The J2EE™ Tutorial

Stephanie Bodoff
Dale Green

Eric Jendrock
Monica Pawlan
Beth Stearns

Copyright © 2001 by Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is
subject to the restrictions set forth in DFARS 252.227-7013(c)(1)(iii) and FAR 52.227-19.

The release described in this book may be protected by one or more U.S. patents, foreign patents, or
pending applications.

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun Microsystems
Computer Corporation logo, Java, JavaSoft, Java Software, JavaScript, JDBC, JDBC Compliant, JavaOS,
JavaBeans, Enterprise JavaBeans, JavaServer Pages, J2EE, J2SE, JavaMail, Java Naming and Directory
Interface, EJB, and JSP are trademarks or registered trademarks of Sun Microsystems, IR i IX
registered trademark in the United States and other countries, exclusively licensed through X/Open Com-
pany, Ltd. All other product names mentioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS 1S” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PROD-
UCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Contents'

Preface. XXi
Who Should Use This Tutorial XXi
Aboutthe EXxamples. XXii
Prerequisites forthe Examples. i XXii
Downloading the Examples i XXii
How to Build and Runthe Examples. XXiii
Related Information. XXV
How to Print This Tutorial. XXV
Typographical Conventions. XXV
Acknowledgments XXVi
Chapter 1: Overview i 27
Distributed Multitiered Applications. i 28
J2EE Application Componentsc i 29
Client ComponeNtS.ottt 30
Application Clients 30
WeED BIrOWSEIS . . . ottt e 30
APPlEtS . e 30
JavaBeans™ Component Architecture 31
J2EE Server Communications. 31
Thin Clients. 32
Web Components. e 32
Business COmMpOoNeNntsS.o e 33
Enterprise Information System Tier. 34
J2EE Architecture 34
Containers and ServiCeSottt e 35
Container TYPES . . ottt e 36

Packaging. 37

Development ROIES 38
J2EE Product Provider. 39
TOOl Provider 39
Application Component Provider, 39

Enterprise BeanCreation0i i 39

Web Component Creationcuiiiiiinnnnn.. 39

J2EE Application Client Creation. 40
Application Assembler. 40
Application Deployer and Administrator. 40

Reference Implementation Software. 41
Web Server. ... 41
Database ACCESS. . . vttt 42
J2EE APIS . . 42

Enterprise JavaBeans Technology 2.0 42
JDBC™ 2.0 APl . .. 42
Java Servlet Technology 2.3. 43
JavaServer Pages (JSP) Technology 1.2. 43
Java Message Service (JMS) 1.0 ..., 43
Java Transaction API (JTA)1.0.......... .. 43
JavaMail™ Technology 1.2 i 43
JavaBeans Activation Framework 1.0 44
Java API for XML Processing (JAXP) 1.1................... 44
J2EE Connector Architecture 1.0. 44
Java Authentication and Authorization Service (JAAS) 1.0 44
Simplified Systems Integration 45
TO0IS o 45
Application Deployment Tool 45
SOt . e e 46
Chapter 2: GettingStarted 47

SettiNg UpP . . e 48
Gettingthe Example Code. i 48
Gettingthe Build Tool (ant). i 48

Checking the Environment Variables 49
Starting the J2EE™ Server e 49
Starting the deploytool. 49
Creating the J2EE™ Application 50
Creating the Enterprise Bean 50
Coding the Enterprise Bean i 50
Coding the Remote Interface 50

Coding the Home Interface.o .. 51

Coding the Enterprise BeanClass. 51

Compiling the Source Files i 52
Packaging the Enterprise Bean. 53
Creating the J2EE™ ApplicationClient. 54
Coding the J2EE ApplicationClient 54
Locating the Home Interface. 55
Creating an Enterprise BeanInstance. 55
Invoking a Business Method. 55
ConverterClient Source Code 55
Compiling the ApplicationClient 56
Packaging the J2EE Application Client. 57
Specifying the Application Client’s Enterprise Bean Reference. 57
Creatingthe Web Client i, 58
Codingthe Web Client. i 58
Compilingthe Web Client i, 60
Packagingthe Web Client i, .. 60
Specifying the Web Client’s Enterprise Bean Reference. 61
Specifyingthe INDINames i 61
Deploying the J2EE™ Application. 62
Running the J2EE™ ApplicationClient 63
Runningthe Web Client i 64
Modifying the J2EE™ Application. 64
Modifyinga ClassFile. i, 65
AddingaFile 65
Modifyingthe Web Client 65
Modifying a Deployment Setting. 66
Common Problems and Their Solutions 66
Cannot Startthe J2EE Server. i 66
Naming and Directory Service Port Conflict 66
Web Service Port Conflict 67
Incorrect XML Parser 67
Compilation Errors.o e 67
Ant Cannot Locate the Build File. 67
The Compiler Cannot Resolve Symbols. 67
Ant 1.4 Will Not Compile the Example After You Run the Client68
Deployment Errors.o e 68
The Incorrect XML Parser Is In Your Classpath 68
The Remote Home Interface Was Specified As a Local Home Inter-
face .. . 68
J2EE Application Client Runtime Errors. 69
The Client Throws an Exception. 69
The Client Cannot Find ConverterApp.ear. 69
The Client Cannot Find the ConverterClient Component. 69

The LoginFailed. i 70

Vi

The J2EE Application Has Not Been Deployed. 70
The JNDI NameisIncorrect. 70
Web Client Runtime Errorso e 70
The Web Contextinthe URL is Incorrect 70
The J2EE Application Has Not Been Deployed. 70
The JNDI NameisIncorrect. 71
Detecting Problems With the Verifier Tool. 71
Comparing Your EAR Files WithOurs. 71
When AllElse Fails. 71
ADOUt INDINaMINGt 71
Chapter 3: EnterpriseBeans. 73
Whatis an Enterprise Bean?. 74
Benefits of Enterprise Beans i 74
When To Use Enterprise Beans., 75
Types of Enterprise Beans. 75
Whatisa SessionBean? i 76
State ManagementModes e 76
Stateful Session Beans i 76
Stateless SessionBeans i 76
Whento Use SessionBeans.t 77
Whatisan Entity Bean? i e 78
What Makes Entity Beans Different From SessionBeans 78
Persistence 78
Shared ACCESS. . . o 78
Primary Key 79
Relationships. 79
Container-Managed Persistence., 79
Abstract Schema. 79
Multiplicity in Container-Managed Relationships. 81
Direction in Container-Managed Relationships. 81
WhenToUse EntityBeans 82
What is a Message-Driven Bean? 82
What Makes Message-Driven Beans Different From Session and Entity
Beans 83
When to Use Message-DrivenBeans. 84
Defining Client Access With Interfaces 84
RemoOte ACCESS.o 85
LoCal ACCESS . . oot 85
Local Interfaces and Container-Managed Relationships. 86
Deciding on Remote or Local AcCesSo 86
Performance and ACCESSottt 87

Method Parameters and ACCESS.ottt e 88

Chapter 4.

Chapter 5:

Vii

Isolation. 88
Granularity of Accessed Data. 88
The Contents of an Enterprise Bean 88
Naming Conventions for Enterprise Beans. 89
The Life Cycles of Enterprise Beans., 90
The Stateful SessionBean LifeCycle 90
The Stateless SessionBean LifeCycle 91
The Entity BeanLifeCycle 92
The Message-Driven Bean LifeCycle. 94
A SessionBeanExample 97
The CartEIJB EXample. e e e 98
SessionBean Class.o 98
The SessionBean Interface 100
The ejbCreate Methods 100
Business Methods 101
Home Interface. 103
Remote Interface 104
Helper Classes e 104
Running the CartEJB Example. 104
Other Enterprise Bean Features. 105
Accessing Environment Entries oL 105
Comparing Enterprise Beans i 106
Passing an Enterprise Bean’s Object Reference. 107
Bean-Managed Persistence Examples. 109
The SavingsAccountEJB Example 110
Entity Bean Classt 110
The EntityBean Interface 111
The ejbCreate Method. i 111
The ejbPostCreate Method 112
The ejpRemove Method 113
The ejbLoad and ejbStore Methods 113
The Finder Methods 115
The Business Methods 116
The Home Methods. 118
Database Calls. 120
Home Interface. 120
Create Method Definitions 121

Finder Method Definitions 121

viii

Home Method Definitions 122
Remote Interface 122
Running the SavingsAccountEJB Example. 123

Setting Upthe Database 123

Deploying the Application 124

Runningthe Client 124

Deploytool Tips for Entity Beans With Bean-Managed Persistence 125
Mapping Table Relationships For Bean-Managed Persistence 125
One-to-One Relationships i ... 125

Running the StorageBInEJBExample 128
One-to-Many Relationships. 129

A Helper Class forthe Child Table 129

Running the OrderEJB Example. 132

An Entity Bean forthe Child Table 133

Running the SalesRepEJB Example. 136
Many-to-Many Relationships 136

Running the EnrollerEJB Example. 139

Primary Keys for Bean-Managed Persistence. 139
The PrimaryKey Class 139
Primary Keys inthe Entity BeanClass 141
Gettingthe Primary Key 142
Handling Exceptions. 142
Chapter 6: Container-Managed Persistence Examples 145
Overview of the RosterApp Application. 146
The PlayerEIJB Code.o 147
Entity Bean Class. 148

Differences Between Container-Managed and Bean-Managed Code

148

Access Methods 149

SelectMethods 150

BusinessMethods. 151

Entity Bean Methods 151
Local Home Interface. 152
LocalInterface.o 153

A Guided Tour of the RosterApp Settings, 154
ROStEIAPD . . o 154

General Tabbed Pane (RosterApp).o oot 154

JNDI Names Tabbed Pane (RosterApp). 154
RosterClient e 154

JAR File Tabbed Pane (Roster Client) 155

EJB Refs Tabbed Pane (Roster Client). 155

ROStErJAR 155

General Tabbed Pane (RosterJAR) 155
RosterEJB 155
TeamJAR e 156
General Tabbed Pane (TeamJAR) 156
Relationships Tabbed Pane (TeamJAR) 156
PlayerEJIB 157
Method Invocations in ROStErApp.o oo 159
Creatinga Player i i e 160
1.RosterClient. 160
2.ROSterEJdB 160
3.PIayerEIB 160
AddingaPlayerToaTeam 161
1.RosterClient. 161
2.ROSterEJdB 161
3.TeamEIB. 161
RemovingaPlayer. i 162
1.RosterClient. 162
2.ROSterEJdB 162
Dropping a Player FromaTeamcciuuu... 163
1.RosterClient. 163
2.ROSterEJdB 163
3.TeamEIB. 163
Gettingthe PlayersOfaTeam. i, 164
1.RosterClient. 164
2.ROSterEJIB e 164
3.TeamEIB. 165
Getting a Copy ofa Team'sPlayers. 165
1.RosterClient. 165
2.ROSterEJIB e 166
3.TeamEIB. 166
Finding the Players By Position. 167
1.RosterClient. 167
2.ROSterEJIB e 167
3.PIayerEIB 167
Getting the Sportsof aPlayer. 168
1.RosterClient. 168
2.ROSterEJdB 168
3.PIayerEIB 169
Running the RosterApp Example 170
Setting UpP. . ..o e 170
Deploying the Application. 170

Runningthe Client i 170

Deploytool Tips for Entity Beans With Container-Managed Persistence .171

Specifyingthe Bean's Type. 171
Selecting the Persistent Fields and Abstract Schema Name 171
Defining EJB QL Queries for Finder and Select Methods 172
Generating SQL and Specifying Table Creation................. 172
Specifying the Database JNDI Name, User Name, and Password . ..173
Defining Relationships. 173
Primary Keys for Container-Managed Persistence. 173
The Primary Key Classt 174
Primary Keys inthe EntityBeanClass 175
Generating Primary Key Values 176
Chapter 7. A Message-Driven Bean Example 177
Example Application Overview i 178
The J2EE™ Application Client. 179
The Message-DrivenBeanClass 180
The onMessage Method. i 180
The ejbCreate and ejpRemove Methods 181
Running the SimpleMessageEJB Example. 181
Starting the J2EE™ Servert 181
Creatingthe Queue e 181
Deploying the Application. 181
Runningthe Client. e 182
Deploytool Tips for Message-DrivenBeans. 182
Specifying the Bean’s Type and Transaction Management. 183
Setting the Message-Driven Bean’s Characteristics 183
Deploytool Tips for IMS Clients i 184
Setting the Resource References 184
Setting the Resource Environment References 184
Specifyingthe INDINames. i, 185

Chapter 8: Enterprise JavaBeans™
Query Languagel87

TermiNOlOgY . .. oo e 188

Simplified Syntax 189

Example QUETES 189
Simple Finder Queries 189
Finder Queries That Navigate to Related Beans 191
Finder Queries With Other Conditional Expressions 192

Select QUENES . . .o 194

FUll Syntax. 195
BNF Grammarof EJBQLo 195
BNF Symbols. 198
FROM Clause.o e e e 198

ldentifiers 199
Identification Variables. 199
Range Variable Declarations. 200
Collection Member Declarations 201
Path EXpressions. i 201
SYMAX . . oot 202
Examples. 202
EXPression TYPeS . ..ottt 203
Navigation. e 203
WHERE Clause e e 204
Literals. . ..o 204
Input Parameters 204
Conditional EXpressions 205
Operators and Their Precedence 206
BETWEEN EXPressions. . ..o 206
IN EXPresSSiONS . ..ot e e 207
LIKE EXPressions . . . oot e 207
NULL Comparison EXpressions.c.cvvviiiinnn... 208
Empty Collection Comparison Expressions 208
Collection Member Expressions.o, 209
Functional EXpressions.t 209
NULLValues i 210
Equality Semantics 211
SELECT ClausSettt 212
RetUrN TYPES. . . oot e 212
DISTINCT and OBJECT Keywords. 213
EJB QL ReStriCtions 213
Chapter9: Web Components., 215
Web ComponentLife Cycle 216

Packaging Web Components.t 218
Creatinga WAR. 219
Adding a WAR to a J2EE Application. 219

Adding a Web Componenttoa WAR 220

Configuring Web Componentsttt 221

Application-Level Configuration. 221
Context ROOL. 221
WAR-Level Configuration. 222

Context Parameters. e 222

Xi

Xii

Chapter 10:

References to Environment Entries, Enterprise Beans, Resource En-

vironment Entries, Or RESOUICES.o v it 222
EventListeners. 223
Error Mapping.o oo 223
Filter Mappingo 223
Component-Level Configuration. 224
Initialization Parameters. 224
Specifyingan AliasPath. 224
Deploying Web Componentst 225
Executing Web Components.t 225
Updating Web Components i 226
Java Servlet Technology 229
Whatisa Servlet? 230
The Example Servlets 231
Troubleshooting. 235
ServletLife Cycle 236
Handling Servlet Life Cycle Events 236
Defining The Listener Class. ot 236
Specifying Event ListenerClasses 238
Handling Errors 238
Sharing Information 238
Scope ObJeCtS. . ..ot 239
Controlling Concurrent Access to Shared Resources 240
Initializing a Servlet 241
Writing Service Methods e 242
Getting Information From Requests 243
Constructing RESPONSESo i it e 245
Filtering Requests and RESPONSES.o i it i e 247
Programming Filters 248
Programming Customized Requests and Responses 250
Specifying Filter Mappings 252
Invoking Other Web Resources 254
Including the Content of Another Resource in the Response 254
Transferring a Control to Another Web Component. 256
Accessingthe Web Context i, 257
Maintaining Client State 258
ACCESSING @ SESSION\ttt 258
Associating Attributes witha Session 258
Notifying Objects That Are Added Toa Session. 259
Session Management 259

Session Trackingot 260

Chapter 11:

Chapter 12:

Chapter 13:

Finalizinga Servlet 261
Tracking Service Requests.o 261
Providinga Clean Shutdown 262
Creating Polite Long-Running Methods 263

JavaServer Pages™ Technology 265

Whatis a JSP Page?. 266

The Example JSP Pagesot e 269

The LifeCycleofaJSPPage ..., 273
Translation and Compilation 273
EXECULION 274

Buffering. 274
Handling Errors. 275

Initializing and FinalizingaJSPPage. 275

Creating StaticContent 277

Creating Dynamic Contentt 277
Using Objects WithinJSP Pages, 277

Implicit Objects. 277
Application-Specific Objects 278
Shared Objects 279
JSP Scripting Elements 280
Declarations. e 280
Scriptlets 281
EXPressionso 282

Including ContentinaJSP Page 283

Transferring Control to Another Web Component 284
Param Element. 284

Including an Applet. 285

Extendingthe JSP Language.t 287

JavaBeans™ Components in JSP™ Pages 289

JavaBeans Component Design Conventions. 290

Why Use a JavaBeans Component? 291

Creating and Using a JavaBeans Component 292

Setting JavaBeans Component Properties. 293

Retrieving JavaBeans Component Properties 295

CustomTagsinJSP™Pages 299

Whatis a Custom Tag? oottt 300

The Example JSP Pagesottt e 300

Xiv

USING TAOS - . ottt e e e 305
Declaring Tag Libraries. 305
TYPES Of TaQS. . v v vttt e e 306

SImple Tags ... oo e 306
Tags With Attributes. 306
TagsWithBodies e e 307
Choosing Between Passing Information as Attributes or Body . .307
Tags That Define Scripting Variables 307
Cooperating Tags « .+« v v vt vt e 308

DefiNiNg Tags . . .o oo e 309
TagHandlers e 309
Tag Library DesCriptors.o e 310

Listener Element. 311
TagElement 312
SIMpPlEe TagS . o 313
TagHandlers. e 313
Body-contentElement 313
Tags With Attributes e 314
Defining Attributesina Tag Handler. 314
Attribute Element 314
Attribute Validation 315
TagsWith Bodies. e e e 316
TagHandlers. e 316
Body-contentElement 318
Tags That Define Scripting Variables 318
TagHandlers. e 318
Providing Information About the Scripting Variable.......... 319
Cooperating TagS . . -« v vttt ettt e 322

EXamples. 324

Anlteration Tag.o 324
JSP Page 324

TagHandler 325

TagExtralnfoClass. 327

A Template Tag Library i 328
JSP Page 328

TagHandlers. 330

How Isa Tag Handler Invoked? 333

Chapter 14: Transactionst 335

Whatis a Transaction? 336

Container-Managed Transactionst 336
Transaction Attributes 337

Transaction Attribute Values 337

XV

Required 337
RequiresNew. 338
Mandatory 338
NotSupported 338
SUPPOMS. .« 339
NeVer. . 339
Summary of Transaction Attributes 339
Setting Transaction Attributes. 340
Rolling Back a Container-Managed Transaction. 341
Synchronizing a Session Bean'’s Instance Variables 342
Methods Not Allowed in Container-Managed Transactions 343
Bean-Managed Transactions.t 343
JDBC TranSactionS. . . .o v et e 344
JTATransactionsot e e 345
Returning Without Committing 346
Methods Not Allowed in Bean-Managed Transactions. 347
Summary of Transaction Options for Enterprise Beans 347
Transaction TIMEOULSttt e 348
Isolation Levels 349
Updating Multiple Databases 349
Transactions for Web Components., 351
Chapter15:Security 353
OVBIVIBW . . . e 354
Declaring RoOIeSo 355
Declaring and Linking Role References 355
Web-Tier SECUNtY o e 357
Protecting Web-Tier Resources, 357
Controlling Accessto Web Resources 357
Authenticating USers 358
Basic Authentication. 358
Form-Based Authentication 358
Client-Certificate Authentication 358

Configuring A Web Resource’s Authentication Mechanism . .. 358
Using SSL to Enhance the Confidentiality of HTTP Basic and Form-

Based Authentication o L 359

Using Programmatic Security inthe Web Tier 359
Unprotected Web-Tier Resources 360
EJB-Tier SECUNLY . ..ottt e e e e 360
Declaring Method Permissions 360
Mapping Roles to J2EE Usersand Groups 361

Using Programmatic Security inthe EJB Tier. 361

XVi

Determining the Caller of the Enterprise Bean. 361
Determining the Caller'sRole 362
Unprotected EJB-Tier RESOUICES. oo oo eee e 362
Application-Client-Tier Security 362
Specifying the Application Client’s CallbackHandler. 363
EIS-Tier SECUrity e e e e 363
Configuring Sign-On 364
Container-Managed Sign-On. i e 364
Component-Managed Sign-Ont 365
Configuring Resource Adapter Security 365
Propagating Security Identity 366
Configuring an Enterprise Bean to Use Propagated Security Identities . .
367
Configuring Client Authentication 367
Trust Between Containers., 368
J2EE Users, Realms, and Groups oo 368
Managing J2EE Usersand Groupscoiiii ... 369
Setting Up a Server Certificate 370
Configuring J2SE Security Policy Files 372
Chapter 16: Resource Connections 373
JNDI Names and Resource References. 373
Deploytool Tips for Resource References. 374
Specifying a Resource Reference. 374
Mapping a Resource Referenceto a JNDIName............. 375
Database Connections for Enterprise Beans. 375
Coded ConNECLiONSo 375
Howto Connect e 375
When ToConnect.t e 376
Deploytool Tips for Specifying Database Users and Passwords .377
Connection Pooling 378
Mail Session ConNNections.t 378
Running the ConfirmerEJB Example 379
Deploying the Application 379
RunningtheClient 380
Trouble-Shooting i 380
URL CONNECLIONSot e e e 380
Running the HTMLReaderEJB Example 382
Deploying the Application 382
RunningtheClient 382

Connecting Beyond the Firewall 382

XVii

Chapter 17: J2EE™Connector Technology 385
About Resource Adapters 386
Resource Adapter Contracts. 386
Administering Resource Adapters 387
The Black Box Resource Adapterso, 389
Transaction Levels. 389
Properties 390
Configuring JDBC™ DIiVEIS. . . ottt i 391
The Non-XA Black Box Adapters 391
The XA Black Box Adapters, 391
Resource Adapter Tutorial. 392
Setting UpP. . .o 392
Deploying the Resource Adapter. 392
Testing the Resource Adapter 393
Common Client Interface (CCI) i i 395
Overview of the CCl i 395
Programming withthe CCI 397
Database Stored Procedures 399
Mapping to Stored Procedure Parameters. 400
Reading Database Records 402
Inserting Database Records. 404
Writinga CCIClient 406
CClTutorial 406
Deploying the Resource Adapter 406
SettingUptheDatabase 407
Browsing the CoffeeApp Application. 408
Deploying and Running the CoffeeApp Application 409
Chapter 18: The Duke’s Bank Application. 411
ENnterprise Beanst 413
SESSION BEANS . . . o ot 414
AccountControllerEJIB 414
CustomerControllerEJIBot 416
TXCONrollerEJB 416
Entity Beans e 417
Helper Classes e e e 417
Database Tables 418
Tables Representing Business Entities 419
Tables that Hold the Next PrimaryKey 419

Securing the EnterpriseBeans 420

XViii

Application Client. 420
The Classes and their Relationships 422
BankAdmin Classt 423

Main Method. 423
CONSIIUCTON . . . e 424
Internationalization. 425
Class Methods. e 426
EventHandle Class.o 426
CONSIIUCTON . . . e 426
actionPerformed Method, 427
hookupEvents Method 427
DataModel Classt 428
CONSIIUCTON . . . e 428
Methods 429

Web Client 430
Design Strategieso oot 432
Web ClientLife Cycle........... i 432

Initializing the Client Components. 432

Request Processingttt 434
Securingthe Web Client 436
Internationalization 437

Building, Deploying, and Running the Application 438
Adding Groups and Userstothe Realm 439
Starting the J2EE Server, Deploy Tool, and Database 440

J2EE Server. . .. 440

Deploytool 440

Cloudscapeo 440
Compiling the Enterprise Beans 440
Packaging the Enterprise Beans. 440
Compilingthe Web Client. 441
Packagingthe Web Client 441
Compiling the J2EE Application Client 441
Packaging the J2EE Application Client. 442
Packagingthe EAR 442
Openingthe EAR. 442
Reviewing JNDINames, 444
Mapping the Security Rolesto Groups 446
Deploying the J2EE Application 447
Creating the Bank Database. 447
Running the J2EE ApplicationClient 448

Runningthe Web Client. 449

XiX

Chapter 19: HTTP Overview. e 451
HTTP ReqUESTES s 451
HTTP RESPONSESo e e 452
Chapter 20: J2EE" SDKTOOIS . ..o ooeeeeee e 453
J2EE Administration Tool. 454
Cleanup ToOol.o 455
Cloudscape Server. 455
Starting Cloudscape 455
Stopping Cloudscape e 456
Running the Interactive SQL Tool. 456
Cloudscape Server Configuration 457
Deployment Tool. 457
J2EE SVl . . . 459
Key TOOl ... 459
Packager. 459
EIBJARFIlE ... 460
SYNMEAX . oo 460
Example. . .. 460
Web Application WAR File. 460
SYNMEAX . ot 460
Example. . .. 460
Application ClientJARFile. 461
SYNMEAX . ot 461
Example. . .. 461
J2EE Application EAR File 461
SYNMEAX . o 461
Example. . .. 461
Specifying the Runtime Deployment Descriptor. 461
SYNMEAX . o 462
Example. . .. 462
Resource Adapter RARFile. 462
SYNMEAX . ot 462
Example. . .. 463
Realm Tool 463
EXamples ... 463
Runclient SCript.o 465
SYNAX. .« e 465
EXxample e 465

XX

AV 2= 11T 466
Command-Line Verifier. 466
Stand-Alone GUI Verifier 467

Glossary 469

Preface

T HE Java Tutorial has been an indispensable resource for many programmers
learning the Java programming language. This tutorial hopes to serve the same
role for developers encountering the Java™ 2 Platform, Enterprise Edition
(J2EE™) for the first time. It follows an example-oriented focus similar to the
Java Tutorial.

