByPri nar yKey() nethod speci fies
* the Gabin renote interface as the return type

* so explicit narrowing is not needed.*/

Cabi nRenot e cabi n = cabi nHone. fi ndByPri nar yKey(12345) ;

/* The Shi pRenot e. get G ewnan() busi ness net hod speci fi es

* the Gewran renote interface as the return type

* so explicit narrow ng i s not needed. */

G ewnanRenot e crew = shi p. get G ewnan("Burns", "John", "1st Lieutenant");

Copyright (c) 2001 O'Reilly & Associates 97

The Remote Home I nterface

The remote home interface provides life-cycle operations and metadata for the bean. When you use JINDI to accessa
bean, you obtain aremote reference, or stub, to the bean’ s EJB home, which implements the remote home interface.
Every bean type may have one home interface, which extendsthej avax. ej b. EJBHone interface.

Hereisthe EJBHone interface:

public interface javax. e b. EJB-bne extends java.rn.Renote {
publ i c abstract EJBMetaData get EJBVet aDat a()
throws Renot eExcepti on;
publ i ¢ HoneHandl e get HoneHandl e() /Il newin 1.1
throws Renot eExcepti on;
public abstract void renove(Handl e handl e)
throws Renot eException, RenoveException;
public abstract void renove(ject prinaryKey)
throws Renot eException, RenoveExcepti on;

}
Removing beans

The EJBHone. r enove() methods are responsible for deleting an enterprise bean. The argument is either the

j avax. ej b. Handl e of the enterprise bean or, if it'san entity bean, its primary key. The Handl e will be
discussed in more detail later, but it is essentially a serializable pointer to a specific enterprise bean. When either of
the EJBHore. r enove() methods are invoked, the remote reference to the enterprise bean on the client becomes
invalid: the stub to the enterprise bean that was removed no longer works. If for some reason the enterprise bean
can't beremoved, aRemoveExcept i on isthrown.

Theimpact of the EJBHome. r enove() onthe enterprise bean itself depends on the type of bean. For session
beans, the EJBHomne. r enove() methods end the session’s service to the client. When EJBHone. r enove() is
invoked, the remote reference to the session beans becomes invalid, and any conversational state maintained by the
session bean islost. The Travel Agent EJB you created in Chapter 4 is stateless, so no conversational state exists
(more about thisin Chapter 7).

When ar emove() method isinvoked on anentity bean, the remote reference becomesinvalid, and any datathat it
representsis actually deleted from the database. Thisis afar more destructive activity because once an entity beanis
removed, the datathat it represents no longer exists. The difference between using ar enove() method on a
session bean and usingr enpve() on an entity beanissimilar to the difference between hanging up on atelephone
conversation and actually killing the caller on the other end. Both end the conversation, but the end results are alittle
different.

The following code fragment is taken from the mai n() method of aclient application that is similar to the clientswe
created to exercise the Cabin and Travel Agent EJBs. It shows that you can remove enterprise beans using a primary
key (entity only) or ahandle. Removing an entity bean del etes the entity from the database; removing a session bean
results in the remote reference becoming invalid.

Qontext jndi Gntext = getlnitia Gntext();
/I otainalist of all the cabins for ship 1 wth bed count of 3.

oj ect ref = jndi Gontext. | ookup(” Travel Agent Hone") ;
Travel Agent HoneRenot e agent Hone = (Travel Agent HoneRenot)
Por t abl eRenot e(oj ect . narrow(r ef , Travel Agent HoneRenot e. ¢l ass) ;

Travel Agent Renot e agent = agent Hone. creat e() ;
Sring list [] = agent.listCabins(l,3);
Systemout . printIn("1st List: Before del eting cabi n nunber 30");

Copyright (c) 2001 O'Reilly & Associates o8

for(int i =0; i <list.length; i++H{
Systemout. printIn(list[i]);
}

// btain the hone and renove cabin 30. Rerun the sane cabin |ist.

ref = jndi Gontext. | ookup("Cabi nHone");
Cabi nHoneRenot e ¢_hone = (Gabi nHoneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Cabi nHoneRenot e. ¢l ass) ;

Integer pk = new I nteger(30);
¢_hone. renove(pk) ;
list = agent.listCbins(1,3);
Systemout. printin("2nd List: After del eting cabi n nunber 30");
for (int i =0; i <list.length; i++) {
Systemout. printIn(list[i]);

}

First, the application creates alist of cabins, including the cabin with the primary key 30. Then it removes the Cabin
EJB with this primary key and creates the list again. The second time the iteration is performed, cabin 30 will not
listed. Because it was removed, thel i st Cabi n() method was unable to find a cabin with a primary key equal to
30, so it stopped making the list. The bean, including its data, is no longer in the database.

Y our output should look something like the following:

Ist List: Before del eting cabi n nunber 30
1, Master SQuite 1

3, ite 101 ,
5 Suite 103 ,
7,uite 105 ,
9, Quite 107 ,
12, Suite 201 2
14, Suite 203 2
16, Suite 205 , 2
18, Suite 207 , 2
20, Suite 209 , 2
22,ite 301 ,
24, uite 303 ,
26, uite 305 ,
28, uite 307)
30, Suite 309 , 3

2nd List: After del eting cabin nunber 30
1, Master SQuite ,
3, ite 101 ,
5 Suite 103 ,
7,uite 105 ,
9, Quite 107 ,
12, Suite 201

14, Suite 203

16, Suite 205

18, Suite 207

20, Suite 209

22,ite 301

24, Uite 303

26, uite 305

28, uite 307

3
3
3
3

- N
WWWWRNRNNNN

Copyright (c) 2001 O'Reilly & Associates 99

Bean metadata

EJBHone. get EJBMet aDat a() returnsaninstanceof j avax. ej b. EJBMet aDat a that describes the remote
home interface, remote interface, and primary key classes, plus whether the enterprise bean is a session or entity
bean®. Thistype of metadatais valuable to Javatoolslike IDEs that have wizards or other mechanisms for interacting
with an enteprise bean from aclient’ s perspective. A tool could, for example, use the class definitions provided by
the EJBMet aDat a with Javareflection to create an environment where deployed enterprise beans can be “wired”
together by developers. Of course, information such asthe JINDI names and URL s of the enterprise beansis also
needed.

Most application developers rarely use the EJBMet aDat a. Knowing that it’s there, however, is valuable when you
need to create automatic code generators or some other automatic facility. In those cases, familiarity with the
Reflection APl is necessary ”* The following code shows the interface definition for EJBMet aDat a. Any class that
implements the EJBMet aDat a interface must be serializable; it cannot be a stub to adistributed object. This allows
IDEs and other toolsto save the EJBMet aDat a for later use.

public interface javax. e b. EJBvet abat a {
publ i c abstract EJB-bne get EJB-bne();
public abstract dass getHonel nterfaced ass();
public abstract dass getPrinaryKeyd ass();
public abstract dass get Renot el nterfaced ass();
publ i c abstract bool ean i sSession();

}

The following code shows how the EJBMet aDat a for the Cabin EJB could be used to get more information about
the enterprise bean. Notice that there is no way to get the bean class using the EJBMet aDat a; the bean classis not
part of the client API and therefore doesn’t belong to the metadata.

Gontext jndi Gontext = getlnitial Gontext();

(oj ect ref = jndi Gontext. | ookup(" Cabi nHong") ;
Cabi nHoneRenot e ¢_hone = (Gabi nHoneRenot €)
Port abl eRenot e(hj ect . narrow(ref, Gabi nHoneRenot e. ¢l ass) ;

EJB\et aDat a neta = ¢_hone. get EJBMet aDat a() ;

Systemout . print| n(net a. get Honel nt er f aced ass() . get Nane()) ;
Systemout . print| n(net a. get Renot el nt er f aced ass() . get Nang()) ;
Systemout. println(neta. get Pri nar yKeyd ass() . get Nane()) ;
Systemout. println(neta.isSession());

This application creates output like the following:

comtitan. cabi n. Gabi nHone
comtitan. cabi n. Gabi n
comtitan. cabi n. Cabi nPK
fal se

In addition to providing the class types of the enterprise bean, the EJBMVet aDat a also makes available the remote
EJB home for the bean. By obtaining the remote EJB home from the EJBMet aDat a, we can obtain referencesto the
remote EJB object and perform other functions. In the following code, we use the EJBMVet aDat a to get the primary

2 Message-driven beansin EJB 2.0 don’t have component interfaces and can't be accessed by Java RM I-11OP.

21 The Reflection API is outside the scope of this book, but it is covered in Java™ in a Nutshell, by David Flanagan
(O’ Relilly).

Copyright (c) 2001 O'Reilly & Associates 100

key class, create akey instance, obtain the remote EJB home, and from it, get aremote reference to the EJB object for
aspecific cabin entity:

A ass prinkeyType = neta. get Pri nar yKeyd ass() ;
| f (prinket Type i nstanceof java.lang.|nteger){
Integer pk = new I nteger(1);

pj ect ref = neta. get EJB-bne() ;
Cabi nHoneRenot e ¢_hone2 = (Gabi nHoneRenot €)
Por t abl eRenot e(j ect . narrow(r ef , Cabi nHoneRenot e. ¢l ass) ;

Cabi nRenot e cabi n = ¢_hong2. fi ndByPri nar yKey(pk) ;
Systemout . println(cabi n. get Nane()) ;

}
TheHomeHandle

EJB 1.1 provides anew object called aHonmeHandl e, which is accessed by calling the

EJBHone. get HoneHandl e() method. This method returnsaj avax. ej b. HoneHand! e object that provides
aserializable reference to an enterprise bean’ s remote home. The HomeHand| e allows aremote home reference to be
stored and used later. It issimilar tothej avax. ej b. Handl e and isdiscussed in more detail alittle |ater.

Creating and finding beans

In addition to the standardj avax. ej b. EJBHonme methodsthat all remote home interfacesinherit, remote home
interfaces also include special create and find methods for the bean. We have already talked about create and find
methods, but alittle review will solidify your understanding of the remote home interface’ s role in the Remote Client
API. The following code shows the remote home interface defined for the Cabin EJB:

public interface Cabi ntbneRenot e ext ends j avax. e b. EJBHone {
publ i ¢ CGabi nRenot e creat e(l nteger id)
throws QO eat eException, RenoteException;

publ i ¢ CGabi nRenot e fi ndByPri nar yKey(I nteger pk)
throws H nder Exception, RenoteException;

}

Create methodsthrow a Cr eat eExcept i on if something goeswrong during the creation process; find methods
throw aFi nder Except i on if the requested bean can’t be located. Since these methods are defined in an interface
that subclasses Renot e, they must also declare that they throw Renpt eExcept i on.

The create and find methods are specific to the enterprisebean, so it is up to the bean devel oper to define the
appropriate create and find methods in the remote home interface. Cabi nHonmeRenot e currently has only one
create method that creates a cabin with aspecified ID and afind method that looks up an enterprise bean given its
primary key, but it’'s easy to imagine methods that would create and find a cabin with particular properties—for
example, a cabin with three beds, or adeluxe cabin with blue wallpaper.

Only entity beans have find methods; session beans do not. Entity beans represent unique identifiable datawithin a
database and therefore can be found. Session beans, on the other hand, do not represent data: they are created to
serve aclient application and are not persistent, so thereis nothing to find. A find method for a session bean would
be meaningless.

In EJB 2.0, the create methods were expanded so that a method name could be used as suffix. In other words, all
create methods may taketheform cr eat e<SUFFI X>() . For example, the Customer EJB might define aremote
home interface with several create methods, each of which take a different String type parameters, but have different
methods hames.

|pub| ic interface QustonertHbne extends javax. e b. EIB-bne { |

Copyright (c) 2001 O'Reilly & Associates 101

publ i ¢ Qust oner Renot e creat eWt hSSN(I nt eger i d,
Sring social SecurityNunber)
throws Q eat eException, RenoteException;

publ i ¢ Qust oner Renot e creat eWt hPl NI nt eger per sonal | dN\ubner)
throws Q eat eException, RenoteException;

publ i ¢ Qust oner Renot e creat eWt hBLN | nt eger i d,
Sring busi nessLi censeNunier)
throws QO eat eException, RenoteException;

publ i c Qustoner findByPrinaryKey(lnteger id)
throws H nder Exception, RenoteException;

}

While the use of a suffix in the create method namesin EJB 2.0 isallowed it isnot required. EJB 1.1 doesn’t support
the use of suffixesin create method names.

The create and find methods defined in the remote home interfaces are straightforward and can be easily employed
by the client. The create methods on the home interface have to match theej bCr eat e() methods on the bean
class.create() andej bCreat e() match when they have the same parameters, when the arguments are of
same type and in the same order, and when their method names are the same.

Thisway, when aclient calls the create method on the home interface, the call can be del egated to the corresponding
ej bCr eat e() method on the bean instance. The find methodsin the home interface work similarly for bean-
managed entitiesin EJB 2.0and 1.1. Every f i nd<SUFFI X>() method in the home interface must correspond to an
ej bFi nd<SUFFI X>() method in the bean itself. Container-managed entities do not implementej bFi nd()
methods in the bean class; the EJB container supports find methods automatically. Y ou will discover more about how
toimplement theebj Cr eat e() andej bFi nd() methodsin the beanin Chapters 6 and 8.

The Remote Interface

The business methods of an enterprise bean can be defined by the remote interface provided by the enterprise bean
developer. Thej avax. ej b. EJBObj ect interface, which extendsthej ava. r mi . Renot e interface, isthe base
classfor all remote interfaces.
Thefollowing codeisthe remote interface for the Travel Agent bean that we developed in Chapter 4:

public interface Travel Agent Renote extends javax. e b. EJBOyj ect {

public Sring [] listGabins(int shiplD int bedCunt)
t hrows Renot eExcepti on;

}

Figure 5-7 showsthe Tr avel Agent Renot e interface' sinheritance hierarchy.

[FIGURE see modified figure 5-4]
Figure 5-4. Enterprise bean interface inheritance hierarchy

Remote interfaces are focused on the business problem and do not include methods for system-level operations such
as persistence, security, concurrency, or transactions. System-level operations are handled by the EJB server, which
relievesthe client developer of many responsibilities. All remote interface methods for beans must throw, at the very
least, aj ava. rm . Renot eExcept i on, which identifies problems with distributed communications. In addition,
methods in the remote interface can throw as many custom exceptions as needed to indicate abnormal business-

Copyright (c) 2001 O'Reilly & Associates 102

related conditions or errors in executing the business method. Y ou will learn more about defining custom exceptions
in Chapters 12 and 14.

= #Exercise 5.1, The remote component interfaces

EJBODbject, Handle, and Primary Key

All remote interfaces extend thej avax. ej b. EJBObj ect interface, which provides a set of utility methods and
return types. These methods and return types are valuable in managing the client’ s interactions with beans. Here is
the definition for the EJBObj ect interface:

public interface javax.ej b. EJBbj ect extends java.rni.Renote {
public abstract EIB-bne get EJBHne()
t hrows Renot eExcept i on;
publ i c abstract Handl e get Handl e()
t hrows Renot eExcepti on;
public abstract (bject getPrinaryKey()
t hrows Renot eExcepti on;
publ i c abstract bool ean isldentical (EJBODj ect obj)
t hrows Renot eExcepti on;
public abstract void renove()
t hrows Renot eException, RenoveExcepti on;

}

When the client obtains areference to the remote interface, it is actually obtaining aremote reference to an EJB
object. The EJB object implements the remote interface by delegating business method calls to the bean class; it
providesits own implementations for the EJBCObj ect methods. These methods return information about the
corresponding bean instance on the server. As discussed in Chapter 2, the EJB object is automatically generated
when deploying the bean in the EJB server, so the bean developer doesn’t need to writean EJBObj ect
implementation.

Getting the EJBHome

The EJBObj ect . get EJBHonme() method returns aremote reference to the EJB home for the bean. The remote
referenceisreturned asaj avax. ej b. EJBHone object, which can be narrowed to the specific enterprise bean’s
remote home interface. This method is useful when an EJB object has left the scope of the remote EJB home that
manufactured it. Because remote references can be passed as references and returned from methods, like any other
Java object on the remote client, aremote reference can quickly find itself in a completely different part of the
application from its remote home. The following code is contrived, but it illustrates how aremote reference can move
out of the scope of its home and how get EJBHome() can be used to get a new reference to the EJB home at any
time:

public static void nain(Sring [] args) {
try {
Qontext jndi Gntext = getlnitia Gntext();
(oj ect ref = jndi Gontext. | ookup("Travel Agent HoneRenot €") ;
Travel Agent HoneRenot e hone = (Tr avel Agent HoneRenot e)
Por t abl eRenot e(hj ect . narrow(r ef , Tr avel Agent HoneRenot e. cl ass) ;

/1 Get arenote reference to the bean (EIB object).
Travel Agent Renot e agent = hone. create();

/1 Pass the renote reference to sone net hod.

get TheEJBHbone(agent) ;

} catch (java.rni.RenoteException re){re.print SackTrace();}
catch (Throwabl e t){t. printSackTrace();}

Copyright (c) 2001 O'Reilly & Associates 103

}

public static void get TheE)B-bne(Tr avel Agent Renot e agent)
t hrows Renot eException {

/1 The hone interface is out of scope in this nethod,
/1 so it nust be obtained fromthe EIB object.
/1 BB 1.0: Wse native cast instead of narrow()
(oj ect ref = agent. get EJB-bne() ;
Travel Agent HoneRenot e hone = (Tr avel Agent HoneRenot e)
Por t abl eRenot eChj ect . narrow(r ef , Travel Agent HoneRenot e. cl ass) ;
/1 Do sonething useful with the hone interface.

}
Primary key

EJBObj ect . get Pri mar yKey() returnsthe primary key for an entity bean. This method is only supported by
EJB objects that represent entity beans. Entity beans represent specific data that can be identified using this primary
key. Session beans represent tasks or processes, not data, so a primary key would be meaningless. To better
understand the nature of a primary key, we need to look beyond the boundaries of the client’ s view into the EJB
container’s layer, which was introduced in Chapters 2 and 3.

The EJB container is responsible for persistence of the entity beans, but the exact mechanism for persistenceis up to
the vendor. In order to locate an instance of abean in a persistent store, the data that makes up the entity must be
mapped to some kind of unique key. Inrelational databases, datais uniquely identified by one or more column values
that can be combined to form a primary key. In an object-oriented database, the key wraps an abject ID (OID) or some
kind of database pointer. Regardless of the mechanism—which isn’t really relevant from the client’ s perspective—the
unique key for an entity bean’s data isencapsulated by the primary key, which is returned by the

EJBObj ect . get Pri mar yKey() method.

The primary key can be used to obtain remote references to entity beansusing thef i ndByPri mar yKey()
method on the remote home interface. From the client’ s perspective, the primary key object can be used to identify a
unique entity bean. Understanding the context of aprimary key’s uniquenessisimportant, as the following code
shows:

Qontext jndi Gntext = getlnitial Context()

(oj ect ref = jndi Gontext. | ookup(" Cabi nHoneRenot e") ;
Cabi nHoneRenot e hone = (Gabi nHoneRenot €)
Por t abl eRenot e(hj ect . nar row(r ef , Gabi nHoneRenot e. ¢l ass) ;

Cabin cabin 1 = hone. creat e(101);
Integer pk = (Integer)cabin_1.getPrinaryKey();
Gabi n cabi n_2 = hone. fi ndByPri nar yKey(pk) ;

In this code, the client creates a Cabin EJB, retrievesits primary key and then uses the key to get a new referenceto
the same Cabin EJB. Thus, we have two variables, cabi n_1 and cabi n_2, which are remote referencesto EJB
objects. These both reference the same Cabin bean, with the same underlying data, because they have the same

primary key.

The primary key must be used for the correct bean in the correct container. While this seemsfairly obvious, the
primary key’ s relationship to a specific container and home interface isimportant. The primary key can only be
guaranteed to return the same entity if it is used within the container that produced the key. As an example, imagine
that athird-party vendor sellsthe Cabin EJB as a product. The vendor sells the Cabin EJB to both Titan and to a
competitor. Both companies deploy the entity bean using their own relational databases with their own data. An

I nt eger primary key with value of 20 in Titan’s EJB system will not map to the same Cabin entity in the
competitor’s EJB system. Both cruise companies have a Cabin bean with a primary key equal to 20, but they represent

Copyright (c) 2001 O'Reilly & Associates 104

different cabins for different ships. The Cabin EJBs come from different EJB containers, so their primary keys are not
equivalent. Every entity EJB object has aunique identity with its EJB home. If two EJB objects have the same home
and same primary key, they are considered identical.

A primary key mustimplement thej ava. i 0. Seri al i zabl e interface. Thismeansthat the primary key,
regardless of its form, can be obtained from an EJB object, stored on the client using the Java serialization
mechanism, and deserialized when needed. When aprimary key is deserialized, it can be used to obtain aremote
reference to that entity usingf i ndByPr i mar yKey (), provided that the key is used on the right remote home
interface and container. Preserving the primary key using serialization might be useful if the client application needs
to access specific entity beans at alater date.

Thefollowing code shows aprimary key that is serialized and then deserialized to reobtain aremote reference to the
same bean:

// btain cabin 101 and set its nane.
Qntext jndi Gontext = getlnitial Gntext();

(oj ect ref = jndi Gontext .| ookup(" Cabi nHong") ;
Cabi nHoneRenot e hone = (Cabi nHoneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Gabi nHoneRenot e. cl ass) ;

Integer pk 1 = new I nteger(101);
Cabin cabin_ 1 = hone. fi ndByPri nar yKey(pk_1);
cabin 1. setNane("Presidential Suite");

/] Serialize the prinmary key for cabin 101 to a file.
FleQitputSreamfos = new FH | eQut put S rean{" pk101. ser");
(bj ect Qut put St ream out S ream = new (bj ect Qut put S reang f os) ;
out treamwiteQject (pk_1);

out Xreamflush();

out S reamcl ose();

pk_ 1 =null;

/1 Deserialize the prinary key for cabin 101.
FlelnputSreamfis = new F | el nput S reang " pk101. ser");
(oj ect I nput S reaminSream= new (oj ect | nput Sreanffis);
Integer pk_2 = (Integer)i nSreamread(j ect();
inSreamcl ose();

/!l Re-obtain a renote reference to cabin 101 and read its nane.
Gabi n cabi n_2 = hone. fi ndByPri nar yKey(pk_2);
Systemout . println(cabi n_2. get Nane()) ;

Comparing beansfor identity

TheEJBObj ect . i sl denti cal () method comparestwo EJB object remote references. It's worth considering
why Obj ect . equal s() isn't sufficient for comparing EJB objects. An EJB object is adistributed object stub and
therefore contains alot of networking and other state. As aresult, references to two EJB objects may be unequal,
even if they both represent the same unique bean. The EJBObj ect . i sl denti cal () method returnst r ue if
two EJB object references represent the same bean, even if the EJB object stubs are different object instances.

The following code shows how this might work. It starts by creating two remote references to the Travel Agent EJB.
These remote EJB objects both refer to the same type of enterprise bean; comparing them withi sl denti cal ()
returnst r ue. Thetwo Travel Agent EJBs were created separately, but because they are stateless they are
considered to be equivalent. If Travel Agent EJB had been a stateful bean (which it becomesin Chapter 12) the out-
come would have been very different. Comparing two stateful beansin this manner will result inf al se because
stateful beans have conversational state, which makes them unique. When we use

Copyright (c) 2001 O'Reilly & Associates 105

Cabi nHone. fi ndByPri mar yKey() tolocate two EJB objects that refer to the same Cabin entity bean, we
know the entity beans are identical, because we used the same primary key. Inthiscase, i sl denti cal () aso
returnst r ue because both remote EJB object references point to the same entity.

Qontext ctx = getlnitial Gntext();

(oj ect ref = ctx. | ookup("Travel Agent HoneRenot €") ;
Travel Agent HoneRenot e agent Hone =(Tr avel Agent HoneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Travel Agent HbneRenot e. cl ass) ;

Travel Agent Renot e agent _1 = agent Hone. creat e() ;
Travel Agent Renot e agent _2 = agent Hone. creat e() ;

bool ean x = agent _1.isldentical (agent_2);

/1 x wll equal true; the two EIB objects are equal .

ref = ctx. | ookup(" Cabi nHoneRenot ") ;
Cabi nHoneRenot e ¢_hone = (Cabi nHoneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Cabi nHoneRenot e. cl ass) ;

Integer pk 1 = new I nteger(101);

Integer pk_2 = new I nteger(101);

Gabi n cabin_ 1 = c_hone. fi ndByPri naryKey(pk_1);

Gabi n cabin_2 = c_hone. fi ndByPri nar yKey(pk_2);

x = cabin_l.isldentical (cabin 2);

/1 x wll equal true; the two EIB objects are equal .

The Integer primary key used in the Cabin bean is simple. More complex custom defined primary keys require usto
override Obj ect . equal s() and Obj ect . hashCode() inorder fortheEJBObj ect . i sl dentical ()
method to work. Chapter 9 discusses this the development of more complex custom primary keys, which are called
compound primary keys.

Removing beans

The EJBObj ect . renpve() method is used to remove the session or entity bean. The impact of this method is
the same asthe EJBHon®e. r enove() method discussed previously. For session beans, r enove() causesthe
session to be released and the remote EJB object reference to becomeinvalid. For entity beans, the actual entity data
is deleted from the database and the remote reference becomesinvalid. The following code showsthe

EJBObj ect . renove() methodinuse:

Gontext jndi Gntext = getlnitia Gntext();

oj ect ref = jndi Gontext. | ookup(" Cabi nHone") ;
Cabi nHoneRenot e ¢_hone = (Cabi nHoneRenot €)
Por t abl eRenot e(hj ect . nar row(r ef , Gabi nHoneRenot e. ¢l ass) ;

Integer pk = new I nteger(101);
Cabi nRenot e cabi n = c¢_hone. fi ndByP i nar yKey(pk) ;
cabi n. renove();

Ther enove() method throwsaRenoveExcept i on if for some reason the reference can't be deleted.

Theenterprise bean handle

TheEJBObj ect . get Handl e() method returnsaj avax. ej b. Handl e object. The Handl e isaserializable
reference to the remote EJB object. This meansthat the client can savethe Hand| e object using Java serialization
and then deserialize it to reobtain areference to the same remote EJB object. Thisis similar to serializing and reusing

Copyright (c) 2001 O'Reilly & Associates 106

the primary key. The Handl e allows usto recreate aremote EJB object reference that points to the same type of
session bean or the same unique entity bean that the handle came from.

Hereistheinterface definition of the Handl e:

public interface javax. e b. Handl e {
public abstract EIBObj ect get EIBOnj ect ()
throws Renot eExcepti on;

}

The Hand! e interface specifies only one method, get EJBObj ect () . Calling this method returns the remote EJB
object from which the handle was created. Once you’ ve gotten the object back, you can narrow it to the appropriate
remote interface type. The following code shows how to serialize and deserialize the EB Handl e onaclient:

/1 btain cabin 100.
Gontext jndi Gntext = getlnitia Gntext();

oj ect ref = jndi Gontext. | ookup(" Cabi nHone") ;
Cabi nHoneRenot e hone = (Cabi nHoneRenot €)
Por t abl eRenot e(hj ect . nar row(r ef , Cabi nHoneRenot e. cl ass) ;

Integer pk_1 = new I nteger(101);
Cabi nRenot e cabin_1 = hone. fi ndByPri narykey(pk_1);

/1 Serialize the Handle for cabin 100 to a file.

Handl e handl e = cabin_1. get Handl e() ;

FleQitputSEreamfos = new F | eQut put &t reang"handl e100. ser");
(oj ect Qut put St ream out Sream = new (bj ect Qut put Sreangfos);
out Sreamwitedject (handl e);

out Streamfl ush();

fos. cl ose();

handl e = nul | ;

/] Deserialize the Handl e for cabin 100.

Flelnput Sreamfis = new F | el nput S reang"handl €100. ser");
(pj ect | nput SreaminSream= new (oj ect | nput S reanfis);
handl e = (Handl)i nS reamreadj ect ();

fis.close();

/!l Reobtain a remote reference to cabin 100 and read its nane.
ref = handl e. get EJBOyj ect () ;
Cabi nRenot e cabin 2 = (Cabi nRenot €)

Por t abl eRenot e(hj ect . narrow(ref, Cabi nRenot e. ¢l ass);

i f(cabin_l1.isldentical (cabin 2))
/1 this will always be true.

At first glance, the Handl e and the primary key appear to do the same thing, but intruth they are very different.
Using the primary key requires you to have the correct remote EJB home—if you no longer have areference to the
EJB remote home, you must ook up the container using JNDI and get a new home. Only then can you call
findByPri maryKey() tolocatethe actual enterprise bean. The following code shows how this might work:

/I otain the prinary key froman input stream
Integer prinarykey = (Integer)inSreamreadject();

/1 The JND APl is used to get aroot directory or initial context.
javax. namng. Gntext ctx = new javax. nanming.lnitial Gntext();

Copyright (c) 2001 O'Reilly & Associates 107

/1 Wsing the initial context, obtain the EJB-bne for the Cabin bean.

(oj ect ref = ctx. | ookup(" Cabi nHone");
Cabi nHoneRenot e hone = (Gabi nHoneRenot €)
Por t abl eRenot e(hj ect . nar row(r ef , Gabi nHoneRenot e. ¢l ass) ;

/1 btain a reference to an EIB object that represents the entity instance.
Cabi nRenot e cabi n_2 = Cabi ntone. fi ndByPri nar yKey(pri nar yKey) ;

TheHandl e object iseasier to use because it encapsul ates the detail s of doing a INDI lookup on the container.
With aHandl e, the correct EJB object can be obtained in one method call, Handl e. get EJBObj ect (), rather
than using the three method calls required to look up the context, get the home, and find the actual bean.

Furthermore, while the primary key can be used to obtain remote references to unique entity beans, it is not available
for session beans; a handle can be used with either type of enterprise bean. This makes using a handle more
consistent across bean types. Consistency is, of course, good initsown right, but it isn’t the whole story. Normally,
we think of session beans as not having identifiable instances because they exist for only thelife of the client
session, but thisis not exactly true. We have mentioned (but not yet shown) stateful session beans, which retain
state information between method invocations. With stateful session beans, two instances are not equivalent. A
handle allows you to work with a stateful session bean, deactivate the bean, and then reactivateit at alater time
using the handle.

A client could, for example, be using a stateful session bean to process an order when the process needs to be
interrupted for some reason. Instead of losing all the work performed in the session, a handle can be obtained from
the EJB object and the client application can be closed down. When the user isready to continue the order, the
handle can be used to obtain areference to the stateful session EJB object. Note that this processis not as fault
tolerant as using the handle or primary key of an entity object. If the EJB server goes down or crashes, the stateful
session bean will be lost and the handle will be usdess. It’ s also possible for the session bean to time out, which
would cause the container to remove it from service so that it isno longer available to the client.

Changes to the container technology can invalidate both handles and primary keys. If you think your container
technology might change, be careful to take this limitation into account. Primary keys obtain EJB objects by
providing unigue identification of instancesin persistent data stores. A change in the persistence mechanism,
however, can impact the integrity of the key.

HomeHandle

Thej avax. ej b. HomeHandl e issimilar in purposetoj avax. ej b. Handl e. Just asthe Handl e isused to
store and retrieve references to remote EJB objects, the HomeHand| e is used to store and retrieve references to
remote EJB homes. In other words, the HoneHand| e can be stored and later used to access an EJB home' s remote
reference the same way that aHandl e can be serialized and later used to access an EJB object’ s remote reference.
The following code shows how the HomeHand! e can be obtained, serialized, and used.

/1 btain cabin 100.
Gontext jndi Gontext = getlnitial Gntext();

(oj ect ref = jndi Gontext. | ookup(" Cabi nHong") ;
Cabi nHoneRenot e hone = (Cabi nHoneRenot €)
Por t abl eRenot e(hj ect . nar row(r ef , Gabi nHoneRenot e. ¢l ass) ;

/] Serialize the HoneHandl e for the cabin bean.

HoneHandl e honeHandl e = hone. get HoneHandl e() ;
FleQutputSreamfos = new FH | eQut put S rean"handl e. ser");
oj ect Qut put S ream out S ream = new (o ect Qut put S rean{f os);
out Sreamw i t e(yj ect (honeHandl e) ;

out Sreamfl ush();

Copyright (c) 2001 O'Reilly & Associates 108

fos. close();
honeHandl e = nul | ;

/] Deserialize the toneHandl e for the cabin bean.
FlelnputSreamfis = new F | el nput S reang"handl e. ser");
(oj ect I nput S reaminSream= new (oj ect | nput S rean{fis);
honeHandl e = (HoneHandl e) i nS ream r ead(j ect () ;
fis.close();

EJB-bne hone = honeHandl e. get EJBHone() ;
Cabi nHoneRenot e hone2 = (Cabi nHoneRenot)
Por t abl eRenot eChj ect . nar r ow(hone, Cabi nHoneRenot e. ¢l ass) ;

InsdetheHandle

Different vendors define their concrete implementations of the EJB handle differently. However, thinking about a
hypothetical implementation of handleswill give you a better understanding of how they work. In this example, we
define the implementation of a handle for an entity bean. Our implementation encapsul ates the INDI lookup and use
of the home'sf i ndByPri nar yKey() method so that any change that invalidates the key invalidates preserved
handles that depend on that key. Here' s the code for our hypothetical implementation of aHandl e:

package comtitan. cabin;

inport javax.naming.Initial Gontext;
inport j avax. nam ng. Cont ext ;

i nport j avax. nam ng. Nam ngExcept i on;
inport javax.ej b. EJBMyj ect;

i nport javax. ej b. Handl €;

inport java.rm. Renot eException;
inport java.util.Properties;

i nport javax. rni. Portabl eRenot ebj ect

public class Vendor X Cabi nHandl e
inpl enents javax.ej b. Handl e, java.io. Serializable {

private Integer prinary key;
private Sring hone_nane;
private Properties jndi _properties;

publ i ¢ Vendor X Gabi nHandl e(1 nteger pk, String hn, Properties p) {
prinary_key = pk;
hone_nane = hn;
jndi _properties = p;

}

publ i ¢ EJBOyj ect get EJIBMj ect () throws Renot eException {

try {
Qntext ctx = new | nitial Gntext(jnd _properties);

(pj ect ref = ctx. | ookup(hone_nane) ;
Cabi nHoneRenot e hone =(Gabi nHoneRenot €)
Por t abl eRenot e(oj ect . narrow(r ef , Cabi nHoneRenot e. ¢l ass) ;

return hone. fi ndByPri naryKey(prinary_key);
} catch (javax. g b. A nder Exception fe) {
t hr ow new Renot eExcepti on(" Cannot | ocate EIB obj ect”, fe);
} catch (j avax. nani ng. Nami ngException ne) {
t hr ow new Renot eExcepti on(" Cannot | ocat e EJB obj ect”, ne);

Copyright (c) 2001 O'Reilly & Associates 109

}

The Handl e isless stable than the primary key because it relies on the networking configuration and naming—the
| P address of the EJB server and the INDI name of the bean’ s home—to remain stable. If the EJB server’s network
address changes or the name used to identify the home changes, the handle becomes usel ess.

In addition, some vendors choose to implement a security mechanism in the handle that preventsits use outside the
scope of the client application that originally requested it. How this mechanism would work is unclear, but the
security limitation it implies should be considered before attempting to use a handle outside the client’ s scope.

& #Exercise 5.2, The EJBObject, Handles and Primary Key

EJB 2.0: TheLocal Client API

Copyright (c) 2001 O'Reilly & Associates 110

6

EJB 2.0 CMP:; Basic Persstence

Overview

In Chapter 4, we started devel oping some simple enterprise beans, skipping over alot of the details about developing
enterprise beans. In this chapter, we' |l take athorough look at the process of developing entity beans. On the
surface, some of thismaterial may look familiar, but it is much more detailed and specific to entity beans.

Entity beans model business concepts that can be expressed as houns. Thisisarule of thumb rather than a
requirement, but it helpsin determining when a business concept is a candidate for implementation as an entity bean.
In grammar school you learned that nouns are words that describe a person, place, or thing. The concepts of
“person” and “place” arefairly obvious: aperson EJB might represent a customer or a passenger, and a place EJB
might represent acity or a port-of-call. Similarly, entity beans often represent “things”: real-world objects like ships,
credit cards, and so on. An EJB can even represent afairly abstract “thing,” such as aticket or areservation. Entity
beans describe both the state and behavior of real-world objects and allow devel opers to encapsul ate the data and
business rules associated with specific concepts; a Customer EJB encapsul ates the data and business rules
associated with a customer, and so on. This makesit possible for data associated with a concept to be manipulated
consistently and safely.

In Titan’ s cruise ship business, we can identify hundreds of business concepts that are nouns and therefore could
conceivably be modeled by entity beans. We' ve already seen asimple Cabin EJB in Chapter 4, and we'll develop
Customer and Address EJBs in this chapter. Titan could clearly make use of a Cruise EJB, a Reservation EJB, and
many others. Each of these business concepts represents data that needs to be tracked and possibly mani pul ated.
Entitiesreally represent datain the database, so changesto an entity bean result in changes to the database.

There are many advantages to using entity beans instead of accessing the database directly. Utilizing entity beansto
objectify data provides programmers with a simpler mechanism for accessing and changing data. It is much easier, for
example, to change a customer’s name by callingCust oner . set Nanme() than to execute an SQL command
against the database. In addition, objectifying the data using entity beans also provides for more software reuse.
Once an entity bean has been defined, its definition can be used throughout Titan’ s system in a consistent manner.
The concept of customer, for example, isused in many areas of Titan's business, including booking, scheduling, and
marketing. A Customer EJB provides Titan with one complete way of accessing customer information, and thus it
ensures that access to the information is consistent and simple. Representing data as entity beans makes
development easi er and more cost effective.

Copyright (c) 2001 O'Reilly & Associates 11

When anew EJB is created, a new record must be inserted into the database and a bean instance must be associated
with that data. Asthe EJB is used and its state changes, these changes must be synchronized with the datain the
database: entries must be inserted, updated, and removed. The process of coordinating the data represented by a
bean instance with the database is called persistence.

There are two basic types of entity beans, and they are distinguished by how they manage persistence. Container-
managed per sistence beans have their persistence automatically managed by the EJB container. The container
knows how a bean instance’s persistent fields and relationships map to the database and automatically takes care of
inserting, updating, and deleting the data associated with entities in the database. Entity beans using bean-managed
persistence do all thiswork explicitly: the bean developer must write the code to manipulate the database. The EJB
container tells the bean instance when it is safe to insert, update, and del ete its data from the database, but it
provides no other help. The bean instance does all the persistence work itself. Bean-managed persistenceis covered
in Chapter 10.

Container-managed persistence has undergone adramatic change in EJB 2.0, which is so different that it’ s not
backward compatible with EJB 1.1. For that reason, EJB 2.0 vendors must support both EJB 2.0’ s container-managed
persistence model and EJB 1.1 container-managed persistence model. The EJB 1.1 model is supported purely so that
application devel opers can migrate their existing applicationsto the new EJB 2.0 platform as painlessly as possible.
It's expected that al new entity beans and new applications will use the EJB 2.0 container-managed persistence and
not EJB 1.1 version. Although EJB 1.1 container-managed persistence is covered in this book, it should be avoided
unless you have alegacy EJB 1.1 system that you maintain. EJB 1.1 container-managed persistenceis covered in
Chapter 9.

The next three chapters focus on devel oping entity beans that use EJB 2.0 contai ner-managed persistence. In EJB 2.0,
the data associated with an entity bean can be much more complex than was possiblein EJB 1.1 or EJB 1.0. InEJB
2.0, container-managed persistence entity beans can have rel ationships with other entity beans, which wasn’t well
supported in the older version. In addition, container-managed persistence entity beans can be finer in granularity so
that they can easily model things like Address, Lineltem, or Cabin.

This chapter develops two very simple entity beans, the Customer and Address EJBs, which will be used to explain
how Enterprise JavaBeans 2.0 container-managed persistence entity beans are defined and operate at runtime. The
Customer EJB has relationships with other several entitiesincluding address, phone, credit card, cruise, ship, cabin,
and reservation EJBs. In the next few chapters, you'll learn how to leverage EJB 2.0's powerful support for entity
bean-to-bean relationships as well as understanding their limitations. In addition, you will learn about the Enterprise
JavaBeans Query Language (EJB QL) in Chapter 8, which is used to define how the find methods and the new sdect
methods should behave at runtime.

It is common to refer to Enterprise JavaBeans 2.0 container-managed persistence as simply CMP 2.0. In the chapters
that follow, we will use this abbreviation to distinguish between CMP 2.0 and CMP 1.1 (Enterprise JavaBeans 1.1
contai ner-managed persistence).

The abstract programming model

In CMP 2.0, entity beans have their state managed automatically by the container. The container will take care of
enrolling the entity bean in transactions and persisting its state to the database. The enterprise bean devel oper
describes the attributes and relationships of an entity bean using virtual persistent fields and relationship fields.
They are called virtual fields because the bean developer does not declare these fields explicitly; instead, abstract
assessor (get and set) methods are declared in the entity bean class. The implementations of these methods are
generated at deployment time by EJB vendor’ s container tools. So it’s important to remember that the terms
relationship field and persistent field are referring to the abstract accessor methods and not to actual fields declared
in the classes. Thisuse of terminology isaconvention in EJB 2.0 that you should become confortable with.

Copyright (c) 2001 O'Reilly & Associates 112

In Figure 6-1, the Customer EJB has four sets of accessor methods. The first two read and update the last and first
names of the customer. These are examples of persistent fields; simple direct attributes of the entity bean. The other
accessor methods obtain and set references to the Address EJB through itslocal interface, Addr ess. Thisisan
example of arelationship field called theaddr ess field.

[FIGURE (note 7-1 and 6-1 are the same figure) |
Figure 6-1 Class Diagram of Customer and Address EJBs

Abstract persistence schema

The CMP 2.0 entity bean classes are defined using abstract accessor methods that represent virtual persistent and
relationship fields. Asalready mentioned, the actual fields themselves are not declared in the entity classes. Instead,
the characteristics of these fields are described in detail in the XML deployment descriptor used by the entity bean.
The abstract persistence schemaisthe set of XML elementsin the deployment descriptor that describe the
relationship fields and the persistent fields. Together with the abstract programming model (the abstract accessor
methods) and some help from the deployer, the container tool will have enough information to map the entity and its
relationships with other entity beans in the database.

Container Tools & Persistence

One of the responsihilities of the vendor’ s container deployment tool is generating concrete implementations of the
abstract entity beans. The concrete classes generated by the container tool are called persistent classes. Instances
of the persistent classes will be responsible for working with the container to read and write data between the entity
bean and the database at run time. Once the persistent classes are generated, they can be deployed into the EJB
container. The container informs the persistent instances (instances of persistent classes) when it’s agood time to
read and write data to the database. The persistent instances perform the reading and writing in away that is
optimized for the database being used.

The persistent classes will include database access logic tailored to a particular database. For example, an EJB
product might provide a container that can map an entity beans to a specific database like the Oracle rel ational
database or the POET object database. This specificity allows the persistent classes to employ native database
optimizations particular to a brand or kind of database, schema, and configuration. Persistent classes may employ
other optimizations like lazy |oading and optimistic locking to further improve performance.

The container tool generates all the database access logic at deployment time, which it imbeds in the persistent
classes. This means that the bean devel opers do not have to write this database access | ogic themselves, saving
them alot of work, and can also results in better performing entity beans because they are optimized implementations.
As an entity bean developer, you will never have to deal with any database access code when working with CMP 2.0
entities. Infact, youwon’'t have access to the persistent classes that contain that logic because they are generated
by container tool automatically. In most cases, the source code is not available to the bean developer.

Figures 7-2 and 7-3 show different container tools both of which are being used to map the Customer entity bean to a
relational database.

[Figure 7-2 need screen shot]

BEA’ s Webl ogic deployment tool

[Figure 7-3 need screen shot]

Sun Microsystem’ s J2EE RI deployment tool

Copyright (c) 2001 O'Reilly & Associates 113

The Customer EJB

In the following example we will develop asimple CMP 2.0 entity bean, the Customer EJB. The Customer EJB models
the concept of a cruise customer or passenger, but its design and use is applicabl e across many commercial domains.

As the chapter progresses the Customer EJB will be expanded and its complexity will increase to illustrate concepts
discussed in each section. So this section serves only to introduce you to the entity bean and some basic concepts
regarding its development, packaging and deployment. To simply things, we will skim over some conceptsthat are

discussed in detail later in the chapter.

The Customer Table

Although CMP 2.0 is database independent, the examples through out this book assume that you are using a
relational database. For arelational database we will need a CUSTOVER table fromwhich we get our customer data.
Therelational database table definition in SQL isasfollows:

CREATE TABLE QUSTAMER

(
ID INT PRINARY KEY,

LAST NAME CHAR(20),
FI RST_NAME GHAR(20)
)

The Customer Bean

The Cust oner Bean classis an abstract class that will be used by the container tool for generating concrete
implementation, the persistent entity class, which will run in EJB container. The mechanism used by the container
tool for generating a persistent entity class varies, but most vendors will generate a subclass of the abstract class
provide by bean devel oper.

Figure 6-4
The container tool typically extends the bean class

The bean class must declare accessor (set and get) methods for each persistent and relationship field defined in the
abstract persistence schema of the deployment descriptor. In truth, it's somewhat of a chicken-and-egg scenario,
since the container tool needs both the abstract accessor methods (defined in the entity bean class) and the XML
elements of the deployment descriptor to fully describe the bean’ s persistence schema. In this book, the entity bean
classisalways defined before the XML elements, because it’s amore natural approach to developing entity beans.

Hereisavery simple definition of the Cust onmer Bean classwhichis developed and packaged for deployment by
the bean devel oper.

inport javax.ejb. EntityQContext;
public abstract class QustonerBean inpl enents javax. gj b. EntityBean {

public Integer e bCeate(lnteger id){

setld(id);

return nul | ;
}
public voi d e bPost G eat e(l nteger id){
}

Copyright (c) 2001 O'Reilly & Associates 114

/] abstract accessor nethods

public abstract Integer getld();
public abstract void setld(Integer id);

public abstract Sring getlLast Nane();
public abstract void setlLastNane(String | nane);

public abstract Sring getF rstNane();
public abstract void setFrstNane(Sring fnane);

/] standard cal |l back nethods

public void set EntityContext(EntityCntext ec){}
public voi d unset EntityQContext(){}

public voi d € bLoad(){}

public void e bSore(){}

public void ej bActivate(){}

publ i c voi d ej bPassivate(){}

publ i c voi d ej bRenove(){}

}

The Cust onmer Bean classisdefined as an abstract class. Thisisrequired by CMP 2.0 to reinforce the idea that
the Cust orrer Bean is not deployed directly into the container system. Since abstract classes cannot be
instantiated, the bean class must be subclassed by a persistence class generated by the deployment tool in order to
be deployed. Also, the accessor methods are themselves declared asabst r act , which necessitates that container
tool implement them and that the bean class declaredabst r act .

The Cust oner Bean extendsthej avax. ej b. Ent i t yBean interface, which defines several callback methods
includingset Ent it yContext (),unset EntityContext(),ej bLoad(),ejbStore(),

ej bActivate(),ej bPassivate(),andej bRemove() . These methods are important for notifying the bean
instance about eventsinitslife cycle, but they are not important to us at this point. We will discuss these methodsin
detail in Chapter 11.

Thefirst method in the entity bean classisej bCr eat e() , which takes areferenceto anl nt eger object asits
only argument. Theej bCr eat e() method is called when the remote client invokesthecr eat e() method on the
entity bean’s home interface. This concept should be familiar, sinceit’sthe sasmeway ej bCr eat e() worked inthe
cabin bean developed in Chapter 4. Theej bCr eat e() method isresponsible for initializing any persistent fields
before the entity bean iscreated. Inthisfirst example, theej bCr eat e() methodisusedtoinitializethei d
persistent field, which isrepresented by theset | d() /get | d() accessor methods.

Thereturn type of theej bCr eat e() methodisan| nt eger type, which isthe primary key of the entity bean.
The primary key isaunique identifier that can take avariety of forms, including wrappers for primitive types and
custom-defined classes. The primary key inthiscaseisan| nt eger , whichismappedtothel Dfield inthe
CUSTOVERtable. Thiswill become more evident when we define the XML deployment descriptor. Although the
return type of theej bCr eat e() method isthe primary key, the value that is actually returned by the

ej bCreat e() methodisnul | . The EIJB container and persistence class will take care to extract the primary key
from the bean when needed. Thereasonej bCr eat e() hasareturntypeistheresult of adecisionin EJB 1.1 that
isexplained in the side bar, Why ejbCreate() returns null.

Copyright (c) 2001 O'Reilly & Associates 115

Why ¢ bCreate() returns null

In EJB 1.0, thefirst release of EJB, theej bCr eat e() method in container managed persistence was
declared as returningvoi d, but it was changed to the primary key typesin EJB 1.1 with an actual return
valueof nul | .

EJB 1.1 changed itsreturn value fromvoi d to the primary key type to facilitate subclassing; the change
was made so that it’ s easier for a bean-managed entity bean to extend a contai ner-managed entity bean. In
EJB 1.0, thisis not possible because Java doesn’t allow you to overload methods with different return
values. By changing this definition so that a bean-managed entity bean can extend a contai ner-managed
entity bean, the EJB 1.1 allowed vendors to support contai ner-managed persistence by extending the con-
tainer-managed bean with a generated bean-managed bean—afairly simple solution to adifficult problem.

With the introduction of CMP 2.0, thislittle trick is not as useful to EJB vendors asit once was. The
abstract persistence schema of EJB CMP 2.0 beansis, in many cases, too complex for asmple BMP
container. However, it remains a part of the programming model for backward compatibility and to facilitate
bean-managed persistence subclassing if needed.

Theej bPost Cr eat e() method isused to perform initialization after the entity bean is created, but before it
services any requests from the client. Usually this method is used to perform work on the entity bean’ s relationship
fields, which can only occur after the bean’sej bCr eat e() method isinvoked and it’s added to the database. For
each ej bCr eat e() method there must be amatchingej bPost Cr eat e() method that has the same method
name and arguments, but returnsavoi d. Thispairing of ej bCr eat e() andej bPost Cr eat e() ensures that
the container calls the correct methods together. We' Il explore the use of theej bPost Cr eat e() in more detail
later, for now it’s not needed, so itsimplementation isleft empty.

The abstract accessor methods represent the persistent fieldsin the Cust oner Bean class. These methods are
defined asabst r act without method bodies. Aswas already mentioned, when the bean is processed by a
container tool, these methods will be implemented by a persistence class based on the abstract persistence schema
(XML deployment descriptor elements), the particular EJB container and the database used. Basically these method
fetch and update values in the database and are not implemented by the bean devel oper.

The Remote Interface

For the Customer EJB we will need aCust omrer Renpt e remote interface, because the bean will be accessed by
clients outside the container system. The remote interface defines the business methods that clients will use to
interact with the entity bean. The remote interface should define methods that model the public aspects of the
business concept being modeled—those behaviors and data that should be exposed to client applications. Hereis
the remote interface for Cust oner Renot e:

inport java.rn.Renot eExcepti on;
public interface Qustoner Renote extends javax. ej b. EJBj ect {

public Sring getlLast Nane() throws Renot eBxception;
public voi d setLast Nane(Sring | nane) throws RenoteExcepti on;

public Sring getH rstNane() throws RenoteExcepti on;
public void setFrstNane(Sring fnane) throws RenoteException;

Copyright (c) 2001 O'Reilly & Associates 116

[} |

Any methods defined in the remote interface must match the signatures of methods defined in the bean class. In this
case, several accessor methodsinthe Cust onmer Renot e interface match persistent field accessor methodsin the
Cust oner Bean class. When the remote interface methods match the persistent field methods, the client has direct
access to the entity bean’ s persistent fields.

Y ou are not required to match abstract accessor methods in the bean class with methods in the remote interface. In
fact, it'srecommended that the remote interface be as independent of the abstract programming model aspossible.
Notice that the remote interface does not defineget | d() andset | d() methods, asdoesthe Cust oner Bean
class. While remote methods can match persistent fields in the bean class, the specification prohibits the remote
methods from matching relationship fields, which access other entity beans.

The Remote Home interface

The remote home interface of any entity bean is used to create, locate, and remove entities from the EJB container.
Each entity bean type may have its own remote homeinterface, or alocal home interface or both. Asyou learned in
chapter 5, the remote and local home interfaces perform essentially the same function. The home interfaces define
three basic kinds of methods: home business methods, zero or morecr eat e() methodsand one or more find
methods” Thecr eat e() methods act like remote constructors and define how new entity beans are created. In
our remote home interface, we only provideasinglecr eat e() method, which matches the corresponding

ej bCr eat e() method in the bean class. The find method is used to locate a specific Customer EJB using the
primary key asauniqueidentifier.

The following code contains the compl ete definition of the Cust oner HoneRenot e interface:

inport java.rnm . Renot eExcepti on;
inport javax.ejb. O eat eException;
inport javax.ej b. FH nder Excepti on;

public interface Qustoner HoneRenot e extends j avax. ej b. EJBHone {

publ i ¢ Qustoner create(lnteger id)
throws Q eat eException, RenoteException;

publ i c Qustoner findByPrinaryKey(lnteger id)
throws H nder Exception, RenoteException;

}

A creat e() method may be suffixed with anamein order to further qualify it when overloading method arguments.
Thisisuseful if you havetwocr eat e() methodsthat take different arguments of the same type. For example, we
could declaretwocr eat e() methods for Customer which both declarean| nt eger argument. Thel nt eger
argument might be a social security number (SSN) in one case and a tax identification number (TIN) in another—
individuals have social security numbers while corporations have tax identification number.

public interface Qustoner HoneRenot e extends j avax. e b. EJBrbone {
publ i c Qustoner createWthSSN\Integer id,

Sring soci al Securit yNunier)
throws QO eat eException, RenoteException;

22 Chapter 15 explains when you should not define any create methods in the home interface.

Copyright (c) 2001 O'Reilly & Associates 117

publ i ¢ Qustoner createWthTI NI nteger id,
Sring taxldentificati onNunber)
throws Q eateException, RenoteException;

publ i c Qustoner findByPrinaryKey(lnteger id)
throws H nder Exception, RenoteException;

}

The use of suffixesisuseful whenyou needcr eat e() methodsto be more descriptive, or need to further qualify
them for method overloading. Eachcr eat e<SUFFI X>() method must have a corresponding

e] bCr eat e<SUFFI X>() inthebean class. For example, the Cust ormrer Bean class would need to definea

ej bCreat eWt hSSN() andej bCreat eW t hTI N() methods. We are keeping this example simple, so we only
need onecr eat e() method and therefore, no suffix.

Enterprise JavaBeans specifiesthat cr eat e() methodsin the remote home interface must throw the
j avax. ej b. Cr eat eExcept i on. Inthe case of container-managed persistence, the container needs acommon
exception for communicating problems experienced during the create process.

Entity remote home interfaces must defineaf i ndByPr i mar yKey () method which takes the entity bean’s primary
key type asits only argument, but a matching method is not defined in the entity bean class. The implementation of
thef i ndByPri mar yKey () isgenerated automatically by the deployment tool. At runtimethe

findByPri maryKey() method will automatically locate and return aremote reference to the entity bean with the
matching primary key.

Other find methods can also be declared by the bean developer. For example, the Cust omer HoneRenot e interface
could defineaf i ndByLast Nane(String | nanm) method, which locates all the Customer entities with the
specified last name. These types of finder methods are implemented by the deployment automatically based on the
method signature and an EJB-QL statement, which issimilar to SQL but is specific to EJB. Custom finder methods and
EJB-QL arediscussed in detail in Chapter 8.

The XML Deployment Descriptor

All CMP 2.0 entity beans must be packaged for deployment with an XML deployment descriptor that describes the
bean and its abstract persistence schema. In most cases the bean developer is not directly exposed to the XML
deployment descriptor, but will use container’ s visual deployment tools to package beans. It is convention in this
book, however, to describe the declarations of the deployment descriptor in detail so that you have afull
understanding of their content and organization.

The XML deployment descriptor, for our simple Customer EJB, contains many elements that are familiar to you from
chapter 4. The elements specific to entity beans and persistence are most important to usin this chapter. The
following isthe complete XML deployment descriptor for the Customer EJB.

<IDOCTYPE €j b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 2.0//BN' "http://java.sun.conidtd/ ejb-jar_2 0.dtd">

<gjb-jar>
<ent er pri se- beans>
<entity>
<gj b- nane>Qust oner EJB</ €] b- nane>
<hone>comti t an. cust oner . Qust oner HoneRenot e</ hone>
<renot e>comt it an. cust oner . Qust oner Renot e</ r enot e>
<gj b-cl ass>com i t an. cust oner . Qust oner Bean</ €] b- cl ass>
<per si st ence-t ype>Cont ai ner </ per si st ence- t ype>
<pri mkey-cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>

Copyright (c) 2001 O'Reilly & Associates 118

<reentrant >Fal se</reentrant >
<cnp- ver si on>2. X</ cnp- ver si on>
<cnp-fi el d><fi el d-nane>i d</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>l ast Nane</ f i el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d-nane>first Nane</ fi el d- nane></ cnp-fi el d>
<prinkey-fiel d> d</ pri nkey-fi el d>
<security-identity><use-caller-identity/><security-identity>
<entity>
</ enterpri se-beans>
<assenbl y- descri pt or >
<security-rol e>
<r ol e- nane>Enpl oyees</ r ol e- nane>
</security-rol e>
<net hod- per ni ssi on>
<r ol e- nane>Enpl oyees</r ol e- nane>
<net hod>
<gj b- nane>CQust oner EJB</ € b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>
<cont ai ner -t ransacti on>
<net hod>
<ej b- nane>Qust oner EJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attribute>
<cont ai ner - transact i on>
</ assenbl y- descri pt or >
<ejb-jar>

Thefirst few elements, which declare the Customer EJB name, (Cust oner EJB) aswell asits home, remote, and
bean class, should already be familiar to you from Chapter 4. The<securi ty-i denti t y> element was covered
in Chapter 3.

The<assenbl y- descri pt or > elements, which declare the security and transaction attributes of the bean, were
also covered briefly in chapter 4. Basically all employees can access any Cust onmer EJ B method and all methods
usethe Requi r ed transaction attribute.

Container managed persistence entities also need to declare their persistence type, version, and whether they are
reentrant. These elements are declared under the entity element.

The<per si st ence-t ype> tdls the container system whether the bean will be a contai ner-managed persistence
entity or a bean-managed persistence entity. Inthiscaseit’'s container-managed, so we use Cont ai ner . Had it
been bean-managed persistence, the value would have been Bean.

The<cnp- ver si on> tellsthe container system which version of container-managed persistence is being used.
Enterprise JavaBeans 2.0 containers must support the new contai ner-managed persistence model as well as the old
one defined in Enterprise JavaBeans 1.1. Thisisrequired for backward compatibility, so that organizations can
migrate to EJB 2.0 without having to redefine all their established container-managed persistence entity beans at
once. Thevalue of the<cnp- ver si on> element can beeither 2. x or 1. x for versonsEJB 2.0and EJB 1.1
respectively. The<cnp- ver si on> elementisoptional. If its not declared, the default valueis2. x, so its not
really needed here but it’ s specified as an aid to other developers who are reading the deployment descriptor.

Copyright (c) 2001 O'Reilly & Associates 119

The <r eent r ant > element indicates whether reentrant behavior or loop-backs are allowed. In this case the value
isFal se, which indicatesthat the Cust oner EJBisnot reentrant. A value of Tr ue would indicate that the
Cust oner EJBisreentrant. Reentrant behavior was covered in chapter 3.

The entity bean will also declare its container managed persistence fields and its primary key.

<entity>
<ej b- nane>Qust oner EJB</ €] b- nane>
<honme>com ti t an. cust oner . Qust oner HoneRenot e</ g b- hone>
<renot e>comti t an. cust oner . Qust oner Renot e</ gj b- r enot e>
<gj b-cl ass>com ti t an. cust oner . Qust oner Bean</ €] b- ¢l ass>
<per si st ence- t ype>Cont ai ner </ per si st ence-t ype>
<pri mkey- cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>
<reentrant >Fal se</ reent rant >
<cnp- ver si on>2. x</ cnp- ver si on>
<cnp-fiel d><fi el d-nane>i d</ fi el d- nane></ cnp-fi el d>
<cnp-fiel d><fi el d- nane>l ast Nane</ fi el d- nane></ cnp-fi el d>
<cnp-fiel d><fi el d- nane>fir st Nane</ fi el d- nane></ cnp-fi el d>
<prinkey-fiel d> d</ pri nkey-fiel d>

<entity>

The container-managed persistent fieldsarethei d,| ast Nane, andf i r st Nane asindicated by the <cnp-
fiel d>elements. The<cnp-fi el d> elements must have matching accessor methodsinthe Cust oner Bean
class. Asyou can seefrom the following table, the values declared inthe <cnp- f i el d> match the names of
abstract accessor methods we declared in the Cust oner Bean class—theget andset part of the method names
are ignored when matching methodsto<cnp- fi el d> declarations.

Cmp-field Abstract accessor method

id public abstract |Integer getld()
public abstract void setld(lnteger id)

| ast Name public abstract String getlLastNanme()
public abstract void setlLastName(String
| name)

firstName public abstract String getFirstName()

public abstract void setFirstName(String
| name)

CMP 2.0 requiresthat the<cnp- f i el d> values start with alower case |etter while its matching accessor methods
taketheform get <cnp-fi el d val ue>(),set<cnp-field val ue>() wherethefirstletter of the <cnp-
fi el d>iscapitalized. Thereturn type of theget method and the parameter of the set method determine the type
of the<cnp- fi el d>. It'sthe convention of thisbook, but not arequirement of CMP 2.0, that field names with
multiple words are declared using “camel case”, where each new word starts with acapital letter (e.g. | ast Nane).

Finally, we declare the primary key using two fields, the<pr i m key- cl ass>andthe<pri nkey-fi el d>. The
<pri m key- cl ass> indicatesthe type of the primary key and the <pr i nkey- f i el d> indicateswhich of the
<cnp- fi el ds> elements designates the primary key. Thisisan example of single-field primary key, where only
onefield of the entity beans container managed fields describes a unique identifier for the bean. In many casesa
compound primary key, which uses more then one of the persistent fields as akey, isused. In addition, an unknown
primary key may be defined; unknown keys use afield that may not be declared in the bean at all. The different types
of primary keys are covered in more detail in Chapter 11, Entity-Container Contract.

Copyright (c) 2001 O'Reilly & Associates 120

The EJB JAR file

Now that you have created the interfaces, bean class, and deployment descriptor, you' re ready to package the bean
for deployment. Asyou learned in Chapter 4, the JAR file provides away to “ shrink-wrap” a component so that it
can be sold and or deployed in an EJB container. The examples available from http://www.oreilly.comcontain a
properly prepared JAR file that includes the Customer EJB’ sinterfaces, bean class, and deployment descriptor. You
may use these files or develop them yourself. The command for creating anew EJB JAR fileis:

\dev %jar cf custoner.jar comititan/custoner/*.class
conititan/ cust oner/ META- I NH €] b-j ar. xnh

F\..\dev> ar cf cabin.jar conmtitan\custoner*.class comtitan\custoner
\META- I NR\ g b-j ar. xn

Most EJB servers provide graphical or command line tools that will create the XML deployment descriptor and
package the enterprise bean into a JAR file automatically. Some of these toolswill even create the home and remote
interfaces automatically, based input from the developer. If you prefer to use these tools, the workbooks will step
you through the process of deploying an entity bean using specific vendor’s container deployment tools.

Deployment

Oncethe Cust onmer EJB ispackaged in aJAR file, it's ready to be processed by the deployment tools. For most
vendors these tools will be combined into one graphical user interface used at deployment time. The point isto map
the container-managed persistence fields of the bean to fields of data objectsin the database. Figures 7-2 and 7-3
show visual tools used to map the Customer EJB’ s persistent fields.

In addition, the security roles need to be mapped to the subjects in the security realm of the target environment and
the bean needs to be added to the naming service and given a INDI lookup name (name binding). These tasks are
also accomplished using the deployment tools provided by your vendor. The workbooks provide step-by-step
instructions for deploying the Cust oner EJB in specific vendor environments.

The Client application

Theclient application isaremote client to the Cust onmer EJ B, which will create several customers, find them, and
then remove them. The following isthe complete definition of the Cl i ent application.

inport javax.naming.Initial Gontext;
inport javax.rm. Portabl eRenot eChj ect ;
i nport | avax. nam ng. Gont ext ;

i nport | avax. nam ng. Nam ngExcept i on;
inport java.util.Properties;

public class Qient {
public static void main(Sring [] args) throws Exception {
/1 obtai n Qustoner Hone
Gontext jndi Gntext = getlnitia Gntext();
(oj ect obj =) ndi Cont ext . | ookup(" Qust oner EIB') ;
Qust oner HoneRenot e hone = (Qust oner HoneRenot e)
j avax. rni. Port abl eRenot ehj ect . narrow(obj ,
Qust oner HoneRenot e. ¢l ass) ;

/1 create Qustoners
for(int i =0; i <args.length;i++){
Integer prinmarykey = new Integer(args[i]);

Copyright (c) 2001 O'Reilly & Associates 121

Sring firstNane = args[++] ;
Sring lastNane = args[++];
Qust oner Renot e cust oner = hone. creat e(pri nar ykey) ;
cust oner . set H rst Nane(first Nane) ;
cust oner . set Last Nane(| ast Nane) ;
}
/1 find and renove Qustoners
for(int i =0; i <args.length;){
Integer prinaryKey = new I nteger(args[i]);
Qust oner Renot e cust oner
= hone. fi ndByPri nar yKey(pri narykey);
Sring | ast Nane = cust oner . get Last Nange();
Sring firstName = custoner.get HrstNane();
Systemout. print (prinaryKey+' =");
Systemout . println(firstNane+" "+ ast Nane) ;

/1 renove Qustoner
cust oner . renove() ;

}

public static Context getlnitial Gontext()
throws j avax. nam ng. Nam ngExcepti on {
Properties p = new Properties();
/1 ... Specify the JND properties specific to the vendor.
//return new javax. namng. I nitial Gontext(p);
return null;

}

The client application creates several Customer EJBs, setstheir first and last names, prints out the persistent field
values, and then removes the entities from the container system, and effectively the database.

& eExercise 6.1, Deploying the Customer EJB

Persistent Fields

Container-managed persistent fields are those virtual fields whose values map directly to the database. Persistent
fidds can be Java serializable types and Java primitive types.

The Java serializable types can be any classthat implementsthej ava. i 0. Seri al i zabl e interface. Most
deployment toolswill handlej ava. | ang. String,j ava. uti | . Dat e and the primitive wrappers (Byt e,
Bool ean, Short, | nt eger,Long,Doubl e, andFl oat) easily, because these types of objects are part of the
Java core and map naturally to fieldsin relational and other databases. The Cust onmer EJB declaresthree
seriadizable fiddsi d, | ast Nanme, andf i r st Nane, which map naturally to the | NT and CHAR fields of the
CUSTOVER tablein the database.

Y ou can also define your own serializable types, called dependent values classes, and declare them as container-
managed persistent fields. However, arbitrary dependent val ues classes usually will not map naturally to database
types, so they must be stored in their serializable form in some type of binary database field. Serializable objects are
always returned as copies and not references, so a change to a serializable object will not impact its database value.
The entire value must be updated using the abstract set <FI ELD- NAME> method. Thisisnormally not an issue
with St ri ng, Dat e, and the primitive wrappers types since they areimmutable objects. This book recommends that
you don'’t use custom serializable objects as persistent field types unlessit’ s absol utely necessary.

Copyright (c) 2001 O'Reilly & Associates 122

The primitivetypes (byt e,short,i nt,l ong,doubl e,f| oat andbool ean) arealso allowed to be container-
managed persistence fields. These typesare easily mapped to the database and are supported by all deployment
tools. Asanexample, the Cust onmer EJB might declareabool ean that represents a customer’ s credit worthiness.

public abstract class QustonerBean inpl enents javax. ej b. EntityBean {

public Integer e bGeate(lnteger id){
setld(id);
return nul | ;

}

/1 abstract accessor nethods
public abstract bool ean get HasGodQ edit();
publ i c abstract voi d set HasGoodQ edi t (bool ean credit Rating);

Dependent value classes

As discussed in the previous section, dependent val ues classes are custom serializabl e objects, which can be used
as persistent fields-- although its not recommended. However, dependent values classes are valuable for packaging
data and moving it between an entity bean and its clients. Dependent values classes can separate the client’ s view of
the entity bean from its abstract persistent model, which makesit easier for the entity bean class to change without
impacting existing clients.

The remote and local interface methods of an entity bean should be defined independently of the anticipated abstract
persistent schema. In other words, you should design the remote interfaces to model the business concepts, not the
underlying persistent programming model. Dependent value classes can help separate the client’ s view from the
persistence model by providing objectsthat fill the gapsin these perspectives. Dependent value classes are used a
lot in remote interfaces where packaging data together can reduce network traffic, but they are also useful inlocal
interfaces.

For example, the Cust onmer EJB could be modified so that its| ast Narme andf i r st Nane fields are not exposed
directly to remote clients through their accessor methods. Thisis areasonable design approach, since most clients
access the entire name of the customer at once. In this case, the remote interface might modified to look as follows:

inport java. rm. Renot eException;
public interface Qustoner Renote extends javax. ej b. EJBOpj ect {

publ ic Nane get Nane() throws RenoteException;
publ i c voi d set Nane(Nane nane) throws RenoteException;

}

The remote interface here is simpler than the one we saw earlier. It allows the remote client to get all the name
information in one method call instead of two—this reduces network traffic and improves performance for remote
clients. The use of the Nane dependent value is also semantically more consistent with how the client interacts with
the Customer EJB, which isuseful in both remote and local interfaces.

To implement these interfaces, the Cust oner Bean class adds a business method that matches the remote interface
methods. Theset Nane() method updatesthel ast Nanme andf i r st Nane fields, whiletheget Nanme()
method constructs a Nae object from these fields.

| inport javax.ejb. EntityGontext; |

Copyright (c) 2001 O'Reilly & Associates 123

public abstract class QustonerBean inpl enents javax. gj b. EntityBean {

public Integer e bCeate(lnteger id){

setld(id);

return nul | ;
}
public voi d e bPost G eat e(l nteger id){
}

/1 busi ness net hods
publ ic Nane get Nange(){
Nane nane = new Nane(get Last Nane(), get F rst Nane()) ;
return nang;
}
publ i c voi d set Nane(Nane nane) {
set Last Nane(nane. get Last Nare()) ;
set H r st Nane(nane. get H rst Nane()) ;
}

/] abstract accessor nethods

public abstract Sring getlLast Nane();
public abstract voi d setlLastNane(Sring | nane);

public abstract Sring getH rstNange();
public abstract void setFrstNane(Sring fnane);

Thisisagood example of how dependent value classes can be used to separate the client’ s view from the abstract
persistence schema.

Theget Nane() andset Name() methods are not abstract persistence methods, they are business methods.
Entity beans can have as many business methods as needed. Business methods introduce business logic to the
Customer EJB; otherwise the bean would only be adata wrapper. For example, validation logic could be added to the
set Nanme() method to ensure that the datais correct before applying the update. In addition, the entity bean class
can use other methods that help with processing data—these are just instance methods and may not be exposed as
business methods in the remote interface.

How dependent value classes are defined isimportant to understanding how they should be used. The Nane
dependent values class is defined as follows:

public class Nane inpl enents java.io. Serializable {
private String | ast Nang;
private Sring firstNang;

public Nane(Sring I nane, Sring fnane){
| ast Nane = | nane;
firstNane = f nane;
}
public Sring getlLast Nane() {
return | ast Nane;
}
public Sring getF rstNane() {
return firstNang;
}

Copyright (c) 2001 O'Reilly & Associates 124

You'll notice that Nane dependent values class hasget accessor methods but not set methods. It'simmutable.
Thisisadesign strategy used in this book and is not arequirement of the specification; CMP 2.0 does not specify
how dependent value classes are defined.

We make dependent values immutabl e so that clients cannot change the Nane object’ sfields. The reason is quite
simple: the Narre object is a copy, not aremote reference. Changes to Nane objects are not reflected in the database.
Making the Name immutable helps to ensure that clients do not mistake this dependent value for aremote object
reference, thinking that a change to the Nane object is automatically reflected on the database. To change the
customer’ s name, the client isrequired to create anew Name object and use the set Nane() method to update the
Customer EJB.

Thefollowing code listing from illustrates how a client would modify the name of a customer using the Nane
dependent values class.

/1 find Qustoner

cust oner = hone. fi ndByPri nar yKey(pri naryKey);

nane = cust oner. get Nane() ;

Systemout . print (prinaryKey+' =");

Systemout . printl n(nane. get FH rst Nang()+ "-+nane. get Last Nane());

/1 change custoner's nane

nane = new Nane("Mnson- Haefel ", "R chard");

cust oner . set Nang(nane) ;

nane = cust oner. get Nange() ;

Systemout . print (prinaryKey+' =");

Systemout . printl n(nane. get A rst Nang()+ "-+nane. get Last Nang());

The output will look asfollows:

1
1

R chard Mbnson
R chard Mbnson- Haef el

Defining the bean’ sinterfaces according to the business concept and not the underlying datais not always
reasonable, but you should try to employ this strategy when the underlying data model doesn't clearly map to the
business purpose or concept being modeled by the entity bean. The bean’ sinterfaces may be used by developers
who know the business, and not the abstract programming model. It isimportant to them that the entity beans reflect
the business concept. In addition, defining the interfaces independent of the persistence model enables the
component interfaces and persistence model to evolve separately. Thisisimportant because it allows the abstract
persistent programming model to change over time; it also allows for new behavior to be added to the entity bean as
needed.

While the dependent val ues classes serve a purpose, they should not be used indiscriminately. In many cases it
would be foolish to use dependent val ues classes when the contai ner-managed persistent field will do just fine. For
example, checking aclient’s credit worthiness before processing an order can be accomplished easily using the
get HasGoodCr edi t () method directly. In this case a dependent object class would serve no purpose.

& eExercise 6.2, Using Dependent value classes

Relationship Fields

Entity beans can form relationships with other entity beans. In figure 6-1, at the beginning of this chapter, the
Customer EJB is shown to have a one-to-one relationship with the Address EJB. The Address EJB isafine-grained
business object that should always be accessed in the context of another entity bean, which meansit should only
have local interfaces and not remote interfaces. An entity bean can have relationships with many different entity

Copyright (c) 2001 O'Reilly & Associates 125

beans at the same time. For example, we could easy add relationship fields for Phone, CreditCard and other entity
beans. At this point, however, we choose to keep the Customer EJB simple.

Following Figure 7-1 as guide we define the Address EJB as follows.
public abstract class AddressBean

extends javax. ej b. EntityBean {

publ ic (hject e bQ eat eAddr ess
(Sring street, Sring city,
Sring state, Sring zip)

{
setSreet(street);
setdty(city);
setSate(state);
setZip(zip);
return nul | ;

}

publ i c voi d ej bPost O eat eAddr ess
(Sring street, Sring city,
Sring state, Sring zip){
}

/1 persistent fields

public abstract Sring getSreet();

public abstract void setSreet(Sring street);
public abstract Sring getdty();

public abstract void setdty(Sring city);
public abstract Sring getState();

public abstract void setSate(Sring state);
public abstract Sring getZ p();

public abstract void setZip(Sring zip);

/1 standard call back nethods

public void setEntityContext(EntityGntext ec){}
publ i c voi d unset EntityGontext (){}

public voi d e bLoad(){}

public void e bSore(){}

public void ej bActivate(){}

publ i c voi d ej bPassi vate(){}

publ i c voi d ej bRenove(){}

}

The Addr essBean classdefinesanej bCr eat eAddr ess() method that is called when anew AddressEJB is
created aswell as several persistent fields (st r eet ,ci ty,st at e, andzi p). The persistent fields are represented
by the abstract accessor methods, which istheidiom required for persistent fieldsin all entity bean classes. These
abstract accessor methods are matched with their own set of XML deployment descriptor elements which define the
abstract persistent schema of the Address EJB. At deployment time the container’ s deployment tool will map the
Customer EJB’s persistent fields and the Address EJB’ s persistent fields to the database. This means that there must
be atablein our relational database that contains columns that match the persistent fieldsin the Address EJB. In this
example we will use aseparate ADDRESS table for storing address information, but the data could just as easily been
declared in other table.

CREATE TABLE ACDRESS
(

Copyright (c) 2001 O'Reilly & Associates 126

ID INT PR MARY KEY,
STREET GHAR(40),
aTY GAR 20),
STATE GHR 2),

ZI P GHAR(10)

)

You'll have noticed that the table includes a column that has no corresponding persistent field in the Address EJB,
the | D colum. Entity beans do not have to define all of the columns from corresponding tables, as persistent fields.
In fact, an entity bean may not even have a single corresponding table; it may be persisted to several tables. The
bottom line is that the container’ s deployment tool allows the abstract persistence schema of entity beansto be
mapped to a database in avariety of ways, allowing a clean separation between the persistent classes and the
database. Inthiscasethel Dcolumnisan auto-increment field, which is created automatically by the database or
container system. It servesthe primary key of the Address EJB and is not part of the bean’ s abstract persistence
schema. It’sinvisible.

In addition to the bean class, we will also define the local interface for the Address EJB, which allowsit to be
accessed by other entity beans (namely the Customer EJB) within the same address space or process.

/1 Address EIB s local interface
public interface AddressLocal extends javax.ejb. EJBLocal b ect {
public Sring getSreet();
public void setSreet(Sring street);
public Sring getdty();
public void setdty(Sring city);
public Sring getSate();
public void setSate(Sring state);
public Sring getZ p();
public void setZ p(Sring zip);
}

/1 Address EIB s | ocal hone interface
public interface AddressLocal Hone extends javax. ej b. EJBLocal Hone {
publ i ¢ AddressLocal create(String street, Sring city,
Sring state, Sring zip)
throws javax. ej b. O eat eExcepti on;
publ i c AddressLocal findByPrinaryKey(Qj ect prinaryKey)
throws javax. €] b. FH nder Excepti on;

}

Y ou may have noticed that theej bCr eat e() method of the Addr essBean class and the

findByPri maryKey() method of the homeinterface both define the primary key typeasj ava. | ang. Obj ect
instead of | ava. | ang. | nt eger. When aprimary key typeis defined as an Object type, it's said to be undefined,
which means the exact type of key used is not known until the bean is deployed. In this case, an undefined type
allows us to use the auto-increment facilities of the native database. If we were to define the primary key type, then
we would have to set the primary key valueintheej bCr eat e() method, which would make it impossible to use
auto-increment for thei d field. Thisisaconcept that isexplored in detail in Chapter 11.

The relationship field for the Address EJB isdefined in the Cust onmer Bean class using an abstract accessor
method, the same way that persistent fields are declared. In the following codethe Cust oner Bean has been
modified to include the Address EJB as arelationship field.

inport javax.ejb. EntityGontext;
inport javax.ejb. O eat eExcepti on;

public abstract class QustonerBean inpl enents javax. ej b. EntityBean {

Copyright (c) 2001 O'Reilly & Associates 127

/1 persistent relationships
public abstract AddressLocal get HoneAddress();
public abstract voi d set HoneAddr ess(AddressLocal address);

/'l persistent fields
publ i c abstract bool ean get Has@odCedit();
public abstract voi d set HasGodQ edit (bool ean credit Rating);

Theget HoneAddr ess() andset HoneAddr ess() accessor methods are self-explanatory; they allow the bean
to access and modify itshonme Addr ess relationship. These accessor methods represent arelationship field, which
isavirtual field that references another entity bean. The name of the accessor method is determined by the name of
the relationship field, as declared in the XML deployment descriptor. In this case we have named the customer’s
address honme Addr ess, so the corresponding accessor method nameswill beget HomeAddr ess() and

set HoneAddr ess() .

To accommaodate the rel ationship between the Customer EJB and the home address aforeign key, ADDRESS_| D, will
be added to the CUSTOVER tabl e that points to the ADDRESS record. In practice this schemais actually the reverse
of what isusually done, where the ADDRESS table contains aforeign key to the CUSTOMER table. However, the
schema used hereis useful in demonstrating alternative database mappings and is utilized again in Chapter 7.

CREATE TABLE QUSTOMER
(
ID INT PR IMARY KEY,
LAST NAME GHAR(20),
FI RST_NAME GHAR(20) ,
ACDRESS | D | NT

)

When anew Address EJB is created and set as the Customer EJB’shone Addr ess relationship, the Address EJB’s
primary key will be placed in the ADDRESS | D column of the CUSTOVER tabl e creating arelationship in the
database. In other words, it’sthe act of setting the relationship field that creates the relationship between the beans.

/1 get local reference
AddressLocal address = ...

/1 establish the relationship
set HoneAddr ess(addr ess) ;

To give the Customer ahome address we will need to deliver the address information to the Customer. This appears
to be asimple matter of declaring matchingset HomeAddr ess() /get HomeAddr ess() intheremoteinterface,
but it'snot! Whileit'svalid to make persistent fields directly available to clients, persistent relationships are more
complicated.

The remote interface of abean is not allowed to expose its relationship fieldsif the relationship references another
bean’slocal interface. Inthe case of thehoneAddr ess field we have declared the type to be Addr essLocal ,
whichisalocal interface, sotheset Home Addr ess() / get HomeAddr ess() assessors cannot be declared in
the remote interface of the Customer EJB.

Remote interfaces may, however, expose relationship fields that use remote interface types. So, for example, if we had

declared thehoneAddr ess field asaremoteinterface (an interface that extendsj avax. ej b. EJBObj ect), we
could expose that relationship field in the remote interface of the Customer EJB.

Copyright (c) 2001 O'Reilly & Associates 128

Thereason for this restriction on remote interfacesisfairly simple: The EJBLocal Obj ect , which implements the
local interface, is optimized for use within the same address space or process as the client, and is not capable of being
used across the network. In other words, references that implement the local interface of abean cannot be passed
across the network, so it cannot declared as areturn type of a parameter of aremote interface.

We take advantage of the EJBLocal Obj ect optimization for better performance, but that same advantage limits
location transparency; we must only use it within the same address space.

Local interfaces (an interface that extendsj avax. ej b. EJBLocal Obj ect) onthe other hand, can expose any
kind of relationship field regardiess of whether it’s aremote or local interface. With local interfaces, the caller and the
enterprise bean being called are located in the same address space, so they can pass around local references without
aproblem. Sofor example, if we had defined alocal interface for the Customer EJB, it could include a method that
allowslocal clientsto accessits Address relationship directly.

public interface QustonerlLocal extends javax.ej b. EJBLocal (bj ect {
publ i ¢ AddressLocal get HoneAddress();
public voi d set HoneAddr ess(Addr essLocal addr ess) ;

}

Unlike local interfaces, remote interfaces can be used as return values or parameters in the methods of both remote
and local interfaces because remote interfaces are location transparent. The networking capabilities of aremote
interface reference work within the same address space as easily as across address spaces.

When it comesto the Address EJB, it’ s better to define alocal interface only becauseit’ s such a fine-grained bean.
To get around remote interface restrictions, the business methods in the bean class exchange address data instead of
Addressreferences. For example, we can declare a method that allows the client to send addressinformation to
create a home address for the Customer.

public abstract class QustonerBean inpl enents javax. gj b. EntityBean {

public Integer e bCeate(lnteger id){

setld(id);

return nul | ;
}
public voi d e bPost G eat e(l nteger id){
}

/1 busi ness net hod

public void set Address(String street,String city,
Sring state, Sring zip)
throws Q eat eException {

AddressLocal addr = this. get HbneAddress();

if(addr == nulI'){
/] Qustoner doesn’t have an address yet. Qreate a new one.
Initial Gontext cntx = new Initial Context();
Addr esshbnelocal addr Hone =
(Addr esshHbnelLocal) cnt x. | ookup(“ honeAddr ess”) ;
addr = addr Hone. creat eAddress(street, city, state, zip);
t hi s. set HoneAddr ess(addr) ;
}el se{
/1 Qustoner already has an address. Change its fields
addr.setSreet(street);
addr.setdty(city);
addr.setSate(state);
addr. setZi p(zip);

Copyright (c) 2001 O'Reilly & Associates 129

Theset Addr ess() business method inthe Cust oner Bean classis also declared in the remote interface of the
Customer EJB, so that it can be called by remote clients.

public interface Qustoner extends javax.ej b. EJBOpj ect {

public voi d set Adddress(String street,Sring city,
Sring state, Sring zip)
throws Q eat eException;

publ ic Nane get Nane() throws RenoteException;
public voi d set Nane(Nane nane) throws Renot eExcepti on;

publ i ¢ bool ean get HasGodGedit() throws Renot eExcepti on;
publ i ¢ voi d set Has@odQ edi t (bool ean credi t Rati ng)
t hrows Renot eExcepti on;

}

When the Cust oner Renot e. set Addr ess() business method isinvoked onthe Cust oner Bean, the
method’ s arguments are used to create anew Address EJB and set it asthe honme Addr ess relationship field if one
doesn't already exist. If the Customer EJB already hasahoneAddr ess reationship, that Address EJB is modified
to reflect the new address information.

When creating anew Addr ess EJB, the home object is obtained from the INDI ENC. and itscr eat eAddr ess()
method is called. Thisresultsin the creation of anew Address EJB and the insertion of a corresponding ADDRESS
record into the database. After the Address EJBis created, it'sused intheset HoneAddr ess() method. The
Cust oner Bean classmust explicitly call theset HoneAddr ess() method, otherwise the new address will not
be assigned to the customer. In fact, simply creating an Address EJB, without assigning it to the customer using the
set HomeAddr ess() method, will result in adisconnected Address EJB. More precisely, it will result in an
ADDRESS record in the database that isnot referenced by any CUSTOVER records. Disconnected entity beans are
fairly normal and even desirablein many cases. In this case, however, we want the new Address EJB to be assigned
tothehonmeAddr ess relationship field of the Customer EJB.

The viability of disconnected entities depends, in part, on the referential integrity of the database.
If the database requires that aforeign key contain a pointer to an existing record, then creating a
disconnected entity would result in a database error.

Whentheset HoneAddr ess() method isinvoked, the container links the ADDRESS record to the CUSTOVER
record automatically. In this case, it places the ADDRESS primary key in the CUSTOVER record’ sADDRESS _| D
field and creates a reference from the CUSTOVER record to the ADDRESS record.

If the Customer EJB already hasahonmeAddr ess, then we want to change its valuesinstead of creating anew one.
Once the values of the existing Address EJB have been updated, we don’t need to use set Honme Addr ess() since
the Address EJB we modified already has arelationship with the entity bean.

The Addr essHone. cr eat eAddr ess() method isdeclared asthrowingaCr eat eExcepti on, asareadll

create methods. Thisrequiresthat theset Addr ess() business method either wrap thecr eat eAddr ess() cal
in atry/catch block or propagate the exception to the client. In the above example, we choose to propagate the

Copyright (c) 2001 O'Reilly & Associates 130

exception because it's more expedient. As an alternative you could catch the Cr eat eExcept i on and throw anew
application exception. Either approach is perfectly acceptable.

We will also want to provide clients with a business method for obtaining a Customer EJB’ s home address
information. Since we are prohibited from sending an instance of the Address EJB directly to the client (because it’s
alocal interface), we must package the address data in some other form and send that the client. There are two
solutionsto this problem: acquire the remote interface of the Address EJB and return that; or return the dataas a
dependent value object.

We can only obtain the remote interface for the Address EJB if one was defined. Entity beans can have a set of |ocal
interfaces or remote interfaces or both. In this situation the Address EJB istoo fine-grained to justify creating a
remote interface, but in many other circumstances a bean may indeed want to have aremoteinterface. If for example,
the Customer EJB referenced a SalesPerson EJB, the Cust oner Bean would need to convert the local reference into
aremote reference. Thiswould be done by accessing the local EJB object, getting its primary key

(EJBLocal Obj ect. get Pri mar yKey()), obtaining the SalesPerson EJB’ s remote home from the INDI ENC,
and then using the primary key and remote home reference to find a remote interface reference.

publ i c Sal esRenot e get Sal esRep() {
Sal esLocal | ocal = get Sal esPerson();
Integer prinkey = local.getPrinarykey();

(oj ect ref = jndi Enc. | ookup(“ Sal estbneRenot €”) ;
Sal estHoneRenot e hone = (Sal esHoneRenot €)
Port abl eRenot e(hj ect . narrow(ref, Sal estbneRenot e. cl ass) ;

Sal esRenot e renot e = hone. fi ndByPri naryKey(prinikey);
return renote;

}

The other option isto use adependent value to pass the Address EJB’ s data between remote clients and the
Customer EJB. Thisisthe approach recommended for fine-grained beans like the Address EJB—in general we don’t
want to expose these beans directly to remote clients.

The following shows how the dependent values class, Addr ess DO, is used in conjunction with the local
component interfaces of the AddressEJB. TheDOinAddr essDOisaconvention used in thisbook; it'saqualifier
that stands for Dependent Object.

public abstract class QustonerBean inpl enents javax.) b. EntityBean {

public Integer e bCGeate(lnteger id){

setld(id);

return nul l;
}
publ i c voi d ej bPost O eat e(| nteger id){
}

/'l busi ness net hod

publ i ¢ AddressDO get Address(){
AddressLocal addrLocal = get HoneAddress();
Sring street = addrLocal . getStreet();
Sring city = addrLocal . getdty();
Sring state = addrLocal . get S ate();
Sring zip = addrLocal . get Z p() ;
Address addrVal ue = new Address(street,city, state, zip);
return addrVal ue;

}

public voi d set Addr ess(Addr essDO addr Val ue)

Copyright (c) 2001 O'Reilly & Associates 131

throws Q eateException {

Sring street = addrVal ue.get Street();
Sring city = addrVal ue. getdty();
Sring state = addrVal ue. get S ate();
Sring zip = addrVal ue. get Zi p() ;

AddressDO addr = get AddressD()) ;

if(addr = null){
/] Qustoner doesn’t have an address yet. Qreate a new one.
Initial Gontext cntx = new Initial Context();
Addr esshbne addr Hone = (Addr essHone) cnt X. | ookup(“ honeAddr ess”) ;
addr = addr Hone. creat eAddress(street, city, state, zip);
t hi s. set HoneAddr ess(addr) ;

}el sg{
/1 Qustoner already has an address. Change its fields
addr.setSreet(street);
addr.setdty(city);
addr.setSate(state);
addr.setZ p(zip);

Here isthe definition for an Addr ess DO dependent value class, which is used by the enterprise bean to send
address information to the client.

public class AddressDOinpl enents java.io. Serializable {
private Sring street;
private Sring city;
private Sring state;
private Sring zip;

public AddressDQ(Sring street, Sring city,
Sring state, Sring zip) {
this.street = street;
this.city = city;
this.state = state;
this.zip = zip;
}
public Sring get Sreet(){
return street;

}

public Sring getdty(){
return city;

}

public Sring getSate(){
return state;

}

public Sring getZ p(){
return zip;

}

Copyright (c) 2001 O'Reilly & Associates 132

The Addr es s DOdependent value follows the conventionslaid out in this book. It's immutable, which meansiit
cannot be altered onceits created. As stated earlier, immutability helpsto reinforce that fact that the dependent
values classisacopy and is not aremote reference.

Y ou can now use aclient application to test the Customer EJBs relationship with the Address EJB. The following
code shows the client code that creates a new Customer, givesit an address, then changes the address using the
method defined above.

inport javax. naming. |l nitial Context;

i nport javax.rni. Portabl eRenot ej ect ;
i nport j avax. naning. Gont ext ;

i nport j avax. nani ng. Nanmi ngExcept i on;
inport java.util.Properties;

public class Qient {
public static void nmain(String [] args) throws Exception {
/1 obtai n Qustoner Hne
Qntext jndi Gontext = getlnitial Gontext();
(bj ect obj 5 ndi Cont ext . | ookup(" Qust oner EJB') ;
Qust oner Hone hone = (Qust oner Hone)
j avax. rni . Portabl eRenot ebj ect . nar r ow(obj ,
Qust oner Hone. cl ass) ;

/] create a Qustoner
Integer prinarykey = new Integer(1);
Qust oner custoner = hone. creat e(pri nar ykey) ;

/] create an address

Addr essDO address = new Address("1010 Gol orado”,
"Austin","Texas", "78701");

/] set address

cust oner . set Addr ess(addr ess);

address = cust oner. get Address();
Systemout. print (prinaryKey+' =");
Systemout . println(address. getStreet());
Systemout . println(address.getdty()+, "+
address. getSate()+' "+
address. getZ p());

/1 create a new address
address = new Address(" 1600 Pennsyl vani a Avenue NA,
"DC', "W, "20500"):

/1 change custoner's address
cust oner . set Addr ess(addr ess) ;

address = cust oner . get Address() ;
Systemout . print (prinarykey+' =");
Systemout. println(address. getSreet());
Systemout . println(address. getdty()+',"+
address. getSate()+' "+
address. getZ p());

/] renove Qustoner

Copyright (c) 2001 O'Reilly & Associates 133

cust oner . renove() ;

}

public static Context getlnitial Context()
throws j avax. nam ng. Nani ngExcepti on {
Properties p = new Properties();

/1 ... Specify the JNO properties specific to the vendor.
//return new javax. naming. I nitial Gontext (p);
return nul l;

}

The following listing shows the deployment descriptor for Customer EJB and Address EJB. To avoid confusion we
will not discuss this deployment descriptor in detail in this chapter because its covered in detail in Chapter 7. Don't
be too concerned about the details until they are explained in the next chapter.

