

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

MEAP Edition
Manning Early Access Program

Copyright 2006 Manning Publications

For more information on this and other Manning titles go to

www.manning.com

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning.com/
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Contents

Chapter 1 - EJB 3.0 Overview
Chapter 2 - A First taste of EJB
Chapter 3 - Building Business Logic with Session beans
Chapter 4 - Messaging and Developing Message Driven Beans
Chapter 5 - Learning Advanced EJB Concepts
Chapter 6 - Transactions and Security
Chapter 7 - Implementing Domain Models with EJB 3.0
Chapter 8 - Object-Relationship Mapping using EJB 3 JPA
Chapter 9 - Manipulating entities with EntityManager API
Chapter 10 - Using the Query API and the Java Persistence
 Query Language
Chapter 11 - Packaging EJB 3 Applications
Chapter 12 - Effectively Integrating EJB 3 across Your Application Tiers
Chapter 13 - Taming Wild EJBs
Chapter 14 - Migrating to EJB 3
Chapter 15 - Exposing EJBs as Web Services
Chapter 16 - EJB 3 and Spring

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Chapter 1 What’s what in EJB 3.0

One day, when God was looking over his creatures, he noticed a boy named Sadhu whose humor

and cleverness pleased him. God felt generous that day and granted Sadhu three wishes. Sadhu asked
for three reincarnations--one as a ladybug, one as an elephant, and the last as a cow. Surprised by
these wishes, God asked Sadhu to explain himself. The boy replied, "I want to be a ladybug so that
everyone in the world will admire me for my beauty and forgive the fact that I do no work. Being an
elephant will be fun because I can gobble down enormous amounts of food without being ridiculed. I
will like being a cow the best because I will be loved by all and useful to mankind." God was charmed
by these answers and allowed Sadhu to live through the three incarnations. He then made Sadhu a
morning star for his service to mankind as a cow.

EJB too has lived through three incarnations. When it was first released, the industry was dazzled
by its innovations. But like the ladybug, EJB 1 had limited functionality. The second EJB
incarnation was just about as heavy as the largest of our beloved pachyderms. The brave souls who
could not do without its elephant-power had to tame the awesome complexity of EJB 2. And finally,
in its third incarnation, EJB has become much more useful to the huddled masses, just like the gentle
bovine that is sacred for Hindus and respected as a mother whose milk feeds us all..

A lot of people have put in a lot of hard work to make EJB 3 as simple and lightweight as
possible without sacrificing enterprise-ready power. EJB components are now little more than Plain
Old Java Objects (POJOs) that look a lot like code in a Hello World program. We hope you will
agree with us as you read through the next Chapters that it has all the makings of a star.

We’ve strived to keep this book as earthy as possible without skimping on content. The book is
designed to help you learn EJB 3.0 as quickly and as easily as possible. At the same time, we will not
neglect to cover the basics where needed. We will also dive into deep waters with you where we can,
share with you all the amazing sights we’ve discovered and warn you about any lurking dangers.

This book is about the radical transformation of a very important and uniquely influential
technology in the Java World. We suspect you are not picking this book up to learn too much about
EJB 2. You probably either already know EJB 2.x or are completely new to the world of EJB. In
either case, spending too much time on previous versions is a waste of your time --you won't be
surprised to learn that EJB 3.0 and EJB 2.x have very little in common. . If you are really curious
about the journey that brought us to the current point, we encourage you to pick up one of the many
good books on the previous versions of EJB.

Our goal in this Chapter is to tell you what’s what in EJB 3.0, why you should consider using it,
and, for EJB 2.x veterans, outline the significant improvements the newest version offers. We will
then jump right into code in the next Chapter to build on the momentum of this one. With this goal
in mind, we now start with a broad overview of EJB.

1.1 EJB Overview
In very straightforward terms, Enterprise Java Beans (EJB) is a platform for building portable,

reusable and scalable business applications using Java programming language. Since its initial

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

incarnation, EJB has been touted a component model or framework to build enterprise Java
applications without having to reinvent a lot of services such as transactions, security, automated,
persistence, and so on that you may need for building an application. EJB lets application developers
focus on building business logic without having to spend time on building infrastructure code.

From a developer’s point of view an EJB is a piece of Java code that executes in a specialized
runtime environment called the EJB container that provides a bunch of component services. The
persistence services are provided by a specialized framework called the persistence provider. We’ll talk
more about the EJB container, persistence provider and services in Section 1.3.

In this section, you will learn how EJB functions as both a component and a framework. We’ll
also examine how EJB lends itself to building layered applications. We’ll round off this section by
listing a few reasons why EJB might be right for you.

1.1.1 EJB as a Component
In this book, when we talk about EJBs, we are talking about the server-side components that you

can use to build parts of your application like the business logic or persistence code. A lot of us tend
to associate the term component with developing complex and heavyweight CORBA, Microsoft
COM+ code. In the brave new world of EJB 3.0, a component is really what it ought to be—nothing
more than a POJO with some special powers. More importantly, these powers stay invisible until
they are needed and don’t distract from the real purpose of the component. You will see this
firsthand throughout this book, especially starting with Chapter 2.

The real idea behind a component is that it should effectively encapsulate application behavior.
The users of a component are not required to know its inner workings. All they need to know is what
to pass in and what to expect back.

There are three types of EJB components: Session beans, Message Driven beans, and Entities.
Session beans and Message driven beans are used to implement business logic in an EJB application
and Entities are used for persistence.

Components can be reusable. For instance, suppose you were in charge of building a web site for
an online merchant that sells technology books. You implemented a module to charge the Credit
Card as part of a regular Java object. Your company did fairly well and you moved on to greener
pastures. The company then decided to diversify and began developing a web site for selling CDs and
DVDs. Since the deployment environment for the new site was different, it could not be located on
the same server as your module. The person building the new site was forced to duplicate your
Credit card module in the new website because there was no easy way to access your module. If you
had implemented the Credit Card charging module as an EJB component as depicted in Figure 1.1
(or as a web service) it would have been much easier for the new person to access it by simply making
a call to it when she needed that functionality. She could have reused it without having to understand
its implementation.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

1 Figure 1.1: EJB allows development of reusable components. For example you can build charging of

CreditCard as an EJB that may be accessed by multiple applications.

Having said that, building a reusable component requires very careful planning because, across

enterprise applications within an organization, very little of the business logic may be reusable. Hence
you may not care about the reusability of EJB components, but EJB still has much to offer as a
framework as we will discover next section.

1.1.2 EJB As a Framework
As we mentioned, EJB components live in a container. Together, the components, or EJBs, and

the container can be viewed as a framework that provides valuable services for enterprise application
development.

Although many people think EJBs are overkill for developing relatively simple web applications
of moderate size, nothing could be farther from the truth. When you build a house you don’t build
everything from scratch. Instead, you buy materials or even the services of a contractor as you need it.
It isn’t too practical to build an enterprise application from scratch either. Most server-side
applications have a lot in common, including churning business logic, managing application state,
storing and retrieving information from a relational database, transaction management, security,
asynchronous processing, system integration and so on.

As a framework, the EJB container provides these kinds of common functionality as out-of-the-
box services, so that your EJB components can use them in your applications without reinventing the
wheel. For instance, let’s say that when you built the credit card module in your web application, you

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

wrote a lot of complex and error-prone code to manage transactions and security access control. You
could have avoided that by using the declarative transaction and security services provided by the EJB
container. These services, as well as many others you will learn about in section 1.3, are available to
the EJB components when they are deployed in the EJB container, as you can see in figure 1.2. At
the end of the day, this means writing high-quality, feature-rich applications much faster than you
might think.

2 Figure 1.2: EJB as a framework provides services to EJB components

The container provides the services to the EJB components in a rather elegant new way; metadata

annotations are used to pre-configure the EJBs by specifying the type of services to add when the
container deploys the EJBs. Java 5 introduced metadata annotations, which are property settings that
mark a piece of code, such as a class or method, as having particular attributes. This is a declarative
style of programming, where the developer specifies what should be done and the system adds the
code to do it.

In EJB, metadata annotations dramatically simplify development and testing of applications,
without having to depend on an external XML configuration file. It allows developers to declaratively
add services to EJB components as and when they need. As Figure 1.3 depicts, an annotation
transforms a simple POJO into an EJB.

3 Figure 1.3: EJBs are regular Java objects configured using metadata annotations.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

As you will learn, annotations are used extensively throughout EJB, and not only to specify
services. For example, an annotation is used to specify the type of the EJB component.

Although it’s sometimes easy to forget it, enterprise applications have one more thing in common
with a house. Both are meant to last, often much longer than anyone expects. Being able to support
high-performance, fault-tolerant, scalable applications is an up-front concern for the EJB platform
instead of being an afterthought. This means that you won’t just be writing good server-side
applications faster, but can expect your platform to grow with the success of your application. When
the need to support a larger number of users becomes a reality, you won’t have to rewrite your code.
Thankfully these concerns are take care of by EJB container vendors. You’ll be able to count on
moving your application to a distributed, clustered server farm by doing nothing more than a little
bit of configuration.

Last but certainly not least, with a world that’s crazy about Service-Oriented Architecture (SOA)
and interoperability EJB lets you turn your application into a Web Services powerhouse with ease
when you need it to.

The EJB framework is a standard Java technology with an open specification. If it catches your

fancy, you can check out the real deal on the Java Community Process (JCP) website at
http://www.jcp.org/en/jsr/detail?id=220. What this means for you is that EJB is supported by a large
group of people with competing but compatible implementations. On one hand, this means that the
large group of people will work their best to keep EJB competitive. On the other hand, the ease of
portability means that you get to pick and choose what implementation suits you best making your
application portable across EJB containers from different vendors.

Having given you a high level introduction to EJB, let’s turn our attention next to how EJB can
be used to build layered applications.

1.1.3 Layered architectures and EJB
Most enterprise applications contain a pretty large number of components. Enterprise

applications are designed to solve a unique type of customer problem, , but they share many common
characteristics. For example, most enterprise applications have some kind of user interface and they
implement business processes, model a problem domain, and save data into a database. Because of
these commonalities, you can a follow a common architecture or design principles for building
enterprise applications known as patterns.

For server-side development, the dominant pattern is layered architectures. In a layered
architecture, components are grouped into tiers. Each tier in the application has a well-defined
purpose, kind of like a profession, but more like a section of a factory assembly line. Each section of
the assembly line does its designated part and passes on the remaining work on to the next one in
line. In layered architectures, each layer delegates work to a layer underneath it.

EJB loosely allows you to build applications using two different layered architectures – the
traditional four-tier architecture and Domain Driven Design (DDD). We will take a brief look at
each of these architectures next.

Traditional Four Tier Layered Architecture
Figure 1.1 shows the traditional four-tier server architecture. This architecture is pretty intuitive

and enjoys a good amount of popularity. In this architecture, the presentation layer is responsible for

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.jcp.org/en/jsr/detail?id=220
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

rendering the graphical user interface and handling user input. The presentation layer passes down
each request for application functionality to the business logic layer.

The business logic layer is the heart of the application and contains workflow and processing logic.
In other words, business logic layer components model distinct actions or processes the application
can perform, such as billing, search, ordering, user account maintenance and so on.

4 Figure 1.1: Most traditional enterprise applications have at least four layers. 1) The presentation layer is

the actual user interface and can either be a browser or a desktop application. 2) The business logic layer

defines the business rules. 3) The persistence layer deals with interactions with database. 4) The

database layer consists up of a relational database such as Oracle that stores the persistent objects.

The business logic layer retrieves data from and saves data into the database by utilizing the

persistence tier.
The persistence layer provides a high level Object-Oriented (OO) abstraction over the database

layer.
The database layer typically consists of a relational database management system (RDBMS) like

Oracle, DB2 or SQL Server.
EJB is obviously not a presentation layer technology. EJB is all about robust support for

implementing the business logic and persistence layers. Figure 1.2 shows how EJB supports these
layers via its services.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

5 Figure 1.2: The component services offered by EJB 3.0 at each supported application layer. Note each

service is independent of each other, so you are for the most part free to pick and choose the features

important for your application. You’ll learn more about services in section 1.3.

In section 1.3, we will get into more detail about EJB services. And in section 1.2, we will explore

the EJB bean types. For now, just note that the bean types called Session Beans and Message Driven
Beans (MDBs) reside in and use the services in the business logic tier, and the bean types called
Entities reside in and use the services in the persistence tier.

As groundbreaking as the traditional four-tier layered architecture is, it is not perfect. One of the
most common criticisms of the traditional layered architecture is that it undermines the OO ideal of
modeling the business domain as objects that encapsulate both data and behavior. Because the
traditional architecture focuses on modeling business processes instead of the domain, the business
logic tier tends to look more like a database driven procedural application rather than an Object
Oriented one. Since persistence tier components are simple data holders, they look a lot like database
record definitions rather than first class citizens of the OO World. Domain Driven Design (DDD)
proposes an alternative architecture that attempts to solve these perceived problems.

Domain Driven Design (DDD)
The term Domain Driven Design1 may be relatively new but the concept is not. Domain Driven

Design emphasizes that domain objects should contain business logic and should not just be a dumb
replica of database records. Domain objects are known as Entities in EJB 3.0 and we will discuss
them in section 1.2. With DDD, the Catalog and Customer objects in a trading application are
typical examples of entities and they may contain business logic.

In his excellent book “POJOs in Action,” author Chris Richardson points out the problem with
using domain objects just as a data holder.

“Some developers still view persistent objects simply as a means to get data in and out of the
database and write procedural business logic. They develop what Fowler calls an “anemic domain
model” [Fowler Anemic]. Just as anemic blood lacks vitality, anemic object models only
superficially model the problem and consist of classes that implement little or no behavior”

1 Domain Driven Design by Eric Evans Addison Wesley

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Yet, even though its value is clear, until this release of EJB, it was very difficult to implement
DDD. Chris goes on to explain how EJB2 encouraged procedural code.

 “… J2EE developers write procedural-style code [because] it is encouraged by the EJB architecture,
literature, and culture, which place great emphasis on EJB components. EJB 2 components are not
suitable for implementing an object model.”

Admittedly, implementing a real domain model was almost impossible with EJB 2.x because
beans were not POJOs and did not support many OO features such as inheritance and
polymorphism. Chris specifically targets Entitity beans as the problem..

“.EJB 2 entity beans, which are intended to represent business objects, have numerous limitations
that make it extremely difficult to use them to implement a persistent object model.”

The good news is that EJB 3.0 enables you to easily follow good object-oriented design or DDD.
JPA Entities being POJOs support OO features such as inheritance or polymorphism. It’s very easy
to implement a persistence object model with the EJB 3.0 JPA. More importantly, you can easily add
business logic to your Entities and, hence, implementing a rich domain model with EJB 3.0 is a
trivial task.

Note though, many people don’t like adding complex business-logic in the domain object itself
and prefer creating a layer for procedural logic named service layer 2 or application layer. The
application layer is really a much thinner version of the business logic layer similar to the traditional
four-tier architecture. Not surprisingly, you can use Session Beans to build the service layer. Whether
you use the traditional four-tier architecture or a layered architecture with Domain-Driven Design
you can use Entities to model domain objects, including modeling state and behavior. We will
discuss domain modeling with JPA Entities in Chapter 7.

Despite its impressive services and vision, EJB 3.0 is not the only act in town. You can combine
various technologies to more or less match EJB services and infrastructure. For example you could use
Spring with other open source technologies such as Hibernate and AspectJ to build your application,
so why choose EJB 3.0? Glad that you asked. Next, we will unravel the reasons behind that.

1.1.5 Why Choose EJB 3.0?
At the beginning of the Chapter, we hinted at EJB’s status as a pioneering technology. EJB is a

groundbreaking technology that has raised the standards of server-side development. Just like Java
itself, EJB has changed things in ways that are here to stay and inspired many innovations beyond
itself. In fact, up until a few years ago, the only serious competition to EJB came from the .NET
framework.

In this section, we’d like to point out a few of the compelling features of EJB 3.0 that we feel
certain will have this latest version at the top of your short list.

Ease of Use
Thanks to the unwavering focus on ease of use, EJB 3.0 is probably the simplest server-side
development platform around. The features that shine the brightest are POJO programming,
annotations in favor of verbose XML, heavy use of sensible defaults, and JPA, all of which you will be
learning about in this book. Although significant in number, you might find that EJB services are

2 Patterns of Enterprise Application Architecture by Martin Fowler

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

very intuitive and only as complicated as its most common usage pattern. For the most part, EJB 3.0
has a practical outlook on things and doesn’t demand that you be a genius computer scientist that
understands the theoretical intricacies of the services EJB offers. In fact, most EJB services are
designed to give you a break from this mode of thinking so you can focus on getting the job done
and go home at the end of the day knowing you accomplished something.

Integrated Solution Stack
EJB 3.0 attempts to offer you a complete stack of server solutions including persistence,

messaging, lightweight scheduling, remoting, Web Services, dependency injection (DI) and
interceptors. This means that you won’t have to spend a lot of time looking for third-party tools to
integrate into your application.. In addition, EJB 3.0 provides seamless integration with other Java
EE technologies like JDBC, JavaMail, JTA (Java Transaction API), JMS (Java Messaging Service),
JAAS (Java Authentication and Authorization Service), JNDI (Java Naming and Directory Interface),
Java RMI (Remote Method Invocation), and so on. EJB is also guaranteed to seamlessly integrate
with presentation tier technologies like JSP, Servlets, JSF and Swing.

Open Java EE Standard
EJB is a critical part of the Java EE standard. This is an extremely important concept to grasp if

you are to adopt it. EJB 3.0 has an open, public API specification against which any company is
encouraged to create a container or persistence provider implementation. The EJB 3.0 standard is
developed by the Java Community Process (JCP), which consists of a non-exclusive group of
individuals driving the Java standard. The open standard leads to broader vendor support for EJB 3.0
and that means better choice for you instead of depending upon a proprietary solution.

Broad Vendor Support
EJB is supported by a large and diverse variety of independent organizations. This includes the
technology world’s largest, most respected and most financially strong names like Oracle and IBM as
well as passionate and energetic open source groups like JBoss and Geronimo.

Wide vendor support means three important facts. Firstly, you are not at the mercy of the ups and
downs of a particular company or group of people. Secondly, a lot of people have concrete long-term
interests to keep the technology as competitive as possible. You can essentially count on being able to
take advantage of the best of breed technologies both in and outside the Java world in a competitive
timeframe. Lastly, vendors have historically competed against each other by providing value added
non-standard features. All of these factors help keep EJB on the track of continuous healthy
evolution.

 Stable High Quality Code Base
Although EJB 3.0 is a radical evolutionary step, most application server implementations will still

benefit from a relatively stable code base that has lived through some of the most demanding
enterprise environments over a prolonged period of time. Most persistence provider solutions like
JDO, Hibernate and TopLink are also stable products that are being used in many mission critical
production environments. This means that although EJB 3.0 is very new, you can expect pretty stable
implementations relatively quickly. Also, because of the very nature of standards based development,
EJB 3.0 container implementations are generally not taken lightly. To some degree this helps ensure a
healthy level of inherent implementation quality.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Clustering, Load-balancing and failover
Although the EJB specification does not make it a requirement, a feature historically added by

almost every application server vendor is robust support for clustering, load balancing and failover.
EJB application servers have a proven track record of supporting some of the largest high-
performance computing (HPC) enabled server farm environments. More importantly, you can
leverage such support with no changes to code, no third-party tool integration and relatively simple
configuration beyond the inherent work in setting up a hardware cluster. This means that you can
rely on hardware clustering to scale up your application with EJB 3.0 if you need to.

EJB 3.0 is a compelling option for building enterprise applications. In the following sections,
we’re going to tell you more about EJB types and how to use them. We will help you discover what
are containers and persistence providers and what type of services they provide. By the time you have
finished reading sections 1.2 and 1.3 you will have a pretty good idea what EJBs are, where they run
and what services they provide! So let’s get started by learning more about EJBs, their types and how
they work.

1.2 Discovering Types of EJBs

From our own experience, when we work on any software products we are always on fire because

we always have a tight deadline to meet. Most of us try to beg, borrow or steal reusable code to make
our life easier. Gone are those days when developers had the luxury to build their own infrastructure
when building a commercial application. While there are several commercial and open source
frameworks available that can simplify application development, EJB is a very compelling framework
that has a lot to offer.

If you’re like us, you must be getting excited about EJB by now, and eager to learn more. So let’s
jump right in and see how you can use EJB as a framework to build your business logic and
persistence tier of your applications, starting with the beans.

In EJB-speak, a component is a “bean”. If your manager doesn’t find the Java-“Coffee bean” play
on words cute either, blame Sun’s marketing department. Hey, at least we get to hear people in suits
use the words “enterprise” and “bean” in close sequence as if it were perfectly normal…

As we mentioned, EJB classifies beans into three types based on what they are used for:

 Session Beans

 Message Driven Beans

 Entities

Each bean type serves a specific purpose and can use a specific subset of EJB services. The real
purpose of bean types is to safeguard against overloading them with services that cross wires. This is
kind of like making sure the accountant in the horn-rimmed glasses doesn’t get too curious about
what happens when you touch both ends of a car battery terminal at the same time. Bean
classification also helps to understand and organize an application in a sensible way, for example,
bean types help you develop applications based on a layered architecture.

As we’ve briefly mentioned, Session Beans and Message Driven Beans are used to build business
logic, and they live in the container, which manages these beans and provides services to them.
Entities are used to model the persistence part of an application. Like the container, it is the

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

persistence provider that manages Entities. A persistence provider is pluggable within the container and
is abstracted behind the Java Persistence API (JPA). This organization of the EJB 3.0 API is shown in
Figure 1.3.

6

7 Figure 1.3: Overall organization of the EJB 3.0 API. The persistence part of the API is completely

separable, the JPA. The business logic processing is done through two component types, Session Beans

and Message Driven Beans. Both of these components are managed by the container. Persistence

components are called Entities, which are managed by the persistent provider through the

EntityManager interface.

We’ll discuss the container and the persistence provider in section 1.3. For the time being, all

you need to know is that these are separable parts of an EJB implementation, each of which provide
support for different EJB component types.

Let’s start digging a little deeper into the different EJB component types, starting with Session
Beans.

1.2.1. Session Beans
A Session Bean is invoked by a client to perform a specific business operation such as checking

the credit history for a customer. The name “session” implies that a bean instance is available for the
duration of a “unit of work” and does not survive a server crash or shutdown. A Session Bean can
model any application logic functionality. There are two types of Session Beans: stateful and Stateless
Session Beans.

A Stateful Session Bean automatically saves bean state between client invocations without your
having to write any additional code. The typical example of a state-aware process is the shopping cart
for a web merchant like Amazon. In contrast, Stateless Session Beans do not maintain any state and
model application services that can be completed in a single client invocation. You could build
Stateless Session Beans for implementing business processes like charging a credit card or checking
customer credit history.

A Session Bean can be invoked either locally or remotely using Java Remote Method Invocation
(RMI) or a stateless session bean can be exposed as a Web Service.

1.2.2 Message Driven Bean (MDB)
Like Session Beans, Message Driven Beans process business logic. However, Message Driven Beans
are different in a very important way. Clients never invoke Message Driven Bean methods directly.
Instead, Message Driven Beans are triggered by messages sent to a messaging server, which enables
sending asynchronous messages between system components . Some typical examples of messaging
servers include IBM WebSphere MQ, SonicMQ, Oracle Advanced Queueing, Tibco and many

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

more. Message Driven Beans are typically used for robust system integration or asynchronous
processing. An example of messaging could be sending an inventory-restocking request from an
automated retail system to a supply chain management system. Do not worry too much about
messaging too much we are going to discuss in greater details when time is ripe.

Next we will learn about entities and Java Persistence API. Before that we will explain what is
persistence and describe how Object-Relational Frameworks help use automated persistence.

1.2.3 Entities and the Java Persistence API (JPA)
One of the exciting new features of EJB3 is in the way it handles persistence. We’ve briefly

mentioned persistence providers and the JPA before, but now let’s dig down into the details.
As you probably know, persistence is the ability to have data contained in Java objects

automatically stored into a relational database like Oracle, SQL Server and DB2. Persistence in EJB
3.0 is managed by the Java Persistence API (JPA). It automatically persists the Java objects using a
technique called Object Relational Mapping (ORM). ORM is essentially the process of mapping data
held in Java objects to database tables using configuration. It relieves you of the task of writing low-
level, boring, and complex JDBC code to persist objects into database.

The frameworks that provide ORM capability to perform automated persistence are known as
Object-Relational Mapping frameworks. As the name implies an O-R framework perform
transparent persistence by making use of O-R mapping metadata that defines how objects are
mapped to database tables. O-R Mapping is not a new concept and has been around for a while.
Oracle TopLink is probably the oldest ORM farmework in the market whereas open source
framework JBoss Hibernate popularized ORM concepts among the mainstream developer
community.

In EJB3 terms, a persistence provider is essentially an O-R framework that supports the EJB3
Java Persistence API.. The JPA defines standard ORM configuration metadata, a standard API to
perform CRUD (Create, Read, Update, Delete) persistence operations named the EntityManager and
the Java Persistence Query Language (JPQL) to search and retrieve persisted application data. Since
JPA standardizes O-R frameworks for the Java platform, you can plug in ORM products like JBoss
Hibernate, Oracle TopLink or BEA Kodo (JDO) as the underlying JPA “persistence provider” for
your application.

Something that might occur to you is the fact that automated persistence is something that is
useful for all kinds of applications, not just server-side applications like those built with EJB. After all,
JDBC, the grandfather of JPA, is used in everything from large-scale real-time systems to desktop-
based hacked-up prototypes. This is exactly why JPA is completely separable from the rest of EJB 3.0
and usable in plain Java SE environments.

Entities are the Session Bean and MDB equivalent in the JPA world. Let’s take a quick glance at
it next, as well as the EntityManager API and the Java Persistence Query Language (JPQL).

Entities
If you are using JPA to build persistence logic of your applications then you have to use entities.

Entities are the Java objects that are persisted into the database. Just as Session Beans model
processes, Entities model lower-level application concepts that high-level business processes
manipulate. While Session Beans are the “verbs” of a system, Entities are the “nouns”. Examples
include an Employee Entity, a User Entity, an Item Entity and so on. Another perfectly valid (and
often simpler to understand) way of looking at Entities is that they are the OO representations of the

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

application data stored in the database. In this sense, Entities survive container crashes and shutdown.
You must be wondering how the persistence provider knows where the entity will be stored. The real
magic lies in the O-R mapping metadata – basically an Entity contains the data that specifies how it
is mapped to the database. You will see an example of this in the next chapter. JPA Entities support a
full range of relational and OO capabilities including relationships between Entities, inheritance and
polymorphism.

The EntityManager
The JPA EntityManager interface manages Entities in terms of actually providing

persistence services. While Entities tell a JPA provider how they map to the database, they do not
persist themselves. The EntityManager interface reads the O-R mapping metadata for an Entity
and actually performs persistence operations. Namely, the EntityManager knows how to add
Entities to the database, update stored Entities, delete Entities and retrieve Entities from the database.
In addition, the JPA also provides ability to handle life-cycle management, performance tuning,
caching and transaction management.

The Java Persistence Query Language (JPQL)
JPA provides a specialized SQL-like query language called the Java Persistence Query Language

(JPQL) to search for Entities saved into the database. The existence of a robust and flexible API like
JPQL means that you don’t lose anything by choosing automated persistence instead of hand-written
JDBC. In addition, JPA supports native, database specific SQL, in the rare cases where they are
worth using.

At this point, you should have a decent high-level view of the different parts of EJB. you also
know that EJB 3.0 components (session beans and MDBs) and entities need to be deployed in an
EJB 3.0 container and persistence providers respectively so that they can make use of the services EJB
3.0 provides. The container, the persistence provider and the services are central concepts in EJB 3.0
and we’ll address them next.

1.3 Getting Inside EJB
 When you build a simple Java class you need a Java Virtual Machine (JVM) to execute it.

Similary you need an EJB container to execute Session beans and MDBs and a Persistence
provider to run your Entities. In this section you will give a birds-eye-view of containers and
persistence providers and how they are related.

 In the Java world, containers aren’t just limited to the realm of EJB 3.0. You’re probably
familiar with a web container, which allows you to run web based applications using Java
technologies such as Servlet, JSP or JSF. A Java EE container is an application server solution
that supports EJB 3.0, a web container, and other Java EE APIs and services. BEA WebLogic
Server, GlassFish, IBM Websphere, JBoss Application Server and Oracle Application Server
10g are examples of Java EE containers.

 The relationship between the Java EE container, web container, EJB container and JPA
persistence provider is shown in Figure 1.4.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Java EE Container

Web Container EJB Container Persistence Provider

JSP Page

JSF Component

Credit Check EJB

Cart EJB

Customer Entity

Catalog Entity

8

9 Figure 1.4: A Java EE container typically contains web and EJB containers and a persistence provider.

The Stateless session bean (Credit Check EJB) and Stateful Session bean (Cart EJB) are deployed and run

in the EJB container. Entities (Customer and Catalog) are deployed and run within an EJB persistence

provider and can be accessed by either web or EJB container components.

10

If you install a Java EE compliant application server such as Sun’s Glassfish, it will contain a
preconfigured web container, EJB container and a JPA provider. However some vendors and open
source projects may provide only a web container such as Tomcat or an EJB 3.0 compliant
persistence provider such as Hibernate. You have to realize that these containers provided limited
functionalities compared to what you get with a complete Java EE 5.0 container.

 In this section, we’ll focus on how the EJB container and the Persistence Provider work and
we’ll finish with a fuller discussion about the EJB services. First, let’s tackle the EJB
container.

1.3.2 Accessing EJB services: the EJB Container
The best way to think of the container is simply an extension of the basic idea of a Java Virtual

Machine (JVM). Just as the JVM transparently manages memory on our behalf, the container
transparently provides EJB component services like transactions, security management, remoting,
web services support and so on. As a matter of fact, you might even think of the container as a JVM
on steroids, whose specific purpose in life is to execute EJBs. In EJB 3.0, the container only provides
services applicable to Session Beans and Message Driven Beans. The task of putting an EJB 3.0
component inside a container is called “deployment”. Once an EJB is successfully deployed in a
container it can be used in your applications.

The persistence provider is the container counterpart in JPA. Let’s briefly talk about it next.

1.3.3 Accessing JPA services: the Persistence Provider
 In section 1.2.3, we mentioned that the persistence provider’s job is to provide standardized

JPA services. Let’s explore how it does that. Instead of following the JVM-like container
model, JPA follows a model similar to APIs like JDBC . This means that while the container
provides its services at runtime without your explicitly asking for it. JPA provides persistence
services like retrieving, adding, modifying and deleting JPA Entities when you explicitly ask
for them by invoking EntityManager API methods.

The “provider” terminology comes from APIs like JDBC and JNDI too. If you’ve worked with
JDBC, you know that a “provider” is essentially the vendor implementation the JDBC API uses

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

under the cover. Products that provide JPA implementation are persistence providers or persistence
engines. JBoss Hibernate and Oracle TopLink are two popular JPA providers.

Since JPA is completely pluggable and separable, the persistence provider and container in an
EJB 3.0 solution need not come from the same vendor. For example, you could use Hibernate inside
a BEA WebLogic container if it suits you better instead of the Kodo implementation WebLogic ships
with.

But without services, what good are containers, you may ask. In the next section, let’s explore the
services concept critical to EJB.

1.3.3 Gaining functionality with EJB Services
The first thing that should cross your mind while evaluating any technology is what it really gives

you. What’s so special about EJB? Beyond a presentation layer technology like JSP, JSF or Struts,
couldn’t you create your web application using just the Java language and maybe some APIs like
JDBC for database access? The plain answer is that you could, if deadlines and cutthroat competition
were not realities. Indeed, before anyone dreamed up EJB, this is exactly what people did. What the
resulting long hours proved is that you tend to spend a lot of time solving very common system level
problems instead of focusing on the real business solution. These bitter experiences flushed out the
fact that there are common solutions that can be reused to solve common development problems.
This is exactly what EJB brings to the table.

EJB is really a collection of “canned” solutions to common server application development
problems as well as a roadmap to common server component patterns. These “canned” solutions, or
services, are provided by either the EJB container or the persistence provider. To access those services,
you build the application components and deploy them into the container. Most of this book will be
spent explaining how you can exploit EJB services.

In this Section, we will briefly introduce some of the services EJB offers. Obviously, we can’t
explain the implementation details of each service in this section. Neither is it really necessary to
cover every service EJB offers right now. Instead we will briefly list the major EJB 3.0 services in
Table 1.1 and mention what they mean to you from a practical perspective.

1.1 Table 1.1: Major EJB 3.0 Component Services and why they are important to you. The persistence

services are provided by the JPA provider.

1.2

Service Applies to What does it mean for you

Integration Session Beans
and MDB

Helps glue together components, ideally through simple configuration
instead of code. In EJB 3.0, this is done through dependency injection (DI) as
well as lookup.

Pooling Stateless
Session Beans,
MDB

For each EJB component, the EJB platform creates a pool of component
instances that are shared by clients. At any given point in time, each pooled
instance is only allowed to be used by a single client. As soon as an instance
is done servicing a client, it is returned to the pool for reuse instead of being
frivolously discarded for the garbage collector to reclaim.

Thread-safety Session Beans
and MDB

EJB makes all components thread-safe and highly peformant in ways that are
completely invisible. This means that you can write your server components
as if you were developing a single threaded desktop application. It doesn’t
matter how complex the component itself is, EJB will make sure it is thread-
safe.

State
management

StatefulSession
beans

The EJB container manages state completely transparently for Stateful
components instead of having you to write verbose and error-prone code for
state management. This means that you can maintain state in instance
variables as if you were developing a desktop application. EJB takes care of
all the details of session maintenance behind the scenes.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Messaging MDB EJB 3.0 allows you to write messaging aware components without having to
deal with a lot of the mechanical details of the Java Messaging Service (JMS)
API.

Transactions Session beans
and MDB

EJB supports declarative transaction management that helps us add
transactional behavior to components using simple configuration instead of
code. In affect, you can designate any component method to be
transactional. If the method completes normally, EJB commits the
transaction and makes the data changes made by the method permanent.
Otherwise the transaction is rolled back.

Security Session Beans
EJB supports integration with the Java Authentication and Authorization
Service (JAAS) API, so it is very easy to completely externalize security and
secure an application using simple configuration instead of cluttering up your
application with security code.

Interceptors Session Beans
and MDB

EJB 3.0 introduces AOP in a very lightweight, accessible manner using
Interceptors. This allows you to easily separate out crosscutting concerns
such as logging, auditing, and so on in a configurable way.

Remote
Access

Session Beans EJB 3.0, you can make components remotely accessible without writing any
code. In addition, EJB 3.0 enables client code to access remote components
as if they were local components using dependency injection.

Web services Stateless
Session Beans

EJB 3.0 can transparently turn business components into robust Web
Services with minimal code change.

Persistence Entities Providing standards-based, 100% configurable, automated persistence as an
alternative to verbose and error-prone JDBC/SQL code is a principal goal of
the EJB 3.0 platform.

Caching and
Performance

Entities In addition to automating persistence, JPA also transparently provides a
number of services geared toward data caching, performance optimization
and application tuning. These services are invaluable in supporting medium
to large-scale systems.

You will learn how to use each of these services in your application throughout in this book.
Despite its robust features, one of the biggest beefs people had with EJB 2.x was that it was too

complex. It was clear that EJB 3.0 had to make development as simple as possible instead of simply
continuing to add additional features or services. If you have worked with EJB 2.x or have simply
heard or read that it is complex, you should be curious as to what makes EJB 3.0 different. Let’s
tackle this question next.

1.4 Renaissance of EJB
[[JC: can you think of a better word to use? “Renaissance” feels like EJB2 was stuck in the dark

ages and no one used it
DP: This word was suggested by Lianna]]
 Software is organic. Much like carbon-based life forms, software grows and evolves. Features die.

New features are born. Release numbers keep adding up like the rings of a healthy tree. EJB is no
exception to the rule of software evolution. In fact, as far as technologies go, the saga of EJB is more
about change than it is about stagnation. Only a handful of other technologies can boast the robust
metamorphosis and continuous improvements EJB has pulled off.

It’s time to get a glimpse of the new incarnation of EJB starting with an example of a simple
stateless session bean and then revealing the features changes that make EJB and easy–to-use
development tool.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

In order to explore the new features of EJB3, we will be pointing out some of the problems
associated with EJB2. If you are not familiar with EJB2, don’t worry – the important information is
how the problems have been resolved in EJB3.

The problems associated with EJB2 have been widely discussed. In fact, there have been whole
books3 written about it. Chris Richardson in POJOs in Action rightfully identified amount of sheer
code you had to write to build an EJB:

You must write a lot of code to implement an EJB------ You must write a home interface, a
component interface, the bean class, and a deployment descriptor, which for an
entity bean can be quite complex. In addition, you must write a number of
boilerplate bean class methods that are never actually called but that are required
by the interface the bean class implements. This code isn’t conceptually difficult,
but it is busywork that you must endure.’’

In this section, we’d like to walk through some of those pain points and show you how they have
been resolved in EJB 3.0. As you will see, EJB 3.0 specifically targets the thorniest issues in EJB 2.x
and solves them primarily through bold adoption and clever adaptation of the techniques widely
available in popular open source solutions such as Hibernate and Spring. Both of which have passed
the “market incubation test” without getting too battered. In many ways, this release primes EJB for
even further innovations by solving the most immediate problems and creating a buffer zone for the
next metamorphosis.

But first, let’s look at a bit of code. You will probably never use EJB2 for building simple
applications such as HelloWorld. However we want to show you a simple EJB implementation of the
ubiquitous ‘Hello World” developed using EJB3. We want to you to see this code for a couple
reasons: first, to demonstrate how simple developing with EJB 3.0 really is, and second, because this
will provide context for the discussions in the following sections and make them more concrete.

1.4.1 HelloUser Example
HelloWorld examples have ruled the world since they first appeared in “The C Programming

Language” by Kernighan and Ritchie. Hello World’ caught on and held ground for good reason. It is
very well suited to focus on introducing a technology as simply and plainly as possible. While almost
every technology book starts with a HelloWorld example, to keep things lively and relevant we were
planning to deviate from that rule and provide a slightly different example.

In 2004, I wrote an article for the TheServerSide.com in which I stated that when EJB3 was
released, it would be so simple you could write a Hello World in it using only a few lines of code.
Any experienced EJB2 developer knows that this couldn’t be done easily in EJB2. You would need to
write a home interface, a component interface, a bean class and a deployment descriptor.. Well, now
that EJB3 has been finalized, let’s see if I was right in my prediction. Listing 1.1 shows

1 Listing 1.1: HelloUser Session bean
package ejb3inaction.example;
public interface HelloUser { |#1
 public void sayHello(String name);
}

package ejb3inaction.example;

3 Bitter EJB: Manning Publications,2003

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

import javax.ejb.Stateless;
@Stateless |#3
public class HelloUserBean implements HelloUser { |#2
 public void sayHello(String name) {
 System.out.println("Hello " + name + " welcome to EJB 3.0!");
 }
}
(annotation) <#1 HelloUser POJI>
(annotation) <#2 HelloUserBean POJO>
(annotation) <#3 Stateless annotation>

Believe it or not, this is a complete and self-contained example of a working EJB! Note that for

simplicity we have kept both the interface and class as part of same listing. As you can see, the EJB
does not look much more complex than your first Java program. The interface is a regular Java
interface (POJI) and the bean class is a regular Java class (POJO). The funny @Stateless symbol
in Listing 1.1 is a metadata annotation#3 that converts the POJO to a full-powered Stateless EJB. If
you are not familiar with metadata annotations, we will explore them in Chapter 2. In affect, they are
“comment-like” configuration information that can be added to Java code.

To execute this EJB you have to deploy it to the EJB container. If you really want to execute this
sample download the chapter1.zip from http://ejb3inaction.com and follow the online instructions to
deploy and run it in your favorite EJB container.

However don’t worry too much about the details of this code right now; it’s just a simple

illustration. We’ll dive into coding details in the next Chapter. Our real intent for the HelloWorld
example was to use this as a basis for discussions how EJB3 addresses the thorniest issues that branded
EJB2 as an elephantine.

Let’s move on now and take a look at what has transformed the EJB-elephant into the EJB-cow.

1.4.2 Simplified Programming Model
We heartily agree with Chris Richardson’s quote at the beginning of this section - one of the biggest
problems with EJB 2.x was the sheer amount of code to generate for a given component

If we had attempted to produce listing 1.1 as an EJB2 example, we would have had to work with

several classes and interfaces just to produce the simple one-line output. All of these class and
interfaces had to either implement or extend EJB API interfaces with rigid and unintuitive
constraints like throwing java.rmi.RemoteException for all methods. Implementing interfaces
like javax.ejb.SessionBean for the bean implementation class was particularly bad since you
had to provide an implementation for life-cycle callback methods like ejbCreate, ejbRemove,
ejbActivate, ejbPassivate and setSessionContext, whether you actually used them or
not. In effect, you were forced to deal with a lot of mechanical steps to accomplish very little. IDE
tools like JBuilder, JDeveloper and WebSphere Studio helped matters a little bit by automating some
of the mechanical steps. However, in general, decent tools with robust support were extremely
expensive and clunky.

As you saw in Listing 1.1, EJB 3.0 enables you to develop an EJB component using Plain Old
Java Objects (POJOs) and Plain Old Java Interfaces (POJIs) that know nothing about platform
services.

Licensed to John Sweitzer <admin@saolailaem.info>

http://ejb3inaction.com/
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

You can then apply configuration metadata, using annotations, to these POJO and POJI to add
platform services such as remoteability, web services support and life cycle callbacks only as needed.

The largely redundant step of creating home interfaces has been done away with altogether. In
short, EJB service definitions have been moved out of the type-safe world of interfaces into deploy
and runtime configuration where they are suited best. A lot of mechanical steps that were hardly ever
used have now been automated by the platform itself. Hence you do not have to write a lot of code to
implement an EJB!

1.4.3 Annotations instead of Deployment Descriptors
In addition to having to write a lot of boilerplate code, a significant hurdle in managing EJB 2.x

was the fact that you still had to do a lot of XML configuration for each component. Although XML
is a great mechanism, the truth is that not everyone is a big fan of its verbosity, poor readability and
fragility.

Before the arrival of Java 5 metadata annotations, there was no other viable alternative but to use
XML for configuration. EJB 3.0 allows us to use metadata annotations to configure a component
instead of using XML deployment descriptors.. As you might be able to guess from Listing 1.1,
besides getting rid of verbosity, annotations help avoid the monolithic nature of XML configuration
files and localizes configuration to the code that is being affected by it. Note though, you can still use
XML deployment descriptors if they suit you better or simply to supplement annotations. We’ll talk
more about this in Chapter 2.

Other than making the task of configuration easier, EJB 3.0 also reduces the total amount of
configuration altogether by using sensible defaults wherever possible. This is especially important
while dealing with automated persistence using ORM, as we will see in Chapters 7, 8, 9, and 10.

1.4.4 Dependency Injection Instead of JNDI Lookup
One of the most tedious parts of EJB 2.x development was writing the same few lines of boilerplate
code many times to do a JNDI lookup whenever you needed to access an EJB or a container-
managed resource such as a pooled database connection handle. Chris Richardson sums it up well:

I
n

EJB 3.0, JNDI lookups have been turned into simple configuration using metadata based
dependency injection (DI). For example, if you want to access the HelloUser EJB that we saw in
Listing 1.1 from another EJB or Servlet we could use code that looks like the following:
...
@EJB
private HelloUser helloUser;

void hello(){

A traditional J2EE application uses JNDI as the mechanism that one component uses to
access another. For example, the presentation tier uses a JNDI lookup to obtain a reference to a
session bean home interface. Similarly, an EJB uses JNDI to access the resources that it needs,
such as a JDBC DataSource. The trouble with JNDI is that it couples application code to the
application server, which makes development and testing more difficult. (POJOs In Action)

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 helloUser.sayHello(“Curious George”);
}
...

Isn’t that great? The @EJB annotation transparently “injects” the HelloUser EJB into the
annotated variable. EJB 3.0 dependency injection essentially gives you a simple abstraction over a
full-scale enterprise JNDI tree. Note you can still use JNDI lookups where they are absolutely
unavoidable.

1.4.5 Simplified Persistence API
A lot of the problems with the EJB 2.x persistence model were due to the fact that it was

applying the container paradigm to a problem for which it was ill suited. This made the EJB 2.x
Entity Bean programming model extremely complex and unintuitive, even on top of the previously
mentioned problems of EJB 2.x, such as excessive code volume and “XML hell”. One of the prime
motivators behind making Entity Beans container-managed was enabling remote access. In reality,
very few clients made use of this feature because of performance issues, opting to use Session Beans as
the remote access point.

Undoubtedly Entity Beans were easily the worst part of EJB 2.x.. EJB 3.0 solves these problems
by using a more natural API paradigm centered on manipulating metadata based POJOs through the
EntityManager interface. Moreover, EJB 3.0 Entities do not carry the unnecessary burden of
remote access.

Another limitations with EJB2 was that you cannot send an EJB2 entity bean across the wire in
different tiers. .. EJB developers discovered an anti-pattern for this problem and it was to add
another layer of objects: the DTOs. Chris sums it up nicely:

You have to write data transfer objects------ A data transfer object (DTO) is a dumb data object
that is returned by the EJB to its caller and contains the data the presentation tier will
display to the user. It is often just a copy of the data from one or more entity beans, which
cannot be passed to the presentation tier because they are permanently attached to the
database. Implementing the DTOs and the code that creates them is one of the most
tedious aspects of implementing an EJB. (- POJOs in Action)

Entities being POJOs can be transferred between different tiers without having to resort to anti-

patterns like data transfer objects.
The simplification of the persistence API leads to several other benefits such as standardization of

persistence frameworks, a separable persistence API that can be used outside EJB container and better
support of object-oriented features such as inheritance and polymorphism. We’ll see EJB 3.0
persistence in action in Chapter 2, but now let’s take a close look at some of the main features of the
persistence API.

Standardized Persistence
One of the major problems with EJB 2.x Entity Beans was that OR Mapping was never

standardized. EJB 2.x Entity Beans left the details of database mapping configuration to the provider.
This resulted in Entity Beans that were not portable across container implementations. The EJB 2.x
query mechanism, EJB-QL, had a similar unfinished feel to it. These standardization gaps have in

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

effect given rise to highly divergent alternative ORM paradigms like Hibernate, Oracle TopLink and
JDO.

A major goal of JPA is to close the standardization gaps left by EJB 2.x. EJB 3.0 solidifies

automated persistence with JPA in three distinct ways. The first is providing a robust Object-
Relational Mapping configuration set capable of handling most automated persistence complexities.
Secondly, the Java Persistence Query Language (JPQL) significantly improves upon EJB-QL,
standardizing divergent Object-Relational query technologies. Finally, the EntityManager API
standardizes ORM CRUD (Create, Read, Update and Delete) operations. But standardization wasn’t
the only benefit of the simplified API: another great feature is that it can run outside the container.

Separable Java Persistence API
As we touched on in section 1.2.3, API. Persistence isn’t just a solution for server-side

applications. Persistence is problem that even a standalone Swing based desktop application has to
solve. This is the realization that drove the decision to make JPA a cleanly separated API on its own
right that can be run outside an EJB 3.0 container. Much like JDBC, JPA is intended to be a general-
purpose persistence solution for any Java application. This is a remarkably positive step in expanding
the scope of EJB 3.0 outside the traditional realm of server applications.

Better Persistence Tier OO Support
Because EJB 2.x Entity Beans were record-oriented they did not support rich OO features like

inheritance and polymorphism, as well as not allowing the mixing of persistent state and domain
logic. As we saw in section 1.1.3, this made it impossible to model the domain layer in Domain
Driven Design architecture.

EJB 3.0 Entities have robust OO support, not just because they are POJOs but also because the
JPA ORM mapping scheme is designed with OO in mind. JPQL has robust support for OO too.
Getting impatient to learn more about JPA? Hang on with us and we have many discussions on JPA
throughout the book and we have Part-3 of the book is reserved with discussions on JPA.

Test Driven Development has become quite popular because it can dramatically improve
performance of software applications and next we will see how EJB 3.0 improves testability of
applications.

1.4.6 Unit Testable POJO Components
Being able to unit test component state or logic in response to simulated input is a critical

technique in increasing code quality. In EJB 2.x, only functional testing of components was possible
since components had to be deployed to the container to be executed. While functional testing
simulating user interactions with the system is invaluable, it is not a good substitute for lower level
unit testing.

Because all EJB 3.0 components are POJOs, they can easily be executed outside the container.
This means that it is possible to unit test all component business logic using testing frameworks such
as JUnit or TestNG.

These are just the primary changes to EJB 3.0. We mentioned some of the others in the services
section like interceptors and transparent Web Services support. There is many more that we will
cover throughout the book.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Just in case you thought you had to choose between Spring and EJB 3.0, we thought we’d
mention why they don’t necessarily need to be regarded as competing technologies.

1.4.7 EJB 3.0 and Spring
As we mentioned before Ejb3 and Spring are often seen as competitors; however, it we look a

little closer, we can see that they can also be complementary Spring has some particularly strong
points: support for Inversion of Control (IoC) for components with simple life cycles such as
singletons, feature-heavy (but slightly more complex) Aspect Oriented Programming (AOP) support,
a number of simple interfaces such as JDBCTemplate and JMSTemplate utilizing common usage
patterns of low-level Java EE APIs and so on.

EJB 3.0, on the other hand, provides better support for transparent state management with
Stateful Session Beans, pooling, thread-safety, robust messaging support with Message Driven Beans,
integrated support for distributed transaction management, standardized automated persistence
through JPA, and so on.

In fact, from a levelheaded, neutral point of view, EJB 3.0 and Spring can be complementary
technologies. The good news is that parts of both the Spring and Java EE communities are working
hard to make Spring/EJB 3.0 integration a reality. This is particularly good news if you have a
significant investment in Spring but want to utilize the benefits of EJB 3.0. We will talk about
Spring/EJB 3.0 integration in much more detail in Chapter 16. However, we will give you a “teaser”
of the possibilities now.

Treat EJB 3.0 business tier components as Spring beans
It is possible to treat EJB 3.0 business tier components as Spring beans. This translates into an

architecture depicted in Figure 1.5. In this architecture, Spring is used for gluing together the
application that contains EJB 3.0 business tier components.

11 Figure 1.5: A Spring/EJB 3.0 integration strategy. It is possible to use EJB 3.0 business tier components

as if they were Spring beans. This allows you to use the complementary strengths of both technologies

in a “hybrid” fashion.

The Spring Pitchfork project, part of Spring 2.0, is meant to make such an integration scenario

completely transparent. Interface21, the company that [[JC: Debu, what is their relation to Spring?]],
plans to support EJB 3.0 annotation metadata specifying Stateless Session Beans, Interceptors,
Resource injection, and so on.

Integrate the JPA into Spring
Alternatively, it is possible that Spring is a good fit for your business tier needs and you simply

want to standardize your persistence layer. In such a case, it is very easy to integrate JPA directly into

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Spring, much like Spring/Hibernate or Spring/JDO integration. This scheme is depicted in Figure
1.6.

12 Figure 1.6: Spring/JPA integration. Because JPA is a cleanly separable API, you can integrate Spring with

JPA just as you would integrate Hibernate.

13

Besides using Spring with JPA, you may find in a situation where you would like to use both
Spring and EJB3 Session beans together and next we will examine the possibilities such integration.

Use Spring interfaces inside EJB 3.0 components
Yet another very interesting idea is to use some of the Spring interfaces like JDBCTemplate and

JMSTemplate or even Spring beans inside EJB 3.0 components. You can do this today either
through direct instantiation or access through the Spring application context. Container vendors like
JBoss, Oracle and BEA are working to provide seamless support for integrating Spring beans into
Session Beans and Message Driven Beans. This kind of integration is visualized in Figure 1.7.

14 Figure 1.7: In certain cases, it might be a very good idea to use Spring from EJB 3.0. Although it is

possible to do so today, such support is very likely to be much better in the future.

We will discuss combining the power of EJB 3.0 and Spring in Chapter 16.
In this section we outlined what makes EJB 3.0 different than its predecessor and how EJB3

makes development and testing of applications simpler. EJB3 components are simple POJOs and
metadata annotations are used instead of deployment descriptor. Dependency Injection instead of
complex JNDI tree makes use of EJB components simpler. EJB3 JPA simplifies persistence aspect of
EJB replacing EJB2 entity beans that was criticized for its limitations. EJB3 being POJOs are simple
for following test driven development approach. EJB3 being POJOs have been embraced by
lightweight containers and provide interesting integration possibilities with frameworks such as
Spring. You will see all these in action in rest of the book starting with next chapter.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

1.5 Summary
You should now have a pretty good idea of what EJB 3.0 is, what it brings to the table, and why

you should consider using it to build server-side applications. We gave you an overview of the new
features in EJB 3.0, including:

 EJB 3.0 components are POJOs configurable through simplified metadata annotations.

 Accessing EJBs from client applications has become very simple using dependency injection.

 EJB 3.0 standardizes the persistence with the Java Persistence API, which defines POJO
Entities that can be used both inside and outside the container.

We also provided a taste of code to show how EJB3 addresses development pain points that was
inherent with EJB 2.x and took a brief look at how EJB 3.0 can be used with Spring.
Armed with this essential background, at this point you are probably eager to look at some code. We
aim to satisfy this desire, at least in part, in the next Chapter. In Chapter 2, we are going to take a
whirlwind tour of the entire EJB 3.0 API to show you how easy the code really is.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Chapter 2 A First taste of EJB
In this age of hyper-competitiveness, learning a new technology by balancing a book on your lap

while hacking away at a business problem on the keyboard has become norm. Let’s face it—
somewhere deep down, you probably prefer this “baptism by fire” to trudging the same old roads
over and over again. This Chapter is for the brave pioneer in all of us, eager to get a peek over the
horizon into the new world of EJB 3.0.

The first Chapter gave you a 20,000-foot view of the EJB 3.0 landscape on board a hypersonic
jet. We told you what EJB is, what services it offers, what the EJB 3.0 architectural vision is and what
the different parts of EJB 3.0 are. This Chapter is a low-altitude fly-over with a reconnaissance
airplane. In this Chapter, we will take a quick and dirty look at the code for solving a realistic
problem using EJB 3.0. The example solution will use all of the EJB 3.0 components types, a layered
architecture and some of the services we talked about in Chapter 1.

EJB 3.0 offers a pretty wide range of features and services. To keep things sane, the examples in

this chapter are designed to show you the very high level features and services of EJB 3.0, and to
introduce you to the major players in EJB: the beans and clients. Thanks to the almost invisible way
most EJB 3.0 services are delivered, this is pretty easy to do. You will see exactly how easy and useful
EJB 3.0 is and how quickly you could pick it up.

We start by covering some basic concepts necessary for understanding the examples, and then we
introduce the application that runs throughout the book, the Action Bazaar. In the rest of the
chapter, we illustrate each EJB type with an example from the ActionBazaar application. We will
implement business logic with session beans and then we will add the power of asynchronous
messaging by adding an MDB. Finally we will discover the most powerful innovation of EJB 3.0 by
looking at a simple example of JPA Entity.

If you aren’t really a big fan of views from heights, don’t worry too much. Think of this Chapter
as that first day at a new workplace, shaking hands with the stranger from the next cubicle. In the
Chapters that follow, you will get to know more about your new co-workers’ likes, dislikes,
eccentricities and how to work around these foibles. All you are expected to do right now is put
names to the faces.

Note

In the examples in this chapter, we won’t explore the solutions beyond what is necessary for
discussing the EJB 3.0 component types but will leave some of it for you as a brainteaser. If
you want to, you can peek at the entire solution by downloading the Chapter2.zip file from
http://ejb3inaction.com. In fact, we highly recommend that you follow the tutorial on the
site to set up your development environment using the code. This way, you can follow along
with us and even tinker with the code on your own, including running it inside a container.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273
http://ejb3inaction.com

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

EJB 3.0 is a fundamental paradigm shift from previous versions. There are a number of

innovations, some familiar and some unfamiliar, that make this paradigm shift possible. A very good
point to start this Chapter is by exploring three of the most important of these innovations.

2.1 New features: simplifying EJB
There are three primary sources of complexities in EJB 2.x: the heavyweight programming

model, directly using the Java Naming Directory Interface (JNDI) and a verbose XML deployment
descriptor. Three primary techniques in EJB 3.0 eliminate these sources of complexity: metadata
annotations, minimal deployment descriptors and dependency injection. In the following Sections,
we will introduce all three of these major innovations that make developing EJB 3.0 as quick and as
easy as possible. Let’s begin by looking at how annotations and deployment descriptors work.

2.1.1 Replacing deployment descriptors with annotations
Service configuration using Java metadata annotations is easily the most important change in EJB

3.0. As you will see throughout the book, annotations make the EJB programming model simple,
remove the need for detailed deployment descriptors and act as an effective delivery mechanism for
dependency injection.

In the next few years, it is very likely that annotations will play a greater and greater role in
improving Java SE and Java EE usability by leaps and bounds. In case you are not familiar with the
metadata annotation facility added in Java SE 5.0, let’s review it first.

Java Metadata Annotations: a brief primer
Annotations essentially allow us to “attach” additional information (officially called “attributes”)

to a Java class, interface, method or variable. The additional information conveyed by annotations
can be used by a development environment like Eclipse, the Java compiler, a deployment tool, a
persistence provider like Hibernate or a runtime environment like the Java EE container. Another
way to think about annotations is that they are “custom” Java modifiers (in addition to private,
public, static, final and so on) that can be used by anything handling Java source or byte
code. This is how annotations look like:

import mypackage.Author;

@Author("Debu Panda, Reza Rahman and Derek Lane")
public class EJB3InAction implements ManningBook

The @Author symbol is the annotation. It essentially tells whoever is using the EJB3InAction
Java class that the authors are Debu Panda, Reza Rahman and Derek Lane. More interestingly, it
adds this bit of extra information about the class without forcing us to implement an interface,
extend a class or add a member variable or method. Since annotations are really a special kind of
interface, it must be imported from where it is defined. In our case, the @Author annotation is
defined in the mypackage.Author.class file. This is all there is to making the complier happy.
It is up to the runtime environment how the @Author annotation should be used. As an example, it
could be used by the Manning website engine to display the author names for this book.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Like many of the Java EE 5.0 innovations, annotations have humble beginnings. The ‘@’
character is a dead giveaway to the grandparent of annotations–Javadoc tags. The next step in the
evolution of the annotation from the lumbering caveman Javadoc tag was the XDoclet tool. If you
have done a significant amount of work with EJB 2.x, it is very likely you are already familiar with
XDoclet. XDoclet acted as a source code preprocessor that allowed to you to process custom Javadoc
tags and do whatever you needed to do with the tagged source code, such as generate PDF
documentation, additional source code or even EJB 2.x deployment descriptors. XDoclet named this
paradigm “attribute-oriented programming”. In case you are curious, you can find out more about
XDoclet at http://xdoclet.sourceforge.net/xdoclet/index.html.

The sleek new annotation facility essentially makes attribute oriented programming a core part of
the Java language. Although this is entirely possible, it is probably unlikely you will be creating your
own annotations. If your inner geek just won’t leave you alone, feel free to explore Making the Most of
Java's Metadata (http://www.oracle.com/technology/pub/articles/hunter_meta.html) by Jason
Hunter. You can find out more about annotations in general at:
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html.

Note, just like anything else, annotations and attribute oriented programming have a few
weaknesses. Specifically, it isn’t always a good idea to mix and match configuration with source code
such as annotations. This means that you would have to change source code each time you made a
configuration change to something like a database connection resource or deployment environment
entry. EJB 3.0 solves this problem by allowing you to override annotations with XML deployment
descriptors where appropriate.

Know Your Deployment Descriptor
A deployment descriptor is simply an XML file that contains application configuration

information. Every deployment unit in Java EE can have a deployment descriptor that describes its
contents and environment. Some typical examples of deployment units are the Enterprise Archive
(EAR), Web Application Archive (WAR) and the EJB (ejb-jar) module. If you have ever used EJB
2.x, you know how verbose the XML (ejb-jar.xml) descriptor was. Most elements were required
even if they were trivial. This added to the complexity of using EJB. For example, you could have had
the following deployment descriptor for the HelloUserBean that we saw in Chapter 1:

<enterprise-beans>
 <session>
 <ejb-name>HelloUserBean</ejb-name>
 <local>ejb3inaction.example.Hello</local>
 <ejb-class>ejb3inaction.example.HelloUserBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
</enterprise-beans>

We will discuss deployment descriptors in greater detail when we talk about EJB packaging in

Chapter 11. The good news is that EJB 3.0 makes deployment descriptors completely optional. You
can now use metadata annotations instead of descriptor entries, making the development experience
much simpler. Note that we will primarily use annotations throughout this book. This is not because
we think deployment descriptors are unimportant or outdated, but because concepts are more easily

Licensed to John Sweitzer <admin@saolailaem.info>

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://xdoclet.sourceforge.net/xdoclet/index.html
http://www.oracle.com/technology/pub/articles/hunter_meta.html
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

explained using annotations. As matter of fact, although deployment descriptors involve dealing with
often confusing and verbose XML, we think they can be an excellent mechanism for separating
coding concerns from deployment and configuration concerns. With this fact in mind, we present
the deployment descriptor counterparts for each of the annotations described in the chapter (and
more) in the appendix.

You can use deployment descriptor entries only for corner cases where you need them.

Mixing annotations and deployment descriptors
Annotations and descriptors are not mutually exclusive. In fact, in EJB 3.0 they are designed for

harmonious co-existence. Deployment descriptor entries override configuration values hard-coded
into EJB components. As an example, we could override the @Author annotation we just introduced
with the following imaginary deployment descriptor:

<ManningBooks>
 <ManningBook>
 <BookClass>EJB3InAction</BookClass>
 <Author>Larry, Moe and Curly</Author>
 </ManningBook>
</ManningBooks>

At runtime, the Manning website engine would detect that the authors of the EJB3InAction

book really are Larry, Moe and Curly and not Debu Panda, Reza Rahman and Derek Lane.
This is an invaluable feature if you develop enterprise applications that can be deployed to a

variety of environments. In the simplest case, the differing environments could be a test and a
production server. In the most complex case, you could be selling shrink-wrapped enterprise
applications deployed to an unknown customer environment. The most obvious way of mixing and
matching annotation and XML metadata is to use XML for deployment environment specific
configuration while using annotations for everything else. If you really don’t like annotations, that’s
fine too. You can avoid using them completely in favor of XML deployment descriptors. We will
primarily focus on annotations rather than deployment descriptors in this book simply because they
are so much more intuitive to look at and explain.

Common metadata annotations
Obviously, EJB defines its own set of standard annotations. We will be discussing these

annotations throughout this book.
During the course of developing Java EE 5.0, it became apparent that the Java EE container as a

whole could use some of the annotations geared toward EJB 3.0. In particular, these annotations are
extremely useful in integrating EJB with the web/Servlet tier. Some of these annotations were
separated out of the EJB 3.0 spec and christened “Common Metadata Annotations”. These
annotations are a core part of what makes EJB 3.0 development easy, including dependency
injection. Table 2.1, lists some of the major common metadata annotations. We will discuss them
throughout this part of the book, starting with some of the most fundamental ones in this Chapter.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

1.3 Table 2.1: Major Metadata annotations introduced in Java EE. Although primarily geared toward EJB,

these annotations apply to Java EE components such as Servlets and JSFs managed beans as well as

application clients.

Annotations Usage Components that can use

javax.annotation.Resource Dependency Injection of resources
such as DataSource, JMS objects,
etc.

EJB, Web, Application Client

javax.ejb.EJB Dependency Injection of Session
beans

EJB, Web, Application Client

javax.jws.WebServiceRef Dependency Injection of Web
services

EJB, Web, Application Client

javax.persistence.PersistenceContext Dependency Injection of container-
managed EntityManager

EJB, Web

javax.persistence.PersistenceUnit Dependency Injection of
EntityManagerFactory

EJB, Web

javax.annotation.PostConstruct Lifecycle method EJB, Web
javax.annotation.PreDestroy Lifecycle method EJB, Web
javax.annotation.security.RunAs Security EJB, Web
javax.annotation.security.RolesAllowed Security EJB
javax.annotation.security.PermitAll Security EJB
javax.annotation.security.DenyAll Security EJB
javax.annotation.security.DeclareRoles Security EJB, Web

As you can see, dependency injection is front and center of the common metadata annotations,

including the @Resource, @EJB, @WebServiceRef, @PersistenceContext and
@PersistenceUnit annotations. Just as metadata annotations take away the ugliness of descriptors
away from the developer’s view, dependency injection solves the complexities surrounding manual
JNDI lookups. Let’s take a look at this concept next.

2.1.2 Introducing Dependency Injection
Almost every component uses another component or resource to implement functionality. The

primary goal of Dependency Injection (DI) is to make component interdependencies as loosely
coupled as possible. In real terms, this means that one component should only call another
component or resource through an interface and components and resources should be glued together
using configuration instead of code. As a result, component implementations can easily be swapped
out as necessary simply by reconfiguring the application.

If you have used JNDI extensively in EJB 2.x, you will appreciate how much this means. We
won’t talk about JNDI very much here since in most cases you can get away without knowing
anything about it. If you don’t know about JNDI and are curious to learn more, we discuss it in
some length in Appendix A. Figure 2.1 shows the difference between manual JNDI lookups and DI.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

15 Figure 2.1: When using JNDI it’s the responsibility to do a lookup and obtain a reference to the object. In

EJB 3.0, you may think Dependency Injection is inverse of JNDI. It is responsibility of container to inject

an object based on the dependency declaration

In a sense, injection is lookup reversed. As you can see, in the manual JNDI lookup model, the

bean explicitly retrieves resources and components it needs. As a result, component and resource
names are hard-coded in the bean. With DI on the other hand, the container reads target bean
configuration, figures out what beans and resources the target bean needs and injects them into the
bean at runtime. In the end, you write no lookup code and can easily change configuration to swap
out beans and resources as needed.

In essence, DI allows us to declare component dependencies, and lets the container deal with the
complexities of service or resource instantiation, initialization, sequencing and supplies the service or
resource references to the clients as required. As we work our way through the examples in this
chapter, you will see several places where we use DI, including @EJB to inject EJBs in section 2.3.
@Resource to inject JMS resources in section 2.4, and @PersistenceContext to inject
container managed persistence in section 2.5,.

To learn more about DI:

Lightweight application containers like the Spring Framework and PicoContainer
popularized the idea of DI. To learn more about the roots of DI itself, visit
http://www.martinfowler.com/articles/injection.html. The article by Martin Fowler
faithfully examines the pros and cons of DI over JNDI-style manual lookups. Since the
article was written before EJB 3.0 was conceived, you might find the discussion of EJB 2.x
cool too!

Now that we’ve covered some of the most fundamental concepts of EJB 3.0, it is time to warm
up to code. The problem we will solve in this Chapter utilizes an essential element of this book–
ActionBazaar. ActionBazaar is an imaginary enterprise system that we will weave most of the material
in this book around. In a certain sense, this book is a case study of developing the ActionBazaar
application using EJB 3.0.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.martinfowler.com/articles/injection.html
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Let’s take a quick stroll around the bazaar to see what it is all about.

2.2 Introducing the ActionBazaar application
ActionBazaar is a simple online auctioning system like eBay. Sellers dust off the treasures hidden

away in basement corners, take a few out-of-focus pictures, and post their item listings on
ActionBazaar. Eager buyers get in the good-old competitive spirit and put exorbitant bids against
each other on the hidden treasures with the blurry pictures and misspelled descriptions. Winning
bidders pay for the items. Sellers ship sold items. Everyone is happy, or so the story goes.

As much as we would like to take credit for it, the idea of ActionBazaar was first introduced in

Hibernate in Action by Christian Bauer and Gavin King as the CaveatEmptor application. The
Hibernate in Action book primary dealt with developing the persistence layer using the Hibernate
ORM framework. The idea was later used by Webworks in Action to discuss the Open Source
presentation-tier framework. We thought this was a pretty good idea to adopt for EJB 3.0.

The next two Parts of the book roughly follow the course of developing each layer of the
ActionBazaar application as it relates to EJB 3.0. We will use EJB 3.0 to develop the business logic
tier in Part 2 of this book, and then the persistence tier in Part 3. We will deal with the presentation
layer as necessary as well.