Who Should Use This Tutorial xvii
About the Examples xviii

Related Information xx

How to Print This Tutorial xxi
Typographical Conventions xxi
Acknowledgments xxii

Who Should Use This Tutorial

This tutorial is intended for programmers interested in developing and deploying
J2EE applications. It covers the main component technologies comprising the
J2EE platform and describes how to develop J2EE components and deploy them
on the J2EE SDK.

This tutorial is not intended for J2EE server or tool vendors. It does not explain
how to implement the J2EE architecture, nor does it explain the internals of the
J2EE SDK. The J2EE specifications describe the J2EE architecture and can be
downloaded from:

http://java.sun.com/j2ee/docs.html#specs

XXi

http://java.sun.com/j2ee/docs.html#specs
http://java.sun.com/docs/books/tutorial

XXil

About the Examples

This tutorial includes many complete, working examples.

Prerequisites for the Examples

To understand the examples you will need a good knowledge of the Java pro-
gramming language, SQL, and relational database concepts. The following top-

ics in the Java Tutorial are particularly relevant:

Topic Java Tutorial

JDBC™ http://java.sun.com/docs/books/tutorial/jdbc

Threads http://java.sun.com/docs/books/tutorial/essential/threads
JavaBeans™ http://java.sun.com/docs/books/tutorial/javabeans

Security http://java.sun.com/docs/books/tutorial/securityl.?2

Downloading the Examples

If you are viewing this online, and you want to build and run the examples, you
need to download the tutorial bundle from:

http://java.sun.com/j2ee/download.html#tutorial

Once you have installed the bundle, the example source code is in the
j2eetutorial/examples/src directory, with subdirectoriesjb for enterprise

bean technology examplegeb for web technology examples, ardnnector

for connector technology examples. For most of the examples, the bundle also
includes J2EE application EAR files, which are located in g2eetutorial/
examples/ears directory.

http://java.sun.com/j2ee/docs.html#specs
http://java.sun.com/docs/books/tutorial/jdbc
http://java.sun.com/docs/books/tutorial/essential/threads
http://java.sun.com/j2ee/download.html#tutorial
http://java.sun.com/docs/books/tutorial/javabeans
http://java.sun.com/docs/books/tutorial/security1.2

XXiii

How to Build and Run the Examples

This tutorial documents the J2EE SDK version 1.3. To build, deploy, and run the
examples you need a copy of the J2EE SDK 1.3 and the J2SE™ SDK 1.3.1 (ear-
lier versions were called JDK). You can download the J2EE SDK from:

http://java.sun.com/j2ee/download.html#sdk

and the J2SE 1.3.1 from:
http://java.sun.com/j2se/1.3/

The examples are distributed with a configuration file for version 1.3nefa
portable make tool. Thent utility is hosted by the Jakarta project at the Apache
Software Foundation. You can downlcad from:

http://jakarta.apache.org/builds/jakarta-ant/release/v1.3/bin

To build the tutorial examples:

1. Download and install the J2SE SDK 1.3.1, J2EE SDK 1.3aand

2. The installation instructions for the J2SE SDK, J2EE SDK, and
explain how to set the required environment variables. Verify that the envi-
ronment variables have been set to the values noted in the following table.

Environment Variable | Value

JAVA_HOME The location of the J2SE SDK installation.
J2EE_HOME The location of the J2EE SDK installation.
ANT_HOME The location of thant installation.

Should include thé1i n directories of the J2EE SDK, J2SE SDH,

PATH X .
andant installations.

3. Go to thej2eetutorial/examples/src directory.

4. Executeant target. For example, to build all the examples, execarte
al11 or to build the web layer examples, execaii@ web. The build process
deposits the output into the directaeetutorial/examples/build.

http://java.sun.com/j2ee/download.html#sdk
http://jakarta.apache.org/ant
http://jakarta.apache.org/builds/jakarta-ant/release/v1.3/bin
http://java.sun.com/j2se/1.3/

XXiV

Related Information

This tutorial provides a concise overview of how to use the central component
technologies in the J2EE platform. For more information about these technolo-
gies, see:

Component Technology Web Site

Enterprise JavaBeans™ (EJB™) http://java.sun.com/products/ejb

Java Servlet http://java.sun.com/products/serviets

JavaServer Pages™ (JSP™) http://java.sun.com/products/jsp

The J2EE platform includes a wide variety of APIs that this tutorial only briefly
touches on. Some of these technologies have their own tutorials:

API Tutorial

Java Message Service (JMS) http://java.sun.com/products/jms/tutorial/

Java Naming and Directory

Interface™ (JNDI) http://java.sun.com/products/jndi/tutorial/

Extensible Markup Language

(XML) http://java.sun.com/xm1/tutorial_intro.html

For complete information on these topics see:

API Web Site

XML http://java.sun.com/xml

J2EE Connector http://java.sun.com/j2ee/connector

http://java.sun.com/xml
http://java.sun.com/products/ejb
http://java.sun.com/products/servlets
http://java.sun.com/products/jsp
http://java.sun.com/j2ee/connector
http://java.sun.com/products/jms/tutorial
http://java.sun.com/products/jndi/tutorial
http://java.sun.com/xml/tutorial_intro.html

XXV

API Web Site

JavaMail™ http://java.sun.com/products/javamail
JMS http://java.sun.com/products/jms
JNDI http://java.sun.com/products/jndi
JDBC™ http://java.sun.com/products/jdbc

Once you have become familiar with the J2EE technologies described in this
tutorial, you may be interested in guidelines for architecting J2EE applications.
The J2EE BluePrints illustrate best practices for developing and deploying J2EE
applications. You can obtain the J2EE BluePrints from:

http://java.sun.com/j2ee/blueprints

How to Print This Tutorial

To print this tutorial, follow these steps:

« Ensure that Adobe Acrobat Reader is installed on your system.

+ Download the PDF version of this book from
http://java.sun.com/j2ee/download.html#tutorial.

* Click the printer icon in Adobe Acrobat Reader.

Typographical Conventions

The following table lists the typographical conventions used in this tutorial.

Font Style Uses
italic Emphasis, titles, first occurrence of terms
monospace URLs, code examples, file names, command

names, programming language keywords

italic monospace Programming variables, variable file names

http://java.sun.com/j2ee/blueprints
http://java.sun.com/products/jndi
http://java.sun.com/products/jdbc
http://java.sun.com/products/javamail
http://java.sun.com/j2ee/download.html#tutorial
http://java.sun.com/products/jms

XXVi

Acknowledgments

The J2EE tutorial team would like to thank the J2EE SDK team for their techni-
cal advice and enthusiasm.

We would also like to thank our manager Jim Inscore for his support and steady-
ing influence.

The chapters on web components use an example and some material that first
appeared in the servlet trail of the Java Tutorial. The chapter on custom tags
describes a template tag library that first appeared in the J2EE Blueprints.

Overview

by Monica Pawlan

TODAY, more and more developers want to write distributed transactional
applications for the enterprise and leverage the speed, security, and reliability of
server-side technology. If you are already working in this area, you know that in
today’s fast-moving and demanding world of e-commerce and information tech-
nology, enterprise applications have to be designed, built, and produced for less
money, with greater speed, and with fewer resources than ever before.

To reduce costs and fast-track enterprise application design and development,
the Java™ 2 Platform, Enterprise Edition (J2EE™) technology provides a com-
ponent-based approach to the design, development, assembly, and deployment of
enterprise applications. The J2EE platform gives you a multitiered distributed
application model, the ability to reuse components, integrated XML-based data
interchange, a unified security model, and flexible transaction control. Not only
can you deliver innovative customer solutions to market faster than ever, but
your platform-independent J2EE component-based solutions are not tied to the
products and APIs of any one vendor. Vendors and customers enjoy the freedom
to choose the products and components that best meet their business and techno-
logical requirements.

This tutorial takes an examples-based approach to describing the features and
functionalities available in J2EE SDK version 1.3. Whether you are a new or an
experienced enterprise developer, you should find the examples and accompany-
ing text a valuable and accessible knowledge base for creating your own enter-
prise solutions.

If you are new to J2EE applications development, this chapter is a good place to
start. Here you will learn the J2EE architecture, become acquainted with impor-
tant terms and concepts, and find out how to approach J2EE application pro-
gramming, assembly, and deployment.

27

Bios.html

28

OVERVIEW

Distributed Multitiered Applications 28
J2EE Application Components 29
Client Components 30
Web Components 32
Business Components 33
Enterprise Information System Tier 34

J2EE Architecture 34
Containers and Services 35
Container Types 36

Packaging 37

Development Roles 38
J2EE Product Provider 39
Tool Provider 39
Application Component Provider 39
Application Assembler 40
Application Deployer and Administrator 40

Reference Implementation Software 41
Web Server 41
Database Access 42
J2EE APIs 42
Simplified Systems Integration 45
Tools 45

Distributed Multitiered Applications

The J2EE platform uses a multitiered distributed application model. This means
application logic is divided into components according to function, and the vari-
ous application components that make up a J2EE application are installed on dif-
ferent machines depending on which tier in the multitiered J2EE environment
the application component belongs. Figure 1 shows two multitiered J2EE appli-
cations divided into the tiers described in the bullet list below. The J2EE applica-
tion parts shown in Figure 1 are presented {IREE Application

Components (page 29).
» Client tier components run on the client machine
» Web tier components run on the J2EE server
» Business tier components run on the J2EE server
» Enterprise information system (EIS) tier software runs on the EIS server

While a J2EE application can consist of the three or four tiers shown in Figure 1,
J2EE multitiered applications are generally considered to be three-tiered appli-
cations because they are distributed over three different locations: client

DISTRIBUTED MULTITIERED APPLICATIONS 29

machines, J2EE server machine, and the database or legacy machines at the
back-end. Three-tiered applications that run in this way extend the standard two-
tiered client and server model by placing a multithreaded application server
between the client application and back-end storage.

J2EE J2EE
Application 1 Application 2
Application . Client Client
Client Dynamic tier Machine
HTML pages |
Web
JSP pages tier
J2EE
Server
Machine
Enterprise Enterprise Business
Beans Beans tier
Database
Database Database EIS Server
tier Machine

Figure 1 Multitiered Applications

J2EE Application Components

J2EE applications are made up of components. A J2EE component is a self-con-
tained functional software unit that is assembled into a J2EE application with its
related classes and files and communicates with other components. The J2EE
specification defines the following J2EE components:

« Application clients and applets are client components.

« Java Servlet and JavaServer Pages™ (JSP™) technology components are
web components.

« Enterprise JavaBeans™ (EJB™) components (enterprise beans) are busi-
ness components.

J2EE components are written in the Java programming language and compiled
in the same way as any program in the language. When you work with the J2EE
platform, the difference is that J2EE components are assembled into a J2EE

30

OVERVIEW

application, verified that they are well-formed and in compliance with the J2EE
specification, and deployed to production where they are run and managed by
the J2EE server.

Client Components

A J2EE application can be web-based or non-web-based. An application client
executes on the client machine for a non-web-based J2EE application, and a web
browser downloads web pages and applets to the client machine for a web-based
J2EE application.

Application Clients

An application client runs on a client machine and provides a way for users to
handle tasks such as J2EE system or application administration. It typically has a
graphical user interface created from Swing or Abstract Window Toolkit (AWT)
APIls, but a command-line interface is certainly possible.

Application clients directly access enterprise beans running in the business tier.
However, if the J2EE application client requirements warrant it, an application
client can open an HTTP connection to establish communication with a servlet
running in the web tier.

Web Browsers

The user’'s web browser downloads static or dynamic Hypertext Markup Lan-
guage (HTML), Wireless Markup Language (WML), or Extensible Markup
Language (XML) web pages from the web tier. Dynamic web pages are gener-
ated by servlets or pages created with JavaServer Pages (JSP) technology pages
running in the web tier.

Applets

A web page downloaded from the web tier can include an embedded applet. An
applet is a small client application written in the Java programming language

that executes in the Java VM installed in the web browser. However, client sys-
tems will likely need Java Plug-in and possibly a security policy file so the applet

can successfully execute in the web browser.

JSP pages are the preferred API for creating a web-based client program because
no plug-ins or security policy files are needed on the client systems. Also, JSP
pages enable cleaner and more modular application design because they provide
a way to separate applications programming from web page design. This means

DISTRIBUTED MULTITIERED APPLICATIONS 31

personnel involved in web page design do not need to understand Java program-
ming language syntax to do their jobs.

Applets that run in other network-based systems such as handheld devices or car
phones can render Wireless Markup Language (WML) pages generated by a JSP
page or servlet running on the J2EE server. The WML page is delivered over
Wireless Application Protocol (WAP) and the network configuration requires a
gateway to translate WAP to HTTP and back again. The gateway translates the
WAP request coming from the handheld device to an HTTP request for the J2EE
server, and then translates the HTTP server response and WML page to a WAP
server response and WML page for display on the handheld device.

JavaBeans™ Component Architecture

The client tier might also include a component based on the JavaBeans™ com-
ponent architecture (JavaBeans component) to manage the data flow between an
application client or applet and components running on the J2EE server. Java-
Beans components are not considered J2EE components by the J2EE specifica-
tion.

JavaBeans components written for the J2EE platform have instance variables
andget andset methods for accessing the data in the instance variables. Java-
Beans components used in this way are typically simple in design and imple-

mentation, but should conform to the naming and design conventions outlined in

the JavaBeans component architecture.

J2EE Server Communications

Figure 2 shows the various elements that can make up the client tier. The client
communicates with the business tier running on the J2EE server either directly,
or as in the case of a client running in a browser, by going through JSP pages or
servlets running in the web tier.

32

OVERVIEW
Client Tier
Web Browser lﬁ
Web pages, applets, > < >
and optional Web Tier
JavaBeans class Business
Tier
Application Client <« >
and optional
JavaBeans class

J2EE Server

Figure 2 Server Communications

Thin Clients

A thin client is a lightweight and typically browser-based interface to the appli-
cation. Thin clients do not do things like query databases, execute complex busi-
ness rules, or connect to legacy applications. When you use a thin client,
heavyweight operations like these are off-loaded to web or enterprise beans exe-
cuting on the J2EE server where they can leverage the security, speed, services,
and reliability of J2EE server-side technologies.

Your J2EE application uses a thin browser-based client or thick application cli-
ent. In deciding which one to use, you should be aware of the tradeoffs between
keeping functionality on the client and close to the user (thick client) and off-
loading as much functionality as possible to the server (thin client). The more
functionality you offload to the server, the easier it is to distribute, deploy, and
manage the application; however, keeping more functionality on the client can
make for a bettgperceiveduser experience.

Web Components

J2EE web components can be either JSP pages or servlets. Servlets are Java pro-
gramming language classes that dynamically process requests and construct
responses. JSP pages are text-based documents that execute as servlets, but allow
a more natural approach to creating static content.

Static HTML pages and applets are bundled with web components during appli-
cation assembly, but are not considered web components by the J2EE specifica-

DISTRIBUTED MULTITIERED APPLICATIONS 33

tion. Server-side utility classes can also be bundled with web components, and
like HTML pages, are not considered web components.

Like the client tier and as shown in Figure 3, the web tier might include a Java-
Beans object to manage the user input and send that input to enterprise beans
running in the business tier for processing.

Web Tier
Web Browser
Web pages, applet, > < >
and optional JSP Pages JavaBeans
JavaBeans class Servlets Class Business
) Tier
(optional)
Application Client <€
and optional
JavaBeans class

J2EE Server
Figure 3 Web Tier and J2EE Application

Business Components

Business code, which is logic that solves or meets the needs of a particular busi-
ness domain such as banking, retail, or finance, is handled by enterprise beans
running in the business tier. Figure 4 shows how an enterprise bean receives data
from client programs, processes it (if necessary), and sends it to the enterprise
information system tier for storage. An enterprise bean also retrieves data from
storage, processes it (if necessary), and sends it back to the client program.

OVERVIEW

Business

Tier EIS Tier
Web Browser
Web pages, applets, <€ » <«
and optional .
JavaBeans class JSP Pages JavaBeans Entity Beans Database
Servlets Class Session Beans &
(optional) Message-Driven Legacy
p Beans Systems
Application Client »
and optional »
JavaBeans class
J2EE Server

Figure 4 Business and EIS Tiers

There are three kinds of enterprise beans: session beans, entity beans, and mes-
sage-driven beans. A session bean represents a transient conversation with a cli-
ent. When the client finishes executing, the session bean and its data are gone. In
contrast, an entity bean represents persistent data stored in one row of a database
table. If the client terminates or if the server shuts down, the underlying services
ensure the entity bean data is saved.

A message-driven bean combines features of a session bean and a Java Message
Service (JMS) message listener, allowing a business component to receive JMS
messages asynchronously. This tutorial describes entity beans and session beans.
For information on message-driven beans, see the Java Message Service Tuto-
rial, which is online at:

http://java.sun.com/products/jms/tutorial/index.htm]l

Enterprise Information System Tier

The enterprise information system tier handles enterprise information system
software, and includes enterprise infrastructure systems such as enterprise
resource planning (ERP), mainframe transaction processing, database systems,
and other legacy information systems. J2EE application components might need
access to enterprise information systems for database connectivity, for example.

J2EE Architecture

Normally, thin-client multitiered applications are hard to write because they
involve many lines of intricate code to handle transaction and state management,

http://java.sun.com/products/jms/tutorial/index.html

J2EE ARCHITECTURE 35

multithreading, resource pooling, and other complex low-level details. The com-
ponent-based and platform-independent J2EE architecture makes J2EE applica-
tions easy to write because business logic is organized into reusable components
and the J2EE server provides underlying services in the form of a container for
every component type. Because you do not have to develop these services your-
self, you are free to concentrate on solving the business problem at hand.

Containers and Services

Containers are the interface between a component and the low-level platform-

specific functionality that supports the component. Before a web, enterprise

bean, or application client component can be executed, it must be assembled into
a J2EE application and deployed into its container.

The assembly process involves specifying container settings for each component
in the J2EE application and for the J2EE application itself. Container settings
customize the underlying support provided by the J2EE server, which include
services such as security, transaction management, Java Naming and Directory
Interface™ (JNDI) lookups, and remote connectivity. Here are some of the high-
lights:

« The J2EE security model lets you configure a web component or enterprise
bean so system resources are accessed only by authorized users.

« The J2EE transaction model lets you specify relationships among methods
that make up a single transaction so all methods in one transaction are
treated as a single unit.

» JNDI lookup services provide a unified interface to multiple naming and
directory services in the enterprise so application components can access
naming and directory services.

» The J2EE remote connectivity model manages low-level communications
between clients and enterprise beans. After an enterprise bean is created, a
client invokes methods on it as if it were in the same virtual machine.

The fact that the J2EE architecture provides configurable services means that
application components within the same J2EE application can behave differently
based on where they are deployed. For example, an enterprise bean can have
security settings that allow it a certain level of access to database data in one pro-
duction environment and another level of database access in another production
environment.

The container also manages non-configurable services such as enterprise bean
and servlet life cycles, database connection resource pooling, data persistence,

36

OVERVIEW

and access to the J2EE platform APIs described]2&E APIs (page 42).
Although data persistence is a non-configurable service, the J2EE architecture
lets you override container-managed persistence by including the appropriate
code in your enterprise bean implementation when you want more control than
the default container-managed persistence provides. For example, you might use
bean-managed persistence to implement your own finder (search) methods or to
create a customized database cache.

Container Types

The deployment process installs J2EE application components in the J2EE con-
tainers illustrated in Figure 5.

J2EE server—is the runtime portion of a J2EE product. A J2EE server pro-
vides EJB and web containers.

Enterprise JavaBeans (EJB) container—manages the execution of enter-
prise beans for J2EE applications. Enterprise beans and their container run
on the J2EE server.

Web container—manages the execution of JSP page and servlet compo-
nents for J2EE applications. Web components and their container run on
the J2EE server.

Application client container—manages the execution of application client
components. Application clients and their container run on the client.

Applet container—manages the execution of applets. Consists of a web
browser and Java Plug-in together running on the client.

PACKAGING 37

J2EE Server
Browser (o »
Servlet JSP Page
) ' g Web Container)
Application Database
Client
Appl(i:catiop Client Enterprise ||| Enterprise
ontainer Bean Bean
< ' g
Client Machine .
EJB Container

Figure 5 J2EE Server and Containers

Packaging

J2EE components are packaged separately and bundled into a J2EE application
for deployment. Each component, its related files such as GIF and HTML files or
server-side utility classes, and a deployment descriptor (DD), are assembled into
a module and added to the J2EE application. A J2EE application is composed of
one or more enterprise bean, web, or application client component modules. The
final enterprise solution can use one J2EE application or be made up of two or
more J2EE applications depending on design requirements

A J2EE application and each of its modules has its own deployment descriptor.
A deployment descriptor is an Extensible Markup Language (XML) text-based
file with an .xm1 extension that describes a component’s deployment settings.
An enterprise bean module deployment descriptor, for example, declares trans-
action attributes and security authorizations for an enterprise bean. Because
deployment descriptor information is declarative, it can be changed without
modifying the bean source code. At run time, the J2EE server reads the deploy-
ment descriptor and acts upon the component accordingly.

A J2EE application with all of its modules is delivered in an Enterprise ARchive
(EAR) file. An EAR file is a standard JAR file with arear extension. In the
GUI version of the J2EE SDK application deployment tool, you create an EAR

38

OVERVIEW

file first and add JAR and WAR files to the EAR. If you use the command line
packager tools, however, you create the Java ARchive (JARs) and Web ARchive
(WAR) files first and create the EAR. The J2EE SDK tools are described in
Tools (page 45).

» Each EJB JAR file contains its deployment descriptor, related files, and the
.class files for the enterprise bean.

» Each application client JAR file contains its deployment descriptor, related
files, and the class files for the application client.

» Each WAR file contains its deployment descriptor, related files, and the
.class files for the servlet orjsp files for a JSP page.

Using modules and EAR files makes it possible to assemble a number of differ-

ent J2EE applications using some of the same components. No extra coding is
needed; it is just a matter of assembling various J2EE modules into J2EE EAR

files.

Development Roles

Reusable modules make it possible to divide the application development and
deployment process into distinct roles so different people or companies can per-
form different parts of the process.

The first two roles involve purchasing and installing the J2EE product and tools.
Once software is purchased and installed, J2EE components can be developed by
application component providers, assembled by application assemblers, and
deployed by application deployers. In a large organization, each of these roles
might be executed by different individuals or teams. This division of labor works
because each of the earlier roles outputs a portable file that is the input for a sub-
sequent role. For example, in the application component development phase, an
enterprise bean software developer delivers EJB JAR files. In the application
assembly role, another developer combines these EJB JAR files into a J2EE
application and saves it in an EAR file. In the application deployment role, a sys-
tem administrator at the customer site uses the EAR file to install the J2EE appli-
cation into a J2EE server.

The different roles are not always executed by different people. If you work for a
small company, for example, or if you are prototyping a sample application, you
might perform the tasks in every phase.

DEVELOPMENT ROLES 39

J2EE Product Provider

The J2EE product provider is the company that designs and makes available for
purchase the J2EE platform, APIs, and other features defined in the J2EE speci-
fication. Product providers are typically operating system, database system,
application server, or web server vendors who implement the J2EE platform
according to the Java 2 Platform, Enterprise Edition Specification.

Tool Provider

The tool provider is the person or company who creates development, assembly,
and packaging tools used by component providers, assemblers, and deployers.
SeeTools (page 45) for information on the tools available with J2EE SDK ver-
sion 1.3.

Application Component Provider

The application component provider is the company or person who creates web
components, enterprise beans, applets, or application clients for use in J2EE
applications.

Enterprise Bean Creation
A software developer performs the following tasks to deliver an EJB JAR file
that contains the enterprise bean:

» Writes and compiles the source code

» Specifies the deployment descriptor

« Bundles the class files and deployment descriptor into an EJB JAR file

Web Component Creation
A web designer (JSP pages) or software developer (servlets) performs the fol-
lowing tasks to deliver a WAR file containing the web component.

« Writes and compiles servlet source code

e Writes JSP and HTML files

« Specifies the deployment descriptor for the web component

« Bundles the.class, .jsp, .html1, and deployment descriptor files in the
WAR file

40

OVERVIEW

J2EE Application Client Creation

A software developer performs the following tasks to deliver a JAR file contain-
ing the J2EE application client.