= #Exercise 6.3, Relationships Fields

<IDOCTYPE gj b-jar PUBLIC "-//Sun Mcrosystens, |Inc.//DID Enterprise
JavaBeans 2.0//BN' "http://java.sun.conidtd/ ejb-jar_2 0.dtd">

<gjb-jar>
<ent er pri se- beans>

<entity>
<gj b- nane>Qust oner EJB</ €] b- nane>
<honme>comti t an. cust oner . Qust oner HoneRenot e</ hone>
<renot e>comti t an. cust oner . Qust oner Renot e</ r enot e>
<gj b-cl ass>com i t an. cust oner . Qust oner Bean</ €] b- cl ass>
<per si st ence-t ype>Cont ai ner </ per si st ence- t ype>
<pri mkey-cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>
<reentrant >Fal se</reent r ant >
<cnp- ver si on>2. X</ cnp- ver si on>
<cnp-fi el d><fi el d-nane>i d</fi el d- nane></ cnp-fi el d>
<cnp- fi el d><fi el d- nane>l ast Nane</ i el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d-nane>first Nane</ fi el d- nane></ cnp-fi el d>
<prinkey-fiel d> d</ pri nkey-fi el d>
<security-identity><use-cal |l er-identity/><security-identity>

<entity>

<entity>

<gj b- nane>Addr essEIB</ €] b- nane>
<l ocal - hone>comti t an. addr ess. Addr esshbnelLocal </ hone>
<l ocal >comti tan. addr ess. Addr essLocal </ r enot e>
<gj b-cl ass>comtit an. addr ess. Addr essBean</ gj b- cl ass>
<per si st ence-t ype>Cont ai ner </ per si st ence- t ype>
<pri mkey- cl ass>j ava. | ang. (bj ect </ pri m key- cl ass>
<reentrant >Fal se</reent rant >
<cnp- ver si on>2. x</ cnp- ver si on>
<cnp-fi el d><fi el d-nane>street </ fi el d- nane></ cnp-fi el d>
<cnp- fi el d><fi el d- nane>ci t y</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d-nane>st at e</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>zi p</fi el d- nane></ cnp-fi el d>
<security-identity><use-cal |l er-identity/><security-identity>
<Jentity>
</ enterpri se- beans>
<rel ationshi ps>
<gj b-rel ati on>
<gj b-rel ati on- nane>Qust oner - Addr ess
</ ej b-rel ati on- nane>

Copyright (c) 2001 O'Reilly & Associates 14

<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Qust oner - has- a- Addr ess
</ ¢ b-rel ati onshi p-r ol e- nane>
<mul tiplicity>Qne</ multiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Qust oner EJB</ €j b- nane>
</rel ati onshi p-rol e-sour ce>
<cm-field>
<cnm - fi el d- nane>addr ess
</ crm-fi el d- nane>
</ crm-field>
</ ejb-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Addr ess- bel ongs- t o- Qust oner
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>One</ mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Addr essEIB</ €] b- nane>
</rel ati onshi p-rol e- sour ce>
</ ejb-rel ati onshi p-rol e>
<ej b-rel ati on>
<rel ati onshi ps>
<assentl y- descri pt or >
<security-rol e>
<r ol e- nane>Enpl oyees</ r ol e- nane>
</security-rol e>
<net hod- per ni ssi on>
<r ol e- nane>Enpl oyees</ r ol e- nane>
<net hod>
<gj b- nane>Qust oner EJB</ €j b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<net hod>
<gj b- nane>Addr essEIB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>
<cont ai ner - transact i on>
<net hod>
<gj b- nane>Addr essEIB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<net hod>
<gj b- nane>Qust oner EJB</ €j b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attri bute>
<cont ai ner -t ransact i on>
</ assenbl y- descri pt or >

</ejb-jar>

Copyright (c) 2001 O'Reilly & Associates

v

EJB 2.0 CMP: Entity Relationships

In Chapter 6 you learned about basic EJB 2.0 container-managed persistence. Thisincluded coverage of container-
managed persistence fields and an introduction to a basic container-managed relationship field. In thischapter we
will continue to devel op the Customer EJB and discussin detail each of seven possible relationships that entity
beans can have with each other.

In order for entity beansto model real world business concepts they must be capable of forming complex
relationships with each other. Thiswas difficult to accomplish in EJB 1.1 container-managed persistence because of
the simplicity of the programming model. In EJB 1.1, entity beans could have persistent fields but not relationship
fields.

Relationship fieldsin EJB 2.0 can model very complex relationships between entity beans. In Chapter 6 you created a
one-to-one rel ationship between the Customer and Address EJBs. Thisrelationship was unidirectional; the
Customer had areference to the Address, but the Address did not have areference back to the Customer. Thisisa
perfectly legitimate relationship between these entities, but other more complicated rel ationships are also possible.
Each Address could also referenceits Customer. Thisis an example of bi-directional navigation, where both
participantsin the relationship maintain references to each other. In addition to one-to-one relationships, entity
beans can also have one-to-many, many-to-one and many-to-many relationships. For example, the Customer EJB
may have many phone numbers, but each phone number belongs to only one Customer (a one-to-many relationship).
A Customer may also have been on many Cruisesin the past and each Cruise will have had many Customers (a
many-to-many relationship).

The Seven Relationship Types

Seven types of relationships can exi st between EJBs. This chapter examines those relationships and how the beans’
code and deployment descriptor work together to define the relationships. First, let’ slook at the different types of
relationships that are possible. There are four different types of cardinality: one-to-one, one-to-many, many-to-one,
and many-to-many. On top of that, each relationship can be either unidirectional or bidirectional. That yields eight
possibilities, but if you think about it, you'll realize that one-to-many bidirectional and many-to-one bidirectional
relationships are actually the same thing, yielding 7 distinct relationship types.

To understand the relationships, it helpsto think about some simple examples. We'll expand on these examplesin the
course of the chapter.

Copyright (c) 2001 O'Reilly & Associates 136

one-to-one, unidirectional
The relationship between a customer and an address. Y ou clearly want to be able to look up a customer’s
address, but you probably don't care about looking up an address' s customer.

one-to-one, bidirectional
The relationship between a customer and a credit card number. Given a customer, you obviously want to be able
to look up hisor her credit card number. And, given acredit card number, it is also conceivable that you would
want to ook up the customer who owns the credit card.

one-to-many, unidirectional
The relationship between a customer and a phone nubmer. A customer can have many phone numbers
(business, home, cell, etc.). Y ou probably wouldn’'t want to look up a customer given his phone number.

one-to-many, bidirectional
Therelationship between a cruise and areservation. Given areservation, you want to be able to look up the
cruisethat the reservation isfor. And given acruise, you want to be able to look up all reservations for that
cruise. Notethat a many-to-one bidirectional relationship isjust another perspective on the same concept.

many-to-one, unidirectional
The relationship between acruise and aship. Y ou obviously want to look up the ship that will be used for a
particular cruise, and many cruises share the same ship, though at different times. 1t’sless useful to be able to
look up the cruises that are associated with the given ship, though if you want this relationship, you can
implement a many-to-one bidirectional relationship.

many-to-many, unidirectional
The relationship between areservation and a cabin. It's possible to make areservation for multiple cabins, and
you clearly want to be able to look up the cabin assigned to areservation. But you're not likely to want to look
up the reservation associated with a particular cabin. (If you think you need to do so, you'd implement it asa
bidirectional relationship.)

many-to-many, bidirectional
The relationship between a cruise and a customer. A customer can make reservations on many cruises, and each
cruise has many customers. Y ou clearly want to be able to look up both the cruises on which a customer has a
booking, and the customers that will be going on any given cruise.

Abstract Persistence Schema

In Chapter 6 you learned how to form a basic rel ationship between the Customer and Address entity beans using the
abstract programming model. In reality, the abstract programming model is only half the equation. In addition to
declaring abstract accessor methods, a bean devel oper mu st further describe the cardinality and direction of the
entity-to-entity relationshipsin the bean’s deployment descriptor. Thisishandled in the relationships section of the
XML deployment descriptor. Aswe discuss each type of relationship in the following sections, both the abstract
programming model and the XML elementswill be examined. It'sthe purpose of this section to introduce you to the
basic elements used in the XML deployment descriptor to better prepare you for subsequent sections on specific
relationship types.

In this book we always refer to the Java programming idioms used to describe relationships, specifically the abstract
accessor methods, as the abstract programming model. When referring to the XML deployment descriptor elements
we use the term abstract persistence schema. Inthe EJB 2.0 specification, the term abstract persistence schema
takes on amore general meaning referring to both the Javaidioms and the XML elements, but this book separate
these concepts so that they can be discussed more easily.

The abstract persistence schema of an entity beanisdefined inthe<r el at i onshi ps> section of the XML
deployment descriptor for that bean. The<r el ati onshi ps section fallsbetweenthe<ent er pri se- beans>
section and the<assenbl y- descri pt or > section. Within the relationships element each entity-to-entity
relationship is defined in separate <ej b-r el at i on> elements.

Copyright (c) 2001 O'Reilly & Associates 137

<gjb-jar>
<ent er pri se- beans>

</ enterpri se-beans>
<rel ati onshi ps>
<gj b-rel ati on>

</ejb-relation>
<gj b-rel ati on>

</¢e b-rel ation>
</rel ati onshi ps>
<assentl y- descri pt or >

</ assenbl y-descri pt or >

Defining relationship fields requiresthat an<ej b- r el at i on> element be added to the XML deployment
descriptor for each entity-to-entity relationship. These <ej b-r el at i on> elements complement the abstract
programming model. For each pair of abstract accessor methods that defined arelationship field, thereisan<ej b-
rel ati on> element in the deployment descriptor. EJB 2.0 requires that the entity beans that participatein a

relationship be defined in the same XML deployment descriptor.

Hereisapartial listing of the deployment descriptor for the Customer and Address EJBs with the emphasis on the

elements that define the relationship.

<gj b-jar>

<ent er pri se- beans>
<entity>
<ej b- nane>Qust oner EJB</ €] b- nane>
<l ocal - hone>comti t an. cust oner . Qusont er Local Hone</ | ocal - hone>
<l ocal >comtitan. cust oner. Qust oner Local </ | ocal >

<entity>

<entity>
<gj b- nane>Addr essEJB</] b- nane>
<l ocal - hone>comti t an. addr ess. Addr essLocal Hone</ | ocal - hone>
<l ocal >comtitan. addr ess. Addr essLocal </ | ocal >

<entity>
</ enterpri se-beans>

<rel ati onshi ps>
<gj b-rel ati on>
<gj b-rel ati on- nane>Qust oner - Addr ess
</ ej b-rel ati on- nane>
<ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-r ol e- nane>
Qust oner - has- a- Addr ess
</ ¢ b-rel ati onshi p-r ol e- nane>
<mul tiplicity>One</mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Qust oner EJB</ €j b- nane>
</rel ati onshi p-rol e- sour ce>
<cnr-fiel d>
<cnt-fi el d- nane>honeAddr ess

Copyright (c) 2001 O'Reilly & Associates

138

</ crm-fi el d- nane>
</ crm-field>
</ ¢ b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Addr ess- bel ongs-t o- Qust oner
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Qne</ mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Addr essEIB</ €] b- nane>
</rel ationshi p-rol e-source>
</ ¢ b-rel ati onshi p-rol e>
<gj b-rel ati on>
<rel ati onshi ps>

All relationships between the Customer EJB and other entity beans, such as CreditCard, Address, and Phone EJBs
will requirethat we definea<ej b-r el at i on> element to complement the abstract accessor methods.

Every relationship may, optionally, have arelationship name, which isdeclared inthe<ej b-r el ati on- nanme>
element. This servesto identify the relationship for individual s reading the deployment descriptor or for deployment
tools, but it’s not required.

Every <ej b-r el at i on> element has exactly two<ej b-r el ati onshi p-r ol e> elements, one for each
participant in arelationship. Inthe previous example, thefirst<ej b-r el at i onshi p-r ol e> declaresthe
Customer EJB’srolein the relationship. Weknow this becausethe<r el at i onshi p-r ol e- sour ce> element
specifiesthe<ej b- nane> asCust oner EJB. Cust oner EJBisthe<ej b- nanme> used in the Customer EIB’s
original declarationinthe<ent er pri se- beans> section. The<r el ati onshi p-rol e-sour ce>element’s
<ej b- nanme> must aways match an<ej b- nanme> element in the enterprise-beans section.

The<ej b-rel ati onshi p-r ol e> element also declares the cardinality, or multiplicity of therole. The

<mul tiplicity>elementcan either be One or Many. Inthe case of the Customer EJB’s<ej b-

rel ati onshi p-rol e>eement, the<nul ti plicity>element hasavaueof One, which means that every
Address EJB has arelationship with exactly one Customer EJB. The Address EJB's<ej b-r el ati onshi p-
rol e> specifies One aso, which meansthat every Customer EJB has exactly one Address EJB. |If the Customer
had a relationship with many Address EJBs, the AddressEBJs' <nul ti pl i city>wouldbeMany.

In Chapter 6, we defined the Customer EJB has having abstract accessor methods for getting and setting the Address
EJB inthehoneAddr ess field, but the Address EJB did not have abstract accessor methods for the Customer EJB.
In this case the Customer EJB maintains areference to the Address EJB, but the Address EJB doesn’t maintain a
reference back to the Customer EJB. Thisisaunidirectional relationship, which meansthat only one of the entity
beans in the relationship maintai ns a contai ner-managed relationship field.

If the bean that is described by the <ej b-r el ati onshi p-r ol e> element maintains references to the other bean
in the relationship, then that reference must be declared as a container-managed relationship field in the <cnr -
fiel d>dement. The<cnr - fi el d>elementisdeclared under the<ej b-r el ati onshi p-r ol e> element.

<gj b-rel ati onshi p-rol e>

<gj b-rel ati onshi p-rol e- nane>

Qust oner - has- a- Addr ess
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Qne</ mul tiplicity>
<rel ationshi p-rol e- sour ce>

<gj b- nane>Qust oner EJB</ € b- nane>
</rel ationshi p-rol e-source>
<crm-field>

Copyright (c) 2001 O'Reilly & Associates 139

<cnr-fi el d- nane>honeAddr ess</ cni-fi el d- nane>
</crm-field>
</ ¢ b-rel ati onshi p-rol e>

Thefield name declared inthe<cnr - f i el d- name> element must match apair of abstract accessor methodsin the
bean class. Inabove example, the<cnr - f i el d- nane> ishoneAddr ess, which corresponds to the pair of
abstract accessor methodsget HoneAddr ess() andset HomeAddr ess() definedinthe Cust oner Bean
class. EJB 2.0 requiresthatthe<cnr - f i el d- nanme> beginwith alower case letter. For every relationship field
defined by a<cnr - f i el d> element, there must be apair of matching abstract accessor methodsin the bean class.
One method in this pair must be defined with the method nameset <cnr - f i el d- nane>() wherethefirst letter
of the<cnr - fi el d- nane> valueis changed to upper case. The other method isdefined asget <cnr - f i el d-
nanme>() withthefirst letter of the<cnr - f i el d- nanme> valuein upper case. So, for example, the<cnr -

fi el d- nane> valueof home Addr ess would have a corresponding abstract accessor methods

get HoneAddr ess() andset HomeAddr ess() .

/1 bean cl ass code
publ i c abstract voi d set HoneAddr ess(AddressLocal address);
publ i c abstract AddressLocal get HoneAddress();

/1 XML depl oynent descriptor declaration
<cni-fiel d>

<cnr-fi el d- nane>honeAddr ess</ cni-fi el d- nane>
</crm-field>

Thereturn type of theget <cnr - fi el d- name>() method and the parameter type of theset <cnr -fi el d-
nanme>() must be exactly the same type. The type must be either the remote or local interface of the bean that is
referenced or one of twoj ava. uti | . Col | ecti on types. Inthe case of thehonmeAddr ess relationship field,
we are using the Address EJB’ slocal interface, Addr essLocal . Collection types are discussed in more detail in
one-to-many, many-to-one and many-to-many relationships later in the chapter.

Having established a basic understanding of how elements are declared in the abstract persistence schema, you are
now ready to discuss each of the seven types of relationshipsin more detail. In the process we will be introducing
additional entity beans that have relationships with the Customer EJB including the CreditCard, Phone, Ship, and
Reservation EJBs.

It'simportant to understand that although entity beans may have both local and remote interfaces, a container-
managed relationship field may only use the entity bean’ slocal interface when persisting arelationship. So for
example, it would beillegal to define abstract accessor methods that have an argument type of

j avax. e] b. EJBObj ect (remoteinterfacetype). All container-managed relationships are based on

j avax. e] b. EJBLocal Obj ect (local interface) types.

Database M odeling

This chapter discusses several Through out this chapter different database table schemas are discussed. These
schemas are intended purely illustrative and are used only to to demonstrate possible manifestations of relationships
between entities in the database; they are not prescriptive. For example, the Address-Customer relationship is
manifested by having ADDRESS table maintain foreign keysinto the CUSTOVER table. Thisis not how most
databases will be organized — instead they will use alink table or have the ADDRESS table maintain aforeign key to
the CUSTOVER. — hHowever, this schema shows is useful in showing how different database schemas can be
supported by EJB 2.0’ s contai ner-managed persistence can support different database organizations.

Its assumed tThrough out this chapter, we assume that the database tables are created before the EJB application.--
lin other words, that the EJB application is mapped to alegacy database. Some vendorswill offer tools that generate

Copyright (c) 2001 O'Reilly & Associates 140

tables automatically according to the relationships defined among entity beans. These tools may create schemas that
are very different from the ones explored here. In other cases, vendors that support established database schemas
may not have the flexibility to support the schemasillustrated in this chapter. Asan EJB developer, you must be
flexible enough to adapt to the facilities provided by your EJB vendor.

One-to-one Unidirectional Relationship

An example of aone-to-one unidirectional relationship is the relationship between the Customer EJB and the Address
EJB defined in Chapter 6. In this case, a Customer has exactly one Address and every Address has exactly one
Customer. Which bean references which determines the direction of navigation. While the Customer has areference
to the Address, the Address doesn’t reference the Customer. Thisisaunidirectional relationship because you can
only go from the Customer to the Address, and not the other way around. In other words, an Address EJB has no
ideawho ownsit. Figure 7-1 shows this relationship.

[Figure 8-1 figure 7-1 and 6-1 are the same]
Figure 7-1: One-to-one Unidirectional Relationship

Relational Database Schema

One-to-one unidirectional relationships normally use afairly typical schemain relational databases where onetable
contains aforeign key (pointer) to another table. The CUSTOVER table contains aforeign key to the ADDRESS
table, but the ADDRESS table doesn’t contain aforeign key to the CUSTOVER table. Thisallowsrecordsinthe
ADDRESS table to be shared by other tables, a scenario explored in section Many-to-many Unidirectional
Relationships.FigureHolder

Figure 7-2: One-to-one Unidirectional Relationship in RDBMS

Abstract Programming M odel

Asyou learned in Chapter 6, the abstract accessor methods are used to define relationship fieldsin the bean class.
When an entity bean maintains a reference to another bean, it defines a pair of abstract accessor methods to model
that reference. In unidirectional relationships, only one of the enterprise beans will define abstract accessor methods.
It's called unidirectional because you can only navigate the relationship one-way. Insidethe Cust oner Bean class
you can call theget HonmeAddr ess () /set HoneAddr ess() to accessthe Address EJBs, but inside the

Addr essBean class there are no methods to access the Customer EJB.

Although the relationship is unidirectional, the Address EJB can be shared between relationship fields of the same
enterprise bean, but it may not be shared between Customer EJBs. If, for example, the Customer EJB defined two
relationship fields, bi | | i ngAddr ess and honeAddr ess, as one-to-one unidirectional relationships with the
Address EJB, these two fields could conceivably reference the same Address EJB.

public class QustonerBean i npl enents javax. g b. EntityBean {
publ i c voi d set Address(Sring street,Sring city,

Sring state, Sring zip)
throws Q eat eException {

addr ess = addr esstHone. cr eat eAddr ess
(street, city, state, zip);

t hi s. set HoneAddr ess(addr ess) ;
this.setB |lingAddress(address);

Copyright (c) 2001 O'Reilly & Associates 141

AddressLocal bil | Addr, honeAddr;

i f(billAddr.isldentical (honeAddr))
/1 always true

}
}
It’s possible for two fieldsin a bean to reference the same relationship if the relationship type is the same. In this
case, boththe honme Addr ess andbi | | i ngAddr ess haveto be defined as one-to-one unidirectional

relationships that utilize the Address EJB’ slocal interface. At any time, if you want to makethebi | | i ngAddr ess
different from thehoneAddr ess, you could be simply set it equal to adifferent Address EJB. Sharing areference
to another bean between two relationship fields in the same entity is sometimes very convenient. In order to support
this type of relationship anew billing address field might be added to the CUSTOMER table.

CREATE TABLE OLSTOMER
(
ID INT PR INARY KEY,
LAST NAME GHAR(20),

FI RST_NAME GHAR(20) ,
ACDRESS | D I N,

Bl LLI NG ADDRESS | D | NT

}

However, it would not be possible to share the Address EJB between two different Customer EJBs. If, for example,
the home Address of Customer A were assigned as the home Address of Customer B, the Address would be moved,
not shared, so that Customer A wouldn’t have ahome Address any longer. Asyou can seein Figure 7-3, Address 2
isinitially assigned to Customer B, but becomes disconnected when Address 1 is re-assigned to Customer B.

FigureHolder
Figure 7-3: Exchanging referencesin a One-to-One Unidirectional Relationship

This seemingly strange side affect is simply anatural result of how the relationship is defined. The Customer-to-
Address EJB relationship was defined as one-to-one, so the Address EJB is allowed to be referenced by only one
Customer EJB.

Abstract Persistence Schema

The XML elements for the Customer-Address rel ationship were already defined in the Abstract Persistence Schema
section, so wewon't go over them again. The<ej b-r el at i on> element used in that section declared aone-to-
one unidirectional relationship. If, however, the Customer EJB did maintain two relationship fields with the Address
EB, honeAddr ess, andbi | | i ngAddr ess, each of these relationships would have to be described in its own
<ej b-rel ati on> element.

<rel ati onshi ps>
<gj b-rel ati on>
<ej b-rel ati on- nane>Qust oner - HoneAddr ess
</ ej b-rel ati on- nane>
<ej b-rel ati onshi p-rol e>

<cnm-field>
<cnm-fi el d- nane>honeAddr ess
</cnr-fi el d- nane>

Copyright (c) 2001 O'Reilly & Associates 142

</ crm-field>
</ ¢ b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>

</ ejb-rel ati onshi p-rol e>
<gj b-rel ati on>
<ej b-rel ati on>
<ej b-rel ati on- nane>Qust oner- B | | i ngAddr ess
</ ej b-rel ati on- nane>
<gj b-rel ati onshi p-rol e>

<crm-fiel d>
<cnr-fi el d-nane>bi | | ng
< cni-fi el d- name>
< cm-fiel d>
</ ejb-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e>

</ ¢ b-rel ati onshi p-rol e>
<gj b-rel ati on>
<rel ati onshi ps>

One-to-one Bi-directional Relationship

We can expand our Customer EJB to include areference to a CreditCard EJB, which maintains credit card information.
The Customer EJB will maintain areferenceto its CreditCard EJB and the CreditCard EJB will maintain areference
back to the Customer—this makes good sense, since a CreditCard should be aware of who ownsit. When each
CreditCard has a reference back to one Customer, and each Customer referencesone CreditCard, we have a one-to-
one bi-directional relationship.

Relational Database Schema

The CreditCard EJB will have a corresponding CREDI T_ CARD table and we neeed to add a CREDIT_CARD foreign
key to the CUSTOMER table;

CREATE TABLE CREDI T_CARD
(
ID I NT PR MARY KEY,
EXP_DATE DATE

NUMBER CHAR(20)

NAME CHAR(40),

CRGAN ZATI ON GHAR 20) ,
QUSTOMRR | D I NT

}

CREATE TABLE QUSTOMER
(
ID INT PR IMARY KEY,
LAST NAME CHAR(20),
FI RST_NAME GHAR(20) ,
HOME_ACDRESS | D | NT,

ACCRESS | D I T,
CREDI T_CARD | D I NT

)

Copyright (c) 2001 O'Reilly & Associates 143

One-to-one bi-directional relationships may model relational database schemas where the two tables each hold a
foreign key for the other table. Specificaly, two rowsin different tables point to each other. Figure 7-4 illustrates
how this schemawould be implemented for rows in the CUSTOVER and CREDI T_CARD tables.

FigureHolder
Figure 7-4: One-to-one Bi-directional Relationship in RDBMS

Its also possible for a one-to-one bi-directional relationship to be established through a linking table where each
foreign key column in the table must be unique, thisis convenient when you do not want to impose relationship on
the original tables. We will use linking tablesin one-to-many and many-to-many relationships later in the chapter.

Abstract Programming M odel

To model the relationship between the Customer and CreditCard, we'll need to declare arelationship field named
cust oner intheCr edi t Car dBean class.

public abstract class QeditCardBean extends javax.ejb. EntityBean {

/1 relationship fields
publ i c abstract QustonerlLocal getQustoner();
publ i c abstract void set Qust oner (CQust oner Local | ocal);

/] persistent fields

public abstract Date getExpirationDate();

public abstract void setExpirationDate(Date date);
public abstract Sring get Nunber();

public abstract voi d set Nunber (Sring nunber);

public abstract Sring get NanehCard();

public abstract void set NanehCard(Sring nane);

public abstract Sring getQeditQganization();

public abstract void setQeditQganization(String org);

/] standard cal | back nethods

}

In this case, we use the Customer EJB’ slocal interface (assume one has been created) because relationship fields
require local interfacestypes. All the relationships explored in the rest of this chapter assume local interfaces. Of
course, the limitation of using local interfacesinstead of remote interfacesisthat you don’'t have location
transparency. All the entity beans must be located in the same process or Java Virtual Machine. Although
relationships fields using remote interfaces are not supported in EJB 2.0, it’slikely that support for remote
relationship fields will be added in a subsequent version of the specification.

We can also add a set of abstract accessor methodsin the Cust oner Bean classfor thecr edi t Car d
relationship field.

publ i c cl ass QustonerBean i npl enents javax. ej b. EntityBean {

public abstract void setGeditCard(GeditCardLocal card)
public abstract GreditCardLocal getQeditCard();

Copyright (c) 2001 O'Reilly & Associates 144

Although aset Cust onmer () method isavailableinthe Cr edi t Car dBean, we do not have to set the Customer
reference on the CreditCard EJB explicitly. When a CreditCard EJB referenceispassed intotheset Cr edi t Car d()
method on the Cust oner Bean class, the EJB Container will automatically establish the customer relationship on
the Address EJB to point back to the Customer EJB.

publ i c class QustonerBean i npl enents javax. ej b. EntityBean {
public void setQeditCard(Date exp, String nunb,
Sring nane, Sring org)
throws Q eat eException {

card = credit Car drbne. cr eat e(exp, nun, nang, or g) ;

/1 the Address EIB s custoner field will be set automatically
this.setGeditCard(card);

Qust oner custoner = card. get Qustoner();

i f(custoner.isldentical (e bContext.get EJBLocal (hj ect())
/1 aways true

}

Attempting to share a CreditCard in a one-to-one bi-directional relationship has the same affect asin one-to-one
unidirectional relationships. While the CreditCard EJB may be shared between relationship fields of the same entity
identity, the CreditCard entity can’t be shared between different Customer EJBs. Assigning the CreditCard of
Customer A to Customer B disassociates that CreditCard from A, and movesit to B.

Figure holder

Figure 7-5: Exchanging referencesin a One-to-One Bi-idirectional Relationship
Abstract Persistence Schema

The<ej b-rel at i on> element that defined the Customer-to-CreditCard relationship isvery similar to the one
used for the Customer-to-Address rel ationship, except for oneimportant difference: bothej b-r el ati onshi p-
rol e elementshaveacnr - fi el d.

<rel ationshi ps>
<gj b-rel ati on>
<gj b-rel ati on- nane>Qust oner - G edi t Card
</ ej b-rel ati on- nane>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Qust oner - has-a- G edi t Card
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Qne</ mul tiplicity>
<rel ationshi p-rol e- sour ce>
<gj b- nane>Qust oner EJB</ € b- nane>
</rel ati onshi p-rol e-sour ce>
<cnm-fiel d>
<cm-fi el d-name>credi t Gard
</ crm-fi el d- nane>

Copyright (c) 2001 O'Reilly & Associates 145

</ crm-field>
</ ¢ b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Q edi t Gar d- bel ongs- t o- Qust oner
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>ne</ multiplicity>
<rel ati onshi p-rol e- sour ce>
<ej b- nane>C edi t Car dEJB</ €] b- nane>
</rel ati onshi p-rol e-sour ce>
<cmi-fiel d>
<cnt-fi el d- nane>cust oner
</ cnr-fi el d- name>
< cm-field>
</ ej b-rel ati onshi p-rol e>
<gj b-rel ati on>
<rel ati onshi ps>

The fact that both participantsin the relationship define<cnr - f i el d> elements (relationship fields) tells up
immediately that the relationship is bi-directional .

One-to-many Unidirectional Relationship

Entity beans can also maintain relationships with multiplicity. This meansthat one entity bean can aggregate or
contain many other entity beans. For example, the Customer EJB may have many Phone EJBs, each of which
represents a phone number. Thisisvery different from the simple one-to-one relationship. One-to-many and many-
to-many relationships require the devel oper to work with a collection of references when accessing the relationship
field, instead of asingle reference.

Relational Database

Toillustrate a one-to-many unidirectional relationship, we will use a new entity bean, the Phone EJB, for which we
must define atable, the PHONE table.

CREATE TABLE PHONE
(
ID INT PR IMARY KEY,
NUMBER CHAR(20)
TYPE INT,
QUSTOMER | D | NT

}

One-to-many unidirectional relationships between the CUSTOVER and PHONE tables could be manifested in a
relational databasein avariety of ways. For this example, we chose to have the PHONE table include aforeign key to
the CUSTOVER table

The table of aggregated data can maintain a column of non-unique foreign keys to the aggregating table. In the case
of the Customer and Phone EJBs, the PHONE table maintains aforeign key for the CUSTOVER table; one or more
PHONE records may contain foreign keys the same CUSTOVER record. Here the pointer is reversed in the database,
so that the PHONE records point to the CUSTOVER records. Although the database has the PHONE records
pointing to the CUSTOVER records, the abstract programming model would have the Customer EJB pointing to the
Phone EJBs. The two schemas are reversed, so how can it work? The container system will hide this reverse pointer
so that it appears asif the Customer is aware of the Phone number and not the other way around. When you ask the

Copyright (c) 2001 O'Reilly & Associates 146

container toreturnaCol | ect i on of Phone EJBs (invoking the get PhoneNunger s() method), it will query the
PHONE tablefor all the records with aforeign key matching the Customer EJB’ s primary key.

FigureHolder
Figure 7-6: One-to-many Unidirectional Relationship in RDBMSusing reverse pointers

This database schema, with reverse pointers, illustrates that the structure and the relationships of the database can
be very different than the relationships as defined in the abstract programming model. In this case the tables are set
up somewhat in reverse, but the EJB container system will manage the beans to meet the specification of the bean
developer. Thisisn't always possible; in some cases, the database schema isincompatible with adesired relationship
field. When dealing with legacy databases, databases that were established before the EJB application, areverse
pointer scenario like the one illustrated here is very common, so supporting thiskind of relationship mapping is
important.

A simpler implementation could use alink table that maintains two columns with foreign keys pointing to both the
CUSTOVMER and PHONE records. In this case we can constrain the link table so that the PHONE foreign key column
requires unique entries, ensuring that every phone has only one customer, while the Customer foreign key column
may have duplicates. The advantage of the link tableisthat it doesn’t impose the rel ationship between the
CUSTOVER and the PHONE onto either of the tables.

Abstract Programming M odel

In the abstract programming model, we represent multiplicity by defining arelationship field that can point to many
entity beans. Thisis accomplished by employing the same abstract accessor methods used for one-to-one
relationships, except thefield typeiseitheraj ava. uti| . Col | ectionorjava. util. Set. Thecollection
mai ntains a homogeneous group of local EJB object references, which meansit contains many references to one kind
of entity bean. The Col | ect i on type may contain duplicate references to the same entity bean, while the Set
type may not.

For example, the Customer EJB may have many different phone numbers. a home phone, work phone, cell phone, fax,
etc. Instead of having asingle relationship field for each of these different Phone EJBs, the Customer EJB keeps all
the Phone EJBsinaCol | ect i on relationship field, which can be accessed through abstract accessor methods:

public abstract class QustonerBean inpl enents javax. ej b. EntityBean {

/1 relationship fields
public java. util.@l |l ection get PhoneNunbers();
publ i ¢ voi d set PhoneNunber s(j ava. util. @l | ection phones);

publ i ¢ AddressLocal get HoneAddress();
publ i ¢ voi d set HoneAddr ess(AddressLocal | ocal);

The Phone EJB, like other entity beans, has a bean class and local interface as shown in the next listing. Notice that
the PhoneBean doesn't provide arelationship field for the Customer EJB. It'saunidirectional relationship; the
Customer maintains a rel ationship with many Phone EJBs, but the Phone EJBs do not maintain arelationship field
back to the Customer. Only the Customer EJB is aware of the relationship.

/1 The local interface for the Phone EIB
public interface PhonelLocal
extends j avax. €] b. EJBLocal (yj ect {
public Sring get Nuner();
publ i ¢ voi d set Nunber (S ring nunber);

Copyright (c) 2001 O'Reilly & Associates 147

public byte get Type();

publ i ¢ voi d set Type(byte type);
}
/1 The bean class for the Phone EIB
public class PhoneBean

i npl enent s javax. gj b. EntityBean {

public Integer e bQeate(Sring nunber, byte type){

set Nunier (nunier) ;

set Type(type);
}
publ i c voi d ej bPost O eate(Sring nunber, byte type)
{}

/1 persistent fields

public abstract Sring get Nunier();

publ i c abstract voi d set Nunber (Sring nunier);
public abstract byte get Type();

public abstract voi d set Type(byte type);

/1 standard cal | back net hods

}

Toillustrate how an entity bean uses a collection-based relationship field, we will define amethod in the Customer
EJB classthat allows clients to add new phone numbers. The method, addPhoneNunber () , uses the phone
number arguments to create a new Phone EJB and then add that Phone EJB to aCol | ect i on named
phoneNunbers.

public abstract class QustonerBean inpl enents javax. ej b. EntityBean {

/1 busi ness net hods
publ i ¢ voi d addPhoneNunber (St ring nuniber, Sring type){

Initial Gontext jndiBrc = new Initia Gontext();
PhonetbneLocal phonetone = j ndi Enc. | ookup(“ PhoneNuner ") ;
PhoneLocal phone = phonetbne. cr eat e(nunber, t ype) ;

@l | ection phoneNunbers = thi s. get PhoneNunbers();
phoneNunber s. add(phone) ;

}

/1 relationship fields
public java.util.@l |l ection get PhoneNunbers();
publ i ¢ voi d set PhoneNunber s(j ava. util. @l | ection phones);

What isimportant with the above example is that the Phone EJB isfirst created, and then added to the
phoneNunber s Collection. ThephoneNunber s Col | ect i on isobtained fromtheget PhoneNunber s()
accessor method and then the new Phone number EJB is added to the Col | ect i on just asyou would add any
object to acollection. The simple act of adding the Phone EJB to the Col | ect i on causes the EJB container to set
the foreign key on the new PHONE record so that it points back to the Customer EJB’s CUSTOVER record. If alink
table had been used, a new link record would have been created. From this point forward, the new Phone EJB will be
available fromthe phoneNunber s Collection.

Copyright (c) 2001 O'Reilly & Associates 148

ReferencesinaCol | ect i on-based relationship field can also be updated or removed from the rel ationship using
the relationship field accessor method. For example, the following code defines two methodsin the Cust oner Bean
classthat allow clientsto remove or update phone numbersin the bean’sphoneNunber s relationship field.

public abstract class QustonerBean inpl enents javax. ej b. EntityBean {

/1 busi ness net hods
publ i ¢ voi d renovePhoneNunber (St ring typeToRenove) {

@l I ection phoneNunibers = thi s. get PhoneNunbers();
Iterator iterator = phoneNunbers.iterator();
whi | e(iterator. hasNext ()){
PhoneLocal phone = (PhonelLocal)iterator. next();
i f (phone. get Type() . equal s(t ypeToRenove)){
i terator.renove(phone);
br eak;

}
}
publ i ¢ voi d updat ePhoneNuniber (St ring nunber, Sring typeTolpdat €) {
@l I ection phoneNuntbers = thi s. get PhoneNunbers();
Iterator iterator = phoneNunbers.iterator();
vhi | e(iterator. hasNext ()){
PhoneLocal phone = (Phonelocal)iterator. next();
i f (phone. get Type() . equal s(typeTolbdat €)){
phone. set Nunier (nunber) ;
br eak;

}

/1 relationship fields
public java. util.Ql | ection get PhoneNunbers();
publ i ¢ voi d set PhoneNunber s(j ava. util. ol | ecti on phones);

Inther embvePhoneNumnber () business method, a Phone EJB with the matching type was found and then
removed from the collection. This has the effect of actually disassociating the phone number from Customer EJB so
that its not referenced by any Customer. The phone number is not deleted from the database, it’ s just not referenced
by a Customer.

FigureHolder
Figure 7-9: Removing a bean reference froma relationshipsfield collection

Theupdat ePhoneNunber () method actually modifies an existing Phone EJB, changing its state in the database.
The Phone EJB is till referenced by the Col | ect i on, but its data has changed.

Bothr emovePhoneNunber () andupdat ePhoneNunber () illustrate that a collection-based relationship can
be accessed and updated just like any other Col | ect i on object. Inaddition,aj ava. util.|terator canbe
obtained fromthe Col | ect i on for looping operations. However, caution should be exercised while using an
iterator over a collection-based relationship. Y oumust not add or remove elements from the Col | ect i on while
using itsiterator. The only exceptionto thisruleisthat thel t er at or . r enove() method may be called to remove
an entry. Althoughthe Col | ecti on. add() andCol | ecti on. renmove() methodscan be used in other
circumstances, calling these methodswhile an iterator isin use will resultina

java.util .||l egal StateExcepti on exception.

Copyright (c) 2001 O'Reilly & Associates 149

If thephoneNunber s relationship field has never had any beans added to it, the get PhoneNurber s() method
will return an empty Col | ect i on. Multiplicity relationship fields never returnnul | . TheCol | ect i on object
used with the relationship field isimplemented by the container system and is proprietary to the vendor and tightly
coupled with the inner workings of the container. This allows the EJB container to implement performance
enhancements like lazy loading or optimistic concurrency seamlessly, without exposing those proprietary
mechanisms to the bean developer. Becausethe Col | ect i on isimplemented and tightly coupled to the vendor’'s
EJB container, itsillegal to use application defined Col | ect i on objectsinrelationship fields. For example, itis
illegal to createanew Col | ect i on object and then attempt to add that Col | ect i on object to the Customer EJB
using theset PhoneNunber s() method.

publ i ¢ voi d addPhoneNunber (S ring nunber, Sring type){

PhoneLocal phone = phonetone. creat e(nunber, t ype) ;

@l I ection phoneNunbers = java. util.Vector();
phoneNuner s. add(phone) ;

I/ thisisillegal. An exception wll be thrown
t hi s. set PhoneNunber s(phoneNunter s) ;

}
/1 relationship fields

public java.util.@l |l ection get PhoneNunbers();

publ i ¢ voi d set PhoneNunber s(j ava. util. @l |l ection phones);

We have used the get PhoneNunber s() method extensively but have not yet used theset PhoneNurnber s() .
In most cases, this method will not be used, because it updates an entire collection of phone numbers. However, in
some scenarios it can be very useful for exchanging like relationships between entity beans.

If two Customer EJBs want to exchange phone numbers, they can do so in avariety of ways. The most important
thing to keep in mind is that a Phone EJB, as the subject of the one-to-many unidirectional relationship, may only

reference one Customer EJB. So aPhone EJB cannot be shared between Customer EJBs. It can be copied, so that
both Customers have Phone EJBs with similar data, but the Phone EJB itself cannot be shared.

Imagine, for example, that Customer A wants to transfer all of its phone numbers to Customer B. It can accomplish
thisby using the set PhoneNunber s() method of Customer B as shown in the listing below. (We assume the
Customer EJBs are interacting through their local interfaces.)

Qustoner custonerA = ...get Qustoner A
Qustoner custonerB = ...get Qustoner B

@l I ection phonesA = cust oner A get PhoneNunber s() ;
cust oner B. set PhoneNunier s(phonesA) ;

i f(custoner A get PhoneNunibers(). i sEnpty())
/1 this will be true

i f(cust oner B. get PhoneNunber s() . equal s(phonesA))
/] this wll be true

Asthe previous code and Figure 7-10 illustrate, passing one collection-based relationship to another actually
disassociates those rel ationships from the first bean and associates them with the second. In addition, if the second
already hadaCol | ect i on of Phone EJBsinitsphoneNunber s relationship field, those beans are bumped out
of the relationship and disassociated from the bean.

FigureHolder

Copyright (c) 2001 O'Reilly & Associates 150

Figure 7-10: Exchanging a relationship collection in a One-to-One unidirectional Relationship

Theresult of this exchange may be counterintuitive, but it is necessary to uphold the unidirectional aspect of the
relationship, which says that the Phone EJB may only have one Customer EJB. This, at |east, explains why Phone
EJBs 1,2 and 3 don't reference both Customer A and B, but it doesn’t explain why Phone EJBs 4, 5 and 6
disassociated from Customer B. Why isn’t Customer B associated with all the Phone EJBS? Thereasonispurely a
matter of semantics, since the relational database schemawouldn’t technically prevent thisfrom occurring. The act
of replacing one Col | ect i on with another by callingset PhoneNunber s(Col | ection col | ecti on)
impliesthat B’sinitial Col | ect i on object isno longer referenced, and is therefore not referenced by any Customer.

In addition to moving whole collection-based rel ationships between beans, it’s also possible to move individual
Phone EJBs between Customers, but again they cannot be shared. For example, if a Phone EJB aggregated by
Customer A is added to the relationship collection of Customer B, that Phone EJB changes so that it’s referenced by
Customer B, and not A, as Figure 7-11 illustrates.

FigureHolder
Figure 7-11: Exchanging a bean in a One-to-One unidirectional Relationship

One again, it’sthe unidirectional aspect of the relationship that prevents Phone 1 from referencing both Customer A
and B.

Abstract Persistence Schema

The abstract persistence schemafor one-to-many unidirectional relationships has a couple of significant changes
when compared tothe<ej b-r el at i on> elements seen so far, but these changes are easy to understand.

<rel ationshi ps>
<ej b-rel ati on>
<gj b-rel ati on- nane>Cust oner - Phones
</ ej b-rel ati on- nane>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Qust oner - has- many- Phone- nunier s
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Qne</ mul tiplicity>
<rel ationshi p-rol e- sour ce>
<ej b- nane>Qust oner EJB</ €] b- nane>
</rel ati onshi p-rol e- sour ce>
<cnm-field>
<cnm - f i el d- nane>phoneNunber s
</ crm-fi el d- nane>
<cni-field-type>ava util.Qllection
</crm-field-type>
</ crm-field>
</ ¢ b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Phone- bel ongs-t o- Qust oner
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Many</multiplicity>
<rel ati onshi p-rol e- sour ce>
<ej b- nane>PhoneEIB</ €] b- nane>
</rel ati onshi p-rol e-sour ce>
</ ej b-rel ati onshi p-rol e>
<gj b-rel ati on>

Copyright (c) 2001 O'Reilly & Associates 151

| <rel ati onshi ps> |

Inthe<ej b-r el ati on> element, the multiplicity for the Customer EJB is declared asOne, while the multiplicity
for the Phone EJB’s<ej b-r el ati onshi p-rol e>isMany. Thisobviously establishes the relationship as one-
to-many. Thefact thatthe<ej b-rel ati onshi p-r ol e> for the Phone EJB doesn’t specify a<cnr - fi el d>
element indicates that the one-to-many relationship is unidirectional; the Phone EJB doesn’t contain areciprocating
reference to the Customer EJB.

The most interesting change is the addition of the<cnr - f i el d- t ype> element in the Customer EJB’s<cnr -
fi el d>declaration. The<cnr - fi el d-type> must be specified for the bean that has a collection-based
relationship field (in this casethe phoneNumnber s field maintained by the Customer EJB). The<cnr -fi el d-

t ype> can haveoneof twovalues,j ava. util . Col | ectionorjava. util. Set,which arethealowed
collection-based relationships types. In afuture specification, the allowed types for collection-based relationships
may be expandedtoincludej ava. uti |l . Li st andj ava. uti | . Map, but these are not supported yet.

= #EXercise 7.1, Customer Relationships

The Cruise, Ship, and Reservation EJBs

To make things more interesting, we are going to introduce some more entity beans so that we can model the
remaining four relationships: Many-to-one unidirectional, One-to-many bi-directional, and many-to-many
unidirectional and finally, many-to-many bi-directional.

In Titan’ sreservation system every customer (a.k.a. passenger) can be booked on one or more cruises. Each booking
requires areservation. A reservation may be for one, or more passengers (usually 2). Each cruise requires exactly one
ship, but each ship may be used for many cruises through out the year. The following diagram illustrates these
relationships.

FigureHolder
Figure7-12: Cruise, Ship & Customer Class Diagram

In the next four sections the relationshipsinvestigated will each refer back to the above diagram and show how these
relationships are manifested in EJB 2.0 container managed persistence.

M any-to-one Unidir ectional Relationships

Many-to-one unidirectional relationships result when many entity beans reference a single entity bean, but the
referenced entity bean is unaware of the relationship. Inthe Titian Cruise business, for example, the concept of a
cruise can be captured by a Cruise EJB. Asshown in figure 7-12, each cruise has a many to one relationship with a
ship. Thisrelationship is unidirectional; the Cruise EJB will maintain arelationship with Ship EJB, but the Ship EJB is
not going to keep track of which Cruisesit used for.

Relational Database Schema

Therelational database schemafor the cruiseto-ship relationship isfairly simple; it requires that the CRUI SE table
maintain aforeign key column for the ship table, where each row in the CRUI SE table pointsto arow in the SHI P
table. The CRUI SE and SHI P tables are defined bel ow; Figure 7-13 shows the relationship between these tablesin
the database.

An enormous about of datawould be required to adequately describe an ocean ship liner, but for the purposes of
this book we will keep the definition of the SHI P table very simply.

Copyright (c) 2001 O'Reilly & Associates 152

CREATE TABLE SH P

(
ID INT PR INARY KEY,

NAME CHAR(30),
TONNAGE CEQ ML (8, 2)
}

The CRUI SE table maintains data on each cruise’ s name, ship, and other information that is not germaine to this
discussion. (Other tables such asRESERVATI ONS, SCHEDUL ES, CREW etc. would have rel ationships with the
CRUI SE tablethrough linking tables.) For our purposeswe'll keep it simple and focus on a definition that useful for
the examplesin this book.

CREATE TABLE (RU SE
(
IDINT PR MARY KEY,
NAMVE CHAR(30),
SHPIDINT

}

FigureHolder
Figure 7-13: Many to One Unidirectional Relationship in RDBMS

Abstract Programming M odel

In the abstract programming model, the relationship field is of type Shi pLocal and is maintained by the Cruise EJB.
Thisisnot particularly interesting, as the abstract accessor methods are similar to those defined in other examples.

public abstract class Q ui seBean
i npl enent s javax. gj b. EntityBean {
public Integer e bGeate(Sring nane,
Shi pLocal ship) {
set Nange(nane) ;
}
public void ej bPost O eate(Sring nane,
Shi p shi pLocal){
set Shi p(ship);
}
public abstract void setNane(Sring nane);
public abstract Sring getNane();
public abstract voi d set Shi p(Shi pLocal ship);
public abstract ShipLocal getShip();

/1 EIB cal | back net hods

}

Notice that the Cruise EJB requiresthat aShi pLocal reference be passed as an argument when the Cruiseis
created; thisis perfectly natural since a cruise cannot exist without a ship. According to the EJB 2.0 specification,
relationship fields cannot be modified or setintheej bCr eat e() method. They must be modifed in the

ej bPost Creat e(), aconstraint that isfollowed in the Cr ui seBean class.

Thereason relationshipsare set inej bPost Cr eat e() andnotej bCr eat e() issimple: In many casesit’'s
simpler for the EJB container to link two beans together in arelationship after they both exist. Oncethe

ej bCr eat e() method executes, the CRUI SE record has been inserted to the database so that its relationship with
the SHI P table can be established. Thisis especially important when, for example, alink table isused to model

Copyright (c) 2001 O'Reilly & Associates 153

relationships. In that case, the link table may have referential integrity constraints that require both records to exist
before they are linked®.

The Ship EJB is even simpler then the Cruise EJB. The relationship between the Cruise and ShipEJB in
unidirectional, so the Ship EJB doesn’t define any relationship fields, just persistent fields.

public abstract class Shi pBean
i npl enent s j avax. g b. EntityBean {

public Integer e bCeate(lnteger prinarykey, Sring nane,
doubl e tonnage) {
set 1 d(pri narykey);
set Nane(nane) ;
set Tonnage(t onnage) ;
}
publ i c voi d ej bPost reat e(l nteger prinaryKey, Sring nane,
doubl e tonnage) {
}
public abstract void setld(Integer id);
public abstract Integer getld();
public abstract void setNane(Sring nane);
public abstract String get Nane();
publ i c abstract voi d set Tonnage(doubl e tonnage);
publ i c abstract doubl e get Tonnage();

// EIB cal | back net hods

}

This should all be fairly mundane for you now. The impact of exchanging Ship references between Cruise EJBsis
equally obvious. Each Cruise may only reference asingle Ship, but each Ship may have many Cruise EJBs. If you
take the Ship A, which isreferenced by some Cruise EJB, and pass set it to some other Cruise, then both Cruise EJBs
will reference the same Ship.

FigureHolder
Figure 7-14: Sharing a bean reference in a many-to-one Unidirectional Relationship

Abstract Persistence Schema

The abstract persistence schemais very simplein amany-to-one unidirectional relationship. It uses everything you
have learned up until now, and should not contain any surprises.

<gj b-jar>

<ent er pri se- beans>
<entity>
<gj b- nane>Q ui seEIB</ gj b- nane>
<l ocal - honme>comti t an. crui se. O ui seLocal Hone</ | ocal - hone>
<l ocal >comtitan. crui se. O ui seLocal </ | ocal >

<Jentity>
<entity>

2 The database insert that occurs between the ej bCreat e() and ej bPost Cr eat e() would be done within the same
transactional context as updates to the relationship field.

Copyright (c) 2001 O'Reilly & Associates 154

<gj b- nane>Shi pEIB</ €] b- nane>
<l ocal - hone>com i t an. shi p. Shi pLocal Hone</ | ocal - hone>
<l ocal >comti tan. shi p. $hi pLocal </ | ocal >

<Jentity>
</ enterpri se-beans>

<rel ationshi ps>
<gj b-rel ati on>
<gj b-rel ati on- nane>Q ui se- Shi p
</ ej b-rel ati on- nane>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Q ui se- has-a- Shi p
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Many</mul tiplicity>
<rel ationshi p-rol e- sour ce>
<ej b- nane>Q ui seEIB</ gj b- nane>
</rel ati onshi p-rol e-sour ce>
<cnm-field>
<cnm - fi el d- nane>shi p
</ crm-fi el d- nane>
< cm-fiel d>
</ ejb-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-r ol e- nane>
Shi p- has- many- Qr ui ses
</ ¢ b-rel ati onshi p-r ol e- nane>
<mul tiplicity>One</mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Shi pEIB</ €] b- nane>
</rel ati onshi p-rol e-source>
</ ejb-rel ati onshi p-rol e>
<gj b-rel ati on>
<rel ati onshi ps>

The<ej b-rel ati onshi p-rol e> of the Cruise EJB definesitsmultiplicity as Many and declaresshi p asits
relationship field. The<ej b-r el ati onshi p-r ol e> of the Ship EJB definesitsmultiplicity as Many and
containsno<cnr - f i el d> declaration, becauseit’s a unidirectional relationship.

One-to-many Bi-directional Relationships

One-to-many and many-to-one bi-directional relationships are the same thing, so they are both covered in this
section. A one-to-many bi-directiona relationship occurs when one entity bean maintains a collection-based
relationship field with another entity bean, and each entity bean referenced in the collection maintainsasingle
reference back to its aggregating bean. For example, in the Titan Cruise system, each Cruise EJB maintains a
referenceto all the passenger reservations made for that Cruise, and each Reservation EJB maintainsasingle
referencetoits Cruise. Therelationship isamany-to-one bi-directional relationship from the perspective of the
Cruise EJB, and aone-to-many bi-directional relationship from the perspective of the Reservation EJB.

Relational Database Schema

Thefirst table we need isthe RESERVATI ONtable, which is defined in the following listing. Notice that the
RESERVATI ON table contains, among other things, a column that serves as aforeign key to the CRUI SE table.

Copyright (c) 2001 O'Reilly & Associates 155

CREATE TABLE RESERVATI ON
(
IDINT PR MARY KEY,
CRUSE IDINT,
AVONT_PAI D DEQ ML (8, 2),
DATE RESERVED DATE

}

While the RESERVATI ON table contains aforeign key to the CRUI SE table, the CRUI SE table doesn’t maintain
foreign keys back to the RESERVATI ONtable. The EJB container system can realize the relationship between the
Cruise and Reservations EJBs by querying the RESERVATI ON table. Explicit pointers from the CRUI SE tableto the
RESERVATI ONtable are not required. Thisillustrates once again the separation between the entity bean’ s view of
its persistent relationships and the database’ s actual implementation of those relationships.

The relationship between the RESERVATI ON and CRUI SE tablesisillustrated in Figure 7-15.

FigureHolder
Figure 7-15: One-to-many/ many-to-one Bi-directional Relationship in RDBMS

Asan alternative, we could have used alink table that would declare foreign keysto both the CRUI SE and
RESERVATI ONtable. Thislink table would probably impose a unique constraint on the RESERVATI ON foreign key
to ensure that each RESERVATI ON record had only one corresponding CRUI SE record.

Abstract Programming M odel

To model the relationship between cruises and reservations, we' |l first define the Reservation EJB, which maintains a
relationship field to the Cruise EJB.

public abstract class ReservationBean
i npl enent s javax. ej b. EntityBean {

public Integer e bQ eate(C uiseLocal cruise){

}
publ i ¢ voi d ej bPost O eat e((ui seLocal crui se){
set O ui se(cruise);

}

public abstract void setQui se(Q ui seLocal cruise);
public abstract G uiselLocal getQuise();

public abstract void set Anount Pai d(fl oat anount);
public abstract float getAmountPaid();

public abstract void setDate(Date date);

public abstract Date getDate();

// EIB cal | back net hods

}

When a Reservation EJB is created, areference to the Cruise for which it is created must be passed to the
creat e() method. Noticethat the Cr ui seLocal referenceissetintheej bPost Creat e() and not the
ej bCr eat e() method. Asinmany-to-one unidirectional relationships, theej bCr eat e() method is not
allowed to update relationship fields; that isthe job of theej bPost Cr eat e() method.

The Cruise EJB needs to have a collection-based relationship field added so that it can reference all the Reservation
EJBsthat were created for it.

Copyright (c) 2001 O'Reilly & Associates 156

public abstract class Q ui seBean
i npl enent s j avax. g b. EntityBean {

public abstract void setReservations(Qollection res);
public abstract ollection getReservations();

public abstract void setNane(Sring nane);
public abstract Sring get Nane();

public abstract void set Shi p(Shi pLocal ship);
publ i c abstract Shi pLocal getShip();

/1 EIB cal | back net hods

}

The interdependency between the Cruise and Reservation EJBs produces some interesting results when creating a
relationship between these beans. For example, the act of creating a Reservation EJB automatically adds that entity
bean to the collection-based relationship of the Cruise EJB.

Qui seLocal cruise = ...get QuiseLocal reference
Reservat i onLocal reservation = ReservationLocal Hone. create(cruise);
@l | ection col l ection = crui se. get Reservations();

i f(collection.contai ns(reservation))
/1 aways returns true

Thisisaside effect of the bi-directional relationship. Any Cruise referenced by a specific reservation has areciprocal
reference back to that reservation. If Reservation X references Cruise A, Cruise A must automatically have a
reference to Reservation X. When you create anew Reservation EJB and set the Cruise reference on that bean, the
Reservation is automatically added to the Cruise EJB’ sreservation field.

Sharing references between beans has some of the ugly side affects we learned about earlier. For example, passing a
collection of reservations referenced by Cruise A to Cruise B actually moves those relationshipsto Cruise B, so
Cruise A has no more Reservations.

FigureHolder
Figure 7-16: Sharing an entire Collection in a one-to-many bi-directional relationship

Aswas the case with Customer and Phone (Figure 7-10), this effect is usually undesirable and should be avoided, as
it displacesthe set of Reservation EJBs formerly associated with Cruise B.

Y ou can move an entire collection from one bean and combine it with the collection of another bean if you use the
Col | ecti on. addAl | () method as shown in the following figure®. The effect is that Cruise A does not
reference any Reservation EJBs, while Cruise B references all of the Reservation EJBs—those it referenced before the
exchange aswell as Cruise B’ s Reservation EJBs.

FigureHolder
Figure 7-17: Using Collection.addAll() in a one-to-many bi-directional relationship

% TheaddAl | () method must be supported by collection-based relationship fieldsin EJB 2.0.

Copyright (c) 2001 O'Reilly & Associates 157

Theimpact of moving individual Reservation EJBs from one Cruise to another is similar to what we have seen with
other one-to-many relationships. the Reservation EJB is effectively moved from one Cruise to another. Theresultis
the same as was shown in one-to-many unidirectional relationships when a Phone was moved from one Customer to
another. Seefigure 7-11. It’'sinteresting to note that the net affect of usingCol | ecti on. addAl | () inthis
scenario isthe sameasusing Col | ecti on. add() onthetarget collection for every element in the source
collection. In other words, you move every element from the source collection to the target collection.

Once again, container-managed relationship fields, collection-based or otherwise, must always use the

j avax. ej b. EJBLocal Obj ect (local interface) of abean and never thej avax. ej b. EJBObj ect (remote
interface). It would beillegal, for example, to try and add the remote interface of the Reservation EJB (if it has one) to
the Cruise EJB’ sreservation Collection. Any attempt to add aremote interface type to a collection-based relationship
fieldwill resultinaj ava. | ang. | | | egal Ar gunent Excepti on.

Abstract Persistence Schema

The abstract persistence schemafor the Cruise-Reservation relationship doesn’t introduce any new concepts. The
Cruise and Reservation<ej b-r el at i onshi p-r ol e> elementsboth have <cnr - f i el d> elements. The Cruise
specifies One as itsmultiplicity, while Reservation specifiesMany .

<gj b-jar>

<ent er pri se- beans>
<entity>
<ej b- nane>Q ui seEIB</ gj b- nane>
<l ocal - hone>comtitan. crui se. O ui seLocal Hone</ | ocal - hone>
<l ocal >comtitan. crui se. O ui seLocal </| ocal >

<entity>
<entity>
<gj b- nane>Reser vat i onEJB</] b- nane>
<l ocal - hone>
comtitan. reservations. Reservati onLocal Hone
</ 1 ocal - hone>
<l ocal >comtitan. reservation. ReservationLocal </| ocal >

<entity>
</ enterpri se-beans>

<rel ati onshi ps>
<gj b-rel ati on>
<gj b-rel ati on- nane>Q ui se- Reservat i on
</ ej b-rel ati on- nane>
<ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Q ui se- has- nany- Reser vat i ons
</ ¢ b-rel ati onshi p-r ol e- nane>
<mltiplicity>Qne</ multiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Q ui seEJB</ g] b- nane>
</rel ati onshi p-rol e-sour ce>
<cn-fiel d>
<cnt-fi el d- nane>r eser vat i ons
</ cni-fi el d- nane>
<cnm-fiel d-type>
java. util.Qllection

Copyright (c) 2001 O'Reilly & Associates 158

</crm-field-type>
</ crm-field>
</ ¢ b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Reser vat i on- has- a- O ui se
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Many</mul tiplicity>
<rel ationshi p-rol e- sour ce>
<gj b- nane>Reser vat i onEJIB</] b- nane>
</rel ationshi p-rol e-source>
<crm-field>
<cnm - fi el d- nane>cr ui se
</ crm-fi el d- nane>
< cm-fiel d>
</ ejb-rel ati onshi p-rol e>
<gj b-rel ati on>
<rel ati onshi ps>

M any-to-many Bi-directional Relationship

Many-to-many bi-directional relationships occurs when many beans maintain a collection-based relationship field
with another bean, and each bean referenced in the Collection maintains a coll ection-based relationship fields back to
the aggregating beans. For example, in Titan Cruises every Reservation EJB may reference many Customers (afamily
can make asingle reservation) and each Customer may have many reservations (a person may make more than one
reservation in ayear). Thisisan example of amany-to-many bi-directional relationship; the customer keeps track of
all of itsreservations and each reservation may be for many customers.

Relational Database Programming

The RESERVATI ON and CUSTOVER tables have already been established. In order to establish a many-to-many bi-
directional relationship, the RESERVATI ON_CUSTOVER LI NK tableiscreated. Thistable maintainstwo columns:
A foreign key column for the RESERVATI ON table and another foreign key column for the CUSTOVER table.

CREATE TABLE RESERVATI N OUSTOMR LI NK

(
RESERVATI QNI D I NT,

QUSTOMER | D I NT,
}

The relationship between the CUSTOVER, RESERVATI ON and CUSTOVER _RESERVATI ON_LI NK tableis
illustrated in the following diagram.

FigureHolder
Figure 7-18: Many-to-many Bi-directional Relationship in RDBMS

Many-to-many bi-directional relationshipswill always require alink in anormalized relational database.

Abstract Programming M odel

To model the many-to-many bi-directional relationship between the Customer and Reservation EJBs, we need to
modify both bean classes to include collection-based relationship fields.

public abstract class Reservati onBean
i npl enent s javax. gj b. EntityBean {

Copyright (c) 2001 O'Reilly & Associates 159

public Integer e bQ eate(Q uiseLocal cruise
@l | ection custoners){
}
publ i ¢ voi d ej bPost O eat e((ui seLocal crui se
@l ection cust oners){

set O ui se(cruise);

Ql I ection nyQustoners = this. getQustoners();

nyQust oner s. addAl | (cust oners) ;

}

public abstract voi d setQustoners(Set custoners);
public abstract Set getQustoners();

}

The abstract accessor methods defined for the cust oner s relationship field declare the Collection type as
java.util.Set. TheSet typeshould contain only unigue Customer EJBs, and no duplicates. Duplicate
customers would introduce some interesting but undesirable side effectsin Titan’ s reservation system. To maintain
avalid passenger count, and to avoid over-charging customers, Titan requires that a customer only be booked once
in the samereservation. The Set collection type expresses thisrestriction. The effectiveness of the Set collection
type depends largely on referential integrity constraints established in the underling database. Referential integrity of
the database and its affect on relationships fieldsis explored at the end of this chapter.

In addition to adding theget Cust oner s()/ set Cust oner s() abstract accessors, the

ej bCreat e() /ej bPost Cr eat e() methodswere modifiedtotakeaCol | ect i on of Customer EJBs. When a
Reservation EJB is created, it must be provided with alist of Customer EJBsthat it will add to its own Customer EJB
collection. Asisalwaysthe case, container-managed relationships field cannot be modified intheej bCr eat e()
method. It'sthe job of theej bPost Cr eat e() method to modify container-managed relationships fields when a
bean is created.

The Customer EJB is also modified to maintain a collection-based relationship with all of its reservations. Whilethe
idea of a Customer having multiple reservations may seem odd, it’ s possible for someone to book more than one
cruisein advance. In order to capture this possibility, the Customer EJB isenhanced toincludear eser vat i ons
relationship field:

public abstract class Qustoner Bean
i npl enent s j avax. ej b. EntityBean {

/1 relationship fields
publ i ¢ abstract
voi d set Reservations(l | ection reservations);

public abstract Qollection getReservations();

When a Reservation EJB is created, it is passed referencesto both its Cruise and a collection of Customers. Because
the relationship is defined as bi-directional, the EJB container will automatically add the Reservation EJB to the
reservationsr el at i onshi p field of the Customer EJB. The following code fragment illustrates this:

Gl lection custoners = .. get local Qustoner EIBs
Quiselocal cruise =.. get alocal Guise EIB
ReservationLocal Hone = .. get |ocal Reservation hone

ReservationLocal nyReservation =
restone. create(cruise, custoners);

Copyright (c) 2001 O'Reilly & Associates 160

Iterator iterator = custoners.iterator();
vhi | e(iterator. hasNext ()){
Qust oner Local cust oner = Qust oner Local)iterator. next();
@l [ection reservations custoner. get Reservations();
i f(reservations.contains(nyReservation))
/1 this will always be true

}

Exchanging bean reference between many-to-many bi-directional relationships resultsin true sharing, where each
relationship maintains areference to the transferred collection. Thisisillustrated in figure 7-19.

FigureHolder

Figure 7-19: Using Collection.addAll() in many-to-many bi-directional relationship

Of course, using theset Cust oner s() orset Reservati ons() method will end up displacing the references
of the target collection, but it doesn’t impact the original relationship of the source collection. Figure 7-20 illustrates.

FigureHolder

Figure 7-20: Sharing an entire Collection in a many-to-many bi-directional relationship

After theset Cust ormrer s() method isinvoked on Reservation D, Reservation D’ s customers change to Customer
EJBs1, 2, and 3. Customer EJBs 1, 2, and 3 were also referenced by Reservation A before the sharing operation and
remain referenced after it's complete. Infact, only the relationships between Reservation D and Customers 4, 5 and 6
areimpacted. The relationship between Customer EJBs 4,5 and 6 and other Reservation EJBs are not affected by the
sharing operation. Thisisaunique property of many-to-many relationships (both bi-directional and unidirectional);
operations on the relationship fields only affect those specific relationships, they do not impact either party’s

relationships with other beans of the same relationship type.

Abstract Persistence Schema

The abstract persistence schema of a many-to-many bi-directional relationship introduces nothing new and so it
should have no surprises. Eachej b-rel ati onshi p-r ol e specifiesMany asitsrmul tiplicity and

declaresacnr - f i el d of aspecific Col | ecti on type.

<gj b-jar>

<ent er pri se- beans>
<entity>
<gj b- nane>Qust oner EJB</ €] b- nane>
<l ocal - home>comti t an. cust oner . Qust oner Local Hone</ | ocal - hone>
<l ocal >comtitan. cust oner. Qust oner Local </ | ocal >

<Jentity>
<entity>
<ej b- nane>Reser vat i onEIB</ €] b- nane>
<l ocal - hone>
comtitan. reservation. Reservat i onLocal Hone
</ | ocal - hone>
<l ocal >comtitan. reservation. ReservationLocal </| ocal >

<Jentity>
</ enterpri se-beans>

<rel ationshi ps>
<gj b-rel ati on>

Copyright (c) 2001 O'Reilly & Associates

161

<gj b-rel ati on- nane>Cust oner - Reser vat i on
</ €j b-rel ati on- nane>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Qust oner - has- many- Reser vat i ons
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Many</mul tiplicity>
<rel ationshi p-rol e- sour ce>
<ej b- nane>Qust oner EJB</ €] b- nane>
</rel ati onshi p-rol e- sour ce>
<cnm-field>
<cnm - f i el d- nane>r eser vat i ons
</ crm-fi el d- nane>
<cnm-fiel d-type>
java. util.Qoll ection
< cmi-fiel d-type>
< cm-fiel d>
</ ejb-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e- nane>
Reser vat i on- has- nany- Qust oner s
</ ¢ b-rel ati onshi p-r ol e- nane>
<mul tiplicity>Many</multiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Reser vat i onEJB</] b- nane>
</rel ati onshi p-rol e-sour ce>
<cnr-fiel d>
<cnt-fi el d- name>cust oner s
</cn-fi el d- nane>
<cnm-fiel d-type>

java. util. Set
</crm-fiel d-type>
</ cm-fiel d>

</ ¢ b-rel ati onshi p-rol e>
<gj b-rel ati on>
<rel ati onshi ps>

M any-to-many Unidirectional Relationship

Many-to-many unidirectional relationships occur when many beans maintain a collection based relationship with
another bean, but the beans referenced inthe Col | ect i on do not maintain a collection-based rel ationship back to
the aggregating beans. In Titan’ sreservation system, every reservation is assigned a cabin on the ship. Thisallows
customers to reserve a specific cabin (a deluxe suite or cabin with sentimental significance) on the Ship. In this case,
each reservation may be for more then one cabin, since each reservation can be for more then one customer. An
exampleisafamily that makes areservation for five for two adjacent cabins (one for the kids and the other for the
parents).

While the reservation will want to keep track of the cabinsit reserves, it’s not necessary for the cabinsto track all the

reservations made by all the cruises, so the relationship is unidirectional. The Reservation EJBsreference a
collection of Cabin beans, but the Cabin beans do not maintain references back to the Reservations.

Relational Database Schema

Our first order of businessisto declare a CABI Ntable.

Copyright (c) 2001 O'Reilly & Associates 162

CREATE TABLE CABI N
(
ID I NT PR NARY KEY,
SHPIDINT,

NAME GHAR(10),
DECK LEVEL I NT,
BED QOUNT | NT

}

Notice that the CABI Ntable maintainsaforeign key for the SHI P table. While thisrelationship isimportant, it’s not
explored because the relationship type (one-to-many bi-directional) is already covered. Therelationship isincluded
in Figure 8-12, however, for completeness. Another interesting aspect of the CABI Ntableisits primary key.

In order to accommodate the many-to-many unidirectional relationship between the RESERVATI ON and CABI N
table, wewill need aRESERVATI ON_CABI N_LI NK table.

CREATE TABLE RESERVATI ON CABI N LI NK

(
RESERVATI QNI D I NT,

CABINID INT,
}

The relationship between the CABIN records and the RESERVATION records through the
RESERVATI ON_CABI N_LI NK tableisillustrated in Figure 7-21.

FigureHolder
Figure 7-21: Many-to-many Unidirectional Relationshipin RDBMS

Abstract Programming M odel

In order to model this relationship need to add a collection-based relationship field for Cabin beansto the
Reservation EJB.

public abstract class Reservati onBean
i npl enent s javax. gj b. EntityBean {

public abstract voi d setCabi ns(Set custoners);
public abstract Set get Gabins();

}

In addition, we need to define a Cabin bean. Notice that the Cabin bean doesn’t maintain arelationship back to the
Reservation EJB. The lack of a container-managed relationship field for the Reservation EJB tells us the relationship
isunidirectional.

public abstract class Cabi nBean
i npl enent s javax. ej b. EntityBean {

public Integer e bQ eate(Shi pLocal ship,
Sring nane){
t hi s. set Nane(nane) ;
}
publ i ¢ voi d ej bPost O eat e(Shi pLocal shi p,
Sring nane){
thi s. set Shi p(ship);

Copyright (c) 2001 O'Reilly & Associates 163

publ i c abstract voi d setShi p(Shi pLocal ship);
public abstract ShipLocal getShip();

public abstract void setNane(Sring nane);
public abstract Sring getName();

public abstract voi d setBedGount (int count);
public abstract int getBed@unt();

public abstract void setDeckLevel (int |evel);
public abstract int getDeckLevel ();

/1 EIB cal | back net hods

}

Although the Cabin bean doesn’t define arelationship field for the Reservation EJB, it does define a one-to-many bi-
directional relationship for the Ship EJB.

The effect of exchanging relationship fields in a many-to-many unidirectional relationship is basically the same as
with many-to-many bi-directional relationships. Use of the Col | ect i on. addAl | () operation and sharing entire
collections has the same net effect as we noted in the section on many-to-many bi-directional relationships. The only
difference isthat the arrows only point one way.

If areservation removes a Cabin bean from its collection-based relationship field, the operation doesn’t affect other
Reservation EJBsthat reference that same Cabin bean. Thisisillustrated in Figure 7-22.

FigureHolder
Figure 7-22: Removing beans in many-to-many unidirectional relationship

If you performed this exact same operation on the many-to-many bi-directional relationship, the result would be the
same except the arrows would point both ways.

Abstract Persistence Schema

The abstract persistence schema for the Reservation-Cabin relationship holds no surprises whatsoever. The
multiplicity of bothej b-r el ati onshi p-rol e elementsisMany, but only the Reservation EJB’sej b-
rel ati onshi p-rol e definesacnr-fiel d.

<gjb-jar>

<ent er pri se- beans>
<entity>
<gj b- nane>Cabi nEIB</ €j b- nane>
<l ocal - hone>comti t an. cabi n. Gabi nLocal Hone</ | ocal - hone>
<l ocal >comti t an. cabi n. Gabi nLocal </ | ocal >

<Jentity>
<entity>
<ej b- nane>Reser vat i onEIB</ €] b- nane>
<l ocal - hone>
comtitan. reservation. Reservati onLocal Hone
</ I ocal - hone>
<l ocal >comtitan. reservation. ReservationLocal </| ocal >

<Jentity>

</ enter pri se- beans>

<rel ati onshi ps>

Copyright (c) 2001 O'Reilly & Associates 164

<gj b-rel ati on>
<gj b-rel ati on- nane>Cabi n- Reser vat i on
</ €j b-rel ati on- nane>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Cabi n- has- nany- Reser vat i ons
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Many</mul tiplicity>
<rel ationshi p-rol e- sour ce>
<ej b- nane>Cabi nEJB</ €] b- nane>
</rel ati onshi p-rol e- sour ce>
</ ¢ b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Reser vat i on- has- nany- Qust oner s
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Many</multiplicity>
<rel ati onshi p-rol e- sour ce>
<ej b- nane>Reser vat i onEIB</ €] b- nane>
</rel ati onshi p-rol e-sour ce>
<cmi-field>
<cnm - fi el d- nane>cabi ns
</ crm-fi el d- nane>
<cmm-fiel d-type>
java. util. Set
</ cm-field-type>
< cm-fiel d>
</ ejb-rel ati onshi p-rol e>
<gj b-rel ati on>
<rel ati onshi ps>

= #EXercise 7.2, Reservation relationships

Collocation and the Deployment Descriptor

Only entity beans that are deployed together with the same depl oyment descriptor can have relationships with each
other. When deployed together, the entity beans are seen as a single deployment unit or application, in which all the
entities are using the same database and are co-located in the same Java virtual machine. This restriction makesit
possible for the EJB container system to use lazy loading, optimistic concurrency, and other performance
optimizations. While it would be technically possible to support relationships across deployments, or even container
systems, the difficulty of doing so combined with the expected degradation in performance was reason enough to
limit the relationship fields to those entity beans that are deployed together. In the future, entity relationships may
be expanded to include remote reference to entities deployed in other containers or other JARs in the same container,
but remote references are not allowed as relationship typesin Enterprise JavaBeans 2.0.

Cascade Delete and Remove

Asyou learned in Chapter 5, invoking ther enove() operation on the EJB home or EJB object of an entity bean
deletes that entity bean’ s data from the database. This, of course, has an impact on the relationships that the entity
has with other entity beans.

Copyright (c) 2001 O'Reilly & Associates 165

When an entity bean is deleted, the EJB container first removesit from any relationships it maintains with other entity
beans. Consider, for example, the relationship between the entity beans we have created in this chapter as shown in
Figure 7-23.

[Figure 7-23 (note thisis the same figure asfigure 8-1)]
Figure 7-23: Titan Cruises Class Diagram

If an EJB application invokesr enpove() onaCreditCard EJB, then the Customer EJB that referenced it would now
haveavalueof nul | foritscr edi t Car d relationshipsfield, as the following code fragment illustrates.

Qust oner Local custoner = ...get Qustoner EIB
QeditCGrdlocal creditCard = custoner.getQeditCard();
credit Gard. renove();
if(custsoner.getQeditCrd() == null)

/1 This will always be true;

The moment ther enove() operationisinvoked on the CreditCard EJB’slocal reference, the bean is disassociated
from the Customer bean and is deleted. The impact of removing abean is even more interesting when it participatesin
several relationships. For example, invokingr enove() onaCustomer EJB will impact the relationship fields of
Reservation, Address, Phone, and CreditCard EJBs. With single EJB object relationship fields, such asthe
CreditCard EJB’ s reference to the Customer EJB, thefield isset tonul | for the entity bean that was removed. With
collection-based relationship fields, the entity that isremoved is no longer apart of the collection. Thiswas shown
in Figure 7-9 of the One-to-many Unidirectional Relationship section, where a Phone EJB was removed.

In some cases, you want the removal of an entity bean to cause a cascade of deletions. For example, if a Customer
EJB isremoved, we would want the Address EJBsreferenced initsbi | | i ngAddr ess andhoneAddr ess
relationshipsfield to be deleted. Thiswould avoid the problem of disconnected Address EJBsin the database. The
<cascade- del et e> element requests cascade deletion; it can be used with one-to-one or one-to many
relationships. Here’'s how to modify the relationship declaration for the Customer and Address EJBsto obtain
cascade delete:

<rel ati onshi ps>
<gj b-rel ati on>
<gj b-rel ati onshi p-rol e>
<mul tiplicity>Qne</ mul tiplicity>
<r ol e- sour ce>
<gj b- nane>CQust oner EJB</ €] b- nane>
</roal e-sour ce>
<cni-fiel d>
<cnr-fi el d- nane>honeAddr ess</ cni-fi el d- nane>
< cm-fiel d>
</ ejb-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e>
<mul tiplicity>Qne</ mul tiplicity>
<cascade- del et e/ >
<r ol e- sour ce>
<dependent - nane>Addr ess</ dependent - nane>
</roal e-sour ce>
</ ejb-rel ati onshi p-rol e>
< ejb-relation>
</rel ati onshi ps>

Without specifying a cascading delete, the ADDRESS record associated with the Address EJB will not be removed
when the CUSTOVER record is deleted. This can result in a disconnected dependent object class, which means that
the datais not linked to anything. In some cases we want to specify a cascading delete to ensure that there are no

Copyright (c) 2001 O'Reilly & Associates 166

detached entities following aremoval. In other cases, however, we do not want to use a cascading delete. If, for
example, the ADDRESS record associated with an entity bean is shared by other CUSTOVER records, then we
probably do not want it deleted when the CUSTOMER record is deleted. It's easy to imagine two different customers
residing at the same residence—sharing address records can be useful.

Cascade delete can only be specified on an entity bean that has a single reference to the entity that is being del eted.
For example, the<ej b-r el ati onshi p-r ol e> for the Phone EJB in the Customer-Phone relationship can have a
cascade del eted specified if the Customer is deleted, because each Phone EJB isreferenced by only one Customer.
However, the Customer EJB cannot have a cascade del ete specified in the Customer-Phone rel ationships, because a
Customer maybe referenced by many Phone EJBs. The entity bean that causes the cascade delete must have a
multiplicity of onein the relationships.

Cascade delete only affectsthe relationship for which it is specified. So for example, if cascade deleteis specified for
the Customer-Phone rel ationshi ps but not the Customer-HomeAddress rel ationships, then detecting a Customer will
cause all the Phone EJBsto be deleted but not the Address EJBs. The Address EJBs must specify their own cascade-
delete element if they want to be del eted.

Cascade del etes can propagate through relationshipsin a chain reaction. For example, if the Ship-Cruise
relationships specifies cascade-del ete on the Cruise relationships field and the Cruise-Reservation rel ationships
specifies cascade-del ete on the Reservation relationship field, then when a Ship isremoved all of its Cruises and
Reservations for those cruises will be removed.

Cascade delete can be avery powerful tool, but it's also dangerous. It should be handled with care. The
effectiveness of a cascade delete dependsin large part onthe referential integrity of the database. For example, the
database may be set up so that aforeign key must point to an existing record, which could result in a transaction
rollback if deleting an entity’ s datawould violate that restriction.

& Exercise 7.3, Cascade Deletes

Copyright (c) 2001 O'Reilly & Associates 167

8

EJB 2.0 CMP: EJB-QL

Find methods have been a part of EJB since EJB 1.0. These methods are defined on the entity bean’ slocal and remote
home interfaces and are used for locating one or more entity beans. All entity beans must have a

findByPri maryKey() find method, which takes the primary key of the entity bean as an argument and returns a
reference to an entity bean. For example, the Cruise EJB defines the standard primary key find method in its home
interface:

publ i ¢ G ui seLocal Hone extends j avax. €j b. EJBLocal Hone
{ public Integer create(Sring nane, ShipLocal ship);

publ i c G uiseLocal findByPrinaryKey(lnteger key);
}

In addition to the mandatory f i ndByPr i mar yKey () methods, entity bean devel opers may also define as many
custom find methods asthey like. For example, the Cruise EJB might define amethod (e.g., f i ndByName()) for
locating a Cruise with a specific name.

publ i ¢ G ui seLocal Hone extends j avax. j b. EJBLocal Hone
{
public Integer create(Sring nane, Shi pLocal ship)
throws QO eat eExcepti on;
public Quiselocal findByPrinaryKey(lnteger key)
throws H ndExcepti on;
public G uiseLocal findByNane(String crui seNane)
throws H ndExcepti on;
}

The option of defining custom find methods is nothing new, but until EJB 2.0 there was no standard way of defining
how the find methods should work. The behavior of thef i ndByPr i nmar yKey() method isobvious: Find the
entity bean with the same primary key. However, the behavior of the custom find methods is not obvious, so addition
information is needed to tell the container how these custom find methods should behave. EJB 1.1 didn’t provide
any standard mechanism for declaring how custom find methods should behave, so vendors came up with their own
query languages and methods. This resulted in non-portability and basically guesswork on the part of the deployer
in determining how to execute queries of find methods. EJB 2.0 introduces EJB QL, which provides a standard query

Copyright (c) 2001 O'Reilly & Associates 168

language for declaring the behavior of custom find methods, and adds new select methods. Select methods are similar
to find methods, but they are more flexible and are visible to the bean class only—Ilike private find methods. Find and
select methods are collectively referred to asquery methodsin EJB 2.0.

EJB QL isadeclarative query language that is similar to the Structured Query Language (SQL) used in relational
databases, but it istailored to work with the abstract persistence schema of entity beansin EJB 2.0.

EJB QL queries are defined in terms of the abstract persistence schema of entity beans and not the underlying data
store, so they are portable across databases and data schemas. When an entity bean’ s abstract bean classis
deployed by the container, the EJB QL statements are typically examined and translated into data access code
optimized for that container’ s data store. At run time, query methods defined in EJB QL typically execute in the
native language of the underlying data store. For example, a container that uses arelational database for persistence
might translate EJB QL statementsinto standard SQL 92, while an object-database container might translate the same
EJB QL statementsinto an object query language.

EJB QL makesit possible for bean developers to describe the behavior of query methodsin an abstract fashion,
making queries portable across databases and EJB vendors. The EJB QL languageis easy for developersto learn,
yet precise enough to be interpreted into native database code. It isafairly rich and flexible query language that
empowers developers at development time, while executing in fast native code at run time. However, EJB QL isnot a
silver bullet and its not without its problems, aswe' Il seelater in this chapter.

Declaring EJB QL

EJB QL statements are declared in<quer y> elements of entity bean’ s deployment descriptor. In the following
listing, you seethat thef i ndByName() method defined in the Customer bean local home interface hasits own
query element and EJB QL statement.

<gj b-jar>
<ent er pri se- beans>
<entity>
<ej b- nane>Q ui seEIB</ gj b- nane>

<reentrant >Fal se</reentrant >
<abst r act - schena- nane>Q ui se</ abst r act - schena- nane>
<cnp- ver si on>2. X</ cnp- ver si on>
<cnp-field>
<fi el d- name>nane</ fi el d- nane>
</ cnp-fiel d>
<prinkey-fiel d> d</ pri nkey-fi el d>
<quer y>
<quer y- net hod>
<net hod- nane>f i ndByNane</ net hod- nane>
<net hod- par ans>j ava. | ang. S ri ng</ net hod- par ans>
</ quer y- net hod>
<gj b-ql >
SH ECT (BIECT(¢) FRM Qruise ¢ WHERE c. nane = ?1
</ ¢ b-q >
</ query>
<entity>
</ enterpri se-beans>

The<quer y> element containstwo primary elements. The<quer y- met hod> element identifies the find method
of the remote and/or local home interface, and the <ej b- ql > element declaresthe EJB QL statement. The

Copyright (c) 2001 O'Reilly & Associates 169

<query> element bindsthe EJB QL statement to the proper find method. Don’t worry too much about the EJB QL
statement just yet; we'll cover that in detail starting in the next section.

Every entity bean that will be referenced in an EJB QL statement must have a special designator called the abstract
schema name, which isdeclared by the<abst r act - schema- nane> element. The<abstract - schena-
nanme> elements must have unique names; no two entity beans may have the same abstract schemaname. Inthe
entity element that describes the Cruise EJB, the abstract schemanameis declared asCr ui se. The<ej b-ql >
element contains an EJB QL statement that uses this identifier in itsFROMclause.

In Chapter 7 you learned that the abstract persistence schema of an entity bean is defined by its<cnp- f i el ds>
and <cnr - f i el d>elements. The abstract schemaname is also an important part of the abstract persistence
schema. EJB QL statements are always expressed in terms of the abstract persistence schema of entity beans. It uses
the abstract schema names to identify entity bean types, and the contai ner-managed persistence (CMP) fields to
identify specific entity bean data and contai ner-managed relationship (CMR) fields to create paths for navigating
from one entity bean to another.

The Query Methods

Find Methods

Find methods are invoked by EJB clients (applications or beans) in order to locate and obtain remote or local EJB
object reference of a specific entity bean. For example, you might call thef i ndByPr i mar yKey () method on the
Customer EJB’s home interface to obtain areference to a specific Customer bean.

Find methods are always declared in the local and remote home interfaces of an entity bean. Asyou have already
learned, every homeinterface must defineaf i ndByPr i mar yKey () method; thisisatype of single-entity find
method. Specifying a single remote or local return type for afind method indicates that the method only |ocates one
bean. f i ndByPri mar yKey () obviously returns one remote reference because there is a one-to-one relationship
between a primary key’svalue and an entity. Other single-entity find methods can aso be declared. For example, the
Customer EJB could declare several single-entity find methods, each of which supports a different query.

public interface QustonerHne extends javax. ej b. EJB-bne {
publ i c Qustoner findByPrinaryKey(Integer prinarykey)
throws javax. ej b. H ndExcepti on;

public Qustoner findByNane(Sring |astNane, Sring firstNane)
throws javax. €] b. FH ndExcepti on;

public Qustoner findBySS\N Sring soci al SecurityNunber)
throws javax. e b. A ndExcepti on;

}

Bean developers can also define multi-entity find methods, which return a collection of EJB objects. The following
listing shows a couple of multi-find methods:;

public interface QustonerlLocal Hone extends javax. e b. EJBLocal Hone {
publ i ¢ Qust oner Local findByPrinaryKey(|Integer prinaryKey)
throws javax. € b. A ndExcepti on;

public Gllection findBydty(Sring city,Sring state)
throws javax. e b. H ndExcepti on;

Copyright (c) 2001 O'Reilly & Associates 170

public Set findByGodQ edit ()
throws javax. ej b. A ndExcepti on;

}

To return several references from afind method, you must usethej ava. util . Col | ecti onor

java. util. Set collectiontypes®. A find method that usesaj ava. uti| . Set returntypewill not have
duplicate values, whileaj ava. uti | . Col | ecti on return type may have duplicates. Multi-entity finds return an
empty Col | ect i on or Set if no matching beans can be found.

Enterprise JavaBeans specifies that all query methods (find or select) must be declared as throwing the

j avax. ej b. Fi ndExcept i on. Find methods that return asingle remote referencethrow aFi ndExcept i on if
an application error occursand aj avax. ej b. Obj ect Not FoundExcept i on if amatching bean cannot be
found. The Obj ect Not FoundExcept i on isasubtypeof Fi ndExcept i on andisonly thrown by single-
entity find methods.

Every find method declared in the local or remote home interface of a CMP 2.0 entity bean must have a matching
query declaration in the bean’ s deployment descriptor. The following snippet from the Customer EJB’ s deployment
descriptor shows declarations two of find methods, f i ndByNanme() andfi ndByGoodCr edi t (), fromthe
examples above.

<query>
<quer y- net hod>
<net hod- nane>f i ndByNane</ net hod- nane>
<net hod- i nt f >Hone</ net hod-i nt f >
<net hod- par ans>
<net hod- par ans>j ava. | ang. St ri ng</ net hod- par ans>
<net hod- par ans>j ava. | ang. S ri ng</ net hod- par ans>
</ net hod- par ans>
</ quer y- net hod>
<gj b-ql >
SH ECT (BJIECT(c) FROM Qust oner ¢
WHERE c.lastNane = ?1 AND c.firstNane = ?1
<ejb-qgl >
</ query>
<quer y>
<quer y- net hod>
<net hod- nane>f i ndByGod(r edi t </ net hod- nane>
<net hod- i nt f >Local Hone</ net hod-i nt f >
<net hod- par ans></ net hod- par ans>
</ quer y- net hod>
<gj b-ql >
SH ECT (BJECT(c) FROM Qust oner ¢
WHERE c. has@odC edit = TRE
<ejb-ql >
</ query>

The query elements in the deployment descriptor allow the bean devel oper to associate EJB QL query statements
with specific find methods. When the bean is deployed, the container attempts to match the find method declared in
each of the query elements with find methods in entity bean’slocal and home interfaces. Thisis done by matching
the values of the <net hod- nane> and <nmet hod- par ans> elements with method names and parameter types
(ordering isimportant) in the home interfaces.

% As of EJB 2.0, these are the only collection types supported for multi-entity query methods. Others, likej ava. uti | . Li st
andj ava. uti | . Map, may be added in future versions.

Copyright (c) 2001 O'Reilly & Associates 171

The<net hod- i nt f > element specifies which home interface (local or remote) the method is defined in. If the find
method is declared in the local home interface, then thevalue Local Horne isused. If the find method is declared in
the remote home interface, then the value Hone is used. This element is only needed when two find methods collide,
i.e., two find methods in the local and remote home interfaces have the same method name and parameters. Using the
met hod- i nt f element allows the bean devel oper to specify different EJB QL statements for each method. If

<met hod- i nt f > not specified, and thereis a collision, the query declaration will apply to both of the colliding
methods. The container will take care of returning the proper type for each colliding query method. The remote home
will return a one or more remote EJB objects, and the local home will return one or more local EJB objects. This allows
you to define the behavior of colliding local and remote home find methods using asingle quer y element, whichis
convenient if you want local clientsto have access to the same find methods as remote clients.

The<ej b- gl > element specifiesthe EJB QL statement for a specific find method. Y ou may have noticed that the
EJB QL statement can use input parameters (?1, ?2, ..?n), which are mapped to the <net hod- par anms> of the
find method, aswell asliterals (e.g. TRUE). The use of input parameters and literals will be discussed in more detail
through out this chapter.

All single-entity and multi-entity find methods must be declared in<quer y > elements in the deployment descriptor,
except for f i ndByPr i mar yKey () methods. Query declarationsfor f i ndByPri mar yKey() methods are not
necessary, and in fact, are forbidden. It’s obvious what this method should do, and you may not try to change its
behavior.

Select Methods

Select methods are very similar to find methods, but they are more versatile and can only be used internally by the
bean class. In other words, select methods are private query methods; they are not exposed to entity bean’s clients
through the home interfaces.

Select methods are declared as abstract methods using the naming conventionej bSel ect <METHOD- NAMVE>. The
following code shows four select methods declared in the Addr essBean class.

public class AddressBean inpl enents javax. ej b. EntityBean {

public abstract Sring e bSel ect Mbst Popul ard ty()
throws H ndExcepti on;

public abstract Set ej bSel ectZi pGodes(Sring state)
throws H ndExcepti on;

public abstract Qollection e bSelectAl ()
throws H ndExcepti on;

publ i c abstract QustonerLocal ej bSel ect Qust oner (AddressLocal addr)
throws H ndExcepti on;

Select methods can return the value of CMPfields. Theej bSel ect Most Popul ar Ci t y() select, for example,
returnsasingle St r i ng value, the name of the city referenced by the most Address EJBs. The

ej bSel ect Zi pCodes() methodreturnsaj ava. uti | . Set of St ri ng values, whichisaunique collection of
all the zip codes declared for Address EJB’ sfor a specific state.

Select methods can also return EJB objects, just like find methods. Theej bSel ect Al | () method, for example,
returnsaj ava. util. Col | ecti on of EJB objectsrepresenting all the Address EJBsin the system. However,
unlike find methods, select methods can return any type of EJB object, and are not limited to the type of bean they

Copyright (c) 2001 O'Reilly & Associates 172

aredeclaredin. Theej bSel ect Cust oner () method, for example, returns the remote EJB object representing the
Customer bean assigned to the specified Address EJB. Notice that the bean type returnedisCust oner Local , not
Addr essLocal .

Like find methods, select methods can declare zero or more arguments, which are used to limit the scope of the query.
Theej bSel ect Zi pCodes() andtheej bSel ect Cust oner () methods both declare arguments used to limit

the scope of the results. These argumentswill be used asinput parametersin the EJB QL statements assigned to the
select methods.

Select methods can return local or remote EJB objects. For single-entity select methods, the type is determined by the
return type of theej bSel ect method. Theej bSel ect Cust oner () method, for example, returnsalocal EJB
object, the Cust oner Local . This method could have easily been defined to return aremote EJB object by
changing the return type to the Customer bean’ sremote interface (Cust orrer Renot e). Multi-entity select
methods, which return a collection of EJB objects, return a collection of local EJB objects by default. However, the
bean provider can override this default behavior using aspecial element, the<r esul t - t ype- mappi ng> element,
in select method’ s <quer y> element.

The following portion of an XML deployment descriptor declarestwo of the select methods from the above example.
Notice that they are exactly the same as the find method declarations. Find and select methods are declared in the
same part of the deployment descriptor, withinan<ent i t y> bean element, within the same <quer y> element.

<quer y>
<quer y- net hod>
<net hod- nane>ej bSel ect Z pGodes</ net hod- nane>
<net hod- par ans>
<net hod- par an®j ava. | ang. S ri ng</ net hod- par an»
</ net hod- par ans>
</ quer y- net hod>
<gj b-ql >
SH ECT a. honeAddress. zi p FROM Address AS a
WHERE a. honeAddress. state = ?1
<ejb-qgl >
</ query>
<quer y>
<quer y- net hod>
<net hod- nane>ej bSel ect Al | </ net hod- nane>
<net hod- par ans></ net hod- par ans>
</ quer y- net hod>
<resul t -t ype- nappi ng>Renot e</ r esul t - t ype- nappi ng>
<gj b-ql >
SH ECT (BIECT(a) FROM Address AS a
</ ¢ b-q >
</ query>

The name given in each <net hod- nanme> element must match one of the ej bSel ect <METHOD- NAME>()
methods defined in the bean class. Thisis different from find methods of CMP 2.0 beans, which do not have a
corresponding ej bFi nd method in the bean class. For find methods we use the method name in the local or remote
home interface. Select methods, on the other hand, are not declared in the local or remote home interface so we use
theej bSel ect method namein the bean class.

If aselect method returns a collection of EJB objects, thenthe<r esul t - t ype- mappi ng> can be used to declare
if it should return local or remote EJB objects. ThevaluelLocal indicatesthat a method should returnloca EJB
objects; Renpt e indicatesremote EJB objects. If the<r esul t -t ype- mappi ng> element is not declared, the
default isLocal . Inthe query element for theej bSel ect Al | method, the<r esul t -t ype- mappi ng>is

Copyright (c) 2001 O'Reilly & Associates 173

declared asRenot e, which means the query should return remote EJB object types; remote references to the
Address EJB.

Select methods are not limited to the context of any specific entity bean. They can be used to query across all the
entity beans declared in the same deployment descriptor. Select methods may be used by the bean class from its
ej bHone methods or any business methods or theej bLoad and ej bSt or e methods. Theej bHone,

ej bLoad andej bSt or e methods are covered in more detail in Chapter 11.

The most important thing to remember about select methods is that they can do anything find methods can and more,
but they can only be used by the entity bean class that declares them, not by the entity bean’ s clients.

EJB QL Examples

EJB QL isexpressed in terms of the abstract persistence schema of an entity bean; its abstract schema name,

contai ner-managed persistence fields, and container-managed relationship fields. EJB QL uses the abstract schema
names to identify beans, the container-managed persistence fields to specify values and contai ner-managed
relationship field names to navigate across relationships.

Todiscuss EJB QL, we will make use of the relationships among the Customer, Address, CreditCard, Cruise, Ship,
Reservation, and Cabin defined in Chapter 7. Figure 8-1 is a class diagram that shows the direction and cardinality
(multiplicity) of the relationships among these beans.