This section will introduce you to the ActionBazaar application. We start with a subset of the

architecture of ActionBazaar and then we will design a solution based on EJB 3.0 and JPA. After this
section, the rest of the chapter will explore some of the important features of EJB 3.0, using examples
from the ActionBazaar application to introduce you to the different bean types and show how they
are used.

Let’s begin by taking a look at the requirements and design of our example.

2.2.1 Starting with the architecture
For the purposes of introducing all three EJB 3.0 component types across the business logic and

persistence layers, we will focus on a small subset of ActionBazaar functionality in this Chapter—
starting from bidding on an item and ending in ordering the item won. This set of application
functionality is shown in Figure 2.2.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

16 Figure 2.2: A chain of representative ActionBazaar functionality used to quickly examine a cross-section

of EJB 3.0. The bidder bids on a desired item, wins the item, orders it, and instantaneously receives

confirmation. In parallel to order confirmation, the user is billed for the item. Upon successful receipt of

payment, the seller ships the item.

In a sense, the functionality represented in Figure 2.2 is the “essentials” of ActionBazaar. The

major functionalities not covered are posting an item for sale, browsing items and searching for items.
We will save these pieces of functionality for the Chapters in Part 2 and 3. This includes presenting
the entire domain model, which we will save for Chapter 7, when we start talking about domain
modeling and persistence using JPA.

The chain of actions in Figure 2.2 starts with the user deciding to place a bid on an item. Our
user, Jenny, spots the perfect Christmas gift for grandpa and quickly puts down a starting bid of
$5.00. After the timed auction ends, the highest bidder wins the item. Jenny gets lucky and no one
else bids on the item, so she wins it for the grand sum of $5.00. As the winning bidder, Jenny is
allowed to order the item from the seller, Joe. An order has all the things we’ve come to expect from
online merchants—shipping information, billing details, a total bill with calculated shipping and
handling costs an so on. Persuasive Jenny gets mom to foot the bill with her credit card and gets the
order to be shipped directly to grandpa’s address. Not unlike many e-Businesses such as Amazon.com
and eBay, ActionBazaar does not make the user wait for the billing process to finish before
confirming an order. Instead, the order is confirmed as soon as it is reasonably validated and the
billing process is started in parallel in the background. Jenny gets an order confirmation number back
as soon as she clicks the ‘order’ button. Although Jenny doesn’t realize it, the process to charge mom’s
credit card starts in the background as she gets the confirmation back. After the billing process is
finished, both the Jenny and the seller, Joe, are sent email notifications. Having been notified of the
receipt of the money for the order, Joe ships the item, just in time for grandpa to get it before
Christmas!

In the next Section, we will see how the business logic and persistence components for this set of
actions can be implemented using EJB 3.0. Before peeking at the solution diagram in the next
Section, you should try to visualize how the components might look like with respect to an EJB-
based layered architecture. How do you think Session Beans, Message Driven Beans, Entities and the
JPA API fit into the picture, given our discussion? Chances are, with the probable exception of the
messaging components, your design will closely match ours.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

2.2.2 An EJB 3.0 based solution
Figure 2.2 shows how the ActionBazaar scenario in the previous Section can be implemented

using EJB 3.0 in a traditional four-tier layering scheme. For our purposes, the presentation tier is
essentially an amorphous blob that generates business tier requests in response to user actions. If you
examine the scenario in Figure 2.2, there are really only two processes that are triggered by the user—
adding a bid to an item and ordering items won. Thinking a little harder, one more process might be
apparent, the background billing process to charge the order, triggered by order confirmation. If you
guessed that the billing process is triggered through a message, you guessed right. As you can see in
Figure 2.3, the bidding and ordering processes are implemented as session beans (PlaceBidBean
and PlaceOrderBean) in the business logic tier. On the other hand, the billing process is
implemented as a Message Driven Bean (OrderBillingMDB) since it is triggered by a message sent
from the PlaceOrderBean instead of a direct user request.

All three of the processes persist data. The PlaceBidBean needs to add a bid record to the

database. Similarly, the PlaceOrderBean must add an order record. Alternatively, the
OrderBillingMDB updates the order record to reflect the results of the billing process. These
database changes are performed through two Entities in the JPA-managed persistence tier—the Bid
and Order Entities. While the PlaceBidBean uses the Bid Entity, the PlaceOrderBean and
OrderBillingMDB use the Order Entity.

17 Figure 2.3: The ActionBazaar scenario implemented using EJB 3.0. From the EJB 3.0 perspective, the

presentation layer is an amorphous blob that generates business tier requests. The business logic tier

components match up wit h the distinct processes in the scenario—putting a bid on an item, ordering the

item won and billing the user. The billing MDB is triggered by a message sent by the order confirmation

process. The business tier components use JPA Entities to persist application state into the database.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Recall that although JPA Entities contain ORM configuration, they do not persist themselves. As

we will see in the actual code solutions, the business tier components have to use the JPA
EntityManager API to add, delete, update and retrieve Entities as needed.

If your mental picture matches up with Figure 2.3 pretty closely, it is likely the code we are going
to present next will seem pretty intuitive too, even though you don’t know EJB 3.0.

In the next Sections, we will explore each of the EJB 3.0 component types using our scenario as a
crutch. Without further ado, we can now start our whirlwind tour of EJB 3.0 component types,
starting with the Session Beans in the business logic tier.

2.3 Building business logic with Session Beans
Session Beans are meant to model business processes or actions, especially as perceived by the

system user. This is why are ideal for modeling the bidding and ordering processes in our scenario. In
a sense, Session Beans are the easiest but most versatile part of EJB.

Recall that Session Beans come in two flavors – Stateful and Stateless. We will take on Stateless

Session Beans first mostly because they are simpler. We will then discover how you can add
statefulness to ActionBazaar application by using a stateful session bean. Along the way, we’ll
introduce you to an example of a Session Bean client in a web tier, and then build a standalone Java
client for a session bean.

2.3.1 Using Stateless Beans
Stateless Session Beans are used to model actions or processes that can be done “in-one-shot”,

like placing a bid on an item in our ActionBazaar scenario. The addBid Bean method in Listing 2.1
is called from the ActionBazaar web tier when a user decides to place a bid. The parameter to the
method, the Bid Object, represents the bid to be placed. The Bid Object contains the ID of the
bidder placing the bid, the ID of the item being bid on, and the bid amount. As we know, all the
method really needs to do is save the passed-in Bid data to the database. In a real application, you
would see more validation and error handling code in the addBid method. Since the point is to
show you how a Session Bean looks like and not to demonstrate the Über geek principles of right and
proper enterprise development, we’ve conveniently decided to be slackers. Also, as you will see
towards the end of the Chapter, the Bid Object is really a JPA Entity.

2 Listing 2.1: PlaceBid Stateless Session Bean code
package ejb3inaction.example.buslogic;

import javax.ejb.Stateless;
import ejb3inaction.example.persistence.Bid;

@Stateless |#1
public class PlaceBidBean implements PlaceBid {
 ...
 public PlaceBidBean() {}

 public Bid addBid(Bid bid) {
 System.out.println(“Adding bid, bidder ID=” + bid.getBidderID()

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 + “, item ID=” + bid.getItemID() + “, bid amount=”
 + bid.getBidAmount() + “.”);

 return save(bid);
 }
 ...
}
...
package ejb3inaction.example.buslogic;

import javax.ejb.Local;
import ejb3inaction.example.persistence.Bid;

@Local |#2
public interface PlaceBid {
 Bid addBid(Bid bid);
}
(annotation) <#1 Mark POJO as Stateless Session Bean>
(annotation) <#2 Mark EJB interface as local>

The first thing that you have probably noticed is how plain this code looks like. The

PlaceBidBean class is just a Plain Old Java Object (POJO) and the PlaceBid interface is a Plain
Old Java Interface (POJI). There is no cryptic EJB interface to implement, class to extend, or
confusing naming convention to follow. In fact, the only notable features in Listing 2.1 are the two
EJB 3.0 annotations, @Stateless and @Local.

@Stateless

The @Stateless annotation tells the EJB container that PlaceBidBean is a Stateless
Session Bean. This means that the container automatically provides a bunch of services to the
bean like automatic concurrency control, thread-safety, pooling, and transaction
management.

In addition, you can add other services that Stateless Beans are eligible for such as transparent
security and interceptors.

@Local

The @Local annotation on the PlaceBid interface tells the container that the PlaceBid
EJB can be accessed locally through the interface. Since EJB and Servlets are typically
collocated in the same application this is probably perfect. Alternatively, we could have
marked the interface with the @Remote annotation. Remote access through the @Remote
annotation is provided under the hood by Java RMI, so this is the ideal means of remote
access from Java clients.

If the EJB needs to be accessed by non-Java clients like .NET applications, web services based
remote access can be enabled using the @WebService annotation applied either on the interface or
the bean class.

That’s pretty much all we are going to say about Stateless Session Beans for now. Let’s now turn
our attention to the client code for using the PlaceBid EJB.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

2.3.2 The Stateless Bean Client
Virtually any client can use the PlaceBid EJB in Listing 2.1. However, the most likely scenario

for EJB usage is from a Java based web tier. In the ActionBazaar scenario, the PlaceBid EJB is
probably called from a JSP or Servlet. For simplicity, let’s assume that the PlaceBid EJB is used by
a Servlet named PlaceBidServlet. Listing 2.2 shows how the code might look like. The Servlet’s
service method is invoked when the user wants to place a bid. The bidder’s ID, item ID and the
bid amount are passed in as HTTP request parameters. The Servlet creates a new Bid Object, sets it
up and passes it to the EJB addBid method.

3 Listing 2.2: A simple Servlet client for the PlaceBid EJB
package ejb3inaction.example.buslogic;

import javax.ejb.EJB;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import ejb3inaction.example.persistence.Bid;

public class PlaceBidServlet extends HttpServlet {
 @EJB |#1
 private PlaceBid placeBid;

 public void service(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 int bidderID = Integer.parseInt(
 request.getParameter(“bidder_id”));
 int itemID = Integer.parseInt(
 request.getParameter(“item_id”));
 double bidAmount = Double.parseDouble(
 request.getParameter(“bid_amount”));

 Bid bid = new Bid();
 bid.setBidderID(bidderID);
 bid.setItemID(itemID);
 bid.setBidAmount(bidAmount);

 placeBid.addBid(bid);
 ...
 }
 ...
}
(annotation) <#1 Inject instance of PlaceBid EJB>

As you can see from Listing 2.2, EJB from the client-side looks even simpler than developing the

component code. Other than the @EJB annotation on the placeBid private variable, the code is no
different than using a local POJO.

@EJB

When the Servlet container sees the @EJB annotation as the Servlet is first loaded, it looks up
the PlaceBid EJB behind the scenes and sets the placeBid variable to the retrieved EJB
reference. If necessary, the container will lookup the EJB remotely over RMI.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

The @EJB annotation works in any component that is registered with the Java EE container such
as a Servlet or JSF backing bean. As long as you are using the standard Java EE stack, this is probably
more than sufficient..

There are a couple other interesting things to look at in this code, illustrating concepts we
introduced earlier. Let’s take a closer look at them.

EJB 3.0 Dependency Injection
Although we mentioned DI in the beginning of the Chapter, if you are not familiar with DI,

what the @EJB annotation is doing might seems a little unusual, in a nifty “black-magic” kind of
way. In fact, if we didn’t tell you anything about the code, you might have been wondering if the
placeBid private variable is even usable in the Servlet’s service method since it is never set! If
fact, if the container didn’t intervene, we would get the infamous
java.lang.NullPointerException when we try to call the addBid method in Listing 2.2
since the placeBid variable would still be null. One interesting way to remember and understand
DI is to think of it as “custom” Java variable instantiation. The @EJB annotation in Listing 2.2
makes the container “instantiate” the placeBid variable with the EJB named ‘PlaceBid’ before the
variable is available for use.

Recall our discussion in Section 2.1.3 that DI can be viewed as inverse of JNDI lookup. Recall
also that JNDI is the container registry that holds references to all container-managed resources such
as EJBs. Clients get access to Session Beans like our PlaceBid EJB directly or indirectly through
JNDI. In EJB 2.x, you would have to manually populate the placeBid variable using JNDI lookup
code that looks like the following:

Context initialContext = new InitialContext();
Object ejbHome = initialContext.lookup("java:comp/env/PlaceBid");
PlaceBidHome placeBidHome = (PlaceBidHome)
 PortableRemoteObject.narrow(ejbHome, PlaceBidHome.class);
PlaceBid placeBid = placeBidHome.create();

It isn’t easy to fully appreciate DI until you see the code above. EJB 3.0 DI using the @EJB

annotation reduces all this mechanical JNDI lookup code to a single statement! In a non-trivial
application, this can easily translate to getting rid of hundreds of lines of redundant, boring, error-
prone code. In a sense, EJB 3.0 DI is really a high level abstraction over JNDI lookups.

Understanding Statelessness
An interesting thing about the PlaceBid Stateless Bean is that as long as calling the addBid

method results in a new bid record being created each time, the client does not care about the
internal state of the bean. There is absolutely no need for the Stateless Bean to guarantee that the
value of any of its instance variables will be the same across any two invocations. This property is
what statelessness means in terms of server-side programming.

The PlaceBid Session Bean can afford to be stateless because the action of placing a bid is
simple enough to be accomplished in a single step. The problem is that not all business processes are
that simple. Breaking a process down into multiple steps and maintaining internal state to “glue
together” the steps is a common technique to present complex processes to the user in a simple way.
Statefulness is particularly useful if what the user does in a given step in a process determines what the
next step is. Think of a questionnaire based setup wizard. The user’s input for each step of the wizard

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

is stored behind the scenes and is used to determine what to ask the user next. Stateful Session Beans
make maintaining server-side application state as easy as possible.

2.3.3 Using Stateful Beans
Unlike Stateless Session Beans, Stateful Session Beans guarantee that a client can expect to set the

internal state of a bean and count on the state being maintained between any numbers of method
calls. The container makes sure this happens by doing two important things behind the scenes.

Maintaining the session
The first is to make sure that a client can reach a bean dedicated to it across more than one

method invocation. Think of this as a phone switchboard that makes sure it routes you to the same
customer service agent if you call a technical support line more than once in a given period of time
(the period of time is the “session”).

The second thing that the container does is make sure that bean instance variable values are
maintained for the duration of a session without our having to write any session maintenance code.
In terms of the customer service example, this makes sure that your account information and call
history in a given period of time is automatically popped up on your agent’s screen when you call
technical support. This “automagic” maintenance of session state is a huge leap from having to fiddle
with the HTTP session, browser cookies or hidden HTML form variables to try to accomplish the
same thing. As we will see in the coming code samples, you can develop Stateful Beans as if you are
developing a in a ‘Hello World’ application, not a web application with verbose code to maintain
session state. The ActionBazaar ordering process is a great example for Stateful Session Beans since it
is broken up into four steps, each of which correspond to a screen presented to the user. These are the
steps:

1. Adding items to the order. If the user started the ordering process by clicking the “order item”
button on the page displaying an item won, the item is automatically added to the order. The
user can still add additional items in this step.

2. Specifying shipping information including shipping method, shipping address, insurance, and so
on.

3. Adding billing information such as credit card data, billing address and the like.

4. Confirming the order after reviewing the complete order, including total cost.

Figure 2.4 depicts these ordering steps. Using a Stateful Bean, the data the user enters at each
step could be cached into bean variables until the ordering workflow completes when the use
confirms the order.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

18 Figure 2.4: To make an otherwise overwhelming process manageable, the ActionBazaar ordering process

is broken down into several steps. The first of these steps is to add one or more item to the order. The

second step is to specify shipping information for the order. The third is to specify the billing information.

Reviewing and confirming the order finishes the ordering process.

Now they we know what we want, let’s see how we can implement it.

Implementing the solution
Listing 2.3 shows a possible implementation of the ActionBazaar ordering workflow using a bean

named PlaceOrderBean. As you might be able to see, each of the ordering steps maps to a method
in the PlaceOrderBean implementation. The addItem, setShippingInfo,
setBillingInfo and confirmOrder methods are called in sequence from the web-tier in
response to user actions in each step. The setBidderID method essentially represents an implicit
workflow setup step. It is called at the beginning of the workflow behind the scenes by the web
application to identify the currently logged-in user as the bidder placing the order. Other than the
confirmOrder method, the rest of the methods do little else than simple save off user input into
stateful instance variables. In a real application, of course, these methods would be doing a lot more
like error handling, validation, figuring out the user’s options for a given step, calculating costs, and
so on. The confirmOrder method does a bunch of things using the data accumulated throughout
the session – the complete order is saved into the database, the billing process is started in parallel,
and an order ID is returned back to the user as confirmation.

4 Listing 2.3: PlaceOrderBean Stateful Session Bean
package ejb3inaction.example.buslogic;

import javax.ejb.*;
import java.util.ArrayList;

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

import java.util.List;

@Stateful |#1
public class PlaceOrderBean implements PlaceOrder {
 private Long bidderID; |#2
 private List<Long> items; |#2
 private ShippingInfo shippingInfo; |#2
 private BillingInfo billingInfo; |#2

 public PlaceOrderBean () {
 items = new ArrayList<Long>();
 }

 public void setBidderID(Long bidderId) {
 this.bidderId = bidderId;
 }

 public void addItem(Long itemId) {
 items.add(itemId);
 }

 public void setShippingInfo(ShippingInfo shippingInfo) {
 this.shippingInfo = shippingInfo;
 }

 public void setBillingInfo(BillingInfo billingInfo) {
 this.billingInfo = billingInfo;
 }

 @Remove |#3
 public Long confirmOrder() {
 Order order = new Order();
 order.setBidderId(bidderId);
 order.setItems(items);
 order.setShippingInfo(shippingInfo);
 order.setBillingInfo(billingInfo);

 saveOrder(order);
 billOrder(order);

 return order.getOrderId();
 }
 ...
}
...
package ejb3inaction.example.buslogic;
import javax.ejb.Remote;
@Remote |#4
public interface PlaceOrder {
 void setBidderId(Long bidderId);
 void addItem(Long itemId);
 void setShippingInfo(ShippingInfo shippingInfo);
 void setBillingInfo(BillingInfo billingInfo);
 Long confirmOrder();
}
(annotation) <#1 Mark bean as Stateful>
(annotation) <#2 Stateful instance variables>
(annotation) <#3 Remove method>
(annotation) <#4 Remote business interface>

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

As you can see, overall, there is not really a big difference between developing a Stateless and a
Stateful Bean. In fact, from a developer’s perspective, the only difference is that the
PlaceOrderBean Class is marked with the @Stateful annotation instead of the @Stateless
annotation#1. As we know though, under the hood this makes a very large difference as to how the
container handles the bean’s relationship to a client and the values stored in the bean instance
variables#2. The @Stateful annotation also serves to tell the client-side developer what to expect
from the bean if behavior is not obvious from the bean’s API and documentation.

It is also important to note the @Remove annotation placed on the confirmOrder method.
Although this annotation is optional, it is very critical for a server performance standpoint.

@Remove

The @Remove annotation marks the end of the workflow modeled by a Stateful Bean. In our
case, we are telling the container that there is no longer a need to maintain the bean’s session
with the client after the confirmOrder method is invoked. If we didn’t tell the container
what method invocation marks the end of the workflow, the container could wait for a long
time until it can safely time out the session. Since Stateful Beans are guaranteed to be
dedicated to a client for the duration of a session, this could mean a lot of “orphaned” state
data consuming precious server resources for long periods of time!

There is virtually no difference between the bean interfaces for our Stateless and Stateful Bean
examples. Both are POJI marked with the @Remote annotation to enable remote client access#4.

Let’s now take a quick look at Stateful Beans from the client perspective. As you might expect,
there really are not major semantic differences from Stateless Beans.

2.3.4 A Stateful Bean Client
It is clear that the PlaceOrder EJB is called from the ActionBazaar web-tier. However, to give

a slightly more colorful perspective on things, we’ll deliberately stay out of web-tier client examples
this time. We will use a thick Java application that functions as a test script to run through the entire
workflow of the PlaceOrder EJB using some dummy data. This test script could just as easily been
part of a very high-level regression test suit using a framework like JUnit or NUnit.

A note on unit testing

If you actually have management buy-in to invest in extensive unit testing, you might also
note the fact that because of the POJO centric nature of EJB 3.0, the application below
could be easily be modified to be a full-scale unit test using dummy data sources and the like.
We will leave this for you as an exercise in case you are interested in exploring further by
tweaking the source code available for download from http://ejb3inaction.com. If unit
testing and code coverage are just not viable topics to bring up in your work environment,
don’t worry. We understand where you are coming from and don’t assume you do a ton of
unit testing.

Listing 2.4 shows the code for the stateful session bean client.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273
http://ejb3inaction.com

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

5 Listing 2.4: Stateful Session Bean Client

package ejb3inaction.example.buslogic;

import javax.ejb.EJB;

public class PlaceOrderTestClient {
 @EJB |#1
 private static PlaceOrder placeOrder;

 public static void main(String [] args) throws Exception {
 System.out.println("Exercising PlaceOrder EJB...");
 placeOrder.setBidderId(new Long(100));
 placeOrder.addItem(new Long(200));
 placeOrder.addItem(new Long(201));
 placeOrder.setShippingInfo(
 new ShippingInfo("123 My Sweet Home",
 "MyCity","MyState"));
 placeOrder.setBillingInfo(
 new BillingInfo("123456789","VISA","0708"));
 Long orderId = placeOrder.confirmOrder();
 System.out.println("Order confirmation number: " + orderId);

 }
}
(annotation) <#1 Inject an instance of EJB>

As you can see, there is nothing special you need to do from the client-side to use Stateful Beans.
As a matter of fact, there is virtually no difference in the client code between using a Stateless and a
Stateful Bean, other than the fact that the client can safely assume that the EJB is maintaining state
even if it is sitting on a remote application server. The other remarkable thing to note about Listing
2.4 is the fact that the @EJB annotation is injecting a remote EJB into a standalone client. This is
accomplished by running the client in the Application Client Container (ACC).

The Application Client Container

The application client container is a mini Java EE container that can be run from the
command line. Think of it as a souped-up JVM with some Java EE juice added. You can run
any Java SE client like a Swing application inside the application client container as if you
were using a regular old JVM. The beauty of it is that the application client container will
recognize and process most Java EE annotations like the @EJB DI annotation. Among other
things, the client container can lookup and inject EJBs on remote servers, communicate with
remote EJBs using RMI, provide authentication, authorization and so on. The application
client really shines if you need to use EJBs in an SE application or would like to inject real
resources into your POJO during unit testing.

Any Java class with a main method can be run inside the ACC. Typically, thought, an
application client is packaged in a jar file that must contain a Main-class in the Manifest file.
Optionally the jar may contain a deployment descriptor (application-client.xml) and a
jndi.properties file that contains the environment properties to connect to a remote EJB
container. Let’s assume you packaged up your application client classes in jar file named chapter2-
client.jar file. Using Sun’s Glassfish application server you could launch your application client inside
ACC as follows:
appclient -client chapter2-client.jar

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

This finishes our brief introduction of Session Beans using our ActionBazaar scenario. We are
now ready to move on to the next business tier EJB component, Message Driven Beans (MDB).

2.4 Messaging with Message Driven Beans
Just as Session Beans process direct business requests from the client, Message Driven Beans

process indirect messages. Messaging has numerous uses in enterprise systems, such as system
integration, asynchronous processing, distributed system communication and so on. If you have been
doing enterprise development for a little bit of time, you are probably familiar with at least the basic
idea of messaging. In the most basic terms, messaging means communicating between two separate
processes, usually across different machines. Java EE messaging follows this basic idea, just put on
steroids. Most significantly, Java EE makes messaging robust by adding a reliable middleman between
the message sender and receiver. This idea is illustrated in Figure 2.5.

19 Figure 2.5: The Java EE “pony express” messaging model. Java EE adds reliability to messaging by

adding a middleman that guarantees the delivery of messages despite network outages, even if the

receiver is not present on the other end when the message is sent. In this sense, Java EE messaging has

much more in common with the postal service than it does with common RPC protocols like RMI. We will

discuss this model in much greater detail in Chapter 5.

In Java EE terms, the reliable middleman is called a messaging destination, powered by Message
Oriented Middleware (MOM) servers like IBM MQSeries or SonicMQ. Java EE standardizes
messaging through a well-known API, JMS (Java Messaging Service), which Message Driven Beans
rely heavily on.

We will discuss messaging, JMS and Message Driven Beans in much greater detail in Chapter 4.

For now, this is all you really need.

In this section we will build a simple example of message producer and a message driven bean.
In our ActionBazaar example, we enable asynchronous order billing through messaging. To see

how this is done, let’s revisit the parts of the PlaceOrderBean introduced in Listing 2.3 that we
deliberately left hidden, namely the implementation of the billOrder method.

2.4.1 Producing a Billing Message
As we discussed in our high-level solution schematic in Section 2.2, The PlaceOrderBean

accomplishes asynchronous or “out-of-process” order billing by generating a message in the
confirmOrder method to request that the order billing be started in parallel. A soon as this billing
request message is sent to the messaging middleman, the confirmOrder method returns with the
order confirmation to the user. We will now take a look at exactly how this piece is implemented. As
we see in Listing 2.5, the billing request message is sent to a messaging destination named

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

‘jms/OrderBillingQueue’. Since you have already seen most of the implementation of the
PlaceOrder bean, we won’t repeat a lot of the code shown in Listing 2.3 here.
6 Listing 2.5: PlaceOrderBean Producing JMS Message
package ejb3inaction.example.buslogic;

...
import javax.annotation.Resource;
import javax.ejb.Remove;
import javax.ejb.Stateful;
import javax.jms.*;
...

@Stateful
public class PlaceOrderBean implements PlaceOrder {
 @Resource(name="jms/QueueConnectionFactory") |#1
 private ConnectionFactory connectionFactory;

 @Resource(name="jms/OrderBillingQueue") |#1
 private Destination billingQueue;
 ...
 @Remove
 public Long confirmOrder() {
 Order order = new Order();
 order.setBidderId(bidderId);
 order.setItems(items);
 order.setShippingInfo(shippingInfo);
 order.setBillingInfo(billingInfo);

 saveOrder(order);
 billOrder(order);

 return order.getOrderId();
 }
 ...
 private billOrder(Order order) {
 try {
 Connection connection = |#2
 connectionFactory.createConnection(); |#2
 Session session = |#2
 connection.createSession(false, |#2
 Session.AUTO_ACKNOWLEDGE); |#2
 MessageProducer producer = |#2
 session.createProducer(billingQueue); |#2
 ObjectMessage message = |#3
 session.createObjectMessage(); |#3
 message.setObject(order); |#3
 producer.send(message); |#3
 producer.close(); |#4
 session.close(); |#4
 connection.close(); |#4
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
}
(annotation) <#1 Inject JMS resources>
(annotation) <#2 JMS setup code>
(annotation) <#3 Creating and sending the message>
(annotation) <#4 Release JMS resources>

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Not surprisingly, the code to send the message in Listing 2.5 is heavily dependent on the JMS
API. In fact, that is all that the code in the billOrder consists of. If you are familiar with JDBC,
the flavor of the code in the method might seem familiar. The end result of the code is that the newly
created Order Object is sent as a message to a JMS destination named ‘jms/OrderBillingQueue’. We
will not deal with the intricacies of JMS now, but will save a detailed discussion of this essential
messaging API for Chapter 4. It is important to note a few things right now, though.

The first thing you should note is that two JMS resources, including the message destination, are
injected using the @Resource annotation#1,instead of being looked up.

@Resource

As we stated earlier, in addition to the @EJB annotation, the @Resource annotation
provides DI functionality in EJB 3.0. While the @EJB annotation is limited to injecting
EJBs, the @Resource annotation is much more general purpose and can be used to inject
anything that the container knows about.

In Listing 2.5 it looks up the JMS resources specified through the name parameter and injects it
into the connectionFactory and billingQueue instance variables. The name parameter values
are what JNDI knows the resources by. The second thing that is important to realize is that the
MessageProducer.send method#3 does not wait for a receiver to receive the message on the
other end. Because the messaging server guarantees that the message will be delivered to anyone
interested in the message, this is just fine. In fact, this is exactly what enables the billing process to
start in parallel to the ordering process, which continues on it’s merry way as soon as the message is
sent. You should also note how loosely coupled the ordering and billing processes are. The ordering
bean doesn’t even know who picks up and processes its message; it simply knows the message
destination!

As we know from our solution schematic in Section 2.3, the OrderBilllingMDB processes
the request to bill the order. It continuously listens for messages sent to the ‘jms/OrderBillingQueue’
messaging destination, picks up the messages from the queue, inspects the Order Object embedded
in the message and attempts to the bill the user. We will depict this scheme in Figure 2.6 to reinforce
the concept:

20 Figure 2.6: Asynchronously billing orders using MDBs. The Stateful Session Bean processing the order

sends a message to the order-billing queue. The billing MDB picks up this message and processes it

asynchronously.

Let’s take a look now at how the OrderBilllingMDB is implemented.

2.4.2 Using the Order Billing Message Processor MDB
The OrderBilllingMDB’s sole job in life is to attempt to bill the bidder for the total cost of

an order, including the price of the items in the order, shipping, handling, insurance costs and the
like. Listing 2.6 shows the abbreviated code for the order billing MDB. Recall that the Order
Object passed inside the message sent by the PlaceOrder EJB contains a BillingInfo Object.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

The BillingInfo Object tells the OrderBilllingMDB how to bill the customer – for example,
perhaps by charging a credit card or crediting against an online bank account. However the user is
supposed to be charged, after attempting to bill the user, the MDB notifies both the bidder and seller
of the results of the billing attempt. If billing is successful, the seller ships to the address specified in
the order. If the billing attempt fails, the bidder must correct and resubmit the billing information
attached to the order. Last but not least, the MDB must also update the order record to reflect what
happened during the billing attempt. Feel free to explore the complete code sample and deployment
descriptor entries containing the JMS resource configuration in Chapter2.zip available for download
from http://ejb3inaction.com.

7 Listing 2.6: The OrderBillingMDB
package ejb3inaction.example.buslogic;

import javax.ejb.MessageDriven;
import javax.ejb.ActivationConfigProperty;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.ObjectMessage;
import ejb3inaction.example.persistence.Order;
import ejb3inaction.example.persistence.OrderStatus;

@MessageDriven(|#1
 activationConfig = { |#2
 @ActivationConfigProperty(|#2
 propertyName="destinationName", |#2
 propertyValue="jms/OrderBillingQueue") |#2
 }
)
public class OrderBillingMDB implements MessageListener { |#3
 ...
 public void onMessage(Message message) {
 try {
 ObjectMessage objectMessage = (ObjectMessage) message;
 Order order = (Order) objectMessage.getObject();

 try {
 bill(order);
 notifyBillingSuccess(order);
 order.setStatus(OrderStatus.COMPLETE);
 } catch (BillingException be) {
 notifyBillingFailure(be, order);
 order.setStatus(OrderStatus.BILLING_FAILED);
 } finally {
 update(order);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 ...
}
(annotation) <#1 Mark as Message Driven Bean>
(annotation) <#2 Specify JMS destination to get messages from>
(annotation) <#3 Implements javax.jms.MessageListener interface>

As you might be able to notice from the code, Message Driven Beans are really Session Beans in
JMS disguise. Like Stateless Beans, Message Driven Beans are not guaranteed to maintain state. The

Licensed to John Sweitzer <admin@saolailaem.info>

http://ejb3inaction.com/
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

@MessageDriven annotation is the MDB counterpart of the @Stateless and @Stateful
annotations—it makes the container transparently provide messaging and other EJB services into a
POJO#1. The activation configuration properties nested inside the @MessageDriven annotation
tells the container what JMS destination the MDB wants to receive messages from.

The container and MDBs

Behind the scenes, the container takes care of a bunch of mechanical details to start listening
for messages sent to the destination specified by the activation configuration properties. As
soon as a message arrives at the destination, the container forwards it to an instance of the
MDB.

Instead of implementing a remote or local business interface, MDBs implement the
javax.jms.MessageListener interface. The container uses this well-known JMS interface to
invoke an MDB. The onMessage method defined by the interface has a single
javax.jms.Message parameter that the container uses to pass a received message to the MDB.
Believe it or not, this is more or less all you need to know to get by using Message Driven Beans, as
long as you have a decent understanding of messaging and JMS.

This pretty much wraps up all we need to say right now about EJB 3.0 business tier components
too. As we mentioned earlier, we will devote the entirety of the next part of the book to this vital part
of the EJB platform. Now, we will move on to the other major part of EJB, the Persistence API.

2.5 Persisting data with EJB 3.0 JPA
The Java Persistence API (JPA) is the persistence tier solution for the Java EE platform. Although a
lot has changed in EJB 3.0 for Session Beans and Message Driven Beans, the changes in the
persistence tier have truly been phenomenal. In fact, other than some naming patterns and concepts,
JPA has very little in common with the EJB 2.x Entity Bean model. This is particularly true in the
fact that JPA does not follow the container model that is just not very well suited to the problem of
persistence. Instead it follows an API paradigm similar to JDBC, JavaMail or JMS. We will soon see,
the JPA EntityManager interface defines the API for persistence while JPA Entities specify how
application data is mapped to a relational database. Although JPA takes a serious bite out of the
complexity in saving enterprise data, ORM based persistence is still a non-trivial topic. We will
devote the entire third part of this book to JPA, namely Chapters 7, 8, 9 and 10..

As we know, data is saved into the database using JPA in almost every step of our ActionBazaar
scenario. We won’t bore you to death by going over all of the persistence code for the scenario.
Instead, we’ll introduce JPA using a representative example and leave you to explore the complete
code on you own. We will see how EJB 3.0 Persistence looks like by revisiting the PlaceBid
Stateless Session Bean. As a reminder to how the bidding process is implemented, Figure 2.7 depicts
the different components that interact with each other when a bidder creates a bid in ActionBazaar.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

21

22 Figure 2.7: PlaceBidServlet invokes the addBid method of PlaceBid EJB and passes a Bid object. The

PlaceBidEJB invokes persist method of EntityManager to save the Bid entity into the database. When the

transaction commits you will see that a corresponding database record in the BIDS table will be stored

Recall that the PlaceBidServlet calls the PlaceBidBean’s addBid method to add a Bid

Entity into the database. As we will see, the PlaceBidBean uses the JPA EntityManager’s
persist method to save the bid. Let’s first take a look at the JPA, and then we’ll see the
EntityManager in action.

2.5.1 Working with the Java Persistence API
You might have noticed that we kept the actual code to save a bid into the database conveniently out
of sight in Listing 2.1. The PlaceBid EJB’s addBid method references the hidden save method
to persist the Bid Object to the database. Listing 2.8 will fill in this gap by showing you what the
save method actually does. The save method uses the JPA EntityManager to save the Bid
Object. But first let’s take a quick look at the fourth and final kind of EJB—the JPA Entity. Listing
2.7 shows us how the Bid Entity actually looks like:

8 Listing 2.7: Bid Entity
package ejb3inaction.example.persistence;

import java.io.Serializable;
import java.sql.Date;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.GenerationType;
import javax.persistence.GeneratedValue;

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

@Entity |#1
@Table(name="BIDS") |#2
public class Bid implements Serializable {
 private Long bidID;
 private Long itemID;
 private Long bidderID;
 private Double bidAmount;
 private Date bidDate;

 @Id |#3
 @GeneratedValue(strategy=GenerationType.AUTO) |#4
 @Column(name="BID_ID") |#5
 public Long getBidID() {
 return bidID;
 }

 public void setBidID(Long bidID) {
 this.bidID = bidID;
 }

 @Column(name="ITEM_ID") |#5
 public Long getItemID() {
 return itemID;
 }

 public void setItemID(Long itemID) {
 this.itemID = itemID;
 }

 @Column(name="BIDDER_ID") |#5
 public Long getBidderID() {
 return bidderID;
 }

 public void setBidderID(Long bidderID) {
 this.bidderID = bidderID;
 }

 @Column(name="BID_AMOUNT") |#5
 public Double getBidAmount() {
 return bidAmount;
 }

 public void setBidAmount(Double bidAmount) {
 this.bidAmount = bidAmount;
 }

 @Column(name="BID_DATE") |#5
 public Date getBidDate() {
 return bidDate;
 }

 public void setBidDate(Date bidDate) {
 this.bidDate = bidDate;
 }
}
(annotation) <#1 Marking POJO as Entity>
(annotation) <#2 Table mapping>
(annotation) <#3 Entity ID>

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

(annotation) <#4 ID value generation>
(annotation) <#5 Column mappings>

You can probably gather a pretty good idea of exactly how O-R mapping in JPA works just by
glancing at Listing 2.7, even if you have no familiarly with ORM tools like Hibernate. Think about
the annotations that mirror relational concepts like tables, columns and ids…

@Entity annotation signifies the fact that the Bid class is a JPA Entity#1. Note that Bid is a
POJO that does not require an interface, unlike Session and Message Driven Beans. The @Table
annotation tells JPA that the Bid Entity is mapped to the BIDS table#2. Similarly, the @Column
annotations indicate what Bid properties map to what BIDS table fields. Note, Entities need not use
getter and setter based properties. Instead, the field mappings could have been placed directly onto
member variables exposed through non-private access modifiers. We’ll learn more about access by
Entity property and field in Chapter 7. @Id annotation is somewhat special. It marks the bidID
property to be the primary key for the Bid Entity#3. Just like a database record, a primary key
uniquely identifies an Entity instance. We have used the @GeneratedValue annotation with
strategy set to GenerationType.AUTO#4 to indicate that the persistence provider should
automatically generate the primary key when the Entity is saved into the database.

The primary key generation

If you have used EJB 2.x you may remember that it was almost rocket science to generate
primary key values with CMP entity beans. With EJB 3.0 JPA, the generation of primary
keys is a snap and you have several options such as table, sequence, identity key and so on.
We will discuss more about primary key generation in Chapter 8.

Although we didn’t do things this way in Listing 2.7, the Bid Entity could have been related to a
number of other JPA Entities by holding direct object references (such the Bidder and Item
Entities). EJB 3.0 ORM allows such object reference based implicit relationships to be elegantly
mapped to the database. We’ve decided to keep things simple for now and not dive into this quite
this early. Instead we’ll discuss Entity relationship mapping in Chapter 8.

Having looked at the Bid Entity, let’s now turn our attention to how the Entity actually winds
up in the database through the PlaceBid bean.

2.5.2 Using the EntityManager
You’ve probably noticed that the Bid Entity doesn’t have a method to save itself into the

database. The JPA EntityManager does this bit of heavy lifting in terms of actually reading ORM
configuration and providing Entity persistence services through an API based interface.

The EntityManager

The EntityManager knows how to store a POJO Entity into the database as a relational
record, read relational data from a database and turn in into an Entity, update Entity data
stored in the database, and delete data mapped to an Entity instance from the database. As
we will see in Chapters 9 and 10, the EntityManager has methods corresponding to each
of these CRUD operations, in addition to support for the robust Java Persistence Query
Language (JPQL).

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

As promised earlier, Listing 2.8 shows how the PlaceBid EJB uses EntityManager API to
persist the Bid Entity.

9 Listing 2.8: Saving a bid record using the EJB 3.0 Java Persistence API
package ejb3inaction.example.buslogic;

...
import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;
...

@Stateless
public class PlaceBidBean implements PlaceBid {
 @PersistenceContext(unitName="actionBazaar") |#1
 private EntityManager entityManager;
 ...
 public Bid addBid(Bid bid) {
 System.out.println(“Adding bid, bidder ID=” + bid.getBidderID()
 + “, item ID=” + bid.getItemID() + “, bid amount=”
 + bid.getBidAmount() + “.”);

 return save(bid);
 }

 private Bid save(Bid bid) {
 entityManager.persist(bid); |#2
 return bid;
 }
}

(annotation) <#1 Injects instance of EntityManager>
(annotation) <#2 Persist Entity instance>

The true magic of the code in Listing 2.8 really lies in the EntityManager interface. One
interesting way to think about the EntityManager interface is as an “interpreter” between the OO
and relational worlds. The manager reads the ORM mapping annotations like @Table and
@Column on the Bid Entity and figures out how to save the Entity into the database. The
EntityManager is injected into the PlaceBid Bean through the @PersistenceContext
annotation#1. Similar to the name parameter of the @Resource annotation in Listing 2.5, the
unitName parameter of the @Resource annotation points to persistence unit specific to Act
ionBazaar. A persistence unit is a group of entities packaged together in an application module. You
will learn more about persistence units in Chapter 9 and 10.
In the save method, the EntityManager persist method is called to actually save the Bid
data into the database#2. After the persist method returns, an SQL statement very much like the
following is issued against the database to insert a record corresponding to the bid:
INSERT INTO BIDS (BID_ID, BID_DATE, BIDDER_ID, BID_AMOUNT, ITEM_ID)
VALUES (52, NULL, 60, 20000.50, 100)

It might be instructive to look back at Listing 2.7 now to see how the EntityManager figures out
the SQL to generate by looking at the O-R mapping annotations on the Bid Entity. Recall that the
@Table annotation specifies that the bid record should be saved in the BIDS table while each of
the @Column annotations in Listing 2.7 tells JPA which Bid Entity field maps to which column in
the BIDS table. For example, the bidId property maps to the BIDS.BID_ID column, the

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

bidAmount property maps to the BIDS.BID_AMOUNT column and so on. As we discussed
earlier the @Id and @GeneratedValue value annotations specify that the BID_ID column is
the primary key of the BIDS table and that JPA should automatically generate a value for the column
before the INSERT statement is issued (the 52 value in the SQL sample). This process of translating
an Entity to columns in the database is exactly what Object-Relational Mapping (ORM) and JPA is
really all about.

This brings us to the end of this brief introduction to the EJB 3.0 Java Persistence API and the
end of this whirlwind Chapter. At this point, it should be clear to you how simple, effective and
robust EJB 3.0 really is, even from a bird’s eye view.

2.6 Summary
As we stated in the introduction, the goal of this Chapter was not to feed you the “guru pill” for

EJB 3.0, but rather show you what to expect from this new version the Java enterprise platform.
This Chapter introduced the ActionBazaar application, a central theme to this book. Using a

scenario from the ActionBazaar application, we have shown you a cross-section of EJB 3.0
functionality, including Stateless Session Beans, Stateful Session Beans, Message Driven Beans and
the EJB 3.0 Java Persistence API. You also learnt some basic concepts such as deployment descriptors,
metadata annotations and dependency injection.

We used a Stateless Session bean (PlaceBidBean) to implement the business logic to place a
bid for an item in an auctioning system. We built a very simple Servlet client to access the bean that
used dependency injection. We then saw a Stateful Session bean (PlaceOrderBean) that
encapsulated the logic for ordering an item and build a simple application client that accesses the
PlaceOrderBean. We saw a very simple example of a Message Driven bean, OrderBillingMDB,
that processes a billing request when a message arrives on a JMS queue. Finally, we built an Entity for
storing bids and used the EntityManager API to persist the Entity to the database.

Most of the rest of this book roughly follows the outline of this Chapter. Chapter 3 revisits
Session Beans, Chapter 4 discusses messaging, JMS and Message Driven Beans, Chapter 5 expands
on dependency injection and discusses topics such as interceptors and timers and Chapter 6 explores
transactions and security management in EJB. Chapters 7 through 11 are devoted to a detailed
exploration of the Persistence API. Finally, Chapters 12 through 15 cover advanced topics in EJB.

In the next Chapter, we will shift to a lower gear and talk about dive into the details of Session
Beans.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Chapter 3 Building Business Logic with
Session beans

At the heart of any Enterprise application resides its business logic. In an ideal world, application

developers should only be concerned with defining and implementing the business logic, while
concerns like presentation, persistence or integration should largely be window dressing. From this
perspective, Session Beans are the most important part of EJB because their purpose in life is to
model high-level business processes.

If you can think of a business system as a horse-drawn Chariot with a driver carrying the Greco-
Roman champion to battle, Session Beans are the driver. Session Beans utilize data and system
resources (the Chariot and the horses) to implement the goals of the user (the champion) using
business logic (the skills and judgment of the driver). For this and other reasons, Sessions Beans,
particularly Stateless Session Beans, have been very popular, even despite the problems of EJB 2.x.
EJB 3.0 makes this vital bean type a lot easier to use.

In Chapter 1, we briefly introduced Session Beans. In Chapter 2 we saw simple examples of
these beans in action. In this Chapter, we will discuss Session Beans in much greater detail, including
their purpose, the different types of Session Beans, how to develop them and some of the advanced
Session Bean features available to you.

We will start this Chapter by exploring some basic Session Bean concepts, and then discuss the
basic characteristics of Session Beans.. Session Beans. We will then cover each Session Bean type –
Stateful and Stateless - in detail before introducing bean client code. Finally, we will mention Session
Bean best practices at the end of the Chapter.

3.1 Getting to know Session Beans
A typical enterprise application will have numerous business activities or processes. For example,

our ActionBazaar application has processes such as creating a user, adding an item for auctioning,
bidding for an item, ordering an item and many more. Session Beans can be used to encapsulate the
business logic for all such processes.
 The theory behind Session Beans centers on the idea that each request by a client to complete a
distinct business process is completed in a session. So what is a session? If you have ever used UNIX
server then you may have used telnet to connect to the server from a PC-client. Telnet allows you to
establish a login session with the UNIX server for a finite amount of time. During this session you
may execute several commands in the server. Simply put a session is a connection between a client and
a server that lasts for a finite period of time.

A session may either be very short-lived like a HTTP request or span a long time like a login
session when you telnet or ftp into a UNIX server. Similar to a typical telnet session a bean may
maintain its state between calls, in which case it is stateful,, or it may be a one time call, in which case
it’s stateless. A typical example of a Stateful application is the module that a Bidder uses to register
himself in the ActionBazaar application. That process takes place in multiple steps. An example of a

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Stateless business module is the application code that is used to place a bid for an item. Information,
such as user id, item number, and amount are passed in and success or failure is returned. This
happens all in one step. We will examine the differences between stateless and stateful session beans
more closely in section 3.1.4.

As you might recall, Session Beans are the only EJB components that are invoked directly by

clients. A client can be anything such as a web application component (Servlet, JSP, JSF and so on), a
command line application or a Swing GUI desktop application. A client can even be a .NET
application using Web Services access.

At this point you might be wondering what makes Session Beans special. After all, why use a
session bean simply to act as a business logic holder? Glad that you asked. Before you invest more of
your time, let us address this question first. Then we will dissect and show you basic anatomy of a
session bean and rules that governs it before finding out about the differences between stateless and
stateful session beans.

3.1.1 Why Use Session Beans?
Session Beans are a lot more than just business logic holders. Remember the EJB services we briefly
mentioned in Chapter 1? A good majority of those services are specifically geared toward Session
Beans. They make developing a robust, feature-rich, impressive business logic tier remarkably easy
(and maybe even a little fun). Let’s take a look at some of the most important of these services.

Concurrency and Thread-safety
The whole point of building server-side applications is that they can be shared by a large number

of remote clients at the same time. Because Session Beans are specifically meant to handle client
requests, they must support a high degree of concurrency safely and robustly. In our ActionBazaar
example, it is very likely thousands of concurrent users will be using the PlaceBid Session Bean we
introduced in Chapter 2. The container employs a number of techniques to “automagically” make
sure you don’t have to worry about concurrency or thread-safety. This means that we can develop
Session Beans as though we were writing a standalone desktop application used by a single user. We
will discuss these “automagic” techniques shortly, including pooling, session management and
passivation.

Remoting and Web Services
Session Beans support both Java RMI (Remote Method Invocation) based native and SOAP

based Web Services remote access. Other than some minor configuration, no work is required to
make Session Bean business logic accessible remotely using either method. This goes a long way in
enabling distributed computing and interoperability. We’ll see Session Bean remoteability in action
in juts a few Sections.

Transaction and Security Management
Transactions and security management are two enterprise-computing mainstays. Session Bean

support for pure configuration based transactions, authorization and authentication makes
supporting these requirements all but a non-issue. We won’t discuss these services in this Chapter but
will reserve the entirety of Chapter 6 to EJB transaction management and security.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Timer Services and Interceptors
Interceptors are EJB’s version of lightweight Aspect Oriented Programming (AOP). Recall that

AOP is the ability to isolate “crosscutting” concerns into their own modules and apply them across
the application through configuration. “Crosscutting” concerns include things like auditing and
logging that are repeated across an application but are not directly related to business logic. We’ll
discuss interceptors in great detail in Chapter 5.

Timer Services are EJB’s version of lightweight application schedulers. In most medium to large
scale applications, you will find that you need some kind of scheduling services. In ActionBazaar,
scheduled tasks could be used to monitor when the bidding for a particular item ends and determine
who won an auction. Timer Services allow us to easily turn a Session Bean into a recurring or non-
recurring scheduled task. We’ll save the discussion of timer services to Chapter 5 as well.

A Session Bean Alternative: Spring

Clearly, EJB 3.0 Session Beans are not your only option in developing the business tier of
your application. POJOs managed by lightweight containers such as Spring could also be
used to build the business logic tier. Before jumping on either the EJB 3.0 Session Bean or
Spring bandwagon you should clearly think about what your needs are.
If your application needs robust remoteability or seamlessly exposing your business logic as
Web Services, EJB 3.0 is the clear choice. Spring also does not have very good equivalents
of instance pooling, automated session state maintenance and passivation/activation.
Because of heavy use of annotations, you can pretty much avoid “XML Hell” using EJB 3.0.
This is not true of Spring. Moreover, because it is an integral part of the Java EE standard the
EJB container is natively integrated with components such as JSF, JSP, Servlets, the JTA
transaction manager, JMS providers and JAAS security providers of your application server.
With Spring, you have to worry whether your application server fully supports the framework
with these native components and other high performance features like clustering, load
balancing and failover.
If these are not factors you are worried about, Spring is not a bad choice at all and has a few
strengths of its own. Spring has numerous simple, elegant utilities to perform many common
tasks such as the JDBC and JMS templates. If you plan to use dependency injection with
regular Java Classes, Spring is great since DI only works for container components in EJB
3.0. Also, Spring AOP/AspectJ is a much more feature-rich (albeit slightly more complex)
choice than EJB 3.0 interceptors.
Nevertheless, if portability, standardization and vendor support is important to you, EJB 3.0
may be the way to go anyway. EJB 3.0 is a mature product that is the organic (albeit
imperfect) result of the incremental effort, pooled resources, shared ownership and
measured consensus of numerous distinct groups of people. This includes the grassroots
Java Community Process (JCP), some of the world’s most revered commercial technology
powerhouses like IBM, Sun, Oracle, BEA, etc and well as spirited open source organizations
like Apache and JBoss.

Now that you are convinced why you would session beans let us learn some basic characteristics

about session beans.

3.1.2 Session Beans: the basics
Although we briefly touched upon Session Bean code in the previous Chapter, we didn’t really

go into a great detail about developing them. Before we dive into the details of developing each type
of Session Bean, let’s revisit the code in Chapter 2 to closely examine some basic traits shared by all
Session Beans.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

The Anatomy of a Session Bean
Although this was understated in Chapter 2, each Session Bean implementation has two distinct

parts—one or more Bean interfaces and a Bean implementation class. In the PlaceBid Bean
example of Chapter 2, the bean implementation consisted of the PlaceBid interface and the
PlaceBidBean class. This is shown in Figure 3.1.

23 Figure 3.1: Parts of the Place Bid Session Bean. Each Session Bean has one or more interfaces and one

implementation class.

All Session Beans must be divided into these two parts. This is because clients cannot have access

to the bean implementation class directly. Instead, they must use Session Beans through a business
interface. Nonetheless, interface based programming is a very sound idea anyway, especially when using
dependency injection.

 Interface based programming is the practice of not using implementation classes directly
whenever possible. This promotes loose coupling since implementation classes can easily be swapped
out without a lot of code changes. EJB has been a major catalyst in the popularization of interface
based programming and even the earliest versions of EJB followed this paradigm, later to form the
basis of DI.

The Session Bean Interface
An interface that a client invokes the bean through is called a business interface. A business

interface essentially defines the bean methods that are appropriate for access through a specific access
mechanism. For example, let’s revisit the PlaceBid interface in Chapter 2. Here is the code:
@Local
public interface PlaceBid {
 Bid addBid(Bid bid);
}

All EJB interfaces being POJI, there really isn’t anything too remarkable in the code above other
than the @Local annotation that specifies it’s a local interface. Recall that a business interface could
be remote or even Web Service accessible instead. We’ll talk more about the three types of interfaces
in Section 3.2. The interesting thing to note right now is the fact that a single EJB can have multiple
interfaces. This means that EJB implementation classes can be polymorphic, meaning that different
clients using different interfaces could use them in completely different ways.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

The EJB Bean Class
Just like usual OO programming, each interface that the Bean intends to support must be

explicitly included in the Bean implementation class’s implements clause. We can see this in the
code for the PlaceBidBean from Chapter 2:
@Stateless
public class PlaceBidBean implements PlaceBid {
 ...
 public PlaceBidBean() {}

 public Bid addBid(Bid bid) {
 System.out.println(“Adding bid, bidder ID=” + bid.getBidderID()
 + “, item ID=” + bid.getItemID() + “, bid amount=”
 + bid.getBidAmount() + “.”);

 return save(bid);
 }
 ...
}

The PlaceBidBean class provides the concrete implementation of the addBid method
required by the PlaceBid interface. Session Bean implementation classes can never be abstract, this
means that all methods mandated by declared business interfaces must be implemented in the class.

A nuance to note is the fact that EJB implementation classes can have non-private methods that
are not accessible through any interface. This can be very useful for creating clever unit testing
frameworks. This is also helpful while implementing lifecycle callback, as we will discuss in Section
3.1.4. Also, an EJB bean class can make use of OO inheritance. You could use this strategy to
support a custom framework for your application. As an example, you could put commonly used
logic in a parent POJO class that a set of Beans inherits from.

Unit Testing Your Session Beans

It is clear that Session Beans are POJOs. Since EJB annotations are
ignored by the JVM Session Beans can be unit tested using a
framework like JUnit or TestNG without having to deploy them into
an EJB container. For more information on JUnit, browse
http://www.junit.org.
On the other hand, since several container-provided services such
as dependency injection cannot be used outside the container so
you cannot perform functional testing of applications using EJBs
outside the container, at least not easily.

Now that we’ve looked at the basic structure of Session Beans, we will outline relatively simple

programming rules for a session bean.

3.1.3 Understanding the programming rules
Like all EJB 3.0 Beans, Session Beans are POJOs that follow a very small set of rules. The

following summarizes the rules that apply to all types of Session Beans:

5. As we discussed earlier in section 3.1.2 a session bean must have a business interface.

6. The Session Bean class must be concrete. You cannot define a Session Bean class to be either
final or abstract since the container needs to manipulate it.

7. You must have a no argument constructor in the Bean class. As we saw, this is because the

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273
http://www.junit.org

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

container invokes this constructor to create a Bean instance when a client invokes an EJB. Note
that complier inserts a default no-argument constructor if there is no constructor in a Java class.

8. A Session Bean class can subclass another Session Bean or any other POJO. For example a
Stateless Session Bean named BidManager can extend another session bean PlaceBidBean in
the following way:
@Stateless
public BidManagerBean extends PlaceBidBean implements BidManager {
 ...
}

9. The business methods and lifecycle callback methods may either be in the Bean Class or in a
superclass. It’s worth mentioning here that annotation inheritance is supported with several
limitations with EJB 3.0 session beans. For example the bean type annotation @Stateless or
@Stateful specified in the PlaceBidBid superclass will be ignored when you deploy the
BidManagerBean. However any annotations in the superclass use to define lifecycle callback
methods (more about that later in this section) and resource injection will be inherited by the
bean class.

10. Business method names must not start with ejb. For example, we should avoid a method
name like ejbCreate or ejbAddBid because it may interfere with EJB infrastructure
processing. We must define all business methods as public and we cannot declare them as
final or static. If you are exposing a method in a remote business interface of the EJB then
you should make sure that the arguments and the return type of the method implement the
java.io.Serializable interface.

We will see these rules applied when we explore concrete examples of Stateless and Stateful Session
Beans in section 3.2 and 3.3 respectively.

Now that we’ve looked at the basic programming rules for the session beans, let’s discuss the
fundamental reasons behind splitting them into two groups.

3.1.4 Conversational State and Session Bean Types
Earlier, we talked about stateful and stateless Session beans. However we have so far avoided the

real differences between them. This grouping of bean types centers on the concept of the
conversational state.
 A particular business process may involve more than one Session Bean method call. During these
method calls, the Session Bean may or may not maintain a conversational state. This terminology will
make more sense if you think of each Session Bean method call as a “conversation” or “exchange of
information” between the client and the bean. A bean that maintains conversational state
“remembers” the results of previous exchanges, and is a Stateful Session Bean. In Java terms, this
means that the bean will store data from a method call into instance variables and use the cached data
to process the next method call. Stateless Session Beans do not maintain any state. In general, Stateful
Session Beans tend to model multi-step workflows, while Stateless Session Beans tend to model
general-purpose, utility services used by the client.

The classic example of maintaining conversational state is the eCommerce website shopping cart.
When the client adds, removes, modifies or checks out items from the shopping cart, the shopping
cart is expected to store all of the items that were put into it while the client was shopping. As you
can imagine, except for the most complex business processes in an application, most Session Bean

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

interactions do not require a conversational state. Putting in a bid at ActionBazaar, leaving Buyer or
Seller feedback, viewing a particular item on bid are all examples of stateless business processes.

As we will soon see, however, this does not mean that Stateless Session Beans cannot have
instance variables. Even before we explore any code, common sense should tell us that in the least,
Session Beans must cache some resources like database connections for performance reasons. The
critical distinction here is client expectations. As long as the client does not need to depend on the fact
that a Session Bean uses instance variables to maintain conversational state, there is no need to use a
Stateful Session Bean.

3.1.5 Bean Lifecycle Callbacks
A Session Bean has a life cycle. This mean that Beans go through a predefined set of state

transitions. If you’ve used Spring or EJB 2.x, this should come as no surprise. If you haven’t the
concept can be a little tricky to grasp.

In order to understand the Bean lifecycle, it is important to revisit the concept of managed
resources. Recall that the container manages almost every aspect of Session Beans. This means that
neither the client nor the Bean is responsible for determining when Bean instances are created, when
dependencies are injected, when Bean instances are destroyed or when to take optimization measures.
Managing these actions enables the container to provide the abstractions that constitute some of the
real value of using EJBs, including DI, automated transaction management, AOP, transparent
security management and so on.

The lifecycle events

The lifecycle of a session bean may be categorized into several phases, or events. The most obvious
two events of Bean life cycle is of course creation and destruction. All EJBs go through these two
phases. In addition, Stateful Session Beans go through the passivation/activation cycle, which we will
discuss in depth in section 3.3. Here, we will take a close look at the phases shared buy all Session
Bean: creation and destruction.

The lifecycle for a Session Bean starts when a bean instance is created. This typically happens
when a client gets a reference to the bean either by doing a JNDI lookup or using dependency
injection. The following steps occur when a bean is initialized:

1) The container invokes the newInstance method on the bean object. This essentially
translates to a constructor invocation on the bean implementation class.

2) If the bean uses DI, all dependencies on resources, other Beans and environment components
are injected into the newly created bean instance.
Figure 3.2 depicts this series of events.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

24 Figure 3.2: The lifecycle of an EJB starts when a method is invoked. The container creates a bean instance

and then dependencies on resources are injected. The instance is then ready for method invocation.

After the container determines that an instance is no longer needed, the instance is destroyed.

This sounds just fine until you realize that the Bean might need to know when some of its life-cycle
transitions happen. As an obvious example, suppose that the resource being injected into a bean is a
JDBC data source. That means that it would be nice to be able to know when it is injected so you
can open the JDBC database connection to be used in the next business method invocation.
Similarly, the bean would also need to be notified before it is destroyed so the open database
connection can be properly closed.

This is where callbacks come in.

Understanding lifecycle callbacks
Life-cycle callbacks are essentially bean methods (typically not exposed by a business interface)

that the container calls to notify the bean about a life-cycle transition, or event. When the event
occurs the container will invoke the corresponding callback method, and you can use these methods
to perform business logic or operations such as initialization and clean up of resources .

Callback methods are Bean methods that are marked with metadata annotations such as
@PostContruct and @PreDestroy. They can be public, private, protected or

package-protected. As you might have already guessed, a PostConstruct callback is invoked
just after a bean instance is created and dependencies are injected. A PreDestroy callback is
invoked just before the bean is destroyed and is useful for cleaning up resources used by the bean.

While all Session beans have PostConstruct and PreDestroy lifecycle events, stateful
Session beans have two additional ones: passivation and activation. Since Stateful session beans
maintain state, there is a stateful session bean instance for each client, and there could be many
instances of a stateful session bean in the container. If this happens, the container may decide to
deactivate a stateful bean instance temporarily when not in use and this process is called passivation. It
activates the bean instance again when client needs it and this process is called activation. The
@PrePassivate and @PostActivate annotations apply to the passivation and activation life
cycle events.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Note you can define a lifecycle callback method either in the bean class or in a separate
interceptor class.

Table 3.1 lists the life cycle callback method annotations, where they are applied and what the
callback methods are typically used for.

1.4 Table 3.1: Lifecycle callbacks are created to handle lifecycle events for an EJB. We can create these

callback methods either in the bean class or in an external interceptor class

Callback annotation Type of EJB What do can we do

javax.annotation.PostConstruct Stateless, Stateful, MDB The annotated method is invoked after a bean
instance is created and dependency injection is
complete. Typically this callback is used to initialize
resources (for example opening database
connections).

javax.annotation.PreDestroy Stateless, Stateful, MDB The annotated method is invoked prior to a bean
instance being destroyed. Typically this callback is
used to cleanup resources (for example closing
database connections).

javax.ejb.PrePassivate Stateful The annotated method is invoked prior to a bean
instance being passivated. Typically this callback is
used to clean up resources, such as database
connections, TCP/IP sockets, or any resources that
cannot be serialized during passivation.

javax.ejb.PostActivate Stateful The annotated method is invoked after a bean
instance is activated. Typically this callback is used
to restore resources, such as database connections
that we cleaned up in the PrePassivate method.

In section 3.2.4 and 3.3.4 we will see how you can define lifecycle callback methods in the Bean class
for stateless and stateful beans respectively. We will defer to the discussion of lifecycle callback
methods in the interceptor classes to Chapter 5.

Now that we’ve covered the basics of session beans, we will start our detailed exploration with the
simpler Stateless Session Bean model, saving Stateful Session Beans for later.

3.2 Stateless Session Beans
As we noted, Stateless Session Beans model tasks that do not maintain conversational state. This
means that Session Beans model task that can be completed in a single method call, like placing a bid.
However, this does not mean that all Stateless Session Beans contain a single method, as is the case
for the PlaceBidBean in Chapter 2. In fact, real-world Stateless Session Beans often contain a
bunch of closely related business methods, like the BidManager Bean we will introduce soon. By
and large, Stateless Session Beans are most popular kind of Session Beans. They are also the most
performance efficient. To understand why, take a look at Figure 3.3. It shows a high level schematic
of how stateless Session Beans are typically used by clients.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

25 Figure 3.3 Stateless Session bean instances can be pooled and may be shared between clients. When a

client invokes a method in a Stateless Session bean the container either creates a new instance in the

bean pool for the client or assigns one from the bean pool. The instance is returned to the pool after use.

As we will soon talk about in greater detail, Stateless Beans are pooled. This means that for each
managed bean, the container keeps a certain number of instances handy in a pool. On each client
request, an instancefrom the pool is quickly assigned to the client. When the client request finishes,
the instance is returned to the pool for reuse. This means that a small number of bean instances can
service a relatively large number of clients.
 In this section you will learn more about developing stateless session beans. We will develop part
of business logic of ActionBazaar system using a stateless session to illustrate its use. You will learn use
of @Stateless annotation, use of different types of business interfaces supported with stateless
session bean and then lifecycle callbacks such as @PostConstruct and @PreDestroy supported
with stateless session bean.

Before we jump into analyzing code we’ll briefly discuss the ActionBazaar business logic that we

will implement as a stateless session bean..

3.2.1. The BidManagerBean example
Bidding is a critical part of the ActionBazaar functionality. Users may bid on an item and view

the current bids on an item, while ActionBazaar admins and Customer Service Representatives may
remove bids under certain circumstances. Figure 3.4 depicts these bid related actions.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

26 Figure 3.4: Some ActionBazaar bid related actions. While bidders can place bids and view the current bids

on an item, admins can remove bids when needed. All of these actions can be modeled with a singe

Stateless Session Bean.

Because all of these bid-related functions are pretty simple, single step processes, a Stateless

Session Bean can be used to model all of them. The BidManagerBean presented in Listing 3.1
contains methods for adding, viewing and canceling (removing) bids. This is essentially an enhanced,
more realistic version of the basic PlaceBid EJB we saw earlier. The complete code is available for
download from http://ejb3inaction.com in Chapter3.zip.

Note that we are using JDBC for simplicity only because we have not introduced the EJB
3.0 Java Persistence API in any detail quite yet and don’t assume you already understand
ORM. Using JDBC also happens to demonstrate the usage of dependency injection of
resources and the Stateless Bean lifecycle callbacks pretty nicely! In general, you should avoid
using JDBC in favor of JPA once you are comfortable with it.

10 Listing 3.1 : Stateless Session bean example
@Stateless(name="BidManager") |#1
public class BidManagerBean implements BidManager {
 @Resource(name="jdbc/ActionBazaarDS") |#2
 private DataSource dataSource;
 private Connection connection;
 ...
 public BidManagerBean() {}

 @PostConstruct |#3
 public void initialize() {
 try {
 connection = dataSource.getConnection();
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }

 public void addBid(Bid bid){
 try {
 Long bidId = getBidId();

Licensed to John Sweitzer <admin@saolailaem.info>

http://ejb3inaction.com
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 Statement statement = connection.createStatement();
 statement.execute(
 "INSERT INTO BID ("
 + “BID_ID, “
 + "BID_AMOUNT, “
 + “BID_BIDDER_ID, “
 + “BID_ITEM_ID) "
 + "VALUES ("
 + bidId + “, “
 + bid.getAmount() + “, ”
 + bid.getBidder().getUserId() + “, ”
 + bid.getItem().getItemId()+ ")");

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 @PreDestroy |#4
 public void cleanup() {
 try {
 connection.close();
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }

 private Long getBidId() { ... }

 public void cancelBid(Bid bid) {...}

 public List<Bid> getBids(Item item) {...}
 ...
}
...
@Remote |#5
public interface BidManager {
 void addBid(Bid bid);
 void cancelBid(Bid bid);
 List<Bid> getBids(Item item);
}
(annotation) <#1 Mark as Stateless Bean>
(annotation) <#2 Inject data source>
(annotation) <#3 Post-construct callback>
(annotation) <#4 Pre-destroy callback>
(annotation) <#5 Remote business inteface>

Briefly scanning Listing 3.1, let’s note the major features of the code.
As we’ve seen before, the @Stateless annotation to marks the POJO as a Stateless Session

Bean#1. The BidManagerBean class implements the BidManager interface, which is marked
@Remote#5. We use the @Resource annotation to perform injection of a JDBC data source#2.
The BidManagerBean has a no argument constructor that the container will use to create instances
of BidManagerBid EJB object. The post-construct#3 and pre-destroy#4 callbacks are used to
manage a JDBC database connection derived from the injected data source. Finally, the addBid
business method adds a bid into the database.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

We will start exploring the features of EJB 3.0 Stateless Session Beans by analyzing this code
next, starting with the @Stateless annotation.