» Writes and compiles the source code
» Specifies the deployment descriptor for the client
» Bundles the class files and deployment descriptor into the JAR file

Application Assembler

The application assembler is the company or person who gets application com-
ponent JAR files from component providers and assembles them into a J2EE
application EAR file. The assembler or deployer can edit the deployment
descriptor directly or use tools that correctly add XML tags according to interac-
tive selections. A software developer performs the following tasks to deliver an
EAR file containing the J2EE application.

» Assembles EJB JAR and web components (WAR) files created in the pre-
vious phases into a J2EE application (EAR) file.

» Specifies the deployment descriptor for the J2EE application.

» \rifies that the contents of the EAR file are well-formed and comply with
the J2EE specification.

Application Deployer and Administrator

The company or person who configures and deploys the J2EE application,
administers the computing and networking infrastructure where J2EE applica-
tions run, and oversees the runtime environment. Duties include such things as
setting transaction controls and security attributes, and specifying connections to
databases.

During configuration, the deployer follows instructions supplied by the applica-
tion component provider to resolve external dependencies, specify security set-
tings, and assign transaction attributes. During installation, the deployer moves
the application components to the server, and generates the container-specific
classes and interfaces.

REFERENCE | MPLEMENTATION SOFTWARE 41

A deployer/system administrator performs the following tasks to install and con-
figure a J2EE application.

« Adds the J2EE application (EAR) file created in the preceding phase to the
J2EE server.

« Configures the J2EE application for the operational environment by mod-
ifying the deployment descriptor of the J2EE application.

* \Verifies that the contents of the EAR file are well-formed and comply with
the J2EE specification.

« Deploys (installs) the J2EE application EAR file into the J2EE server.

Reference Implementation Software

The J2EE SDK is a non-commercial operational definition of the J2EE platform
and specification made freely available by Sun Microsystems for demonstra-
tions, prototyping, and educational use. It comes with the J2EE application
server, web server, relational database, J2EE APIs, and complete set of develop-
ment and deployment tools. You can download the J2EE SDK from the web:

http://java.sun.com/j2ee/download.html#sdk

» Product providers use the J2EE SDK to determine what their implementa-
tions must do under a given set of application conditions, and to run the
J2EE Compatibility Test Suite to test that their J2EE products fully comply
with the specification.

» Application component developers run their J2EE applications on the
J2EE SDK to verify that applications are fully portable across all J2EE
products and tools.

Web Server

The web server provides services to one or more web containers. For example, a
web container typically relies on a web server to provide HTTP message han-
dling. A J2EE implementation is not required to support a particular type of web
server, which means the web server supported by different J2EE products can
vary.

http://java.sun.com/j2ee/download.html#sdk

42

OVERVIEW

Database Access

The relational database provides persistent storage for application data. A J2EE
implementation is not required to support a particular type of database which
means the database supported by different J2EE products can vary. See the
Release Notes included with the J2EE SDK download for a list of the databases
currently supported by the reference implementation.

J2EE APIs

The Java 2 Platform, Standard Edition (J2SE™) SDK is required to run the J2EE
SDK and provides core APIs for writing J2EE components, core development
tools, and the Java virtual machine. The J2EE SDK provides the following APls
to be used in J2EE applications.

Enterprise JavaBeans Technology 2.0

An enterprise bean is a body of code with fields and methods to implement mod-
ules of business logic. You can think of an enterprise bean as a building block
that can be used alone or with other enterprise beans to execute business logic on
the J2EE server.

There are three kinds of enterprise beans: session beans, entity beans, and mes-
sage-driven beans as describedimsinessComponents (page 33). You do not

have to write any SQL code or use the JDBC™ API directly to perform database
access operations with an entity bean. The EJB container handles this for you.
However, if you override the default container-managed persistence for any rea-
son, you will need to use the JDBC API. Also, if you choose to have a session
bean access the database, you have to use the JDBC API.

JDBC™ 2.0 API

The JDBC API lets you invoke SQL commands from Java programing language
methods. You use the JDBC API in an enterprise bean when you override the
default container-managed persistence or have a session bean access the data-
base. With container-managed persistence, database access operations are han-
dled by the container and your enterprise bean implementation contains no
JDBC code or SQL commands. You can also use the JDBC API from a servlet or
JSP page to access the database directly without going through an enterprise
bean.

REFERENCE | MPLEMENTATION SOFTWARE 43

The JDBC API has two parts: an application-level interface used by the applica-
tion components to access a database, and a service provider interface to attach a
JDBC driver to the J2EE platform.

Java Servlet Technology 2.3

Java Servlet technology lets you define HTTP-specific servlet classes. A servlet
class extends the capabilities of servers that host applications accessed by way of
a request-response programming model. Although servlets can respond to any
type of request, they are commonly used to extend the applications hosted by
web servers.

JavaServer Pages (JSP) Technology 1.2

JSP pages technology lets you put snippets of servlet code directly into a text-
based document. A JSP page is a text-based document that contains two types of
text: static template data which can be expressed in any text-based format such
as HTML, WML, and XML, and JSP elements that determine how the page con-
structs dynamic content.

Java Message Service (JMS) 1.0

The JMS APl is a messaging standard that allows J2EE application components
to create, send, receive, and read messages. It enables distributed communication
that is loosely coupled, reliable, and asynchronous. For more information on
JMS see theonline Java Message Service Tutorial:

http://java.sun.com/products/jms/tutorial/index.html

Java Transaction API (JTA) 1.0

The JTA API provides a standard demarcation interface for demarcating transac-
tions. The J2EE architecture provides a default auto commit to handle transac-
tion commits and roll backs. An auto commit means any other applications
viewing data will see the updated data after each database read or write opera-
tion. However, if your application performs two separate database access opera-
tions that depend on each other, you will want to use the JTA API to demarcate
where the entire transaction, including both operations, begins, rolls back, and
commits.

JavaMail™ Technology 1.2

Many Internet applications need to send email notifications so the J2EE platform
includes the JavaMail APl with a JavaMail service provider that application

http://java.sun.com/products/jms/tutorial/index.html

44

OVERVIEW

components can use to send Internet mail. The JavaMail API has two parts: an
application-level interface used by the application components to send mail, and
a service provider interface.

JavaBeans Activation Framework 1.0

The JavaBeans Activation Framework is included because JavaMail uses it. It
provides standard services to determine the type of an arbitrary piece of data,
encapsulate access to it, discover the operations available on it, and create the
appropriate JavaBean component to perform those operations.

Java API for XML Processing (JAXP) 1.1

XML is a language for representing and describing text-based data so the data
can be read and handled by any program or tool that uses XML APIs. Programs
and tools can generate XML files that other programs and tools can read and
handle.

For example, a J2EE application can use XML to produce reports, and different
companies that receive the reports can handle the data in a way that best suits
their needs. One company might put the XML data through a program to trans-
late the XML to HTML so it can post the reports to the web, another company
might put the XML data through a tool to create a marketing presentation, and
yet another company might read the XML data into its J2EE application for pro-
cessing.

J2EE Connector Architecture 1.0

The J2EE Connector Architecture is used by J2EE tools vendors and system
integrators to create resource adapters that support access to enterprise informa-
tion systems that can be plugged into any J2EE product. A resource adapter is a
software component that allows J2EE application components to access and
interact with the underlying resource manager. Because a resource adapter is
specific to its resource manager, there is typically a different resource adapter for
each type of database or enterprise information system.

Java Authentication and Authorization Service (JAAS) 1.0

The Java Authentication and Authorization Service (JAAS) provides a way for a
J2EE application to authenticate and authorize a specific user or group of users
to run it.

REFERENCE | MPLEMENTATION SOFTWARE 45

JAAS is a Java programing language version of the standard Pluggable Authenti-
cation Module (PAM) framework that extends the Java 2 platform security archi-
tecture to support user-based authorization.

Simplified Systems Integration

The J2EE platform is a platform-independent and full systems integration solu-
tion that creates an open marketplace in which every vendor can sell to every
customer. Such a marketplace encourages vendors to compete, not by trying to
lock customers into their technologies, but by trying to outdo each other by pro-
viding products and services that benefit customers such as better performance,
better tools, or better customer support.

The J2EE APIs enable systems and applications integration as follows:

« Unified application model across tiers with enterprise beans.

» Simplified response and request mechanism with JSP pages and servlets.

« Reliable security model with JAAS API.

« XML-based data interchange integration with the JAXP API.

» Simplified interoperability with the J2EE Connector Architecture.

- Easy database connectivity with the JDBC API.

« Enterprise application integration with message-driven beans and the JMS,

JTS, and JNDI APlIs.

You can learn more about using the J2EE platform to build integrated business
systems by readindEE Technology in Practice

http://java.sun.com/j2ee/inpractice/aboutthebook.html

Tools

The J2EE reference implementation provides an application deployment tool
and an array of scripts for assembling, verifying, and deploying J2EE applica-
tions and managing your development and production environments. See
J2EE™ SDK ®ols (page 453) for a discussion of the tools.

Application Deployment Tool

The J2EE reference implementation provides an application deployment tool for
assembling, verifying, and deploying J2EE applications. There are two versions:
command-line and GUI.

http://java.sun.com/j2ee/inpractice/aboutthebook.html

46

OVERVIEW

The GUI tool includes wizards for

» Packaging, configuring, and deploying J2EE applications
» Packaging and configuring enterprise beans

» Packaging and configuring web components

» Packaging and configuring application clients

» Packaging and configuring resource adaptors

In addition, configuration information can be set for each component and mod-

ule type in the tabbed inspector panels.

Scripts

Table 1 lists the scripts included with the J2EE reference implementation that let

you perform operations from the command line.

Table 1 J2EE Scripts

the

cli-

Script Description

j2ee Start and stop the J2EE server.

cloudscape Start and stop the default database.

j2eeadmin Add JDBC drivers, JMS destinations, and connection factories for variols
resources.

keytool Create public and private keys and generate X509 self-signed certificat

realmtool Import certificate files. Add J2EE users to and remove J2EE users from
authentication and authorization list for a J2EE application.

packager Package J2EE application components into EAR, EJB JAR, application
ent JAR, and WAR files.

verifier Verify that EAR, EJB JAR, application client JAR, and WAR files are we|
formed and comply with the J2EE specification.

runclient Run a J2EE application client.

cleanup Remove all deployed applications from the J2EE server.

Getting Started

by Dale Green

T HIS chapter shows you how to develop, deploy, and run a simple client-server
application that consists of an currency conversion enterprise bean and two cli-
ents: a J2EE™ application client and a web client that consists of a JSP page.

Setting Up 48
Getting the Example Code 48
Getting the Build Tool (ant) 48
Checking the Environment Variables 49
Starting the J2EE™ Server 49
Starting the deploytool 49
Creating the J2EE™ Application 50
Creating the Enterprise Bean 50
Coding the Enterprise Bean 50
Compiling the Source Files 52
Packaging the Enterprise Bean 53
Creating the J2EE™ Application Client 54
Coding the J2EE Application Client 54
Compiling the Application Client 56
Packaging the J2EE Application Client 57
Specifying the Application Client’s Enterprise Bean Reference 57
Creating the Web Client 58
Coding the Web Client 58
Compiling the Web Client 60
Packaging the Web Client 60
Specifying the Web Client’s Enterprise Bean Reference 61
Specifying the JNDI Names 61
Deploying the J2EE™ Application 62
Running the J2EE™ Application Client 63
Running the Web Client 64

47

Bios.html

48 GETTING STARTED

Modifying the J2EE™ Application 64
Modifying a Class File 65
Adding a File 65
Modifying the Web Client 65
Modifying a Deployment Setting 66
Common Problems and Their Solutions 66
Cannot Start the J2EE Server 66
Compilation Errors 67
Deployment Errors 68
J2EE Application Client Runtime Errors 69
Web Client Runtime Errors 70
Detecting Problems With the Verifier Tool 71
Comparing Your EAR Files With Ours 71
When All Else Fails 71
About JNDI Naming 71

Setting Up

Before you start developing the example application, you should follow the
instructions in this section.

Getting the Example Code

The source code for components isjeetutorial/examples/src/ejb/con-
verter, a directory that is created when you unzip the tutorial bundle. If you are
viewing this tutorial online, you need to download the tutorial bundle from:

http://java.sun.com/j2ee/download.html#tutorial

Getting the Build Tool (ant)

To build the example code you'll need installations of the J2EE SDKaanda
portable make tool. For more information, sklew to Build and Run the

Examples (page xxiii).

http://java.sun.com/j2ee/download.html#tutorial

SETTING UP 49

Checking the Environment Variables

The installation instructions for the J2EE SDK aatt explain how to set the
required environment variables. Please verify that the environment variables
have been set to the values noted in the following table.

Table 2 Required Environment Variables

Environment Variable | Value

JAVA_HOME The location of the J2SE™ SDK installation.

J2EE_HOME The location of the J2EE™ SDK installation.

ANT_HOME The location of thant installation.

PATH Shou_ld inclu_de thé1n directories of the J2EE SDK, J2SE, ar|d
ant installations.

Starting the J2EE™ Server

To launch the J2EE server, open a terminal window and type this command:
j2ee -verbose

Although optional, theverbose option is useful for debugging. To stop the
server, type the following command:

j2ee -stop

Starting the deploytool

The deploytool has two modes: command-line and GUI. The instructions in this
chapter refer to the GUI version. To start e Toytool GUI, open a terminal
window and type this command:

deploytool

To view the tool's context-sensitive help, préss

GETTING STARTED

Creating the J2EE™ Application

The sample application contains three J2EE components: an enterprise bean, a
J2EE application client, and a web component. Before building these compo-
nents, you will create a new J2EE application calt@éverterApp and will
store it in a file namedonverterApp.ear.

1. In thedeploytool, select File -> New-> Application.

2. Click Browse.

3. In the file chooser, navigate §@eetutorial/examples/src/ejb/con-
verter.

4. In the File Name field enté€bnverterApp.ear.
. Click New Application.
6. Click OK.

62

Creating the Enterprise Bean

An enterprise bean is a server-side component that contains the business logic of
an application. At run time, the application clients execute the business logic by
invoking the enterprise bean’s methods. The enterprise bean in our example is a
stateless session bean cal@ghverterEJB. The source code for theonvert-

erEJB bean is in thg2eetutorial/examples/src/ejb/converter directory.

Coding the Enterprise Bean
The enterprise bean in this example requires the following code:

* Remote interface
* Home interface
» Enterprise bean class

Coding the Remote Interface

A remote interface defines the business methods that a client may call. The busi-
ness methods are implemented in the enterprise bean code. The source code for
the Converter remote interface follows.

CREATING THE ENTERPRISE BEAN

import javax.ejb.EJBObject;
import java.rmi.RemoteException;
import java.math.*;

public interface Converter extends EJBObject {

public BigDecimal dollarToYen(BigDecimal dollars)
throws RemoteException;

public BigDecimal yenToEuro(BigDecimal yen)
throws RemoteException;

}

Coding the Home Interface

A home interface defines the methods that allow a client to create, find, or
remove an enterprise bean. TeenverterHome interface contains a single cre-
ate method, which returns an object of the remote interface type. Here is the
source code for theonverterHome interface:

import java.io.Serializable;
import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface ConverterHome extends EJBHome {

Converter create() throws RemoteException, CreateException;

}

Coding the Enterprise Bean Class

The enterprise bean class for this example is callederterBean. This class
implements the two business methods]TarToYen and yenToEuro, that the
Converter remote interface defines. The source code fordtieverterBean
class follows.

import java.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import java.math.*;

public class ConverterBean implements SessionBean {

BigDecimal yenRate = new BigDecimal(*121.6000");
BigDecimal euroRate = new BigDecimal(“0.0077");

public BigDecimal dollarToYen(BigDecimal dollars) {

51

52

GETTING STARTED

BigDecimal result = dollars.multiply(yenRate);
return result.setScale(2,BigDecimal.ROUND_UP);
}

public BigDecimal yenToEuro(BigDecimal yen) {

BigDecimal result = yen.multiply(euroRate);
return result.setScale(2,BigDecimal.ROUND_UP);
}

public ConverterBean() {}

public void ejbCreate() {}

public void ejbRemove() {}

public void ejbActivate() {}

public void ejbPassivate() {}

public void setSessionContext(SessionContext sc) {}

Compiling the Source Files

Now you are ready to compile the remote interfacengerter.java), home
interface ConverterHome.java), and the enterprise bean clas®rverter-
Bean.java):

1. In a terminal window, go to thizeetutorial/examples/src directory.
2. Type the following command:

ant converter

This command compiles the source files for the enterprise bean and the J2EE
application client. It places the resulting class files in fdeetutorial/exam-
ples/build/ejb/converter directory. For more information abouiht, see

How to Build and Run the Examples (page xxiii).

Note: When compiling the code, the precedingt task includes thg2ee. jar file

in the classpath. This file resides in théb directory of your J2EE SDK installa-
tion. If you plan on using other tools to compile the source code for J2EE compo-
nents, make sure that the classpath includes2be. jar file.

CREATING THE ENTERPRISE BEAN 53

Packaging the Enterprise Bean

In this section you will run the New Enterprise Bean Wizard of degloytool
to perform these tasks:

» Create the bean’s deployment descriptor.
« Package the deployment descriptor and the bean’s classes in an EJB JAR
file.

e In

To start

sert the EJB JAR file into the application@nverterApp.ear file.

the New Enterprise Bean Wizard, select File->New-> Enterprise Bean.

The wizard displays the following dialog boxes.

1. Introduction Dialog Box

a.
b.

Read this explanatory text for an overview of the wizard's features.
Click Next.

2. EJB JAR Dialog Box

a.

Select the Create new JAR File in Application button.

b. In the combo box, select ConverterApp.

D QO O

g
h

. In the JAR Display Name field ent@&nverter]AR.
. Click Edit.
. In the tree under Available Files, locate theeetutorial/exam-

ples/build/ejb/converter directory. (If theconverter directory is
many levels down in the tree, you can simplify the tree view by entering
all or part of theconverter directory’s path name in the Starting Direc-
tory field.)

Select the following classes from the Available Files tree and click Add:

Converter.class, ConverterBean.class, ConverterHome.class.
(You may also drag and drop these class files to the Contents text area.)

. Click OK.
. Click Next.

3. General Dialog Box

a.

Under Bean Type, select the Session radio button.

Select the Stateless radio button.

In the Enterprise Bean Class combo box, select ConverterBean.

. In the Enterprise Bean Name field, erti@iverterEJB.

. In the Remote Home Interface combo box, select ConverterHome.

GETTING STARTED

f. In the Remote Interface combo box, select Converter.
g. Click Next.

4. Transaction Management Dialog Box

Because you may skip the remaining dialog boxes, click Finish.

Creating the J2EE™ Application Client

A J2EE application client is a program written in the Java™ programming lan-
guage. At run time, the client program executes in a different virtual machine
(VM) than the J2EE server.

The J2EE application client in this example requires two different JAR files. The
first JAR file is for the J2EE component of the client. This JAR file contains the
client’s deployment descriptor and its class files. When you run the New Appli-
cation Client wizard, theleploytool automatically creates the JAR file and
stores it in the application’s EAR file. Defined by tH2EE Specificationthe

JAR file is portable across all compliant J2EE servers.

The second JAR file contains stub classes that are required by the client program
at run time. These stub classes enable the client to access the enterprise beans
that are running in the J2EE server. Because this second JAR file is not covered
by the J2EE Specificationit is implementation-specific, intended only for the
J2EE SDK.

The J2EE application client source code is ijReetutorial/exam-
ples/src/ejb/converter/ConverterClient.java. You already compiled this
code along with the enterprise bean code in the secGompiling the Source
Files (page 52).

Coding the J2EE Application Client

The ConverterClient.java source code illustrates the basic tasks performed
by the client of an enterprise bean:

» Locating the home interface

» Creating an enterprise bean instance

* Invoking a business method

CREATING THE J2EE™ APPLICATION CLIENT 55

Locating the Home Interface

TheConverterHome interface defines life-cycle methods suchcasate. Before
the ConverterClient can invoke thecreate method, it must instantiate an
object whose type iGonverterHome. This is a three-step process:

1. Create a JNDI naming context. SAbout JNDI Naming (page 71) for
background on naming contexts.

Context initial = new InitialContext();
2. Retrieve the object bound to the nasnik/SimpleConverter.

Object objref = initial.lookup
("java:comp/env/ejb/SimpleConverter");

3. Narrow the reference toCanverterHome object.

ConverterHome home =
(ConverterHome) PortableRemoteObject.narrow(objref,
ConverterHome.class);

Creating an Enterprise Bean Instance

To create the bean instance, the client invokesciteate method on theCon-
verterHome object. Thecreate method returns an object whose typeCisi-
verter. The remoteConverter interface defines the business methods of the
bean that the client may call. When the client invokes dheate method, the
EJB container instantiates the bean and then invokesdinerterBean.ejb-
Create method. The client invokes theeate method as follows:

Converter currencyConverter = home.create();

Invoking a Business Method

Calling a business method is easy—you simply invoke the method otothe
verter object. The EJB container will invoke the corresponding method on the
ConverterEJ]B instance that is running on the server. The client invokesghe
larToYen business method in the following lines of code.

BigDecimal param = new BigDecimal ("100.00");
BigDecimal amount = currencyConverter.dollarToYen(param);

ConverterClient Source Code
The full source code for ti@nverterClient program follows.

GETTING STARTED

import javax.naming.Context;

import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import java.math.BigDecimal;

import Converter;
import ConverterHome;

public class ConverterClient {

public static void main(String[] args) {
try {
Context initial = new InitialContext();
Object objref = initial.lookup
(“java:comp/env/ejb/SimpleConverter”);

ConverterHome home =
(ConverterHome)PortableRemoteObject.narrow(objref,
ConverterHome.class);

Converter currencyConverter = home.create();

BigDecimal param = new BigDecimal (“100.00");

BigDecimal amount =
currencyConverter.dollarToYen(param);

System.out.println(amount);

amount = currencyConverter.yenToEuro(param);

System.out.printTn(amount) ;

System.exit(0);
} catch (Exception ex) {

System.err.println(“Caught an unexpected exception!”);
ex.printStackTrace();

Compiling the Application Client

The application client files are compiled at the same time as the enterprise bean
files, as described i@ompiling the Source Files (page 52).

CREATING THE J2EE™ APPLICATION CLIENT 57

Packaging the J2EE Application Client

To package an application client component, you run the New Application Client
Wizard of thedeploytool. During this process, the wizard puts the client files
into a JAR file and then adds the JAR file to the applicatianis/erterApp.ear

file.

To start the New Application Client Wizard, select File->New->Application Cli-
ent. The wizard displays the following dialog boxes.
1. Introduction Dialog Box:
a. Read this explanatory text for an overview of the wizard’s features.
b. Click Next.

2. JAR File Contents Dialog Box
a. In the combo box, select ConverterApp.
b. Click Edit.

c. In the tree under Available Files, locate theeetutorial/exam-
ples/build/ejb/converter directory.

d. Select the ConverterClient.class file and click Add.
e. Click OK.
f. Click Next.

3. General Dialog Box:

a. In the Main Class combo box, select ConverterClient.
b. Verify that the entry in the Display Name field is ConverterClient.

c. In the Callback Handler Class combo box, select container-managed
authentication.

d. Click Next.
e. Click Finish.

Specifying the Application Client’s Enterprise Bean
Reference

When it invokes thd ookup method, the ConverterClient refers to an enterprise
bean:

Object objref = initial.lookup
("java:comp/env/ejb/SimpleConverter");

GETTING STARTED

You specify this reference as follows:

. In the tree, select ConverterClient.

. Select the EJB Refs tab.

. Click Add.

. In the Coded Name column enégb/SimpleConverter.
. In the Type column, select Session.

. In the Interfaces column, select Remote.

. In the Home Interface column ent@nverterHome.

. In the Local/Remote Interface column ertietiverter.

00O N O O b WN P

Creating the Web Client

The web client is contained in the JSP pageeetutorial/exam-
ples/src/ejb/converter/index.jsp. A JSP page is a text-based document
that contains static template data, which can be expressed in any text-based for-
mat such as HTML, WML, and XML and JSP elements, which construct
dynamic content.

Coding the Web Client

The statements (highlighted below) for locating the home interface, creating an
enterprise bean instance, and invoking a business method are nearly identical to
those of the J2EE application client. The parameter of t&up method is the

only difference; the motivation for using a different name is discuss&patci-

fying the JNDI Names (page 61).

The classes needed by the client are declared with a JSP directive (enclosed
within the<%@ %> characters). Because locating the home interface and creating
the enterprise bean are performed only once, they appear in a JSP declaration
(enclosed within the%! %> characters), that contains the initialization method,
jspInit, of the JSP page. The declaration is followed by standard HTML
markup for creating a form with an input field. A scriptlet (enclosed within the

<% %> characters) retrieves a parameter from the request and converts it to a dou-
ble. Finally, JSP expressions (enclosed witkis %> characters) invoke the
enterprise bean’s business methods and insert the result into the stream of data
returned to the client.