[Figure 8-1(note thisis the same figure as figure 7-23)]
Figure 8-1: Titan Cruises Class Diagram

Simple Queries

The simplest EJB QL statement has no WHERE clause and only one abstract schematype. For example, aquery
method might be defined to select all Customer beans.

| SELECT GBIECT(¢) FROM Qustoner AS ¢ |

The FROM clause determines which entity bean typeswill be included in the select statement. It provides the scope
of the select. In this case the FROMclause declaresthe typeto be Cust oner , which isthe abstract schema name of
the Customer EJB. The“AS c¢” part of the clause assignsc astheidentifier of the Customer EJB. Thisissimilar to
SQL, which allows an identifier to be associated with atable. Identifiers can be any length and follow the same rules
that are applied to field names inthe Java programming language. The following isalso perfectly legal.

|SELECT (BIECT(custoner) FROM Qustoner AS cust oner |

The AS operator isoptional, but its used in this book to help make the EJB QL statements more clear. The following
statement is equivalent:

|SELECT (BIECT(custoner) FRCOM Qust oner cust oner |

The SELECT clause determines the type of values returned. In this case, it’ s the Customer entity bean as indicated
by thecust oner identifier.

The OBJECT() operator isrequired when the SELECT type isan abstract schemaidentifier (entity bean identifier).
Thereason for this requirement is pretty vague (and in the author’ s opinion, the specification would have been better
off without it), but it’ s required whenever the SELECT typeisan entity bean identifier.

Copyright (c) 2001 O'Reilly & Associates 174

Simple Queries with Paths

EJB QL alowsSELECT clauses to return any container-managed persistence (CMP) or single contai ner-managed
relationship (CMR) field. For example, asimple select statement can be defined to return all the last names of all the
customers as follows.

|SE_ECTC.IastName FROM Qust oner AS ¢ |

The SELECT clause uses a simple path to select the Customer bean’s| ast Name CMP field asthereturn type. EJB
QL usesthe CMP and CMR field namesdeclared in<cnp- fi el d>and<cnr - f i el d> elements of the
deployment descriptor. This navigation leverages the same syntax as the Java programming language, specifically
thedot (“. ") navigation operator. For example, compare the above EJB QL statement with the following snippet from
the Customer EJB’ s depl oyment descriptor:

<gjb-jar>
<ent er pri se- beans>
<entity>
<gj b- nane>Qust oner EJB</ €] b- nane>
<hone> Qust oner HoneRenot e</ ej b- hone>
<r enot e>Qust oner Renot e</) b- r enot e>
<gj b- cl ass>Qust oner Bean</ gj b- ¢l ass>
<per si st ence-t ype>Cont ai ner </ per si st ence- t ype>
<pri mkey-cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>
<reentrant >Fal se</reent r ant >
<abst r act - schena- nane>Cust oner </ abst r act - schena- nane>
<cnp- ver si on>2. X</ cnp- ver si on>
<cnp-fi el d><fi el d-nane>i d</fi el d- nane></ cnp-fi el d>
<cnp- fi el d><fi el d- nane>l ast Nane</ i el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d-nane>first Nane</ fi el d- nane></ cnp-fi el d>

CMR field types may also be used in simple select statements. For example, the following EJB QL statement selects
all the CreditCard EJBsfrom al the Customer EJBs.

|SELECI’ c.creditCard FROM Qust oner ¢ |

In this case, the EJB QL statement uses a path to navigate from the Customer EJBsto their cr edi t Car d
relationship fields. Thecr edi t Car d identifier is obtained from the<cnr - f i el d> name used in the relationship
element that describes the Customer-CreditCard relationship.

<ent er pri se- beans>
<entity>
<gj b- nane>Qust oner EJB</ €j b- nane>

<abst r act - schena- nane>Qust oner </ abst r act - schena- nane>
<Jentity>
</ enterpri se- beans>

<rel ati onshi ps>
<gj b-rel ati on>
<gj b-rel ati on- nane>Qust oner - G edi t Card
</ ej b-rel ati on- nane>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Qust oner - has-a- G edi t Card
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Ohe</ mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Qust oner EIB</ €] b- nane>

Copyright (c) 2001 O'Reilly & Associates 175

</rel ati onshi p-rol e-source>
<crm-field>
<cnm - fi el d- nane>cr edi t Gard</ cn - f i el d- nane>
</ crm-field>
</ ¢ b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>

Paths can be aslong as required. It’s common to use paths that navigate over one or more CMR fields to end at
either aCMR or CMPfield. For example, thefollowing EJB QL statement selectsall theci t y CMPfields of all the
Address EJBs of every Customer EJB.

|SELECI’ c. honeAddr ess. city FROM Qust oner ¢ |

In this case, the path uses the abstract schema name of the Customer EJB, the Customer EJB’shoneAddr ess CMR
fidd and finally the Address EJB’sci t y CMPfield. Using pathsin EJB QL issimilar to navigating through object
references in the Javalanguage.

Toillustrate more complex paths, we' |l need to expand the class diagram. Figure 8-2 shows that CreditCard EJB is
related to a CreditCompany EJB that hasits own Address EJB.

Figureholder
Figure 8-2: Expanded Class Diagram for CreditCard
Using these relationships, a more complex path could be specified that navigates from the Customer EJB to the
CreditCompany EJB’s Address EJB. Thefollowing EJB QL selectsall the addresses of all the credit companies.
| SH ECT c. credi t Card. credi t Gonpany. address FROM Qust oner AS ¢ |

The EJB QL statement could also navigate all the way to the Address bean’s CMP fields. For example, the following
EJB QL selectsall the citiesfor al the credit card companies for those credit cards used by Titan’s customers.

|SELECT c.creditGard. credi t Conpany. addr ess. city FROM Qust oner AS ¢ |

It sinteresting to note that these EJB QL statements would only returnaddr ess CMR fields or Addressci ty
CMPfieldsfor credit companies of cards owned by Titan's customers. If there are any credit companies whose cards
are not currently used by Titan’s customers, their address information won’t be included in the result.

Paths cannot navigate beyond CMP fields. For example, imagine that the Address EJB usesa Zi pCode class asits
Zip CMPfield.

public class Z pGode i npl enents java.io. Serializabl ef
public int mai nCode;
public int codeSuffix;

}

It would beillegal to attempt to navigate to one of the Zi pCode class’ instance fields.

/1 thisis illegal
SH ECT c. honeAddr ess. zi p. nai nGbde FROM Qust oner AS ¢

CMP fields cannot be further decomposed and navigated by paths. All CMP fields are considered opaque.

The pathsused in a SELECT clause of an EJB QL must always end with asingletype. They may notendin a
collection-based relationship field. For example, the following isnot legal because the CMR fieldr eser vat i ons is
acollection-based relationship field.

/1 thisis illegal
SH ECT c.reservati ons FROM Qust oner AS ¢

Copyright (c) 2001 O'Reilly & Associates 176

Infact, it'sillegal to navigate across a collection-based relationship field. The following EJB QL statement is also
illegal, even though the path endsin asingle relationships field.

|SE_ECT c.reservations. crui se FROM Qustoner AS ¢ |

If you think about it, this limitation makes sense Y ou cannot use a havigation operator (“. ”) in Javato access
elementsof aj ava. uti|. Col | ecti on object either. For example, you can't do the following (assume
get Reservations() returnsaj ava. util . Col | ecti on type).

/1l thisisillegal in the Java programmng | anguage.
cust oner . get Reservat i ons() . get Q ui se()

Referencing the elements of a collection-based relationship field is possible in EJB QL, but it require the use of anl N
operator and an identification assignment in the FROMclause, which are discussed next.

Simple Queriesthe IN operation

Many relationships between entity beans are collection-based relationships; being able to access and select from
these relationshipsisimportant. We've seenthat it isillegal to select elementsdirectly from a collection-based
relationship. To overcome thislimitation, EJB QL introducesthe | N operation, which allows an identifier to represent
individual elementsin a collection-based relationship field.

Thefollowing query usesthe | N operation to select the elements from a collection-based relationship. It returns all
the reservations of all the customers.

SHECT GBIECT(r)
FRMQustoner ASc, IN c.reservations) ASr

The | Noperation assigns theindividual elementsinther eser vat i ons CMR field to the identifier r . Once we
have an identifier to represent the individual elements of the collection, we can reference them directly and even
select them in the EJB QL statement. The element identifier can also be used in path expressions. For example, the
following EJB QL statement will select every cruise for which Titan’s customers have made reservations.

SHECT r.cruise
FRM Qustoner ASc, IN c.reservations) ASr

Theidentifiers assigned in the FROMclause of EJB QL are evaluated from left to right. Once an identifier has been
declared it can be used is subsequent declarationsin the FROMclause. Notice that the identifier ¢, which was
declared first, was subsequently used in the | N operation to define theidentifier r .

The OBJECT() operationisused for singleidentifiersin the select statement and not for path
expressions. While this convention makes little sense, it is none-the-less required by the EJB 2.0
specification. A rule of thumb: If the select typeisasolitary identifier, then it must be wrapped in
an OBJECT() operation. If the select typeisapath expression then it isnot.

Identification chains, in which subsequent identifications depend on previous identifications, can become very long.
Thefollowing EJB QL statement usestwo | N operations to navigate two collection-based relationships and asingle
CMR relationship. While not necessarily useful, this statement demonstrates how aquery can use | N operations
across many relationships.

SHECT cabi n. ship
FROM Qustoner ASc, IN(c.reservations) ASr,
IN(r.cabins) AS cabin

& #Exercise 8.1, Smple EIB QL Statements

Copyright (c) 2001 O'Reilly & Associates 177

The WHERE clause and Literals

Literal values can also be used in the EJB QL to narrow the scope of the elements selected. Thisis accomplished
through the WHERE clause, which behaves in much the same way as the WHERE clausein SQL.

For example, an EJB QL statement can be defined to select all the Customer EJBs that use a specific brand of credit
card. Theliteral inthiscaseisastring literal. Literal strings are enclosed by single quotes. Literal values that include
asingle quote, like the restaurant name “Wendy’s", use two single quotes to escape the quote: ‘Wendy’'s'. The
following statement returns customers that use the American Express credit card:

SH ECT (BIECT(¢) FROM Qustoner AS ¢
WHERE c. credit Card. organi zati on = * Averi can Express’

Path expressions are always used in the WHERE clause in the same way that they’ re used in the SELECT clause.
When making comparisons with aliteral, the path expression must evaluate to aCMP field; you can't compareaCMR
field with aliteral.

In addition to literal strings, literal can aso be exact numeric values (long types) and approximate numerical values
(doubletypes). Exact numerical literal values are expressed using the Javainteger literal syntax (321, - 8932, +22).
Approximate literal values are expressed using Javafloating point literal syntax in scientific (5E3, - 8. 932E5) or
decimal (5. 234,38282. 2) notation.

For example, the following EJB QL statement selects all the shipsthat weigh 100,000.00 metric tons.

SH ECT BIECT(s)
FRMShip ASs
WHERE s. t onnage = 100000. 00

Boolean literal values use TRUE and FALSE. Here’san EJB QL statement selects all the customers who have good
credit.

SHECT (BIECT(¢) FROM Qust oner AS ¢
WHERE c. has®@odQedit = TRE

The WHERE clause and Input Parameters

Query methods (find and sel ect methods) that use EJB QL statements may specify method arguments. Input
parameters allow those method arguments to be mapped to EJB QL statements and are used to narrow the scope of
the query. For example, theej bSel ect ByCi t y() method is designed to select all the customersthat residein a
particular city and state.

public abstract class Qustoner Bean
i npl enent s j avax. gj b. Enti tyBean {

public abstract Qollection e bSel ectByAty(Sring city,Sring state)
throws H ndExcepti on;
}
The EJB QL statement for this method would use the city and state arguments as input parameters.

SHECT (BIECT(¢) FROM Qust oner AS ¢
WHERE c. honeAddress. state = 72
AND c. honeAddress.city = 7?1

Input parameters use a? prefix followed by the argument’s position, in order of the query method’ s parameters. In
thiscase, st at e isthe second argument andci t y isthefirst argument listedintheej bSel ect ByCi t y()

Copyright (c) 2001 O'Reilly & Associates 178

method. When a query method declares one or more arguments, the associated EJB QL statement may use some or
al of the arguments asinput parameters.

Input parameters are not limited to simple CMP field types; they can also be EJB object references. For example, the
following find methodf i ndBy Shi p() isdeclaredinthe Cruise bean’slocal interface.

public interface Qui seLocal extends javax.ejb. EJBLocal (oj ect {
public Gollection findByShi p(Shi pLocal custoner)
throws H ndExcepti on;

}

The EJB QL statement associated with this method would use the shi p argument to locate all the cruises scheduled
for the specified Ship bean.

SH ECT (BIECT(cruise) FRMQuise AS cruise
WHERE cruise.ship =71

When an EJB object is used as an input parameter, the container bases the comparison on the primary key of the EJB
object. Inthis case, it searches through all the Cruise EJBslooking for referencesto a Ship EJB with same primary
key value that the Ship EJB passed to the query method.

The WHERE clause and Operator Precedence

The WHERE clause is composed of conditional expressions that reduce the scope of the query and limit the number
of items selected. A number of conditional and logical operators can be used in expressions; they are listed below in
the order of precedence. The operators at the top of thelist have the highest precedence; they are evaluated first.

?? Navigation operator (.)
?? Arithmetic operators:
+, - unary
* I multiplication and division
+, - addition and subtraction
?? Comparison operators:
=,>,>=, <, <=, <> (not equal),
LI KE, BETVEEN, I N, SNULL, | SEMPTY, MEMBER OF
?? Logical operators:

NOT, AND, OR
If you’ ve been working as aprogrammer for longer than a month, most of these operators will be familiar to you.

EJB QL statements are declared in XML deployment descriptors. XML uses the greater than (*>") and lessthan (‘<’)
characters as delimiters for tags, so using these symbolsin the EJB QL statements will cause parsing errors unless
CDATA sections are used.

For example, thefollowing EIB QL statement is declared in a XML deployment descriptor. causes aparsing error,
because the XML parser cannot distinguish the use of the ‘>’ symbol from adelimiter to a XML tag:

<quer y>
<quer y- net hod>
<net hod- nane>f i ndWt hPaynent G eat er Than</ net hod- nane>

Copyright (c) 2001 O'Reilly & Associates 179

<net hod- par ans>j ava. | ang. Doubl e</ net hod- par ans>
</ quer y- net hod>
<gj b-ql >
SHECT BIECT(r) FROMReservation r
WERE r.anountPaid > ?1
</ ejb-ql >
</ query>

Inthis case the EJB QL statement will cause a parsing error, because the XML parser can not distinguish the use of
the‘>" symbol from adelimiter to aXML tag. To avoid this problem, the EJB QL statement should be placedin a
CDATA section: as shown below.

<quer y>
<quer y- net hod>
<net hod- nane>f i ndWt hPaynent G eat er Than</ net hod- nane>
<net hod- par ans>j ava. | ang. Doubl e</ net hod- par ans>
</ quer y- net hod>
<gj b-ql >
<[CDATA
SHECT BIECT(r) FROMReservation r
WHERE r. anount Pai d > 300. 00
11>
< ejb-ql >
</ query>

The CDATA section takestheform <! [CDATA[litteral-text]] >. When an XML processor encounters a
CDATA section it doesn’t not attempt to parse the contents enclosed by the CDATA section, instead the parser
treatsit asliteral text .

The WHERE clause and Arithmetic Operators

The arithmetic operators allow a query to perform arithmetic in the process of doing acomparison. In EJB QL,
arithmetic operators can only be used in the WHERE clause and not in the SELECT clause. The following EJB QL
statement returns references to all the Reservation EJBs that will be charged a port tax of more than $300.00.

SHECT BIECT(r) FROMReservation r
WHERE (r.amountPaid * .01) > 300.00

Therules applied to arithmetic operations are the same as those used in the Java programming language, where
numbers are widened or promoted in the process of performing a calculation. For example, multiplying adoubl e and
ani nt valuerequiresthat thei nt first be promotedtoadoubl e value. Theresult will always be that of the widest
type used inthe calculation, so multiplyingani nt andadoubl e resultsinadoubl e value.

String, bool ean, and EJB object types cannot be used in arithmetic operations. For example, using the addition

operator with two St r i ng valuesisconsidered anillegal operation. Thereisaspecial function for concatenating
St ri ng vaues, which is covered in The WHERE clause and FUNTIONS section.

The WHERE clause and L ogical Operators

Logical operators such asAND, OR, and NOT operate the same as their corresponding logical operatorsin SQL.

% To learn more about XML and the use of CDATA Sections, see+ead-the-boek XML in a Nutshell by Elliotte Rusty Harold and |
W. Scott Means published by O’ Reilly & Associates 2001.

Copyright (c) 2001 O'Reilly & Associates 180

Logical operators evaluate only boolean expressions, so each operand (each side of the expression) must evaluate to
trueorfal se. Thisiswhy thelogical operators have the lowest precedence: so that all the expressions can be
evaluated before they are applied.

The AND and OR operations may not, however, behave like their Javalanguage counterparts&& and | | . Specifically,
EJB QL does not specify whether the right-hand operands are evaluated conditionally. For example, the && operator
in Java evaluates its right-hand operand only if the left hand operand ist r ue. Similarly, the| | logical operator
evaluates the right-hand operand only if the left-hand operand isf al se. We can’'t make the same assumption for
the AND and OR operatorsin EJB QL. Whether these operators eval uate right-hand operands depends on the native
query language into which it’ stranslated. It’s best to assume that both operands are evaluated on all logical
operators.

NOT simply reverses the boolean result of its operand; expressions that evaluate to the boolean valueof t r ue
becomef al se, and visaversa

The WHERE clause and Comparison Symbols

Comparison operators, which use the symbols =, >, >=, <, <=, and <>, should be familiar to you. The following
statement selects all the Ship EJBs whose tonnage CMP field is greater than or equal to 80,000 tons but |ess than or
equal to 130,000 tons.

SHECT BIECT(s) FRMShip s
WHERE s. tonnage >= 80000. 00 AND s. t onnage <= 130000. 00

Only the = and <> (not equal) operators may beused on St r i ng, bool ean, and EJB object references. The
greater-than and less-than symbols (>, >=, <, <=) can only be used on numerical values. It would beillegal, for
exampl e, to use the greater-than, or less-than symbolsto comparetwo St r i ngs. Thereis no mechanism to compare
St ringsinthisway in EJB QL.

The WHERE clause and Equality semantics

Whileit'slegal to compare an exact numerical value (shor t ,i nt,| ong) to an approximate numerical value
(doubl e, f | oat) all other equality comparisons must comp are the exact sametypes. Y ou cannot, for example,
compareaSt r i ng valueof ‘123’ to theinteger literal 123.

EJB objects can also be compared for equality, but they too must be of the same exact type. To be more specific, they
must both be EJB object references to beans of the same deployment. As an example, the following method finds all
the Reservation EJBs made by a specific Customer EJB:

public interface ReservationtbneLocal extends EJBLocal (bj ect{
public Gl lection findByQust oner (Qust oner Local cust oner)
throws H ndExcepti on;

The matching EJB QL statement uses the customer argument as an input parameter.

SHECT CBIECT(r)
FROM Reservation r, IN(r.custoners) custoner
WERE custoner = 71

It's not enough for the EJB object that’ s used in the comparison to implement the Cust oner Local interface; it
must be the same bean type as the Customer EJB used in the Reservation’ s customers CMR Field. In other words,

Copyright (c) 2001 O'Reilly & Associates 181

they must be from the same deployment. Once it’ s determined that the bean is the correct type, the actual comparison
is performed on the bean’s primary keys. If they have the same primary keys, they are considered equal.

java. util . Dat e objects cannot be used in equality comparisons. In order to compare dates, the long millisecond
value of the date must be used, which meansthat the date must be persisted in along CMP field and not a
java.util . Date CMP. Theinput valueor literal must also beal ong value.

The WHERE clause and BETWEEN

The BETWEEN clause is an inclusive operation specifying arange of values. It can be used to select all ships
between 80,000 and 130,000 tons.

SELECT GBJECT(s) FRMShip s
WERE s. t onnage BETVEEN 80000. 00 AND 130000. 00

The BETW\EEN clause may only be used on numeric primitives (byt e,short,i nt,| ong,doubl e, f | oat) and
their correspondingj ava. | ang. Nunber types(Byt e, Short,| nt eger,etc.). It may notbeusedonStri ng,
bool ean, or EJB object references.

Using the NOT logical operator in conjunction with BETVEEEN excludes the range specified. For example, the
following EJB QL statement selects all the Ship EJBsthat are less than 80,000 tons or greater then 130,000 tons but
excludes everything in-between.

SELECT GBJECT(s) FRMShip s
WERE s. t onnage NOT BETVEEN 80000. 00 AND 130000. 00

The net effect of this query isthe same asif it had been executed with comparative symbols:

SHECT BIECT(s) FRMShip s
WHERE s. tonnage < 80000. 00 (R s. tonnage > 130000. 00

The WHERE clauseand IN

Thel N conditional operator used in the WHERE clause is not the same asthe | N operator used in the FROMclause.
Inthe WHERE clause, | Ntestsfor membership in alist of literal string values, and can only be used with operands
that evaluate to string values. For example, the following EJB QL statement usesthe | N operator to select all the
customerswho residein a specific set of states:

SH ECT (BIECT(¢) FROM Qust oner ¢
WHERE c. honeAddress. state IN(“FL', “TX, ‘M’, ‘W', ‘M)

Applying the NOT operator to this expression reverses the selection, excluding all customerswho residein thelist of
states:

SH ECT (BIECT(¢) FROM Qust oner ¢
WHERE c. honeAddress. city
NOT IN(“F, “TX, “M’, “W', “MN)

If thefield tested isnul | , the value of the expression is“unknown”, which meansit cannot be predicted.

The WHERE clauseand ISNULL

Thel S NULL comparison operator allows you to test whether a path expressionisnul | . For example, the
following EJB QL statement selects all the customers who do not have a home address.

| SELECT GBIECT(¢) FROM Qustoner ¢ |

Copyright (c) 2001 O'Reilly & Associates 182

| WERE c. homeAddress 1S NULL |

Using the NOT logical operator, we can reverse the results of this query, selecting all the customersthat do have a
home address.

SH ECT (BIECT(¢) FROM Qust oner ¢
WHERE c. honeAddress |'S NOT NULL

When nul | fields appear in comparison operations such as| N and BETWEEN, they can have pretty serious side
affects. In most cases, evaluatinganul | field in acomparison operation (other than| S NULL) producesin an
UNKNOWN result. Unknown evaluations throw the entire EJB QL results set into question; since we cannot predict
the outcome the EJB QL statement, it is unreliable. One way to avoid this situation isto require that fields used in the
expressions have values. Thisrequires careful programming. To ensure an entity bean field isnevernul | , you
must initialize the field when the entity is created. For primitive values this not a problem, since they cannot be nul | ;
they have default values. For other fields, such as single CMR fields and object based CMPfields, like St r i ng, the
fieldsmust beinitializedintheej bCr eat e() andej bPost Cr eat e() methods.

The WHERE clauseand ISEMPTY

Thel S EMPTY operator allowsthe query to test if a collection-based relationship is empty. Remember from Chapter
7 that a collection-based relationship will never be nul | . If acollection-based relationship field has no elements, it
will return an empty Col | ect i on or Set .

Testing whether a collection-based relationship is empty has the same purpose as testing whether single CMR field
or CMPfieldisnul | : it can be used to limit the scope of the query and items selected. For example, the following
guery selects all the cruises that have not booked any reservations:

SH ECT (BJECT(cruise) FROM G ui se crui se
WHERE crui se.reservations | S BWTY

The NOT operator reversestheresult of | S EMPTY. The following query selects all the cruisesthat have at |east
one reservation.

SH ECT (BJECT(cruise) FRMQuise ¢
WHERE crui se.reservations |'S NOI' BWPTY

Interestingly, it'sillegal touse| S EMPTY against collection-based relationships that have been assigned an
identifier in the FROMclause.

/1 illegal query

SH ECT GBIECT(1)

FROM Reservation r, IN r.custoners) c
WHERE

r.custoners |'S NOI BEMPTY AND
c.address.city = ‘ Boston’

While this query appears to be good insurance against unknown results, it’snot. Infact, it'sanillegal EJB QL
statement, becausethe| S EMPTY operator cannot be used on a collection-based relationship identified inan| N
operation in the FROMclause. Because the relationship is specified in the IN clause, only those Reservation EJBs
that have anon-empty cust oner s field will be included in the query; any Reservation EJB that has an empty CMR
field will be excluded because its customers elements cannot be assigned the ¢ identifier.

Copyright (c) 2001 O'Reilly & Associates 183

The WHERE clause and MEMBER OF

The MEMBER OF operator isapowerful tool for determining whether an EJB object is a member of a specific
collection-based relationship. The following query determines whether a particular Customer (specified by the input
parameter) is amember of any of the Reservation-Customer relationships.

SH ECT C(BIECT(cruise)
FROM QG ui se crui se, Qustoner ¢
WERE

c="71

AND

¢ MBMBER CF crui se. reservations

Applying the NOT operator to VEMBER OF will have the reverse effect, select all the cruises on which the specified
customer doesn’t have areservation.

SH ECT (BJECT(cruise)
FROM G ui se crui se, Qustoner c
WERE
c="71
AND
¢ NOT MEMBER CF crui se. reservations

Checking whether an EJB object is amember of an empty collection aways returnsf al se.

The WHERE clauseand LIKE

The LI KE comparison operator allows the query to select St r i ng type CMP fields that match a specified pattern.
For example, the following EJB QL statement selects all the customers with hyphenated names, like “Mbnson-
Haef el " and “Ber ner s- Lee”.

SH ECT (BIECT(¢) FROM Qust oner ¢
WHERE c. | ast Nane LIKE ‘ %%

Two special characters can be used when establishing a comparison pattern: * 96 (percent) stands for any sequence
of characters, and® ' (underscore) standsfor any single character. %and _ characters can be used at any location
within a string pattern. The escape character \ can be used if a%or _ actually occursin the string. The NOT logical
operator reverses the eval uation so that matching patterns are excluded.

The following examples show how the LIKE clause would evaluate St r i ng type CMP fields.

?? phone. nunber LIKE ‘6179%
truefor *617-322-4151
falsefor ‘415-222-3523

?? cabin.nane LIKE ‘Suite _100’
true for * Suite A100’
falsefor ‘ Suite A233

?? phone. nunmber NOT LI KE ‘ 608%
truefor ' 415-222-3523
false for ‘608-233-8484'

Copyright (c) 2001 O'Reilly & Associates 184

?? soneField.underscored LIKE ‘_%

truefor*_xyz
falsefor ‘abc’
?? sonmeFi el d. percentage LIKE ‘\ %%
truefor ‘% XYZ’
fasefor ‘ABC’

The WHERE clause and Functional Expressions

EJB QL hassix functional expressionsthat allow for simple St r i ng manipulation and a couple of basic numerical
operations. The St r i ng functions are listed below:

CONCAT(Stringl, String2)
returnsthe St r i ng that results from concatenating St ri ngl and St ri ng2.

SUBSTRI NG(Stringl, start, |ength)
returnsthe St r i ng consisting of | engt h characterstaken from St r i ngl, starting at the position given by
start.

LOCATE(Stringl, String2 [, start])
returnsani nt indicating the position at which St ri ngl isfound withinSt ri ng2. If it'spresent, st art
indicates the character position in St ri ng2 at which the search should start.

LENGTH(St ri ng)
returnsani nt indicating thel engt h of the string.

Thest art and| engt h parametersindicate positionsinaSt r i ng asinteger values. These expressions can be
used in the WHERE clause to help refine the scope of the items selected. Hereis an example of how the LOCATE and
LENGTH functions might be used:

SHECT GBIECT(¢)
FROM Qust oner ¢
WHERE
LENGTH c. | ast Nane) > 6
AND
LOCATH c.|astNane, ‘ Monson') > -1

ThisEJB QL statement selects all the customerswith ‘Monson’ somewhere in their last name, but the name must be
longer than 6 characters. Therefore, ‘Monson- Haef el * and‘Monson- Ar es’ evaluatetot r ue, but ‘Monson’
returnsf al se becauseit hasonly 6 characters.

The arithmetic functions are ABS and SQRT.

ABS(nunber)
returns the absolute value of anumber (i nt ,f | oat , or doubl €)

SQRT(doubl e)
returns the square root of adoubl e

& eExercise 8.2, Complex EJB QL statements

Copyright (c) 2001 O'Reilly & Associates 185

Problemswith EJB QL

EJB QL isapowerful new tool that promisesto improve performance, flexibility, and portability of the entity beansin
container-managed persistence, but it has some design flaws and omissions.

The OBJECT() operation

The use of the OBJECT() operation is unnecessary, cumbersome, and provides little or no value to the bean
developer. It'strivial for EJB vendors to determine when an abstract schematypeisthe return value, so the
OBJECT() operation provideslittlereal value during query translation. In addition, the OBJECT() operationis
applied haphazardly. It’ s required when the return type is an abstract schemaidentifier, but not when a path
expression of the SELECT clauseendsin a CMR field. Both return an EJB object reference, so the use of
OBJECT() inonescenario and not the other isillogical and confusing.

When questioned about this, Sun replied that several vendors had requested the use of the OBJECT() operations
because it will be included in the next major release of the SQL programming language. EJB QL was designed to be
similar to SQL because it’s the query language that is most familiar to developers, but this doesn’t mean it should
include functions and operations that have no real meaning in Enterprise JavaBeans.

Themissing ORDER BY clause

Soon after you begin using EJB QL you will quickly realize that it’s missing amajor component, the ORDER BY
clause. Requesting ordered listsis extremely important in any query language; most major query languages including
SQL and object query languages support this concept.

The ORDER BY clause has a couple of big advantages: it clearly communicates the bean developer’ sintentions; and
it gives the application server vendors the option of delegating ordering to the database:

?? The ORDER BY clausewould provide avery clear mechanism for the bean developer to communicate his
intentionsto the EJB QL interpreter. The ORDER BY clause is unambiguous; it states exactly how a collection
should be ordered (the attributes to order by, ascending, decending, etc.). Giventhat it'sthe purpose of EJB QL
to clearly describe the behavior of the find and select operations in a portable fashion, ORDER BY isclearly a
significant omission.

?? With an ORDER BY clause, EJB QL interpreters used by EJB vendors could, in most cases, choose an ordering
mechanism that is optimized for a particular database. Allowing the resource to perform the ordering is more
efficient than having the container do it after the dataisretrieved. It was suggested that EJB vendors could
provide ordering mechanically, by having the collection sorted after it’s obtained. Thisisarather ridiculous
expectation, since it would require collectionsto be fully manifested after the query completes, eliminating the
advantages of lazy loading.

However, evenif the application server vendor chooses to have the container do the ordering, the ORDER BY clause
still provides the EJB vendor with a clear indication of how to order the collection. It’ s up to the vendor to choose
how to support the ORDER BY clause. For databases and other resources that support it, ordering could be
delegated to the resource. For those resources that don't support ordering, it can be performed by container.
Without an ORDER BY clause, the deployer will have to manipulate collections manually or force the container’s
collection implementations to do the ordering. These two options are untenable in real world applications where
performanceiscritical.

When pressed, Sun explained that the ORDER BY clause was not included in this version of the specification
because of problems dealing with the mismatch in ordering behavior between the Java language and databases. The

Copyright (c) 2001 O'Reilly & Associates 186

example give was string values. The semantics of ordering strings in a database may be different than that of the Java
language. For example, JavaordersSt r i ng types according to character sequence and case (upper case vs. lower
case). Different databases may or may not consider case while ordering or discount leading or trailing white space.
Inlight of these possible differences, it seams like Sun has a reasonable argument, but only for limiting the portability
of ORDER BY, not for eliminating its use all together. EJB developers can live with less than prefect portability of
the ORDER BY clause, but they cannot live without the ORDER BY clause.

Finally, contrary to popular belief, the ORDER BY clause would not necessitate the use of thej ava. uti | . Li st
asareturntype. Although theLi st typeissupposed to be used for ordered lists, it also allows devel opers to place
itemsin aspecific location of the list, which in EJB would mean a specific location of the database. Thisisnearly
impossible to support, and so appears to be areasonabl e argument against using the ORDER BY clause. However,
this reasoning is flawed, because there is nothing preventing EJB from using the simple Col | ect i on typefor
ordered queries. The understanding would be that the items are ordered, but only as long as the collection is not
modified after it is obtained. In other words, elements are not added or removed. Another option isto require that EJB
QL statementsthat use the ORDER BY clausereturnaj ava. uti| . Enuner at i on type. This seems perfectly
reasonable, sincethe Col | ect i on received by aselect or find operation shouldn’t be manipulated anyway.

Lack of support for Date

EJB QL doesn’t provide native support for thej ava. uti | . Dat e class. Thisisnot acceptable. The

java. util . Dat e class should be supported as anatural typein EJB QL. It should be possible, for example, to do
comparisons with Dat e CMP fields and literal and input parameters. It should be possible to use comparison
symbols (=, >, >=, <, <=, <>) withDat e CMPfields. It should also be possible to introduce common date functions
so that comparisons can be done at different levels, like comparing the day of the week DOW() or month

(MONTH()), etc. Of course, including the Dat e as asupported typein EJB QL isnot trivial and problems with
interpretation of dates and locals would need to be considered, but the failure to address Dat e as a supported type
isasignificant omission.

Limited Functional Expressions

While the functional expressions provided by EJB QL will be valuable to devel opers there are many other functions
that should have been included. For example, COUNT() isused alot in real world applications. Other functions that
would be useful include (but are not limited to): CAST() useful for comparing different types;, MAX() and M N() ;
SUM) ; UPPER() and perhaps others. In addition, if support forj ava. uti | . Dat e wasincludedin EJB QL,
other date functions could be added, like DOW() , MONTH() , etc.

Copyright (c) 2001 O'Reilly & Associates 187

9

EJB 1.1: Container-Managed Persistence

A Notefor EJB 2.0 Readers

Container-managed persistence has undergone adramatic change in EJB 2.0, which is not backward compatible with
EJB 1.1. For that reason, EJB 2.0 vendors must support both EJB 2.0's container-managed persistence model and EJB
1.1’ s container-managed persistence model. The EJB 1.1 model is supported purely for backward compatibility, so
that application developers can migrate their existing applications to the new EJB 2.0 platform as painlessly as
possible. It's expected that all new entity beans and new applications will use the EJB 2.0 container-managed
persistence, not the EJB 1.1 version. Although EJB 1.1 container-managed persistence is covered in this book, avoid
it unless you maintain alegacy EJB 1.1 system. EJB 2.0 container-managed persistence is covered in Chapters 6 thru
8.

InEJB 2.0, EJB 1.1 container-managed persistence is limited in other ways. For example, EJB 1.1 CMP beans can only
have remote component interfaces; they are not allowed to have local or local homeinterfaces. Other subtle
differences also make EJB 1.1 CMP more limiting the EJB 2.0. For example, theej bCr eat e() and

ej bPost Creat e() methodsin EJB 1.1 do not support the <METHOD- NANME> suffix allowed in EJB 2.0, which
makes method overloading more difficult.

Overview for EJB 1.1 Readers

Thefollowing overview of EJB 1.1 container-managed persistence is pretty much duplicated in Chapter 6, but for EJB
1.1 readers who have not read Chapter 6, the overview isimportant to understanding the context of entity beans and
container-managed persistence.

In Chapter 4, we started devel oping some simple enterprise beans, skipping over alot of the details about developing
enterprise beans. In this chapter, we' |l take athorough look at the process of developing entity beans. On the
surface, some of this material may look familiar, but it is much more detailed and specific to entity beans.

Entity beans model business conceptsthat can be expressed as nouns. Thisisarule of thumb rather than a
requirement, but it helpsin determining when a business concept is a candidate for implementation as an entity bean.
In grammar school you learned that nouns are words that describe a person, place, or thing. The concepts of person
and place are fairly obvious: a person EJB might represent a customer or a passenger, and a place EJB might

Copyright (c) 2001 O'Reilly & Associates 188

represent acity or aport-of-call. Similarly, entity beans often represent things: real-world objects like ships, credit
cards, and so on. An EJB can even represent afairly abstract thing, such as aticket or areservation. Entity beans
describe both the state and behavior of real-world objects and allow devel opers to encapsul ate the data and business
rules associated with specific concepts; a Ship EJB encapsul ates the data and business rules associated with a ship,
and so on. Thismakesit possible for data associated with a concept to be manipulated consistently and safely.

In Titan’s cruise ship business, we can identify hundreds of business concepts that are nouns and therefore could
conceivably be modeled by entity beans. We' ve already seen a simple Cabin EJB in Chapter 4, and we' |l develop Ship
EJB in this chapter. Titan could clearly make use of a Customer EJB, Cruise EJB, a Reservation EJB, and many others.
Each of these business concepts represents data that needs to be tracked and possibly manipulated. Entities really
represent datain the database, so changes to an entity bean result in changes to the database.

There are many advantages to using entity beans instead of accessing the database directly. Utilizing entity beansto
objectify data provides programmers with a simpler mechanism for accessing and changing data. It is much easier, for
example, to change a customer’ s name by calling Shi pRenpt e. set Nanme() than to execute an SQL command
against the database. In addition, objectifying the data using entity beans also provides for more software reuse.
Once an entity bean has been defined, its definition can be used throughout Titan’s system in a consistent manner.
The concept of customer, for example, is used in many areas of Titan's business, including booking, scheduling, and
marketing. A Ship EJB provides Titan with one complete way of accessing ship information, and thusit ensures that
accessto the information is consistent and simple. Representing data as entity beans makes devel opment easier and
more cost effective.

When anew EJB is created, a new record must be inserted into the database and a bean instance must be associated
with that data. Asthe EJB is used and its state changes, these changes must be synchronized with the datain the
database: entries must be inserted, updated, and removed. The process of coordinating the data represented by a
bean instance with the database is called per sistence.

There aretwo basic types of entity beans, and they are distinguished by how they manage persistence. Container-
managed per sistence beans have their persistence automatically managed by the EJB container. The container
knows how a bean instance’ s persistent fields and rel ationships map to the database and automatically takes care of
inserting, updating, and deleting the data associated with entities in the database. Entity beans using bean-managed
persistence do all thiswork explicitly: the bean devel oper must write the code to manipulate the database. The EJB
container tellsthe bean instance when it is safe to insert, update, and del ete its data from the database, but it
provides no other help. The bean instance does all the persistence work itself. Bean-managed persistence is covered
in Chapter 10.

Container-M anaged Persistence

When you deploy an EJB 1.1 CMP entity bean, you identify which fields in the entity are managed by the container
and how they map to the database. Once you have defined the fields that will be automatically managed and how
they map to the database, the container generates the logic necessary to save the bean instance’ sstate
automatically.

Fields that are mapped to the database are called container-managed fields—EJB 1.1 doesn’t support relationship
fields, as does EJB 2.0. Container- managed fields can be any Java primitive type or serializable objects. Most beans
will use Java primitive types when persisting to arelational database, sinceit’s easier to map Java primitivesto
relational datatypes.

EJB 1.1 also allows references to other beans to be container-managed fields. The EJB vendor must support
converting bean references (remote or home interface types) from remote references to something that can be
persisted in the database and converted back to aremote reference automatically. Vendors will normally convert
remote references to primary keys, Handl e or HomeHand| e objects, or some other proprietary pointer type, which
can be used to preserve the bean reference in the database. The container will manage this conversion from remote

Copyright (c) 2001 O'Reilly & Associates 189

reference to persistent pointer and back automatically. This feature was abandoned in EJB 2.0 CMPin favor of
container-managed relationship fields.

The advantage of contai ner-managed persistence is that the bean can be defined independently of the database used
to storeits state. Container-managed beans can take advantage of arelational database or an object-oriented
database. The bean state is defined independently, which makes the bean more reusable and flexible.

The disadvantage of container-managed beansis that they require sophisticated mapping toolsto define how the
bean’ s fields map to the database. In some cases, this may be a simple matter of mapping each field in the bean
instance to acolumn in the database, or of serializing the bean to afile. In other cases, it may be more difficult. The
state of some beans, for example, may be defined in terms of acomplex relational database join or mapped to some
kind of legacy system suchas CICS or IMS.

In this chapter, we will create a new container-managed entity bean, the Ship EJB, which we will examinein detail. A
Ship EJB isalso used in both Chapter 7, when discussing complex relationshipsin EJB 2.0, and Chapter 10, when
discussing bean-managed persistence. When you are done with this chapter you may want compare the Ship EJB
developed here with the ones created in Chapter 7 and 10.

Let’sstart by thinking about what we' re trying to do. An enormous amount of data would go into acomplete
description of aship, but for our purposes we will limit the scope of the datato asmall set of information. For now,
we can say that a ship hasthe following characteristics or attributes: its name, passenger capacity, and tonnage (i.e.,
size). The Ship EJB will encapsulate this data; we'll need to create aSHI P tablein our database to hold this data.
Here isthe definition for the SHI P table expressed in standard SQL.:

CREATE TABLE SHP (1D INT PR MARY KEY, NAVE GHAR(30), CAPAQ TY INT,
TONNAGE CEQ MAL(8, 2))

When defining any bean, we start by coding the remote interfaces. Thisfocuses our attention on the most important
aspect of any bean: its business purpose. Once we have defined the interfaces, we can start working on the actual
bean definition.

The Remote Interface

For the Ship EJB we will need aremote interface. Thisinterface defines the business methods that clients will useto
interact with the bean. When defining the remote interface, we will take into account all the different areasin Titan's
system that may want to use the ship concept. Here isthe remoteinterface, Shi pRenot e, for the Ship EJB:

package comtitan. ship;

inport javax.ej b. EJBMj ect;
inport java.rni.RenoteBException;

public interface Shi pRenote extends j avax. ej b. EJBOyj ect {
public Sring get Nane() throws Renot eExcepti on;
public voi d setNane(Sring nane) throws RenoteException;
public voi d set Capacity(int cap) throws RenoteException;
public int getCapacity() throws RenoteException;
publ i ¢ doubl e get Tonnage() throws Renot eBxception;
publi ¢ voi d set Tonnage(doubl e tons) throws Renot eExcepti on;

}

The Remote Home I nterface

The remote home interface of any entity bean is used to create, locate, and remove objects from EJB systems. Each
entity bean type hasits own home interface. The homeinterface defines two basic kinds of methods: zero or more

Copyright (c) 2001 O'Reilly & Associates 190

create methods and one or more find methods?’ The create methods act like remote constructors and define how new
Ship EJBs are created. (In our homeinterface, we only provide asinglecr eat e() method.) The find method is used
to locate a specific ship or ships.

The following code contains the compl ete definition of the Shi pHomeRenot e interface:

package comtitan. ship;

inport javax. e b. EJB-bne;

inport javax.ej b. O eat eExcepti on;
inport javax.ej b. FH nder Excepti on;
inport java.rm.Renot eExcepti on;
inport java.util.Enuneration;

public interface Shi pHoneRenot e ext ends j avax. €j b. EJB-bne {

public ShipRenote create(lnteger id, Sring nane,
int capacity, double tonnage)

throws Renot eExcepti on, O eat eExcept i on;

publ ic ShipRenote create(lnteger id, Sring nane)
throws Renot eExcept i on, O eat eExcept i on;

publ i c Shi pRenote findByPri naryKey(Integer prinaryKey)
throws H nder Exception, RenoteException;

publ i ¢ Enuneration findByCapacity(int capacity)
throws H nder Exception, RenoteException;

}

Enterprise JavaBeans specifies that create methods in the home interface must throw the
j avax. ej b. Creat eExcept i on. Inthe case of container-managed persistence, the container needs acommon
exception for communicating problems experienced during the create process.

Thefind methods

EJB 1.1 CMP only supports find methods, not EJB 2.0’ s select methods. In addition, find methods are supported by
only the remote home interface; local component interfaces are not supported by EJB 1.1 entity beans.

With EJB 1.1 container-managed persistence, implementations of the find methods are generated automatically at
deployment time. Different EJB container vendors employ different strategies for defining how the find methods
work. Regardless of the implementation, when you deploy the bean, you'll need to do some work to define the rules
of thefind method. f i ndByPr i mar yKey () isastandard method that all home interfaces for entity beans must
support. This method locates beans based on the attributes of the primary key. In the case of the Ship EJB, the
primary key isthel nt eger class, which mapstothei d field of the Shi pBean. With relational databases, the
primary key attributes usually map to aprimary key in atable. Inthe Shi pBean class, for example, thei d attribute
maps to the | D primary key column in the SHI P table. In an object-oriented database, the primary key’ s attributes
might point to some other unique identifier.

EJB 1.1 allows you to specify other find methods in the home interface, in additiontof i ndByPri nar yKey () . All
find methods must have names that match the patternf i nd<SUFFI X>() . So, for example, if wewereto include a
find method based on the Ship EJB’ s capacity, it might be calledf i ndByCapaci t y(i nt capacity).Incon-
tai ner-managed persistence, any find method included in the home interface must be explained to the container. In
other words, the deployer needs to define how the find method should work in terms that the container understands.
Thisisdone at deployment time, using the vendor’ s deployment tools and syntax specific to the vendor.

27 Chapter XX explains when you should not define any create methods in the home interface.

Copyright (c) 2001 O'Reilly & Associates 191

Find methods return either the remote-interface type appropriate for that bean, or an instance of
java.util.Enunerationorjava.util.Collectiontype UnlikeEJB 2.0CMP, EJB 1.1 CMP doesn’t
supportthej ava. uti | . Set asareturntype fromfinder methods.

Specifying aremote-interface type indicates that the method only locates one bean. Thef i ndByPri mar yKey()
method obviously returns one remote reference because there is a one-to-one relationship between a primary key's
value and an entity. Thef i ndByCapaci ty(i nt capacity) method, however, could return several remote
references, one for every ship that has a capacity equal to the parameter capaci t y. The possibility of returning
several remote references requires the use of the Enuner at i on typeor aCol | ect i on type. Enterprise
JavaBeans specifies that any find method used in a home interface must throw the

j avax. ej b. Fi nder Except i on. Find methods that return a single remote reference throw a

Fi nder Except i on if anapplication error occurs, andaj avax. ej b. Obj ect Not FoundExcepti onifa
matching bean cannot be found. The Obj ect Not FoundExcept i on isasubtypeof Fi nder Excepti on andis
only thrown by find methods that return single remote references.

Find methods that return anEnuner at i on or Col | ect i on type (multi-entity finders) return an empty collection
(not anull reference) if no matching beans can be found, or throw aFi nder Except i on if an application error
occurs.

How find methods are mapped to the database for contai ner-managed persistenceis not defined inthe EJB 1.1
specification—it is vendor-specific. Consult the documentation provided by your EJB vendor to determine how find
methods are defined at deployment time. Unlike EJB 2.0 CMP, there is no standard query language for expressing the
behavior of find methods at runtime.

ThePrimary Key

A primary key is an object that uniquely identifies an entity bean according to the bean type, home interface, and
container context from which it is used.

In container-managed persistence, aprimary key can be a serializable object defined specifically for the bean by the
bean devel oper, or its definition can be deferred until deployment. The primary key defines attributes that can be
used to locate a specific bean in the database. In this case, we need only one attribute, i d, but in other cases, a
primary key may have several attributes, all of which uniquely identify abean’s data. We will examine primary keysin
detail in Chapter 11; for now, we specify that the Ship EJB use asimple single-value primary key of type

java. |l ang. | nteger.

The ShipBean Class

No bean is complete without its implementation class. Now that we have defined the Ship EJB’ s remote interfaces and
primary key, we are ready to definethe Shi pBean itself. The Shi pBean will reside on the EJB server. When a
client application or bean invokes a business method on the Ship EJB’ s remote interface, that method invocationis
received by the EJB object, which then delegatesit to the Shi pBean instance.

When developing any bean, we have to use the bean’ sremote interfaces as a guide. Business methods defined in the
remote interface must be duplicated in the bean class. In contai ner-managed beans, the create methods of the home
interface must also have matching methods in the bean class according to the EJB 1.1 specification. Finally, callback
methods defined by thej avax. ej b. Ent i t yBean interface must be implemented. Here is the code for the

Shi pBean class.

package comtitan. ship;

inport javax.ejb. EntityGContext;

Copyright (c) 2001 O'Reilly & Associates 192

public class ShipBean inpl enents javax. gj b. EntityBean {

public Integer id;
public Sring nang;
public int capacity;
publ i ¢ doubl e tonnage;

public EntityQontext context;

public Integer ejbQeate(lnteger id, Sring nane,

}

int capacity, double tonnage) {
this.id =id,
thi s. nane = nang;
this.capacity = capacity;
thi s. tonnage = tonnage;
return nul l;

public Integer ejbGeate(lnteger id, Sring nane) {

this.id =id;
thi s. nane = nane;
capacity = 0;
tonnage = 0;
return null;

public voi d e bPost Geate(lnteger id, Sring nane, int capacity,
doubl e t onnage) {
Integer pk = (Integer)context.getPrinarykey();
/1 Do sonething useful with the prinary key.
}

public void e bPostGeate(int id, Sring nane) {
Shi pRenot e nysel f = (Shi pRenot e) cont ext . get EJBMyj ect () ;
/1 Do sonething useful wth the EIBOj ect reference.

}

public void setEntityGontext (EntityContext ctx) {
context = ctx;

}

public voi d unset EntityGontext () {
context = null;

}

public void e bActivate() {}

public voi d e bPassivate() {}

public voi d e bLoad() {}

public void ejbSore() {}

public voi d e bRenmove() {}

public Sring get Nane() {
return naneg,

}

public void setNane(Sring n) {
nane = n;

}

public voi d set Gapacity(int cap) {
capacity = cap;

}

public int getCapacity() {

Copyright (c) 2001 O'Reilly & Associates

193

return capacity;

}

publ i ¢ doubl e get Tonnage() {
return tonnage;

}

publ i ¢ voi d set Tonnage(doubl e tons) {
tonnage = tons;

}

}

The Ship EJB definesfour persistent fields: i d, name, capaci ty, andt onnage. No mystery here: these fields
represent the persistent state of the Ship EJB; they are the state that defines a unique ship entity in the database. The
Ship EJB also defines another field, cont ext , which holds the bean’sEnt i t yCont ext . We'll have more to say
about thislater.

The set and get methods are the business methods we defined for the Ship EJB; both the remote interface and the
bean class must support them. This means that the signatures of these methods must be exactly the same, except for
thej avax. ej b. Renpt eExcept i on. The bean class’ s business methods aren’t required to throw the

Renot eExcept i on. This makes sense because these methods aren’t actually invoked remotely— they’ re invoked
by the EJB object. If acommunication problem occurs, the container will throw the Renot eExcept i on for the
bean automatically.

| mplementing the javax.g b.EntityBean I nterface

To makethe Shi pBean an entity bean, it must implement thej avax. ej b. Ent i t yBean interface. The
Ent i t yBean interface contains anumber of callback methods that the container uses to alert the bean instance of
various runtime events:

public interface javax. e b. EntityBean extends javax. ej b. EnterpriseBean {
public abstract void ej bActivate() throws RenoteException;
public abstract void ej bPassivate() throws RenoteException;
public abstract void ej bLoad() throws RenoteException;
public abstract void ejbSore() throws RenoteBxception;
public abstract void ej bRenove() throws Renot eException;
public abstract void setEntityQontext(EntityCGontext ctx)
t hrows Renot eExcept i on;
public abstract void unset EntityContext() throws RenoteException;

}

Each callback method is called at a specific time during the life cycle of aShi pBean. In many cases, container-
managed beans (like the Shi pBean) don’t need to do anything when a callback method isinvoked. Container-
managed beans have persistence managed automatically, so many of the resources and logic that might be managed
by these methods are already handled by the container.

Thisversion of the Ship EJB has empty implementations for its callback methods. It isimportant to note, however,
that even a contai ner-managed bean can take advantage of these callback methods if needed; we just don’t need
theminour Shi pBean at thistime. The callback methods are examined in detail in Chapter 11. Y ou should read the
chapter to learn more about the callback methods and when they are invoked.

The Create M ethods

When a create method isinvoked on the home interface, the EJB home delegates it to the bean instance in the same
way that business methods on the remote interface are handled. This meansthat we need anej bCr eat e() method
in the bean class that corresponds to eachcr eat e() method in the home interface.

Copyright (c) 2001 O'Reilly & Associates 194

Theej bCr eat e() method returnsanul | valueof typel nt eger for the bean’s primary key. The return value of
theej bCr eat e() method for a container-managed bean is actually ignored by the container.

EJB 1.1 changed itsreturn value from voi d, which was the return typein EJB 1.0, to the primary
key typeto facilitate subclassing; the change was made so that it’s easier for a bean-managed bean
to extend a contai ner-managed bean. In EJB 1.0, thisis not possible because Javawon’t allow you
to overload methods with different return values. By changing this definition so that a bean-
managed bean can extend a contai ner-managed bean, the EJB 1.1 specification allows vendors to
support container-managed persistence by extending the contai ner-managed bean with a generated
bean-managed bean—afairly simple solution to adifficult problem. Bean developers can also take
advantage of inheritance to change an existing CM P bean into a BM P bean, which may be needed
to overcome difficult persistence problems.

For every cr eat e() method defined in the entity bean’ s home interface, there must be a corresponding

ej bPost Cr eat e() method in the bean instance class. In other words, ej bCr eat e() and

ej bPost Cr eat e() methods occur in pairs with matching signatures; there must be one pair for eachcr eat e()
method defined in the homeinterface.

g bCreate() and g bPostCreate

In a container-managed bean, theej bCr eat e() methodiscalled just prior to writing the bean’ s container-
managed fields to the database. Values passed into theej bCr eat e() method should be used to initialize the
fields of the bean instance. Oncetheej bCr eat e() method completes, anew record, based on the container-
managed fields, iswritten to the database.

The bean developer must ensure that theej bCr eat e() method sets the persistent fields that correspond to the
fields of the primary key. When a primary key is defined for a container-managed bean, it must define fields that
match one or more of the container- managed (persistent) fieldsin the bean class. The fields must match with regard
to type and name exactly. At runtime, the container will assume that fields in the primary key match some or all of the
fieldsin the bean class. When anew bean is created, the container will use those container- managed fieldsin the
bean class to instantiated and populate a primary key for the bean automatically.

Once the bean’ s state has been populated and itsEnt i t yCont ext established, anej bPost Cr eat e() method
isinvoked. This method gives the bean an opportunity to perform any post-processing prior to servicing client
requests.

The bean identity isn’t available to the bean during the call toej bCr eat e() , butisavailablein the

ej bPost Cr eat e() method. This meansthat the bean can accessits own primary key and EJB object, which can
be useful for initializing the bean instance prior to servicing business method invocations. Y ou can use the

ej bPost Cr eat e() method to perform any additional initiaization. Eachej bPost Cr eat e() method must have
the same parameters asits correspondingej bCr eat e() method. Theej bPost Cr eat e() method returns

voi d.

Chapter 11 provides more details about theej bCr eat e() andej bPost Cr eat e() method and how they relate
tothelife cycle of entity beans. Consult that chapter for more detail s about these methods.

Using g bL oad() and gbStor&() in container-managed beans

The process of ensuring that the database record and the entity bean instance are equivalent is called
synchronization. In contai ner-managed persistence, the bean’ s container- managed fields are automatically
synchronized with the database. In most cases, we will not need theej bLoad() andej bSt or e() methods
because persistence in container- managed beans is uncomplicated.

Copyright (c) 2001 O'Reilly & Associates 195

Deployment Descriptor

Whether you are using an EJB 2.0 or EJB 1.1 platform, EJB 1.1 CMP entity beans must use the EJB 1.1 deployment
descriptor format. Y ou do not use the EJB 2.0 deployment descriptor for deploying EJB 1.1 container-managed
persistence entitiesin a 2.0 platform.

With acomplete definition of the Ship EJB, including the remote interface and the home interface, we are ready to
create a deployment descriptor. The following listing shows the bean’s XML deployment descriptor. The <cnp-
fi el d>element isparticularly important. These elementslist the fields that are managed by the container; they
have the same meaning as they do in EJB 2.0 container-managed persistence.

<?xnh version="1.0"?>

<IDOCTYPE gj b-jar PUBLIC "-//Sun Mcrosystens, |Inc.//DID Enterprise
JavaBeans 1.1//BN' "http://java. sun.conij 2ee/dtds/ejb-jar_1 1.dtd">

<gjb-jar>
<ent er pri se- beans>
<entity>
<descri pti on>
Thi s bean represents a crui se ship.
</ descri ption>
<ej b- nane>Shi pEIB</ €j b- nane>
<hone>com ti t an. shi p. Shi proneRenot e</ hone>
<renot e>comti tan. shi p. Shi pRenot e</ r enot e>
<gj b-cl ass>comti t an. shi p. Shi pBean</ €] b- cl ass>
<per si st ence- t ype>Qont ai ner </ per si st ence-t ype>
<pri mkey- cl ass>j ava. | ang. | nt eger </ pri m key- cl ass>
<reentrant >Fal se</reentrant >
<cnp- ver si on>1. X</ cnp- ver si on>
<cnp-fi el d><fi el d-nane>i d</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>nane</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>capaci t y</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>t onnage</ fi el d- nane></ cnp-fi el d>
<Jentity>
</ enterpri se-beans>

<assenbl y- descri pt or >
<security-rol e>
<descri pti on>
This rol e represents everyone who i s allowed full access
to the Ship EIB
</ descri ption>
<r ol e- nane>ever yone</ r ol e- nane>
</security-rol e>

<net hod- per m ssi on>
<r ol e- nane>ever yone</ r ol e- nane>
<net hod>
<gj b- nane>Shi pEJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

<cont ai ner -t ransacti on>
<net hod>
<gj b- nane>Shi pEIB</ €] b- nane>

Copyright (c) 2001 O'Reilly & Associates 196

<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attri bute>
</ cont ai ner-transacti on>
</ assenbl y- descri pt or >
<ejb-jar>

The<cnp- fi el d>elementslist all the container-managed fields in the entity bean class. These are the fields that
will be persisted in the database and are managed by the container at runtime.

& eExercise 9.1, CMP 1.1 Entity Bean

Copyright (c) 2001 O'Reilly & Associates 197

10

Bean-Managed Persistence

Bean-M anaged Per sistence

Bean-managed persistence is more complicated than container-managed persistence because you must explicitly
write the persistence logic into the bean class. In order to write the persistence handling code into the bean class,
you must know what type of database is being used and the how the bean class’ s fields map to that database.

Given that container-managed persistence saves alot of work, why would anyone bother with bean-managed
persistence? The advantage of bean-managed persistenceisthat it givesyou more flexibility in how state is
managed between the bean instance and the database. Entity beans that use data from a combination of different
databases or other resources such as legacy systems can benefit from bean-managed persistence. Essentially, bean-
managed persistence is the alternative to contai ner-managed persistence when the container tools are inadequate for
mapping the bean instance’ s state to the backend databases or resource.

The disadvantage of bean-managed persistence is obvious: more work is required to define the bean. Y ou haveto
understand the structure of the database or resource, the APIs that access them, and devel op the logic to create,
update, and remove data associated with an entity. This requires diligence in using the EJB callback methods such as
ej bLoad() andej bSt or e() appropriately. In addition, you must explicitly develop the find methods defined in
the bean’ s home interfaces.

The select methods used in EJB 2.0 container-managed persistence are not supported in bean-
managed persistence.

Another disadvantage of bean-managed persistenceisthat it ties the bean to a specific database type and structure.
Any changesin the database or in the structure of data require changes to the bean instance’s definition; these
changes may not betrivial. A bean-managed entity is not as database-independent as a contai ner-managed entity,
but it can better accommodate a complex or unusual set of data.”®

28 Containers that use object-to-relational mapping tools in bean-managed persistence can mitigate this disadvantage.

Copyright (c) 2001 O'Reilly & Associates 198

To understand how bean-managed persistence works, we will create anew Ship EJB that is similar to the one used in
Chapters 7 and 11. For bean-managed persistence, we need to implement theej bCr eat e() ,ej bLoad(),
ej bStore(),andej bRenove() methodsto handle synchronizing the bean’ s state with the database.

The Remote Interface

We will need aremote interface for the Ship EJB. Thisinterface is basically the same as any other remote or local
interface. It defines the business methods used by clientsto interact with the bean:

package comtitan. ship;

inport javax.ej b. EJBMj ect;
inport java.rm . Renot eException;

public interface Shi pRenote extends j avax. ej b. EJByj ect {
public Sring get Nane() throws Renot eException;
public void setNane(String nane) throws RenoteExcepti on;
public voi d set Capacity(int cap) throws RenoteException;
public int getCapacity() throws RenoteException;
publ i ¢ doubl e get Tonnage() throws Renot eException;
publi ¢ voi d set Tonnage(doubl e tons) throws Renot eExcepti on;

}

Inthis chapter, we will not develop alocal interface for the bean-managed Ship bean; however, in EJB 2.0, bean-
managed entity beans can have either local or remote component interfaces, just like CMP.

Set and get methods

The Shi pRenpt e definition uses a series of accessor methods whose hames beginwith set and get . Thisis not
arequired signature pattern, but it is the naming convention used by most Java devel opers when obtaining and
changing the values of object attributes or fields. These methods are often referred to assetters and getters (ak.a
mutators and accessors) and the attributes that they manipulate can be called properties.” These properties should
be defined independently of the anticipated storage structure of the data. In other words, you should design the
remote interface to model the business concepts, not the underlying data. Just because there’sacapaci ty
property doesn’t mean that there has to be a capacity field in the bean or the database; the get Capaci t y()
method could conceivably compute the capacity from alist of cabins, by looking up the ship’s model and
configuration, or with some other algorithm.

Defining entity properties according to the business concept and not the underlying datais not always possible, but
you should try to employ this strategy whenever you can. The reason istwo-fold. First, the underlying data doesn’t
always clearly define the business purpose or concept being modeled by the entity bean. Remote interfaces will be
used by developers who know the business, not the database configuration. It isimportant to them that the entity
bean reflect the business concept. Second, defining the properties of the entity bean independent of the data allows
the bean and data to evolve separately. Thisisimportant because it allows a database implementation to change over
time; it also allows for new behavior to be added to the entity bean as needed. If the bean’ s definition isindependent
of the data source, the impact of these evolutionsis limited.

29 Although EJB is different from its GUI counterpart, JavaBeans, the concepts of accessors and properties are similar. You can
learn about thisidiom by reading Developing Java Beans™ by Rob Englander (O’ Reilly).

Copyright (c) 2001 O'Reilly & Associates 199

The Remote Home I nterface

The home interfaces (local and remote) of any entity bean are used to create, locate, and remove objects from EJB
systems. Each entity bean hasits own remote or local home interface. The home interface defines two basic kinds of
methods: zero or more create methods, and one or more find methods® The create methods act like remote
constructors and define how new Ship EJBs are created. (In our home interface, we only provideasinglecr eat e()
method.) The find method is used to locate a specific ship or ships.

The following code contains the compl ete definition of the Shi pHomeRenot e interface:

package comtitan. ship;

inport javax. e b. EJB-bne;

inport javax.ej b. O eat eExcepti on;
inport javax.ej b. FH nder Excepti on;
inport java.rm.Renot eExcepti on;
inport java.util.@l | ection;

public interface Shi pHoneRenot e ext ends j avax. €] b. EJB-bne {

public ShipRenote create(lnteger id, Sring nane,
int capacity, double tonnage)

throws Renot eExcepti on, O eat eExcept i on;

public ShipRenote create(lnteger id, Sring nane)
throws Renot eExcept i on, O eat eExcept i on;

publ i c Shi pRenote findByPri naryKey(Integer prinaryKey)
throws H nder Exception, RenoteException;

public Gollection findByCapacity(int capacity)
throws H nder Exception, RenoteException;

}

Enterprise JavaBeans specifies that create methods in the home interface must throw the
j avax. e] b. Creat eExcept i on. Thisprovidesthe EJB container with acommon exception for communicating
problems experienced during the create process.

The Renpt eExcept i on isthrown by all remoteinterfaces and is used to communicate network problems that
occurred while processing invocations between aremote client and the EJB container system.

The Primary Key

In bean-managed persistence, aprimary key can be a serializable object defined specifically for the bean by the bean
developer. The primary key defines attributes that can be used to locate a specific bean in the database. For the

Shi pBean, we need only one attribute, i d, but in other cases, aprimary key may have several attributes, which
taken together uniquely identify abean’s data.

We will examine primary keysin detail in Chapter 11; for now, we specify that the Ship EJB uses asimple single-value
primary key of typej ava. | ang. | nt eger. Theactual persistencefield in the bean classisan| nt eger named
id.

30 Chapter XX explains when you should not define any create methods in the home interface.

Copyright (c) 2001 O'Reilly & Associates 200

The ShipBean

The Shi pBean defined for this chapter uses JDBC to synchronize the bean’ s state to the database. In reality, an
entity bean that is this simple could easily be deployed as a contai ner-managed persistence bean. The purpose of
this chapter, however, isto illustrate exactly where the resource access code goes for bean-managed persistence and
how to implement it. The fact that we are synchronizing the bean state against arelational database is not important
to the example. The bean could be persisted to some legacy system, or an ERP application, or some other resource
that is not supported by your vendor’s EJB contai ner-managed persistence, like LDAP or some hierarchical database.

So when learning about bean-managed persistence you should focus on when and where the resource is accessed to
synchronize the bean with the database, and not be overly concerned with the fact that this example use JDBC and a
relational database.

Here isthe complete definition of the Shi pBean:

package comtitan. ship;

i nport j avax. naning. Gont ext ;

inport javax.nanming.Initial Gontext;

i nport j avax. nam ng. Nam ngExcept i on;
inport javax.ejb. EntityGContext;
inport java.rm.Renot eExcepti on;
inport java.sql.SQ.Exception;

inport java.sql.Qnnection;

inport java.sql . PreparedS at enent ;
inport java.sql.DriverNManager;
inport java.sql.ResultSet;

inport javax. sql . Dat aSour ce;

inport javax.ejb. O eat eException;
inport javax.ej b. EJBExcepti on;

i nport j avax. ej b. H nder Excepti on;
inport javax. ej b. (bj ect Not FoundExcept i on;
inport java.util.Enuneration;

inport java.util.Properties;

inport java.util.\Vector;

inport java.util.Ql | ection;

public class ShipBean inpl enents javax.ejb. EntityBean {
public Integer id;
public Sring nang;
public int capacity;
publ i ¢ doubl e tonnage;

public EntityQontext context;

public Integer e bQeate(lnteger id, Sring nane,
int capacity, doubl e tonnage)
throws O eateBException {
if ((idintValue() <1) || (nane = null))
t hrow new G eat eException("Inval id Paraneters");
this.id =id;
thi s. nane = nang;
this.capacity = capacity;
t hi s. tonnage = t onnage;

Gonnection con = nul | ;

Copyright (c) 2001 O'Reilly & Associates 201

PreparedSatenent ps = null;
try {
con = this.getGnnection();
ps = con. prepar eX at enent (
"insert into Ship (id, nane, capacity, tonnage) " +
"values (2,2,2,?2)");
ps.setint(1, id.intValue());
ps.setSring(2, nane);
ps.setlnt (3, capacity);
ps. set Doubl (4, tonnage);
if (ps.executelpdate() '=1) {
t hrow new G eat eException ("Failed to add Ship to database");
}

return id;
}

catch (SQException se) {
t hr ow new EJBException (se);
}
finally {
try {
if (ps !=null) ps.close();
if (conl=null) con.close();
} catch(SQException se) {
se. print S ackTrace();
}
}
}
public voi d e bPost Geate(lnteger id, Sring nane,
int capacity, double tonnage) {
/1 Do sonething useful with the prinary key.
}
public Integer ejbQeate(lnteger id, Sring nane)
throws Q eat eException {
return e bQeate(id, nang, 0,0);
}
public void e bPost Geate(int id, Sring nane) {
/1 Do sonething useful wth the EIBOj ect reference.
}
public Integer ej bF ndByPrinaryKey(lnteger prinaryKey)
throws H nder Exception {
Gonnection con = nul | ;
PreparedSatenent ps = null;
Resul t Set result = null;
try {
con = this.getGnnection();
ps = con. prepar eX at enent (
"select id fromShip where id =?");
ps.setint (1, prinaryKey.intValue());
result = ps. execut eQiery();
/1 Does ship id exist in database?
if (‘result.next()) {
t hr ow new (j ect Not FoundExcept i on(
"Gannot find Ship withid ="+d);
}
} catch (SQException se) {
t hr ow new EJBExcepti on(se);

}

Copyright (c) 2001 O'Reilly & Associates

finally {
try {
if (result '=null) result.close();
if (ps !=null) ps.close();
if (con'=null) con.close();
} catch(SQException se){
se. print S ackTrace();
}
}
return prinarykey;
}
public @l | ection ej bFH ndByCapaci ty(int capacity)
throws H nder Exception {
Gonnection con = nul | ;
PreparedSatenent ps = null;
Resul t Set result = null;
try {
con = this. getGnnection();
ps = con. prepar et at enent (
"select id fromShip where capacity = ?");
ps. setInt (1, capacity);
result = ps. execut eQiery();
Vector keys = new Vector();
whi l e(result.next()) {
keys. addH enent (resul t. get (oj ect ("i d"));
}

return keys;

}
catch (SQ.Exception se) {

t hrow new EJBException (se);
}
finally {
try {
if (result '=null) result.close();
if (ps !'=null) ps.close();
if (conl=null) con.close();
} catch(SQException se) {
se. print S ackTrace();
}
}
}
public void setEntityContext (EntityGontext ctx) {
context = ctx;
}
public voi d unset EntityGontext () {
context = null;
}
public void e bActivate() {}
public voi d e bPassivate() {}
public void e bLoad() {

Integer prinaryKey = (Integer)context.getPrinarykey();
Gonnection con = nul | ;

PreparedSatenent ps = null;

ResultSet result = null;

try {

Copyright (c) 2001 O'Reilly & Associates

con = this. get Gonnection();
ps = con. prepar e at enent (

"sel ect nane, capacity, tonnage fromShip where id = ?");
ps.setInt (1, prinaryKey.intValue());
result = ps. execut eQiery();
if (result.next()){

id=pk.intVal ue();
nane = resul t.getSring("nane");
capacity =result.getlnt("capacity");
tonnage = resul t. get Doubl e("t onnage") ;
} else {
t hr ow new EJBExcept i on();
}
} catch (SQException se) {
t hr ow new EJBExcepti on(se);
}
finally {
try {
if (result '=null) result.close();
if (ps!=null) ps.close();
if (con'=null) con.close();
} catch(SQException se) {
se. print S ackTrace();
}
}
}
public void e bSore() {
Gonnection con = nul | ;
PreparedSatenent ps = null;
try {
con = this.getGnnection();
ps = con. prepar eX at enent (

"update Ship set nane = ?, capacity =?, " +

"tonnage = ? where id = ?");
ps. set Xring(l, nane);
ps.setlnt (2, capacity);
ps. set Doubl e(3, t onnage) ;
ps.setint(4,id. intVal ue());
if (ps.executelpdate() '=1) {

t hrow new EJBExcepti on("ej bStore");
}
}
catch (SQException se) {
t hrow new EJBExcepti on (se);
}
finaly {
try {
if (ps!=null) ps.close();
if (con'=null) con.close();
} catch(SQException se) {
se. print SackTrace();
}
}

}
publ i ¢ voi d e bRenove() {

Gonnection con = nul | ;
PreparedSatenent ps = null;

Copyright (c) 2001 O'Reilly & Associates

try {
con = this. getGnnection();
ps = con. prepareSatenent ("del ete fromShip where id = ?");
ps.setInt(1, id.intVal ue());
if (ps.executelpdate() '=1) {
t hr ow new EJBExcept i on(" ej bRenove") ;
}

}
catch (SQException se) {

t hrow new EJBException (se);
}
finally {
try {
if (ps !=null) ps.close();
if (conl=null) con.close();
} cat ch(SQ.Exception se) {
se. print SackTrace();

}

}

}

public Sring get Name() {
return nang;

}

public void setName(Sring n) {
nane = n;

}

publ i ¢ voi d set Gapacity(int cap) {
capacity = cap;

}

public int getCapacity() {
return capacity;
}
publ i ¢ doubl e get Tonnage() {
return tonnage;
}
publ i ¢ voi d set Tonnage(doubl e tons) {
tonnage = tons;
}
private Gonnection get Gnnection() throws SQException {
/1 Inplenentations for EIB 1.0 and EJB 1.1 shown bel ow

}

}

Obtaining a Resour ce Connection

In order for aBMP entity bean to work, it must have access to the database or resource that it will persist itself to. To
get access to the database, the bean usually obtains aresource factory from the INDI ENC. The INDI ENC is covered
in detail in chapter 12, Session beans, but an overview here will be helpful sincethisisthefirst timeits actually used.
To get access to the database we simply request a connection from aDat aSour ce, which we obtain from the INDI

environment naming context:

private Gonnection get Gnnection() throws SQException {

try {
Gontext jnditx = new Initial Gontext();

Dat aSour ce ds =
(Dat aSour ce) j ndi Ot x. | ookup("j ava: conp/ env/ j dbc/ titanDB');

Copyright (c) 2001 O'Reilly & Associates

return ds. get Gonnecti on();
}
cat ch (Nam ngException ne) {
t hr ow new EJBExcept i on(ne) ;
}
}

In EJB, every enterprise bean has access to its INDI environment naming context (ENC), which is part of the bean-
container contract. The bean’s deployment descriptor maps resources such as the JDBC DataSource, JavaMail, and
Java Message Service to a context (name) in the ENC. This provides a portable model for accessing these types of
resources. Here' sthe relevant portion of the deployment descriptor that describes the JIDBC resource:

<ent er pri se- beans>
<entity>
<gj b- nane>Shi pEJB</ €] b- nane>

<resour ce- r ef >
<descri pti on>Dat aSource for the Titan dat abase</ descri ption>
<res-ref-nane>j doc/ titanCB</ res-ref - nane>
<res-type> avax. sql . Dat aSour ce</ r es- t ype>
<res- aut h>Cont ai ner </ r es- aut h>
<resour ce-ref >

<entity>

<ent er pri se- beans>

The<r esour ce-r ef > tagisused for any resource (JDBC, IMS, JavaMail) that is accessed from the ENC. It
describes the INDI name of the resource (<r es- r ef - nane>), thefactory type (<r es- t ype>), and whether
authentication is performed explicitly by the bean or automatically by the container (<r es- aut h>). Inthisexample,
we are declaring that the INDI name" j dbc/ t it anDB" referstoaj avax. sql . Dat aSour ce resource manager,
and that authentication to the database is handle automatically by the container. The INDI name specified in the
<res-ref - nane> tag isalwaysrelative to the standard INDI ENC context name, " j ava: conp/ env".

When the bean is deployed, the deployer mapstheinformationinthe<r esour ce- r ef > tagto alive database.
Thisisdone in avendor-specific manner, but the end result is the same. When a database connection is requested
using the INDI name" j ava: conp/ j dbc/ti t anDB",aDat aSour ce for the Titan databaseis returned.
Consult your vendor’ s documentation for details on how to map the Dat aSour ce to the database at deployment
time.

Theget Connect i on() method provides uswith a simple and consistent mechanism for obtaining a database
connection for our Shi pBean class. Now that we have a mechanism for obtaining a database connection, we can
useit to insert, update, delete, and find Ship EJBsin the database.

Exception Handling

Exception handling is particularly relevant in our discussion of bean-managed persistence because, unlike container-
managed persistence, the bean developer isresponsible for throwing the correct exceptions at the right moments. For
thisreason we' Il take a moment to discuss different types of exceptionsin bean-managed persistence. This
discussion will be useful when we get into the details of database access and implementing the callback methods.

There are three types of exceptions thrown from a bean: application exceptions, which indicate businesslogic errors,
runtime exceptions, and checked subsystem exceptions, which are thrown from subsystems like JDBC or JNDI.

Copyright (c) 2001 O'Reilly & Associates 206

Application exceptions

Application exceptions include standard EJB application exceptions and custom application exceptions. The
standard EJB application exceptionsare Cr eat eExcept i on, Fi nder Excepti on,

Obj ect Not FoundExcepti on, Dupl i cat eKeyExcepti on, and RenoveExcept i on. These
exceptions are thrown from the appropriate methods to indicate that a business|ogic error has occurred. Custom
exceptions are exceptions you develop for specific business problems. Y ou will develop custom exceptionsin
Chapter 12, Session beans.

Runtime exceptions

Runt i meExcept i on typesarethrown from the virtual machineitself and indicate that afairly serious
programming error has occurred. Examplesinclude Nul | Poi nt er Excepti on and

I ndexQut Of BoundsExcept i on. These exceptions are handled by the container automatically and should
not be handled inside a bean method.

Youwill noticethat al the callback methods (ej bLoad, ej bSt or e, ej bActi vat e, ej bPassi vat e, and
ej bRenove) throw an EJBExcept i on when aserious problem occurs. All EJB callback methods declare the
EJBExcept i on and Renot eExcept i on intheirt hr ows clause. If you need to throw an exception from
one of the callback methods, it must be an EJBExcept i on or asubclass. The Renot eExcept i on typeis
included in the method signature to support backward compatibility with EJB 1.0 beans. Its use has been
deprecated since EJB 1.1. Renpt eExcept i ons should never be thrown by callback methods of EJB 1.1 or EJB
2.0 beans.

Subsystem exceptions

Checked exceptions thrown by other subsystems should be wrapped in anEJBExcept i on or application
exception and re-thrown from the method. Several examples of this can be found in the previous example, in
which an SQLExcept i on that wasthrown from JDBC was caught and rethrown as an EJBExcept i on.
Checked exceptions from other subsystems, such as those thrown from JNDI, JavaMail, IM S, etc., should be
handled in the same fashion. The EJBExcept i on isasubtype of the Runt i meExcept i on, soit doesn’t
need to be declared in the method’ st hr ows clause. If the exception thrown by the subsystem is not serious,
you can opt to throw an application exception, but thisis not recommended unless you are sure of the cause and
affect of the exception on the subsystem. In the majority of cases, throwing an EJBExcept i on isprefered.

Exceptions have an impact on transactions and are fundamental to transaction processing. Exceptions are examined
in greater detail in Chapter 14, Transactions

The gbCreate() Method

Theej bCr eat e() methods are called by the container when a client invokes the corresponding cr eat e()
method on the bean’ s home. With bean-managed persistence, theej bCr eat e() methods are responsible for
adding the new entity to the database. This meansthat the new version of ej bCr eat e() will be much more
complicated than the equivalent methods in contai ner-managed entities; with container-managed beans, ej b-

Cr eat e() doesn’t haveto do much morethaninitialize afew fields. The EJB specification also states that

ej bCr eat e() methodsin bean-managed persistence must return the primary key of the newly created entity. This
is another difference between bean-managed and contai ner-managed persistence; in our contai ner-managed beans,
ej bCreat e() isrequiredtoreturnvoi d.

The following code containsthe ej bCr eat e() method of the Shi pBean. Itsreturn type isthe Ship EJB’s primary
key, | nt eger . Furthermore, the method uses the JIDBC API to insert anew record into the database based on the
information passed as parameters.

public Integer e bQeate(lnteger id, Sring nane,
int capacity, doubl e tonnage)
throws O eat eException {
if ((idintValue() <21) || (nane = null))

Copyright (c) 2001 O'Reilly & Associates 207

t hrow new QG eat eException("Inval i d Paraneters");
this.id =id;
this. nane = nane;
this.capacity = capacity;
thi s. tonnage = t onnage;

Gonnection con = nul | ;
PreparedSatenent ps = null;
try {
con = this.getGnnection();
ps = con. prepar eX at enent (
"insert into Ship (id, nane, capacity, tonnage) " +
"values (?2,2,2,?7");
ps.setlnt(1, id.intValue());
ps.setXring(2, nane);
ps.setlnt (3, capacity);
ps. set Doubl (4, tonnage);
if (ps.executelpdate() '=1) {
t hrow new G eat eException ("Failed to add Ship to database");
}

return id;

}
catch (SQException se) {

t hr ow new EJBException (se);

}

finally {
try {
if (ps !=null) ps.close();
if (conl=null) con.close();
} catch(SQ.Exception se) {
se. print SackTrace();
}

}

}

At the beginning of the method, we verify that the parameters are correct, and throw aCr eat eExcept i on if the
i dislessthan 1, orthenamne isnul | . Thisshowshow you would typically useaCr eat eExcept i on to report
an application logic error.

The Shi pBean instance fields are still initialized using the parameters passed toej bCr eat e() by setting the
instance fields of the ShipBean. These values will be used to manually insert the datainto the SHI P table in our
database.

To perform the database insert, we use aJDBC Pr epar edSt at enent for SQL requests because it makes it easier
to see the parameters being used. Alternatively, we could have used a stored procedure through a JDBC

Cal | abl eSt at enent orasmple JDBC St at enent object. We insert the new bean into the database using a
SQL | NSERT statement and the valuespassed intoej bCr eat e() parameters. If the insert is successful (no
exceptions thrown), we create a primary key and return it to the container.

If theinsert operation is unsuccessful, we throw anew Cr eat eExcept i on, whichillustratesits usein more
ambiguous situation. Failure to insert the record could be construed as an application error or asystem failure. In this
situation, the JDBC subsystem hasn’t thrown an exception, so we shouldn’t interpret the inability to insert arecord
as afailure of the subsystem. Therefore, wethrow aCr eat eExcept i on instead of anEJBExcept i on.
Throwing aCr eat eExcept i on provides the application the opportunity to recover from the error, atransactional
concept that is covered in more detail in Chapter 14, Transactions

Copyright (c) 2001 O'Reilly & Associates 208

After theinsert operation is successful, the primary key is returned to the EJB container fromtheej bCr eat e()
method. Inthiscasewesimply returnthesamel nt eger object passed into the method, but in many cases a new
key might be derived from the method arguments. Thisis especially true when using compound primary keys, which
are discussed in Chapter 11. Behind the scenes, the container uses the primary key and the Shi pBean instance that
returned it to provide the client with areference to the new Ship entity. Conceptually, this means that the Shi pBean
instance and primary key are assigned to anewly constructed EJB object, and the EJB object stub is returned to the
client.

Our home interface requires usto provide asecondej bCr eat e() method with different parameters. We can save
work and write more bulletproof code by making the second method call the first:

public Integer e bQeate(lnteger id, Sring nane)
throws O eat eException {
return e bQ eat e(id, nane, 0, 0);

}
The gbLoad() and gbStore() Methods

Throughout the life of anentity, itsdatawill be changed by client applications. In the Shi pBean, we provide
accessor methods to changethe nane, capaci t y, andt onnage of the Ship EJB after it has been created.
Invoking any of these accessor methods changes the state of the Shi pBean instance, which must be reflected in
the database.

In container-managed persistence, synchronization between the entity bean and the database takes place
automatically; the container handlesit for you. With bean-managed persistence, you are responsible for
synchronization: the entity bean must read and write to the database directly. The container works closely with the
bean-managed persistence entities by advising them when to synchronize their state through the use of two callback
methods: ej bSt ore() andej bLoad().

Theej bSt or e() method is called when the container decides that it is agood time to write the entity bean’ s data
to the database. The container makes these decisions based on all the activitiesit is managing, including
transactions, concurrency, and resource management. Vendor implementations may differ slightly asto when the

ej bSt or e() method iscalled, but thisis not the bean devel oper’ s concern. In most cases, theej bSt or e()
method will be called after a business method has been invoked or at the end of atransaction. Hereisthe

ej bSt or e() method for the Shi pBean:

public void ejbSore() {
Gonnection con = nul | ;
PreparedSatenent ps = nul |l ;
try {
con = this.getGnnection();
ps = con. prepar e at enent (
"update Ship set nane = ?, capacity =?, " +
"tonnage = ? where id = ?");
ps. set Sring(1, nane);
ps. setlnt(2, capacity);
ps. set Doubl e(3, t onnage) ;
ps.setint(4,id.intVal ue());
if (ps.executelpdate() '=1) {
t hr ow new EJBException("ej bSore");

}

}
catch (SQ.Exception se) {
t hr ow new EJBException (se);

}

Copyright (c) 2001 O'Reilly & Associates 209

finally {
try {
if (ps!=null) ps.close();
if (conl=null) con.close();
} catch(SQ.Exception se) {
se. print S ackTrace();

}

}

Except for the fact that we are doing an update instead of an insert, thismethod issimilar totheej bCr eat e()
method we examined earlier. A JDBC Pr epar edSt at enent isemployed to execute the SQL UPDATE command,
and the entity bean’ s persistent fields are used as parameters to the request. This method synchronizes the database

with the state of the bean.

EB also providesanej bLoad() method that synchronizes the state of the entity with the database. This method
isusually called prior to a new transaction or business method invocation. Theideaisto make sure that the bean
always represents the most current datain the database, which could be changed by other beans or other non-EB

applications. Hereistheej bLoad() method for a bean-managed Shi pBean class:
public void ej bLoad() {

Integer prinmaryKey = (Integer)context.getPrinaryKey();
Gonnection con = nul | ;
PreparedS atenent ps = null;
ResultSet result = null;
try {
con = this.getGnnection();
ps = con. prepar eX at enent (
"sel ect nane, capacity, tonnage fromShip where id = ?");
ps.setInt (1, prinaryKey.intVal ue());
result = ps. executeQiery();
if (result.next()){
id = prinaryKey;
nane = result.getSring("nane");
capacity =result.getlnt("capacity");
tonnage = resul t. get Doubl e("t onnage");
} else {
t hr ow new EJBException();
}
} catch (SQLException se) {
t hr ow new EJBExcept i on(se);

}
finally {
try {
if (result '=null) result.close();
if (ps !'=null) ps.close();
if (conl=null) con.close();
} catch(SQ.Exception se) {
se. print S ackTrace();
}
}

}

To executetheej bLoad() method we need aprimary key. To get a primary key, we query the bean’s

Enti t yCont ext . Notethat we don’t get the primary key directly from the Shi pBean’si d field because we
cannot guarantee that thisfield isalwaysvalid—the ej bLoad() method might be populating the bean instance’s

Copyright (c) 2001 O'Reilly & Associates

210

state for the first time, in which case the fields would all be set to their default values. This situation would occur
following bean activation. We can guarantee that the Ent i t yCont ext for the Shi pBean isvalid because the
EJB specification requiresthat the bean instance Ent i t yCont ext referenceisvalid beforetheej bLoad()
method can beinvoked. TheEnt i t yCont ext will bediscussed in detail in Chapter 11.

Y ou may want to jump to Chapter 11 and read the section titled EntityContext so that you have a better
understanding of its purpose and usefulnessin entity beans.

The ggbRemove() M ethod

In addition to handling their own inserts and updates, bean-managed entities must also handle their own deletions.
When aclient application invokes the remove method on the EJB home or EJB object, that method invocation is
delegated to the bean-managed entity by callingej bRenove() . It isthe bean developer’ s responsibility to
implement anej bRenove() method that deletes the entity’ s datafrom the database. Here' stheej bRenove()
method for our bean-managed Shi pBean:

publ i c voi d ej bRenove() {

Gonnection con = nul | ;

PreparedSatenent ps = null;

try {
con = this. get Gnnection();
ps = con. prepareS atenent ("del ete fromShip where id = ?");
ps.setlnt(1, id.intValue());
if (ps.executelpdate() '=1) {

t hr ow new EJBExcept i on(" ej bRenove") ;

}

}

catch (SQException se) {
t hr ow new EJBException (se);

}

finally {
try {
if (ps !=null) ps.close();
if (conl=null) con.close();
} catch(SQ.Exception se) {
se. print SackTrace();
}

}

}
ejbFind() Methods

In bean-managed persistence, the find methods in the remote or local home interface must match theej bFi nd
methods in the actual bean class. In other words, for each method named f i nd<SUFFI X>() inahomeinterface,
there must be a correspondingej bFi nd<SUFFI X>() method in the entity bean class with the same arguments
and exceptions. When afind method isinvoked on an EJB home, the container delegatesthe f i nd method to a
corresponding ej bFi nd method on the bean instance. The bean-managed entity is responsible for locating records
that match the find requests. In Shi pHonme Renot e, there are two find methods:

public interface Shi pHoneRenote extends j avax. ej b. EJBrbone {
publ i c Shi pRenote findByPri naryKey(Integer prinaryKey)

throws H nder Excepti on, Renot eExcepti on;
publ i ¢ BEnuneration findByGapaci ty(int capacity)

Copyright (c) 2001 O'Reilly & Associates 211

throws H nder Excepti on, Renot eExcepti on;

}
And here are the signatures of the corresponding ej bFi nd methodsin the Shi pBean:
public class ShipBean extends javax.ej b. EntityBean {
public Integer e bAH ndByPrinaryKey(lnteger prinaryKey)
throws H nder Excepti on, Renot eException {}

public Qollection e bH ndByCapaci ty(int capacity)
throws H nder Exception, RenoteBException {}

}

Aside from the names, there’ s one difference between these two groups of methods. The find methods in the home
interface return either an EJB object implementing the bean’ s remote interface—in this case, Shi pRenot e—or a
collection of EJB objectsintheformof aj ava. uti | . Enunerati onorjava. util. Coll ection.The

ej bFi nd methodsin the bean class, on the other hand, return either aprimary key for the appropriate bean—in this
case, | nt eger —or acollection of primary keys. The methods that return a single value (whether aremote/local
interface or a primary key) are used whenever you need to look up a single reference to a bean. If you are looking up
agroup of references (for example, all shipswith a certain capacity), you have to use the method that returns either
theCol | ect i on or Enuner at i on type. In either case, the container intercepts the primary keys and converts
them into remote references for the client.

The EJB 2.0 specification recommends that EJB 2.0 bean-managed persistence beans use the

Col | ecti on typeinstead of the Enurrer at i on type. Thisrecommendation is probably made
so that bean-managed persistence beans are more consistent with EJB 2.0 contai ner-managed
persistence beans, which usethe Col | ect i on type. However, unlike EJB 2.0 container-managed
persistence beans, bean-managed persistence beans do not support j ava. util . Set asareturn

type.

It shouldn’t come as a surprise that the type returned—whether it’saprimary key or aremote (or local in EJB 2.0)
interface—must be appropriate for the type of bean you’ re defining. For example, you shouldn’t put find methods in
a Ship EJB to look up and return Cabin EJB objects. If you need to return collections of adifferent bean type, use a
business method in the remote interface, not afind method from one of the home interfaces.

In EJB 2.0, the EJB container takes care of returning the proper (local or remote) interface to the client. For example,
the Ship EJB may define both alocal and remote home interface both of which haveaf i ndByPri mar yKey()
method. Whenf i ndByPri mar y() isinvoked onthelocal or remoteinterface, it will be delegated to the same
ej bFi ndByPri mary() key method. After theej bFi ndByPri mar yKey() method executes and returnsthe
primary key, the EJB container takes care of returning a Shi pRenot e or Shi pLocal referencetotheclient,
depending on which home interface (Ilocal or remote) was used. The EJB container also handles this for multi-entity
find methods, returning a collection of remote references for remote home interfaces and local references for local
home interfaces.

Both find methods defined in the Shi pBean classthrow aFi nder Except i on if afailurein the request occurs
when an SQL exception condition isencountered. Thef i ndByPri mar yKey() throwsthe

Obj ect Not FoundExcept i on if there are no recordsin the database that match thei d argument. Thisis
exception should always be thrown by single-entity find methodsif no entity is found.

Thefi ndByCapaci t y() method returns an empty collection if no SHI P records were found with a matching
capacity; multi-entity find methods do not throw an Obj ect Not FoundExcept i on if no entitiesare found. Find
methods also throw Fi nder Except i on and EJBExcept i on, in addition to any application-specific exceptions
that the bean devel oper considers appropriate.

Copyright (c) 2001 O'Reilly & Associates 212

It ismandatory that all entity remote and local home interfaces include the methodf i ndByPr i mar yKey() . This
method returns the remote interface type, Shi p. The method declares one parameter, the primary key for that bean
type. With local home interfaces, the return type of any single-entity finder method is always the bean’slocal
interface. With remote home interfaces, the return type of any single-entity find method is always the remote
interface. Y ou cannot deploy an entity bean that doesn’tincludeaf i ndByPri mar yKey() method initshome
interfaces.

Following the rules outlined earlier, we can definetwoej bFi nd methodsin Shi pBean that match the two find
methods defined in the Shi pHone:

public Integer ej bF ndByPrinaryKey(lnteger prinarykKey)
throws H nder Exception, {
Gonnection con = nul | ;
PreparedSatenent ps = nul | ;
Resul tSet result = null;
try {
con = this.getGnnection();
ps = con. prepar eX at enent (

"select id fromShip where id = ?");
ps.setint (1, prinarykey.intVal ue());
result = ps. execut eQiery();

/1 Does ship id exist in database?
if ('result.next()) {
t hr ow new (j ect Not FoundExcept i on(

"Gannot find Ship withid ="+d);

}
} catch (SQ.Exception se) {
t hr ow new EJBExcepti on(se);

}
finally {
try {
if (result '=null) result.close();
if (ps!=null) ps.close();
if (conl=null) con.close();
} catch(SQ.Exception se){
se. print S ackTrace();
}
}

return prinarykey;
}
public Qollection e bF ndByCapaci ty(int capacity)
throws H nder Exception {
Gonnection con = nul | ;
PreparedSatenent ps = null;
ResultSet result = null;
try {
con = this. get Gnnection();
ps = con. prepar eX at enent (
"select id fromShip where capacity = ?");
ps. setInt(1, capacity);
result = ps. execut eQiery();
Vector keys = new Vector();
vhile(result.next()) {
keys. addH enent (resul t. get hj ect ("i d"));
}

return keys

Copyright (c) 2001 O'Reilly & Associates 213

}

catch (SQ.Exception se) {
t hr ow new EJBException (se);

}

finally {
try {
if (result '=null) result.close();
if (ps !=null) ps.close();
if (conl=null) con.close();
} catch(SQ.Exception se) {
se. print S ackTrace();
}

}

}

The mandatory f i ndByPr i mar yKey () method uses the primary key to locate the corresponding database
record. Onceit has verified that the record exists, it simply returns the primary key to the container, which then uses
the key to activate a new instance and associate it with that primary key at the appropriate time. If thereis no record
associated with the primary key, the method throws an Cbj ect Not FoundExcepti on.

Theej bFi ndByCapaci t y() methodreturnsaCol | ect i on of primary keysthat match the criteria passed into
the method. Again, we construct a prepared statement that we use to execute our SQL query. Thistime, however, we
expect multipleresultsso weusethej ava. sql . Resul t Set toiterate through the results, creating a vector of
primary keysfor each SHI P_| Dreturned.

Find methods are not executed on bean instances that are currently supporting a client application. Only bean
instances that are not assigned to an EJB object (instancesin the instance pool) are supposed to service find
requests, which meansthat theej bFi nd() methodsin the bean instance have somewhat limited use of the
EntityContext.TheEntityCont ext methodsget Pri maryKey() andget EJBObj ect () will throw
exceptions because the bean instance isin the pool and is not associated with a primary key or EJB object when the
ej bFi nd method iscalled.

Where do the objects returned by afinder method come from? This seems like a simple enough question, but the
answer is surprisingly conplex. Remember that a finder method isn’t executed by a bean instance that is actually
supporting the client; the container selects an idle bean instance from the instance pool to execute the method. The
container isresponsible for creating the EJB objects and local or remote references for the primary keys returned by
theej bFi nd method in the bean class. Asthe client accesses these remote references, bean instances are swapped
into the appropriate EJB objects, loaded with data, and made ready to service the client’ s requests.