3.2.2 Using the @Stateless Annotation
As we know, the @Stateless annotation marks the BidManagerBean POJO as a Stateless
Session Bean. Believe it or not, other than marking a POJO for the purposes of making the container
aware of its purpose, the annotation really does not do very much else. The specification of the

@Stateless annotation is as follows:
@Target(TYPE) @Retention(RUNTIME)
public @interface Stateless {
 String name() default "";
 String mappedName() default "";
 String description() default "";

}

The single parameter, name, specifies the name of the Bean. Some containers use this parameter

to bind the EJB to the global JNDI tree. Recall that JNDI is essentially the application server’s
managed resource registry. All EJBs automatically get bound to JNDI as soon as they catch the
container’s watchful eye. You will see real use of the name parameter in Chapter 11 when we discuss
deployment descriptors. In Listing 3.1, the Bean name is specified to be ‘BidManager’. As the
annotation definition shows, the name parameter is optional since it is defaulted to an empty
String. We could easily omit it as follows:
@Stateless
public class BidManagerBean implements BidManager {

If the name parameter is omitted, the container assumes that the bean name should be set to the
name of the Class. In this case, the Bean name would be assumed to be ‘BidManagerBean’. The
mappedName is a vendor specific name that you can assign to your EJB, some containers such as
Glassfish application server uses this name to assign the global JNDI name for the EJB. As we noted,
the BidManagerBean implements a business interface named BidManager. Although we’ve
touched on the idea of a business interface, we haven’t really dug very deep into the concept. This is a
great time to do exactly that.

3.2.3 Specifying Bean Interfaces
In section 3.1, we introduced you to EJB interfaces. Now let’s explore a bit more how they work

with stateless session beans. Client applications can invoke a Stateless Session Bean in exactly three
different ways. In addition to local invocation within the same JVM and remote invocation through
RMI, Stateless Beans can also be invoked remotely as Web Services. There are three types of business
interfaces that correspond to the different access types; each is identified through a distinct
annotation. Let’s take a detailed look at these annotations:

Local interface
A local interface is for clients of Stateless Session Beans collocated in the same container (JVM)

instance. As we’ve seen, we designate an interface to be a local business interface by using the
@Local annotation. The following could be a local interface for the BidManagerBean class in
Listing 3.1:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

@Local
public interface BidManagerLocal {
 void addBid(Bid bid);
 void cancelBid(Bid bid);
 List<Bid> getBids(Item item);
}

Local interfaces do not require any special measures either in terms of defining or implementing

them.

Remote interface
Clients residing outside the EJB container’s JVM instance must use some kind of remote

interface. If the client is also written in Java, the most logical and resource efficient choice for remote
EJB access is Java Remote Method Invocation (RMI). In case you are unfamiliar with RMI, we will
provide a brief introduction to RMI in the Appendix. For now, all you need to know is that it is a
highly efficient, TCP/IP-based remote communication API that automates most of the work needed
for calling a method on a Java object across a network. EJB 3.0 enables a Stateless Bean to be made
accessible via RMI through the @Remote annotation. The BidManager business interface in our
example uses the annotation to make the bean remotely accessible:
@Remote
public interface BidManager extends Remote {
 ...
}

A remote business interface may extend java.rmi.Remote as we do above, although this is
optional. Typically the container will perform byte code enhancements during deployment to extend
java.rmi.Remote if our bean interface does not extend it. Remote business interface methods are
not required to throw java.rmi.RemoteException unless the business interface extends
java.rmi.Remote interface. Remote business interfaces do have one special requirement. All
parameters and return types of interface methods must be Serializable. This is because only
Serializable objects can be sent across the network using RMI.

Web service Endpoint Interface
We previously introduced local and remote interfaces, but there is a third one specific to Stateless

Session Beans that you haven’t seen yet: the Web Service Endpoint Interface (also known as SEI).
The ability to expose a Stateless Session Beans as a SOAP-based Web Service is one of the most
powerful features of EJB 3.0. All you need to do to make a bean SOAP accessible is marking a
business interface with the @javax.jws.WebService annotation. The following defines a simple
web service endpoint interface for the BidManagerBean:

@WebService
public interface BidManagerWS {
 void addBid(Bid bid);
 List<Bid> getBids(Item item);
}

Note we have omitted the cancelBid bean method from the interface, as we do not want this

functionality to be accessible via a Web Service although it is accessible locally as well as remotely
through RMI. The @WebService annotation does not place any special restrictions on either the

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

interface of the implementing Bean. We will discuss EJB Web Services in much greater detail in
Chapter 15.

Working with Multiple Business Interfaces
Although it is tempting, you cannot mark the same interface with more than one access type

annotation. For example, you cannot mark the BidManager interface in Listing 3.1 with both the
@Local and @Remote annotations instead of creating separate BidManagerLocal (local) and
BidManager (remote) interfaces, although both interfaces expose the exact same bean methods.

However, a business interface can extend another interface and you can remove code duplication
by creating a business interface that has common methods and business interfaces that extend the
common “parent” interface. For example we can create a set of interfaces utilizing OO inheritance as
follows:

public interface BidManager{
 void addBid(Bid bid);
 List<Bid> getBids(Item item);
}

@Local
public interface BidManagerLocal extends BidManager {
 void cancelBid(Bid bid);
}

@Remote
public interface BidManagerRemote extends BidManagerLocal {
}

@WebService
public interface BidManagerWS extends BidManager {
}

If you want, you can apply the @Local, @Remote or @WebService annotations in the bean

class without having to implement the business interface as follows:
@Remote(BidManager.class)
@Stateless
public class BidManagerBean {
 ...
}

The preceding code marks the BidManager interface as remote through the bean class itself.
This way, if you change your mind later, all you would have to do is change the access type
specification in the bean class without ever touching the interface.

Next, we move onto discussing the EJB lifecycle in our example.

3.2.4 Using Bean Life-Cycle Callbacks
We introduced you to life cycle callback methods or callbacks, earlier in the Chapter; now let’s

take a deeper look at how they are used with stateless session beans. As far as EJB life cycles go,
Stateless Session Beans have a very simple one as depicted in Figure 3.4. In effect, the container:

1. Creates bean instances using the default constructor as needed.

11. Injects resources such as database connections.

12. Puts instances in a managed pool.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

13. Pulls an idle bean out of the pool when an invocation request is received from the client (the
container may have to increase the pool size at this point).

14. Executes the requested business method invoked through the business interface by the client.

15. When the business method finishes executing, pushes the idle bean back into the “method-
ready” pool.

16. As needed, retires (a.k.a. destroys) beans out of the pool.

27 Figure 3.4: The chicken or the egg – the stateless session bean life cycle is has three states: does not

exist, idle and busy. As a result, there are only two life-cycle callbacks corresponding to bean creation

and destruction.

A very important point to notice from the Stateless Session Bean lifecycle is that since beans are

allocated from and returned to the pool on a per-invocation basis, Stateless Session beans are
extremely performance friendly and a relatively small number of bean instances can handle a large
number of virtually concurrent clients.

As previously stated, there are two types of Stateless Session Bean lifecycle callback methods:
callbacks that are invoked when the PostConstruct event occurs immediately after a Bean
instance is created, setup and all the resources are injected, and callbacks that are invoked when the
PreDestroy event occurs, right before the Bean instance is retired and removed from the pool.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Note, you can have multiple post-construct and pre-destroy callbacks for a given bean (although this
is seldom used).

In Listing 3.1, the life cycle callback methods embedded in the bean are initialize() and
cleanup(). Callbacks must follow the pattern of public void <METHOD>(). Unlike business
methods, callbacks cannot throw checked exceptions (any exception that does not have
java.lang.RuntimeException as a parent).

As we noted, the typical usage of these callbacks is for allocating and releasing injected resources

that are used by the business methods, which is exactly what we do in our example of
BidManagerBean in Listing 3.1. In Listing 3.1 we open and close connections to the database
using an injected JDBC data source.

Recall that the addBid method in Listing 3.1 inserted the new bid submitted by the user. The
method created a java.sql.Statement from an open JDBC connection and used the
statement to insert a record into the BIDS table. The JDBC connection object used to create the
statement is a classic heavy-duty resource. It is expensive to open and should be shared across calls
whenever possible. It can hold a number of native resources, so it is very important to close the JDBC
connection when it is no longer needed. We accomplish both these goals using callbacks as well as
resource injection.

In Listing 3.1, the JDBC data source that the connection is created from is injected using the
@Resource annotation. We will discuss more injecting resources using the @Resource
annotation in Chapter 5. For now, though this is all that you need to know.

Let’s take a closer look at how we used the callbacks in listing 3.1.

@PostConstruct callback
The setDataSource method saves the injected data source in an instance variable. After

injecting all resources, the container checks if there are any designated PostConstruct methods
that need to be invoked before the bean instance is put into the pool. In our case, we mark the
initialize method in Listing 3.1 with the @PostConstruct annotation:
@PostConstruct
public void initialize() {
 ...
 connection = dataSource.getConnection();
 ...
}

In the initialize method, we create a java.sql.Connection from the injected data
source and save it into the connection instance variable used in addBid each time the client
invokes the method.

@PreDestroy callback
As we know, at some point, the container decides that our bean should be removed from the

pool and destroyed (perhaps at server shutdown). The PreDestroy callback given us a chance to
cleanly teardown bean resources before this is done. In the cleanup method marked with the
@PreDestroy annotation in Listing 3.1, we tear down the open database connection resource
before the container retires our bean:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

@PreDestroy
public void cleanup() {
 ...
 connection.close();
 connection = null;
 ...
}

Since bean instances from the pool are assigned randomly for each method invocation, trying to

store client-specific state across method invocations is useless since the same bean instance may not be
used for subsequent calls by the same client. On the other hand, Stateful Session Beans, which we
will discuss next, are ideally suited for this situation.

3.3 Stateful Session Beans
Stateful Session Beans are the cousins of Stateless Session Beans but they are guaranteed to maintain
conversational state. Stateful Session Beans are not programmatically very different from what we
have already discussed for Stateless Session Beans. As a matter of fact, the only real difference between
Stateless and Stateful Beans is how the container manages their lifecycle. Unlike Stateless Beans, the
container makes sure that subsequent method invocations by the same client are handled by the same
Stateful Bean instance. Figure 3.5 shows the one-to-one mapping between a bean instance and a
client enforced behind the scenes by the container. As far as you are concerned, this one-to-one
relation management happens “automagically”.

28 Figure 3.5: Stateful Bean session maintenance. There is a bean instance reserved for a client and each

instance stores the client’s state information. The bean instance exists until either removed by the client

or timed out.

The one-to-one mapping between a client and a bean instance makes saving bean conversational

state in a useful manner possible. However, this one-to-one correlation comes at a price. Bean
instances cannot be readily returned to the pool and reused while a client session is still active.
Instead, a bean instance must be squirreled away in memory to wait for the next request from the
client owning the session. As a result, Stateful Session Bean instances held by a large number of
concurrent clients can have a significant memory footprint. An optimization technique called
passivation, which we will discuss soon, is used to alleviate this problem. Stateful Session Beans are

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

ideal for multi-step, workflow oriented business processes. In this Section, we will explore Stateful
Beans by using the ActionBazaar bidder account creation workflow as an example.
 We will examine a usecase of ActionBazaar application and implement it using a stateful session
beans. You will learn additional programming rules for stateful session beans, stateful bean lifecycle
callback methods @Remove method. Finally we will summarize differences between stateless and
stateful session beans.

However, before we jump into code, we will briefly mention the rules that are specific to

developing a Stateful Session Bean.

3.3.1 Additional programming rules
In section 3.1.3, we discussed the programming rules that apply to all session beans. Stateful

session bean have a few minor twists on these rules:

Stateful Bean instance variables used to store conversational state must be Java primitives or
Serializable objects. We will talk more about this requirement when we cover passivation.

17. Since stateful Session Beans cannot be pooled and reused like Stateless beans, there is a real
danger of accumulating too many of them if we don’t have a way to destroy them. Therefore, we
have to define a business method for removing the bean instance by the client using the
@Remove annotation. We’ll talk more about this annotation soon.

18. In addition to the @PostConstruct and @PreDestroy lifecycle callback methods,
Stateful Session Beans also have the @PrePassivate and @PostActivate lifecycle callback
methods. A @PrePassivate method is invoked before a Stateful bean instance is passivated
and @PostActivate is invoked after a bean instance is brought back into the memory and is
method ready.

We will see these rules applied when we explore a concrete Stateful Session Beans example next.
As we did for Stateless Beans, we will utilize the example as a jump off point to detail Stateful
features.

3.3.2The BidderAccountCreatorBean example
The process to create an ActionBazaar bidder account is too involved to be implemented as a

single-step action. As a result, account creation is implemented as a multi-step process. At each step
of the workflow, the would-be bidder enters digestible units of data. For example, the bidder may
enter username/password information first, then biographical information such as name, address and
contact information, then billing information such as credit card and bank account data and so forth.
At the end of a workflow, the bidder account is created or the entire task is abandoned. This
workflow is depicted in Figure 3.6.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

29 Figure 3.6: The ActionBazaar bidder account creation process is broken up into multiple steps: entering

username/password, entering biographical information, entering billing information and finally creating

the account. This workflow could be implemented as a Stateful Session Bean.

Each step of the workflow is implemented as a method of the BidderAccountCreatorBean

presented in Listing 3.2. Data gathered in each step is incrementally cached into the Stateful Session
Bean as instance variable values. Calling either the cancelAccountCreation or
createAccount methods ends the workflow. The createAccount method creates the bidder
account in the database and is supposed to be the last “normal” step of the workflow. The
cancelAccountCreation method on the other hand, prematurely terminates the process when
called by the client at any point in the workflow and nothing is saved into the database.

The full version of the code is available for download in Chapter3.zip from
http://www.ejb3inaction.com.

11 Listing 3.2 Stateful Session Bean Example
@Stateful(name="BidderAccountCreator") |#1
public class BidderAccountCreatorBean
 implements BidderAccountCreator {
 @Resource(name="jdbc/ActionBazaarDS")
 private DataSource dataSource;

 private LoginInfo loginInfo; |#2
 private BiographicalInfo biographicalInfo; |#2
 private BillingInfo billingInfo; |#2

 private Connection connection;

 public BidderAccountCreatorBean () {}

 @PostConstruct |#3
 @PostActivate |#4
 public void openConnection() {

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.ejb3inaction.com/
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 try {
 connection = dataSource.getConnection();
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }

 public void addLoginInfo(LoginInfo loginInfo) {
 this.loginInfo = loginInfo;
 }

 public void addBiographicalInfo(
 BiographicalInfo biographicalInfo) {
 this.biographicalInfo = biographicalInfo;
 }

 public void addBillingInfo(BillingInfo billingInfo) {
 this.billingInfo = billingInfo;
 }

 @PrePassivate |#5
 @PreDestroy |#6
 public void cleanup() {
 try {
 connection.close();
 connection = null;
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }

 @Remove |#7
 public void cancelAccountCreation() {
 loginInfo = null;
 biographicalInfo = null;
 billingInfo = null;
 }

 @Remove |#7
 public void createAccount() {
 try {
 Statement statement = connection.createStatement();
 statement.execute(
 "INSERT INTO bidder(" +
 "username, " +
 ...
 “first_name, ” +
 ...
 “credit_card_type, ” +
 ...
 ") VALUES (" +
 “’” + loginInfo.getUsername() + “’, ” +
 ...
 “’” + biographicalInfo.getFirstName() + “’, ” +
 ...
 “’” + billingInfo.getCreditCardType() + “’, ” +
 ...

 ")");
 statement.close();

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }
}
...
@Remote
public interface BidderAccountCreator implements Remote {
 void addLoginInfo(LoginInfo loginInfo);
 void addBiographicalInfo(BiographicalInfo biographicalInfo);
 void addBillingInfo(BillingInfo billingInfo);
 void cancelAccountCreation();
 void createAccount();
}
(annotation) <#1 Mark POJO Stateful>
(annotation) <#2 Stateful instance variables>
(annotation) <#3 Post construct callback>
(annotation) <#4 Post activate callback>
(annotation) <#5 Pre passivate callback>
(annotation) <#6 Pre destroy callback>
(annotation) <#7 Remove methods>

Briefly scanning Listing 3.2, we will note its major features right now. As we mentioned earlier, it

should not surprise you that the code has a lot in common with the Stateless Session Bean code in
Listing 3.1.

Note that, as before, we are using JDBC for simplicity in this example because we want you
to focus on the Session Bean code right now and not JPA. We’ll cover JPA in the Third part
of the book. An interesting exercise for you is to refactor this code using JPA and notice the
radical improvement over JDBC!

We are using the @Stateful annotation to mark the BidderAccountCreatorBean
POJO#1. Other than the annotation name, this annotation behaves exactly like the @Stateless
annotation so we will not mention it any further. The bean implements the
BidderAccountCreator remote business interface. As per Stateful Bean programming rules, the
BidderAccountCreatorBean has a no argument constructor.

Just like in Listing 3.1, a JDBC data source is injected using the @Resource annotation. Both the
PostConstruct#3 and PostPassivate#4 callbacks prepare the bean for use by opening a database
connection from the injected data source. On the other hand, both the PrePassivate#5 and
PreDestroy#6 callbacks close the cached connection.

The loginInfo, biographicalInfo and billingInfo instance variables are used to store
client conversational state across business method calls#2. Each of the business methods models a step
in the account creation workflow and incrementally populates the state instance variables. The
workflow is terminated when the client invokes either of the @Remove annotated methods#7.

There is no real point to repeating the coverage of the features that are identical to the ones for
Stateless Session Beans, so we will avoid doing so. However, we will cover the specific features unique
to Stateful Session Beans next, starting with the Stateful Bean business interfaces.

3.3.3 Business Interfaces for Stateful Beans
Specifying Stateful Bean business interfaces works in almost exactly the same way as it does for

Stateless Beans with a couple exceptions. Stateful Session Beans support local and remote invocation

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

through the @Local and @Remote annotations. However, a Stateful Session Bean cannot have a
Web Service Endpoint Interface (SEI). This is because SOAP based Web Services are inherently
stateless in nature. Also, we should always include at least one @Remove annotated method in our
Stateful Bean’s business interface. The reason for this will become clear as we discuss the Stateful
Bean lifecycle next.

3.3.4 Stateful Bean Lifecycle Callbacks
As we mentioned in section 3.1, the lifecycle of the Stateful Session Bean is very different from

that of a Stateless Session Bean, because of passivation. In this section, we will explain this concept in
more depth. Let’s start by looking at the lifecycle of a Stateful Bean, as depicted in Figure 3.7. It can
be summarized as follows--the container:

1. Always creates new bean instances using the default constructor whenever a new client session is
started.

19. Injects resources.

20. Stores the instance in memory.

21. Executes the requested business method invoked through the business interface by the client.

22. Waits for and executes subsequent client requests.

23. If the client remains idle for a period of time, the container passivates the bean instance.
Essentially, passivation means that the bean is moved out of active memory, serialized and stored
in temporary storage.

24. If the client invokes a passivated bean, it is activated (brought back into memory from
temporary storage).

25. If the client does not invoke a passivated bean instance for a period of time, it is destroyed.

26. If the client requests the removal of a bean instance, it is first activated if necessary and then
destroyed.

30 Figure 3.7: The lifecycle of a Stateful Session bean. A Stateful bean maintains client state and cannot be

pooled. They may be passivated when the client is not using it and must be activated when client needs

it again.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Like a Stateless Session Bean, the Stateful Session Bean has lifecycle callback methods, or
callbacks, that are invoked when the PostConstruct event occurs, as an instance is created, and
callbacks that are invoked when the PreDestroy event occurs, before it is destroyed. But now we
have two new callback events that we can have callbacks for: PrePassivate and PostActivate, that are
part of the passivation process. We will discuss them next.

Just as we do in Listing 3.1, we use a PostConstruct callback in Listing 3.2 to open a
database connection from the injected data source so that it can be used by business methods. Also
like Listing 3.1, we close the cached connection in preparation for bean destruction in a
PreDestroy callback. However, the curious thing you should note is that we invoke the very same
method for both the PreDestroy and PrePassivate callbacks:
@PrePassivate
@PreDestroy
public void cleanup() {
 ...
}

Similarly, the exact same action is taken for both the PostConstruct and PostActivate
callbacks:
@PostConstruct
@PostActivate
public void openConnection() {
 ...
}

To see why this is the case, lets discuss activation and passivation in a little more detail.

Passivation and Activation
As we noted, if clients don’t invoke a bean for a long enough time, it is really not a good idea to

continue keeping it in memory. For a large number of beans, this could easily make the machine run
out of memory. The container employs the technique of passivation to save memory when possible.

Passivation essentially means saving a bean instance into disk instead of holding it in
memory. The container accomplishes this task by serializing the entire bean instance and
moving into permanent storage like a file or the database. Activation is the opposite of
passivation and is done when the bean instance is needed again. The container activates a
bean instance by retrieving it from permanent storage, deserializing it and moving it back
into memory. Note this means that all bean instance variables that you care about and
should be saved into permanent storage must either be a Java primitive or implement the
java.io.Serializable interface.

The point of the pre-passivation callback is to give the bean a chance to prepare for serialization.
This may include copying non-serializable variable values into Serializable variables and
clearing unneeded data out of serializable variables to save total disk space needed to store the bean.
Most often the pre-passivation step consists of releasing heavy-duty resources such as open database,
messaging server and socket connections that cannot be serialized. A well-behaved bean should ensure
that heavy-duty resources are both closed and explicitly set to null before passivation takes place.

From the perspective of a bean instance, there really isn’t very much of a difference between
being passivated and being destroyed. In both cases, the current instance in memory would cease to
exist. As a result, in most cases, you will find that the same actions are performed for both the
PreDestroy and PrePassivate callbacks, as we do in Listing 3.2. Pretty much the same applies

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

for the PostConstruct-PostActivate pair. For both callbacks, the bean needs to do whatever
is necessary to get ready to service the next incoming request. Nine times out of ten, this means
getting hold of resources that are either not instantiated or were lost during the
serialization/deseralization process. Again, Listing 3.2 is a good specimen since the
java.sql.Connection object cannot be serialized and must be reinstantiated during
activation.

Destroying a Stateful Session Bean
In Listing 3.2, the cancelAccountCreation or createAccount methods are marked with

the @Remove annotation. Beyond the obvious importance of these methods in implementing vital
workflow logic, these methods play an important role in maintaining application server performance.
Calling business methods marked with the @Remove annotation signifies a desire by the client to end
the session. As a result, invoking these methods triggers immediate bean destruction.

To gain an appreciation for this feature, consider what would happen if it did not exist. If
remove methods did not exist, the client would have no way of telling the container when a session
should be ended. As a result, every Stateful Bean instance ever created will always have to be timed-
out into being passivated (if the container implementation supports passivation) and timed-out again
to be finally destroyed. In a highly concurrent system, this could have a drastic performance impact.
The memory footprint for the server would constantly be artificially high, not to mention the wasted
CPU cycles and disk space used in the unnecessary activation/passivation process. This is why it is
critical that we remove Stateful Bean instances when the client is done with its work instead of
relying on the container to destroy them when they time out.

Believe it or not, these are the only few Stateful Bean specific features that we needed to talk
about! Before concluding this section on Stateful Beans, we will briefly summarize the differences
between Stateful and Stateless Session Beans as a handy reference in Table 3.2.

1.5 Table 3.2: The main differences between Stateless and Stateful Session beans.

Features Stateless Stateful

Conversational state No Yes
Pooling Yes No
Performance Problems Unlikely Possible
Lifecycle events PostConstruct, PreDestroy PostConstruct, PreDestroy,

PrePassivate, PostActivate
Timer
(discussed in Chapter 5)

Yes No

SessionSynchronization for
Transactions
(discussed in Chapter 6)

No Yes

Web Services Yes No
Extended PersistenceContext
(discussed in Chapter 9)

No Yes

Thus far we have explored how to develop Session Beans. In the next section, we are going to

discuss how Session Beans are actually accessed and used by clients.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

3.4 Session Bean Clients
A session bean works for a client and may either be invoked by local clients co-located in the same
JVM or by remote client outside the JVM. In this section we will first discuss how can a client
accesses a session bean and then see the usage of @EJB annotation to inject session bean references.
Almost any Java component can be a Session Bean client. POJOs, Servlets, JSPs or other EJBs can
access Session Beans. In fact, Stateless Session Beans exposed through Web Services endpoints can
even be accessed by non-Java clients such as .NET applications. However, in this Section, we will
concentrate on clients that either access Session Beans locally or remotely through RMI. In Chapter
15 we will see how EJB Web Service clients look like.

Fortunately, in EJB 3.0, accessing a remote or local Session Bean looks exactly the same. As a
matter of fact, other than method invocation patterns, Stateless and Stateful Session Beans pretty
much look alike from a client’s perspective too. In all of these cases, a Session Bean client follows
these general steps to use a Session Bean:

1. The client obtains a reference to the Beans directly or indirectly from JNDI.

27. All Session Bean invocations are made through an interface appropriate for the access type.

28. The client makes as many method calls as is necessary to complete the business task at hand.

29. In case of a Stateful Session Bean, the last client invocation should be a remove method.

In order to keep things as simple as possible, we will explore a client that uses the
BidManagerBean Stateless Session Beans to add a bid to the ActionBazaar site. We will leave it as a
thought exercise for you to extend the client code to use the BidderAccountCreatorBean
Stateful Session Bean. For starters, let us take a look at how the code to use the BidManagerBean
from another EJB might look like:

@Stateless
public class GoldBidderManagerBean implements GoldBidderManager {
 @EJB
 private BidManager bidManager;

 public void addMassBids(List<Bid> bids) {
 for (Bid bid : bids) {
 bidManager.addBid(bid);
 }
 }
}

The preceding code uses dependency injection through the @javax.ejb.EJB annotation to get

a reference to the BidManagerBean. This is by far the easiest method of obtaining a reference to a
Session Bean. Depending on your client environment, you might have to use one of the two other
options available for obtaining EJB references: using EJB context lookup or using JNDI lookup.
Since neither of these options is used too often in real life, we’ll focus on DI for right now. However,
we’ll discuss both EJB context lookup and JNDI lookup further in coming Chapters as well as the
Appendix.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

3.4.1 Using the @EJB Annotation
Recall from our discussion on DI in Chapter 2 that the @EJB annotation is specifically intended

for injecting Session Beans into client code. Also recall that since injection is only possible within
managed environments, this annotation only works inside another EJB, in code running inside an
Application-Client Container (ACC) or in components registered with the web container (such as a
Servlet or JSF backing bean). The following is the specification for the @EJB annotation:

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface EJB {
 String name() default "";
 Class beanInterface() default Object.class;
 String beanName() default "";
}

All three of the parameters for the @EJB annotation are optional. The name element suggests

the name used to identify the EJB to be injected from JNDI. The beanInterface specifies the
business interface to be used to access the EJB. The beanName element allows us to distinguish
between EJBs if multiple EJBs implement the same business interface. In our
GoldBidManagerBean code, we chose to use the remote interface of the BidManagerBean. If
we wanted to use the local interface of the BidManagerBean EJB instead we can use the following:
@EJB
private BidManagerLocal bidManager;

We have not specified the name parameter for the @EJB annotation in the preceding code and
the JNDI name is derived from the interface name (BidManagerLocal in our case). If we want to
inject an EJB bound to a different JNDI name we can use the @EJB annotation as follows:

@EJB(name="BidManagerRemote")
private BidManager bidManager;

3.4.2 Injection and Stateful Session Beans
For the most part, using DI is a no-brainer. There are a few nuances to keep an eye on while

using DI with Stateful Beans, though. You can inject a Stateful Session into another Stateful Session
Bean instance if you need to. For example you can inject the BidderAccountCreator Stateful
EJB from UserAccountRegistration EJB that is another Stateful Session Bean as follows:

@Stateful
public class UserAccountRegistrationBean
 implements UserAccountRegistration {
 @EJB
 private BidderAccountCreator bidderAccountCreator;
 ...
}

The above code will create an instance of BidderAccountCreatorBean that will be

specifically meant for the client accessing the instance of the UserAccountRegistrationBean. If
the client removes the instance of UserAccountRegistrationBean the associated instance of
BidderAccountCreatorBean will also be automatically removed.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Note that you must not inject a Stateful Session Bean into a stateless object such as Stateless
Session Bean or Servlet that may be shared by multiple concurrent clients (you should use JNDI in
such cases instead). However injecting an instance of a Stateless Session Bean into Stateful Session
Bean is perfectly legal.

We will discuss how you can use EJB from other tiers in much greater detail in Chapter 12.
This concludes our brief discussion on accessing Session beans. Next, we’ll briefly discuss

potential performance issues of Stateful Session Beans.

3.5 Performance Considerations for Stateful Beans
Rightfully or wrongfully, Stateful Session Beans have had a bad rap for being performance

bottlenecks. There is truth behind this perception, quite possibly due to poor initial implementations
for most popular application servers. In recent years, these problems have been greatly alleviated with
effective under the hood optimizations as well as better JVM implementations. However, there are
still a few things to keep in mind in order to use Session Beans effectively. More or less, these
techniques are essential for using any Stateful technology, so pay attention even if you decide against
using Stateful Beans. In this section we’ll familiarize you with the techniques to effectively use stateful
session beans and the other alternatives for building stateful applications.

3.5.1 Using Stateful Session Beans effectively

There is little doubt that Stateful Session Beans provide extremely robust business logic processing
functionality if maintaining conversational state is an essential application requirement. In addition,
EJB 3.0 adds extended persistence contexts specifically geared toward Stateful Session Beans
(discussed in Chapter 9 and 13), significantly increasing its power. Most popular application servers
such as WebSphere, WebLogic, Oracle and JBoss provide high availability by clustering EJB
containers running the same Stateful Bean. A clustered EJB container replicates session state across
container instances. If a clustered container instance crashes for any reason the client is routed to
another container instance seamlessly without losing state. Such reliability is hard to match without
using Stateful Session Beans. Nonetheless there are a few things to watch out for while using Stateful
Session Beans.

Choosing session data appropriately
Stateful Session Beans can become resource hogs causing performance problems if not used

properly. Since the container stores session information in memory, if you have thousands of
concurrent clients for your Stateful Session Bean you may run out of memory or cause a lot of disk
thrashing by the container as it passivates and activates instances to try to conserve memory. As a
result, you have to closely examine what kind of data you are storing in the conversation state and
make sure the total memory footprint for the Stateful Bean is as small as possible. For example, it
may be a lot more efficient to store just the itemId for an Item instead of storing the complete
Item object in an instance variable.

If we cluster Stateful Beans the conversational state is replicated between different instances of

the EJB container. State replication uses network bandwidth. Storing a large object in the bean state

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

may have a significant impact on the performance of your application because the containers will
spend time replicating objects to other container instances to ensure high availability.

Passivating and removing beans

The rules for passivation are generally implementation specific. Improper use of passivation

policies (when passivation configuration is an option) may cause performance problems. For example,
the Oracle Application Server has several rules to passivate bean instances such as the expiration of
idle time for a bean instance, reaching maximum number of active bean instances allowed for a
Stateful Session Bean or when the threshold for JVM memory is reached. You have to check the
documentation for your EJB container and appropriately set passivation rules. For example, if we set
the maximum number of active instances allowed for a Stateful Bean instance to be 100 and we
usually have 150 active clients, the container will keep on passivating and activating bean instances
causing performance problems.

You can go a long way to solving potential memory problems by explicitly removing the bean

instances no longer required instead of depending on the container to time them out. As discussed
earlier you can annotate a method with the @Remove annotation that signals the container to
remove the bean instance.

Given the fact that Stateful Session Beans can become performance bottlenecks whether through

improper usage or under certain circumstances, it is worth inspecting the alternatives to using them.

3.5.2 Stateful Session Bean Alternatives
Here are a few alternative strategies to implementing stateful business processing, as well as some
issues you may need to consider when using them:

The first alternative to Stateful Beans is replacing them with a combination of persistence and

stateless processing. In this scheme, we essentially move state information from memory to the
database on every request.

You should carefully examine whether you really want to maintain state between conversations in
memory. This is completely based on the application requirements and how much tolerance of failure
you have. For example, in the BidderAccountCreator EJB you can probably avoid the use of
conversational state by not maintaining instance variables to store the user information in memory
and save data in the database on each method call.

Secondly you may choose to build some mechanism at the client side to maintain state. This
requires additional coding such as storing the state as an object in client memory or file.

The downside of these two approaches is that it is very difficult to guarantee high availability
with these and they may not be viable options for your application. In fact, you would lose all of the
advantages that the container provides by hand-coding proprietary solutions such as the ones
outlined above, including automated passivation and robust, transparent state maintenance.

Thirdly you may choose to maintain session state in the web container if you are building a web
application. Although HTTP is a stateless protocol, the Java Servlet API provides the ability to
maintain state by using the HttpSession object. The Servlet container does not have to do heavy

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

lifting like passivation and activation and may perform better in certain situations. Be aware that too
much data in the HttpSession could decrease performance of the Servlet container as well, so this
is not a silver bullet either. Moreover, you cannot use this option with thick or Java SE clients.

So when you really need to maintain state in your applications and your clients are Java SE
clients then the first two options we discussed earlier may be harder to implement hence Stateful
Session Beans are probably the only viable option as long as you carefully weigh the performance
considerations we outlined above.

Hopefully it was a smooth ride to Session beans and we are almost at the end of training track.
We will close by outlining some best practices for session beans that you can use to ramp yourself up
to build the business logic of your applications with the knowledge you gathered so far.

3.6 Session Bean Best Practices
In this brief Section we will outline some of the best practices for Session beans that you can use

while building the business logic tier for your application.
Choose your bean type carefully. Stateless Session beans will be suitable most of the time. Carefully

examine whether your application needs Stateful Session Beans because it comes with a price. If the
EJB client lies in the web tier then using the HttpSession may be a better choice than Stateful
Session Beans under some circumstances.

Carefully examine interface types for Session Beans. Remote interfaces involve network access and
may slow down your applications. If the client will always be used within the same JVM as the bean,
then a local interface should be used.

If you are using DI make sure you don’t inject a Stateful Session Bean into a Stateless Session Bean or
Servlet. Injected EJB instances are stored in an instance variable and are available globally for
subsequent clients even if a Stateless Bean instance is returned to the pool and an injected Stateful
Bean instance may contain inaccurate state information that will be available to a different client. It’s
legal to inject a Stateful Bean instance to another Stateful Session Bean or an application client.

Separate cross cutting concerns such as logging and auditing using business interceptors that we
discuss in Chapter 5 instead of spreading these all over the business logic.

Closely examine what kind of data you are storing in the conversation state. Try to use small,
primitive instance variables in a Stateful Bean whenever possible as opposed to large nested composite
objects.

Don’t forget remove methods in a Stateful Session Bean.
Tune passivation and timeout configuration to find optimal values for your application.
These brief pointers on using Session Beans brings us to the end of this Chapter! We’ll finish

things off by recapping what we covered and telling you what’s coming next.

3.7 Summary
In this chapter, you learned the Session Bean types and how Stateless Session Beans and Stateful
Session Beans differ. We looked at the programming rules for both Stateless and Stateful Session
Beans and built comprehensive examples of both bean types. Stateless Session beans have a very
simple lifecycle and can be pooled. Stateful Beans require instances for each client and for that the

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

reason they may take up a lot of resources. In addition, passivation and activation of Stateful Beans
may impact performance if used inappropriately. There are alternatives for Stateful Session Beans that
you should consider and make an educated choice. Session Bean clients can either be local or remote.
Dependency injection makes the use of EJB simpler instead of making complex JNDI lookups.
Finally we provided some best practices for developing Session Beans.
At this point you have all the ammunition necessary to build the business logic of your application
using Stateless and Stateful Session Beans. In the next Chapter we will discuss how you can build
messaging applications with Message Driven beans.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Chapter 4: Messaging and Developing
Message Driven Beans

In this chapter we will take a closer look at developing Message Driven Beans as well as overview

the concepts and technologies these powerful EJB 3 components build on. We will first introduce
you to basic messaging concepts. We will then explore the premier Java messaging, JMS (Java
Message Service.) by creating a message producer. Finally, we will take a look at Message Driven
Beans (MDB), the EJB 3 answer to messaging.

There are two essential reasons to gain an understanding of messaging and JMS before diving
into MDB. First, most MDBs you will encounter are glorified JMS message consumers
implementing JMS interfaces (such as javax.jms.MessageListener) and using JMS components (such as
javax.jms.Message). Secondly, for most solutions with MDB, your messaging will involve much more
than simply consuming messages. For the simplest of these tasks, such as sending messages, you will
have to understand JMS. This chapter assumes that you have familiarity with JMS and we briefly
discuss JMS.

If you are pretty comfortable with Messaging and JMS, feel free to skip to the sections on MDB.
It is good to reinforce what you know from time to time though, so you just might want to quickly
jog though first few sections with us anyway.

4.1 Messaging Concepts
When we talk about messaging in the Java EE context, what we really mean is the process of

loosely coupled, asynchronous communication between system components. Most communication
between components is synchronous, such as simple method invocation or Java RMI (Remote
Method Invocation). In both cases, the invoker and the invocation target have to be currently present
for the communication to succeed. Synchronous communication also means that the invoker must
wait for the target to complete the request for service before proceeding further.

As an example from real-life, we are communicating synchronously when we (the invoker) call
and talk to someone over the phone. But what if the person (the invocation target) is not available? If
possible we could leave a message. The answering machine would make the communication
asynchronous by storing your message so that the receiver could listen to it later and respond.
Message Oriented Middleware (MOM) enables messaging in almost exactly the same way that an
answering machine does – by acting as the middleman between a message sender and receiver so that
they do not have to be available simultaneously. In this section we will briefly introduce Message
Oriented Middleware, will do a quick review of use of messaging in ActionBazaar and examine
popular messaging models.

4.1.1 Message Oriented Middleware (MOM)
Message Oriented Middleware is software that enables asynchronous messages between system

components. When a message is sent to MOM it stores the message in a location specified by the

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

sender and acknowledges receipt immediately. The message sender is called a producer and the
location where the message is stored is called a destination. At a later point in time, any software
component interested in messages at that particular destination can retrieve currently stored messages.
The software components receiving the messages are called the message consumers. Figure 4.1 depicts
different components of MOM.

31 Figure 4.1: Basic MOM message flow. When the producer sends a message to the MOM, it is stored

immediately and later collected by the consumer. Looks a lot like email, doesn’t it?

32

MOM is not a new concept by any means. MOM products include IBM WebsphereMQ, Tibco
Rendezvous, SonicMQ, ActiveMQ, and Oracle Advanced Queuing giving it a vibrant market.

To flush out messaging concepts a bit more, let us explore a problem in the ActionBazaar
application. We will continue working on this problem as we progress through the chapter.

4.1.2 Messaging in ActionBazaar
As an additional source of revenue, ActionBazaar will itself list items for bid when the company is

able to find good bulk deals though its extensive purchasing network. These items are displayed on
the site as “ActionBazaar Specials” and come with complete satisfaction guarantees. ActionBazaar
automatically ships these items from their warehouse to winning bidders as soon as they order them.
When ActionBazaar started as a two-person Internet operation, Joe and John, the two founders,
made a sweet deal with Turtle Shipping Company’s founder Dave Turtle. As a part of the deal, Joe
and John agreed to ship with Turtle for a few years.

As soon as a user places as order for an “ActionBazaar Special,” a shipping request is sent to the
Turtle system via a B2B (business-to-business) connection as depicted in Figure 4.2. The order
confirmation page is loaded only after Turtle confirms receipt. Now that the number of ActionBazaar
customers has gone through the roof, the slow Turtle servers and B2B connection simply cannot keep
up and completing a shipping order takes forever. To make matters worse, the Turtle server
occasionally goes down, making orders fail altogether.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

33 Figure 4.2: ActionBazaar ordering before MOM is introduced. Slow B2B processing is causing customer

dissatisfaction.

Taking a closer look at things, we see that we could make the forwarding process of the shipping

request asynchronous and solve this problem. Instead of communicating directly with the Turtle
server, the ActionBazaar ordering process could send a message containing the shipping request to
MOM as depicted in Figure 4.3. As soon as the message is stored in MOM, the order can be
confirmed without making the user wait. At a later point in time, the Turtle server could request
pending shipping request messages from the MOM and process them at its own pace.

34 Figure 4.3: ActionBazaar ordering after MOM is introduced. Messaging enables both fast customer

response times and reliable processing.

In this case, the most obvious advantage MOM is offering is increasing reliability. The reliability

stems from not insisting that both the ActionBazaar and Turtle servers be up and running at the same
time and also not insisting that they function at the same processing rate. In the most extreme case,

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

even if the Turtle server is down at any given time, the shipping request is not lost and is just
delivered later. Another significant advantage of messaging that might not be obvious is loosely
coupled system integration. We could, if we wanted to, easily switch from the Turtle Shipping
Company to O’Hare Logistics once the current contract runs out. Note how different this is from
having to know the exact interface details of the Turtle servers in case of synchronous communication
technologies like RMI or even remote Session Beans.

So far we have described a particular form of messaging named ‘point-to-point’ to explain basic
messaging concepts. This is a good time to move away from this simplification and fully discuss
messaging models.

4.1.3 Messaging Models
A ‘messaging model’ is simply a particular way of messaging and number of senders, consumers

involved. It will be more obvious what this means as we describe each model. There are two popular
messaging models standardized in Java EE -- Point-to-Point messaging and Publish-Subscribe
messaging. We will discuss each of these messaging models next.

Point-to-Point (PTP)
You can probably guess from the names of the messaging models how they function. In the PTP

scheme, a single message travels from a single producer (point A) to a single consumer (point B). PTP
message destinations are called queues. It is important to note that PTP does not guarantee that
messages are delivered in any particular order -- the name ‘queue’ is more symbolic than anything
else. Also, if there is more than one potential receiver for a message, a random receiver is chosen, as
depicted by Figure 4.4. The classic message in a bottle story is a good analog of PTP messaging. The
message in a bottle is set afloat by the lonely castaway (the producer). The ocean (the queue) carries
the message to an anonymous beach dweller (the consumer) and the message can only really be
“found” once.

35 Figure 4.4: The PTP messaging model with one producer and two consumers.

The ActionBazaar shipping request forwarding problem is an excellent candidate for the PTP

model, as we want to be guaranteed that the message is received once and only once.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comme

http://www.man

Publish-Subscribe (Pub-Sub)
Publish-Subscribe messaging is much like posting to an Internet newsgroup. As shown in Figure

4.5, a single producer produces a message that is received by any number of consumers that happen
to be connected to the destination at the time. To make the likeness to Internet postings even closer,
the message destination in this model is called a topic and a consumer is called a subscriber.

36 Figure 4.5: The publish-subscribe messaging model with one producer and three consumers. Each topic

subscriber receives a copy of the message.

Pub-sub messaging works particularly well in broadcasting information across systems. For

example, it could be used to broadcast a system maintenance notification several hours before an
outage to all premium sellers whose systems are directly integrated with ActionBazaar and are
listening at the moment.

In the ActionBazaa
from Turtle once th
queue.

A third kind of mod
kinds of situations.
enough information
an “overlay” mode
either the PTP or p

For example, in the
used to send a rep
queue) as well as a
incoming message
the message and s
correlation ID. The
and figures out wh
correlation ID.

Licensed to Jo
 The Request-Reply Model

r example, you might want a receipt confirmation
ey get the shipping request you sent to the

el called request-reply comes in handy in these
 In this model, we give the message receiver
 so that they might “call us back”. This model is
l because it is typically implemented on top of
ub-sub models.

 PTP model, the sender specifies a queue to be
ly back to (in JMS, this is called the ‘reply to’
 unique ID shared by both the outgoing and
s (‘correlation ID’ in JMS). The receiver receives
ends a reply to the reply queue, copying the

 sender receives the message on the reply queue
at message received a reply by matching the

nts or corrections to the Author Online forum at
ning-sandbox.com/forum.jspa?forumID=273

hn Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

At this point, you should have a good conceptual foundation of messaging and are perhaps be
eager to get a taste of some code. Next, we will take a brief look at JMS and actually implement the
ActionBazaar message producer for sending the message.

4.2 Introducing Java Messaging Service
In this section we will provide an overview to JMS API by building a simple message producer.

JMS is a deceptively simple and small API to a very powerful technology. The JMS API is to
messaging what the Java Database Connectivity (JDBC) API is to database access. JMS provides a
uniform, standard way of accessing MOM in Java and is therefore an alternative to using product-
specific APIs. With the exception of Microsoft Message Queue (MSMQ), most major MOM
products support JMS.

The easiest way to learn JMS might be by looking at code in action. We are going to explore
JMS by first developing the ActionBazaar code that sends out the shipping request. In this section we
will develop a message producer using JMS and learn about structure of Message interface and then
in the next section, we will develop the message consumer using MDB.

4.2.1 Developing the JMS Message Producer
As we described in our scenario in section 4.1.2, when a user places an order for an

“ActionBazaar Special”, a shipping request is sent to a queue shared between ActionBazaar and
Turtle. The code in Listing 4.1 sends the message out and could be part of a method in a simple Java
Object invoked by the ActionBazaar application. All relevant shipping information such as the item
number, shipping address, shipping method and insurance amount is packed into a message and sent
out to ‘ShippingRequestQueue’.

12 Listing 4.1: JMS Code to Send Out Shipping Request from ActionBazaar
@Resource(name="jms/QueueConnectionFactory")
 private ConnectionFactory connectionFactory; |#1

@Resource(name="jms/ShippingRequestQueue")
 private Destination destination; |#2

Connection connection = connectionFactory.createConnection(); |#3
Session session = connection.createSession(true, |#4
 Session.AUTO_ACKNOWLEDGE);

MessageProducer producer = session.createProducer(destination); |#5

ObjectMessage message = session.createObjectMessage(); |#6
ShippingRequest shippingRequest = new ShippingRequest(); |#7
shippingRequest.setItem(item); |#7
shippingRequest.setShippingAddress(address); |#7
shippingRequest.setShippingMethod(method); |#7
shippingRequest.setInsuranceAmount(amount); |#7
message.setObject(shippingRequest); |#8

producer.send(message); |#9

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

session.close(); |#10
connection.close(); |#10

(annotation) <#1 Inject Connection Factory>
(annotation) <#2 Inject Destination>
(annotation) <#3 Connecting to MOM>
(annotation) <#4 Creating Session>
(annotation) <#5 Creating A Producer>
(annotation) <#6 Creating Message>
(annotation) <#7 Creating PayLoad>
(annotation) <#8 Setting PayLoad>
(annotation) <#9 Sending Message>
(annotation) <#10 Cleaning up>

As we explain each logical step of this code in the following sections, we will go through a
large subset of the JMS API components and see usage patterns.

Retrieving the ConnectionFactory and Destination
JMS has a concept called administered objects that is very similar to JDBC

javax.sql.DataSource Objects. These are resources that are created and configured outside
code and stored in JNDI. JMS has two administrative objects, javax.jms.ConnectionFactory
and javax.jms.Destination, both of which we use in Listing 4.1. The connection factory we
then retrieved using dependency injection with @Resource annotation and it encapsulates all
configuration information needed to connect to the MOM#1. We also inject the queue to forward
the shipping request to, aptly named ‘ShippingRequestQueue’ #2. With EJB 3.0, using resources is
much easier and you do not have to deal with complexity of JNDI and configuring resource
references in deployment descriptors. We will discuss more about dependency injection in Chapter 5.

The next step in Listing 4.1 is creating a connection to the MOM and getting a new JMS

session.

Opening the Connection and Session
The javax.jms.Connection object represents a live MOM connection, which we create

using the createConnection() method of the connection factory#3 (in Listing 4.1).
Connections are thread-safe and designed to be sharable because opening a new connection is
resource intensive. A JMS session (javax.jms.Session) on the other hand, provides a single-
threaded, task-oriented context for sending and receiving messages. We create a session from the
connection using the createSession method (#4 in listing 4.1). The first parameter of the
method specifies if the session is transactional. We have decided that our session should be
transactional and set the parameter to true. This means that the requests for messages to be sent will
not be realized until either the session’s commit() method is called or the session is closed. If the
session were not transactional, messages would be sent as soon as the send method is invoked. The
second parameter of the createSession method specifies the acknowledge mode and only has an
effect for non-transactional sessions receiving messages, which we will discuss later. Having set up
the session, we are now ready to take on the meat of the matter: sending the message.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Preparing and Sending the Message
The session is not directly used for sending or receiving messages4.Instead, a

javax.jms.MessageProducer – needed to send messages to the shipping request queue is
constructed using the session’s createProducer method in listing 4.1#5. Then #6, #7 and #8
create and populate the javax.jms.Message to be sent. In our example, we send the
Serializable Java Object ShippingRequest to Turtle, so the most appropriate message type
for us is javax.jms.ObjectMessage, which we create using the createObjectMessage
method#6. We then create an instance of the ShippingRequest object and set the item number,
shipping address, shipping method and insurance amount fields#7. Once ShippingRequest is set
up, we set it as the payload of the message using setObject#8. Finally, we instruct the message
producer to send the message out using the send method in listing 4.1#9.

Releasing Resources
A large number of resources are allocated under the hood for both the Session and Connection

Objects, so it is very important to explicitly close both once we are finished with them, as we do in
#10 (Listing 4.1). Closing the session is even more important in our case since no messages are sent
out until our transactional session is committed when we close the session.

If all goes well, a message containing the shipping request winds up in the queue. Before we look
at the message consumer code that receives this message, we are going to discuss the
javax.jms.Message Object in a little more detail.

4.2.2 The JMS Message Interface
The Message interface standardizes what is exchanged across JMS and is an extremely robust

data encapsulation mechanism. As figure 4.6 shows, JMS message has the following parts: the
message header, message properties and the message body, each of which is detailed in the sections
that follow.

Figure 4.6: The Anatomy of a Message. A JMS message has a header, properties and a body.

An analogy for JMS messages is mailing envelopes. We will see how this analogy fits next.

4 We could argue that having it do so would simplify the JMS API

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Message Headers
Headers are name-value pairs common to all messages. In our envelope analogy, the message

header is the information on an envelope that is pretty standard: the to and from addresses, postage
and postmark. For example, the JMS message version of a postmark is the JMSTimestamp header.
The MOM sets this header to the current time when the message is sent.

Some other commonly used JMS headers are: JMSCorrelationID, JMSReplyTo and
JMSMessageID.

Message Properties
Message properties are just like headers, but are explicitly created by the application instead of

being standard across messages. In the envelope analogy, if you decide to write “Happy Holidays” on
the envelope to let the receiver know the envelope contains a gift or note, the text is a property
instead of a header. In the ActionBazaar example, one way to mark a shipping request as fragile
would be to add a boolean property called ‘Fragile’ and set it to true. The code to do this would look
like the following:

message.setBooleanProperty(“Fragile”, true);

A property can be a boolean, byte, double, float, int, long, short, String or Object.

Message Body
The message body is the contents of the envelope; it is the payload of the message. What we are

trying to send in the body determines what message type we should use. In listing 4.1, we chose
javax.jms.ObjectMessage because we were sending out the ShippingRequest Java Object.
Alternatively, we could have chosen to send a BytesMessage, MapMessage, StreamMessage or
TextMessage. Each of these message types has a slightly different interface and usage pattern.
There are no hard and fast rules dictating the choice of message types. You should explore all the
choices before taking a decision on what message type to use for your application.

Believe it or not, we just finished reviewing most of the major parts of JMS that you need to send

and use with MDB. A full coverage of JMS is obviously beyond the scope of this chapter and not

The Spring JMSTemplate

Spring’s JmsTemplate greatly simplifies common JMS tasks
like sending messages by automating generic code. Using
JmsTemplate, our entire message producer code could be
reduced to a few lines. This is a great way of getting work
done, as long as you are not doing anything too complicated like
using temporary queues, JMS headers and properties, etc.

At the time of writing, Spring does not have very robust
asynchronous message processing capabilities when compared
to MDB. Any future MDB like features in Spring is likely to
utilize the relatively arcane JCA container, which leaves room
for a great Spring/EJB3 integration case.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please pos

http://w

really necessary to start discussing Message Driven Beans in the next section. However, we encourage
you to fully explore the fascinating JMS API by visiting http://java.sun.com/products/jms/docs.html.
In particular, you should explore how JMS message consumers work.

Having taken a closer look at JMS messages, the time is now ripe to look at the Turtle server

message consumer built using an MDB.

4.3 Working with Message Driven Beans (MDB)
We will now build on the brief coverage of Message Driven Beans in chapter 1 and 2 and

explore in detail what MDBs are, why we should consider using them and how to develop them. We
will also discuss some best practices and pitfalls to avoid when developing MDBs.

Put very plainly, Message Driven Beans are EJB components that are designed to consume the
asynchronous messages we have been talking about. Although MDBs are designed to handle many
different kinds of messages (note the discussion in the sidebar titled “JCA Connectors and
Messaging”), we will primarily focus on MDBs that process JMS messages because most enterprise
applications use JMS. From this perspective, you might ask why we would need to employ EJBs to
handle the task of consuming messages at all when we could use the code we just developed for the
JMS message consumer. We will address this question next. We wil soon learn why you would use
MDB and its programming rules. We will develop a simple message consumer application using
MDB and learn use of @MessageDriven annotation, more about MessageListener interface,
activation config properties and MDB lifecycle.

Although by far JMS is
as of EJB 2.1, they are
Architecture (JCA), MD
System (EIS), such as P
support JMS.

Suppose that you have
MDB. You can do this b
includes a Message Inf
is deployed to a Java E
have an asynchronous m
JCA end-point is essen
proxy to an MDB (a me
message arrives at the
listening to the end poin

For its part, the MDB im
connector/message typ
to register as a listener
listeners and activation
providers to integrate w
compliant connector or
For more information o

Licens
JCA Connectors and Messaging

the primary messaging provider for Message Driven beans,
not the only one. Thanks to the Java EE Connector
Bs can receive messages from any Enterprise Information
eopleSoft HR or Oracle Manufacturing, not just MOMs that

a legacy application that wants to send messages to an
y implementing a JCA compliant adapter/connector that

low Contract. Once your JCA resource adapter or connector
E container, you can use the Message Inflow Contract to

essage delivered to an ‘end-point’ inside the container. A
tially the same idea as a JMS destination – it acts as a server
ssage consumer/listener in JMS terms). As soon as a
end point, the container triggers any registered MDBs
t and delivers the message to it.

plements a listener interface that is suitable to the JCA
e and passes appropriate activation configuration parameters
of your JCA connector (we will discuss more about message
configuration parameters shortly). JCA also enables MOM
ith Java EE containers in a standardized manner using a JCA

 resource adapter.
n JCA, visit

t comments or corrections to the Author Online forum at
ww.manning-sandbox.com/forum.jspa?forumID=273

ed to John Sweitzer <admin@saolailaem.info>

http://java.sun.com/products/jms/docs.html
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

4.3.1 Why Use Message Driven Beans?
Given the less than stellar reputation of EJB 2.1, it is fair to question the value EJB 3.0. MDBs

have to offer. The truth is MDBs have enjoyed a reasonable degree of success even in the darkest
hours of EJB. Following are some of the reasons why this is the case and why you should take a
serious look at MDBs:

Multithreading
You business application may require multi-threaded message consumers that can process messages
concurrently. You can avoid building complexity of building multithreaded by depending upon MDBs
because they handle multithreading right out of the box, without any additional code. This is done
essentially by managing incoming messages among multiple instances of beans (in a pool) that have
no special multithreading code themselves. As soon as a new message reaches the destination, an
MDB instance is retrieved from the pool to handle the message as figure 4.5 demonstrates this
concept.

37 Figure 4.5: As soon as a message arrives at the destination, the container retrieves it and assigns a

servicing MDB instance from the pool.

This is popularly known as MDB-pooling that we learn while discussing MDB lifecycle.

Simplified Messaging Code
Other than coding the message consumer (onMessage) method, MDBs relieve you from

coding the mechanical aspects of processing messages, such as looking up connection
factories/destinations, creating connections, opening sessions, creating consumers and attaching
listeners. As we will see when we build Turtle message consumer MDB, all of these tasks are handled
behind the scenes for you. In EJB 3.0, using sensible defaults for common circumstances even
eliminates most of the configuration. In the worst-case scenario, you will have to supply
configuration information using simple annotations or through the deployment descriptor.

Starting Message Consumption
If your building a message consumer for the Turtle server message consumer, someone needs to

invoke the method in your code in order to start picking up messages from the shipping request
queue. In a production environment, it is not clear how this will be accomplished. Doing this
through a user-driven manual process obviously is not very desirable. In a server environment, almost
every way to execute the method on server startup would be highly system-dependent, not to

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

mention awkward. The same is true about stopping message receipt manually. On the other hand,
registered Message Driven Beans would be bootstrapped or torn-down gracefully by the container
when the server is started or stopped.

We will continue consolidating these three points as we start investigating a real example of
developing MDBs soon. Before we do that, we need to examine the simple rules for developing an
MDB.

4.3.2 Programming Rules

Like all EJBs, MDBs are plain Java objects that follow a simple set of rules and sometimes have
annotations. We list these rules now before moving on. Do not take these too seriously yet; simply
note them in preparation for going through the code-intensive sections that follow:

1. The MDB class must directly (by using the implements keyword in the class declaration) or
indirectly (through annotations or descriptors) implement a message listener interface.

2. The MDB class must be concrete. It cannot be either a final or an abstract class.

3. The MDB must be a top-level class and not a subclass of another MDB.

4. The MDB class must be declared public.

5. The bean class must have a no-argument constructor. If you do not any constructors in your
java class the compiler will create a default constructor. The container uses this constructor to
create a bean instance.

6. We cannot define a finalize method in the bean class. If any cleanup code is necessary, it
should be defined in a method designated as PreDestroy.

7. We must implement the methods defined in the message listener interface. The message listener
methods must be public and cannot be static or final.

 We must not throw the javax.rmi.RemoteException or any runtime exceptions. If a
RuntimeException is thrown, the MDB instance is terminated.

We will apply these rules next in developing our example MDB.

4.3.3 Developing a Message Consumer with MDB
We will now explore how to develop an MDB by reworking the Turtle server JMS message

consumer as a MDB. To make the code a bit more interesting, we will actually implement the
processShippingRequest method mentioned in the JMS code. Listing 4.2 shows the MDB
code retrieves shipping requests sent to the queue and saves each request in the Turtle database table
named SHIPPING_REQUEST. Note that we are using JDBC for simplicity and it gives us ability to
demonstrate the MDB lifecycle methods for opening and closing JDBC connections. We
recommend that you consider EJB3 Java Persistence API, discussed in part 3 of this book, for
persisting your data instead of using straight-JDBC.

13 Listing 4.2: Turtle Server Shipping Request Processor MDB
package ejb3inaction.example.buslogic;

import javax.ejb.MessageDriven;
import javax.ejb.ActivationConfigProperty;
import javax.annotation.PostConstruct;

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

import javax.annotation.PreDestroy;
import javax.annotation.Resource;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import java.sql.*;
import javax.sql.*;

@MessageDriven(|#1
 name="ShippingRequestProcessor", |
 activationConfig = { |
 @ActivationConfigProperty(|
 propertyName="destinationType", |
 propertyValue="javax.jms.Queue"), |
 @ActivationConfigProperty(|
 propertyName="destinationName", |
 propertyValue="jms/ShippingRequestQueue") |
 } |
) |
public class ShippingRequestProcessorMDB |#2
 implements MessageListener { |
 private java.sql.Connection connection;
 private DataSource dataSource;

 @Resource
 private MessageDrivenContext context; |#4

 @Resource(name="jdbc/TurtleDS") |#7
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 @PostConstruct |#6
 public void initialize() {
 try {
 connection = dataSource.getConnection();
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }

 @PreDestroy |#6
 public void cleanup() {
 try {
 connection.close();
 connection = null;
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 }
 }

 public void onMessage(Message message) { |#3
 try {
 ObjectMessage objectMessage = (ObjectMessage)message;
 ShippingRequest shippingRequest =
 (ShippingRequest)objectMessage.getObject();
 processShippingRequest(shippingRequest); #9
 } catch (JMSException jmse) {
 jmse.printStackTrace();

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 context.setRollBackOnly(); | #5
 } catch (SQLException sqle) {
 sqle.printStackTrace();
 context.setRollBackOnly(); |#5
 }
 }

 private void processShippingRequest(ShippingRequest request) |#8
 throws SQLException {
 Statement statement = connection.createStatement();
 statement.execute(
 "INSERT INTO "
 + "SHIPPING_REQUEST ("
 + "ITEM, “
 + "SHIPPING_ADDRESS, "
 + "SHIPPING_METHOD, "
 + "INSURANCE_AMOUNT) "
 + "VALUES ("
 + request.getItem() + ", "
 + "\’" + request.getShippingAddress() + "\’, ”
 + "\’ " + request.getShippingMethod() + "\’, ”
 + request.getInsuranceAmount() + ")");
 }
}
(annotation) <#1 MessageDriven annotation>
(annotation) <#2 Message listener interface>
(annotation) <#3 Message listener implemenation>
(annotation) <#4 Message driven context>
(annotation) <#5 Using the MDB context>
(annotation) <#6 Life-cycle callbacks>
(annotation) <#7 Resource injection>
(annotation) <#8 Business logic>
(annotation) <#9 Persist object>

Taking a bird’s eye view of listing 4.2, the @MessageDriven annotation identifies this object as

an MDB and specifies the MDB configuration, including the fact that we are listening on the
shipping request queue #1. #2 marks this MDB as a JMS message listener. The onMessage method
provides the implementation for the message listener interface #3 and processes incoming messages. A
message driven context is injected in #4 and used inside the onMessage method #5 to rollback
transactions as needed. A database resource is injected in #7. The life-cycle callbacks #6 open and
close a connection derived from the database resource. Finally, the shared JDBC connection is used
by the business logic #8 called in onMessage #9 to save each shipping request into the database. We
will discuss major MDB features by analyzing this code in greater detail presently - starting with the
@MessageDriven annotation.

4.3.4 Using the @MessageDriven Annotation
MDBs are one of the simplest kinds of EJBs to develop and support the smallest number of

annotations. In fact, the @MessageDriven annotation and the @ActivationConfigProperty
annotation nested inside it are the only MDB-specific annotations to discuss. The
@MessageDriven annotation we use for the example probably is very representative of what you
will be using most of the time. The annotation is defined as follows:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

@Target(TYPE)
@Retention(RUNTIME)
public @interface MessageDriven {
 String name() default "";
 Class messageListenerInterface default Object.class;
 ActivationConfigProperty[] activationConfig() default {};
 String mappedName();
 String description();

}

Notice that all three of the annotation’s arguments are optional. If you are a minimalist, you can

keep the annotation as simple as the code that follows, leaving any details to be added elsewhere, such
as the deployment descriptor:

@MessageDriven
public class ShippingRequestProcessorMDB

The first element, name, specifies the name of the MDB. In our case, the name is specified to be
‘ShippingRequestProcessor’. If omitted, the name is set as the name of the class --
ShippingRequestProcessorMDB in our example. The second parameter,
messageListenerInterface specifies what message listener the MDB implements. The last
parameter, activationConfig is used to specify listener-specific configuration properties. Both of
these two last parameters deserve to be covered on their own, as we will do next.

4.3.5 Implementing the MessageListener
An MDB implements a message listener interface for the very same reason our plain JMS

consumer implemented the javax.jms.MessageListener interface. The container uses the
listener interface to register the MDB with the message provider and pass incoming messages by
invoking implemented message listener methods. Using the messageListenerInterface
parameter of the MessageDriven annotation is just one way to specify a message listener and
instead we could have done the following:

@MessageDriven(
 name=”ShippingRequestJMSProcessor”,
 messageListenerInterface=”javax.jms.MessageListener”)
public class ShippingRequestProcessorMDB {

Instead, we chose to omit this parameter and specified the interface using the implements
keyword:

public class ShippingRequestProcessorMDB implements MessageListener {

Yet another option is to specify the listener interface through the deployment descriptor and
leave this detail out of code altogether. Which approach you choose is largely a matter of your likes
and dislikes. We like the second approach because it is looks a lot like our JMS example.

The MDB feature of being able to specify a message listener with relative flexibility looks
especially cool if you consider the following scenario: suppose that we switch messaging technologies

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

and decide to use JAXM (Java API for XML Messaging5) to send shipping requests instead of JMS.
Thanks to JCA support, you can use still use MDBs to receive shipping requests (see the sidebar
titled “JCA Connectors and Messaging” to see how this might be done). All we would have to do is
switch to the JAXM message listener interface, javax.jaxm.OneWayMessageListener instead
of javax.jms.MessageListener and reuse most of the MDB code and configuration:

public class ShippingRequestProcessorMDB implements
 javax.jaxm.OneWayMessageListener {

Whichever way you choose to specify the message listener, make sure you provide a valid
implementation of all methods required by your message listener, especially when using the
deployment descriptor approach, where there are no compile-time checks to watch your back. Now,
let’s take a look at the last (but definitely not least) parameter of the MessageDriven annotation:
activationConfig.

4.3.6 Using ActivationConfigProperty
The activationConfig property of the message driven annotation lets you provide

messaging-system specific configuration information through an array of
ActivationConfigProperty instances. ActivationConfigProperty is defined as follows:

public @interface ActivationConfigProperty {
 String propertyName();
 String propertyValue();
}

Each activation property is essentially a name-value pair that the underlying messaging provider

understands and uses to setup the MDB. The best way of understanding how this works is through
example. In this example, we provide three of the most common JMS activation configuration
properties: destinationType, connectionFactoryJndiName and destinationName.

@MessageDriven(
 name="ShippingRequestProcessor",
 activationConfig = {
 @ActivationConfigProperty(
 propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(
 propertyName="connectionFactoryJndiName",
 propertyValue="jms/QueueConnectionFactory"
),
 @ActivationConfigProperty(
 propertyName="destinationName",
 propertyValue="jms/ShippingRequestQueue")
 }
)

The destinationType property tells the container this JMS MDB is listening to a queue. If

we were listening to a topic instead, the value could be specified to ‘javax.jms.Topic’. The

5 JAXM is essentially a SOAP-based XML messaging API. For more information, visit
http://java.sun.com/webservices/jaxm/.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273
http://java.sun.com/webservices/jaxm/

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

connectionFactoryJndiName specifies the JNDI name of the connection factory that should be used
to create JMS connections for the MDB. Lastly, the destinationName parameter specifies that we are
listening for messages arriving at a destination with the JNDI name of ‘jms/ShippingRequestQueue’.
There are a few other configuration properties for JMS that we will describe in the sections that
follow. Visualizing what happens behind the scenes can help you understand and remember these
configuration properties. The container does something very similar to our JMS message consumer
setup steps (as shown in listing 4.2) to bootstrap the MDB. Most of the method parameters that we
specify during those steps are made available as configuration properties in the MDB world.

acknowledgeMode
Messages are not actually removed from the queue until the consumer acknowledges them. There

are many ‘modes’ through which messages can be acknowledged. By default, the acknowledge mode
for the underlying JMS session is assumed to be AUTO_ACKNOWLEDGE, which meant the
session acknowledged messages on our behalf in the background. This is the case for our example as
we omitted this property. If we wanted to we could change the acknowledge mode to
DUPS_OK_ACKNOWLEDGE (or any other acknowledge mode we discussed in the JMS section)
using the following:

@ActivationConfigProperty(
 propertyName="acknowledgeMode",
 propertyValue="DUPS_OK_ACKNOWLEDGE")

All of the acknowledgment modes supported by JMS are listed in table 4.1:

1.6 Table 4.1: JMS session acknowledge modes. For non-transacted sessions, you should choose the mode

most appropriate for your project. In general, AUTO_ACKNOWLEDGE is the most common and

convenient.

Acknowledgement Mode Description

AUTO_ACKNOWLEDGE The session automatically acknowledges receipt after a message has been
received or is successfully processed.

CLIENT_ACKNOWLEDGE We have to manually acknowledge the receipt of the message by calling the
acknowledge() method on the message.

DUPS_OK_ACKNOWLEDGE The session can lazily acknowledge receipt of the message. This is similar to
AUTO_ACKNOWLEDGE but useful when the application can handle delivery of
duplicate messages and rigorous acknowledgement is not a requirement.

SESSION_TRANSACTED This is returned for transacted sessions if the Session.getAcknowledgeMode()
method is invoked.

subscriptionDurability
If our MDB is listening on a topic, we can specify if the topic subscription is durable or non-

durable.
Recall that in the pub-sub domain, a message is distributed to all currently subscribed consumers.