CREATING THE WEB CLIENT

<%@ page import="Converter,ConverterHome,javax.ejb.*,
javax.naming.*, javax.rmi.PortableRemoteObject,
java.rmi.RemoteException" %>
<%
private Converter converter = null;
public void jspInit() {
try {
InitialContext ic = new InitialContext();
Object objRef = 1ic.lookup("
java:comp/env/ejb/TheConverter');
ConverterHome home =
(ConverterHome)PortableRemoteObject.narrow(
objRef, ConverterHome.class);
converter = home.create();
} catch (RemoteException ex) {

}

%>

<html>

<head>
<title>Converter</title>

</head>

<body bgcolor="white">
<hl><center>Converter</center></hl>
<hr>
<p>Enter an amount to convert:</p>
<form method="get">
<input type="text" name="amount" size="25">

<p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">
</form>
<%
String amount = request.getParameter("amount");
if (amount != null &% amount.length() > 0) {
BigDecimal d = new BigDecimal (amount);
%>
<p><%= amount %> dollars are
<%= converter.dollarToYen(d) %> Yen.
<p><%= amount %> Yen are
<%= converter.yenToEuro(d) %> Euro.
<%

60

GETTING STARTED

}
%>
</body>
</html>

Compiling the Web Client

The J2EE server automatically compiles web clients that are JSP pages. If the
web client were a servlet, you would have to recompile it.

Packaging the Web Client

To package a web component, you run the New Web Component Wizard of the
deploytool. During this process, the wizard puts the client files into a WAR file
and then adds the WAR file to the applicatialvsverterApp.ear file.

To start the New Web Component Wizard, select File->New->Web Component.
The wizard displays the following dialog boxes.
1. Introduction Dialog Box:
a. Read this explanatory text for an overview of the wizard’s features.
b. Click Next.

2. WAR File Dialog Box
a. Select Create New WAR File in Application.
. In the combo box, select ConverterApp.
. In the WAR Display Name field, entesnverterWAR.
. Click Edit.

. In the tree under Available Files, locate theeetutorial/exam-
ples/build/ejb/converter directory

e. Select index.jsp and click Add.
f. Click OK.
g. Click Next.

o O T QO

3. Choose Component Type Dialog Box
a. Select the JSP radio button.
b. Click Next.

4. Component General Properties Dialog Box

a. In the JSP Filename combo box, select index.jsp.

SPECIFYING THE JNDI NAMES 61

b. Click Finish.

Specifying the Web Client’s Enterprise Bean
Reference

When it invokes th@ookup method, the web client refers to an enterprise bean:

Object objref = initial.lookup
("java:comp/env/ejb/TheConverter");

You specify this reference as follows:

. In the tree, select ConverterWAR.

. Select the EJB Refs tab.

. Click Add.

. In the Coded Name column enégb/TheConverter.

. In the Type column, select Session.

. In the Interfaces column, select Remote.

. In the Home Interface column ent@nverterHome.

. In the Local/Remote Interface column erti@tiverter.

0O N O O b WDN P

Specifying the JNDI Names

Although the J2EE application client and the web client access the same enter-
prise bean, their code refers to the bean by different names. The J2EE applica-
tion client refers to the bean a$mpleConverter, but the web client refers to it
asTheConverter. These references are in the parameters of ébeup calls. In

order for thelookup method to retrieve the bean, you must map the references in
the code to the bean’s JNDI name. Although this mapping adds a level of indi-
rection, it decouples the clients and the beans, making it easier to assemble
applications from J2EE components. For more information, Aeeut JNDI

Naming (page 71).
To map the bean references in the clients to the JNDI nhame of the bean, follow
these steps:

1. In the tree, select ConverterApp.

2. Select the JNDI Names tab.

62 GETTING STARTED

3. To specify a JNDI name for the bean, in the Application table locate the
ConverterEJB component and entgConverter in the JNDI Name col-
umn.

4. To map the references, in the References table @ptenverter in the
JNDI Name for each row.

The following screen shot shows what the JINDI Names tab should look like after
you've performed the preceding steps.

fie Eda Iosh FEelp

GElg@s EEAa o bk ¢ B

B Mrip= lwrprctiy His e fgpda pives U orrasri o B
¥ O sppatics mlmﬂmwm
¥ & Comssseripn) -
O preeerienc e N
& (J Comeriniae Camparani Tipe | Gomp ot AHCH Hama
= (il CorweiailaR Em CorwerarE S by " 11 P e
P& Sarer |
EI:I i)
|
| Helrrences
Fed Tyge | PalemresdBs | Febssrcs baes | D Hams
[EJB Pl L rfea SRryiRR Wi T Cofsme We orraalan
JB Rl Comemon ienl GIBIma i ome . Wl Dinilel

Figure 6 ConverterApp JNDI Names

Deploying the J2EE™ Application

Now that the J2EE application contains the components, it is ready for deploy-
ment.
1. Select the ConverterApp application.

2. Select Tools->Deploy.
3. Inthe Introduction dialog box, confirm that ConverterApp is shown for the
Object to Deploy andlocalhost for the Target Server.

4. Select the checkbox labelled Return Client Jar.

RUNNING THE J2EE™ APPLICATION CLIENT

5. In the text field that appears, enter the full path name for theédileert-
erAppClient.jar so that it will reside in thej2eetutorial/exam-
ples/src/ejb/converter subdirectory. TheConverterAppClient.jar
file contains the stub classes that enable remote access torthert-
erEJB bean.

6. Click Next.

7. In the INDI Names dialog box, verify the names you entered in the previ-
ous section.

8. Click Next.

9. Inthe WAR Context Root dialog box, entamverter in the Context Root
field. When you run the web client, tkenverter context root will be part
of the URL.

10. Click Next.
11.In the Review dialog box, click Finish.

12.In the Deployment Progress dialog box, click OK when the deployment
completes.

Running the J2EE™ Application Client

1. In a terminal window, go to th§2eetutorial/examples/src/ejb/con-
verter directory.

2. Verify that this directory contains tltenverterApp.ear andConverter-
AppClient.jar files.

3. Set the APPCPATH environment variabledénverterAppClient. jar.
4. Type the following command (on a single line):

runclient -client ConverterApp.ear -name ConverterClient
-textauth

5. The client container prompts you to login. Endaest for the user name
andguest123 for the password.

6. In the terminal window, the client displays these lines:

Binding name: ‘java:comp/env/ejb/SimpleConverter
12160.00

0.77

Unbinding name: ‘java:comp/env/ejb/SimpleConverter"

63

GETTING STARTED

Running the Web Client

To run the web client point your browser at the following URL. Replakest>
with the name of the host running the J2EE server. If your browser is running on
the same host as the J2EE server, you may replaast> with Tocalhost.

http://<host>:8000/converter

You should see the following after enteringe in the input field and clicking

Submit:
H Cormeerier - Mebsoapes a0
Flo Edt Vew GO Communcanr Hap
- ’ 3 B 22 @ =S o O 'Ii
5 Bak Apiond Ho®me Gassch Mescane Fiml Seoedly Shop
af “Bookmarks B Locstion fran ocelost O Cosweneriedan apTamoun=1 00 =] g ¥het's Faleted
T
Converter
Enter am amoint to conyvert
I
Submt | Rasat
100 dollare are 12160000 e
10D Yenmare 0,77 Euro.
o' &= Diocument; Dore o YO T T

Figure 7 Converter Web Client

Modifying the J2EE™ Application

Since the J2EE SDK is intended for experimentation, it supports iterative devel-
opment. Whenever you make a change to a J2EE application, you must redeploy
the application.

MODIFYING THE J2EE™ APPLICATION 65

Modifying a Class File

To modify a class file in an enterprise bean, you change the source code, recom-
pile it, and redeploy the application. For example, suppose that you want to
change the exchange rate in e TarToYen business method of th@nvert-

erBean class:

1. EditConverterBean. java.
2. RecompileConverterBean. java by typingant converter.
3. In the deploytool, select Tools->Update Files.

4. A dialog appears reporting the changed file. Verify thatverter-
Bean.class has been changed and dismiss the dialog.

5. Select Tools->Deploy. Make sure the checkbox labeled Save object before
deploying is checked.

You can also perform steps 4. and 5. by selecting Tools->Update and Redeploy.
The deploytool replaces the old JSP file fonverterApp.ear with the new
one and then redeploys the application.

Adding a File

To add a file to the EJB JAR or WAR of the application, you would perform
these steps:
1. Select the JAR or WAR in the tree.
. Select the General tab.
. Click Edit.
. In the tree of the Available Files field, locate the file and click Add.
. Click OK
. From the main toolbar, select Tools->Update and Redeploy.

o O A~ WDN

Modifying the Web Client

To modify the web client:

1. Editindex. jsp.
2. Executeant converter to copy the modified file to the build directory.
3. In the deploytool, select Tools->Update Files.

4. A dialog appears reporting the changed file. Verify thatex.jsp has
been changed and dismiss the dialog.

66

GETTING STARTED

5. Select Tools->Deploy. Make sure the checkbox labeled Save object before
deploying is checked.

You can also perform steps 4. and 5. by selecting Tools->Update and Redeploy.
The deploytool replaces the old JSP file ftonverterApp.ear with the new
one and then redeploys the application.

Modifying a Deployment Setting

To modify a deployment setting @bnverterApp, you edit the appropriate field
in a tabbed pane and redeploy the application. For example, to change the JNDI
name of theConverterBean from ATypo to MyConverter, you would follow
these steps:

1. In thedeploytool, select ConverterApp in the tree.

2. Select the JNDI Names tab.

3. In the JNDI Name field, ent®yConverter.

4. From the main toolbar, select File->Save.

5. Select Tools->Update and Redeploy.

Common Problems and Their Solutions

Cannot Start the J2EE Server

Naming and Directory Service Port Conflict

Symptom: When you start the J2EE server with therbose option, it displays
these lines:

J2EE server Tisten port: 1050
RuntimeException: Could not initialize server. . .

Solution: Another process is using port 1050. If the J2EE server is already run-
ning, you can stop it by typingj2ee -stop. If some other program is using the
port, then you can change the default port number (1050) by editingothe
fig/orb.properties file of your J2EE SDK installation.

For more information about default port numbers, seeGbafiguration Guide
in the documentation download bundle of the J2EE SDK.

COMMON PROBLEMS AND THEIR SOLUTIONS 67

Web Service Port Conflict
Symptom: When you start the J2EE server with therbose option, it displays
these lines:

LifecycleException: HttpConnector[8000].open:
java.net.BindException: Address in use.

Solution: Another process is using port 8000. You can change the default port
number (8000) by editing theonfig/web.properties file of your J2EE SDK
installation.

Incorrect XML Parser
Symptom: When you start the J2EE server with therbose option, it displays
these lines:

Exception in thread "main"
javax.xml.parsers.FactoryConfigurationError:
org.apache.xerces.jaxp.SAXParserFactoryImpl at .

Solution: Remove thgre/1ib/jaxp.properties file from your J2SE installa-
tion.

Compilation Errors

Ant Cannot Locate the Build File
Symptom: When you typent converter, these messages appear:

Buildfile: build.xml does not exist!
Build faiTed.

Solution: Before runningnt, go to thej2eetutorial/examples/src directory.

If you want to runant from your current directory, then you must specify the
build file on the command line. For example, on Windows you would type this
command on a single line:

ant -buildfile C:\j2eetutorial\examples\src\build.xm]l
converter
The Compiler Cannot Resolve Symbols

Symptom: When you typant converter, the compiler reports many errors,
including these:

68

GETTING STARTED

cannot resolve symbol
BUILD FAILED

Compile failed, messages should have been provided

Solution: Make sure that you've set the J2EE_HOME environment variable cor-

rectly. SeeChecking the Evironment \ariables (page 49).

Ant 1.4 Will Not Compile the Example After You Run the Client
Symptom: Ant 1.4 displays this error:

The filename, directory name, or volume label syntax is
incorrect.

Solution: Use version 1.3 afnt. The 1.4 version of thent.bat script and the
scripts of the J2EE SDK all use tHavACMD environment variable. The SDK'’s
runclient.bat script, for example, sets3AvVACMD to a value that causes prob-
lems forant.bat.

Deployment Errors

The Incorrect XML Parser Is In Your Classpath
Symptom: The error displayed has the following text:

[1java.rmi.RemoteException:Error saving/opening

Deployment Error:Bad mapping of key{0} class{1},
not found: com.sum.enterprise.deployment.xml.ApplicationNode

Solution: Remove thgaxp.jar file from the jre/1ib/ext directory of your

J2SE installation. This JAR file contains XML parsing routines that are incom-

patible with the J2EE server. If you do not havgap. jar file, then perhaps

your classpath refers to the XML routines of a Tomcat installation. In this case,

you should remove that reference from your classpath.

The Remote Home Interface Was Specified As a Local Home
Interface

Symptom: An error such as the following is displayed:

COMMON PROBLEMS AND THEIR SOLUTIONS

LocalHomeImpl must be declared abstract.
It does not define javax.ejb.HomeHandle getHomeHandle()
from interface javax.ejb.EJBHome.

Solution: Remove the enterprise bean from the EAR file (Edit->Delete) and cre-
ate a new bean with the New Enterprise Bean Wizard. In the General dialog box
of the wizard, select values from the Remote Home Interface and Remote Inter-
face combo boxes.

J2EE Application Client Runtime Errors

The Client Throws an Exception
Symptom: The client reports this exception:

java.lang.NoClassDefFoundError:converter.ConverterHome

Solution: Make sure that you set APPCPATH to the path of the client jar you
returned when you deployed the application.

The Client Cannot Find ConverterApp.ear
Symptom: The client reports this exception:

IOException: ConverterApp.ear does not exist

Solution: Ensure that theonverterApp. ear file exists and that you've specified
it with the-c1ient option:

runclient -client ConverterApp.ear -name ConverterClient

You created theConverterApp.ear file in the section,Creatingthe J2EE™
Application (page 50). See also,Running the J2EE™ Application
Client (page 63).

The Client Cannot Find the ConverterClient Component
Symptom: The client displays this line:

No application client descriptors defined for:

Solution: Verify that you've created the ConverterClient component and that
you've specified it for the name option of therunc1ient command. You created

69

GETTING STARTED

the ConverterClient component in the sectiBackagingthe J2EEApplication
Client (page 57).

The Login Failed
Symptom: After you login, the client reports displays this line:

Incorrect login and/or password

Solution: At the login prompts, entguest as the user name ar@est123 as
the password.

The J2EE Application Has Not Been Deployed
Symptom: The client reports the following exception:

NameNotFoundException. Root exception is org.omg.CosNaming. . .

Solution: Deploy the application. For instructions, deeploying the J2EE™
Application (page 62).

The JNDI Name is Incorrect
Symptom: The client reports the following exception:

NameNotFoundException. Root exception is org.omg.CosNaming. . .

Solution: In the JNDI Names tabbed pane of thaverterApp, make sure that
the JNDI names for th€onverterBean and theejb/SimpleConverter match.
Edit the appropriate JNDI Name field and then redeploy the application.

Web Client Runtime Errors

The Web Context in the URL is Incorrect
Symptom: The browser reports that the page cannot be found (HTTP 404).

Solution: Verify that the web context¢nverter) in the URL matches the one
you specified in the Component General Properties dialog box in the section,
Packagingthe Web Client (page 60). The case (upper or lower) of the web con-
textis significant.

The J2EE Application Has Not Been Deployed
Symptom: The browser reports that the page cannot be found (HTTP 404).

AsouT JNDI NAMING 71

Solution: Deploy the application.

The JNDI Name is Incorrect

Symptom: When you click Submit on the web page, the browser reporta that
Servlet Exception Has Occurred.

Solution: In the JNDI Names tabbed pane of thaverterApp, make sure that
the INDI names for th€onverterBean and theConverterWAR match. Edit the
appropriate JNDI Name field and then redeploy the application.

Detecting Problems With the Verifier Tool

The verifier tool can detect inconsistencies in deployment descriptors and
method signatures. These inconsistencies often cause deployment or runtime
errors. From theleploytool, you can run the GUI version of therifier tool

by selecting Tools-> Verifier. You can also run a stand-alone GUI or command-
line version of theverifier tool. For more information, see tRREE™SDK

Tools (page 453).

Comparing Your EAR Files With Ours

For most of the examples, the download bundle of the tutorial includes J2EE
application EAR files, which are located in th2eetutorial/examples/ears
directory.

When All Else Fails

If none of these suggestions fixes the problem, you can uninstall the application
and clean out the server’s repository by running ¢heanup script. You'll also
need to shutdown and restart the server:

j2ee -stop
cleanup
j2ee -verbose

About JNDI Naming

J2EE naming services provide application clients, enterprise beans, and Web
components with access to a JNDI naming environmemtaiing environment
allows a component to be customized without the need to access or change the

72

GETTING STARTED

component’s source code. A container implements the component’s environ-
ment, and provides it to the component as a JNDiing context

J2EE components locate their environment haming contexts using JNDI inter-
faces. A component creategavax.naming.InitialContext Object and looks

up the environment naming context itnitialContext under the name
java:comp/env. A component’s naming environment is stored directly in the
environment naming context, or in any of its direct or indisebicontexts

A J2EE component can access named system-provided and user-defined objects.
The names of system-provided objects, such asUkEkTransaction objects,

are stored in the environment naming contegxiya: comp/env. The J2EE plat-

form allows a component to name user-defined objects, such as enterprise beans,
environment entries, JDBGataSource objects, and message connections. An
object should be named within a subcontext of the naming environment accord-
ing to the type of the object. For example, enterprise beans are named within the
subcontextjava: comp/env/ejb and JDBCDataSource references in the sub-
contextjava:comp/env/jdbc.

Enterprise Beans

by Dale Green

ENTERPRlSEbeans are the J2EE™ components that implement Enterprise
JavaBeans™ (EJB™) technology. Enterprise beans run in the EJB container, a
runtime environment within the J2EE server. (See Figure 5.) Although transpar-
ent to the application developer, the EJB container provides system-level ser-

vices such as transactions to its enterprise beans. These services enable you to

quickly build and deploy enterprise beans, which form the core of transactional
J2EE applications.

What is an Enterprise Bean? 74
Benefits of Enterprise Beans 74
When To Use Enterprise Beans 75
Types of Enterprise Beans 75
What is a Session Bean? 76
State Management Modes 76
When to Use Session Beans 77
What is an Entity Bean? 78
What Makes Entity Beans Different From Session Beans 78
Container-Managed Persistence 79
When To Use Entity Beans 82
What is a Message-Driven Bean? 82
What Makes Message-Driven Beans Different From Session and Entity
Beans 83
When to Use Message-Driven Beans 84

73

Bios.html

74

ENTERPRISE BEANS

Defining Client Access With Interfaces 84
Remote Access 85
Local Access 85
Local Interfaces and Container-Managed Relationships 86
Deciding on Remote or Local Access 86
Performance and Access 87
Method Parameters and Access 88
The Contents of an Enterprise Bean 88
Naming Conventions for Enterprise Beans 89
The Life Cycles of Enterprise Beans 90
The Stateful Session Bean Life Cycle 90
The Stateless Session Bean Life Cycle 91
The Entity Bean Life Cycle 92
The Message-Driven Bean Life Cycle 94

What is an Enterprise Bean?

Written in the Java™ programming language, an enterprise bean is a server-side
component that encapsulates the business logic of an application. The business
logic is the code that fulfills the purpose of the application. In an inventory con-
trol application, for example, the enterprise beans might implement the business
logic in methods calledheckInventorylLevel andorderProduct. By invoking

these methods, remote clients can access the inventory services provided by the
application.

Benefits of Enterprise Beans

For several reasons, enterprise beans simplify the development of large, distrib-
uted applications.

First, because the EJB container provides system-level services to enterprise

beans, the bean developer can concentrate on solving business problems. The
EJB container—not the bean developer—is responsible for system-level services

such as transaction management and security authorization.

Second, because the beans—and not the clients—contain the application’s busi-
ness logic, the client developer can focus on the presentation of the client. The
client developer does not have to code the routines that implement business rules
or access databases. As a result, the clients are thinner, a benefit that is particu-
larly important for clients that run on small devices.

WHAT IS AN ENTERPRISE BEAN? 75

Third, because enterprise beans are portable components, the application assem-
bler can build new applications from existing beans. These applications can run
on any compliant J2EE server.

When To Use Enterprise Beans

You should consider using enterprise beans if your application has any of these
requirements:

» The application must be scalable. To accommodate a growing number of
users, you may need to distribute an application’s components across mul-
tiple machines. Not only can the enterprise beans of an application run on
different machines, but their location will remain transparent to the clients.

¢ Transactions are required to ensure data integrity. Enterprise beans support
transactions, the mechanisms that manage the concurrent access of shared
objects.

« The application will have a variety of clients. With just a few lines of code,
remote clients can easily locate enterprise beans. These clients can be thin,
various, and numerous.

Types of Enterprise Beans

Table 3 summarizes the three different types of enterprise beans. The following
sections discuss each type in more detail.

Table 3 Summary of Enterprise Bean Types

Enterprise Bean Type Purpose

Session Performs a task for a client.

Represents a business entity object that exists in persist¢nt

Entity storage.

Acts as a listener for the Java™ Message Service API, pfo-

Message-Driven .
cessing messages asynchronously.

76

ENTERPRISE BEANS

What is a Session Bean?

A session bean represents a single client inside the J2EE server. To access an
application that is deployed on the server, the client invokes the session bean’s
methods. The session bean performs work for its client, shielding the client from
complexity by executing business tasks inside the server.

As its name suggests, a session bean is similar to an interactive session. A ses-
sion bean is not shared—it may have just one client, in the same way that an
interactive session may have just one user. Like an interactive session, a session
bean is not persistent. (That is, its data is not saved to a database.) When the cli-
ent terminates, its session bean appears to terminate and is no longer associated
with the client.

For code samples, see the chapBaan-ManagedPersistenc&Examples (page
109).

State Management Modes

There are two types of session beans: stateful and stateless.

Stateful Session Beans

The state of an object consists of the values of its instance variables. In a stateful
session bean, the instance variables represent the state of a unique client-bean
session. Because the client interacts (“talks”) with its bean, this state is often
called the conversational state.

The state is retained for the duration of the client-bean session. If the client
removes the bean or terminates, the session ends and the state disappears. This
transient nature of the state is not a problem, however, because when the conver-
sation between the client and the bean ends there is no need to retain the state.

Stateless Session Beans

A stateless session bean does not maintain a conversational state for a particular
client. When a client invokes the method of a stateless bean, the bean'’s instance
variables may contain a state, but only for the duration of the invocation. When
the method is finished, the state is no longer retained. Except during method
invocation, all instances of a stateless bean are equivalent, allowing the EJB con-
tainer to assign an instance to any client.

Because stateless session beans can support multiple clients, they can offer better
scalability for applications that require large numbers of clients. Typically, an

WHAT IS A SESSION BEAN? 77

application requires fewer stateless session beans than stateful session beans to
support the same number of clients.

At times, the EJB container may write a stateful session bean out to secondary
storage. However, stateless session beans are never written out to secondary stor-
age. Therefore, stateless beans may offer better performance than stateful beans.

When to Use Session Beans
In general, you should use a session bean under the following circumstances:

< At any given time, only one client has access to the bean instance.
« The state of the bean is not persistent, existing only for a short period of
time (perhaps a few hours).
Stateful session beans are appropriate if any of the following conditions are true:
* The bean’s state represents the interaction between the bean and a specific
client.

* The bean needs to hold information about the client across method invoca-
tions.

« The bean mediates between the client and the other components of the
application, presenting a simplified view to the client.

» Behind the scenes, the bean manages the work flow of several enterprise
beans. For an example, see taeountControllerE]B in theTheDuke's
Bank Application (page 411).

To improve performance, you might choose a stateless session bean if it has any
of these traits:

» The bean'’s state has no data for a specific client.

 In a single method invocation, the bean performs a generic task for all cli-
ents. For example, you might use a stateless session bean to send an email
that confirms an online order.

« The bean fetches from a database a set of read-only data that is often used
by clients. Such a bean, for example, could retrieve the table rows that rep-
resent the products that are on sale this month.

78

ENTERPRISE BEANS

What is an Entity Bean?

An entity bean represents a business object in a persistent storage mechanism.
Some examples of business objects are customers, orders, and products. In the
J2EE SDK, the persistent storage mechanism is a relational database. Typically,

each entity bean has an underlying table in a relational database, and each

instance of the bean corresponds to a row in that table.

For code examples of entity beans, please refer to these chapters:

» Bean-Managed Persistence Examples (page 109)
» ContainerManaged Persistence Examples (page 145)

What Makes Entity Beans Different From Session
Beans

Entity beans differ from session beans in several ways. Entity beans are persis-
tent, allow shared access, have primary keys, and may participate in relation-
ships with other entity beans.