Deployment Descriptor

With a complete definition of the Ship EJB, including the remote interface, home interface, and primary key, we are
ready to create a deployment descriptor. Here are the XML deployment descriptorsfor EJB 1.1 and 2.0. These
deployment descriptors are alittle different from the descriptors we created for the contai ner-managed entity beansin
Chapters 6, 7, and 10. In this deployment descriptor, theper si st ence-t ype isBean and there are no container-
managed or relationship field declarations. We also must declare the Dat aSour ce resource factory that we use to
query and update the database.

Here isthe deployment descriptor for EJB 2.0:

<?xnh version="1.0"?>

<IDOCTYPE €] b-jar PLBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 2.0//BN' "http://java. sun.contj 2ee/ dtds/ejb-jar_2 0.dtd">

Copyright (c) 2001 O'Reilly & Associates 214

<gjb-jar>
<ent er pri se- beans>
<entity>
<descri pti on>
Thi s bean represents a crui se ship.
</descri pti on>
<ej b- nane>Shi pEIB</ €j b- nane>
<hone>com ti t an. shi p. Shi proneRenot e</ hone>
<renot e>comtitan. shi p. Shi pRenot e</ r enot e>
<ej b-cl ass>comti t an. shi p. Shi pBean</ € b- cl ass>
<per si st ence- t ype>Bean</ per si st ence-t ype>
<pri mkey-cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>
<reentrant >Fal se</reentrant >
<security-identity><use-cal |l ers-identity/><security-identity>
<r esour ce-r ef >
<descri pti on>Dat aSource for the Titan dat abase</ descri pti on>
<res-ref-nane>j doc/ titanCB</res-ref - nane>
<res-type>j avax. sql . Dat aSour ce</ r es- t ype>
<res- aut h>Cont ai ner </ r es- aut h>
</resour ce-ref >

<entity>
</enterpri se-beans>

<assentl y- descri pt or >
<security-rol e>
<descri pti on>
This rol e represents everyone who is allowed full access
to the Ship BEIB
</descri pti on>
<r ol e- nane>ever yone</ r ol e- nane>
</security-rol e>

<net hod- per m ssi on>
<r ol e- nane>ever yone</ r ol e- nane>
<net hod>
<gj b- nane>Shi pEJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

<cont ai ner-transacti on>
<net hod>
<gj b- nane>Shi pEIB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y- descri pt or >

<ejbjar> |

The EJB 1.1 deployment descriptor is exactly the same except for two things: the <! DOCTYPE> element references
EJB 1.1 instead of 2.0:

<IDOCTYPE €j b-jar PWBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 1.1//BN' "http://java. sun.conij 2ee/dtds/ejb-jar_1 1.dtd">

Copyright (c) 2001 O'Reilly & Associates 215

Andthe<security-identity>eementisspecificto EJB 2.0 and would not bein the EJB 1.1 deployment
descriptor.

| <security-identity><use-callers-identity/><security-identity> |

= #Exercise 10.1, Bean-Managed Persistence

Copyright (c) 2001 O'Reilly & Associates 216

11

Entity-Container Contract

Although each of the three entity type components (EJB 2.0 CMP, EJB 1.1 CMP, and BMP) are programmed
differently, their relationshipsto the container system at runtime are very similar. This chapter coversthe relationship
between EJBs and their containers, which includes areas like primary keys, callback methods, and the entity bean
lifecycle. When differences between the bean types are important, they will be noted.

ThePrimary Key

A primary key isan object that uniquely identifies a specific type of entity bean. A primary key can be any
seridizable type including primitive wrappers (I nt eger , etc.) or custom classes defined by the bean developer. In
the Ship EJB (Chapters 7, 9, and 10) we used the | nt eger type asaprimary key. Primary keys can be declared by
the bean devel oper, or the primary key type can be deferred until deployment. We will talk about deferred primary
keyslater.

Because the primary key may be used in remote invocations, it must adhere to the restrictions imposed by Java RMI-
I1OP. These are addressed in Chapter 5, but for most cases, you just need to make the primary key serializable. In
addition, the primary key must be avalid Java RMI-I1OP vaue type; and it must implementequal s() and
hashCode() appropriately.

EJB allows two types of primary keys. compound and single-field keys. Single-field primary keysmap to asingle
persistent field defined in the bean class. The Customer and Ship EJBs, for example, useaj ava. | ang. | nt eger
primary key that maps to the container-managed persistence (CMP) field namedi d. A compound primary key isa
custom defined object that contains several instance variables that map to more than one persistent field in the bean
class.

Single-field key

The St ri ng class and the standard wrapper classes for the primitive datatypes (j ava. | ang. | nt eger,

java. | ang. Doubl e, etc.) can be used as primary keys. These are referred to as single-field primary keys because
the primary key isatomic; it maps only to one of the bean’ s persistent fields. A compound primary key, discussed
next, maps aprimary key to two or more persistent fields. In the case of the Ship EJB, we specified anl nt eger type
asthe primary key in the finder methods

Copyright (c) 2001 O'Reilly & Associates 217

public interface Shi pHbneRenote extends j avax. ej b. EJBrbone {

public Ship findByPrinaryKey(java.lang.|nteger prinarykey)
throws H nder Exception, RenoteException;

}

In this case, there must be asingle persistent field in the bean class with the same matching type as the primary key.
For the Shi pBean, thei d CMPfieldisof typej ava. | ang. | nt eger, soit mapswell tothel nt eger primary

key type.

In EJB 2.0 container-managed persistence, the primary key type must map to one of the CMP fields. The abstract
accessor methodsfor thei d fieldinthe Shi pBean classfit this description.

public class ShipBean inpl enents javax.ejb. EntityBean {
public abstract Integer getld();
public abstract void setld(Integer id);

}

In bean-managed persistence (Chapter 10) and EJB 1.1 contai ner-managed persistence (Chapter 9) the single-field
primary key maps to a container-managed persistent field. For the Shi pBean defined in Chapters 9 and 10, the
I nt eger primary key would maptothei d instancefield.

public class ShipBean inpl enents javax.ejb. EntityBean {
public Integer id;
public Sring nane;

}

With single-field types, you identify the matching persistent field in the bean classusing the pri nkey-fi el d
element in the deployment descriptor to specify one of the bean’s CMP fields asthe primary key. Thepr i m key-

cl ass element specifiesthe type of object used for the primary key class. The Ship EJB uses both of these elements
when defining thei d persistent field asthe primary key.

<entity>
<gj b- nane>Shi pEJB</ €] b- nane>
<honme>com ti t an. Shi pHoneRenot e</ ej b- hone>
<renot e>comtit an. Shi pRenot e</ gj b- r enot e>
<gj b-cl ass>comti t an. Shi pBean</ €] b- cl ass>
<per si st ence- t ype>Qont ai ner </ per si st ence-t ype>
<pri mkey-cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>
<reentrant >Fal se</ reent rant >
<cnp-fi el d><fi el d-nane>i d</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>nane</fi el d- nane></ cnp-fi el d>
<cnp-fiel d><fi el d- nane>t onnage</ fi el d- nane></ cnp-fi el d>
<prinkey-fiel d> d</ pri nkey-fiel d>

<entity>

Although primary keys can be primitive wrappers (I nt eger, Doubl e, Long, etc.), primary keys cannot be
primitivetypes (i nt,doubl e, ong, etc.); some of the semantics of EJB interfaces prohibit the use of primitives.
For example, the EJBOhj ect . get Pri mar yKey () method returnsan Obj ect type, thusforcing primary keysto
be Obj ect s. Primitivesalso cannot be primary keys because primary keys must implement theequal s() and
hashcode() methods, so they can be managed in collections. Primitives are not objects and do not have

equal s() orhashcode() methods.

Copyright (c) 2001 O'Reilly & Associates 218

Compound primary keys

A compound primary key isaclassthat implementsj ava. i 0. Seri al i zabl e and contains one or more public
fields whose names and types match a subset of persistent fieldsin the bean class. These types of primary keys are
classes defined by the bean devel oper for a specific entity bean.

For example, if a Ship EJB didn’t have ani d field, we might uniquely identify ships by their name and registration
number. (We are adding ther egi st r at i on CMPto the Ship EJB for thisexample.) In this case the nane and
regi strati on CMPfieldswould become our primary key fields. To accommodate multiple fields as a primary key
we need to define aprimary key class.

In thisbook, it’s a convention to define all compound primary keys as serializabl e classes with names that match the
pattern BeanName PK. In this case we can construct a new class called Shi pPK, which serves as the compound
primary key for our Ship EJB.

public class ShipPK inpl enents java.io. Serializable {
public Sring nane;
public Sring registration;

publ i c Shi pPK(){

}

public ShipPK(Sring nane, String registration){
thi s. nane = nang;
this.registration = registration;

}

public Sring get Nange() {
return nane;

}

public Sring getRegistration() {
return registration;

}
publ i ¢ bool ean equal s(j ect obj){

if (obj = null || !'(obj instanceof ShipPK))

return fal se;

Shi pPK ot her = (Shi pPK) obyj ;

i f(this. nane. equal s(ot her. nane) andand
this.registration. equal s(other.registration))
return true;

el se
return fal se;

}

public int hashGode(){
return nane. hashCode() ~regi strati on. hashGode() ;

}

public Sring toSring(){
return nane+' "+registration;

}

}

To makethe Shi pPK class work as a compound primary key we must makeitsfields public. This allowsthe
container system to use reflection when synchronizing the valuesin the primary key class with the persistent fieldsin

Copyright (c) 2001 O'Reilly & Associates 219

the bean class. In addition, we must defineanequal s() andhashCode() method so that the primary key can be
easily manipulated within collections, which is often needed by container systems and application developers alike.

It'simportant to make sure that the variables declared in the primary key have corresponding CMP fieldsin the entity
bean with matching identifiers (names) and datatypes. Thisis required so that the container, using reflection, can
match the variables declared in the compound key to the correct CMP fieldsin the bean class. In thiscase, thenane
andr egi strati on instance variables declared in the Shi pPK class correspond tonane andr egi strati on
CMPfieldsin the Ship EJB, soit’sagood match.

We have also overridden thet oSt r i ng() method to return a meaningful value. The default implementation
defined inObj ect returnsthe class name of the object appended to the object identity for that name space.

The Shi pPK class defines two constructors: a no-argument constructor and an overloaded constructor that sets the
nanme andr egi st rati on variables. The overloaded constructor is aconvenience method for devel opers that
reduces the number of steps required to create a primary key. The no-argument constructor isrequired for container-
managed persistence. When anew bean is created, the container automatically instantiated the primary key using the
Cl ass. newl nst ance() method, and populatesit from the bean class's contai ner-managed fields. A no-
argument constructor must existin order for that to work.

To accommodate the Shi pPK we changetheej bCr eat e() /ej bPost Cr eat e() methods so that they have
name and registration argumentsto set the primary key fieldsin the bean. Hereishow the Shi pPK primary key class
would be used in EJB 2.0 using the Ship EJB’ s bean class that was developed in Chapter 7:

inport javax.ejb. EntityQContext;
inport javax. ej b. O eat eException;

public abstract class ShipBean inpl enents javax. ej b. EntityBean {

public ShipPK ej bGeate(Sring nane, Sring registration){

set Nange(nane) ;
set Regi stration(registration);
return nul l;
}
public void ej bPost Qeate(Sring nane, String registration){

}

In EJB 1.1 contai ner-managed persistence, the contai ner-managed fields are set directly. Hereisan example of how
this would be done with the Ship EJB in CMP 1.1:

public class ShipBean inpl enents javax. ejb. EntityBean {
public Sring nane,
public Sring registration;

public ShipPK ej bGeate(Sring nane, Sring registration){
this. nane = nane;
this.registration = registration;
return nul | ;

}

In bean-managed persistence, the Ship EJB setsitsinstance fields, instantiate the primary key, and return it to the
container.

public class ShipBean inpl enents javax.ejb. EntityBean {
public Sring nane;
public Sring registration;

Copyright (c) 2001 O'Reilly & Associates 220

public ShipPK ej bGeate(Sring nane, Sring registration){
this. nane = nane;
this.registration = registration;

/] database insert |ogic goes here

return new Shi pPK(nane, registration);

}

Theej bCr eat e() method now returnsthe Shi pPK asthe primary key type. Theej bCr eat e() method of
entity beans must be defined with areturn type matching the primary key typeif it's defined—it returns the type
j ava. | ang. Obj ect if itisundefined.

In EJB 2.0 contai ner-managed persistence, if the primary key fields are defined—if they are accessible through
abstract accessor methods—then they must be set intheej bCr eat e() method. Undefined or deferred primary
keys are explained in the next section. While the return type of theej bCr eat e() method is alwaysthe primary key
type, the value returned must alwaysbenul | . The EJB container itself takes care of extracting the proper primary
key directly. In bean-managed persistence, the bean classis responsible for constructing the primary key and
returning it to the container.

The Shi pHomeRenot e interface must be modified so that it uses the name and registration argumentsin the
creat e() method and the Shi pPKinthefi ndByPri mar yKey() method—EJB requiresthat we use the
primary key type in that method.

inport java.rnm . Renot eExcepti on;
inport javax.ejb. O eat eExcepti on;
inport javax.ej b. FH nder Excepti on;

public interface Shi pHoneRenot e ext ends j avax. €] b. EJB-bne {

publ ic ShipRenote create(Sring nane, String registration)
throws Q eat eException, RenoteException;

publ i ¢ Shi pRenot e findByPri nar yKey(Shi pPK pri nar yKey)
throws H nder Exception, RenoteException;

}

set Nanme() andset Regi strati on(),whichmodify thenane andr egi strati on of the Ship EJB, should
not be declared in the remote or local interfaces of the bean. The primary key of an entity bean must not be changed
oncethe bean is created. However, methods that simply read the primary key fields may be exposed because they
don’t change the key’ s values.

EJB 2.0 specifiesthat the primary key may only be set onceintheej bCr eat e() method or, if it'sundefined,
automatically by the container when the bean is created. Once the bean is created the primary key fieldsmust never
be modified by the bean or one of itsclients. Thisis areasonable requirement that should also be applied to EJB 1.1
CMP and bean-managed persistence beans, because the primary key isthe unique identifier of the bean. Changing it
could violate referential integrity in the database, resulting in two beans mapped to the same identifier or breaking
relationships with other beans based on value of the primary key.

Undefined primary keys

Undefined primary keys for container-managed persistence were introduced in EJB 1.1, but they didn’t realize their
full potential until EJB 2.0. Basically, undefined primary keys allow the bean developer to defer declaring the primary

Copyright (c) 2001 O'Reilly & Associates 221

key to the deployer, which makesit possible to utilize auto-generated primary keys and to create more portable entity
beans.

Undefined Primary Keysand Auto-Generated Values

An advantage of the undefined primary key isthat the primary key’ s value can be automatically generated by the
database or resources. The most popular relational databases, for example, allow fieldsto be defined so that they
auto-increment or otherwise auto-generate values when anew record isinserted. Thisisconvenient asit allows new
records to be allotted a unique primary key; the application code doesn’t have to invent unique identifiers every time
anew record is added.

To facilitate an undefined primary key, the bean class and itsinterfaces usethe Obj ect typeto identify the primary
key. In Chapter 6 the Address EJB was introduced, which uses an undefined primary key. The following shows the
ej bCr eat e() method asreturning an Object type.

public abstract class AddressBean extends javax. e b. EntityBean {
publ ic bject e bQ eat eAddr ess

(Sring street, Sring city,
Sring state, Sring zip)

{
setSreet(street);
setdty(city);
setSate(state);
setZip(zip);
return null;

}

Thef i ndByPri mar yKey() method defined in the local and remote home interface must also use an Obj ect
type.
public interface AddressLocal Hone extends javax. ej b. EJBLocal Hone {

publ i ¢ AddressLocal findByPrinaryKey((oject prinaryKey)
throws javax. €] b. FH nder Excepti on;

}

Finally, the deployment descriptor of the Address EJB definesits primary key typeasj ava. | ang. Obj ect , and
does not defineany pri m key-fi el d elements.

<ej b-jar>
<ent er pri se- beans>

<entity>
<gj b- nane>Addr essEIB</ €] b- nane>
<l ocal - hone>Addr essLocal Hne</ | ocal - hone>
<l ocal >Addr essLocal </ | ocal >
<gj b- cl ass>Addr essBean</ €j b- cl ass>
<per si st ence-t ype>ont ai ner </ per si st ence-t ype>
<pri mkey- cl ass>j ava. | ang. (oj ect </ pri mkey- cl ass>
<reentrant >Fal se</reent rant >
<cnp-fi el d><fi el d-nane>street </ fi el d- nane></ cnp-fi el d>
<cnp- fi el d><fi el d- nane>ci t y</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d-nane>st at e</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>zi p</fi el d- nane></ cnp-fi el d>

<Jentity>

Copyright (c) 2001 O'Reilly & Associates 229

The use of an undefined primary key means that the bean developer and application devel oper (client code) must
work withaj ava. | ang. Obj ect typeand not a specific primary key type, which can be limiting. For example, it's
not possible to construct an undefined primary key to use in afinder method if you don’t know itstype. This
limitation can be quite daunting if you need to locate an entity bean by its primary key. However, entity beans with
undefined primary keys can be easily located using other query methods that do not depend on the primary key
value, so thislimitation is not a serious handicap.

In the case of the Address EJB we derived agreat deal of value from using an undefined primary key. It allowed usto
create new Address beans without having to worry about what the value of the primary key should be. If using auto-
generated primary keys makesyour life easier, feel freeto use undefined primary keys throughout your system. Just
be aware of the limitations mentioned above.

Undefined Primary Keysand Portability

Another advantage of undefined primary keysisthat they canimprove the portability of entity beans across different
databases and resources. One problem with container-managed persistencein EJB 1.0 was that the entity bean
developer had to define the primary key before the entity bean was deployed. In turn, this requirement forced the
developer to make assumptions about the environment in which the entity bean would be used, which limited the
entity bean’s portability across databases. For example, arelational database uses a set of columnsin atable asthe
primary key, to which entity bean’ s fields map nicely. An object database, however, uses a completely different
mechanism for indexing objects, to which aprimary key may not map very well. The sasmeistrue for legacy systems
and Enterprise Resource Planing (ERP) systems.

An undefined primary key allows the deployer to choose a system-specific key at deployment time. An object
database may generate an Object 1D, while an ERP system may generate some other primary key. These keys are
generated by the database or backend system automatically. This may require that the CMP bean be altered or
extended to support the key, but thisisimmaterial to the bean devel oper; she concentrates on the business logic of
the bean and |eaves the indexing to the container.

In bean-managed persistence an undefined primary key can be declared by simply making the primary key type
java. |l ang. Obj ect . However, thisis pure semantics; the primary key value will not be auto-generated by the
container because the bean devel oper has total control over persistence. In this case the bean developer would still
need to use avalid primary key, but itstype would be hidden from the bean clients. This could be useful if the
primary key typeis expected to change over time.

The Callback Methods

All entity beans (container- or bean-managed) must implement thej avax. ej b. Ent i t yBean interface. The
Ent i t yBean interface contains anumber of callback methods that the container uses to alert the bean instance of
various runtime events:

public interface javax.ejb. EntityBean extends javax. ej b. Enterpri seBean {
public abstract void e bActivate()
throws EIBException, RenoteBException;
publ i c abstract voi d ej bPassi vat e()
throws EJBException, RenoteBxception;
public abstract voi d ej bLoad() throws EJBException, RenoteException;
public abstract void ejbSore() throws EIBException, RenoteBException;
public abstract void ej bRenove()
t hrows EJBExcepti on, Renot eExcepti on;
public abstract void setEntityContext(EntityCntext ctx)
throws EIBException, RenoteBException;
publ i c abstract voi d unset EntityGontext() throws EJBException,

Copyright (c) 2001 O'Reilly & Associates 223

Renot eExcept i on;
}

Each callback method isinvoked on an entity bean instance at a specific time duringitslife cycle.

Asdescribed in Chapter 10, BMP beans must implement most of these callback methods to synchronize the bean’s
state with the database. Theej bLoad() method tellsthe BMP bean when to read its state from the database;

ej bSt ore() tellsit when to write to the database; andej bRenove() tellsthe bean when to deleteitself from the
database.

While bean-managed persistence beans take full advantage of callback methods, CMP entity beans may not use them
at all. CMP entity beans have persistence managed automatically, so many of the resources and logic that might be
managed by these methods are already handled by the container. However, even a CMP entity bean can take
advantage of these callback methods if needed; we just don’t need them in any of the container-managed entity
beans defined in this book.

Y ou will have noticed that each method inthe Ent i t yBean interface throws bothj avax. ej b. EJBExcepti on
andj ava. rm . Renot eExcepti on. EJB 1.0 required that aRent eExcept i on bethrown if asystem
exception occurred while bean executed a callback method. However, since EJB 1.1, the use of Renpt eExcepti on
in these methods has been deprecated in favor of thej avax. ej b. EJBExcepti on. EJB 1.1and EJB 2.0 require
that the EJBExcept i on bethrownif asystem error, likeaSQLExcept i on, isencountered while executing a
method. The EJBExcept i on isasubclassof Runt i meExcept i on, soyou don't haveto declareit in the
method signature. At any rate, you don’'t have to declare the Renot eExcept i on whenimplementing the callback
methods, and it’s recommended that you don’t.

setEntityContext() and unsetEntityContext()

The first method called after abean instanceisinstantiated isset Ent i t yCont ext () . Asthe method signature
indicates, this method passes the bean instance areferencetoaj avax. ej b. Enti t yCont ext , whichisrealy
the bean instance’ sinterface to the container. The purpose and functionality of the Ent i t yCont ext iscoveredin
detail later in this chapter.

Theset Enti t yCont ext () method iscalled prior to the bean instance’ s entry into the instance pool. In
Chapter 3, we discussed the instance pool that EJB containers maintain, where instances of entity and stateless
session beans are kept ready to use. Ent i t yBean instances in the instance pool are not associated with any data
in the database; their state is not unique. When aclient requests a specific entity, an instance from the pool is
chosen, populated with data from the database, and assigned to service the client. It isrecommended that any non-
managed resources needed for the life of the instance be obtained when this method is called. This ensures that
such resources are only obtained once in the life of abean instance. A non-managed resource is one that is not
automatically managed by the container (e.g., referencesto CORBA objects). Only resources that are not specific to
the entity bean’ sidentity should be obtained intheset Ent i t yCont ext () . Other managed resources (e.g. Java
Message Service factories) and entity bean references are obtained as needed from the INDI ENC. Bean references
and managed resources obtained through the INDI ENC are not availablefromtheset Ent i t yCont ext (). The
JNDI ENC iscovered in detail later in this chapter.

At the end of the entity bean instance’ slife, after the entity bean instance is removed permanently from the instance
pool and beforeit’ s garbage collected, theunset Ent i t yCont ext () method iscalled, indicating that the bean
instance’sent i t yCont ext isnolonger implemented by the container. Thisisagood time to free up any
resources obtained intheset Ent i t yCont ext () method.

Copyright (c) 2001 O'Reilly & Associates 224

gjbCreatg()

InaCMP bean, theej bCr eat e() method iscalled just prior to writing the bean’ s state to the database. Values
passed intotheej bCr eat e() method should be used to initialize the CMP fields of the bean instance. Once the
ej bCr eat e() method completes, anew record, based on the persistent fields, iswritten to the database.

In bean-managed persistence, theej bCr eat e() method is called when it'stime for the bean to add itself to the
database. Insidetheej bCr eat e() method, a BMP bean must use some kind of API to insert its datainto the
database.

Eachej bCr eat e() method must have parametersthat match acr eat e() method in the home interface. If you
look at the Shi pBean class definition and compare it to the Ship EJB’s home interface (Chapters 7, 9, and 10), you
can see how the parameters for the create methods match exactly in type and sequence. This enables the container to
delegatethecr eat e() method on the homeinterfaceto the proper ej bCr eat e() method in the bean instance.

INEJB 2.0, theej bCr eat e() method cantaketheform ej bCr eat e<SUFFI X>() , which allowsfor easier
method overloading when parameters are the same but the methods act differently. For example,

ej bCreat eByNanme(Stri ng nane) andej bCreat eByRegi stration(String registration)
would have corresponding create methods defined in the local or home interface of the form
createByName(String nane) andcr eat eByRegi stration(String registration).

EJB 1.1 CMP does not allow the use of suffixesonej bCr eat e() names. Theej bCreat e() andcreat e()
methods may only differ by the number and type of parameters defined.

TheEnt it yCont ext maintained by the bean instance does not provide an entity bean with the proper identity
until theej bCr eat e() method has completed. This means that during the course of theej bCr eat e() method,
the bean instance doesn’t have accessto its primary key or EJB object. TheEnt i t yCont ext does, however,
provide the bean with information about the caller’ sidentity, accessto its EJB home object (local and remote), and
properties. The bean can also use the INDI naming context to access other beans and resource managers like

j avax. sql . Dat aSour ce.

The CMP entity bean devel oper must, however, ensure that theej bCr eat e() method sets the persistent fields
that correspond to the fields of the primary key. When anew CMP entity bean is created, the container will use the
CMPfieldsin the bean class to instantiate and popul ate a primary key automatically. In the case of an undefined
primary key, the container and database will work together to generate the primary key for the entity bean.

Once the bean’ s state has been populated and itsEnt i t yCont ext established, theej bPost Cr eat e() method
isinvoked. This method gives the bean an opportunity to perform any post-processing prior to servicing client
requests. In EJB 2.0 CM P entity beans, theej bPost Cr eat e() method is used to manipul ate contai ner-managed
relationship (CMR) fields. In EJB 2.0 container-managed persistence, CMR fields must not be modified in the

ej bCr eat e() method. Thereason for thisrestriction hasto do with referential integrity; in order for two beans to
have arelationship, both must exist. In the case of arelational database, for example, relationships between data may
not be possible unless both parties have records in the database. There could be areferential integrity constraint that
says aforeign key value cannot be used if the corresponding record doesn’t exist. Requiring that theej bCr eat e
method complete before CMR fields are modified ensures that the entity bean’s record isinserted into the database
before attempting to link it to other records.

ejbPostCreate()

The bean identity isn’t available during the call toej bCr eat e() , butisavailableintheej bPost Creat e()
method. This means that the bean can access its own primary key and EJB object (local or remote) inside of

Copyright (c) 2001 O'Reilly & Associates 275

ej bPost Creat e() . Thiscan be useful for performing post processing prior to servicing business method
invocations—in CMP 2.0 it can be used for initializing CMR fields of the entity bean.

Eachej bPost Cr eat e() method must have the same parameters asits correspondingej bCr eat e() method as
well asthe same method name. For example, if the Shi pBean classdefinesan ej bCr eat eByNanme(Stri ng
name) method, it must also define amatchingej bPost Cr eat eByNane(St ri ng nane) method. The

ej bPost Cr eat e() method returnsvoi d. InEJB 1.1 CMP, suffixes are not allowed on create methods. Only the
parameter lists may differ between ej bPost Cr eat e() methods, but the method names must be

ej bPost Creat e.

Matching the parameter listsof ej bCr eat e() andej bPost Cr eat e() methodsisimportant for acouple of
reasons. First, it indicateswhichej bPost Cr eat e() method is associated with whichej bCr eat e() method.
This ensures that the container callsthe correctej bPost Cr eat e() method after ej bCr eat e() isdone.
Second, it is possible that one of the parameters passed is not assigned to a persistent field. In this case, you would
need to duplicate the parameters of theej bCr eat e() method to have that information available in the

ej bPost Cr eat e() method.

In EJB 2.0 contai ner-managed persistence, relationship fields are the primary reason for utilizing the
ej bPost Cr eat e() method, because of referential integrity (discussed in the previous section on
ej bCreate()).

ejbCreate() and gfbPostCreate() sequence of events

To understand how an entity bean instance gets up and running, we have to think of aentity bean in the context of
itslife cycle. Figure 11-1 shows the sequence of events during a portion of a container-managed persistence bean’'s
life cycle, as defined by the EJB specification. Every EJB vendor must support this sequence of events.

[FIGURE amodified version of Figure 6-1 from the 2™ edition]
Figure 11-1: Event sequence for bean instance creation

The process begins when the client invokes one of thecr eat e() methods on the bean’sEJB home. Acr eat e()
method isinvoked on the EJB home stub (step 1), which conmunicates the method to the EJB home across the
network (step 2). The EJB home plucks a Shi pBean instance from the pool and invokes its corresponding

ej bCreat e() method (step 3).

Thecreate() andej bCr eat e() methods are responsible for initializing the bean instance so that the container
can insert arecord into the database. In the case of the Shi pBean, the minimal information required to add anew
customer to the system isthe customer’suniquei d. ThisCMPfield isinitialized during theej bCr eat e() method
invocation (step 4).

In container-managed persistence (EJB 2.0 and 1.1), the container uses the bean bean’s CMPfields (i d, nane,

t onnage) to insert arecord in the database, which it reads from the bean (step 5). Only the fields described as CMP
fieldsin the deployment descriptor are accessed. Once the container has read the CMP fields from the bean instance,
it will automatically insert a new record into the database using those fields (step 6). How the datais written to the
database is defined when the bean’ s fields are mapped at deployment time. In our example, a new record is inserted
into the CUSTOVER table.

In bean-managed persistence, the bean classitself reads the fields and performs a database insert
to add the bean’ s data to the database. Thiswould take placein steps 5 and 6.

Copyright (c) 2001 O'Reilly & Associates 226

Once the record has been inserted into the database, the beaninstance is ready to be assigned to an EJB object (step
7). Once the bean is assigned to an EJB object, the bean’ sidentity isavailable. Thisiswhen the
ej bPost Creat e() method isinvoked (step 8).

In EJB 2.0 CMP entity beanstheej bPost Cr eat e() methodis used to manage the entity beans container-
managed relationship fields. This might involve setting the Cruise, in the Ship EJB’s cruise CMP field or some other
relationship (step 9).

Finally, whentheej bPost Cr eat e() processing iscomplete, the bean isready to service client requests. The EJB
object stub is created and returned to client application, which will useit to invoke business methods on the bean
(step 10).

Using gbL oad() and g bStore() in container-managed per sistence

The process of ensuring that the database record and the entity bean instance are equivalent is called
synchronization. In container-managed persistence, the bean’s CMP fields are automatically synchronized with the
database. In most cases, we will not needtheej bLoad() andej bSt or e() methods because persistencein
container-managed beansisfairly straightforward.

Leveragingtheej bLoad() andej bSt or e() callback methodsin container-managed beans, however, can be
useful if custom logic is needed when synchronizing CMP fields. Dataintended for the database can be reformatted
or conpressed to conserve space; datajust retrieved from the database can be used to cal cul ate derived values for
non-persistent fields.

Imagine a hypothetical bean class that includes some binary value that you want to store in the database. The binary
value may be very large (an image for example), so you need to compress it before storing it away. Using the

ej bLoad() andej bSt or e() methodsin acontainer-managed bean allows the bean instance to reformat the data
as appropriate for the state of the bean and the structure of the database. Here' s how thismight work:

inport java.util.zip.Inflater;
inport java.util.zip. Deflater;

public abstract class Hypothetical Bean i npl enents j avax. gj b. EntityBean {
/1 instance variabl e
public byte [] inflated nage;

/1 Qw field net hods
publ i c abstract void setlnage(byte [] inage);
public abstract byte [] getlnage();

/1 busi ness nethods. Used by client.
public byte [] getlnageF | e(){
if(inflatedl nage = nul |){
Inflater unzipper = new Inflater();
byte [] tenp = getlnage();
unzi pper . set | nput (t enp) ;
unzi pper . i nfl ate(infl at edl nage) ;
}
return infl atedl nage;
}
public void setlnageH | e(byte [] inage){
i nfl atedl nage = i nage;

}

/1 call back nethods

Copyright (c) 2001 O'Reilly & Associates 227

publ i c voi d ej bLoad(){
inflatedl nage = nul | ;
}
public void ej bSore(){
if(inflatedl nage !'= null){
Deflater zipper = new Deflater();
zi pper . set | nput (i nfl at edl nage) ;
byte [] tenp = new byt e[infl atedl nage. | engt h] ;
int size = zipper.deflate(tenp);
byte [] tenp2 = new byt €[si ze] ;
Systemarraycopy(tenp, O, tenp2, 0, size);
set | nage(tenp2) ;

}

Just before the container synchronizes the state of entity bean with the database, it callstheej bSt or e() method.
Thismethod usesthej ava. uti| . zi p packageto compresstheimagefile, if it has been modified, before writing it
to the database.

Just after the container updates the fields of the Hypot het i cal Bean with fresh data from the database, it calls
theej bLoad() method, whichre-initializesthei nf | at edl nage instance variabletonul | . Decompression is
preformed lazily so it’s only done when it is needed. Compression is performed by theej bSt or e() method only if
the image was accessed, otherwise the image field is not modified.

Using g bL oad() and gbStore() in bean-managed per sistence

In bean-managed persistencetheej bLoad() andej bSt or e() methods are called by the container when it’s
timeto read or write the database. Theej bLoad() method will be invoked after the start of atransaction, but
before the entity bean can service amethod call. Theej bSt or e() isusually called after the business method is
called, but it must be called before the end of the transaction.

While the entity bean isresponsible for reading and writing its state to the database, the container is responsible for
managing the scope of the transaction. This meansthat the entity bean developer need not worry about committing
operations on database access APIs, provided the resource is managed by the container. The container will take care
of committing the transaction and making persistent the changes at the appropriate times.

If abean-managed persistence entity bean uses aresource that is not managed by the container system, the entity
bean must manage the scope of the transaction manually, using operations specific to the API. Examples of how to
usetheej bLoad() andej bSt or e() methodsin bean-managed persistence are shown in detail in Chapter 10.

g bPassivate() and g bActivate()

Theej bPassi vat e() method notifies the bean devel oper that the entity bean instance is about to be pooled or
otherwise disassociated from the entity bean identity. This gives the entity bean developer an opportunity to do
some last minute clean up before the bean is placed in the pool—where it will be reused by some other EJB object.

Theej bAct i vat e() method notifiesthe bean devel oper that the entity bean instance has just returned from the
pool and is now associated with an EJB object and has been assigned an identity. This givesthe entity bean
developer an opportunity to prepare the entity bean for service, which might include obtaining some kind of resource
connection.

Copyright (c) 2001 O'Reilly & Associates 228

However, aswith theej bPassi vat e() method, it s difficult to see why this method would be used in practice. It
is best to secure resourceslazily (i.e., asneeded). Theej bAct i vat e() method suggests that some kind of eager
preparation can be accomplished, but thisis rarely used in practice.

Even in EJB containers that do not pool entity bean instances, the value of ej bAct i vat e() and
ej bPassi vat e() isquestionable. It’s possible that an EJB container may choose to evict
instances from memory between client invocations, and create a new instance for each new
transaction. While this may appear to hurt performance, it’ s areasonable design provided the
container system'’s Java virtual machine has an extremely efficient garbage collection and memory
allocation strategy. Hotspot is an example of aVM that has made some important advancesin this
area. Eveninthiscase, ej bActi vat e() andej bPassi vat e() providelittle value because
theset Entit yCont ext () andunset Enti t yCont ext () canaccomplish the same thing.

One of the few practical reasonsfor usingej bAct i vat e() isto re-initialize non-persistent instance fields of the
bean class that may have become dirty while the instance serviced another client.

Regardless of their general usefulness, these callback methods are at your disposal if you need them. In most cases,
you are better off usingset Ent i t yCont ext () andunset Enti t yCont ext () for the same purpose, since
these methods will only execute once in the life cycle of abean instance.

e/ bRemove()

The component interfaces (remote, local, home, and local home) definer enove() methods that can be used to
delete an entity from the system. When aclient invokes one of ther enove() methods, as shown in the following
code, the container must del ete the entity’ s data from the database.

Qust oner HbneRenot e cust oner Hone;
Qust oner Renot e cust oner ;

cust oner . r enove()
/'l or
cust oner Hone. r enove(cust oner) ;

The data del eted from the database includes all CMP fields and, in the case of CMP 2.0, the CMR fields. So, for
example, when invoking remove on a Ship EJB, the corresponding record in the SHI P table is deleted.

In CMP 2.0, the remove method al so removes the link between the SHI P record and the CRUI SE record. However,
the CRUI SE record associated with the SHI P record will not be automatically deleted. The address datawill be
deleted along with the customer data only if cascading delete is specified. A cascading delete must be declared
explicitly inthe XML deployment descriptor, as explained in Chapter 7.

Theej bRenove() methodin container-managed persistence notifies the entity bean that it’ s about to be removed,
and its datadeleted. This notification occurs after the client invokes one of ther enove() methods definedina
component interface, but before the container actually deletesthe data. It gives the bean developer an opportunity
to do some | ast minute clean up before the entity isremoved. Any clean-up operations that might ordinarily be done
intheej bPassi vat e() method should also bedoneintheej bRenove() method, because the bean will be
pooled after theej bRenmove() method without having itsej bPassi vat e() method invoked.

In bean-managed persistence, the bean developer is responsible for implementing the logic that removes the entity
bean’ s data from the database.

Copyright (c) 2001 O'Reilly & Associates 229

EJB 2.0: gbHome

In EJB 2.0, CMP and BMP entity beans can declare home methodsthat perform operations related to the EJB
component, but that are not specific to an entity bean instance. A home method must have a matching
implementation in the bean classwith the signature ej bHone<METHOD- NAMVE>() .

For example, the Cruise EJB might define a home method that cal culates the total revenue in bookings for a specific
Cruise.

public interface Q uisetbneLocal extends javax.ej b. EJBLocal Hone {

publ ic QuiseLocal create(Sring nane, ShiplLocal ship);
public void set Nane(Sring nane);

public Sring getName();

public voi d set Shi p(Shi pLocal ship);

public ShipLocal getShip();

publ i ¢ doubl e total Reservati onRevenue(G ui seLocal crui se);

}

Every method in the home interfaces must have a corresponding ej bHone<METHOD- NAME>(') in the bean class.
For example, the Cr ui seBean classwould haveanej bHonmeTot al Reser vat i onRevenue() method, as
shown in the following code.

public abstract class Q ui seBean
i npl enent s j avax. g b. EntityBean {
public Integer e bGeate(Sring nane,
Shi pLocal ship) {
set Nane(nane) ;
}

publ i ¢ doubl e €] bHoneTot al Reser vat i onRevenue(G ui seLocal cr ui se){

Set reservations = e bSel ect Reservati ons(crui se);
Iterator enum= set.iterator();
doubl e total = 0;
vhi | e(enum hasNext ()) {
ReservationLocal res = (ReservationLocal)enumnext();
Total += res. get Anount () ;
}

return total;

}

publ i c abstract ejbSel ect Reservations(Q ui seLocal crui se);

}

Liketheej bFi nd methodsin bean-managed persistence, the ej bHone methods execute without an identity within
theinstance pool. Thisiswhy theej bHoneTot al Reser vati onRevenue() requiredthat aCr ui seLocal
EJB object reference be passed in to the method. This makes sense once you realize that the caller isinvoking the
home method on the entity bean’s EJB home object, and not an entity bean reference directly. The EJB home (local or
remote) is not specific to any one entity instance.

The bean devel oper may implement home methods in both EJB 2.0 bean-managed persistence and contai ner-managed
persistence. Container-managed persistence implementations typically rely on select methods, while BMP

Copyright (c) 2001 O'Reilly & Associates 230

implementations frequently use direct database access and the finder methods of beansto query data and apply
changes.

EntityContext

Thefirst method called by the container after abean instanceiscreated isset Ent i t yCont ext () . This method
passes the bean instance areferencetoitsj avax. ej b. Enti t yCont ext , whichisreally theinstance’ sinterface
to the container.

Theset Enti t yCont ext () method iscalled prior to the bean instance’ s entry into the instance pool. In
Chapter 3, we discussed the instance pool that EJB containers maintain, where instances of entity and stateless
session beans are kept ready to use. Ent i t yBean instances in the instance pool are not associated with any data
in the database; their state is not unique. When arequest for a specific entity is made by aclient, an instance from
the pool is chosen, populated with data from the database, and assigned to service the client.

At the end of the entity bean instance’ s life, after it isremoved permanently from the instance pool and beforeitis
garbage collected, theunset Ent i t yCont ext () method is called, indicating that the bean instance’s
Entit yCont ext isnolonger implemented by the container.

Theset Enti t yCont ext () method should be implemented by the entity bean developer so that it placesthe
Entit yCont ext referenceinaninstancefield of the bean whereit will be kept for the life of the instance. The
definitionof Ent i t yCont ext inEJB 2.0isasfollows:

public interface javax.ej b. EntityContext extends javax.ejb. EJBGontext {
publ i ¢ EJBLocal (bj ect get EJBLocal (bj ect ()
throws |11 egal S at eException
public abstract EIJBOp ect get EJBOj ect ()
throws |11 egal S at eExcepti on;
public abstract (bject getPrinaryKey() throws Il egal S ateException;

}

EJBLocal Obj ect isnew to EJB 2.0 and isnot supported by EJB 1.1. EJB 1.1 uses the Enterprise JavaBeans 1.1
EntityCont ext,whichdoesn't defineaget EJBLocal Cbj ect () method.

The definition of theEnt i t yCont ext inEJB l.1lisasfollows:

public interface javax. e b. Enti tyContext extends javax.ejb. EJBGontext {
publ i c abstract EIJBObj ect get EJIBOj ect ()
throws |11 egal S ateBxception;
public abstract (bject getPrinaryKey() throws Il egal & ateException;

}

Asthe bean instance is swapped from one EJB object to the next, the information obtainable from the

Enti t yCont ext reference changesto reflect the EJB object that theinstance is assigned to. Thisis possible
becausethe Ent i t yCont ext isaninterface, not astatic class definition. This means that the container can
implement the Ent i t yCont ext with aconcrete classthat it controls. Asthe entity bean instance is swapped from
one EJB object to another, some of the information made available through the Ent i t yCont ext will also change.

Theget EJBObj ect () method returns aremote reference to the bean instance’ s EJB object. The

get EJBLocal Obj ect () method (EJB 2.0), on the other hand, returns alocal reference to the bean instance’s EJB
object.

Copyright (c) 2001 O'Reilly & Associates 231

The EJB objects obtained fromthe Ent i t yCont ext arethe same kinds of references that might be used by an
application client, in the case of the remote reference, or another co-located bean, in the case of alocal reference. The
purpose of this method isto provide the bean instance with areference to itself whenit needs to perform aloopback
operation, or to provide areference to another bean for arelationship field.

A loopback occurs when a bean invokes a method on another bean, passing itself as one of the parameters. Hereis
an example:

public class A Bean extends EntityBean {

public EntityQontext context;

publ i c voi d someMet hod() {
BBean b=... // Gt arenote reference to B Bean.
EJBpj ect obj = context. get EJIBMyj ect () ;
A Bean nySelf = (A Bean)

Por t abl eRenot e(j ect . narrow(obj , A Bean. cl ass);

b. aMet hod(nySel f);

}

Itisillegal for abeaninstanceto passat hi s reference to another bean; instead, it passesits remote or local EJB
object reference, which the bean instance getsfrom itsEnt i t yCont ext . Asdiscussed in Chapter 3, loopbacks or
reentrant behavior are problematic in EJB and should be avoided by new EJB devel opers.

Session beans also definethe get EJBObj ect () andget EJBLocal Obj ect () method (EJB
2.0)inthe Sessi onCont ext interface; its behavior is exactly the same.

In EJB 2.0, the ability to obtain an EJB object reference to itself is also useful when establishing relationships with
other beans in contai ner-managed persistence. For example, the Customer EJB might implement a business method
that allows it to assign itself a Reservation.

public abstract class QustonerBean inpl enents javax. ej b. EntityBean {
public EntityQontext context;

publ i ¢ voi d assi gnToReser vati on(Reservati onLocal reservati on){
EJBLocal (hj ect | ocal Ref = context. get EJBLocal (bj ect () ;
@l [ection custoners = reservation. get Qust oners();
cust oner s. add(| ocal Ref);

}

Theget Pri mar yKey() method allows abean instance to get a copy of the primary key to which it is currently
assigned. Using this method outside of theej bLoad() andej bSt or e() methods of BMP entity beansis
probably rare, but the Ent i t yCont ext makesthe primary key available for those unusual circumstanceswhenitis
needed.

Asthe context in which the bean instance operates changes, some of the information made available through the
Enti t yCont ext referencewill be changed by the container. Thisiswhy the methodsintheEnt i t yCont ext
throw thej ava. | ang. | | | egal St at eExcepti on.TheEntityCont ext isawaysavailableto the bean
instance, but the instance is not always assigned to an EJB object. When the bean is between EJB objects, when it’s
in the pool, it has no EJB object or primary key to return. If theget EJBObj ect () ,get EJBLocal Cbj ect (), or
get Pri mar yKey() methods areinvoked when the bean is not assigned to an EJB object (when it’sin the pool),
these methods will throw anl | | egal St at eExcept i on. Appendix B provides tables for each bean type
describing which EJBCont ext methods can be invoked at what times.

Copyright (c) 2001 O'Reilly & Associates 232

EJBContext

TheEntityCont ext extendsthej avax. ej b. EJBCont ext class, whichisalso the base classfor the
Sessi onCont ext used by session beans. The EJBCont ext defines several methods that provide useful
information to a bean at runtime. Here is the definition of the EJBCont ext interface:

package j avax. gj b;
public interface EJBOontext {

// EIB hone net hods

publ i ¢ EJBHone get EJBHone() ;

// EIB 2.0 only

publ i ¢ EJBLocal Hone get EJBLocal Hone() ;

/1 security nethods
public java.security. Principal getCallerPrincipal ();
publ i ¢ bool ean isCal |l erl nRol e(java. | ang. Sring rol eNane) ;

/1 transaction nethods
publ i ¢ javax.transaction. User Transacti on get User Transact i on()
throws java.lang. || egal S at eBException;
publ i ¢ bool ean get Rol | backQnl y()
throws java.lang. |l egal S at eExcepti on;
public voi d set Rol | backQnl y()
throws java.lang. ||| egal S at eException;

/] deprecat ed net hods

public java.security.ldentity getCallerldentity();

publ i ¢ bool ean isCal | erl nRol e(j ava. security.ldentity role);
public java. util.Properties getEnvironnent();

}

Theget EJBHone() andget EJBLocal Honme() methods (EJB 2.0) returns areference to the bean’s EJB home.
Thisisuseful if the bean needsto create or find entity beans of its own type. Accessto the EJB home proves more
useful in bean-managed entity beans or CMP 1.1 entity beansthen it doesin CMP 2.0 entity beans, which have select
methods and CMR fields.

Asan example, if all employeesin Titan's system (including managers) are represented by CMP 1.1 Employee beans,
then a manager employee who needs access to subordinate employees can usethe get EJBHonme () method to get
beans representing the appropriate employees:

public class Ewpl oyeeBean i npl enents EntityBean {
int id;
Sring firstNang;

publ i ¢ Bnuneration get Subordi nates() {
(hj ect ref = e bGont ext . get EJBHone() ;
Enpl oyeetbne hone = (Epl oyeetbne)
Por t abl eRenot e(hj ect . narrow(ref, Enpl oyeetbne. cl ass) ;
Integer prinkey = (Integer)context.getPrinarykey();
Enuner ati on subor di nat es = hone. fi ndByManager | O pri niey) ;
return subor di nat es;

Copyright (c) 2001 O'Reilly & Associates 33

Theget Cal | er Pri nci pal () methodisusedtoobtainthePri nci pal object representing the client that is
currently accessing the bean. The Pri nci pal object can, for example, be used by the Ship bean to track the
identity of clients making updates:

public class ShipBean inpl enents EntityBean {
Sring nodifiedBy;
EntityQontext context;

publ i ¢ voi d set Tonnage(doubl e tons){
tonnage = tons;
Principal principal = context.getCallerPrincipal ();
Sring nodifiedBy = principal.get Name();

}

Thei sCal | er | nRol e() method tells you whether the client accessing the bean is a member of a specific role,
identified by arole name. This method is useful when more access control is needed than simple method-based
access control can provide. In abanking system, for example, the Teller role might be allowed to make withdrawal s,
but only a Manager can make withdrawals over $10,000. Thiskind of fine-grained access control cannot be addressed
through EJB’ s security attributes because it involves a business |ogic problem. Therefore, we can use the

i sCal | erl nRol e() method to augment the automatic access control provided by EJB. First, let’ s assume that all
Managers also are Tellers. Let's also assume that the deployment descriptor for the Account bean specifies that
clientsthat are members of the Teller role can invokethewi t hdr aw() method. The businesslogicinthe

wi t hdraw() method usesi sCal | er I nRol e() to further refine access control so that only the M anager role
can withdraw over $10,000.00.

public class AccountBean inpl enents EntityBean {
int id;
doubl e bal ance;
EntityQontext context;

publ i ¢ voi d w t hdraw(Doubl e wi t hdr aw)
throws AccessDeni edException {

i f (w thdraw doubl eVal ue() > 10000) {
bool ean i shanager = context.isCal | erl nRol e(" Manager") ;
if (lisManager) {
/1 Only Managers can w t hdraw nore than 10Kk.
t hrow new AccessDeni edExcepti on();
}
}

bal ance = bal ance - wi t hdraw doubl eVal ue();

}

The EJBCont ext contains some deprecated methods that were used in EJB 1.0 but were deprecated in EJB 1.1 and
have been abandoned in EJB 2.0. Support for these deprecated methods is optional for EJB 1.1 containers, which can
host EJB 1.0 beans. EJB containers that do not support the deprecated security methods will throw a

Runt i meExcept i on. The deprecated security methods are based on EJB 1.0'suse of the |l dent i t y object
instead of the Pr i nci pal object. The semantics of the deprecated methods are basically the same, but because

| dent ity isanabstract class, it has proven to be too difficult to use.

Copyright (c) 2001 O'Reilly & Associates 234

Theget Envi ronnment () method has been replaced by the INDI Environment Naming Context, which is
discussed later in the book. Support in EJB 1.1 for the deprecated get Envi r onnent () method isdiscussed in
detail in Chapter 12.

Thetransactional methods (get User Tr ansacti on(),set Rol | backOnl y(),get Rol | backOnl y())are
described in detail in Chapter 14.

The material onthe EJBCont ext ascovered in this section apply equally well to session and message-driven
beans. There are some exceptions, however, and these differences are covered in Chapter 12, Session beans and
Chapter 13, Message-Driven beans

JNDI ENC

Starting with EJB 1.1, the bean-container contract for entity and stateful beans was expanded beyond the

EJBCont ext usingthe Java Naming and Directory Interface (JNDI). A special JINDI name space, which isreferred
to as the environment naming context (ENC), was added which allows any enterprise bean to access environment
entries, other beans, and resources such as JDBC Dat aSour ce objects specific to that enterprise bean.

The JNDI ENC continues to be an extremely important part of the bean-container contract in EJB 2.0. Although the
JNDI ENC isused to access JDBC in the bean-managed persistence chapter (Chapter 10), it’s not specific to entity
beans. The INDI ENC is used by session, entity, and message-driven beans alike. To avoid unnecessary duplication,
adetailed discussion of thisimportant facility isleft for Chapter 12, Session beans. What you learn about using the
JNDI ENC in Chapter 12 applies equally as well to session, entity, and message-driven beans.

The Life Cycle of an Entity Bean

To understand how to best develop entity beans, it isimportant to understand how the container manages them. The
EJB specification definesjust about every major event in an entity bean’slife, from the timeit isinstantiated to the
timeit is garbage collected. Thisiscalled the life cycle, and it provides the bean devel oper and EJB vendors with all
the information they need to devel op beans and EJB servers that adhere to a consistent protocol. To understand the
life cycle, we will follow an entity instance through several life-cycle events and describe how the container interacts
with the entity bean during these events. Figure 11-2 illustrates the life cycle of an entity instance.

[FGURE]
Figure 11-2: Entity bean life cycle

Wewill examinethelife cycle of an entity bean and identify the points at which the container would call each of the
methods described inthe Ent i t yBean interface, aswell as the find methods, and in EJB 2.0, the select and home
methods. Bean instances must implement the Ent i t yBean interface, which means that invocations of the callback
methods are invocations on the bean instance itself.

At each stage of the entity bean’slife cycle the bean container provides varying levels of access. For example, the
EntityContext.getPrimary() methodwill not work if it'sinvoked duringintheej bCr eat e() method,
but it doeswork when calledintheej bPost Cr eat e() method. Other EJBCont ext methods have similar
restrictions, as doesthe INDI ENC. While this section touches on the accessibility of these methods, a complete
table that details what is available in each bean class method (ej bCr eat e() ,ej bActi vate(),ej bLoad(),
etc.) can be found in Appendix B.

Copyright (c) 2001 O'Reilly & Associates 235

Does Not Exist

The entity bean beginslife asacollection of files. Included in that collection are the bean’ s deployment descriptor,
component interfaces and all the supporting classes generated at deployment time. At this stage, no instance of the
bean exists.

The Pooled State

When the EJB server is started, it reads the EJB’ sfiles and instantiated several instances of the entity bean’s bean
class, which it placesin apool. Theinstances are created by callingthe Cl ass. newl nst ance() method on the
bean class. Thenewl nst ance() method creates an instance using the default constructor, which hasno
arguments® This means that the persistent fields of the bean instances are set at their default values; the instances
themselves do not represent any datain the database.

Immediately following the creation of an instance, and just beforeit is placed in the pool, the container assigns the
instanceitsEnt i t yCont ext . TheEnt i t yCont ext isassigned by callingtheset Ent i t yCont ext ()
method defined of the Ent i t yBean interface which isimplemented by the bean class. After the instance has been
assigned its context, it is entered into the instance pool.

In the instance pool, the bean instance is available to the container as a candidate for servicing client requests. Until
itisrequested, however, the bean instance remainsinactive unlessit is used to service a query methods (finder or
select methods) or ejbHome requests. Bean instances in the Pooled state typically service query and ejbHome
requests, which makes perfectly good sense because they aren’t busy, and these methods don’t rely on the bean
instance’ s state. All instancesin the Pooled state are equivalent. None of the instances are assigned to an EJB
object, and none of them has meaningful state.

The Ready State

When abean instanceisin the Ready State, it can accept client requests. A bean instance moves to the Ready State
when the container assignsit to an EJB object. This occurs under two circumstances: when anew entity beanis
being created or when the container is activating an entity.

Transitioning from the Pooled stateto the Ready State via creation

When aclient application invokesthecr eat e() method onan EJB home, several operations must take place
before the EJB container can return aremote or local reference (EJB object) to the client. First, an EJB object must be
created on the EJB server . Once the EJB object is created, a entity bean instance is taken from the instance pool
and assigned to the EJB object. Next, thecr eat e() method, invoked by the client, is delegated to its corre-
sponding ej bCr eat e() method on the bean instance. After theej bCr eat e() method completes, aprimary key
is created. In contai ner-managed persistence, the container instantiates and popul ates the key automatically; in bean-
managed persistence the entity bean constructs the primary key manually intheej bCr eat e() method. Oncethe
primary key is created, the key is embedded in the EJB object, providing it withidentity. Once the EJB object has
identity, the bean instance’ sEnt i t yCont ext can accessinformation specific to that EJB object, including the

31 Constructors should never be defined in the bean class. The default no-argument constructor must be available to the
container.

32 This is only a conceptual model. In reality an EJB container and the EJB object may be the same thing or perhaps a single EJB
object provides a multiplexing service for all entities of the same type. The implementation details are not as important as
understanding the life cycle protocol.

Copyright (c) 2001 O'Reilly & Associates 236

primary key and its own remote reference. Whiletheej bCr eat e() method is executing, the security and
transactional information is available.

Whentheej bCr eat e() methodisdone, theej bPost Cr eat e() method on the entity bean instanceis called.
At thistime, the bean instance can perform any post-processing that is necessary before making itself available to
the client—maodifying relationship fieldsistypical. Whiletheej bPost Cr eat e() executes, the bean’s primary key
and accessto itsown EJB object reference are available through the Ent i t yCont ext . InEJB 2.0, the

ej bPost Cr eat e() method can be used to initialize the container-managed relationship fields.

Finally, after the successful completion of theej bPost Cr eat e() method, the homeis allowed to return aremote
or local reference—an EJB object—to the client. The bean instance and EJB object are now ready to service method
requests from the client. Thisis one way that the bean instance can move from the Pooled state to the Ready State.

Transtioning from the Pooled state to the Ready State viaa query method

When a query method isexecuted, each EJB object that isfound as aresult of the query will be realized by
transitioning an instance from the Pool ed state to the Ready State. When an entity bean isfound, it is assigned to an
EJB object and its EJB object reference isreturned to the client. A found bean follows the same protocol asa
passivated bean; it is activated when the client invokes a business method. A found bean can be considered to be a
passivated bean and will move into the Ready State through activation as described in the next section.

In many cases (depending on the EJB vendor), found entity beans don’t actually migrate into the ready state until
they are accessed by the client. So, for example, of afind method returns a collection of entity beans, the entity beans
may not be activated until they are obtained from the collection or when accessed directly by the client. This saves
resources by activating entity beanslazily (as needed).

Transtioning from the Pooled state to the Ready State viaactivation

The activation process can also move an entity bean instance from the Pooled state to the Ready State. Activation
facilitates resource management by allowing afew bean instances to service many EJB objects. Activation was
explained in Chapter 2, but we will revisit the process asit relates to the entity bean instance’ s life cycle. Activation
presumes that the entity bean has previously been passivated. More is said about this state transition later; for now,
sufficeit to say that when abean instance is passivated, it frees any resourcesthat it does not need and leaves the
EJB object for the instance pool. When the bean instance returns to the pool, the EJB object isleft without an
instance to del egate client requests to. The EIJB object maintainsits stub connection on the client, so as far asthe
client is concerned, the entity bean hasn’t changed. When the client invokes a business method on the EJB object,
the EJB object must obtain anew bean instance. Thisis accomplished by activating a bean instance.

When abean instanceis activated, it |eaves the instance pool (the Pooled State) to be assigned to an EJB object.
Once assigned to the proper EJB object, theej bAct i vat e() methodiscalled—theinstance’sEnt i t yCont ext
can now provide information specific to the EJB object, but it cannot provide security or transactional information.
Theej bAct i vat e() callback method can be used in the bean instance to re-obtain any resources or perform
some other work needed before servicing the client.

When an entity bean instance is activated, non-persistent instance fields of the bean instance may contain arbitrary
values (dirty values) and must bereinitialized intheej bAct i vat e() method.

In contai ner-managed persistence, contai ner-managed fields are automatically synchronized with the database after
ej bAct i vat e() isinvoked and before a business method can be serviced by the bean instance. The order in
which these things happen in CMP entity beansis:

1. ej bActivat e() isinvoked onthe bean instance.

2. Persistent fields are synchronized automatically.

Copyright (c) 2001 O'Reilly & Associates 237

3. ej bLoad() notifiesthe bean that its persistent fields have been synchronized.

4. Business methods are invoked as needed.

In bean-managed persistence, persistent fields are synchronized by theej bLoad() method after
ej bAct i vat e() hasbeen called and before a business method can be invoked. Here is the order of operationsin
bean-managed persistence:

1. ejbActivate() isinvoked on the beaninstance.
2. ej bLoad() iscalledtolet the bean synchronizeits persistent fields.

3. Business methods are invoked as needed.

Transtioning from the Ready Stateto the Pooled state viapassivation

A bean can move from the Ready State to the Pooled state via passivation, which isthe process of disassociating a
bean instance from an EJB object when it is not busy. After a bean instance has been assigned to an EJB object, the
EJB container can passivate the instance at any time, provided that the instance is not currently executing amethod.
As part of the passivation process, theej bPassi vat e() method isinvoked on the bean instance. This callback
method can be used by the instance to release any resources or perform other processing prior to leaving the EJB
object. Whenej bPassi vat e() hascompleted, the bean instance is disassociated from the EJB object server and
returned to the instance pool. The bean instance is now back in the Pooled State.

A bean-managed entity instance should not try to save its state to the database in theej bPassi vat e() method,;
thisactivity isreserved for theej bSt or e() method. The container will invokeej bSt or e() to synchronizethe
bean instance’ s state with the database prior to passivating the bean.

The most fundamental thing to remember isthat, for entity beans, passivation is simply a notification that the
instanceis about to be disassociated from the EJB object. Unlike stateful session beans, an entity bean instance’s
fields are not serialized and held with the EJB object when the bean is passivated. Whatever values are held in the
instance’ s non-persistent fields when it was assigned to the EJB object will be carried with it to its next assignment.

Transitioning from the Ready State to the Pooled state viaremoval

A bean instance al so moves from the Ready State to the Pooled state when it is removed. This occurs when the client
application invokes one of ther enpve() methods on the bean’s EJB object or EJB home. With entity beans,
invoking aremove method means that the entity’ s datais deleted from the database. Once the entity’ s data has been
deleted from the database, it isno longer avalid entity. The Ent i t yCont ext can provide the EJB object with
identity information during the execution of theej bRenove() method. Oncetheej bRenove() method has
finished, the bean instance is moved back to the instance pool and out of the Ready State. It isimportant that the

ej bRenpve() method release any resources that would normally bereleased by ej bPassi vat e() , whichisnot
called when abean isremoved. This can be done, if need be, by invokingtheej bPassi vat e() method within the
ej bRenove() method body.

In bean-managed persistence, theej bRenove() method isimplemented by the entity bean devel oper and include
code to delete the entity bean’ s data from the database. The EJB container will invoketheej bRenove() method
inresponseto aclient’sinvocation of ther enove() method on one of the component interfaces.

In container-managed persistence, theej bRenove() method notifies the entity bean instance that its datais about
to be removed form the database. Immediately following theej bRenove() call, the container detetes the entity
bean’ s data.

In EJB 2.0 CMP the container also cleans up the entity bean’ s relationships with other entity beansin the database.
If acascade delete is specified, it removes each entity bean in the cascade delete relationships. Thisinvolves

Copyright (c) 2001 O'Reilly & Associates 238

activating each entity bean and calling itsej bAct i vat e() methods, |oading each entity bean’s state by calling its
ej bLoad() method, callingtheej bRenove() onall of the entity beans in the cascade relationship, and then
deleting their data. This process can continuein achain until all the cascade-delete operations of all the relationships
have compl eted.

Lifein the Ready State

A beanisinthe Ready State when it is associated with an EJB object and is ready to service requests from the client.
When the client invokes a business method, like Shi p. get Nane() , on the bean’sremote or local reference (EJB
object), the method invocation is received by the EJB server and delegated to the bean instance. The instance per-
forms the method and returns the results. Aslong as the bean instanceisin the Ready State, it can service all the
business methods invoked by the client. Business methods can be called zero or more timesin any order.

In addition to servicing business methods, an entity bean in the ready state can also execute select methods, which
are called by the bean instance on itself while servicing a business method or ejbHome method.

Theej bLoad() andej bSt or e() methods, which synchronize the bean instance’s state with the database, can
be called only when the bean isin the Ready State. These methods can be called in any order, depending on the

vendor’ simplementation. Some vendorscall ej bLoad() before every method invocation andej bSt or e() after
every method invocation, depending on the transactional context. Other vendors call these methods less frequently.

In bean-managed persistence, theej bLoad() method should alwaysusetheEnt i t y-

Cont ext . get Pri mar yKey () to obtain datafrom the database and not trust any primary key or other data that
the bean has stored in one of itsfields. (Thisis how weimplemented it in the bean-managed version of the Ship bean
in Chapter 10.) It should be assumed, however, that the state of the beanisvalid when calling theej bSt or e()
method.

In container-managed persistence, theej bLoad() method isaways called immediately following the
synchronization of the bean’ s contai ner-managed fields with the database—in other words, right after the container
updates the state of the bean instance with data from the database. This provides an opportunity to perform any
calculations or reformat data before the instance can service business method invocations from the client. The

ej bSt or e() method iscalled just before the database is synchronized with the state of the bean instance—just
before the container writes the container-managed fields to the database. This provides the CMP entity bean
instance with an opportunity to change the data in the contai ner-managed fields prior to their persistence to the
database.

In bean-managed persistence, theej bLoad() andej bSt or e() methods are called when the container deemsit
appropriate to synchronize the bean’ s state with the database. These are the only callback methods that should be
used to synchronize the bean’ s state with the database. Do not useej bAct i vat e() ,ej bPassi vat e(),

set EntityContext(),orunset EntityContext () toaccessthedatabase for the purpose of
synchronization. Theej bCr eat e() andej bRenove() methods, however, can be used to insert and delete
(respectively) the entity’ s datafrom the database.

End of the Life Cycle

A bean instance’ slife cycle ends when the container decides to remove it from the pool and allow it to be garbage
collected. This happens under afew different circumstances. If the container decides to reduce the number of
instances in the pool—usually to conserve resources—it rel eases one or more bean instances and allows them to be
garbage collected. The ability to adjust the size of the instance pool allows the EJB server to manage its resources
(the number of threads, available memory, etc.) so that it can achieve the highest possible performance. This behavior
istypical of aCTM.

Copyright (c) 2001 O'Reilly & Associates 239

When an EJB server is shut down, most containers release all the bean instances so that they can be safely garbage
collected. Finally, some containers may decide to release an instance that is behaving unfavorably or an instance that
has suffered from some kind of unrecoverable error that makes it unstable. For example, anytime an entity bean
instance throws atype of Runt i neExcept i on from any of its methods, the EJB container will evict that instance
from memory and replace it with a stable instance from the instance pool.

When an entity bean instance leaves the instance pool to be garbage collected, theunset Ent i t yCont ext ()
method isinvoked by the container to alert the bean instance that it is about be destroyed. This callback method lets
the bean instance rel ease any resources it maintains before being garbage collected. Once the bean’s

unset Enti t yCont ext () method has been called it will be garbage collected.

The bean instance’sf i nal i ze() method may or may not beinvoked followingtheunset Ent i t yCont ext ()

method. A bean should not rely onitsf i nal i ze() method, since each vendor handles evicting instances
differently.

Copyright (c) 2001 O'Reilly & Associates 240

12

Sesson Beans

Chapters 6 through 11 demonstrated that entity beans provide an object-oriented interface that makesit easier for
developersto create, modify, and delete data from the database. Entity beans make devel opers more productive by
encouraging reuse and reducing devel opment costs. A concept like a Ship can be reused throughout a business
system without having to redefine, recode, or retest the business logic and data access.

However, entity beans are not the entire story. We have also seen another kind of enterprise bean: the session bean.
Session beans fill the gaps left by entity beans. They are useful for describing interactions between other beans
(workflow) or for implementing particular tasks. Unlike entity beans, session beans don’t represent shared datain the
database, but they can access shared data. This means that we can use session beans to read, update, and insert
data. For example, we might use a session bean to provide lists of information, such asalist of all available cabins.
Sometimes we might generate the list by interacting with entity beans, like the cabin list we developed in the

Travel Agent EJB in Chapter 4. More frequently, session beans will generate lists by accessing the database directly.

So when do you use an entity bean and when do you use a session bean to directly access data? Good question! As
arule of thumb, an entity bean is developed to provide a safe and consistent interface to a set of shared data that
defines a concept. This data may be updated frequently . Session beans access data that spans concepts, is not
shared, or isusually read-only.

In addition to accessing data directly, session beans can represent workflow. Workflow describes all the steps
required to accomplish a particular task, such as booking passage on a ship or renting a video. Session beans are part
of the same business API as entity beans, but as workflow components, they serve adifferent purpose. Session
beans can manage the interactions between entity beans, describing how they work together to accomplish a specific
task. The relationship between session beans and entity beansis like the relationship between a script for aplay and
the actors that perform the play. Where entity beans are the actors, the session bean is the script. Actors without a
script can each serve afunction individually, but only in the context of ascript can they tell astory. In terms of our
example, it makes no sense to have a database full of cabins, ships, custoners, and other objectsif we can’t create
interactions between them, like booking a customer for a cruise.

Session beans are divided into two basic types: stateless and stateful. A statel ess session bean is a collection of
related services, each represented by a method; the bean maintains no state from one method invocation to the next.
When you invoke a method on a statel ess session bean, it executes the method and returns the result without
knowing or caring what other requests have gone before or might follow. Think of a statel ess session bean as a set of
procedures or batch programs that execute a request based on some parameters and return aresult. Stateless session
beans tend to be general-purpose or reusable, such as a software service.

Copyright (c) 2001 O'Reilly & Associates 241

A stateful session bean is an extension of the client application. It performs tasks on behalf of the client and

mai ntains state related to that client. This state is called conversational state because it represents a continuing
conversation between the stateful session bean and the client. Methods invoked on a stateful session bean can write
and read datato and from this conversational state, which is shared among all methodsin the bean. Stateful session
beans tend to be specific to one scenario. They represent logic that might have been captured in the client
application of atwo-tier system. Session beans, whether they are stateful or stateless, are not persistent like entity
beans. In other words, session beans are not saved to the database.

Depending on the vendor, stateful session beans may have atimeout period. If the client fails to use the stateful bean
before it times out, the bean instance is destroyed and the EJB object referenceisinvalidated. This preventsthe
stateful session bean from lingering long after a client has shut down or otherwise finished using it. A client can also
explicitly remove a stateful session bean by calling one of its remove methods.

Statel ess session beans have longer lives because they don’t retain any conversational state and are not dedicated
to oneclient, but they still aren’t saved in a database because they don’t represent any data. Once a stateless
session bean has finished a method invocation for aclient, it can be reassigned to any other EJB object to service a
new client. A client can maintain a connection to a stateless session bean’s EJB object, but the bean instanceitself is
free to service requests from any client. Because it doesn’'t contain any state information, there's no difference
between one client and the next. Statel ess session beans may also have atimeout period and can be removed by the
client, but the impact of these eventsisdifferent than with a stateful session bean. With a statel ess session bean, a
timeout or remove operation simply invalidates the EJB object reference for that client; the bean instance is not
destroyed and is free to service other client requests.

The Stateless Session Bean

A stateless session bean isvery efficient and relatively easy to develop. Stateless session beans require few server
resources because they are neither persistent nor dedicated to one client. Because they aren’t dedicated to one
client, many EJB objects can share afew instances of a stateless bean. A statel ess session bean does not maintain
conversational state relativeto theclient it is servicing, so it can be swapped freely between EJB objects. As soon as
a statel ess instance services amethod invocation, it can be swapped to another EJB object immediately. Because
there is no conversational state, a statel ess session bean doesn’t require passivation or activation, further reducing
the overhead of swapping. In short, they are lightweight and fast!

Statel ess session beans often perform services that are fairly generic and reusable. The services may be related, but
they are not interdependent. Thismeans that everything a method needs to know has to be passed via the method’ s
parameters. This provides an interesting limitation. Statel ess session beans can’t remember anything from one
method invocation to the next, which means that they have to take care of the entire task in one method invocation.
The only exception to thisrule isinformation obtainable from the Sessi onCont ext and the INDI ENC.

Statel ess session beans are EJB’ s version of the traditional transaction processing applications, which are executed
using aprocedure call. The procedure executes from beginning to end and then returns the result. Once the
procedure is done, nothing about the data that was manipulated or the details of the request are remembered. Thereis
no state.

These restrictions don’t mean that a statel ess session bean can’t have instance variables or maintain some kind of
internal state. There’s nothing that prevents you from keeping a variable that tracks the number of times a bean has
been called or that saves datafor debugging. An instance variable can even hold areferenceto aliveresource like a
URL connection for writing debugging data, verifying credit cards, or anything else that might be useful. However,
it'simportant to remember that this state can never bevisibleto aclient. A client can’t assume that the same bean
instance will serviceit every time. If these instance variables have different valuesin different bean instances, their
values will appear to change randomly as statel ess session beans are swapped from one client to another. Therefore,
any resources that you reference in instance variables should be generic. For example, each bean instance might
reasonably record debugging messagesin a different file—that might be the only way to figure out what was

Copyright (c) 2001 O'Reilly & Associates 242

happening on alarge server with many bean instances. The client doesn’t know or care where debugging output is
going. However, it would be clearly inappropriate for a statel ess bean to remember that it wasin the process of
making areservation for Madame X—the next timeit is called, it may be servicing another client entirely.

Statel ess session beans can be used for report generation, batch processing, or some statel ess services like
validating a credit card. Another good application would be a StockQuote EJB that returns a stock’ s current price.
Any activity that can be accomplished in one method call is a good candidate for the high-performance statel ess
session bean.

EJB 1.1: Downloading the Missing Pieces

Both the Travel Agent EJB and the ProcessPayment EJB, which we develop in this chapter, depend on other entity
beans, some of which we developed earlier in this book and several that you can download from O’ Reilly’ sweb site.
The Cabin was developed in Chapter 4, but we still need several other beans to develop this example. The other
beans are the Cruise, Customer, and Reservation EJBs. The source code for these beansis avail able with the rest of
the examples for this book at the O’ Reilly download site. Instructions for downloading code are availablein the
preface of this book and in the workbook.

Before you can use these beans, you will need to create some new tablesin your database. Here are the table
definitions that the new entity beans will need. The Cruise EJB mapsto the CRUI SE table:

CREATE TABLE CGRU SE

(
ID INT PRIMARY KEY,
NAMVE CHAR(30) ,
SHPID INT

)
The Customer EJB maps to the CUSTOVER table:

CREATE TABLE QUSTOMER
(
ID INT PR MARY KEY,
FIRST NAVE GHAR(30),
LAST NAME CHAR(30),
MODLE NVE GHAR(30)
)

The Reservation EJB mapsto the RESERVATI ONtable:

CREATE TABLE RESERVATI ON
(
ABTOMR ID N,
CABIN I D I NT,
CRUSEID I NT,
AVOUNT PAI D DEQ ML (8, 2),
DATE RESERVED DATE

)

Once you have created the tables, deploy these beans as contai ner-managed entitiesin your EJB server and test
them to ensure that they are working properly.

Copyright (c) 2001 O'Reilly & Associates 243

The ProcessPayment EJB

Chapters 2 and 3 discussed the Travel Agent EJB, which had a business method calledbookPassage() that uses
the ProcessPayment EJB. The next section devel ops a complete definition of the Travel Agent EJB, including the logic
of thebookPassage() method. At this point, however, we are interested in the ProcessPayment EJB, whichisa
stateless bean used by the Travel Agent EJB. The Travel Agent EJB uses the ProcessPayment EJB to charge the
customer for the price of the cruise.

The process of charging customersis acommon activity in Titan's business systems. Not only does the reservation
system need to charge customers, but so do Titan’s gift shops, boutiques, and other related businesses. The process
of charging acustomer for servicesis common to many systems, so it has been encapsulated in its own bean.

Payments are recorded in a special database table called PAYMENT. The PAYMENT datais batch processed for
accounting purposes and is not normally used outside of accounting. In other words, the datais only inserted by
Titan’ s system; it’ s not read, updated, or deleted. Because the process of making a charge can be completed in one
method, and because the datais not updated frequently or shared, a statel ess session bean has been chosen for
processing payments. Several different forms of payment can be used: credit card, check, or cash. We will model
these payment formsin our stateless ProcessPayment EJB.

PAYMENT: Thedatabasetable

The ProcessPayment EJB accesses an existing table in Titan’s system called the PAYMENT table. Create atablein
your database called PAYMENT with this definition:

CREATE TABLE PAYMENT

(
custoner_id NUMER C
anount CEA MAL(8, 2),
type AR (10),

check bar_code CHAR50),
check_nunier | NTEEER
credi t_nunber N.MER C
credit_exp date DATE

)
ProcessPaymentRemote: Theremoteinterface

A stateless session bean, like any other bean, needs a component interface. While EJB 1.1 uses only remote
interfaces, in EJB 2.0 a session beans may have either alocal or remote interface. For EJB 2.0 we'll develop both.

For the remote interface, we obviously need aby Cr edi t () method because the Travel Agent EJB usesit. We can
also identify two other methods that we'll need: by Cash() for customers paying cash andbyCheck() for
customers paying with a personal check.

Here is acomplete definition of the remote interface for the ProcessPayment EJB:
package comtitan. processpaynent ;

inport java.rm . Renot eExcepti on;

inport java. util.Date;
inport comtitan. cust oner. Qust oner;

public interface ProcessPaynent Renote extends javax. ej b. EJBOj ect {

publ i ¢ bool ean byCheck(Qust oner Renot e cust oner, CheckDO check, doubl e anount
throws Renot eExcept i on, Paynent Excepti on;

Copyright (c) 2001 O'Reilly & Associates 244

publ i ¢ bool ean byCash(Qust oner Renot e cust oner, doubl e anount)
throws Renot eExcept i on, Paynent Excepti on;

publ i ¢ bool ean byQ edi t (Qust oner Renot e cust oner, O edit CardDO card, doubl e gnmount)
throws Renot eExcept i on, Paynent Except i on;
}

Remote interfaces in session beans follow the same rules as the entity beans. Here we have defined the three
business methods, by Check() ,byCash(),andbyCredi t (), which takeinformation relevant to the form of
payment used and return abool ean valuethat indicates the success of the payment. Inaddition to the required
Renot eExcept i on, these methods can throw an application-specific exception, the Paynent Except i on. The
Paynment Except i on isthrown if any problems occur while processing the payment, such as alow check number
or an expired credit card. Notice, however, that nothing about the Pr ocessPaynent Renot e interfaceis specific
to the reservation system. It could be used just about anywherein Titan’s system. In addition, each method defined
in the remote interface is completely independent of the others. All the datathat is required to process apayment is
obtained through the method’ s arguments.

Asan extension of thej avax. ej b. EJBObj ect interface, the remote interface of a session bean inherits the same
functionality as the remote interface of an entity bean. However, theget Pri mar yKey () method throwsa
Renot eExcept i on, since session beans do not have a primary key to return:

public interface javax. e b. EJBbj ect extends java.rni.Renote {
publ i c abstract EJBrbne get EIB-bne()
throws Renot eExcepti on;
public abstract Handl e get Handl e()
throws Renot eExcepti on;
public abstract (pj ect getPrinaryKey()
throws Renot eExcepti on;
publ i c abstract bool ean isldentical (EJBOj ect obj)
throws Renot eExcepti on;
public abstract void renove()
throws Renot eExcepti on, RenoveExcepti on;

}

Theget Handl e() method returns a serializable handle object, just likethe get Handl e() method in the entity
bean. For stateless session beans, this handle can be serialized and reused any time, aslong as the statel ess bean
typeisstill availablein the container that generated the handle.

Unlike statel ess session beans, stateful session beans are only available through the handle for as
long as that specific bean instance is kept alive on the EJB server. If the client explicitly destroys
the stateful session bean using one of ther enmove() methods, or if the bean times out, the
instance is destroyed and the handle becomesinvalid. As soon as the server removes a stateful
session bean, its handleis no longer valid and will throw aRenpt eExcept i on when its

get EJBObj ect () isinvoked.

A remote reference to the bean can be obtained from the handle by invoking itsget EJBObj ect () method:

public interface javax. e b. Handl e {
public abstract EIBObj ect get EIBONj ect ()
throws Renot eExcepti on;

}

The ProcessPayment EJB has its own package, which meansit hasits own directory in our devel opment tree,
dev/com/titan/processpayment. That’swhere we'll store all the code and compile class files for this bean.

Copyright (c) 2001 O'Reilly & Associates 245

Dependent Objects. The CreditCardDO and CheckDO classes

The ProcessPayment EJB’ sremote interface usestwo classesin its definition that are particularly interesting: the
Cr edi t Car dDOand CheckDOclasses. The definitions for these classes are as follows:

/* QeditCard.java */
package comtitan. processpaynent ;

inport java.util.Date;

public class GeditCardDOinpl enents java.io. Serializable {
final static public Sring MASTER CARD = "MASTER CARD',;
final static public Sring I SA = "I A,
final static public Sring AMER CAN EXPRESS =
" AVER CAN BEXPRESS';
final static public String O SOO/ER = "D SCOER';
final static public String D NERS CARD = "0 NERS CARDY';

public | ong nunber;
public Date expiration;
public Sring type;

public GeditCard(long nnbr, Date exp, Sring typ) {
nunber = nnfr;
expiration = exp;
type = typ;

}

/* Check.java */
package comtitan. processpaynent ;

public class CheckDOinpl enents java.io. Serializable {
Sring checkBar Code;
int checkNuniber ;
publ ic Check(Sring barCode, int nunber) {
checkBar Code = bar Gode;
checkNunber = nunber ;

}

The Cr edi t Car dDOand Check DO are dependent objects (DO standards for Dependent Object) a concept that
was explored with the Address EJB in Chapter 6. 1f you examine the class definitions of the Cr edi t Car dDO and
CheckDOclasses, you will seethat they are not enterprise beans. They are simply serializable Java classes. These
classes provide a convenient mechanism for transporting and binding together related data. Cr edi t Car dDO, for
example, binds all the credit card data together in once class, making it easier to pass the information across the
network aswell as making our interfaces alittle cleaner.

PaymentException, An application exception

Any remote or local interface, whether it’sfor an entity bean or a session bean, can throw application exceptions.
Application exceptions are created by the bean devel oper and should describe a business |ogic problem—in this
particular case, a problem making a payment. Application exceptions should be meaningful to the client, providing an
explanation of the error that is both brief and relevant.

It'simportant to understand what exceptions to use and when to use them. The Renpt eExcept i on indicates
subsystem-level problems and is used by the RMI facility. Likewise, exceptionslike

Copyright (c) 2001 O'Reilly & Associates 246

j avax. nam ng. Nam ngExcepti onandj ava. sql . SQLExcept i on arethrown by other Java subsystems;
usually these should not be thrown explicitly by your beans. The Java Compiler requiresthat you uset r y/cat ch
blocksto capture checked exceptions like these.

InEJB 2.0, the EJBExcept i on can express container problems processing local interface invocations. The
EJBExcept i on isan unchecked exception so you won't get acompile error if you don’t write code to handleit.
However, under certain circumstancesit’sagood ideato catchEJBExcept i on, whilein other circumstancesit’s
best to propagate it.

When a checked exception from a subsystem (JDBC, JNDI, JMS, etc.) is caught by a bean method, it should be
rethrown as an EJBExcept i on or an application exception. Y ou would rethrow a checked exception as an
EJBExcept i on if it represented a system-level problem; checked exceptions are rethrown as application
exceptions when they result from business logic problems. Y our beans incorporate your businesslogic; if a problem
occursin the businesslogic, that problem should be represented by an application exception. When an
EJBExcept i on or someother type of Runt i mneExcepti on isthrown by the enterprise bean, the exceptionis
first processed by the container, which discards the bean instance and replaces it with another. After the container
processes the exception, it then propagates an exception to the client. For remote clients, the container throws a
Renot eExcept i on; for local clients (co-located enterprise beans), the container rethrows the original
EJBExcepti on or Runti neExcept i on that wasthrown by the bean instance.

The Paynent Except i on describes a specific business problem, so it is an application exception. Application
exceptionsextendj ava. | ang. Except i on. If you choose to include any instance variables in the exception,
they should all be serializable. Hereisthe definition of Pr ocessPaynent application exception:

package comtitan. processpaynent ;

public class Paynent Exception extends java.lang. Exception {
publ i ¢ Paynent Exception() {

super () ;

}

publ i ¢ Paynent Exception(Sring nsg) {
super (nsQ) ;

}

}
ProcessPaymentHomeRemote: The homeinterface

The homeinterface of a statel ess session bean must declareasinglecr eat e() method with no arguments. Thisis
arequirement of the EJB specification. It isillegal to definecr eat e() methods with arguments, because statel ess
session beans don’t maintain conversational state that needs to be initialized. There are no find methods in session
beans, because session beans do not have primary keys and do not represent data in the database.

Although EJB 2.0 definescr eat e<SUFFI X>(') methods for stateful and entity beans, statel ess session beans
may only defineasinglecr eat e() method, with no suffix and no arguments. Thisisaso thecasein EJB 1.1. The
reason for thisrestriction has to do with the life cycle of stateless session beans, which is explained later in the
chapter.

Here isthe definition of the remote home interface for the ProcessPayment EJB:

package comtitan. processpaynent ;

inport java.rn.Renot eExcepti on;
inport javax.ej b. O eat eExcepti on;

public interface ProcessPaynent HbneRenot e ext ends j avax. ej b. EJB-bne {
publ i ¢ ProcessPaynent create()

Copyright (c) 2001 O'Reilly & Associates 247

throws Renot eException, O eateException;

}

TheCr eat eExcept i on ismandatory, asisthe Renot eExcepti on. TheCr eat eExcept i on can bethrown
by the bean itself to indicate an application error in creating the bean. A Renot eExcept i on isthrown when other
system errors occur, for example, when there is a problem with network communication or when an unchecked excep-
tion isthrown from the bean class.

The Pr ocessPaynment HomeRenot e interface, as an extension of thej avax. ej b. EJBHone, offersthe same
EJBHome methods as entity beans. The only differenceisthatr emove(Obj ect pri mar yKey) doesn’t work
because session beans don’t have primary keys. If EJBHone. r enove(Obj ect pri maryKey) isinvoked ona
session bean (stateless or stateful), aRenot eExcept i on isthrown. Logically, this method should never be
invoked on the remote home interface of a session bean. Here are the definitions of thej avax. ej b. EJBHone
interface for EJB 1.1 and 2.0:

public interface javax. e b. EJB-bne extends java. rm. Renote {
publ i ¢ abstract HoneHandl e get HoneHandl e()
throws Renot eExcepti on;
public abstract EJBMetaData get EJBVet aDat a()
throws Renot eExcepti on;
public abstract void renove(Handl e handl e)
throws Renot eExcepti on, RenoveExcepti on;
public abstract voi d renmove(ject prinaryKey)
throws Renot eExcepti on, RenoveExcepti on;

}

The homeinterface of asession bean can return the EJBMet aDat a for the bean, just like an entity bean.

EJBMet aDat a isaserializable object that provides information about the bean’ sinterfaces. The only difference
between the EJBMet aDat a for asession bean and an entity bean isthat theget Pri mar yKeyCl ass() onthe
session bean’sEJBMet aDat a throwsaj ava. | ang. Runt i neExcept i on wheninvoked:

public interface javax. e b. EJBWet alat a {
publ i c abstract EJBrbne get EJB-bne();
public abstract dass getHonel nterfaced ass();
public abstract dass getPrinaryKeyd ass();
public abstract dass get Renotel nterfaced ass();
publ i ¢ abstract bool ean i sSession();
public abstract boolean isSateless(); // EIB 1.0 only

}
ProcessPaymentBean: Thebean class

As stated earlier, the ProcessPayment EJB accesses data that is not generally shared by systems, so it is an excellent
candidate for a stateless session bean. This bean really represents a set of independent operations that can be
invoked and then thrown away—another indication that it's a good candidate for a stateless session bean. Hereis
the definition of the Pr ocessPaynent Bean class, which supports the remote interface functionality:

package comtitan. processpaynent ;
inport comtitan. custoner.*;

inport java.sql.*;
inport java.rn.Renot eExcepti on;
inport javax. ej b. Sessi onCont ext ;

inport javax.naming.Initial Gontext;
inport javax.sql . Dat aSour ce;
i nport javax. ej b. EJBExcepti on;

Copyright (c) 2001 O'Reilly & Associates 248

i nport j avax. nami ng. Nami ngExcept i on;
public class ProcessPaynent Bean i npl enents j avax. €j b. Sessi onBean {

final public static Sring CASH = "CAH';
final public static Sring GO T ="CGRADT';
final public static Sring GEX = "GEX';

publ i ¢ Sessi onCont ext cont ext;

public void ej bGeate() {
}

publ i ¢ bool ean byCash(Qust oner Renot e cust oner,
doubl e anount)
throws Paynent Except i on{
return process(get Qust oner | O cust oner) , anount ,
CASHnull,-1,-1,nul I);
}

publ i ¢ bool ean byCheck(Qust oner Renot e cust oner,
CheckDO check, doubl e anount)
t hrows Paynent Except i on{
int mnCheckNuniber = get M nCheckNunber () ;
i f (check. checkNunber > ninCheckNunber) {
return process(get Qust oner | O cust oner), anmount, GHECK
check. checkBar Gode, check. checkNunber ,

-1, null);
}
el se {
t hr ow new Paynent Except i on(
"Check nunber is too low Mist be at least "+
ni nCheckNuntoer) ;
}

}
publi ¢ bool ean byQ edi t (Qust oner Renot e cust oner,
Qedi t GardDO card, doubl e amount)
t hrows Paynent Exception {
if (card.expiration. before(newjava. util.Date())) {
t hr ow new Paynent Except i on(" Expiration date has”+

‘ passed");
}
el se {
return process(get Qust oner | O cust oner), anount,
CEOT, null,-1, card. nunber,
new j ava. sgl . Date(card. expiration.getTine()));
}

}
private bool ean process(Integer custonerlD doubl e anount,
Sring type, Sring checkBar Code,
int checkNunber, |ong creditNinber,
java.sql . Date credit ExpDat e)
t hrows Paynent Except i on{

Gonnection con = nul | ;

PreparedSatenent ps = nul |l ;

Copyright (c) 2001 O'Reilly & Associates

249

try {
con = get Gnnection();

ps = con. prepar eX at enent
("I'NSERT | NTO paynent (custoner_id, anount, type,"+
"check _bar _code, check_nunber, credit _nunber, "+
"credit_exp date) VALUES (?2,2,2,2,2,2,?)");
ps.setint (1, custonerl DintVal ue());
ps. set Doubl e(2, anount) ;
ps.set Sring(3,type);
ps. set S ring(4, checkBar Gode) ;
ps. set | nt (5, checkNunter) ;
ps. set Long(6, cr edi t Nunber) ;
ps. set Dat e(7, credi t Explat €) ;
int retVal = ps. executelpdat e();
if (retval!=1) {
t hr ow new EJBExcepti on(" Paynent insert failed");
}
return true;
} catch(SQ.Exception sql) {
t hrow new EJBException(sql);
} finally {
try {
if (ps!=null) ps.close();
if (con'=null) con.close();
} catch(SQ.Exception se){se.printSackTrace();}
}

}
public void ejbActivate() {}

public void ej bPassivate() {}

public void e bRenove() {}

public voi d set Sessi onCont ext (Sessi onGont ext ctx) {
context = ctx;

}
private |Integer getQustoner!| D Qustoner custoner) {
try {
(I'nt eger) cust oner . get Pri naryKey() ;
} cat ch(Renot eException re) {
t hr ow new EJBException(re);
}
}

private Gonnection get Gnnection() throws SQException {
/1 Inpl enentations shown bel ow

}

private int get M nCheckNunber () {
/1 I'npl enentations shown bel ow

}

}

The three payment methods all use the private helper method pr ocess() , which does the work of adding the
payment to the database. This strategy reduces the possibility of programmer error and makes the bean easier to
maintain. Thepr ocess() method simply inserts the payment information into the PAYMENT table. The use of
JDBC in this method should be familiar to you from your work on the bean-managed Ship EJB in Chapter 10. The
JDBC connection is obtained from the get Connect i on() method as shown in the following code listing.

private Gonnection get Gnnection() throws SQException {
try {

Copyright (c) 2001 O'Reilly & Associates

Initial Gontext jnditx = new Initial Gontext();
Dat aSour ce ds = (Dat aSour ce)
j ndi Mt x. | ookup("j ava: conp/ env/ j dbc/titanDB');
return ds. get Gnnection();
} cat ch(Nami ngExcept i on ne) {t hr ow new EJBExcepti on(ne);}
}

ThebyCheck() andthebyCredi t () methods contain some logic to validate the data before processing it. The
byCredi t () method verifiesthat the credit card’ s expiration data does not precede the current date. If it does, a
Paynment Except i on isthrown.

ThebyCheck() method verifiesthat the check is above a minimum number, as determined by a property that's
defined when the bean is deployed. If the check nuntber isbelow thisvalue, aPaynment Except i on isthrown. The
property isobtained fromtheget M nCheckNurber () method. We can use the INDI ENC to read the value of
themi nCheckNunber property.

private int get M nCheckNunber () {
try {
Initial Gontext jnditx = new Initia Gontext();
Integer value = (Integer)
j ndi Mt x. | ookup("j ava: conp/ env/ m nCheckNuniber ") ;
return val ue.intVal ue();
} cat ch(Nami ngExcept i on ne){t hrow new EJBException(ne);}

}

Thus, we are using an environment property set in the deployment descriptor to change the business behavior of a
bean. It isagood ideato capture thresholds and other limits in the environment properties of the bean rather than
hardcoding them. This gives you greater flexibility. If, for example, Titan decided to raise the minimum check number,
you would only need to change the bean’ s deployment descriptor, not the class definition. (Y ou could also obtain
this type of information directly from the database.)

JNDI ENC: Accessing environment properties

In EJB, the bean container contract includes the JINDI environment naming context (JNDI ENC). The JINDI ENCisa
JNDI name space that is specific to each bean type. This name space can be referenced from within any bean, not just
entity beans, using thename" j ava: conp/ env" . The enterprise naming context provides aflexible, yet standard,
mechanism for accessing properties, other beans, and resources from the container.

WEe've aready seen the INDI ENC several times. In Chapter 10, we used it to access a resource factory, the
Dat aSour ce. ThePr ocessPaynent Bean also usesthe INDI ENC to accessaDat aSour ce inthe
get Connect i on() method; further, it usesthe INDI ENC to access an environment property in the

get M nCheckNunber () method. This section examines the use of the INDI ENC to access environment
properties.

Named properties can be declared inabean’s deployment descriptor. The bean accesses these properties at runtime
by using the INDI ENC. Properties can be of type St r i ng or one of several primitive wrapper types including
I nt eger,Long, Doubl e, Fl oat ,Byt e, Bool ean, and Shor t . By modifying the deployment descriptor, the
bean deployer can change the bean’ s behavior without changing its code. As we' ve seen in the ProcessPayment
EJB, we could change the minimum check number that we' re willing to accept by modifying the mi nCheckNunber
property at deployment. Two ProcessPayment EJBs deployed in different containers could easily have different
minimum check numbers, as shown in the following example:

<gjb-jar>

<ent er pri se- beans>

<sessi on>
<env-entry>

Copyright (c) 2001 O'Reilly & Associates 251

<env- ent r y- nane>m nCheckNunber </ env- ent r y- nane>
<env-entry-type>j ava. | ang. | nt eger </ env- entry-t ype>
<env- ent ry- val ue>2000</ env-ent ry-val ue>
</ env-entry>
</ sessi on>

<ent er pri se- beans>

</€jb-jar>
EJBContext

The EJBCont ext . get Envi ronnent () method isoptional in EJB 2.0 and 1.1, which means that it may or may
not be supported. If it is not functional, the method will throw aRunt i neExcept i on. If itisfunctional, it returns

only those values declared in the deployment descriptor as follows (wheremi nCheckNunber isthe property
name):

<gj b-jar>
<ent er pri se- beans>
<sessi on>
<env-entry>
<env- ent ry- nane>
€] b10- properti es/ m nCheckNuniber
</env-entry- nane>
<env-entry-type>
java.lang. Sring
</ env- ent ry- nane>
<env- ent ry- val ue>20000</ env- ent ry- val ue>
</env-entry>
</ sessi on>
</ enterpri se- beans>
<ejb-jar>

Theej b10- properti es subcontext specifies that the property ni nCheckNunber isavailable from both INDI
ENC context" | ava: conp/ env/ ej b10- properties/ m nCheckNunber" (asaStri ng vaue), andfrom
theget Envi ronnent () method.