In general, this is very much like a broadcast message in that anyone who is not connected to the
topic at the time does not receive a copy of the message. The exception to this rule is what is called a
durable subscription. A durable subscription means that once such a subscription is obtained on a
topic, all messages sent to the topic are guaranteed for delivery to a consumer holding a subscription.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

If the durable subscriber is not connected to a topic when a message is received, the MOM retains a
copy of the message until the subscriber connects and delivers the message. A durable subscriber is
created as follows:

MessageConsumer playBoySubscriber = session.createDurableSubscriber(
 playBoyTopic, “JoeOgler”);

In the preceding code, we are creating a durable subscription message consumer to the
javax.jms.Topic playBoyTopic with a subscription ID of ‘JoeOgler’. From now on, all
messages to the topic will be held until a consumer with the subscription ID ‘JoeOgler’ receives them.
You can remove this subscription with the following code when needed:

session.unsubscribe(“JoeOgler”);

If you want the MDB to be a durable subscriber then the action config property would look like

the following:

@ActivationConfigProperty(
 propertyName="destinationType",
 propertyValue="javax.jms.Topic"),
@ActivationConfigProperty(
 propertyName="subscriptionDurability",
 propertyValue="Durable")

For non-durable subscriptions, we explicitly set the value of the subscriptionDurability
property to ‘NonDurable’, which is also the default.

messageSelector
The messageSelector property is the MDB parallel to applying a selector for a JMS

consumer. In our code consumed all messages at the destination. If we needed to, we could filter
what messages we retrieve by using a message selector. A message selector is essentially a criteria applied
to the headers and properties of messages specifying which messages the consumer wants to receive.
For example, if we wanted to receive all shipping requests that had a ‘Fragile’ property set to true, we
would use the following code:

MessageConsumer consumer = session.createConsumer(destination,
 “Fragile IS TRUE”);

As you might have noticed, the selector syntax is almost identical to the where clause in SQL-92,

but the selector syntax usess message header and property names instead of column names. Selector
expressions can be as complex and expressive as you need them to be and can include literals,
identifiers, white spaces, expressions, standard brackets, logical and comparison operators, arithmetic
operators, null comparisons, etc.

Using our JMS message selector example from above we could specify in our MDB that we want
to handle only fragile shipping requests as follows:

@ActivationConfigProperty(
 propertyName="messageSelector",
 propertyValue="Fragile IS TRUE")

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Table 4.2 summarizes some common message selector token.

1.7 Table 4.2: Commonly used message selector token. The syntaxs of message selectors are quite similar to

SQL WHERE clause

Type Description Example

Literals This can either be strings, exact or approximate numeric values
or booleans

‘BidManagerMDB’
100
TRUE

Identifiers Identifiers can either be a message property or header name
and are case sensitive

RECEPIENT
NumOfBids
Fragile
JMSTimestamp

Whitespace Same as defined in the Java language specification: space, tab,
form feed and line terminator

Comparison
Operator

Comparison operators such as =, >, >=, <=, <> RECIPIENT=’BidManagerMDB’
NumOfBids>=100

Logical operators All three types of logical operators NOT, AND, OR are
supported

RECIPIENT=’BidManagerMDB’
AND NumOfBids>=100

Null comparison IS NULL and IS NOT NULL comparisons FirstName IS NOT NULL
True/false
comparison

IS [NOT] TRUE and IS [NOT] FALSE comparisons Fragile IS TRUE
Fragile IS FALSE

Having discussed the last of the MessageDriven annotation parameters, we are now ready to

examine life-cycle callbacks in MDB and their typical uses.

4.3.8 Using Bean Life-Cycle Callbacks
As you might remember from Chapter 3, similar to stateless session beans, MDBs have a very

simple life cycle. The container:

 Creates MDB instances and sets them up.

 Injects resources, including the message driven context discussed in the next chapter in detail.

 Places instances in a managed pool.

 Pulls an idle bean out of the pool when a message arrives (the container may have to increase
the pool size at this point).

 Executes the onMessage method.

 When the onMessage method finishes executing, pushes the idle bean back into the “method-
ready” pool.

 As needed, retires (a.k.a. destroys) beans out of the pool.

 Figure 4.7 depicts the MDB lifecycle.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

38 Figure 4.7: The chicken or the egg - the MDB life cycle is has three states: does not exist, idle and busy.

As a result, there are only two life-cycle callbacks corresponding to bean creation and destruction.

The MDB’s two lifecycle callbacks are PostConstruct, which is called immediately after an

MDB is created, set up and all the resources are injected, and PreDestroy, which is called right
before the bean instance is retired and removed from the pool. The typical usage of these callbacks in
MDB are for allocating and releasing injected resources that are used by the onMessage method,
which is exactly what we do in our example.

The processShippingRequest method saves off shipping requests that the onMessage
method extracts from the incoming JMS message:

private void processShippingRequest(ShippingRequest request)
 throws SQLException {
 Statement statement = connection.createStatement();
 statement.execute(
 "INSERT INTO "
 + "SHIPPING_REQUEST ("
 …
 + request.getInsuranceAmount() + ")");
}

The method creates a statement from an open JDBC connection and uses it to save a record into

the SHIPPING_REQUEST table containing all the fields from the ShippingRequest object. The
JDBC connection object used to create the statement is a classic heavy-duty resource. It is expensive
to open and should be shared whenever possible. On the other hand, it can hold a number of native
resources, so it is very important to close the connection when it is no longer needed. We accomplish
both these goals using callback methods as well as resource injection.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Firstly, the JDBC data source that the connection is created from is injected using the
@Resource annotation:

@Resource(name="jdbc/TurtleDS")
public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
}

The @Resource annotation tells the EJB container that it should lookup a
java.sql.DataSource named jdbc/TurtleDS from JNDI and pass it to the
setDataSource method after creating a new instance of the bean. The setDataSource method,
in turn, saves the data source in an instance variable. After injecting resources, the container checks if
there are any designated PostConstruct methods that need to be invoked before the MDB is put
into the pool. In our case, we mark the initialize method with the @PostConstruct
annotation:

@PostConstruct
public void initialize() {
 ...
 connection = dataSource.getConnection();
 ...
}

In the initialize method, we are creating a java.sql.Connection from the injected data source

and saving it into the connection instance variable used in processShippingRequest. At
some point, the container decides that our bean should be removed from the pool and destroyed
(perhaps at server shutdown). The PreDestroy callback given us a chance to cleanly teardown bean
resources before this is done. In the cleanup method marked with the @PreDestroy annotation,
we tear down the database connection resource before the container retires our bean:

@PreDestroy
public void cleanup() {
 ...
 connection.close();
 connection = null;
 ...
}

Although database resources and their management are the predominant uses of resource

injection and life-cycle methods in MDBs, another important resource we have explicitly seen being
used in the JMS sections are also important for MDB. These are the JMS destination and connection
factory administrative objects as well as the JMS connections. We will explore how these are utilized
in MDBs next.

4.3.9 Sending JMS Messages from MDB
Somewhat ironically, a task you will find yourself doing time and again in an MDB is sending

JMS messages. As a simple example, we might have to communicate back to ActionBazaar from the
ShippingRequestProcessorMDB if a shipping request is incomplete. It is only natural that this
notification be done via JMS messages sent to an ‘error queue’ that ActionBazaar listens to.
Fortunately, we have already seen how to send a JMS message in listing 4.1. This task is even simpler

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

and more robust in MDB. The queue named ‘jms/ShippingErrorQueue’ and the connection factory
named ‘jms/QueueConnectionFactory’ could be injected using the @Resource annotation as
follows:
 @Resource(name="jms/ShippingErrorQueue")
 private javax.jms.Destination errorQueue;
 @Resource(name="jms/QueueConnectionFactory")
 private javax.jms.ConnectionFactory connectionFactory;

A shared javax.jms.Connection instance could then be created and destroyed using life-

cycle callbacks just as the JDBC connection was managed in the previous section:
 @PostConstruct
 public void initialize() {
 ...
 jmsConnection = connectionFactory.createConnection();
 ...

 }
 @PreDestroy
 public void cleanup() {
 ...
 jmsConnection.close();
 ...

 }
Finally, the business method to send the error message would look very much like the rest of the

JMS session code in listing 4.1:
 private void sendErrorMessage(ShippingError error) {
 Session session = jmsConnection.createSession(true,
 Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer = session.createProducer(errorQueue);
 ...
 producer.send(message);
 session.close();
 }

Although we did not explicitly show it in our example, there is one more MDB feature you
should know about – MDB transaction management. We will discuss EJB transactions in general in
much more detail in the next chapter, so we will simply give you the “bargain basement” version for
dealing with the specifics of MDBs in the next section.

4.3.10 Managing MDB Transactions
In our plain JMS examples, we specified whether the JMS session would be transactional when

we created it. On the other hand, if you look closely at the MDB example, it does not specify
anything about transactions at all. Instead, we are letting the container use the default transactional
behavior for MDBs. By default, the container will start a transaction before the onMessage method
is invoked and will commit the transaction when the method returns unless the transaction was
marked rolled back through the message driven context. We will learn more about transactions in
Chapter 6.

This brief discussion of transaction management finishes off our analysis of the basic features that
MDBs offer. We have discussed how we can use MDBs to leverage the power of messaging without
dealing with the low-level details of the messaging API. In addition, MDBs give us a whole host of
EJB features for free, such as multithreading, resource injection, life cycle management and
container-managed transactions. We have tried to formulate our code samples such that you can use

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

them as templates for solving real business problems and carrying things to much deeper waters.
Before concluding this chapter, we will give you some tips for dealing with the nuances of MDBs that
might help you navigate those deeper waters safely and with confidence.

4.4 MDB Tips and Tricks
Like all technologies, MDBs have some pitfalls to look out for and some best practices to keep in

mind. This is particularly true in the demanding environments where messaging is typically deployed.
If you are reading this chapter, this probably means you. We will now share the most common such
concepts you should keep an eye on.

Choose your messaging models carefully. Before you wade knee deep in code, consider your choice
of messaging model carefully. You might find that PTP will solve your problem nine times out of
ten. In some cases, though, pub-sub really is better, especially if you find yourself broadcasting the
same message to more than one receiver (such as our system outage notification example). Luckily,
most messaging code is domain independent and you should strive to keep it that way. For the most
part, switching domains should be just a matter of configuration.

Remember modularization. Because MDBs are so similar to Session Beans, it is very natural to
start putting business logic right into message listener methods. Business logic should be decoupled
and modularized away from messaging-specific concerns. We tried to follow this principle by coding
the processShippingRequest method and invoking it from onMessage. An excellent practice
(but one that would have made this chapter unnecessarily complicated) is to put business logic in
Session Beans and invoke them from the onMessage method.

Make Good Use of Message Filters. There are some valid reasons for using a single messaging
destination for multiple purposes. Message selectors come in very handy in these circumstances. For
example, if you are using the same queue for both shipping requests and order cancellation notices,
you can have the client set a message property identifying the type of request. You can then use
message selectors on two separate MDBs to isolate and handle each kind of request.

Conversely, in some cases, you might dramatically improve performance and keep your code
simple by using separate destinations instead of using selectors. In the example just mentioned, using
separate queues and MDBs for shipping requests and cancellation orders could make message delivery
much faster. In this case, the client would have to send each request type to the appropriate queue.

Choose Message Types Carefully. The choice of message type is not always as obvious as it seems.
For example, it is a very compelling idea to use XML strings for messaging. Among other things, this
tends to promote loose coupling between systems. In our example, the Turtle server would know
about the format of the XML message and not the ShippingRequest object itself.

The problem is that XML tends to bloat the size of the message, significantly degrading MOM
performance. In certain circumstances, it might even be the right choice to use binary streams in the
message payload, which puts the least amount of demand on MOM processing as well as memory
consumption.
Be Wary of Poison Messages. Imagine that a message is handed to you that your MDB was not able to
consume. Using our example, let us assume that we receive a message that is not an
ObjectMessage. As you can see from code snippet below, if this happens, the cast in onMessage
will throw a java.lang.ClassCastException #1:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

try {
 ObjectMessage objectMessage = (ObjectMessage)message; |#1
 ShippingRequest shippingRequest =
 (ShippingRequest)objectMessage.getObject();
 processShippingRequest(shippingRequest);
} catch (JMSException jmse) {
 jmse.printStackTrace();
 context.setRollBackOnly();
}
(annotation) <#1 Wrong message type will fail cast>

Since onMessage will not complete normally, the container will be forced to roll back the
transaction and put the message back on the queue instead of acknowledging it (in fact, since a
runtime exception is thrown, the bean instance will be removed from the pool). The problem is, since
we are still listening on the queue, the same message will be delivered to us again and we will be stuck
in the accept/die loop indefinitely! Messages that cause this all-too-common scenario are called
“poison messages”.

The good news is that there are several mechanisms that many MOMs and EJB containers
provide to deal with poison messages, including “redelivery” counts and “dead message” queues. If
you we set up the redelivery count and dead message queue for the shipping request destination, the
message delivery will be attempted for the specified number of times. After the redelivery count is
exceeded, the message will be moved to a specially designated queue for poison messages called the
“dead message” queue. The bad news is that these mechanisms are not standardized and are vendor-
specific.

Configure MDB Pool Size. Most EJB containers will let you specify the maximum number of
instances of a particular MDB the container can create. In effect, this controls the level of
concurrency. If there are five concurrent messages to process and the pool size is set to three, the
container will wait until the first three messages are processed before assigning any more instances.
This is a double-edged sword and requires careful handling. If we set our MDB pool size to be too
small, messages will be processed slowly. At the same time, it is desirable to place reasonable limits on
the MDB pool size so that many concurrent MDB instances do not choke the machine.
Unfortunately, at the time of this writing, setting MDB pool sizes is not standardized and is provider-
specific.

4.4 Summary
In this chapter, we have covered basic messaging concepts, the Java Messaging Service, as well as

Message Driven beans. Messaging is an extremely powerful technology for the enterprise and it helps
build loosely coupled systems. Java Messaging Service allows you to use message-oriented middleware
from enterprise Java applications. Use JMS API to build a message consumer application can be
pretty time consuming and involved task and MDBs make using MOM in a standardized manner
through Java EE extremely easy.

Note, however, that messaging and MDBs are not right for all circumstances and can be

overused. One such case at hand is using the Request/Reply domain (discussed in the sidebar titled
“The Request-Reply Model”). This model entails a lot of extra complexity as compared to simple
PTP or pub-sub messaging. If you find yourself using this model extensively and in ways very close to

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

synchronous messaging, it might be worth thinking about switching to a synchronous technology
such as RMI, SOAP or remote Session Bean calls.

Few major EJB features we skated over in this chapter are dependency injection, interceptors,
timers, transaction and security. EJB 3.0 largely relieves us from these system level concerns while
providing extremely robust and flexible functionality. We will discuss dependency injection, timers
and interceptors in next chapter.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Chapter 5 Learning Advanced EJB
Concepts

In the last two Chapters we focused on developing Session Beans and Message Driven Beans.
Although we discussed a few bean type specific features in detail, we generally avoided covering topics
not closely related to introducing the basics. In this Chapter we will build on the material in the
previous Chapters and introduce a few advanced concepts applicable to Message Driven Beans and
Session Beans. It is very likely that you will find these EJB 3.0 features extremely helpful while using
EJB in the real world.

In this Chapter we start by discussing the how containers provide the services behind the scene and
how to access environment information. Armed with that knowledge, we then move on to advanced
usage of dependency injection, JNDI lookups, EJB interceptors, and the EJB timer service. EJB 3.0
largely relieves us from these system level concerns while providing extremely robust and flexible
functionality.
 As foundation to the rest of the Chapter, we will very briefly examine these EJB internals first.

5.1 EJB Internals
Although we’ve talked about the role of the container and the concept of managed services, we
haven’t talked about how most containers go about providing managed services. The secret to
understanding and remembering these and the other EJB services is knowing how the container
provides them. Without going into too much details we will discuss about EJB objects that does the
magic of providing the service and then about EJB context that a bean can use to access runtime
environment and use container services.

5.1.1 EJB Behind the Scenes
EJB centers on the idea of managed objects. As we saw in the previous Chapters, EJB 3.0 beans are
just annotated POJOs themselves. When a client invokes an EJB method using the bean interface it
actually do not work directly on the bean instance. The container makes beans “special” by acting as
a proxy between the client and the actual Bean instance. This enables the container to provide EJB
services to the client on behalf of the bean instance.

EJB Object

For each bean instance, the container automatically generates a proxy named an EJB Object.
The EJB Object has access to all the functionality of the container including the JNDI
registry, security, transaction-management, thread-pools, session-management and pretty
much anything else that is necessary to provide EJB services. The EJB Object is aware of the
bean configuration and what services the POJO is supposed to provide.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Since all requests to the EJB instance is passed through the EJB Object proxy, the EJB Object can
“insert” container services to client requests as needed, including managing all aspects of the bean life-
cycle. Figure 5.1 is a typical visual representation of this technique.

Figure 3.1: The “magic” of EJB. The container-generated EJB Object receives all EJB client requests as the proxy,

reads configuration and inserts container services as required before forwarding client requests to the bean

instance.

As we’ve seen in the previous Chapters, the beauty of technique is that all the service details are
completely transparent to bean clients and even to bean developers. In fact, a container
implementation is free to implement the services in the most effective way possible as well as
providing vendor-specific feature and performance enhancements. This is really fundamentally all
there is to the “magic” parts of EJB. For Session Beans, the client interacts with the EJB Object
through the business interface. On the other hand, for Message Driven Beans, the EJB Object or
Message Endpoint sits between the message provider and the bean instance.
Let’s now take a look at how EJBs can access the container environment in which the EJB Object
itself resides.

5.1.2 EJB context: accessing the Runtime Environment
EJB components are generally meant to be agnostic of the container. This means that in the ideal
case, EJB components should merely hold business logic and never access the container or use
container services directly. As we saw in the previous Chapters and will see further in the coming
Chapters, services like transaction management, security, dependency injection and so forth are
meant to be “overlaid” on the bean through configuration.

However, in the real world, it is sometimes necessary for the bean to explicitly use container services
in code. These are the situations the EJB context is designed to handle. The
javax.ejb.EJBContext interface is essentially your backdoor into the mystic world of the
container. We will see the definition of EJBContext, its use and using dependency injection to
retrieve EJBContext.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Defining the EJBContext Interface

As you might be able to see from the interface definition in Listing 5.1, the interface allows direct
programmatic access to some of the services such as transaction, security, etc. typically specified
through configuration and completely managed by the container.

Listing 5.1: javax.ejb.EJBContext interface
public interface EJBContext {
 public Principal getCallerPrincipal(); |#1
 public boolean isCallerInRole(String roleName); |#1
 public EJBHome getEJBHome();
 public EJBLocalHome getEJBLocalHome();
 public boolean getRollbackOnly(); |#2
 public UserTransaction getUserTransaction(); |#2
 public void setRollbackOnly(); |#2
 public TimerService getTimerService(); |#3

 public Object lookup(String name); |#4
}
(annotation) <#1 Bean-managed security>
((annotation) <#2 Bean transaction management>
(annotation) <#3 Access to timer service>
(annotation) <#4 JNDI lookup>

We will briefly mention what each of these methods do now. A detailed analysis for most of them
will be left for when we discuss the services that each of the methods is related to. For now, you
should note the array of services offered through the EJB context as well the method patterns, shown
in table 5.1.

1.8 Table 5.1 You can use javax.ejb.EJBContext to access runtime services.

Methods Description

getCallerPrincipal
isCallerInRole

These methods are used in bean-managed security. We will discuss these two
methods further in Chapter 6 when we talk about programmatic security.

getEJBHome
getEJBLocalHome

These methods are used to obtain the bean’s “remote home” and “local home”
interfaces respectively. Both are optional for EJB 3.0 and are hardly used beyond
legacy EJB 2.1 beans. We will not discuss these methods beyond this basic
introduction. They are mainly provided for backwards compatibility.

getRollbackOnly,
setRollbackOnly
getUserTransaction

 These methods are used for EJB transaction management in the case of container-
managed transactions. We will discuss container-managed transactions in greater
detail in Chapter 6.

getUserTransaction This method is used for EJB transaction management in the case of bean-managed
transactions. We will discusse bean-managed transactions in greater detail in Chapter
6.

getTimerService This method is used to get access to the EJB timer service. We will discuss EJB
timers later on in this Chapter.

lookup This method is used to get references to Objects stored in the JNDI registry. With the
introduction of DI in EJB 3.0, direct JNDI lookup has largely been made unnecessary.
However, there are some edge cases that DI cannot handle or DI is simply not
available. This method comes in very handy in these circumstances. Discussed later in
this section.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Both Session and Message Driven Beans have their own subclasses of the javax.ejb.EJBContext
interface. As shown in Figure 5.2, the Session Bean specific subclass is
javax.ejb.SessionContext while the MDB specific subclass is
javax.ejb.MessageDrivenContext.

Figure 5.2: The EJB Context interface has a subclass for both the Session and Message Driven Bean types.

Each subclass is designed to suit the particular runtime environment of each bean type. As a result,
they either add methods to the superclass or invalidate methods not suited for the bean type.

Using EJBContext
As we discussed earlier you can get access to several container services such as transaction or security
by using EJBContext. Interestingly you can get access to the EJBContext through DI. For example,
a SessionContext could be injected into a bean as follows:

@Stateless
public class PlaceBidBean implements PlaceBid {
 @Resource
 SessionContext context;
 ...
}

In the code snippet, the container detects the @Resource annotation on the context variable and
figures out that the bean wants an instance of it’s session context. The SessionContext adds a
number of methods specific to the Session Bean environment, including getBusinessObject,
getEJBLocalObject, getEJBObject, getInvokedBusinessInterface and
getMessageContext. All of these are fairly advanced methods that are rarely used. Note that
getEJBLocalObject and getEJBObject methods are meant for EJB 2.x beans and will generate
exceptions if used with EJB 3.0 beans. We will not discuss these methods further and will leave them
for you to explore on your own.

The MessageDrivenContext adds no methods specific to MDB. Rather, it throws exceptions if
the getCallerPrincipal, isCallerInRole, getEJBHome or getEJBLocalHome
methods are called since they make no sense in a messaging based
environment (recall that a message driven bean has no business

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

interface and is never invoked directly by the client). Much like
a session context, a MessageDrivenContext can be injected as follows:

@MessageDriven
public class OrderBillingMDB {
 @Resource MessageDrivenContext context;
 ...
}

Note it is illegal to inject a MessageDrivenContext into a Session Bean or a
SessionContext into a Message Driven Bean.This is about as much time as we need to spend on
the EJB context right now. Rest assured that we will see more of its use in Chapter 6.

In the meanwhile, we’ll turn our attention back to a vital part of EJB 3.0—dependency injection. We
provided a brief overview of dependency injection in Chapter 2 and have been seeing EJB DI in
action in last few Chapters. We just saw a pretty intriguing use-case in injecting EJB contexts. In
reality, EJB DI is a like a Swiss army knife, it is an all-in-one tool that can be used in very unexpected
ways. Let’s take a look at some of these advanced usages next.

5.2 Accessing Resources using DI and JNDI
We’ve seen EJB 3.0 DI in its primary incarnations already—the @javax.ejb.EJB and
@javax.annotation.Resource annotations. EJB 3.0 DI comes in three more forms—the
@javax.persistence.PersistenceContext and
@javax.persistence.PersistenceUnit annotations. We’ll see these two annotations in
action in Part 3 of this book.

We’ve also seen only a small subset of the power of the @Resource annotation. So far, we’ve used
the @Resource annotation to inject JDBC data sources, JMS connection factories and JMS
destinations. Unlike some lightweight containers such as Spring, EJB 3.0 does not allow injection of
POJOs that aren’t beans. However, the @Resource annotation allows for a variety of other uses,
some of which we will cover in the coming section. In this section we will learn how to use
@Resource annotations, its parameters, difference between setter and field injection and see
@Resource annotation in action to inject a variety of resources such as mail, environment entries,
timer service, etc. Finally we will see learn lookuping of resources using JNDI and lookup method in
EJBContext.

5.2.1 Resource Injection using @Resource
The @Resource annotation is by far the most versatile mechanism for DI in EJB 3.0. As we noted,
in most cases the annotation is used to inject JDBC data sources, JMS resources and EJB contexts.
However, the annotation can also be used for email server resources, environment entries or even EJB
references. We will briefly take a look at each of these cases. For convenience, we will use the familiar
JDBC data source example to explain to the basic features of the @Resource annotation before
moving on to the more involved cases. As review, here is how the code to inject a data source into the
PlaceBid Bean from Chapter 2 looks like:
@Stateless

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

public class PlaceBidBean implements PlaceBid {
 ...
 @Resource(name=”jdbc/actionBazaarDB”)
 private javax.sql.DataSource dataSource;

In this particular case, the container would not have to work very hard to figure out what resource to
inject because the name parameter is explicitly specified. As we know, this parameter specifies the
JNDI name of the resource to be injected, which in out case is specified to be ‘jdbc/actionBazaarDB’.
Although we didn’t mention this little detail before, the value specified by the name parameter is
actually interpreted further by the container to match a value specified in the res-ref-name in the
resource-ref tag in deployment descriptor as in the following example.
<resource-ref>
 <res-ref-name>jdbc/actionBazaarDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
</resource-ref>

The value of the name parameter in @Resource (or res-ref-name) is actually translated to a
fully qualified JNDI mapping in the form: java:comp/env/[value of the name parameter] (see the
sidebar item on ENC). In our example, the actual complete JNDI path for the resource will be:
java:comp/env/jdbc/actionBazaarDB. If you don’t specify the name element in the @Resource
annotation the JNDI name for the resource will be of the format java:comp/env/ [bean Class name
including package]/[value of the annotated field/property]. If we didn’t specify the name element
in the @Resource annotation, the container would be looking for the JNDI path:
java:comp/env/actionbazaar.buslogic.PlaceBidBean/dataSource.

The Environment Naming Context and Resolving Global JNDI Names

If you are familiar with how JNDI references worked in EJB 2.x, you will remember about the
Environment Naming Context (ENC). ENC allows portability of the application without having to
depend upon on global JNDI names. Global JNDI names for resources differ between application
server implementations and ENC allows us to use a JNDI location that starts with java:comp/env/
instead of hard coding actual global path names. EJB 3.0 essentially assumes that all JNDI names
used in code are local references and automatically prepends names with the ‘java:comp/env/’
prefix.
This automatic interpretation of EJB 3.0 JNDI names into local references is a very nice alternative
to mentioning relative the local ENC prefix over and over again. However, this nice convenience
does come at a price. Since you cannot use global names with the name parameter, you have to
make sure to perform the mapping between the ENC and global JNDI names in all cases.
Fortunately, many application servers will automatically resolve the ENC name to global JNDI name
if a resource with same global JNDI name exists. For example, if you are using the Sun Glassfish or
Oracle Application Server and you define a data source as below, the application server will
automatically map the data source to the global JNDI resource bound to jdbc/ActionBazaarDS even if
you didn’t explicitly map the resource.

@Resource(name="jdbc/ActionBazaarDS")
private javax.jdbc.DataSource myDB;

Moreover, application servers will allow you to explicitly specify a global JNDI name using the
mappedBy parameter of the @Resource annotation. For example, if you are using the JBoss
Application Server and you have a data source with a global JNDI name of java:/DefaultDS you can
specify the resource mapping as follows:

@Resource(name="jdbc/ActionBazaarDS", mappedName="java:/DefaultDS")
private javax.jdbc.DataSource myDB;

In this case, the data source with the global JNDI name of java:/DefaultDS will be looked up when
the ENC java:comp/env/jdbc/ActionBazaarDS is resolved.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

However remember that using the mappedName parameter makes code less portable and we
recommend you use deployment descriptors for mapping global JNDI names instead.

Note, just as the @Resource annotation, the @EJB annotation has a mappedBy parameter as well.

Behind the scenes, the container resolves the JNDI references to the resources and binds the resource
to the ENC (see the sidebar item) during deployment. If the resource is not found during injection,
the container throws a runtime exception and the bean becomes unusable.

Beyond JNDI name mapping, the @Resource annotation is meant to be a lot more flexible when it
needs to be than what is apparent in our deliberately straightforward data source injection example.
To understand some of these robust features, let us take a look at the definition for the annotation:
@Target({TYPE, METHOD, FIELD, PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
public @interface Resource {
 String name() default "";
 String type() default Object.class;
 AuthenticationType authenticationType() CONTAINER;
 boolean shareable() default false;
 String description default "";
 String mappedName() default "";
}

The first thing you should note from the definition of the @Resource annotation is that it is not
limited to being applied to instance variables. As the @Target value indicates, it can be applied to
setter methods, method parameters and even to classes.

Setter vs. Field Injection

Other than field injection, setter injection is the most commonly used option for injection. To see
how it works, let us translate our data source example to use setter injection:
@Stateless
public class PlaceBidBean implements PlaceBid {
 ...
 private DataSource dataSource;
 ...
 @Resource(name=”jdbc/actionBazaarDB”)
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }

As you can see, setter injection relies on JavaBeans property naming conventions. In case you are
unfamiliar with them, the conventions dictate that the instance variables of an object should always
be private so that they cannot be externally accessible. Instead, an instance variable named XX should
have corresponding non-private methods named getXX and setXX that allow it to be accessed and set
externally. We’ve seen how the setter for the PlaceBidBean dataSource variable looks like.
The getter could look like the following:

public DataSource getDataSource() {
 return dataSource;
}

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Just as in instance variable injection, the container inspects the @Resource annotation on the
setDataSource method before a bean instance becomes usable, looks up the data source from
JNDI using the name parameter value and calls the setDataSource method using the retrieved
data source as parameter.

Whether or not to use setter injection is largely a matter of taste. Although setter injection
might seem like a little more work, they provide a few distinct advantages. Firstly it is easier
to unit test since the public setter method by invoking it from a testing framework like
JUnit. Secondly, it is easier to put initialization code in the setter if you need it.

In our case, we can open a database connection in the setDataSource method as soon as injection
happens:
private DataSource dataSource;
private Connection connection;
...
@Resource(name=”jdbc/actionBazaarDB”)
public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 this.connection = dataSource.getConnection();
}

The optional type parameter of the @Resource annotation can be used to explicitly set the type
of the injected resource. For example, we could have chosen to tell the container that the injected
resource is of type javax.sql.DataSource as following:

@Resource(name=”jdbc/actionBazaarDB”,
 type=javax.sql.DataSource.class)
private DataSource dataSource;

If omitted, the type of the injected resource is assumed to be the same as the type of the instance
variable or property.

The type element is mandatory when @Resource annotation is used at the class level and use
JNDI to obtain reference to the resource. We will deviate from dependency injection and we will see
this usage next.

Using @Resource at the class level

You may recall from our earlier discussion that dependency injection is supported only in the
managed classes and you cannot injection in helper or utility classes. In most applications use of
helper classes is a reality and you have to use JNDI to lookup a resource. If you are not familiar with
JNDI we recommend that you rerference to Appendix A for a brief discussion on JNDI. For looking
up a resource from the helper class you have to reference the resource in the EJB class as follows:

@Resource(name=”jdbc/actionBazaarDB”,mappedName=”jdbc/actionBazaarDS”,
 type=javax.sql.DataSource.class)
@Stateless
public class PlaceBidBean implements PlaceBid

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

You can lookup the resource either from the EJB or the helper class as follows:

Context ctx = new InitialContext();
DataSource ds = (DataSource)
ctx.lookup(“java:comp/env/jdbc/ActionBazaarDS”)

Before we conclude this section let us look at some remaining parameters of @Resource annotation.
The other parameters for the @Resource annotation, authenticationType, shareable,
description and mappedName are not used very often and we will not cover them in great detail.
Table 5.1 describes the use of these parameters.

Table 5.1: @Resource annotation can be used to inject resources. The parameters in are the least used

parameters of the annotation that you should note in case you need them.

Parameter Type Description Default

AuthenticationType Enum AuthenticationType
{CONTAINER,
APPLICATION}

The type of authentication required for
accessing the resource. The CONTAINER
value means that the container’s security
context is used for the resource. On the
other hands, the APPLICATION value
means that authentication for the resource
must be provided by the application. We
will talk more about EJB security in
Chapter 6.

CONTAI
NER

Shareable Boolean Specifies if the resource can be shared. false
Description String The description of the resource. “”
MappedName String A vendor specific name that the resource

may be mapped to, as opposed to the
JNDI name. See the side bar tilted
“Environment Naming Context and
resolving global JNDI names in EJB 3.0”
for details on this parameter.

“”

Using injection for JDBC data sources is just the tip of the iceberg. We will start taking a look at the
other uses of EJB DI next. In general, we are avoiding talking about how the resources are actually
defined in the deployment descriptor for now. We will discuss this in much greater detail when we
talk about application packaging and deployment descriptor tags in Chapter 11.

5.2.2 @Resource annotation In Action
In the previous sections we discussed different parameters of @Resource annotation and learnt how
to use field or setter injection with @Resource to inject JDBC datasources. Next we will see
@Resource annotation in action to inject resources such as JMS objects, mail resources, EJBContext,
environment entries and timer Service.

Injecting JMS resources
Recall the discussion on messaging and Message Driven Beans in Chapter 4. If your application has
anything to do with messaging, it is going to need to use JMS resources such as a
javax.jms.Queue, javax.jms.Topic, javax.jms.QueueConnectionFactory or
javax.jms.TopicConnectionFactory. Just like JDBC data sources, these resources are stored
in the application server’s JNDI context and can be injected through the @Resource annotation. As

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

an example, the following code injects a Queue bound to the name ‘jms/actionBazaarQueue’ to the
queue field:

@Resource(name="jms/actionBazaarQueue")
private Queue queue;

EJBContext
Recall the discussion on the uses of the EJBContext, SessionContext and
MessageDrivenContext interfaces in Section 5.2. One of the most common uses of injection is
to get access to EJB contexts. The following code, used in the PlaceBid Session Bean, injects the
EJB type specific context into the context instance variable:

@Resource SessionContext context;

A critical nuance to note is that the injected session context is not stored in JNDI. In fact, it would be
incorrect to try to specify the name parameters in this case at all and servers will probably ignore the
element if specified. Instead, when the container detects the @Resource annotation on the
context variable, it figures out that the EJB context specific to the current bean instance must be
injected by looking at the variable data type, javax.ejb.SessionContext. Since PlaceBid is a
Session Bean, the result of the injection would be the same if the variable were specified to be the
parent class, EJBContext. In the code below, an underlying instance of
javax.ejb.SessionContext is still injected into the context variable, even if the variable data
type is javax.ejb.EJBContext.

@Resource EJBContext context;

Using the above code in a Session Bean would make a lot of sense if you do not plan to use any of the
bean type specific methods available through the SessionContext interface anyway.

Accessing environment entries
If you have been working with enterprise applications for a little while, it is very likely you have come
across situations where some parameters of your application change from one deployment to another
(such as customer site information, product version and so on). It is overkill to save this kind of
“semi-static” information in the database. This is exactly the situation environment entry
 values are designed to solve.
For example, in the ActionBazaar application, we could have a need to set the censorship flag for
certain countries. If this flag is on, the ActionBazaar application checks items posted against a
censorship list specific to the country the application deployment instance is geared toward.
We can inject an instance of an environment entry as follows:
@Resource
private boolean censorship;

Environment entries are specified in the deployment descriptor and are accessible via JNDI. The
ActionBazaar censorship flag could be specified as following:
<env-entry>
 <env-entry-name>country</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>China</env-entry-value>

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

</env-entry>
<env-entry>
 <env-entry-name>censorship</env-entry-name>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 <env-entry-value>true</env-entry-value>
</env-entry>

Environment entries are essentially meant to be robust application constants and support a relatively
small range of data types. Specifically, the values of the env-entry-type tag are limited to these
Java types: String, Character, Byte, Short, Integer, Long, Boolean, Double, and
Float. Because environment entries are accessible via JNDI they can be injected by name. We could
inject the censorship flag environment entry into any EJB by explicitly specifying the JNDI name as
follows:

@Resource(name=”censorship”)
private boolean censorship;

As you might gather, the data types of the environment entry and the injected variable must be
compatible. Otherwise, the container throws a runtime exception while attempting DI.

Accessing email resources
Other than JDBC data sources and JMS resources, the other heavy-duty resource enterprise
applications often use is JavaMail API javax.mail.Session. JavaMail Sessions that abstract
email server configuration can be stored in the application server JNDI registry. The Session can
then be injected into an EJB using the @Resource annotation and used to send email. In the
ActionBazaar application, this is useful for sending the winning bidder a notification after bidding on
an item is over. The DI code to inject the mail Session could look like the following:

@Resource(name="mail/ActionBazaar")
private javax.mail.Session mailSession;

We will show you how to configure a mail session using the deployment descriptor in the Appendix.

Accessing the timer service
The container-managed timer service provides EJBs the ability to schedule tasks in a very simple way.
We will learn more about timers very soon in Section 5.5. We inject the container timer service into
an EJB using @Resource annotation using the following code:

@Resource
javax.ejb.TimerService timerService;

Just as in the case of the EJB context, the timer service is not saved in JNDI, but the container
resolves the resource by looking at the data type of the injection target.

The @Resource annotation may be used for injecting EJB references accessible via JNDI into other
EJBs. However, the @EJB annotation is provided specifically for this purpose and should be used in
these circumstances instead. Refer to the discussion in Chapter 3 for details of this annotation.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

EJB 3.0 and POJO Injection

As you might have noted, the one DI feature glaringly missing is the ability
to inject resources to POJOs and injection of POJOs that are not EJBs.
You can still indirectly accomplish this by storing POJOs in the JNDI
context (not a particularly easy thing to do) or using proprietary extension of
your container vendor. We will hope that a future version of EJB 3.0 will
provide expanded support for POJO injection similar to other lightweight DI
capable frameworks like Spring.
You can also use POJO injection with Spring-enabled EJB 3.0 beans if you
really need POJO injection in your EJB applications.

@Resource and annotation inheritance
In chapter 3, we learnt that an EJB bean class may inherit from another EJB class or a POJO. If the
superclass defines any dependencies on resources using @Resource annotation those are inherited by
the subclass. For example BidManagerbean extends another stateless EJB PlaceBidBean where
PlaceBidBean defines a resource as in the following example:

@Stateless
public class PlaceBidBean implements PlaceBid{
@Resource(name=”censorship”)
 private boolean censorship;
..
}

@Stateless
public class BidManagerBean extends PlaceBidBean implements BidManager{
..
}

The environment entry defined in the PlaceBidBean will be inherited by the BidManagerBean and
dependency injection will occur when an instance of BidManager is created.

As useful as DI is, it cannot always solve every problem. There are some cases where you must
programmatically lookup resources from a JNDI registry yourself. We’ll talk about some of these
cases next as well as showing you how to do programmatic lookups.

5.2.3 Looking Up Resource and EJBs
Although we can use the @EJB or @Resource annotation to inject resource instances you may still
need to lookup items from JNDI in several advanced cases (if you are unfamiliar with JNDI itself,
check out the brief tutorial in the Appendix). You can use @EJB or @Resource annotation at the EJB
class level to define dependency on an EJB or a resource. There are two ways of using programmatic
lookups—either using the EJB context or a JNDI initial context. We’ll look at both methods.

Recall from our earlier discussion that you can lookup any object stored in JNDI using the
EJBContext.lookup method (including Session Bean references).

This technique can be used to accomplish one extremely powerful feature that DI cannot accomplish.
Using lookups instead of DI allows you to determine what resource to use dynamically at runtime

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

instead of being constrained to using static configuration that cannot be changed programmatically.
All you have to do is specify a different name in the lookup method to retrieve a different resource.
As a result, program logic driven by data and/or user input can determine dependencies instead of
deploy-time configuration.

The following code shows the usage of the EJB context lookup method:

@EJB(name="ejb/BidderAccountCreator", beanInterface =
BidderAccountCreator.class)
@Stateless
public class GoldBidderManagerBean implements GoldBidderManager {
@Resource SessionContext sessionContext;
...
BidderAccountCreator accountCreator
 = (BidderAccountCreator)
 sessionContext.lookup(
 “ejb/BidderAccountCreator”);
...
accountCreator.addLoginInfo(loginInfo);
...
accountCreator.createAccount();

Note that while using the lookup method, you must explicitly specify the complete JNDI path name
yourself. Also note that once an EJB context is injected as in the sample lookup code, it could be
passed into any non-bean POJO to perform the actual lookup.
While both DI and lookup using the EJB context are relatively convenient, the problem is that they
are only available inside the Java EE container (or an application client container). For POJOs
outside a container, you are limited to the most basic method of looking up JNDI references—using
a JNDI initial context. The code to do so is a little mechanical, but it really isn’t too complex. Here is
how the lookup code looks like:

Context context = new InitialContext();
BidderAccountCreator accountCreator
 = (BidderAccountCreator)
 context.lookup(“java:comp/env/ejb/BidderAccountCreator”);
...
accountCreator.addLoginInfo(loginInfo);
...
accountCreator.createAccount();

The InitialContext object can be created by any code that has access to the JNDI API. Also the
object can be used to connect to a remote JNDI server, not just a local one. Although this code
probably looks harmless enough, you should avoid it if at all possible. Mechanical JNDI lookup code
was one of the major pieces of avoidable complexity in EJB 2.x, particularly when these same bits of
code are repeated hundreds of times across an application.

Believe it or not, this is all we needed to say about EJB 3.0 DI and JNDI lookups. In the next
Section, we will cover one of the most exciting new features in EJB 3.0—interceptors.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

5.3 AOP in the EJB World: Interceptors
Have you ever in a situation that requirements changing almost towards the end of the project and
you were asked to add some common missing feature such as logging or auditing for EJBs in your
application. It will be too much boring exercise to go and add logging code in each of your EJB
classes. This type of common code also causes maintainability issues and requires modifying a lot of
java classes for minor changes. Well, EJB 3.0 Interceptors solves this probelm. For example, in this
situation, you create a logging interceptor that does the logging and you can make this as the default
interceptor for your application. The logging interceptor will be executed when any bean method is
executed and does the logging. If the requirement for logging changes then just change only one class.
In section, we’re going to see how they work. First we will provide an introduction to AOP, EJB 3.0
interceptors , defining an interceptor for an EJB and building of a business method interceptor. You
may remember that we briefly discussed in Chapter 3 that you can define lifecycle-callbacks in
external classes and we will learn how you can use interceptors configuration to define external
lifecycle callback listeners.

5.3.1 What is AOP?
It is very likely you have at least briefly come across the term Aspect-Oriented Programming (AOP).
The essential idea behind AOP is that for most applications, there is common code repeated across
methods that is not necessarily directly involved in solving the core business problem, but has to do
with infrastructure concerns.

The most commonly cited example of this is logging, especially at the basic debugging level. To use
an ActionBazaar example, let us assume that we log the entry into every method in the system.
Without AOP, this would mean adding logging statements at the beginning of every single method
in the system to log the action of “entering method XX”! Some other common examples where AOP
applies are auditing, profiling, statistics and so on.
The common term used to describe these cases are called crosscutting concerns—concerns that cut
across application logic. An AOP system allows the separation of crosscutting concerns into their own
modules. These modules are then applied across the relevant cross-section of application code, such as
the beginning of every method call. Tools like AspectJ have made AOP relatively popular. For great
coverage of AOP, please read AspectJ in Action by Ravnivas Laddad.

EJB 3.0 supports AOP-like functionality by providing ability to intercept business methods and
lifecycle callbacks. Buckle up and get ready to jump into the world of EJB 3.0 interceptors where you
will learn what interceptors are and how to build business method and lifecycle callback interceptors.

5.3.2 What are Interceptors

Interceptors are essentially the EJB rendition of AOP. Interceptors are objects that are automatically
triggered when an EJB method is invoked (believe it or not, Interceptors are not new concepts and
date back to technologies like CORBA). While EJB 3.0 Interceptors provide good enough
functionality to handle most common crosscutting concerns (such as our logging example), it does

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

not try to provide the level of functionality a full scale AOP package like AspectJ provides. On the
flip side of things, EJB 3.0 Interceptors are also generally a lot easier to use.

Recall our discussion in Section 5.1 on how the EJB object provides services like transactions and
security. In essence, the EJB object is essentially a very sophisticated built-in interceptor that provides
a whole host of functionality. If you wanted to you could create your own EJB-esque services using
Interceptors if you wanted to.

In the pure AOP world, interception happens at various points (called point cuts) including at the
beginning of a method, at the end of a method, when an exception is triggered and so on. If you are
familiar with AOP, an EJB Interceptor is the most general form of interception—it is an around
invoke advice. EJB 3.0 Interceptors are triggered at the beginning of a method, is around when the
method returns, can inspect the method return value or any exceptions thrown by the method.
Interceptors can be applied to both Session and Message Driven Beans.

We will examine business method Interceptors further by implementing basic logging on the
PlaceBid Session Bean presented in Chapter 2. Once you understand how this works, applying it
to a Message Driven Bean should be a snap. Figure 5.3 depicts a business method interceptor that
implements common logging code in the ActionBazaar application.

Figure 5.3: Business Interceptors are typically used to implement common code. The ActionBazaarLogger

implements common logging code used by all EJBs in the ActionBazaar system.

Listing 5.1 details how the code looks like. The Interceptor attached to the addBid method will
print a log message out to the console each time the method is invoked. In a real-world application,
this could be used as debugging information (and perhaps printed out using
java.util.logging or Log4J).

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Listing 5.1: EJB business method interceptors
@Stateless
public class PlaceBidBean implements PlaceBid {
 ...
 @Interceptors(ActionBazaarLogger.class) |#1
 public void addBid(Bid bid) {
 ...
 }
}

public class ActionBazaarLogger {
 @AroundInvoke |#2
 public Object logMethodEntry(
 InvocationContext invocationContext)
 throws Exception {
 System.out.println("Entering method: ”
 + invocationContext.getMethod().getName());
 return invocationContext.proceed();
 }
}
(annotation) <#1 Attaching the interceptor>
(annotation) <#2 Specifying the interceptor method>

We will take a bird’s eye view of this code first before analyzing each feature in detail in the coming
Sections. The Interceptor Class, ActionBazaarLogger is attached to the addBid method of the
PlaceBid Stateless Session bean using the @javax.interceptor.Interceptors
annotation#1. The ActionBazaarLogger object’s logMethodEntry method is annotated with
the @javax.interceptor.AroundInvoke annotation and will be invoked when the addBid
method is called#2. The logMethodEntry method prints out a log message to the system console
including the method name entered using the javax.interceptor.InvocationContext.
Finally, the invocation context’s proceed method is invoked to signal to the container that the
addBid invocation can proceed normally.
We will now start a detailed analysis of the code, starting with attaching the interceptor using the
@Interceptors annotation.

5.3.3 Specifying interceptors
The @Interceptors annotation allows us to specify one or more Interceptor classes for a method
or Class. In Listing 5.2 we attach a single interceptor to the addBid method:

@Interceptors(ActionBazaarLogger.class)
public void addBid (...

The @Interceptors annotation can also be applied to an entire class. When the
@Interceptors annotation is applied to a class, the Interceptor would be triggered if any of the
target class’s methods are invoked. For example if the ActionBazaarLogger is applied at the
class level as in the following code, our logMethodEntry method will be invoked when either the
PlaceBid Class’s addBid or addTimeDelayedBid methods are called by the client (imagine
that the addTimeDelayedBid method adds a bid after a specified interval of time):

@Interceptors(ActionBazaarLogger.class)
@Stateless
public class PlaceBidBean implements PlaceBid {

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 public void addBid (...
 public void addTimeDelayedBid (...
}

As we mentioned, the @Interceptors annotation is fully capable of attaching more than one
interceptor either at a class or method level. All you have to do is provide a comma-separated list as
parameter to the annotation. For example, a generic logger and a bidding statistics tracker could be
added to the PlaceBid Session Bean as follows:

@Interceptors({ActionBazaarLogger.class, BidStatisticsTracker.class})
public class PlaceBidBean { ... }

Besides specifying method and class level interceptors, we may also create what is called a default
Interceptor. A default interceptor is essentially a “catch-all” mechanism that attaches to all methods of
all Beans in the EJB module. Unfortunately, you cannot specify these kind of Interceptors using
annotations and must use deployment descriptor settings instead. We will not discuss deployment
descriptors in any great detail at this point but will show you how setting the
ActionBazaarLogger class as a default interceptor for the ActionBazaar application might look
like:

<assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>
 actionbazaar.buslogic.ActionBazaarLogger
 </interceptor-class>
 </interceptor-binding>
</assembly-descriptor>

An interesting question that might have already crossed your mind is what happens if we specify a
default, class and method level Interceptors for a specific target method (yes, this is perfectly legal). In
which order do you think the interceptors would be triggered?

Somewhat counterintuitive to how Java scoping typically works out, the interceptors are called from
the larger scope to the smaller scope. That is, the default interceptor is triggered first, then the class
level interceptor and finally the method interceptor. Figure 5.4 shows this behavior.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Figure 5.4: The order in which business method Interceptors are invoked. Default Interceptors apply to all

methods of all EJBs in an ejb-jar package. Class level Interceptors apply to all methods of a specific class.

Method level Interceptors apply to one specific method in a class. Default application level Interceptors are

invoked first, then class level Interceptors, then method level Interceptors.

If more than one interceptor is applied at any given level, they are executed in the order that they are
specified. In our ActionBazaarLogger and BidStatisticsTracker example, the
ActionBazaarLogger is executed first since it appears first in the comma-separated list in the
@Interceptors annotation:
@Interceptors({ActionBazaarLogger.class, BidStatisticsTracker.class})

Unfortunately, the only way to alter this execution order is using interceptor-order element in
deployment descriptor and there is no annotations to change interceptor order.. However you can
disable Interceptors at the default or class levels if you need to. Applying the
@javax.interceptor.ExcludeDefaultInterceptors annotation on either a class or a
method disables all default interceptors on the class or method. Similarly the
@javax.interceptor.ExcludeClassInterceptors annotation disables class level
Interceptors for a method. For example, both default and class level Interceptors may be disabled for
the addBid method using the following code:
@Interceptors(ActionBazaarLogger.class)
@ExcludeDefaultInterceptors
@ExcludeClassInterceptors
public void addBid (...

Having looked at how to specify Interceptors, we will take a detailed look the Interceptor classes
themselves next.

5.3.4 Implementing business Interceptors
Like the EJB lifecycle callback methods that we discussed in Chapters 3 and 4, business Interceptors
can either be implemented in the bean class itself or separate classes. However we recommend that
you create Interceptor methods external to the bean class because it allows you to separate
crosscutting concerns from business logic and shared them between multiple beans. After all isn’t that
the whole point of AOP?

As we can see from Listing 5.2, following the general EJB 3.0 philosophy, an Interceptor class is
simply a POJO that may have a few annotations.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Around Invoke Methods

What is important to note from the Listing is that an Interceptor must always have only one
method that is designated as the around invoke (@AroundInvoke) method. @AroundInvoke methods
must NOT be a business method, which means that it should not be a public method in the bean’s
business interface(s).

An around invoke method is automatically triggered by the container when a client invokes a method
that has designated it to be its Interceptor. In Listing 5.2, the triggered method is marked with the
@AroundInvoke annotation:
@AroundInvoke
public Object logMethodEntry(
 InvocationContext invocationContext)
 throws Exception {
 System.out.println("Entering method: ”
 + invocationContext.getMethod().getName());
 return invocationContext.proceed();
}

In effect, this means that the logMethodEntry method would be executed whenever the
ActionBazaarLogger Interceptor is triggered. As you might gather from the preceding code, any
method designated AroundInvoke must follow this pattern:
public Object <METHOD>(InvocationContext) throws Exception

The InvocationContext interface passed in as the single parameter to the method provides a
number of features that makes the AOP mechanism extremely flexible. The logMethodEntry
method uses just two of the methods included in the interface. The getMethod().getName() call
returns the name of the method being intercepted–‘addBid’ in our case.

The call to the proceed method is extremely critical to the functioning of the Interceptor.
In our case, we always return the object returned by the
InvocationContext.proceed() in the logMethodEntry method. This tells the
container that it should proceed to the next Interceptor in the execution chain or call the
intercepted business method. On the other hand, not calling the proceed method will bring
processing to a halt and avoid the business method (and any other Interceptor down the
execution chain) from being called.

This feature can be extremely useful for things like security validation. For example, the following
Interceptor method prevents the intercepted business method from being executed if security
validation fails:
@AroundInvoke
public Object validateSecurity(InvocationContext invocationContext)
 throws Exception {
 if (!validate(...)) {
 throw new SecurityException(“Security cannot be validated. “ +
 “The method invocation is being blocked.”);
 }

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 return invocationContext.proceed();
}

The InvocationContext interface
The InvocationContext interface has a number of other very useful methods. Here is the
definition of the interface:
public interface InvocationContext {
 public Object getTarget();
 public Method getMethod();
 public Object[] getParameters();
 public void setParameters(Object[]);
 public java.util.Map<String,Object> getContextData();
 public Object proceed() throws Exception;
}

The getTarget method retrieves the bean instance that the intercepted method belongs to. This
method is particularly useful for checking the current state of the bean through its instance variables
or accessor methods.

The getParameters method returns the parameters passed to the intercepted method as
an array of objects. The setParameters method, on the other hand, allows us to change
these values at runtime before they are passed to the method. These two methods are
extremely useful for interceptors that manipulate bean parameters to change behavior at
runtime.

An Interceptor in ActionBazaar to transparently round off all monetary values to two decimal places
for all methods across the application could use the getParameters and setParameters
methods to accomplish its task.

The key to understanding the need for the InvocationContext.getContextData method is
the fact that contexts are shared across the interceptor chain for a given method. As a result, data
attached to an InvocationContext can be used to communicate between Interceptors. For
example, let us assume that our security validation Interceptor stores the member status into
invocation context data after the user is validated. This can be done as follows:
invocationContext.getContextData().put("MemberStatus", "Gold");

As we can see, the invocation context data is simply a Map used to store name-value pairs. Another
Interceptor in the invocation chain can now retrieve this data and take specific actions based on the
member status. For example, a discount calculator Interceptor can reduce the ActionBazaar item
listing charges for a Gold member. The code to retrieve the member status would look like the
following:
String memberStatus =
 (String) invocationContext.getContextData().get("MemberStatus");

Following is the AroundInvoke method of the DiscountVerifierInterceptor that actually
uses the invocation context as well as most of the methods we discussed earlier:

@AroundInvoke
public Object giveDiscount(InvocationContext context)
 throws Exception {
 System.out.println("*** DiscountVerifier Interceptor”
 + “ invoked for " + context.getMethod().getName() + " ***");

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 if (context.getMethod().getName().equals("chargePostingFee")
 && (((String)(context.getContextData().get("MemberStatus")))
 .equals("Gold"))) {
 Object[] parameters = context.getParameters();
 parameters[2] = new Double ((Double) parameters[2] * 0.99);
 System.out.println (
 "*** DiscountVerifier Reducing Price by 1 percent ***");
 context.setParameters(parameters);
 }

 return context.proceed();
}

We may throw or handle a runtime or checked exception in a business method Interceptor. If a
business method interceptor throws an exception before invoking the proceed method, the
processing of other Interceptors in the invocation chain and the target business method will be
terminated.

Recall our discussion on life-cycle callback methods in Chapter 3 and 4. Although this isn’t readily
obvious, life-cycle callbacks are a form of interception as well. While method Interceptors are
triggered when a business method is invoked, life cycle callbacks are triggered when a bean transitions
from one life-cycle state to another. Although this was not the case in our previous life-cycle
examples, in some cases life-cycle callback methods can be used for crosscutting concerns that can be
shared across beans such as logging and profiling. For this reason, you can define life-cycle callbacks
in Interceptor classes in addition to business method Interceptors. Let’s take a look at how to do this
next.

5.3.5 Lifecycle callback methods in the Interceptor class
Recall that the @PostConstruct, @PrePassivate, @PostActivate and @PreDestroy
annotations can be applied to bean methods to receive life-cycle callbacks. When applied to
Interceptor class methods, lifecycle callbacks work in exactly the same way. Lifecycle callbacks defined
in an interceptor class are known as lifecycle callback interceptors or lifecycle callback listeners. When the
target bean transitions lifecycles, annotated methods in the Interceptor class is triggered.

The following Interceptor class logs when ActionBazaar beans allocate and release resources when
beans instances are constructed and destroyed:

public class ActionBazaarResourceLogger {
 @PostConstruct
 public void initialize (InvocationContext context) {
 System.out.println (“Allocating resources for bean: ”
 + context.getTarget());
 context.proceed();
 }

 @PreDestroy
 public void cleanup (InvocationContext context) {
 System.out.println (“Releasing resources for bean: ”
 + context.getTarget());
 context.proceed();

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 }
}

As the code sample shows, lifecycle Interceptor methods cannot throw checked exceptions (it doesn’t
really make sense since there is no client for lifecycle callbacks to bubble a problem up to).
Note a bean can have the same lifecycle callbacks both in the bean itself as well as in one or more
Interceptors. That is the whole point of calling the InvocationContext.proceed method in
lifecycle Interceptor methods as in the resource logger code. This makes sure that the next lifecycle
Interceptor method in the invocation chain or the bean lifecycle method is triggered. There is
absolutely no difference between applying an Interceptor class with or without lifecycle callbacks.
The resource logger, for example is applied as follows:

@Interceptors({ActionBazaarResourceLogger.class})
public class PlaceBidBean { ... }

You might find that you will use lifecycle callbacks as bean methods to manage resources a lot more
often than using Interceptor lifecycle callbacks to encapsulate crosscutting concerns like logging,
auditing and profiling. However, Interceptor callbacks are extremely useful when you need them.
As a recap, Table 5.2 contains a summary of both business method Interceptors and lifecycle
callbacks.

Table 5.2 Differences between lifecycle and business method interceptors. Lifecycle interceptors are created to

handle EJB lifecycle callbacks. Business method interceptors are associated with business methods and are

automatically invoked when a user invokes the business method.

 Lifecycle callback methods Business method interceptor

 Gets invoked when a certain lifecycle event
occurs.

Gets invoked when a business method is
called by a client.

Location In a separate Interceptor class or in the bean
class.

In the class or an interceptor class.

Method signature public void <METHOD>(InvocationContext) –
in a separate Interceptor Class.

public void <METHOD>() – in the bean class.

public Object
<METHOD>(InvocationContext) throws
Exception

Annotation @PreDestroy, @PostConstruct,
@PrePassivate, @PostActivate

@AroundInvoke

Exception handling May throw run-time exceptions but must not
throw checked exceptions.
May catch and swallow exceptions.
No other lifecycle callback methods are
called if an exception is thrown.

May throw application or run time exception.
May catch and swallow runtime exceptions.
No other business Interceptor methods or
the business method itself are called if an
exception is thrown before calling the
proceed method.

Transaction and security
context

No security and transaction context. Share the same security and transaction
context within which the original business
method was invoked.

This is all that we want to say about Interceptors right now. Clearly, Interceptors are an extremely
important addition to EJB. It is very likely that the AOP features in future releases of EJB will get
more and more robust. Interceptors certainly have the potential to evolve into a robust way of
extending the EJB platform itself; with vendors offering new out-of-the-box Interceptor based
services.

We will now move onto the final vital EJB 3.0 feature we will cover in this Chapter– the Timer
service. Timers can be used only by Stateless Session Beans and Message Driven Beans.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

5.4 Scheduling: the EJB 3.0 Timer Service
Scheduled tasks are a reality for most non-trivial applications. For example, your business application
may have to run a daily report to determine inventory levels and automatically send out restocking
requests. For most legacy applications is it typical to have a batch job to cleanup temporary tables at
the start or end of each day. If fact, it is fair to say schedulers are an essential holdover from the days
of big iron batch computing. As a result, scheduling tools, utilities and frameworks have been a
development mainstay for a long time. UNIX cron is probably the most popular and well-loved
scheduling utility. The System Task Scheduler, generally lesser known, is the Microsoft Windows
counterpart of cron.

In the Java EE world, you have a few options for scheduling tasks and activities. Most Java EE
application servers come with a scheduling utility that is sufficiently useful. There are also a number
of feature-rich, full-scale scheduling packages available for enterprise applications. Flux is an excellent
commercial scheduling package, while Quartz is a good quality open source implementation. EJB
Timer services are the standard Java EE answer to scheduling. As you will see in this part of the
Chapter, while it does not try to compete with full-scale scheduling products, the EJB 3.0 Timer
service is probably sufficient for most day-to-day application development requirements. Because it is
so lightweight, the EJB 3.0 Timer service is also extremely easy to use.

In the next few Sections, we will take a look at how EJB 3.0 Timers work. We will build scheduling
service using EJB 3.0 timers and hence learn use of @Timeout annotation. Finally we will brainstorm
the ideal circumstances to use timers.

5.4.1 What are Timers?
In a sense, the EJB 3.0 Timer service is based on the idea of time-delayed callbacks. In other words,
the EJB Timer service allows you to specify a method (appropriately called the timeout method) that is
automatically invoked after a specified interval of time. The container invokes the timeout method
on your behalf when the time interval you specify elapses. As we will see, we can use the Timer
service to register for callbacks triggered once at a specific time or at regular intervals.

We can only use Timers in Stateless Session Beans and Message Driven Beans because of
their asynchronous, stateless nature. However, unlike Stateless Session Beans and MDBs,
Timers are persistent and can survive a container crash or restart. Timers are also
transactional, that is, a transaction failure in a timeout method rolls back the actions taken by
the Timer.

Figure 5.5 illustrates how Timers work.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Figure 5.5: How an EJB Timer works. A client may invoke an EJB method that creates a ‘Timer’ that registers a

callback in the EJB Timer Service. The EJB container invokes the timeout method in the bean instance when the

Timer expires.

As the Figure demonstrates, an EJB method can register a time-driven callback with the container
Timer service. When the time interval specified by the EJB expires, the Timer service invokes the
timeout method pointed to by the EJB. We will see how this works by way of a simple example next.

5.4.2 Using the Timer Service
We will explore the features of the EJB 3.0 Timer services by adding a Timer to the PlaceBid EJB
we introduced in Chapter 2. We will add a Timer in the addBid method to check the status of the
newly placed bid every fifteen minutes. Although we won’t code it, another very compelling use case
is to create a Timer when an item is added for bidding. Such a timer could be triggered when the
auction time expires and determine who the winning bidder is. We’ll leave the implementation of
this Timer as an exercise for you.
Among other things the Timer we will implement would notify the bidder via email if they have been
outbid. We have omitted most of the code that is not absolutely necessary to explain Timer
functionality in Listing 5.2. The complete code is included in the downloadable code samples if you
are interested in exploring further.

Listing 5.2: Using the EJB 3.0 Timer service
public class PlaceBidBean implements PlaceBid {
 ...
 @Resource TimerService timerService; |#1
 ...
 public void addBid(Bid bid) {
 ... Code to add the bid ...
 timerService.createTimer(15*60*1000, 15*60*1000, bid); |#2
 ...
 }
 ...

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 @Timeout |#3
 public void monitorBid(Timer timer) {
 Bid bid = (Bid) timer.getInfo();
 ... Code to monitor the bid ...
 }
}
(annotation) <#1 Timer service injected>
(annotation) <#2 Timer created>
(annotation) <#3 Timeout method>
We will not explore this code in close detail right now, but will do a brief “fly over”.
We use EJB 3.0 resource injection to get access to the Timer service#1. In the addBid method,
after we add the bid, we schedule a Timer service callback to occur every fifteen miniues#2. The
newly added Bid is attached as Timer info when the timer is registered. At regular intervals, the
monitorBid method is called by the Timer service, which is designated with the @Timeout
annotation. The monitorBid method retrieves the Bid instance attached as Timer info and
monitors the bid.
We will explore EJB timer services details using Listing 5.2 as a jump off point in the next few
sections, starting with the ways to get access to the EJB 3.0 Timer Service.

Accessing the Timer Service
As we just saw in Listing 5.2, the EJB Timer service can be injected into a Java EE component using
the @Resource annotation. Alternatively, you can also get access to the container Timer service
through the EJB context:

@Resource SessionContext context;
...
TimerService timerService = context.getTimerService();

Which method you choose is largely a matter of taste. In general, if you are already injecting an EJB
context, you should avoid injecting the Timer Service too in order to avoid redundant code. Instead,
you should use the getTimerService method like the preceding code. However, if you are not
using the EJB context for anything else, it makes perfect sense to simply inject the TimerService
as in Listing 5.2.

We will take a closer look at the injected Timer service itself next.

Using the TimerService interface
In Listing 5.2, we use the TimerService interface to register a Timer#2. As we will soon see, a
Timer is simply a Java EE representation of a scheduled task. The createTimer method used in
Listing 5.2 is one of four overloaded methods provided in the TimerService interface to add
Timers. The one we used specified that the Timer should initially trigger in 15*60*1000
milliseconds (15 minutes), repeat every 15*60*1000 milliseconds (15 minutes) and added a Bid
instance as Timer info:
timerService.createTimer(15*60*1000, 15*60*1000, bid);

Let’s take a look at the complete definition of the TimerService interface to get clearer picture of
the range of options available:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Listing 5.3: Specification for the TimerService interface is used to create either single-

event or recurring timers

public interface javax.ejb.TimerService {
 public Timer createTimer(long duration, |#1
 java.io.Serializable info); |#1
 public Timer createTimer(long initialDuration, |#2
 long intervalDuration, java.io.Serializable info); |#2
 public Timer createTimer(java.util.Date expiration, |#3
 java.io.Serializable info); |#3
 public Timer createTimer(java.util.Date initialExpiration, |#4
 long intervalDuration, java.io.Serializable info); |#4
 public Collection getTimers(); |#5
}
(annotation) <#1 Single-event timer with initial timeout >
(annotation) <#2 Recurring timer with initial timeout >
(annotation) <#3 Single-event timer with expiration time >
(annotation) <#4 Recurring timer with expiration time >
(annotation) <#5 Retrieve list of timers >

The first version of the createTimer#1 method allows us to create a single-event timer that is fired
only once and not repeated. The first parameter, duration specifies the time, in milliseconds, after
which the timeout method should be invoked. The second parameter, info allows us to attach an
arbitrary piece of information to the timer. Note that timer info objects must always be
Serializable, as is the Bid object we used in Listing 5.2. Note also that the info parameter can
be left null if it is not really needed.
We have already seen the second version of the createTimer#2 method in action in Listing 5.2. It
allows us to create recurring timers with initial timeout and interval durations set in milliseconds.
The third version#3 is very similar to the first version in that it allows us to create a timer that fires
once and only once. However, this version allows us to specify the expiration value as a specific
instant in time represented by a java.util.Date instead of a long time offset. The fourth#4 and
second versions of createTimer methods have differ from each other in the same way. Using a
concrete date instead of an offset from the current time generally makes sense for events that should
be fired farther out in the future. However, this is largely a matter of taste. All of these methods
return a generated Timer reference. In general, this returned value is not used very often. Behind the
scenes, all of the TimerService methods associate the current EJB as the callback receiver for the
generated Timers. The final method of the TimerService interface, getTimers#5, retrieves all
of the active Timers associated with the current EJB. This method is rarely used and we will not
discuss it further.
Having looked at the TimerService interface and how to create timers, let’s now take a closer look
at how to implement timeout methods.

Implementing timeout methods
In Listing 5.2, we mark monitorBid to be the timeout method using the @Timeout annotation:
@Timeout
public void monitorBid(Timer timer) {

When the timer or timers created for the PlaceBid EJB expire, the container invokes the designated
timeout method—monitorBid. Using the @Timeout annotation is by far the simplest, but not the

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

only way to specify timeout methods. As you might have guessed, methods marked with the
@Timeout annotation are expected to follow this convention:
public void <METHOD>(Timer timer)

The Timer for which the callback was invoked is passed in as a parameter for the method as
processing context. This is because multiple timers, especially in case of repeating intervals, may
invoke the same timeout method. Also, as we saw in Listing 5.2, it is often necessary to use the
TimerService interface to pass around data to the timeout methods as Timer info.
We will finish off our analysis of the EJB 3.0 Timer service code by taking a closer look at the Timer
interface next.

Using the Timer Interface
As we mentioned, the container passes us back the Timer instance that triggered the timeout
method. In the monitorBid method, we use the interface to retrieve the Bid instance stored as
timer info through the getInfo method:
@Timeout
public void monitorBid(Timer timer) {
 Bid bid = (Bid) timer.getInfo();
 ... Code to monitor the bid ...
}

There are a number of other useful methods defined in the Timer interface. We are going to explore
them through the definition of the Timer interface below in listing 5.3:

Listing 5.3: The javax.ejb.Timer interface

public interface javax.ejb.Timer {
 public void cancel();

 public long getTimeRemaining();

 public java.util.Date getNextTimeout();

 public javax.ejb.TimerHandle getHandle();

 public java.io.Serializable getInfo();
}

The cancel method is particularly useful in canceling a timer prior to its expiration. We can use this
method to stop timers prematurely. In our bid-monitoring example, we can use this method to stop
the chain of recurring callbacks when bidding on the item is over.