Persistence

Because the state of an entity bean is saved in a storage mechanism, it is persis-
tent. Persistence means that the entity bean’s state exists beyond the lifetime of
the application or the J2EE server process. If you've worked with databases,
you're familiar with persistent data. The data in a database is persistent because
it still exists even after you shut down the database server or the applications it
services.

There are two types of persistence for entity beans: bean-managed and con-
tainer-managed. With bean-managed persistence, the entity bean code that you
write contains the calls that access the database. If your bean has container-man-
aged persistence, the EJB container automatically generates the necessary data-
base access calls. The code that you write for the entity bean does not include
these calls. For additional information, s&@wpntainerManaged Persistence

(page 79).

Shared Access

Entity beans may be shared by multiple clients. Because the clients might want
to change the same data, it's important that entity beans work within transac-
tions. Typically, the EJB container provides transaction management. In this
case, you specify the transaction attributes in the bean’s deployment descriptor.

WHAT IS AN ENTITY BEAN? 79

You do not have to code the transaction boundaries in the bean—the container
marks the boundaries for you. S&eansactions (page 335) for more informa-
tion.

Primary Key

Each entity bean has a unique object identifier. A customer entity bean, for
example, might be identified by a customer number. The unique identifier, or pri-
mary key, enables the client to locate a particular entity bean. For more informa-
tion seeEntity Bean Class (page 110).

Relationships

Like a table in a relational database, an entity bean may be related to other entity
beans. For example, in a college enrollment applicationsthelentEIB and
CourseEJB beans would be related because students enroll in classes.

You implement relationships differently for entity beans with bean-managed-
persistence and those with container-managed-persistence. With bean-managed
persistence, the code that you write implements the relationships. But with con-
tainer-managed persistence, the EJB container takes care of the relationships for
you. For this reason, relationships in entity beans with container-managed per-
sistence are often referred to as container-managed relationships.

Container-Managed Persistence

The term container-managed persistence means that the EJB container handles
all database access required by the entity bean. The bean’s code contains no
database access (SQL) calls. As a result, the bean’s code is not tied to a specific
persistent storage mechanism (database). Because of this flexibility, even if you
redeploy the same entity bean on different J2EE servers that use different data-
bases, you won't need to modify or recompile the bean’s code. In short, your
entity beans are more portable.

In order to generate the data access calls, the container needs information that
you provide in the entity bean’s abstract schema.

Abstract Schema

Part of an entity bean’s deployment descriptor, the abstract schema defines the
bean’s persistent fields and relationships. The term “abstract” distinguishes this
schema from the physical schema of the underlying datastore. In a relational
database, for example, the physical schema is made up of structures such as
tables and columns.

80

ENTERPRISE BEANS

You specify the name of an abstract schema in the deployment descriptor. This
name is referenced by queries written in the Enterprise JavaBeans™ Query Lan-
guage (EJB™ QL). For an entity bean with container-managed persistence, you
must define an EJB QL query for every finder method (exd@ptiByPrima-
ryKey). The EJB QL query determines the query that is executed by the EJB
container when the finder method is invoked. To learn more about EJB QL, see
the chapterEnterprise JaaBeans™ Query Language (page 187).

You'll probably find it helpful to sketch the abstract schema before writing any
code. The following figure represents a simple abstract schema that describes the
relationships between three entity beans. These relationships are discussed fur-
ther in the sections that follow.

OrderEJB
One Many

Many One

LineltemEJB CustomerEJB

ProductEJB

Figure 8 A High-Level View of an Abstract Schema

Persistent Fields. The persistent fields of an entity bean are stored in the
underlying datastore. Collectively, these fields constitute the state of the bean. At
runtime, the EJB container automatically synchronizes this state with the data-

WHAT IS AN ENTITY BEAN? 81

base. During deployment, the container typically maps the entity bean to a data-
base table and the persistent fields to the table’s columns.

A CustomerE]B bean, for example, might have persistent fields suchiast-

Name, TastName, phone, andemailAddress. In container-managed persistence,
these fields are virtual. You declare them in the abstract schema, but you do not
code them as instance variables in the entity bean class. Instead, the persistent
fields are identified in the code by access methods (getters and setters).

Relationship Fields. A relationship field is like a foreign key in a database
table—it identifies a related bean. Like a persistent field, a relationship field is
virtual and is defined in the enterprise bean class with access methods. But
unlike a persistent field, a relationship field does not represent the bean’s state.
Relationship fields are discussed further Direction in_ ContainerManaged

Relationships (page 81).

Multiplicity in Container-Managed Relationships
There are four types of multiplicities:

One-to-One - Each entity bean instance is related to a single instance of another
entity bean. For example, to model a physical warehouse in which each storage
bin contains a single widget, th&corageBinEJB andwidgetEJB beans would

have a one-to-one relationship.

One-to-Many - An entity bean instance may be related to multiple instances of
the other entity bean. A sales order, for example, can have multiple line items. In
the order application, abrderg]B bean would have a one-to-many relationship
with theLineItemEJB beans.

Many-to-One - Multiple instances of an entity bean may be related to a single
instance of the other entity bean. This multiplicity is the opposite of one-to-
many. In the example mentioned in the previous paragraph, from the perspective
of theLineItemE]B bean the relationship to tbederE]B bean is many-to-one.

Many-to-Many - The entity bean instances may be related to multiple instances
of each other. For example, in college each course has many students and every
student may take several courses. Therefore, in an enrollment application, the
CourseEJB andStudentEJB beans would have a many-to-many relationship.

Direction in Container-Managed Relationships
The direction of a relationship may be either bidirectional or unidirectional.

82

ENTERPRISE BEANS

In a bidirectional relationship, each entity bean has a relationship field that refers
to the other bean. Through the relationship field, an entity bean’s code can access
its related object. If an entity bean has a relative field, then we often say that it
“knows” about its related object. For example, if @derE]B bean knows what
LineItemEJB beans it has and if eadhneItemE]B bean knows whatrderEJB

bean it belongs to, then they have a bidirectional relationship.

In a unidirectional relationship, only one entity bean has a relationship field that
refers to the other. For examplel #éneItemE]B bean would have a relationship
field that identifies ®roductEJB bean, but th@roductEJB bean would not have

a relationship field for th&ineItemEJB bean. In other words, theineItemEJB

bean knows about theroductEJB bean, but th@roductEIB bean doesn’'t know
which LineItemE]B beans refer to it.

EJB QL queries often navigate across relationships. The direction of a relation-
ship determines whether a query can navigate from one bean to another. For
example, a query may navigate from thimeItemE]B bean to theProductEJB

bean, but may not navigate in the opposite direction. Forottuere]B and
LineItemEJB beans, a query could navigate in both directions, since these two
beans have a bidirectional relationship.

When To Use Entity Beans
You should probably use an entity bean under the following conditions:

» The bean represents a business entity, not a procedure. For example,
itCardEJB would be an entity bean, bdteditCardverifiere]B would
probably be a session bean.

» The bean’s state must be persistent. If the bean instance terminates or if the
J2EE server is shut down, the bean’s state still exists in persistent storage
(a database).

What is a Message-Driven Bean?

Note: This section contains text from the Java™ Message Service Tutorial. Because
message-driven beans rely on Java Message Service (JMS) technology, to fully
understand how these beans work you should consult the tutorial at this URL:

http://java.sun.com/products/jms/tutorial/index.htm]l

http://java.sun.com/products/jms/tutorial/index.html

WHAT IS A MESSAGEDRIVEN BEAN? 83

A message-driven bean is an enterprise bean that allows J2EE applications to
process messages asynchronously. It acts as a JMS message listener, which is
similar to an event listener except that it receives messages instead of events. The
messages may be sent by any J2EE component—an application client, another
enterprise bean, or a Web component—or by a JMS application or system that
does not use J2EE technology.

Message-driven beans currently process only JMS messages, but in the future
they may be used to process other kinds of messages.

For a code sample, see the chapferMessage-Drien Bean Example (page
177).

What Makes Message-Driven Beans Different From
Session and Entity Beans

The most visible difference between message-driven beans and session and
entity beans is that clients do not access message-driven beans through inter-
faces. Interfaces are described in the sedbefining Client AccessWith Inter-

faces (page 84). Unlike a session or entity bean, a message-driven bean has only
a bean class.

In several respects, a message-driven bean resembles a stateless session bean:

* A message-driven bean’s instances retain no data or conversational state
for a specific client.

« All instances of a message-driven bean are equivalent, allowing the EJB
container to assign a message to any message-driven bean instance. The
container can pool these instances to allow streams of messages to be pro-
cessed concurrently.

« Asingle message-driven bean can process messages from multiple clients.

The instance variables of the message-driven bean instance can contain some
state across the handling of client messages—for example, a JMS API connec-

tion, an open database connection, or an object reference to an enterprise bean
object.

When a message arrives, the container calls the message-driven &eais's

sage method to process the message. dhigessage method normally casts the
message to one of the five IMS message types and handles it in accordance with
the application’s business logic. TlheMessage method may call helper meth-

ods, or it may invoke a session or entity bean to process the information in the
message or to store it in a database.

http://java.sun.com/products/jms/tutorial/index.html

84

ENTERPRISE BEANS

A message may be delivered to a message-driven bean within a transaction con-
text, so that all operations within thewmessage method are part of a single
transaction. If message processing is rolled back, the message will be redeliv-
ered. For more information s@eansactions (page 335).

When to Use Message-Driven Beans

Session beans and entity beans allow you to send JMS messages and to receive
them synchronously, but not asynchronously. To avoid tying up server resources,
you may prefer not to use blocking synchronous receives in a server-side compo-
nent. To receive messages asynchronously, use a message-driven bean.

Defining Client Access With Interfaces

Note: The material in this section applies only to session and entity beans, not to
message-driven beans. Because they have a different programming model, mes-
sage-driven beans do not have interfaces that define client access.

A client may access a session or an entity bean only through the methods defined
in the bean’s interfaces. These interfaces define the client’s view of a bean. All
other aspects of the bean—method implementations, deployment descriptor set-
tings, abstract schemas, database access calls—are hidden from the client.

Well designed interfaces simplify the development and maintenance of J2EE
applications. Not only do clean interfaces shield the clients from any complexi-
ties in the EJB tier, but they allow the beans to change internally without affect-
ing the clients. For example, even if you change your entity beans from bean-
managed to container-managed persistence, you won't have to alter the client
code. But if you were to change the method definitions in the interfaces, then
you might have to modify the client code as well. Therefore, to isolate your cli-
ents from possible changes in the beans, it is important that you design the inter-
faces carefully.

When you design a J2EE application, one of the first decisions you make is the
type of client access allowed by the enterprise beans: remote or local.

DEFINING CLIENT ACCESSWITH INTERFACES 85

Remote Access
A remote client of an enterprise bean has the following traits:

* It may run on a different machine and a different Java™ Virtual Machine
(JVM) than the enterprise bean it accesses. (It is not required to run on a
different JVM.)

« It can be aweb component, a J2EE application client, or another enterprise
bean.

« To aremote client, the location of the enterprise bean is transparent.

To create an enterprise bean with remote access, you must code a remote inter-
face and a home interface. The remote interface defines the business methods
that are specific to the bean. For example, the remote interfacesailac-
countEJB bean might have business methods nadwd t and credit. The home
interface defines the bean’s life-cycle methods-eate andremove. For entity

beans, the home interface also defines finder methods and home methods. Finder
methods are used to locate entity beans. Home methods are business methods
that are invoked on all instances of an entity bean class. The following figure
shows how the interfaces control the client’s view of an enterprise bean.

Remote Interface

deposit()
credit()

R(?mote BankAccountEJB
Client

Home Interface

create()
remove()
findByPrimaryKey()

Figure 9 Interfaces for an Enterprise Bean With Remote Access

Local Access
A local client has these characteristics:

e It must run in the same JVM as the enterprise bean it accesses.

86

ENTERPRISE BEANS

* It may be a web component or another enterprise bean.

» To the local client, the location of the enterprise bean it accesses is not
transparent.

It is often an entity bean that has a container-managed relationship with
another entity bean.

To build an enterprise bean that allows local access, you must code the local
interface and the local home interface. The local interface defines the bean’s
business methods and the local home interface defines its life-cycle and finder
methods.

Local Interfaces and Container-Managed
Relationships

If an entity bean is the target of a container-managed relationship, then it must
have local interfaces. The direction of the relationship determines whether or not
a bean is the target. In Figure 8, for example, RheductEJB bean is the target

of a unidirectional relationship with th@ineItemEJB bean. Because the
LineItemEJB accesses theroductEJB locally, the ProductEJB must have the
local interfaces. TheineItemE]B also needs local interfaces—not because of
its relationship with the ProductEJB—but because it is the target of a relation-
ship with theordergJB. And because the relationship betweenitieeItemEIB
andorderEJB is bidirectional, both beans must have local interfaces.

Because they require local access, entity beans that participate in a container-
managed relationship must reside in the same EJB container. The primary bene-
fit of this locality is increased performance—Ilocal calls are usually faster than
remote calls.

Deciding on Remote or Local Access

The decision on whether to allow local or remote access depends on the follow-
ing factors:
» Container-Managed Relationships

If an entity bean is the target of a container-managed relationship, it must
use local access.

» Tight or Loose Coupling of Related Beans

Tightly coupled beans depend on one another. For example, a completed
sales order must have one or more line items, which cannot exist without the

DEFINING CLIENT ACCESSWITH INTERFACES 87

order to which they belong. TherderEJB and LineItemE]B beans that
model this relationship are tightly coupled.

Tightly coupled beans are good candidates for local access. Since they fit
together as a logical unit, they probably call each other often and would ben-
efit from the increased performance that is possible with local access.

* Type of Client

If an enterprise bean is accessed by J2EE application clients, then it should
allow remote access. In a production environment, these clients almost
always run on different machines than the J2EE server.

If an enterprise bean'’s clients are web components or other enterprise beans,
then the type of access depends on how you want to distribute your compo-
nents.

e Component Distribution

J2EE applications are scalable because their server-side components can be
distributed across multiple machines. In a distributed application, for exam-
ple, the web components may run on a different server than the enterprise
beans they access. In this distributed scenario, the enterprise beans should
allow remote access.

If you aren’t sure which type of access an enterprise bean should have, then
choose remote access. This decision gives you more flexibility—in the future

you can distribute your components to accommodate growing demands on your
application.

Although uncommon, it is possible for an enterprise bean to allow both remote
and local access. Such a bean would require both remote and local interfaces.

Performance and Access

Because of factors such as network latency, remote calls may be slower than
local calls. On the other hand, if you distribute components among different
servers, you might improve the application’s overall performance. Both of these
statements are generalizations; actual performance can vary in different opera-
tional environments. Nevertheless, you should keep in mind how your applica-
tion design might impact performance.

ENTERPRISE BEANS

Method Parameters and Access

The type of access affects the parameters of the bean methods that are called by
clients. The following topics apply not only to method parameters, but also to
method return values.

Isolation

An argument in a remote call is passed by value; it is a copy of an object. But
an argument in a local call is passed by reference, just like a normal method
call in the Java programming language.

The parameters of remote calls are more isolated than those of local calls.
With remote calls, the client and bean operate on different copies of a
parameter object. If the client changes the value of the object, the value of
the copy in the bean does not change. This layer of isolation can help protect
the bean if the client accidentally modifies the data.

In a local call, both the client and the bean may modify the same object. In
general, you should not rely on this side-effect of local calls. Perhaps some
day you will want to distribute your components, replacing the local calls
with remote ones.

Granularity of Accessed Data

Because remote calls are likely to be slower than local calls, the parameters
in remote methods should be relatively coarse-grained. Since a coarse-
grained object contains more data than a fine-grained one, fewer access calls
are required.

For example, suppose thatCastomerE]B is accessed remotely. This bean
would have a single getter method that returr@istomerDetails object,
which encapsulates all of the customer’s information. But if¢hetomer-

EJB is to be accessed locally, it could have a getter method for each instance
variable: getFirstName, getlLastName, getPhoneNumber, and so forth.
Since local calls are fast, the multiple calls to these finer-grained getter
methods would not significantly degrade performance.

The Contents of an Enterprise Bean

To develop an enterprise bean, you must provide the following files:

» Deployment descriptor - An XML file that specifies information about the
bean such as its persistence type and transaction attributedeg ey -

NAMING CONVENTIONS FOR ENTERPRISE BEANS 89

too1 creates the deployment descriptor when you step through the New
Enterprise Bean Wizard.

« Enterprise bean class - Implements the methods defined in the following
interfaces.

» Interfaces - The remote and home interfaces are required for remote
access. For local access, the local and local home interfaces are required.
SeeDefining Client AccessWith Interfaces (page 84). (Please note that
these interfaces are not used by message-driven beans.)

« Helper classes - Other classes needed by the enterprise bean class, such as
exception and utility classes.

You package the files in the preceding list into an EJB JAR file, the module that
stores the enterprise bean. An EJB JAR file is portable and may be used for dif-
ferent applications. To assemble a J2EE application, you package one or more
modules—such as EJB JAR files—into an EAR file, the archive file that holds
the application. When you deploy the EAR file that contains the bean’s EJB JAR
file, you also deploy the enterprise bean onto the J2EE server.

Naming Conventions for Enterprise Beans

Because enterprise beans are composed of multiple parts, it's useful to follow a
naming convention for your applications. Table 4 summarizes the conventions
for the example beans of this tutorial. (The DD abbreviation means that the item
is an element in the bean’s deployment descriptor.)

Table 4 Naming Conventions for Enterprise Beans

Item Syntax Example
enterprise bean name (DD) <name>EJB AccountEJB

EJB JAR display name (DD) <name>JAR AccountJAR
enterprise bean class <name>Bean AccountBean

home interface <name>Home AccountHome
remote interface <name> Account

local home interface Local<name>Home LocalAccountHome

ENTERPRISE BEANS

Table 4 Naming Conventions for Enterprise Beans (Continued)

Item Syntax Example
local interface Local<name> LocalAccount
abstract schema (DD) <name> Account

The Life Cycles of Enterprise Beans

An enterprise bean goes through various stages during its lifetime, or life cycle.
Each type of enterprise bean— session, entity, or message-driven— has a differ-
ent life cycle.

The descriptions that follow refer to methods that are explained along with the
code examples in the next two chapters. If you are new to enterprise beans, you
should skip this section and try out the code examples first.

The Stateful Session Bean Life Cycle

Figure 10 illustrates the stages that a session bean passes through during its life-
time. The client initiates the life cycle by invoking tlkeeate method.The EJB
container instantiates the bean and then invokess#tSessionContext and
ejbCreate methods in the session bean. The bean is now ready to have its busi-
ness methods invoked.

While in the ready stage, the EJB container may decide to deactivate, or passi-
vate, the bean by moving it from memory to secondary storage. (Typically, the
EJB container uses a least-recently-used algorithm to select a bean for passiva-
tion.) The EJB container invokes the beasj®Passivate method immediately
before passivating it. If a client invokes a business method on the bean while it is
in the passive stage, the EJB container activates the bean, moving it back to the
ready stage, and then calls the beafis\ctivate method.

At the end of the life cycle, the client invokes the remove method and the EJB
container calls the beanéjbRemove method. The bean’s instance is ready for
garbage collection.

Your code controls the invocation of only two life cycle methods—¢heate
andremove methods in the client. All other methods in Figure 10 are invoked by
the EJB container. ThejbCreate method, for example, is inside the bean class,
allowing you to perform certain operations right after the bean is instantiated.

THE LIFE CYCLES OF ENTERPRISE BEANS 91

For instance, you may wish to connect to a database iejbereate method.
SeeResource Connections (page 373) for more information.

Does Not
Exist
A
1. create 1. remove
2. setSessionContext 2. ejoRemove
3. ejbCreate
—

ejbPassivate

Ready 2 (Passive

ejbActivate

Figure 10 Life Cycle of a Stateful Session Bean

The Stateless Session Bean Life Cycle

Because a stateless session bean is never passivated, its life cycle has just two
stages: non-existent and ready for the invocation of business methods. Figure 11
illustrates the stages of a stateless session bean.

ENTERPRISE BEANS

Does Not
Exist
1. setSessionContext ejpbRemove
2. ejbCreate
Ready

Figure 11 Life Cycle of a Stateless Session Bean

The Entity Bean Life Cycle

Figure 12 shows the stages that an entity bean passes through during its lifetime.
After the EJB container creates the instance, it calls sweEntityContext
method of the entity bean class. ThetEntityContext method passes the
entity context to the bean.

After instantiation, the entity bean moves to a pool of available instances. While
in the pooled stage, the instance is not associated with any particular EJB object
identity. All instances in the pool are identical. The EJB container assigns an
identity to an instance when moving it to the ready stage.

There are two paths from the pooled stage to the ready stage. On the first path,
the client invokes thereate method, causing the EJB container to call éje-

Create andejbPostCreate methods. On the second path, the EJB container
invokes theejbActivate method. While in the ready stage, an entity bean’s
business methods may be invoked.

There are also two paths from the ready stage to the pooled stage. First, a client
may invoke theremove method, which causes the EJB container to call the
ejbRemove method. Second, the EJB container may invokeefigPassivate
method.

THE LIFE CYCLES OF ENTERPRISE BEANS 93

At the end of the life cycle, the EJB container removes the instance from the
pool and invokes thensetEntityContext method.

Does Not
Exist

setEntityContext

ejbActivate

1. create
2. ejbCreate
3. ejpbPostCreate

A

unsetEntityContext

—

Pooled

ejbPassivate

1. remove
2. ejpRemove

Figure 12 Life Cycle of an Entity Bean

In the pooled state, an instance is not associated with any particular EJB object
identity. With bean-managed persistence, when the EJB container moves an
instance from the pooled state to the ready state, it does not automatically set the
primary key. Therefore, thejbCreate andejbActivate methods must set the
primary key. If the primary key is incorrect, tlgbLoad andejbStore methods
cannot synchronize the instance variables with the database. had¢bentEJB
example, theejbCreate method assigns the primary key from one of the input
parameters. ThejbActivate method sets the primary keid] as follows:

../examples/src/ejb/account/AccountEJB.java

94

ENTERPRISE BEANS

id = (String)context.getPrimaryKey();

In the pooled state, the values of the instance variables are not needed. You can
make these instance variables eligible for garbage collection by setting them to
null in theejbPasssivate method.

The Message-Driven Bean Life Cycle
Figure 13 illustrates the stages in the life cycle of a message-driven bean.

The EJB container usually creates a pool of message-driven bean instances. For
each instance, the EJB container instantiates the bean and performs these tasks:

1. It calls thesetMessageDrivenContext method to pass the context object
to the instance.
2. It calls the instancesjbCreate method.

Like a stateless session bean, a message-driven bean is never passivated, and it
has only two states: nonexistent and ready to receive messages.

At the end of the life cycle, the container calls thgbRemove method. The
bean’s instance is ready for garbage collection.

THE LIFE CYCLES OF ENTERPRISE BEANS

Does Not
Exist
1. setMessageDrivenContext ejpbRemove
2. ejbCreate
onMessage Ready

Figure 13 Life Cycle of a Message-Driven Bean

96

ENTERPRISE BEANS

A Session Bean
Example

by Dale Green

&SSIONbeans are powerful because they extend the reach of your clients into
remote servers—yet they’re easy to buildGettingStarted (page 47), you built

a stateless session bean naraetertert]B. This chapter examines the source
code of a stateful session bean catlectEJB.

The CartEJB Example 94
Session Bean Class 94
Home Interface 98
Remote Interface 100
Helper Classes 100
Running the CartEJB Example 100
Other Enterprise Bean Features 101
Accessing Environment Entries 101
Comparing Enterprise Beans 102
Passing an Enterprise Bean’s Object Reference 103

97

Bios.html

A SESSION BEAN EXAMPLE

The CartEJB Example

TheCartEJB bean represents a shopping cart in an online book store. The bean’s
client may add a book to the cart, remove a book, or retrieve the cart’s contents.
To construct th€artEJB bean, you need the following code:

e Session bean classaftBean)

* Home interfaceartHome)

* Remote interfacecart)
All session beans require a session bean class. All enterprise beans that permit
remote access must have a home and remote interface. To meet the needs of a
specific application, an enterprise bean may also need some helper classes. The

CartEJB session bean uses two helper clasBeskException andIdverifier,
which are discussed in the sectibtelper Classes (page 104).

Source Code. The source code for this example is in the
j2eetutorial/examples/src/ejb/cart directory. To compile the code, go to
thej2eetutorial/examples/src directory and typent cart. A sampleCar-
tApp.ear file is in the peetutorial/examples/ears directory.

Session Bean Class

The session bean class for this example is catlectBean. Like any session
bean, thecartBean class must meet these requirements:

» |t implements the&essionBean interface.

» The class is defined as public.

* The class cannot be definedaastract or final.

* It implements one or mokgjbCreate methods.

It implements the business methods.

* It contains gublic constructor with no parameters.

* It must not define th&inalize method.