Only those properties declared under theej b10- pr oper t i es subcontext are available viathe EJBCont ext .
Furthermore, such properties are only available through the EJBCont ext in containersthat choose to support the
EB 1.0get Envi r onnent () method; al other containerswill throw aRunt i neExcept i on. It'sexpected that
most EJB 2.0 vendors will have dropped support for thisfeature. In either case, developers are encouraged to use the
JNDI ENC to obtain property values and to stop using the EJBCont ext . get Envi r onnent () method.

The ProcessPayment EJB’s deployment descriptor

Deploying the ProcessPayment EJB presents no significant problems. It’ s essentially the same as deploying entity
beans, except that the ProcessPayment EJB has no primary key or persistent fields. Here isthe XML deployment
descriptor for the ProcessPayment EJB:

<?xnh version="1.0"?>

<IDOCTYPE € b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 2.0//BN' "http://java. sun.conij 2ee/ dtds/ejb-jar_2 O.dtd">

Copyright (c) 2001 O'Reilly & Associates 252

<gjb-jar>
<ent er pri se- beans>
<sessi on>
<descri pti on>
A service that handl es nonetary paynents.
</descri pti on>
<ej b- nane>Pr ocessPaynent Bean</ €] b- nane>
<hone>
comtitan. processpaynent . ProcessPaynent HoneRenot e
</ hone>
<r enot e>
comtitan. processpaynent . ProcessPaynent Renot e
</renot e>
<ej b-cl ass>
comtitan. processpaynent . ProcessPaynent Bean
</ ej b-cl ass>
<sessi on-type>S at el ess</ sessi on-type>
<transacti on-type>Qont ai ner </t ransact i on-t ype>
<env-entry>
<env- ent ry- nane>ni nCheckNuner </ env- ent r y- nane>
<env-entry-type>j ava. | ang. | nt eger </ env-entry-type>
<env- ent ry- val ue>2000</ env- ent ry-val ue>
</env-entry>
<resour ce-ref >

<descri pti on>Dat aSour ce for the Titan dat abase</ descripti on>

<res-ref-nane>j doc/ titanCB</res-ref - nane>
<res-type>j avax. sql . Dat aSour ce</ r es- t ype>
<res- aut h>Qont ai ner </ r es- aut h>

</ resour ce-ref >

</ sessi on>
</ enterpri se-beans>

<assentl y- descri pt or >
<security-rol e>
<descri pti on>
This rol e represents everyone who is allowed full access
to the ProcessPaynent EIB.
</ descri pti on>
<r ol e- nane>ever yone</ r ol e- nane>
</security-rol e>

<net hod- per m ssi on>
<r ol e- nane>ever yone</ r ol e- nane>
<net hod>
<gj b- nane>Pr ocessPaynent Bean</ gj b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

<cont ai ner -t ransact i on>
<net hod>
<ej b- nane>Pr ocessPaynent Bean</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attribute>

Copyright (c) 2001 O'Reilly & Associates

253

</ cont ai ner-transacti on>
</ assenbl y- descri pt or >
</ ¢ b-jar>

The deployment descriptor for EJB 1.1 is exactly the same, except its header specifiesthe EJB 1.1 specification and
deployment descriptor.

<IDOCTYPE €j b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 1.1//BN' "http://java. sun.conij 2ee/dtds/ejb-jar_1 1.dtd">

& #Exercise 12.1, The ProcessPayment EJB

EJB 2.0: Local Component Interfaces

Like entity beans, statel ess session beans can define local component interfaces. Thisallowsthelocal interfaces of a
statel ess session bean to be used by other co-located enterprise beans, including other statel ess and stateful session
beans and even entity beans. Obviously, it’s more efficient to use local component interfaces between two beansin
the same container system than to use the remote interfaces.

The process of defining local interfaces for a stateless or stateful session bean isthe same asthat for entity beans.
Thelocal interfaces extendj avax. ej b. EJBLocal Obj ect (for business methods) and

j avax. e] b. EJBLocal Horre (for the home interfaces). These interfaces are then defined in the XML deployment
descriptor inthe<l ocal > and <l ocal - hone> elements.

For the sake of brevity, we will not definelocal interfaces for either the statel ess ProcessPayment EJB or the stateful
Travel Agent EJB developed in the next section. Y our experience in Chapters 5, 6, and 7 at creating local interfacesfor
entity beans can be applied easily to any kind of session bean.

The Life Cycle of a Stateless Session Bean

Just asthe entity bean has awell-defined life cycle, so does the statel ess session bean. The statel ess session bean’s
life cycle hastwo states: Does Not Exist and Method-Ready Pool. The Method-Ready Pool is similar to the instance
pool used for entity beans. Thisis one of the significant life-cycle differences between statel ess and stateful session
beans; statel ess beans define instance pooling in their life cycle and stateful beans do not.® Figure 12-1 illustrates
the states and transitions that a statel ess session bean instance goes through in itslifetime.

[FIGURE]

Figure 12-1: Statelesssession bean life cycle

Does Not Exist

When abean isin the Does Not Exist state, it is not an instance in the memory of the system. In other words, it has
not been instantiated yet.

The Method-Ready Pool

Statel ess bean instances enter the M ethod-Ready Pool as the container needs them. When the EJB server isfirst
started, it will probably create a number of stateless bean instances and enter them into the M ethod-Ready Pool. (The
actual behavior of the server depends on the implementation.) When the number of stateless instances servicing
client requestsisinsufficient, more can be created and added to the pool.

33 Some vendors do not pool stateless instances, but may instead create and destroy instances with each method
invocation. This is an implementation-specific decision that shouldn’'t impact the specified life cycle of the state ess bean instance.

Copyright (c) 2001 O'Reilly & Associates 254

Transitioning to the Method-Ready Pool

When an instance transitions from the Does Not Exist state to the Method-Ready Pool, three operations are
performed on it. First, the bean instanceisinstantiated by invoking the Cl ass. newi nst ance() method on the
statel ess bean class.

Enterprise bean classes, entity, session and message-driven beans alike, must never define
constructors. Take care of initialization needs withinej bCr eat e() and other callback methods.
The container instantiates instances of the bean classusingCl ass. newl nst ance(), which
requires a no- argument constructor.

Although thelife cycle of abean instance is defined by the specification, the actual implementation
by EJB vendors need only support the specified life cycle as perceived by the bean class and the
client. For thisreason, a bean developer must only depend on behavior described by the
specification. The specification does not describe the behavior of Javalanguage constructors; it
only describes the behavior of the create and callback methods in the bean class.

Second, the Sessi onBean. set Sessi onCont ext (Sessi onCont ext cont ext) methodisinvoked on
the bean instance. Thisiswhen the instance receivesitsreference to the EJBCont ext foritslifetime. The
Sessi onCont ext reference may be stored in anontransient instance field of the statel ess session bean.

Finally, the no-argument ej bCr eat e() method isinvoked on the bean instance. Remember that a statel ess session
bean only hasoneej bCr eat e() method, which takes no arguments. Theej bCr eat e() method isinvoked only
onceinthelife cycle of the statel ess session bean; when the client invokesthecr eat e() method on the EJB home,
itisnot delegated to the bean instance.

Statel ess session beans are not subject to activation, so they can maintain open connectionsto resources for their
entirelifecycle® Theej bRenpve() method should closeany open resources before the statel ess session bean is
evicted from memory at the end of itslife cycle. More about ej bRenove() laterin thissection.

Lifein the Method-Ready Pool

Once aninstanceisin the Method-Ready Poal, it isready to service client requests. When aclient invokes a
business method on an EJB object, the method call is delegated to any available instance in the M ethod-Ready Pool.
Whilethe instance is executing the request, it is unavailable for use by other EJB objects. Once the instance has
finished, itisimmediately available to any EJB object that needsit. Thisis slightly different from the instance pool for
entity beans described in Chapter 11. In the entity instance pool, a bean instance might be swapped in to service an
EJB object for several method invocations. Statel ess session instances are only dedicated to an EJB object for the
duration of the method.

Although vendors can choose different strategies to support stateless session beans, it’ s likely that vendors will use
an instance-swapping strategy similar to that used for entity beans (the strategy utilized by entity beansis described
in Chapter 11). However, the swap is very brief, lasting only as long as the business method needs to execute. When
aninstanceisswappedin, itsSessi onCont ext changesto reflect the context of its EJB object and the client
invoking the method. The bean instance may be included in the transactional scope of the client’ s request, and it may
access Sessi onCont ext information specific to the client request, for example, the security and transactional
methods. Once the instance has finished servicing the client, it is disassociated from the EJB object and returned to
the M ethod-Ready Pool.

34 The duration of a stateless bean instance’s life is assumed to be very long. However, some EJB servers may actu-
ally destroy and create instances with every method invocation, making this strategy kss attractive. Consult your vendor’'s
documentation for details on how your EJB server handles statel ess instances.

Copyright (c) 2001 O'Reilly & Associates 255

Statel ess session beans are not subject to activation and never havetheir ej bAct i vat e() or
ej bPassi vat e() calback methodsinvoked. The reason issimple: statel ess instances have no conversational
state that needsto be preserved. (Stateful session beans do depend on activation, aswe'll see later.)

Clients that need aremote or local reference to a statel ess session bean begin by invoking thecr eat e() method
on the bean’ s EJB home:

(pj ect ref = jndi Gonnecti on. | ookup(" ProcessPaynent Hone") ;
Pr ocessPaynent HoneRenot e hone = (Pr ocessPaynent HoneRenot e)
Por t abl eRenot e(hj ect . nar row(r ef , ProcessPaynent HoneRenot e. ¢l ass) ;

Pr ocessPaynent Renot e pp = hone. create();

Unlike the entity bean and stateful session bean, invokingthecr eat e() method doesnot result inacall to the
bean’sej bCr eat e() method. In statel ess session beans, calling the EJB home'scr eat e() method resultsin the
creation of an EJB object for the client, but that isall. Thee] bCr eat e() method of a stateless session bean is only
invoked oncein the life cycle of an instance—when it istransitioning from the Does Not Exist state to the Method-
Ready Pool. Itisn’t reinvoked every time a client requests a remote reference to the bean.

That’s why statel ess session beansare limited to a single no-argument create method; there is no way for the
container to anticipate which create method the client might invoke, so only one standard no-argument cr eat e()
method is allowed.

Transitioning out of the Method-Ready Pool: The death of a statel ess bean instance

Bean instances |eave the M ethod-Ready Pool for the Does Not Exist state when the server no longer needs the
instance. This occurs when the server decides to reduce the total size of the Method-Ready Pool by evicting one or
more instances from memory. The process begins by invoking theej bRenove() method on the instance. At this
time, the bean instance should perform any cleanup operations, like closing open resources. Theej bRenove()
method is only invoked oncein thelife cycle of a statel ess session bean’ s instance—when it is about to transition to
the Does Not Exist state. When aclient invokes one of ther enove() methods on a statel ess session bean’ s remote
or home interface, it is not delegated to the bean instance. The client’ sinvocations of this method simply invalidate
the stub and releases the EJB object; it notifies the container that the client no longer needs the bean. The container
itself invokestheej bRenove() method on the stateless instance, but only at the end of the instance’slife cycle.
Again, thisisvery different from both stateful session beans and entity beans, which suffer more destructive
consequences when the client invokes aremove method. During theej bRenove() method, the

Sessi onCont ext and accessto the INDI ENC is still available to the bean instance. Following the execution of
theej bRenmove() method, the bean isdereferenced and eventually garbage collected.

The Stateful Session Bean

Stateful session beans offer an alternative that lies between entity beans and statel ess session beans. Stateful
session beans are dedicated to one client for the life of the bean instance; a stateful session bean acts on behalf of a
client asits agent. They are not swapped among EJB objects or kept in an instance pool like entity and statel ess bean
instances. Once a stateful session bean isinstantiated and assigned to an EJB object, it is dedicated to that EJB
object for itsentirelife cycle.®

Stateful session beans maintain conversational state, which means that the instance variables of the bean class can
cache datarelative to the client between method invocations. This makesit possible for methodsto be

35 This is a conceptual model. Some EJB containers may actually use instance swapping with stateful session beans
but make it appear as if the same instance is servicing al requests. Conceptually, however, the same stateful session bean instance
services dl requests.

Copyright (c) 2001 O'Reilly & Associates 256

interdependent, so that changes made by methods to the bean’ s state can affect the result of subsequent method
invocations. In contrast, the statel ess session beans we have been talking about do not maintain conversational
state. Although statel ess beans may have instance variables, these fields are not specific to one client. A stateless
instance is swapped among many EJB objects, so you can’t predict which instance will service amethod call. With
stateful session beans, every method call from aclient is serviced by the same instance (at |east conceptually), so the
bean instance’ s state can be predicted from one method invocation to the next.

Although stateful session beans maintain conversational state, they are not themselves persistent like entity beans.
Entity beans represent data in the database; their persistent fields are written directly to the database. Stateful
session beans, like statel ess beans, can access the database but do not represent data in the database. In addition,
stateful beans are not used concurrently like entity beans. If you have an entity EJB object that wraps an instance of
the ship called Paradise, for example, al client requests for that ship will be coordinated through the same EJB
object.® With stateful session beans, the EJB object is dedicated to one client—stateful session beans are not used
concurrently.

Stateful session beans are often thought of as extensions of the client. This makes sense if you think of aclient as
being made up of operations and state. Each task may rely on some information gathered or changed by a previous
operation. A GUI client is a perfect example: when you fill in the fields on a GUI client you are creating conversational
state. Pressing a button executes an operation that might fill in more fields, based on the information you entered
previously. Theinformation in the fields isconversational state.

Stateful session beans allow you to encapsul ate the business logic and the conversational state of aclient and move
it to the server. Moving thislogic to the server thins the client application and makes the system as awhole easier to
manage. The stateful session bean acts as an agent for the client, managing processes or wor kflow to accomplish a
set of tasks; it manages the interactions of other beansin addition to direct data access over several operations to
accomplish acomplex set of tasks. By encapsulating and managing workflow on behalf of the client, stateful beans
present asimplified interface that hides the details of many interdependent operations on the database and other
beans from the client.

EJB 2.0: Modifying the Reservation EJB

The Reservation EJB that was used in Chapter 7 will be modified slightly so that it can be created with all its
relationships identified right away. To accommodate this, we overload theej bCr eat e() method:

public abstract class ReservationBean
i npl enent s javax. gj b. EntityBean {
public Integer e bQ eate(Qustoner Renot e cust oner,
Q ui seLocal crui se,
Cabi nLocal cabi n, doubl e price){
set Amount Pai d(pri ce);
}
publ i ¢ voi d ej bPost O eat e(Qust oner Renot e cust oner
Q ui seLocal crui se,
Cabi nLocal cabin, doubl e price)
throws javax. g b. O eat eExcepti on{

set G ui se(cruise);
set Gabi n(cabi n);

try{
Integer prinkey = (Integer)custoner.get Prinmarykey();

36 This is a conceptual model. Some EJB containers may actually use separate EJB objects for concurrent access to
the same entity, relying on the database to control concurrency. Conceptually, however, the end result is the same.

Copyright (c) 2001 O'Reilly & Associates 257

Qust oner Local Hone hone = (Qust oner Local Hone)
j ndi Gont ext . | ookup(“j ava: conp/ env/ ej b/ Qust oner Hone”) ;
Qust oner Local custL = hone. fi ndByPri nar yKey(pri nikey) ;
set Qust oner (custL);
}cat ch(H nder Exception fe){

t hrow new O eat eException("Inval id Qustoner");

}

}

Relationship fields use local EJB object references, so we must convert the Cust oner Renpt e referenceto a

Cust oner Local referencein order to set the Reservation EJB’ s customer relationship field. Thisis accomplished
using the INDI ENC to locate the local home interface and then executing thef i ndByPr i mar yKey () method. As
an alternative, you could have implemented anej bSel ect method in the Reservation EJB to locate the

Cust oner Local reference.

The TravelAgent EJB

The Travel Agent EJB, which we have aready seen, is astateful session bean that encapsulates the process of
making areservation on acruise. Wewill develop this bean further to demonstrate how stateful session beans can be
used as workflow objects.

Although the Travel Agent EJB will use the local interfaces of other beans, we will not develop alocal interface for
the Travel Agent EJB. Therulesfor developing local interfaces for stateful session beans are the same as those for
stateless and entity beans. The Travel Agent EJB is designed to be used only by remote clients and therefore
doesn’t require a set of local component interfaces.

TravelAgent: Theremoteinterface

In Chapter 4, we developed an early version of the Tr avel Agent Renot e interface that contained asingle
business method, | i st Cabi ns() . Wearegoing to removethel i st Cabi ns() method and redefine the
Travel Agent EJB so that it behaves like aworkflow object. Later in the chapter, we will add a modified listing method
for obtaining amore specific list of cabinsfor the user.

As astateful session bean that modelsworkflow, Travel Agent manages the interactions of several other beans while
mai ntaining conversational state. The following code contains the modified Tr avel Agent Renot e interface:

package comtitan.travel agent;

inport java.rm . Renot eExcepti on;

inport javax.ej b. FH nder Excepti on;

inport comtitan. cruise. Guise;

inport comtitan. cust oner. Qust oner;

inport comtitan. processpaynent. G editCard;

public interface Travel Agent Renote extends javax. g b. EJBOyj ect {

publ i c voi d set G ui sel 0| nteger cruise)
t hrows Renot eException, H nder Excepti on;

publ i ¢ voi d set Gabi nl | nt eger cabi n)
t hrows Renot eException, H nder Excepti on;

publ i ¢ Ti cket DO bookPassage(G edi t Car dDO card, doubl e pri ce)
throws Renot eExcepti on, | nconpl et eGonver sati onal S at €;

Copyright (c) 2001 O'Reilly & Associates 258

The purpose of the Travel Agent EJB isto make cruise reservations. To accomplish thistask, the bean needsto know
which cruise, cabin, and customer make up the reservation. Therefore, the client using the Travel Agent EJB needs to
gather thiskind of information before making the booking. The Tr avel Agent Renpt e interface provides methods
for setting the IDs of the cruise and cabin that the customer wants to book. We can assume that the cabin ID came
from alist and that the cruise ID came from some other source. The customer issetinthecr eat e() method of the
home interface—more about this later.

Once the customer, cruise, and cabin are chosen, the Travel Agent EJB is ready to process the reservation. This
operation is performed by thebookPassage() method, which needs the customer’s credit card information and
the price of the cruise. bookPassage() isresponsiblefor charging the customer’s account, reserving the chosen
cabin in the right ship on the right cruise, and generating aticket for the customer. How thisis accomplished is not
important to us at this point; when we are devel oping the remote interface, we are only concerned with the business
definition of the bean. We will discuss the implementation when we talk about the bean class.

Notethat thebookPassage() method throws an application-specific exception,

I nconpl et eConver sati onal St at e. Thisexception isused to communicate business problems encountered
while booking a customer on acruise. Thel nconpl et eConver sat i onal St at e exception indicates that the
Travel Agent EJB didn’t have enough information to process the booking. Thel nconpl et e-

Conver sati onal St at e application exception class isdefined below:

package comtitan.travel agent;

publ i c class | nconpl et eConversati onal Sate extends java. | ang. Exception {
publ i ¢ I nconpl et eGnver sati onal S at e() {super();}
publ i ¢ | nconpl et eGnversational Sate(Sring nsg){super(nsg);}

}
Dependent Object: TicketDO

LiketheCr edi t Car dDOand CheckDOclasses used in the ProcessPayment EJB, the Ti cket DOclass that
bookPassage() returnsisdefined as a pass-by-value object. It can be argued that aticket should be an entity
bean since it is not dependent and may be accessed outside the context of the Travel Agent EJB. However,
determining how a business object is used can also dictate whether it should be abean or simply aclass. The

Ti cket DOobject, for example, could be digitally signed and emailed to the client as proof of purchase. This
wouldn’t befeasibleif the Ti cket DO object had been an entity bean. Enterprise beans are only referenced through
their remote interfaces and are not passed by value, as are serializable objects such asTi cket DO,

Credi t Car dDO, and CheckDO. Asan exercise in pass-by-value, we define the TicketDO asasimple seridizable
ojbect instead of abean.

EJB 2.0: TicketDO

EJB 2.0 utilizes thelocal interfaces of Customer, Cruise, and Cabin EJB’swhen creating anew Ti cket DO.

package comtitan. travel agent;

inport comtitan.crui se. 0 ui seLocal ;
inport comtitan. cabi n. Gabi nLocal ;
inport comtitan. custoner. Qust oner Renot e;

public class TicketDOinplenents java.io. Serializable {
public Integer custonerlD
public Integer cruiselD
public Integer cabinlD
publ i ¢ doubl e pri ce;
public Sring description;

publ i ¢ Ti cket D Qust oner Renot e cust oner

Copyright (c) 2001 O'Reilly & Associates 259

Q ui seLocal cruise, GabinLocal cabin,
doubl e pri ce)
throws javax. e b. F nder Excepti on, Renot eExcepti on,
j avax. nani ng. Nani ngExcept i on {

description = custoner. get H rst Nane() +
" + custoner. get Last Name() +
" has been booked for the "
+ crui se. get Nange() +
" cruise on ship" +
crui se.getShip().getNang() + ".\n" +
" Your accormmodations include " +
cabi n. get Nane() +
" a" + cabin. getBedQunt () +
" bed cabin on deck |evel " + cabin. get DeckLevel () +
".\n Total charge =" + price;
custoner | D = (I nt eger) cust oner. get Pri naryKey();
crui sel D = (Integer)cruise. get PrinarykKey();
cabi nl D = (I nteger) cabi n. get Pri marykey();
price = anount;

}

public Sring toString() {
return description;

}

}
EJB 1.1: TicketDO

EJB 1.1 utilizes the remote interfaces of Customer, Cruise, and Cabin EJB’swhen creating anew Ti cket DO.

package comtitan. travel agent;

inport comtitan. cruise. G ui seRenot €;
inport comtitan. cabi n. Cabi nRenot e;
inport comtitan. cust oner. Qust oner Renot €;
inport java.rni.RenoteException;

public class TicketDOinplenents java.io. Serializable {
public Integer custonerlD
public Integer cruiselD
public Integer cabinlD
publi ¢ doubl e price;
public Sring description;

publi ¢ Ti cket DO Qust oner Renot e cust oner ,
G ui seRenot e crui se, Cabi nRenot e cabi n,
doubl e pri ce)
throws j avax. ej b. A nder Excepti on, Renot eExcepti on,
j avax. nani ng. Nani ngExcept i on {

description = custoner. get H rst Nane() +
" + custoner. get Last Nane() +
' has been booked for the "
+ crui se. get Nane() +
" cruise on ship " + cruise.getShipl() +".\n" +
" Your accommodations include " +
cabi n. get Nane() +

Copyright (c) 2001 O'Reilly & Associates 260

" a" + cabin. getBedQunt () +
" bed cabin on deck level " + cabin.getDeckLevel () +
".\n Total charge =" + price;

custoner | D = (I nt eger) cust oner . get Pri naryKey();
crui sel D = (I nteger)cruise. get Pri naryKey();
cabi nl D = (I nteger)cabi n. get Pri naryKey();

price = anount;

}
public Sring toString() {
return description;

}

}
TravelAgentHomeRemote: The homeinterface

Starting withthe Tr avel Agent HoneRenpt e interface that we developed in Chapter 4, we can modify the
creat e() method to take aremote reference to the customer who is making the reservation:

package comtitan.travel agent;
inport java.rm.Renot eExcepti on;
inport javax.ejb. O eat eException;
inport comtitan. custoner. Qust oner;

public interface Travel Agent HoneRenot e ext ends j avax. gj b. EJB-bne {

publ i c Travel Agent creat e(Qustoner Renote cust)
throws Renot eException, O eateBException;

}

Thecr eat e() method in this home interface requires that aremote reference to a Customer EJB be used to create
the Travel Agent EJB. Because there are no other cr eat e() methods, you can’t create a Travel Agent EJB if you
don’t know who the customer is. The Customer EJB reference provides the Travel Agent EJB with some of the
conversational stateit will need to processthebookPassage() method.

Taking a peek at the client view

Before settling on definitions for your component interfaces, it is agood ideato figure out how the bean will be used
by clients. Imagine that the Travel Agent EJB is used by a Java application with GUI fields. The GUI fields capture the
customer’ s preference for the type of cruise and cabin. We start by examining the code used at the beginning of the
reservation process:

Gontext jndi Gntext = getlnitia Gntext();
oj ect ref = jndi Gontext. | ookup(" Qust oner Hone") ;
Qust oner HoneRenot e cust oner Hone =(Qust oner HoneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Qust oner HoneRenot e. cl ass) ;

Sring I'n = tfLast Nane. get Text () ;

Sring fn =tfHrstNane. get Text ();

Sring m = tfMddl eNane. get Text () ;

Qust oner cust oner = cust oner Hone. create(nextI D In, fn, mM);

ref = jndi Gontext. | ookup("Travel Agent Hone");
Travel Agent HoneRenot e hone = (Tr avel Agent HoneRenot)
Por t abl eRenot e(hj ect . narrow(ref, Travel Agent HoneRenot e. cl ass) ;

Copyright (c) 2001 O'Reilly & Associates 261

|Tr avel Agent Renot e agent = hone. cr eat e(cust oner) ;

This snippet of code creates a new Customer EJB based on information the travel agent gathered over the phone.
The Cust orrer Renpt e referenceisthen used to create a Travel Agent EJB. Next, we gather the cruise and cabin

choices from another part of the applet:
Integer cruise id =
new | nt eger (text F el d_crui seNunber . get Text ());

Integer cabinid =
new | nt eger (text H el d_cabi nNunber . get Text ());

agent . set Q ui sel O(cruise_id);
agent . set Gabi nl O cabi n_i d);

The user chooses the cruise and cabin that the customer wishesto reserve. These IDs are set in the Travel Agent

EJB, which maintains the conversational state for the whole process.

At the end of the process, the travel agent completes the reservation by processing the booking and generating a
ticket. Because the Travel Agent EJB has maintained the conversational state, caching the customer, cabin, and cruise
information, only the credit card and price are needed to compl ete the transaction:

| ong cardNuniber = Long. par seLong(text H el d_car d\unier . get Text ());
Date date =

dateFornatter.fornat (text H el d_cardExpiration. get Text());
Sring cardBrand = textF el d_cardBrand. get Text () ;
QeditGardDO card = new O edi t Car dDJ car d\unioer , dat e, car dBrand) ;
doubl e price =
doubl e. val ued (text F el d_crui sePri ce. get Text ()) . doubl eVal ue();
Ti cket DO ti cket = agent. bookPassage(card, price);
PrintingService. print(ticket);

We can how move ahead with development; this summary of how the client will use the Travel Agent EJB confirms

that our remote interface and home interface definitions are workabl e.

TravelAgentBean: Thebean class

We now implement all the behavior expressed in the new remote interface and homeinterface for the Travel Agent

EJB. Hereisapartial definition of thenew Tr avel Agent Bean:™

EJB 2.0: TravelAgentBean

inport comtitan.reservation.*;

inport java.sql.*;

inport javax. sql . Dat aSour ce;

inport java.util.\Vector;

inport java.rm.Renot eExcepti on;

i nport j avax. nam ng. Nam ngExcept i on;
inport javax. ej b. EJBExcepti on;

public class Travel Agent Bean i npl enents j avax. ej b. Sessi onBean {

37

If you're modifying the bean developed

in

Chapter 4, remember to delete thel i st Cabi n() method. We will add a new implementation of that method later in this chapter.

Copyright (c) 2001 O'Reilly & Associates

262

publ i ¢ Qust oner Renot e cust oner ;
public QuiselLocal cruise;
publi ¢ Gabi nLocal cabi n;

public javax. g b. Sessi onCont ext ej bGont ext ;
publi ¢ j avax. naming. Gont ext j ndi Cont ext ;

public voi d e bGreat e(Qust oner Renot e cust) {
custoner = cust;
}
public voi d set Gabi nl | nt eger cabi nl D
throws javax. ej b. FH nder Exception {
try {
Cabi nHoneLocal hone = (Gabi nHoneLocal)
j ndi Gont ext . | ookup("j ava: conp/ env/ ej b/ Cabi nHong") ;

cabi n = hone. fi ndByPri nar yKey(cabi nl D ;
} cat ch(Renot eException re) {
t hrow new EJBException(re);

}

public voi d set Guisel I nteger cruiselD
throws javax. j b. A nder Exception {
try {
Q ui setbneLocal hone = (G ui setbneLocal)
j ndi Gont ext . | ookup("j ava: conp/ env/ e b/ O ui seHone") ;

crui se = hone. fi ndByPri naryKey(cruiselD;
} cat ch(Renot eException re) {
t hr ow new EJBException(re);

}

}
publ i ¢ Ti cket DO bookPassage(G edi t Car dDO card, doubl e pri ce)
throws | nconpl et eConversational Sate {

if (custoner = null || cruise = null || cabin = null)
{
t hrow new | nconpl et eConver sati onal S at e() ;
}
try {

Reser vat i ontoneLocal restone =
(Reservat i onHoneLocal)
j ndi Gont ext . | ookup
("j ava: conp/ env/ ej b/ Reser vat i ontbng") ;

ReservationLocal reservation =
reshone. creat e(cust oner, cruise, cabin, price);

(pj ect ref = jndi Gontext. | ookup
("] ava: conp/ env/ ej b/ Pr ocessPaynent Hone") ;

Pr ocessPaynent HoneRenot e ppHone =
(Pr ocessPaynent HoneRenot €)

Copyright (c) 2001 O'Reilly & Associates

263

Por t abl eRenot e(hj ect . nar r ow
(ref, ProcessPaynent HoneRenot e. cl ass);

Pr ocessPaynent Renot e process = ppHone. create();
process. byQedi t (custoner, card, price);

TicketDO ticket =
new Ti cket DJ cust oner, cr ui se, cabi n, price);
return ticket;
} catch(Exception e) {
t hrow new EJBException(e);
}

}
public void e bRenove() {}

public void e bActivate() {}
public voi d e bPassivate() {}

public voi d set Sessi onCont ext (j avax. €] b. Sessi onCont ext cnt x)

{

e bGontext = cntx;

try {
jndi Gontext = new javax. namng. I nitial Gontext();

} cat ch(Nami ngException ne) {

t hrow new EJBExcepti on(ne);

}
}

EJB 1.1: TravelAgentBean

inport comtitan.reservation.*;

inport java. sdql.*;

inport javax.sql . Dat aSource;

inport java. util.\Vector;

inport java.rm . Renot eException;

i nport j avax. nami ng. Nam ngExcept i on;
inport javax. ej b. EJBExcepti on;

public class Travel AgentBean inpl enents j avax. ej b. Sessi onBean {

publ i ¢ Qust oner Renot e cust oner ;
public G ui seRenot e crui se;
publ i ¢ Cabi nRenot e cabi n;

public javax. g b. Sessi onCont ext ej bGont ext ;
publi ¢ javax. naning. Gont ext j ndi Cont ext ;

public voi d ej bQ eat e(Qust oner Renot e cust) {
cust oner = cust;

}

publ i c voi d set Gabi nl (I nteger cabi nl D)

throws javax. ej b. F nder Exception {

try {
Cabi nHoneRenot e hone = (Gabi nHoneRenot €)

Copyright (c) 2001 O'Reilly & Associates

264

get Hone(" Gabi nHone", Cabi nHoneRenot e. ¢l ass) ;
cabi n = hone. fi ndByPri nar yKey(cabinl D);
} cat ch(Renot eException re) {
t hr ow new EJBException(re);
}
}

public voi d set G uisel I nteger cruiselD

throws javax. ej b. A nder Exception {

try {
Q ui setbneRenot e hone = (G ui seHoneRenot €)
get Hore(" @ ui setbne”, C ui setbneRenot e. ¢l ass) ;
crui se = hone. fi ndByPri naryKey(cruiselD;

} cat ch(Renot eException re) {
t hr ow new EJBException(re);

}

}
publ i ¢ Ti cket DO bookPassage(G edi t Car dDO card, doubl e pri ce)

throws | nconpl et eConversational Sate {

if (custoner = null || cruise = null || cabin = null) {
t hr ow new | nconpl et eConver sati onal S ate();

}

try {

Reser vat i ontbneRenot e restHone =
(Reservat i onHoneRenot) get Hone(" Reser vat i ontone",
Reser vat i ontHoneRenot e. ¢l ass) ;
Reservat i onRenot e reservation =
resHone. creat e(cust oner, cruise, cabin, price);
Pr ocessPaynent HoneRenot e ppHone =
(Pr ocessPaynent HoneRenot €)
get Hone(" Pr ocessPaynent Hone",

Pr ocessPaynent HoneRenot e. ¢l ass) ;
Pr ocessPaynent Renot e process = ppHone. create();
process. byQedi t (custoner, card, price);

TicketDOticket =
new Ti cket DO cust oner, cr ui se, cabi n, price);
return ticket;
} catch(Exception e) {
t hrow new EJBException(e);
}

}
public voi d e bRenove() {}

public void e bActivate() {}
public voi d ej bPassivate() {}

public voi d set Sessi onCont ext (j avax. €] b. Sessi onCont ext cnt x)

{
e bGontext = cntx;
try {
jndi Gontext = new javax. namng. I nitial Gontext();
} cat ch(Nami ngException ne) {

t hr ow new EJBExcepti on(ne);

Copyright (c) 2001 O'Reilly & Associates

265

}

}
protected (pject gettHone(Sring nane, d ass type) {
try {
(oj ect ref =

j ndi Gont ext . | ookup("j ava: conp/ env/ j b/ " +nane) ;
return Portabl eRenot e(hj ect. narrow(ref, type);
} cat ch(Nam ngException ne) {
t hr ow new EJBExcepti on(ne);

}

}

Thereisalot of codeto digestinthe Tr avel Agent Bean class definition, so we will approach it in small pieces.
First, let'sexaminetheej bCr eat e() method:

public class Travel Agent Bean i npl enents j avax. ej b. Sessi onBean {
publ i ¢ Qust oner Renot e cust oner ;
publ i c j avax. e b. Sessi onCont ext ej bGont ext ;
publ i ¢ j avax. nam ng. Cont ext j ndi Cont ext ;

public voi d e bQ eat e(Qust oner Renot e cust) {
cust oner = cust;

}

When the bean is created, the remote reference to the Customer EJB is passed to the bean instance and maintained in
thecust oner field. Thecust oner fieldispart of the bean’s conversational state. We could have obtained the
customer’ sidentity as an integer ID and constructed the remote reference to the Customer EJB in the

ej bCr eat e() method. However, we passed the reference directly to demonstrate that remote references to beans
can be passed from aclient application to abean. They can also be returned from the bean to the client and passed
between beans on the same EJB server or between EJB servers.

Referencesto the Sessi onCont ext and JNDI context are held in fields calledej bCont ext and
j ndi Cont ext.Theej b andj ndi prefixeshelp to avoid confusion between the different content types.

When abean is passivated, the INDI ENC must be maintained as part of the bean’s conversational state. This means
that the INDI context should not bet r ansi ent . Onceafield is set to reference the INDI ENC, the reference
remainsvalid for thelife of the bean. Inthe Tr avel Agent Bean, we set thefieldj ndi Cont ext to referencethe
JNDI ENC whenthe Sessi onCont ext isset athe beginning of the bean’slife cycle:

public voi d set Sessi on(ont ext (j avax. e b. Sessi onCont ext cntx) {
e bGontext = cntx;
try {
jndi Gontext = new Initial Gontext();
} cat ch(Nani ngException ne) {
t hr ow new EJBExcepti on(ne);

}

}

The EJB container makes special accommodations for referencesto Sessi onCont ext , the INDI ENC, references
to other beans (remote and home interface types) and the JTA User Tr ansact i on type, which isdiscussed in
detail in Chapter 14. The container must maintain any instance fields that reference objects of these types as part of
the conversational state, even if they are not serializable. All other fields must be serializable or nul | when the bean
is passivated.

Copyright (c) 2001 O'Reilly & Associates 266

The Travel Agent EJB has methods for setting the desired cruise and cabin. These methods take Integer IDs as

arguments and retrieve references to the appropriate Cruise or Cabin EJB from the appropriate home interface. These
references are also a part of the Travel Agent EJB’ s conversational state;

EJB 2.0: setCabinlD() and getCabinl D()

publ i ¢ void set Gabi nl I nteger cabi nl D)
throws javax. ej b. H nder Exception {
try {
Cabi nHoneLocal hone = (Gabi nHoneLocal)
j ndi Gont ext . | ookup("j ava: conp/ env/ ej b/ Cabi nHone") ;

cabi n = hone. fi ndByPri nar yKey(cabi nl D ;
} cat ch(Renot eException re) {
t hrow new EJBException(re);
}
}
public voi d set G ui sel O I nteger cruiselD
throws j avax. ej b. H nder Exception {
try {
Q ui setonelLocal hone = (QO ui seHoneLocal)
j ndi Gont ext . | ookup("] ava: conp/ env/ €j b/ G ui setone") ;

crui se = hone. fi ndByPri naryKey(crui selD;
} cat ch(Renot eException re) {
t hrow new EJBException(re);

}

EJB 1.1: setCabinl D() and getCabinl D()

public voi d set Gabi nl (I nteger cabi nl D
throws javax. ej b. H nder Exception {
try {
Gabi nHoneRenot e hone =
(Gabi nHone) get Hone(" Cabi nHone™ , Gabi nHone. ¢l ass) ;
cabi n = hone. fi ndByPri nar yKey(cabi nl D ;
} cat ch(Renot eException re) {
t hr ow new EJBException(re);
}
}
publ i c void set G ui sel (I nteger cruiselD
throws javax. ej b. H nder Exception {
try {
Q ui setbne hone =
(Q ui setbrne) get Hone(" O ui seHbne”, O ui seHbne. cl ass);
crui se = hone. fi ndByPri naryKey(cruiselD;
} cat ch(Renot eException re) {
t hrow new EJBException(re);

}

It may seem strange that we set these values using the Integer | Ds, but we keep them in the conversational state as
entity bean references. Using the Integer | Ds for these objectsis simpler for the client, which doesn’t work with their
entity bean references. In the client code, we get cabin and cruise IDs from text fields. Why make the client obtain a

Copyright (c) 2001 O'Reilly & Associates 267

bean reference to the Cruise and Cabin EJBswhen an ID issimpler? In addition, using the I Dsis cheaper than
passing aremote reference in terms of network traffic. We need the EJB object references to these bean typesin the
bookPassage() method, so we usetheir IDsto obtain actual entity bean references. We could have waited until
thebookPassage() method wasinvoked before reconstructing the remote references, but this way we keep the
bookPassage() method simple.

JNDI ENC and EJB References

The INDI ENC can be used to obtain areference to the home interface of other beans. Using the ENC lets you avoid
hardcoding vendor-specific INDI propertiesinto the bean. In other words, the INDI ENC alows EJB referencesto be
network and vendor independent.

Inthe EJB 2.0listing for the Tr avel Agent Bean, the INDI ENC is used to access both the remote home interface
of the ProcessPayment EJB as well asthelocal home interfaces of the Cruise and Cabin EJBs. Thisillustratesthe
flexiblity of the INDI ENC, which can provide adirectory for both local and remote enterprise beans.

Inthe EJB 1.1 listing for the Tr avel Agent Bean class, get Hone() isaconvenience method that hides the
details of obtaining remote referencesto EJB home objects. Theget Hone() method usesthej ndi Cont ext ref-
erence to obtain references to the Cabin, Ship, ProcessPayment, and Cruise home objects.

The EJB specification recommends that all EJB references be boundtothe” j ava: conp/ env/ ej b" context,
which isthe convention followed here. In the Travel Agent EJB, we pass in the name of the home object we want and
appendittothe"”j ava: conp/ env/ ej b" context to do the lookup.

Remote EJB referencesin the JNDI ENC

The deployment descriptor provides a special set of tags for declaring remote EJB references. Here' s how the <ej b-
r ef > tag and its subelements are used:

<gj b-ref>
<gj b-r ef - nane>ej b/ Pr ocessPaynent Hone</ gj b-r ef - nane>
<gj b-ref -t ype>Sessi on</ €] b-ref - t ype>
<hone>
comtitan. processpaynent . ProcessPaynent HoneRenot e
</ hone>
<r enot e>
comtitan. processpaynent . ProcessPaynent Renot e
</ renot e>
</ ¢ b-ref>

The<ej b- r ef > tag and its subelements should be self-explanatory: they define aname for the bean within the
ENC, declare the bean’ stype, and give the names of its remote and home interfaces. When abean is deployed, the
deployer mapsthe <ej b- r ef > elementsto actual beansin away specific to the vendor. The<ej b-r ef >
elements can also be linked by the application assembler to beansin the same deployment (a subject covered in detail
in Chapter 16, which is about the XML deployment descriptors). EJB 2.0 devel opers should try to use local
component interfaces for beans located in the same deployment and container.

At deployment time, the EJB container’ stools map the remote references declared inthe <ej b- r ef > elementsto
entity beansin other EJB containers, which might located on the same machine or at a different node on the network.

EJB 2.0: Remote EJB referencesin the JNDI ENC

Copyright (c) 2001 O'Reilly & Associates 268

The deployment descriptor also provides a special set of tags, the<ej b- | ocal - r ef > elements, to declare local
EJB references: enterprise beans that are co-located in the same container and deployed in the same EJB JAR file.
The<ej b- | ocal - r ef > elementsare declared immediately after the<ej b- r ef > elements.

<ej b-1ocal -ref >
<ej b-ref - nane>ej b/ G ui seHone</ gj b- r ef - nane>
<gj b-ref-type>Entity</ g b-ref-type>
< | ocal - hone >
comtitan. crui se. O ui seHoneLocal
</l ocal - hone >
<l ocal >
comtitan. cruise. G ui seLocal
</l ocal >
<ej b-11 nk>C ui seEIB< gj b-11 nk>
</ejb-local -ref>
<gj b-1ocal -ref>
<gj b-r ef - nane>ej b/ Gabi nHone</ gj b-r ef - nane>
<gj b-ref-type>Entity</ g b-ref-type>
< ocal - horne >
comti tan. cabi n. Cabi nHoneLocal
</l ocal - hone >
< ocal >
comtitan. cabi n. Gabi nLocal
</l ocal >
<gj b- 1 i nk>Cabi NEJB</ €] b-1i nk>
</ ejb-local -ref>

The<ej b- | ocal - r ef > tag defines aname for the bean within the ENC, declares the bean’ stype, and givesthe
names of itslocal component interfaces. The<ej b- | ocal - r ef > elements should be linked explicitly to other co-
located beans using the <ej b- | i nk> element, but thisis not required—the application assembler or deployer can
doit later. Thevalueof the<ej b-1 i nk> element withinthe<ej b-1 ocal - r ef > must equal the<ej b- nane>
of the appropriate bean in the same JAR file.

At deployment time the EJB container’ stools map the local references declared inthe<ej b- | ocal - r ef >
elements to entity beans that are co-located in the same container system.

The book Passage() method

The last point of interest in our bean definitionisthebookPassage() method. This method leveragesthe
conversational state accumulated by ej bCreat e(),set Cabi nl D(),andset Cr ui sel D() methods to
process areservation for a customer.

EJB 2.0: bookPassage() method

publ i ¢ Ti cket DO bookPassage(G edi t Car dDO card, doubl e pri ce)
throws | nconpl et eConversational Sate {

if (custoner = null || cruise = null || cabin = null) {
t hr ow new | nconpl et eConver sati onal S ate() ;

}

try {

Reser vat i onHoneLocal restone =
(Reservat i onHonelLocal)
j ndi Gont ext . | ookup
("j ava: conp/ env/ ej b/ Reser vat i ontHong") ;

Copyright (c) 2001 O'Reilly & Associates 269

ReservationLocal reservation =
restbne. creat e(cust oner, cruise, cabin, price);

(pj ect ref = jndi Gontext. | ookup
("]j ava: conp/ env/ ej b/ Pr ocessPaynent Hone") ;

Pr ocessPaynent HoneRenot e ppHone =
(ProcessPaynent HoneRenot e)
Por t abl eRenot e(hj ect . nar r ow
(ref, ProcessPaynent HoneRenot e. cl ass) ;

Pr ocessPaynent Renot e process = ppHone. create();
process. byQedi t (custoner, card, price);

TicketDO ticket =
new Ti cket DO cust oner, cr ui se, cabi n, pri ce);
return ticket;
} catch(Exception e) {
t hr ow new EJBExcepti on(e);

}

EJB 1.1: bookPassage() method

publ i ¢ Ti cket DO bookPassage(Q edi t Gar dDO card, doubl e price)
throws | nconpl et eConversational Sate {

if (custoner = null || cruise = null || cabin = null) {
t hrow new | nconpl et eConver sati onal S at e() ;

}

try {

Reser vat i onHoneRenot e resHone =
(Reser vat i onHoneRenot €) get Hone(" Reser vat i onHone",
Reser vat i onHoneRenot e. cl ass);
Reservati onRenot e reservation =
resHone. creat e(cust oner, cruise, cabin, price);
Pr ocessPaynent HoneRenot e ppHone =
(Pr ocessPaynent HoneRenot €)
get Hone(" Pr ocessPaynent Hone",
Pr ocessPaynent HoneRenot e. cl ass) ;
Pr ocessPaynent Renot e process = ppHone. create();
process. byQredi t (custoner, card, price);

TicketDO ticket =
new Ti cket DJ cust oner, cr ui se, cabi n, price);
return ticket;
} catch(BException e) {
/1 BB 1.0: throw new Renot eException("", €);
t hr ow new EJBException(e);

}

This method exemplifies the workflow concept. It uses several beans, including the Reservation, ProcessPayment,
Customer, Cabin and the Cruise EJBs to accomplish one task: book a customer on a cruise. Deceptively simple, this
method encapsul ates several interactions that ordinarily might have been performed on the client. For the price of

onebookPassage() cal from the client, the Travel Agent EJB performs many operations:

Copyright (c) 2001 O'Reilly & Associates

L ook up and obtain areference to the Reservation EJB’s EJB home.

Create anew Reservation EJB resulting in a database insert.

L ook up and obtain aremote reference to the ProcessPayment EJB’s EJB home.
Create a new ProcessPayment EJB.

Charge the customer’ s credit card using the ProcessPayment EJB.

o g~ w NP

Generateanew Ti cket DOwith all the pertinent information describing the customer’ s purchase.

From a design standpoint, encapsul ating the workflow in a stateful session bean means aless complex interface for
the client and more flexibility for implementing changes. We could, for example, easily changethebookPassage()
method to check for overlapped booking (when a customer books passage on two different cruises that overlap).
Thistype of enhancement would not change the remote interface, so the client application wouldn’t need
modification. Encapsulating workflow in stateful session beans allows the system to evolve over time without impact-
ing clients.

In addition, the type of clients used can change. One of the biggest problems with two-tier architectures—besides
scalability and transactional control—isthat the business logic is intertwined with the client logic. This makesit
difficult to reuse the business logic in adifferent kind of client. With stateful session beansthisis not aproblem,
because stateful session beans are an extension of the client but are not bound to the client’ s presentation. Let’s say
that our first implementation of the reservation system used a Java applet with GUI widgets. The Travel Agent EJB
would manage conversational state and perform all the business logic while the appl et focused on the GUI
presentation. If, at alater date, we decideto go to athin client (HTML generated by a Java servlet, for example), we
would simply reuse the Travel Agent EJB in the serviet. Because all the businesslogicisin the stateful session bean,
the presentation (Java appl et or servlet or something else) can change easily.

The Travel Agent EJB also provides transactional integrity for processing the customer’ sreservation. If any one of
the operations within the body of thebookPassage() method fails, all the operations are rolled back so that none
of the changes are accepted. If the credit card can’t be charged by the ProcessPayment EJB, the newly created
Reservation EJB and its associated record are removed. The transactional aspects of the TravelAgent EJB are
explained indetail in Chapter 14.

InEJB 2.0, remote and local EJB references can be used within the same workflow. For example, the
bookPassage() method useslocal references when accessing the Cruise and Cabin beans, but
remote references when accessing the ProcessPayment and Customer EJB. Thisistotally
appropriate. The EJB container ensures that failures when accessing remote or local EJB references
will impact the entire transaction.

Why use a Reservation entity bean?

If we have a Reservation EJB, why do we need a Travel Agent EJB? Good question! The Travel Agent EJB usesthe
Reservation EJB to create areservation, but it also has to charge the customer and generate aticket. These are not
activitiesthat are specific to the Reservation EJB, so they need to be captured in a stateful session beanthat can
manage workflow and transactional scope. In addition, the Travel Agent EJB also provides listing behavior, which
spans conceptsin Titan's system. It would have been inappropriate to include any of these other behaviorsin the
Reservation entity bean. (For EJB 2.0 readers, the Reservation EJB was developed in chapter 7. For EJB 1.1 readers,
the code for this bean is available on the O’ Reilly web site.)

listAvailableCabing(): Listing behavior

As promised, we are going to bring back the cabin-listing behavior we played around with in Chapter 4. Thistime,
however, we are not going to use the Cabin EJB to get the list; instead, we will access the database directly.
Accessing the database directly is a double-edged sword. On one hand, we don’t want to access the database
directly if entity beans exist that can access the same information. Entity beans provide a safe and consistent
interface for a particular set of data. Once an entity bean has been tested and proven, it can be reused throughout the

Copyright (c) 2001 O'Reilly & Associates 271

system, substantially reducing dataintegrity problems. The Reservation EJB is an example of that kind of usage. In
addition, entity beans can pull together disjointed data and apply additional business logic such as validation, limits,
and security to ensure that data access follows the businessrules.

But entity beans cannot define every possible data access needed, and they shouldn’t. One of the biggest problems
with entity beansis that they tend to become bloated over time. Huge entity beans with dozens of methods are a sure
sign of poor design. Entity beans should be focused on providing data access to avery limited, but conceptually
bound, set of data. Y ou should be ableto update, read, and insert records or data. Data access that spans concepts,
like listing behavior, should not be encapsulated in one entity bean.

Systems always need listing behavior to present clients with choices. In the reservation system, for example,
customers need to choose a cabin from alist of available cabins. The word available is key to the definition of this
behavior. The Cabin EJB can provide uswith alist of cabins, but it doesn’t know whether any given cabinis
available. For EJB 2.0, Chapter 7 defined the Cabin-Reservation relationship asunidirectional where the Reservation
was aware of its Cabin relationships, but not the other way around.

The question of whether acabinisavailableisrelevant to the process using it—in this case Travel Agent EJB—but
may not be relevant to the cabin itself. As an analogy, an automobile entity would not care what road it’son; it is
only concerned with characteristics that describe its state and behavior. An automobile-tracking system would be
concerned with the location of individual automobiles.

To get availability information, we need to compare the list of cabins on our ship to the list of cabinsthat have
aready been reserved. Thel i st Avai | abl eCabi ns() method does exactly that. It uses acomplex SQL query to
produce alist of cabinsthat have not yet been reserved for the cruise chosen by the client:

public Sring [] listAvailabl eCabi ns(int bedGount)
throws | nconpl et eConversational S ate {
if (cruise = null)
t hrow new | nconpl et eConver sati onal S at e() ;

Gonnection con = nul | ;
PreparedSatenent ps = null;;
ResultSet result = null;
try {
Integer cruisel D= (Integer)cruise.getPrinarykey();
I nteger shiplD = (Integer)
crui se. get Shi p() . get Pri naryKey();
con = get Gonnection();
ps = con. prepar eX at enent (
"select 1D NAME DECK LBEVEH. fromCABIN "+
"where SHP_ID=? and IDNOI IN "+
"(SELECT CABI N | D FROM RESERVATI ON “ +
“WERE QRUSEID=?)");

ps.setlnt (1, shiplDintVal ue());
ps.setlnt (2, cruiselDintValue());
result = ps. execut eQery();
Vector vect = new Vector();
vhile(result.next()) {
SringBuffer buf = new SringBuffer();
buf . append(resul t.getSring(1));
buf . append(',");
buf . append(resul t.getSring(2));
buf . append(',");
buf . append(resul t.getSring(3));
vect . addH enent (buf.toSring());

Copyright (c) 2001 O'Reilly & Associates 272

Sring [] returnArray = new Sring[vect.size()];
vect . copyl nto(returnArray);
return returnArray;
}
catch (Exception e) {
t hr ow new EJBExcepti on(e);

}
finally {

try {

if (result '=null) result.close();

if (ps!=null) ps.close();

if (conl=null) con.close();

}cat ch(SQLExcept i on se){se. print S ackTrace();}
}

EJB 1.1 readers use almost exactly the same codefor | i st Avai | abl eCabi ns() except for
how the Ship EJB’s D isobtained. EJB 1.1 readers should replace the line:

I nteger shiplD = (Integer)
crui se. get Ship().getPrimaryKey();

With theline:
I nt eger shipl D =crui se. get Shi pl D() ;

This changeis necessary because EJB 1.1 doesn’t support relationship fields.

Asyou can see, the SQL query is complex. It could have been defined using a method like

Cabi n. fi ndAvai | abl eCabi ns(Crui se crui se) intheCabin EJB. However, this method would be
difficult to implement because the Cabin EJB would need to access the Reservation EJB’ s data, which isanavigable
relationship. Another reason for accessing the database directly isto demonstrate that this kind of behavior isboth
normal and, in some cases preferred. In some cases, the query isfairly specific to the scenario and is not reusable. To
avoid adding finder methods for every possible query, you can instead simply use direct database access as shown
inthel i st Avai | abl eCabi ns() method. Direct database access generally has less of an impact on performance
because the container doesn’t have to manifest EJB object references, but its also less reusable. These things must
be considered when deciding if aquery for information should be done using direct database access or if anew
finder method should be defined.

Thel i st Avai | abl eCabi ns() method returnsan array of St r i ng objectsto the remote client. Thisis
important because we could have opted to return an collection of remote Cabinreferences, but we didn’t. The reason
issimple: we want to keep the client application as lightweight as possible. A list of St r i ng objectsis much more
lightweight than the alternative, a collection of remote references. In addition, a collection of remote references means
that client would be working with many stubs, each with its own connection to EJB objects on the server. By
returning alightweight string array, we reduce the number of stubs on the client, which keeps the client simple and
conserves resources on the server.

To make this method work, you need to createaget Connect i on() method for obtaining a database connection
and add ittothe Tr avel Agent Bean:

private Gonnection get Gnnection() throws SQException {
try {
Dat aSour ce ds = (Dat aSour ce) j ndi Gont ext . | ookup(
"j ava: conp/ env/ j dbc/titanCB');
return ds. get Gonnection();
} cat ch(Nami ngExcepti on ne) {throw new EIJBException(ne);}

}

Changethe remoteinterface for Travel Agent EJB toincludethel i st Avai | abl eCabi ns() method:

Copyright (c) 2001 O'Reilly & Associates 273

package comtitan. travel agent;

inport java.rm . Renot eExcepti on;

inport javax.ej b. FH nder Excepti on;

inport comtitan.cruise. Quise;

inport comtitan. cust oner. Qist oner;

inport comtitan. processpaynent. G editCard,

public interface Travel Agent Renote extends j avax. ej b. EJBOpj ect {

public voi d set Guisel 0| nteger cruise)
t hrows Renot eException, H nder Excepti on;

publ i ¢ voi d set Gabi nl | nt eger cabi n)
t hrows Renot eException, H nder Excepti on;

publ i ¢ Ti cket DO bookPassage(G edi t Car dDO card, doubl e pri ce)
throws Renot eExcept i on, | nconpl et eGonver sati onal S at €

public Sring [] listAvailabl eGabi ns(int bedGount)
throws Renot eException, | nconpl et eConversational S at e

}
EJB 2.0: The Travel Agent deployment descriptor

Thefollowing listing is an abbreviated version of the XML deployment descriptor use for the Travel Agent
application. It defined not only the Travel Agent EJB, but al so the Customer, Cruise, Cabin and Reservation EJBs.
The ProcessPayment EJB is not defined in this deployment descriptor becauseit is assumed to be deployed in a
separate JAR file, or possibly even an EJB server on adifferent network node.

<?xnh version="1.0"?>

<IDOCTYPE ej b-jar PLBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 2.0//BN'" "http://java. sun.contj2ee/ dtds/ejb-jar_2 0.dtd">

<gjb-jar>
<ent er pri se- beans>
<sessi on>
<ej b- nane>Tr avel Agent Bean</ ej b- nane>
<hone>comtitan.travel agent. Tr avel Agent Hone</ hone>
<renot e>comtitan. travel agent. Travel Agent </ r enot e>
<gj b-cl ass>
comtitan. travel agent. Travel Agent Bean
</ ej b-cl ass>
<sessi on-type>S at ef ul </ sessi on-t ype>
<transacti on-type>Qont ai ner </t ransact i on-t ype>

<ej b-ref>
<ej b-r ef - nane>ej b/ Pr ocessPaynent Hone</ ej b-r ef - nane>
<ej b-ref -t ype>Sessi on</ €] b-ref -t ype>
<hone>
comtitan. processpaynent . Pr ocessPaynent HoneRenot e
</ hone>
<r enot e>
comtitan. processpaynent . ProcessPaynent Renot e
</ renot e>
</ €] b-ref>
<ej b-1ocal -ref >

Copyright (c) 2001 O'Reilly & Associates 274

<gj b-r ef - nane>ej b/ Gabi nHone</ gj b-r ef - nane>
<ej b-ref-type>Entity</ g b-ref-type>
<l ocal - hone>
comtitan. cabi n. Cabi nHoneLocal
</ | ocal - hone>
<l ocal >comti t an. cabi n. Gabi nLocal </ | ocal >
</ejb-local -ref>
<ej b-1ocal -ref>
<gj b-ref - nane>ej b/ O ui setHone</ gj b-r ef - nane>
<ej b-ref-type>Entity</ g b-ref-type>
<l ocal - hone>
comtitan. crui se. G ui setbneLocal
</ | ocal - hone>
<l ocal >comtitan. crui se. @ ui seLocal </| ocal >
</ejb-local -ref>
<ej b-1ocal -ref>
<gj b-ref - nane>ej b/ Reser vat i ontbne</ gj b- r ef - nane>
<ej b-ref-type>Entity</ g b-ref-type>
<l ocal - hone>
comtitan. reservation. Reservati ontonelLocal
</ | ocal - hone>
<l ocal >comtitan. reservation. ReservationLocal </| ocal >
</ejb-local -ref>

<resour ce-ref>
<descri pti on>
Dat aSource for the Titan dat abase
</ descri pti on>
<res-ref-nane>j doc/ titanCB</ res-ref - nane>
<res-type> avax. sql . Dat aSour ce</ r es- t ype>
<r es- aut h>Cont ai ner </ r es- aut h>
</ resour ce-ref >
</ sessi on>
<entity>
<ej b- nane>Cabi nEJB</ €j b- nane>
<l ocal - hone>comti t an. cabi n. Gabi nHonelLocal </ | ocal - hone>
<l ocal >comti t an. cabi n. Gabi nLocal </ | ocal >

<entity>

<entity>
<ej b- nane>Q ui seEJB</ gj b- nane>
<l ocal - home>comtitan. crui se. O ui setbneLocal </ | ocal - hone>
<l ocal >comtitan. crui se. O ui seLocal </ | ocal >

<Jentity>
<entity>
<ej b- nane>Reser vat i onEJIB</ €] b- nane>
<l ocal - hone>
comtitan. reservation. Reservati ontbnelLocal
</ ocal - hone>
<l ocal >comtitan. reservation. ReservationLocal </ | ocal >

<Jentity>
</ enterpri se- beans>
<assentl y- descri pt or >
<security-rol e>
<descri pti on>

Copyright (c) 2001 O'Reilly & Associates

275

This rol e represents everyone
</ descri pti on>
<r ol e- nane>ever yone</ r ol e- nane>
</security-rol e>

<net hod- per m ssi on>
<r ol e- nane>ever yone</ r ol e- nane>
<net hod>
<gj b- nane>Tr avel Agent Bean</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per ni ssi on>

<cont ai ner-transacti on>
<net hod>
<ej b- nane>Tr avel Agent Bean</] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attri bute>
</ cont ai ner-transacti on>
</ assenbl y- descri pt or >
<ejb-jar>

EJB 1.1: The Travel Agent deployment descriptor

Use the following XML deployment descriptor when deploying the Travel Agent EJB. The most important difference
between this descriptor and the deployment descriptor used for the ProcessPayment EJB isthe <sessi on-t ype>
tag, which states that this bean is stateful, and the use of the <ej b- r ef > elementsto describe beans that are refer-
enced through the ENC:

<?xnh version="1.0"?>

<IDOCTYPE €j b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 1.1//BN' "http://java. sun.conij 2ee/dtds/ejb-jar_1 1.dtd">

<ej b-jar>
<ent er pri se- beans>
<sessi on>
<descri pti on>
Acts as a travel agent for booking passage on a ship.
</descri ption>
<ej b- nane>Tr avel Agent Bean</ ej b- nane>
<horme>comti tan. travel agent . Tr avel Agent Hone</ hone>
<renot e>comtitan. travel agent. Travel Agent </ r enot e>
<ej b-cl ass>
comtitan. travel agent. Travel Agent Bean
</ ej b-cl ass>
<sessi on-t ype>S at ef ul </ sessi on-type>
<transacti on-type>Cont ai ner </t ransact i on-t ype>

<gj b-ref>
<ej b-r ef - nane>gj b/ Pr ocessPaynent Hone</ ej b-r ef - nane>
<gj b-ref -type>Sessi on</ €j b-ref -t ype>
<hone>
comtitan. processpaynent . ProcessPaynent Hone
</ hone>
<r enot e>
comtitan. processpaynent . ProcessPaynent

Copyright (c) 2001 O'Reilly & Associates 276

</ renot e>
</ ejb-ref>
<gj b-ref>
<ej b-ref - nane>ej b/ Gabi nHone</ gj b-r ef - nane>
<ej b-ref-type>Entity</ g b-ref-type>
<hone>comti t an. cabi n. Gabi nHone</ hone>
<renot e>comtitan. cabi n. Gabi n</ r enot e>
</ejb-ref>
<ej b-ref>
<gj b-ref - nane>ej b/ O ui setHbne</ gj b-r ef - nane>
<ej b-ref-type>Entity</ g b-ref-type>
<horme>comti t an. crui se. O ui seHne</ hone>
<renot e>comtitan. crui se. O ui se</ r enot e>
</ ejb-ref>
<ej b-ref>
<gj b-r ef - nane>ej b/ Qust oner Hone</ €j b- r ef - nane>
<ej b-ref-type>Entity</ g b-ref-type>
<honme>com ti t an. cust oner . Qust oner Hone</ hone>
<renot e>comtitan. cust oner . Qust oner </ r enot >
</ ejb-ref>
<ej b-ref>
<ej b-ref - nane>ej b/ Reser vat i ontHone</ €] b- r ef - nane>
<ej b-ref-type>Entity</ g b-ref-type>
<hone>comtit an. r eser vat i on. Reser vat i onHone</ hone>
<renot e>comtitan. reservation. Reservation</renot e>

</ ejb-ref>

<resour ce-ref >

<descri pti on>
Dat aSource for the Titan dat abase

</ descri pti on>
<res-ref-nane>j doc/ titanCB</res-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</ r es- t ype>
<r es- aut h>Cont ai ner </ r es- aut h>

</resour ce-ref >

</ sessi on>
</ enterpri se-beans>

<assentl y- descri pt or >
<security-rol e>
<descri pti on>
This rol e represents everyone
</ descri pti on>
<r ol e- nane>ever yone</ r ol e- nane>
</security-rol e>

<net hod- per m ssi on>
<r ol e- nane>ever yone</ r ol e- nane>
<net hod>
<gj b- nane>Tr avel Agent Bean</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

<cont ai ner-transacti on>
<net hod>
<gj b- nane>Tr avel Agent Bean</ €] b- nane>

Copyright (c) 2001 O'Reilly & Associates

277

<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attri bute>
</ cont ai ner-transacti on>
</ assenbl y- descri pt or >
<ejb-jar>

Once you have generated the deployment descriptor, jar the Travel Agent EJB and deploy it in your EJB server. You
will also need to deploy the Reservation, Cruise, and Customer EJBs that you downloaded earlier. Based on the
business methods in the remote interface of the Travel Agent EJB and your past experiences with the Cabin, Ship, and
ProcessPayment EJBs, you should be able to create your own client application to test thiscode.

= #Exercise12.2, The Travel Agent EJB

The Life Cycle of a Stateful Session Bean

The biggest difference between the stateful session bean and the other bean typesis that stateful session beans
don’t use instance pooling. Stateful session beans are dedicated to one client for their entirelife, so thereisno
swapping or pooling of instances.® Instead of pooling instances, stateful session beans are simply evicted from
memory to conserve resources. The EJB object remains connected to the client, but the bean instance is dereferenced
and garbage collected during inactive periods. This means that a stateful bean must be passivated beforeit is evicted
to preserve the conversational state of the instance, and it must be activated to restore the state when the EJB object
becomes active again.

The bean’ s perception of itslife cycle depends on whether or not it implements a special interface called

j avax. ej b. Sessi onSynchr oni zat i on. Thisinterface defines an additional set of callback methods that
notify the bean of its participation in transactions. A bean that implementsSessi onSynchr oni zat i on can
cache database data across several method calls before making an update. We have not discussed transactionsin
detail yet, so we will not consider this part of the bean’slife cycle until Chapter 14. This section describes the life
cycle of stateful session beans that do not implement the Sessi onSynchr oni zat i on interface.

Thelife cycle of astateful session bean has three states: Does Not Exist, Method-Ready, and Passivated. This
sounds alot like a statel ess session bean, but the M ethod-Ready state is significantly different from the Method-
Ready Pool of stateless beans. Figure 12-2 shows the state diagram for stateful session beans.

[FIGURE]

Figure 12-2: stateful session bean life cycle

Does Not Exist State

When a stateful bean instanceisin the Does Not Exist state, it isnot an instance in the memory of the system. In
other words, it has not been instantiated yet.

38

Some vendors use pooling with stateful session beans, but that is a proprietary implementation and shouldn’t
impact the specified life cycle of the stateful session bean.

Copyright (c) 2001 O'Reilly & Associates 278

The Method-Ready State

Transitioning to the M ethod-Ready state

When aclientinvokesthecr eat e() method on an EJB home of a stateful session bean, itslife cycle begins. When
thecr eat e() method isreceived by the container, the container invokesnewl nst ance() onthe bean class,
creating anew instance of the bean. Next, the container invokesset Sessi onCont ext () ontheinstance,
handing it itsreferenceto the Sessi onCont ext , which it must maintain for life. At this point, the bean instanceis
assigned to its EJB object. Finally, the container invokestheej bCr eat e() method on the instance that matches
thecr eat e() method invoked by theclient. Onceej bCr eat e() has completed, the container returns the EJB
object’ sreference to the client. Theinstance is now in the Method-Ready State and is ready to service business
methods invoked by the client on the bean’ s remote reference.

Lifein the Method-Ready state

Whilein the Method-Ready State, the bean instance is free to receive method invocations from the client, which may
involve controlling the workflow of other beans or accessing the database directly. During this time, the bean can
maintain conversational state and open resourcesin itsinstance variables.

Transitioning out of the M ethod-Ready sate

Bean instances |eave the M ethod-Ready state to enter either the Passivated state or the Does Not Exist state. During
itslifetime, a bean instance will be passivated and activated zero or more times. Depending on how the client usesthe
stateful bean, the EJB container’ sload, and the passivation algorithm used by the vendor, a bean instance may be
passivated several timesinitslife or not at all. The bean entersthe Does Not Exist stateif it isremoved. A client
application can remove a bean by invoking one of ther enove() methods on the client API, or the container can
choose to remove the bean.

The container can also move the bean instance from the Method-Ready State to the Does Not Exist stateif the bean
times out. Timeouts are declared at deployment time in amanner specific to the EJB vendor. When atimeout occurs,
theej bRenmove() methodisnot invoked. A stateful bean cannot time out while atransactionisin progress.

Passivated State

During the lifetime of astateful session bean, there may be periods of inactivity, when the bean instance is not
servicing methods from the client. To conserve resources, the container can passivate the bean instance while itis
inactive by preserving its conversational state and evicting the bean instance from memory.

When a stateful bean is passivated, the instance fields are read and then written to the secondary storage associated
with the EJB object. When the stateful session bean has been successfully passivated, the instanceis evicted from
memory; it is destroyed.

When abean is about to be passivated, itsej bPassi vat e() method isinvoked, alerting the bean instance that it
is about to enter the Passivated state. At thistime, the bean instance should close any open resources and set all
nontransient, nonserializable fieldstonul | . Thiswill prevent problems from occurring when the bean is serialized.
Transient fields will simply be ignored.

A bean’ s conversational state may consist of only primitive values, objects that are serializable, and the following
special types:

EJB 2.0and 1.1
j avax. ej b. Sessi onCont ext

j avax. ej b. EJBHone (homeinterface types)
j avax. ej b. EJBObj ect (remoteinterface types)

Copyright (c) 2001 O'Reilly & Associates 279

javax.jta. User Transact i on (bean transaction interface)
j avax. nami ng. Cont ext (only when it referencesthe JINDI ENC)

EJB 2.0 only
j avax. ej b. EJBLocal Homre (home interface types)

javax. ej b. EJBLocal Obj ect (remoteinterface types)

References to Managed Resource Factories (e.g., j avax. sql . Dat aSour ce)

Thetypesin thislist (and their subtypes) are handled specially by the passivation mechanism. They don’t need to be
serializable; they will be maintained through passivation and restored automatically to the bean instance when it is
activated.

A bean instance’ s conversational state will be written to secondary storage to preserve it when theinstanceis
passivated and destroyed. Containers can use standard Java serialization to preserve the bean instance, or some
other mechanism that achieves the same result. Some vendors, for example, will simply read the values of the fields
and store them in a cache. The container isrequired to preserve remote references to other beans with the
conversational state. When the bean is activated, the container must restore any bean references automatically. The
container must also restore any references to the special types listed earlier.

Fieldsdeclaredt r ansi ent will not be preserved when the bean is passivated. Except for the special types listed
earlier, al fields that are nontransient and nonserializable must be set tonul | beforethe instance is passivated or
else the container will destroy the bean instance, making it unavailable for continued use by the client. Referencesto
special types must automatically be preserved with the serialized bean instance by the container so that they can be
reconstructed when the bean is activated.

When the client makes arequest on an EJB object whose bean is passivated, the container activates the instance.
Thisinvolves deserializing the bean instance and reconstructing the Sessi onCont ext reference, bean references,
and managed resource factories (EJB 2.0 only) held by the instance before it was passivated. When abean’s
conversational state has been successfully restored, theej bAct i vat e() method isinvoked. The bean instance
should open any resources that cannot be passivated and initialize the value of any transient fields within the

ej bActi vat e() method. Onceej bAct i vat e() iscomplete, the bean is back in the Method-Ready state and
available to service client requests delegated by the EJB object.

In EJB 1.1, open resources such as sockets or JDBC connections must be closed whenever the
bean is passivated. In stateful session beans, open resources will not be maintained for thelife of
the bean instance. When a stateful session bean is passivated, any open resource can cause
problems with the activation mechanism.

The activation of abean instance follows the rules of Java serialization. The exception to thisistransient fields. In
Javaserialization, transient fields are set to their default values when an object is deserialized; primitive numbers
become zero, Boolean fields f al se, and object referencesnul | . In EJB, transient fields do not have to be set to
their initia values; therefore, they could contain arbitrary values when the bean is activated. The value held by
transient fields following activation is unpredictable across vendor implementations, so don't depend on them to be
initialized. Instead, useej bAct i vat e() toreset their values.

System Exceptions

Whenever a system exception is thrown by a bean method, the container invalidates the EJB object and destroys the
bean instance. The bean instance moves directly to the Does Not Exist state and theej bRenove() method isnot
invoked.

A system exception is any unchecked exception, including EJBExcept i on. Checked exceptions thrown from sub-
systems are usually wrapped in an EJBExcept i on and rethrown as system exceptions. A checked exception

Copyright (c) 2001 O'Reilly & Associates 280

thrown by a subsystem does not need to be handled thisway if the bean can safely recover from the exception. In
most cases, however, the subsystem exception should be rethrown as an EJBExcept i on.

INEJB 1.1, thej ava. r m . Renpt eExcept i on isalso considered a system exception for backward compatibly

with EJB 1.0. However, throwing the Renpt eExcept i on from abean class method is discouraged. Throwinga
Renot eExcept i on from abean class method has been deprecated.

Copyright (c) 2001 O'Reilly & Associates 281

13

Message-Driven Beans

This section is divided into two subsections: JMSas a Resource, and Message-Driven Beans The first section
describes the Java M essage Service (JMS) and its role as aresource that is available to any enterprise bean (session,
entity, or message-driven). An enterprise bean can use the IMS API to send messages to other applications through
avirtual channel called atopic or queue. Readers unfamiliar with IM S should read the first section before proceeding
to the second section, which provides an overview of the message-driven bean.

The second section in this chapter addresses the new enterprise bean type, the message-driven bean. A message-
driven bean is an asynchronous bean activated by message delivery. In EJB 2.0, vendors are required to support a
JM S-based message-driven bean that listens to a specific topic or queue, and processes JM S messages as they are
delivered.

All EJB 2.0 vendors must, by default, support aJM S provider. Most EJB 2.0 vendors have a JMS provider built in,
but some may also support other IM S providers. For example, VENDOR XXX uses Sonic Software’ s SonicMQ asits
JMS service. Regardless of how the EJB 2.0 vendor provides the IM S service, having oneis pretty much a
requirement if the vendor expects to support message-driven beans. The advantage of thisforced adoption of IMS
isthat EJB developers cannot expect to have aworking JM S provider on which messages can be both consumed and
delivered.

JMSasaresource

JMSisastandard vendor-neutral API that is part of the J2EE platform and can be used to access enterprise
messaging systems. An enterprise messaging system (a.k.a. message-oriented middleware) facilitates the exchange
of messages among software applications over anetwork. JMSis analogousto JDBC: Whereas JDBC isan API that
can be used to access many different relational databases, JM S provides the same vendor-independent access to
enterprise messaging systems. Many enterprise messaging products currently support JIMS, including IBM's
MQSeries, BEA’s Weblogic IMS service, Sun Microsystems' Java M essage Queue, and Progress’ SonicMQ to name
afew. Software applicationsthat use the IMS API for sending or receiving messages are called JIMS clients and are
portable across brands of IMS vendors.

Messaging clientsin JM S are called IMSclients, and the messaging system—the MOM —including the IM S service

provider is called the IMSprovider. A JMSapplication isabusiness system composed of many JMS clients and,
generally, one IM S provider.

Copyright (c) 2001 O'Reilly & Associates 323

In EJB, enterprise beans of al typescan use JM S to send messages to other Java applications or to message-driven
beans. IM S facilitates sending messages from enterprise beans by using a messaging service, sometimes called a
message broker or router. Message brokers have been around for a couple of decades the oldest and most
established being IBM’s MQSeries, but IMSisfairly new and is specifically designed to deliver avariety of
messages types from one Java application to another.

Reimplimenting the TravelAgent EJB with IMS

As an example we can modify the Travel Agent EJB developed in Chapter 12 so that it uses JIM S to alert some other
Java application that areservation was made. The following code shows how to modify thebookPassage()
method so that the Travel Agent EJB will send a simple text message based on the description information from the
Ti cket DO

publ i ¢ Ti cket DO bookPassage(O edi t Car dDO card, doubl e pri ce)
throws | nconpl et eConversational S ate {

if (custoner = null || cruise = null || cabin = null) {
t hr ow new | nconpl et eConver sati onal S at e() ;

}

try {

Reser vat i onHoneLocal reshone =
(Reser vat i ontbneLocal)
j ndi Gont ext . | ookup
("j ava: conp/ env/ ej b/ Reser vat i ontong") ;

Reservat i onLocal reservation =
resHone. creat e(cust oner, cruise, cabin, price);

oj ect ref = jndi Gontext. | ookup
("j ava: conp/ env/ ej b/ Pr ocessPaynent Hong") ;

Pr ocessPaynent HoneRenot e ppHone =
(Pr ocessPaynent HoneRenot €)
Por t abl eRenot eCj ect . nar r ow
(ref, ProcessPaynent HoneRenot e. cl ass) ;

ProcessPaynent Local process = ppHone. create();
process. byQ edi t (custoner, card, price);

TicketDOticket =
new Ti cket DJ cust oner, cr ui se, cabi n, price);

Sring ticketDescription = ticket.toSring();

Topi cGonnect i onFactory factory = (Topi cGonnect i onFact ory)
j ndi Gont ext . | ookup(“j ava: conp/ env/ j ns/ Topi cFact ory”);

Topi ¢ topi c = (Topi c)
j ndi Gont ext . | ookup(“j ava: conp/ env/ ej b/ Ti cket Topi ¢”) ;

Topi cGonnect i on connect = factory. creat eTopi cGnneci ton();

Topi cSessi on sessi on =
connect . cr eat eTopi cSessi on(true, 0) ;

Copyright (c) 2001 O'Reilly & Associates 324

Topi cPubl i sher publ i sher = sessi on. creat ePubl i sher (topi c);

Text Message text Mg = new Text Message(ti cket Descri ption);
publ i sher. publ i sh(t ext Msg) ;
connect . cl ose();

return ticket;
} catch(BException e) {
t hr ow new EJBException(e);

}

}

A lot of new code was needed in order to send a message. However, whileit may look alittle overwhelming at first,
the basics of IMS are not all that complicated.

TopicConnectionFactory and Topic

In order to send a JM S message we need a connection to the IMS provider and a destination address for the
messages. The connection to the JIM S provider is made possible by a IM S connection factory; the destination
address of the message isidentified by a Topi ¢ object. Both the connection factory and the Topi ¢ object are
obtained from the Travel Agent EJB’s JNDI ENC.

Topi cGonnect i onFactory factory = (Topi cGonnect i onFact ory)
j ndi Gont ext . | ookup(“j ava: conp/ env/ j ns/ Topi cFactory”);

Topi ¢ topi c = (Topi c)
j ndi Gont ext . | ookup(“j ava: conp/ env/ ej b/ Ti cket Topi ¢”) ;

TheTopi cConnect i onFact ory inIMSissimilar infunctiontothe Dat aSour ce in JDBC. Just asthe
Dat aSour ce provides a JDBC connection to adatabase, the Topi cConnect i onFact ory providesaJMS
connection to a message router.

The Topi c object itself represents a network independent destination to which the message will be addressed. In
JM'S, messages are sent to destinations—either topics or queues—instead of sending them directly to other
applications. Destinationsin JM S are analogous to e-mail lists or news groups; any application with the proper
credentials can subscribe to any destination and send messages and receive messages from that destination. IMS
decouples applications by allowing them to send messages to each other through a destination, which serves as
virtual channel. ThisexampleusesaTopi ¢ type destination, but JIM S also supportsQueue type destinations. The
difference between these typesis explained in more detail later.

TopicConnection and TopicSession

TheTopi cConnecti onFact ory isusedtocreateaTopi cConnect i on, whichisan actual connection to the
JMS provider:

Topi cGonnect i on connect = factory. creat eTopi cGnneci ton();

Topi cSessi on sessi on =

connect . cr eat eTopi cSessi on(true, 0);

OnceaTopi cConnect i on isabtained, it can be used to createa Topi cSessi on. ATopi cSessi on alows
the Java devel oper to group the actions of sending and receiving messages. |n most cases, you will only need a
single Topi cSessi on, but occasionally having more than one Topi cSessi on object ishelpful.

Copyright (c) 2001 O'Reilly & Associates 305

Thecreat eTopi cSessi on() method is defined with two parameters:
| creat eTopi cSessi on(bool ean transacted, int acknow edgeMbde) |

These arguments are ignored at runtime because the EJB container manages the transaction and acknowledgment
mode of any JM S resource obtained from the INDI ENC. The specification recommends that developers use the
argumentst r ue fort r ansact ed and 0 foracknowl egeMbde, but since they are supposed to beignored, it
should not matter what you use.

TopicPublisher

TheTopi cSessi onisusedtocreateaTopi cPubl i sher.TheTopi cPubl i sher isusedto send messages
from the Travel Agent EJB to the destination specified by the topic. Any JMS clients that subscribe or listen to that
topic will receive acopy of the message:

Topi cPubl i sher publ i sher = sessi on. creat ePubl i sher (topic);

Text Message text Mg = new Text Message(ti cket Descri ption);
publ i sher. publ i sh(t ext Msg) ;

M essage Types

InJMS, amessage is a Java object with two parts: a header and a message body. The header is composed of delivery
information and metadata, while the message body carries the application data, which can take several forms: text,
serializable objects, byte streams, etc. The IMS API defines several message types (Text Message,
MessageMap, Obj ect Message, and others) and provides methods for delivering messages to, and receiving
messages from, other applications.

For example, we can change the Travel Agent EJB so that it sendsaMapMessage instead of aText Message:

Ti cket DO ti cket = new Ti cket DO cust oner, cr ui se, cabi n, price);
Topi cPubl i sher publ i sher = sessi on. creat ePubl i sher (topi c);

MapMessage mapMsg = new MapMessage() ;

text Msg. setInt (“Qustoner| D', ticket.custonerlDintVal ue());
text Mg. setInt(“Quisel D, ticket.cruiselDintValue());
textMg. setInt(“Cabinl D', ticket.cabinlDintVal ue());

t ext Mbg. set Doubl e(“Price”, ticket.price);

publ i sher. publ i sh(napMsg) ;

The attributes of the MapMessage (Cust onmer | D, Cr ui sel D, Cabi nl D, and Pr i ce) can be accessed by name
from those IM S clients that receiveit.

Asan aternative, The Travel Agent EJB could be modified to use the Obj ect Message type, which would alow us
to send the entire Ti cket DOobject as the message using Java serialization:

Ti cket DO ticket = new Ti cket DJ cust oner, crui se, cabi n, price);
Topi cPubl i sher publ i sher = sessi on. creat ePubl i sher (topi c);

(bj ect Message obj ect Mig = new (bj ect Message() ;
(bj ect Msg. set (pj ect (ticket);

publ i sher. publ i sh(obj ect Msg) ;

Copyright (c) 2001 O'Reilly & Associates 306

In addition tothe Text Message, MapMessage and Obj ect Message, JMS provides two other message types.
St reanmVessage andByt esMessage. StreamVessage cantake asits payload the contents of an |/O stream.
Byt esMessage cantake any array of bytes, which it treats as opague data.

XML Deployment Descriptor

When aJM S resourceis used, it must be declared in the bean’s XML deployment descriptor, in amanner similar to
the JDBC resource used by the Ship EJB in Chapter 10:

<ent er pri se- beans>
<sessi on>
<gj b- nane>Tr avel Agent Bean</ gj b- nane>

<resour ce-ref>
<res-ref - nane>j ns/ Topi cFact or y</ r es- r ef - nane>
<res-type> avax. j ns. Topi cGonnect i onFact or y</ r es-t ype>
<r es- aut h>Cont ai ner </ r es- aut h>
</resour ce-ref >
<resour ce-ref >
<res-ref - nane>j dbc/ ti t anDB</ r es- r ef - nane>
<res-type>] avax. sql . Dat aSour ce</ r es- t ype>
<r es- aut h>Cont ai ner </ r es- aut h>
</resour ce-ref >
<resour ce- env-ref >
<r esour ce- env- r ef - nane>
j s/ Ti cket Topi ¢
</ r esour ce- env-r ef - nane>
<r esour ce- env-r ef - t ype>
j avax. j ns. Topi ¢
</resour ce- env-ref - t ype>
</ resour ce- env-r ef >
</ sessi on>

The<resour ce-ref >fortheIMSTopi cConnecti onFact ory issimilar tothe<r esour ce-r ef >
declaration for the JDBC Dat aSour ce. The JNDI ENC name, interface type, and authorization protocol are
declared. Inadditiontothe<r esour ce-r ef >, the Travel Agent EJB must also declarethe <r esour ce- env-

r ef >, which lists any “administered objects” associated with a<r esour ce- r ef > entry. In this case, we declare
the Topi c used for sending a Ticket message. While the beanis under development, the <r esour ce- env-

r ef > isonly used for declaring JM S destinations. At deployment time the deployer will map the IMS

Topi cConnecti onFact ory and Topi ¢ declared by the<r esour ce-r ef >and <r esour ce- env-r ef >
elementsto a JM S factory and topic.

JM S Application Client

To get abetter idea of how IMSis used, we can create a Java application whose sole purpose is receiving and
processing reservation messages. We will develop avery simple IMS client that simply prints a description of each
ticket asit receivesthe messages. We'll assume that the Travel Agent is using the TextM essage to send a
description of the Ticket to the IMS clients. The following code shows how the JIM S application client might look.

inport javax.] ns. Message;

inport javax.] ns. Text Message;

inport javax.j ns. Topi cQonnect i onFact ory;
inport javax.j ns. Topi cConnecti on;

inport javax.jns. Topi cSessi on;

inport javax.jns. Topi c;

Copyright (c) 2001 O'Reilly & Associates 307

inport javax. | ns. Topi cSubscri ber;

inport javax.jns. JMSExcepti on;

inport javax.nanming. | nital Gontext;

public class JnsAient_1 extends javax.jns. Messageli st ener{

public static void nain(Sring [] args){

if(args.length = 2)
t hrow new Excepti on("Wong nunber of argunents");

new Jnsd ient_1(args[0], args[1]);
vhi | e(true){ Thread. sl eep(10000) ; }

}

public JnsQient_1(Sring factoryNane, Sring topi cNang)
throws Exception{

Initial Context jndi Context = getlnitial Gontext()

Topi cGonnecti onFactory factory = (Topi cGonnecti onFact ory)
j ndi Gont ext . | ookup(f act or yNane) ;

Topi ¢ topi c = (Topi c)
j ndi Gont ext . | ookup(t opi cNane) ;

Topi cGonnect i on connect = factory. creat eTopi cGnneci ton();

Topi cSessi on sessi on =
connect . cr eat eTopi cSessi on(f al se, Sessi on. AUTO ACKNOALEDEE) ;

Topi cSubscri ber subscri ber = sessi on. creat eSubscri ber (t opi c);
subscri ber . set Messageli st ener (thi s);

connect . start();

}

public voi d onMessage(Message nessage) {
try{

Text Message text Mg = (Text Message) nessage;
Sring text = textMg. get Text();
Systemout. println("\n RESERVATION REQ BEVED \ n"+text);

}cat ch(JIMBExcepti on j nsE) {
j msE print SackTrace();

}
}

public static Initial Context getlnitial Gontext(){
/1 create vendor speicific JNO Gontext here

}

Copyright (c) 2001 O'Reilly & Associates

328

The constructor of JnsCl i ent _1 obtainsthe Topi cConnecti onFact ory and Topi ¢ fromthe JNDI

I nitial Context.Thiscontext iscreated with vendor-specific properties so that the client can connect to the
same JM S provider as the one used by the Travel Agent EJB. For example, theget | ni ti al Cont ext () method
for the Weblogic Application server would be coded as follows:

public static Initial Gontext getlnitial Gontext(){
Properties env =new Properties();
env. put (Gontext. SEOR TY PR N PAL, “guest”);
env. put (Gont ext . SEAR TY GREDENTTALS, “guest”);
env. put (Gntext. | N Tl AL_GONTEXT_FACTCRY,
“webl ogi . j ndi . W ni tial Cont ext Factory”);
env. put (“Context . PROADER LR, “t3://l ocal host : 7001");
return new I nitial Gontext(env);

}

Oncetheclient hasthe Topi cConnect i onFact ory and Topi c, it createsaTopi cConnecti onanda
Topi cSessi on inthe same way asthe Travel Agent EJB. The big difference comeswhen the Topi cSessi on
objectisusedto createaTopi cSubscri ber instead of aTopi cPubl i sher. TheTopi cSubscri ber is
designed specifically to process incoming messages that are published toits specified Topi c.

Topi cSessi on sessi on =
connect . cr eat eTopi cSessi on(f al se, Sessi on. AUTO ACKNOALEDXE) ;

Topi cSubscri ber subscri ber = sessi on. creat eSubscri ber (topic);

subscri ber . set Messageli st ener (thi s);

connect . start();

The Topi cSubscri ber can receive messages directly, or it can delegate the processing of the messagesto a
javax.j nms. MessagelLi st ener . WechosetohaveJnsCl i ent _1 implementthe Messageli st ener
interface so that it can process the messagesitself. MessagelLi st ener objectsimplement a single method,
onMessage(), whichisinvoked every time anew message is sent to the subscriber’ stopic. Inthiscase, every
time the Travel Agent EJB sends areservation message to the topic, the IMS client will haveitsonMessage()
method invoked so that it can receive a copy of the message and processiit.

publ i ¢ voi d onMessage(Message nessage) {
try{

Text Message text Mg = (Text Message) nessage;
Sring text = textMg.get Text();
Systemout. println("\n RESERVATI ON REQ EVED \ n" +t ext) ;

}cat ch(JMBEXcept i on | nsE){
j mE print SackTrace();
}

}
& #Exercise 13.1, IMS and the Travel Agent EJB

JM Sis Asynchronous

One of the principal advantages of JM S messaging isthat it s asynchronous. In other words, a M S client can send a
message without having to wait for areply. Contrast thisflexibility with the synchronous messaging of Java RMI.
RMI isan excellent choice for assembling transactional components, but istoo restrictive for some uses. Eachtimea
client invokes abean’s method it blocks until the method completes execution. Thislock-step processing makes the

Copyright (c) 2001 O'Reilly & Associates 329

client dependent on the availability of the EJB server, resulting in atight coupling between the client and enterprise
bean.

In IMS, aclient sends messages asynchronously to atopic, to which other JIMS clients subscribe or listen. When a
JM S client sends amessage, it doesn’t wait for areply; it sends the message to arouter, which isresponsible for
forwarding it to other clients. Clients sending messages are decoupled from the clients receiving them; senders are
not dependent on the availability of receivers.

Thelimitations of RMI make JM S an attractive alternative for communicating with other applications. Using the
standard JNDI environment-naming context, an enterprise bean can obtain aJM S connection to aJMS provider and
use it to deliver asynchronous messages to other Java applications. Asan example, a Travel Agent session bean can
use JM Sto notify other applications that an order has been processed.

Figure 13-1: Using IMSwith the Travel Agent EJB

In this case, the applications receiving JM S messages from the Travel Agent EJB may be message-driven beans, other
Java applicationsin the enterprise, or applicationsin other organizations that benefit from being notified that an order
has been processed. Examples might include business partners who share customer information or an internal
marketing application that adds customersto a catalog mailing list.

JM S enables the enterprise bean to send messages without blocking. The enterprise bean doesn't know who will
receive the message, because it delivers the message to avirtual channel (destination) and not directly to another
application. Applications can choose to subscribe to that virtual channel and receive notification of new
reservations.

An interesting aspect of enterprise messaging in general and IMSin particular, isthat the de-coupled asynchronous
nature of the technology means that transactions and security contexts of the sender are not propagated to the
receiver of the message. The sender can be authenticated against the IMS provider (message router) but it doesn’t
propagate its security context. For example, when the Travel Agent EJB sends the ticket message, it may be
authenticated by the IMS provider but it won't propagate the security context. When aJM S client receivesthe
message from the Travel Agent EJB, it will have no idea about the security context under which it was sent. Thisis
how it should be; the sender and receiver often operate in different environments with different security domains.

Similarly, transactions are never propagated from the sender to the receiver. For one thing, the sender has no idea
who the receivers of the message will be. If the message is sent to atopic there could be one receiver or thousands,
managing a distributed transaction under such ambiguous circumstancesis not tenable. In addition, the clients
receiving the message may not get it for along time after its sent. Clients may be down or otherwise unable to
receive messages; one key strength of IMSisthat it allows senders and receivers to be temporally de-coupled.
Transactions are designed to be executed very quickly because they lock of resources; the possibility of along
transaction with an unpredictable end is also not tenable.

A JMS client can, however, have adistributed transaction with the IM S provider so that it manage the send or
receive operation in the context of atransaction. For example, if the Travel Agent EJB’ stransaction fails or any
reason, the IM S provider will discard the ticket message sent by the Travel Agent EJB. Transactionsand IMS are
covered in more detail in Chapter 14.

JM S Messaging Models: Publish/Subscribe and Point-to-Point

JM S provides two types of messaging models: publish-and-subscribe and point-to-point queuing. The JMS
specification refers to these asmessaging domains. In JMS terminology, publish-and-subscribe and point-to-point
are frequently shortened to pub/sub and p2p (or PTP) respectively. This chapter uses both the long and short forms
throughout.

Copyright (c) 2001 O'Reilly & Associates 330

In the simplest sense, publish-and-subscribeisintended for a one-to-many broadcast of messages, while point-to-
point isintended for one-to-one delivery of messages (See Figure 13-1).

[FIGURE usefigure 1-4 from JM S book]
Figure 13-2: IMS Messaging Domains

A JMS client that produces amessage is called a producer, whileaJMS client that receives amessageiscalled a
consumer. A JM S client can be both a producer and a consumer. When we use the term consumer or producer, we
mean a JM S client that consumes messages or produces messages, respectively. We use this terminology
throughout the book.

Publish and Subscribe

In pub/sub, one producer can send a message to many consumers through avirtual channel called atopic.
Consumers, which receive messages, can choose to subscribe to atopic. Any messages addressed to atopic are
delivered to all the topic’s consumers. Every consumer receives a copy of each message. The pub/sub messaging
model is by and large a push-based model, where messages are automatically broadcast to consumers without them
having to request or poll the topic for new messages.

In the pub/sub messaging model, the producer sending the message is not dependent on the consumers receiving
the message. Optionally, IMS clients that use pub/sub can establish durable subscriptions that allow consumersto
disconnect and later reconnect and collect messages that were published while they were disconnected.

The Travel Agent EJB in this chapter uses the pub/sub programming model withaTopi ¢ asadestination. The
Topi cPubl i sher sends messages from the Travel Agent EJB to the Topi c.

Point To Point

The point-to-point messaging model allows JM S clients to send and receive messages both synchronously and
asynchronously viavirtual channels known asqueues. The p2p messaging model has traditionally been a pull- or
polling-based model, where messages are requested from the queue instead of being pushed to the client
automatically .

A queue may have multiple receivers, but only one receiver may consume each message. Asshown in Figure 13-1,
the JIMS provider will take care of doling out the work, ensuring that each message is consumed once by the next
available receiver in the group. The JM S specification does not dictate the rules for distributing messages among
multiple receivers, although some JM S vendors have chosen to implement this as aload balancing capability.

The messaging API for p2p isvery similar to that used for pub/sub. The following shows how the Travel Agent EJB
could be modified to use the Queue-based p2p API instead of the Topi c-based pub/sub model used in the earlier
example.

publ i ¢ Ti cket DO bookPassage(G edi t Car dDO card, doubl e pri ce)
throws | nconpl et eConversational S ate {

TicketDO ticket =
new Ti cket DO cust oner, crui se, cabi n, pri ce);

Sring ticketDescription = ticket.toSring();

% In IMS, an option allows p2p clients to use a push mode! similar to pub/sub.