It is vital to invoke the cancel method for recurring Timers when they are no longer
needed. Otherwise, the EJB will spin in an infinite loop unnecessarily. This is a subtle,
common and easy mistake to make.

The getTimeRemaining method can be used on either a “single use” or interval timer. The return
value of this method indicates the remaining time for the timer to expire, in milliseconds. You might
find that this method is rarely used. The getNextTimeout method indicates the next time a
recurring Timer will time out, as a java.util.Date instead of a long time-offset. Similar to the
getTimeRemaining method, this method is useful in the rare occasion that you might need to
determine whether or not to cancel a Timer based on when it will fire next.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

The getHandle method returns a Timer handle. TimerHandle is a serialized object that we can
store and obtain information about the Timer by using the getTimer method available through it.
This is a relatively obscure method that we will leave for you to explore on your own if you need it.
We have already seen the getInfo method#5 in action. As we’ve seen, this method is extremely
useful in writing non-trivial timeout functions and accessing extra “processing information” attached
to the Timer by the bean method creating the Timer.
Believe it or not, that is all there is to using the EJB 3.0 Timer service. We will now finish off this
Section by discussing the situations where EJB Timers are an appropriate fit.

EJB Timers and Transactions

EJB Timers are transactional objects.
If the transaction that a timer is triggered under rolls back for some reason
(as a result of a runtime exception in the timeout method for example) the
timer creation is undone. In addition, the timeout method can be executed
in a transactional context. You can specify a transactional attribute for the
timeout method to be ‘Required’ or ‘RequiresNew’ and the container will
start a transaction before invoking the timeout method. If the transaction
fails the container will make sure the changes made by the failed method
does not take effect and will retry the timeout method.
We will talk about EJB transactions in much greater detail in the next
Chapter.

5.4.3 When to use EJB Timers
Clearly, although EJB Timers are relatively feature-rich, they are not intended to go toe-to-toe against
full-fledged scheduling solutions like Flux or Quartz. However, under some circumstances, they are
very sufficient if not ideal. Like almost all other technology choices, this decision comes down to
weighting features against needs for your specific situation and environment.

Merits of Timers
The following are some of the merits of using EJB 3.0 Timers:

 Timers are part of the EJB specification. Hence, applications using EJB Timers will remain
portable across containers instead of being locked into the non-standard APIs of job schedulers
like Quartz.

 Since the EJB Timer service comes as a standard part of a Java EE application server there is no
additional cost in terms of time or money to use it. No extra installation or configuration is
required as would be the case for an external job scheduler, and you will not need to worry about
integration and support.

 The Timer is a container-managed service. No separate thread pools or user threads are required
for them, as would be the case with an external scheduler. For the very same reasons, the EJB
Timer service is likely to have better out-of-the-box performance than third-party products.

 Transactions are fully supported with Timers (see the side bar titled ‘EJB Timers and
Transactions’), unlike external job schedulers, in which you may need to do extra setup for
supporting JTA.

 By default, EJB Timers are persisted and survive EJB lifecycles and container restarts. The same
cannot be said of all third-party schedulers.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Limitations for Timers
The following are the primary limitations of EJB Timers:

 EJB Timers are meant for long-running business processes and not real-time applications where
precision timing is absolutely critical. Commercial schedulers may provide much better
guarantees in terms of precision than the EJB 3.0 Timer service.

 EJB Timers lack support for extremely flexible cron-type timers, blackout dates, workflow
modeling for jobs and so on. These advanced features are commonly available with external job
schedulers.

 There is no robust GUI admin tool to create, manage and monitor EJB 3.0 Timers. This is
generally available for third-party job schedulers.

This concludes our analysis of EJB 3.0 Timers and marks the end of this Chapter.

In general, you should attempt to use EJB 3.0 Timers first. You should only resort to third-
party schedulers if you run into serious limitations that cannot be easily overcome.

Although robust schedulers are a compelling idea, in general they are complex and should not be used
frivolously. However, there are many complex, scheduling intensive applications where robust
schedulers are a must, especially in industries like Banking and Finance.

5.5 Summary
In this Chapter, we covered a few advanced concepts common to all EJB types: such as EJB Object,
EJB Context, using resources using dependency injection in EJB 3.0 and EJB Timer service.

The EJB Object acts as a proxy between clients and container where you can use EJBContext to
access container runtime information and services.

Interceptors are lightweight AOP features in EJB 3.0 for dealing with cross cutting concerns such as
logging and auditing. You can use interceptors either at the EJB module level, class level or method
level.

EJB Timers provide a lightweight scheduling service that you can use in your applications.

You will likely find these advanced features very useful in moderate-sized real-life applications.
The only two features common to Session and Message Driven Beans that we did not cover in this
Chapter are transaction and security management. We have decided to defer the discussion of these
relatively involved topics to Chapter 6. This is a sensible ordering as it would be difficult to broach
the topic of transaction and security management before understanding a few of the features
introduced in this Chapter like Interceptors and managed components. We’ll also defer the topic of
EJB packaging to Chapter 11, after we finish talking about the Java Persistence API (JPA).

Let’s dive into two of the most important EJB services—transactions and security in the next
Chapter.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Chapter 6 Transactions and Security

Transaction and security management are very important aspects of any serious enterprise
development effort. By the same token, both of these are system level concerns rather than true
business application development concerns, which is why they often become an afterthought. In the
worst-case scenario, these critical aspects of application development are overlooked altogether. With
these facts in mind, EJB 3.0 provides functionality in both of these realms that is both robust enough
for the most demanding environments, yet simple enough for those who prefer to focus on
developing business logic. Although we have briefly mentioned these features in previous chapters, we
have not dealt with them in any detail until this chapter. The first part of this chapter is devoted to
exploring the rich transaction management features of EJB 3.0. We will briefly discuss about
transactions and explore more about container managed and bean managed transactions support in
EJB. The second part deals with security features of EJB where we briefly explore declarative and
programmatic security support in EJB.

6.1 What Transactions Are
We engage in transactions almost every day when withdrawing money from an ATM or paying a
phone bill. Transactions in computing are a closely related concept but differ slightly and are a little
harder to define. In the most basic terms, a transaction is a grouping of tasks that must be processed
as an inseparable unit. This means every task that is part of the transaction must succeed for the
transaction to succeed. If any of the tasks fail, the transaction fails as well. You can think of a
transaction as a three-legged wooden stool. All three legs must hold for the stool to stand. If any of
them break, the stool collapses. In addition to this all or nothing value proposition, transactions must
guarantee a degree of reliability and robustness. We will come back to exactly what this last statement
means when we describe what are called the ACID properties of transactions. A successful transaction
is committed, meaning its results are made permanent, whereas a failed transaction is rolled back, as if
it never happened.

To explore transaction concepts further, let us take a look at an example problem in the
ActionBazaar application. Before exploring transaction support in EJB, we will briefly discuss about
ACID properties, transaction management concepts such as Resource Manager and Transaction
Manager and two phase commit.

6.1.1 A Transactional Solution in ActionBazaar
Some items on ActionBazaar have a “Snag-It” ordering option. This option allows a user to

purchase an item on bid at a set price before anyone else bids on it. As soon as the first bid is placed
on an item, the “Snag-It” option disappears. This feature has become very popular because neither

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

the buyer nor the seller needs to wait for bidding to finish as long as they both like the initial “Snag-
It” price tag. As soon as the user presses the “Snag-It” button, the ActionBazaar application makes
sure no bids have been placed on the item, validates the buyer’s credit card, charges the buyer and
removes the item from bidding. Imagine what would happen if one of these four actions failed due to
a system error but the rest of the actions were allowed to succeed. For example, let us assume that we
validate and charge the customers credit card successfully. However, the order itself fails because the
operation to remove the item from bid fails due to a sudden network outage and the user receives an
error message. Since the credit card charge was already finalized, the customer is billed for a failed
order! To make matters worse, the item would remain available for bidding. Another user could put a
bid on the item before anyone could fix the problem, creating an interesting situation for the poor
customer support folks to sort out! We can see this situation in figure 6.1.

39 Figure 6.1: Because of the fact that the ordering process is not covered by a transaction, ActionBazaar

reaches a strange state when a Snag-It order fails halfway through. The customer is essentially billed for

a failed order!

While creating ad-hoc application logic to automatically credit the customer back in case of an

error is a band-aid to the problem, transactions are ideally suited to handle such situations. A
transaction covering all of the ordering steps would ensure that no actual ordering operation changes
are finalized until the entire operation finishes successfully. If any errors occur, all pending data
changes, including the credit card charge, will be aborted. On the other hand, if all the operations
succeed, the transaction will be marked successful and all ordering changes will be made permanent.

Although this “all or nothing” value proposition is a central theme of transactional systems, they
are not their only attribute. There are a number of properties for transactional systems; we will
discuss them next.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

6.1.2 ACID Properties
The curious acronym ACID stands for Atomicity, Consistency, Isolation and Durability. All

transactional systems are said to exhibit these four characteristics. Let us take a look at exactly what
each of these characteristics is.

Atomicity
As we have seen in our ActionBazaar scenario, transactions are atomic in nature; they either

commit or rollback together. In coding terms, you band together an arbitrary body of code under the
umbrella of a transaction. If something unexpected and irrecoverable happens during the execution of
the code, the result of the attempted execution is completely undone so that it has no effect on the
system. Otherwise, the results of a successful execution are allowed to become permanent.

Consistency
This is the trickiest of the four properties because it involves more than writing code. This is the

most common way of describing the consistency property: if the system is in a state consistent with
the business rules before a transaction begins, it must remain in a consistent state after the transaction
is rolled back or committed. A corollary to this statement is that the system need not be in a consistent
state during the transaction. Think of a transaction as a sandbox or sanctuary – you are temporarily
protected from the rules while inside it. As long as we make sure all the business rules in the system
remain intact after the last line of code in a transaction is executed, it does not matter if you are in an
inconsistent state at an arbitrary point in the transaction. Using our example, it is fine if we charge
the customer even though we really have not removed the item from bidding yet, because the results
of our code will have no impact on the system until and unless our transaction finishes successfully.
In the real world, setting up rules and constraints in the database (such as primary keys, foreign key
relationships, field constraints and so on) ensures consistency, so that transactions encountering error
conditions are rejected and the system is returned to its pre-transactional state.

Isolation
If you understand thread synchronization or database locking, you already know what isolation

is. The isolation property makes sure transactions do not step on each other’s toes. Essentially, the
transaction manager (a concept we will define shortly) makes sure nobody touches your data while
you are in the transaction. This concept is especially important in concurrent systems where any
number of processes can be attempting to manipulate the same data at any given time. Usually
isolation is guaranteed by using low-level database locks hidden away from the developer. The
transaction manager places some kind of lock on the data accessed by a transaction so that no other
processes can modify them until the transaction is finished.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post commen

http://www.mann

In terms of our example, the tran

be placed on the item while we are in
“snagged” item record would be locked

Durability
The last of the four ACID pr

transaction, once committed, is guara
using transaction logs in the database
data changes made by a transaction be
occurs during a commit, once the da
properly reapplied (think of untangli
tangling). Changes made during the tr
from the transaction log (replaying th
transactions making sure ‘commit’ real

In the next section, we will examin
such as distributed transactions, transa

6.1.3 Transaction Managem
As you have probably already g

database management system do mos
everything that we do in code trans
unlocking rows or tables in a databa

6 The application server can also maintain a tra

The concept of isolation as th
as we just suggested. As yo
each other’s data locks limits
run on a system. However, d
between concurrency and lo
strictness. Each isolation stra
following are the four most c
of concurrency to the lowest

Read uncommitted: At this
uncommitted data of other tr
should not use this level in a
Read committed: Your trans
from another transaction. Th
Repeatable read: The transa
multiple reads of the same ro
Serializable: This is the high
the tables you touch will cha
new rows. This isolation lev
bottlenecks.

A good rule of thumb is to us
acceptable performance leve
levels from EJBs – the isolat

Licensed to Jo
Isolation Levels

ey pertain to databases is not as cut and dried
u might imagine, making transactions wait for
 the number of concurrent transactions that can
ifferent isolation strategies allow for a balance
cking, primarily by sacrificing lock acquisition
tegy corresponds to an isolation level. The
ommon isolation levels, from the highest level
:

isolation level, your transaction can read the
ansactions – also known as a ‘dirty’ read. You
 multithreaded environment.
action will never read uncommitted changes

is is the default level for most databases.
ction is guaranteed to get the same data on
ws until the transaction ends.
est isolation level and guarantees that none of
nge during the transaction, including adding
el is very likely to cause performance

e the highest isolation level that yields an
l. Generally, you do not directly control isolation
ion level is set at the database resource level

ts or corrections to the Author Online forum at
ing-sandbox.com/forum.jspa?forumID=273

saction isolation property is what makes sure that no bids can
 the middle of executing the “Snag-It” ordering steps since our
 in the database.

operties is durability. Transaction durability means that a
nteed to become permanent. This is usually implemented by
server.6 Essentially, the database keeps a running record of all
fore it commits. This means that even if a sudden server error
tabase recovers from the error, changes can be reverted to be
ng a cassette tape and rewinding it to where the tape started
ansaction are applied again by executing the appropriate entries
e rewound tape to finish). This property is the muscle behind
ly does mean commit.
e the internals of transaction management and define concepts

ction managers, and resource managers.

ent Internals
uessed, application servers and enterprise resources like the
t of the heavy lifting in transaction management. Ultimately,
lates into low level database operations such as locking and
se, beginning a transaction log, committing a transaction by

nsaction log. However, we will ignore this fact for the time being.

hn Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

applying log entries or rolling back a transaction by abandoning the transaction log. In enterprise
transaction management, the component that takes care of transactions for a particular resource is
called a resource manager. Remember that a resource need not just be a database like Oracle. It could
be a message server like IBM MQSeries or an Enterprise Information System like PeopleSoft CRM.

Most enterprise applications only involve a single resource. A transaction that only uses a single
resource is called a local transaction. However, many enterprise applications use more than one
resource. If you look carefully at our “Snag-It” order example, it most definitely involves more than
one database – the credit card provider’s database used to charge the customer, as well as the
ActionBazaar database to manage bids, items and ordering. It is fairly apparent that for sane business
application development some kind of abstraction is needed to manage multiple resources in a single
transaction. This is exactly what the transaction manager is – a component that, under the hood,
coordinates a transaction over multiple distributed resources.

 From an application’s view, the transaction manager is the application server or some other
external component that provides simplified transaction services. As we see in Figure 6.2, the
application program (ActionBazaar) asks the Transaction Manager to start, commit, and rollback
transactions. The transaction manager coordinates these requests among multiple resource managers
and each transaction phase may translate to possibly numerous low-level resource commands issued
by the resource managers.

40 Figure 6.1: Distributed Transaction Management. The application program delegates transaction

operations to the transaction manager who coordinates between resource managers.

Next, we will discuss exactly how transactions are managed across multiple resources. In EJB,

this is done with Two-Phase commits.

6.1.4 Two-Phase Commit
How transactions are managed in a distributed environment involving more than one resource is

extremely interesting. The protocol commonly used to achieve this is called two-phase commit.
Imagine what would happen if no special precautions were taken while attempting to commit a

transaction involving more than one database. Suppose that the first database commits successfully,
but the second fails. It would be extremely difficult to go back and ‘undo’ the finalized changes to the
first database. To avoid this problem, the two-phase commit protocol performs an additional

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

preparatory step before the final commit. During this step, each resource manager involved is asked if
the current transaction can be successfully committed. If any of the resource managers indicate that
the transaction cannot be committed if attempted, the entire transaction is abandoned (rolled back).
Otherwise, the transaction is allowed to proceed and all resource managers are asked to commit. As
we see in Table 6.1, only distributed transactions use the two-phase commit protocol.

1.9 Table 6.1: A transaction may be either local or global. A local transaction involves one resource and a

global transaction involves multiple resources

 Local Global Transaction

Number of resources One Multiple
Coordinator Resource Manager Transaction Manager
Commit protocol Single-Phase Two-Phase
1.10

1.11

We have just reviewed how transactions work and what makes them reliable, now we will take a

look at how EJB provides these services for the application developer.

6.1.5 Transaction Management in EJB
Transaction management support in EJB is provided through the Java Transaction API (JTA).

JTA is a small, high-level API exposing functionality at the distributed transaction manager layer,
typically provided by the application server. As a matter of fact, for the most part, as an EJB
developer, you will probably only need to know about only one JTA interface —
javax.transaction.UserTransaction. This is because the container takes care of most
transaction management details behind the scenes. As an EJB developer, you simply tell the container
where the transaction begins and ends (called transaction demarcation or establishing transaction
boundaries) and whether to rollback or commit.

There are two ways of using transactions in EJB. Both provide abstractions over JTA, one to a
lesser and one to a greater degree. The first is to declaratively manage transactions through
Container-Managed Transactions (CMT) – this can be done through annotations or the deployment
descriptor. On the other hand, Bean-Managed Transactions (BMT) require you to explicitly manage
transactions programmatically. It is very important to note that in this version of EJB, only Session
Beans and Message Driven Beans support BMT and CMT. The EJB 3.0 Java Persistence API is not

The XA Protocol

To coordinate the two-phase commit across many
different kinds of resources, the transaction manager and
each of the resource managers must “talk the same
tongue” or use a common protocol. In the absence of
such a protocol, imagine how sophisticated even a
reasonably effective transaction manager would have to
be. The transaction manager would have to be developed
with the proprietary communication protocol of every
supported resource.
The most popular distributed transaction protocol used
today is the XA protocol, which was developed by the
X/Open group. JAVA EE uses this protocol for
implementing distributed transaction services.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

directly dependent on either CMT or BMT but can transparently plug into any transactional
environment including BMT and CMT while used inside a Java EE container. We will cover this
functionality when we discuss Persistence in Chapters 7, 8, 9, 10, 11 and 12. In this chapter, we
explore CMT and BMT as they pertain to the two bean types we discussed in Chapter 3 (Session
Beans) and Chapter 4 (Message Driven Beans).

Container-managed transactions are by far the simplest and most flexible way of managing EJB

transactions. We will take a look at them first.

6.2 Container-Managed Transactions (CMT)
In CMT, the container starts, commits and rolls back a transaction on our behalf. Transaction
boundaries in declarative transactions are always marked by the start and end of EJB business
methods. More precisely, the container starts a JTA transaction before a method is invoked, invokes
the method and depending on what happened during the method call, either commits or rolls back
the managed transaction. All we have to do is tell the container how to manage the transaction by
using either annotations or deployment descriptors and ask it to roll back the transaction when
needed. By default, the container assumes that you will be using CMT on all business methods. This
section describes CMT in action. We will build Snag-it ordering system using CMT and see usage of
@TransactionManagement and @TransactionAttribute. Finally we will learn how to rollback a
transaction using methods of EJBContext and when application exception is raised.

6.2.1 Snag-It Ordering Using CMT
Code Listing 6.1 implements the Snag-It ordering scenario as the method of a Stateless Session

Bean using CMT. This is fine since the user can order only one item at a time using the Snag-It
feature and no state information need be saved between calls to the OrderManagerBean. The bean
first checks to see if there are any bids on the item, and if there are not, it validates the customer’s
credit card, charges the customer and removes the item from bidding. To keep the code sample as

JTS vs. JTA

These like-sounding acronyms are both related to Java
EE transaction management. JTA defines application
transaction services as well as the interactions between
the application server, the transaction manager and
resource managers. On the other hand, JTS (Java
Transaction Service) deals with how a transaction
manager is actually implemented. A JTS transaction
manager supports JTA as its high-level interface and
implements the Java mapping of the OMG Object
Transaction Service (OTS) specification as its low-level
interface.

As an EJB developer, there really is no need for you to
deal with JTS.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

simple as possible, we have omitted all details that are not directly necessary for our explanation of
CMT.

14 Listing 6.1: Implementing Snag-It Using CMT
@Stateless
@TransactionManagement(TransactionManagementType.CONTAINER)
|#1
public class OrderManagerBean {
 @Resource |#2
 private SessionContext context; |#2
…
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
|#3
 public void placeSnagItOrder(Item item, Customer customer){
 try {
 if (!bidsExisting(item)){
 validateCredit(customer);
 chargeCustomer(customer, item);
 removeItemFromBidding(item);
 }
 } catch (CreditValidationException cve) { |#4
 context.setRollbackOnly(); |#4
 } catch (CreditProcessingException cpe){ |#4
 context.setRollbackOnly(); |#4
 } catch (DatabaseException de) { |#4
 context.setRollbackOnly(); |#4
 } |#4
 }
}
(annotation) <#1 Bean Uses CMT>
(annotation) <#2 Injected EJB Context>
(annotation) <#3 Transaction Required for Method>
(annotation) <#4 Rollback Signal on Exception>

We will briefly describe the major features of Listing 6.1 now and explore CMT in detail using
the example as a jump-off point in the coming sections. #1 tells the container that it should manage
the transactions for this bean. If we do not specify the TransactionManagement annotation or
the transaction-type element in the deployment descriptor, the container assumes that we
intend to use CMT. The EJB context is injected into the bean in #2. #3 means that a transaction is
required for the placeSnagItOrder method and one should be started by the container when
needed. If an exception stops us from completing the Snag-It order, we ask the container to roll back
the transaction using the injected EJBContext Object’s setRollbackOnly method#4.

Let us first take a closer look at the TransactionManagement annotation#1 next on our way
to analyzing the code in more detail.

6.2.2 The @TransactionManagement Annotation
The @TransactionManagement annotation specifies if CMT or BMT is to be used for a

particular bean. In our case, we specify the value TransactionManagementType.CONTAINER -
meaning the container should manage transactions on the bean’s behalf. If we wanted to manage
transactions programmatically instead, we would specify TransactionManagementType.BEAN
for the TransactionManagement value. Notably, although we have explicitly included the
annotation in our example, if we leave it out, the container will assume CMT anyway. When we
explore BMT, it will be more obvious why CMT is the default and most commonly used choice for

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

transaction management. We will take a look at the second transaction related annotation in Listing
6.1, TransactionAttribute#3 next.

6.2.3The @TransactionAttribute Annotation
Although the container does most of the heavy lifting in CMT, you still need to tell the

container how it should manage transactions. To understand what this means, consider the fact that
the transaction that wraps around your bean’s method could be started by the container specifically
when calling your method or it could be inherited from a client calling your method (otherwise called
joining a transaction). Let us explore this idea a little more using our example. The
placeSnagItOrder method in Listing 6.1 calls a number of methods such as bidsExisting,
validateCredit, chargeCustomer and removeItemFromBidding. As Figure 6.2 depicts,
these method calls could simply be forwarded to other Session Bean invocations, such as
BidManagerBean.bidsExist, BillingManagerBean.validateCredit,
BillingManagerBean.chargeCustomer and ItemManagerBean.removeFromBidding.

41 Figure 6.2: The method invocations from the CMT session bean is actually forwarded to other session

beans that may be using various transaction attributes.

42

We already know that the placeSnagItOrder method is managed by a transaction. What if

all the Session Beans we are invoking are also managed by CMT? Should the container reuse the
transaction created for our method to invoke the other methods? Should our existing transaction be
independent of the other Session Bean’s transactions? What happens if any of the methods cannot
support transactions? The @TransactionAttribute annotation tells the container how to
handle all these situations. The annotation can be applied either to individual CMT bean methods or
to the entire bean. If the annotation is applied at the bean level, all business methods in the bean
inherit the transaction attribute value specified by it. In Listing 6.1, we specify that the value of the
@TransactionAttribute annotation for the placeSnagItOrder method should be
TransactionAttributeType .REQUIRED#3. There are six different choices for this annotation
defined by enumerated type TransactionAttributeType. Table 6.2 summarizes their behavior.

1.12 Table 6.2: Effects of transaction attributes on EJB methods

Transaction Attribute Caller Transaction Exists? Effect

Required No Container creates a new transaction.
 Yes Method joins the caller’s transaction.
Requires new No Container creates a new transaction.
 Yes Container creates a new transaction and the

client’s transaction is suspended.
Supports No No transaction is used.
 Yes Method joins the caller’s transaction.
Mandatory No javax.ejb.EJBTransactionRequiredException

is thrown.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 Yes Method joins the caller’s transaction.
Not supported No No transaction is used.
 Yes The client transaction is suspended and the

method is called without a transaction.
Never No No transaction is used.
 Yes javax.ejb.EJBException is thrown.

Let us take a look at what each of these values really mean and where they are applicable.

Required
This is the default and most commonly applicable transaction attribute value. This value means that
the EJB method should always be invoked within a transaction. If the method is invoked from a non-
transactional client, the container will start a transaction before the method is called and finish it
when the method returns. On the other hand, if the caller invokes the method from a transactional
context, the method will join the existing transaction. In case of transactions propagated from the
client, if our method indicates that the transaction should be rolled back, the container will not only
roll back the whole transaction, but will throw a javax.transaction.RollbackException
back to the client. This lets the client know that the transaction it started has been rolled back by
another method. Our placeSnagItOrder method is most likely invoked from a non-transactional
web tier. Hence, the REQUIRED value in the TransactionAttribute annotation will cause the
container to create a brand new transaction for us when the method is executed. If all the other
Session Bean methods we invoke from our bean are also marked REQUIRED, when we invoke them,
they will join the transaction created for us. This is just fine, since we want the entire ordering action
to be covered by a single “umbrella” transaction. In general, you should use the REQUIRED value if
you are modifying any data in your EJB method and are unsure if the client will start a transaction of
its own before calling your method.

Requires New
The REQUIRES_NEW value means that the container must always create a new transaction to

invoke the EJB method. If the client already has a transaction, it is temporarily suspended until our
method returns. This means that the success or failure of our new transaction has no effect on the
existing client transaction. From the client’s perspective, its transaction is paused, our method is
invoked, our method either commits or rolls back its own transaction and the client’s transaction is
resumed as soon as our method returns. The REQUIRES_NEW attribute has limited uses in the real
world. You should use it if you need a transaction but do not want a rollback to affect the client.
Vice-versa, you also want this value when you do not want the client’s rollback to affect you. Logging
is a great example. Even if the parent transaction rolls back, you want to be able to record the failure
into your logs. On the other hand, failing to log a minor debugging message should not roll back
your entire transaction and the problem should be localized to the logging component.

Mandatory
This really means requires existing. That is, the caller must have a transaction before calling an

EJB method and the container should never create a transaction on behalf of the client. If the EJB
method using the MANDATORY attribute is invoked from a non-transactional client, the container
throws an EJBTransactionRequiredException. This value is also very rarely used. You
should use this value if you want to make sure the client fails if you request a rollback. We can make

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

a reasonable case to require a MANDATORY transaction on a Session Bean method that charges the
customer. After all, we want to make sure nothing is accidentally given away for free if the client
neglects to detect a failure in the method charging the customer and the invoker’s transaction can be
forcibly rolled back by us when necessary.

Not Supported
If we specify NOT_SUPPORTED to be the transaction attribute, the EJB method cannot be

invoked in a transactional context. If a caller with an associated transaction invokes the method, the
container will suspend the transaction, invoke the method and then resume the transaction when the
method returns. This attribute is typically useful only for an MDB supporting a JMS provider in
non-transactional, auto-acknowledge mode. To recap from Chapter 5, in such cases, the message is
acknowledged as soon as it is successfully delivered and the MDB has no capability or apparent need
to support rolling back message delivery.

Supports
The SUPPORTS attribute essentially means the EJB method will inherit whatever the

transactional environment of the caller is. If the caller does not have a transaction, the EJB method
will be called without a transaction. On other hand, if the caller is transactional, the EJB method will
join the existing transaction and will not cause the exiting transaction to be suspended. This avoids
any needless overhead in suspending or resuming the client transaction. This attribute is typically
useful for methods that perform read-only operations such as retrieving a record from a database
table. In our Snag-It example, the Session Bean method for checking if a bid exists on the item about
to be ordered can probably have a SUPPORTS attribute since it modifies no data.

Never
In CMT, NEVER really means NEVER. In other words, this attribute means that the EJB method

can never be invoked from a transactional client. If such an attempt is made, a
javax.ejb.EJBException is thrown. This is probably the least-used transaction attribute value.
It could be used if your method is changing a non-transactional resource (such as a text file) and you
want to make sure the client knows about the non-transactional nature of the method.

Transaction Attributes and MDB
As we mentioned in Chapter 4, MDBs do not support all of the six transaction attributes we

have discussed. Although you can apply any of the attributes to a Stateful or Stateless Session Bean,
MDBs only support the REQUIRED and NOT_SUPPORTED attributes. This goes back to the fact that
no client ever invokes MDB methods directly. It is the container that invokes MDB methods when it
receives an incoming message. Since there is never an existing client transaction to suspend or join,
REQUIRES_NEW, SUPPORTS, MANDATORY make no sense (refer to Table 6.2). NEVER makes no
sense either since we do not need that strong a guard against the container. In effect, depending on
message acknowledgment on method return, we need only tell the container of two conditions: we
need a transaction (REQUIRED) that encapsulates the message listener method; or we do not need
transaction support (NOT_SUPPORTED).

So far, we have taken a detailed look at how transactions are created and managed by the
container. We know that the successful return of a CMT method causes the container to commit a
method or at least not roll it back if it is a joined transaction. We have mentioned the fact that a

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

CMT method can mark an available transaction as rolled back, but have not discussed the actual
mechanics. Let us dig into the underpinnings next.

6.2.4 Marking a CMT Transaction for Rollback
If the appropriate business conditions arise, a CMT method can ask the container to roll back a

transaction as soon as possible. The important thing to note here is that the transaction is not rolled
back immediately, but a flag is set for the container to do the actual rollback when it is time to end
the transaction. Let us go back to a snippet of our scenario in Listing 6.1 to see exactly how this is
done:
@Resource
private SessionContext context;
...
public void placeSnagItOrder(Item item, Customer customer){
 try {
 ...
 validateCredit(customer);
 ...
 } catch (CreditValidationException cve) {
 context.setRollbackOnly();
 ...

As the code snippet shows, the setRollbackOnly method of the injected

javax.ejb.EJBContext marks the transaction to be rolled back when we are unable to validate
the user’s credit card, a CreditValidationException is thrown and we cannot allow the order
to complete. If you go back and look at the complete listing, we do the same thing in case of other
serious problems, such as a database problem or if we have trouble charging the credit card.

To keep things simple, let us assume that the container started a new transaction because the
placeSnagItOrder method was invoked from a non-transactional web-tier. This means that after
the method returns, the container would check to see if it could commit the transaction. Since we set
the roll back flag for the underlying transaction through the setRollbackOnly method, the
container would roll back instead. Because the EJB context in this case is really a proxy to the
underlying transaction, you should never call the setRollbackOnly method unless you are sure
there is an underlying transaction to flag. Typically, you can only be sure of this fact if your method
has a REQUIRED, REQUIRED_NEW or MANDATORY transaction attribute. If we are not using CMT or
our method is not invoked in a transaction context, calling this method will throw
java.lang.IllegalStateException.

Another EJBContext method you should know about is getRollbackOnly(). The method
returns a boolean telling you if the underlying CMT transaction has already been marked for roll
back. If you suspect that this method is used very infrequently, you are right. There is one case in
particular when it is very useful to check the status of the transaction you are participating in – before
engaging in a very long, resource intensive operation. After all, why expend all that effort for
something that is already going to be rolled back? For example, let us assume that ActionBazaar
checks a potential Power Seller’s creditworthiness before approving an account. Since this calculation
involves a large set of data collection and business intelligence algorithms that potentially involve
third parties, it is only undertaken if the current transaction has not already been rolled back. The
code could look like the following:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

@Resource
private SessionContext context;
... checkCreditWorthiness(Seller seller) { ...
 if (!context.getRollbackOnly()) {
 DataSet data = getDataFromCreditBureauRobberBarons(seller);
 runLongAndConvolutedBusinessAnalysis(seller, data);
 ...
 } ...

If the model of catching exceptions just to call the setRollbackOnly method seems a little

cumbersome, you are in luck. EJB 3.0 makes the job of translating exceptions into transaction
rollback almost transparent using the ApplicationException paradigm. We will take a look at
the role of exception handling in transaction management next.

6.2.5 Transaction and Exception Handling
The subject of transactions and exception handling in EJB 3.0 is intricate and often confusing.

However, properly used, exceptions used to manage transactions can be extremely elegant and
intuitive.

To see how how exceptions and transaction work together, let us revisit the exception handling
code in the placeSnagItOrder method:

try {
 // Ordering code throwing exceptions.
 if (!bidsExisting(item)){
 validateCredit(customer);
 chargeCustomer(customer, item);
 removeItemFromBidding(item);
 }
} catch (CreditValidationException cve) {
 context.setRollbackOnly();
} catch (CreditProcessingException cpe){
 context.setRollbackOnly();
} catch (DatabaseException de) {
 context.setRollbackOnly();
}

As we can see, the CreditValidationException, CreditProcessingException and

DatabaseException exceptions being thrown are essentially the equivalent of the managed
transaction being rolled back. To avoid this all too common mechanical code, EJB 3.0 introduces the
idea of controlling transactional outcome through the @javax.ejb.ApplicationException
annotation. The best way to see how this works is though example. Listing 6.2 re-imlements the
placeSnagItOrder method using the @ApplicationException mechanism to roll back CMT
transactions:

15 Listing 6.2: Using @ApplicationException to roll back CMT transactions
public void placeSnagItOrder(Item item, Customer customer)
 throws CreditValidationException, CreditProcessingException, |#1
 DatabaseException { |#1
 if (!bidsExisting(item)){ |#2
 validateCredit(customer); |#2
 chargeCustomer(customer, item); |#2
 removeItemFromBidding(item); |#2

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 } |#2
}
...
@ApplicationException(rollback=true) |#3
public class CreditValidationException extends Exception { |#3
...
@ApplicationException(rollback=true) |#3
public class CreditProcessingException extends Exception { |#3
...
@ApplicationException(rollback=false) |#4
public class DatabaseException extends RuntimeException { |#4
...
(annotation) <#1 Declaring exceptions on the throws clause>
(annotation) <#2 Exceptions thrown from the method body>
(annotation) <#3 ApplicationException Specification>
(annotation) <#4 A RuntimeException is marked as ApplicationException>

The first change from listing 6.1 you will notice is the fact that the try-catch blocks have
disappeared and have been replaced by a throws clause in the method declaration#1. However it’s a
good idea for you to gracefully handle the application exceptions in the client and generate
appropriate error message. The various nested method invocations still throw the three exceptions
listed in the throws clause #2. The most important thing to note, however, is the three
@ApplicationException specifications on the custom exceptions. The
@ApplicationException annotation identifies a Java checked or unchecked exception as an
application exception.

In EJB, an application exception is an exception that the client is expected to handle. When
thrown, such exceptions are passed directly to the method invoker. By default, all checked
exceptions except for java.rmi.RemoteException are assumed to be application
exceptions. On the other hand, all exceptions that inherit from either
java.rmi.RemoteExceptions or java.lang.RuntimeException are assumed to
be system exceptions (as you might already know, all exceptions that inherit from
java.lang.RuntimeException are unchecked). In EJB, system exceptions are not
assumed to be expected by the client. When encountered, such exceptions are not passed to
the client as-is but are wrapped in a javax.ejb.EJBException instead.

In code listing 6.2, the @ApplicationException annotations on
CreditValidationException and CreditProcessingException does not change this
default behavior since both would have been assumed to be application exceptions anyway. However,
by default, DatabaseException #4 would have been assumed to be a system exception. Applying
the @ApplicationException annotation to it causes it to be treated as an application exception
instead.

More than the @ApplicationException annotation itself, the rollback element changes
default behaviour in profound ways. By default, application exceptions do not cause an automatic
CMT transaction roll back since the rollback element is defaulted to false. However, setting the
element to true tells the container that it should roll back the transaction before the exception is
passed on to the client. In code listing 6.2, this means that whenever a
CreditValidationException, CreditProcessingException, or DatabaseException
is thrown, the transcation will be rolled back and the client would receive an exception indicating the
cause for failure, accomplishing exactly the same thing as the more verbose code in listing 6.1 aims to

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

do. If the container detects a system exception, such as an ArrayIndexOutOfBounds or
NullPointerException that you did not guard for, it will still roll back the CMT transaction.
However, in such cases the container will also assume that the Bean is in inconsistent state and will
destroy the instance. Because unnecessarily destroying Bean instances is costly, you should never
delibretely use system exceptions.

Although the simplified code is very tempting, we recommend you to use application
exceptions for CMT rollback carefully. Using the setRollbackOnly method, however verbose,
removes the guesswork from automated transaction management, especially for junior developers that
might have a hard time understanding the intricacies of exception handling in EJB. However, you
should not interpret this to mean you should avoid using custom application exceptions in general.
In fact, we encourage the usage of this very powerful and intuitive errror handling mechanism widely
used in the Java realm.

As we can clearly see, CMT relieves us from all but the most unavoidable details of EJB
transaction management. However, for certain circumstances, CMT may not give us the level of
control we need. BMT gives us this additional control while still providing a very powerful, high-
level API, as we will see next.

6.3 Bean-Managed Transactions (BMT)
The greatest strength of CMT is also its greatest weakness. Using CMT, you are limited to having the
transaction boundaries set at the beginning and end of business methods and rely on the container to

Session Synchronization

Although by using CMT you do not have full control over when a transaction is
started, committed or rolled back, you can be notified about the transaction’s life
cycle events. This is done simply by having your CMT Bean implement the
javax.ejb.SessionSynchronization interface. This interface defines
three methods:

void afterBegin(): Called right after the container creates a new transaction
and before the business method is invoked.
void beforeCompletion(): Invoked after a business method returns but
right before the container ends a transaction.
void afterCompletion(boolean committed): Called after the transaction
finishes. The boolean committed flag indicates if a method was committed or
rolled back.

Implementing this interface in a Stateful Session Bean can be considered very
close to having a poor man’s persistence mechanism, because data can be
loaded into the bean when the transaction starts and unloaded right before the
transaction finishes, while the afterCompletion callback can be used to reset
default values. However, one can make a valid argument that since Session
Beans are supposed to model processes, if it makes sense to cache some data
and synchronize with the database as a natural part of a process, then this
practice is just fine if not fairly elegant.

Note this facility does not make much sense in a stateless session bean or MDB
where data should not be cached anyway; hence, the interface is not supported
for those bean types.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

actually determine when a transaction starts, commits or rolls back. BMT on the other hand, allows
you to specify exactly these details programmatically, using semantics very similar to the JDBC
transaction model with which you might already be familiar. However, even in this case, the
container still helps you out by actually creating the physical transaction as well as taking care of a few
low level details. In BMT, you must be much more aware of the underlying JTA transaction API,
primarily the javax.transaction.UserTransaction interface, which we will introduce
shortly. But first, we will re-develop the Snag-It ordering code in BMT so that we can use it as a
crutch for the next few sections. You will learn more about the
javax.transaction.UserTransaction interface and its use. Finally we discuss pro and cons
of using BMT over CMT.

6.3.1 Snag-It Ordering Using BMT
Listing 6.3 re-implements the code of Listing 6.1 using BMT. To summarize, it checks if there

are any bids on the item ordered, validates the user’s credit card, charges the customer and removes
the item from bidding. Note that the import statements were are omitted and error handling
trivialized to keep the code sample short.

16 Listing 6.3: Implementing Snag-It Using BMT
@Stateless)
@TransactionManagement(TransactionManagementType.BEAN)
|#1
public class OrderManagerBean {
 @Resource |#2
 private UserTransaction userTransaction; |#2

 public void placeSnagItOrder(Item item, Customer customer){
 try {
 userTransaction.begin(); |#3
 if (!bidsExisting(item)){
 validateCredit(customer);
 chargeCustomer(customer, item);
 removeItemFromBidding(item);
 }
 userTransaction.commit(); |#4
 } catch (CreditValidationException cve) { |#5
 userTransaction.rollback(); |#5
 } catch (CreditProcessingException cpe){ |#5
 userTransaction.rollback(); |#5
 } catch (DatabaseException de) { |#5
 userTransaction.rollback(); |#5
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}
(annotation) <#1 Bean Uses BMT>
(annotation) <#2 Injected Transaction>
(annotation) <#3 Transaction Started>
(annotation) <#4 Transaction Commited>
(annotation) <#5 Transaction Rolled Back on Exception>

Briefly scanning the code, you will note that the @TransactionManagement annotation specifies
the value TransactionManagementType.BEAN as opposed to

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

TransactionManagementType.CONTAINER, indicating that we are using BMT this time#1. The
TransactionAttribute annotation is missing altogether since it is applicable only for CMT. A
UserTransaction, the JTA representation of a bean managed transaction is injected#2 and used
explicitly to begin#3, commit#4 or rollback#5 a transaction. The transaction boundary is much
smaller than the entire method and includes only calls that really need to be atomic. The sections that
follow discuss the code in greater detail next, starting with getting a reference to the
javax.transaction.UserTransaction.

6.3.2 Getting a UserTransaction
The UserTransaction interface encapsulates the basic functionality provided by a JAVA EE

transaction manager. JTA has a few other interfaces used under different circumstances. We will not
cover them, as the great majority of time you will be dealing with UserTransaction. For a full
coverage of JTA, check out http://java.sun.com/products/jta/. As you might expect, the
UserTransaction interface is too intricate under the hood to be instantiated directly and must be
obtained from the container. In Listing 6.3, we have used the simplest way of getting a
UserTransaction, namely by injecting it through the @Resource annotation. There are a couple
of other ways to do this instead: Using JNDI Lookup or the EJBContext.

JNDI Lookup
The application server binds the UserTransaction to the JNDI name

java:comp/UserTransaction. We can look it up directly using JNDI with this code:

Context context = new InitialContext();
UserTransaction userTransaction =
 (UserTransaction) context.lookup(“java:comp/UserTransaction”);
userTransaction.begin();
// Perform transacted tasks.
userTransaction.commit();

This method is typically used outside of EJBs — for example, if you need to use a transaction in

a helper or a non-managed class in the EJB or web-tier where dependency injection is not supported.
If you actually find yourself in this situation, you might want to think long and hard about moving
the transactional code to an EJB where you have access to greater abstractions.

EJBContext
We can also get a UserTransaction by invoking the getUserTransaction method of the

EJBContext. This is useful if we are using a SessionContext or MessageDrivenContext for
some other purpose anyway and a separate injection just to get a transaction instance would be
redundant. A very important thing to note here is that we can only use the getUserTransaction
method if we are using bean managed transactions. Calling this in a CMT environment will cause the
context to throw an IllegalStateException. The following code shows the
getUserTransaction method in action:

@Resource
private SessionContext context;
...
UserTransaction userTransaction = context.getUserTransaction();

Licensed to John Sweitzer <admin@saolailaem.info>

http://java.sun.com/products/jta/
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

userTransaction.begin();
// Perform transacted tasks.
userTransaction.commit();

On a related but very relevant note, you cannot use the EJBContext getRollbackOnly and

setRollbackOnly methods in BMT and they will throw an IllegalStateException if
accessed. Next, let us take a look at how the obtained UserTransaction interface is actually used.

6.3.3 Using UserTransaction
We have already seen the UserTransaction interface’s most frequently used methods, namely

begin, commit and rollback. The UserTransaction interface has a few other useful methods
we should take a look at as well. The definition of the entire interface looks like the following:

public interface UserTransaction {
void begin() throws NotSupportedException, SystemException;
void commit() throws RollbackException,
HeuristicMixedException, HeuristicRollbackException, SecurityException,
IllegalStateException, SystemException;

void rollback() throws IllegalStateException, SecurityException,
SystemException;

void setRollbackOnly() throws IllegalStateException,
SystemException;

int getStatus() throws SystemException;
void setTransactionTimeout(int seconds) throws SystemException;
}

The begin method creates a new low-level transaction behind the scenes and associates it with

the current thread. You might be wondering what would happen if you called the begin method
twice before calling rollback or commit. You might think this is possible if you want to create a
nested transaction, a paradigm supported by some transactional systems. In reality, the second
invocation of begin would throw a NotSupportedException since Java EE does not support
nested transactions. The commit and rollback methods, on the other hand, remove the
transaction attached to the current thread by begin. While commit sends a ‘success’ signal to the
underlying transaction manager, rollback abandons the current transaction. The
setRollbackOnly method on this interface might be slightly counterintuitive as well. After all,
why bother marking a transaction rolled back when you can roll it back yourself?

To understand why, consider the fact that we could call a CMT method from our BMT bean
that contains a lengthy calculation and checks the transactional flag before proceeding (like out
Power Seller credit validation example in section 6.3.4). Since our BMT transaction would be
propagated to the CMT method, it might be programmatically simpler, especially in a long method,
to mark the transaction rolled back using the setRollbackOnly method instead of writing an
involved if-else block avoiding such conditions. The getStatus method is a more robust version of
getRollbackOnly in the CMT world. Instead of returning a boolean, this method will return an
integer-based status of the current transactions indicating a more fine-tuned set of states a transaction
could possibly be in. The javax.transaction.Status interface defines exactly what these states
are and we list them in Table 6.3.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

1.13 Table 6.3: The possible values of the javax.transaction.Status interface. These are the status values

returned by the UserTransaction.getStatus method.

Status Description

STATUS_ACTIVE The transaction is associated and is in an active state.
STATUS_MARKED_ROLLBACK The associated transaction is marked for rollback possibly due to invocation of the

setRollbackOnly method.
STATUS_PREPARED The associated transaction is in the prepared state because all resources have agreed

to commit (refer to the two-phase commit discussion in section 6.1.2).
STATUS_COMMITTED The associated transaction has been committed.
STATUS_ROLLEDBACK The associated transaction has been rolled back.
STATUS_UNKNOWN The status for associated transaction is not known (very clever, don’t you agree?).
STATUS_NO_TRANSACTION There is no associated transaction in the current thread.
STATUS_PREPARING The associated transaction is preparing to be committed and awaiting response from

subordinate resources (refer to the two-phase commit discussion in section 6.1.2).
STATUS_COMMITTING The transaction is in the process of committing
STATUS_ROLLING_BACK The transaction is in the process of rolling back
1.14

The setTransactionTimeout method sets the time in milliseconds, in which a transaction

must finish. The default transaction timeout value is set to different values for different application
servers. For example, JBoss has a default transaction timeout value of 300 seconds whereas Oracle
Application Server 10g has a default transaction timeout value of 30 seconds. You might want to use
this method if you are using a very long-running transaction. Typically, it is better to simply set the
application server-wide defaults using vendor specific interfaces, however. At this point, you are
probably wondering how to set a transaction timeout when using CMT instead. This is only
supported by containers either using an attribute in the vendor specific deployment descriptor or
vendor specific annotations.

Comparing Listing 6.1 and 6.3, you might ask if the additional complexity and verbosity
associated with BMT is really worth it. Let us explore this issue in detail next.

6.3.4 The Pros and Cons of BMT
CMT is the default transaction type for EJB transactions. In general, BMT should be used

sparingly because it is verbose, complex and difficult to maintain. There are some concrete reasons to
use BMT, however. BMT transactions need not begin and end in the confines of a single method
call. If you are using a Stateful Session Bean and need to maintain a transaction across method calls,
BMT is your only option. Be warned, however, this technique is very complicated and error-prone
and you might just be better off rewriting your application rather than attempting this. Can you spot
a bug in listing 6.4? The last catch-block did not rollback the transaction like all other catch-
blocks did. But even that is not enough, what if the code throws an Error (rather than an
Exception)? Whichever way you do it, it is error prone and we recommend using CMT instead.

Another argument for BMT is that you can fine-tune your transaction boundaries so that the
data held by your code is isolated for the shortest time possible. Our opinion is that this idea
indulges in premature optimization and again, you are probably better off refactoring your methods
to be smaller and more specific anyway. Another drawback for BMT is the fact that it can never join
an existing transaction. Existing transactions are always suspended when calling a BMT method,
significantly limiting flexible component reuse.

Believe it or not, this wraps up our discussion of EJB transaction management. It is now time to
turn our attention to another critical aspect of enterprise Java development -- security.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

6.4 Exploring EJB Security
Securing enterprise data has always has been a primary application development concern. This is

even more true today in the age of sophisticated cyber-world hackers, phishers and identity/data
thieves. Consequently, security is a major concern in developing robust Java EE solutions. EJB has a
security model that is elegant, flexible, and portable across heterogonous systems.

In the remainder of this Chapter, we explore some basic security concepts such as authentication
and authorization, users and groups and investigate discuss the Java EE/EJB security framework and
take a look at both declarative and programmatic security in EJB 3.0.

We start with two of the most basic ideas in security: authentication and authorization.

6.4.1 Authentication versus Authorization
Securing an application involves two primary functions: authentication and authorization.

Authentication must be done before authorization can be performed, but as we shall see, both are
necessary aspects of application security. Let us explore both of these concepts next.

Authentication
Authentication is the process of verifying user identity. By authenticating yourself, you prove that

you are who you say you are. In the real world, this is usually accomplished through visual
inspection/identity cards, signature/handwriting, fingerprint checks and even DNA tests. In the
computer world, the most common method of authentication is by checking username and
password. All security is meaningless if someone can log onto a system with a false identity.

Authorization
Authorization is the process of determining whether a particular user has access to a particular

resource or task, and it comes into play once a user is authenticated. In an open system, an
authenticated user can access any resource. In a realistic security environment, this all-or-nothing
approach would be highly ineffective. Therefore, most systems must restrict access to resources based
on user identity. Although there might be some resources in a system that are accessible to all, most
resources should be accessed only by a limited group of people.

Both authentication and authorization, but particularly authorization, is closely tied to other
security concepts, namely users, groups and roles, which we will look at next.

6.4.2 Users, Groups and Roles
To perform efficient and maintainable authorization, it is best if we can organize users into some

kind of grouping. Otherwise, each resource must have an associated list of all the users that can access
it. In a non-trivial system, this would easily become an administrator’s nightmare. To avoid this
problem, users are organized into groups and groups as a whole are assigned access to resources,
making the access list for an individual resource much more manageable.

The concept of role is a closely related to the concept group but is a bit tricky to understand. For
an EJB application, the concept of roles is much more critical than users and groups. To understand
the distinction, consider the fact that you might not be building an in-house solution but a packaged
Java EE application. As a result, you might not know the exact operational environment your

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

application might be deployed in once it is purchased by the customer. As a result, it would be
impossible for you to code for the specific group names a customer’s system administrator will
choose. Neither should you care about groups. What you do care about is what role a particular user
in a group plays for your application. In the customer system, user Joe might belong to the system
group called peons. Now assume that an ActionBazaar Integrated B2B Enterprise Purchasing System
installation is made on the customer’s site. Among other things, this type of B2B installation
transparently logs in all existing users from the customer system into the ActionBazaar site through a
custom desktop shortcut. Once logged in, from ActionBazaar’s perspective, Joe could simply be a
buyer who buys items online on behalf of the B2B customer company. To another small application
in the operational environment, user Joe might be an administrator who changes system-wide
settings. For each deployed application in the operational environment, it is the responsibility of the
system administrator to determine what system group should be mapped to what application role. In
the Java EE world, this is typically done through vendor-specific administrative interfaces. As a
developer, you simply need to define what roles your application’s users have and leave the rest to the
administrator. For ActionBazaar, roles can be buyers, sellers, administrators and so on.

Let us solidify our understanding of application security in EJB using an ActionBazaar example
next.

6.5.3 A Security Problem in ActionBazaar
At ActionBazaar, customer service representatives (CSR) are allowed to cancel a user’s bid under

certain circumstances (for example, if the seller discloses something in answer to an email question
from the bidder that should have been mentioned on the item description). However, the cancel bid
operation does not check if the user is actually a CSR, as long as the user can locate the functionality
on the ActionBazaar site, for example by typing in the correct URL.

43 Figure 6.4: Security breach into ActionBazaar allows hacker to shill bids by posting an item, starting a

bidding war from a fake account and then at the last minute canceling the highest fake bid. The end

result is that an unsuspecting bidder winds up with an overpriced item.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

A clever hacker broke into the ActionBazaar web server logs and figured out the URL used by
CSRs to cancel bids. Using this knowledge, he devised an even cleverer “shill bidding” scheme to
incite users to overpay for otherwise cheap items. The hacker would post items on sale and use a
friend’s account to incite a bidding war with genuine bidders. If at any point genuine bidders gave up
bidding and a fake bid becomes the highest bid, the hacker would avoid actually having to pay for the
item and losing money in posting fees by canceling his highest fake bid through the stolen URL. No
one would be any wiser as the genuine bidders as well as the ActionBazaar system would think the
highest bid was canceled for legitimate reasons. The end result would be that an honest bidder would
be fooled into overpaying for otherwise cheap items. After a while, ActionBazaar customer service
finally catches onto the scheme thanks to a few observant users and makes sure the bid canceling
action is authorized for CSRs only. Now if a hacker tries to access the functionality, the system would
simply deny access, even if the hacker has a registered ActionBazaar account and accesses the
functionality through the URL or otherwise. As we discuss how security is managed by EJB in the
next section, you will get a very good idea of what the solution might actually look like.

6.4.4 EJB 3.0 and Java EE Security
Java EE security is largely based on the JAAS (Java Authentication and Authorization Service)

API. JAAS essentially separates the authentication system from the Java EE application by using a
well-defined, pluggable API. In other words, the Java EE application need only know how to talk to
the JAAS API. The JAAS API, on the other hand, knows how to talk to underlying authentication
systems like LDAP or Microsoft Active Directory using a vendor plug-in. As a result, you can easily
swap between authentication systems simply by swapping JAAS plug-ins without changing any code.
In addition to authentication, the application server internally uses JAAS to perform authorization for
both the web and EJB tiers. When we look at programmatic EJB security management, we will
directly deal with JAAS very briefly, namely when we discuss the JAAS
javax.security.Principal interface. Feel free to explore JAAS at
http://java.sun.com/products/jaas/ since our discussion is limited to what is needed for understanding
EJB security.

JAAS is designed so that both the authentication and authorization steps can be performed at any
Java EE tier, including the Web and EJB tiers. Realistically, however, most Java EE applications are
web accessible and share an authentication system across tiers, if not across the application server.
JAAS fully leverages this reality and once a user (or entity, to use a fancy security term) is
authenticated at any Java EE tier, the authentication context is passed through tiers whenever possible
instead of repeating the authentication step. The Principal object we already mentioned
represents this sharable, validated authentication context. Figure 6.5 depicts this common Java EE
security management scenario.

Licensed to John Sweitzer <admin@saolailaem.info>

http://java.sun.com/products/jaas/
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

44 Figure 6.5: Most Common Java EE Security Management Scenario using JAAS

As shown in Figure 6.5, a user enters the application through the Web tier. The web tier gathers
authentication information from the user and authenticates the supplied credentials using JAAS
against an underlying security system. A successful authentication results in a valid user Principal. At
this point, the Principal is associated with one or more roles. For each secured Web/EJB tier resource,
the application server checks if the principal/role is authorized to access the resource. The Principal is
transparently passed from the Web tier to the EJB tier as needed.

A detailed discussion of Web tier authentication and authorization is beyond the scope of this
book as is the extremely rare scenario of standalone EJB authentication using JAAS. However, we will
give you a basic outline of Web tier security to serve as a starting point for further investigation
before diving into authorization management in EJB 3.0.

Web-Tier Authentication and Authorization
The Web-tier Servlet specification (http://java.sun.com/products/servlet/) successfully hides a

great many low-level details for both authentication and authorization. As a developer, you simply
need to tell the Servlet container what resources you want secured, how they are secured, how
authentication credentials are gathered and what roles have access to secured resources. The Servlet
container, for the most part, takes care of the rest. Web-tier security is mainly configured using the
login-config and security-constraint elements of the web.xml file. Let us take a look at
an example of how securing the administrative module of ActionBazaar might look using these
elements.

17 Listing 6.3: Sample web.xml elements to secure order cancelling and other

ActionBazaar admin functionality.
<login-config>
 <auth-method>BASIC</auth-method> |#1
 <realm-name>ActionBazaarRealm</realm-name> |#2
</login-config>

...
<security-constraint>
 <web-resource-collection>
 <web-resource-name>
 ActionBazaar Administrative Component
 </web-resource-name>
 <url-pattern>/admin/*</url-pattern> |#3

Licensed to John Sweitzer <admin@saolailaem.info>

http://java.sun.com/products/servlet/
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 </web-resource-collection>
 <auth-constraint>
 <role-name>CSR</role-name> |#4
 </auth-constraint>
</security-constraint>
(annotation) <#1 Indicates How Authentication is Done>
(annotation) <#2 Specifies Authentictaion Realm>
(annotation) <#3 Indicates what is Secured>
(annotation) <#4 The Roles Accessing the Secured Resource>

#1 in Listing 6.3 specifies how the web container should gather and validate authentication. In

our case, we have chosen the simplest authentication mechanism, BASIC. BASIC authentication uses
a HTTP-header based authentication scheme that usually causes the web-browser to gather
username/password information using a built-in prompt. Other popular authentication mechanisms
include FORM and CLIENT-CERT. FORM is essentially the same as BASIC except for the fact that the
prompt used is an HTML form that you create. CLIENT-CERT, on the other hand, is an advanced
form of authentication that bypasses username/password prompts altogether. In this scheme, the
client sends a public key certificate stored in the client browser to the web server using SSL and the
server authenticates the contents of the certificate instead of a username/password. The credentials are
then validated by JAAS. #2 specifies the realm the container should authenticate against. A realm is
essentially a container-specific abstraction over a JAAS-driven authentication system. #3 specifies that
all URLs that match the pattern /admin/* should be secured. Finally, #4 specifies that only
validated principals with the CSR role can access the secured pages. In general, this is all there really
is to securing a web application using JAAS, unless you choose to use programmatic security, which
essentially follows the same pattern used in programmatic EJB security that we will discuss soon.

EJB Authentication and Authorization
At the time of writing, authenticating and accessing EJBs from a standalone client, without any

help from the Servlet container is still a daunting task that requires you to thoroughly understand
JAAS. In affect, we would have to implement all of the authentication steps that the Servlet container
nicely abstracts away from us. Thankfully, this task is not undertaken very often and most application
servers provide JAAS login-module available that can be used by applications.

On the other hand, the authorization model in EJB 3.0 is very simple yet powerful. Much like
authorization in the Web tier, it centers on the idea of checking whether the authenticated Principal
is allowed to access an EJB resource based on the Principal’s role. Like transaction management,
authentication can be either declarative or programmatic, each of which provides a different level of
control over the authentication process. In addition, like the transaction management features
discussed in this chapter, security really applies to Session Beans and Message Driven Beans and not
the EJB Java Persistence API.

We will first explore declarative security management by coding up our bid-canceling scenario
presented in 6.4.3 and then move on to exploring programmatic security management.

6.4.5 Declarative Security
Listing 6.4 applies authentication rules to the BidManagerBean that includes the cancelBid

method our clever hacker used for his shill-bidding scheme. Now, only CSRs are allowed to use this
method. Note, we have omitted method implementation since thus really is not relevant to our
discussion.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

18 Listing 6.4: Securing Bid Cancellation Using Declarative Security Management
@DeclareRoles("BIDDER", "CSR", "ADMIN") |#1
@Stateless
public class BidManagerBean implements BidManager {
 @RolesAllowed("CSR, ADMIN") |#2
 public void cancelBid(Bid bid, Item item) {...}

 @PermitAll |#3
 public List<Bid> getBids(Item item) {...}
}
(annotation) <#1 Roles for the bean declared>
(annotation) <#2 Roles with access to method>
(annotation) <#3 Permits all system roles access to the method>

The listing uses some of the most commonly used security annotations defined by Common

Metadata annotations for Java Platform specification (JSR-250), javax.annotation.
security.DeclareRoles, javax.annotation.security.RolesAllowed and
javax.annotation.security.PermitAll. Two other annotations that we have not used but will
discuss are the javax.annotation.security.DenyAll and
javax.annotation.security.RunAs. We will start our analysis of the code and security
annotations with @DeclareRoles annotation.

Declaring Roles
It is highly recommended, but not required that you declare the security roles to be used in your

application, EJB module, EJB or business methods. There are a few ways of declaring roles, one of
which is through the @DeclareRoles annotation, which we use in Listing 6.4#1. This annotation
applies at either the method or the Class level and consists of an array of role names. We are
specifying that the BidManagerBean uses the roles of Bidders, CSRs and System Administrators.
Alternatively, we can specify roles for the entire enterprise application or EJB module through
deployment descriptors. The ActionBazaar application could use the roles of Guests, Bidders, Sellers,
Power Sellers, CSRs, admins, and so on. If we never declare roles, the container will automatically
build a list of roles by inspecting the @RolesAllowed annotation that we will talk about next.
Remember, when the application is deployed, the local system administrator must map each role to
groups defined in the runtime security environment.

Specifying Authenticated Roles
The @RolesAllowed annotation is the crux of declarative security management. This

annotation can be applied to either an EJB business method or an entire class. When applied to an
entire EJB, it tells the container which roles are allowed to access any EJB method. On the other
hand, we can use this annotation on a method to specify the authentication list for that particular
method. The tremendous flexibility offered by this annotation becomes evident when we consider the
fact that we can override class level settings by reapplying the annotation at the method level (for
example to restrict access further for certain methods). However, we discourage such usage because at
best it is convoluted and at worst it can cause subtle mistakes that are hard to discern. In Listing 6.4,
we specify that only CSR and system administrator roles be allowed to cancel bids through the
cancelBid method#2. The @PermitAll and @DenyAll annotations are conveniences that
perform essentially the same function as this annotation. We will discuss both next.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

@PermitAll and @DenyAll
We can use the @PermitAll annotation to mark an EJB class or a method to be invoked by any

role. We use this annotation in listing 6.4#3 to instruct the container that any user can retrieve the
current bids for a given item. You should use this annotation sparingly, especially at the Class level, as
it is possible to inadvertently leave security holes if it is used carelessly. The @DenyAll annotation
does exactly the opposite of what @PermitAll does. That is, when used at either the Class or the
method level, it renders functionality inaccessible by any role. You might be wondering why you
would ever use this annotation. The annotation makes sense when you consider the fact that your
application may be deployed in wide-ranging environments that you did not envision. You can
essentially invalidate methods or classes that might be inappropriate for a particular environment
without changing code using the @DenyAll annotation. Just as with the @RolesAllowed
annotation, when applied at the method level, these annotations will override bean-level
authorization settings. We will now wrap up our discussion of declarative security management by
discussing our final annotation, @RunAs.

@RunAs
The @RunAs annotation comes in handy if we need to dynamically assign a new role to the

existing Principal in the scope of an EJB method invocation. We might need to do this, for example
if we are invoking another EJB within our method but the other EJB requires a role that is different
from the current Principal’s role. Depending on the situation, the new “assumed” role might be
either more restrictive, lax or neither. For example, the cancelBid method in Listing 6.4 might
need to invoke a statistics tracking EJB that manages historical records in order to delete the statistical
record of the cancelled bid ever taking place. However, the method for deleting a historical record
might require an ADMIN role. Using the @RunAs annotation, we can temporarily assign a CSR an
ADMIN role so that the statistics tracking EJB thinks an admin is invoking the method:

@RunAS("ADMIN")
@RolesAllowed("CSR")
public void cancelBid(Bid bid, Item item) {...}

You should use this annotation sparingly since like the @PermitAll annotation, it can open up

security holes you might not have foreseen.
As you can see, declarative security gives you access to a powerful authentication framework while

staying mostly out of the way. The flexibility available to you through the relatively small number of
relevant annotations should be apparent as well. If you have ever rolled out your own security or
authentication system, however, one weakness might have crossed your mind already. The problem is
that although you can authenticate a role using declarative security, what if you need to provide
security settings specific to individuals, or even simple changes in method behavior based on the
current Principal’s role? This is where programmatic EJB security steps onto the stage.

6.4.6 Using EJB Programmatic Security
In effect, programmatic security gives us direct access to the Principal as well as convenient

means to check the Principal’s role in code. Both of these functions are made available through the
EJB context. We will begin exploring programmatic security by redeveloping the bid-canceling
scenario as a starting point. Listing 6.5 implements the scenario:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

19 Listing 6.5: Securing Bid Cancellation Using Programmatic Security
@Stateless
public class BidManagerBean implements BidManager {
 @Resource SessionContext context; |#1
 ...
 public void cancelBid(Bid bid, Item item) {
 if (!context.isCallerInRole("CSR")) { |#2
 throw new SecurityException(|#3
 "No permissions to cancel bid"); |#3
 }
 ...
 }
 ...
}
(annotation) <#1 EJB Context Injected>
(annotation) <#2 Authentiation Check>
(annotation) <#3 Exception Thrown on Violation>
#1 in listing 6.5 injects the EJB context. We use the isCallerInRole method of the EJBContext
to see if the underlying authenticated principal has the CSR role#2. If it does not, we throw a
java.lang.SecurityException notifying the user about the authentication violation#3.
Otherwise, the bid cancellation method is allowed to proceed normally. We will discuss both the
security management related methods provided in the EJB context next, namely the
isCallerInRole and getCallerPrincipal.

isCallerInRole and getCallerPrincipal
Believe it or not, programmatic security is made up solely of the two previously mentioned

JAAS-related methods. The methods are defined in the javax.ejb.EJBContext interface as
follows:

public interface EJBContext {
 ...
 public java.security.Principal getCallerPrincipal();
 public boolean isCallerInRole(java.lang.String roleName);
 ...
}

We already saw the isCallerInRole method in action; it is fairly self-explanatory. Behind the

scenes, the EJB context retrieves the Principal associated with the current thread and checks if any of
its roles matches the name you provided. The getCallerPrincipal method gives us direct access
to the java.security.Principal representing the current authentication context. The only
method of interest in the Principal interface is getName(), which returns the name of the
Principal. Most of the time, the name of the Principal is the login name of the validated user. This
means that just as in the case of a homemade security framework, you could validate the individual
user if you needed to. For example, let us assume that we had a change of heart and decided that in
addition to the CSRs, bidders can cancel their own bids as long as the cancellation is done within a
minute of putting in the bid. We could implement this using the getCallerPrincipal method
as follows:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

public void cancelBid(Bid bid, Item item) {
 if (!context.isCallerInRole("CSR")
 && !(context.getCallerPrincipal().getName().equals(
 bid.getBidder().getUsername()) && (bid.getTimestamp() >=
 (getCurrentTime() - 60*1000))))) {
 throw new SecurityException(
 "No permissions to cancel bid");
 }
 ...
}

Note though, there is no guarantee exactly what the Principal name might return. In some

environments, it can return the role name, group name or any other arbitrary String that makes sense
for the authentication system. Before you use the Principal.getName() method, you should
check the documentation of your particular security environment. As you can see, the one great
drawback of programmatic security management is the intermixing of security code with business
logic as well as the potential hard-coding of role and Principal names. In previous versions of EJB,
there was no real way of getting around these shortfalls. However, in EJB 3.0, you can alleviate this
problem somewhat using interceptors. Let us see how to accomplish this next.

Using Interceptors for Programmatic Security
As we know, in EJB 3.0 we can setup interceptors that are invoked before and after (around) any

EJB business method. This facility is ideal for cross-cutting concerns that should not be duplicated in
every method, such as programmatic security (if you are unfamiliar with the term crosscutting, in
aspect-oriented-programming or AOP-speak, application requirements that cut across components
are called cross-cutting concerns). We could re-implement code Listing 6.5 using interceptors instead
of hard-coding security in the business method as follows:

20 Listing 6.6: Using Interceptors with Programmatic Security
public class SecurityInterceptor {
 @AroundInvoke |#1
 public Object checkUserRole(InvocationContext context)
 throws Exception {
 if (!context.getEJBContext().isCallerInRole("CSR")) { |#2
 throw new SecurityException(
 "No permissions to cancel bid");
 }

 return context.proceed();
 }
}

@Stateless
public class BidManagerBean implements BidManager {
 @Interceptors(actionbazaar.security.SecurityInterceptor.class) |#3
 public void cancelBid(Bid bid, Item item) { ... }
(annotation) <#1 Marked for Intercepted Invocation>
(annotation) <#2 EJB Context Accessed from Invocation Context>
(annotation) <#3 Specifying Interceptor for method>

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

The SecurityInterceptor Class method checkUserRole is designated as
AroundInvoke meaning it would be invoked whenever a method is intercepted#1. In the method,
we check to see if the Principal is a CSR#2. If case the role is not right, we throw a
SecurityException. Our BidManagerBean, on the other hand, specifies the
SecurityInterceptor Class as the interceptor for the cancelBid method. Note, although
using interceptors helps matters a little bit in terms of removing hard-coding out of business logic,
there is no escaping the fact that there is still a lot of hard-coding going on in the interceptors
themselves. Moreover, unless you are using a very simple security scheme where most EJB methods
have similar authorization rules and you can reuse a small number of interceptors across the
application, things could get complicated fast. In affect, you would have to resort to writing ad-hoc
interceptors for method-specific authentication combinations (just admin, CSR and admin,
everyone, no one, and so on). Contrast this to the relatively simple life of using the declarative
security management annotations or deployment descriptors. All in all, declarative security
management is the scheme you should stick with, unless you have an absolutely unavoidable reason
not to do so.