The source code for tltartBean class follows:

import java.util.¥*;
import javax.ejb.¥;

public class CartBean implements SessionBean {

String customerName;

THE CARTEJB EXAMPLE

String customerId;
Vector contents;

public void ejbCreate(String person) throws CreateException {

if (person == null) {
throw new CreateException(“Null person not allowed.”);
3
else {
customerName = person;

}

customerId = “07;
contents = new Vector();

}

public void ejbCreate(String person, String id)
throws CreateException {

if (person == null) {
throw new CreateException(“Null person not allowed.”);
}
else {
customerName = person;

}

IdVerifier idChecker = new IdVerifier();
if (idChecker.validate(id)) {
customerId = 1id;

3
else {

throw new CreateException(“Invalid id: “ + 1id);
}

contents = new Vector();

}
public void addBook(String title) {

contents.addETement(title);
}

public void removeBook(String title) throws BookException {

boolean result = contents.removeElement(title);
if (result == false) {
throw new BookException(title +

not in cart.”);

}

100

A SESSION BEAN EXAMPLE

}

public Vector getContents() {
return contents;

}

public CartBean() {}

public void ejbRemove() {}

public void ejbActivate() {}

public void ejbPassivate() {}

public void setSessionContext(SessionContext sc) {}

}

The SessionBean Interface

The SessionBean interface extends thénterpriseBean interface, which in
turn extends the&erializable interface. TheSessionBean interface declares
the ejbRemove, ejbActivate, ejbPassivate, andsetSessionContext meth-

ods. TheCartBean class doesn'’t use these methods, but it must implement them
because they're declared in tisessionBean interface. Consequently, these
methods are empty in theéartBean class. Later sections explain when you
might use these methods.

The ejbCreate Methods

Because an enterprise bean runs inside an EJB container, a client cannot directly
instantiate the bean. Only the EJB container can instantiate an enterprise bean.
During instantiation, the example program performs these steps:

1. The client invokes areate method on the home object:
Cart shoppingCart = home.create(“Duke DeEarl1”,”123”);

2. The EJB container instantiates the enterprise bean.

3. The EJB container invokes the appropriajeCreate method inCart-
Bean:

public void ejbCreate(String person, String id)
throws CreateException {

if (person == null) {
throw new CreateException(“Null person not allowed.”);

}
else {
customerName = person;

http://java.sun.com/j2ee/tutorial/api/javax/ejb/SessionBean.html
http://java.sun.com/j2ee/tutorial/api/javax/ejb/EnterpriseBean.html

THE CARTEJB EXAMPLE 101

}

IdVerifier idChecker = new IdVerifier();
if (idChecker.validate(id)) {
customerId = 1id;

}
else {
throw new CreateException(“Invalid id: “ + id);

}

contents = new Vector();

}

Typically, anejbCreate method initializes the state of the enterprise bean. The
precedingejbCreate method, for example, initializes theustomerName and
customerId variables with the arguments passed byctiwate method.

An enterprise bean must have one or mefeCreate methods. The signatures
of the methods must meet the following requirements:

* The access control modifier musthd1ic.
» The return type must be1id.

« If the bean allows remote access, the arguments must be legal types for
Java RMI.

* The modifier cannot betatic or final.

The throws clause may include thgavax.ejb.CreateException and other
exceptions that are specific to your application. theCreate method usually
throws aCreateException if an input parameter is invalid.

Business Methods

The primary purpose of a session bean is to run business tasks for the client. The
client invokes business methods on the remote object reference that is returned
by the create method. From the client's perspective, the business methods
appear to run locally, but they actually run remotely in the session bean. The fol-
lowing code snippet shows how tltartClient program invokes the business
methods:

Cart shoppingCart = home.create(“Duke DeEarl”, “123”);

shoppingCart.addBook(“The Martian Chronicles”);
shoppingCart.removeBook(“Alice In Wonderland”);
bookList = shoppingCart.getContents();

102 A SESSIONBEAN EXAMPLE

TheCartBean class implements the business methods in the following code:
public void addBook(String title) {

contents.addElement(new String(title));
}

public void removeBook(String title) throws BookException {

boolean result = contents.removeElement(title);
if (result == false) {
throw new BookException(title +

not in cart.”);
}
}

public Vector getContents() {
return contents;
3

The signature of a business method must conform to these rules:

» The method name must not conflict with one defined by the EJB architec-
ture. For example, you cannot call a business metégitLreate or
ejbActivate.

* The access control modifier mustddl1ic.

 If the bean allows remote access, the arguments and return types must be
legal types for Java RMI.

* The modifier must not betatic or final.

The throws clause may include exceptions that you define for your application.
The removeBook method, for example, throws tl@okException if the book is
not in the cart.

To indicate a system-level problem, such as the inability to connect to a data-
base, a business method should throw theax.ejb.EJBException. When a
business method throws &1BException, the container wraps it in Remote-
Exception, which is caught by the client. The container will not wrap applica-
tion exceptions such @&okException. Becaus&JBException is a subclass of
RuntimeException, you do not need to include it in thehrows clause of the
business method.

THE CARTEJB EXAMPLE 103

Home Interface

A home interface extends tli@BHome interface. For a session bean, the purpose
of the home interface is to define the create methods that a remote client may
invoke. TheCartClient program, for example, invokes thiseate method:

Cart shoppingCart = home.create(“Duke DeEarl”, “123”);

Every create method in the home interface corresponds toeghCreate
method in the bean class. The signatures okt reate methods in th&€art-
Bean class follow:

public void ejbCreate(String person) throws CreateException

public void ejbCreate(String person, String id)
throws CreateException

Compare the=jbCreate signatures with those of thereate methods in the
CartHome interface:

import java.io.Serializable;
import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface CartHome extends EJBHome {
Cart create(String person) throws RemoteException,
CreateException;
Cart create(String person, String id) throws
RemoteException, CreateException;

}

The signatures of thejbCreate andcreate methods are similar, but differ in
important ways. The rules for defining the signatures ofktreate methods of a
home interface follow:

* The number and types of arguments icraate method must match those
of its correspondingjbCreate method.

¢ The arguments and return type of theeate method must be valid RMI
types.

» A create method returns the remote interface type of the enterprise bean.
(But anejbCreate method returns void.)

e The throws clause of the create method must include the
java.rmi.RemoteException and thejavax.ejb.CreateException.

104

A SESSION BEAN EXAMPLE

Remote Interface

The remote interface, which extenglsvax.ejb.EIBObject, defines the busi-
ness methods that a remote client may invoke. Here is the source code for the
Cart remote interface:

import java.util.¥*;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Cart extends EJBObject {

public void addBook(String title) throws RemoteException;
public void removeBook(String title) throws BookException,
RemoteException;

public Vector getContents() throws RemoteException;

}

The method definitions in a remote interface must follow these rules:
» Each method in the remote interface must match a method implemented in
the enterprise bean class.

» The signatures of the methods in the remote interface must be identical to
the signatures of the corresponding methods in the enterprise bean class.

» The arguments and return values must be valid RMI types.
* Thethrows clause must include thiava.rmi.RemoteException.

Helper Classes

TheCartE]B bean has two helper classesokException andIdverifier. The
BookException is thrown by theremoveBook method and th&dverifier vali-
dates thecustomerId in one of theejbCreate methods. Helper classes must
reside in the EJB JAR file that contains the enterprise bean class.

Running the CartEJB Example

1. Start the J2EE server and theploytool. For instructions, se8&etting
Up (page 48).

2.In the deploytool open the j2eetutorial/examples/ears/Car-
tApp.ear file (File->Open).

OTHER ENTERPRISE BEAN FEATURES 105

3. Deploy theCartApp application (Tools->Deploy). In the Introduction dia-
log box, make sure that you select the Return Client JAR checkbox. For
detailed instructions, sé&eploying the J2EE™ Application (page 62).

4. Run the application:

a. In aterminal window, go to thi2eetutorial/examples/ears direc-
tory.

b. Set theA\PPCPATH environment variable t@artAppClient.jar.
c. Type the following command:

runclient -client CartApp.ear -name CartClient -textauth

d. At the login prompts, enteyuest for the user name anghest123 for
the password.

Other Enterprise Bean Features

The topics that follow apply to both session and entity beans.

Accessing Environment Entries

Stored in an enterprise bean’s deployment descriptor, an environment entry is a
name-value pair that allows you to customize the bean’s business logic without
changing its source code. An enterprise bean that calculates discounts, for exam-
ple, might have an environment entry named “Discount Percent.” Before deploy-
ing the bean’s application, you could assign “Discount Percent” a value of .05 on
the Environment tabbed pane of theploytool. When you run the application,

the enterprise bean fetches the .05 value from its environment.

In the following code example, th&plyDiscount method uses environment
entries to calculate a discount based on the purchase amount. First, the method
locates the environment naming context by invokingokup with the
java:comp/env parameter. Then it callsookup on the environment to get the
values for the “Discount Level” and “Discount Percent” names. For example, if
you assign a value of .05 to the “Discount Percent” name inl#ip@oytool, the

code will assign .05 to theéiscountPercent variable. TheapplyDiscount
method, which follows, is in th€heckerBean class. The source code for this
example is inj2eetotorial/examples/src/ejb/checker. A sampleChecker-
App.ear file is in the peetutorial/examples/ears directory.

106 A SESSIONBEAN EXAMPLE

public double applyDiscount(double amount) {

try {
doubTle discount;

Context initial = new InitialContext();
Context environment =
(Context)initial.lookup(“java:comp/env”);

Double discountLevel =
(Double)environment.lookup(“Discount Level”);

Double discountPercent =
(Double)environment.lookup(“Discount Percent”);

if (amount >= discountLevel.doubleValue()) {
discount = discountPercent.doubleValue();

}
else {

discount = 0.00;
}

return amount * (1.00 - discount);

} catch (NamingException ex) {
throw new EJBException(“NamingException: “ +
ex.getMessage());

Comparing Enterprise Beans

A client can determine if two stateful session beans are identical by invoking the
isIdentical method:

bookCart = home.create(“Bill Shakespeare”);
videoCart = home.create(“Lefty Lee”);

if (bookCart.isIdentical(bookCart)) {

// true ... }
if (bookCart.isIdentical(videoCart)) {
// false ... }

Because stateless session beans have the same object identfitydéretical
method always returns-ue when used to compare them.

OTHER ENTERPRISE BEAN FEATURES 107

To determine if two entity beans are identical, the client can invoke ¢feen-
tical method, or it can fetch and compare the beans’s primary keys:

String keyl
String key2

(String)accta.getPrimaryKey(Q);
(String)acctb.getPrimaryKey(Q);

if (keyl.compareTo(key2) == 0)
System.out.printin(“equal”);

Passing an Enterprise Bean’s Object Reference

Suppose that your enterprise bean needs to pass a reference to itself to another
bean. You might want to pass the reference, for example, so that the second bean
can call the first bean’s methods. You can’t passtivis reference because it
points to the bean’s instance, which is running in the EJB container. Only the
container may directly invoke methods on the bean’s instance. Clients access the
instance indirectly by invoking methods on the object whose type is the bean’s
remote interface. It is the reference to this object (the bean’s remote reference)
that the first bean would pass to the second bean.

A session bean obtains its remote reference by calling¢hglBobject method

of the SessionContext interface. An entity bean would call thgtEJBObject
method of theEntityContext interface. These interfaces provide beans with
access to the instance contexts maintained by the EJB container. Typically, the
bean saves the context in thetSessionContext method. The following code
fragment shows how a session bean might use these methods.

public class WagonBean implements SessionBean {
SessionContext context;
public void setSessionContext(SessionContext sc) {

this.context = sc;

}
public void passItOn(Basket basket) {

basket.copyItems(context.getEIJBObject());
}

108 A SESSIONBEAN EXAMPLE

Bean-Managed
Persistence Examples

by Dale Green

DATA is at the heart of most business applications. In J2EE™ applications,
entity beans represent the business objects that are stored in a database. For
entity beans with bean-managed persistence, you must write the code for the
database access calls. Although writing this code is an additional responsibility,
you will have more control over how the entity bean accesses a database.

This chapter discusses the coding techniques for entity beans with bean-man-
aged persistence. For conceptual information on entity beans, pleadéatis

an Entity Bean? (page 78).

The SavingsAccountEJB Example 108
Entity Bean Class 108
Home Interface 118
Remote Interface 120
Running the SavingsAccountEJB Example 121
Deploytool Tips for Entity Beans With Bean-Managed Persistence 122
Mapping Table Relationships For Bean-Managed Persistence 122
One-to-One Relationships 123
One-to-Many Relationships 126
Many-to-Many Relationships 134
Primary Keys for Bean-Managed Persistence 136
The Primary Key Class 137
Primary Keys in the Entity Bean Class 138
Getting the Primary Key 139
Handling Exceptions 139

109

Bios.html

110 BEAN-MANAGED PERSISTENCE EXAMPLES

The SavingsAccountEJB Example

The entity bean illustrated in this section represents a simple bank account. The
state of thesavingsAccountE]B bean is stored in thg€avingsaccount table of a
relational database. Thavingsaccount table is created by the following SQL
statement:

CREATE TABLE savingsaccount
(id VARCHAR(3)
CONSTRAINT pk_savingsaccount PRIMARY KEY,
firstname VARCHAR(24),
Jastname VARCHAR(24),
balance NUMERIC(10,2));

TheSavingsAccountEJB example requires the following code:

» Entity bean classs@vingsAccountBean)
* Home interfaceYavingsAccountHome)
* Remote interfaceS@vingsAccount)

This example also makes use of the following classes:

* A helper class namethsufficientBalanceException.
» A client class calleBavingsAccountClient.

Source Code. The source code for this example is in the
j2eetutorial/examples/src/ejb/savingsaccount directory. To compile the
code, go to thej2eetutorial/examples/src directory and typeant sav-
ingsaccount. A sample SavingsAccountApp.ear file is in the
j2eetutorial/examples/ears directory.

Entity Bean Class

The sample entity bean class is calleavingsAccountBean. As you look
through its code, note that it meets the requirements of any entity bean with
bean-managed persistence. First of all, it implements the following:

* EntityBean interface

e Zero or moreejbCreate andejbPostCreate methods

» Finder methods

* Business methods

* Home methods

THE SAVINGSACCOUNTEJB EXAMPLE 111

In addition, an entity bean class with bean-managed persistence has these
requirements:

* The class is defined asblic.

¢ The class cannot be definedadstract or final.
« It contains an empty constructor.

It does not implement th&inalize method.

The EntityBean Interface

TheEntityBean interface extends thenterpriseBean interface, which extends
the Serializable interface. TheEntityBean interface declares a number of
methods, such asjbActivate andejbLoad, which you must implement in your
entity bean class. These methods are discussed later sections.

The ejbCreate Method

When the client invokes a create method, the EJB container invokes the corre-
spondingejbCreate method. Typically, arjbCreate method in an entity bean
performs the following tasks:

* Inserts the entity state into the database
* Initializes the instance variables
* Returns the primary key

TheejbCreate method ofSavingsAccountBean inserts the entity state into the
database by invoking the privatensertRow method, which issues the SQL
INSERT statement. Here is the source code foretfiEreate method:

public String ejbCreate(String id, String firstName,
String lastName, BigDecimal balance)
throws CreateException {

if (balance.signum() == -1) {
throw new CreateException
(“A negative initial balance is not allowed.”);

}

try {
insertRow(id, firstName, lastName, balance);
} catch (Exception ex) {
throw new EJBException(“ejbCreate: “ +
ex.getMessage());

http://java.sun.com/j2ee/tutorial/api/javax/ejb/EnterpriseBean.html
http://java.sun.com/j2ee/tutorial/api/javax/ejb/EntityBean.html

112

BEAN-MANAGED PERSISTENCE EXAMPLES

this.id = id;
this.firstName = firstName;
this.lastName = TastName;
this.balance = balance;

return 1id;

}

Although theSavingsAccountBean class has just onejbCreate method, an
enterprise bean may contain multiglghCreate methods. For an example, see
the CartEJB.java source code in thg2eetutorial/examples/src/ejb/cart
directory.

When writing anejbCreate method for an entity bean, be sure to follow these
rules:

The access control modifier mustg®lic.

The return type must be the primary key.

The arguments must be legal types for Java RMI.
» The method modifier cannot lfénal or static.

The throws clause may include thg¢avax.ejb.CreateException and excep-

tions that are specific to your application. AfbCreate method usually throws

a CreateException if an input parameter is invalid. If anjbCreate method
cannot create an entity because another entity with the same primary key already
exists, it should throw gavax.ejb.DuplicateKeyException (a subclass of
CreateException). If a client receives aCreateException Or a Dupli-
cateKeyException, it should assume that the entity was not created.

The state of an entity bean may be directly inserted into the database by an appli-
cation that is unknown to the J2EE server. For example, a SQL script might
insert a row into thesavingsaccount table. Although the entity bean for this

row was not created by anjbCreate method, the bean can be located by a cli-
ent program.

The ejbPostCreate Method

For eachejbCreate method, you must write aejbPostCreate method in the
entity bean class. The EJB container invokgsPostCreate immediately after
it calls ejbCreate. Unlike theejbCreate method, theejbPostCreate method
can invoke thegetPrimaryKey andgetEJBObject methods of thentityCon-
text interface. For more information on tlyetEJBObject method, se€assing
an EnterpriseBeans ObjectReference (page 107). Often, yatgbPostCreate
methods will be empty.

THE SAVINGSACCOUNTEJB EXAMPLE 113

The signature of aejbPostCreate must meet the following requirements:

« The number and types of arguments must match a correspogitiage-
ate method.

* The access control modifier musthd1ic.
* The method modifier cannot bénal or static.
e The return type must b@1id.

The throws clause may include tHavax.ejb.CreateException and excep-
tions that are specific to your application.

The ejpbRemove Method

A client deletes an entity bean by invoking themove method. This invocation
causes the EJB client to call thgbRemove method, which deletes the entity
state from the database. In tl$avingsAccountBean class, theejbRemove
method invokes a private method nangedeteRow, which issues a SQLELETE
statement. ThejbRemove method is short:

public void ejbRemove() {
try {
deleteRow(id);
catch (Exception ex) {
throw new EJBException(“ejbRemove: * +
ex.getMessage());

}

If the ejbRemove method encounters a system problem, it should throw the
javax.ejb.EJBException. If it encounters an application error, it should throw
a javax.ejb.RemoveException. For a comparison of system and application
exceptions, see the secti¢ttandling Exceptions (page 142).

An entity bean may also be removed directly by a database deletion. For exam-
ple, if a SQL script deletes a row that contains an entity bean state, then that
entity bean is removed.

The ejbLoad and ejbStore Methods

If the EJB container needs to synchronize the instance variables of an entity bean
with the corresponding values stored in a database, it invokesjth@ad and
ejbStore methods. ThejbLoad method refreshes the instance variables from
the database, and thg¢bStore method writes the variables to the database. The
client may not calkjbLoad andejbStore.

114 BEAN-MANAGED PERSISTENCE EXAMPLES

If a business method is associated with a transaction, the container irafakes

Load before the business method executes. Immediately after the business
method executes, the container cali®Store. Because the container invokes
ejblLoad andejbStore, you do not have to refresh and store the instance vari-
ables in your business methods. T$w/ingsAccountBean class relies on the
container to synchronize the instance variables with the database. Therefore, the
business methods &favingsAccountBean should be associated with transac-
tions.

If the ejbLoad andejbStore methods cannot locate an entity in the underlying
database, they should throw thi@avax.ejb.NoSuchEntityException. This
exception is a subclass efBException. BecauseEJBException is a subclass
of RuntimeException, you do not have to include it in thehrows clause. When
NoSuchEntityException is thrown, the EJB container wraps it irRamoteEx-
ception before returning it to the client.

In the SavingsAccountBean class,ejblLoad invokes theloadRow method, which
issues a SQlselect statement and assigns the retrieved data to the instance
variables. TheajbStore method calls thestoreRow method, which stores the
instance variables in the database with a SBRATE statement. Here is the code
for theejbLoad andejbStore methods:

public void ejbLoad() {

try {
ToadRow();
} catch (Exception ex) {
throw new EJBException(“ejbLoad: “ +
ex.getMessage());

}

public void ejbStore() {

try {
storeRow();
} catch (Exception ex) {
throw new EJBException(“ejbStore: “ +
ex.getMessage());

THE SAVINGSACCOUNTEJB EXAMPLE 115

The Finder Methods

The finder methods allow clients to locate entity beans. 33w ngsAccount-
Client program locates entity beans with three finder methods:

SavingsAccount jones = home.findByPrimaryKey(“836”);
Collection c = home.findByLastName(“Smith”);

Collection c

home.findInRange(20.00, 99.00);

For every finder method available to a client, the entity bean class must imple-
ment a corresponding method that begins with the prefb#ind. The Sav-
ingsAccountBean class, for example, implements thejbFindByLastName
method as follows:

public Collection ejbFindByLastName(String TastName)
throws FinderException {

Collection result;

try {
result = selectBylLastName(lastName);
} catch (Exception ex) {
throw new EJBException(“ejbFindByLastName “ +
ex.getMessage());
}

return result;

}

The finder methods that are specific to your application, sucéyjBsindBy-
LastName and ejbFindInRange, are optional—but thejbFindByPrimaryKey
method is required. As its name infers, th¢bFindByPrimaryKey method
accepts as an argument the primary key, which it uses to locate an entity bean. In
the SavingsAccountBean class, the primary key is thid variable. Here is the
code for the2jbFindByPrimaryKey method:

public String ejbFindByPrimaryKey(String primaryKey)
throws FinderException {

boolean result;

try {
result = selectByPrimaryKey(primaryKey);
} catch (Exception ex) {
throw new EJBException(“ejbFindByPrimaryKey: “ +

116 BEAN-MANAGED PERSISTENCE EXAMPLES

ex.getMessage());
}

if (result) {
return primaryKey;

}
else {
throw new ObjectNotFoundException
(“Row for id “ + primaryKey + “ not found.”);
}

}

The ejbFindByPrimaryKey method may look strange to you, because it uses a
primaryKey for both the method argument and return value. However, remem-
ber that the client does not callibFindByPrimaryKey directly. It is the EJB
container that calls thejbFindByPrimarykey method. The client invokes the
findByPrimaryKey method, which is defined in the home interface.

The following list summarizes the rules for the finder methods that you imple-
ment in an entity bean class with bean-managed persistence:

* TheejbFindByPrimaryKey method must be implemented.
» A finder method name must start with the prefigFind.

* The access control modifier mustgd1ic.

» The method modifier cannot fénal or static.

» The arguments and return type must be legal types for Java RMI. (This
requirement applies only to methods defined in a remote— not local—
home interface.)

» The return type must be the primary key or a collection of primary keys.

The throws clause may include thg¢avax.ejb.FinderException and excep-
tions that are specific to your application. If a finder method returns a single pri-
mary key and the requested entity does not exist, the method should throw the
javax.ejb.0ObjectNotFoundException (a subclass ofinderException). If a

finder method returns a collection of primary keys and it does not find any
objects, it should return an empty collection.

The Business Methods

The business methods contain the business logic that you want to encapsulate
within the entity bean. Usually, the business methods do not access the database,
allowing you to separate the business logic from the database access code. The
SavingsAccountBean class contains these business methods:

THE SAVINGSACCOUNTEJB EXAMPLE 117
public void debit(BigDecimal amount)
throws InsufficientBalanceException {

if (balance.compareTo(amount) == -1) {
throw new InsufficientBalanceException();

}
balance = balance.subtract(amount);
}

public void credit(BigDecimal amount) {

balance = balance.add(amount);

}
public String getFirstName() {

return firstName;

}
public String getLastName() {

return lastName;

}
public BigDecimal getBalance() {

return balance;

}
TheSavingsAccountClient program invokes the business methods as follows:

BigDecimal zeroAmount = new BigDecimal(“0.00”);
SavingsAccount duke = home.create(“123”, “Duke”, “Earl”,
zeroAmount) ;

duke.credit(new BigDecimal(“88.50”));
duke.debit(new BigDecimal(*20.25”));
BigDecimal balance = duke.getBalance();

118 BEAN-MANAGED PERSISTENCE EXAMPLES

The requirements for the signature of a business method are the same for both
session and entity beans:

» The method name must not conflict with a method name defined by the
EJB architecture. For example, you cannot call a business meghaeée-
ate OrejbActivate.

* The access control modifier mustgad1ic.
* The method modifier cannot fénal or static.

» The arguments and return types must be legal types for Java RMI. (This
requirement applies only to methods defined in a remote— not local—
home interface.)

The throws clause may include the exceptions that you define for your applica-
tion. Thedebit method, for example, throws tH@sufficientBalanceExcep-

tion. To indicate a system-level problem, a business method should throw the
javax.ejb.EJBException.

The Home Methods

A home method contains the business logic that applies to all entity beans of a
particular class. In contrast, the logic in a business method applies to a single
entity bean, an instance with a unique identity. During a home method invoca-
tion, the instance has neither a unique identity nor a state that represents a busi-
ness object. Consequently, a home method must not access the bean’s
persistence state (instance variables). (For container-managed persistence, a
home method also must not access relationships.)