Copyright (c) 2001 O'Reilly & Associates 331

QueueGonnecti onFactory factory = (QueueQonnect i onFact ory)
j ndi Gont ext . | ookup(“j ava: conp/ env/ j ns/ QueueFact ory”) ;

Queue queue = (Queue)
j ndi Gont ext . | ookup(“j ava: conp/ env/ ej b/ Ti cket Queue”) ;

QueueConnecti on connect = factory. creat eQueuenneci ton();

QueueSessi on sessi on =
connect . cr eat eQueueSessi on(true, 0);

QueueSender sender = sessi on. cr eat eSender (queue) ;

Text Message text Mg = new Text Message(ti cket Descri ption);
sender . send(t ext Msg) ;
connect . cl ose();

return ticket;
} catch(BException e) {
t hr ow new EJBException(e);

}

}

Which messaging model should you use?

The rational e behind the two modelsliesin the origin of the IMS specification. JMS started out as away of
providing acommon API for accessing existing messaging systems. At the time of its conception, some messaging
vendors had a p2p model, and some had a pub/sub model. Hence JM S needed to provide an API for both modelsto
gain wideindustry support. The JM S 1.0.2 specification does not require a JM S provider to support both models,
although most JM S vendors do.

Almost anything that can be done with the pub/sub model can be done with point-to-point, and vice versa. An
analogy can be drawn to developers’ programming language preferences. Intheory, any application that can be
written with Pascal can also be written with C. Anything that can be written in C++ can also be written in Java. In
some cases it comes down to amatter of preference, or which model you are already familiar with.

In most cases, the decision about which model to use depends on the distinct merits of each model. With pub/sub,

any number of subscribers can be listening on atopic, all receiving copies of the same message. The publisher may
not care if everybody islistening, or even if nobody islistening. For example, consider a publisher that broadcasts

stock quotes. If any particular subscriber is not currently connected and misses out on agreat quote, the publisher
isnot concerned. In contrast, a point-to-point session islikely to be intended for a one-on-one conversation with a
specific application at the other end. In this scenario, every message really matters.

The range and variety of the data that the messages represent can be afactor aswell. Using pub/sub, messages are
dispatched to the consumers based on filtering that is provided through the use of specific topics. Even when
messaging is being used to establish a one-on-one conversation with another known application, it can be
advantageous to use pub/sub with multiple topics to segregate different kinds of messages. Each kind of message
can be dealt with separately through its own unique consumer andonMessage() handler.

Point-to-point is more convenient when you want one receiver to process any given message once. Thisis perhaps

the most critical difference between the two models: point-to-point guarantees that only one consumer processes a
given message. Thisisextremely important when messages need to be processed separately but in tandem.

Copyright (c) 2001 O'Reilly & Associates 332

Entity and session beans shouldn’t receive messages

JnsCl i ent 1 wasdesigned to consume messages produced by the Travel Agent EJB. Can another entity or
session bean receive those message also? The answer isyes, but it'sareally bad idea.

Entity and session beans respond to Java RMI calls from EJB clients and cannot be programmed to respond to IMS
messages as do message-driven beans. That meansit’simpossible to write a session or entity bean that will be
driven by incoming messages. Theinability to make EJBsrespond to JM S messages was why message-driven beans
were introduced in EJB 2.0. Message-driven beans are designed to subscribe or listen to topics and queues and to
process messages delivered to those destinations. They fill an important niche; we'll learn more about how to
program them in the next section.

Itis, however, possible to develop an entity or session bean that can consume a JM S message from a business
method, but the method must be called by an EJB client first. For example, when the business method on the
Hypothetical EJB iscalled, it sets up aJM S session and then attempts to read a message from a queue.

publ i c class Hypothetical Bean i npl enents j avax. €j b. Sessi onBean {
Initia Gontext jndi Gontext;

public Sring busi nessMet hod(){

try{

Queue@nnectionFactory factory = (QieueConnect i onFact ory)
j ndi Gont ext . | ookup(“j ava: conp/ env/ j ns/ QueueFact ory”) ;

Queue topi c = (Queue)
j ndi Gont ext . | ookup(“j ava: conp/ env/ j ns/ Qieue”) ;

QueueGonnect i on connect = factory. creat eQueueCnneci ton();

QueueSessi on sessi on =
connect . cr eat eQueueSessi on(true, 0);

QueueRecei ver recei ver = sessi on. creat eReci ever (queue) ;
Text Message text Msg = (Text Message) r eci ever . recei ve() ;
connect . cl ose();
return text Msg. get Text () ;

}cat ch(Exception €){

throws new EJBException(e);

}

}

The QueueRecei ver , which isamessage consumer, is used to proactively fetch a message from the queue. While
this has been programmed correctly, it is a dangerous operation because a call to the

QueueRecei ver. recei ve() method blocks the thread until a message becomes available. |f amessageis
never delivered to the receiver’s queue, the thread will block indefinitely! In other words, if no one every sendsa
message to the queue we are listening too, then the QueueRecei ver will just sit their waiting forever.

Copyright (c) 2001 O'Reilly & Associates 333

To befair, thereare other r ecei ve() methodsthat are less dangerous. For example, r ecei ve(|l ong

ti meout) alowsyou to specify atime after which the QueueRecei ver should stop blocking the thread and
give up waiting for amessage. Thereisalsor ecei veNoWai t (), which checks for amessage and returnsnul | if
there are none waiting, thus avoiding a prolonged thread block.

Whilethe alternativer ecei ve() methods are much safer, thisis still a dangerous operation to perform. Thereis
no guarantee that thelessrisky r ecei ve() methodswill perform as expected, and the risk of programmer error
(e.g., using thewrongr ecei ve() method) istoo risky. Besides, the message-driven bean provides you with a
powerful and simple enterprise bean that is especially designed to consume JM S messages. This book recommends
that you do not attempt to consume messages from entity or session beans.

L earning more about JMS

JMSS (and enterprise messaging in general) represents a powerful paradigm in distributed computing. In my opinion,
the Java Message Service is asimportant as Enterprise JavaBeans itself, and should be well understood beforeit’s
used in development.

While this chapter has provided a brief overview of IMS, we have only been able to present you with enough
material to prepare you for the discussion of message-driven beans in the next section. To understand JM'S and how
itisused, you will need to study it independently. For adetailed treatment of IM S, see Java Message Service

(O’ Reilly, 2000). Taking the timeto learn IMSiswell worth the effort.

M essage-Driven Beans

M essage-driven beans (MDBSs) are statel ess, server-side, transaction-aware components for processing
asynchronous JM S messages. Newly introduced in EJB 2.0, message-driven beans process messages delivered via
the Java M essage Service.

M essage-driven beans can receive JM S messages and process them using the same robust component-based
infrastructure that session and entity beans enjoy. While a message-driven bean is responsible for processing
messages, its container takes care of automatically managing the component’ s entire environment including
transactions, security, resources, concurrency, message acknowledgment, etc.

One of the most important aspects of message-driven beansis that they can consume and process messages
concurrently. This capability provides asignificant advantage over traditional JIM S clients, which must be custom
built to manage resources, transactions, and security in a multi-threaded environment. The message-driven bean
containers provided by EJB manage concurrency automatically, so the bean developer can focus on the business
logic of processing the messages. The MDB can receive hundreds of JM S messages from many different
applications and process them all at the same time, because the container can have many instances of any MDB
executing concurrently.

The container also ensures that any operations on resources or enterprise beans accessed by an MDB are executed
in the same transaction and that the security identity associated with the MDB is propagated to the resources and
enterprise beansit accesses.

A message-driven bean is a complete enterprise bean, just like a session or entity bean, but there are some important
differences. While a message-driven bean has a bean class and XML deployment descriptor, it does not have remote
or homeinterfaces. Theseinterfaces are absent because the message-driven bean is not accessible viathe Java RM|I
API; it responds only to asynchronous messages.

Copyright (c) 2001 O'Reilly & Associates 33U

Reser vationProcessor EJB

The ReservationProcessor EJB is a message-driven bean that receives JM S messages notifying it of new
reservations. The ReservationProcessor is an automated version of the Travel Agent EJB that processes reservations
sent viaJM S by other travel organizations. It requires no human intervention; it's completely automated.

The JM S messages that notify the ReservationProcessor EJB of new reservations might come from another
application in the enterprise or an application in some other organization. When the ReservationProcessor EB
receives amessage, it creates a new Reservation EJB (adding it to the database), processes the payment using the
ProcessPayment EJB, and sends out aticket.

[FIGURE}
Figure 13-3: The ReservationProcessor EJB processing reservations

Reser vationPr ocessor Bean

Hereisapartial definition of the Reser vat i onPr ocessor Bean class. Some methods are left empty; they will be
filled in later. Notice that theonMessage() method contains the business logic of the bean class; it is similar to the
business|ogic developed inthe bookPassage() method of the TravelAgent EJB in Chapter 12.

package comtitan. reservati onpr ocessor;

inport javax.ns. Message;

inport javax. | ns. MypMessage;
inport comtitan. custoner.*;
inport comtitan.cruise.*;

inport comtitan. cabin.*;

inport comtitan.reservation.*;
inport comtitan. processpaynent. *;

publ i c cl ass Reservati onProcessor Bean
i npl enent s j avax. ej b. Messagely i venBean, j avax.j ns. Messageli st ener {

MessageDx i ven(ont ext ej bGont ext ;
Gont ext j ndi Gont ext ;

public voi d set MessageDri venQont ext (Messagely i venCont ext nuc) {
e bGontext = nuc;
try{
jndi Gontext = new Initial Context();
} cat ch(Nanmi ngExcepti on ne){
t hr ow new EJBExcepti on(ne) ;
}
}

public void e bGeate(){}

publ i c voi d onMessage(Message nessage) {

try {
MapMessage reservati onMsg = (MipMessage) nessage;

I nteger custonerPk = (Integer)
reservat i onMsg. get (oj ect ("Qustoner 1 D');

Copyright (c) 2001 O'Reilly & Associates 335

Integer cruisePk = (Integer)

reservat i onMsg. get (oj ect ("Quisel D');
I nteger cabi nPk = (I'nteger)

reservat i onMsg. get Qoj ect (" Cabi nl D) ;

doubl e price = reservati onMsg. get Doubl e(“Price”);

QeditCGrdbDOcard = (QeditGardD)
reservati onMsg. get oj ect (“CreditCard”);

Qust oner Local cust oner = get Qust oner (cust oner FK) ;
Q ui seLocal crui se = get G ui se(crui sefk);
Cabi nLocal cabi n = get Gabi n(cabi nPk) ;

Reser vat i onHonelLocal resHone = (Reservat i onHbnelLocal)
j ndi Gont ext . | ookup("j ava: conp/ env/ ej b/ Reser vat i ontHone") ;

ReservationLocal reservation =
restbne. creat e(cust oner, cruise, cabin, price);

(pj ect ref = jndi Gontext. | ookup
("]j ava: conp/ env/ ej b/ Pr ocessPaynent Hone") ;

Pr ocessPaynent HoneRenot e ppHone =
(Pr ocessPaynent HoneRenot €)
Por t abl eRenot eChj ect . nar r ow
(ref, ProcessPaynent HoneRenot e. ¢l ass) ;

ProcessPaynent Local process = pptone. create();
process. byQedi t (custoner, card, price);

Ticket DO ticket =
new Ti cket DJ cust oner, cr ui se, cabi n, price);

del i ver Ti cket (reservati onMsg, ticket);

} catch(BException e) {
t hr ow new EJBExcepti on(e);

}
public voi d del i ver Ti cket (MapMessage reser vat i onsg) {
/] create a ticket and send it to the proper destination
publ i ¢ Qust oner Renot e get Qust oner (I nt eger key)
throws Nami ngException, b ect Not FoundExcept i on{
/] get arenote reference to the Qustoner EIB
public G uiseLocal getQuise(lnteger key)
throws Nami ngBxception, Cbj ect Not FoundExcept i on{
/1 get alocal reference to the Qruise EIB
publ i ¢ CGabi nLocal get Gabi n(I nteger key)

throws Nami ngException, b ect Not FoundExcept i on{
/1 get a local reference to the CGabin EIB

Copyright (c) 2001 O'Reilly & Associates

}

publ i ¢ voi d ej bRenove() {
try{
j ndi Gontext . cl ose();
e bGntext = null;
}cat ch(Nam ngException ne){ /* do nothing */ }

}

M essageDrivenBean I nterface

The message-driven bean classis required to implement thej avax. ej b. MessageDr i venBean interface, which
defines callback methods similar to those in entity and session beans. Here isthe definition of the
MessageDr i venBean interface.

package j avax. gj b;

public interface MessageDrivenBean extends javax. e b. EnterpriseBean {
publ i c void set MessageDxi venCont ext (MessageDri venCont ext cont ext)
t hrows EJBExcepti on;
publ i c voi d ej bRenove() throws EJBException;

}

Theset MessageDri venCont ext () methodiscalled at the beginning of the MDB’slife cycle and provides the
MDB instance with areferenceto itsMessageDr i venCont ext :

MessageDx i ven(ont ext ej bGont ext ;
Gont ext j ndi Gont ext ;

public voi d set MessageDri venQont ext (Messagely i venCont ext nuc) {
e bGontext = nuc;
try{
jndi Gontext = new Initial Context();
} cat ch(Nami ngExcepti on ne){
t hr ow new EJBExcepti on(ne);

}

}

Theset MessageDri venCont ext () methodintheReser vati onProcessor Bean class setsthe

ej bCont ext instancefield tothe MessageDr i venCont ext , which was passed into the method. It also
obtains areference to the INDI ENC, which it storesinthej ndi Cont ext . MDBs may have instance fields that are
similar to a stateless session beans instance fields. These instance fields are carried with the MDB instance for its
lifetime and may be reused every timeit processes anew message. Unlike stateful session beans, MDBs do not
have “conversational” state and are not specific to asingle IMS client. MDB instances are used to processes
messages from many different IMS clients, and are tied to a specific topic or queue to which they subscribe or listen,
not to a specific IMS client. They are stateless in the same way that statel ess session beans are statel ess.

ej bRenove() providesthe MDB instance an opportunity to clean up any resourcesit storesin itsinstance fields.
Inthis case, we useit to close the INDI Context and set theej bCont ext fieldtonul | . These operations are not
absolutely necessary, but they illustrate the kind of operation that anej bRenmove() method might do. Note that
ej bRenove() iscaled at the end of the MDB’slife cycle, beforeit is garbage collected. It may not be called if the
EJB server hosting the MDB failsor if anEJBExcept i on isthrown by the MDB instancein one its other methods.
When an EJBExcept i on isthrown by any method in the MDB instance, the instance isimmediately removed from
memory and the transaction isrolled back.

Copyright (c) 2001 O'Reilly & Associates 337

M essageDrivenContext

TheMessageDri venCont ext simply extendsthe EJBCont ext and doesn’'t add any new methods. The
EJBCont ext isdefined as:

package j avax. gj b;
public interface EJBOontext {

/1 transaction net hods
publ i ¢ javax.transaction. User Transacti on get User Tr ansact i on()
throws java.lang. |l egal S at eExcepti on;
publ i ¢ bool ean get Rol | backQnl y()
throws java.lang. ||| egal S at eExcepti on;
publ i ¢ voi d set Rol | backQnl y()
throws java.lang. ||| egal S ateException;

// EIB hone net hods
publ i ¢ EIBHbne get EJB-one() ;
publ i ¢ EJBLocal Hone get EJBLocal Hone() ;

/] security nethods
public java.security.Principal getGallerPrincipal ();
publ i ¢ bool ean isCal |l erl nRol e(j ava. | ang. Sring rol eNane) ;

/] deprecat ed net hods

public java.security.ldentity getCallerldentity();

publ i c bool ean isCall erl nRol e(j ava. security.ldentity role);
public java. util.Properties get Environnent();

}

Only the transactional methods that the MessageDr i venCont ext inheritsfrom EJBCont ext areavailableto
message-driven beans. The home methods (get EJBHone () and get EJBLocal Hore()) throw a

Runt i meExcept i on if invoked, because MDBs do not have home interfaces or EJB home objects. The security
methods (get Cal | er Princi pal () andi sCal | erl nRol e())asothrowaRunt i neExcepti on if
invoked onaMessageDri venCont ext . When an MDB servicesa JM S message thereisno “caller” so a
security context doesn’t exist that can be obtained from the caller. Remember that IMSis asynchronous, and doesn’t
propagate the sender’ s security context to the receiver—that wouldn’t make sense since senders and receivers tend
to operate in different environments.

MDBs usually execute in a container-initiated or bean-initiated transaction, so the transaction methods allow the
MDB to manage its context. The transaction context is not propagated from the JIM S sender, but is atransaction that
iseither initiated by the container or by the bean explicitly usingj avax. j t a. User Tr ansact i on. The
transaction methodsin the EJBCont ext areexplained in more detail in Chapter 14.

M essage-driven beans also have access to their own JNDI environment naming context (ENC) which providesthe
MDB instance access to environment entries, other enterprise beans, and resources. The ReservationProcessor EJB
takes advantage of the INDI ENC to obtain references to the Customer, Cruise, Cabin, Reservation, and
ProcessPayment EJB aswell asaJMS QueueConnect i onFact or y and Queue for sending out tickets.

Messagel istener | nterface

In addition to the MessageDr i venBean interface, MDBsimplement thej avax.] ns. Messageli st ener
interface, which definesthe onMessage() method; bean devel opers implement this method to process IM S
messages received by abean. It'sinthisonMessage() method that the bean processes the JM S message.

Copyright (c) 2001 O'Reilly & Associates 338

package j avax. j ns;
public interface Messageli stener {
publ i c voi d onMessage(Message nessage) ;

}

It'sinteresting to consider why the MDB implementsthe MessageLi st ener interface separately from the
MessageDr i venBean interface. Why not just put theonMessage() method, MessagelLi st ener only
method, inthe MessageDr i venBean interface so that there is only interface for the MDB class to implement?
Thiswas the solution taken by an early proposed version of EJB 2.0. However, it was quickly realized that message-
driven beans could, in the future, process messages from other types of systems, not just IMS. To makethe MDB
open to other messaging systems, it was decided that it should implement thej avax. j ns. Messageli st ener
interface separately, thus separating the concept of the message-driven bean from the types of messagesit can
process. Inafuture version of the specification other types of MDB might be available for thingslike SMTP (e-mail)
or JAXM (JavaAPI for XML Messaging) for ebXML. Other technologies will use different methods rather then
onMessage() whichisspecificto IMS.

The onM essage() method: Workflow and Integration for B2B

TheonMessage() methodiswhereall the businesslogic goes. Asmessages arrive they are passed tothe MDB
using itsonMVessage() method by the container. When the method returns, the MDB isready to process a new

message.

In the ReservationProcessor EJB, theonMessage() method extractsinformation about areservation from a
MapMessage and usesthat information to create areservation in the system:

publ i c voi d onMessage(Message nessage) {

try {
MapMessage reservati onMsg = (MipMessage) nessage;

I nteger custonerPk = (Integer)
reservat i onMsg. get (oj ect ("Qustoner| D');

Integer cruisePk = (Integer)
reservati onMsg. get Qoj ect ("Q ui sel D');
I nteger cabinPk = (I'nteger)

reservat i onMsg. get (bj ect ("Cabi nl D');
doubl e price = reservati onMsg. get Doubl e("Price");

QeditCGrdbDOcard = (QeditGardD)
reservati onMsg. get (oj ect ("CreditCard");

JMSisfrequently used as an integration point for business-to-business applications, so it’s easy to imagine the
reservation message coming from one of Titan’s business partners, perhaps a 3" party processor or branch travel

agency.

The ReservationProcessor needs to access the Customer, Cruise and Cabin EJBsin order to process the reservation.
The MapM essage contains the primary keys for these entities; the ReservationProcessor EJB uses hel per methods
(get Cust oner (),get Crui se(),andget Cabi n()) methodsto look up the entity beans and obtain EJB
object references to them:

publ i c voi d onMessage(Message nessage) {

Qust oner Local cust oner = get Qust oner (cust oner FK) ;
Q ui seLocal crui se = get G ui se(crui seFk);
Cabi nLocal cabi n = get CGabi n(cabi nFk) ;

Copyright (c) 2001 O'Reilly & Associates 339

}

publ i ¢ Qust oner Local get Qust oner (I nteger key)
throws Nami ngException, Cbj ect Not FoundExcept i on{

Qust oner HoneLocal hone = (Qust oner HonelLocal)
j ndi Gont ext . | ookup("j ava: conp/ env/ e b/ Qust oner Hone") ;
Qust oner Local custoner = hone. fi ndByPri nar yKey(key);
return custoner;
}
publ ic G ui seLocal get Q ui se(lnteger key)
throws Nami ngException, Cbj ect Not FoundExcept i on{

Q ui setoneLocal hone = (G ui seHoneLocal)
j ndi Gont ext . | ookup("j ava: conp/ env/ €] b/ G ui setone") ;
Qui seLocal cruise = hone. fi ndByPri nar ykey(key);
return cruise;
}
publ i ¢ Gabi nLocal get Cabi n(Integer key)
throws Nami ngException, Cbj ect Not FoundExcept i on{

Cabi nHoneLocal hone = (CGabi nHonelLocal)

j ndi Gont ext . | ookup("j ava: conp/ env/ e b/ CGabi nHone") ;
Cabi nLocal cabi n = hone. fi ndByPri nar yKey(key);
return cabin;

Once theinformation is extracted from the MapMessage, it is used to create areservation and process the payment.
Thisisbasically the same workflow that was used by the Travel Agent EJB in Chapter 12. A Reservation EJB is
created that represents the reservation itself, and a ProcessPayment EJB is created to process the credit card
payment.

Reservat i ontbnelLocal resHone = (Reservati onHoneLocal)
j ndi Gont ext . | ookup("j ava: conp/ env/ ej b/ Reser vat i ontHone") ;

Reservat i onLocal reservation =
restone. creat e(cust oner, cruise, cabin, price);

(oj ect ref = jndi Gontext. | ookup
("] ava: conp/ env/ ej b/ ProcessPaynent Hone") ;

Pr ocessPaynent HoneRenot e ppHone =
(Pr ocessPaynent HoneRenot €)
Por t abl eRenot e(hj ect . narr ow
(ref, ProcessPaynent HoneRenot e. cl ass) ;

ProcessPaynent Local process = pptone. create();
process. byQedi t (custoner, card, price);

TicketDOticket =
new Ti cket DO cust oner, cr ui se, cabi n, price);

del i ver Ti cket (reservati onMsg, ticket);

Thisillustrates that the MDB can access any other entity or session bean, and use those other beans to complete a
task, just like session beans. Inthisway, the MDB fulfillsitsrole as an integration point in B2B application

Copyright (c) 2001 O'Reilly & Associates 340

scenarios. MDB can manage a process and interact with other beans as well as resources. For example, it's
commonplace for an MDB to use JDBC to access a database based on the contents of the messageit’s processing.

Sending M essages from a M essage-Driven Bean

MDB can also send messages using JIMS. Thedel i ver Ti cket () method sendsthe Ticket information to a
destination defined by the sending IMS client:

public voi d deliverTi cket (MypMessage reservati onMsg, TicketDOticket)
t hrows Nami ngException, JMBExcepti on{

Queue queue = (Queue)reservati onMsg. get INSRepl yTo() ;

QueueGonnecti onFactory factory = (QueueConnect i onFact ory)
j ndi Gont ext . | ookup("j ava: conp/ env/ j ns/ QueueFact ory") ;

Queue@nnection connect = factory. creat eQueueCGonneci ton();

QueueSessi on sessi on =
connect . cr eat eQueueSessi on(true, 0) ;

QueueSender sender = sessi on. cr eat eSender (queue) ;
(oj ect Message nessage = new (bj ect Message(ti cket);
sender . send(nessage) ;

connect . cl ose();

}

As stated earlier, every message type has two parts: a message header and a message body (a.k.a. payload). The
message header contains routing information, and may also have properties for message filtering and other attributes,
including a JMSReplyTo attribute. When aJM S client sends a message, it may set the IMSReplyTo attribute to be
any destination accessibleto its IMS provider. In the case of the reservation message, the sender set the
JMSReplyTo attribute to the Queue to which theresulting Ti cket should be sent. Another application can access
this Queue to read tickets and distribute them to customers, or store the information in the sender’ s database.

The IM SReplyTo address can also be used to report business errors that occur while processing the message. For
example, if the Cabin is already reserved, the ReservationProcessor EJB might send an error message to the
JMSReplyTo queue explaining that the reservation could not be processed. Including this type of error handling is
left as an exercise for the reader.

XML Deployment Descriptor

MDBs have XML deployment descriptors, just like entity and session beans. They can be deployed alone or, more
often than not, deployed together with other enterprise beans. For example, the ReservationProcessor EJB would
have to be deployed in the same JAR using the same XML deployment descriptor as the Customer, Cruise, and Cabin
beansif it’ s going to use their local interfaces.

Here' show the XML deployment descriptor that defines the ReservationProcessor EJB. This deployment descriptor
also defines the Customer, Cruise, Cabin, and other beans, but these are | eft out for brevity.

<ent er pri se- beans>

Copyright (c) 2001 O'Reilly & Associates U1

<nessage- dri ven>
<gj b- nane>Reser vat i onPr ocessor EIB</ €] b- nane>
<gj b-cl ass>
comtitan. reservationprocessor. Reservati onPr ocessor Bean
</ €j b-cl ass>
<transacti on-type>Cont ai ner </t ransact i on-t ype>
<nessage- sel ect or >MessageFor nat = "Versi on 2. 3" </ nessage- sel ect or >
<acknow edge- node>Aut o- acknow edge</ acknow edge- node>
<nessage- dri ven- dest i nati on>
<desti nati on-type>j avax. j ns. Qieue</ desti nati on-type>
</ nessage- dri ven-dest i nat i on>
<gj b-ref>
<gj b-r ef - nane>ej b/ Pr ocessPaynent Hone</ j b-r ef - nane>
<gj b-ref -t ype>Sessi on</ €] b-ref - t ype>
<hone>
comti tan. processpaynent . ProcessPaynent HoneRenot e
</ hone>
<r enot e>
comtitan. processpaynent . ProcessPaynent Renot e
</renot e>
<ejb-ref>
<ej b-1ocal -ref >
<gj b-r ef - nane>ej b/ Qust oner Hone</ €] b- r ef - nane>
<gj b-ref-type>Enti ty</ g b-ref-type>
<l ocal - hone>
comtitan. cust oner. Qust oner HonelLocal
</l ocal - hone>
<l ocal >comtitan. cust oner. Qust oner Local </ | ocal >
</ ejb-local -ref>
<ej b-1ocal -ref >
<gj b-ref - nane>ej b/ O ui seHone</ gj b-r ef - nane>
<gj b-ref-type>Entity</ g b-ref-type>
<l ocal - hone>
comtitan. crui se. O ui seHoneLocal
</l ocal - hone>
<l ocal >comtitan. crui se. O ui seLocal </ | ocal >
</ejb-local -ref>
<ej b-1ocal -ref >
<gj b-r ef - nane>ej b/ Gabi nHone</ gj b-r ef - nane>
<gj b-ref-type>Entity</ g b-ref-type>
<l ocal - hone>
comtitan. cabi n. Gabi nHonelLocal
</l ocal - hone>
<l ocal >comti tan. cabi n. Gabi nLocal </ | ocal >
</ejb-local -ref>
<ej b-1ocal -ref >
<gj b-ref - nane>ej b/ Reser vat i onHne</ gj b-r ef - nane>
<gj b-ref-type>Entity</ g b-ref-type>
<l ocal - hone>
comtitan. reservation. Reservati onHonelLocal
</l ocal - hone>
<l ocal >comtitan. reservation. ReservationlLocal </| ocal >
</ejb-local -ref>
<security-identity>
<r un- as>MANACER/ r un- as>
</security-identity>
<resour ce-r ef >

Copyright (c) 2001 O'Reilly & Associates

342

<r es-r ef - nane>j ns/ QueueFact or y</ r es- r ef - nane>
<res-type> avax. | ns. Qieue@nnect i onFact or y</ r es-t ype>
<r es- aut h>Cont ai ner </ r es- aut h>
</resour ce-ref >
</ nessage- dri ven>

<ent er pri se- beans>

AnMDB isdeclaredina<nmessage- dr i ven> element withinthe<ent er pri se- beans> element, alongside
<sessi on>and<entity> beans. Similarto<sessi on> bean types, it definesan<ej b- nane>, <ej b-

cl ass>and<transacti on-type>, butit doesnot define component interfaces (local or remote). MDBsdon’t
have component interfaces, so these definitions aren’t needed.

message-selector

AnMDB canalsodeclarea<nessage- sel ect or > element, which is unique to message-driven beans.
| <nessage- sel ect or >MessageFor nat = "Versi on 3. 4" </ nessage- sel ect or > |

Message selectors allow an MDB to be more selective about the messages it receives from a particular topic or
queue. Message selectors use Message properties as criteriain conditional expressions®. These conditional
expressions use boolean logic to declare which messages should be delivered to aclient.

M essage properties, upon which message selectors are based, are additional headers that can be assigned to a
message. They give the application developer or IM'S vendor the ability to attach more information to amessage. The
Message interface provides several accessor and mutator methods for reading and writing properties. Properties
can haveaSt ri ng value, or one of several primitivevalues (bool ean, byt e,short,int,l ong,fl oat,
doubl e). The naming of properties, together with their values and conversion rules, is strictly defined by JIMS.

The ReservationProcessor uses a message sel ector filter to select messages that meet a specific format. Inthis case
theformat is“Version 2.3"; thisisastring that Titan usesto identify messages of type MapMessage and contain
the namevalues Cust oner | D, Cr ui sel D, Cabi nl D, Cr edi t Car d, andPr i ce. Inother words, by specifying
a“MessageFormat” on every reservation message, we can write MDBs that are designed to process that type of
message. If anew business partner needs to use a different type of Message object, we only need a new message
version and an MDB to processit.

Thisishow aJMS producer would go about setting aMessageFor mat property on aMessage:

Message nessage = new MapMessage() ;
nessage. set Propery(“ MessageFornmat”,” Version 3.47);

/1 set the reservation naned val ues

sender . send(nessage) ;

The message sel ectors are based on a subset of the SQL-92 conditional expression syntax that is used in the WHERE
clauses of SQL statements. They can become fairly complex, including the use of literal values, boolean expressions,
unary operators, etc.

M essage Selector Examples

Here are three complex selectors used in hypothetical environments. Although you will have to use your imagination
alittle, the purpose of these examplesisto convey the power of the message selectors. When a selector is declared,

46 M essage selectors are al so based on message headers, which is outside the scope of this chapter.

Copyright (c) 2001 O'Reilly & Associates 43

theidentifier always refersto a property name or JIMS header name. For example, the selector “ User Nane
F="W I Iiam " assumesthat thereisaproperty in the message named Us er Name, which can be compared to the
value' Wl lian.

Managing claimsin an HMO

Due to some fraudulent claims, an automatic processisimplemented using MDBs that will audit all claims submitted
by patients who are employees of the ACME manufacturing company with visits to chiropractors, psychologists,
and dermatol ogists:

<nessage- sel ect or >

<! [CDATA

Physi ci anType IN (" Chiropractic', ' Psychol ogists', ' Dernatol ogist') AND Patient G dupl D LI KE " ACM®b
11>

</ nessage- sel ect or >

MDB <nmessage- sel ect or > statements are declared in XML deployment descriptors. XML
assigns avariety of characters like the greater than (‘>’) and less than (*<’) special meaning, so
using these symbolsin the <message- sel ect or > statements will cause parsing errors unless
CDATA sectionsare used. This isthe samereason CDATA section were needed in EJB QL

<ej b- gl > statements as explained in Chapter 8.

Notification of certain bids on inventory

A supplier wants notification of requests-for-bids on specific inventory items at specific quantities:

<nessage- sel ect or >
<[CDATA

Invent oryl D = S93740283- 02' AND Quantity BETWAEN 1000 AND 13000 “;
11>

</ nessage- sel ect or >

Selecting recipients for a catalog mailing

Anonlineretailer wantsto deliver aspecial catalog to any customer that orders more then $500.00 worth of
merchandise where the average price per item ordered is greater than $75.00 and the customer residesin one several
states. The retailer creates a special application that subscribes to the order processing topic and processes catal og
deliveriesfor only those customers that meet the defined criteria:

<nessage- sel ect or >

<[CDATA
Tot al Charge >500. 00 AND ((Tot al Char ge /|t enCount) >=75. 00)
AND Sate IN("MN,"W',"M',"CH)™,

11>

</ nessage- sel ect or >

acknowledge-mode

JM S has the concept of acknowledgment, which means that the IMS client notifiesthe IM S provider (message
router) that a message was received. In EJB, it'sthe MDB container’ s responsibility to send acknowledgements to
the IM S provider when it receives amessage. To acknowledge a messageisto tell the IMS provider that MDB
container has received the message and processed it using an MDB instance. Without an acknowledgement, the
JM S provider will not know whether the MDB container has received the message, so it will try to redeliver it. This
can cause problems. For example, once we have processed a reservation message using the Reservati onProcessor
EJB, we don’'t want to receive the same message again.

Copyright (c) 2001 O'Reilly & Associates U4

When transactions are involved, the acknowledgment mode set by the bean provider isignored. In this case, the
acknowledgment is performed within the context of the transaction. If the transaction succeeds, the messageis
acknowledged. If the transaction fails, the message is not acknowledged. So if the MDB is using contai ner-managed
transactions, asit will in most cases, the acknowledgment mode isignored by the MDB container. When using
container-managed transactions with aRequi r ed transaction attribute, the <acknowl edge- node> isusualy
not specified; we included it in the deployment descriptor for the sake of discussion.

| <acknow edge- node>Aut 0- acknow edge</ acknow edge- node> |

When the MDB executes with bean-managed transactions, or with the contai ner-managed transaction attribute
Not Suppor t ed (see Chapter 14), then the value of <acknowl edge- node> becomesimportant.

Two values can be specified for <acknowl edge- node>: Aut o- acknowl edge and Dups- ok-

acknow edge. Thefirst tellsthe container that it should send an acknowledgement to the IM S provider soon after
the message is given to an MDB instance to process. The Dups- ok- acknowl edge tellsthe container that it
doesn’t have to send the acknowledgement immediately; any time after the message is given to the MDB instance
will befine. WithDups- ok- acknowl edge, it’s possible for the MDB container to delay acknowledgement so
long that the IM S provider assumes that the message was not received and so sends a “ duplicate” message.
Obviously, withDups- ok- acknowl edge, your MDBs must be able to handle duplicate messages correctly.

Aut 0- acknowl edge duplicate messages because the acknowledgement is sent immediately. Therefore, the IMS
provider won't send aduplicate. In most cases an MDB will want to use Aut o- acknowl edge, to avoid
processing the same message twice. Dups- ok- acknowl edge exists becauseit may allow aJMS provider to
optimizeits use of the network. In practice, the overhead of an acknowledgment is so small, and the frequency of
communication between the MDB container and JM S provider is so high, that Dups- ok- acknowl edge doesn’t
have abig impact of performance.

message-driven-destination

The<nessage-dri ven-desti nati on> element designates the type of destination that the MDB is
subscribed to or listensto. The allowed valuesfor thiselement arej avax. | ns. Queue and

javax. j ms. Topi c. Inthe case of the ReservationProcessor EJB, thisvalueissettoj avax. j ns. Queue
meaning that the MDB is getting its messages via the p2p messaging model from aQueue.

<nessage- dri ven- dest i nat i on>
<desti nati on-type> avax. j ns. Qieue</ desti nati on-type>
</ nessage- dri ven-dest i nat i on>

When the MDB is deployed, the deployer will map the MDB so that it listensto areal Queue on the network.

Whenthe <desti nati on-type>isaj avax.] ns. Topi c,the<subscri pti on-durability> element
must be declared with either Dur abl e or NonDur abl e asitsvalue.

<nessage- dri ven- dest i nati on>
<desti nati on-type> avax. j ns. Topi c</ desti nati on-type>
<subscri pti on-durabi | i t y>Dur abl e</ subscri pti on-durability>
</ nessage- dri ven-dest i nat i on>

The<subscri pti on-durability> eementdetermineswhether or not the MDB’s subscription to the Topi ¢
isdurable. A Dur abl e subscription outlasts an MDB’s connection to the IMS provider. So if the EJB server
suffersapartial failure, is shut down, or is otherwise disconnected from the JIM S provider, the messages that it would
have received will not belost. WhileaDur abl e MDB is disconnected from the IMS provider, it isthe
responsibility of the IMS provider to store any messages the subscriber misses. When the Dur abl e MDB
reconnects to the IM S provider, the IMS provider sendsit all the unexpired messages that accumulated while it was
down. This behavior is commonly referred to asstore-and-forward messaging. Dur abl e MDBs make MDBs

Copyright (c) 2001 O'Reilly & Associates U5

tolerant of disconnections, whether they are intentional or the result of apartial failure. If <subscri pti on-

dur abi l'i ty>isNonDur abl e, then any messages the bean would have received while it was disconnected will
belost. Developersuse NonDur abl e subscriptionswhen it’s not critical that all messages be processed. Using a
NonDur abl e subscription improves the performance of aJM S provider but significantly reduces the reliability of
the MDBs.

When <desti nati on-type>isj avax. | ms. Queue, asisthe case in the ReservationProcessor EJB,
durahility is not afactor because of the nature of p2p or Queue based messaging systems. With a queue, messages
may only be consumed once, and remain in the Queue until they are distributed to one of the Queue’ s listeners.

Therest of the elementsin the deployment descriptor should already be familiar. The<ej b- r ef > element provides
JNDI ENC bindings for aremote EJB home object whilethe<ej b- | ocal - r ef > elements provide INDI ENC
bindingsfor local EJB home objects. Notethat the<r esour ce- r ef > element that defined the IMS
QueueConnect i onFact or y used by the ReservationProcessor EJB to send ticket messagesis hot accompanied
by a<r esour ce- env-r ef > element. The Queue to which the tickets are sent is obtained from the IMSReplyTo
header of the MapMessage itself, and not from the INDI ENC.

The ReservationProcessor Clients

In order to test the ReservationProcessor EJB, we need to devel op two new client applications: one to send
reservation messages and the other to consume ticket messages produced by the ReservationProcessor EJB.

The Reservation M essage Producer

TheJnsCl i ent _Reservati onProducer isdesigned to send 100 reservation requests very quickly. The
speed with which it sends these messages will force many MDB containers to use multiple instances to process the
reservation messages.

inport javax.ns. Message;

inport javax.jns. MapMessage;

inport javax.] ns. QueueCnnect i onFact ory;
i nport javax.j ns. QueueCnnect i on;

inport javax.ns. QieueSessi on;

inport javax. | ns. Queue;

inport javax. | ns. QieueSender ;

inport javax.ns. JMEException;

inport javax. naming. I nital Gontext;

inport comtitan. processpaynent . G edit Car dDQ

public class Jnsdient_Reservati onProducer {
public static void main(Sring [] args){
Initial Context jndi Gontext = getlnitial Context()

Queue@nnectionFactory factory = (QieueConnect i onFact ory)
j ndi Gont ext . | ookup(f act or yNane) ;

Queue reservati onQueue = (Queue)
j ndi Gont ext . | ookup(t opi chane) ;

QueueGonnect i on connect = factory. creat eQueueCnneci ton();

Copyright (c) 2001 O'Reilly & Associates 346

QueueSessi on sessi on =
connect . cr eat eQueueSessi on(f al se, Sessi on. AUTO ACGKNOALEDE) ;

QueueSender sender = sessi on. cr eat eSender (reser vat i onQieue) ;
Integer cruiselD = new Integer(l);

for(int i =0; i <100; i+H{
MapMessage nessage = new MapMessage() ;

nessage. setInt("Quisel D', 1);

nessage. set | nt (" Qust oner | D', i %40);

nessage. setInt("CGbinlD',i);

nessage. set Doubl e("Price”, (doubl €) 1000+);

/1 the card expires in about 30 days
Date expirationDate =
new Dat e(Systemcurrent Ti neM | | i s() +43200000) ;
CQeditGrdDOcard =
new @ edi t Car dDQ(9238302830291,
expi rationDat e,
Q edi t Gar dDQ MASTER CARD) ;

nessage. set j ect ("QeditCard", card);
sender . send(nessage) ;

}

connect . cl ose() ;

}

public static Initial Gontext getlnitial Gontext()
throws JMBEXcept i on{
/1 create vendor speicific JNO (ontext here

}

}

You may have noticed that the JnsCl i ent _Reser vati onProducer setsthe Cust oner | D, Cr ui sel D, and
Cabi nl Dasprimitivei nt values, butthe Reser vat i onPr ocessor Bean reads these values as

java.l ang. | nt eger types. Thisisnot amistake. The MapMessage automatically converts any primitiveto its
proper wrapper if that primitiveisread usingMapMessage. get Obj ect () . So, for example, anamed-value that is
loaded intoaMapMessage usingset | nt () canberead asan Integer usingget Obj ect () :

MapMessage mapMsg = new MapMessage() ;
naphsg. set | nt (“ TheVal ue”, 3);
Integer nylnteger = (Integer)napMg. get (j ect (“ TheVal ue”);

if(nylnteger.intValue() = 3)
/1 this will always be true

JM S has a cornucopia of features and details which are simply too extensive to cover in this book.

Copyright (c) 2001 O'Reilly & Associates 347

TheTicket Message Consumer

TheJnsCl i ent _Ti cket Consuner isdesigned to consume all the ticket messages delivered by
ReservationProcessor instances to the queue. It consumes the messages and prints out the descriptions.

inport javax. | ns. Message;

inport javax.ns. (j ect Message;

inport javax.j ns. QieueCnnect i onFact ory;
inport javax.jns. QieueCnnecti on;

inport javax.ns. QreueSessi on;

inport javax.|ns. Qeue;

inport javax.ns. QueueSender;

inport javax.jns. JMSException;

i nport javax. naming. | nital Context;

inport comtitan.travel agent. Ti cket DQ
public class JnsAient_Ti cket Gonsuner
extends j avax.j ns. Messageli st ener {
public static void nain(Sring [] args){
new Jnsd i ent _Ti cket Gonsuner () ;
vhi | e(true){ Thread. sl eep(10000) ; }

}

public Jnsd i ent_Ti cket Consuner
throws Exception{

Initial Context jndi Context = getlnitial Gontext()

QueueConnecti onFactory factory = (QueueQonnect i onFact ory)
j ndi Gont ext . | ookup(f act or yNane) ;

Queue ticket Queue = (Queue)
j ndi Gont ext . | ookup(t opi cNane) ;

QueueGonnect i on connect = factory. creat eQueueCnneci ton();

QueueSessi on sessi on =
connect . cr eat eQueueSessi on(f al se, Sessi on. AUTO ACKNOALEDE) ;

QueueRecei ver recei ver = sessi on. cr eat eRecei ver (ti cket Qieue) ;
recei ver . set Messageli st ener (thi s);

connect . start();

}

public voi d onMessage(Message nessage) {
try{

(bj ect Message obj Mg = () ect Message) nessage;
Ticket DO ticket = (Ticket DO obj . Msg. get (j ect () ;

Copyright (c) 2001 O'Reilly & Associates 348

S’St em OUt i pl’l nt I n(”********************************") ’
Systemout. println(ticket);
&St em OUt i prl nt | n("********************************") ’

}cat ch(IMBExcept i on j nsE) {
j msE print S ackTrace();
}
}
public static Initia Gontext getlnitial Gontext()
throws JMBExcept i on{
/1 create vendor speicific JNO (ontext here

}

}

In order to make the ReservationProcessor EJB work with the two client applications,
JmsCl i ent _Reservati onProducer andJnsCl i ent _Ti cket Consumer , you must configure your EJB
container and JM S provider so that it has two queues: one for reservation messages and another for ticket messages.

& eExercise 13.2, ReservationProcessor: The Message-driven bean

TheLife Cycle of a Message-Driven Bean

Just as the entity and session beans have well-defined life cycles, so doesthe MDB. The MDB’slife cycle hastwo
states: Does Not Exist and Method-Ready Pool. The M ethod-Ready Pool is similar to the instance pool used for
statel ess session beans. Like statel ess beans, M DBs define instance pooling in their life cycle.*” Figure 13-4
illustrates the states and transitions that an MDB instance goes through in itslifetime.

[FIGURE]

Figure 13-4: MDB lifecycle
Does Not Exist

When abeanisin the Does Not Exist state, it is not an instance in the memory of the system. In other words, it has
not been instantiated yet.

The Method-Ready Pool

MDB instances enter the M ethod-Ready Pool as the container needs them. When the EJB server isfirst started, it will
probably create a number of MDB instances and enter them into the M ethod-Ready Pool. (The actual behavior of the
server depends on the implementation.) When the number of MDB instances handling incoming messagesis
insufficient, more can be created and added to the pool.

Transitioning to the Method-Ready Pool

When an instance transitionsfrom the Does Not Exist state to the Method-Ready Pool, three operations are
performed on it. First, the bean instance isinstantiated by invoking the Cl ass. newl nst ance() method on the
MDB class. Second, theset MessageDri venCont ext () method isinvoked when the instance receivesits
referenceto the EJBCont ext . The MessageDri venCont ext reference may be stored in an instance field of the
MDB.

47 Some vendors do not pool MDB instances, but may instead create and destroy instances with each new message.
This is an implementation-specific decision that shouldn’t impact the specified life cycle of the statd ess bean instance.

Copyright (c) 2001 O'Reilly & Associates 349

Finally, the no-argument ej bCr eat e() method isinvoked on the bean instance. Remember that an MDB only has
oneej bCr eat e() method, which takes no arguments. Theej bCr eat e() method isinvoked only onceinthe
life cycle of the MDB.

MDBs are not subject to activation, so they can maintain open connections to resources for their entirelife cycle.”
Theej bRenove() method should close any open resources before the MDB is evicted from memory at the end of
itslifecycle.

Lifein the Method-Ready Pool

Once aninstanceisin the Method-Ready Poadl, it isready to handleincoming messages. When amessage is
delivered to an MDB it is delegated to any availableinstance in the Method-Ready Pool. Whilethe instance is
executing the request, it is unavailable to process other messages. The MDB can handle many messages
simultaneously, delegating the responsibility of handling each message to a different MDB instance. Once the
instance has finished, it isimmediately available to handle a new message.

When amessage is delegated to an instance, the MDB instance’sMessageDr i venCont ext changes to reflect
the new transaction context.

MDBs are not subject to activation and do not haveej bAct i vat e() orej bPassi vat e() callback methods.
Thereason issimple: MDB instances have no conversational state that needs to be preserved. (Stateful session
beans do depend on activation, aswe' |l seelater.)

Transitioning out of the Method-Ready Pool: The death of an MDB instance

Bean instances |eave the M ethod-Ready Pool for the Does Not Exist state when the server no longer needs the
instance. This occurs when the server decides to reduce the total size of the M ethod-Ready Pool by evicting one or
more instances from memory. The process begins by invoking theej bRenove() method on the instance. At this
time, the bean instance should perform any cleanup operations, like closing open resources. Theej bRenove()
method is only invoked oncein the life cycle of an MDB’ sinstance—when it is about to transition to the Does Not
Exist state. During theej bRenove() method, the MessageDr i venCont ext and accesstothe INDI ENC isstill
available to the bean instance. Following the execution of theej bRenove() method, the bean isdereferenced and
eventually garbage collected.

48 The duration of an MDB instance’s life is assumed to be very long. However, some EJB servers may actually
destroy and create instances with every new message, making this strategy less attractive. Consult your vendor’s documentation for
details on how your EJB server handles statel ess instances.

Copyright (c) 2001 O'Reilly & Associates 350

14

Transactions

ACID Transactions

To understand how transactions work, we will revisit the Travel Agent EJB, a stateful session bean that encapsulates
the process of making a cruise reservation for a customer. Here is the Travel Agent’ sbook Passage() method in
EJB 2.0and 1.1 versions:

EJB 2.0: book Passage() method

publ i ¢ Ti cket DO bookPassage(G edi t Car dDO card, doubl e pri ce)
throws | nconpl et eConversational S ate {

if (custoner = null || cruise = null || cabin = null) {
t hr ow new | nconpl et eConver sati onal S ate();

}

try {

Reser vat i ontbnelLocal resHone =
(Reservat i ontbnelLocal)
j ndi Gont ext . | ookup
("] ava: conp/ env/ ej b/ Reser vat i onHone") ;

Reservat i onLocal reservation =
reskone. creat e(cust oner, cruise, cabin, price);

(oj ect ref = jndi Gontext. | ookup
("j ava: conp/ env/ ej b/ Pr ocessPaynent Hong") ;

Pr ocessPaynent HoneRenot e ppHone =
(Pr ocessPaynent HoneRenot €)
Por t abl eRenot eCj ect . nar r ow
(ref, ProcessPaynent HoneRenot e. cl ass) ;

Pr ocessPaynent Renot e process = ppHone. create();
process. byQredi t (custoner, card, price);

Copyright (c) 2001 O'Reilly & Associates 351

Ticket DO ticket =
new Ti cket DJ cust oner, cr ui se, cabi n, price);
return ticket;
} catch(Bxception e) {
t hr ow new EJBExcepti on(e);

}

EJB 1.1: bookPassage() method

publ i ¢ Ti cket DO bookPassage(G edi t Car dDO card, doubl e pri ce)
throws | nconpl et eConversati onal S ate {

if (custoner = null || cruise = null || cabin = null) {
t hr ow new | nconpl et eConver sati onal S ate();

}

try {

Reser vat i ontbneRenot e restHone =
(Reservat i onHoneRenot) get Hone(" Reser vat i ontone",
Reser vat i ontHoneRenot e. cl ass);
Reser vat i onRenot e reservation =
resHone. creat e(cust oner, cruise, cabin, price);
Pr ocessPaynent HoneRenot e ppHone =
(ProcessPaynent HoneRenot e)
get Hone(" Pr ocessPaynent Hone",
Pr ocessPaynent HoneRenot e. ¢l ass) ;
Pr ocessPaynent Renot e process = ppHone. create();
process. byQedi t (custoner, card, price);

TicketDO ticket =
new Ti cket DO cust oner, crui se, cabi n, pri ce);
return ticket;
} catch(Exception e) {
t hrow new EJBException(e);

}

}

The TravelAgent EJB isafairly simple session bean, and its use of other EJBsis atypical example of business object
design and workflow. Unfortunately, good business object design is not enough to make these EJBs useful in an
industrial-strength application. The problem is not with the definition of the EJBs or the workflow; the problem is that
agood design doesn't, in and of itself, guarantee that the Travel Agent’ sbookPassage() method represents a
good transaction. To understand why, we will take acloser ook at what atransaction means and what criteriaa
transaction must meet to be considered reliable.

In business, atransaction usually involves an exchange between two parties. When you purchase an ice cream cone,
you exchange money for food; when you work for a company, you exchange skill and time for money (which you use
to buy more ice cream). When you are involved in these exchanges, you monitor the outcome to ensure that you
don’t get “ripped off.” If you give the ice cream vendor a $20 bill, you don’t want him to drive off without giving you
your change; you want to make sure that your paycheck reflects al the hours that you worked. By monitoring these
commercial exchanges, you are attempting to ensure the reliability of the transactions; you are making sure that the
transaction meets everyone' s expectations.

In business software, atransaction embodies the concept of acommercia exchange. A business system transaction
(transaction for short) isthe execution of a unit-of-work that accesses one or more shared resources, usually

Copyright (c) 2001 O'Reilly & Associates 352

databases. A unit-of-work is a set of activitiesthat relate to each other and must be completed together. The
reservation processis aunit-of-work made up of several activities: recording a reservation, debiting a credit card, and
generating aticket together make up a unit-of-work.

Transactions are part of many different types of systems. In each transaction, the objective isthe same: to execute a
unit-of-work that resultsin areliable exchange. Here are some examples of other types of business systems that
employ transactions:

ATM
The ATM (automatic teller machine) you use to deposit, withdraw, and transfer funds, executes these units-of-
work astransactions. In an ATM withdrawal, for example, the ATM checksto make sure you don’t overdraw
and then debits your account and spits out some money.

Online book order
Y ou'’ ve probably purchased many of your Java books from an online bookselle—maybe even this book. This
type of purchaseis also a unit-of-work that takes place as a transaction. In an online book purchase, you submit
your credit card number, it is validated, and then acharge is made for price of the book, and an order to ship you
the book is sent to the bookseller’ s warehouse.

Medical system
In amedical system, important data—some of it critical—is recorded about patients every day, including
information about clinical visits, medical procedures, prescriptions, and drug allergies. The doctor prescribes the
drug, then the system checks for allergies, contraindications, and appropriate dosages. If al tests pass, then the
drug can be administered. The tasks just described make up a unit-of-work in amedical system. A unit-of-work in
amedical system may not be financial, but it’s just asimportant. A failure to identify adrug allergy in apatient
could befatal.

Asyou can see, transactions are often complex and usually involve the manipulation of alot of data. Mistakesin
data can cost money, or even alife. Transactions must therefore preserve dataintegrity, which means that the
transaction must work perfectly every time or not be executed at all. Thisisa pretty tall order, especially for complex
systems. As difficult asthisrequirement is, however, when it comes to commerce there is no room for error. Units-of-
work involving money or anything of value always require the utmost reliability, because errorsimpact the revenues
and the well-being of the partiesinvolved.

To giveyou an idea of the accuracy required by transactions, think about what would happen if atransactional
system suffered from seemingly infrequent errors. ATMs provide customers with convenient access to their bank
accounts and represent a significant percentage of the total transactionsin personal banking. The number of
transactions handled by ATMs are simple but numerous, providing uswith a great example of why transactions must
be error proof. Let’ s say that a bank has 100 ATMsin ametropolitan area, and each ATM processes 300 transactions
(deposits, withdrawals, or transfers) aday for atotal of 30,000 transactions per day. If each transaction, on average,
involves the deposit, withdrawal, or transfer of about $100, about three million dollars would move through the ATM
system per day. In the course of ayear, that’s alittle over abillion dollars:

(365 days) ? (100ATMs) ? (300 transactions) ? ($100.00) = $1,095,000,000.00

How well do the ATMs have to perform in order for them to be considered reliable? For the sake of argument, let’s
say that ATMs execute transactions correctly 99.99% of the time. This seems to be more than adequate: after all, only
one out of every ten thousand transactions executes incorrectly. But over the course of ayear, if you do the math,
that could result in over $100,000 in errors!

$1,095,000,000.00 ? .01% = $109,500.00

Obviously, thisis an oversimplification of the problem, but it illustrates that even a small percentage of errorsis
unacceptable in high-volume or mission-critical systems. For this reason, expertsin thefield of transaction services
have identified four characteristics of atransaction that must be followed in order to say that a system is safe.
Transactions must be atomic, consistent, isolated, and durable (ACID)—the four horsemen of transaction services.
Here' swhat each term means:

Copyright (c) 2001 O'Reilly & Associates 353

Atomic
To be atomic, atransaction must execute completely or not at all. This means that every task within a unit-of-
work must execute without error. If any of the tasksfails, the entire unit-of-work or transaction is aborted,
meaning that changes to the data are undone. If all the tasks execute successfully, the transaction is committed,
which means that the changes to the data are made permanent or durable.

Consistent
Consistency is atransactional characteristic that must be enforced by both the transactional system and the
application developer. Consistency refersto the integrity of the underlying data store. The transactional system
fulfillsits obligation in consistency by ensuring that a transaction is atomic, isolated, and durable. The
application developer must ensure that the database has appropriate constraints (primary keys, referentia
integrity, and so forth) and that the unit-of-work, the business logic, doesn’t result in inconsistent data (data
that is not in harmony with the real world it represents). In an account transfer, for example, adebit to one
account must equal the credit to the other account.

Isolated
A transaction must be allowed to execute without interference from other processes or transactions. In other
words, the data that a transaction accesses cannot be affected by any other part of the system until the
transaction or unit-of-work is completed.

Durable
Durability meansthat all the data changes made during the course of a transaction must be written to some type
of physical storage before the transaction is successfully completed. This ensures that the changes are not lost
if the system crashes.

To get abetter idea of what these principles mean, we will examine the Travel Agent EJB in terms of the four ACID
properties.

Isthe TravelAgent EJB Atomic?

Our first measure of the Travel Agent EJB’ sreliability isits atomicity: doesit ensure that the transaction executes
completely or not at all? What we are really concerned with are the critical tasks that change or create information. In
thebookPassage() method, a Reservation EJB is created, the ProcessPayment EJB debits acredit card, and a

Ti cket DOobject is created. All of these tasks must be successful for the entire transaction to be successful.

To understand the importance of the atomic characteristic, you have to imagine what would happen if even one of
the subtasks failed to execute. If, for example, the creation of a Reservation EJB failed but all other tasks succeeded,
your customer would probably end up getting bumped from the cruise or sharing the cabin with astranger. Asfar as
the travel agent is concerned, thebookPassage() method executed successfully becauseaTi cket DOwas
generated. If aticket is generated without the creation of areservation, the state of the business system becomes
inconsistent with reality because the customer paid for aticket but the reservation was not recorded. Likewise, if the
ProcessPayment EJB fails to charge the customer’s credit card, the customer gets a free cruise. He may be happy, but
management isn’t. Finally, if the Ti cket DO is never created, the customer would have no record of the transaction
and probably wouldn’t be allowed onto the ship.

So the only way bookPassage() canbecompletedisif all the critical tasks execute successfully. If something
goes wrong, the entire process must be aborted. Aborting atransaction requires more than simply not finishing the
tasks; in addition, all the tasks that did execute within the transaction must be undone. If, for example, the creation of
the Reservation EJB and Pr ocessPaynent . byCr edi t () method succeeded but the creation of the Ti cket DO
failed throwing an exception from constructor, then the reservation record and payment records must not be added to
the database.

Copyright (c) 2001 O'Reilly & Associates 354

Isthe TravelAgent EJB Consistent?

In order for atransaction to be consistent, the state of the business system must make sense after the transaction has
completed. In other words, the state of the business system must be consistent with the reality of the business. This
requires that the transaction enforce the atomic, isolated, and durable characteristics of the transaction, and it also
requires diligent enforcement of integrity constraints by the application developer. If, for example, the application
developer failsto include the credit card charge operation inthe bookPassage() method, the customer would be
issued aticket but would never be charged. The data would be inconsistent with the expectation of the business—a
customer should be charged for passage. In addition, the database must be set up to enforce integrity constraints.
For example, it should not be possible for arecord to be added to the RESERVATI ON table unlessthe CABI N_| D,
CRUI SE_I D, and CUSTOVER_| Dforeign keys map to corresponding records in the CABI N, CRUI SE, and
CUSTOVER tables, respectively. If aCUSTOVER | Disused that doesn’t map to a CUSTOVER record, referential
integrity should cause the database to throw an error message.

Isthe TravelAgent EJB | solated?

If you are familiar with the concept of thread synchronization in Java or row-locking schemesin relational databases,
isolation will be afamiliar concept. To beisolated, atransaction must protect the datathat it is accessing from other
transactions. Thisisnecessary to prevent other transactions from interacting with datathat isin transition. In the
Travel Agent EJB, the transaction isisolated to prevent other transactions from modifying the EJBs that are being
updated. I magine the problems that would arise if separate transactions were allowed to change any entity bean at
any time—transactions would walk all over each other. You could easily have several customers book the same cabin
because their travel agents happened to make their reservations at the sametime.

Theisolation of data accessed by EJBs doesn’t mean that the entire application shuts down during a transaction.
Only those entity beans and data directly affected by the transaction are isolated. In the Travel Agent EJB, for
example, the transaction isolates only the Reservation EJB created. There can be many Reservation EJBsin existence;
there’ s no reason these other EJBs can’t be accessed by other transactions.

Isthe TravelAgent EJB Durable?

To bedurable, thebookPassage() method must write all changes and new datato a permanent data store before
it can be considered successful. While this may seem like ano-brainer, often it isn’'t what happensinreal life. Inthe
name of efficiency, changes are often maintained in memory for long periods of time before being saved on adisk
drive. Theideaisto reduce disk accesses—which slow systems down—and only periodically write the cumulative
effect of datachanges. Whilethis approachis great for performance, it is also dangerous because data can be lost
when the system goes down and memory iswiped out. Durability requires the system to save all updates made within
atransaction as the transaction successfully completes, thus protecting the integrity of the data.

In the Travel Agent EJB, this means that the new RESERVAT| ON and PAYMENT recordsinserted are made
persistent before the transaction can compl ete successfully. Only when the datais made durabl e are those specific
records accessible through their respective EJBs from other transactions. Hence, durability also playsarolein
isolation. A transaction isn't finished until the datais successfully recorded.

Ensuring that transactions adhere to the ACID principles requires careful design. The system has to monitor the
progress of atransaction to ensurethat it does all itswork, that the datais changed correctly, that transactions don’t
interfere with each other, and that the changes can survive a system crash. Engineering all thisfunctionality into a
system isalot of work, and not something you would want to reinvent for every business system you worked on.
Fortunately, EJB is specifically designed to support transactions automatically, making the development of
transactional systems easier. The rest of this chapter examines how EJB supports transactionsimplicitly (through
declarative transaction attributes) and explicitly (through the Java Transaction API).

Copyright (c) 2001 O'Reilly & Associates 355

Declarative Transaction M anagement

One of the primary advantages of Enterprise JavaBeansisthat it allows for declarative transaction management.
Without this feature, transactions must be controlled using explicit transaction demarcation. Thisinvolves the use of
fairly complex APIslikethe OMG's OTS (Object Transaction Service) or its Javaimplementation, JTS (Java Trans-
action Service). Explicit demarcation is difficult for developersto use at best, particularly if you are new to
transactional systems. In addition, explicit transaction demarcation requires that the transactional code be written
within the business logic, which reduces the clarity of the code and more importantly creates inflexible distributed
objects. Once transaction demarcation is “hardcoded” into the business object, changes in transaction behavior
require changes to the businesslogic itself. We talk more about explicit transaction management and EJB later in this
chapter.

With EJB’ s declarative transaction management, the transactional behavior of EJBs can be controlled using the
deployment descriptor, which sets transaction attributes for individual enterprise bean methods. This means that the
transactional behavior of a EJB within an application can be changed easily without changing the EJB’ s business
logic. In addition, a EJB deployed in one application can be defined with very different transactional behavior than
the same EJB deployed in a different application. Declarative transaction management reducesthe complexity of
transactions for EJB developers and application devel opers and makesit easier for you to create robust transactional
applications.

Transaction Scope

Transaction scopeisacrucial concept for understanding transactions. In this context, transaction scope means
those EJBs—both session and entity—that are participating in a particular transaction.

InthebookPassage() method of the Travel Agent EJB, all the EJBsinvolved are a part of the same transaction
scope. The scope of the transaction starts when a client invokes the Travel Agent EJB’sbookPassage() method.
Once the transaction scope has started, it ispropagated to both the newly created Reservation EJB and the
ProcessPayment EJB:

Asyou know, atransaction isaunit-of-work that is made up of one or moretasks. In atransaction, all the tasks that
make up the unit-of-work must succeed for the entire transaction to succeed; the transaction must be atomic. If any
task fails, the updates made by all the other tasks in the transaction will be rolled back or undone. In EJB, tasks are
expressed as enterprise bean methods, and a unit-of-work consists of every enterprise bean method invoked in a
transaction. The scope of atransaction includes every EJB that participates in the unit-of-work.

It is easy to trace the scope of atransaction by following the thread of execution. If the invocation of the
bookPassage() method begins atransaction, then logically, the transaction ends when the method compl etes.
The scope of the bookPassage() transaction would include the Travel Agent, Reservation, and ProcessPayment
EBs—every EJB touched by thebookPassage() method. A transaction is propagated to an EJB when that EJB’s
method isinvoked and included in the scope of atransaction.

A transaction can end if an exception isthrown whilethebookPassage() method is executing. The exception
could be thrown from one of the other EJBs or from thebookPassage() method itself. An exception may or may
not cause arollback, depending on itstype. More about exceptions and transactions later.

Thethread of execution isn't the only factor that determines whether a EJB isincluded in the scope of atransaction;
the EJB’ stransaction attributes also play arole. Determining whether a EJB participatesin the transaction scope of
any unit-of-work is accomplished either implicitly using EJB’ s transaction attributes or explicitly using the Java
Transaction APl (JTA).

Copyright (c) 2001 O'Reilly & Associates 356

Transaction Attributes

As an application developer, you do not normally need to control transactions explicitly when using an EJB server.
EJB servers can manage transactionsimplicitly, based on the transaction attributes established for EJBs at
deployment time. The ability to specify how business objects participate in transactions through attribute-based
programming is acommon characteristic of CTMs, and one of the most important features of the EJB conmponent
model.

When an EJB isdeployed, you can set its runtime transaction attribute in the deployment descriptor to one of several
values. Thelist below shows the XML attribute values used to specify these transaction attributes:

?? Not Supported
Supports
Requi r ed
Requi r esNew

Mandat ory

i TR, S S S

Never

Using transaction attributes simplifies building transactional applications by reducing the risks associated with
improper use of transactional protocols like JTA (discussed later in this chapter). It’s more efficient and easier to use
transaction attributes than to control transactions explicitly.

It is possibleto set atransaction attribute for the entire EJB (in which case, it appliesto all methods) or to set
different transaction attributes for individual methods. The former is much simpler and less error prone, but setting
attributes at the method level offers more flexibility. The code fragmentsin the following sections show how the
default transaction attribute of a EJB can be set in the EJB’ s deployment descriptor.

Setting atransaction attribute

Inthe XML deployment descriptor, a<cont ai ner -transacti on> element specifies the transaction attributes
for the EJBs described in the deployment descriptor:

<gj b-jar>
<assenbl y- descri pt or >

<cont ai ner -t ransact i on>
<net hod>
<gj b- nane>Tr avel Agent EJB</] b- nane>
<net hod- nane> * </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attribute>
</ cont ai ner -transact i on>
<cont ai ner -t ransact i on>
<net hod>
<ej b- nane>Tr avel Agent EJB</ €] b- nane>
<net hod- nane> i st Avai | abl eCabi ns</ net hod- nane>
</ net hod>
<trans-attribute>Supports</trans-attribute>
</ cont ai ner -t ransact i on>

</ assenbl y-descri pt or >

Copyright (c) 2001 O'Reilly & Associates 357

</€jb-jar>

This deployment descriptor specifies the transaction attributes for the Travel Agent EJB. The<cont ai ner -
transacti on> element specifies amethod and the transaction attribute that should be applied to that method.
Thefirst<cont ai ner-transact i on> element specifiesthat all methods by default have atransaction attribute
of Requi r ed; the* isawildcard that indicates all of the methods of the Travel Agent EJB. The second

<cont ai ner-transacti on> element overrides the default setting to specify that the

i stAvail abl eCabi ns() method will haveaSuppor t s transaction attribute. Note that we have to specify
which EJB we' rereferring to with the <ej b- nane> element; an XML deployment descriptor can cover many EJBs.

Transaction Attributes Defined

Here are the definitions of the transaction attributes listed above. In afew of the definitions, we say that the client
transaction issuspended. This meansthat the transaction is not propagated to the enterprise bean method being
invoked; propagation of the transaction istemporarily halted until the enterprise bean method returns.

To makethings easier, we'll talk about attribute types asif they were bean types: for example, we'll say a
“Requi r ed EJB” asshorthand for “an enterprise bean with the Requi r ed transactional attribute”.

NotSupported

Invoking a method on an EJB with this transaction attribute suspends the transaction until the method is
completed. This means that the transaction scope is not propagated to the NotSupported EJB or any of the EJBs
it calls. Once the method on the NotSupported EJB is done, the original transaction resumesits execution.

Figure 8-1 shows that a Not Supported EJB does not propagate the client transaction when one of its methodsis
invoked.

[FIGURE (modified 8-1)]
Figure 14-1: Not Supported attribute

Supports
This attribute means that the enterprise bean method will be included in the transaction scopeif it isinvoked
within atransaction. In other words, if the EJB or client that invokes the Supports EJB is part of atransaction
scope, the Supports EJB and all EJBs accessed by it become part of the original transaction. However, the Sup-
ports EJB doesn’'t have to be part of atransaction and can interact with clients and other EJBs that are not
included in atransaction scope.

Figure 8-3(a) shows the Supports EJB being invoked by atransactional client and propagating the transaction.
Figure 8-3(b) shows the Supports EJB being invoked from anon-transactional client.

[FIGURE (modifed 8-2)]
Figure 14-2: Supports attribute
Required
This attribute means that the enterprise bean method must be invoked within the scope of atransaction. If the
caling client or EJB is part of atransaction, the Required EJB is automatically included in its transaction scope.
If, however, the calling client or EJB is not involved in atransaction, the Required EJB startsits own new

transaction. The new transaction’s scope covers only the Required EJB and all other EJBs accessed by it. Once
the method invoked on the Required EJB is done, the new transaction’s scope ends.

Figure 8-5(a) shows the Required EJB being invoked by atransactional client and propagating the transaction.
Figure 8-5(b) showsthe Required EJB being invoked from a non-transactional client, which causesit to start its
own transaction.

[FIGURE (modifed 8-3)]

Copyright (c) 2001 O'Reilly & Associates 358

Figure 14-3: Required attribute

Requires New
This attribute means that a new transaction is always started. Regardless of whether the calling client or EJB is
part of atransaction, amethod with the RequiresNew attribute begins a new transaction when invoked. If the
caling client is already involved in atransaction, that transaction is suspended until the RequiresNew EJB’s
method call returns. The new transaction’s scope only covers the RequiresNew EJB and all the EJBs accessed
by it. Once the method invoked on the RequiresNew EJB is done, the new transaction’ s scope ends and the
original transaction resumes.

Figure 8-7(a) shows the RequiresNew EJB being invoked by atransactional client. The client’ stransaction is
suspended while the EJB executes under its own transaction. Figure 8-7(b) shows the RequiresNew EJB being
invoked from anon-transactional client; the RequiresNew executes under its own transaction.

[FIGURE (modified 8-4)]
Figure 14-4: Requires New attribute

Mandatory
This attribute means that the enterprise bean method must always be made part of the transaction scope of the
calling client. If the calling client or EJB is not part of atransaction, the invocation will fail, throwing a
javax.transaction. Transacti onRequi r edExcepti on toremoteclientsor a
javax. ej b. Transacti onRequi redLocal Excepti on toloca EJB 2.0 clients.

Figure 8-9(a) shows the Mandatory EJB being invoked by atransactional client and propagating the transaction.
Figure 8-9(b) shows the Mandatory EJB being invoked from a non-transactional client; the method throws the
Transacti onRequi r edExcepti on toremoteclientsor Tr ansact i onRequr edLocal Excepti on
tolocal EJB 2.0 clients, because thereis no transaction scope.

[FIGURE (modifed 8-5)]
Figure 14-5: Mandatory attribute

Never
This attribute means that the enterprise bean method must never be invoked within the scope of atransaction. If
the calling client or EJB is part of atransaction, the Never EJB will throw aRenpt eExcept i on to remote
clientsor anEJBExcept i on toloca EJB 2.0 clients. If, however, the calling client or EJB isnot involvedin a
transaction, the Never EJB will execute normally without a transaction.
Figure 8-11(a) shows the Never EJB being invoked by a non-transactional client. Figure 8-11(b) shows the Never
EJB being invoked by transactional client; the method throws the Renpt eExcept i on to remote clients or
EJBExcepti on toloca EJB 2.0 clients, because the method can never be invoked by aclient or EJB that is
included in atransaction.

[FIGURE (modifed 8-6)]
Figure 14-6. Never attribute

EJB 2.0: M essage-driven beansand transaction attributes

M essage-driven beans may only declare the NotSupported or Required transaction attributes. The other transaction
attributes don’t make sense in message-driven beans because they apply to client-initiated transactions. The
Supports, RequiresNew, Mandatory, and Never attributes are all relative to the transaction context of the client. For
example, the Mandatory attribute requires the client to have atransaction in progress before calling the enterprise
bean. Thisismeaninglessfor amessage-driven bean, which is uncoupled from the client.

The NotSupported transaction attribute indicates the message will be processed without atransaction. The
Required transaction attribute indicates that the message will be processed with a container-initiated transaction.

Copyright (c) 2001 O'Reilly & Associates 359

Transaction Propagation

Toillustrate the impact of transaction attributes on enterprise bean methods, we'll look once again at the
bookPassage() method of the Travel Agent EJB created in Chapter 7 (see the listings at the earlier in the chapter):

Inorder for bookPassage() toexecute asasuccessful transaction, both the creation of the Reservation EJB and
the charge to the customer must be successful. This means that both operations must be included in the same
transaction. If either operation fails, the entire transaction fails. We could have specified the Required transaction
attribute as the default for all the EJB involved, because that attribute enforces our desired policy that all EJBs must
execute within atransaction and thus ensures data consistency.

As atransaction monitor, an EJB server watches each method call in the transaction. If any of the updatesfail, all the
updatesto all the EIBswill be reversed or rolled back. A rollback islike anundo command. If you have worked with
relational databases, then the concept of arollback should be familiar. Once an update is executed, you can either
commit the update or roll it back. A commit makes the changes requested by the update permanent; arollback aborts
the update and |eaves the database in its original state. Making EJBs transactional provides the same kind of
rollback/commit control. For example, if the Reservation EJB cannot be created, the charge made by the
ProcessPayment EJB isrolled back. Transactions make updates an all-or-nothing proposition. This ensures that the
unit-of-work, likethebookPassage() method, executes asintended, and it prevents inconsistent data from being
written to databases.

In cases where the container implicitly manages the transaction, the commit and rollback decisions are handled
automatically. When transactions are managed explicitly within an enterprise bean or by the client, the responsibility
falls on the enterprise bean or application developer to commit or roll back atransaction. Explicit demarcation of
transactionsis covered in detail later in this chapter.

Let’sassume that the Travel Agent EJB is created and used on aclient as follows:

Travel Agent agent = agent Hone. cr eat e(cust oner) ;
agent . set Gabi nl O cabi n_id);
agent . set O ui sel (crui se_id):
try {
agent . bookPassage(card, pri ce);
} catch(BException e) {
Systemout. println("Transaction failed ");

}

Furthermore, let’ s assume that the book Passage() method has been given the transaction attribute RequiresNew.
In this case, the client that invokesthe bookPassage() method isnot itself part of atransaction. When
bookPassage() isinvoked onthe Travel Agent EJB, anew transaction is created, as dictated by the RequiresNew
attribute. This means that the Travel Agent EJB registersitself with the EJB server’ s transaction manager, which will
manage the transaction automatically. The transaction manager coordinates transactions, propagating the
transaction scope from one EJB to the next to ensure that all EJBs touched by atransaction are included in the
transaction’ s unit-of-work. That way, the transaction manager can monitor the updates made by each enterprise bean
and decide, based on the success of those updates, whether to commit all changes made by all enterprise beans to
the database or roll them all back. If a system exception isthrown by the bookPassage() method, the transaction
isautomatically rolled back. We will talk more about exceptions later in this chapter.

When the by Cr edi t () method isinvoked withinthebookPassage() method, the ProcessPayment EJB
registers with the transaction manager under the transactional context that was created for the Travel Agent EJB; the
transactional context is propagated to the ProcessPayment EJB. When the new Reservation EJB is created, it isalso
registered with the transaction manager under the same transaction. When all the EJBs are registered and their
updates made, the transaction manager checks to ensure that their updates will work. If all the updates will work, then
the transaction manager allows the changes to become permanent. If one of the EJBs reports an error or fails, any

Copyright (c) 2001 O'Reilly & Associates 360

changes made by either the ProcessPayment or Reservation EJB arerolled back by the transaction manager.
Figure 8-15 illustrates the propagation and management of the Travel Agent EJB’ stransactional context.

[FIGURE (modified 8-8)]
Figure 14-7: Managing the Travel Agent EJB’ s transactional context

In addition to managing transactionsin its own environment, an EJB server can coordinate with other transactional
systems. If, for example, the ProcessPayment EJB actually came from a different EJB server than the Travel Agent EJB,
the two EJB servers would cooperate to manage the transaction as one unit-of-work. Thisiscaled a distributed
transaction.”

A distributed transaction is agreat deal more complicated, requiring what is called atwo- phase commit (2-PC or
TPC). 2-PC is amechanism that allows transactions to be managed across different servers and resources (e.g.
databases and JM S providers). The details of a 2-PC are beyond the scope of this book, but a system that supportsit
will not require any extra operations by a EJB or application developer. If distributed transactions are supported, the
protocol for propagating transactions, as discussed earlier, will be supported. In other words, as an application or
EJB developer, you should not notice a difference between local and distributed transactions.

| solation and Database L ocking

Transaction isolation (the“1” in ACID) isacritical part of any transactional system. This section explainsisolation
conditions, database locking, and transaction isolation levels. These concepts are important when deploying any
transactional system.

Dirty, Repeatable, and Phantom Reads

Transaction isolation is defined in terms of isolation conditions called dirty reads, repeatable reads, and phantom
reads. These conditions describe what can happen when two or more transactions operate on the same data.*

Toillustrate these conditions, let’ sthink about two separate client applications using their own instances of the
Travel Agent EJB to access the same data—specifically, a cabin record with the primary key of 99. These examples
revolve around the RESERVATI ONtable, which is accessed by both thebookPassage() method (through the
Reservation EJB) and thel i st Avai | abl eCabi ns() method (through JDBC). It might be agood ideato go back
to Chapter 12 and review how the RESERVATI ON table is accessed through these methods. Thiswill help you to
understand how two transactions executed by two different clients can impact each other. Assume that both
methods have atransaction attribute of Required.

Dirty reads

A dirty read occurswhen the first transaction reads uncommitted changes made by a second transaction. If the
second transaction is rolled back, the data read by the first transaction becomes invalid because the rollback undoes
the changes. Thefirst transaction won’t be aware that the data it has read has become invalid. Here’'s a scenario
showing how adirty read can occur (illustrated in Figure 14-8):

1. Time10:00:00: Client 1 executes the Travel Agent.bookPassage() method. Along with the Customer and Cruise
EJBs, Client 1 had previously chosen Cabin 99 to be included in the reservation.

49 Not all EJB servers support distributed transactions.
50 Isolation conditions are covered in detail by the ANSI SQL-92 Specification, Document Number: ANS| X3. 135-1992 (R1998).

Copyright (c) 2001 O'Reilly & Associates 361

2. Time10:00:01: Client 1's Travel Agent EJB creates a Reservation EJB within the bookPassage() method. The
Reservation EJB’ s create() method inserts arecord into the RESERVATION table, which reserves Cabin 99.

3. Time10:00:02: Client 2 executes Travel Agent.listAvail ableCabins(). Cabin 99 has been reserved by Client 1, so it
isnot in thelist of available cabinsthat are returned from this method.

4. Time10:00:03: Client 1's Travel Agent EJB executes the ProcessPayment.byCredit() method within the
bookPassage() method. The byCredit() method throws an exception because the expiration date on the credit
card has passed.

5. Time 10:00:04: The exception thrown by the ProcessPayment EJB causes the entire bookPassage() transaction to
berolled back. As aresult, the record inserted into the RESERVATION table when the Reservation EJB was
created is not made durable (it is removed). Cabin 99 is now available.

[FIGURE (use 8-9)]
Figure 14-8: Adirty read

Client 2isnow using an invalid list of available cabins because Cabin 99 is available but is not included in thelist.
Thiswould be seriousif Cabin 99 was the last avail able cabin because Client 2 would inaccurately report that the
cruise was booked. The customer would presumably try to book a cruise on acompeting cruise line.

Repeatable reads

A repeatableread iswhen the dataread is guaranteed to ook the same if read again during the same transaction.
Repeatable reads are guaranteed in one of two ways: either the dataread islocked against changes or the dataread is
asnapshot that doesn’t reflect changes. If the dataislocked, then it cannot be changed by any other transaction
until thistransaction ends. If the datais a snapshot, then other transactions can change the data, but these changes
won't be seen by thistransaction if the read is repeated. Here' s an example of arepeatable read (illustrated in

Figure 14-9):

1. Time 10:00:00: Client 1 begins an explicit javax.transaction.UserT ransaction.

2. Time10:00:01: Client 1 executes Travel Agent.listAvailableCabins(2), asking for alist of available cabins that have
two beds. Cabin 99 isin thelist of available cabins.

3. Time 10:00:02: Client 2 isworking with an interface that manages Cabin EJBs. Client 2 attempts to change the bed
count on Cabin 99 from 2 to 3.

4. Time 10:00:03: Client 1 re-executes the Travel Agent.listAvailableCabins(2). Cabin 99 is till inthelist of available
cabins.

[FIGURE (use 8-10)]
Figure 14-9: Repeatableread

This example is somewhat unusual because it usesj avax. t ransacti on. User Transact i on. Thisclassis
covered in more detail later in this chapter; essentially, it allows aclient application to control the scope of a
transaction explicitly. In this case, Client 1 places transaction boundaries around both callsto

| i st Avai | abl eCabi ns() , sothat they are a part of the same transaction. If Client 1 didn’t do this, the two
I'i st Avai | abl eCabi ns() methodswould have executed as separate transactions and our repeatable read
condition would not have occurred.

Although Client 2 attempted to change the bed count for Cabin 99 to 3, Cahin 99 still shows up inthe Client 1 call to
i st Avail abl eCabi ns() when abed count of 2 isrequested. Thisis because either Client 2 was prevented
from making the change (because of alock), or Client 2 was able to make the change, but Client 1 isworking with a
snapshot of the data that doesn’t reflect that change.

Copyright (c) 2001 O'Reilly & Associates 362

A nonrepeatable read is when the dataretrieved in a subsequent read within the same transaction can return
different results. In other words, the subsequent read can see the changes made by other transactions.

Phantom reads

Phantom reads occur when new records added to the database are detectable by transactions that started prior to the
insert. Queries will include records added by other transactions after their transaction has started. Here's a scenario
that includes a phantom read (illustrated in Figure 14-10):

1. Time 10:00:00: Client 1 begins an explicit javax.transaction.UserTransaction.

2. Time 10:00:01: Client 1 executes Travel Agent.listAvailableCabins(2), asking for alist of available cabinsthat have
two beds. Cabin 99 isin thelist of available cabins.

3. Time10:00:02: Client 2 executes bookPassage() and creates a Reservation EJB. The reservation inserts a new
record into the RESERVATION table, reserving cabin 99.

4. Time 10:00:03: Client 1 re-executes the Travel Agent.listAvailableCabins(2). Cabin 99 isno longer in thelist of
available cabins.

[FIGURE (use 8-11)]
Figure 14-10: Phantomread

Client 1 places transaction boundaries around both callstol i st Avai | abl eCabi ns(), so that they are a part of
the same transaction. In this case, the reservation was made betweenthel i st Avai | abl eCabi ns() queriesin
the same transaction. Therefore, the record inserted in the RESERVATI ON table didn’t exist when the first

i st Avai |l abl eCabi ns() method isinvoked, but it does exist and is visible when the second

i st Avai | abl eCabi ns() method isinvoked. The record inserted isa phantomrecord.

Database L ocks

Databases, especially relational databases, normally use several different locking technigues. The most common are
read locks, write locks, and exclusive write locks. (I’ ve taken the liberty of adding “snapshots,” although thisisn’t a
formal term.) These locking mechanisms control how transactions access data concurrently. Locking mechanisms
impact the read conditions that were just described. These types of locks are simple concepts that are not directly
addressed in the EJB specification. Database vendors implement these locks differently, so you should understand
how your database addresses these |ocking mechanisms to best predict how the isolation levels described in this
section will work.

Read locks
Read locks prevent other transactions from changing data read during a transaction until the transaction ends,
thus preventing nonrepeatabl e reads. Other transactions can read the data but not write it. The current
transaction is also prohibited from making changes. Whether aread lock locks only the records read, a block of
records, or awhole table depends on the database being used.

Write locks
Write locks are used for updates. A write lock prevents other transactions from changing the data until the
current transaction is complete. A write lock allows dirty reads, by other transactions and by the current
transaction itself. In other words, the transaction can read its own uncommitted changes.

Exclusive write locks
Exclusive write locks are used for updates. An exclusive write lock prevents other transactions from reading or
changing data until the current transaction is complete. An exclusive write lock prevents dirty reads by other
transactions. Other transactions are not allowed to read the datawhileit is exclusively locked. Some databases
do not allow transactions to read their own datawhileit is exclusively locked.

Copyright (c) 2001 O'Reilly & Associates 363

Snapshots
Some databases get around locking by providing every transaction with its own snapshot of the data. A
snapshot isafrozen view of the datathat is taken when the transaction begins. Snapshots can prevent dirty
reads, nonrepeatabl e reads, and phantom reads. Snapshots can be problematic because the datais not real-time;
itisold theinstant the snapshot is taken.

Transaction Isolation Levels

Transaction isolation is defined in terms of the isolation conditions (dirty reads repeatable reads, and phantom
reads). Isolation levels are commonly used in database systems to describe how locking is applied to datawithin a
transaction.> The following terms are usually used to discuss isolation levels:

Read Uncommitted
The transaction can read uncommitted data (data changed by a different transaction that is still in progress).

Dirty reads, nonrepeatable reads, and phantom reads can occur. Bean methods with thisisolation level can read
uncommitted change.

Read Committed
The transaction cannot read uncommitted data; data that is being changed by a different transaction cannot be
read.

Dirty reads are prevented; nonrepeatabl e reads and phantom reads can occur. Bean methods with this isolation
level cannot read uncommitted data.

Repeatable Read
The transaction cannot change data that is being read by a different transaction.

Dirty reads and nonrepeatabl e reads are prevented; phantom reads can occur. Bean methods with thisisolation
level have the same restrictions as Read Committed and can only execute repeatable reads.

Seridizable
The transaction hasexclusive read and update privilegesto data; different transactions can neither read nor
write the same data.

Dirty reads, nonrepeatabl e reads, and phantom reads are prevented. Thisisolation level isthe most restrictive.

Theseisolation levels are the same as those defined for JDBC. Specifically, they map to the static final variablesin
thej ava. sql . Connect i on class. The behavior modeled by theisolation levelsin the connection classisthe
same as the behavior described here.

The exact behavior of theseisolation levels depends largely on the locking mechanism used by the underlying
database or resource. How the isolation levels work dependsin large part on how your database supports them.

In EJB, the deployer sets transaction isolation levelsin avendor specific way if the container manages the
transaction. The EJB developer sets the transaction isolation level if the enterprise bean manages its own
transactions. Up to this point we have only discussed contai ner-managed transactions; bean-managed transactions
are discussed later in this chapter.

Balancing Performance Against Consistency

Generdly speaking, astheisolation levels become more restrictive, the performance of the system decreases because
more restrictive isolation levels prevent transactions from accessing the same data. If isolation levels are very
restrictive, like Serializable, then all transactions, even simple reads, must wait in lineto execute. Thiscanresultina

51 Isolation conditions are covered in detail by ANSI SQL-92 Specification, Document Number: ANSI X3.135- 1992 (R1998).

Copyright (c) 2001 O'Reilly & Associates 364

system that is very slow. EJB systems that process alarge number of concurrent transactions and need to be very
fast will therefore avoid the Serializable isolation level whereit is not necessary, sinceit will be prohibitively slow.

Isolation levels, however, also enforce consistency of data. More restrictive isolation levels help ensure that invalid
datais not used for performing updates. The old adage “garbage in, garbage out” applies here. The Serializable
isolation level ensuresthat datais never accessed concurrently by transactions, thus ensuring that the datais
always consistent.

Choosing the correct isolation level requires some research about the database you are using and how it handles
locking. Y ou must also balance the performance needs of your system against consistency. Thisis not a cut-and-
dried process, because different applications use data differently.

Although there are only three shipsin Titan's system, the entity beans that represent them are included in most of
Titan' s transactions. This means that many, possibly hundreds, of transactions will be accessing these Ship EJBs at
the same time. Access to Ship EJBs needs to be fast or it becomes a bottleneck, so we do not want to use very
restrictive isolation levels. At the same time, the ship data al so needs to be consistent; otherwise, hundreds of
transactions will be using invalid data. Therefore, we need to use a strong isolation level when making changes to
ship information. To accommodate these conflicting requirements, we can apply different isolation levels to different
methods.

M ost transactions use the Ship EJB’ s get methods to obtain information. Thisisread- only behavior, so the isolation
level for the get methods can be very low, such asRead Uncommitted. The set methods of the Ship EJB are almost
never used; the name of the ship probably wouldn’t change for years. However, the data changed by the set
methods must be isolated to prevent dirty reads by other transactions, so we will use the most restrictive isolation
level, Serializable, on the ship’s set methods. By using different isolation levels on different business methods, we
can balance consistency against performance.

Controlling isolation levels

Different EJB serversallow different levels of granularity for setting isolation levels; some servers defer this
responsibility to the database. Most EJB servers control theisolation level through the resource access API (e.g.
JDBC and JIMS) and may allow different resources to have different isolation levels, but will generally require that
access to the same resource within a single transaction use a consistent isolation level. Y ou will need to consult your
vendor’s documentation to find out the level of control your server offers.

Bean-managed transactions in session beans (stateful and statel ess) and message-driven beans (EJB 2.0), however,
allow the EJB developer to specify the transaction isolation level using the API of the resource providing persistent
storage. The IDBC AP, for example, provides amechanism for specifying the isolation level of the database
connection. The following code shows how thisis done. Bean- managed transactions are covered in more detail later
in this chapter.

Dat aSour ce sour ce = (j avax. sql . Dat aSour ce)
j ndi Mt xt . | ookup("j ava: conp/ env/j dbc/titanDB');

Gonnect i on con = sour ce. get Gonnect i on() ;
con. set Transact i onl sol at i on(Gonnect i on. TRANSACTI ON SER ALI ZABLE) ;

Y ou can set theisolation level to be different for different resources within the same transaction, but all enterprise
beans that use the same resource in atransaction should use the sameisolation level.

Copyright (c) 2001 O'Reilly & Associates 365

Non-Transactional Beans

Beans that reside outside a transaction scope normally provide some kind of statel ess service that doesn’t directly
manipulate datain a data store. While these types of enterprise beans may be necessary as utilitiesduring a
transaction, they do not need to meet the stringent ACID requirements of atransaction.

Consider anon-transactional stateless session bean, the QuoteBean, that provides live stock quotes. This EJB may
respond to arequest from atransactional EJB involved in a stock purchase transaction. The success or failure of the
stock purchase, as atransaction, will not impact the state or operations of the QuoteBean, so it doesn’t need to be
part of the transaction. Beans that areinvolved in transactions are subjected to the isolated ACID property, which
means that their servicescannot be shared during the life of the transaction. Making an enterprise bean transactional
can be an expensive runtime activity. Declaring an EJB to be non-transactional (i.e., Not Supported) leavesit out of
the transaction scope, which may improve the performance and availability of that service.

Explicit Transaction M anagement

Although this section covers JTA, it is strongly recommended that you do not attempt to manage
transactions explicitly. Through transaction attributes, EJB provides a comprehensive and simple
mechanism for delimiting transactions at the method level and propagating transactions
automatically. Only developers with a thorough understanding of transactional systems should
attempt to use JTA with EJB.

In EJB, implicit transaction management is provided on the enterprise bean method level so that we can define
transactions that are delimited by the scope of the method being executed. Thisis one of the primary advantages of
EJB over cruder distributed object implementations: it reduces complexity and therefore programmer error. In addition,
declarative transaction demarcation, as used in EJB, separates the transactional behavior from the businesslogic; a
change to transactional behavior does not require changes to the business logic. In rare situations, however, it may
be necessary to take control of transactions explicitly. To do this, it is necessary to have a much more complete
understanding of transactions.

Explicit management of transactionsis complex and is normally accomplished using the OMG’sOTS (Object
Transaction Service) or the Javaimplementation of OTS, JTS (Java Transaction Service). OTS and JTS provide APIs
that allow developersto work with transaction managers and resources (e.g. databases and JM S providers) directly.
While the JTS implementation of OTSisrobust and complete, it isnot the easiest API to work with; it requires clean
and intentional control over the bounds of enrollment in transactions.

Enterprise JavaBeans supports a much simpler API, the Java Transaction API (JTA), for working with transactions.
This APl isimplemented by thej avax. t ransact i on package. JTA actually consists of two components: a high-
level transactional client interface and alow-level X/Open XA interface. We are concerned with the high-level client
interface since that is the one accessible to the enterprise beans and is the recommended transactional interface for
client applications. The low-level XA interfaceis used by the EJB server and container to automatically coordinate
transactions with resources like databases.

As an application and EJB devel oper, your use of explicit transaction management will focus on one very simple
interface: j avax. transacti on. User Transacti on.User Transact i on provides an interface to the
transaction manager that allows the application devel oper to manage the scope of atransaction explicitly. Hereis an
example of how explicit demarcation might be used in aEJB or client application:

oject ref = getlnitial Gontext ().l ookup(”Travel Agent Hone");
Travel Agent Hone hone = (Travel Agent Hone)
Por t abl eRenot e(hj ect . narrow(ref, Travel Agent Hone. cl ass);

Copyright (c) 2001 O'Reilly & Associates 366

Travel Agent tr1l = hone. creat e(cust oner);
trl setQuisel DcruiselD;

trl. set Gabi nl O(cabin_1);

Travel Agent tr2 = hone. creat e(cust oner) ;
tr2.set G uisel O cruiselD;

tr2. set Gabi nl cabi n_2);

javax.transaction. User Transaction tran = ...; // Get the WserTransacti on.
tran. begi n();

tr 1. bookPassage(vi saCard, price);

tr 2. bookPassage(vi saCard, pri ce) ;

tran. commt();

The client application needs to book two cabins for the same customer—in this case, the customer is purchasing a
cabin for himself and his children. The customer doesn’t want to book either cabin unless he can get both, so the
client application is designed to include both bookings in the same transaction. Explicitly marking the transaction’s
boundaries through the use of thej avax. t ransacti on. User Tr ansact i on object doesthis. Each
enterprise bean method invoked by the current thread between the User Tr ansact i on. begi n() and

User Transacti on. comi t () method isincluded in the same transaction scope, according to transaction
attribute of the enterprise bean methods invoked.

Obviously this exampleis contrived, but the point it makesis clear. Transactions can be controlled directly, instead of
depending on method scope to delimit them. The advantage of using explicit transaction demarcationisthat it gives
the client control over the bounds of atransaction. The client, in this case, may be a client application or another
enterprise bean.*” In either case, thesamej avax. t ransact i on. User Transact i on isused, but it is obtained
from different sources depending on whether it is needed on the client or in an enterprise bean.

Java 2 Enterprise Edition (J2EE) specifies how aclient application can obtain a UserTransaction object using JNDI.
Here’' s how aclient obtains a UserTransaction object if the EJB container is part of a J2EE system (J2EE and its
relationship with EJB is covered in more detail in Chapter 17):

Gontext jndi itx = new Initia Gontext();
Wser Transaction tran =

(User Transact i on) j ndi Ot x. | ookup("j ava: conp/ User Transacti on");
ut x. begi n() ;

utx. commit ();

Enterprise beans can also manage transactionsexplicitly. Only session beans and message-driven beans (EJB 2.0)
withthe<t ransacti on-t ype> vaueof “Bean” can be managed their own transactions. Enterprise beans that
manage their own transactions are frequently referred to as bean-managed transaction (BMT) beans. Entity beans
can never be BMT beans. BMT beans do not declare transaction attributes for their methods. Here' s how a session
bean declares that it will manage transactions explicitly:
<ej b-jar>
<ent er pri se- beans>

<sessi on>

52 Only beans declared as managing their own transactions (bean-managed transaction beans) can use the User -
Transact i on interface.