6.5 Summary
In this Chapter, we discussed the basic theory of transactions, transaction management using

CMT and BMT, basic security concepts as well as programmatic and declarative security
management. Both transactions and security are crosscutting concerns that ideally should not be
interleaved with business logic. The EJB 3.0 take on security and transaction management tries to
reflect exactly this belief, fairly successfully in our opinion, while allowing some flexibility.

An important thing to notice is the fact that even if you specify nothing for transaction
management in your EJB, the container still assumes default transactional behavior. On the other
hand, the container applies no default security settings if you leave it out. The assumption is that at a
minimum, an application server would be authenticated and authorized at a level higher than EJB
(for example the Web tier). Nevertheless, we highly recommend that you not leave yourself
vulnerable by ignoring security at the mission-critical EJB layer where most of your code and data is
likely to reside. Security vulnerabilities are insidious and you are better safe than sorry. Most
importantly, the security features of EJB 3.0 are so easy to use that there is no reason to risk the worst
by ignoring them.

The discussion on security and transactions wrap up our coverage of Session and Message Driven
Beans. Neither feature is directly applied to the EJB Persistence API as they were for Entity Beans in
EJB 2.1. We will see why this is the case as we explore the Persistence API in the next few chapters.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Chapter 7 Implementing Domain
Models with EJB 3.0

Most of today’s enterprise systems save their data into a relational database of some kind. This is

why, persistence, the process of saving and retrieving data from permanent storage, has been a major
application development concern for many decades. As a matter of fact, some authoritative sources
claim that a great majority of enterprise development efforts concentrate on the problem of
persistence.

Arguably, after JDBC, EJB 2.x Entity Beans has been the most significant groundbreaking
solution to the problem of persistence in Java. Unfortunately, many of us who developed Entity
Beans experienced an API that felt overcomplicated, cumbersome and unpolished. It is pretty fair to
say Entity Beans were the most weakly conceived part of EJB 2.x. In the past few years, lightweight
persistence solutions like Hibernate and TopLink successfully filled the gap left open by Entity
Beans. EJB 3.0 Java Persistence API (JPA) brings the innovative ideas created by these popular
solutions into the Java EE standard and leaves behind the Entity Beans paradigm.

Domain modeling is a concept inseparably linked with persistence. In fact, it is often the domain
model that is persisted. As a result, it makes good sense to present JPA by breaking things down into
four Chapters that might mirror the iterative process of developing the domain model and persistence
layer of the ActionBazaar application. We have decided on four convenient development phases:
defining, persisting, manipulating and querying the domain model. In this Chapter, we briefly
introduce domain modeling, present the ActionBazaar domain model, and implement part of the
domain model using EJB 3.0 JPA. In Chapter 8 we explain how entities in our domain model are
persisted into a database by using Object-Relational mapping. In Chapter 9, we manipulate the
entities using the EntityManager API. Finally, in Chapter 10, we query the persisted entities using
the EJB 3.0 Query API.

7.1 Domain Modeling and the JPA
Often the first step to developing an enterprise application is creating the domain model, that is,

listing the entities in the domain and defining the relationships between them.
 In this section we will first give you a primer on domain modeling. Then we will explore the

ActionBazaar problem domain and identify actors in a domain model such object, relationships,
cardinality, etc. We will provide a brief overview of how domain modeling is supported with EJB 3.0
Java Persistence API and then build a simple domain object as a simple Java class.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

7.1.1 Introducing Domain models
Although domain modeling is often presented as something complex and arcane, the idea behind it is
really pretty simple. In affect, a domain model is a conceptual image of the problem your system is
trying to solve. Very literally, it is made up of the objects in the “system universe” and the
relationships or associations between them. As you can guess, an object in a domain model need not
be a physical object but just a concept used by your system. A relationship on the other hand is an
imaginary link between objects that “need to know about one another.” The critical thing to note is
that the domain model describes the objects and how the objects might relate to each other, but not
how a system acts on the objects.
We like to think of a domain model as a set of interlocking toy blocks. Each uniquely shaped block
in the set is an object. The shape of each block determines how they fit with each other. Each such
“fit” is a relationship. In the end though, you put together the blocks into whatever configuration
sparks your imagination. The master plan for putting together the final results of the potential offered
by the block set is the business rules of the application. The business rules of the application are the
implemented by the Session Beans and Message Driven Beans we discussed in the last few Chapters,
while the persistence API implements the domain model the business rules act on.

We will not talk about domain modeling much further than what is needed for explaining the
concepts we just introduced. However, we encourage you to explore the topic further by checking
out the excellent books written on the subject of domain modeling, most notably Patterns of
Enterprise Applications Architecture by Martin Fowler (Addison-Wesley, 2002).UML Class diagrams
are the most popular method of creating the initial domain model. However, we are going to avoid
using formal Class Diagrams throughout this Chapter and in the rest of the book. Instead we will use
the simplest diagrams possible that might have a very shallow resemblance to UML.

7.1.2 The ActionBazaar Problem Domain

Modeling the entire ActionBazaar domain will introduce complexity that we do not really need

in order to explain JPA. To avoid this unnecessary complexity, we are going to develop the core
functionality of the ActionBazaar application that is directly related to buying and selling items on
bid online7.

As Figure 7.1 shows, at the heart of it, ActionBazaar centers on the following activities8:

30. Sellers posting an item on ActionBazaar.

31. Items being organized into searchable and navigable categories.

32. Bidders placing bids on items.

33. The highest bidder ordering the item won.

7 Admittedly, this is a slightly unoriginal example. We considered using an example slightly tangential to
the central theme of ActionBazaar but decided against it and remained true to the ActionBazaar core
concept.
8 If you are familiar with use cases and the list looks a lot like use cases, they really are.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

45 Figure 7.1: The core functionality of ActionBazaar. Sellers post items into searchable and navigable

categories. Bidders bid on found items and the highest bidder orders items won.

In our artificially simplistic scenario, we can pick out the domain objects simply by scanning the

list of activities and looking for nouns: seller, item, category, bidder, bid and order. Our goal is
identify the domain objects or entities that we want to persist in the database. In the real world,
finding domain objects usually involves hours of work and many iterations of analyzing the business
problem. We will make our initial diagram by randomly throwing together our objects into Figure
7.2:

Figure 7.2 Entities are objects that can be persisted in the database. As the first step you identify entities e.g.

Entities in the ActionBazaar domain

Putting in the links between objects that should know about each other (these are the infamously

complex domain relationships) will complete our domain model. We encourage you to spend a little
bit of time looking at Figure 7.2 and trying to guess how the objects might be related before peeking
at the finished result in Figure 7.3.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

We will not spell out or discuss every relationship in Figure 7.3 since most are pretty intuitive
even with the slightly cryptic arrows and numbers. We will explain what is going on with the arrows
and numbers in just a little bit when we talk about direction and multiplicity of relationships. For
now, all we really need to note is the text describing how objects are related to each other. For
example, an item is sold by a seller, the item is in a category, each category has a parent category and
a possible set of subcategories, a bidder places a bid on an item and so on. You should also note that
although the domain model describes the possibilities for cobbling objects together, it does not
actually describe the way the objects are manipulated. For example, although we can see that an order
consists of one or more items and is placed by a bidder, we are not really told how or when these
relationships are formed. Applying a bit of common sense though, it is easy to figure out that an item
won through a winning bid is put into an order placed by the highest bidder. These relationships are
probably formed by the business rules after the bidding is over and the winner checks out the item
won.

Figure 7.3: ActionBazaar domain model complete with entities and relationships. Entities are related to each

other and the relation can either be one-one, one-many, many-one and many-many. Relataionships can either be

uni or bi-dierctional.

We will clarify the concepts behind domain model objects, relationships and multiplicity a little
more next, before moving onto the JPA.

7.1.3 Domain Model Actors
Domain modeling theory identifies four not three, domain model “actors”: objects, relationships,the
multiplicity and optionality of relationships. We will now discuss the details that we have left out so
far on all three actors.

Objects
For a Java developer perspective, as the name implies, domain objects are very closely related to

Java Objects. Like Java Objects, domain objects can have both behavior (methods in Java terms) and

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

state (instance variables in Java). For example, the category domain object probably has name,
creation date and modification date as attributes. Similarly, a category probably also has the behavior
of being renamed and the modification date updated. There are likely hundreds of instances of
category domain objects in the ActionBazaar such as ‘Junkyard Cars for Teenagers’, ‘Psychedelic
Home Décor from the Sixties’, “Cheesy Romantic Novels for the Bored Housewife”, and so on.

Relations
In Java terms, a relation is manifested as one Object having a reference to another. If the Item

and Bid Objects are related, there is probably a Bid instance variable in Item, an Item instance
variable in Bid or both. Where the Object reference resides determines the direction of the arrows in
Figure 7.3. If Item has a reference to Bid, the arrow should point from Item to Bid. As it so
happens, in our case Item and Bid have references to each other (an Item has Bids on it and Bids
are placed on Items). Signifying this fact, the arrow connecting Bid and Item points in both
directions in Figure 7.3. This is what is meant by a bi-directional relationship or association as
opposed to a uni-directional association or relation. Typically objects are nouns and associations are
verbs such as: has, is part of, is member of, belongs to, and so on.

Multiplicity or Cardinality
As you can probably infer from Figure 7.3, not all relationships are one-to-one. That is, there

may be more than one object on either side of a relationship. For example, a Category can have
more than one Item. Multiplicity refers to this multifaceted nature of relationships. The multiplicity
of a relationship can be:

 One-to-one: Each side of the relationship may have at most only one object. An employee can
have only one ID card and an ID card can only be assigned to one employee.

 One-to-many: A particular object instance may be related to at least two instances of another.
For example, an Item can have more than one Bid. Note, taken from the point of view of a
Bid, the relationship is said to be many-to-one. For example, many Bids can be placed by a
Bidder in Figure 7.3.

 Many-to-many: If both sides of the relationship may have more than one object, the
relationship is many-to-many. For example, an Item can be in more than one Category
and a Category can have multiple Items.

Optionality or Ordinality
Ordinality or optionality of a relationship determines whether an associated entity exists. For

example we have bi-directional one-to-one association between User and BillingInfo and every
user need not always have billing information so the relationship is optional. However,
BillingInfo always belongs to a User and hence the optionality for BillingInfo-User association
is false.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Having established the basic concepts of domain modeling, we can now start discussing how the
domain model is persisted using the EJB 3.0 Java Persistence API and actually start implementing
our domain model.

7. 1.4 The EJB 3.0 Java Persistence API
In contrast to EJB 2.x Entity Beans, the EJB 3.0 Java Persistence API (JPA) is a metadata driven
POJO technology. That is, to save data held in Java Objects into a database, our Objects are not
required to implement an interface, extend a class or fit into a framework pattern. In fact, persisted
objects need not contain a single inline statement of JPA . All we have to do is code our domain
model as plain Java Objects and use annotations or the XML to give the persistence provider the
following information:

1. What our domain objects are (for example using the @Entity and @Embedded notations).
2. How to uniquely identify a persisted domain object (for example using the @Id

annotation).

3. What the relations between objects are (for example using the @OneToOne, @OneToMany,
@ManyToMany annotations).

4. How the domain object is mapped to database tables (for example using various Object-
Relational mapping annotations like @Table, @Column, @JoinColumn, etc).

As we can see, although Object-Relational mapping using the JPA (or any other O/R frameworks
like Hibernate) is a great improvement over Entity Beans or JDBC, automated persistence is still an
inherently a complex activity. The large number of persistence-related annotations and wide array of
possible arrangements is a result of this fact. To make things as digestible as possible, we will only
cover steps 1-3 in this chapter, leaving step 4 to Chapter 8. Moreover, we will stray from our pattern
of presenting then analyzing a complete example since the wide breadth of the persistence API would
not yield to the pattern nicely. Instead, we are going to explore the persistence API by visiting each
step in our list using specific cases from the ActionBazaar example, analyzing features and intricacies

Rich vs. Anemic Domain Models

As we mentioned, domain models are eventually persisted into the
database. It might already be obvious that it is very easy to make the
domain model objects look exactly like database tables. As a matter of
fact, this is exactly why data modeling is often synonymous to domain
modeling and DBAs are often the domain experts. In this mode of
thinking, domain objects contain attributes (mapping to database table
columns) but no behavior. This type of model is referred to as the anemic
model.
A rich domain model on the other hand, encapsulates both object
attributes and behavior and utilizes objected oriented design such as
inheritance, polymorphism and encapsulation.

Note an anemic domain model may not necessarily be a very bad thing for
some applications. For one, it is very painless to map objects to the
database. As a rule of thumb, the richer the domain model is, the harder it
is to map it to the database, particularly while using inheritance.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

on the way. Not straying from previous Chapters, however, we will still focus on using annotations,
leaving the description of deployment descriptor equivalents for a brief discussion in chapter 11. We
will implement our first step next by coding a domain object from ActionBazaar.

7.1.5 Domain Objects as Java Classes
We now get our feet wet by examining some code for the JPA. We pick a representatively

complex domain object, Category, and see how it might look like in Java code. The Category
class in Listing 7.1 is a simple POJO class that is a domain object built using Java. This is a candidate
for becoming an entity and to be persisted to the database. As we mentioned earlier, the Category
domain object may have the category name and modification date as attributes. In addition, there are
a number of instance variables in the POJO Class that express domain relationships instead of simple
attributes of a category. The id attribute also does more than simply serving as a data-holder for
business logic and identifies an instance the Category object. You will learn about identity in the next
section.

Listing 7.1: Category domain object in Java
package ejb3inaction.actionbazaar.model;
import java.sql.Date;

public class Category { |#1
 protected Long id; |#2

 protected String name; |#3
 protected Date modificationDate; |#3

 protected Set<Item> items; |#4
 protected Category parentCategory; |#4
 protected Set<Category> subCategories; |#4

SQL-Centric Persistence: Spring JDBCTemplate and iBATIS

Like many of us, if you are very conformable with SQL, JDBC and
like the control and flexibility offered by do-it-yourself, hands-on
approach, O/R in its full-blown black magic, automated form may
not be for you. As a matter of fact, O/R tools like Hibernate and
EJB 3.0 Java persistence API (JPA) might seem like overkill or an
unnecessary learning curve to overcome, even despite the long-
term benefits offered by a higher-level API.

If this is the case, you should give tools like Spring JDBCTemplate
and iBATIS a very close look. Both of these tools do an excellent
job abstracting out really low-level, verbose JDBC mechanics
while keeping the SQL/Database-centric feel of persistence intact.

However, you should give O/R Frameworks and JPA a fair chance.
You just might find that it makes your life a lot easier/OO-centric,
freeing you to use your neuron-cycles to solve business problems
instead.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 public Category() {} |#5

 public Long getId() { |#6
 return this.id; |#6
 } |#6
 |#6
 public void setId(Long id) { |#6
 this.id = id; |#6
 } |#6
 |#6
 public String getName() { |#6
 return this.name; |#6
 } |#6
 |#6
 public void setName(String name) { |#6
 this.name = name; |#6
 } |#6
 |#6
 public Date getModificationDate() { |#6
 return this.modificationDate; |#6
 } |#6
 |#6
 public void setModificationDate(Date modificationDate) { |#6
 this.modificationDate = modificationDate; |#6
 } |#6
 |#6
 public Set<Item> getItems() { |#6
 return this.items; |#6
 } |#6
 |#6
 public void setItems(Set<Item> items) { |#6
 this.items = items; |#6
 } |#6
 |#6
 public Set<Category> getSubCategories() { |#6
 return this.subCategories; |#6
 } |#6
 |#6
 public void setSubCategories(Set<Category> subCategories) { |#6
 this.subCategories = subCategories; |#6
 } |#6
 |#6
 public Category getParentCategory() { |#6
 return this.parentCategory; |#6
 } |#6
 |#6
 public void setParentCategory(Category parentCategory) { |#6
 this.parentCategory = parentCategory; |#6
 } |#6
}
(annotation) <#1 Plain Java Object>
(annotation) <#2 Instance Variable Uniquely Identifying Object>
(annotation) <#3 Object Attribute Instance Variable>
(annotation) <#4 Instance Variables for Relations>
(annotation) <#5 Empty Constructor>
(annotation) <#6 Getters and Setters For Each Instance Variable>

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

The Category POJO has a number of protected instance fields#3 #4, each with corresponding
setters and getters that conform to JavaBeans naming conventions#6. In case you are unfamiliar with
them, JavaBeans rules state that all instance variables should be non-public and made accessible via
methods that follow the getXX and setXX pattern used in Listing 7.1, where XX is the name of the
property (instance variable). Other than name and modificationDate, all the other properties
have a specific role in domain modeling and persistence. The id field is used to store a unique
number used to identify the category#2. The items property stores all the items stored under a
category and represents a many-to-many relationship between items and categories. The
parentCategory property represents a self-referential many-to-one relationship between parent
and child categories. Finally, the subCategories property maintains a many-to-many relationship
between parent categories and subcategories.

The Category Class as it stands in Listing 7.1 is a perfectly acceptable Java implementation of a

domain object. The problem is that the EJB 3.0 persistence provider has no way of distinguishing
the fact that the Category Class is a domain object instead of just another random Java Object used
for business logic, presentation, or some other purpose. Moreover, note that the properties
representing relationships do not make direction or multiplicity clear. Lastly, the persistence provider
also needs to be told about the special purpose of the id property. We will start solving some of these
problems by using JPA annotation next, starting with identifying the Category Class as a domain
object.

7.2 Implementing Domain Objects with JPA
In the previous few sections you learnt about domain modeling concepts and identified part of the
ActionBazaar domain model. Also we briefly introduced some commonly used metadata annotations
supported by JPA. In this section we will see some of the JPA annotations in action as we implement
part of the domain model using EJB 3.0 JPA. We will start with @Entity:using annotation that
converts a POJO to an entity. Then we will learn about field and property-based persistence and
entity identity. Finally we will discover embedded objects.

7.2.1 The @Entity Annotation
The @Entity annotation marks a POJO as a domain object that can be uniquely identified.

You may think of the annotation as the persistence counterpart of the @Stateless, @Stateful
and @MessageDriven annotations. We would mark the Category Class as an Entity as follows:
@Entity
public class Category {
 ...
 public Category() { ... }
 public Category(String name) { ... }
 ...
}

As the code snippet demonstrates, all non-abstract entities must have either a public or protected
no-argument constructor. The constructor is used to create a new entity instance by using new
operation as follows:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Category category = new Category();

One of the coolest features of JPA is that since Entities are POJOs, they support a full range of
OO inheritance features, with a few persistence related nuances thrown in. You can have an Entity
extend either another Entity or even a non-Entity Class. For example, it would be good design to
extend both the Seller and Bidder domain object Classes from a common User Class as
depicted in Figure 7.4.

46 Figure 7.4 Inheritance Support with Entities. Bidder, Seller entities extend the User entity class

As the code snippet that follows shows, this Class could store information common to all users

like the user ID, username and email address.
@Entity
public class User { |#1
 ...
 String userId;
 String username;
 String email;
 ...
}

@Entity
public class Seller extends User { ... |#2

@Entity
public class Bidder extends User { ... |#2
(annotation) <#1 Parent Entity Class>
(annotation) <#2 Entity Subclasses>

Because the parent User class is declared an Entity, all the inherited fields like username and

email are persisted when either the Seller or Bidder Entities are saved. A slightly counter-
intuitive nuance you should note is that this would not be the case if the User Class were not an
Entity itself. Rather the value of the inherited properties would be discarded when either Seller or
Bidder are persisted. The preceding code snippet also demonstrates an interesting weakness—the
User class could be persisted on its own, which is not necessarily desirable or appropriate
application behavior. One way to avoid this problem is to declare the User Class abstract, since
abstract Entities are allowed but cannot be directly instantiated or saved. In any case, this is probably

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

better OO design anyway. Since JPA supports entity inheritance the relationship between entities and
queries may be polymorphic. We will discuss about handling polymorphic queries in Chapter 10.

Obviously the ultimate goal of persistence is to save the properties of the Entity into the database

(such as name and modification date for the Category Entity in Listing 7.1). However, things are
not as simple as they seem and there are a few twists about Entity data persistence you need to have a
good grasp of.

7.2.2 Persisting Entity Data
An entity being a persistent object has some state that is stored into the database. In this section

we will discuss access types, defining a transient field and datatypes supported by JPA.

Field vs Property based Persistence
An entity maintains its state by using either fields or properties (via setter and getter methods).

Although JavaBeans Object property-naming conventions have been widely used in the Java platform
for a good number of years, some developers consider these conventions to be overkill and would
rather access instance variables directly. The good news is that JPA supports this paradigm (whether it
should is an open question. We will express our viewpoint a few paragraphs later). Defining O-R
mapping using fields or instance variables of entity is known as field-based accesss whereas using O-R
mapping with properties is known as property-based access.

 If you want to use field-based access, you can declare all your POJO persisted data fields public or

protected and ask the persistence provider to ignore getters/setters altogether. You would only have
to provide some indication on at least one of the instance variables that they are to be used for
persistence directly. You can do this by using the @Id annotation that we will discuss next that apply
to either a property on a field . Depending on your inclination, this transparent flexibility may or
may not seem a little counter-intuitive. In the early releases of the EJB 3.0 specification the @Entity
annotation had an element named accessType to explicitly specify the persistence data storage type
to be either FIELD or PROPERTY. You will learn that O-R mapping using XMLprovides an element
named access to specify the access type. However, many developers did not like this element and
wanted additional flexibility in having the JPA provider dynamically determine the access type based
on Entity field usage patterns.

In the snippet that follows, shows you what field-based persistence might look like:

@Entity
public class Category {
 @Id
 public Long id;

 public String name;
 public Date modificationDate;

 public Category() {}
}

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

In the code snippet, the persistence provider would infer that the id, name, and
modificationDate public fields should be persisted since the @Id annotation is used on the id
field. The annotations would have been applied to getters if we did not intend to use fields for
persistence instead of properties.

Note that annotations used with a setter method is ignored by the persistence provider for
property-based access.

One caveat in choosing between field and property-based persistence is that both are one-way-streets;
you cannot mix and match access types in the same Entity or in any Entity in the POJO hierarchy.
Field-based persistence is a one-way-street in another important way: you give up the OO benefits of
encapsulation/data-hiding that you get from getters and setters if you expose the persistence fields to
be directly manipulated by clients. Even if you used field-based access we recommend that you make
the fields private and expose the fields to be modified by getter/setter method.

For example, property setters are often used in non-trivial applications to validate the new data
being set or standardize POJO data in some fashion. In our example, we could automatically convert
Category names to uppercase in the setName method:

public void setName(String name) {
 this.name = name.toUpperCase();
}

In general, we highly recommend that you use field-based access with accessor methods or
property-based access. It is much easier to have it and not need it than to find out that you need it
later on and have to engage in a large-scale, painful refactoring effort in the face of deadlines.

By default, the persistence provider saves all Entity fields or properties that have JavaBeans style

public or protected setters and getters (for example, getName, setName in Listing 7.1). In addition,
persisted setters and getter cannot be declared final, as the Persistence provider may need to
override them.

Defining a transient field
If necessary, you can stop an Entity property from being persisted by marking the getter with the

@Transient annotation. A transient field is typically useful for caching some data that you do not
want to save in the database. For example, the Category Entity could have a property named
activeUserCount that stores the number of active users currently browsing items under the
directory or a generatedName field that is generated by concatenating category id and name.
However, saving this runtime information into the database would not make much sense. We could
avoid saving the property by using @Transient as follows:

@Entity
public class Category {
 ...
 @Transient
 protected Long activeUserCount;
 transient public String generatedName

 ...
 public Long getActiveUserCount() {
 return activeUserCount;
 }

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 public void setActiveUserCount(Long activeUserCount) {
 this.activeUserCount = activeUserCount;
 }
 ...
}

We could have achieved the same effect by using the @Transient tag on the getter when using
property-based access.

Note that defining a field with transient modifier as we have used with generatedName has

the same effect as @Transient annotation:

Persistent Data types
Before we move on from the topic of persisted POJO data and start discussing identity and

relations, we need to discuss exactly what field data can be persisted. Ultimately persisted
fields/properties wind up in a relational database table and have to go through an extremely powerful,
high-level API to get there. Because of this fact, there are some restrictions on what data types can be
used in a persisted field/property. In general, these restrictions are not very limiting, but you should
be aware of them nonetheless. Table 7.1 lists the data types that can be used in a persistent
field/property:

1.15 Table 7.1: Data types allowable for a persisted field/property

Types Examples

Java primitives Int, double, long
Java primitives wrappers java.lang.Integer, java.lang.Double
String type java.lang.String
Java API Serializable types java.math.BigInteger, java.sql.Date
User defined Serializable types Class that implements java.io.Serializable
Array types byte[], char[]
Enumerated type {SELLER, BIDDER, CSR, ADMIN}
Collection of Entity types Set<Category>
Embeddable class Classes that are defined @Embeddable

We will discuss the @Embeddable annotation in section 7.5.3 after we discuss Entity Identities.

For now, think of an Embeddable Object as a custom data type for an Entity that encapsulates
persisted data.

We have already touched on the issue of identity when we talked about uniquely identifying the

Category domain object through the id property. We will now take up the issue of Entity Identity
in greater detail.

7.2.3 Specifying Entity Identity
Every Entity of the domain model must be uniquely identifiable. This requirement partly comes

from the fact that at some point Entities must be persisted into a uniquely identifiable row in a
database table (or set of rows in multiple tables). If you are familiar with the concept of database
table primary keys, this should come as no surprise. Without primary keys, you would never be able

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

to uniquely identify and retrieve the data you put into a record since you would not know which row
it went into after performing the save! The concept of being able to distinguish different instances of
the same object holding a different set of data is not completely alien to object oriented programming
either. Consider the equals method in java.lang.Object, meant to be overridden by subclasses
as necessary. This method is the OO equivalent of comparing the primary keys of two distinct
database records. In most cases, the equals method is implemented by comparing the data that
uniquely identifies instances of the same object from one another. In the case of the Category
Object, you might imagine that the equals method would look like this:

public boolean equals (Object other) {
 if (other instanceof Category) {
 return this.name.equals(((Category)other).name)
 } else {
 return false;
 }
}

In this case, we would be assuming that the name instance variable uniquely identifies a
Category. The name field therefore is the identity for the Category Object. In Listing 7.1,
however, we choose the id field as the identity for Category. This choice will be more obvious
when we talk about mapping the Category Object into a database table. As we will see, in effect, we
choose this instance variable because we get it free from the database as a unique Category
identifier and it is less resource intensive than comparing the java.lang.String name field since
it is a numeric java.lang.Long. There are several ways of telling the persistence provider where
the identity of an Entity is stored. Starting with the simplest and ending with the most complex,
these are:

1. Using the @Id Annotation.

2. Using the @IdClass Annotation.

3. Using the @EmbeddedId Annotation.

We will now look at each of these mechanisms next.

The @Id Annotation
Using the javax.persistence.Id annotations is the simplest way of telling the persistence

provider where the Entity identity is stored. The @Id annotation marks a field or property as identity
for an Entity. Since we are using property based persistence for the Category Entity, we could let
the API know that we are using the id property as the identity by applying the @Id annotation to
the getId method as in the following code snippet. In case of field-based persistence, the @Id
annotation would have been applied directly to an instance variable instead.
@Entity
public class Category {
 ...
 protected Long id;
 ...

 @Id
 public Long getId() {
 return this.id;
 }

 public void setId(Long id) {

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 this.id = id;
 }
 ...
}

Because the identity we specify will end up in a database primary key column, there are
limitations to what data types an identity might have. EJB 3.0 supports primitives, primitive
wrappers and Serializable types like java.lang.String, java.util.Date, and
java.sql.Date as identities. In addition, when choosing numeric types you should avoid types
such as float, Float, double, etc because of the indeterminate nature of type precision. For
example, let us assume that we are using float data as the identity and specify 103.789 and 103.787 as
the identity values for two separate Entitiy instances. If the database rounds these values to two-digit
decimal precision before storing the record, both of these values would map to 103.79 and we would
have a primary key violation!

An important thing to note is that using @Id annotation on its own works only for identities
with just one field or property. In reality, you will often have to use more than one property or field
(known as composite key) to uniquely identify an Entity. For sake of illustration, let us assume that
we changed our minds and decided that a Category is uniquely identified by its name and creation
date. There are two ways we can accomplish this: either by using the @IdClass or @EmbeddedId
annotations.

The IdClass Annotation
In effect, the @IdClass annotation enables us to use more than one @Id annotation in a

sensible way. This is the basic problem with using more than one @Id field or property in an Entity
class: it is not obvious how to compare two instances in an automated fashion. This is especially true
since in cases where composite keys are necessary, one or more of the fields that constitute the
primary key are often relation or association fields. For example, although this is not the case for us,
the Bid domain object might have an identity consisting of the item to bid on, the bidder as well
as a bid amount.
public class Bid {
 private Item item;
 private Bidder bidder;
 private Double amount;
 ...
}

In the preceding snippet, both the item and bidder instance variables represent relation
references to other entities. It might be that neither of the references is simple enough to compare
instances using the equals method, as it would be for a java.lang.String or
java.lang.Long. This is where a designated IdClass comes in. The best way to understand how
this works is though an example. For simplicity, we will return to our Category object with the
name and creation date identity. This is how the solution might look like:

Listing 7.2: Specifying Category Identity Using IdClass

public class CategoryPK implements Serializable {
 String name; |#1
 Date createDate; |#1

 public CategoryPK() {} |#2

 public boolean equals(Object other) { |#3

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 if (other instanceof CategoryPK) {
 final CategoryPK otherCategoryPK = (CategoryPK)other;
 return (otherCategory.name.equals(name) &&
 otherCategoryPK.createDate.equals(createDate));
 }

 return false;
 }

 public int hashCode() { |#4
 return super.hashCode();
 }
}

@Entity
@IdClass(CategoryPK.class) |#5
public class Category {
 public Category() {}

 @Id |#6
 protected String name; |#6

 @Id |#6
 protected Date createDate; |#6
 ...
}
 (annotation) <#1 Stored Indentity Fields>
(annotation) <#2 Empty Constructor>
(annotation) <#3 equals method comparing Identity>
(annotation) <#4 Hashcode Implementation>
(annotation) <#5 IdClass Specification>
(annotation) <#6 Identity Fields>

As shown in Listing 7.2, the CategoryPK Class is designated as the IdClass for

Category#6. The Category Class has two Identity fields marked by the @Id annotation, name
and creationDate#6. These two Identity fields are mirrored in the CategoryPK Class#1. The
equals method implemented in CategoryPK compares the two mirrored Identity fields to
determine if two given identities are equal#3. The magic here is that at runtime, the persistence
provider determines if two Category Objects are equal by copying the marked @Id fields into the
corresponding fields of the CategoryPK Object and using CategoryPK.equals. Note that any
IdClass must be Serializable and must provide a valid hashCode implementation#4. In effect, all
that is happening here is that we are specifying exactly how to compare multiple identity fields using
an external IdClass#5. The disadvantage to using @IdClass is the slight redundancy and
associated maintainability problems in repeating the definition of identity fields in the Entity and the
IdClass. In our case the name and createDate fields are defined in both the Category and
CategoryPK Classes. However, the IdClass approach keeps your domain model clutter free,
especially as opposed to the slightly awkward object model proposed by the third approach, which
uses the @EmbeddedId annotation.

The @EmbeddedId Annotation
Using the @EmbeddedId annotation is like moving the IdClass right into your Entity and

using the identity fields nested inside it to store Entity data. Take a look at what we mean in the
following code snippet that rewrites Listing 7.2 using @EmbededId:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

21 Listing 7.3: Specifying Category Identity Using EmbeddedId
@Embeddable |#1
public class CategoryPK {
 String name;
 Date createDate;

 public CategoryPK() {}

 public boolean equals(Object other) { |#2
 if (other instanceof CategoryPK) {
 final CategoryPK otherCategoryPK = (CategoryPK)other;
 return (otherCategory.name.equals(name) &&
 otherCategoryPK.createDate.equals(createDate));
 }

 return false;
 }

 public int hashCode() { |#2
 return super.hashCode();
 }
}

@Entity
public class Category {
 public Category() {}

 @EmbeddedId |#3
 protected CategoryPK categoryPK;
 ...
}
(annotation) <#1 Embeddable Identity Class>
(annotation) <#2 Still Includes Equals and HashCode>
(annotation) <#3 Marking as Identity>

In Listing 7.3, notice that the identity fields, name and createDate, are absent altogether from
the Category Class. Instead an “Embeddable” Object instance, categoryPK, is designated as the
identity using the @EmbeddedId annotation#3. The CategoryPK Object itself is almost identical
to the IdClass used in Listing 7.1 and contains the name and createDate fields. We still need to
implement the equals and hashCode methods#2. The only difference is that the @Embedded
Object need not be Serializable. In effect, the Object designated as @EmbeddedId is expected
to be a simple data holder encapsulating only the identity fields. Note, the @Id annotation is missing
altogether since it is redundant. As a matter of fact, you are not allowed to use Id or IdClass in
conjunction with EmbeddedId. As you can see, although this approach saves typing, it is a little
awkward to justify in terms of Object modeling (even the variable name, categoryPK, is more
reminiscent of relational databases than OO). It is a little unwieldy too. Imagine having to write
category.catetogyPK.name to use the name field for any other purpose than as a primary key,
as opposed to using category.name. However, which method you choose is ultimately a matter of
personal taste.

Unless you really need a composite primary key because you are stuck with a legacy database we

do not recommend using it and instead recommend a simple generated key (also known as surrogate
key) that we will discuss in Chapter 8.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

One concept is critical: identities can only be defined once in an entire Entity hierarchy. Having
had a sufficient introduction to the idea of Entities and identities, we are now ready to explore the
@Embeddable annotation in greater detail.

7.2.4 The @Embeddable Annotation
Let us step back a second from the idea of identities into the world of pure OO domain

modeling. Are all domain objects always identifiable on their own? How about Objects that are
simply used as convenient data holders/groupings inside other Objects? An easy example would be an
Address Object used inside a User Object as an elegant OO alternative to listing street address,
city, zip, etc directly as fields of the User object. It would be overkill for the Address Object to
have an identity since it is not likely to be used outside a User Object. This is exactly the kind of
scenario the @Embeddable annotation was designed for. The @Embeddable annotation is used to
designate persistent Objects that need not have an identity of their own. This is because
Embeddable Objects are identified by the Entity Objects they are nested inside and never persisted
or accessed on their own. Put another way, Embeddable Objects share their identities with the
enclosing Entity. An extreme case of this is the @EmbeddedId situation where the embeddable
object is the identity. Let us take a look at a code snippet showing the user/address example to get a
better understanding of the most commonly used Embeddable Object semantic patterns:

Listing 7.4: Using Embedded Objects
@Embeddable |#1
public class Address {
 protected String streetLine1;
 protected String streetLine2;
 protected String city;
 protected String state;
 protected String zipCode;
 protected String country;
 ...
}

@Entity
public class User {
 @Id
 protected Long id; |#2
 protected String username;
 protected String firstName;
 protected String lastName;
 @Embedded
 protected Address address; |#3
 protected String email;
 protected String phone;
 ...
}
(annotation) <#1 Embeddable Address>
(annotation) <#2 Shared Identity>
(annotation) <#3 Embedded Address>

In Listing 7.4, the embeddable Address Object#1 is embedded inside a User Entity#3 and
shares the identity marked with the @Id annotation#2. It is illegal for an @Embeddable object to
have an identity. Also, the EJB 3.0 API does not support nested embedded Objects. In most cases,
embedded objects are stored in the same database record as the entity and are only materialized in the
OO world. We will show you how this is done in Chapter 8.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Our discussion of Embedded Objects rounds out the coverage of domain Objects. We will take a

look at domain object relationships next.

7.3 Entity Relationships
In section 7.2.1, we explored the concepts of domain relationships, direction and multiplicity. As
review, we will summarize those concepts here before diving into the details of how to specify domain
relationships using the JPA. As you might have noted in our domain object code samples, a
relationship essentially means that one Entity holds an object reference to another. For example, the
Bid Object holds a reference to the Item Object the bid was placed on. Hence, there is a
relationship between the Bid and Item domain objects. Recall that relationships can be either
unidirectional or bidirectional. The relationship between Bidder and Bid in Figure 7.3 is
unidirectional, since the Bidder object has a reference to Bid, but the Bid object has no reference
to the Bidder. The Bid-Item relationship, on the other hand, is bidirectional, meaning both the
Bidder and Item Objects have references to each other. Relationships can be one-to-one, one-to-
many, many-to-one or many-to-many. Each of these relationship types is expressed in the JPA
through an annotation. Table 7.2 lists the relationship annotations we will discuss in the following
sections.

Table 7.2: Domain Relation types and corresponding annotations

Type of relationship Annotation

One-to-one @OneToOne
One-to-many @OneToMany
Many-to-one @ManyToOne
Many-to-many @ManyToMany

We explore each annotation using examples next.

7.3.1 @OneToOne
The @OneToOne annotation is used to mark uni- and bi-directional one-to-one relationships.

Although in most systems, one-to-one relationships are rare, they make perfect sense for domain
modeling. In fact, our ActionBazaar example in Figure 7.3 has no one-to-one relationships. However,
we can imagine that the User domain object parent to both Seller and Bidder has a one-to-one
relationship with a BillingInfo object. The BillingInfo object might contain billing data on a
user’s credit card, bank account, and so on. Let’s start by seeing what a unidirectional relationship
would look like as depicted in figure 7.5.

Unidirectional One-to-One
For the time, being, let us assume that the User object has a reference to the BillingInfo,

but not vice-versa. That is, the relationship is uni-directional.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Figure 7.5: One-to-One relationship between User and BillingInfo entities. A User may have atmost one instance

of BillingInfo object and BillingInfo object cannot exist without a User.

The following code illustrates this relationship:

Listing 7.5: Unidirectional OneToOne Relationship
@Entity
public class User {
 @Id
 protected String userId;
 protected String email;
 @OneToOne |#1
 protected BillingInfo billingInfo;
}

@Entity
public class BillingInfo {
 @Id
 protected Long billingId;
 protected String creditCardType;
 protected String creditCardNumber;
 protected String nameOnCreditCard;
 protected Date creditCardExpiration;
 protected String bankAccountNumber;
 protected String bankName;
 protected String routingNumber;
}
(annotation) <#1 One-to-one relationship between User and BillingInfo>

In Listing 7.5, the User Class holds a BillingInfo reference in the persisted billingInfo field.
Since the billingInfo variable holds only one instance of the BillingInfo Class, the
relationship is one-to-one. The @OneToOne annotation indicates that the persistence provider should
maintain this relationship in the database#1. Let us take a closer look at the definition of the
@OneToOne annotation to understand its features better:

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToOne {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default EAGER;
 boolean optional() default true;
 String mappedBy() default "";
}

First, note that this annotation can be applied to either fields or properties since the Target is
specified to be METHOD, FIELD. We are using field-based persistence for the examples to keep
things simple. The targetEntity element tells the persistence provider what the related Entity
Class is. In most cases, this is redundant since the container can infer the Class from the Class of the
field or the return type of the property getter and setter. However, you can specify it explicitly
anyway if you prefer. We will see a case in which this element is indispensable when we explore one-
to-many relations. The cascade and fetch parameters are best discussed after we introduce

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Object-relational mapping in the next Chapter. For now, suffice it to say that cascade controls
what happens to related data when the relation is altered or deleted and fetch specifies when and
how the related fields are populated from database tables.

Listing 7.6 shows an example of how the @OneToOne annotation might be applied to a property

instead of a field.

22 Listing 7.6: Property Based Unidirectional OneToOne Relationship
@Entity
public class User {
 private Long userId;
 private String email;
 private BillingInfo billing;
 ...
 @OneToOne |#1
 public BillingInfo getBilling() {
 this.billing;
 }

 public void setBilling(BillingInfo billing) {
 this.billing = billing;
 }
}

@Entity
public class BillingInfo {
 private Long billingId;
 private String creditCardType;
 ...
}
(annotation) <#1 One-to-one relationship between User and BillingInfo Using Properties>

The optional element tells the persistence provider if the related Object must always be

present. By default, this is set to true, which means that a corresponding related object need not
exist for the Entity to exist. In our case, every user need not always have billing information (for
example if the user just signed up) so the relationship is optional and the billing field can
sometimes be null. If the optional parameter was set to false, the Entity cannot exist if the
relationship or association does not hold. In other words, no User without BillingInfo could
ever exist. We will see the mappedBy parameter in action in the next section when we discuss bi-
directional associations.

Bidirectional One-to-One
The real point of having domain relationships between Entities is to be able to reach one Entity

from another. In our previous example, we can easily reach the billing information through the
billingInfo reference when we have an instance of a User. In some cases, you need to be able to
access related Entities from either side of the relationship (admittedly, this is rare for one-to-one
relationships). For example, the ActionBazaar application may periodically check for credit card
expiration dates and notify users of imminently expiring credit cards. As a result, the application
should be able to access user information from a given BillingInfo Entity and the User-
BillingInfo relationship should really be bidirectional. In effect, bidirectional one-to-one
relationships are implemented using two @OneToOne annotations pointing to each other on either

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

side of the bidirectional relation. Let us see how this works in Listing 7.7 by refactoring the code
from Listing 7.5:

23 Listing 7.7: Bidirectional OneToOne Relationship
@Entity
public class User {
 @Id
 protected String userId;
 protected String email;
 @OneToOne |#1
 protected BillingInfo billingInfo;
}

@Entity
public class BillingInfo {
 @Id
 protected Long billingId;
 protected String creditCardType;
 protected String creditCardNumber;
 protected String nameOnCreditCard;
 protected Date creditCardExpiration;
 protected String bankAccountNumber;
 protected String bankName;
 protected String routingNumber;
 @OneToOne(mappedBy=”billingInfo”, optional=”false”); #2
 protected User user;
}
(annotation) <#1 One-to-One Relationship Between User and BillingInfo>
(annotation) <#1 Reciprocal Relationship to User>

In listing 7.7, the User class still has a relation to the BillingInfo Class through the

billingInfo variable#1. However, in this case the relationship is bidirectional because the
BillingInfo class also has a reference to the User Class through the user field#2. The
@OneToOne annotation on the user field has two more interesting things going on. The first is the
mappedBy=”billingInfo” specification#2. This is telling the container that the “owning” side of
the relationship exists in the User Class’s billingInfo instance variable. The concept of a
relationship owner is really not originated from domain modeling. It exists as a convenience to define
the database mapping for a relationship only once instead of repeating the same mapping for both
directions of a relationship. We will see this concept in action in Chapter 8 when we describe O-R
mapping. For now, you should simply note the role of the mappedBy attribute. The second
interesting feature of the @OneToOne annotation on the user field is that the optional
parameter is set to false this time. This means that a BillingInfo Object cannot exist without a
related User object. After all, why bother storing credit card or bank account information that is not
related to an existing user?

7.3.2 @OneToMany and @ManyToOne
As you might have gathered from the ActionBazaar domain model in Figure 7.3, one-to-many

and many-to-one relations are the most common in enterprise systems. In this type of relationship,
one Entity will have two or more references of another. In the Java world, this usually means that an
Entity has a collection-type field such as java.util.Set or java.util.List storing multiple

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

instances of another Entity. Also, if the association between two Entities is bi-directional, one side of
the association is one-to-many and the opposite side of association is many-to-one.

Figure 7.6: Every Item has one or more Bids where more than one Bids may be placed on an Item. Hence

relationship between Item and Bid is one-to-many where relationship between Bid-Item is many-to-one.

 In Figure 7.6, the relationship between Bid and Item is one-to-many from the perspective of

the Item object, while it is many-to-one from the perspective of the Bid. Similar to the one-to-one
case, we can mark the owning side of the relationship by using the mappedBy column on the Entity
that is not the owner of the relationship. We will analyze these relationships further by actually
coding the Bid-Item relationship in Listing 7.8:

Listing 7.8: One-Many Bidirectional Relationship
@Entity
public class Item {
 @Id
 protected Long itemId;
 protected String title;
 protected String description;
 protected Date postdate;
 ...
 @OneToMany(mappedBy="item") |#1
 protected Set<Bid> bids;
 ...
}

@Entity
public class Bid {
 @Id
 protected Long bidId;
 protected Double amount;
 protected Date timestamp;
 ...
 @ManyToOne |#2
 protected Item item;
 ...
}
(annotation) <#1 One-to-Many Relationship>
(annotation) <#2 Corresponding Many-to-One Relationship>

[[JC: add some intervening text before the head]]

One-to-Many Relationship

Listing 7.8 shows that the Item domain object has a Set of Bid objects that it has references to.

To signify this domain relationship, the bids field is marked with a @OneToMany annotation#1.
There are a few nuances about the @OneToMany annotation we should talk about. In order to
explore them, let us take a quick look at the definition of the annotation:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToMany {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default LAZY;
 String mappedBy() default "";
}

If you notice, this is literally identical to the definition of the @OneToOne annotation, including the
mappedBy element. As a matter of fact, the only element we need to discuss further is
targetEntity. Remember that this element is used to specify the class of the related Entity if it is
not immediately obvious. In the @OneToMany annotation used in listing 7.8, this parameter is
omitted since we are using Java generics to specify the fact that the bids variable stores a Set of Bid
Objects:

@OneToMany(mappedBy="item")

protected Set<Bid> bids;

Imagine, however, what would happen if we did not use generics on the Set. In this case, it

would be impossible for the persistence provider to determine what Entity the Item object has a
relation to. This is exactly the situation the targetEntity parameter is designed for. We would use
it to specify the Entity at the other end of the OneToMany relation as follows:

@OneToMany(targetEntity=Bid.class,mappedBy="item")
protected Set bids;

[[JC: add some intervening text before the head]]

Many-to-One as owning-side of relationship
You should also note the mappedBy="item" value on the @OneToMany annotation specifying

the owning side of the bidirectional relation to be the items field of the Bid Entity.
Because the relationship is bidirectional, The Bid domain object has a reference to an Item

through the item variable#2. The @ManyToOne annotation on the item variable tells the
persistence provider that more than one Bid Entity could hold references to the same Item
instance. For bi-directional one-to-many relationships, ManyToOne is always the owning side of the
relationship. Because of this fact, the mappedBy element does not exist in the definition of the
@ManyToOne annotation:

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToOne {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default EAGER;
 boolean optional() default true;
}

Other than this minor difference, all the other elements of the @ManyToOne annotation have the
same purpose and functionality as the elements in the @OneToOne and @OneToMany annotations.

The last type of domain relationship is many-to-many, which we will discuss next.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

7.3.3 @ManyToMany
While not as common as one-many relations, many-to-many relations occur quite frequently in
enterprise applications. In this type of relationship, both sides of the relationship might have multiple
references to related Entities. In our ActionBazaar example, the relationship between Categoriy and
Item is many-to-many as depicted in figure 7.7.

47 Figure 7.7: The relationship beween Category and Item is many-to-many because every category may

have one or more items whereas each item may belong to more than one categories.

That is, a category can contain multiple items and an item can belong to multiple categories. For
example, a category named “Sixties Fashion” could contain items like “Bellbottom Pants” and
“Platform Shoes”. “Bellbottom Pants” and “Platform Shoes” could also be listed under
“Uncomfortable and Outdated Clothing.” Although many-to-many relations can be unidirectional,
they are often bidirectional because of their cross-connecting, mutually independent nature. Not too
surprisingly, a bidirectional many-to-many relation is often represented by @ManyToMany
annotations on opposite sides of the relation. Like the one-to-one and one-many relationships we can
identify the owning-side of the relationship by specifying mappedBy on the “subordinate” entity and
may have to use the targetEntity attribute if not using Java Generics.

The definition for @ManyToMany is identical to OneToMany and holds no special intricacies beyond
those already discussed:

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToMany {
 Class targetEntity() default void.class;
 CascadeType[] cascade() default {};
 FetchType fetch() default LAZY;
 String mappedBy() default "";
}

To round off our discussion of many-to-many relations let us take a look at Listing 7.9 to see
how the Item-Category relation might look like:

Listing 7.9 : Many-Many Relationship Between Category and Items
@Entity
public class Category {
 @Id
 protected Long categoryId;
 protected String name;
 ...
 @ManyToMany |#1
 protected Set<Item> items;
 ...
}

@Entity
public class Item {

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 @Id
 protected Long itemId;
 protected String title;
 ...
 @ManyToMany(mappedBy=”items”) |#2
 protected Set<Category> categories;
 ...
}
(annotation) <#1 Owning Many-to-Many Relationship>
(annotation) <#2 Subordinate Many-to-Many Relationship>

In Listing 7.9, the Category object’s items variable is marked by the @ManyToMany

annotation and is the owning side of the bidirectional association. In contrast, the Item object’s
categories variable signifies the subordinate bidirectional many-to-many association. As in the
case of one-to-many relationships, the @ManyToMany annotation is missing the optional attribute.
This is because an empty Set or List implicitly means an optional relation, meaning that the Entity
can exist even if no associations do.

As a handy reference, we will summarize the various elements available in the @OneToOne,

@OneToMany, @ManyToOne and @ManyToMany annotations in Table 7.3:

Table 7.3: Elements available in the @OneToOne, @OneToMany, @ManyToOne and @ManyToMany annotations

Element @OneToOne @OneToMany @ManyToOne @ManyToMany

TargetEntity 5 5 5 5
Cascade 5 5 5 5
Fetch 5 5 5 5
Optional 5 6 5 6
MappedBy 5 5 6 5

Believe it or not, we are now at the end of the Chapter and have finished discussing domain

modeling using the JPA.

RIP - Container Managed Relations

If you have used EJB 2.x, you might be familiar with the Container-
Managed-Relationship feature of Entity Beans with bidirectional
relationships. This feature monitored changes on either side of the
relationship and updated the other side automatically. CMR is not
supported in this version because Entities can possibly be used outside of
containers. However, mimicking this feature really is not too hard using a
few extra lines of code. Let us take the User-BillingInfo one-to-one
relation for example. The code for changing the BillingInfo object for a
User and making sure both sides of the relationship are still accurate
would look like the following:

user.setBilling(billing);
billing.setUser(user);

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

7.4 Summary
In this chapter, we have discussed basic domain modeling concepts, Entities, relationships and

how to define them using the JPA. The lightweight API makes creating rich, elegant object-oriented
domain models a simple matter of applying annotations or deployment descriptor settings to plain
Java Objects. The even greater departure from the heavyweight, framework code-laden approach of
EJB 2.x is the fact that the new persistence API can be separated altogether from the container, as we
will see in the coming chapters.

It is interesting to note that the API does not directly control relationship multiplicity. In the

case of one-to-one and many-to-one relations, the optional annotation element somewhat specifies
the multiplicity of the relationship. However, in the case of one-to-many and many-to-many
relations, the API does not enforce multiplicity at all. In this case, it is the responsibility of the
programmer to control the size of the collection holding Entity references (java.util.Set objects
in our examples) and hence control multiplicity.

In Chapter 8 we will move onto the next step to building the ActionBazaar persistence layer and

show you how to map the Entities and relationships we created to the database using the Object-
relational mapping.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Chapter 8 Object-Relationship
Mapping using EJB 3 JPA

In the previous chapter, we used EJB 3.0 JPA features to create a POJO domain model that
supported a full range of OO features including inheritance. Namely, we identified Entities,
Embedded Objects and the relationships between them using EJB 3.0 annotations. In this chapter,
we learn how to persist our domain model into a relational database using Object-Relational
mapping, which is the basis for JPA. In effect, Object-Relational mapping specifies how sets of Java
Objects, including references between them are mapped to rows and columns in database tables. The
first part of this chapter very briefly discusses the difference between Object-Oriented and relational
world also known as “impedance mismatch”. Later sections of the chapter explore the O-R (Object-
Relational) mapping features of the EJB 3.0 JPA.

 If you are a seasoned Enterprise developer, you are probably fairly comfortable with relational
databases. If this is not the case then refer to Appendix XX for some primer on some relatively
obscure relational database concepts like normalization and sequence columns that you must
understand to get a clear understanding of the intricacies of O-R mapping.

We will warm up to the discussion by taking a look at the basic motivation behind O-R
mapping, the so called “impedance mismatch.” Then we will begin our analysis by mapping domain
objects, move on to mapping relations and finally map inheritance using the inheritance strategies
supported by JPA.

8.1 The Impedance Mismatch
The term impedance mismatch refers to the differences in the OO and relational paradigms and

difficulties in application development that arises from these differences. The persistence layer where
the domain model resides is where the impedance mismatch is usually the most apparent. The root of
the problem lies in the differing fundamental objectives of both technologies.

Recall the fact that when a Java object holds a reference to another, the actual referred object is
not copied over into the referring object. In other words, Java accesses Objects by reference and not
by value. For example, two different Item Objects containing the same category instance variable
value really point to the same Category Object in the JVM. This fact frees us from space efficiency
concerns in implementing domain models with a high degree of conceptual abstraction. If this were
not the case, we would probably store the identity of the referred Category Object (perhaps in an

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

int variable) inside the Item and materialize the link when necessary. This is in fact almost exactly
what is done in the relational world.

The JVM also gives us the luxury of inheritance and polymorphism (by means that are very
similar to the Object reference feature) that does not exist in the relational world. Lastly, as we
mentioned in the previous chapter, a rich domain model object includes behavior (methods) in
addition to attributes (data in instance variables). Databases tables on the other hand, inherently
encapsulate only rows, columns and constraints, not business logic. These differences mean that the
relational and OO model of the same conceptual problem look very different, especially for an
appropriately normalized database created by an experienced DBA. Table 8.1 summarizes some of
the overt mismatches between the object and relational worlds.

Table 8.1: The impedance mismatch: Obvious differences between the Object and Relational Worlds

OO Model (Java) Relational Model

Object, Classes Table, Rows
Attributes, Properties Columns
Identity Primary Key
Relationship/Reference to Other Entity Foreign key
Inheritance/Polymorphism Not supported
Methods Indirect parallel to SQL logic, Stored Procedures
Code is portable Not necessarily potable depending on vendor
1.16

In the following sections, we will crystallize the Object-Relational mismatch a little more by
looking at a few corner cases while saving a persistence layer domain model into the database. We will
discuss problems in mapping objects to database tables and provide a brief overview of Object-
Relational Mapping. .

8.1.1 Mapping Objects to Databases
The most basic persistence layer for a Java application could consist of saving and retrieving

domain objects using the JDBC API directly. To flush out the particularly rough spots in the object-
relational mismatch, we will assume automated O-R mapping does not exist and we are following the
direct JDBC route to persistence. We will see later that the EJB 3.0 Persistence API irons out these
rough spots through simple configuration. Scott Ambler has written very good material that discusses
the problem of mapping Objects to a relational database in much greater detail than we have the
scope for. You can review the material at http://www.ambysoft.com/essays/mappingObjects.html.

One-To-One Mapping
As we discussed in the previous chapter, one-to-one relationship between Entities although are

very rare in applications, makes a great deal of sense in the domain-modeling world. For example,
The User and BillingInfo objects represent two logically separate concepts in the real world (we
assumed) that are bound by a one-to-one relationship. Moreover, we also know that it does not make
very much sense for a BillingInfo Object to exist without an associated User. The relation could
be unidirectional from User to BillingInfo. The Figure 8.1 shows how this relationship might
be materialized:

48 Figure 8.1: A unidirectional one-to-one relationship between User and BillingInfo.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.ambysoft.com/essays/mappingObjects.html
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

The code in listing 8.1 implements this relationship:

24 Listing 8.1: One-to-One Relationship Between User and BillingInfo
public class User {
 protected String userId;
 protected String email;
 protected BillingInfo billing; |#1
}

public class BillingInfo {
 protected String creditCardType;
 protected String creditCardNumber;
 protected String nameOnCreditCard;
 protected Date creditCardExpiration;
 protected String bankAccountNumber;
 protected String bankName;
 protected String routingNumber;
}
(annotation) <#1 Object Reference for One-to-One Relation>

From an OO perspective, it would make sense for the database tables storing this data to mirror the
Java implementation in code listing 8.1. In this scheme, two different tables, USERS and
BILLING_INFO would have to be created, with the billing object reference in the User object#1
being translated into a foreign key to the BILLING_INFO table’s key in the USERS table (perhaps
called BILLING_ID). The problem is that this scheme does not make complete sense in the
relational world. As a matter of fact, since the objects are merely expressing a one-to-one relationship,
normalization would dictate that the USERS and BILLING_INFO tables be merged into one. This
would eliminate the almost pointless BILLING_INFO table and the redundant foreign key in the
USER table. The extended USER table could look like the following:

USER_ID NOT NULL, PRIMARY KEY NUMBER
EMAIL NOT NULL VARCHAR2(255)
CREDIT_CARD_TYPE VARCHAR2(255)
CREDIT_CARD_NUMBER VARCHAR2(255)
NAME_ON_CREDIT_CARD VARCHAR2(255)
CREDIT_CARD_EXPIRATION DATE
BANK_ACCOUNT_NUMBER VARCHAR2(255)
BANK_NAME VARCHAR2(255)
ROUTING_NUMBER VARCHAR2(255)

In effect, our persistence layer mapping code would have to resolve this difference by pulling field
data out of both the User and related BillingInfo tables and storing it into the columns of the
combined USERS table. A bad approach, but an all too common one, would be to compromise your
domain model to make it fit the relational data model (get rid of the separate BillingInfo
Object). While this would certainly make the mapping code simper, you would lose out on a sensible
domain model. In addition, you would write awkward code for the parts of your application that deal
only with `the BillingInfo object and not the User object. If you remember our discussion in
Chapter 7 then you probably realize that BillingInfo may make sense as an embedded object since
you do not want to have a separate identity, and want to store the data in the USERS table.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

One-To-Many Relationships
The relational primary-key/foreign-key mechanism is ideally suited for a parent-child one-to-many
relationship between tables. Let us take the probable relationship between the ITEMS and BIDS
tables for example. The tables are likely to look like those shown in Listing 8.2:
25

26 Listing 8.2: One-to-Many Relationship Between ITEMS and BIDS Tables
ITEMS TABLE
ITEM_ID NOT NULL, PRIMARY KEY NUMBER
TITLE NOT NULL VARCHAR2(255)
DESCRIPTION NOT NULL CLOB
INITIAL_PRICE NOT NULL NUMBER
BID_START_DATE NOT NULL TIMESTAMP
BID_END_DATE NOT NULL TIMESTAMP
ITEM_SELLER_ID NOT NULL, NUMBER
 FOREIGN KEY (USERS(USER_ID))

BIDS TABLE
BID_ID NOT NULL, PRIMARY KEY NUMBER
AMOUNT NOT NULL NUMBER
BID_DATE NOT NULL TIMESTAMP
BID_BIDDER_ID NOT NULL, NUMBER
 FOREIGN KEY (USER(USER_ID))
BID_ITEM_ID NOT NULL, NUMBER |#1
 FOREIGN KEY (ITEMS(ITEM_ID))
(annotation) <#1 Foreign Key Signifying One-To-Many Relation>

The ITEM_ID foreign key into the ITEMS table from the BID table means that multiple BIDS

table rows can refer to the same record in ITEMS table. This implements a many-to-one relation
going from the BIDS table to the ITEMS table and it is very simple to retrieve an item given a bid
record. On the other hand, retrieval from ITEMS to BIDS will require a little more effort in looking
for BIDS rows that match a given ITEM_ID key. As we mentioned in the previous chapter, however,
the relationship between the Item and Bid domain objects are one-many bidirectional. This means
that the Item Object has a reference to a set of Bid Objects while the Bid object holds a reference
to an Item Object. As a Java developer, you might have expected the ITEMS table to contain some
kind of reference to the BIDS table in addition to the ITEM_ID foreign key in the BIDS table. The
problem is that such a table structure simply does not make sense in the relational world. Instead, our
O-R mapping layer must translate the parent-child unidirectional database relation into a
bidirectional one-to-many relation in the OO world by using a lookup scheme instead of simple,
directional references.

Many-To-Many
Many-to-many relations are fairly common in enterprise development. In our ActionBazaar

domain model presented in Chapter 7, the relationship between the Item and Category domain
objects is many-to-many. That is, an item can belong in multiple categories while a category can
contain more than one item. This is fairly easy to implement in the OO world with a set of references
on either side of the relationship. In the database world on the other hand, the only way to
implement a relation is through a foreign key, which is inherently one-to-many. As a result, the only
real way to implement many-to-many relations is by breaking them down into two one-to-many

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

relations. Let us see how this works by taking a look at the database table representation of the item-
category relation in Listing 8.3.:
27

28 Listing 8.3: Many-to-Many Relationship Between ITEMS and CATEGORIES Tables
ITEMS TABLE
ITEM_ID NOT NULL, PRIMARY KEY NUMBER |#1
TITLE NOT NULL VARCHAR2(255)
...

CATEGORIES TABLE
CATEGORY_ID NOT NULL, PRIMARY KEY NUMBER |#2
NAME NOT NULL VARCHAR2(255)
...

CATEGORY_ITEMS TABLE |#3
ITEM_ID NOT NULL, PRIMARY KEY NUMBER |#4
 FOREIGN KEY(ITEMS(ITEM_ID))
CATEGORY_ID NOT NULL, PRIMARY KEY NUMBER |#5
 FOREIGN KEY(CATEGORIES(CATEGORY_ID))

(annotation) <#1 ItemsT able Primary Key>
(annotation) <#2 Category Table Primary Key>
(annotation) <#3 Association Table Implementing Many-to-Many Relation>
(annotation) <#4 Items Table Foreign Key>
(annotation) <#5 Category Table Foreign Key>

The CATEGORY_ITEMS table is called an association or intersection table and accomplishes a
pretty neat trick. The only two columns it contains are foreign key references to the ITEMS and
CATEGORIES tables (ironically the two foreign keys combined are the primary key for the table). In
effect, it makes it possible to match up arbitrary rows of the two related tables, making it possible to
implement many-to-many relations. Since neither related table contains a foreign key, relationship
direction is completely irrelevant. To get to the records on the other side of the relation from either
side, we must perform a join in the O-R mapping layer involving the association layer. For example,
to get all the items under a category, we must retrieve the CATEGORY_ID, join the
CATEGORY_ITEMS table with the ITEMS table and retrieve all item data for rows that match the
CATEGORY_ID foreign key. Saving the relation into the database would involve saving rows into the
CATEGORIES and ITEM tables as well as the CATEGORY_ITEMS table. Clearly, the many-to-many
relationships are modeled very differently in the relational world than they are in the OO world.

Inheritance
Unlike the three previous cases, one-to-one, one-to-many, and many-to-many, inheritance is
probably the most severe case of the object-relational mismatch. Inheritance therefore calls for
solutions that are not elegant fits to relational theory at all,.The OO concept of inheritance has no
direct equivalent in the relational world. However, there are a few creative ways that O-R solutions
bridge this gap, including: storing each object in the inheritance hierarchy in completely separated
tables, mapping all classes into a single table, or storing superclass/subclasses in related tables. Because
none of these strategies is simplistic, we will defer a detailed discussion to the O-R mapping section
later in the chapter.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

8.1.2 Introducing O/R Mapping
In the most general sense, the term Object-Relational Mapping means any process that can save an

Object (in our case a Java Object) into a relational database. As we mentioned, for all intents and
purposes you could write home-brewed JDBC code to do that. In the realm of automated
persistence, O-R Mapping really means using primarily configuration metadata to tell an extremely
high level API which tables a set of Java Objects are going to be saved into. It is not all that far from
the truth that this involves the promisingly simple act of figuring out what table row an Object
instance should be saved into and what field/property data belongs in what column. In EJB 3.0, the
configuration metadata obviously consists either of annotations or deployment descriptor elements.
As our impedance mismatch discussion points out, there are a few wrinkles in the idealistic view of
automated persistence. Because of the inherent complexity of the problem, EJB 3.0 cannot make the
solution absolutely effortless, but it goes a long way in making it less painful. In the next section, we
start our discussion of EJB 3.0 O-R Mapping by covering the simplistic case of saving an Entity
without regards to domain relations or inheritance.

Other than smoothing out the impedance problems by applying generalized strategies behind the

scenes, there are a few other benefits to using O-R. Even disregarding the edge cases discussed above,
if you have spent any time writing application persistence layers using JDBC, you know that
substantial work is required. This is largely because of the repetitive “plumbing” code of JDBC and
the large volume of complicated hand-written SQL involved. As we will soon see, using O-R
Mapping frees us from this burden and the task of persistence largely becomes an exercise in simple
configuration. The fact that the EJB3 Persistence provider generates JDBC and SQL code on your
behalf has another very nice effect. Because the persistence provider is capable of automatically
generating code optimized to your database platform from your database-neutral configuration data,
switching databases becomes a snap. Accomplishing the same using hand-written SQL is careful,
tedious work at best and impossible at worst. Database portability is one of the most appealing
features of the EJB 3.0 Java Persistence API that fits nicely with the Java philosophy but has been
elusive for some time.

Now that we’ve looked at the reasons for O/R mapping, let’s see how EJB 3.0 implements it.

O-R Mapping Portability s in EJB 2.x

One of the greatest weaknesses of EJB 2.x CMP (Container Managed
Persistence) Entity beans was that it never standardized the process of Object-
Relational Mapping. Instead, mapping strategies were left up to the individual
vendors, whose approaches varied widely. As a result, porting Entity beans
from one application server to another more or less meant redoing O-R
mapping all over again. This meant that the portability that EJB 2.x promised
meant little more than empty words.

EJB 3.0 firmly standardizes O-R mapping and gets us much closer to then
elusive goal of portability. As a matter of fact, this is likely to be very
accomplishable as long as you are careful to steer clear of application server
specific features.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

8.2 Mapping Entities
This section explores some of the fundamental features of EJB 3.0 O-R mapping by taking a look

at the implementation of the ActionBazaar User Entity. You will learn use of several O-R mapping
annotations such as @Table, @Column, @Enumerated, @Lob, @Temporal and @Embeddable.

If you remember from our discussion in Chapter 7, User is the superclass to both the Seller
and Bidder domain objects. To keep this example simple we will ignore the inheritance and use a
peristence field to identify the user type in the table USERS. The User Entity contains fields that are
common to all user types in ActionBazaar such as the user ID, username (used for login and
authentication), first name, last name, user type (bidder, seller and admin, etc), user-uploaded picture
and user account creation date. All fields are mapped and persisted into the database for the User
Entity in code listing 8.4. We have used field-based persistence for the Entity to keep the code sample
short.

