Fuzzing and Exploit
Development with
Metasploit Framework

Who am |

® Elliott Cutright aka Nullthreat
® Senior Information Security Analyst

® Do not take anything | say as fact. | have
been wrong before and | will be wrong

again.

What is an overflow

Too much data in a space not designed for
it

Stack Based (Focus on today)
Heap Based

Smashing the stack for fun and profit
® Phrack 49 by Aleph One

What is the Stack

Holds the functions and function variables
User Input
Data needed by the app

First in, first out

Unallocated Stack Space

Char c[12]

S
Z
2
O
x
U
8
1))

Char *bar

sassalppy Alowe

Saved Frame pointer

Return Address

Parent Routine's Stack

The Stack

Unallocated Stack Space

Char c[12]

=
-
=
2
(L)
4
o
S
)

sassalppy Alowes

Char *bar

Saved Frame pointer

Return Address

Parent Routine's Stack

The Stack (now with more data)

Unallocated Stack Space

Address
0x80C03508

-

S
2
2
O
4
¥}
3
v

sessalppy Aowey

Little Endian
0x80C03508

Parent Routine's Stack

The Stack (Smashed)

Fuzzing

® Sending random info to the application and
monitor for a crash

® Make the app cry
o GET /AAAAAAAAAAAAAA.....

® EIP=0x4141414]

X86 Registers

EIP - Address of next instruction
ESP - Address for the top of the stack
EBP - Stack Base Address

EAX/ECX/EDX - Holds variables and data
for the application

x86 Registers

EIP = Instruction Pointer
ESP = Stack Pointer
EAX = Accumulator
EBX = Base Index

ECX = Counter

EDX = Data

ES| = Source Index

EDI = Destination Index

Lets Break Some Stuff

e DEMO

® Fuzzing

Awesome...wait..what!

® EIP=0x41414141
® Ox4| = A

® Ve control EIP. so we can tell the
application what to do

® Now we need to find the location of the
EIP overwrite

Enter Pattern_create()

® MSF Pattern Create creates a easy-to-
predict string to assist with EIP location

® E|P overwritten with pattern and use MSF
Pattern Offset to determine location

Lets Break Some Stuff

e DEMO
® MSF Pattern Create/Offset

EIP Overwrite

® We now know it takes 256 bytes to get to
the EIP over write

® Use this to build out skeleton exploit

Skeleton Exploit

“\X00\x01” - Sets the mode in TFTP

“I41” * 256 - Sends 256 A’s, overflow buffer
“Ix42” * 4 - Sets EIP to 0x42424242

“Ix43” * 250 - Sends 250 C’s as fake payload
“\x00” - Ends the packet

Exploit in Metasploit

crash = "\x00\x0 | "

crash += "\x4[" * 256

crash += [target.ret].pack('V’)
crash += "\x43" * 250

crash += "\x00"

Lets Break Some Stuff

e DEMO

® Skeleton Exploit

A Closer Look

Registers (FPLU) < £ £ £ < £

ERx 4BDEDSS1
ECX ©8812FRD4
EDx 88880069

EBX 00880006 !
ESP @812FBE@ ASCII "CCCOCCil OXOO I F B EO
EBF 8812FD13

ESI 88394988

EDI 661668164
0x42424242 — o ==
ES @623 32bit B(FFFFFFFF)

CS 801B 32bit B(FFFFFFFF)
SS 86232 32bit B(FFFFFFFF)
8823 32bit B(FFFFFFFF)
FS B63E 32bit PFFOFBBA(FFF)
GS 8088 NULL

LastErr ERROR_SUCCESS (80000008)
EFL @B@i1ez2ez (NO,NE,NE,R,NS, PO, GE, G)

STA empty 777 FFFF BBFFOOFF GBFFBOGFF
ST1 empty =777 FFFF BBFFBOFF GOFFOGBFF
ST2 empty -777 FFFF BDBFEBBES BB4A0E11
ST3 empty =777 FFFF GOFEGBEY 8844080B
ST4 empty -NAN FFFF FFES448E FFE94A11
STS empty =777 FFFF BOFFBBES 8844000B
STE empty =777 FFFF 000000068 0000060600
ST? empty -777 FFFF 00200020 00500030
32180 ESPUDZ I

FST 0888 Cond B B B 8 Err @8 86 8 66868 (GT)
FCW 827F Prec NERAR,S3 Mask i e op g |

oOo0HOMNDTOO
QEOQODRD
o
o

2FEBBE 41414141

2FBBC 41414141 AARARA
2FBCB 41414141

2FBC4 41414141 AARA
2FBCZ2 41414141 ARARA
2FBCC 41414141 AAARA
Z2FEDB 41414141 AARARA
2FBD4 41414141 RAAARR

1
1
1
1
1
1
1
49490404) — | il
0C 2424242 BEEB
X ZFBEB 43434343 CCCC
1
1
1
1
1
1
1
1
1

OO0 ®D
OO0

=

— 0x0012FBEO

2FBE4 43434343 CCCC
2FBES 43434343 CCCC
2FBEC 43434343 CCCC
ZFEFD 43434343 CCCC
2FBF4 43434343 CCCC
2FEFS 43434343 CCCC
2FBFC 43434343 CCCC
2FCOB 43434343 CC
2FCA4 43434343 C
2FCOS 43434343 C

Novev= A g g

IO
o D R] 5

Find the JMP

We control EIP and ESP
The data we want it is ESP

We want to find a JMP ESP

This will place us at the start of our
“shellcode”

Finding the |MP

® Ollydbg or ImmunityDBG
® Use the search feature

® Find in application or windows lib

Testing the return

® Use break point at the address

® Make sure we jump to the right spot

Lets Break Some Stuff

e DEMO
® Finding and adding the JMP
® TJesting the |MP

Adding the Shellcode

® Metasploit has a large library

® Very easy to add to exploit

® replace “\x43” * 250 with
payload.encoded

® This exploit has small space for shellcode

® For this proof of concept we will launch
calc.exe

Lets Break Some Stuff

e DEMO

® Shellcode and Final Exploit

Buzz Kills

® ASLR - Address Space Layout
Randomization

® Vista and Server '08 enabled by default
® DEP - Data Execution Prevention

® XP SP2 and newer

® Prevents code execution in non-
executable memory

Resources

www.hullthreat.net - Slides and demos

www.offsec.com - Cracking the Perimeter

www.corelan.be:8800 - Awesome tutorials
on exploit dev

DHAtEnclaveForensics - Youtube channel

www.exploit-db.com - take working
exploits apart and re-write them

http://www.nullthreat.net
http://www.nullthreat.net
http://www.offsec.com
http://www.offsec.com
http://www.corelan.be:8800
http://www.corelan.be:8800
http://www.exploit-db.com
http://www.exploit-db.com