Copyright (c) 2001 O'Reilly & Associates 367

<transacti on-type>Bean</t ransact i on- t ype>

To manage its own transaction, an enterprise bean needsto obtainaUser Tr ansact i on object. An enterprise
bean obtains areferenceto the User Tr ansact i on from the EJBCont ext , as shown below:

public class Hypothetical Bean extends Sessi onBean {
Sessi onGont ext €] bCont ext ;

public voi d soneMet hod() {

try {
UWser Transaction ut = ej bGont ext . get User Transacti on() ;
ut . begi n();

/] Do sone work.

ut.commt();
} catch(lllegal SateExceptionise) {...}
cat ch(Syst enkxception se) {...}
cat ch(Transact i onRol | edbackException tre) {...}
cat ch(Heuri sti cRol | backException hre) {...}
cat ch(Heuri sticM xedException hne) {...}

An enterprise bean can also accessthe User Tr ansact i on from the INDI ENC as shown in the following example.
Both methods are legal and proper. The enterprise bean performs the lookup using the
"j ava: conp/ env/ User Tr ansact i on" context:

Initial Gontext jnditx = new Initial Gontext();
Wser Transaction tran = (User Transact i on)
j ndi Mt x. | ookup("j ava: conp/ env/ User Transact i on") ;

Transaction Propagation in Bean-M anaged Transactions

With statel ess session beans, transactions that are managed using the User Tr ansact i on must be started and
completed within the same method. In other words, User Tr ansact i on transactions cannot be started in one
method and ended in another. This makes sense because statel ess session bean instances are shared across many
clients. So while one statel ess instance may service a client’ sfirst request, acompletely different instance may
service the same client subsequent request. With stateful session beans, however, atransaction can begin in one
method and be conmitted in another because a stateful session bean is only used by oneclient. Thisallowsa
stateful session bean to associate itself with atransaction across several different client- invoked methods. Asan
example, imagine the Travel Agent EJB asaBMT bean. In the following code, the transaction is started in the set -
Crui sel D() method and completed inthebookPassage() method. Thisalowsthe TravelAgent EJB’'s
methods to be associated with the same transaction.

EJB 2.0: TravelAgentBean

inport comtitan.reservation.*;

inport java.sql.*;

inport javax. sql . Dat aSour ce;

inport java.util.\Vector;

inport java.rm . Renot eExcepti on;

i nport j avax. nam ng. Nam ngExcept i on;
inport javax.ej b. EJBExcepti on;

public class Travel Agent Bean i npl enents j avax. ej b. Sessi onBean {

Copyright (c) 2001 O'Reilly & Associates 368

public voi d set Guisel I nteger cruiselD
throws javax. ej b. H nder Exception {
try {
ej bGont ext . get User Transact i on() . begi n();
Q ui setbneLocal hone = (G ui setbneLocal)
j ndi Gont ext . | ookup("j ava: conp/ env/ ej b/ O ui setHone") ;

crui se = hone. fi ndByPri naryKey(cruiselD);
} cat ch(Renot eException re) {
t hrow new EJBException(re);

}

}
publ i ¢ Ti cket DO bookPassage(G edi t Car dDO card, doubl e pri ce)

throws | nconpl et eConversational S ate {

try {
if (e bContext.getUserTransaction().getSatus() !=

javax. transacti on. S at us. STATUS ACTI VE) {

t hr ow new EJBExcepti on("Transaction is not active");

}

} catch(j avax. transacti on. Syst enExcepti on se) {
t hr ow new EJBExcept i on(se);

}
if (custoner = null || cruise = null || cabin = null)
{
t hrow new | nconpl et eConver sati onal S at e() ;
}
try {

Reser vat i onHoneLocal restHone =
(Reservat i onHonelLocal) j ndi Gont ext . | ookup(
"j ava: conp/ env/ ej b/ Reser vat i ontbng") ;

ReservationLocal reservation =
resHone. creat e(cust oner, cruise, cabin, price);

(pj ect ref = jndi Gontext. | ookup
("] ava: conp/ env/ ej b/ Pr ocessPaynent Hone") ;

Pr ocessPaynent HoneRenot e ppHone =

(ProcessPaynent HoneRenot €) Por t abl eRenot eChj ect . nar r ow(

ref, ProcessPaynent HoneRenot e. cl ass);

Pr ocessPaynent Renot e process = ppHone. create();
process. byQedi t (custoner, card, price);

Ticket DO ticket =
new Ti cket DJ cust oner, cr ui se, cabi n, price);

€] bGont ext . get User Transacti on() . commit ();

return ticket;
} catch(Bxception e) {

Copyright (c) 2001 O'Reilly & Associates

t hr ow new EJBException(e);

}
EJB 1.1: TravelAgentBean

public class Travel AgentBean inpl enents j avax. ej b. Sessi onBean {

public voi d set G uisel I nteger cruiselD

throws javax. ej b. H nder Exception {

try {
€] bGont ext . get User Transact i on() . begi n() ;
Q ui setoneRenot e hone = (G ui seHoneRenot €)
get Hone(" @ ui setbne”, C ui setHbneRenot e. ¢l ass);
crui se = hone. fi ndByPri naryKey(cruiselD;

} cat ch(Renot eException re) {

t hrow new EJBException(re);

}

}
publ i ¢ Ti cket DO bookPassage(G edi t Car dDO card, doubl e pri ce)
throws | nconpl et eConversational S ate {

try {
if (ej bContext.get User Transacti on().getSatus() !=

javax. transaction. & at us. STATUS ACTI VE) {

t hr ow new EJBExcepti on(" Transaction is not active");

}

} catch(j avax. transaction. Syst enkException se) {
t hrow new EJBExcepti on(se) ;

}

if (custoner = null || cruise = null || cabin = null) {
t hr ow new | nconpl et eConver sati onal S ate();

}

try {

Reser vat i ontbneRenot e restHone =

(Reservat i onHoneRenot) get Hone(" Reser vat i ontone",

Reser vat i ontHoneRenot e. cl ass) ;

Reservat i onRenot e reservation =

resHone. creat e(cust oner, cruise, cabin, price);

Pr ocessPaynent HoneRenot e ppHone = (Pr ocessPaynent HoneRenot €)

get Hone(" Pr ocessPaynent Hone", ProcessPaynent HoneRenot e. cl ass) ;
Pr ocessPaynent Renot e process = ppHone. create();
process. byQredi t (custoner, card, price);

TicketDOticket =
new Ti cket DQ cust oner, cr ui se, cabi n, price);

ej bGont ext . get User Transact i on(). commt ();

return ticket;

Copyright (c) 2001 O'Reilly & Associates 370

} catch(Exception e) {
t hrow new EJBException(e);

}

}

Repeated callsto the EJBCont ext . get User Tr ansact i on() method return areference to the same
User Transact i on object. The container is required to retain the association between the transaction and the
stateful bean instance across multiple client calls until the transaction terminates.

InthebookPassage() method, we can check the status of the transaction to ensure that it’ s still active. If the
transaction is no longer active, we throw an exception. The use of theget St at us() methodis covered in more
detail later in this chapter.

When a bean-managed transaction method isinvoked by aclient that is already involved in atransaction, the client’s
transaction is suspended until the method returns. This suspension occurs whether the BMT bean explicitly startsits
own transaction within the method or the transaction was started in a previous method invocation. The client
transaction is always suspended until the bean-managed transaction method returns.

Transaction control across methods isstrongly discouraged because it can result in improperly
managed transactions and long-lived transactions that lock up resources.

EJB 2.0: M essage-driven beans and bean-managed transactions

M essage-driven beans al so have the option of managing their own transactions. In the case of MDBSs, the scope of
the transaction must begin and end within theonMessage() method—it’ s not possible for a bean-managed
transaction to spanonMessage() cals.

The ReservationProcessor EJB can be transformed to be aBMT bean, simply by changing its<t r ansact i on-
t ype>valueto “Bean”.

<gjb-jar>
<ent er pri se- beans>

<nessage- dri ven>

<transacti on-type>Bean</t ransacti on-t ype>

Inthiscase, the Reser vat i onPr ocessor Bean class would be modified to use the
javax.transaction. User Transact i on to mark the beginning and end of the transaction in
onMessage():

public class ReservationProcessor Bean
i npl enent s j avax. ej b. Messagely i venBean, j avax.] ns. Messageli st ener {

MessageDx i venCQont ext €] bCont ext ;
Gontext j ndi Gont ext;

publ i c voi d onMessage(Message nessage) {
try {

€] bGont ext . get User Transact i on() . begi n() ;

MapMessage reservati onMsg = (MipMessage) nessage;

Copyright (c) 2001 O'Reilly & Associates 371

I nteger custonerPk = (I nteger)
reservat i onMsg. get Qoj ect (" Qust oner | D') ;

Integer cruisePk = (Integer)
reservat i onMsg. get (oj ect ("Q ui sel D') ;
I nteger cabi nPFk = (I'nteger)

reservat i onMsg. get (hj ect ("CGabinl D');
doubl e price = reservati onMsg. get Doubl e(“Price”);

QeditCGrdbDOcard = (QeditGardd)
reservati onMsg. get Qoj ect (“Gredit Gard”);

Qust oner Local cust oner = get Qust oner (cust oner FK) ;
Q ui seLocal crui se = get G ui se(crui seFk);
Cabi nLocal cabi n = get Gabi n(cabi nFk) ;

Reservat i ontbnelocal resHone = (Reservati onHoneLocal)
j ndi Gont ext . | ookup("j ava: conp/ env/ ej b/ Reser vat i onHone") ;

Reservat i onLocal reservation =
resHone. creat e(cust oner, cruise, cabin, price);

oj ect ref = jndi Gontext. | ookup
("j ava: conp/ env/ ej b/ ProcessPaynent Hong") ;

Pr ocessPaynent HoneRenot e ppHone =
(Pr ocessPaynent HoneRenot €)
Por t abl eRenot eCj ect . nar r ow
(ref, ProcessPaynent HoneRenot e. cl ass) ;

ProcessPaynent Local process = ppHone. create();
process. byQedi t (custoner, card, price);

Ticket DO ticket =
new Ti cket DJ cust oner, cr ui se, cabi n, price);
del i ver Ti cket (reservati onMsg, ticket);
€] bGont ext . get User Transacti on(). commit ();
} catch(Exception e) {

t hr ow new EJBExcepti on(e);
}

}

It isimportant to understand that in BM T, the message consumed by the MDB is not a part of the transaction. When
an MDB uses container-managed transactions, the message it is handling is a part of the transaction, so if the
transaction is rolled back, the consumption of the message is also rolled back, forcing the IMS provider to redeliver
the message. But with bean-managed transactions, the message is not a part of the transaction, so if the BMT
transaction is rolled back, the IMS provider will not be aware of transaction the failure. However, al is not lost
because the IMS provider can still rely on message acknowledgment to determine if the message was successfully
delivered.

Copyright (c) 2001 O'Reilly & Associates 372

The EJB container will acknowledge the messageif theonMessage() method returnssuccessfully. If, however, a
RuntimeException is thrown by the onM essage() method, the container will not acknowledge the message and the
JMSS provider will suspect a problem and will probably attempt to redeliver the message. If redlivery of amessageis
important when atransaction failsin BMT, you’ re best course of action isto ensure that the onMessage() method
throws an EJBException so that the container will not acknowledge the message received from the IM S provider.

Vendorswill use proprietary (declarative) mechanisms to specify the number of timesto redeliver
messagesto BMT/NotSupported MDBs which 'fail’ to acknowledge. The IM S provider may
provide a"dead message" area into which such messages would be placed if they cannot be
successfully processed according to the retry count. The “dead message” area can monitored by
administrators and delivered messages can be detected and handled manually.”

While the message is hot a part of the transaction, everything else betweenthe User Tr ansact i on. begi n()
andUser Transacti on. conmi t () isapart of the same transaction. Thisincludes creating anew Reservation
EJB and processing the credit card using the ProcessPayment EJB. If atransaction failure occurs, these operations
will berolled back. Thetransaction also includesthe use of the IMS APl inthedel i ver Ti cket () methodto
send the ticket message. |If atransaction failure occurs, the ticket message will not be sent.

Heuristic Decisions

Transactions are normally controlled by atransaction manager (often the EJB server) that managesthe ACID
characteristics across several enterprise beans, databases, and servers. This transaction manager uses atwo-phase
commit (2-PC) to manage transactions. 2-PC is a protocol for managing transactions that commits updatesin two
stages. 2-PC is complex and outside the scope of this book, but basically it requiresthat servers and databases
cooperate through an intermediary, the transaction manager, to ensure that all the datais made durable together.
Some EJB servers support 2-PC while others don't, and the value of this transaction mechanism is a source of some
debate. The important point to remember is that a transaction manager controls the transaction; based on the results
of apoll against the resources (databases, JM S providers, and other resources), it decides whether all the updates
should be committed or rolled back. A heuristic decision iswhen one of the resources makes a unilateral decision to
commit or roll back without permission from the transaction manager. Once a heuristic decision has been made, the
atomicity of the transaction islost and possible dataintegrity errors can occur.

User Tr ansact i on, discussed in the next section, throws a couple of different exceptionsrelated to heuristic
decisions; these are included in the following discussion.

User Transaction

User Tr ansact i on isaJavainterfacethat is defined in the following code. EJB servers are not required to
support therest of JTA, nor are they required to use JTSfor their transaction service. TheUser Tr ansacti on is
defined asfollows:

public interface javax.transaction. User Transact i on
{
public abstract void begin()
throws 111 egal S ateException, Systenkxception;
publ i c abstract void commit ()
throws |11 egal S at eException, Systenixcepti on,
Transact i onRol | edbackExcept i on,
Heuri sti cRol | backExcepti on, Heuri sti cM xedExcepti on;
public abstract int getSatus();
public abstract void rol | back()
throws |11 egal S at eException, SecurityException, Systenkxception;
public abstract void setRol | backOnl y()

Copyright (c) 2001 O'Reilly & Associates 373

throws |11 egal S at eException, Systenixcepti on;
public abstract voi d setTransactionTi neout (i nt seconds)
throws Systentxcepti on;

}

Here' swhat the methods defined in thisinterface do:

begi n()
Invoking thebegi n() method creates anew transaction. The thread that executesthe begi n() methodis
immediately associated with the new transaction. The transaction is propagated to any EJB that supports
existing transactions. Thebegi n() method can throw one of two checked exceptions. |1legal StateException is
thrown whenbegi n() iscalled by athread that is already associated with atransaction. Y ou must complete
any transactions associated with that thread before beginning a new transaction. Syst enExcepti on is
thrown if the transaction manager (the EJB server) encounters an unexpected error condition.

commi t ()
Theconmmi t () method completes the transaction that is associated with the current thread. Whenconmi t ()
is executed, the current thread is no longer associated with atransaction. This method can throw several
checked exceptions. | | | egal St at eExcept i on isthrownif the current thread is not associated with a
transaction. Syst enExcept i on isthrown if the transaction manager (the EJB server) encounters an
unexpected error condition. Tr ansact i onRol | edbackExcept i on isthrown when the entire transaction
isrolled back instead of committed; this can happen if one of the resources was unable to perform an update or if
theUser Transacti on. rol | BackOnl y() method wascalled. Heur i st i cRol | backExcepti on
indicates that heuristic decisions were made by one or more resources to roll back the transaction.
Heuri sti cM xedExcept i on indicates that heuristic decisions were made by resources to both roll back
and commit the transaction; some resources decided to roll back while others decided to commit.

| back()

Ther ol | back() method isinvoked to roll back the transaction and undo updates. Ther ol | back()
method can throw one of three different checked exceptions. Secur i t yExcept i on isthrown if the thread
using the User Tr ansact i on object isnot allowed to roll back the transaction.

1l egal St at eExcepti on isthrown if the current thread is not associated with atransaction.

Syst enExcept i on isthrown if the transaction manager (the EJB server) encounters an unexpected error
condition.

set Rol | BackOnl y()
This method isinvoked to mark the transaction for rollback. This means that, whether or not the updates
executed within the transaction succeed, the transaction must be rolled back when completed. This method can
be invoked by any TX_BEAN_MANAGED EJB participating in the transaction or by the client application. The
set Rol | BackOnl y () method can throw one of two different checked exceptions.
|1l egal St at eExcepti on isthrownif the current thread is not associated with a transaction.
Syst enExcept i on isthrown if the transaction manager (the EJB server) encounters an unexpected error
condition.

set Transacti onTi neout (i nt seconds)
This method sets the life span of atransaction: how long it will live before timing out. The transaction must
complete before the transaction timeout is reached. If this method is not called, the transaction manager (EJB
server) automatically setsthe timeout. If this method isinvoked with avalue of 0 seconds, the default timeout of
the transaction manager will be used. This method must be invoked after the begi n() method.
Syst enExcept i on isthrown if the transaction manager (EJB server) encounters an unexpected error
condition.

get St at us()

Theget St at us() method returns an integer that can be compared to constants defined in the
j avax. transaction. St at us interface. This method can be used by a sophisticated programmer to

ro

Copyright (c) 2001 O'Reilly & Associates 374

determine the status of atransaction associated withaUser Tr ansact i on object. Syst enExcepti onis
thrown if the transaction manager (EJB server) encounters an unexpected error condition.

Status

St at us isasimpleinterface that contains no methods, only constants. Its sole purposeisto provide a set of
constants that describe the current status of atransactional object— in this case, the User Tr ansact i on:

interface javax.transaction. Satus
{
public final static int STATUS ACTIVE
public final static int STATUS COW TTED
public final static int STATUS COW TTI NG
public final static int STATUS MMRKED RO LBAK
public final static int STATUS NO TRANSACTI ON
public final static int STATUS PREPARED
public final static int STATUS PREPAR NG
public final static int STATUS ROLEBAXK
public final static int STATUS ROLI NG BACKK;
public final static int STATUS UNKNOMN

}

Thevaluereturned by get St at us() tellstheclient usingthe User Tr ansact i on the status of atransaction.
Here’' s what the constants mean:

STATUS_ACTI VE
An active transaction is associated with the User Tr ansact i on object. This statusisreturned after a
transaction has been started and prior to a transaction manager beginning a 2-PC commit. (Transactions that
have been suspended are still considered active.)

STATUS_COWM TTED
A transaction is associated with the User Tr ansact i on object; the transaction has been committed. It is
likely that heuristic decisions have been made; otherwise, the transaction would have been destroyed and the
STATUS_NO_TRANSACTI ON constant would have been returned instead.

STATUS_COWM TTI NG
A transaction isassociated with the User Tr ansact i on object; the transaction isin the process of
committing. TheUser Tr ansact i on object returns this statusif the transaction manager has decided to
commit but has not yet completed the process.

STATUS MARKED ROLLBACK
A transaction is associated with the User Tr ansact i on object; the transaction has been marked for rollback,
perhapsasaresult of aUser Tr ansact i on. set Rol | backOnl y() operation invoked somewhere elsein
the application.

STATUS_NO_TRANSACTI ON
No transaction is currently associated withthe User Tr ansact i on object. This occurs after a transaction has
completed or if no transaction has been created. Thisvalueis returned rather than throwing an
1l egal St at eExcepti on.

STATUS_PREPARED
A transaction is associated withthe User Tr ansact i on object. The transaction has been prepared, which
means that the first phase of the two-phase commit process has completed.

STATUS_PREPARI NG
A transaction is associated withthe User Tr ansact i on object; the transaction isin the process of preparing,
which means that the transaction manager isin the middle of executing the first phase of the two-phase commit.

Copyright (c) 2001 O'Reilly & Associates 375

STATUS_ROLLEDBACK
A transaction is associated with the User Tr ansact i on object; the outcome of the transaction has been
identified as arollback. It islikely that heuristic decisions have been made; otherwise, the transaction would
have been destroyed and the STATUS_NO_TRANSACTI ON constant would have been returned.

STATUS_ROLLI NG_BACK
A transaction is associated with the User Tr ansact i on object; the transaction isin the process of rolling
back.

STATUS_UNKNOWN
A transaction is associated with the User Tr ansact i on object; its current status cannot be determined. This
isatransient condition and subsequent invocations will ultimately return a different status.

EJBContext Rollback M ethods

Only BMT beans have accessto the User Tr ansact i on from the EJBCont ext and INDI ENC. Enterprise beans
that manager their own transactions, container-managed transaction (CMT) beans, can not use the

User Transacti on. CMT beansusetheset Rol | backOnl y() andget Rol | backOnl y() methods of the
EJBCont ext to interact with the current transaction.

Theset Rol | backOnl y() method gives an enterprise bean the power to veto atransaction. This power can be
used if the enterprise bean detects a condition that would cause inconsistent data to be committed when the
transaction completes. Once an enterprise bean invokesthe set Rol | backOnl y () method, the current
transaction is marked for rollback and cannot be committed by any other participant in the transaction—including the
container.

Theget Rol | backOnl y() method returnst r ue if the current transaction has been marked for rollback. This can
be used to avoid executing work that wouldn’t be committed anyway. If, for example, an exception is thrown and
captured within an enterprise bean method, get Rol | backOnl y (') can be used to determine whether the exception
caused the current transaction to be rolled back. If it did, thereisno sensein continuing the processing. If it didn’t,
the EJB has an opportunity to correct the problem and retry the task that failed. Only expert EJB devel opers should
attempt to retry tasks within atransaction. Alternatively, if the exception didn’t cause arollback

(get Rol | backOnl y() returnsf al se), arollback can be forced using theset Rol | backOnl y() method.

BMT beans must not usetheset Rol | backOnl y() andget Rol | backOnl y() methods of the
EJBCont ext . BMT beans should usetheget St at us() andr ol | back() methods on the
User Tr ansact i on object to check for rollback and force arollback respectively.

Exceptions and Transactions

Application Exceptions Versus System Exceptions

An application exception is any exception that doesnot extendj ava. | ang. Runt i meExcepti on or the
java.rm . Renot eExcepti on. System exceptionsarej ava. | ang. Runt i neExcept i on and its subtypes,
including EJBExcept i on.

An application exception must never extend either the Runt i meExcept i on, the
Renpt eExcept i on, or one of their subtypes.

Transactions are automatically rolled back if a system exception isthrown from an enterprise bean method.
Transactions are not automatically rolled back if an application exception isthrown. If you remember these two rules,
you will bewell prepared to deal with exceptions and transactionsin EJB.

Copyright (c) 2001 O'Reilly & Associates 376

ThebookPassage() method providesagood illustration of an application exception and how it’sused. The
following code showsthebookPassage() method:
EJB 2.0: bookPassage() method

publ i ¢ Ti cket DO bookPassage(G edi t Car dDO card, doubl e pri ce)
throws | nconpl et eConversational S ate {

if (custoner = null || cruise = null || cabin = null) {
t hr ow new | nconpl et eConver sati onal S at e() ;

}

try {

Reser vat i ontbnelLocal resHone =
(Reservat i onHbnelLocal)
j ndi Gont ext . | ookup
("] ava: conp/ env/ ej b/ Reser vat i onHone") ;

Reservat i onLocal reservation =
reskone. creat e(cust oner, cruise, cabin, price);

(oj ect ref = jndi Gontext. | ookup
("j ava: conp/ env/ ej b/ Pr ocessPaynent Hong") ;

Pr ocessPaynent HoneRenot e ppHone =
(Pr ocessPaynent HoneRenot €)
Por t abl eRenot eCj ect . nar r ow
(ref, ProcessPaynent HoneRenot e. cl ass) ;

Pr ocessPaynent Renot e process = ppHone. create();
process. byQredi t (custoner, card, price);

TicketDOticket =
new Ti cket DJ cust oner, cr ui se, cabi n, price);
return ticket;
} catch(Exception e) {
t hr ow new EJBException(e);

}

EJB 1.1: bookPassage() method

publ i ¢ Ti cket DO bookPassage(G edi t Car dDO card, doubl e pri ce)
throws | nconpl et eConversational Sate {

if (custoner = null || cruise = null || cabin = null) {
t hrow new | nconpl et eGonver sati onal S at e() ;

}

try {

Reser vat i onHoneRenot e restHone =
(Reser vat i onHoneRenot) get Hone(" Reser vat i ontHone",
Reser vat i onHoneRenot e. cl ass) ;
Reservat i onRenot e reservation =
restone. creat e(cust oner, cruise, cabin, price);
Pr ocessPaynent HoneRenot e ppHone =
(Pr ocessPaynent HoneRenot €)

Copyright (c) 2001 O'Reilly & Associates 377

get Hone(" Pr ocessPaynent Hone",
Pr ocessPaynent HoneRenot e. ¢l ass) ;
Pr ocessPaynent Renot e process = ppHone. create();
process. byQedi t (custoner, card, price);

TicketDO ticket =
new Ti cket DO cust oner, crui se, cabi n, pri ce);
return ticket;
} catch(Exception e) {
t hr ow new EJBExcepti on(e);

}

System exceptions

System exceptionsarethe Runt i neExcept i on and itssubclasses. The EJBExcept i on isasubclass of the
Runt i meExcepti on, soit'sconsidered a system exception.

System exceptions always cause a transaction to roll back when thrown from a enterprise bean method. Any

Runt i meExcepti on (EJBExcepti on,Nul | Poi nt er Excepti on,| ndexQut Of BoundsExcepti on,
etc.) thrown withinthebookPassage() method is handled by the container automatically, and also resultsin a
transaction rollback. In Java, Run- t i meExcept i on typesdo not need to be declared in thet hr ows clause of the
method signature or handled usingt r y/cat ch blocks; they are automatically thrown from the method.

Runt i meExcept i on types thrown from within enterprise beans always cause the current transaction to roll back.
If the method in which the exception occurs started the transaction, the transaction isrolled back. If the transaction
started from aclient that invoked the method, the client’ s transaction is marked for rollback and cannot be committed.

System exceptions are handled automatically by the container, which will always:

?? Roll back the transaction
?? Log the exception to aert the system administrator

?? Discard the EJB instance

Runt i meExcept i ons thrown from the callback methods (ej bLoad() ,ej bAct i vat e(), etc.) aretreated the
same as exceptions thrown from business methods.

While EJB requires that system exceptions be logged, it does not specify how exceptions should be logged or the
format of thelog file. The exact mechanism for recording the exception and reporting it to the system administrator is
left to the vendor.

When a system exception occurs, the EJB instance is discarded, which meansthat it’ s dereferenced and garbage
collected. The container assumes that the EJB instance may have corrupt variables or otherwise be unstable, and is
therefore unsafe to use.

Theimpact of discarding an EJB instance depends on the enterprise beans’ stype. In the case of statel ess session
beans and entity beans, the client does not notice that the instance was discarded. These types are not dedicated to
aparticular client; they are swapped in and out of an instance pool, so any instance can service a new request. With
stateful session beans, however, the impact on the client is severe. Stateful session beans are dedicated to asingle
client and maintain conversational state. Discarding a stateful bean instance destroys the instance’ s conversation
state and invalidates the client’ s reference to the EJB. When stateful session instances are discarded, subsequent

Copyright (c) 2001 O'Reilly & Associates 378

invocations of the EJB’s methods by the client resultinaNoSuchCObj ect Except i on, asubclass of the
Renpt eExcepti on.®

With message-driven beans a system exception thrown by theonMessage() method or one of the callback
methods (ej bCr eat e() orej bRenove()) will cause the bean instance to be discarded. If the MDB wasBMT
bean, then the message it was handling may or may not be redelivered depending on when the EJB container
acknowledges delivery. Inthe case of container-managed transactions, the container will rollback the transaction, so
the message will not be acknowledged and may be redelivered.

In session and entity beans, a system exception occurs and the instanceis discarded, aRenot eExcepti on is
always thrown to remote clients; clients using the beans remote component interfaces. If the client started the
transaction, which was then propagated to the EJB, a system exception (thrown by the enterprise bean method) will
be caught by the container and rethrown as a

j avax.transaction. Transacti onRol | edbackExcepti on. The

Transacti onRol | edbackExcepti on isasubtype of the Renpt eExcept i on; it'samore explicit indication
to the client that arollback occurred. In all other cases, whether the EJB is container-managed or bean-managed, a
Runt i meExcept i on thrown from within the enterprise bean method will be caught by the container and rethrown
asaEJBExcept i on. A system exception always resultsin arollback of the transaction.

In EJB 2.0 session and entity beans, when a system exception occurs and the instance is discarded, an
EJBExcept i on isawaysthrown to any local enterprise bean clients (clients using the enterprise bean’ slocal
component interfaces). If the client started the transaction, which was then propagated to the EJB, a system
exception (thrown by the enterprise bean method) will be caught by the container and rethrown as a

j avax. ej b. Transacti onRol | edbackLocal Excepti on.The

Transacti onRol | edbackLocal Excepti onisasubtype of the EJBExcept i on; it'samore explicit
indication to the client that arollback occurred. In all other cases, whether the EJB is container-managed or bean-
managed, aRunt i neExcept i on thrown from within the enterprise bean method will be caught by the container
and rethrown asan EJBExcept i on. A system exception always resultsin arollback of the transaction.

An EJBExcept i on should be thrown, in most cases, when a subsystem throws an exception such as JDBC
throwing a SQLExcept i on or IMSthrowing aJMSExcept i on. In some cases the bean devel oper may attempt
to handle the exception and retry an operation rather then throw an EJBExcept i on. This should only be done
when the exceptions thrown by the subsystem and their repurcussions on the transaction are well understood. Asa
rule of thumb, throw subsystem exceptionsasEJBExcept i ons and alow the EJB container to rollback the
transaction and discard the bean instance.

The callback methods defined inthej avax. ej b. Ent i t yBean and

j avax. ej b. Sessi onBean interfacesdeclarethej ava. r m . Renot eExcept i on intheir
t hr ows clause. Thisisleft over from EJB 1.0, which has been deprecated since EJB 1.1. You
should never throw Renot eExcept i ons from callback methods, or any other bean class
methods.

Application exceptions

An application exception is normally thrown in response to a business logic error, as opposed to a system error.
They are always delivered directly to the client, without being repackaged asRenot eExcept i on or

EJBExcept i on (EJB 2.0) types. They do not typically cause transactions to roll back; the client usually has an
opportunity to recover after an application exception isthrown. For example, thebookPassage() method throws
an application exception called | nconpl et eConver sat i onal St at e; thisisan application exception because

53 Although the instance is always discarded with a Runti meExcepti on, the impact on the remote reference may vary
depending on the vendor.

Copyright (c) 2001 O'Reilly & Associates 379

it does not extendRunt i meExcepti on or Renot eExcepti on. The

I nconpl et eConver sati onal St at e exceptionisthrown if one of the arguments passed into the book -
Passage() methodisnul | . (Application errors are frequently used to report validation errorslike this.) In this
case, the exception isthrown before tasks are started, and is clearly not the result of a subsystem (JDBC, IMS, Java
RMI, INDI, etc.) failure.

Becauseit isan application exception, throwing | nconpl et eConver sati onal St at e doesnot resultina
transaction rollback. The exception isthrown before any work is done, avoiding unnecessary processing by the
bookPassage() method and providing the client (the enterprise bean or application that invoked the
bookPassage() method) with an opportunity to recover and possibly retry the method call with valid arguments.

Business methods defined in the remote and local interfaces can throw any kind of application exception. These
application exceptions must be declared in the method signatures of the remote and local interfaces and in the
corresponding method in the Enterprise EJB class.

The EJB create, find, and remove methods can also throw several exceptions defined inthej avax. ej b package:
Cr eat eExcepti on,Dupl i cat eKeyExcepti on,Fi nder Excepti on, Obj ect Not FoundExcepti on,
and RenoveExcept i on. These exceptions are also considered application exceptions: they are delivered to the
client asis, without being repackaged asRenot eExcept i ons. Furthermore, these exceptions don’t necessarily
cause atransaction to roll back, giving the client the opportunity to retry the operation. These exceptions may be
thrown by the EJBs themselves; in the case of container-managed persistence (CMP), the container can also throw
any of these exceptions while handling the EJB’ s create, find, or remove methods (ej bCr eat e() ,

ej bFind...(),andej bRenpve()). The container might, for example, throw aCr eat eExcept i on if the
container encounters a bad argument while attempting to insert arecord for a container-managed EJB. Y ou can
always choose to throw a standard application exception from the appropriate method regardless of how persistence
is managed.

Hereis adetailed explanation of the five standard application exceptions and the situationsin which they are thrown:

Cr eat eExcepti on
TheCr eat eExcept i onisthrown by thecr eat e() method in the remote interface. This exception can be
thrown by the container if the container is managing persistence, or it can be thrown explicitly by the EJB
developerintheej bCr eat e() orej bPost Cr eat e() methods. This exception indicates that an application
error has occurred (invalid arguments, etc.) while the EJB was being created. If the container throws this
exception, it may or may not roll back the transaction. Explicit transaction methods must be used to determine the
outcome. Bean devel opers should roll back the transaction before throwing this exception only if dataintegrity is
aconcern.

Dupl i cat eKeyExcepti on
TheDupl i cat eKeyExcept i on isan subtype of the Cr eat eExcept i on;itisthrownby thecr eat e()
method in the remote interface. This exception can be thrown by the container, if the container is managing
persistence, or it can be thrown explicitly by the EJB developer intheej bCr eat e() method. This exception
indicates that an EJB with the same primary key already existsin the database. The transaction is typically not
rolled back by the EJB provider or container before throwing this exception.

Fi nder Excepti on
TheFi nder Except i on isthrown by the find methods in the home interface. This exception can be thrown
by the container, if the container is managing persistence, or it can be thrown explicitly by the EJB developer in
theej bFi nd. . . () methods. Thisexception indicates that an application error occurred (invalid arguments,
etc.) while the container attempted to find the EJBs. Do not use this method to indicate that entities were not
found. Multi-entity find methods return an empty collection if no entities were found; single-entity find methods
throw an Obj ect Not Found- Except i on toindicate that no object was found. The transaction istypically
not rolled back by the EJB provider or container before throwing this exception.

Copyright (c) 2001 O'Reilly & Associates 330

Obj ect Not FoundExcepti on
The Obj ect Not FoundExcept i on isthrown from asingle-entity find method to indicate that the container
couldn’t find the requested entity. This exception can be thrown by the container if the container is managing
persistence, or it can be thrown explicitly by the EJB developer intheej bFi nd. . . () methods. This exception
should not be thrown to indicate abusiness|ogic error (invalid arguments, etc.). Usethe Fi nder Excepti on
to indicate businesslogic errorsin single-entity find methods. The Cbj ect Not FoundExcept i on isonly
thrown by single-entity find methods to indicate that the entity requested was not found. Find methods that
return multiple entities should return an empty collection if nothing isfound. The transaction is typically not
rolled back by the EJB provider or container before throwing this exception.

RenpoveExcepti on
TheRenoveExcept i on isthrown fromther enove() methodsin the remote and homeinterfaces. This
exception can be thrown by the container, if the container is managing persistence, or it can be thrown explicitly
by the EJB developer intheej bRenmpve() method. This exception indicates that an application error has
occurred while the EJB was being removed. The transaction may or may not have been rolled back by the
container before throwing this exception. Explicit transaction methods must be used to determine the outcome.
Bean devel opers should roll back the transaction before throwing the exception only if dataintegrity isa
concern.

Table 14-1 summarizes the interactions between different types of exceptions and transactions in session and entity
beams.

Table 14-1: Exception Summary for Session and Entity beans

Transaction Scope Transaction TypeException Container’s Action Client’sView
Attributes Thrown
Client Initiated Transaction transaction-type = Application If the EJB invoked Receives the Appli
Container Exception set Rol | backOnl y() , then mark [Exception. The ¢
Transection is started by the dient transaction-attribute = the cllmt’stransx-:nor? for rollba.:k. Lr;lnictbe;:r:n :Izd ?(;r ?;ﬁ
(application or EJB) and is propa Required | Rethrow the Application Exception.
gated to the enterprise bean method. | Mandatory |
Supports |
System Mark the client’ s transaction for Remote clients receivestl
Exception rollback. JTA Transacti on
Log the error. Rol | bgckExcep.t i on
local clientsreceiveth
Discard the instance. j avax. ej b. Trans
Rethrow the JTA Transaction [onRol | backlLoca
Rol | backExcept i on toremote [Ception
clients or the The client’stransaction t
j avax. ej b. Transact i onR|yeen rolled back.
ol | backLocal Exception
to EJB 2.0 locd clients.
Container Initiated Transaction transaction-type = Application If the EJB method called Receives the Appli
Container Exception set Rol | backOnl y(), thenroll |Exception. The
; : back the transaction and rethrow the transaction may or ma
The transaction started when the transactl.on-attrlbute - /Application Exception. have been ro?l?led back
EJB’s method was invoked and will Required | . o dient's transaction it
end when method completes. ReguiresNew If the EJB d_ldn t explicitly roll back ¢fected
the transaction, then attempt to ;
commit the transaction and rethrow

Copyright (c) 2001 O'Reilly & Associates 331

the Application Exception.

System Roll back the transaction. Remote clients receive th
Exception L og the error. Renot eE?< cept |'on;l
EJB 2.0 clients receive th
Discard the instance. EJBExcept i on.
Rethrow Rermot eExcept i onto [The EJB’ s transaction wi
remote clients or the rolled back.
EJBExcepti on toEJB 2.0loca - o
dlients. The client’ s transaction i
affected.
Bean is not part of atransaction transaction-type = Application Rethrow the Application Exception. [Receives the Application
Container Exception Exception.
The EJB was invoked but does not transaction-attribute = The client’ s transaction i
propagate the client’ stransaction and| Never | affected.
does not start its own transac tion. NotSupported |
Supports |
System Log the error. Remote clients receivest]
Exception Discard the instance. Renot eE?< cept |.on;l
EJB 2.0 clients receive th
Rethrow Renot eExceptionto |EjBExcepti on.
remote clients or the - o
EJBExcept i on to EJB 2.0 local | € dlient’s transaction |
clients. affected.
Bean Managed Transaction. transaction-type = Application Rethrow the Application Exception. [Receives the Application
The stateful or stateless session EJB | Bean Exception Exception.
uses the EJBCont ext to explicitly [transaction-attribute = The client’ s transaction i
manage its own transac tion Bean-managed affected.

transaction EJBs do nof

use transaction
attributes.

System
Exception

Roll back the transaction.
Log the error.
Discard the instance.

Rethrow Renot eExcept i on to
remote clients or the
EJBExcepti on toEJB 2.0local

clients.

Remote clients receive th
Renot eEx cepti on;|
EJB 2.0 clientsreceive th
EJBExcepti on.

The client’s transaction i
affected.

Table 14-2 summarizes the interactions between different types of exceptions and transactions in message-driven

beans.

Table 14-2: Exception Summary for Message-Driven beans

Transaction Scope Transaction TypeException Container’s Action
Attributes Thrown
Container Initiated Transaction transaction-type = System Roll back the transaction.
Container Exception

The transaction started before the
onMessage() method was
invoked and will end when method

transaction-attribute =
Required

Copyright (c) 2001 O'Reilly & Associates

Log the error.

Discard the instance.

compl etes.

Container Initiated Transaction transaction-type = System Log the error.

Container Exception Discard the instance.
No-transaction was started. ransaction-attribute =

NotSupported
Bean Managed Transaction. transaction-type = System Roll back the transaction.
The message-driven bean uses the Bean Exception Log the error.
EJBCont ex.t to explicitly manageits |transaction-attribute = Discard the instance.
own transaction Bea]_mm@w

transaction EJBs do nof
use transaction
attributes.

Transactional Stateful Sesson Beans

Asyou saw in Chapter 12, session beans can interact directly with the database as easily as they can manage the
workflow of other enterprise beans. The ProcessPayment EJB, for example, makes insertsinto the PAYMENT table
when thebyCr edi t () method isinvoked. The Travel Agent EJB queries the database directly when the

i st Avai |l abl eCabi ns() method isinvoked. With statel ess session beans like ProcessPayment, there is no
conversational state, so each method invocation must make changes to the database immediately. With stateful
session beans, however, we may not want to make changes to the database until the transaction is complete.
Remember, a stateful session bean can be just one participant out of many in atransaction, so it may be advisable to
postpone database updates until the entire transaction is committed or to avoid updatesif it’s rolled back.

There are several different scenariosin which a stateful session bean would want to cache changes before applying
them to the database. For example, think of a shopping cart implemented by a stateful session bean that accumulates
severa itemsfor purchase. If the stateful bean implementsSessi onSynchr oni zat i on, it can cache the items
and only write them to the database when the transaction is compl ete.

Thej avax. ej b. Sessi onSynchr oni zat i on interface allows a session bean to receive additional notification
of the session’ sinvolvement in transactions. The addition of these transaction callback methods by the

Sessi onSynchroni zat i on interface expands the EJB’ s awareness of itslife cycleto include anew state, the
Transactional Method-Ready state. Thisthird state, although not discussed in Chapter 12, isalways a part of thelife
cycle of atransactional stateful session bean. Implementing the Sessi onSynchr oni zat i on interface simply
makes it visible to the EJB. Figure 14-11 shows the stateful session bean with the additional statein EJB.

[FIGURE (use modifed 8-12)]
Figure 14-11: Life cycle of a stateful session bean
The Sessi onSynchr oni zat i on interface has the following definition:
package j avax. gj b;
public interface javax. e b. Sessi onSynchroni zation {
public abstract void afterBegin() throws RenoteException;
public abstract voi d beforeConpl etion() throws RenoteBException;

public abstract void afterConpl eti on(bool ean conmtt ed)
t hrows Renot eExcept i on;

Copyright (c) 2001 O'Reilly & Associates 333

[} |

When amethod of the SessionSynchronization bean is invoked outside of atransaction scope, the method executes
in the Method-Ready state as discussed in Chapter 12. However, when a method is invoked within atransaction
scope (or creates a new transaction), the EJB moves into the Transactional M ethod-Ready state.

The Transactional Method-Ready State

Transitioning into the Transactional M ethod-Ready state

When atransactional method isinvoked onaSessi onSynchr oni zat i on bean, the stateful bean becomes part
of the transaction. This causestheaf t er Begi n() calback method defined in the

Sessi onSynchroni zat i on interfaceto beinvoked. This method should take care of reading any datafrom the
database and storing the datain the bean’ sinstance fields. Theaf t er Begi n() method is called before the EJB
object delegates the business method invocation to the EJB instance.

Lifein the Transactional M ethod-Ready state

Whenthe af t er Begi n() callback method is done, the business method originally invoked by the client is
executed on the EJB instance. Any subsequent business methods invoked within the same transaction will be
delegated directly to the EJB instance.

Once astateful session bean is apart of atransaction—whether it implementsSessi onSynchr oni zati on or
not—it cannot be accessed by any other transactional context. Thisistrue regardless of whether the client triesto
access the EJB with adifferent context or the EJB’s own method creates anew context. If, for example, a method with
atransaction attribute of RequiresNew isinvoked, the new transactional context causes an error to be thrown. Since
the attributes NotSupported and Never simply a different transactional context (no context), invoking a method with
these attributes also causes an error. A stateful session bean cannot be removed whileit isinvolved in atransaction.
This meansthat invokingej bRenmove() whilethe SessionSynchronization bean isin the middle of atransaction
will cause an error to be thrown.

At some point, the transaction in which the SessionSynchronization bean has been enrolled will cometo an end. If
the transaction is committed, the SessionSynchronization bean will be notified through itsbef or eConpl et i on()
method. At thistime, the EJB should write its cached data to the database. If the transaction isrolled back, the

bef or eConpl et i on() method will not beinvoked, avoiding the pointless effort of writing changes that won't be
committed to the database.

Theaft er Conpl et i on() method isawaysinvoked, whether the transaction ended successfully with acommit
or unsuccessfully with arollback. If the transaction was a success—which means that bef or eConpl et i on()
was invoked—the committed parameter of theaf t er Conpl et i on() method will bet r ue. If the transaction was
unsuccessful, commi t t ed will bef al se.

It may be desirable to reset the stateful session bean’ sinstance variablesto someinitial stateif the
af t er Conpl et i on() method indicates that the transaction was rolled back.

Copyright (c) 2001 O'Reilly & Associates 3

15

Design Strategies

The previous fourteen chapters have presented the core EJB technology. What' s left is a grab bag of miscellaneous
issues: how do you solve particular design problems, how do you work with particular kinds of databases, and topics
of that nature.

Hash Codesin Compound Primary Keys

Chapter 11 discusses the necessity of overriding the Obj ect . hashCode() and Obj ect . equal s() methods
in the primary key class of entity beans. With complex primary keys that have several fields, overriding the

bj ect . equal s() methodisfairly trivial. However, the Cbj ect . hashCode() method is more complicated
because an integer value that can serve as a suitable hash code must be created from several fields.

One solution isto concatenate all thevaluesintoaSt ri ng and usethe St ri ng object’'shashCode() method to
create a hash code value for the whole primary key. The St r i ng class has a decent hash code algorithm that
generates afairly well distributed and repeatable hash code value from any set of characters. The following code
shows how to create such a hash code for a hypothetical primary key:

public class Hypothetical Prinarykey inplenments java.io.Serializable {
public int prinary id;
public short secondary id;
public java. util.Date date;
public Sring desc;

public int hashCode() {

SringBuffer strBuff = new SringBuffer();
strBuff. append(prinary id);

st rBuf f. append(secondary id);

strBuf f. append(dat €) ;

strBuf f. append(desc) ;

Sring str = strBuff.toSring();

int hashGde = str. hashGode();

ret urn hashGode;

Copyright (c) 2001 O'Reilly & Associates 385

/1 the constructor, equals, and toString nethods fol |l ow

}

A St ri ngBuf f er cutsdown on the number of objects created, since St r i ng concatenation is expensive. The
code could be improved by saving the hash code in a private variable and returning that value in subsequent method
calls; thisway, the hash codeis only calculated once in the life of the instance.

Weéll-Distributed Versus Unique Hash Codes

A Hasht abl e isdesigned to provide fast lookups by binding an object to akey. Given any object’ s key, looking
the object up in ahash table isavery quick operation. For the lookup, the key is converted to an integer value using
the key’shashCode() method.

Hash codes do not need to be unique, only well-distributed. By “well-distributed,” we mean that given any two keys,
the chances are very good that the hash codes for the keyswill be different. A well-distributed hash code algorithm
reduces, but does not eliminate, the possibility that different keys evaluate to the same hash code. When keys
evaluate to the same hash code, they are stored together and uniquely identified by their equal s() method. If you
look up an object using akey that evaluates to a hash code that is shared by several other keys, the Hasht abl e
locates the group of objects that have been stored with the same hash code; then it uses the key’sequal s()
method to determine which key (and hence, which object) you want. (That’ s why you have to override the

equal s() methodin primary keys, aswell asthehashCode() method.) Therefore, the emphasisin designing a
good hash code algorithm is on producing codes that are well-distributed rather than unique. This allows you to
design an index for associating keys with objects that is easy to compute, and therefore fast.

Passing Objectsby Value

Passing objects by valueistricky with Enterprise JavaBeans. Two simple rules will keep you out of most problem
areas. objects that are passed by value should be fine-grained Dependent Objects or wrappers used in bulk
accessors, and dependent objects should be immutable.

EJB 1.1: Dependent Objects

The concept of dependent objects was addressed in Chapter 6, which describes the use of dependent objectsin EJB
2.0. But for EJB 1.1, dependent objects are anew concept. EJB 2.0 and EJB 1.1 use dependent objects differently,
because EJB 2.0 can accommodate much finer-grained entity beansthan EJB 1.1.

Dependent objects are objects that only have meaning within the context of another business object. They typically
represent fairly fine-grained business concepts, like an address, phone number, or order item. For example, an address
has little meaning when it is not associated with abusiness object like Per son or Or gani zat i on. It depends on
the context of the business object to give it meaning. Such an object can be thought of as awrapper for related data.
The fields that make up an address (street, city, state, and Zip) should be packaged together in asingle object called
Addr essDO. Inturn, the Addr essDOobject is usually an attribute or property of another business object; in EJB,
we would typically see an Addr es s DOor some other dependent object as a property of an entity bean.

Here'satypical implementation of anAddr essDO:

public class AddressDOinpl enents java.io. Serializable {
private Sring street;
private Sring city;

private String state;
private Sring zip;

Copyright (c) 2001 O'Reilly & Associates 386

public Address(Sring str, Sring cty, Sring st, Sring zp) {
street = str;
city = cty;
state = st;
zip = zp;
}
public Sring getSreet() {return street;}
public Sring getdty() {return city;}
public Sring getSate() {return state;}
public Sring getZip() {return zip;}

}

We want to make sure that clients don’t change an Addr ess DO sfields. Thereasonis quite simple: the

Addr essDOaobject is acopy, not aremote reference. Changesto Addr ess DOobjects are not reflected in the entity
from which it originated. If the client were to change the Addr ess DO object, those changes would not be reflected
in the database. Making the Addr ess DOimmutable helps to ensure that clients do not mistake thisfine-grained
object for aremote reference, thinking that a change to an address property is reflected on the server.

To change an address, the client isrequired to remove the Addr es s DOobject and add a new one with the changes.
This enforces the idea that the dependent object is not aremote object and that changesto its state are not reflected
on the server. Here is the remote interface to a hypothetical Employee bean that aggregates address information:

public interface Epl oyee extends javax. g b. EJBy ect {
publ i c AddressDO[] get Addresses() throws RenoteExcepti on;
publ i ¢ voi d renoveAddr ess(AddressDO adrs) throws Renot eExcepti on;
publ i ¢ voi d addAddr ess(AddressDO adrs) throws Renot eExcepti on;
/1 ... Qher business nethods follow

}

Inthisinterface, the Enpl oyee can have many addresses, which are obtained as a collection of pass-by-value
Addr essDOobjects. To remove an address, the target Addr ess DOi s passed back to the bean in the

r enoveAddr ess() method. The bean class then removes the matching Addr es s DO object from its persistent
fields. To add an address, an Addr essDOobject is passed to the bean by value.

Dependent Objects may be persistent fields, or they may be properties that are created as needed. The following
code demonstrates both strategies using the Addr es sDOabject. In the first listing, the Addr essDOobject isa
persistent field, whilein the second the Addr es s DOobject is a property that doesn’t correspond to any single field;
we create the Addr es s DOobject as needed but don't saveit as part of the bean. Instead, the Addr es s DO object
correspondsto four persistent fields: st reet ,ci ty,st at e, andzi p.

/] Address as a persistent field
public class Person extends javax.ejb. EntityBean {
publ i ¢ AddressDO addr ess;
publ i ¢ AddressDO get Addr ess(){
return address;
}
publ i ¢ voi d set Addr ess(AddressDO addr) {
address = addr;

}
.

/1 Address as a property
public class Person extends javax.ejb. EntityBean {

Copyright (c) 2001 O'Reilly & Associates 337

public Sring street;
public Sring city;
public Sring state;
public Sring zip;

publ i ¢ Addr essDO get Addr ess() {

return new AddressD((street, city, state, zip);
}
publ i ¢ voi d set Addr ess(Addr essDO addr) {

street = addr.street;

city = addr.city;

state = addr. state;

zip = addr. zi p;

}

When a dependent object is used as a property, it can be synchronized with the persistent fieldsin the accessor
methods themselves or intheej bLoad() andej bSt or e() methods. Both strategies are acceptable.

This discussion of dependent objects has been full of generalizations, and thus may not be applicableto all
situations. That said, it is recommended that only very fine-grained, dependent, immutabl e objects should be passed
by value. All other business concepts should be represented as beans—entity or session. A very fine-grained object
is one that has very little behavior, consisting mostly of get and set methods. A dependent object is one that has
little meaning outside the context of its aggregator. An immutable object is one that provides only get methods and
thus cannot be modified once created.

Validation Rulesin Dependent Objects

Dependent Objects make excellent homes for format validation rules. Format validation ensures that a simple data
construct adheres to a predetermined structure or form. As an example, aZip Code always has a certain format. It
must be composed of digits; it must be five or nine digitsin length; and if it has nine digits, it must use ahyphen asa
separator between the fifth and sixth digits. Checking to see that a Zip Code follows theserulesis format validation.

One problem that all developers faceis deciding where to put validation code. Should data be validated at the user
interface (Ul), or should it be done by the bean that usesthe data? Validating the data at the Ul has the advantage of
conserving network resources and improving performance. Validating datain the bean, on the middletier, ensures
that the logic is reusable across user interfaces. Dependent objects provide alogica compromise that allows datato
be validated on the client, but remain independent of the Ul. By placing the validation logic in the constructor of a
dependent object, the object automatically validates datawhen it is created. When datais entered at the Ul (GUI,
Servlet, JSP, or whatever) it can be validated by the Ul using its corresponding dependent object. If the dataisvalid,
the dependent object is created; if the dataisinvalid, the constructor throws an exception.

The following code showsa dependent object that represents a Zip Code. It adheresto the rules for a dependent
object as | have defined them, and also includes format validation rulesin the constructor.

public class Z pGdeDO i npl enents java.io. Serializable {

private Sring code;
private String boxNunber;

public Zi pGde(Sring zi pcode) throws Validati onException
{
if (zipcode = null)
throw new Val i dati onException("Z p code cannot be null");
else if (zipcode.length()==5 & ! isD gits(zipcode))

Copyright (c) 2001 O'Reilly & Associates 388

throw new Val i dati onException("Z p code nust be all digits");
else if (zipcode.length()==10)
if (zipcode.charA(5) = "'-") {
code = zi pcode. substring(0,5);
if (isDgits(code)){
boxNunier = zi pcode. substring(6);
if (isDgits(boxNunber))

return;
}
}
throw new Val i dati onException("Z p code nust be of form##H##- #HHH");
}
private bool ean isOgits(Sring str) {
for (int i =0; i <str.length(); i+H{
char chr = str.charA(i);
if (! Character.isDgit(chr)) {
return fal se;
}
}
return true;
}

public Sring get@de() { return code; }
public Sring get BoxNunber () { return boxNuner; }

public Sring toSring() {
return code+ -' +boxNunber ;

}

}

This simple exampleillustrates that format validation can be performed by dependent objects when the object is
constructed at the user interface or client. Any format validation errors are reported immediately, without requiring
any interaction with the middle tier of the application. In addition, any business object that usesZi pCode DO
automatically gains the benefit of the validation code, making the validation rules reusable (and consistent) across
beans. Placing format validation in the dependent object is also a good coding practice because it makes the
dependent object responsible for its own validation; responsibility isakey concept in object-oriented programming.
Of course, dependent objects are only useful for validation if the Enterprise JavaBeans implementation supports
pass-by-value.

Asan alternative to using Dependent Objects, format validation can be performed by the accessors of enterprise
beans. If, for example, a customer bean has accessors for setting and obtaining the Zip Code, the accessors could
incorporate the validation code. While thisis more efficient from a network perspective—passinga St r i ng valueis
more efficient than passing a dependent object by value—it isless reusable than housing format validation rulesin
dependent objects.

Bulk Accessors

Most entity beans have several persistent fields that are manipulated through accessor methods. Unfortunately, the
one-to-one nature of the accessor idiom can result in many invocations when accessing an entity, which translates
into alot of network traffic even for simple edits. Every field you want to modify requires a method invocation, which
in turn requires you to go out to the network. One way to reduce network traffic when editing entitiesisto use bulk
accessors. This strategy packages access to several persistent fields into one bulk accessor. Bulk accessors provide
get and set methods that work with structures or simple pass-by-val ue objects. The following code shows how a bulk
accessor could be implemented for the Cabin bean:

| /1 Cabi nDat a Dat ahj ect |

Copyright (c) 2001 O'Reilly & Associates 389

public class Cabi nData {

public Sring nang;

public int deckLevel;

public int bedGount;

public Gabi nData() {

}

public Cabi nData(Sring nane, int deckLevel, int bedCunt) {
thi s. nane = nang;
t hi s. deckLevel = deckLevel ;
thi s. bedCunt = bedGount ;

}

/1 GCabi nBean usi ng bul k accessors
public class Cabi nBean i npl enents j avax. €] b. EntityBean {
public int id;
public Sring nang;
public int deckLevel ;
public int ship;
public int bedGount;
/1 bul k accessors
public Cabi nCata getData() {
return new Cabi nDat a(nane, deckLevel , bedCount) ;
}
public voi d setData(Cabi nData data) {
nane = dat a. nang;
deckLevel = dat a. deckLevel ;
bedGount = dat a. bedCount ;
}
/1 sinple accessors and entity nethods
public Sring get Nane() {

return nane;

}

public void setNane(Sring str) {
nane = str;

}

/] nore nethods fol | ow

}

Theget Dat a() andset Dat a() methods allow several fields to be packaged into a simple object and passed
between the client and bean in one method call. Thisis much more efficient than requiring three separate calls to set
the name, deck level, and bed count.

Rules-of-thumb for bulk accessors

Here are some guidelines for creating bulk accessors:

Data objects are not dependent objects
Data objects and dependent objects serve clearly different purposes, but they may appear at first to be the same.
Where dependent objects represent business concepts, data objects do not; they are simply an efficient way of
packaging an entity’ s fields for access by clients. Data objects may package dependent objects along with more
primitive attributes, but they are not dependent objects themselves.

Data objects are simple structures
Keep the data objects as simple as possible; ideally, they should be similar to asimple struct in C. In other
words, the data object should not have any businesslogic at al; it should only havefields. All the business
logic should remain in the entity bean, whereiit is centralized and easily maintained.

Copyright (c) 2001 O'Reilly & Associates 390

In order to keep the semantics of a C struct, data objects should not have accessor (get and set) methods for
reading and writing their fields. The CabinData class doesn’t have accessor methods; it only hasfieldsand a
couple of constructors. The lack of accessors reinforces the idea that the data object exists only to bundle fields
together, not to “behave” in a particular manner. As a design concept, we want the data object to be asimple
structure devoid of behavior; it'samatter of form following function. The exception is the multi-argument
constructor, which isleft as a convenience for the devel oper.

Bulk accessors bundle related fields
The bulk accessors can pass a subset of the entity’ s data. Some fields may have different security or transaction
needs, which require that they be accessed separately. In the CabinBean, only a subset of the fields (nane,
deckLevel ,bedCount) ispassed in the dataobject. Thei d field isnot included for several reasons: it
doesn’t describe the business concept, it’ s already found in the primary key, and the client should not edit it.
Theshi p field is not passed because it should only be updated by certain individuals; the identities authorized
to changethisfield are different from the identities allowed to change the other fields. Similarly, accessto the
ship may fall under adifferent transaction isolation level than the other fields (e.g., Seri al i zabl e versus
Read Comni t t ed).

In addition, it's more efficient to design bulk accessors that pass logically related fields. In entity beans with
many fields, it is possible to group certain fields that are normally edited together. An employee bean, for
example, might have several fieldsthat are demographic in nature (addr ess, phone, enai |) that can be
logically separated from fields that are specific to benefits (conpensat i on, 401K, heal t h,vacati on).
Logically related fields can have their own bulk accessor; you might even want several bulk accessorsin the
same bean:

public interface Enpl oyee extends javax. e b. EJB(pj ect {

publ i ¢ Enpl oyeeBenefit sData get BenefitsDat a()
throws Renot eExcepti on;

public voi d set Benef i t sDat a(Enpl oyeeBenefi t sDat a dat a)
throws Renot eExcepti on;

publ i ¢ Enpl oyeeDenogr aphi cCat a get Denogr aphi cDat a()
throws Renot eExcepti on;

publ i ¢ voi d set Denogr aphi clat a(Enpl oyeeDenogr aphi cDat a dat &)
throws Renot eExcepti on;

/1 nore sinple accessors and ot her busi ness net hods fol | ow

}

Retain simple accessors
Simple accessors (get and set methods for single fields) should not be abandoned when using bulk accessors. It
isstill important to allow editing of singlefields. It’ s just as wasteful to use a bulk accessor to change onefield
asit isto change several fieldsusing simple accessors.

Local referencesin EJB 2.0 container-managed persistence are very efficient, so the performance benefits of bulk
accessorsare minimal. Therefore, if you're using EJB 2.0, use bulk accessors with remote interfaces whenever it
makes sense according to the guidelines given here, but use them sparingly with local interfaces.

Entity Objects

The pass-by-value section earlier gave you some good ground rules for when and how to use pass-by-valuein EJB.
Business concepts that do not meet the dependent object criteria should be modeled as either session or entity
beans. It’ s easy to mistakenly adopt a strategy of passing business objects that would normally qualify as entity
beans (Customer, Ship, and City) by value to the clients. Overzealous use of bulk accessors that pass data objects

Copyright (c) 2001 O'Reilly & Associates 301

loaded with business behavior is bad design. The belief isthat passing the entity objectsto the client avoids
unnecessary network traffic by keeping the set and get methods local. The problem with this approach is object
equivalence. Entities are supposed to represent the actual data on the database, which means that they are shared
and always reflect the current state of the data. Once an object isresident on the client, it isno longer representative
of thedata. It is easy for aclient to end up with many dirty copies of the same entity, resulting in inconsistent
processing and representation of data.

Whileit’ strue that the set and get methods of entity objects can introduce alot of network traffic, implementing
pass-by-value objectsinstead of using entity beansis not the answer. The network problem can be avoided if you
stick to the design strategy elaborated throughout this book: remote clients interact primarily with session beans, not
entity beans. Y ou can also reduce network traffic significantly by using bulk accessors, provided that these
accessors only transfer structures with no businesslogic. Finally, try to keep the entity beans on the server
encapsulated in workflow defined by session beans. This eliminates the network traffic associated with entities, while
ensuring that they always represent the correct data.

| mproved Performancewith Session Beans

In addition to defining the interactions among entity beans and other resources (workflow), session beans have
another substantial benefit: they improve performance. The performance gains from using session beans are related
to the concept of granularity. Granularity describes the scope of a business component, or how much business
territory the component covers. Asyou learned previously, very fine-grained dependent business objects are usually
model ed as pass-by-value objects. At asmall granularity, you are dealing with entity beans like Ship or Cabin. These
have a scope limited to a single concept and can only impact the data associated with that concept. Session beans
represent large, coarse-grained components with a scope that covers several business concepts—all the business
concepts or processes that the bean needs in order to accomplish atask. In distributed business computing, you rely
on fine-grained components like entity beans to ensure simple, uniform, reusable, and safe access to data. Coarse-
grained business conponents like session beans capture the interactions of entities or businessprocesses that span
multiple entities so that they can be reused; in doing so, they also improve performance on both the client and the
server. Asarule of thumb, client applications should do most of their work with coarse-grained components like
session beans, and with limited direct interaction with entity beans.

To understand how session beans improve performance, we have to address the most common problems cited with
distributed component systems: network traffic, latency, and resource consumption.

Network Traffic and Latency

One of the biggest problems of distributed component systems is that they generate alot of network traffic. Thisis
especially true of component systemsthat rely solely on entity- type business components, such as EJB’s

Ent i t yBean component. Every method call on aremote reference begins aremote method invocation loop, which
sends information from the stub to the server and back to the stub. The loop requires data to be streamed to and from
the client, consuming bandwidth. If we built areservation system for Titan Cruise Lines, we would probably use
several entity beans like Ship, Cabin, Cruise, and Customer. Aswe navigate through these fine-grained beans,
requesting information, updating their states, and creating new beans, we generate network traffic. One client
probably doesn’t generate very much traffic, but multiply that by thousands of clients and we start to develop
problems. Eventually, thousands of clients will produce so much network traffic that the system as awhole will
suffer.

Another aspect of network communicationsislatency. Latency isthe delay between the time we execute a command
and the time it completes. With enterprise beans there is always abit of latency due to thetime it takesto
communicate requests viathe network. Each method invocation requires aRMI loop that takes timeto travel from the
client to the server and back to the client. A client that uses many beanswill suffer from atime delay with each

Copyright (c) 2001 O'Reilly & Associates 392

method invocation. Collectively, the latency delays can result in very slow clients that take several seconds to
respond to each user action.

Accessing coarse-grained session beans from the client instead of fine-grained entity beans can substantially reduce
problems with network bandwidth and latency. In Chapter 12, we developed thebookPassage() method on the
Travel Agent bean. ThebookPassage() method encapsulates the interactions of entity beans that would oth-
erwise have resided on the client. For the network cost of one method invocation on the client (bookPassage()),
several tasks are performed on the EJB server. Using session beans to encapsulate several tasks reduces the number
of remote method invocations needed to accomplish atask, which reduces the amount of network traffic and latency
encountered while performing these tasks.

In EJB 2.0, agood design is to use remote component interfaces on the session bean that manages the workflow, and
local compenent interfaces on the enterprise beans (both entity and session) that it manages. This ensures the best
performance.

Striking a Balance

We don’t want to abandon the use of entity business components, because they provide several advantages over
traditional two-tier computing. They allow usto encapsulate the business logic and data of a business concept so
that it can be used consistently and reused safely across applications. In short, entity business components are
better for accessing business state because they simplify data access.

At the same time, we don’'t want to overuse entity beans on the client. Instead, we want the client to interact with
coarse-grained session beans that encapsul ate the interactions of small-grained entity beans. There are situations
where the client application should interact with entity beans directly. If aclient application needs to edit a specific
entity— change the address of a customer, for example—exposing the client to the entity bean is more practical than
using a session bean. If, however, atask needsto be performed that involves the interactions of more than one entity
bean—transferring money from account to another, for example—then a session bean should be used.

When aclient application needs to perform avery specific operation on an entity, like an update, it makes senseto
make the entity availableto client directly. If the client is performing atask that spans business concepts or otherwise
involves more then one entity, that task should be modeled in a session bean as aworkflow. A good design will
emphasi ze the use of coarse-grained session beans as workflow and limit the number of activities that require direct
client accessto entity beans.

In EJB 2.0, entity beansthat are accessed by both remote clients and local enterprise beans can accommodate both
by implementing both remote and local component interfaces. The methods defined in remote and local component
interfaces do not need to be identical; each should define methods appropriate to the clients that will use them. For
example, the remote interfaces might make more use of bulk accessors then the local interface.

Listing Behavior

Make decisions about whether to access data directly or through entity beans with care. Listing behavior that is
specific to aworkflow can be provided by direct data access from a session bean. Methods like

i stAvail abl eCabi ns() inthe Travel Agent bean use direct data access becauseit isless expensive than
creating afind method in the Cabin bean that returns alist of Cabin beans. Every bean that the system hasto deal
with requires resources; by avoiding the use of components where their benefit is questionable, we can improve the
performance of the whole system. A CTM islike a powerful truck, and each business component it managesislike a
small weight. A truck is much better at hauling around a bunch of weights than an lightweight vehicle like abicycle,
but piling too many weights on the truck will make it just asineffective asthe bicycle. If neither vehicle can move,
which oneis better?

Copyright (c) 2001 O'Reilly & Associates 303

Chapter 12 spends some time discussing the Travel Agent bean’sl i st Avai | abl eCabi ns() method as an
example of amethod that returnsalist of tabular data. This section provides several different strategies for
implementing listing behavior in your beans.

Tabular datais datathat is arranged into rows and columns. Tabular datais often used to let application users select
or inspect data in the system. Enterprise JavaBeans lets you use find methods to list entity beans, but this
mechanism is not asilver bullet. In many circumstances, find methods that return remote references are a
heavyweight solution to alightweight problem. For example, Table 9-1 shows the schedule for a cruise.

Table 9-2: Hypothetical Cruise Schedule (continued)

CruiseID Port-of-Call Arrive Depart

233 San Juan June 4, 1999 June 5, 1999
233 IAruba June 7, 1999 June 8, 1999
233 Cartagena June 9, 1999 June 10, 1999
233 San Blas |slands June 11, 1999 June 12, 1999

It would be possible to create a Port-Of-Call entity object that represents every destination, and then obtain alist of
destinations using afind method, but thiswould be overkill. Recognizing that the datais not shared and only useful
in this one circumstance, we would rather present the data as a simple tabular listing.

In this case, we will present the datato the bean client asan array of St r i ng objects, with the values separated by a
character delimiter. Hereisthe method signature used to obtain the data:.

public interface Schedul e i npl enents j avax.) b. EJB(pj ect {
public Sring [] getSchedul e(int ID throws RenoteException;

}

And hereisthe structure of the St r i ng valuesreturned by theget Schedul e() method:

233; San Juan; June 4, 1999; June 5, 1999

233; Aruba; June 7, 1999; June 8, 1999

233; Cartegena; June 9, 1999; June 10, 1999

233; San B as Islands; June 11, 1999; June 12, 1999

The data could also be returned as amultidimensional array of strings, in which each column represents one field.
Thiswould certainly make it easier to reference each dataitem, but would also complicate navigation.

One disadvantage to using the simple array strategy isthat Javaislimited to single type arrays. In other words, all
the elementsin the array must be of the sametype. We use an array of St ri ngs here because it has the most
flexibility for representing other datatypes. We could also have used an array of Cbj ect s or evenaVect or. The
problem with using anObj ect array or aVect or isthat thereis no typing information at runtime or development
time.

Implementing listsasarrays of structures

Instead of returning asimple array, amethod that implements some sort of listing behavior can also return an array of
structures. For example, to return the cruise ship schedule dataillustrated in Table 9-1, you could return an array of
schedul e structures. The structures are simple Java objects with no behavior (i.e., no methods) that are passed in an
array. The definition of the structure and the bean interface that would be used are;

/1 Definition of the bean that uses the Sructure
public interface Schedul e i npl enents javax. ej b. EJBMj ect {
publ i ¢ G ui seSchedul eltem[] get Schedul e(int 1D throws Renot eExcepti on;

}

Copyright (c) 2001 O'Reilly & Associates 3

/] Definition of the Sructure
public class Q ui seSchedul el tem{
public int cruiselD
public Sring portNane;
public java. util.Date arrival;
public java. util.Date departure;

}

Using structures allows the data elements to be of different types. In addition, the structures are self-describing: it is
easy to determine the structure of the datain the tabular set based on its class definition.

Implementing lists as ResultSets

A more sophisticated and flexible way to implement alist isto provide a pass-by-value implementation of the

j ava. sql . Resul t Set interface. Although it isdefined inthe JDBC package (j ava. sql) theResul t Set
interfaceis semantically independent of relational databases; it can be used to represent any set of tabular data.
Sincethe Resul t Set interfaceisfamiliar to most enterprise Java developers, it is an excellent construct for usein
listing behavior. Using the Resul t Set strategy, the signature of theget Schedul e() method would be:

public interface Schedul e i npl enents javax. ej b. EJBOyj ect {
publ ic Resul t Set get Schedul e(int cruiselD throws RenoteException;

}

In some cases, the tabular data displayed at the client may be generated using standard SQL through a JDBC driver.
If the circumstances permit, you may choose to perform the query in a session bean and return the result set directly
to the client through alisting method. However, there are many cases in which you don’t want to return aResul t -
Set that comesdirectly from JDBC drivers. AResul t Set fromaJDBC 1.x driver isnormally connected directly to
the database, which increases network overhead and exposes your data source to the client. In these cases, you can
implement your own Resul t Set object that uses arrays or vectors to cache the data. JIDBC 2.0 provides a cached

j avax. sql . RowSet that lookslikeaResul t Set , but is passed by value and provides features like reverse
scrolling. Y ou can use the RowSet , but don't expose behavior that allows the result set to be updated. Data updates
should only be performed by bean methods.

In some cases, the tabular data comes from several data sources or nonrelational databases. In these cases, you can
guery the data using the appropriate mechanisms within the listing bean, and then reformat the datainto your

Resul t Set implementation. Regardless of the source of data, you still want to present it as tabular datausing a
custom implementation of the Resul t Set interface.

UsingaResul t Set hasanumber of advantages and disadvantages. First, the advantages:

Consistent interface for devel opers
TheResul t Set interface provides a consistent interface that developers are familiar with and that is
consistent across different listing behaviors. Developers don’t need to learn several different constructs for
working with tabular data; they use the same Resul t Set interfacefor al listing methods.

Consistent interface for automation
TheResul t Set interface provides a consistent interface that all ows software algorithms to operate on data
independent of its content. A builder can be created that constructsan HTML or GUI table based on any set of
results that implementsthe Resul t Set .

Metadata operations
TheResul t Set interface defines several metadata methods that provide devel opers with runtime information
describing the result set they are working with.

Copyright (c) 2001 O'Reilly & Associates 395

Flexibility
TheResul t Set interface isindependent of the data content, which allows tabular sets to change their schema
independent of the interfaces. A change in schema does not require a change to the method signatures of the
listing operations.

And now, the disadvantages of using aResul t Set :

Complexity
TheResul t Set interface strategy is much more complex than returning asimple array or an array of
structures. It normally requires you to develop a custom implementation of the Resul t Set interface. If
properly designed, the custom implementation can be reused across all your listing methods, but it’sstill a
significant development effort.

Hidden structure at development time
Although the Resul t Set can describeitself through metadata at runtime, it cannot describe itself at
development time. Unlike asimple array or an array of structures, the Resul t Set interface provides no clues
at development time about the structure of the underlying data. At runtime, metadatais available, but at
development time, good documentation is required to express the structure of the data explicitly.

Bean Adapters

One of the most awkward aspects of the EJB bean interface typesisthat, in some cases, the callback methods are
never used or are not relevant to the bean at all. A simple container-managed entity bean might have empty
implementations for itsej bLoad() ,ej bSt ore() ,ej bActi vate(),ej bPassi vate(), orevenits

set Entit yCont ext () methods. Statel ess session beans provide an even better example of unnecessary
callback methods: they must implement theej bAct i vat e() andej bPassi vat e() methods even though
these methods are never invoked!

To simplify the appearance of the bean class definitions, we can introduce adapter classes that hide callback
methods that are never used or that have minimal implementations. Here is an adapter for the entity bean that
provides empty implementations of all the Ent i t yBean methods:

public class EntityAdapter inplenents javax.ejb. EntityBean {
public EntityContext e bCGontext;

public void ej bActivate(){}
publ i c voi d ej bPassi vate(){}
publ i c void ej bLoad(){}
public void e bSore(){}
publ i c voi d ej bRenove(){}

public void setEntityContext(EntityCQontext ctx) {
g bGontext = ctx;

}

publ i c void unset EntityQontext() {
e bGntext = null;

}

public EntityContext get EJBGontext() {
return ej bGont ext;

}

}

We took care of capturing the Ent i t yCont ext for use by the subclass. We can do this because most entity
beans implement the context methods in exactly thisway. We simply leverage the adapter class to manage thislogic
for our subclasses.

Copyright (c) 2001 O'Reilly & Associates 396

If acallback method is deemed necessary, it can simply be overridden by a method in the bean class.

A similar Adapt er class can be created for statel ess session beans:

public class SessionAdapter inplenents javax. e b. Sessi onBean {
publ i ¢ Sessi onCont ext ej bCont ext ;

public void e bActivate() {}
public voi d € bPassivate() {}
publ i c voi d ej bRenove() {}

publ i c voi d set Sessi onGont ext (Sessi onGnt ext ctx) {
e b(ontext = ctx;

}

publ i ¢ Sessi onCont ext get EJBGont ext () {
return ej bGont ext;

}

}

Don't use these adapter classes when you need to override more than one or two of their methods. If you need to
implement several of the callback methods, your code will be clearer if you don’t use the adapter class. The adapter
class also impacts the inheritance hierarchy of the bean class. If later you would like to implement a different
superclass, one that captures business logic, the class inheritance would need to be modified.

| mplementing a Common I nterface

This book discourages implementing the remote interface in the bean class. This makesit alittle more difficult to
enforce consistency between the business methods defined in the remote interface and the corresponding methods
on the bean class. There are good reasons for not implementing the remote interface in the bean class, but thereis
also aneed for acommon interface to ensure that the bean class and remote interface define the same business
methods. This section describes adesign alternative that allows you to use acommon interface to ensure
consistency between the bean class and the remote interface.

Why the Bean Class Shouldn’t | mplement the Remote Interface

There should be no difference, other than the missingj ava. r m . Renot eExcept i on, between the business
methods defined in the Shi pBean and their corresponding business methods defined in the Shi pRenpt e
interface. EJB requires you to match the method signatures so that the remote interface can accurately represent the
bean class on the client. Why not implement the remoteinterfacecom t i t an. Shi pRenot e inthe Shi pBean
class to ensure that these methods are matched correctly?

EJB allows a bean class to implement its remote interface, but this practice is discouraged for a couple of very good
reasons. First, the remote interface is actually an extension of thej avax. ej b. EJBObj ect interface, which you
learned about in Chapter 5. Thisinterface defines several methods that are implemented by the EJB container when
the bean is deployed. Here isthe definition of thej avax. ej b. EJBObj ect interface:

public interface javax. e b. EJBObj ect extends java.rni. Renote {
publ i c abstract EJB-bne get EJB-bne();
public abstract Handl e get Handl e();
public abstract (bject getPrinarykKey();
public abstract bool ean isldentical (EJBOj ect obj);
public abstract void renove();

Copyright (c) 2001 O'Reilly & Associates 397

The methods defined here are implemented and supported by the EJB object for use by client software and are not
implemented by thej avax. ej b. Ent i t yBean class. In other words, these methods are intended for the remote
interface’ simplementation, not the bean instance’s. The bean instance implements the business methods defined in
the remoteinterface, but it does so indirectly. The EJB object receives all the method invocations made on the remote
interface; those that are business methods (like the get Nane or set Capaci t y methodsin Shi p) are delegated to
the bean instance. The other methods, defined by the EJBObj ect , are handled by the container and are never
delegated to the bean instance.

Just for kicks, change the Shi pBean definition so that it implementsthe Shi p interface as show here:

| public class ShipBean inpl enents Shi pRenote { |

When you recompile the Shi pBean, you should have five errors stating that the Shi pBean must be declared
abstract because it doesn’t implement the methods from thej avax. ej b. EJBCbj ect . EJB alowsyou to
implement the remote interface, but in so doing you clutter the bean class' s definition with abunch of methods that
have nothing to do with its functionality. Y ou can hide these methods in an adapter class; however, using an adapter
for methods that have empty implementationsis one thing, but using an adapter for methods that shouldn’t bein the
classat all isdecidedly bad practice.

Another reason that beans should not implement the remote interfaceisthat aclient can be an application on a
remote computer or it can be another bean. Beans as clients are very common. When calling a method on an object,
the caller sometimes passesitself as one of the parameters.> In normal Java programming, an object passes a
reference to itself using thet hi s keyword. In EJB, however, clients, even bean clients, are only allowed to interact
with the remote interfaces of beans. When one bean calls a method on another bean, it is not allowed to pass the

t hi s reference; it must obtain its own remote reference from its context and pass that instead. The fact that abean
class doesn’t implement its remote interface prevents you from passing thet hi s reference and forces you to get a
reference to the interface from the context. The bean classwon’t compileif you attempt to uset hi s asaremote
reference. For example, assume that the Shi pBean needsto call soneMet hod(Shi pRenot e shi p) . It can't
simply call someMet hod(t hi s) because Shi pBean doesn’'t implement Shi pRenot e. If, however, the bean
instance implements the remote interface, you could mistakenly pass the bean instance reference using thet hi s
keyword to another bean.

Beans should alwaysinteract with the remote references of other beans so that method invocations are intercepted
by the EJB objects. Remember that the EJB objects apply security, transaction, concurrency, and other system-level
constraints to method calls before they are delegated to the bean instance; the EJB object works with the container to
manage the bean at runtime.

The proper way to obtain a bean’ s remote reference, within the bean class, isto usethe EJBCont ext . Hereisan
example of how thisworks:

public class Hypothetical Bean extends EntityBean {
public EntityContext ej bGontext;
public voi d soneMet hod() throws RenoteException {

Hypot hetical nySelf = (Hypot hetical) ej bGont ext. get EJBDj ect ();
// Do sonething interesting with the renote reference.

}

/1] More nethods fol | ow

54 This is frequently done in loopbacks where the invokee will need information about the invoker. Loopbacks are
discouraged in EJB because they require reentrant programming, which should be avoided.

Copyright (c) 2001 O'Reilly & Associates 308

EJB 2.0: Why the Bean Class Shouldn’t Implement the Local Interface

In EJB 2.0, the bean class should not implement the local interface for the exact same reasons that it shouldn’t
implement the remote interface: Y ou would have to support the methods of thej avax. ej b. EJBLocal Obj ect
which are not germane to the bean class.

EJB 1.1: The Business I nterface Alter native

Although it isundesirable for the bean class to implement its remote interface, we can define an intermediate interface
that is used by both the bean class and the remote interface to ensure consistent business method definitions. We
will call thisintermediate interface the business interface.

The following code contains an example of abusiness interface defined for the Ship bean, called Shi pBusi ness.
All the business methods formerly defined in the Shi pRenot e interface are now defined in the Shi pBusi ness
interface. The businessinterface defines all the business methods, including every exception that will be thrown from
the remote interface when used at runtime:

package comtitan. ship;
inport java.rn.Renot eExcepti on;

public interface Shi pBusiness {
public Sring getNane() throws Renot eException;
public void set Nane(Sring nane) throws RenoteException;
publ i ¢ voi d set Capacity(int cap) throws RenoteException;
public int getCapacity() throws RenoteException;
publ i ¢ doubl e get Tonnage() throws Renot eExcepti on;
publ i ¢ voi d set Tonnage(doubl e tons) throws Renot eExcepti on;

}

Oncethe businessinterfaceis defined, it can be extended by the remote interface. The remote interface extends both
the Shi pBusi ness and the EJBOhj ect interfaces, giving it all the business methods and the EJBObj ect
methods that the container will implement at deployment time:

package comtitan. ship;
i nport javax. ej b. EJByj ect ;

public interface Shi pRenote extends Shi pBusi ness, javax.ej b. EJByj ect {
}

Finally, we can implement the business interface in the bean class as we would any other interface:

public class ShipBean inpl enents Shi pBusi ness, javax.ejb. EntityBean {
public int id;
public Sring nang;
public int capacity;
publ i ¢ doubl e tonnage;

public Sring get Nane() {

return nang,

}

public void setNane(Sring n) {
nane = n;

}

publ i ¢ void set Gapacity(int cap) {
capacity = cap;

}

Copyright (c) 2001 O'Reilly & Associates 399

public int getCapacity() {
return capacity;

}

publ i ¢ doubl e get Tonnage() {
return tonnage;

}

publ i c voi d set Tonnage(doubl e tons) {
tonnage = tons;

}

/] More nethods foll ow ..

}

In the case of the Shi pBean class, we choose not to throw the Renpt eExcept i on. Classes that implement
interfaces can choose not to throw exceptions defined in the interface. They cannot, however, add exceptions. Thisis
why the business interface must declare that its methods throw the Renot eExcept i on and all application
exceptions. The remote interface should not modify the business interface definition. The bean class can choose not
to throw the Renpt eExcept i on, but it must throw all the application- specific exceptions.

The business interfaceis an easily implemented design strategy that will make it easier to develop beans. This book
recommends that you use the business interface strategy in your own implementations. Remember not to pass the
businessinterface in method calls; always use the bean’ s remote interface in method parameters and asreturn types.

Entity Beans Without Create Methods

If an entity bean is never meant to be created by aclient, you can simply not implement acr eat e() method on the
home interface. This means that the entity in question can only be obtained using thef i nd() methods on the home
interface. Titan might implement this strategy with their Ship beans, so that new ships must be created by directly
inserting arecord into the database—a privilege that might be reserved for the database administrator. They
wouldn’t want some crazed travel agent inserting random shipsinto their cruise line.

EJB 1.1. Object-to-Relational Mapping Tools

Some EJB vendors provide object-to-relational mapping tools that, using wizards, can create object representations
of relational databases, generate tables from objects, or map existing objectsto existing tables. These tools are
outside the scope of this book because they are proprietary in nature and cannot generally be used to produce beans
that can be used across EJB servers. In other words, in many cases, once you have begun to rely on a mapping tool
to define abean’ s persistence, you might not be able to migrate your beans to adifferent EJB server; the bean
definition is bound to the mapping tool.

Mapping tools can make bean devel opers much more productive, but you should consider the implementation-
specific details of your tool before using it. If you will need to migrate your application to a bigger, faster EJB server
in the future, make sure that the mapping tool you use is supported in other EJB servers.

Some products that perform object-to-relational mapping use JDBC. The Object People’s TOPLink and Watershed' s
ROF are examples of thistype of product. These products provide more flexibility for mapping objectsto arelational
database and are not as dependent on the EJB server. However, EJB servers must support these productsin order for
them to be used, so again let caution guide your decisions about using these products.

Copyright (c) 2001 O'Reilly & Associates 400

Avoid Emulating Entity Beanswith Session Beans

Session beans that implement the Sessi onSynchr oni zat i on interface (discussed in Chapter 8) can emulate
some of the functionality of bean-managed entity beans. This approach provides a couple of advantages. First, these
session beans can represent entity business concepts like entity beans; second, dependency on vendor-specific
object-to- relational mapping toolsis avoided.

Unfortunately, session beans were never designed to represent data directly in the database, so using them as a
replacement for entity beansis problematic. Entity beans fulfill this duty nicely because they are transactional
objects. When the attributes of a bean are changed, the changes are reflected in the database automatically in a
transactionally safe manner. This cannot be duplicated in stateful session beans because they are transactionaly
aware but are not transactional objects. The difference is subtle but important. Stateful session beans are not shared
like entity beans. Thereis no concurrency control when two clients attempt to access the same bean at the same time.
In the case of the stateful session beans, each client getsits own instance, so many copies of the same session bean
representing the same entity data can bein useconcurrently. Database isolation can prevent some problems, but the
danger of obtaining and using dirty datais high.

Other problems include the fact that session beans emulating entity beans cannot havef i nd() methodsin their
homeinterfaces. Entity beans supportf i nd() methods as a convenient way to |ocate data. Find methods could be
placed in the session bean’ s remote interface, but this would be inconsistent with the EJB component model. Also, a
stateful session bean must use the Sessi onSynchr oni zat i on interface to be transactionally safe, which
requiresthat it only be used in the scope of the client’ stransaction. Thisisbecause methodslikeej bCr eat e()
and ej bRenove() arenot transactional. In addition, ej bRenove() hasasignificantly different function in
session beans than in entity beans. Shouldej bRenove() end the conversation, delete data, or both?

Weighing all the benefits against the problems and risks of datainconsistency, it is recommended that you do not
use stateful session beans to emulate entity beans.

Limiting Session Beansto Wor kflow

Direct database access with JDBC

Perhaps the most straightforward and most portable option for using a server that only supports session beansis
direct database access. We did some of thiswith the ProcessPayment bean and the Travel Agent bean in Chapter 12.
When entity beans are not an option, we simply take this a step further. The following code is an example of the
Travel Agent bean’sbookPassage() method, coded with direct JDBC data access instead of using entity beans:

publ i c Ticket bookPassage(QeditCard card, double price)
throws Renot eException, | nconpl et eConversational Sate {
if (custonerID=0 || cruiselI D=0 || cabinlD=0) {
t hr ow new | nconpl et eGonver sati onal S ate();
}
Gonnection con = nul | ;
PreparedSatenent ps = null;;

try {
con = get Gonnection();

/1 Insert reservation.

ps = con. prepareStatenent ("insert into RESERVATION "+
"(ABTOMR ID CRUSEID CBINID PR values (?2,2,2,?7");

ps.setlnt(1, custonerlD;

ps.setInt(2, cruiselD;

Copyright (c) 2001 O'Reilly & Associates 401

ps.setint(3, cabinlD;

ps. set Doubl e(4, price);

if (ps.executelpdate() '=1) {

t hr ow new Renot eExcepti on (
"Failed to add Reservation to database");

}

/1 Insert paynent.

ps = con. prepareStat enent ("insert into PAYMENT "+
"(QBTOMR I D, AMONT, TYPE, GREDIT_NMBER CGRED T_BEXP DATE) "+
"values(?,?,?2,2,?7");

ps.setlnt(1, custonerlD;

ps. set Doubl e(2, price);

ps.setSring(3, card.type);

ps. set Long(4, card. nunber);

ps. set Dat e(5, new java. sql . Date(card. experation.getTine()));

if (ps.executelpdate() '=1) {

t hr ow new Renot eExcepti on (
"Failed to add Reservation to database");

}

Ticket ticket = new Ticket (custoner! D cruisel D cabinl D price);

return ticket;

} catch (SQException se) {
t hrow new Renot eExcept i on (se. get Message());

}
finally {

try {
if (ps !=null) ps.close();
if (conl=null) con.close();
} catch(SQException se){
se. print SackTrace();

}
}

}

No mystery here: we have simply redefined the Travel Agent bean so that it works directly with the data through
JDBC rather than using entity beans. This method is transactional safe because an exception thrown anywhere within
the method will cause all the database inserts to be rolled back. Very clean and simple.

Theideabehind this strategy is to continue to model workflow or processes with session beans. The Travel Agent
bean models the process of making areservation. Its conversaional state can be changed over the course of a
conversation, and saf e database changes can be made based on the conversational state.

EJB 1.1: Direct access with object-to-relational mapping tools

Object-to-relational mapping provides another mechanism for “direct” accessto datain a stateful session bean. The
advantage of object-to-relational mapping toolsisthat data can be encapsulated as object-like entity beans. So, for
example, an object-to-relational mapping approach could end up looking very similar to our entity bean design. The
problem with object-to-relational mapping is that most tools are proprietary and may not be reusable across EJB
servers. In other words, the object-to-relational tool may bind you to one brand of EJB server. Object-to-relational
mapping tools are, however, amuch more expedient, safe, and productive mechanism to obtaining direct database
access when entity beans are not available.

Copyright (c) 2001 O'Reilly & Associates 402

Avoid Chaining Stateful Session Beans

In developing session-only systems you will be tempted to use stateful session beans from inside other stateful
session beans. While this appears to be a good modeling approach, it’'s problematic. Chaining stateful session beans
can lead to problems when beans time out or throw exceptions that cause them to become invalid. Figure 9-1 shows a
chain of stateful session beans, each of which maintains conversational state that other beans depend on to

compl ete an operation encapsul ated by bean A.

[FIGURE (use figure 9-1)]
Figure9-1: Chain of stateful session beans

If any one of the beansin this chain times out, say bean B, the conversational statetrailing that bean islost. If this
conversational state was built up over along time, considerable work can belost. The chain of stateful session beans
isonly as strong asits weakest link. If one bean times out or becomesinvalid, the entire conversational state on
which bean A depends becomesinvalid. Avoid chaining stateful session beans.

Using statel ess session beans from within stateful session beansis not a problem, because a statel ess session bean
does not maintain any conversational state. Use statel ess session beans from within stateful session beans as much
asyou need.

Using a stateful session bean from within a statel ess session bean is almost nonsensical because the benefit of the
stateful session bean’s conversational state cannot be leveraged beyond the scope of the statel ess session bean’s
method.

Copyright (c) 2001 O'Reilly & Associates 403

16

XML Deployment Descriptors

What Isan XML Deployment Descriptor?

This chapter discusses what goesinto an XML deployment descriptor; it teaches you how to write deployment
descriptors for your beans. Keep in mind that you may never need to write a deployment descriptor by hand; most
vendors of integrated devel opment tools and EJB servers will provide tools for creating the descriptor automatically.
Even if you have such atool available, however, you should be familiar enough with deployment descriptorsto be
ableto read them on your own.

This chapter doesn’t attempt to teach you how to read or write correct XML. There are many books on the subject; a
good quick reference is XML Pocket Reference by Bob Eckstein (O’ Reilly); XML in a Nutshell provides amore
detailed treatment. Very briefly, XML looks like HTML, but with different tag names and different attributesinside the
tags. Youwon't see <h1> and <p> inside a deployment descriptor; you'll seetagslike<ej b- | ar >. But otherwise,
if you expect an XML document to look like HTML, you’ re most of the way toward reading it. The tag names and
attribute names for an XML document are defined by a special document called aDTD (Document Type Definition).
Therefore, for XML deployment descriptors, thereisa DTD that defines the tags and attributes that can be used in
the document; the DTDs for deployment descriptorsin EJB 2.0 and 1.1 are available online at
http://java.sun.com/dtd/ejb-jar_2_0.dtd and http://java.sun.convj2ee/dtds/ejb-jar_1_1.dtd.

There are afew other important differences between XML andHTML. XML is much more strict; many thingsthat are
acceptablein HTML are errorsin XML. This shouldn’t make adifferenceif you' re just reading a deployment
descriptor, but if you' re writing one, you have to be careful. Two differences are particularly important: XML iscase
sensitive. Y ou can’t mix uppercase and lowercase inyour tag names. HTML doesn’t care about the difference
between <h1> and <H1>, but XML does. All of the tags and attributes used in deployment descriptors are lower
case. In addition, XML will not forgive you if you don’t supply closing tags. In HTML, it was okay to write

<p>. .. <p>, without ever putting in</ p> to end the paragraph. XML never allows you to be sloppy. Whenever
you have atag, there must always be a closing tag.

And that’ s about it. These few paragraphs don’t even qualify as a quick introduction to XML, but the basic ideas are
very simple, and that’ sreally all you should need to get going.

Copyright (c) 2001 O'Reilly & Associates 404

The Contents of a Deployment Descriptor

We've discussed XML deployment descriptors throughout this book. At this point, you probably know enough to
write deployment descriptors on your own. However, it’ s still worthwhile to take a tour through a complete
descriptor. Here' s the deployment descriptor for the Cabin EJB, which we created in Chapter 4, inboth 2.0and 1.1
versions. It contains most of the tags that are needed to describe entity beans; session and message-driven beans
aren’t much different. The differences between the versions are small but significant. We'll use this deployment

descriptor to guide our discussion in the following sections.

EJB 2.0: Deployment Descriptor

<?xnh version="1.0"?>

<IDOCTYPE €j b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 2.0//BN' "http://java.sun.conidtd/ ejb-jar_2 0.dtd">

<ej b-jar>
<ent er pri se- beans>
<entity>
<descri pti on>
This Gabin enterprise bean entity represents a cabin on
a crui se ship.
</ descri ption>
<gj b- nane>Cabi nEIB</ €] b- nane>
<hone>com ti t an. cabi n. Gabi nHoneRenot e</ hone>
<renot e>com ti t an. cabi n. Cabi nRenot e</ r enot e>
<l ocal - hone>comti t an. cabi n. Gabi ntbneLocal </ | ocal - hone>
<l ocal >comti tan. cabi n. Gabi nLocal </ | ocal >
<ej b-cl ass>comti t an. cabi n. Gabi nBean</ gj b- cl ass>
<per si st ence- t ype>Qont ai ner </ per si st ence- t ype>
<pri mkey-cl ass>comtitan. cabi n. Gabi nPK</ pri m key- cl ass>
<reent rant >Fal se</ reent r ant >
<cnp- ver si on>2. x</ cnp- ver si on>
<abst r act - schena- nane>Cabi n</ abst r act - schena- nane>
<cnp-fi el d><fi el d-name>i d</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>nane</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>deckLevel </ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>shi pl d</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>bedCount </ fi el d- nane></ cnp-fi el d>
<prinkey-fiel d> d</ prinkey-fiel d>

<entity>
</ enterpri se-beans>

<assentl y- descri pt or >
<security-rol e>
<descri pti on>
This rol e represents everyone who is allowed full access
to the Gabin EIB
</ descri pti on>
<r ol e- nane>ever yone</ r ol e- nane>
</security-rol e>

<net hod- per m ssi on>
<r ol e- nane>ever yone</ r ol e- nane>
<net hod>
<ej b- nane>Cabi nEJB</ €] b- nane>

Copyright (c) 2001 O'Reilly & Associates

<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

<cont ai ner -t ransacti on>
<net hod>
<gj b- nane>Cabi NEJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y- descri pt or >
<ejb-jar>
EJB 1.1: Deployment Descriptor

<?xnh version="1.0"?>

<IDOCTYPE € b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 1.1//BN' "http://java. sun.conij 2ee/dtds/ejb-jar_1 1.dtd">

<gj b-jar>
<ent er pri se- beans>
<entity>

<descri pti on>
This Gabin enterprise bean entity represents a cabin on
a cruise ship.