Listing 8.4: Mapping an Entity
@Entity |#1
@Table(name="USERS") |#2
@SecondaryTable(name="USER_PICTURE", |#3
 pkJoinColumns=@PrimaryKeyJoinColumn(name="USER_ID"))
public class User implements Serializable {

 @Id |#4
 @Column(name="USER_ID", nullable=false) |#5
 protected Long userId;

 @Column(name="USER_NAME", nullable=false) |#5
 protected String username;

 @Column(name="FIRST_NAME", nullable=false, length=1) |#5
 protected String firstName;

 @Column(name="LAST_NAME", nullable=false) |#5
 protected String lastName;

 @Enumerated(EnumType.ORDINAL) |#6
 @Column(name="USER_TYPE", nullable=false)
 protected UserType userType;

 @Column(name="PICTURE", table="USER_PICTURE")
 @Lob |#7
 @Basic(fetch=FetchType.LAZY) |#8
 protected byte[] picture;

 @Column(name="CREATION_DATE", nullable=false)
 @Temporal(TemporalType.DATE) |#9
 protected Date creationDate;

 @Embedded |#10
 protected Address address;

 public User() {} |#11
}

@Embeddable |#12
public class Address implements Serializable {

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 @Column(name="STREET", nullable=false)
 protected String street;

 @Column(name="CITY", nullable=false)
 protected String city;

 @Column(name="STATE", nullable=false)
 protected String state;

 @Column(name="ZIP_CODE", nullable=false)
 protected String zipCode;

 @Column(name="COUNTRY", nullable=false)
 protected String country;
}
(annotation) <#1 Entity Reference>
(annotation) <#2 Table Mapping>
(annotation) <#3 A Join Table>
(annotation) <#4 Id field>
(annotation) <#5 Field Column Mappings>
(annotation) <#6 Enumerated Column>
(annotation) <#7 Blob Field>
(annotation) <#8 Lazy Loading>
(annotation) <#9 Temporal Field>
(annotation) <#10 Embedded field>
(annotation) <#11 Default Constructor>
(annotation) <#12 Embeddable Class>

Briefly scanning Listing 8.4, we see that the User Entity is mapped to the USERS table#2 joined
with the USER_PICTURE table using the USER_ID primary key#3. Each of the fields is mapped to a
database column using the @Column annotation#5. We deliberately made the Listing feature-rich
and quite a few interesting things are going on with the columns. The userType field is restricted to
be an ordinal enumeration#6. The picture field is marked as a binary large object (BLOB)#7 that
is lazily loaded#8. The creationDate field is marked as a temporal date#9. All in all, the @Table,
@SecondaryTable, @Column, @Enumerated, @Lob, @Basic, @Temporal, @Embedded

and @Embeddable O-R mapping annotations are used. We will start our analysis of O-R with the
@Table annotation.

Annotations vs. XML in O-R Mapping

The difficulty of choosing between annotations and XML deployment descriptors
manifests itself most strikingly in the arena of EJB 3.0 O-R Mapping. XML descriptors are
verbose, hard to manage and most developers find them to be a sour-point for Java EE.
While O-R mapping with Annotations make life simpler you should keep in mind that you
are hard-coding your database schema in your code similar to using JDBC. This means
that the slightest schema change will result in a recompilation and redeployment cycle as
opposed to simple configuration. If you have a stable database design that rarely changes
or you are comfortable using JDBC DAO then there is no issue here. But if you have an
environment where database schema is less stable (subject to change more often) you
would probably be better off using descriptors. Luckily, you can use XML descriptors to
override O-R mapping annotations after deploying to a production environment. As a
result, changing your mind in response to the reality on the ground many not be a very
big deal.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

DP: Yes, similar8.2.1 Specifying the table
@Table specifies the table containing the columns to which the Entity is mapped. In code listing

8.4, the @Table annotation makes the USERS table’s columns available for O-R Mapping. In fact,
by default, all the persistent data for the Entity is mapped to the table specified by the annotation’s
name parameter. As you can see from the annotation’s definition below, it contains a few other
parameters:

@Target(TYPE)
@Retention(RUNTIME)
public @interface Table {
 String name() default "";
 String catalog() default "";
 String schema() default "";
 UniqueConstraint[] uniqueConstraints() default {};
}
If the name parameter is omitted, the table name is assumed to be the same as the name of the
Entity. Note, in our case, this would have been just fine, if we are mapping to the USERS table. We
limit discussion on the catalog and schema parameters since they are hardly ever used. In affect,
they allow you to fully qualify the mapped table9. For example, we could have explicitly specified that
the USERS table belongs in the ACTIONBAZAAR schema like so:

@Table(name="USERS", schema=”ACTIONBAZAAR”)
public class User

By default, it is assumed that the table belongs in the schema of the data source used. We will

learn how to specify a data source for a persistence module in Chapter 11 when we discuss Entity
packaging. The uniqueConstraints parameter really is not used that often either. It specifies
unique constraints on table columns and is only used when table auto-creation is enabled. The
following is an example:

@Table(name="CATEGORIES",
 uniqueConstraints=
 {@UniqueConstraint(columnNames={"CATEGORY_ID"})})

If it did not exist and auto-generation is enabled, the code puts a unique constraint on the

CATEGORY_ID column of the CATEGORIES table when it is created during deployment time. The
uniqueConstraints parameter supports specifying constraints on more than one column. It is
important to keep mind, however, that EJB 3.0 implementations are not mandated to support
generation of tables and it is a bad idea to use automatic table generation beyond simple development
databases. The @Table annotation itself is optional. If omitted, the Entity is assumed to be mapped
to a table in the default schema with the same name as the Entity Class. Most Entities will typically
be mapped to a single table. The User Object happens to be mapped to two tables, as you might

9 We already discussed what a schema is. For all intensive purposes, you can think of a catalog to be a
“meta-schema” or a higher-level abstraction for organizing schemas. Often, a database will only have one
common system catalog.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

have guessed from the @SecondaryTable annotation used in listing 8.4#3. We will comer back to
this later after we take a look at mapping Entity data using the @Column annotation.

8.2.2 Mapping the columns
The @Column annotation maps a persisted field or property to a table column. All of the fields used
in listing 8.3 are annotated with @Column. For example, the userId field is mapped to the
USER_ID column:
@Column(name="USER_ID")
protected Long userId;

It is assumed that the USER_ID column belongs to the USERS table specified by the @Table
annotation. Most often, this is as simple as your @Column annotation will look. At best, you might
need to explicitly specify which table the persisted column belongs to as we do for the picture field
in listing 8.4:
@Column(name="PICTURE", table="USER_PICTURE")
...
protected byte[] picture;

As you can see from the definition in Listing 8.5, a number of other parameters exist for the
annotation. The insertable#3 and updatable#4 parameters are used to control persistence
behavior.

Listing 8.5: The @Column Annotation

@Target({METHOD, FIELD})
@Retention(RUNTIME)
public @interface Column {
 String name() default "";
 boolean unique() default false; |#1
 boolean nullable() default true; |#2
 boolean insertable() default true;
 boolean updatable() default true;
 String columnDefinition() default "";
 String table() default "";
 int length() default 255; |#3
 int precision() default 0; |#4
 int scale() default 0; |#8
}
(annotation) <#1 Specifies Unique Constraint>
(annotation) <#2 Specifies if Column Allows Nulls>
 (annotation) <#3 Length of Column>
(annotation) <#4 Decimal Precision of Column>
(annotation) <#5 Decimal Scale of Column>
If the insertable parameter is set to false, the field or property will not be included in the INSERT
statement generated by the Persistence provider to create a new record corresponding to the Entity.
Likewise, setting the updatable parameter to false excludes the field or property from being
updated when the Entity is saved. These two parameters are usually helpful in dealing with read-only
data, like primary keys generated by the database. They could be applied to the userId field as
follows:

@Column(name="USER_ID", insertable=false, updatable=false)
protected Long userId;

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

When a User Entity is first created in the database, the Persistence provider does not include the
USER_ID as part of the generated INSERT statement. Instead, we could be populating the USER_ID
column through an INSERT-induced trigger on the database server side. Similarly, since it does not
make very much sense to update a generated key, it is not included in the UPDATE statement for the
Entity either. The rest of the parameters of the @Column annotation are only used for automatic
table generation and specify column creation data. The nullable parameter specifies if the column
supports null values#2, the unique parameter#1 indicates if the column has a unique constraint, the
length parameter#3 specifies the size of the database column, the precision parameter#4
specifies the precision of a decimal field, the scale parameter#5 specifies the scale of a decimal
column. Finally, the columnDefinition parameter allows you to specify the exact SQL to create
the column. We will not cover these parameters much further than this basic information since we do
not encourage automatic table creation. Note the @Column annotation is optional. If omitted, a
persistent field or property is saved to the table column matching the field or property name. For
example, a property specified by the getName and setName methods will be saved into the NAME
column of the table for the Entity. Next, we will take a look at a few more annotations applied to
Entity data, starting with @Enumerated.

8.2.3 Using @Enumerated
Languages like C and Pascal have had enumerated data types for decades. Enumerations were

finally introduced in Java 5.0. In case you are unfamiliar with them, we will start with the basics. In
listing 8.4, the user type field has a type of UserType. UserType is a Java enumeration that is defined
as follows:

public enum UserType {SELLER, BIDDER, CSR, ADMIN};

This effectively means that any data type defined as UserType (like our persistent field in the

User Object) can only have the four values listed in the enumeration. Like an array, each element of
the enumeration is associated with an index called the ordinal. For example the UserType.SELLER
value has an ordinal of 0, the UserType.BIDDER value has an ordinal of 1 and so on. The problem
is determining how to store the value of enumerated data into the column. The Java Persistence API
supports two options through the @Enumerated annotation. In our case, we specify that the ordinal
value should be saved into the database:

@Enumerated(EnumType.ORDINAL)
...
protected UserType userType;

This means that if the value of the field is set to UserType.SELLER, the value 0 will be stored
into the database. Alternatively, you can specify that the Enumeration value name should be stored as
a String:
@Enumerated(EnumType.STRING)
...
protected UserType userType;

In this case a UserType.ADMIN value would be saved into the database as “ADMIN”. By
default an Enumerated field or property is saved as an ordinal. This would be the case if the
@Enumerated annotation is omitted altogether or no parameter to the annotation is specified.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

8.2.4 Mapping CLOBs and BLOBs
An extremely powerful feature of relational databases is the ability to store very large data as

BLOB (Binary Large Object) and CLOB (Character Large Object) types. These correspond to the
JDBC javax.sql.Blob and javax.sql.Clob Objects. The @Lob annotation designates a
property of field as a CLOB or BLOB. For example we designate the picture field as a BLOB in
listing 8.4:

@Lob
@Basic(fetch=FetchType.LAZY)
protected byte[] picture;

Whether a field or property designated @Lob is a CLOB or BLOB is determined by its type. If
the data is of type char[] or String, the persistence provider maps the data to a CLOB column.
Otherwise, the column is mapped as a BLOB. An extremely useful annotation to use in conjunction
with @Lob is @Basic.@Basic can be marked on any attribute with direct-to-field mapping. Just as
we have done for the picture field, the @Basic(fetch=FetchType.LAZY) specification causes
the BLOB or CLOB data to be loaded from the database only when it is first accessed. This is a great
feature since LOB data is usually very memory intensive and should only be loaded if needed.
Unfortunately lazy loading of LOB types is left as optional for vendors by the EJB 3.0 specification
and there is no guarantee that the column will actually be lazily loaded.

8.2.5 Mapping temporal types
Most databases support a few different temporal data types with different granularity levels

corresponding to DATE (storing day, month and year), TIME (storing just time and not day, month
or year) and TIMESTAMP (storing time, day, month and year). The @Temporal annotation
specifies which of these data types we want to map a java.util.Date or java.util.Calendar
persistent data type to. In listing 8.3, we save the creationDate field into the database as a DATE:

@Temporal(TemporalType.DATE)
protected Date creationDate;

Note this explicit mapping is redundant while using the java.sql.Date, java.sql.Time

or java.sql.Timestamp Java types as opposed to java.util.Date or
java.util.Calendar. If we do not specify a parameter for @Temporal annotation or omit it
altogether the Persistence provider will assume the data type mapping to be TIMESTAMP (the
smallest possible data granularity).

8.2.6 Mapping an entity to multiple tables
This is not often the case for non-legacy databases, but sometimes an Entity’s data must come from
two different tables. In fact, in some rare situations, this is a very sensible strategy. For example, the
User Entity in Listing 8.4 is stored across the USERS and USER_PICTURE tables as depicted in
Figure 8.2.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

49 Figure 8.2: An entity can be mapped to more than one table e.g. User entity spans more than one table i.e

USERS and USER_PICTURE. The primary table is mapped using @Table and secondary table is mapped

using @Secondary table. The primary and secondary tables must have the same primary key.

This makes excellent sense because the USER_PICTURE table stores large binary images that could
significantly slow down queries using the table but is rarely used. Isolating the binary images into a
separate table in conjunction with the lazy loading technique discussed in section 8.2.4 to deal with
the picture field mapped to the USER_PICTURE table can result in a significant boost in
application performance. The @SecondaryTable annotation enables us to derive Entity data from
more than one table and is defined as follows:

@Target({TYPE}) @Retention(RUNTIME)
public @interface SecondaryTable {
 String name();
 String catalog() default "";
 String schema() default "";
 PrimaryKeyJoinColumn[] pkJoinColumns() default {};
 UniqueConstraint[] uniqueConstraints() default {};
}

Notice that other than the pkJoinColumns element, the definition of the annotation is
identical to the definition of the @Table annotation. This element is the key to how annotation
works. To see what we mean, examine the following code implementing the User Entity mapped to
two tables:

@Entity
@Table(name="USERS")
@SecondaryTable(name="USER_PICTURE",
 pkJoinColumns=@PrimaryKeyJoinColumn(name="USER_ID"))
public class User implements Serializable {
..}

Obviously the two tables in @Table and @SecondaryTable are related somehow and are
joined to materialize the Entity. This kind of relationship is implemented by creating a foreign key in

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

the secondary table referencing the primary key in the first table. In this case, the foreign key also
happens to be the primary key of the secondary table. To be precise, USER_ID is the primary key of
USER_PICTURE table and it references the primary key of the USERS table. The
pkJoinColumns=@PrimaryKeyJoinColumn(name="USER_ID") specification assumes exactly
this relation. The name element points to the USER_ID foreign key in the USER_PICTURE
secondary table. The persistence provider is left to figure out what the primary key of the USERS
table is, which also happens to be named USER_ID. Using the detected primary key, the provider
performs a join when necessary in order to materialize the data for the User Entity. In the extremely
unlikely case that an Entity consists of tables from more than two columns, we may use the
@SecondaryTables annotation more than once for the same Entity. We will not cover this case
here but encourage you to explore it if needed.

Before we conclude the section on mapping Entities and talk about mapping EJB 3.0 relations,
we are going to discuss very vital feature of JPA, primary key generation.

8.2.7 Generating primary keys
When we identify a column or set of columns as primary key, we essentially ask the database to

enforce uniqueness. Primary keys that consist of business data are called natural keys. The classic
example of this is SSN as the primary key for an EMPLOYEE table. CATEGORY_ID or EMPLOYEE_ID,
on the other hand, are examples of surrogate keys. Essentially, surrogate keys are columns created
explicitly to function as primary keys. Surrogate keys are popular and we highly recommend them,
especially over compound keys.

There are three popular ways of generating primary key values: identities, sequences and tables.
Fortunately, all three strategies are supported via the @GeneratedValue annotation and switching
is as simple as changing configuration. We will start our analysis with the simplest case, using
identities.

Identity Columns as Generators

Many databases such as Microsoft SQLServer support identity column and we can use an

identity constraint to manage the primary key for the User entity as follows:
@Id
@GeneratedValue(strategy=GenerationType.IDENTITY)
@Column(name="USER_ID")
protected Long userId;

The code above assumes that an identity constraint exists on the USERS.USER_ID column.

Note that while the value for the identity field may not be available available before the entity data is
saved in the database while using IDENTITY as generator type because the typically it is generated
while a record is committed.

The two other strategies, SEQUENCE and TABLE, both require the use of an externally defined

generator. Namely, a SequenceGenerator or TableGenerator must be created and set for the
GeneratedValue. We will see how this works by first taking a look at the sequence generation
strategy.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Database squences as Generator

In order to use sequence generators, we must define a sequence in the database first. The

following is a sample sequence for the USER_ID column in an Oracle database:

CREATE SEQUENCE user_sequence START WITH 1 INCREMENT BY 10;

We are now ready to create a sequence generator in EJB 3.0:

@SequenceGenerator(name="USER_SEQUENCE_GENERATOR",
 sequenceName="USER_SEQUENCE",
 initialValue=1, allocationSize=10)

The @SequenceGenerator annotation creates a sequence generator named
USER_SEQUENCE_GENERATOR referencing the Oracle sequence we created and matching its setup.
Naming the sequence is critical since it is referred to by the @GeneratedValue annotation. The
initialValue element is pretty self-explanatory: allocationSize specifies how much the
sequence is incremented by each time a value is generated. The default values for initialValue
and allocationSize are 0 and 50 respectively. It’s handy that the sequence generator need not be
created in the same Entity that it is used. As a matter of fact, any generator is shared among all
Entities in the persistence module and hence each generator must be uniquely named in a persistence
module. Finally, we can reimplement the generated key for the USER_ID column as follows:

@Id
@GeneratedValue(strategy=GenerationType.SEQUENCE,
 generator="USER_SEQUENCE_GENERATOR")
@Column(name="USER_ID")
protected Long userId;

Sequence Tables as Generators

Using table generators is just as simple as with a sequence generator, the first step is to create a
table to use for generating values. The table used must follow a general format like the following one
created for Oracle:

CREATE TABLE sequence_generator_table
 (sequence_name VARCHAR2(80) NOT NULL,
 sequence_value NUMBER(15) NOT NULL,
 PRIMARY KEY (sequence_name));

The sequence_name column is meant to store the name of a sequence while the

sequence_value column is meant to store the current value of the sequence. The next step is to
prepare the table for use by inserting the initial value manually as follows:

INSERT INTO
 sequence_generator_table (sequence_name, sequence_value)
VALUES ('USER_SEQUENCE', 1);

In a sense, these two steps combined are the equivalent to creating the Oracle sequence in the
second strategy. Despite the obvious complexity of this approach, one upside is that the same

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

sequence table can be used for multiple sequences in the application. We are now prepared to create
the TableGenerator utilizing the table:
@TableGenerator (name="USER_TABLE_GENERATOR",
 table="SEQUENCE_GENERATOR_TABLE",
 pkColumnName="SEQUENCE_NAME",
 valueColumnName="SEQUENCE_VALUE",
 pkColumnValue="USER_SEQUENCE")

If you need to, you can specify the values for initialValue and allocationSize as well.
Finally, we can use the table generator for USER_ID key generation:
@Id
@GeneratedValue(strategy=GenerationType.TABLE,
 generator=”USER_TABLE_GENERATOR”)
@Column(name="USER_ID")
protected Long userId;

Default Primary key generation strategy

The last option for key generation is to let the PROVIDER decide the best strategy for the
underlying database by using the AUTO specification as follows:
@Id
@GeneratedValue(strategy=GenerationType.AUTO)
@Column(name="USER_ID")
protected Long userId;

This is a perfect match for automatic table creation because the underlying database objects
required will be created by the JPA provider.

Probably you would assume that if Oracle were the underlying database, the persistence provider

probably would choose SEQUENCE as the strategy; if SQL Server were the underlying database,
IDENTITY would probably be chosen on your behalf. However this may not be true and we
recommend that you check documentation of your persistence provider. For example TopLink
Essentials uses table generator as the default auto generator for all databases.

 Also you should note that although generated values are often used for surrogate keys, you could
use the feature for any persistence field or property. Before we move onto discussing Entity relations,
we will tackle the most complicated case of mapping basic Entity data next—mapping Embeddable
Objects.

8.2.8 Mapping Embeddable Classes
When discussing Embeddable Objects in Chapter 7, we mentioned that an Embeddable object

acts primarily as a convenient data holder for Entities and has no identity of its own. Rather, it shares

Standardization of Key Generation

Just as EJB 3.0 standardizes O-R Mapping, it standardizes key
generation as well. This is a large leap from EJB 2.x, where you
had to resort to various Sequence Generator patterns to
accomplish the same for CMP Entity Beans. Using sequences,
identity constraints or tables was a significant effort, a far cry from
simple configuration, not to mention non-portable.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

the identity of the Entity Class it belongs to. We will now discuss how Embeddable Objects are
mapped to the database.

50 Figure 8.3: Embeddable object act as convenient dataholder for entities and have no identity of its own.

Address is an embeddable object that is stored as a part of User entity that is mapped to the USERS

table.

In Listing 8.4, we include the Address Embedded Object introduced in Chapter 7 in the User

Entity as a data field. The relevant parts of Listing 8.4 are repeated in Listing 8.6 for easy reference.
29 Listing 8.6: Using Embeddable Objects
@Table(name="USERS") |#1
...
public class User implements Serializable {

 @Id |#2
 @Column(name="USER_ID", nullable=false)
 protected Long userId;
 ...
 @Embedded |#3
 protected Address address;
 ...
}
...
@Embeddable |#4
public class Address implements Serializable {
 @Column(name="STREET", nullable=false) |#5
 protected String street;
 ...

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 @Column(name="ZIP_CODE", nullable=false) |#5
 protected String zipCode;
 ...
}
(annotation) <#1 The table storing both Entity and Embeddable Object>
(annotation) <#2 Shared identity>
(annotation) <#3 Embeded field>
(annotation) <#4 Embeddable Object>
(annotation) <#5 Embeddable Object field mappings>

The first interesting feature of Listing 8.6 you should notice is that unlike the User Entity, the

Embeddable Address Object is missing a @Table annotation. This is because EJB 3.0 does not
allow Embedded Objects to be mapped to a table different from the enclosing Entity, at least not
directly through the @Table annotation. Instead, the Address Object’s data is stored in the USERS
table that stores the enclosing Entity#1. Hence, the @Column mappings applied to the fields of the
Address Object#5 really refer to the columns in the USER table. For example, the street field is
mapped to the USERS.STREET column, the zipCode field is mapped to the USERS.ZIP_CODE
column and so on. This also means that the Address data is stored in the same database row as the
User data and both objects share the USER_ID identity column#2. Other than this minor nuance,
all data mapping annotations used in Entities are available for you in Embedded Objects and behave
in exactly the same manner. In general, this is the norm and Embedded Objects are often stored in
the same table as the enclosing Entity. However, if this does not suit you, it is possible to store the
Embeddable Object’s data in a separate table and use the @SecondaryTable annotation to retrieve
its data into the main Entity using a join. We will not detail this solution, as it is fairly easy to figure
out and will leave it for you to experiment with instead.

Sharing Embeddable Classes Between Entities

One of the most useful features of Embeddable Classes is that they can be shared
between Entities. Using our Address Object example, the Address Object could be
embedded inside a BillingInfo object to store billing addresses while still being used
by the User Entity. The important nuance to keep in mind is that the Embeddable
Class definition is shared in the OO world and not the actual data in the underlying
relational tables. As we noted, the Embedded data is materialized using the table
mapping of the Entity Class. However, this means that all the Embeddable data
must be mapped to both the USERS and BILLING_INFO tables. In other words,
both tables must contain some mappable street, city, zip, etc columns.
An interesting wrinkle to consider is the fact that the same embedded data could be
mapped to columns with different names in two separate tables. For example, the
‘state’ data column in BILLING_INFO could be called STATE_CODE instead of
STATE. Since the Column annotation in Address maps to a column named STATE,
how will this column be resolved? The solution to the answer is overriding the
column mapping in the enclosing Entity using the AttributeOverride annotation as
follows:
@Embedded
@AttributeOverrides({@AttributeOverride(
 name="state",
 column=@Column(name="STATE_CODE"))})
protected Address address;
In effect, the AttributeOverride annotation is telling the providerto resolve the
Embedded field “state” to the STATE_CODE table for the enclosing Entity.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

We have now finished looking at all the annotations required for mapping Entities except for
mapping OO Inheritance. We will move onto looking at EJB 3.0 features for mapping Entity
relations next.

8.3 Mapping Entity Relations
In the last chapter we explored implementing domain relations between entities. In section 8.1.1 we
briefly discussed the problems translating relations from the OO world to the database world. In this
section, we will see how these solutions are actually implemented in EJB 3.0 using annotations,
starting with one-one relations. You will learn mapping of all types of relations one-to-one, one-to-
many and many-to-one and many-to-many.

8.3.1 Mapping One-to-One Relations
As we know, one-to-one relations are mapped using primary/foreign key associations. It should

be pretty obvious that a parent-child relation usually exists between the Entities of a one-to-one
relationship. For example, in the User-BillingInfo relationship mentioned earlier, the User
Entity could be characterized as the parent. Depending on where the foreign key resides, the
relationship could be implemented in two different ways: either using the @JoinColumn or the
@PrimaryKeyJoinColumn annotation.

Using @JoinColumn
If the underlying table for the referencing Entity is the one containing the foreign key to the

table to which referenced “child” Entity is mapped to, we may map the relation using the
@JoinColumn annotation.

51 Figure 8.4: User has a one-one unidirectional relationship with BillingInfo. User and BillingInfo entities are

mapped to USERS and BILLING_INFO tables respectively and USERS table has a foreign key reference to

BILLING_INFO table. Such associations are mapped using @JoinColumn.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

In our User-BillingInfo example as depicted in figure 8.4, the USERS table contains a
foreign key named USER_BILLING_ID that refers to the BILLING_INFO table’s BILLING_ID
primary key. This relation would be mapped shown in listing 8.7.

30 Listing 8.7: Mapping OneToOne Uni-directional Relationship Using @JoinColumn
@Entity
@Table(name=”USERS”)
public class User {
 @Id
 @Column(name=”USER_ID”)
 protected String userId;
 ...
 @OneToOne
 @JoinColumn(name=”USER_BILLING_ID”, |#1
 referencedColumnName=”BILLING_ID”, updatable=false) |#1
 protected BillingInfo billingInfo;
}

@Entity
@Table(name=”BILLING_INFO”)
public class BillingInfo {
 @Id
 @Column(name=”BILLING_ID”) |#2
 protected Long billingId;
 ...
}
(annotation) <#1 Parent Foreign Key Manifestation>
(annotation) <#2 Child Table Primary Key>

The @JoinColumn annotation’s name element refers to the name of the foreign key in the

USERS table#1. If this parameter is omitted, it is assumed to follow this form:
<relationship field/property name>_<name of referenced primary key column>
In our example, the foreign key name would be assumed to be BILLINGINFO_BILLING_ID in

the USER table. The referencedColumnName element specifies the name of the primary key or a
unique key the foreign key refers to. If we do not specify the referencedColumnName value it is
assumed to be the column containing the identity of the referenced entity. Incidentally, this would
have been fine in our case as BILLING_ID is the primary key for BILLING_INFO table.

Like the @Column annotation, the @JoinColumn annotation contains the updatable,
insertable, table, unique elements. The elements serve the same purposes as the elements of
the @Column annotation. In our case, updatable is set to false which means that the persistence
provider would not update the foreign key even if the billingInfo reference were changed. If we
have more than one column in the foreign key we can use JoinColumns annotation instead. We
will not cover this annotation since this situation is very unlikely if not bad design.

If you have a bi-directional OneToOne relationship then the entity in inverse side of the
relationship will contain the mappedBy element as we discussed in the Chapter 7. Let us assume that
User and BillingInfo entities have a bidirectional relationship and hence you must modify the
BillingInfo entity to have the OneToOne relation definition pointing to User entity as follows:

@Entity
public class BillingInfo {
 @OneToOne(mappedBy=”billingInfo”)
 protected User user;

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

..

}

If you look at above code you will realize that mappedBy element identifies the name of the
association field in the owning side of the relationship. In a bidirectional relationship owning-side of
the relationship is the entity that stores the relationship in its underlying table. In our example
USERS table stores the relationship in the USER_BILLING_ID field and hence is the relationship
owner. The OneToOne relationship in BillingInfo has mappedBy element specified as
billingInfo that is the relationship field defined in the User entity that has definition for
JoinColumn.

Note that you do not have to define @JoinColumn in the entities of both side of OneToOne
relation.

Next we will discuss how you define the OneToOne relationship when the foreign key is in the
table to which child entity is mapped.

Using @PrimaryKeyJoinColumn
In the more likely case that the foreign key reference exists in the table to which the referenced

Entity is mapped to, the @PrimaryKeyJoinColumn would be used instead.

52 Figure 8.5: User has a one-one unidirectional relationship with BillingInfo. User and BillingInfo entities are

mapped to USERS and BILLING_INFO tables respectively and BILLING_INFO and USERS table share the

same primary key i.e. primary key of BILLING_INFO table is also a foreign key referencing the primray key

of USERS table. Such associations are mapped using @PrimaryKeyJoinColumn.

Typically, the @PrimaryKeyJoinColumn is used in one-to-one relationships when both the

referenced and referencing tables share the primary key of the referencing table. In our example as

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

shown in Figure 8.5, the BILLING_INFO table would contain a foreign key reference named
BILLING_USER_ID pointing to the USER_ID primary key of the USERS table. In addition,
BILLING_USER_ID would be the primary key of the BILLING_INFO table. The relationship would
be implemented as in listing 8.8.:

Listing 8.8: Mapping OneToOne Relationship Using @PrimaryKeyJoinColumn
@Entity
@Table(name=”USERS”)
public class User {
 @Id
 @Column(name=”USER_ID”)
 protected Long userId;
 ...
 @OneToOne
 @PrimaryKeyJoinColumn(name=”USER_ID”, |#1
 referencedColumnName=”BILLING_USER_ID”) |#1
 protected BillingInfo billingInfo;
}

@Entity
@Table(name=”BILLING_INFO”)
public class BillingInfo {
 @Id
 @Column(name=”BILLING_USER_ID”)
 protected Long userId;
 ...
}
(annotation) <#1 Parent Primary Key Join>

The @PrimaryKeyJoinColumn annotation’s name element refers to the primary key column

of the table storing the current Entity. On the other hand, the referencedColumnName element
refers to the foreign key in the table holding the referenced Entity. In our case, the foreign key is the
BILLING_INFO table’s BILLING_USER_ID column and it points to the USERS.USER_ID primary
key. If the names of both the primary key and foreign key columns are the same, you may omit the
referencedColumnName element since this is what the JPA provider will assume by default. In
our example, if we rename the foreign key in the BILLING_INFO table from BILLING_USER_ID to
USER_ID to match the name of the primary key in the USERS table, we may omit the
referencedColumnName value so that the provider can default it correctly.

If you have a composite primary key in the parent table (rare if you are using surrogate keys) you
should use the @PrimaryKeyJoinColumns annotation instead. We encourage you to explore this
annotation on your own if you need it.

We will see how to map one-many relationships next.

8.3.2 One-To-Many and Many-To-One
As we mentioned in the previous chapter, one-to-many and many-to-one relations are the most

common in enterprise systems and are implemented using the @OneToMany and @ManyToOne
annotations. For example, the Item-Bid relation is the ActionBazaar system is one-many, since an
Item holds references to a collection of Bids placed on it and a Bid holds a reference to the Item it
was placed on. The beauty of EJB 3.0 persistence mapping is that the same two annotations we used
for mapping one-to-one relations are also used for one-many relations. This is because both relation

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

types are implemented as primary-key/foreign-key association in the underlying database. Let us see
how this is done by implementing the Item-Bid relation as in Listing 8.9.

Listing 8.9: One-Many Bidirectional Relationship Mapping
@Entity
@Table(name="ITEMS")
public class Item {
 @Id
 @Column(name="ITEM_ID")
 protected Long itemId;
 ...
 @OneToMany(mappedBy="item")
 |#1
 |#1
 protected Set<Bid> bids;
 ...
}

@Entity
@Table(name="BIDS")
public class Bid {
 @Id
 @Column(name="BID_ID")
 protected Long bidId;
 ...
 @ManyToOne
 @JoinColumn(name="BID_ITEM_ID", |#2
 referencedColumnName="ITEM_ID") |#2
 protected Item item;
 ...
}
(annotation) <#1 One-to-Many Relationship Mapping>
(annotation) <#2 Many-to-One Relationship Mapping>

Since multiple instances of BIDS records would refer to the same ITEM record, the BIDS table
will hold a foreign key reference to the primary key of the ITEMS table. In our example this foreign
key is BID_ITEM_ID and it refers to the ITEM_ID primary key of the ITEMS table. This database
relation between the tables is shown in Figure 8.6. In Listing 8.9 the many-one relation is expressed
in O-R mapping using @JoinColumn annotations. In effect, a @JoinColumn annotation’s job is
to specify a primary/foreign key relationship in the underlying data model. Note that the exact
@JoinColumn specification could have been repeated for both the Bid.item and Item.bids
persistent fields on either side of the relation. In ManyToOne (#1), the name element specifies the
foreign key, BID_ITEM_ID while the referencedColumnName element specifies the primary key,
ITEM_ID. From the Item Entity’s perspective, this means the persistence provider would figure out
what Bid instances to put in the bids Set by retrieving the matching BIDS_ITEM_ID in the
BIDS table.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Figure 8.6: The one-many relation between the Item and Bid tables is materialized through a foreign key in the

Bid table referring to the primary key of the Item table.

After performing the join, the JPA provider will see what BIDS records are retrieved by the join

and populate them into the bids Set. Similarly, when it is time to materialize the item reference in
the Bid Entity, the persistence provider would populate the @JoinColumn-defined join with the
available BID_ITEM_ID foreign key, retrieve the matched ITEMS record and put it into the item
field.

Instead of repeating the same @JoinColumn annotation, we have used the mappedBy element
(#2) we mentioned but did not detail in Chapter 7. Note that persistence provider will generate
deployment-time errors if you specify @JoinColumn on both side of a bidirectional one-many
relationship. We can specify this element in the OneToMany element on the Item.bids variable as
follows:

public class Item {
 ...
 @OneToMany(mappedBy="item")
 protected Set<Bid> bids;
 ...
}

The mappedBy element is essentially pointing to the previously the relationship field
Bid.item with @JoinColumn definition . In a bidirectional one-many relationship the
owner of relationship is the Entity side that stores the foreign key i.e. the many-side of the
relationship.

The persistence provider will know to look it up appropriately when resolving Bid Entities. In
general, you have to use the mappedBy element wherever bi-directional relationship is required. If
you do not specify mappedBy element with the @OneToOne annotation the persistence provider will
treat the relationship as a uni-directional relationship. Obviously, this would not be possible if the
OneToMany relationship reference were unidirectional since there would be no owner of the relation
to refer to.

Unfortunately JPA does not support uni-directional One-To-Many relationship using
foreign key on the target table and you cannot use the following mapping if you have a uni-
directional OneToMany relationship between Item and Bid:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 @OneToMany(cascade=CascadeType.ALL)
 @JoinColumn(name="ITEM_ID", referencedColumnName="BID_ITEM_ID")
 protected Set<Bid> bids;

Although many persistence provider will support the above mapping this is not standardized
and you have to use a join or intersection table using @JoinTable annotation similar to
ManyToMany relationship that we discuss in 8.3.3. Uni-directional OneToMany are
relationship are scarce and we will leave this you to explore on your own. We would rather
recommend that you convert your relationship to a bi-directional relation thus avoding
complexities in maintaining another table.

Also, the ManyToOne annotation does not support the mappedBy element since it is always the
side of the relation that holds the foreign key and the inverse side can never be the “relationship
owner”.

A final point to remember is that foreign keys can refer back to the primary key of the same table
it resides in. There is nothing stopping a @JoinColumn annotation from specifying such a relation.
For example, the many-to-one relationship between subcategories and parent categories could be
expressed as shown in Listing 8.10:
31 Listing 8.10: ManyToOne Self-Referencing Relationship Mapping
@Entity
@Table(name="CATEGORIES")
public class Category implements Serializable {
 @Id
 @Column(name=“CATEGORY_ID”)
 protected Long categoryId;
 ...
 @ManyToOne
 @JoinColumn(name="PARENT_ID", |#1
 referencedColumnName=”CATEGORY_ID") |#1
 Category parentCategory; ...
}
(annotation) <#1 Self-Referencing ManyToOne Relationship Mapping>

In Listing 8.10, the Category Entity refers to its parent through the PARENT_ID foreign key
pointing to the primary key value of another record in the CATEGORY table. Since multiple sub-
categories can exist under a single parent, the @JoinColumn annotation specifies a many-one
relationship. Recall that the @JoinColumns annotation used in case of the rare case of composite
keys for both the one-one and one-many cases.

We will conclude the section on mapping domain relations next by dealing with the most
complex relationship mapping, many-to-many.

8.3.3 Many-to-Many
As we mentioned in section 8.1.1, a many-to-many relationship in the database world is
implemented by breaking it down into two one-many relationships stored in an association or join
table. In other words, an association or join table allows us to indirectly match-up primary keys from
either side of the relationship by storing arbitrary pairs of foreign keys in a row. This scheme is
depicted in Figure 8.7.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Figure 8.7: Many-to-many relationships are modeled in the database world using join tables. A join table

essentially pairs foreign keys pointing to primary keys on either side of the relationship.

The @JoinTable mapping in EJB 3.0 models this technique. To see how this is done, let us take a
look at the code in Listing 8.11 for mapping the many-many relationship between the Item and
Category Entities. Recall that a Category can contain multiple Items while an Item can
belong to multiple Categories.

Listing 8.11: Many-to-Many Relationship Mapping
@Entity
@Table(name="CATEGORIES")
public class Category implements Serializable {
 @Id
 @Column(name="CATEGORY_ID")
 protected Long categoryId;

 @ManyToMany
 @JoinTable(name="CATEGORY_ITEMS", |#1
 joinColumns= |#1
 @JoinColumn(name="CI_CATEGORY_ID", |#1
 referencedColumnName="CATEGORY_ID"), |#1
 inverseJoinColumns= |#1
 @JoinColumn(name="CI_ITEM_ID", |#1
 referencedColumnName="ITEM_ID")) |#1
 protected Set<Item> items;
 ...
}

@Entity
@Table(name=”ITEMS”)
public class Item implements Serializable {
 @Id
 @Column(name=”ITEM_ID”)
 protected Long itemId;
 ...
 @ManyToMany(mappedBy=”items”) |#2
 protected Set<Category> categories;
 ...
}
(annotation) <#1 Owning Many-Many Relationship Mapping>
(annotation) <#2 Subordinate Many-Many Relationship Mapping>

The @JoinTable annotation’s name element specifies the association or join table, which is
named CATEGORY_ITEMS in our case. The CATEGORY_ITEMS table contains only two columns,

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

CI_CATEGORY_ID and CI_ITEMS_ID. The CI_CATEGORY_ID column is a foreign key reference
to the primary key of the CATEGORIES table, while the CI_ITEM_ID column is a foreign key
reference to the primary key of the ITEMS table. The joinColumns and inverseJoinColumns
elements represent exactly this fact. Each of the two elements describes a join condition on either side
of the many-many relationship. The joinColumns element describes the “owning” relationship
between the Category and Item Entities and the inverseJoinColumns element describes the
“subordinate” relationship between them. Note the distinction of the “owning” side of the
relationship is purely arbitrary.

Just as we used the mappedBy element to reduce redundant mapping for one-many relations, we
are using the mappedBy element on the Item.categories field#2 to point to the @JoinTable
definition in Category.items. We can specify more than one join column with joinColumns
annotation if we have more than one column that constitutes the foreign key (again this is an unlikely
situation that should be avoided in a clean design). From the perspective of the Category Entity,
the peristence provider will determine what Item Entities go in the items collection by setting the
available CATEGORY_ID primary key against the combined joins defined in the @JoinTable
annotation, figuring out what CI_ITEM_ID foreign keys match and retrieving the matching records
from the ITEM table. The flow of logic is essentially reversed for populating Item.categories.
While saving the relationship into the database, the peristence provider might need to update all
three of the ITEMS, CATEGORIES and CATEGORY_ITEMS tables as necessary. For a typical change
in relation data, the ITEMS and CATEGORIES tables will remain unchanged while the foreign key
references in the CATEGORY_ITEMS table will change. This might be the case if we move an item
from one category to the other for example. Because of the inherent complexity of many-to-many
mappings, the mappedBy element of the @ManyToMany annotation really shines in terms of
reducing redundancy.

If you a unidirectional many-many relationship then the only difference is that the inverse side of
the relation does not contain the mappedBy element.

We have now finished discussing Entity relation mapping and will discuss mapping OO
inheritance next before concluding the chapter.

8.4 Mapping Inheritance
In section 8.1.1 we mentioned the difficulties in mapping OO inheritance into relational databases.
We also alluded to the three strategies used to solve this problem: putting all Classes in the OO
hierarchy in the same table, using joined tables for the super- and sub-Classes or using completely
separate tables for each Class. We will explore how each strategy is actually implemented in this
section.
 Recall from section 8.2.7 that we could easily utilize different strategies for generating sequences
more or less by changing configuration parameters for the @GeneratedValue annotation. The
@Inheritance annotation used to map OO inheritance tries to follow the same philosophy of
isolating strategy-specific settings into configuration. We will explore inheritance mapping using the
three strategies offered through the @Inheritance annotation by implementing a familiar
example.

As we mentioned before, the ActionBazaar system has several different user types including sellers
and bidders. We have also introduced the idea of creating a User superclass common to all user

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

types. In this scheme of things, the User Entity would hold data and behavior common to all users
while subclasses like Bidder and Seller would hold data and behavior specific to user types. A
simplified class diagram for this OO hierarchy could look like Figure 8.8:

Figure 8.8: The ActionBazaar user hierarchy. Each user type like Bidder and Seller inherit from the common User

superclass. The empty arrow signifies there may be some other subclasses of User class.

53

In this section we will discuss how the entire entities in the entity hierarchy in figure 8.8 can be

mapped to database tables using different type of inheritance mapping strategies supported by JPA:
Single table, Joined subclass and Table per class. Finally we will learn about polymorphic
relationships. We will see how this hierarchy can be mapped using the SINGLE_TABLE strategy next.

8.4.1 Single Table Strategy
In this strategy all classes in the inheritance hierarchy are mapped to a single table. This means that
the single table will contain a superset of all data stored in the class hierarchy. Different Objects in
the OO hierarchy are identified using a special column called a discriminator column. In effect, the
discriminator column contains a value unique to the object type in a given row. The best way of
understanding this scheme is by seeing it implemented. For the ActionBazaar schema, let us assume
that all user types including Bidders and sellers are mapped into the USERS table. Figure 8.9 shows
how the table might look like:

Figure 8.9: Storing all ActionBazaar user types using a single table

As figure 8.9 depicts, the USERS table contains data common to all users (such as USER_ID and
USERNAME), Bidder-specific data (such as BID_FREQUENCY) and seller-specific data (such as
CREDIT_WORTH). Record 1 and 2 contain Bidder records while record 3 contains a seller record.
This is indicated by the ‘B’ and ‘S’ values in the USER_TYPE column. We can imagine that the
USER_TYPE discriminator column can contain values corresponding to other user types, such as ‘A’
for admin or ‘C’ for CSR. You might imagine that the Peristence provider maps each user type to the
table by storing persistent data in to relevant mapped columns, setting the USER_TYPE value

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

correctly and leaving the rest of the values NULL. The next step to understanding the
SINGLE_TABLE strategy might be to analyze the actual mapping implementation. The code in
Listing 8.12 shows the mapping for the User, Bidder and Seller Entities:

32 Listing 8.12: Inheritance Mapping Using Single Table
@Entity
@Table(name="USERS")
@Inheritance(strategy=InheritanceType.SINGLE_TABLE) |#1
@DiscriminatorColumn(name=”USER_TYPE”, |#2
 discriminatorType=DiscriminatorType.STRING, length=1) |#2
public abstract class User ...

@Entity
@DiscriminatorValue(value=”S”) |#3
public class Seller extends User ...

@Entity
@DiscriminatorValue(value=”B”) |#4
public class Bidder extends User
(annotation) <#1 Inheritance Strategy>
(annotation) <#2 Discriminator Column>
(annotation) <#3 Seller Discriminator>
(annotation) <#4 Bidder Discriminator >

The inheritance strategy and discriminator column has to be specified on the root Entity of the

OO hierarchy. In listing 8.12, we specify the strategy to be InheritanceType.SINGLE_TABLE in
the @Inheritance annotation on the User Entity#1. The @Table annotation on the User Entity
specifies the name of the single table used for inheritance mapping, USERS. The
@DiscriminatorColumn annotation#2 specifies the details of the discriminator column. The
name element specifies the name of the discriminator, USER_TYPE. The discriminatorType
element specifies the data type of the discriminator column, which happens to be String and the
length element specifies the size of the column, 1. Both subclasses of User, Bidder and Seller
specify a discriminator value using the @DiscriminatorValue annotation. The Seller Class
specifies its discriminator value to be ‘S’#3. This means that when the peristence provider saves a
Seller Object into the USERS table, it will set the value of the USER_TYPE column to be ‘S’.
Similarly, Seller Entities would only be reconstituted from rows with a discriminator value of ‘S’.
Likewise, the Bidder subclass specifies its discriminator value to be ‘B’. Every subclass of User is
expected to specify an appropriate discriminator value not conflicting with other sub-classes. If we do
not specify a discriminator value for a subclass, the value is assumed to be the name of the subclass
(such as “Seller” for the Seller Entity).

SINGLE_TABLE is the default inheritance strategy for EJB 3.0. Although this strategy is very
simple to use, it has one great disadvantage that might be apparent from Figure 8.5. It does
not really fully utilize the power of the relational database in terms of using primary/foreign
keys and results in a large number of NULL column values.

To understand why, consider the seller record (record number 3) in Figure 8.9. The
BID_FREQUENCY value is set to NULL for this record since it is not a Bidder record and the Seller
Entity does not map this column. Conversely, none of the Bidder records ever populate the

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

CREDIT_WORTH column. It is not that hard to imagine the amount of redundant NULL-valued
columns in the USER table if there are a significant numbers of users (such as a few thousand).

For the very same reason, the strategy also limits the ability to enforce data integrity constrains.

For example, if you want to enforce a column constraint that BID_FREQUNCY cannot be NULL for a
Bidder, you would not be able to enforce the constraint since the same column will contain seller
records for which the value may be NULL. Typically, such constraints are enforced through alternative
mechanisms such as database triggers for the SINGLE table strategy. The second inheritance strategy
we are now going to take a look at, JOINED, avoids these pitfalls and fully utilizes database relations.

8.4.2 Joined Table Strategy
The joined table inheritance strategy uses one-to-one relations to model OO inheritance. In effect,
the joined table strategy means creating separate tables for each Entity in the OO hierarchy and
relating direct descendants in the hierarchy with one-to-one relations. To understand it better, let us
take a look at how the data in figure 8.10 might look using this strategy:

Figure 8.10: Modeling inheritance using joined tables. Each Entity in the OO hierarchy corresponds to a separate

table and parent-child relationships are modeled using one-to-one mapping.

In the joined table strategy, the parent of the hierarchy contains only columns common to its
children. In our example, the USERS table contains columns common to all ActionBazaar user types
(such as USERNAME). The child table in the hierarchy contains columns specific to the Entity sub-
type. In our case, both the BIDDERS and SELLERS tables contain columns specific to the Bidder
and Seller Entities respectively (for example, the SELLERS table contains the CREDIT_WORTH
column). The parent-child OO hierarchy chain is implemented using one-to-one relations. For
example, the USERS and SELLERS tables are related through the USER_ID foreign key in the
SELLERS table pointing to the primary key of the USERS table. A similar relation exists between the
BIDDER and USERS tables. The discriminator column in the USERS table is still used, primarily as
way of easily differentiating data types in the hierarchy. We are now ready to take a look at Listing
8.13 to see how the mapping strategy is actually implemented in EJB 3.0:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Listing 8.13: Inheritance Mapping Using Joined Table

@Entity
@Table(name="USERS")
@Inheritance(strategy=InheritanceType.JOINED) |#1
@DiscriminatorColumn(name=”USER_TYPE”,
 discriminatorType=STRING, length=1)
public abstract class User ...

@Entity
@Table(name="SELLERS")
@DiscriminatorValue(value="S")
@PrimaryKeyJoinColumn(name="USER_ID") |#2
public class Seller extends User ...

@Entity
@Table(name="BIDDERS")
@DiscriminatorValue(value="B")
@PrimaryKeyJoinColumn(name="USER_ID") |#3
public class Seller extends User ...

(annotation) <#1 Inheritance Strategy>
(annotation) <#2 Primary Key Join>
(annotation) <#3 Primary Key Join>

Listing 8.13 uses the @DiscriminatorColumn and @DiscriminatorValue annotations in

exactly the same way as the SINGLE_TABLE strategy. The @Inheritance annotation’s strategy
element is specified to be JOINED, however#1. In addition, the one-to-one relationships between
parent and child tables are implemented through the @PrimaryKeyJoinColumn annotations in
both the Seller and Bidder Entities. In both cases, the name element specifies the USER_ID foreign
key. Joined Subclass strategy is probably the best mapping strategy from design perspective. From
performance perspective it is worse than the Single Table Per hierarchy strategy because it requires
joining of multiple tables for polymorphic queries.

8.4.3 Table Per Class Strategy
Table-per-Class is probably the simplest inheritance strategy for a layman to understand. However,
this inheritance strategy is the worst from both a relational and an OO standpoint. In this strategy,
both the superclass and subclasses are stored in their own table and no relationship exists between any
of the tables. To see how this works, take a look the tables in Figure 8.11.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Figure 8.11: Table-per-Class inheritance strategy. Super- and sub-Classes are stored in their own, entirely

unrelated tables.

As the Figure depicts, Entity data are stored in their own tables even if they are inherited from

the superclass. This is true even for the USER_ID primary key. As a result, primary keys in all tables
must be mutually exclusive for this scheme to work. In addition, inherited columns are duplicated
across tables, such as the USERNAME column. Using this inheritance strategy, we define the strategy
in the superclass and map tables for all the Classes. Listing 8.14 shows how the code might look.

Listing 8.14: Inheritance Mapping Using Table Per Class
@Entity
@Table(name="USERS") |#1
@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)
|#2
public class User {
...
@Entity
@Table(name="SELLERS") |#1
public class Seller extends User {
...
@Entity
@Table(name="BIDDERS")
|#1
public class Bidder extends User {
(annotation) <#1 Table Mappings>
(annotation) <#2 Inheritance Strategy >

As we can see, the inheritance strategy, TABLE_PER_CLASS is specified in the superclass Entity,
User. However all of the concrete Entities in the OO hierarchy are mapped to separate tables and
each have a @Table specification. The greatest demerit for this mapping type is that it does not have
good support for polymorphic relations or queries because each subclass is mapped to its own table.

The limitation is that when we want to retrieve entities over the persistence provider will use
SQL UNION or retrieve each entity with separate SQL for each subclass in the hierarchy.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Besides being awkward, this strategy is the hardest for an EJB 3.0 provider to implement
reliably. As a result, implementing this strategy has been made optional for the provider by
the EJB 3.0 specification. We recommend that you avoid this strategy altogether.

This finishes our analysis of the three strategies for mapping OO inheritance. Choosing the right

strategy is not as straightforward as you might think. Table 8.2 compares each of mapping strategies.

Table 8.2: EJB 3.0 JPA supports three different inheritance strategies single table per class hirerarchy, joined

subclass and table per class. Table per class is optional and worst of these strategies.

 Single Table per class

hierarchy

Joined Subclass Strategy Table per class

Table Support One table for all classes in
the entity hierarchy

- Mandatory columns

may be nullable
- Table grows when

more subclasses gets
added

One for parent class and
each subclass has a
separate table to store
polymorphic properties

Most normalized tables

One table for each concrete
class in the entity hierarchy

Use Discriminator

Column

Yes Yes No

SQL Generated for

retrieval of entity

hierarchy

Simple SELECT SELECT clause joining
multiple tables

One SELECT for each sub
class or UNION of SELECT

SQL for Insert and Update Single INSERT or UPDATE
for all entities in the
hierarchy

Multiple INSERT, UPDATE.
One for root class and one
for each for involved
subclass

One INSERT UPDATE for
every subclass

Polymorphic relation Good Good Poor
Polymorphic queries Good Good Poor
Support in EJB 3.0 JPA Required Required Optional

The single table strategy is relatively simple and is fairly performance friendly since it avoids joins

under the hood. Even inserts and updates in the single table strategy perform better when compared
to the joined table strategy. This is because in the joined table strategy, both the parent and child
tables need to be modified for a given Entity subclass. However, as we mentioned, the single table
strategy results in a large number of NULL-valued columns. Moreover, adding a new subclass
essentially means updating the unified table each time.

In the joined table strategy, adding a subclass means adding a new child table as opposed to
altering the parent table (which may or may not be easier to do). By and large, we recommend the
joined table strategy since it best utilizes the strengths of the relational database including using
normalization techniques to avoid redundancy. In our opinion, the performance cost associated with
joins is relatively insignificant, especially with surrogate keys and proper database indexing.

 The table per Class strategy is probably the worst choice of the three. It is relatively
counterintuitive and uses almost no relational database features. It almost magnifies the object
relational impedance instead of attempting to bridge it. The most important reason to avoid this
strategy, however, is that EJB 3.0 makes it optional for a provider to implement it. As a result,
choosing this strategy might make your solution non-portable across implementations.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Beside these inheritance strategies EJB 3.0 JPA allows an entity to inherit from a non-entity class.

Such a class is annotated with @MappedSuperClass annotation. Like an embeddable object, a
mapped super class does not have an associated table. We leave details about MappedSuperClass as an
exercise for you.

8.4.4 Mapping Polymorphic Relations
In chapter 7 we discussed that JPA fully supports inheritance and polymorphism. Now that we are
complete with our discussions on mapping relationships and inheritance you must be excited to
know about polymorphic associations and wondering how do you map polymorphic associations. A
relation between two entities is said to be polymorphic when the actual relation may refer to instances
of subclass of associated entity. Let us assume that there is a bidirectional many-to-one relationship
between ContactInfo and User entities. We discussed earlier that User is an abstract entity and
entities such as Bidder, Seller, etc inherit from User class. When we retrieve the association from
ContactInfo entity User being abstract an instance of its subclass either Bidder or Seller will be
retrieved. The greatest benefit of JPA is that you do not have to do any extra work for mapping
polymorphic association and you get it for free. You just define the relationship mapping between
super class and associated entity and the association becomes polymorphic.

8.5 Summary
In this chapter, we covered basic database concepts, introduced the Object-Relational Impedance

problem. We reviewed the O-R mapping annotations such as @Table, @Column mapped some of
the Entities into database tables.

We reviewed different types of primary key generation strategies and reviewed mapping of
composite primary keys.

We reviewed different types of Relations presented in the previous chapter and used JPA
annotations such as @JoinColumn and @PrimaryKeyColumn to map those into database tables. You
learnt that @ManyToMany and uni-directional @OneToMany relations require association tables.
Hope the limitation to support unidirectional relationship using a target foreign key constraint will
be addressed in a future release.

We showed you the robust OO Inheritance mapping features supported by the JPA as well and
compared their relative merits and demerits. Of three of the inheritance mapping strategies Joined
Subclass is the best for design perspective.

You should note, however, that we avoided some complexities while presenting this chapter.
First, we used field-based persistence in all of our code samples to keep them as short and simple as

Eclipse O-R Mapping Tool

As we mentioned before, EJB 3.0 makes O-R mapping a lot easier, but not quite
painless. This is largely because of the inherent complexity of O-R Mapping and the large
number of possible combinations to handle. The good news is that an Eclipse-based EJB
3.0 Mapping tool code-named Dali is underway (http://www.eclipse.org/dali/). The project
is lead by Oracle and supported by JBoss and BEA . It will be a part of Eclipse web tool
project (WTP) and will support creating and editing EJB 3.0 Object-Relational Mappings
using either annotations or XML. Also two commercial products Oracle JDeveloper and
BEA Workshop support development of EJB 3.0 applications.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.eclipse.org/dali/
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

possible. Secondly, we only mentioned the most commonly used elements for the annotations used in
the chapter. We felt justified in doing so as most of the annotation elements we avoided are rarely
used. We do encourage you to check out the full definition of all the annotations in this chapter
available online at http://java.sun.com/products/persistence/javadoc-1_0-
fr/javax/persistence/package-tree.html.

In the next chapter, we are going to see how to actually manipulate the Entity and Relations we
mapped in this chapter using the EntityManager API.

Licensed to John Sweitzer <admin@saolailaem.info>

http://java.sun.com/products/persistence/javadoc-1_0-
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Chapter 9 Manipulating entities with
EntityManager API

In Chapter 7 we learned how to develop the application domain model using JPA. In Chapter 8
we saw how domain objects and relations are mapped to the database. While the ORM annotations
we discussed in Chapter 8 indicate how an entity is persisted, the annotations don’t do the actual
persisting. The actual persistence is done by applications using the EntityManager interface, the topic
of this chapter.

To use an analogy, the domain model annotated with ORM configuration is kind of like a

children’s toy that needs assembly. The domain model consists the parts of the toy. The ORM
configuration is the assembly instructions. While the assembly instructions tell you how the toy parts
are put together, you do the actual assembly. The EntityManager is the toy assembler of the
persistence world. The EntityManager figures out how to persist the domain by looking at the
ORM configuration. More specifically, the EntityManager performs Create, Read, Update and
Delete (CRUD) operations on domain objects. The Read part includes extremely robust search and
retrieval of domain objects from the database. This chapter covers each of the CRUD operations that
the EntityManager provides in detail, with the exception of the search part of search and
retrieval. In addition to simple primary key based domain object retrieval, JPA provides SQL
SELECT like search capabilities through the EJB 3.0 query API. The query API is so extensive and
powerful that we will dedicate the entirety of Chapter 10 to it while briefly touching on it in this one.

Before we dive down into the persistence operations we will learn about EntityManager interface,

lifecycle of entities, persistence context and how to obtain an instance of EntityManager. We will
discuss about entity lifecycle callback listeners before concluding with best practices.

Before we get into too much code, we are going to gently introduce the EntityManager and
briefly cover some concepts useful in understanding the nuances behind this critical part of JPA.

9.1 Introducing the EntityManager
EntityManager API is probably most important and interesting part of Java Persistence API. It
manages the lifecycle of entities. In this section you will learn about EntityManager and methods in
the EntityManager interface. We will uncover the entity lifecycle and then learn about persistence
contexts and their types.

9.1.1 The EntityManager Interface
In a sense, the EntityManager is the bridge between the OO and relational worlds as depicted

in Figure 9.1. When we ask that a domain Entity be created, the EntityManager translates the
Entity into a new database record. When we ask that an Entity be updated, it tracks down the

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

relational data that correspond to the Entity and updates the data. Likewise the EntityManager
removes the relational data when we ask that an Entity be deleted. From the other side of the
translation bridge, when we ask for an Entity “saved” in the database, the EntityManager creates
the Entity object, populates it with relational data and “returns” the Entity back to the OO world.

54 Figure 9.1: EntityManager acts as the bridge between OO and relational world. It interprets the O-R

mapping specified for an entity and saves in the database

Besides providing these explicit SQL-like CRUD operations, the EntityManager also tries to

quietly keep Entities synched with the database automatically as long as they are within the
EntityManager’s reach (this behind-the-scenes synchronization is what we mean when we talk
about “managed” Entities in the next Section) The EntityManager is easily the most important
interface in JPA and is responsible for most of the ORM black magic in the API.

Despite all this under-the-hood power, the EntityManager is a very small, simple and intuitive
interface, especially compared to the mapping steps we already discussed in the previous Chapter and
the query API to be discussed in the next Chapter. In fact, once we go over some basic concepts in
the next few sections, the interface might seem almost trivial. You might already agree if you took a
quick look at Table 9.1. The table lists some of the most commonly used methods defined in the
EntityManager interface.

1.17 Table 9.1: The EntityManager is used to perform CRUD operations. The following are the most commonly

used methods of the EntityManager interface.

Method Signature Description

public void persist(Object entity); Saves (persists) an Entity into the database.
public <T> T merge(T entity); Merges an Entity to the EntityManager’s persistence context

and returns the merged Entity.
public void remove(Object entity); Removes an Entity from the database.
public <T> T find(Class<T> entityClass, Object
primaryKey);

Find an entity instance by its primary key.

public void flush(); Synchronize the state of Entities in the EntityManager’s
persistence context with database.

public void setFlushMode(FlushModeType flushMode); Change the flush mode of the EntityManager’s persistent
context. The flush mode may either be AUTO or COMMIT.
The default flush mode is AUTO, meaning that the
EntityManager tries to automatically synch the Entities with
the database.

public FlushModeType getFlushMode();

Retrieve the current flush mode.

public void refresh(Object entity); Refresh (reset) the Entity from the database.
public Query createQuery(String jpqlString);

Create a dynamic query using a JPQL statement.

public Query createNamedQuery(String name);

Create a query instance based on a named query on the
Entity instance.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

public Query createNativeQuery(String sqlString);

public Query createNativeQuery(String sqlString, Class
result Class);

public Query createNativeQuery(String sqlString, String
resultSetMapping);

Create a dynamic query using a native SQL statement.

public void close(); Close an EntityManager.
public boolean isOpen(); Check whether an EntityManager is open.
public EntityTransaction getTransaction();

Retrieve a transaction object that can be used to manually
start or end a transaction.

public void joinTransaction(); Ask an EntityManager to join an existing JTA transaction.

Don’t worry too much if the methods are not immediately obvious. Except for the methods

related to the query API (createQuery, createNamedQuery and createNativeQuery), we
will discuss them in detail in the coming sections. The few EntityManager interface methods that
we did not cover above are rarely ever used, so we won’t spend time in the limited scope of this book
talking about them. Once you’ve read and understood the material in this Chapter though, we
encourage you to explore them on your own. The EJB 3.0 Java Persistence API final specification is
available at http://jcp.org/en/jsr/detail?id=220.

The JPA Entity: A Right Set of Tradeoffs

Nothing in life is free…
As we mentioned and will explore further this Chapter onward, the reworked EJB 3.0 JPA
Entity model brings a whole host of things to the table: simplicity, OO support, unit
testability, and so on. However, the JPA Entity loses a few features that were available in
the EJB 2.x model because of its separation from the container. Because the
EntityManager and not the container manages Entities, they cannot directly use container
services such as dependency injection, defining method level transaction and security
attributes, remoteability, and so on.
However, the truth of the matter is most layered applications designed using the EJB 2.x
CMP “Entity Bean” model never really utilized container services directly anyway. This is
because Entity Beans were almost always used through a Session Bean façade. This
means that Entity Beans “piggybacked” over container services configured at the Session
Bean level. The same is true for JPA Entities. This means that in real terms, the JPA
model loses very little functionality.
Incidentally, losing the magic word “bean” means that JPA Entities are no longer EJB
components managed by the container. So if you catch someone calling JPA Entities
“beans”, feel free to gently correct them!

Even though JPA is not container-centric like Session Beans or MDBs, Entities still have a life

cycle. This is because Entities are “managed” by JPA in the sense that the API keeps track of them
under the hood and even automatically synchronizes Entity state with the database when possible.
We’ll explore exactly how the Entity life cycle looks like in the following section.

9.1.2 The Life Cycle of an Entity
An Entity has a pretty simple life cycle. Making sense of the Entity life cycle and remembering it

is easy once you understand a simple concept–the EntityManager knows nothing about a POJO
regardless of how it is annotated, until you tell the manager to start treating the POJO like a JPA
Entity. This is the exact opposite of POJOs annotated to be Session Beans or Message Driven Beans,
which are loaded and managed by the container as soon as the application starts. Moreover, the
default behavior of the EntityManager is to manage an Entity for as short of a time as possible.

Licensed to John Sweitzer <admin@saolailaem.info>

http://jcp.org/en/jsr/detail?id=220
http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Again, this is the opposite of container-managed beans, which remain managed until the application
is shut down.

An Entity that the EntityManager is keeping track of is considered attached or managed. On
the other hand, when an EntityManager stops managing an Entity, the Entity is said to be
detached. Lastly, an Entity that was never managed at any point is called transient or new.

Figure 9.2 summarizes all of the Entity life cycle.

Figure 9.2 : An entity becomes managed when we persist, merge, refresh or retrieve an entity. It may also be attached
when we retrieve it. A managed entity becomes detached when it is out of scope, removed, serialized or cloned.

Let’s take a close look at the managed and detached states.

Managed Entities
When we talk about managing an Entity’s state, what we mean is that the EntityManager

makes sure that the entity’s data is synchronized with the database. The EntityManager ensures
this by doing two things. Firstly, as soon as we ask an EntityManager to start managing an Entity,
it synchronizes the Entity’s state with the database. Secondly, until the Entity is no longer managed,
the EntityManager ensures that changes to the Entity’s data (caused by Entity method
invocations, for example) are reflected in the database. The EntityManager accomplishes this feat
by holding an object reference to the managed Entity and periodically checking for data freshness. If
the EntityManager finds that any of the Entity’s data has changed, it automatically synchronizes
the changes with the database. The EntityManager stops managing the Entity when the Entity is
either deleted or the Entity moves out of persistence provider’s reach.

An Entity can become attached to the EntityManager’s context in many ways: by passing the
Entity to the persist, merge or refresh methods. Also an entity becomes attached when an
entity is is retrieved using the find method or a query within a transaction. The state of the entity
determines which method you will use.

When an Entity is first instantiated as in the following snippet, it is in the new or transien state
since the EntityManager doesn’t know it exists yet:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Bid bid = new Bid();

Hence the entity instance is not managed yet. It will become managed if the EntityManager’s

persist() method creates a new record in the database corresponding to the Entity . This would
be the most natural way to for the Bid Entity in the previous snippet to be attached to the
EntityManager’s context:

manager.persist(bid);

A managed entity becomes detached when it is out of scope, removed, serialized or cloned. For
example, the instance of Bid entity will become detached when the underlying transaction commits.

Unlike Entities explicitly created using the new operator, an Entity retrieved from the database

using the EntityManager’s find() method or a query is attached if retrieved within a
transactional context. A retrieved instance of entity become detached immediately if there is not an
associated transaction.

The merge() and refresh() methods are meant for entities that have been retrieved from the

database and are in detached state, and will attach them to the EntityManager.The merge() updates
the database with the data held in the entity. The refresh()does the opposite of what the merge
method does—it resets the Entity’s state with data from the database. We’ll discuss all of these
methods in much greater detail in sections 9.3.

Detached Entities
A detached entity is an entity that is no longer managed by EntityManager and there is no guarantee
that state of entity is in sync with the database. Detachment and merge operations become handy
when you want to pass an entity across application tiers. For example, you can detach an entity and
pass to the web tier and then update it and send it back to the EJB-tier where you can merge the
detached entity to the persistence context.

There are three ways to detach an Entity.

The common way Entities become detached is a little subtler. Essentially, an attached Entity

becomes detached as soon as it goes out of the EntityManager context’s scope. Think of this as the
invisible link between an Entity and the EntityManager being expired at the end of a logical unit
of work or a session. An EntityManager session could be limited to a single method call or span an
arbitrary length of time (this is reminiscence of Session Beans, isn’t it? As we will soon see, this is not
entirely an accident). For an EntityManager whose session is limited to a method call, all Entities
attached to it become detached as soon as a method returns, even if the Entity objects are used
outside the method. If this is not absolutely crystal clear right now, it will be once we talk about the
EntityManager persistence context in the next Section. Entity instances also become detached
through cloning or serialization. This is because the EntityManager quite literally keeps track of
Entities through Java object references. Since cloned or serialized instances don’t have the same object
references as the original managed Entity, the EntityManager has no way of knowing they exist.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

This scenario happens most often in situations where Entities are sent across the network for Session
Bean remote method calls.

If you call the clear method of EntityManager, it forces all entities in the persistence context to

be detached.

Calling the EntityManager remove() method will also detach it. This makes perfect common
sense since this method removes the data associated with the Entity from the database. As far as the
EntityManager is concerned, the Entity no longer exists, so there is no need to continue managing
it. For our Bid Entity, this would be an “apt demise”:

manager.remove(bid);

We will return to discussion on detachment and merge operations in section 9.3.3.

A good way to remember the Entity lifecycle is through a convenient analogy. Think of an Entity

as an aircraft and the EntityManager as the air traffic controller. While the aircraft is outside the
range of the airport (detached or new), it is not guided by the air traffic controller. However, when it
does come into range (managed), the traffic controller manages the aircraft’s movement (state
synchronized with database). Eventually, a grounded aircraft is guided into takeoff and goes out of
airport range again (detached), at which point the pilot is free to follow his own flight plan
(modifying a detached Entity without state being managed).

The persistence context scope is the equivalent of airport radar range. It is critical to understand

how the persistence context works to use managed Entities effectively. We will examine the relation
between the persistence context, its scope and the EntityManager in the next Section.

9.1.3 Persistence Contexts, Scope and the EntityManager
The persistence context plays vital part in the internal functionality of the EntityManager.

Although we perform persistence operations by invoking methods on the EntityManager, the

EntityManager itself does not directly keep track of the life cycle of an individual Entity. In
reality, the EntityManager delegates the task of managing Entity state to the currently available
persistence context.

In a very simple sense, a persistence context is a self-contained collection of Entities managed by
an EntityManager during a given persistence scope. The persistence scope is the duration of time a
given set of Entities remains managed.