Typically, a home method locates a collection of bean instances and invokes
business methods as it iterates through the collection. This approach is taken by
the ejbHomeChargeForLowBalance method of theSavingsAccountBean class.

The ejbHomeChargeForLowBalance method applies a service charge to all sav-
ings accounts with balances less than a specified amount. The method locates
these accounts by invoking tiféndInRange method. As it iterates through the
collection of SavingsAccount instances, theejbHomeChargeForLowBalance
method checks the balance and invokesd#iei t business method. Here is the
source code of thejbHomeChargeForLowBalance method:

public void ejbHomeChargeForLowBalance(
BigDecimal minimumBalance, BigDecimal charge)
throws InsufficientBalanceException {

try {
SavingsAccountHome home =

THE SAVINGSACCOUNTEJB EXAMPLE 119

(SavingsAccountHome) context.getEJBHome() ;
Collection c = home.findInRange(new BigDecimal(“0.00"),
minimumBaTlance.subtract(new BigDecimal(“0.01”)));

Iterator i = c.iterator();

while (i.hasNext()) {
SavingsAccount account = (SavingsAccount)i.next();
if (account.getBalance().compareTo(charge) == 1) {
account.debit(charge);
}
}

} catch (Exception ex) {
throw new EJBException(“ejbHomeChargeForLowBalance:
+ ex.getMessage());

}

The home interface defines a corresponding method namedeForLowBal-
ance. (SeeHome Method Definitions (page 122)). Since the interface provides
the client view, thesavingsAccountClient program invokes the home method
as follows:

SavingsAccountHome home;

home.chargeForLowBalance(new BigDecimal(“10.00”),
new BigDecimal(“1.00”));

In the entity bean class, the implementation of a home method must adhere to
these rules:

« A home method name must start with the prefidtome.

* The access control modifier mustgad1ic.

¢ The method modifier cannot beatiic.

The throws clause may include exceptions that are specific to your application;
it must not throw thgava. rmi.RemoteException

120

BEAN-MANAGED PERSISTENCE EXAMPLES
Database Calls

The following table summarizes the database access calls igathegsAc-
countBean class:

Table 5 SQL Statements ifavingsAccountBean

Method SQL Statement

ejbCreate INSERT

ejbFindByPrimaryKey | SELECT

ejbFindByLastName SELECT

ejbFindInRange SELECT
ejblLoad SELECT
ejbRemove DELETE
ejbStore UPDATE

The business methods of tlsavingsAccountBean class are absent from the
preceding table because they do not access the database. Instead, these business
methods update the instance variables, which are written to the database when
the EJB container callsjbStore. Another developer may have chosen to access

the database in the business methods ofSthe ngsAccountBean class. This

choice is one of those design decisions that depend on the specific needs of your
application.

Before accessing a database you must connect to it. For more information, see
the sectionResource Connections (page 373).

Home Interface

The home interface defines the methods that allow a client to create and find an
entity bean. Th&avingsAccountHome interface follows:

import java.util.Collection;
import java.math.BigDecimal;
import java.rmi.RemoteException;
import javax.ejb.*;

THE SAVINGSACCOUNTEJB EXAMPLE 121

public interface SavingsAccountHome extends EJBHome {

public SavingsAccount create(String id, String firstName,
String lastName, BigDecimal balance)
throws RemoteException, CreateException;

public SavingsAccount findByPrimaryKey(String 1id)
throws FinderException, RemoteException;

public Collection findByLastName(String TastName)
throws FinderException, RemoteException;

public Collection findInRange(BigDecimal Tow,
BigDecimal high)
throws FinderException, RemoteException;

public void chargeForLowBalance(BigDecimal minimumBalance,
BigDecimal charge)
throws InsufficientBalanceException, RemoteException;

}

Create Method Definitions
Eachcreate method in the home interface must conform to these requirements:
* It has the same number and types of arguments as its matejtingeate
method in the enterprise bean class.
|t returns the remote interface type of the enterprise bean.

» Thethrows clause includes the exceptions specified bytthews clause
of the correspondingjbCreate andejbPostCreate methods.

* The throws clause includes tha&va.rmi.CreateException.

« Ifthe method is defined in a remote— not local— home interface, then the
throws clause includes tHavax.ejb.RemoteException.

Finder Method Definitions

Every finder method in the home interface corresponds to a finder method in the
entity bean class. The name of a finder method in the home interface begins with
find, whereas the corresponding name in the entity bean class begins with
ejbFind. For example, théavingsAccountHome class defines th&indByLast-
Name method, and théavingsAccountBean class implements thejbFindBy-

122 BEAN-MANAGED PERSISTENCE EXAMPLES

LastName method. The rules for defining the signatures of the finder methods of
a home interface follow:

» The number and types of arguments must match those of the correspond-
ing method in the entity bean class.

» The return type is the entity bean’s remote interface type, or a collection of
those types.

* The exceptions in thehrows clause include those of the corresponding
method in the entity bean class.

* Thethrows clause contains thiavax.ejb.FinderException.

» |fthe method is defined in a remote— not local— home interface, then the
throws clause includes thavax.ejb.RemoteException.

Home Method Definitions

Each home method definition in the home interface corresponds to a method in
the entity bean class. In the home interface, the method name is arbitrary, pro-
vided that it does not begin wittreate or find. In the bean class, the matching
method name begins witkijbHome. For example, in th&avingsAccountBean

class the name isjbChargeForLowBalance, but in theSavingsAccountHome
interface the name hargeForLowBalance.

The home method signature must follow the same rules specified for finder
methods in the previous section (except that a home method does not throw a
FinderException).

Remote Interface

The remote interface extendavax.ejb.EJBObject and defines the business
methods that a remote client may invoke. Here is3heingsAccount remote
interface:

import javax.ejb.EJBObject;
import java.rmi.RemoteException;
import java.math.BigDecimal;

public interface SavingsAccount extends EJBObject {

public void debit(BigDecimal amount)
throws InsufficientBalanceException, RemoteException;

public void credit(BigDecimal amount)
throws RemoteException;

THE SAVINGSACCOUNTEJB EXAMPLE 123

public String getFirstName()
throws RemoteException;

public String getLastName()
throws RemoteException;

public BigDecimal getBalance()
throws RemoteException;

}

The requirements for the method definitions in a remote interface are the same
for both session and entity beans:

« Each method in the remote interface must match a method in the enterprise
bean class.

« The signatures of the methods in the remote interface must be identical to
the signatures of the corresponding methods in the enterprise bean class.

« The arguments and return values must be valid RMI types.
* The throws clause must inclugleva. rmi.RemoteException.

A local interface has the same requirements, with the following exceptions:

« The arguments and return values are not required to be valid RMI types.
* The throws clause does not incluidgra. rmi .RemoteException.

Running the SavingsAccountEJB Example

Setting Up the Database

The instructions that follow explain how to use th@ingsAccountEJB exam-
ple with a Cloudscape database. The Cloudscape software is included with the
J2EE SDK download bundle.

1. From the command-line prompt, run the Cloudscape database server by
typingcloudscape -start. (When you are ready to shut down the server,
typecloudscape -stop.)

2. Create theavingsaccount database table.

a. Go to thej2eetutorial/examples/src directory

b. Typeant create-savingsaccount-table.

You may also run this example with databases other than Cloudscape. (See the
Release Notesf the J2EE SDK for a list of supported databases.) If you are

124

BEAN-MANAGED PERSISTENCE EXAMPLES

using one of these other databases, you may runjteetutorial/exam-
ples/src/ejb/sql/savingsaccount.sql Script to create theavingsaccount
table.

Deploying the Application

1.Inthedep1oytoo10penth@Zeetutoria1/examp1es/ears/Sav1ngsAc—
countApp.ear file (File->Open).

2. Deploy the SavingsAccountApp application (Tools->Deploy). In the
Introduction dialog box, make sure that you select the Return Client JAR
checkbox. For detailed instructions, sdeeploying the J2EE™

Application (page 62).

Running the Client

1. In aterminal window, go to thi2eetutorial/examples/ears directory.

2. Set theAPPCPATH environment variable to SavingsAccountAppCli-
ent.jar.

3. Type the following command on a single line:

runclient -client SavingsAccountApp.ear -name
SavingsAccountClient -textauth

4. At the login prompts, entgjuest for the user name anglest123 for the
password.

5. The client should display the following lines:

baTlance = 68.25
balance = 32.53
456: 44.77

730: 19.54

268: 100.07
836: 32.55

456: 44.77

4.00

7.00

DEPLOYTOOL TIPS FOR ENTITY BEANS WITH BEAN-MANAGED

Deploytool Tips for Entity Beans With Bean-
Managed Persistence

An earlier chapterGetting Started (page 47), gave step-by-step instructions for
creating and packaging a session bean. To build an entity bean you follow the
same procedures, but with the following exceptions.

1. In the New Enterprise Bean Wizard, specify the bean’s type and persistent
management.
a. In the General dialog box, select the Entity radio button.
b. In the Entity Settings dialog box, select the radio button for Bean-Man-
aged Persistence.

2. In the Resource Refs Tabbed Pane, specify the resource factories refer-
enced by the bean. These settings enable the bean to connect to the data-
base. For instructions, seeDeploytool Tips for Resource
References (page 374).

3. Before you deploy the bean, verify that the JNDI names are correct.

a. Select the application from the tree.

b. Select the JNDI Names tab.

Mapping Table Relationships For Bean-
Managed Persistence

In a relational database, tables can be related by common columns. The relation-
ships between the tables affect the design of their corresponding entity beans.
The entity beans discussed in this section are backed up by tables with the fol-
lowing types of relationships:

¢ One-to-One relationships

¢ One-to-Many relationships

* Many-to-Many relationships

One-to-One Relationships

In a one-to-one relationship, each row in a table is related to a single row in
another table. For example, in a warehouse applicatiaritaragebin table
might have a one-to-one relationship withwadget table. This application

126

BEAN-MANAGED PERSISTENCE EXAMPLES

would model a physical warehouse where each storage bin contains one type of
widget and each widget resides in one storage bin.

Figure 14 illustrates thetoragebin andwidget tables. Because thecorage-
binid uniquely identifies a row in thetoragebin table, it is that table’s primary
key. Thewidgetid is the primary key of thevidget table. The two tables are
related because theidgetid is also a column in thetoragebin table. By
referring to the primary key of theidget table, thewidgetid in the storage-

bin table identifies which widget resides in a particular storage bin in the ware-
house. Because the dgetid of the storagebin table refers to the primary key

of another table, itis called a foreign key. (The figure denotes a primary key with
PK and a foreign key with FK.)

StorageBin Table Widget Table
storagebinid (PK) 1:1 widgetid (PK)
widgetid (FK) (re—— description
guantity price

Figure 14 One-to-One Table Relationship

A dependent (child) table includes a foreign key that matches the primary key of
the referenced (parent) table. The values of the foreign keys intihvagebin
(child) table depend on the primary keys in thigiget (parent) table. For exam-
ple, if the storagebin table has a row with aidgetid of 344, then the widget
table should also have a row whedégetid is 344.

When designing a database application, you may choose to enforce the depen-
dency between the parent and child tables. There are two ways to enforce such a
dependency: by defining a referential constraint in the database or by performing
checks in the application code. Theoragebin table has a referential constraint
namedfk_widgetid:

CREATE TABLE storagebin
(storagebinid VARCHAR(3)
CONSTRAINT pk_storagebin PRIMARY KEY,
widgetid VARCHAR(3),
quantity INTEGER,
CONSTRAINT fk_widgetid
FOREIGN KEY (widgetid)
REFERENCES widget(widgetid));

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSIS-

Source Code. The source code for the following example is in the
j2eetutorial/examples/src/ejb/storagebin directory. To compile the
code, go to thg2eetutorial/examples/src directory and typent storage-
bin. A sampleStorageBinApp.ear file is in the Peetutorial/examples/ears
directory.

TheStorageBinBean andwidgetBean classes illustrate the one-to-one relation-
ship of thestoragebin and widget tables. TheStorageBean class contains
variables for each column in thetoragebin table, including the foreign key,
widgetId:

private String storageBinld;
private String widgetId;
private int quantity;

The ejbFindByWidgetId method of theStorageBean class returns thetor-
ageBinId that matches a giveridgetId:

public String ejbFindByWidgetId(String widgetId)
throws FinderException {

String storageBinId;

try {
storageBinld = selectByWidgetId(widgetId);
} catch (Exception ex) {
throw new EJBException(“ejbFindByWidgetId: “ +
ex.getMessage());
}

if (storageBinId == null) {
throw new ObjectNotFoundException
(“Row for widgetId “ + widgetId + “ not found.”);

}
else {

return storageBinId;
}

}

TheejbFindByWidgetId method locates the widgetld by querying the database
in theselectByWidgetId method:

private String selectByWidgetId(String widgetId)
throws SQLException {

String storageBinId;

128 BEAN-MANAGED PERSISTENCE EXAMPLES

String selectStatement =

“select storagebinid “ +

“from storagebin where widgetid = ? “;
PreparedStatement prepStmt =

con.prepareStatement(selectStatement);
prepStmt.setString(l, widgetId);

ResultSet rs = prepStmt.executeQuery(Q);

if (rs.next()) {
storageBinIld = rs.getString(1);

}
else {

storageBinId = null;
}

prepStmt.close();
return storageBinId;

}

To find out which storage bin a widget resides in, ft@rageBinClient pro-
gram calls theéfindByWidgetId method:

String widgetld = “777”;

StorageBin storageBin =
storageBinHome.findByWidgetId(widgetId);

String storageBinId = (String)storageBin.getPrimaryKey(Q);

int quantity = storageBin.getQuantity(;

Running the StorageBinEJB Example

1. Create thetoragebin database table:
a. Go to thej2eetutorial/examples/src directory.
b. Typeant create-storagebin-table.

2. Deploy thestorageBinApp.ear file (located in thej2eetutorial/exam-
ples/ears directory).

3. Run the client:

a. Go to thej2eetutorial/examples/ears directory.
b. Setthe\PPCPATH environment variable tStorageBinAppClient. jar.
c. Type the following command on a single line:

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSIS-

runclient -client StorageBinApp.ear -name StorageBinClient
-textauth

d. At the login prompts, entejuest for the user name anghest123 for
the password.

One-to-Many Relationships

If the primary key in a parent table matches multiple foreign keys in a child
table, then the relationship is one-to-many. This relationship is common in data-
base applications. For example, an application for a sports league might access a
team table and g1ayer table. Each team has multiple players and each player
belongs to a single team. Every row in the child talpleager), has a foreign key
identifying the player’s team. This foreign key matchesthan table’s primary

key.

The sections that follow describe how you might implement one-to-many rela-
tionships in entity beans. When designing such entity beans, you must decide
whether both tables are represented by entity beans, or just one.

A Helper Class for the Child Table

Not every database table needs to be mapped to an entity bean. If a database
table doesn't represent a business entity, or if it stores information that is con-
tained in another entity, then the table should be represented with a helper class.
In an online shopping application, for example, each order submitted by a cus-
tomer can have multiple line items. The application stores the information in the
database tables shown by Figure 15.

Orders Table Lineltems Table

orderid (PK) 1:Many

customerid e —— itemno (PK)

totalprice orderid (FK)

status productid
unitprice
quantity

Figure 15 One-to-Many Relationship: Order and Line Items

130

BEAN-MANAGED PERSISTENCE EXAMPLES

Not only does a line item belong to an order, it does not exist without the order.
Therefore, th@1ineitems table should be represented with a helper class and not
with an entity bean. Using a helper class in this case is not required, but doing so
might improve performance because a helper class uses fewer system resources
than an entity bean.

Source Code. The source code for the following example is in the
j2eetutorial/examples/src/ejb/order directory. To compile the code, go
to the j2eetutorial/examples/src directory and typeant order. A sample
OrderApp.ear file is in the peetutorial/examples/ears directory.

The LineItem andOrderBean classes show how to implement a one-to-many
relationship with a helper clasa.iheItem). The instance variables in the
LineItem class correspond to the columns in thimeitems table. TheitemNo
variable matches the primary key for thénei tems table and therderId vari-
able represents the table’s foreign key. Here is the source code fotrbetem
class:

public class LineItem implements java.io.Serializable {

String productld;
int quantity;
double unitPrice;
int itemNo;
String orderId;

public LineItem(String productId, int quantity,
double unitPrice, int itemNo, String orderId) {

this.productId = productId;
this.quantity = quantity;
this.unitPrice = unitPrice;
this.itemNo = itemNo;
this.orderId = orderld;

}

public String getProductId() {
return productld;

}

public int getQuantity() {
return quantity;
}

public doubTle getUnitPrice() {

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSIS-

return unitPrice;

}

public int getItemNo() {
return itemNo;

}

public String getOrderId() {
return orderld;
}
}

The OrderBean class contains aArraylList variable namedineItems. Each
element in thelineItems variable is aLineItem object. ThelineItems vari-
able is passed to therderBean class in theejbCreate method. For every
LineItem object in thelineItems variable, theejbCreate method inserts a row
into thelineitems table. It also inserts a single row into theders table. The
code for thejbCreate method follows:

public String ejbCreate(String orderId, String customerId,
String status, double totalPrice, ArraylList lineItems)
throws CreateException {

try {
insertOrder(orderId, customerId, status, totalPrice);
for (int i = 0; 1 < lineItems.size(); i++) {
LineItem item = (LineItem)lineltems.get(i);
insertItem(item);

} catch (Exception ex) {
throw new EJBException(“ejbCreate: “ +
ex.getMessage());
3

this.orderId = orderId;
this.customerId = customerld;
this.status = status;
this.totalPrice = totalPrice;
this.TineItems = linelItems ;

return orderld;

}

TheorderClient program creates and loads/AtrayList of LineItem objects.
The program passes thigrayList to the entity bean when it invokes tlaee-
ate method:

132 BEAN-MANAGED PERSISTENCE EXAMPLES

ArraylList lineItems = new ArraylList();

TineItems.add(new LineItem(“p23”, 13, 12.00, 1, “123”));
TineItems.add(new Lineltem(“p67”, 47, 89.00, 2, “123"));
TineItems.add(new LineItem(“pll”, 28, 41.00, 3, “123”));

Order duke = home.create(“123”, “c44”, “open”,
totalItems(lineltems), TineItems);

Other methods in th@rderBean class also access both database tables. The
ejbRemove method, for example, deletes not only a row from ééers table,

but also deletes all corresponding rows in theei tems table. TheejbLoad and
ejbStore methods synchronize the state of@mlerE]B instance, including the
TineItems Arraylist, with theorders andlineitems tables.

TheejbFindByProductId method enables clients to locate all orders that have a
particular line item. This method queries thime1items table for all rows with a
particularproductId. The method returns @llection of productId String
objects. ThedrderClient program iterates through tt@1lection and prints

the primary key of each order:

Collection c = home.findByProductId(“p67”);
Iterator i=c.iterator();
while (i.hasNext()) {
Order order = (Order)i.next();
String id = (String)order.getPrimaryKey(Q);
System.out.printin(id);
}

Running the OrderEJB Example

1. Create therders database table:
a. Go to thej2eetutorial/examples/src directory.
b. Typeant create-order-table.

2. Deploy theOrderApp.ear file (located in thej2eetutorial/exam-
ples/ears directory).

3. Run the client:

a. Go to thej2eetutorial/examples/ears directory.
b. Set the\PPCPATH environment variable t@rderAppClient.jar.
c. Type the following command on a single line:

runclient -client OrderApp.ear -name OrderClient
-textauth

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSIS-

d. At the login prompts, entgjuest for the user name anghest123 for
the password.

An Entity Bean for the Child Table

You should consider building an entity bean for a child table under the following
conditions:

The information in the child table is not dependent on the parent table.

The business entity of the child table could exist without that of the parent
table.

The child table might be accessed by another application that does not
access the parent table.

These conditions exist in the following scenario. Suppose that each sales repre-
sentative in a company has multiple customers and that each customer has only
one sales representative. The company tracks its sales force with a database

application. In the database, each row in tHéesrep table (parent) matches
multiple rows in thecustomer table (child). Figure 16 illustrates this relation-
ship.

SalesRep Table Customer Table
1: Many _
salesrepid (PK) | pumm— CUStOMETd (PK)
name salesrepid (FK)
name

Figure 16 One-to-Many Relationship: Sales Representative and Customers

TheSalesRepBean andCustomerBean entity bean classes implement the one-to-
many relationship of the gfales andcustomer tables.

Source Code. The source code for this example is in the
j2eetutorial/examples/src/ejb/salesrep directory. To compile the code,
go to thej2eetutorial/examples/src directory and typent salesrep. A
sampleSalesRepApp.ear file is in the Reetutorial/examples/ears direc-
tory.

134

BEAN-MANAGED PERSISTENCE EXAMPLES

The SalesRepBean class contains a variable namegstomerIds, which is an
ArraylList of String elements. Thesgtring elements identify which custom-
ers belong to the sales representative. BecauseutitemerIds variable reflects
this relationship, thealesRepBean class must keep the variable up to date.

The SalesRepBean class instantiates thaistomerIds variable in thesetEnti-
tyContext method, not inejbCreate. The container invokesetEntityCon-

text just once—when it creates the bean instance—ensuring:tkabmerIds

is instantiated just once. Because the same bean instance can assume different
identities during its life cycle, instantiatingustomerIds in ejbCreate might

cause multiple and unnecessary instantiations. ThereforeSahesRepBean

class instantiates th@stomerIds variable insetEntityContext:

public void setEntityContext(EntityContext context) {

this.context = context;
customerIds = new ArrayList();

try {
makeConnection();
Context initial = new InitialContext();
Object objref =
initial.lookup(“java:comp/env/ejb/Customer”);

customerHome =
(CustomerHome)PortableRemoteObject.narrow(objref,
CustomerHome.class);
} catch (Exception ex) {
throw new EJBException(“setEntityContext: “ +
ex.getMessage());

}

Invoked by theejblLoad method,loadCustomerIds is a private method that
refreshes theustomerIds variable. There are two approaches when coding a
method such asoadCustomerIds: fetch the identifiers from theustomer data-
base table or get them from tlaestomerE]B entity bean. Fetching the identifi-
ers from the database might be faster, but exposes the codeSalésRepBean
class to thecustomerEJB bean’s underlying database table. In the future, if you
were to change théustomerE]B bean’s table (or move the bean to a different
J2EE server), then you might need to changeStti@sRepBean code. But if the
SalesRepBean class gets the identifiers from tlt@stomerEJB entity bean, no
coding changes would be required. The two approaches present a trade-off: per-
formance versus flexibility. ThealesRepEIB example opts for flexibility, load-

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSIS-

ing thecustomerIds variable by calling theFindSalesRep andgetPrimaryKey
methods of theCustomerEJB bean. Here is the code for tH@adCustomerIds
method:

private void loadCustomerIds() {
customerIds.clear();

try {
Collection ¢ = customerHome.findBySalesRep(salesRepId);
Iterator i=c.iterator();

while (i.hasNext()) {
Customer customer = (Customer)i.next();
String id = (String)customer.getPrimaryKey(Q);
customerIds.add(id);

}

} catch (Exception ex) {
throw new EJBException(“Exception in loadCustomerIds: “ +
ex.getMessage());

}

If a customer’s sales representative changes, the client program updates the data-
base by calling theetSalesRepId method of theCustomerBean class. The next

time a business method of teelesRepBean class is called, thejbLoad method
invokes loadCustomerIds, which refreshes thecustomerIds variable. (To
ensure thatéjbLoad is invoked before each business method, set the transaction
attributes of the business methods to Required.) For exampleatlaeRepC11 -

ent program changes thalesRepId for a customer named Mary Jackson:

Customer mary = customerHome.findByPrimaryKey(“987");
mary.setSalesRepId(“543”);

The salesRepId 543 identifies a sales representative hamed Janice Martin. To
list all of Janice’s customers, tlsalesRepClient program invokes thgetCus-
tomerIds method, iterates through the ArrayList of identifiers, and locates each
CustomerE]B bean by calling its firgl/PrimaryKey method:

SalesRep janice = salesHome.findByPrimaryKey(“543”);
ArrayList a = janice.getCustomerIds();
i = a.iterator();

whiTle (i.hasNext()) {

136 BEAN-MANAGED PERSISTENCE EXAMPLES

String customerId (String)i.next();
Customer customer

customerHome. findByPrimaryKey(customerlId);
String name = customer.getName();

System.out.println(customerId + “: “

}

+ name);

Running the SalesRepEJB Example

1. Create the database tables:
a. Go to thej2eetutorial/examples/src directory.
b. Typeant create-salesrep-table.

2. Deploy theSalesRepApp.ear file (located in thej2eetutorial/exam-

ples/ears directory).
3. Run the client:

a. Go to thej2eetutorial/examples/ears directory.

b. Set the\PPCPATH environment variable tGalesRepAppClient.jar.

c. Type the following command on a single line:

runclient -client SalesRepApp.ear -name SalesRepClient

-textauth

d. At the login prompts, enteyuest for the user name angliest123 for

the password.

Many-to-Many Relationships

In a many-to-many relationship, each entity may be related to multiple occur-
rences of the other entity. For example, a college course has many students and
each student may take several courses. In a database, this relationship is repre-
sented by a cross reference table containing the foreign keys. In Figure 17, the
cross reference table is tharol1ment table. (PK indicates a primary key and

FK a foreign key.)

MAPPING TABLE RELATIONSHIPS FOR BEAN-MANAGED PERSIS-

Enrollment Table

studentid (FK)
courseid (FK)

1: Many Many : 1
Student Table Course Table
studentid (PK) courseid (PK)
name name

Figure 17 Many-to-Many Relationship: Students and Courses

These tables are accessed by3hedentBean, CourseBean, andEnrollerBean
classes.

Source Code. The source code for this example is in the
j2eetutorial/examples/src/ejb/enroller directory. To compile the code,
go to thej2eetutorial/examples/src directory and typeant enroller. A
sampleEnrollerApp.ear file is in the Reetutorial/examples/ears directory.

The StudentBean andCourseBean classes are complementary. Each class con-
tains anArrayList of foreign keys. ThestudentBean class, for example, con-
tains anArrayList hamedcourselds, which identifies the courses the student
is enrolled in. Likewise, th&ourseBean class contains aArrayList named
studentIds.

TheejbLoad method of thestudentBean class adds elements to theurselIds
ArrayList by calling ToadCourselIds, a private method. Th&oadCourselds
method gets the course identifiers from therol1lerEJB session bean. The
source code for thievadCourseIds method follows:

138 BEAN-MANAGED PERSISTENCE EXAMPLES

private void loadCourseIds() {
courselds.clear();

try {
Enroller enroller = enrollerHome.create();
ArraylList a = enroller.getCourselds(studentId);
courselds.addA11(a);

} catch (Exception ex) {
throw new EJBException(“Exception in loadCourselds: “ +
ex.getMessage());

}

Invoked by theloadCourseIds method, thegetCourses method of theEnrol-
TerBean class queries thenrol1ment table:

select courseid from enrollment
where studentid = ?

Only the EnrollerBean class accesses themrollment table. Therefore, the
EnrollerBean class manages the student-course relationship represented in the
enrollment table. If a student enrolls in a course, for example, the client calls
theenrol11 business method, which inserts a row:

insert into enrollment
values (studentid, courseid)

If a student drops a course, ilveEnro11 method deletes a row:

deTete from enrollment
where studentid = ? and courseid = ?

And if a student leaves the school, theleteStudent method deletes all rows
in the table for that student:

deTete from enrollment
where student = ?

The EnrollerBean class does not delete the matching row from thedent

table. That action is performed by tlkg¢bRemove method of theStudentBean

class. To ensure that both deletes are executed as a single operation, they should
belong to the same transaction. $smsactions (page 335) for more informa-

tion.

PRIMARY KEYS FORBEAN-MANAGED PERSISTENCE 139

Running the EnrollerEJB Example

1. Create the database tables:
a. Go to thej2eetutorial/examples/src directory.
b. Typeant create-enroller-table

2. Deploy theEnrollerApp.ear file (located in thej2eetutorial/exam-
ples/ears directory).

3. Run the client:

a. Go to thej2eetutorial/examples/ears directory.
b. Set theA\PPCPATH environment variable t&nrollerAppClient. jar.
c. Type the following command on a single line:

runclient -client EnrollerApp.ear -name EnrollerClient
-textauth

d. At the login prompts, enteyuest for the user name anghest123 for
the password.

Primary Keys for Bean-Managed
Persistence

You specify the primary key class in the entity bean’s deployment descriptor. In
most cases, your primary key class will b6taing, anInteger, or some other

class that belongs to the J2SE or J2EE standard libraries. For some entity beans,
you will need to define your own primary key class. For example, if the bean has
a composite primary key (that is, composed of multiple fields) then you must
create a primary key class.

The Primary Key Class

The following primary key class is a composite key— fr@ductId andven-
dorId fields together uniquely identify an entity bean.

public class ItemKey implements java.io.Serializable {

public String productld;
public String vendorId;

public ItemKey() { };

140 BEAN-MANAGED PERSISTENCE EXAMPLES

public ItemKey(String productId, String vendorId) {

this.productId = productld;
this.vendorId = vendorld;

}
public String getProductId() {

return productld;

}
public String getVendorId() {

return vendorld;

}
public boolean equals(Object other) {

if (other instanceof ItemKey) {
return (productId.equals(((ItemKey)other).productId)
&& vendorId.equals(((ItemKey)other).vendorId));
}

return false;

}
public int hashCode() {
return productId.concat(vendorId).hashCode();
}

For bean-managed persistence, a primary key class must meet these require-
ments:

* The access control modifier of the claspuslic.

o All fields are declared gaibTic.

» The class has a public default constructor.

» The class implements thashCode () andequals(Object other) meth-
ods.

e The class is serializable.

PRIMARY KEYS FORBEAN-MANAGED PERSISTENCE 141

Primary Keys in the Entity Bean Class

With bean-managed persistence, éieCreate method assigns the input param-
eters to instance variables and then returns the primary key class:

public ItemKey ejbCreate(String productld, String vendorld,
String description) throws CreateException {

if (productId == null || vendorId == null) {
throw new CreateException(
“The productId and vendorId are required.”);

}

this.productId = productId;
this.vendorId = vendorlId;
this.description = description;

return new ItemKey(productId, vendorId);

}

The ejbFindByPrimaryKey verifies the existence of the database row for the
given primary key:

public ItemKey ejbFindByPrimaryKey(ItemKey primaryKey)
throws FinderException {

try {
if (selectByPrimaryKey(primaryKey))
return primaryKey;

}

private boolean selectByPrimaryKey(ItemKey primaryKey)
throws SQLException {

String selectStatement =
“select productid “ +
“from item where productid = ? and vendorid = ?”;
PreparedStatement prepStmt =
con.prepareStatement(selectStatement);
prepStmt.setString(l, primaryKey.getProductId());
prepStmt.setString(2, primaryKey.getVendorId());
ResultSet rs = prepStmt.executeQuery();
boolean result = rs.next(Q);
prepStmt.close();
return result;

142

BEAN-MANAGED PERSISTENCE EXAMPLES

Getting the Primary Key

A client can fetch the primary key of an entity bean by invoking daePrima-
ryKey method of th&JBObject class:

SavingsAccount account;
String id = (String)account.getPrimaryKey(Q);

The entity bean retrieves its own primary key by calling t@PrimaryKey
method of the&ntityContext class:

EntityContext context;

String id = (String) context.getPrimaryKey(Q);

Handling Exceptions

The exceptions thrown by enterprise beans fall into two categories: system and
application.

A system exception indicates a problem with the services that support an appli-
cation. Examples of these problems include the following: a database connection
cannot be obtained, a SQL insert fails because the database is talbkap
method cannot find the desired object. If your enterprise bean encounters a sys-
tem-level problem, it should throw favax.ejb.EJBException. The container

will wrap the EJBException in aRemoteException, which it passes back to the
client. Because theJBException is a subclass of thRuntimeException, you

do not have to specify it in thehrows clause of the method declaration. If a sys-
tem exception is thrown, the EJB container might destroy the bean instance.
Therefore, a system exception cannot be handled by the bean'’s client program; it
requires intervention by a system administrator.

An application exception signals an error in the business logic of an enterprise
bean. There are two types of application exceptions: customized and predefined.
A customized exception is one that you've coded yourself, such astlefi-
centBalanceException thrown by thedebit business method of thgav-
ingsAccountEJB example. Thejavax.ejb package includes several predefined
exceptions that are designed to handle common problems. For exampfié-an
Create method should throw @reateException to indicate an invalid input
parameter. When an enterprise bean throws an application exception, the con-

HANDLING EXCEPTIONS 143

tainer does not wrap it in another exception. The client should be able to handle
any application exception it receives.

If a system exception occurs within a transaction, the EJB container rolls back
the transaction. However, if an application exception is thrown within a transac-
tion, the container does not roll back the transaction.

The following table summarizes the exceptions of jheax.ejb package. All
of these exceptions are application exceptions, except fo¥dhechEntityEx-
ception and theEJBException, which are system exceptions.

Table 6 Exceptions

Method Name Exception It Throws Reason for Throwing

An input parameter is

ejbCreate CreateException . .
invalid.

ejbFindByPrimaryKey
(and other finder ObjectNotFoundException

methods that return (subclass of FinderException)
a single object)

The database row for the
requested entity bean is
cannot be found.

The entity bean’s row can

ejbRemove RemoveException not be deleted from the
database.
ejbLoad NoSuchEntityException The database row to be

loaded cannot be found.

The database row to be

j N hEntityE i
ejbStore oSuchEntityException updated cannot be found

A system problem has

11 method EJBExcepti
(a1l methods) xception been encountered.

144 BEAN-MANAGED PERSISTENCE EXAMPLES

Container-Managed
Persistence Examples

by Dale Green

AN entity bean with container-managed persistence offers important advan-
tages to the bean developer. First, the EJB™ container handles all database stor-
age and retrieval calls. The container also manages the relationships between the
entity beans. Because of these services, you don't have to code the database
access calls in the entity bean. Instead, you specify settings in the bean’s deploy-
ment descriptor. Not only does this approach save you time, but it makes the
bean portable across various database servers.

This chapter focuses on the source code and deployment settings for an example
calledRosterApp, an application that features entity beans with container-man-
aged persistence. If you are unfamiliar with the terms and concepts mentioned in
this chapter, please consult the sectionContainefManaged
Persistence (page 79).

Overview of the RosterApp Application 144
The PlayerEJB Code 145
Entity Bean Class 146
Local Home Interface 150
Local Interface 151
A Guided Tour of the RosterApp Settings 152
RosterApp 152
RosterClient 152
RosterJAR 153
TeamJAR 154

145

Bios.html

146

CONTAINER-MANAGED PERSISTENCE EXAMPLES

Method Invocations in RosterApp 157
Creating a Player 158
Adding a Player To a Team 159
Removing a Player 160
Dropping a Player From a Team 161
Getting the Players Of a Team 162
Getting a Copy of a Team’s Players 163
Finding the Players By Position 165
Getting the Sports of a Player 166
Running the RosterApp Example 168
Setting Up 168
Deploying the Application 168
Running the Client 168
Deploytool Tips for Entity Beans With Container-Managed Persistence 169
Specifying the Bean’s Type 169
Selecting the Persistent Fields and Abstract Schema Name 169
Defining EJB QL Queries for Finder and Select Methods 170
Generating SQL and Specifying Table Creation 170
Specifying the Database JNDI Name, User Name, and Password 171
Defining Relationships 171
Primary Keys for Container-Managed Persistence 171
The Primary Key Class 172
Primary Keys in the Entity Bean Class 173
Generating Primary Key Values 174

Overview of the RosterApp Application

The RosterApp application maintains the team rosters for players in sports
leagues. The application has five components. RdsxerAppClient cOmpo-
nent is a J2EE™ application client that accessesrtiyerE]B session bean
through the bean’s remote interfaces. RogterEJB bean accesses three entity
beans—PlayerE]B, TeamEJB, andLeagueEJB—through their local interfaces.

The entity beans use container-managed persistence and relationships. The
TeamEJB andPlayerEJB beans have a bidirectional, many-to-many relationship.

In a bidirectional relationship, each bean has a relationship field whose value
identifies the related bean instance. The multiplicity of the TeamEJB-PlayerEJB
relationship is many-to-many: Players who participate in more than one sport
belong to multiple teams and each team has multiple players.Ld&gieE]B
andTeamEJB beans also have a bidirectional relationship, but the multiplicity is
one-to-many: A league has many teams but a team can belong to just one league.

THE PLAYEREJB CODE 147

Figure 18 shows the components and relationships cidbeerApp application.
The dotted lines represent the access gained through invocations of the JNDI
Tookup method. The solid lines represent the container-managed relationships.

Many : Many

PlayerEJB TeamEJB LeagueEJB

RosterEJB

RosterClient

Figure 18 RosterApp J2EE™ Application

The PlayertEJB Code

ThePlayerE]B entity bean represents a player in a sports league. Like any entity
bean with container-managed persistencepitagerte]B bean needs the follow-
ing code:

» Entity Bean ClassP(layerBean)
» Local Home InterfaceLpcalPlayerHome)
« Local Interfacel(ocalPlayer)

Source Code. The source code for this example is in the
j2eetutorial/examples/src/ejb/cmproster directory. To compile the code,
go to thej2eetutorial/examples/src directory and typeant cmproster. A
sampleRosterApp.ear file is in the peetutorial/examples/ears directory.

148

CONTAINER-MANAGED PERSISTENCE EXAMPLES

Entity Bean Class

For container-managed persistence, the code of the entity bean class must meet
the several syntax requirements. First, the class must be definedBs: and
abstract. Also, the class must implement the following:

» TheEntityBean interface

e Zero or morejbCreate andejbPostCreate methods

» The getand set access methods, definetlsisract, for the persistent and
relationship fields

» Any select methods, defining themaastract
* The home methods
» The business methods.

The entity bean class must not implement these methods:

e The finder methods
e Thefinalize method

Differences Between Container-Managed and Bean-Managed
Code

Because it contains no calls to access the database, an entity bean with container-
managed persistence requires a lot less code than one with bean-managed persis-
tence. For example, ttlayerBean. java source file discussed in this chapter is
much smaller than th&avingsAccountBean.java code documented in the
Bean-ManagedPersistenc&Examples (page 109) chapter. The following table
compares the code of the two types entity beans.

Table 7 Coding Differences Between Persistent Types

Difference Container-Managed Bean-Managed

class definition abstract not abstract

database access calls generated by tools coded by developers
represented by virtual coded as instance

persistent state persistent fields variables

access methods for per-
sistent and relationship | required none
fields

THE PLAYEREJB CODE 149

Table 7 Coding Differences Between Persistent Types (Continued)

Difference Container-Managed Bean-Managed
findByPrimaryKey handled by container coded by developers
method

. handled by container, but the
customized

finder methods developer must define the EJB coded by developers

QL queries
select methods handled by container none
return value of ejpCreatd should be null must be the primary key

Note that for both types of persistence, the rules for implementing business and
home methods are the same. Sdee BusinessMethods (page 116) an@he
Home Methods (page 118).

Access Methods

An entity bean with container-managed persistence has persistent and relation-
ship fields. These fields are virtual, so you do not code them in the class as
instance variables. Instead, you specify them in the bean’s deployment descrip-
tor. To permit access to the fields, you define abstract get and set methods in the
entity bean class.

Access Methods for Persistent Fields. The EJB container automatically
performs the database storage and retrieval of the bean’s persistent fields. The
deployment descriptor of thelayerE]JB bean specifies the following persistent
fields:

* playerId (primary key)
e name

e position

e salary

ThePlayerBean class defines the access methods for the persistent fields as fol-
lows:

public abstract String getPlayerId();
public abstract void setPlayerId(String id);

public abstract String getName(Q);

150

CONTAINER-MANAGED PERSISTENCE EXAMPLES

public abstract void setName(String name);

public abstract String getPosition();
public abstract void setPosition(String position);

public abstract double getSalary();
public abstract void setSalary(double salary);

The name of an access method begins with or set, followed by the capital-

ized name of the persistent or relationship field. For example, the accessor meth-
ods for thesalary field aregetSalary andsetSalary. This naming convention

is similar to that of JavaBeans™ components.

Access Methods for Relationship Fields. In the RosterApp application,
since a player can belong to multiple teamspPlayerEJB instance may be
related to manyreameJB instances. To specify this relationship, the deployment
descriptor of thePlayereJB defines a relationship field namedams. In the
PlayerBean class, the access methods for thams relationship field are as fol-
lows:

public abstract Collection getTeams();
public abstract void setTeams(Collection teams);

Select Methods
A select method is similar to a finder method in the following ways:

» A select method queries a database and returns objects.
» The deployment descriptor specifies an EJB QL query for a select method.
» The entity bean class does not implement the select method.

However, a select method differs significantly from a finder method:

» A select method can return persistent fields or the home interfaces of
related entity beans. A finder method can return only the home interface
(or a collection thereof) that defines it.

» Since it is not exposed in any of the local or remote interfaces, a select
method cannot be invoked by a client. It may be invoked only by the meth-
ods implemented within the entity bean class. A select method is usually
invoked by a business method.

» A select method is defined in the entity bean class. For bean-managed per-
sistence, a finder method is defined in the entity bean class, but for con-
tainer-managed persistence it is not.

THE PLAYEREJB CODE 151

ThePlayerBean class defines these select methods:

public abstract Collection ejbSelectLeagues(LocalPlayer player)
throws FinderException;

public abstract Collection ejbSelectSports(LocalPlayer player)
throws FinderException;

The signature for a select method must follow these rules:

» The prefix of the method name mustdjéSelect.

* The access control modifier mustgad1ic.

« The method must be declaredaastract.

* The throws clause must include tjw/ax.ejb.FinderException.

Business Methods

Since clients cannot invoke select methods,heyerBean class wraps them in
thegetlLeagues andgetSports business methods:

public Collection getLeagues() throws FinderException {

LocalPlayer player =
(team.LocalPlayer)context.getEJBLocalObject();
return ejbSelectLeagues(player);

}

public Collection getSports() throws FinderException {

LocalPlayer player =
(team.LocalPlayer)context.getEJBLocalObject();
return ejbSelectSports(player);
}

Entity Bean Methods

Because the container handles persistence, the life-cycle method®irajfee -
Bean class are nearly empty.

TheejbCreate method initializes the bean instance by assigning the input argu-
ments to the persistent fields. After thghCreate method completes, the con-
tainer inserts a row into the database. Here is the source code fortthecate
method:

152 CONTAINER-MANAGED PERSISTENCE EXAMPLES

public String ejbCreate (String id, String name,
String position, double salary) throws CreateException {

setPlayerId(id);
setName(name) ;
setPosition(position);
setSalary(salary);
return id;

}

Except for a debug statement, thibRemove method in thePTayerBean class is
empty. The container invokegbRemove right before it deletes the database row.

The ejbPostCreate method must have the same input parameters and return
type as thejbCreate method. If you want to set a relationship field to initialize
the bean instance, you should do so inéhiePostCreate method. You may not

set a relationship field in thgbCreate method.

The container automatically synchronizes the state of the entity bean with the
database. After the container loads the bean’s state from the database, it invokes
theejbLoad method. In like manner, before storing the state in the database, the
container invokes thejbStore method.

Local Home Interface

The local home interface defines theeate, finder, and home methods that may
be invoked by local clients.

The syntax rules for areate method follow:

» The name begins wittreate.

It has the same number and types of arguments as its mateftigeate
method in the entity bean class.

It returns the local interface type of the entity bean.

» Thethrows clause includes the exceptions specified bytthews clause
of the correspondingjbCreate method.

» The throws clause contains ti#vax.ejb.CreateException.
These rules apply for a finder method:

* The name begins witfiind.

» The return type is the entity bean’s local interface type, or a collection of
those types.

* Thethrows clause contains thfavax.ejb.FinderException.

THE PLAYEREJB CODE 153

* ThefindByPrimarykKey method must be defined.

An excerpt of the.ocalPlayerHome interface follows:

package team;

import java.util.¥*;
import javax.ejb.*;

public interface LocalPlayerHome extends EJBLocalHome {

public LocalPlayer create (String id, String name,
String position, double salary)
throws CreateException;

public LocalPlayer findByPrimaryKey (String 1id)
throws FinderException;

public Collection findByPosition(String position)
throws FinderException;

public Collection findByLeague(LocallLeague Teague)
throws FinderException;

Local Interface

This interface defines the business and access methods that a local client may
invoke. ThePlayerBean class implements two business methogistLeagues
andgetSports. It also defines several get and set access methods for the persis-
tent and relationship fields. The set methods are hidden from the bean’s clients
because they are not defined in thecalPlayer interface. However, the get
methods are exposed to the clients by the interface:

package team;

import java.util.¥*;
import javax.ejb.¥;

public interface LocalPlayer extends EJBLocalObject {

public String getPlayerId();
public String getName();
public String getPosition();
public double getSalary(Q);

154 CONTAINER-MANAGED PERSISTENCE EXAMPLES

public Collection getTeams();

public Collection getLeagues() throws FinderException;
pubTlic Collection getSports() throws FinderException;

A Guided Tour of the RosterApp Settings

This section introduces you to the settings of the deployment descriptors for
entity beans with container-managed persistence and relationships. As this tour
guides you through theeploytool screens, it discusses the highlights of the
tabbed panes and dialog boxes that appear.

To begin our tour, please run tldepToytool and open th®osterApp.ear file,
which is in thej2eetutorial/examples/ears directory.

RosterApp

To view the deployment settings for the application, selecRtiy@erApp node
in the tree view.

General Tabbed Pane (RosterApp)

The Contents field displays the files contained in #Hw&terApp.ear file,
including the two EJB JAR filesteam-ejb.jar, roster-ejb.jar) and the
J2EE application client JAR filee¢ster-ac. jar).

JNDI Names Tabbed Pane (RosterApp)

The Application table lists the JNDI names for the enterprise beans iRothe
terApp application.

The References table has two entries. The EJB Ref entry maps the coded name
(ejb/SimpleRoster) in theRosterClient to the JINDI name of th@osterE]B

session bean. The Resource entry specifies the JNDI name for the database that
is accessed by the entity beans contained im¢aeJAR module.

RosterClient

To view this client, expand theosterApp node by clicking its adjacent key icon
in the tree view. Next, seleRbsterClient.

A GUIDED TOUR OF THE ROSTERAPP SETTINGS 155

JAR File Tabbed Pane (Roster Client)

The Contents field shows the files contained by theter-ac.jar file: two
XML files (the deployment descriptors) and a single class fles{erCli-
ent.class).

EJB Refs Tabbed Pane (Roster Client)

TheRosterClient accesses a single bean, #eeterE]B session bean. Because

this access is remote, the value in the Interfaces column is Remote and the value
for the Local/Remote Interface column is the bean’s remote interface- (
ter.Roster).

RosterJAR

In the tree view, sele®osterJAR. This JAR file contains thRosterEJB session
bean.

General Tabbed Pane (RosterJAR)

The Contents field lists three packages of class files.rbleer package con-
tains the class files required for tResterEJB—the session bean class, remote
interface, and home interface. Theam package includes the local interfaces for
the entity beans accessed by thesterEJB session bean. Thetil package
holds the utility classes for this application.

RostereJB
In the tree view, expand tiResterJAR node and sele@bsterE]B.

General Tabbed Pane (RosterEJB). This tabbed pane shows thabs-
terEJB is a stateful session bean with remote access. Since it allows no local
access, the Local Interfaces fields are empty.

EJB Refs Tabbed Pane (RosterEJB). The RosterEJB session bean accesses
three entity bean®1ayerE]B, TeamE]B, andLeagueE]B. Because this access is
local, the entries in the Interfaces columns are defined as Local. The Home Inter-
face column lists the local home interfaces of the entity beans. The
Local/Remote Interfaces column displays the local interfaces of the entity beans.

To view the runtime deployment settings, select a row in the table. For example,
when you select the row with the Coded Nameegb/SimpleLeague, the
LeagueEJB name appears in the Enterprise Bean Name Field. If a component

156

CONTAINER-MANAGED PERSISTENCE EXAMPLES

references a local entity bean, then you must enter the name of the referenced
bean in the Enterprise Bean Name field.

TeamJAR

In the tree view, select theeamJAR node. This JAR file contains the three related
entity beansteagueE]B, TeamEJB, andPlayerEJB

General Tabbed Pane (TeamJAR)

The Contents field shows two packages of class filesn andutil. The team
package has the entity bean classes, local interfaces, and local home interfaces
for all three entity beans. Thei1 package contains utility classes.

Relationships Tabbed Pane (TeamJAR)

On this tabbed pane you define the relationships between entity beans with con-
tainer-managed persistence. The Container Managed Relationships table sum-
marizes two relationships: TeamEJB-PlayerEJB and LeagueEJB-TeamEJB. In
the TeamEJB-PlayerEJB relationship, teamE]B bean is designated as EJB A

and thePlayerE]B bean as EJB B. (This designation is arbitrary—we could have
assigneclayert]B to EJB A andreamEJB to EJB B.)

Edit Relationship Dialog Box (TeamJAR). To view this dialog box, on the
Relationships tab select a row and click Edit. For example, to view the
TeamEJB-PlayerEJB relationship, select the row in which the EJB A value is
Team and then click Edit.

TeamEJB-PlayerEJB Relationship

The Multiplicity combo box offers four choices. For this relationship, the Many
to Many choice should be selected because a team has many players and a player
can belong to more than one team.

The information in the Enterprise Bean A box definesTeanE]B bean’s side of

the relationship. The Field Referencing Bean B combo box displays the relation-
ship field players) in TeamEJB. This field corresponds to the relationship
access methods in theamBean. java source code:

public abstrac