</descri ption>

<ej b- nane>Cabi nEIB</ €j b- nane>

<hone>com ti t an. cabi n. Gabi nHoneRenot e</ hone>

<renot e>com ti t an. cabi n. Cabi nRenot e</ r enot e>

<ej b-cl ass>comti t an. cabi n. Gabi nBean</ gj b- cl ass>

<per si st ence- t ype>Qont ai ner </ per si st ence-t ype>

<pri mkey- cl ass>j ava. | ang. | nt eger </ pri m key- cl ass>

<reent rant >Fal se</ reent rant >

<cnp-fi el d><fi el d-nane>i d</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>nane</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>deckLevel </ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>shi pl d</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>bedCount </ fi el d- nane></ cnp-fi el d>
<prinkey-fiel d> d</prinkey-fiel d>

<Jentity>
</ enterpri se- beans>

<assentl y- descri pt or >
<security-rol e>
<descri pti on>
This rol e represents everyone who i s allowed full access
to the Gabin EIB
</descri ption>
<r ol e- nane>ever yone</ r ol e- nane>
</security-rol e>

<net hod- per m ssi on>
<r ol e- nane>ever yone</ r ol e- nane>
<net hod>

Copyright (c) 2001 O'Reilly & Associates

<gj b- nane>Cabi nEJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

<cont ai ner -t ransact i on>
<net hod>
<ej b- nane>Cabi nEJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attri bute>
</ cont ai ner-transacti on>
</ assenbl y- descri pt or >
<ejb-jar>

The Document Header

All XML documents start with afew tags that provide general information about the document itself. The first tag
specifiesthe version of XML that isin use:

| <?xnmh version="1.0"?> |
Thistag identifies the document as an XML document that adheresto Version 1.0 of the XML specification.
The next tag specifiesthe DTD that definesthe document:

EJB 20

<IDOCTYPE €j b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 2.0//BN' "http://java.sun.conidtd/ ejb-jar_2 0.dtd">

EJB11

< DOCTYPE €j b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 1.1//BN' "http://java. sun.conij 2ee/dtds/ejb-jar_1 1.dtd">

Thistag provides the URL from which you (or, more important, tools processing the deployment descriptor) can
download the document. The DTD can be used to validate the XML document; this means that the EJB server
deploying the bean can download the DTD and use it to prove that your deployment descriptor is correct (i.e., that it
isorganized correctly uses the right tag names, and that all the tags and attributes have appropriate parameters).

Thistag also identifies the name of the document’ sroot element, whichis<ej b-j ar >. The<ej b-j ar > tag marks
the beginning of the document proper.

The Descriptor’s Body

The body of any XML document begins and ends with the tag for the document’ s “root element,” which is defined
by the DTD. For adeployment descriptor, the root element isnamed<ej b- j ar >, and lookslikethis:

<gjb-jar>
. other elenents ...
<ejb-jar>

All other elements must be nested within the <ej b- j ar > element. Y ou can place the following kinds of elements
within<ej b-j ar >:

Copyright (c) 2001 O'Reilly & Associates 407

<descri pti on> (optional)
The<descri pti on> element can be used to provide a description of this deployment descriptor. This
element can be used in many contexts within a deployment descriptor: to describe the descriptor as awhole, to
describe particular beans, to describe particular security roles, etc. The Cabin EJB deployment descriptor doesn’t
usea<descri pti on> element for the deployment descriptor as awhole, but it does provide a description for
the Cabin EJB itself.

<di spl ay- nane> (optional)
The<di spl ay- nane> element is used by tools (like adeployment wizard) that are working with the
deployment descriptor. It provides a convenient visual label for the entire JAR file and individual bean
components.

<smal | -i con>and<l| ar ge-i con> (optiona)
These elements point to files within the JAR file that provide icons that a deployment wizard or some other tool
can use to represent the JAR file. Icons must be image filesin either the JPEG or GIF format. Small icons must be
16 x 16 pixels; largeicons must be 32 x 32 pixels. Theseicon elementsare also used inthe<entity>,
<sessi on>, and<nessage- dr i ven> elementsto represent individual enterprise bean components.

<ent er pri se- beans> (onerequired)
The<ent er pri se- beans> element contains descriptions of one or more enterprise beans that are contained
inthisJAR file. A deployment descriptor may have only one<ent er pri se- beans> element. Within this
element, <ent i t y>,<sessi on>, and<nessage- dri ven> (EJB 2.0) eements describe the individual
beans.

<ej b-client-j ar > (optional)
The<ej b-cl i ent -j ar > element provides the path of the client JAR, which normally contains all the classes
(including stubs, remote and home interface classes, etc.) that the client will need to access the beans defined in
the deployment descriptor. How client JAR files are organized and delivered to the client is not specified—
consult your vendor’ s documentation.

<assenbl y- descri pt or > (optional)
The application assembler or bean developer adds an<assenbl y- descri pt or > element to the deployment
descriptor to define how the enterprise beans are used in an actual application. The<assenbl y-
descri pt or > contains a number of elements that define the security roles used to access the bean, the
method permissions that govern which roles can call different methods, and transactional attributes.

All of these elements are quite simple, except for the<ent er pri se- beans> element and the<assenbl y-
descri pt or > element. These two elements contain alot of other material nested within them. We'll look at the
<ent erpri se-beans> element first.

Describing Enterprise Beans

The enterprise beans contained in a JAR file are described within the deployment descriptor’s<ent er pri se-
beans> element. So far, we' ve only talked about deployment descriptors for a single enterprise bean, but there’ s no
reason that you can’t package several enterprise beansin a JAR file and describe them all within a single deployment
descriptor. We could, for example, have deployed the Travel Agent, ProcessPayment, Cruise, Customer, and
Reservation EJBsin the same JAR file.

EJB 2.0

In EJB 2.0, we could also add the message-driven bean, the ReservationProcessor EJB that was devel oped in Chapter
13. The EJB 2.0 deployment descriptor would ook something like this:

<?xm version="1.0"?>
<IDOCTYPE €] b-jar PLBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 2.0//BN' "http://java. sun.conidtd/ejb-jar_2 0.dtd">

Copyright (c) 2001 O'Reilly & Associates 408

<gjb-jar>
<descri pti on>
Thi s Depl oynent includes all the beans needed to nake a reservation:
Travel Agent, ProcessPaynent, Reservation, Qustoner, Quise, and Cabin.
</ descri pti on>
<ent er pri se- beans>
<sessi on>
<ej b- nane>Tr avel Agent EIB</ €] b- nane>
<renot e>comtitan. travel agent . Travel Agent Renot e</ r enot e>

</ sessi on>
<entity>
<ej b- nane>Qust oner EJB< €j b- nane>
<renot e>comti t an. cust oner . Qust oner Renot e</ r enot e>

<Jentity>
<sessi on>
<ej b- nane>Pr ocessPaynent EJB</] b- nane>
<renot e>comtitan. processpaynent . ProcessPaynent Renot e</ r enot e>
</ sessi on>
<nessage- dri ven>
<ej b- nane>Reser vat i onPr ocessor EJB</ €] b- nane>
</ nessage- dri ven>

</ enterpri se-beans>
<rel ati onshi ps>

<rel ati onshi ps>
<assentl y- descri pt or >

</ assenbl y- descri pt or >

</ejb-jar>
EJB 11

The EJB 1.1 deployment descriptor would look something like this:

<?xnh versi on="1.0"?>
<IDOCTYPE €] b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 1.1//BN' "http://java. sun.conij 2ee/dtds/ejb-jar_1 1.dtd">

<gj b-jar>
<descri pti on>
Thi s Depl oynent includes all the beans needed to nake a reservation:
Travel Agent, ProcessPaynent, Reservation, Qustoner, Guise, and Gabin.
</ descripti on>
<ent er pri se- beans>
<sessi on>
<ej b- nane>Tr avel Agent EJB</] b- nang>
<renot e>comtitan. travel agent. Travel Agent Renot e</ r enot e>

</ sessi on>
<entity>
<ej b- nane>Qust oner EJB< €j b- nane>

Copyright (c) 2001 O'Reilly & Associates

<renot e>comti t an. cust oner . Qust oner Renot e</ r enot e>
<entity>
<sessi on>

<ej b- nane>Pr ocessPaynent EJB</ gj b- nane>

<renot e>comtitan. processpaynent . Pr ocessPaynent Renot e</ r enot e>
</ sessi on>

</ enterpri se-beans>
<assentl y- descri pt or >

</ assenbl y- descri pt or >

<ejb-jar>
In thisdescriptor, the<ent er pri se- beans> element containstwo<sessi on> elements, one<entity>
element, and for EJB 2.0, a<nessage- dr i ven> element describing the enterprise beans. Other elements within
the<entity>,<sessi on>and<nmessage- dri ven> elements provide detailed information about the

enterprise beans; asyou can see, the <ej b- nane> element defines the enterprise bean’ s name. We'll discuss all of
the things that can go into abean’ s description later.

Multiple bean deployments have the advantage that they can share assembly information, which is defined in the
<assenbl y- descri pt or > element that followsthe <ent er pri se- beans> element. In other words, beans
can share security and transactional declarations, making it simpler to deploy them consistently. For example,
deployment is easier if the samelogical security roles control accessto all the beans, and it’ s easiest to guarantee
that the roles are defined consistently if they are defined in one place. It s also easier to ensure that the transactional
attributes are applied consistently to all beans because you can declare them all at the sametime.

Session and Entity Beans

The<sessi on>and<ent i t y> elements, which describe session and entity beans, usually contain many
elements nested within them, but the lists of allowable subelements are similar. Therefore, we'll discussthe
<sessi on>and<enti t y> elementstogether.

Liketheebj - | ar elementitself, a<sessi on> oran<ent it y> element can optionally have<descri pti on>,
<di spl ay- nane>,snal | -i con, and| ar ge-i con elements. These arefairly self-explanatory and, in any
case, mean the same asthey did for the<ej b- | ar > element. The<descri pti on> letsyou provide acomment
that describes the enterprise bean; the <di spl ay- nane> isused by deployment tools to represent the enterprise
bean; and the two icons are used to represent the enterprise bean in visual environments. The icons must point to
JPEG or GIF images within the JAR file.

The other elements are more interesting:

<ej b- nane> (onerequired)
Thisisthe name of the enterprise bean component. It isused in the <met hodx> element to scope method
declarations to the correct enterprise bean. Throughout this book, we use <ej b- nanme>sof theform
“NameEJB” asthe<ej b- nanme> for enterprise bean. Other common conventions use <ej b- nanme>sof the
form “NameBean” or “TheName.”

<hone> (onerequired)
Thisisthefully qualified class name of the enterprise bean’ s remote home interface.

<r enot e> (onerequired)
Thisisthefully qualified class name of the enteprise bean’ s remoteinterface.

Copyright (c) 2001 O'Reilly & Associates 410

<l ocal - hone> (EB 2.0)
Thisisthefully qualified class name of the enterprise bean’slocal homeinterface.

<l ocal > (EB 20)
Thisisthe fully qualified class name of the enteprise bean’slocal interface.

<ej b- cl ass> (one required)
Thisisthefully qualified class name of the bean class.

<pri nkey-fi el d> (optional; entity beans only)
This element is used to specify the primary key field for entity beans that use contai ner-managed persistence. Its
valueisthe name of thefield that is used as the primary key. It is not used if the bean has a compound primary
key or if the entity bean managesits own persistence. In the Cabin EJB, the<pr i nkey-fi el d>isthei d
CMPfield. This element is discussed in more detail in the section “ Specifying Primary Keys,” later in this
chapter.

<pri m key- cl ass> (onerequired; entity beans only)
This element specifies the class of the primary key for entity beans. Itsvalue isthe fully qualified name of the
primary key class; it makes no difference whether you' re using a custom compound primary key or asimple
<prinkey-fiel d>likeanl nt eger,Stri ng,Dat e, etc. If you defer definition of the primary key class to
the deployer, specify thetypeasj ava. | ang. Obj ect inthiselement.

<per si st ence-t ype> (onerequired; entity beans only)
The<per si st ence-t ype> element declares that the entity bean uses either contai ner-managed persistence
or bean-managed persistence. This element can have one of two values: Cont ai ner or Bean.

<r eent r ant > (onerequired; entity beans only)
The<r eent r ant > element declares that the bean either allowsloopbacks (reentrant invocations) or doesn’t.
This element can have one of two values: Tr ue or Fal se. Tr ue means that the bean allows loopbacks;
Fal se meansthat the bean throws an exception if aloopback occurs.

<cnp- ver si on> (EJB 2.0: optional)
This element describes the version of container-managed persistence for which the entity bean is deployed. EJB
containers must support both EJB 2.0 CMP and EJB 1.1 CMP for backward compatibility. Thiselement may have
one of twovalues: 2. x for EJB 2.0, 0r 1. x for EJB 1.1.

<abstract-schema- nane> (EJB 2.0: optiond)
This element uniquely identifies entity beansin aJJAR file so that they can be referenced by EJB QL statements.
Thiselement is described in more detail in the section “ Declaring EJB QL elements”.

<cnp- f i el d>(zero or more; entity beans only)
This element isused in entity beans with contai ner-managed persistence. A <cnp- f i el d> element must exist
for each container-managed field in the bean class. Each<cnp- f i el d> element may include a
<descri pti on>element and mustincludea<f i el d- nane> element. The description is an optional
comment describing thefield. The<f i el d- nane> isrequired and must be the name of one of the bean’s CMP
fields. In EJB 2.0, this means it must match method name of the abstract accessor method (e.g., deckLevel for
get DeckLevel () /set DeckLevel ()).InEJB 1.1, thismeansthat the<cnp- f i el d> must match the field
name of one of the bean class' s declared instance fields. The container will manage persistence for the given
CMPfield. The following portion of a descriptor shows several <cnp- f i el d> declarations for the Cabin EJB:
<cnp-fiel d>

<description>This is the prinary key</description>

<fi el d- nane>i d</fi el d- nane>
</ cnp-fiel d>
<cnp-fiel d>

<fi el d- nane>nane</ fi el d- nane>
</ cnp-fiel d>
<cnp-fiel d>

<fi el d- nane>deckLevel </ fi el d- nane>

Copyright (c) 2001 O'Reilly & Associates 211

</ cnp-fiel d>
<cnp-fiel d>

<fi el d- nane>shi pl d</ fi el d- nane>
</ cnp-fiel d>
<cnp-fiel d>

<fi el d- name>bed@unt </ fi el d- nane>
</ cnp-fiel d>
<env- ent r y> (zero or more)
This element declares an environment entry that is available through the INDI ENC. The use of environment
entriesin abean and a deployment descriptor is discussed further in the section “ Environment Entries.”

<ej b-r ef > (zero or more)
This element declares a remote enterprise bean reference that is available through the INDI ENC. The mechanism
for making bean references available through the ENC is described in more detail later, in the section “ References
to Other Beans.”

<ej b- 1 ocal - r ef > (zero or more)
Thiselement declares alocal enterprise bean reference that is avail able through the INDI ENC. The mechanism
for making bean references available through the ENC is described in more detail later, inthe section “References
to Other Beans.”

<r esour ce-r ef > (zero or more)
This element declares areference to a connection factory that is available through the INDI ENC. An example of
aresourcefactory isthej avax. sql . Dat aSour ce, which is used to obtain a connection to a database. This
element isdiscussed in detail in the section “ References to External Resources,” later in this chapter.

<resour ce- env-ref > (EJB 2.0: zero or more)
This element describes additional “administered objects” required by the resource. The<r esour ce- env-
r ef > element and administered objects are explained in more detail in the section “ References to External
Resources’ later in this chapter.

<security-rol e-ref>(zeroor more)
The<security-rol e-ref>elementisusedtodeclare security rolesin the deployment descriptor, and map
them into the security rolesin effect for the bean’ s runtime environment. This element is described in more detail
in the section “ Security Roles.”

<security-identity>(EJB 2.0: optional)
This element specifies the Principal under which amethod will run. It is described in more detail in the section
“Specifying Security Roles and M ethod Permissions.”

<sessi on-t ype> (onerequired; session beans only)
The<sessi on-t ype> element declares that a session bean is either stateful or stateless. This element can
have one of two values: St at ef ul or St at el ess.

<transacti on-type> (onerequired; session beans only)
The<transacti on-type> element declares that a session bean either manages its own transactions, or that
its transactions are managed by the container. This element can have one of two values: Bean or Cont ai ner .
A bean that manages its own transactions will not have container-transaction declarations in the assembly -
descriptor section of the deployment descriptor.

<quer y> (EJB 2.0: zero or more)
This element contains an EJB QL statement that is bound to afind or select method. The EJB QL statement
defines how the find or select method should execute at runtime. This element is described in more detail in the
section “Declaring EJB QL elements”.

Copyright (c) 2001 O'Reilly & Associates 412

M essage-Driven Beans

The<nmessage- dri ven> element describes messege-driven bean deployments. <nessage- dri ven>
elements occur after entity and session elements within the enterprise-bean element. Likethe<ent i t y>and
<sessi on> elements, the<nmessage- dr i ven> element can optionally have<descri pti on>,<di spl ay-
nanme>,<smal | -i con>, and<I| ar ge- i con> elements. These elements are used primarily by visual deployment
toolsto represent the message-driven bean. The<nessage- dr i ven> element also requires declaration of the

<ej b- nane>,<ej b-cl ass>,<transacti on-type>,and<security-id-entity>.Inaddition, it
contains the standard JINDI ENC elements<env- ent ry>,<ej b-r ef >, <ej b-1 ocal -ref >, <resour ce-

ref > and<resource-env-ref > Thesearefairly self-explanatory and, in any case, mean the same as they did
forthe<entity>and<sessi on> elements.

The elements that are specific to the message-driven bean are:

<nessage- sel ect or >
Message selectors allow an MDB to be more sel ective about the messages it receives from a particular topic or
queue. Message selectors use Message properties as criteriain conditional expressions™. These conditional
expressions use boolean logic to declare which messages should be delivered to aclient. The syntax of message
selectors can cause problems with XML processing. See the side bar titled “CDATA Sections”.

<acknow edge- node>
Thiselement isonly considered by the container if the message-driven bean uses bean-managed transactions;
with contai ner-managed transactions, it’ signored. It determines which type of acknowledgment it uses; its
value can be either Aut 0- acknowl edge or Dups- ok- acknow edge. Thefirst acknowledges messages
immediately; the second can delay acknowledgement to benefit peformance, but may result in duplicate or re-
delivered messages.

<nessage-driven-destinati on>
This element designates the type of destination that the MDB is subscribed to or listensto. The allowed values
for thiselement arej avax. j ns. Queue andj avax. j ns. Topi c.

55 Message selectors are al so based on message headers, which is outside the scope of this chapter.

Copyright (c) 2001 O'Reilly & Associates 113

CDATA Sections

The<nmessage- sel ect or > used by message-driven beans and <ej b- gl > elements often require the
use of charactersthat have special meaningsin XML, like < and >. These characterswill cause parsing
errorsunless CDATA sections are used.

The CDATA section takestheform <! [CDATA[literal -text]]>.Whenan XML processor
encountersa CDATA section, it doesn’t attempt to parse the contents enclosed by the CDATA section.
The following code listings show how CDATA can beused in<nessage- sel ect or > and<ej b- ql >
elements.

M essage Selector

<nessage- sel ect or >

<! [CDATA
Tot al Charge >500. 00 AND ((Tot al Charge /1tenCount) >=75. 00)
AND State IN ("MWN ,"W',"M"',"OH)":

11>

</message-sel ector>

EJB QL

<query>
<query- net hod>

</ query- net hod>

<ej b-qgl >
<! [CDATA[
SELECT OBJECT(r) FROM Reservation r
VWHERE r. anount Paid > 300. 00
11>

</ ejb-ql >

</ query>

Specifying Primary Keys

An entity bean does not always have to use a custom key class as a primary key. If there’ sasingle field in the bean
that can serve naturally as aunique identifier, you can use that field as the primary key without having to create a
custom key. In the Cabin EJB, for example, the primary key type was the Cabi nPK, which mapped to the bean class
fieldi d asshown here (the Cabi nBean is using bean-managed persistence to better illustrate):

public class Cabi nBean i npl enents javax. € b. EntityBean {

public int id;

public Sring nane;
public int deckLevel;
public int ship;
public int bedGount;

public Gabi nPK ej bQreate(int id) {
this.id =id;
return new Gabi nPk(i d);

Copyright (c) 2001 O'Reilly & Associates 14

Instead of using the custom Cabi nPK class, we could have used the appropriate primitive wrapper,
java. |l ang. | nt eger, and defined the CabinBean as.

public class Cabi nBean i npl enents j avax. gj b. EntityBean {

public int id;

public Sring nang;
public int deckLevel;
public int ship;
public int bedGount;

public Integer e bGeate(int id){
this.id =id;
return new I nteger (id);

}

Thissimplifiesthings alot. Instead of taking the time to define a custom primary key like Cabi nPK, we simply use
the appropriate wrapper. To do this, we need to add a<pr i nkey- f i el d> element to the Cabin EJB’s deployment
descriptor, so that it knows which field to use asthe primary key. We also need to changethe<pri m key-

cl ass> element to state that the | nt eger classisbeing used to represent the primary key. The following code
shows how the Cabin EJB’ s deployment descriptor would need to changeto use| nt eger astheprimary key field:

<entity>

<descri pti on>
This Gabin enterprise bean entity represents a cabin on
a crui se ship.

</ descri ption>

<gj b- nane>Cabi nEIB</ €] b- nane>

<hone>com ti t an. cabi n. Cabi nHbne</ hone>

<renot e>com ti t an. cabi n. Gabi n</ r enot e>

<ej b-cl ass>comti t an. cabi n. Gabi nBean</ gj b- cl ass>

<per si st ence- t ype>Bean</ per si st ence-t ype>

<pri mkey-cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>

<prinkey-fiel d> d</ pri nkey-fiel d>

<reent rant >Fal se</ reent r ant >

<cnp-fi el d><fi el d-name>i d</fi el d- nane></ cnp-fi el d>

<cnp-fi el d><fi el d- name>nane</ fi el d- nane></ cnp-fi el d>

<cnp-fi el d><fi el d- nane>deckLevel </ fi el d- nane></ cnp-fi el d>

<cnp-fi el d><fi el d- nane>shi p</fi el d- nane></ cnp-fi el d>

<cnp-fi el d><fi el d- nane>bedCount </ fi el d- nane></ cnp-fi el d>
<Jentity>

Simple primary key fields are not limited to the primitive wrapper classes (Byt e, Bool ean, | nt eger, etc.); any
container-managed field can be used as aprimary key aslong asit’s serializable. St r i ng types are probably the
most common, but other types, such asj ava. | ang. StringBuffer,java. util . Date,oreven
java.util . Hasht abl e arealsovalid. Custom typescan also be <pr i nkey- f i el d>sproviding that they are
serializable. Of course, common sense should be used when choosing a primary key: becauseit is used as an index to
the data in the database, it should be lightweight. Here' s code for a bean that uses a Dat e asits primary key:

/1 bean class that uses Date as a prinary key
public class Hypothetical Bean i npl enents javax. ej b. EntityBean {
public Date creationbate;

public Date e bGeate() {

Copyright (c) 2001 O'Reilly & Associates 415

creationDate = new Date();
return creationDate;

And here’ s the corresponding section of the deployment descriptor:
/1 prinkey-field declaration for the Hypothetical bean
<entity>

<ej b- nane>Hypot het i cal EJB< €j b- nane>

<pri mkey-cl ass>j ava. uti | . Dat e</ pri mkey- cl ass>
<prinkey-fi el d>creationDate</ prinkey-fiel d>
<reent rant >Fal se</ reentrant >

<cnp-fi el d><fi el d-nanme>creat i onDat e</ fi el d- nane></ cnp-fi el d>

<Jentity>

Throughout the book we use custom compound primary keys, like Shi pPK and Cabi nPK, instead of using simple
primary keys. This may seem strange because these custom primary keys only wrap asinglefield, usually an integer,
which could have been represented by an| nt eger and used asthe <pri nkey-fi el d>.

The reason we use custom primary keysis simple: encapsulation. If the primary key fields of the beans change over
time, using a custom key hides the changes from client applications that use the key. If, for example, the Cabi nBean
changed to usebotha St ri ng and al ong primitive asthe primary key fieldsinstead of asingle integer field (i d),
the Cabin EJB’ s custom primary key class (Cabi nPK) would hide this change from the client application. However,
if wehadused a<pri nkey-fiel d>ofjava. | ang. | nt eger, any client applications that use the
findByPri mar yKey() method (and other similar operations involving the key) would have to be modified.

Deferring primary key definition

With container-managed persistence, it’s also possible for the bean devel oper to defer defining the primary key,
leaving key definition to the bean deployer. This feature might be needed if, for example, the primary key is generated
by the database and is not a container-managed field in the bean class. Containersthat have atight integration with
database or legacy systems that automatically generate primary keys might use this approach. It’ s also an attractive
approach for vendors that sell shrink-wrapped beans because it makes the bean more portable. The following code
shows how an entity bean using contai ner-managed persistence defers the definition of the primary key to the
deployer:

/1 bean class for bean that uses a deferred prinary key
public class Hypothetical Bean i npl enents javax. ej b. EntityBean {

public java.lang. (j ect e bQeate(){

return nul | ;

}.

/1 hone interface for bean with deferred prinary key
public interface Hypothetical Hone extends javax. ej b. EJB-bne {

public Hypothetical create() throws ...;

Copyright (c) 2001 O'Reilly & Associates 416

publ i ¢ Hypot hetical findByPrinaryKey(java.lang. (oject key) throws ...;
}

Here' sthe relevant portion of the deployment descriptor:
/1 prinkey-field declaration for the Hypothetical bean
<entity>

<ej b- nane>Hypot het i cal EJB</ €j b- nane>

<per si st ence-t ype>Qont ai ner </ per si st ence- t ype>
<pri mkey- cl ass>j ava. | ang. oj ect </ pri mkey- cl ass>
<reent rant >Fal se</ reent r ant >

<cnp-fi el d><fi el d- nane>creat i onDat e</ fi el d- nane></ cnp-fi el d>

<entity>

Becausethe primary key isof typej ava. | ang. Obj ect , theclient application’ s interaction with the bean’skey is
limited to the Obj ect typeand its methods.

Environment Entries

A deployment descriptor can define environment entries, which are values similar to properties that the bean can read
when it is running. The bean can use environment entries to customize its behavior, find out about how it is
deployed, etc.

The<env- ent r y> element is used to define environment entries. This element containsa<descri pti on>
element (optional), <env- ent r y- name> (required), <env-ent r y- t ype> (required), and<env-entry-
val ue> (optional). Hereisatypical <env- ent r y> declaration:

<env-entry>
<env- ent ry- nane>ni nCheckNunier </ env- ent r y- nange>
<env-entry-type>j ava. | ang. | nt eger </ env-entry-type>
<env- ent ry- val ue>2000</ env- ent ry-val ue>
</env-entry>

The<env-entry-nane>isrelativetothe"j ava: conp/ env" context. For example, thenm nCheckNumnber
entry can be accessed using the path" j ava: conp/ env/ m nCheckNunber " inaJNDI ENC lookup:

Initial Gontext jndi Gontext = new Initial Gntext();
I nteger mniunval ue = (I nteger)
j ndi Gont ext . | ookup("j ava: conp/ env/ m nCheckNunier ") ;

The<env-entry-type>canbeoftypeSt ri ng, or one of several primitive wrapper typesincluding! nt eger,
Long, Doubl e, Fl oat , Byt e, Bool ean, and Short .

The<env-entry-val ue>isoptiona. The value can be specified by the bean developer or deferred to the
application assembler or deployer.

The subcontext" | ava: conp/ env/ ej b10- properti es" canbeused to make an entry available viathe
EJBCont ext . get Envi r onnent () method. Thisfeature has been deprecated, but it may help you deploy EJB
1.0 beanswithinan EJB 1.1 server. The<ej b- entry-t ype> must alwaysbej ava. | ang. St ri ng for entriesin
this subcontext. Here'san example:

<env-entry>
<description>This property is avail abl e through

Copyright (c) 2001 O'Reilly & Associates 27

EJBMont ext . get Envi ronnent () </ descri pti on>
<env- ent ry- nane>ej b10- proper t i es/ nm nCheckNunier </ env- ent r y- nange>
<env-entry-type> ava. | ang. S ri ng</ env- ent r y- nane>
<env- ent ry-val ue>20000</ env- ent ry- val ue>
< env-entry>

Referencesto Other Beans

Remote References

The<env-r ef > element is used to define referencesto other beans within the INDI ENC. This makes it much easier
for beans to reference other beans; they can use JINDI to look up areference to the home interface for any beans that
they areinterested in.

The<env-r ef > element contains<descr i pti on> (optional), <ej b- r ef - nanme> (required), <ej b-r ef -
t ype> (required), <r enot e> (required), <honme> (required), and<ej b- | i nk> (optional) elements. Hereisa
typical <env-r ef > declaration:

<gj b-ref>
<gj b-r ef - nane>ej b/ Pr ocessPaynent Hone</ ej b-r ef - nane>
<gj b-ref -t ype>Sessi on</ €] b-ref - t ype>
<hone>com tit an. pr ocesspaynent . Pr ocessPaynent HoneRenot e</ hone>
<renot e>comtitan. processpaynent . Pr ocessPaynent HoneRenot e</ r enot e>
</ ejb-ref>

The<ej b-ref - nane>isrelativetothe” j ava: conp/ env" context. It isrecommended, but not required, that
the name be placed under a subcontext of ej b/ . Following this convention, the path used to access the
ProcessPayment EJB’s homewould be" j ava: conp/ env/ ej b/ ProcessPaynment <honme>". The following
code shows how aclient bean would use this context to look up areference to the ProcessPayment EJB:

Initial Gontext jndi Gontext = new Initital Gontext();
(oj ect ref = jndi Gontext. | ookup("java: conp/ env/ gj b/ ProcessPaynent Hong") ;
Pr ocessPaynent HoneRenot e hone = (Pr ocessPaynent HoneRenot e)

Por t abl eRenot e(hj ect . narrow(ref, ProcessPaynent HoneRenot e. cl ass) ;

The<ej b-ref - t ype> can have one of two values: <ent i t y> or <sessi on>, according to whether the bean is
an entity or a session bean.

The <hone> element specifiesthe fully qualified class name of the bean’ s home interface; the <r enot e> element
specifiesthe fully qualified class name of the bean’ s remote interface.

If the bean referenced by the <ej b- r ef > element is deployed in the same deployment descriptor (it isdefined
under the same <ej b- j ar > element), the<ej b- r ef > element can be linked to the bean’ s declaration using the
<ej b-1 i nk> element. If, for example, the Travel Agent bean uses reference to the ProcessPayment EJB that is
declared in the same deployment descriptor, then the<ej b- r ef > elements for the Travel Agent bean can use an
<ej b- | i nk> element to map its<ej b- r ef > elementsto the ProcessPayment EJB. The<ej b- | i nk> value must
match one of the <ej b- name> values declared in the same deployment descriptor. Here’ saportion of a
deployment descriptor that usesthe <ej b- | i nk> element:
<gjb-jar>
<ent er pri se- beans>
<sessi on>
<gj b- nane>Tr avel Agent EJB</] b- nane>
<renot e>comtitan. travel agent . Travel Agent Renot e</ r enot e>

<ej b-ref>

Copyright (c) 2001 O'Reilly & Associates 418

<gj b-r ef - nane>ej b/ Pr ocessPaynent Hone</ gj b-r ef - nane>
<gj b-ref -type>Sessi on</ ej b-ref -t ype>
<hone>com it an. pr ocesspaynent . Pr ocessPaynent HoneRenot e</ hone>
<renot e>comtitan. processpaynent . ProcessPaynent Renot e</ r enot e>
<ej b-1i nk>Pr ocessPaynent EJB</ g] b-1 i nk>
</ ejb-ref>
</ sessi on>
<sessi on>
<ej b- nane>Pr ocessPaynent EJB</] b- nange>
<r enot e>

comtitan. processpaynent . ProcessPaynent Renot e
</ r enot e>

</ sessi on>

</ enterpri se- beans>

<ejb-jar>

If you are an EJB 2.0 developer, you are usually better off usingthe<ej b- | ocal - r ef > element to obtain
referencesto beansin the same JAR file, unless the referenced enterprise bean doesn’t have a set of local component
interfaces. Inthat case, the<ej b- | i nk> element should be used with the <ej b- r ef > element to get aremote
reference to the enteprise bean.

EJB 2.0: Local References

The deployment descriptor also provides a special set of tags, the<ej b- | ocal - r ef > elements, to declare local
EJB references: enterprise beans that are co-located in the same container and deployed in the same EJB JAR file.
The<ej b- | ocal - r ef > elementsare declared immediately after the<ej b- r ef > elements.

<ej b-1ocal -ref >
<ej b-ref - nane>ej b/ G ui seHone</ gj b- r ef - nane>
<gj b-ref-type>Entity</ g b-ref-type>
< | ocal - hone >
comtitan. crui se. O ui seHoneLocal
</l ocal - hone >
<l ocal >
comtitan. cruise. G ui seLocal
</l ocal >
<ej b-11 nk>C ui seEIB< €j b-11 nk>
</ejb-local -ref>
<gj b-1ocal -ref>
<gj b-r ef - nane>ej b/ Gabi nHone</ gj b-r ef - nane>
<gj b-ref-type>Entity</ g b-ref-type>
< ocal - horne >
comtitan. cabi n. Cabi nHoneLocal
</l ocal - hone >
< ocal >
comtitan. cabi n. Cabi nLocal
</l ocal >
<gj b- 1 i nk>Cabi NEJB</ €] b-1i nk>
</ejb-local -ref>

The<ej b- | ocal - r ef > tag defines aname for the bean within the ENC, declares the bean’ stype, and givesthe
names of itslocal component interfaces. The<ej b- | ocal - r ef > elements should be linked explicitly to other co-
located beans using the <ej b- | i nk> element, but thisis not required—the application assembler or deployer can

Copyright (c) 2001 O'Reilly & Associates 419

doitlater. Thevalueof the<ej b-1i nk> element withinthe<ej b-1 ocal - r ef > must equal the<ej b- nane>
of the appropriate bean in the same JAR file.

At deployment time the EJB container’ stools map the local references declared inthe<ej b- | ocal - r ef >
elementsto entity beans that are co-located in the same container system.

Enterprise beansdeclared inthe<ej b- | ocal - r ef > elementsarelocal enterprise beans and so do not require the
use of Por t abl eRenpt eCbj ect to narrow the reference; instead you can use simple native cast operation.

Initial Context jndi Gontext = new Initital Context();
Gabi nHone hone = (CGabi nHone)
j ndi Gont ext . | ookup("j ava: conp/ env/ g b/ Cabi nHone") ;

References to External Resour ces

Enterprise beansalso use the INDI ENC to look up external resources, like database connections, that they need to
access. The mechanism for doing thisis similar to the mechanism used for referencing other beans and environment
entries: the external resources are mapped into a name within the INDI ENC name space. For external resources, the
mapping is performed by ther esour ce-r ef element.

The<resour ce-r ef > element contains<descr i pt i on> (optiona), <r es- r ef - nane> (required), <r es-
t ype> (required), and<r es- aut h> (required) elements. Hereisa<r esour ce- r ef > declaration used for a
Dat aSour ce connection factory:

<resour ce-ref >
<descri pti on>Dat aSource for the Titan dat abase</ descri ption>
<res-ref-nanme>j doc/ titanCB</ res-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</ r es-t ype>
<r es- aut h>Cont ai ner </ r es- aut h>
</resource-ref>

The<res-ref-nane>isrelativetothe” j ava: conp/ env" context. Although it isnot arequirement, it'sa
good ideato place connection factories under a subcontext that describes the resource type. For example:

?? jdbc/ foraJDBC Dat aSour ce factory

?? jmg foraJMSQueueConnecti onFact ory oraTopi cConnect i onFact ory factory
?? mail/foraJavaMai | Session factory

?? url/foraj avax. net . URL factory

Hereis how abean would use JNDI to look up aresource—inthis case, aDat aSour ce:

Initial Gontext jndi Gontext = new Initial Gntext();
Dat aSour ce sour ce = (Dat aSour ce)
j ndi Gont ext . | ookup("j ava: conp/ env/ j dbc/ titanDB');

The<r es-t ype>isusedto declare the fully qualified class name of the connection factory. In this example, the
<res-type>isjavax. sql . Dat aSour ce.

The<r es- aut h> tellsthe server who isresponsible for authentication. It can have one of two values:

Cont ai ner or Appl i cati on.If Cont ai ner isspecified, authentication (sign-on or login) to use the resource
will be performed automatically by the container as specified at deployment time. If Appl i cat i on isspecified, the
bean itself must perform the necessary authentication before using the resource. The following code shows how a
bean might sign on to a connection factory when Appl i cat i on isspecified for <r es- aut h>:

Copyright (c) 2001 O'Reilly & Associates 420

Initial Gontext jndi Gontext = new Initial Gntext();
Dat aSour ce sour ce = (Dat aSour ce)
j ndi Gont ext . | ookup("j ava: conp/ env/ jdbc/ titanDB');

Sring | ogi nNane = ej bGont ext . get Gal | er Princi pal () . get Nare() ;
Sring password = ...; // get password from sonewhere

/1 use login nane and password to obtai n a dat abase connection
java. sgl . Gnnection con = source. get Gonnecti on(| ogi nNNang, passwor d) ;

EJB 2.0: Additional Administered Objects

In addition to the resource factory described in the <r esour ce- r ef > element, some resources may also have
other administered objects that need to be obtained from the INDI ENC. An administered object isaresourcethat is
configured at deployment time and managed by the EJB container at runtime. For example, in order to use IMS, the
bean developer must obtain both a JM S factory object as well as a destination object:

Topi cGonnecti onFactory factory = (Topi cGonnecti onFact ory)
j ndi Gont ext . | ookup(“j ava: conp/ env/ j ns/ Topi cFact ory”) ;

Topi ¢ topi c = (Topi c)
j ndi Gont ext . | ookup(“j ava: conp/ env/ ej b/ Ti cket Topi ¢”) ;

Both the IM S factory and destination are administered objects that must be obtained from the INDI ENC. The
<r esour ce-r ef > isused to declare the IMSfactory whilethe<r esour ce- env- r ef > isused to declare the
destination.

<resour ce-ref >
<res-ref - nane>j ns/ Topi cFact or y</ r es- r ef - nane>
<res-type>j avax. | ns. Topi cGonnect i onFact or y</r es-t ype>
<r es- aut h>Cont ai ner </ r es- aut h>
</resour ce-ref >
<resour ce-r ef >
<res-ref-nane> dbc/ titanDB</res-ref - nane>
<res-type> avax. sql . Dat aSour ce</ r es- t ype>
<r es- aut h>Cont ai ner </ r es- aut h>
</resour ce-ref >
<r esour ce- env-ref >
<r esour ce- env-r ef - nane>
j s/ Ti cket Topi ¢
</ resour ce- env-r ef - nane>
<r esour ce- env-ref -t ype>
javax.j ns. Topi ¢
</ resour ce- env-r ef - t ype>
</ resour ce- env-r ef >

At deployment time, the deployer mapsthe IMS Topi cConnect i onFact ory or
QueueConnect i onFact ory andthe Topi ¢ or Queue declared by the<r esour ce-r ef > and
<resour ce- env-ref > elementsto aJMSfactory and topic.

EJB 2.0: Shar eable Resour ces

When several enterprise beansin a unit-of-work or transaction all use the same resource you will want to configure
your EJB server to share the resource. Sharing aresource mean that each enterprise beans will use the same
connection to access the resource (e.g., database or JIM S provider), which is more efficient than using separate
resource connections.

Copyright (c) 2001 O'Reilly & Associates 421

For example, in the Travel Agent EJB, thebookPassage() method uses the ProcessPayment EJB and the
Reservation EJB to book a passanger onacruise. |f both these enterprise beans use the same database, they should
share their resource connection for efficiency. Enterprise JavaBeans containers share resources by default, but
resource sharing can be turned on or off explicitly through the <r esour ce- r ef > element:

<resour ce-ref >
<res-ref-nane> dbc/ titanDB</ res-r ef - nane>
<res-type> avax. sql . Dat aSour ce</ r es- t ype>
<r es- aut h>Cont ai ner </ r es- aut h>
<r es- shari ng- scope>Shar eabl e</ r es- shari ng- scope>
</resour ce-ref >

<res-shari ng- scope>isanoptiona element that may be declared as either Shar eabl e, indicating that
connections should be shared in local transactions, or Unshar eabl e, indicating that they should not. If it’s not
specified, the default isShar eabl e.

Unless you have a good reason for turning off resource sharing, this book recommends that you use Shar eabl e
resources, which isthe default. Occasionally, advanced developers may run into situations where resource sharing is
not desirable—thisisrelatively rare, but having the option to turn off resource sharing is beneficial in those
circumstances.

Security Roles

The<security-rol e-ref>elementisused to define the security rolesthat are used by a bean and to map them
into the security rolesthat arein effect for the runtime environment. It can contain three subelements: an optional
<descri ption>,a<rol e- name> (required), and an optional <r ol e- | i nk>.

Here' s how security roles are defined. When arole nameisused in the

EJBCont ext.isCall erlnRol e(String rol eNane) method, the role name must be statically defined (it
cannot be derived at runtime) and it must be declared in the deployment descriptor usingthe<securi ty-rol e-
r ef > element:

<-- security-role-ref declaration for Account bean -->
<entity>
<ej b- nane>Account EJB</ €] b- nane>

<security-rol e-ref>
<descri pti on>
The cal ler nust be a nenber of this role in
order to wthdraw over $10, 000
</ descri pti on>
<r ol e- nane>Manager </ r ol e- nane>
<rol e-link>Admni strator</rol e-1ink>
</security-rol e-ref>

<entity>

The<r ol e- nane> defined in the deployment descriptor must match the role name used in the
EJBCont ext. i sCal | erl nRol e() method. Hereishow the role nameisused in the bean’ s code:

/1 Account bean uses the isCallerlnRol e() nethod
public class AccountBean inpl enents EntityBean {
int id;
doubl e bal ance;
EntityQontext context;

Copyright (c) 2001 O'Reilly & Associates 422

publi ¢ voi d w t hdr aw(Doubl e wi t hdr aw)
throws AccessDeni edException {

i f (w thdraw doubl eVal ue() > 10000) {
bool ean i sManager = context.isCal | erl nRol e(" Manager") ;
if ('isManager) {
/1 only Managers can w thdraw nore than 10k
t hrow new AccessDeni edException();
}
}

bal ance = bal ance - wi t hdraw doubl eVal ue() ;

}

The<rol e- 1 i nk> element isoptional; it can be used to map the role name used in the bean to alogical role
definedina<security-rol e>elementinthe<assenbl y- descri pt or > section of the deployment
descriptor. If no<r ol e- | i nk> isspecified, the deployer must mapthe<security-rol e-ref >toanexisting
security role in the target environment.

Declaring EJB QL elements

EJB QL statements are declared in<quer y> elementsin an entity bean’s deployment descriptor. Inthe following
listing, you can seethatf i ndByNane() andej bSel ect Shi ps() methods declared inthe <quer y> elements
of the Cruise EJB deployment descriptor.

<ejb-jar>
<ent er pri se- beans>
<entity>
<gj b- nane>Shi pEIB</ €] b- nane>

<abst r act - schena- nane>Shi p</ abst r act - schena- nane>

<Jentity>
<entity>
<ej b- nane>Q ui seEIB</ gj b- nane>

<reentrant >Fal se</ reent rant >
<abst r act - schenma- nane>Q ui se</ abst r act - schena- nane>
<cnp- ver si on>2. x</ cnp- ver si on>
<cnp-fiel d>
<fi el d- nane>nane</ fi el d- nane>
</ cnp-fiel d>
<prinkey-fiel d> d</ pri nkey-fiel d>
<query>
<quer y- net hod>
<net hod- nane>f i ndByNane</ net hod- nane>
<net hod- i nt f >Local Hone</ net hod-i nt f >
<net hod- par ans>j ava. | ang. St ri ng</ net hod- par ans>
</ quer y- net hod>
<gj b-ql >
SH ECT (BJECT(c) FROM Qrui se ¢ WHERE c. nane = ?1
</ ejb-qgl >
</ query>
<query>

Copyright (c) 2001 O'Reilly & Associates 423

<quer y- net hod>
<net hod- nane>ej bSel ect Shi ps</ net hod- nane>
<net hod- par ans></ net hod- par ans>

</ quer y- net hod>

<resul t-type- mappi ng>Renot e</ r esul t - t ype- nappi ng>

<gj b-ql >
SH ECT (BIECT(s) FRM Ship AS s

</ ejb-ql >

</ query>
<entity>
</ enterpri se-beans>
<ejb-jar>

The <quer y> element contains two primary elements. The<quer y- met hod> element identifies the find method
of the remote and/or local home interface, and the <ej b- ql > element declaresthe EJB QL statement. The

<quer y> element bindsthe EJB QL statement to the proper find method. The syntax used in EJB QL may cause
problemsfor the XML parser. See the sidebar “CDATA Sections’ for more details.

The<net hod- i nt f > element specifiesthe home interface (local or remote) in which the method is defined. If the
find method is declared in the local home interface, the value Local Horne isused. If the find method is declared in
the remote home interface, the value Horre is used. This element is needed only when two find methods collide; i.e.,
when two find methods in the local and remote home interfaces have the same method name and parameters. Using
the <net hod- i nt f > element allows the bean devel oper to specify different EJB QL statements for each method. If
<met hod- i nt f > isnot specified and thereis acollision, the query declaration will apply to both of the colliding
methods. The container will return the proper type for each colliding query method: the remote home will return one
or more remote EJB objects, and the local home will return one or more local EJB objects. Thisallowsyou to define
the behavior of colliding local and remote home find methods using asingle <quer y> element, which is convenient
if you want local clientsto have access to the same find methods as remote clients.

If aselect method returns a collection of EJB objects, the<r esul t - t ype- mappi ng> element can be used to
declare whether it should return local or remote EJB objects. Thevalue<| ocal > indicates that a method should
return <I ocal> EJB objects; <r enpt e> indicates remote EJB objects. If the<r esul t - t ype- nappi ng> element
is not declared, the default is<l ocal >. Inthe<quer y> element for theej bSel ect Shi ps() method the
<resul t-type- mappi ng> isdeclared as<r enot e>, which means the query should return remote EJB object
types (i.e., remote references to the Ship EJB).

Every entity bean that will be referenced in an EJB QL statement must have a special designator called an abstract
schema name, which isdeclared by the<abst r act - schenma- nanme> element. The<abstract - schena-
nane> eements must have unique names; no two entity beans may have the same abstract schemaname. Inthe
entity element that describes the Cruise EJB, the abstract schemanameis declared asCr ui se, whilethe Ship EJB
abstract schemanameisShi p. The<ej b- gl > element contains an EJB QL statement that uses thisidentifier in its
FROMclause.

In Chapter 7 you learned that the abstract persistence schema of an entity bean is defined by its<cnp- f i el d> and
<cnr - fi el d>elements. The abstract schemanameis also animportant part of the abstract persistence schema.
EJB QL statements are always expressed in terms of the abstract persistence schemas of entity beans. EJB QL uses
the abstract schema names to identify entity bean types, the contai ner-managed persistence (CMP) fields to identify
specific entity bean data, and the contai ner-managed relationship (CMR) fieldsto create paths for navigating from
one entity bean to another.

Copyright (c) 2001 O'Reilly & Associates 424

EJB 2.0: Describing Relationships

CMP 2.0 entity bean classes are defined using abstract accessor methods that represent virtual persistence and
relationship fields. Asyou learned in Chapters 6, 7, and 8, the actual fields themselves are not declared in the entity
classes. Instead, the characteristics of these fields are described in detail in the XML deployment descriptor used by
the entity bean. The abstract persistence schemaisthe set of XML elementsin the deployment descriptor that
describe the relationship and persistence fields. Together with the abstract programming model (the abstract

accessor methods) and some help from the deployer, the container tool has enough information to map the entity and
its relationships with other entity beans.

The relationships between entity beans are described in the <r el at i onshi ps> section of the XML deployment
descriptor. The<r el at i onshi ps> section falls between the<ent er pri se- beans> section and the
<assenbl y- descri pt or > section. Withinthe <r el at i onshi ps> element, each entity-to-entity relationship
isdefined in aseparate<ej b-r el at i on> element:
<gjb-jar>

<ent er pri se- beans>

</ enterpri se-beans>
<rel ati onshi ps>
<gj b-rel ati on>

</ ejb-rel ation>
<ej b-rel ati on>

</ ejb-rel ation>
</rel ati onshi ps>
<assentl y- descri pt or >

</ assenbl y- descri pt or >
</eb-jar>

Defining relationship fields requiresthat an<ej b- r el at i on> element be added to the XML deployment
descriptor for each entity-to-entity relationship. These <ej b-r el at i on> elements complement the abstract
programming model. For each pair of abstract accessor methods that define arelationship field, thereisan<ej b-
rel ati on> element in the deployment descriptor. EJB 2.0 requires that the entity beansin arelationship be
defined in the same XML deployment descriptor.

Hereisapartial listing of the deployment descriptor for the Customer and Address EJBs, emphasizing the elements
that define the relationship:

<gj b-jar>

<ent er pri se- beans>
<entity>
<ej b- nane>Qust oner EJB</ €] b- nane>
<l ocal - hone>comti t an. cust oner . Qusont er Local Hone</ | ocal - hone>
<l ocal >comtitan. cust oner. Qust oner Local </ | ocal >

<entity>

<entity>
<gj b- nane>Addr essEIB</] b- nane>
<l ocal - hone>comti t an. addr ess. Addr essLocal Hone</ | ocal - hone>
<l ocal >comtitan. addr ess. Addr essLocal </ | ocal >

Copyright (c) 2001 O'Reilly & Associates 425

<entity>
</ enterpri se-beans>

<rel ati onshi ps>
<gj b-rel ati on>
<gj b-rel ati on- nane>Qust oner - Addr ess</ €} b-r el ati on- nane>
<ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Qust oner - has- an- Addr ess
</ ¢ b-rel ati onshi p-r ol e- nane>
<mul tiplicity>Qne</ multiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Qust oner EJB</ €j b- nane>
</rel ati onshi p-rol e- sour ce>
<cm-fiel d>
<cnt-fi el d- nane>honeAddr ess</ cnm-f i el d- nane>

</ crm-field>
</ ¢ b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Addr ess- bel ongs-t o- Qust oner
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Qne</ mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Addr essEIB</ €] b- nane>
</rel ationshi p-rol e-source>
</ ¢ b-rel ati onshi p-rol e>
</ ejb-relation>
<rel ati onshi ps>
<ejb-jar>

All relationships between the Customer EJB and other entity beans, such as CreditCard, Address, and Phone, require
that we definean<ej b-r el at i on> element to complement the abstract accessor methods.

Every relationship may have arelationship name, whichisdeclaredinthe<ej b-r el at i on- nanme> element. This

name identifies the relationship for individual s reading the deployment descriptor or for deployment tools, but it’s
not required.

Every <ej b-r el at i on> element has exactly two<ej b-r el ati onshi p-r ol e> elements, one for each
participant in the relationship. In the previous example, thefirst<ej b-r el at i onshi p-r ol e> declaresthe
Customer EJB’srolein the relationship. We know this becausethe<r el at i onshi p-r ol e- sour ce> element
specifiesthe<ej b- nane> asCust oner EJB. Cust oner EJBisthe<ej b- nanme> used in the Customer EJB’s
original declarationinthe<ent er pri se- beans> section. The<r el ati onshi p-rol e-sour ce>element’s
<ej b- nane> must always match an<ej b- nane> elementinthe<ent er pri se- beans> section.

The<ej b-rel ati onshi p-r ol e> element also declares the cardinality, or multiplicity, of therole. The

<mul tiplicity>element caneither be One or Many. Inthiscase, the Customer EJB’s<nul ti plicity>
element has avalue of One, which means that every Address EJB has arelationship with exactly one Customer EJB.
The Address EJB’s<mul ti pl i ci t y> element also specifies One, which meansthat every Customer EJB hasa
relationship with exactly one Address EJB. If the Customer EJB had arelationship with many Address EJBs, the
AddressEJB’s<mnul ti pli city> element would be set to Many.

Copyright (c) 2001 O'Reilly & Associates 426

If the bean described by the<ej b-r el ati onshi p-r ol e> element maintains areference to the other bean in the
relationship, that reference must be declared as a container-managed relationship field inthe<cnr - f i el d>
element. The<cnr - fi el d> elementisdeclared under the<ej b-r el ati onshi p-r ol e> element:

<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-r ol e- nane>
Qust oner - has- an- Addr ess
</ ¢ b-rel ati onshi p-r ol e- nane>
<mul tiplicity>One</ mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Qust oner EJB</ €j b- nane>
</rel ati onshi p-rol e- sour ce>
<cnr-fiel d>
<cnt-fi el d- nane>honeAddr ess</ cnm-f i el d- nane>
<cmi-fiel d>
</ ¢ b-rel ati onshi p-rol e>

EJB 2.0requiresthat the<cnr - f i el d- name> begin with alowercase letter. For every relationship field defined
by a<cnr - fi el d> element, the bean class must include a pair of matching abstract accessor methods. One
method in this pair must be defined with the method nameset <cnr - f i el d- nanme>() , with thefirst letter of the
<cnr - fi el d- name> changed to uppercase. The other method is defined asget <cnr - f i el d- nane>(), aso
with the first letter of the<cnr - f i el d- nanme> in uppercase. Inthisexample, the<cnr - fi el d- nane> is
homeAddr ess, which corresponds to the get Honme Addr ess() andset HoneAddr ess() methods defined in
the Cust omer Bean class:

/1 bean class code
public abstract voi d set HoneAddress(AddressLocal address);
public abstract AddressLocal get HoneAddress();

/1 XML depl oynent descriptor declaration
<cm-field>

<cm - fi el d- nane>honeAddr ess</ cni - fi el d- nane>
<cnm-field>

The<cascade- del et e> element requests cascade deletion; it can be used with one-to-one or one-to-many
relationships. It's always declared as an empty element: <cascade- del et e/ >.<cascade- del et e> indicates
that the lifetime of the entity beans of a particular relationship depends upon the lifetime the other entity bean in the
relationship. Here' s how to modify the relationship declaration for the Customer and Address EJBs to obtain cascade
delete.

<rel ati onshi ps>
<ej b-rel ati on>
<ej b-rel ati onshi p-rol e>
<mul tiplicity>Ohe</ mul tiplicity>
<r ol e- sour ce>
<gj b- nane>Qust oner EJB</ €] b- nane>
</rol e-source>
<cnm-field>
<cnm-fi el d- nane>honeAddr ess</ cni-fi el d- nane>
<cm-field>
</ ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<mul tiplicity>Oe</mul tiplicity>
<cascade- del et e/ >
<r ol e- sour ce>
<dependent - nane>Addr ess</ dependent - nane>
</rol e-source>

Copyright (c) 2001 O'Reilly & Associates 427

</ ¢ b-rel ati onshi p-rol e>
</ ejb-rel ation>
</rel ati onshi ps>

With this declaration, the Address EJB will be del eted automatically when the Customer EJB that referstoiitis
deleted.

Describing Bean Assembly

At this point, we' ve said just about all that can be said about the bean itself. We've come to the end of the

<ent er pri se- beans> element, and are now ready to describe how the beans are assembled into an application.
That is, we are ready to talk about the other major element inside the <ej b- | ar > element: the<assenbl y-
descri pt or > element.

The<assenbl y- descri pt or > element is optional, though it’s difficult to imagine a bean being deployed
successfully without an<assenbl y- descri pt or >. When we say that the <assenbl y- descri pt or > is
optional, we really mean that a devel oper whose only roleisto create enterprise beans (for example, someonewho is
developing beans for use by another party and who has no role in deploying the beans) can omit this part of the
deployment descriptor. The descriptor is valid without it—but someone will almost certainly haveto fill inthe
assembly information before the bean can be deployed.

The assembly descriptor serves three purposes. It describes the transactional attributes of the bean’ s methods; it
describes the logical security rolesthat are used in the method permissions; and it specifies method permissions (i.e.,
which roles are allowed to call each of the methods). To thisend, an<assenbl y- descri pt or > can contain
three kinds of elements, each of which isfairly complex initsown right. These are:

<cont ai ner-transacti on> (zero or more)
This element declares which transactional attributes apply to which methods. It contains an optional
<descri pti on> element, one or more <met hod> elements, and exactly one<t r ans- at t ri but e>
element. Entity beans must have <cont ai ner - t r ansact i on> declarationsfor al remote and home
interface methods. Session beans that manage their own transactions will not have <cont ai ner -t r ansac-
t i on> declarations. Thiselement is discussed in more detail in the section “ Specifying a Bean' s Transactional
Attributes.”

<security-rol e>(zeroor more)
The<security-rol e>element defines the security rolesthat are used when accessing a bean. These
security rolesare used in the <met hod- per mi ssi on> element. A <security-rol e>element contains an
optional description and one <r ol e- nane>. Thiselement and the <net hod- per m ssi on> element are
described in more detail in the section “ Specifying Security Roles and Method Permissions.”

<nmet hod- per m ssi on> (zero or more)
This element specifies which security roles are allowed to call one or more of abean’s methods. It contains an
optional <descri pti on>, oneor more<r ol e- name> eements, and one or more <net hod> elements. It is
discussed in more detail in the section “ Specifying Security Roles and Method Permissions,” along with the
security-role element.

The<cont ai ner-transacti on>and<met hod- per m ssi on> elements both rely on the ability to identify
particular methods. This can be acomplicated affair, given features of the Javalanguage like method overloading.
The <net hod> element is used within these tags to identify methods; it is described at length in the section
“ldentifying Specific Methods.”

Copyright (c) 2001 O'Reilly & Associates 428

Specifying a Bean’s Transactional Attributes

The<cont ai ner-transacti on> elements are used to declare the transaction attributes for all the beans
defined in the deployment descriptor. A <cont ai ner -t r ansact i on> element maps many bean methodsto a
single transaction attribute, so each<cont ai ner - t r ansact i on> specifies one transaction attribute and one or
more bean methods.

The<cont ai ner-transacti on>elementincludesasingle<t rans- attri but e> dement, which can have
one of six values. Not Support ed, Supports,Requi r ed, Requi r esNew, Mandat or y, and Never . These
arethe transactional attributes that we discussed in Chapter 8. In additionto<t r ans- att ri but e>, the

<cont ai ner-transacti on> elementincludesone or more<net hod> elements.

The <net hod> element itself contains at |east two subelements: an<ej b- nanme> element, which specifiesthe
name of the bean, and a<mnet hod- name> element, which specifies a subset of the bean’ s methods. The val ue of
the <met hod- nane> can be amethod name or an asterisk (*), which acts as wildcard for al the bean’ s methods.
There’ salot more complexity to handle overloading and other special cases, but that’s enough for now; we'll
discusstherest |ater.

Here' san example that shows how the<cont ai ner-transacti on> elementistypicaly used. Let’slook again
at the Cabin EJB, which we' ve used as an example throughout. Let’ s assume that we want to give the transactional
attribute Mandat or y tothecr eat e() method; all other methods use the Requi r ed attribute:

<cont ai ner -t ransact i on>
<net hod>
<ej b- nane>Cabi nEJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attri bute>
</ cont ai ner-transacti on>
<cont ai ner -t ransact i on>
<net hod>
<ej b- nane>Cabi nEJB</ €] b- nane>
<net hod- nane>cr eat e</ net hod- nane>
</ net hod>
<trans-attribut e>Mandat ory</trans-attri but e>
</ cont ai ner-transacti on>

Inthefirst<cont ai ner-transacti on>, wehaveasingle <met hod> element that uses the wildcard character
(*) torefer to all of the Cabin EJB’s methods. We set the transactional attribute for these methodsto Requi r ed.
Then, we have asecond<cont ai ner -t ransact i on> element that specifies a single method of the Cabin EJB:
creat e() . We set the transactional attribute for this method to Mandat or y. This setting overrides the wildcard
setting; in contai ner-transaction elements, specific method declarations always override more general declarations.

The following methods must be assigned transaction attributes for each bean declared in the deployment descriptor:
For entity beans:

?? All business methods defined in the remote interface (and all superinterfaces).

?? Create methods defined in the home interface.

?? Find methods defined in the home interface.

?? Remove methods defined in the EJBHone and EJBObj ect interface.

For session beans:

Copyright (c) 2001 O'Reilly & Associates 429

?? All Business methods defined in the remote interface (and all superinterfaces).

For session beans, only the business methods have transaction attributes; the create and remove methods in session
beans do not have truncation attributes.

Specifying Security Roles and M ethod Per missions

Two elements are used to define logical security roles and to specify which roles can call particular bean methods.
The<securi ty-rol e>element can contain an optional <descri pti on>, plusasingle<r ol e- nanme> that
provides the name. An<assenbl y- descri pt or > can contain any number of <security-rol e>elements.

It'simportant to realize that the security role names defined here are not derived from a specific security realm. These
security role names are logical; they are simply labels that can be mapped to real security rolesin the target
environment at deployment time. For example, thefollowing<securi t y-r ol e> declarations define two roles—
everyone andadm ni strator:

<security-rol e>
<descri pti on>
This rol e represents everyone who is allowed read/wite access
to existing Cabin EJBs.
</ descri ption>
<r ol e- nane>ever yone</ r ol e- nane>
</security-rol e>
<security-rol e>
<descri pti on>
This role represents an admni strator or nanager who is
allowed to create new Gabin EJBs. This role nay al so be a nenber
or the everyone role.
</ descri ption>
<r ol e- nane>adn ni strat or </ r ol e- nane>
</security-rol e>

These role names might not exist in the environment in which the beanswill be deployed. There's nothing inherent
about ever yone that givesit fewer (or greater) privilegesthan anadmi ni st r at or . It's up to the deployer to
map one or more roles from the target environment to the logical roles in the deployment descriptor. So for example,
the deployer may find that the target environment has two roles, DBA (database administrator) and CSR (customer
service representative), that map totheadm ni st rat or andever yone rolesdefinedinthe<security-

r ol e> element.

Assigning rolesto methods

Security rolesin themselves wouldn’t be worth much if you couldn’t specify what the roles were allowed to do.
That’swherethe <net hod- per m ssi on> element comesin. This element maps the security roles to methodsin
the remote and home interfaces of the bean. A method permission isavery flexible declaration that allows a many-to-
many relationship between methods and roles. A <met hod- per ni ssi on> contains an optional

<descri pti on>, oneor more<met hod> elements, and one or more <r ol e- name> elements. The names
specified inthe <r ol e- nanme> elements correspond to the roles that appear inthe<securi t y-r ol e> elements.
Here' s one way to set method permissions for the Cabin EJB:

<net hod- per ni ssi on>
<r ol e- nane>adni ni st rat or </ r ol e- nane>
<net hod>
<gj b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>* </ net hod- nange>
</ net hod>
</ net hod- per ni ssi on>

Copyright (c) 2001 O'Reilly & Associates 430

<net hod- per ni ssi on>
<r ol e- nane>ever yone</r ol e- nane>
<net hod>
<gj b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>get DeckLevel </ net hod- nane>
</ net hod>
</ net hod- per ni ssi on>

In thisexample, theadni ni st r at or role has accessto all methodsin the Cabin EJB. Theever yone roleonly
has accessto the get DeckLevel () method—it cannot access any of the other methods of the Cabin EJB. Note
that the specific method permissions are combined to form aunion. Theget DeckLevel () method, for example, is
accessible by boththeadm ni strat or andever yone roles, which is the union of the permissions declared in
the descriptor. Once again, it’simportant to note that we still don’t know whatadmi ni st rat or andeveryone
mean. That’s defined by the person deploying the bean, who must map these logical security rolesto real security
roles defined in the target environment.

All the methods defined in the remote or home interface and all superinterfaces, including the methods defined in the
EJBObj ect and EJB<hone> interfaces, can be assigned security rolesin the <nmet hod- per mi ssi on>
elements. Any method that is excluded will not be accessible by any security role.

EJB 2.0: Unchecked Methods

In EJB 2.0, a set of methods can be designated asunchecked, which means that the security permissions are not
checked before invoking the method. An unchecked method can be invoked by any client, no matter what roleitis
using. To designate a method or methods as unchecked, use the <net hod- per m ssi on> element, and replace
the<r ol e- nane> element with an empty <unchecked> element.

<net hod- per m ssi on>
<unchecked/ >
<net hod>
<gj b- nane>Cabi nEJB</ €j b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<net hod>
<ej b- nane>Qust oner EJB</ €] b- nane>
<net hod- nane>f i ndByPr i nar yKey</ net hod- nane>
</ net hod>
</ net hod- per m ssi on>
<net hod- per ni ssi on>
<r ol e- nane>adni ni st rat or </ r ol e- nane>
<net hod>
<gj b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

This declaration tells us that all the methods of the Cabin EJB are unchecked, as well as the Customer EJB’s
findByPri maryKey() method. Although the second<net hod- per m ssi on> givesthe administrator
permission to access all the Cabin EJB’s methods, this declaration is overridden by the unchecked method
permission. Unchecked method permissions always override all other method permissions.

EJB 2.0: TherunAssecurity identity

In addition to specifying the Pr i nci pal sthat have accessto an enterprise bean’ s methods, the deployer can also
specify ther unAs Pri nci pal forthe entire enterprise bean. Ther unAs security identity was originally specified

Copyright (c) 2001 O'Reilly & Associates 431

in EJB 1.0, but was abandoned in EJB 1.1. It has been reintroduced in EJB 2.0 and modified so that it is easier for
vendorsto implement.

Whilethe <nmet hod- per m ssi on> elements specify which Pri nci pal shave accessto the bean’s methods,
the<security-identity> element specifiesunder whichPri nci pal the method will run. In other words, the
runAsPri nci pal isused asthe enterprise bean’sidentity when it tries to invoke methods on other beans—this
identity isn’t necessarily the same as the identity that’s currently accessing the bean.

For example, the following deployment descriptor elements declare that thecr eat e() method can be accessed only
by Ji nSni t h, but that the Cabin EJB always runs under the Adni ni st r at or security identity:

<ent er pri se- beans>

<entity>
<ej b- nane>Enpl oyeeSer vi ce</ gj b- nane>

<security-identity>
<run-as>
<rol e- nane>Adm ni st rat or </ r ol e- nane>
</run-as>
</security-identity>

<Jentity>

</ enterpri se-beans>
<assenfbl er >
<security-rol e>

<rol e- nane>Adn ni st rat or </ r ol e- nane>
</security-rol e>
<security-rol e>

<r ol e- nane>Ji ngn t h</r ol e- nane>
</security-rol e>

<net hod- per ni ssi on>
<rol e- nane>Ji gt h</ r ol e- nane>
<net hod>
<gj b- nane>Cabi NEJB</ €] b- nane>
<net hod- nane>cr eat e</ net hod- nane>
</ net hod>
</ net hod- per ni ssi on>

</ assenbl er >

To specify that an enterprise bean will execute under the caller’ sidentity, the<securi ty-i dentity>role
contains asingle empty element, <use-cal | er -i dent i t y>. For example, the following declarations specify that
the Cabin EJB always executes under the caller’ sidentity, so if Jim Smithinvokesthecr eat e() method, the bean
will rununder the Ji nSmi t h security identity:

<ent er pri se- beans>

<entity>
<gj b- nane>Enpl oyeeSer vi ce</ €] b- nane>

<security-identity>
<use-cal l er-identity/>

</security-identity>

Copyright (c) 2001 O'Reilly & Associates 432

<entity>
</ enterpri se-beans>

Theuseof <security-identity> appliesequally to entity and statel ess session beans. However, message-
driven beans have only arunAsidentity; they will never execute under the caller identity, because thereis no
“caller.” The asynchronous JM S messages that a message-driven bean processes are not considered calls, and the
JMS clients that send them are not associated with the messages. With no caller identity to propagate, message-
driven beans must always have arunAs security identity specified.

EJB 2.0: ExcludeList

The last element of the assembler isthe optional <excl ude-1i st > element. The<excl ude- | i st > element
containsa<descr i pti on>and aset of <met hod> elements. Every method listed in the exclude-list should be
considered uncallable, which means that the deployer needs to set up security for those methods so that all calls,
from any client, are rejected. Remote clients should receiveaj ava. r m . r ennt eExcept i on andlocal clients

should receiveaj avax. ej b. AccessLocal Excepti on.

<ejb-jar>
<ent er pri se- beans>
<entity>
<gj b- nane>Cabi nEIB</ €j b- nane>
<Jentity>
</ enterpri se-beans>
<assentl y- descri pt or >
<excl usion-1i st>
<net hod>
<gj b- nane>Cabi nEJB</ €j b- nane>
<net hod- nane>get DeckLevel </ net hod- nane>
</ net hod>
<net hod>
</ net hod>
</ excl usion-1ist>
</ assenbl y-descri pt or >
<ejb-jar>

| dentifying Specific M ethods

The<net hod> element isused by the <net hod- per ni ssi on>and<cont ai ner-transacti on>
elements to specify a specific group of methodsin aparticular bean. The <met hod> element always contains an
<ej b- name> element that specifiesthe bean’s name and a<met hod- nane> element that specifies the method. It
may alsoincludea<descri pti on>, <met hod- par ans> elements that specify method parameters used to
resolve overloaded methods, and a<nmet hod- i nt f > element that specifies whether the method belongsto the
bean’ s home or remote interface. This last element takes care of the possibility that the same method name might be
used in more than one interface.

Wildcard declarations

The method name in amethod element can be asimple wildcard (*). A wildcard appliesto all methods of the bean’s
home and remote interfaces. For example:

<net hod>
<ej b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>* </ net hod- nange>

Copyright (c) 2001 O'Reilly & Associates 433

| </ net hod> |

Although it’ s tempting to combine the wildcard with other characters, don’t. Thevalue get *, for example, isillega.
The asterisk (*) character can only be used by itself.

Named method declarations

Named declarations apply to all methods defined in the bean’ s remote and home interfaces that have the specified
name. For example:

<net hod>
<gj b- nane>Cabi nEJB</ €j b- nane>
<net hod- nane>cr eat e</ net hod- nane>
</ net hod>
<net hod>
<gj b- nane>Cabi NEJB</ €] b- nane>
<net hod- nane>get DeckLevel </ net hod- nane>
</ net hod>

These declarations apply to all methods with the given name in both interfaces. They don’t distinguish between
overloaded methods. For example, if the home interface for the Cabin EJB is modified so that it has three overloaded
creat e() methods as shown here, the previous<net hod> declaration would apply to al three methods:

public interface Cabi ntone j avax. ej b. EJBrbne {
public Gabin create()
throws Q eat eException, RenoteException;
public Gabin create(int id)
throws Q eat eException, RenoteException;
public Gabin create(int id, Ship ship, double [][] nmatrix)
throws Q eat eException, RenoteException;

}
Specific method declarations

Specific method declarations use the <net hod- par ans> element to pinpoint a specific method by listing its
parameters. This allows you to differentiate between overloaded methods. The <net hod- par ans> element
contains zero or more <met hod- par an® dements that correspond, in order, to each parameter type (including
multidimensional arrays) declared in the method. To specify a method with no arguments, use a<net hod-

par ans> element with no<met hod- par anm> elements nested within it.

For an example, let’slook again at our Cabin EJB, to which we' ve added some overloaded cr eat e() methodsin the
homeinterface. Here are three <net hod> elements, each of which specifies unambiguously one of thecr eat e()
methods by listing its parameters:

<net hod>
<descri pti on>
Met hod: public CGabin create();
</ descri pti on>
<gj b- nane>Cabi nEJB</ €j b- nane>
<net hod- nane>cr eat e</ net hod- nane>
<net hod- par ans>
</ net hod- par ans>
</ net hod>
<net hod>
<descri ption>
Met hod: public CGabin create(int id);
</ descri pti on>

Copyright (c) 2001 O'Reilly & Associates 434

<gj b- nane>Cabi nEJB</ €j b- nane>
<net hod- nane>cr eat e</ net hod- nane>
<net hod- par ans>
<net hod- par an®i nt </ net hod- par am»
</ net hod- par ans>
</ net hod>
<net hod>
<descri ption>
Met hod: public Gabin create(int id, Ship ship, double [][] natriXx);
</ descri pti on>
<gj b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>cr eat e</ net hod- nane>
<net hod- par ans>
<net hod- par an®i nt </ net hod- par am»
<net hod- par ampcom ti t an. shi p. Shi p</ net hod- par an»
<net hod- par anrdoubl e [][] </ net hod- par an»
</ net hod- par ans>
</ net hod>

Remote/home/local differentiation

There's one problem left. The same method name can be used in the home interface, the local home interface, the
remote interface, and the local interface. To resolve this ambiguity, you can add the<net hod- i nt f > elementtoa
method declaration as amodifier. Four values are allowed for a<net hod- i nt f > element: Renot e, Hone,

Local Hone, andLocal .

Inreality, it'sunlikely that a good devel oper would use the same method names in both home and remote interfaces;
that would lead to unnecessarily confusing code. However, you would expect to see the same namesin thelocal and
remote interfaces, or the home and local home interfaces. It'salso likely that you' [l need the <net hod- i nt f >
element in awildcarded declaration. For example, the following declaration specifies all of the methods in the remote
interface of the Cabin EJB:

<net hod>
<ej b- nane>Cabi nEJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
<net hod-i nt f >Renot e</ net hod-i nt f >
</ net hod>

All these styles of method declarations can be used in any combination within any element that uses the <net hod>
element. The<net hod- per n ssi on> elements are conbined to form aunion of role-to-method permissions. For
example, in the following listing, the first <met hod- per m ssi on> element declaresthat theadmi ni st r at or
has access to the Cabin EJB’ s home methods (create and find methods). The second<net hod- per m ssi on>
specifiesthat ever yone hasaccessto thef i ndByPri mar yKey () method. This meansthat both roles

(ever yone andadni ni st r at or) haveaccesstothef i ndByPri mar yKey() method.

<net hod- per ni ssi on>
<r ol e- nane>adni ni strat or </ r ol e- nane>
<net hod>
<gj b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>* </ net hod- nane>
<net hod- i nt f >Home</ net hod i nt f >
</ net hod>
</ net hod- per m ssi on>
<net hod- per ni ssi on>
<r ol e- nane>ever yone</ r ol e- nane>
<net hod>
<gj b- nane>Cabi nEIB</ €j b- nane>

Copyright (c) 2001 O'Reilly & Associates 435

<net hod- nane>f i ndByPr i nar yKey</ net hod- nane>
</ net hod>
</ net hod- per ni ssi on>

Thegb-jar File

The JAR fileformat isa platform-independent format for compressing, packaging, and delivering several files
together. Based on ZIPfile format and the ZL1B compression standards, the JAR (Java archive) packages and tool
were originally developed to make downloads of Java applets more efficient. As a packaging mechanism, however,
the JAR file format is a convenient way to “shrink-wrap” components and other software for delivery to third parties.
The original JavaBeans component architecture depends on JAR files for packaging, as doesEnterprise JavaBeans.
Thegoal in using the JAR file format isto package all the classes and interfaces associated with one or more beans,
including the deployment descriptor, into onefile.

The JAR fileis created using a vendor-specific tool, or using the jar utility that is part of the Java 2, Standard Edition
development kit. Angb-jar file contains;

?? The XML deployment descriptor
?? Thebean classes

?? Theremote and home interfaces
?? The primary key class

?? Dependent classes and interfaces

The XML deployment descriptor must be located in the path META-INF/gjb-jar.xml, and must contain all the
deployment information for all the beansin the gb-jar file. For each bean declared in the XML deployment descriptor,
the gb-jar file must contain its bean class, remote and home interfaces, and dependent classes and interfaces.
Dependent classes and interfaces are usually things like application-specific exceptions, business interfaces, and
other super types, and dependent objects that are used by the bean. In the gb-jar file for the Travel Agent bean, for
example, wewould includethel nconpl et eConver sat i onal St at e application exception and the Ti cket
and Cr edi t Car d classes, as well asthe remote and home interfaces to other beans referenced by the Travel Agent
bean, like the Customer and ProcessPayment bean.56

Thejar utility can be used from the command line to package abean in a JAR file. Here is an example of how the jar
utility was used to package the Cabin EJB in Chapter 4

\dev %jar cf cabin.jar conititan/cabin/*.class META- | N7 g b-j ar. xm
F\..\dev> ar cf cabin.jar comtitan\cabi n*.class META I NR\ g b-j ar. xm

Y ou might have to create the META-INF directory first, and copy eb-jar.xml into that directory. The c option tells
thejar utility to create anew JAR file that contains the filesindicated in subsequent parameters. It also tellsthe jar
utility to stream the resulting JAR file to standard output. Thef option tellsjar to redirect the standard output to a
new file named in the second parameter (cabin.jar). It’ simportant to get the order of the option letters and the
command-line parameters to match. Y ou can learn more about thejar utility and thej ava. uti | . zi p packagein
Java™ in a Nutshell by David Flanagan (O’ Reilly), or Learning Java™, by Pat Niemeyer and Jonathan Knudsen
(formerly Exploring Java™, aso published by O’ Reilly).

56 The EJB 1.1 specification also allows remote and home interfaces of referenced beans to be named in the manifest’'s
Cl ass- Pat h attribute, instead of including them in the JAR file. Use of the Cl ass- Pat h entry in the JAR's manifest is
addressed in more detail in the Java 2, Standard Edition specification.

Copyright (c) 2001 O'Reilly & Associates 436

Thejar utility createsthe file cabin.jar in the dev directory. If you' re interested in looking at the contents of the JAR
file, you can use any standard ZIP application (WinZip, PKZIP, etc.), or you can use the commandjar tvf cabin.jar.

Theclient-jar File

EJB 1.1 also dlowsfor aclient-jar file, which includes only the interfaces and classes need by a client application to
access a bean. Thiswould include the remote and home interfaces, primary key, and any dependent types that the
client is exposed to, such as application exceptions. The specification does not say how thisis delivered to the client,
what exactly it contains, or how it is packaged with the gb-jar file. In other words, the client-jar fileisafairly vendor-
specific concept in EJB.

Copyright (c) 2001 O'Reilly & Associates 437

17

Java 2, Enterprise Edition

The specification for the Java 2, Enterprise Edition (J2EE) defines a platform for devel oping web-enabled applications
that includes Enterprise JavaBeans, Servlets, and Java Server Pages (JSP). J2EE products are application servers that
provide a complete implementation of the EJB, Servlet, and JSP technologies. In addition, the J2EE outlines how these
technologies work together to provide a complete solution. To understand what J2EE is, it simportant that we
introduce Servlets and JSP and explain the synergy between these technol ogies and Enterprise JavaBeans.

At risk of spoiling the story, J2EE provides two kinds of “glue”’ to make it easier for componentsto interact. We've
aready seen both types of glue. The INDI Enterprise Naming Context (ENC) is used to standardize the way compo-
nents look up resources that they need. We' ve seen the ENC in the context of enterprise beans; in this chapter, we'll
look briefly at how servlets, JSPs, and even some clients can use the ENC to find resources. Second, the idea of
deployment descriptors—in particular, the use of XML to define alanguage for deployment descriptorsis also used
with servlets and JSP. Java servlets and server pages can be packaged with deployment descriptors that define their
relationship to their environment. Deployment descriptors are also used to define entire assemblies of many
components into applications.

Servlets

The Servlet specification defines a server-side component model that can be implemented by web server vendors.
Servlets provide asimple but powerful API for generating web pages dynamically. (Although servlets can be used
for many different request- response protocols, they are predominantly used to process HTTP requests for web

pages.)

Servlets are devel oped in the same fashion as enterprise beans; they are Java classes that extend a base component
class and have a deployment descriptor. Once aservlet is developed and packaged in a JAR file, it can be deployed
in aweb server. When aservlet is deployed, it is assigned to handle requests for a specific web page or assist other
servletsin handling page requests. The following servlet, for example, might be assigned to handle any request for
the helloworld.html page on aweb server:

inport javax.servlet.*;
inport javax.servlet.http.*;

public class HelloVrld extends HtpServlet {

Copyright (c) 2001 O'Reilly & Associates 438

protected voi d doGet (H t pServl et Request req,
H t pSer vl et Response response)
throws Servl et Exception,java.io. | (xception {

try {
ServletQutput Sreamwiter = response. getWiter();

witer.println("<HTM><BDY>");
witer.println("<hl>Hello Wrld'!</hl>");
witer.println("</ BDY></ HIM>");

} catch(Exception e) {

/1 handl e exception

}

}...

When a browser sends arequest for the page to the web server, the server del egates the request to the appropriate
servlet instance by invoking the servlet'sdoGet () method.>” The servlet is provided information about the request
intheHt t pSer vl et Request object, and can usethe Ht t pSer vl et Response object toreply to the request.
Thissimple servlet sends a short HTML document including the text “Hello World” back to the browser, which
displaysit. Figure 17-1 illustrates how arequest is sent by abrowser and serviced by a servlet running in aweb
server.

[FIGURE (usefigure 11-1)]
Figure17-1: Serviet servicing an HTTP request

Servlets are similar to session beans because they both perform a service and can directly access backend resources
like a database through JDBC, but they do not represent persistent data. Servlets do not, however, have support for
transactions and are not composed of business methods. Servlets respond to very specific requests, usually HTTP
requests, and respond by writing to an output stream.

The Servlet specification is extensive and robust but also simple and elegant. I’ s a powerful server-side component
model. Y ou can learn more about servlets by reading Java™ Servlet Programming, 2™ Edition by Jason Hunter and
William Crawford (O’ Reilly).

Java Server Pages

Java Server Pages (JSP) is an extension of the servlet component model that simplifies the process of generating
HTML dynamically. JSP essentially allows you to incorporate Java directly into an HTML page as a scripting
language. In J2EE, the Java code in a JSP page can access the INDI ENC, just like the codein a servlet. In fact, JSP
pages (text documents) are translated and compiled into Java servlets, which are then runin aweb server just like any
other servlet—some servers do the compilation automatically at runtime. JSP can also be used to generate XML
documents dynamically.

Y ou can learn more about servlets by reading Java™ Server Pages by Hans Bergsten (O’ Reilly).

Web Componentsand EJB

Together Servlets and JSP provide a powerful platform for generating web pages dynami cally. Servlets and JSP,
which are collectively called web components, can access resources like JDBC and enterprise beans. Because web

57 HttpServlets also have adoPost () method which handles requests for forms.

Copyright (c) 2001 O'Reilly & Associates 439

components can access databases using JDBC, they can provide a powerful platform for e-commerce by allowing an
enterprise to expose its business systems to the web through an HTML interface. HTML has several advantages
over more conventional client applications, in Java or any other language. The most important advantages have to do
with distribution and firewalls. Conventional clients need to be distributed and installed on client machines, which is
their biggest limitation: they require additional work for deployment and maintenance. Applets, which are dynamically
downloaded, can be used to eliminate the headache of installation, but applets have other limitations like sandbox
restrictions and heavyweight downloads. In contrast, HTML is extremely lightweight, doesn't require prior installa-
tion, and doesn’t suffer from security restrictions. In addition, HTML interfaces can be modified and enhanced at
their source without having to update the clients.

Firewalls present another significant problem in e-commerce. HTTP, the protocol over which web pages are requested
and delivered, can pass through most firewalls without a problem, but other protocolslike I1OP or JRMP cannot. This
has proven to be a significant barrier to the success of distributed object systems that must support access from
anonymous clients. This means that distributed object applications generally cannot be created for a client base that
may have arbitrary firewall configurations. HT TP does not have this limitation, since practically all firewalls alow
HTTP to pass unhindered.

The problems with distribution and firewalls have led the EJB industry to adopt, in large part, an architecture based
on the collaborative use of web components (Servlets/JSP) and Enterprise JavaBeans. While web components
provide the presentation logic for generating web pages, Enterprise JavaBeans provides a robust transactional
middle tier for business |ogic. Web components access enterprise beans using the same API used by application
clients. Each technology is doing what it does best: Servlets and JSP are excellent components for generating
dynamic HTML, while Enterprise JavaBeans is an excellent platform for transactional business logic. Figure 17-2
illustrates how this architecture works.

[FIGURE (usefigure 11-3)]
Figure 17-2: Using Servlets/JSP and EJB together

Thisweb component—EJB architectureis so widely accepted that it begs the question, “ Should there be a united
platform?’ Thisisthe question that the J2EE specification is designed to answer. The J2EE specification defines a
single application server platform that focuses on the interaction between these Servlets, JSP, and EJB. J2EE is
important because it provides a specification for the interaction of web components with enterprise beans, making
solutions more portable across vendors that support both component models.

J2EE Fillsin the Gaps

The J2EE specification attemptsto fill the gaps between the web components and Enterprise JavaBeans by defining
how these technol ogies come together to form a compl ete platform.

One of the ways in which J2EE adds value is by creating a consistent programming model across web components
and enterprise beans through the use of the INDI ENC and XML deployment descriptors. A servlet in J2EE can
access JDBC Dat aSour ce objects, environment entries, and references to enterprise beans through a JINDI ENC in
exactly the same way that enterprise beans use the INDI ENC. To support the INDI ENC, web components have their
own XML deployment descriptor that declares elementsfor the INDI ENC (<ej b-r ef >, <resour ce-r ef >,
<env- ent r y>) aswell security roles and other elements specific to web components. In J2EE, web components
(Servlets and JSP pages) along with their XML deployment descriptors, are packaged and deployed in JAR files with
the extension .war, which stands for web archive. The use of the INDI ENC, deployment descriptors, and JAR filesin
web components makes them consistent with the EJB programming model and unifies the entire J2EE platform.

Use of the INDI ENC makes it much simpler for web components to access Enterprise JavaBeans. The web
component devel oper doesn’t need to be concerned with the network location of enterprise beans; the server will
map theej b- r ef elementslisted in the deployment descriptor to the enterprise beans at deployment time. The

Copyright (c) 2001 O'Reilly & Associates 240

JNDI ENC also supportsaccesstoaj avax. j t a. User Transact i on object, asisthecasein EJB. The

User Tr ansact i on object allowsthe web component to manage transactions explicitly. The transaction context
must be propagated to any enterprise beans accessed within the scope of the transaction (according to the
transaction attribute of the enterprise bean method). A .war file can contain several servlets and JSP documents,
which share an XML deployment descriptor.

J2EE also defines an .ear (Enterprise archive) file, which isa JAR file for packaging Enterprise JavaBean JAR files and
web component JAR files (.war files) together into one complete deployment called a J2EE Application. A J2EE
Application hasits own XML deployment descriptor that points to the EJB and web component JAR files (called
modules) as well as other elements likeicons, descriptions, and the like. When a J2EE Application is created,
interdependencieslike ej b- r ef elements can be resolved and security roles can be edited to provide aunified view
of the entire web application.

The J2EE Enterprise Archive (.ear) file would contain the EJB JAR files and the web component .war files. Figure 17-3
illustrates the file structure inside a J2EE archivefile.

[FIGURE (figure 11-3)]
Figure 17-3: Contents of a J2EE EARfile

J2EE Application Client Components

In addition to integrating web and enterprise bean components, J2EE introduces a conpletely new component model:
the application client component. An application client component is a Java application that resides on aclient
machine and accesses enterprise bean components on the J2EE server. Client components also have accessto a
JNDI ENC that operates the same way as the INDI ENC for web and enterprise bean components. The client
component also includes an XML deployment descriptor that declarestheenv-entry,ej b-ref, and

resour ce-ref elementsof theJNDI ENCinadditiontoadescri pti on,di spl ay- nane, andi con that can
be used to represent the client component in a deployment tool.

A client component is simply a Java program that uses the INDI ENC to access environment properties, enterprise
beans, and resources (JDBC, JavaMail, etc.) made available by the J2EE server. Client components reside on the
client machine, not the J2EE server. Here is an extremely simple component:

public class MJ2eeQient {
public static void main(Sring [] args) {
Initial Gontext jndihitx = new I nitial Gontext();

oj ect ref = jndi Ont x. | ookup("j ava: conp/ env/ gj b/ Shi pBean") ;
Shi ptbne hone = (Shi pHone)
Por t abl eRenot e(hj ect . nar row(r ef , Shi pHone. cl ass);

Shi p ship = hone. fi ndByPri nar yKey(new Shi pPK(1));
Sring name = ship. get Nane() ;
Systemout . printl n(nane) ;

}

MyJ2eed i ent illustrates how aclient component iswritten. Notice that the client component did not need to use
anetwork-specific INDI | ni t i al Cont ext . In other words, we did not have to specify the service provider in
order to connect to the J2EE server. Thisisthe real power of the J2EE Application client component: location trans-
parency. The client component does not need to know the exact location of the Ship EJB or choose a specific INDI
service provider; the INDI ENC takesthis care of |ocating the enterprise bean.

Copyright (c) 2001 O'Reilly & Associates 441

When application components are developed, an XML deployment descriptor is created that specifiesthe INDI ENC
entries. At deployment time, a vendor-specific J2EE tool generates the class files needed to deploy the component on
client machines.

A client component is packaged into aJAR file with its XML deployment descriptor and can be included in a J2EE
Application. Once aclient component isincluded in the J2EE Application deployment descriptor, it can be packaged
inthe EAR file with the other components, as Figure 17-4 illustrates.

[FIGURE (use figure 11-4)]
Figure 17-4: Contents of a J2EE EAR file with Application component

Guaranteed Services

The J2EE 1.3 specification requires application servers to support a specific set of protocols and Java enterprise
extensions. This ensures a consistent platform for deploying J2EE applications. J2EE application servers must
provide the following “ standard” services:;

Enterprise JavaBeans 2.0
J2EE products must support the compl ete specification.

Servlets2.3
J2EE products must support the compl ete specification.

Java Sever Pages 1.2
J2EE products must support the compl ete specification.

HTTPand HTTPS
Web componentsin a J2EE server service both HTTP and HTTPS requests. The J2EE product must be capable
of advertisingHTTP 1.0and HTTPS (HTTP 1.0 over SSL 3.0) on ports 80 and 443 respectively.

JavaRMI-IIOP
Aswasthe case with EJB 2.0, only the semantics of Java RMI-110P are required; the underlying protocol need
not be [1OP. Therefore, components must use return and parameter types that are compatible with 110P, and must
usethe Por t abl eRenpt eObj ect . narr ow() method.

JavaRMI-JRMP
J2EE components can be Java RMI-JRMP clients.

JavalDL
Web components and enterprise beans must be able to access CORBA services hosted outside the J2EE
environment using Javal DL, a standard part of the Java 2 platform.

JOBC 2.0
J2EE requires support for the JDBC Core (JDK 1.3) and some parts of the JDBC 2.0 Extension including
connection naming and pooling, and distributed transaction support.

JavaNaming and Directory Interface (JNDI) 1.2
Web and enterprise bean components must have access to the INDI ENC, which make available EJBHome
objects, JTA UserTransaction objects, JDBC DataSource objects, and optionally Java Messaging Service
connection factory objects.

JavaMail 1.2 and JAF 1.0
J2EE products must support sending basic Internet mail messages (the protocol is not specified) using the
JavaMail API from web and enterprise bean components. The JavaMail implementation must support MIME
message types. JAF isthe Java Activation Framework, which is needed to support different MIME typesand is
required for support of JavaMail functionality.

Java Message Service (JMS) 1.0.2
J2EE products must provide support for both point-to-point (p2p) and publish-and-subscribe (pub/sub)
messaging models. Support for the optional application integration interfacesis not required.

Copyright (c) 2001 O'Reilly & Associates 442

Java APl for XML Parsing (JAXP) 1.1
J2EE products mu st support JAXP and provide must at |east one SAX 2 parser, at least one DOM 2 parser, and
at least one XSLT transform engine.

J2EE™ Connector Architecture (JCA) 1.0
J2EE must support the JCA API from all components and provide full support for resource adapters and
transaction capabilities as defined by the JCA.

Java™ Authentication and Authorization Service (JAAS) 1.0
J2EE products must support the use of JAAS as described in the JCA specification. In addition, application
client containers must support the authentication facilities defined in the JAAS specification.

JavaTransaction APl 1.0.1
Web and enterprise bean components must have access to JTA UserTransaction objects viathe INDI ENC
under the" j ava: conp/ User Transact i on" context. TheUser Tr ansact i on interfaceisused for
explicit transaction control.

Fitting the Pieces Together

To illustrate how a J2EE platform would be used, imagine using a J2EE server in Titan' s reservation system. To build
this system, we would use the Travel Agent, Cabin, ProcessPayment, Customer, and other enterprise beans we
defined in this book, along with web components that would provideaHTML interface.

The web components would access the enterprise beans in the same way that any Java client would, by using the
enterprise beans’ remote and home interfaces. The web components would generate HTML to represent the
reservation system.

Figure 17-5 shows a web page generated by a servlet or JSP page for the Titan reservation system. This web page
was generated by web components on the J2EE server. The person using the reservation system would have been
guided through alogin page, a customer selection page, and cruise selection page, and would be about to choose an
available cabin for the customer.

[FIGURE (usefigure 11-5)]
Figure 17-5: HTML interface to the Titan reservation system

Thelist of avail able cabins was obtained from the Travel Agent EJB, whosel i st Avai | abl eCabi ns() method
was invoked by the servlet that generated the web page. Thelist of cabins was used to createaHTML list box ina
web page that was |oaded into the user’ s browser. When the user chooses a cabin and submits the selection, an
HTTP request is sent to the J2EE server. The J2EE server receives the request and delegates it to the

Reservati onSer vl et ,whichinvokesthe Tr avel Agent . bookPassage() methodto do the actual
reservation. The Ticket information returned by thebookPassage() method isthen used to create another web
page that is sent back to the user’s browser. Figure 17-6 shows how the different components work together to
process this request.

[FIGURE (use 11-6)]
Figure 17-6: J2EE Titan Reservation System

Future Enhancements

There are several areas that are targeted for improvement in the next major release of the J2EE specification. Support
for “web services’ is expected to be alarger part of afuture J2EE specification, including support for Java API for
XML messaging (JAXM), Java API for XML registries (JAXR), and Java APl for XML RPC (JAX-RPC). Support for

Copyright (c) 2001 O'Reilly & Associates 43

the XML Data Binding APl may be required in afuture version of the specification, which considered easier to use
than JAXP.

In addition, J2EE may be expanded to require support for JDBC rowsets, SQL J, management and deployment APIs,
and possibly a J2EE SPI that would build on the advancements made with the JCA specification.

Copyright (c) 2001 O'Reilly & Associates 44

	Preface
	1 Introduction
	2 Architectural Overview
	3 Resource Management and the Primary Services
	4 Developing Your First Enterprise Beans
	5 The Client View
	6 EJB 2.0 CMP: Basic Persistence
	7 EJB 2.0 CMP: Entity Relationships
	8 EJB 2.0 CMP: EJB-QL
	9 EJB 1.1: Container-Managed Persistence
	10 Bean-Managed Persistence
	11 Entity-Container Contract
	12 Session Beans
	13 Message-Driven Beans
	14 Transactions
	15 Design Strategies
	16 XML Deployment Descriptors
	17 Java 2, Enterprise Edition