The best way of understanding what this means is to start by examining what the different

persistence scopes are and what they do and then backtracking back to the meaning of the term.
We’ll explain how the persistence context and persistence scope relates to the EntityManager by
first exploring what the persistence context is. We will then tell you what a persistence context scope
is and how it affects both the EntityManager and the persistence context.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

There are two different types of persistence scopes: transaction and extended.

Transaction Scoped EntityManager

If a persistence context is under transaction scope, Entities attached during a transaction are

automatically detached when the transaction ends (note, all persistence operations that may result in
data changes must be performed inside a transaction, no matter what the persistence scope is). In
other words, the persistence context keeps managing Entities while the transaction it is enclosed by is
active. Once the persistence context detects that a transaction has either been rolled back or
committed, it will detach all managed Entities after making sure all data changes until that point is
synchronized with the database. Figure 9.3 depicts this relationship between Entities, the transaction
persistence scope, and persistence contexts:

55 Figure 9.3: Transaction scoped persistence contexts only keep Entities attached within the boundaries of

the enclosing transaction.

An EntityManager associated with a transaction scoped persistence context is known as
transaction-scoped EntityManager.

Extended EntityManager
The life span of extended EntityManager lasts across multiple transactions. An extended

EntityManager can only be used with Stateful session beans and lasts as long as the bean instance is
alive. Hence in persistent contexts with extended scope, how long Entities remain managed has
nothing to do with transaction boundaries. In fact, once attached, Entities pretty much stay managed
as long as the EntityManager instance is around. As an example, for a Stateful Session Bean, an
EntityManager with extended scope will keep managing all attached Entities until the
EntityManager is closed as bean itself is destroyed. As figure 9.4 shows, this means that unless
explicitly detached through the @Remove method to end the life of stateful bean instance, Entities
attached to an extended persistence context will remain managed across multiple transactions.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

56 Figure 9.4: For an extended persistence context, once an Entity is attached in any given transaction, it is

kept managed for all transactions in the lifetime of the persistence context.

The term scope is used for persistence contexts in the same manner that it is used for Java variable

scoping. It is used to describe how long a particular persistence context remains active. Transaction-
scoped persistence contexts can be compared to method local variables, in the sense that they are only
in effect within the boundaries of a transaction. On the other hand, extended-scoped persistence
contexts are more like instance variables that are active for the lifetime of an object—they hang
around as long as the EntityManager is around.

At this point, we’ve covered the basic concepts needed to understand the functionality of the

EntityManager. We are now ready to see the EntityManager itself in action.

9.1.4 Using the EntityManager in ActionBazaar
We will explore the EJB 3.0 EntityManager interface by implementing an ActionBazaar

component. We will implement the ItemManagerBean Stateless Session Bean used to provide the
operations to manipulate items. As code Listing 9.1 demonstrates, the Session Bean provides methods
for adding, updating and removing Item Entities using the JPA EntityManager.

33 Listing 9.1: ItemManagerBean Using the EntityManager Interface
@Stateless
public class ItemManagerBean implements ItemManager {
 @PersistenceContext(unitName="actionBazaar")
 private EntityManager entityManager; |#1

 public ItemManagerBean() {}

 public Item addItem(String title, String description,
 byte[] picture, double initialPrice, long sellerId) {
 Item item = new Item();
 item.setTitle(title);
 item.setDescription(description);
 item.setPicture(picture);
 item.setInitialPrice(initialPrice);
 Seller seller = entityManager.find(Seller.class, sellerId); |#2
 item.setSeller(seller);
 entityManager.persist(item); |#3

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 return item;
 }

 public Item updateItem(Item item) {
 entityManager.merge(item); |#4
 return item;
 }

 public Item undoItemChanges(Item item) {
 entityManager.refresh(entityManager.merge(item)); |#5
 return item;
 }

 public void deleteItem(Item item) {
 entityManager.remove(entityManager.merge(item)); |#6
 }
}
(annotation) <#1 Inject EntityManager Instance>
(annotation) <#2 Retrieve Entity Using Primary Key>
(annotation) <#3 Persist Entity Instance>
(annotation) <#4 Merge Changes to Database>
(annotation) <#5 Refresh Entity from Database>
(annotation) <#6 Remove Entity from Database>

ItemManagerBean is a pretty good representation of the most common ways the
EntityManager API is used. Firstly, an instance of the EntityManager is injected using the
@PersistenceContext annotation#1 and used in all the Session Bean methods that manipulate
Entities. As you might imagine, the addItem method is used by the presentation layer to add an
item posted by the seller to the database. The persist() method is used by addItem to add a new
Item Entity into the database#2. The addItem method also uses the EntityManager find()
method to retrieve the Seller of the Item using the Entity’s primary key#2. The retrieved Seller
Entity is set as an association field of the newly instantiated Item Entity along with all other item
data. The updateItem method updates the Item Entity data in the database using the merge
method#4. This method could be invoked from an administrative interface that allows a seller to
update a listing after an item is posted. The EntityManager refresh() method is used in the
undoItemChanges method to discard whatever changes were made to an Item Entity and reload it
with the data stored in the database#5. The undoItemChanges method could be used by the same
administrative interface that uses the updateItem method to allow the user to start over with
modifying a listing (think of a HTTP form’s “reset” button). Lastly an Item Entity is removed from
the database using the remove() method#6. This method could be used by an ActionBazaar
administration to remove an offending listing.

Now that we’ve “surface-scanned” the code in Listing 9.1, we’re ready to start our in-depth

analysis of the EntityManager API. We’ll start from the most logical point: making an
EntityManager instance available to the application.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

9.2 Creating EntityManager Instances
EntityManager is like the conductor of orchestra who manages the show. When you are

impressed with a show and you want to take the show to your town. You first get in touch and try to
hire the conductor. Similarly first obvious step to performing any persistence operation is obtaining
an instance of an EntityManager.

In Listing 9.1, we do this by injecting an instance using the @PersistenceContext
annotation. If you are using a container, this is more or less all you will need to know about getting
an instance of an EntityManager.
All EntityManager instances injected using the @PersistenceContext annotation are
container-managed.This means that the container takes care of the mundane task of looking up,
opening and closing the EntityManager behind the scenes. In addition, unless otherwise specified,
injected EntityManager have transaction scope. Just as you aren’t limited to using the transaction
scope, you are not limited to using a container managed EntityManager either.

JPA fully supports creating application-managed EntityManagers that you explicitly create, use
and release, including controlling how the EntityManager handles transactions.This capability is
particularly important for using JPA outside the container.

In this section we will explore how to create and use both container and application managed

EntityManagers.

9.2.1 Container-Managed EntityManagers
As we saw, container-managed EntityManagers are created using the
@PersistenceContext injection.

Let’s take a look at the definition of the annotation to start exploring its features:

@Target({TYPE, METHOD, FIELD})
@Retention(RUNTIME)
public @interface PersistenceContext {
 String name() default "";
 String unitName() default "";
 PersistenceContextType type default TRANSACTION;
 PersistenceProperty[] properties() default {};
}

The first element of the annotation, name, specifies the JNDI name of the persistence context.
This element is used in the very unlikely case you have to explicitly mention the JNDI name for a
given container implementation to be able to lookup an EntityManager. In most cases, leaving
this element empty is fine except when you use @PersistenceContext at class level to establish
reference to the persistence context.

Persistence Unit

The unitName element specifies the name of the persistence unit. A persistence unit is essentially a

grouping of Entities used in an application. This idea is really useful when you have a large Java EE

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

application and would like to separate it into several logical areas (think Java packages). For example,
ActionBazaar Entities could be grouped into general and admin units. Persistence units cannot be set
up using code. You must configure persistence units through the persistence.xml deployment
descriptor. We will come back to the topic of configuring persistence units in Chapter 11 and will
leave it alone for the time being. For now, all you need to understand is that we could get an
EntityManager for the admin unit using the unitName element as follows:

@PersistenceContext(unitName="admin")
EntityManager entityManager;

In the typical case that a Java EE module has a single persistence unit, specifying the unitName

might seem redundant. In fact, most persistence providers will resolve the unit correctly if don’t
specify a unitName. However, we recommend specifying a persistence unit name even if you only
have one unit. This ensures that you are not dependent on container-specific functionality since the
specification does not state what the persistence provider must do if the unitName is not specified.

EntityManager Scoping
The last element, type, specifies the EntityManager scope. As we noted, the scope for a

container-managed EntityManager scope can either be TRANSACTION or EXTENDED. If the type
element is left empty, the scope of the EntityManager is assumed to be TRANSACTION. Not
surprisingly, the typical use of the type element is to specify EXTENDED scope for an
EntityManager instead of the default TRANSACTION scope. The code would look like the
following:

@PersistenceContext(type=PersistenceContextType.EXTENDED)
EntityManager entityManager;

Note, you are not allowed to use extended persistence scope for Stateless Session Beans or

Message Driven Beans. If you stop and think for second, the reason should be pretty obvious. The
real reason for using extended scope in a bean would be to manage Entity state across multiple
method calls, even if each method call is a separate transaction. Since neither Sessions Beans nor
Message Driven Beans are supposed to implement such functionality, it makes no sense to support
extended scope for these bean types. On the other hand, extended persistence scope is ideal for
Stateful Session Beans. An underlying EntityManager with extended scope could be used to cache
and maintain the application domain across an arbitrary number of method calls from a client. More
importantly, you could do this and still not have to give up method level transaction granularilty
(most likely using CMT). We will return to the discussion of how you can use an extended
persistence context for Stateful Session Beans as an effective caching mechanism in Chapter 13.

The real power of container-managed EntityManager is in the high degree of abstraction
they offer. Behind the scenes, the container instantiates EntityManagers, binds them to
JNDI, injects them into beans on demand and closes them when they are no longer needed
(typically when a bean is destroyed).

If is difficult to get an appreciation of the amount of menial code the container takes care of until
you see the alternative. Keep this in mind when we take a look at application-managed
EntityManagers in the coming Section. Note container-managed EntityManagers are

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

available to all components in a Java EE container including JSF backing beans and Servlets.
However be careful of the fact that EntityManagers are not thread-safe so injecting them
frivolously into presentation layer components can get you into trouble easily. We’ll discuss this
nuance in the sidebar titled “EntityManagers and Thread-Safety”.

EntityManager and Thread-Safety

It is very easy to forget the fact that web-tier components are meant to be used by multiple concurrent
threads. Servlet based components like JSPs are deliberately designed this way because they are
intended to achieve high throughput through statelessness.
However, this fact means that you cannot use resources that are not thread-safe as Servlet instance
variables. The EntityManager falls under this category so injecting it into a web component is a big no-
no. One way around this problem is using the SingleThreadModel interface to make a Servlet thread-
safe. In practice, this technique severely degrades application performance and is almost always a bad
idea.
Some vendors might try to solve this problem to guaranteeing a thread-safe EntityManager. If you are
extremely comfortable with your container vendor, you could count on this. Remember though, one
very important benefit of using EJB 3.0 is portability across container implementations. You shouldn’t
give this advantage up frivolously.
If you must use container-managed EntityManagers from your Servlet, the best option is to lookup an
instance of the EntityManager inside your method as follows:

@PersistenceContext(name="pu/actionBazaar",unitName="ActionBazaar")
public class ItemServlet extends HttpServlet {
 @Resource private UserTransaction ut;
 public void service (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 Context ctx = new InitialContext();
 EntityManager entityManager = (EntityManager) ctx.lookup("java:comp/env/pu/actionBazaar");
 …
 ut.begin();
 entityManager.persist(item);
 ut.commit();
 ...
 }
 …
}
The other alternative is to use an application-managed EntityManager with a JTA transaction. It is
worth noting that EntityManagerFactory is thread-safe.

Now that you are warmed up working with EntityManager inside the container let us discuss about
application-managed EntityManager.

9.2.2 Application-Managed EntityManager
An application-managed EntityManager wants nothing to do with a Java EE container.
This means that we must write code to control every aspect of the EntityManager’s lifecycle.

By and large, application-managed EntityManagers are most appropriate for
environments where a container is not available, such as Java SE or a lightweight web
container like Tomcat.

However, a justification to use application-managed EntityManagers inside a Java EE
container is to maintain fine-grained control over the EntityManager life cycle or transaction
management. For this reason as well as to maintain flexibility, the EJB 3.0 API provides a few
conveniences for using application-managed EntityManagers inside a container. This happens to

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

suit us well too because it provides an effective approach to exploring application-managed
EntityManagers by reusing the code in Listing 9.1. Here is the code:

Listing 9.2: ItemManagerBean Using an Application-Managed EntityManager
@Stateless
public class ItemManagerBean implements ItemManager {
 @PersistenceUnit |#1
 private EntityManagerFactory entityManagerFactory;
 private EntityManager entityManager;

 public ItemManagerBean() {}

 @PostConstruct
 public void initialize() {
 entityManager = entityManagerFactory.createEntityManager(); |#2
 }
 ...
 public Item updateItem(Item item) {
 entityManager.joinTransaction(); |#3
 entityManager.merge(item);
 return item;
 }
 ...
 @PreDestroy
 public void cleanup() {
 if (entityManager.isOpen()) { |#4
 entityManager.close(); |#4
 } |#4
 }
 ...
}
(annotation) <#1 Inject EntityManagerFactory Instance>
(annotation) <#2 Create EntityManager>
(annotation) <#3 Explicitly Joining JTA Transaction>
(annotation) <#4 Closing EntityManager>

Eyeballing Listing 9.2, it should be fairly obvious that we are more or less explicitly doing what

the container did for us behind the scenes in Listing 9.1. In #2, we create an EntityManager after
the bean is constructed while in #4 we close it before the bean is destroyed, mirroring what the
container does automatically. The same is true of the code in #3 to explicitly join a container-
managed JTA transaction before performing an EntityManager operation.

EntityManagerFactory
As you can see, we get an instance of an application-managed EntityManager using the

EntityManagerFactory interface. If you have used JDBC, this is essentially the same idea as
creating a Connection from a DriverManager factory. In a Java EE environment you have the
luxury to use the @PersistenceUnit annotation to inject an instance of an
EntityManagerFactory, just as we do in Listing 9.2#1. This useful annotation is defined as
follows:

@Target({TYPE, METHOD, FIELD})
@Retention(RUNTIME)
public @interface PersistenceUnit {
 String name() default "";

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 String unitName() default "";
}

The name and unitName elements serve exactly the same purpose as they do for the
@PersistenceContext annotation. While the name element can be used to point to the JNDI
name of the EntityManagerFactory, the unitName element is used to specify the name of the
underlying persistence unit.

Figure 9.5 shows the relationships between important interfaces made available by JPA in outside

the container that we will discuss in this section.

57 Figure 9.5: Relataionships between different important classes in javax.persistence package for using JPA

outside Java EE container.

The EntityManagerFactory’s createEntityManager() method creates an application-

managed EntityManager. This is probably the most commonly used method in the interface, in
addition to the close method. We don’t explicitly close the factory in Listing 9.2 since the
container takes care of cleaning up all resources it injects (unlike the EntityManager, which is
created programmatically and is explicitly closed in #4). Table 9.2 lists all the methods in the
EntityManagerFactory interface. As you can see, most of them are fairly self-explanatory.

1.18 Table 9.2 EntityManager factory is used to create an instance of application-managed EntityManager

Method Purpose

EntityManager createEntityManager()

Creates an application-managed EntityManager.

EntityManager createEntityManager(Map
map)

Creates an application-managed EntityManager with a specified Map. The
Map contains vendor specific properties to create the manager.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

void close()

Closes the EntityManagerFactory.

Boolean isOpen() Checks whether the EntityManagerFactory is open.

Perhaps the most interesting aspect of Listing 9.2 is the

entityManager.joinTransaction() call in the updateItem method#3. Let’s discuss this
method in just a little more detail.

As we hinted in the beginning of the Section, unlike container-managed EntityManagers,

application-managed EntityManagers do not automatically participate in an enclosing
transaction. Instead, they must be asked to join an enclosing JTA transaction by calling the
joinTransaction method. This method is specifically geared to using application-managed
EntityManagers inside a container, where JTA transactions are usually available.

Application Managed EntityManager outside Java EE container
In Java SE environments on the other hand, JTA is not a possibility. Resource local transactions

must be used in place of JTA for such environments. The EntityTransaction interface is
designed with exactly this scenario in mind. We will explore this interface by re-implementing the
code to update an item from Listing 9.2 for an SE application. Listing 9.3 also serves the dual
purpose of being a good template for using application-managed EntityManagers without any
help from the container.

Listing 9.3: Using an Application-Managed EntityManager Outside a Container
EntityManagerFactory entityManagerFactory = |#1
 Persistence.createEntityManagerFactory(“actionBazaar”); |#1

EntityManager entityManager = |#2
 entityManagerFactory.createEntityManager(); |#2

try
{

 EntityTransaction entityTransaction =
|#3
 entityManager.getTransaction(); |#3

 entityTransaction.begin();
|#4

 entityManager.merge(item);
|#5

 entityTransaction.commit(); |#6

 entityManager.close();
|#7
 entityManagerFactory.close();
|#7
}
catch (Exception e) {}
finally

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

{
 entityManager.close();
 entityManagerFactory.close(); |
}

(annotation) <#1 Get EntityManagerFactory Instance>
(annotation) <#2 Create EntityManager>
(annotation) <#3 Create Transaction>
(annotation) <#4 Begin Transaction>
(annotation) <#5 Merge Item>
(annotation) <#6 Commit Transaction>
(annotation) <#7 Close Resources>

The first thing that should strike you about Listing 9.3 is the amount of boilerplate code
involved to accomplish exactly the same thing as the updateItem method in Listing 9.1 (cutting
and pasting both code snippets into a visual editor and comparing the code side-by-side might be
helpful in getting the full picture at a glance).

The Persistence object’s createEntityManagerFactory method used in Listing 9.3#1

is essentially a programmatic substitute for the @PersistenceUnit annotation. The single
parameter of the createEntityManagerFactory method is the name of the
EntityManagerFactory defined in the persistence.xml deployment descriptor. Since the
container is no longer helping us out, it is now very important to make sure to close the
EntityManagerFactory returned by the createEntityManagerFactory method when we
are done, in addition to closing the EntityManager#7. Just like in Listing 9.2, the
EntityManagerFactory’s createEntityManager method is still used to create the
application-managed EntityManager#2.

However, before merging the Item Entity to the database#5, we now create an

EntityTransaction by calling the getTransaction method of the EntityManager#3. The
EntityTransaction is essentially a high-level abstraction over a resource-local JDBC transaction,
as opposed to the distributed JTA transaction we joined in Listing 9.2. On first blush it is very natural
to think that a joinTransaction call is still necessary to make the EntityManager aware of the
enclosing transaction. Remember that since the EntityManager itself is creating the transaction
instead of the container, it implicitly keeps track of EntityTransactions, so the join is not
necessary. The rest of the transaction code, namely the begin#4 and the commit#6 do exactly what
you would expect. As might be obvious, the EntityTransaction interface also has a rollback
method to abort the transaction. Note application-managed EntityManagers are never
transaction-scoped. That is, they keep managing attached Entities until they are closed. Also the
transaction-type must be set to RESOURCE_LOCAL in the persistence.xml file for using
EntityTransaction interface (we will discuss this further in Chapter 11 when we talk about EJB
3.0 packaging and deployment).

Although there is little doubt that the code in Listing 9.3 is pretty verbose and error prone, being

able to use application-managed EntityManagers outside the confines of the container
accomplishes the vital goal of making standardized ORM accessible to all kinds of applications
beyond server-side enterprise solutions, including Java Swing based desktop apps as well as enabling
integration with web container such as Tomcat or Jetty.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Using JPA in a web container and ThreadLocal Pattern
If you are using application managed entity manager in a web container such as Tomcat or Jetty

some persistence provider such as Hibernate recommends you to use ThreadLocal pattern. This is
widely known as ThreadLocal session pattern in the Hibernate community. It associates a single
instance of EntityManager with a particular request. You have to bind the EntityManager to a thread
local variable and set the EntityManager instance to the associated thread as in the following example:

private static EntityManagerFactory entityManagerFactory;
 public static final ThreadLocal<EntityManager> _threadLocal = new
ThreadLocal<EntityManager>(); |#1

 public static EntityManagerFactory getEntityManagerFactory() {
 if (entityManagerFactory == null) {
 entityManagerFactory =
Persistence.createEntityManagerFactory("actionBazaar");
 }

 return entityManagerFactory;
 }

 public static EntityManager getEntityManager() {
 EntityManager entityManager = _threadLocal.get();

 if (_threadLocal == null) {
 entityManager = entityManagerFactory.createEntityManager();
|#2
 _threadLocal.set(entityManager); |#3
 }
 return entityManager;
 }

(annotation) <#1 Store EM in ThreadLocal variabke>
(annotation) <#2 Create EntityManager>
(annotation) <#3 Associate EM with a thread>

Check documentation of your persistence provider if it requires you to use ThreadLocal pattern.

This coverage of application-managed EntityManagers brings us to the end of the topic of

creating EntityManager instances. In the next Sections, we are going to tackle the most important
part of this Chapter, EntityManager operations.

9.3 Managing Persistence Operations
The heart of the JPA API lies in the EntityManager operations we will discuss in the coming
Sections. As you might have noted in Listing 9.1, although the EntityManager interface is small
and simple, it is pretty complete in its ability to provide an effective persistence infrastructure. In
addition to the CRUD (Create, Read, Update and Delete) functionality we lightly introduced in
Listing 9.1, we will also cover a few less-commonly used operations like flushing and refreshing.

We’ll start our coverage in the most logical place, persisting new Entities into the database.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

9.3.1 Persisting Entities
Recall that in Listing 9.1, the addItem method persists an Item Entity into the database. Since

Listing 9.1 was quite a few pages back, we will repeat the addItem method body as review in Listing
9.4. Although it is not obvious, the code is especially helpful in understanding how Entity relations
are persisted, which we will look at in greater detail in a minute. For now, we will concentrate on the
persist() method itself:

Listing 9.4: Persisting Entities
public Item addItem(String title, String description,
 byte[] picture, double initialPrice, long sellerId) {
 Item item = new Item();
 item.setTitle(title);
 item.setDescription(description);
 item.setPicture(picture);
 item.setInitialPrice(initialPrice);
 Seller seller = entityManager.find(Seller.class, sellerId);
 item.setSeller(seller);
 entityManager.persist(item); |#1

 return item;
}
(annotation) <#1 Persist Entity>

A new Item Entity corresponding to the record being added is first instantiated in the addItem

method. All of the relevant Item Entity data to be saved into the database, such as the item title and
description, are then populated with the data passed in by the user. As we recall from Chapter 7, the
Item Entity has a many to one relationship with the Seller Entity. The related seller is retrieved
using the EntityManager find method and set as a field of the Item Entity. The persist
method is then invoked to save the Entity into the database as depicted in Figure 9.6. Note the
persist method is intended to create new Entity records in the database, not update existing ones.

This means that you should make sure the identity or primary key of the Entity to be
persisted does not already exist in the database.

58 Figure 9.6: Invoking the persist() method on EntityManager interface makes an entity instance managed

and its state is synchronized when transaction is committed

If you try to persist an Entity that violates the database’s integrity constraint, the persistence
provider will throw javax.persistence.PersistenceException.

As we noted earlier, the persist method also causes the Entity to become managed as soon as

the method returns. The INSERT statement (or statements) to create the record corresponding to the
Entity is not necessarily issued immediately. For transaction-scoped EntityManagers, the
statement is typically issued when the enclosing transaction is about to commit. In our example, this
means the SQL statements are issued when the addItem method returns. For extended-scoped (or

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

application-managed) EntityManagers, the INSERT statement is probably issued right before the
EntityManager is closed. The INSERT statement can also be issued at any point when the
EntityManager is flushed. We will discuss automatic and manual flushing in more detail in just a
few Sections. For now, you just need to know that under certain circumstances, either the
EntityManager or you can choose to perform pending database operations (like an INSERT to
create a record), without waiting for the transaction to end or the EntityManager to close. The
INSERT statement corresponding to Listing 9.4 to save the Item Entity could look something like
the following:

INSERT INTO ITEMS VALUES (TITLE, DESCRIPTION, SELLER_ID, ...) VALUES
(“Toast with the face of Bill Gates on it”,
 “This is an auction for...”, 1, ...)

An interesting thing to note here is that the ITEM_ID primary key that is the Identity for the

Item Entity is not included in the generated INSERT statement. This is because the key generator
scheme for the itemId Identity field of the Entity is set to IDENTITY. If the key generation scheme
was set to SEQUENCE or TABLE instead, the EntityManager would have generated a SELECT
statement to retrieve the key value first and then include the retrieved key in the INSERT statement.
As we mentioned in Section 9.3, all persistence operations that require database updates must be
invoked within the scope of a transaction. If an enclosing transaction is not present when the
persist method is invoked, a TransactionRequiredException exception is thrown. The
same is true for the EntityManager flush, merge, refresh and remove methods we will
discuss shortly.

Persisting Entity Relations
One of the most interesting aspects of persistence operations is the handling of Entity relations.

JPA gives us a number of options to handle this nuance in a way that suits a particular application-
specific situation.

Let’s explore these options by revisiting Listing 9.4. The addItem method is one of the simplest
cases of persisting Entity relations. The Seller Entity is retrieved using the find method, so it is
already managed and any changes to it are guaranteed to be transparently synchronized. Recall from
Chapter 7 that there is a bidirectional one-to-many relationship between the Item and Seller
Entities. This relationship is realized in Listing 9.4 by setting the Seller using the
item.setSeller method. Let’s assume that the Seller Entity is mapped to the SELLER table. Such
a relationship between the Item and Seller Entities is likely implemented through a foreign key to
the SELLER.SELLER_ID column in the ITEMS table. Since the Seller Entity is already persisted,
all the EntityManager has to do is to set the SELLER_ID foreign key in the generated INSERT
statement. Examining the INSERT statement presented earlier, this is how the SELLER_ID value is
set to 1. Note if the seller property of Item was not set at all, the SELLER_ID column in the
INSERT statement would be set to NULL.

Things become a lot more interesting when we consider the case when the Entity related to the

one we are persisting does not exist in the database yet. This situation does not happen very often for
one-many and many-many relations. In such cases, the related Entity is more than likely already
saved in the database. However, it does occur a lot more often for one-to-one relations. For purposes
of meaningful illustration, we will stray from our ItemManager example and take a look at saving

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

User Entities with associated BillingInfo Entities. Recall that we introduced this unidirectional
one-to-one relation in Chapter 7. The method outlined in Listing 9.5 receives user information such
as username, email as well as billing information such as credit card type, credit card number and
persists both the User and related BillingInfo Entities into the database.

Listing 9.5: Persisting Relations
public User addUser(String username, String email,
 String creditCardType, String creditCardNumber,
 Date creditCardExpiration) {
 User user = new User();
 user.setUsername(username);
 user.setEmail(email);

 BillingInfo billing = new BillingInfo();
 billing.setCreditCardType(creditCardType);
 billing.setCreditCardNumber(creditCardNumber);
 billing.setCreditCardExpiration(creditCardExpiration);

 user.setBillingInfo(billing);
 entityManager.persist(user); |#1

 return user;
}
(annotation) <#1 Persist both User and BillingInfo>

As we see, neither the User Entity nor the related BillingInfo Entity is managed when the

persist method is invoked since both are newly instantiated. Let us assume for the purpose of this
example that the User and BillingInfo Entities are saved into the USERS and BILLING_INFO
tables, with the one-to-one relation modeled with a foreign key on the USERS table referencing the
BILLING_ID key in the BILLING_INFO table. As you might guess from looking at Listing 9.5, two
INSERT statements, one for the User and the other for the BillingInfo Entity, are issued by
JPA. The INSERT statement on the USERS table will contain the appropriate foreign key to the
BILLING_INFO table.

Cascading Persist Operations

Believe it or not, it is not the default behavior for JPA to persist related Entities. By default the

BillingInfo Entity would not be persisted and you would not see an INSERT statement
generated to persist the BillingInfo Entity into BILLING_INFO table. The key to understanding
why this is not what happens in Listing 9.5 lies in the @OneToOne annotation on the billing
property of the User Entity:
public class User {

@OneToOne(cascade=CascadeType.PERSIST)
 public void setBillingInfo(BillingInfo billing) {

Notice the value of the cascade element of the @OneToOne annotation. We deferred the

discussion of this element in Chapter 7 so that we could discuss it in a more relevant context here.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Cascading in ORM based persistence is very similar to the idea of cascading in databases.
The cascade element essentially tells the EntityManager how or if to propagate a given
persistence operation on a particular Entity into Entities related to it.

By default, the cascade element is empty, which means that no persistence operations are
propagated to related Entities. Alternatively, the cascade element can be set to ALL, MERGE,
PERSIST, REFRESH and REMOVE. Table 9.3 lists the effect of each of these values.

1.19 Table 9.3: Effects of various cascade type values.

CascadeType Value Effect

CascadeType.ALL

All EntityManager operations are propagated to related Entities.

CascadeType.MERGE

Only EntityManager.merge operations are propagated to related Entities.

CascadeType.PERSIST Only EntityManager.persist operations are propagated to related Entities.
CascadeType.REFRESH

Only EntityManager.refresh operations are propagated to related Entities.

CascadeType.REMOVE Only EntityManager.remove operations are propagated to related Entities.

Since in our case we have set the cascade element to PERSIST, when we persist the User

Entity, the EntityManager figures out that a BillingInfo Entity is associated with the User
Entity and it must be persisted as well. As Table 9.3 indicates, the persist operation would still be
propagated to BillingInfo if the cascade element were set to ALL instead. However, if the
element was set to any other value or not specified the operation would not be propagated and we
would have to perform the persist operation on the BillingInfo Entity separately from the
User Entity. For example, let us assume that the cascade element on the @OneToOne annotation
is not specified. In order to make sure both related Entities are persisted, the addUser method
would have to change as to look like Listing 9.6.

Listing 9.6: Manually Persisting Relations
public User addUser(String username, String email,
 String creditCardType, String creditCardNumber,
 Date creditCardExpiration) {
 User user = new User();
 user.setUsername(username);
 user.setEmail(email);

 BillingInfo billing = new BillingInfo();
 billing.setCreditCardType(creditCardType);
 billing.setCreditCardNumber(creditCardNumber);
 billing.setCreditCardExpiration(creditCardExpiration);

 entityManager.persist(billing); |#1

 user.setBillingInfo(billing);
 entityManager.persist(user); |#2

 return user;
}
(annotation) <#1 Persist BillingInfo>
(annotation) <#2 Persist User>

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

As you can see, the BillingInfo Entity is persisted first. The persisted BillingInfo Entity
is then set as a field of the User Entity. When the User Entity is persisted, the generated key from
the BillingInfo Entity is used in the foreign key for the generated INSERT statement.

Having explored the persist operation, let us now move on to the next operation in the

EntityManager CRUD sequence—retrieving Entities.

9.3.2 Retrieving Entities by Primary Key
JPA supports several ways to retrieve Entity instances from the database. By far the simplest way

is retrieving an Entity by its primary key using the find method we introduced in Listing 9.1. The
other ways of retrieving Entities all involve using the query API and JPQL, which we will discuss in
Chapter 10. Recall that the find method was used in the addItem method in Listing 9.1 to retrieve
the Seller instance corresponding to the Item to add:
Seller seller = entityManager.find(Seller.class, sellerId);

The first parameter of the find() method specifies the Java type of the Entity to be retrieved.
The second parameter specifies the identity value for the Entity instance to retrieve. Recall from
Chapter 7 that an Entity Identity can either be a simple Java type identified by the @Id annotation or
a composite primary key class specified through the @EmbededId or @IdClass annotation. In the
example in Listing 9.1, the find method is passed a simple java.lang.Long value matching the
Seller Entity’s @Id annotated Identity, sellerId.

Although this is not the case in Listing 9.1, the find() method is fully capable of supporting

composite primary keys. To see how this code might look like, let us assume for sake of illustration
that the Identity of the Seller Entity consists of the seller’s first and last name instead of a simple
numeric identifier. This Identity is encapsulated in a composite primary key class annotated with the
@IdClass annotation. Listing 9.7 shows how this Identity class can be populated and passed to the
find method:

Listing 9.7: Find by Primary Key Using Composite Keys
SellerPK sellerKey = new SellerPK(); |#1

sellerKey.setFirstName(firstName); |#1
sellerKey.setLastName(lastName); |#1

Seller seller = entityManager.find(Seller.class, sellerKey); |#2
(annotation) <#1 Creating and Setting Composite Key>
(annotation) <#2 Retrieving By Composite Key>

The find method does what it does by inspecting the details of the Entity class passed in as the

first parameter and generating a SELECT statement to retrieve the Entity data. This generated
SELECT statement is populated with the primary key values specified in the second parameter of the
find method. For example, the find method in Listing 9.1 could generate a SELECT statement
that looks something like the following:
SELECT * FROM seller WHERE seller_id = 1

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Note if an Entity instance matching the specified key does not exist in the database, the find
method will not throw any exceptions. Instead, the EntityManager will return null or an empty
Entity and your application must handle this situation. It is not strictly necessary to call the find
method in a transactional context. However, the retrieved Entity is detached unless a transaction
context is available, so it is generally advisable to call the find method inside a transaction. One of
the most important features of the find method is that it utilizes EntityManager caching. If your
persistence provider supports caching and the Entity already exists in the cache then the
EntityManager returns a cached instance of Entity instead of retrieving it from the database. Most
persistence providers like Hibernate and Oracle TopLink support caching, so you can more or less
count on this extremely valuable optimization.

There is one more important JPA feature geared toward application optimization—lazy and

eager loading. The generated SELECT statement in our example attempts to retrieve all of the Entity
field data when the find method is invoked. In general this is exactly what will happen for Entity
retrieval since it is the default behavior for JPA. However, in some cases, this is not desirable
behavior. Fetch modes allow us to change this behavior to optimize application performance when
needed.

Entity Fetch Modes
We briefly mentioned fetch modes in previous Chapters but never really discussed them in great

detail. Discussing Entity retrieval is an ideal place to fully explore fetch-modes.
As we suggested, the EntityManager normally loads all Entity instance data when an Entity is

retrieved from the database. In ORM-speak this is called eager fetching or eager loading. If you have
ever dealt with application performance problems due to premature or inappropriate caching, you
probably already know that eager fetching is not always a good thing. The classic example we used in
previous Chapters is loading large binary objects (BLOB), such as pictures. Unless you are developing
a heavily graphics-oriented program such as an online photo album, it is very unlikely that loading a
picture as part of an Entity used in a lot of places in the application is a very good idea. Because
loading BLOB data typically involves long running, I/O-heavy operations, they should be loaded
cautiously and only as needed. In general, this optimization strategy is called lazy fetching.

JPA has more than one mechanism to support lazy fetching. Specifying column fetch-mode using

the @Basic annotation is the easiest one to understand. For example, we can set the fetch-mode for
the picture property on the Item Entity to be lazy as follows:

@Column(name="PICTURE")
@Lob
@Basic(fetch=FetchType.LAZY)
public byte[] getPicture() {
 return picture;
}

A SELECT statement generated by the find method to retrieve Item Entities would not load
data from the ITEMS.PICTURE column into the picture field. Instead, the picture data will be
automatically loaded from the database when the property is first accessed through the getPicture
method.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Be advised, however, that lazy-fetching is a double-edged sword. Specifying that a column be
lazily fetched means that the EntityManager will issue an additional SELECT statement just to
retrieve the picture data when the lazily loaded field is first accessed. In the extreme case, imagine
what would happen if all Entity data in an application is lazily loaded. This would mean that the
database would be flooded with a very large number of frivolous SELECT statements as Entity data is
accessed. Also, lazy-fetching is an optional EJB 3.0 feature, which means not every persistence
provider is guaranteed to implement it. You should check your provider’s documentation before
spending too much time figuring out which Entity columns should be lazily fetched.

Loading Related Entities
One of the most intricate uses of fetch modes is to control the retrieval of related Entities. Not

too surprisingly, the EntityManager find method must retrieve all Entities related to the one
returned by the method. Let’s take the ActionBazaar Item Entity. The Item Entity is an
exceptionally good case because it has a many-to-one, a one-to-many and two many-to-many
relations. The only relationship type not represented in the Item Entity is one-to-one. The Item
Entity has a many-to-one relation with the Seller Entity (a seller can sell more than one item, but
an item can be sold by only one seller), a one-to-many relation with the Bid Entity (more than one
bid can be put on an item) and a many-to-many relation with the Category Entity (an item can
belong to more than one category and a category contains multiple items). These relations are
depicted in Figure 9.7.

59 Figure 9.7: The Item Entity is related to three other Entities, Seller, Bid and Category. The relationships to

Item are ManyToOne, OneToMany and ManyToMany respectively.

When the find method returns an instance of an Item, it also automatically retrieves the

Seller, Bid and Category Entities associated with the instance and populates them into their
respective Item Entity properties. As we see in Listing 9.8, the single Seller Entity associated with
the Item is populated into the seller property, the Bid Entities associated with an Item are
populated into the bids List and the Category Entities the Item is listed under are populated
into the categories property. It might surprise you to know some of these relations are retrieved
lazily.

All the relationship annotations we saw in Chapter 8, including the @ManyToOne, @OneToMany
and @ManyToMany annotations have a fetch element to control fetch-modes just like the @Basic
annotation discussed in the previous Section. None of the relationship annotations in Listing 9.8
specify the fetch element, so the default for each annotation takes effect.
34

35 Listing 9.8: Relationships in the Item Entity
public class Item {

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 @ManyToOne |#1
 public Seller getSeller(){
 ...

 @OneToMany |#2
 public List<Bid> getBids(){
 ...

 @ManyToMany |#3
 public List<Category> getCategories(){
 ...
}
(annotation) <#1 Many-to-One Relation with Seller>
(annotation) <#2 One-to-Many Relation with Bids>
(annotation) <#3 Many-to-Many Relation with Categories>

By default, some of the relationship types are retrieved lazily while some are loaded eagerly. We

will discuss why each default makes sense as we go through each relationship retrieval case for the
Item Entity. The Seller associated to an Item is retrieved eagerly, because the fetch-mode for the
@ManyToOne annotation is defaulted to EAGER#1. To understand why this is sensible, it is very
helpful to understand how the EntityManager implements eager fetching. In effect, each eagerly
fetched relation turns into an additional JOIN tacked onto to the basic SELECT statement to retrieve
the Entity. To see what we mean, let us take a look at how the SELECT statement for an eagerly
fetched Seller record related to an Item looks like:

Listing 9.9: SELECT Statement for Eagerly Fetched Seller Related to an Item
SELECT
 *
FROM
 ITEMS
INNER JOIN |#1
 SELLER
ON
 ITEM.SELLER_ID = SELLER.SELLER_ID
WHERE ITEM.ITEM_ID = 100

(annotation) <#1 Inner Join For Many-to-One Relation>

As the Listing shows, an eager fetch means that the most natural way of retrieving the Item

Entity would be through a single SELECT statement using a JOIN between the ITEMS and SELLER
tables. It is important to note the fact that the JOIN will result in a single row, containing columns
from both the SELLER and ITEMS tables. In terms of database performance, this is more efficient
than issuing one SELECT to retrieve the Item and issuing a separate SELECT to retrieve the related
Seller. This is exactly what would have happened in case of lazy fetching and the second SELECT
for retrieving the Seller will be issued when the Item’s seller property is first accessed. Pretty
much the same thing applies to the OneToOne annotation so the default for it is also eager loading.
More specifically, the JOIN to implement the relation would result in a fairly efficient single
combined row in all cases.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Lazy vs. Eager Loading of related Entities
In contrast, the @OneToMany and @ManyToMany annotations are defaulted to lazy-loading. The

critical difference is that for both of these relationship types, more than one Entity is matched to the
retrieved Entity. Think about Category Entities related to a retrieved Item for example. JOINs
implementing eagerly loaded OneToMany and ManyToMany relations usually return more than one
row. In particular, a row is returned for every related Entity matched.

The problem becomes particularly obvious when you consider what happens when multiple

Item Entities are retrieved at one time (for example as the result of a JPQL query, discussed in the
next Chapter). (N1 + N2 + … + Nx) rows would be returned, where Ni is the number of related
Category Entities for the ith Item record. For non-trivial numbers of N and i, the retrieved result
set could be quite large, potentially causing significant database performance issues. This is why the
JPA makes the conservative assumption of defaulting to lazy loading for @OneToMany and
@ManyToMany annotations.

Table 9.4 lists the default fetch behavior for each type of relationship annotation.

Table 9.4: Behavior of loading of associated entity is different for different kind of associations by default. We can

change the loading behavior by specifying fetch element with the association.

Relationship Type Default Fetch Behavior Number of Entities Retrieved

OneToOne EAGER Single Entity Retrieved
OneToMany LAZY Collection of Entities Retrieved
ManyToOne EAGER Single Entity Retrieved
ManyToMany LAZY Collection of Entities Retrieved

The relationship defaults are not right for all circumstances, however. While the eager fetching

strategy makes sense for @OneToOne and @ManyToOne relations under most circumstances, they
are a bad idea in some cases. For example, if an Entity contains a large number of one-to-one and
many-to-one relationships, eagerly loading all of them would result in a large number of JOINs
chained together. Executing a relatively large number of joins can be just as bad as loading an (N1 +
N2 + … + Nx) results set. If this proves to be a performance problem, some of the relations should be
loaded lazily. The following is an example of explicitly specifying the fetch mode for a relation (it
happens to be the familiar Seller property of the Item Entity):

@ManyToOne(fetch=FetchType.LAZY)
public Seller getSeller() {
 return seller;
}

You should not take the default lazy loading strategy of the @OneToMany and @ManyToMany
annotations for granted either. For particularly large data sets, this can result in a very big number of
SELECTs being generated against the database. This is known as the N+1 problem, where 1 stands
for the SELECT statement for the originating Entity and where N stands for SELECT statement to
retrieve each related Entity. In some cases, you might find out that you are better off using eager
loading even for @OneToMany and @ManyToMany relations. In Chapters 10 and 13, we will discuss
how you can eagerly load related Entities without having to change the fetch mode on an association
on a per-query basis.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Unfortunately, the choice of fetch modes is not cut and dry and depends on a whole host of
factors including the database vendor’s optimization strategy, database design, data volume and
application usage patterns. In the real world, ultimately these choices are often made through trial
and error. Luckily, with JPA, performance tuning just means a few configuration changes here and
there as opposed to time-consuming code modifications.

Having discussed Entity retrieval, we can now move into the third operation of the CRUD

sequence, updating Entities.

9.3.3 Updating Entities
Recall that the EntityManager makes sure that changes made to attached Entities are always

saved into the database behind the scenes. This means that for the most part, our application does
not need to worry about manually calling any methods to update the Entity. This is perhaps the most
elegant feature of ORM based persistence since this hides data synchronization behind the scenes and
truly allows Entities to behave like POJOs. Take the code in Listing 9.10 that calculates an
ActionBazaar power-seller’s creditworthiness for example:

Listing 9.10: Transparent Management of Attached Entities
public void calculateCreditWorthiness (Long sellerId) {
 PowerSeller seller = entityManager.find(|#1
 PowerSeller.class, sellerId); |#1

 seller.setCreditWorth(seller.getCreditWorth() |#2
 * CREDIT_FACTOR |#2
 * getRatingFromCreditBureauRobberBarons(seller)); |#2
 seller.setCreditWorth(seller.getCreditWorth() |#2
 + (seller.getCreditWorth() |#2
 * FEEDBACK_FACTOR |#2
 * seller.getBuyerFeedbackRating())); |#2
 seller.setCreditWorth(seller.getCreditWorth() |#2
 + (seller.getCreditWorth() |#2
 * SELLING_FACTOR |#2
 * getTotalHistoricalSales(seller))); |#2
}
(annotation) <#1 Find Seller Entity>
(annotation) <#2 Changes to Entity Transparently Saved>

Other than looking up the PowerSeller Entity, little else is done using the EntityManager

in the calculateCreditWorthiness method. As you know this is because the PowerSeller is
managed by the EntityManager as soon as it is returned by the find method. Throughout the
relatively long calculation for determining creditworthiness, the EntityManager will make sure
that the changes to the Entity wind up in the database.

Detachment and Merge operations

Although managed Entities are extremely useful, the problem is that it is difficult to keep Entities

attached at all times. Often the problem is that the Entities will need to be detached and serialized at
the web tier, where the Entity is changed, outside the scope of the EntityManager. In addition,
recall that Stateless Session Beans cannot guarantee that calls from the same client will be services by

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

the same bean instance. This means that an Entity cannot be guaranteed to be handled by the same
EntityManager instance across method calls, making automated persistence ineffective.

60 Figure 9.8: An entity instance can be detached and serialized to a separate tier where client makes

changes to the entity and sends back to the server. The server can use merge operation to attach the

entity to the persistence context.

This is exactly the model the ItemManager Session Bean introduced in Listing 9.1 assumes.

The EntityManager used for the bean has transactional scope. Since the bean uses CMT, Entities
become detached when transactions end the end of the method. This means that Entities returned by
the Session bean to its clients are always detached, just as the newly created Item Entity returned by
the ItemManager’s addItem method:
public Item addItem(String title, String description,
 byte[] picture, double initialPrice, long sellerId) {
 Item item = new Item();
 item.setTitle(title);
 ...
 entityManager.persist(item);

 return item;
}

At some point, we will want to reattach the detached Entity to a persistence context to
synchronize it with the database. This is exactly what the EntityManager merge method is
designed to do. Figure 9.8 depicts the merge operation.You should remember that like all attached
Entities, the Entity passed to the merge() method is not necessarily synchronized with the database
immediately, but it is guaranteed to be synchronized with the database at some point. We use the
merge method in the ItemManager bean in the most obvious way possible, to update the database
with an existing Item:

public Item updateItem(Item item) {
 entityManager.merge(item);

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 return item;
}

As soon as the updateItem method returns, the database is updated with the data from the
Item Entity. The merge method must only be used for an Entity that exists in the database. An
attempt to merge a non-existent Entity will result in an IllegalArgumentException. The
same is true if the EntityManager detects that the Entity you are trying to merge has already been
deleted through the remove method, even if the DELETE statement has not been issued yet.

Merging Relations
By default, Entities associated to the Entity being merged are not merged as well. For example,

the Seller, Bid and Category Entities related to the Item are not merged when the Item is
merged in the previous code snippet. However, as mentioned in section 9.3.1, this behavior can be
controlled using the cascade element of the OneToOne, OneToMany, ManyToOne and
ManyToMany annotations. If the element is set to either ALL or MERGE, the related Entities are
merged. For example, the following code will cause the Seller Entity related to the Item to be
merged since the cascade element is set to MERGE:

public class Item {
 @ManyToOne(cascade=CascadeType.MERGE)
 public Seller getSeller() {

Note, like most of the EntityManager’s methods, the merge method must be called from a

transactional context or it will throw a TransactionRequiredException.

We will now move onto the final element of the CRUD sequence, deleting an Entity.

Detached Entities and the DTO Anti-Pattern

If you have spent even a moderate amount of time using EJB 2.x you are probably
thoroughly familiar with the Data Transfer Object (DTO) anti-pattern. In a sense,
the DTO anti-pattern was really necessary because of Entity Beans. The fact that
EJB 3.0 detached Entities are really nothing but POJOs makes the DTO anti-
pattern less of a necessity of life. Instead of having to create separate DTOs from
domain data just to pass back and forth between the business and presentation
layers, you may simply pass detached Entities. This is exactly the model we follow
in this Chapter.
However, if your Entities contain behavior, you might be better off using the DTO
pattern anyway, to safeguard business logic from inappropriate usage outside a
transactional context. In any case, if you decide to use detached Entities as a
substitute to DTOs, you should make sure they are marked java.io.Serializable.

9.3.4 Deleting Entities
The deleteItem method in the ItemManagerBean in Listing 9.1 deletes an Item from the
database. An important detail to notice about the deleteItem method (repeated next) is that the
Item to be deleted was first attached to the EntityManager using the merge method:

public void deleteItem(Item item) {
 entityManager.remove(entityManager.merge(item));
}

This is because the remove() method can only delete currently attached Entities and the Item
Entity being passed to the deleteItem method is not managed. If a detached Entity is passed to

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

the remove method, it throws an IllegalArgumentException. Before the deleteItem
method returns, The Item record will be deleted from the database using a DELETE statement like
the following:

DELETE FROM items WHERE item_id = 1

Just as with the persist and merge methods, the DELETE statement is not necessary issued

immediately but is guaranteed to be issued at some point. In the meanwhile, the EntityManager
marks the Entity as removed so that no further changes to it are synchronized (as we noted in the
previous Section).

Cascading Remove Operations
Just as in merging and persisting Entities, you must set the cascade element of a relationship

annotation to either ALL or REMOVE for related Entities to be removed with the one passed to the
remove method. For example, we can specify that the BillingInfo Entity related to a Bidder
be removed with the owning Bidder Entity as follows:
@Entity
public class Bidder {
 @OneToOne(cascade=CascadeType.REMOVE)
 public BillingInfo setBillingInfo() {

From a common sense perspective, this setup makes perfect sense. There is no reason for a

BillingInfo Entity to hang around if the enclosing Bidder Entity it is related to is removed.
When it comes down to it, the business domain really determines if deletes should be cascaded. In
general, you might find that the only relationship types where cascading removal makes sense are
one-to-one and one-to-many relations. You should be very careful when using cascade delete because
the related Entity you are cascading the delete to may be related to other Entities you don’t know
about. For example, let’s assume that there is a one-to-many relationship between Seller and Item
Entities and you are using cascade delete to remove a Seller and the related the Items. Remember
the fact that other Entities such as the Category Entity also hold references to the Items you are
deleting and these relationships would become meaningless!

Handling Relations
If your intent was really to cascade delete the Items associated with the Seller, you should

iterate over all the Categories that hold reference to the deleted Items and remove the
relationships first. The following code does this:

List<Category> categories = getAllCategories();
List<Item> items = seller.getItems();
for (Item item: items) {
 for (Category category: categories) {
 category.getItems().remove(item);
 }
}
entityManager.remove(seller);

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

The code gets all Categories in the system and makes sure that all Items related to the
Seller being deleted are removed from referencing Lists first. It then proceeds with removing the
Seller, cascading the remove to the related Items.

Not surprisingly, the remove method must be called from a transactional context or it will

throw a TransactionRequiredException. Also, trying to remove an already removed Entity
will raise IllegalStateException.

Having finished the basic EntityManager CRUD operations, we will now move on to the two

remaining major persistence operations–flushing data to the database and refreshing from the
database.

9.3.5 Controlling Updates with Flush
We’ve been talking about EntityManager flushing on and off throughout the Chapter. It is time
we discussed this concept fully.
For the most part, you will probably be able to get away without knowing too much about this
EntityManager feature. However, there are some important cases where not understanding
EntityManager flushing could be a great disadvantage. Recall that EntityManager operations
like persist, merge and remove do not cause immediate database changes. Instead, these
operations are postponed until the EntityManager is flushed. The true motivation for doing things
this way is performance optimization. Batching SQL as much as possible instead of flooding the
database with a bunch of frivolous requests saves a lot of communication overhead and avoids
unnecessarily tying down the database.

By default, the database flush mode is set to AUTO. This means that the EntityManager performs a
flush operation automatically as needed. In general, this is done at the end of a transaction for
TRANSACTION scoped EntityManagers and when the manager is closed for application-managed
or EXTENDED scope EntityManagers. In addition, if Entities with pending changes are used in a
query, the persistence provider will flush changes to the database before executing the query.

You can set the flush mode to COMMIT if you don’t like the idea of auto-flushing and want greater
control over database synchronization. You can do so using the EntityManager setFlushMode
method as follows:

entityManager.setFlushMode(FlushModeType.COMMIT);

If the flush mode is set to COMMIT, the persistence provider will only synchronize with the database
when the transaction commits. However, you should be very careful in doing this, as it will be your
responsibility to synchronize Entity state with the database before executing a query.

If you do not do this and an EntityManager query returns stale Entities from the database, the
application can wind up in an inconsistent state.

In reality, resetting flush mode is often overkill. This is because you can explicitly flush the
EntityManager when you need to, using the flush method as follows:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

entityManager.flush();

The EntityManager synchronizes the state of every managed Entity with the database as soon as
this method is invoked. Like everything else, manual flushing should be used in moderation and only
when really needed. In general, batching database synchronization requests is a very good
optimization strategy to try to preserve.

We will now move onto the last persistence operation we will discuss in this Chapter, refreshing
Entities.

9.3.6 Refreshing Entities
The refresh operation re-populates Entity data from the database. In other words, given an Entity
instance, the persistence provider matches the Entity with a record in the database and resets the
Entity with retrieved data from the database as depicted in figure 9.9.

61 Figure 9.9: Refresh operation repopulates the entity from database overriding any changes in the entity

This EntityManager method is not used very frequently. However, there are some circumstances
where it is extremely useful. In Listing 9.1, we use the method to undo changes made by the
ItemManager client and return fresh Entity data from the database:

public Item undoItemChanges(Item item) {
 entityManager.refresh(entityManager.merge(item));
 return item;
}

The merge operation is performed first in the undoItemChanges method because the
refresh method only works on managed Entities. It is extremely important to note that just like
the find method, the refresh method uses the Entity Identity to match database records. As a
result, you must make sure the Entity being refreshed exists in the database.

The refresh method really shines when you consider a subtle but very common scenario. To

illustrate this scenario, let us go back to the addItem method in Listing 9.1:

public Item addItem(String title, String description,
 byte[] picture, double initialPrice, long sellerId) {
 Item item = new Item();
 item.setTitle(title);
 ...
 entityManager.persist(item);

 return item;
}

Note a subtle point about the method: it assumes that the Item Entity is not altered by the
database in any way when the record is inserted into the database. It is easy to forget that this

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

is often never the case with relational databases. For most INSERT statements issued by the
usual application, the database will fill-in column values not included in the INSERT
statement using table defaults. For example, let us assume that the Item Entity has a
postingDate property that is not populated by the application. Instead, this value is set to
the current database system time when the ITEMS table record is inserted. This could be
implemented in the database by utilizing default column values or even database triggers.

Since the persist method only issues the INSERT statement and does not load the data that

was changed by the database as a result of the INSERT, the Entity returned by the method would not
include the generated postingDate field. This problem could be fixed by using the refresh method
as follows:
public Item addItem(String title, String description,
 byte[] picture, double initialPrice, long sellerId) {
 Item item = new Item();
 item.setTitle(title);
 ...
 entityManager.persist(item);
 entityManager.flush();
 entityManager.refresh(item);

 return item;
}

After the persist method is invoked, the EntityManager is flushed immediately so that the
INSERT statement is executed and the generated values are set by the database. The Entity is then
refreshed so that we get the most up-to-date data from the database and populate it into the inserted
Item instance (including the postingDate field). In most cases you should try to avoid using
default or generated values with JPA due to the slightly awkward nature of the code just introduced.
Luckily, this awkward code is not necessary while using fields that use the JPA @GeneratedValue
annotation since the persist method correctly handles such fields.

Before we wrap up this Chapter, we will introduce Entity life cycle based listeners.

9.4 Entity Lifecycle Listeners
We saw in earlier Chapters that both Session and Message Driven Beans allow us to listen for
lifecycle callbacks like PostConstruct and PreDestroy. Similarly, Entities allow us to receive
callbacks for life-cycle events like persist, load, update and remove. Just as in Session and Message
Driven Beans, you can do almost anything you need to in the life-cycle callback methods, including
invoking an EJB, or use APIs like JDBC or JMS. In the persistence realm, however, life-cycle
callbacks are usually used to accomplish tasks like logging, validating data, auditing, sending
notifications after a database change or generating data after an Entity has been loaded. In a sense,
callbacks are the database triggers of JPA.

Table 9.6 lists the callbacks supported by the API:

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

1.20 Table 9.6: Callbacks supported by JPA and when they are called.

Lifecycle method When it is performed

PrePersist Before the EntityManager persists an Entity instance.
PostPersist After an Entity has been persisted.
PostLoad After an Entity has been loaded by a query, find or refresh operation.
PreUpdate Before a database update occurs to synchronize an Entity instance.
PostUpdate After a database update occurs to synchronize an Entity instance.
PreRemove Before EntityManager removes an Entity.
PostRemove After an Entity has been removed.

Entity life-cycle methods need not be defined in the Entity itself. Instead, you can choose to define a
separate entity listener class to receive the life-cycle callbacks. We highly recommend this approach
because defining callback methods in the Entities themselves will clutter up the domain model you
might have carefully constructed. Moreover, Entity callbacks typically contain crosscutting concerns
rather than business logic directly pertinent to the Entity. For our purposes, we will explore use of
entity callbacks using separate listener classes, default listeners and execution order of entity listeners
if you multiple listeners.

9.4.1 Using an Entity Listener
Let’s take a look at how Entity life cycle callbacks look like by coding up an entity listener on the
Item entity that notifies an ActionBazaar admin if an item’s initial bid amount is set higher than a
certain threshold. It is ActionBazaar policy to scrutinize items with extremely high initial prices to
check against possible fraud, especially for items such as antiques and artwork. Listing 9.11 shows
what the code looks like:

Listing 9.11: Item Entity Listener
public class ItemMonitor {
 ...
 public ItemMonitor() {}
 @PrePersist |#1
 @PreUpdate |#1
 public void monitorItem(Item item) {
 if (item.getInitialBidAmount() >
 ItemMonitor.MONITORING_THRESHOLD) {
 notificationManager.sendItemPriceEmailAlert(item);
 }
 }
}

@Entity
@EntityListeners(actionbazaar.persistence.ItemMonitor.class) |#2
public class Item implements Serializable {

(annotation) <#1 Callbacks>
(annotation) <#2 Registering Listener>

As Listing 9.11 outlines our listener, ItemMonitor, has a single method monitorItem that
receives callbacks for both the PrePersist and PreUpdate events. The @EntityListeners
annotation on the Item Entity specifies ItemMonitor to be the life-cycle callback listener for the
Item Entity. All we have to do to receive a callback is to annotate our method with a callback
annotation such as @PrePersist, @PostPersist, @PreUpdate and so on. The monitorItem
method checks to see if the initial bid amount set for the item to be inserted or updated is above the

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

threshold specified by the ItemMonitor.MONITORING_THRESHOLD variable and sends the
ActionBazaar admin an email alert if it is. As you might have guessed by examining Listing 9.11,
Entity listener callback methods follow the form void methodName(Object). The single method
parameter of type Object specifies the Entity instance for which the life-cycle event was generated.
In our case, this is the Item Entity.

If the life-cycle callback method throws a runtime exception, the intercepted persistence
operation is aborted. This is an extremely important feature to validate persistence
operations.

For example, if you have a listener class to validate that all Entity data is present before persisting
an Entity, you could abort the persistence operation if needed by throwing a runtime exception.

Listing 9.12 shows an example listener class that can be used to validate an entity state before an
entity is persisted. You can build validation logic in a PrePersist callback and if the callback fails then
the entity will not be persisted. For example, ActionBazaar sets a minimum price for the initialPrice
for items being auctioned and not items are allowed to be listed below that price.

Listing 9.12: ItemVerifier validates price set for an item
public class ItemVerifier{

…

 public ItemVerifier() {
 }
 @PrePersist
 public void newItemVerifier(Item item){
 if (item.getInitialPrice()<MIN_INITIAL_PRICE)
 throw new
ItemException("Item Price is lower than Minimum Price Allowed");
 }

}

Note all Entity listeners are stateless in nature and you cannot assume that there is a one-to-one

relation between an Entity instance and a listener instance.

One great drawback of Entity listener classes is that they do not support dependency
injection. This is due to the fact that entities may be used outside container, where DI is not
available.

For crosscutting concerns like logging or auditing, it is really inconvenient to have to specify
listeners for individual Entities. Keeping this problem in mind, JPA enables us to specify default
Entity listeners that receive callbacks from all Entities in a persistence unit. We will take a look at this
mechanism next.

9.4.2 Default Listener Classes
ActionBazaar audits all changes made to Entities. You can think of this as an ActionBazaar version of
a transaction log. This feature can be implemented using a default listener like the following:
public class ActionBazaarAuditor {
 ...

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

 @PrePersist
 @PostPersist
 ...
 @PostRemove
 public void logOperation(Object object) {
 Logger.log(“Performing Persistence Operation on: ”
 + object.getName());

The ActionBazaarAuditor listens for all persistence operations for all Entities in the
ActionBazaar persistence unit and logs the name of the Entity that the callback was generated on.
Unfortunately, there is no way to specify default Entity listeners using annotations and we must
resort to using the persistence.xml deployment descriptor. Since we have not yet fully
described the persistence deployment descriptor, we will simply note the relevant descriptor snippet
below, leaving a detailed analysis to Chapter 11:
<persistence-unit name="actionBazaar">
 ...
 <default-entity-listeners>
 actionbazaar.persistence.ActionBazaarAuditor.class
 </default-entity-listeners>
 ...

In the snippet above, the default-entity-listeners element lists the default Entity
listeners for the “actionBazaar” persistence unit. Again, do not worry too much about the specific
syntax at the moment, as we will cover it in greater detail later.

This brings us to the interesting question of what happens if there is both a default listener and
an Entity specific listener for a given Entity, as in the case of our Item Entity. The Item Entity now
has two life-cycle listeners, the default ActionBazaarAuditor listener and the ItemMonitor
listener. How do you think they interact? Moreover, since Entities are POJOs that can inherit from
other Entities, both the superclass and subclass may have attached listeners. For example, what if the
User Entity has an attached listener named UserMonitor while the Seller subclass also has an
attached listener, SellerMonitor. How these listeners relate to each other is determined by the
order of execution as well as exclusion rules.

9.4.3 Listener Class Execution Order and Exclusion
If an Entity has default listeners, Entity class specific listeners and inherited superclass listeners,

the default listeners are executed first. Following OO constructor inheritance rules, the superclass
listeners are invoked after the default listeners. Subclass listeners are invoked last. Figure 9.10 depicts
this execution order:

62 Figure 9.10: Entity Listener Execution Order. Default Entity Listeners are Executed First, then Superclass

and Subclass Listeners.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

If there is more than one listener listed on any level, the execution order is determined by the
order in which they are listed in the annotation or deployment descriptor. For example, in the
following Entity listener annotation, the ItemMonitor listener is called before ItemMonitor2:
EntityListeners({actionbazaar.persistence.ItemMonitor.class,
 actionbazaar.persistence.ItemMonitor2.class})

You cannot programmatically control this order of execution. However, if needed, you can

exclude default and superclass listeners from being executed at all. Let us assume for a second that we
need to disable both default and superclass listeners for the Seller Entity. You can do this with the
following code:
@Entity
@ExcludeDefaultListeners
@ExcludeSuperClassListeners
@EntityListeners(actionbazaar.persistence.SellerMonitor.class)
public class Seller extends User {

As you can see from the code, the @ExcludeDefaultListeners annotation disables any

default listeners while the @ExcludeSuperClassListeners annotation stops superclass listeners
from being executed. As a result, only the SellerMonitor listener specified by the
@EntityListeners annotation will receive life-cycle callbacks for the Seller Entity.
Unfortunately, neither the @ExcludeDefaultListeners nor the
@ExcludeSuperClassListeners annotation currently enables us to block specific listener
Classes. We will hope that this is a feature that will be added in a future version of JPA.

9.5 Best Practices
Throughput the Chapter, we have provided you some hints on the best practices of using the

EntityManager interface. Before we conclude this Chapter, in this section we will solidify the
discussion of best practices by discussing a few of the most important ones in detail.

Use Container Managed Entity Managers. If you are building an enterprise application that will be
deployed to a Java EE container we strongly recommend that you use container-managed Entity
managers. Furthermore if you are manipulating Entities from the Session Bean and MDB tier you
should use declarative transactions in conjunction with container-managed EntityManagers.
Overall, this will let you focus on application logic instead of worrying about the mundane details of
managing transactions, managing EntityManager life cycles and so on.

Avoid InjectingEntity Managers into the Web Tier. If you are using the EntityManager API
directly from a component in the web tier such as a Servlet, we recommend that you avoid injecting
entity managers because the EntityManager interface is not thread-safe. Instead you should use a
JNDI lookup to grab an instance of a container-managed EntityManager. Better yet, use the
Session Facade pattern discussed in Chapter 12 instead of using EntityManager API directly from
the web tier and take advantage of the benefits offered through Session Beans such as declarative
transaction management.

Use the Entity Access Object Pattern. Instead of cluttering your business logic with
EntityManager API calls, use a Data Access Object (we call it Entity Access Object) discussed in
Chapter 12. This practice allows you to abstract the EntityManager API from the business-tier.

Licensed to John Sweitzer <admin@saolailaem.info>

http://www.manning-sandbox.com/forum.jspa?forumID=273

Please post comments or corrections to the Author Online forum at
http://www.manning-sandbox.com/forum.jspa?forumID=273

Separate Callbacks into External Listeners. Do not pollute your domain model with crosscutting
concerns such as auditing and logging code. Use external Entity listener classes instead. This way, you
could swap listeners in and out as needed.

9.6 Summary
In this Chapter, we covered the most vital aspect of JPA, persistence operations using Entity

managers. We also covered persistence contexts, persistence scopes, various types of Entity managers
and their usage patterns. We even briefly covered Entity lifecycles and listeners. We highly
recommend Java EE container managed persistence contexts with CMT-driven transactions. In
general, this strategy minimizes the amount of careful consideration of what is going on behind the
scenes and consequent meticulous coding you might have to engage in otherwise. However, there are
some valid reasons why you might want to use application-managed EntityManagers. In
particular, the ability to use the EntityManager outside the confines of a Java EE container is an
extremely valuable feature, especially to those of us using lightweight technologies like Apache
Tomcat and the Spring Framework or even Java SE Swing based client/server applications.

We avoided covering a few relatively obscure EntityManager features like lazily obtaining

Entity references using the getReference method or using the clear method to force
detachment of all entities in a persistence context. We encourage you to research these remaining
features on your own. However, a critical feature that we did not discuss in the Chapter is robust
Entity querying using the powerful query API and JPQL. We will discuss this in detail in the next
Chapter.

http://www.manning-sandbox.com/forum.jspa?forumID=273

	제목없음
	Chapter 1 What’s what in EJB 3.0
	1.1 EJB Overview
	1.2 Discovering Types of EJBs
	1.3 Getting Inside EJB
	1.4 Renaissance of EJB
	1.5 Summary

	Chapter 2 A First taste of EJB
	2.1 New features: simplifying EJB
	2.2 Introducing the ActionBazaar application
	2.3 Building business logic with Session Beans
	2.4 Messaging with Message Driven Beans
	2.5 Persisting data with EJB 3.0 JPA
	2.6 Summary

	Chapter 3 Building Business Logic with Session beans
	3.1 Getting to know Session Beans
	3.2 Stateless Session Beans
	3.3 Stateful Session Beans
	3.4 Session Bean Clients
	3.5 Performance Considerations for Stateful Beans
	3.6 Session Bean Best Practices
	3.7 Summary

	Chapter 4: Messaging and Developing Message Driven Beans
	4.1 Messaging Concepts
	4.2 Introducing Java Messaging Service
	4.3 Working with Message Driven Beans (MDB)
	4.4 MDB Tips and Tricks
	4.4 Summary

	Chapter 5 Learning Advanced EJB Concepts
	5.1 EJB Internals
	5.2 Accessing Resources using DI and JNDI
	5.3 AOP in the EJB World: Interceptors
	5.4 Scheduling: the EJB 3.0 Timer Service
	5.5 Summary

	Chapter 6 Transactions and Security
	6.1 What Transactions Are
	6.2 Container-Managed Transactions (CMT)
	6.3 Bean-Managed Transactions (BMT)
	6.4 Exploring EJB Security
	6.5 Summary

	Chapter 7 Implementing Domain Models with EJB 3.0
	7.1 Domain Modeling and the JPA
	7.2 Implementing Domain Objects with JPA
	7.3 Entity Relationships
	7.4 Summary

	Chapter 8 Object-Relationship Mapping using EJB 3 JPA
	8.1 The Impedance Mismatch
	8.2 Mapping Entities
	8.3 Mapping Entity Relations
	8.4 Mapping Inheritance
	8.5 Summary

	Chapter 9 Manipulating entities with EntityManager API
	9.1 Introducing the EntityManager
	9.2 Creating EntityManager Instances
	9.3 Managing Persistence Operations
	9.4 Entity Lifecycle Listeners
	9.5 Best Practices
	9.6 Summary

