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Preface

This book is intended to serve as the textbook a first-year graduate course in econometrics.

Students are assumed to have an understanding of multivariate calculus, probability theory,
linear algebra, and mathematical statistics. A prior course in undergraduate econometrics would
be helpful, but not required. Two excellent undergraduate textbooks are Wooldridge (2015) and
Stock and Watson (2014).

For reference, some of the basic tools of matrix algebra and probability inequalites are reviewed
in the Appendix.

For students wishing to deepen their knowledge of matrix algebra in relation to their study of
econometrics, I recommend Matriz Algebra by Abadir and Magnus (2005).

An excellent introduction to probability and statistics is Statistical Inference by Casella and
Berger (2002). For those wanting a deeper foundation in probability, I recommend Ash (1972)
or Billingsley (1995). For more advanced statistical theory, I recommend Lehmann and Casella
(1998), van der Vaart (1998), Shao (2003), and Lehmann and Romano (2005).

For further study in econometrics beyond this text, I recommend Davidson (1994) for asymp-
totic theory, Hamilton (1994) and Kilian and Liitkepohl (2017) for time-series methods, Wooldridge
(2010) for panel data and discrete response models, and Li and Racine (2007) for nonparametrics
and semiparametric econometrics. Beyond these texts, the Handbook of Econometrics series pro-
vides advanced summaries of contemporary econometric methods and theory.

The end-of-chapter exercises are important parts of the text and are meant to help teach students
of econometrics. Answers are not provided, and this is intentional.

I would like to thank Ying-Ying Lee and Wooyoung Kim for providing research assistance in
preparing some of the empirical examples presented in the text.

This is a manuscript in progress. Chapters 1-11 are mostly complete. Chapters 12-18 are
incomplete.



Chapter 1

Introduction

1.1 What is Econometrics?

The term “econometrics” is believed to have been crafted by Ragnar Frisch (1895-1973) of
Norway, one of the three principal founders of the Econometric Society, first editor of the journal
Econometrica, and co-winner of the first Nobel Memorial Prize in Economic Sciences in 1969. It
is therefore fitting that we turn to Frisch’s own words in the introduction to the first issue of
FEconometrica to describe the discipline.

A word of explanation regarding the term econometrics may be in order. Its defini-
tion is implied in the statement of the scope of the [Econometric] Society, in Section I
of the Constitution, which reads: “The Econometric Society is an international society
for the advancement of economic theory in its relation to statistics and mathematics....
Its main object shall be to promote studies that aim at a unification of the theoretical-
quantitative and the empirical-quantitative approach to economic problems....”

But there are several aspects of the quantitative approach to economics, and no single
one of these aspects, taken by itself, should be confounded with econometrics. Thus,
econometrics is by no means the same as economic statistics. Nor is it identical with
what we call general economic theory, although a considerable portion of this theory has
a defininitely quantitative character. Nor should econometrics be taken as synonomous
with the application of mathematics to economics. Experience has shown that each
of these three view-points, that of statistics, economic theory, and mathematics, is
a necessary, but not by itself a sufficient, condition for a real understanding of the
quantitative relations in modern economic life. It is the unification of all three that is
powerful. And it is this unification that constitutes econometrics.

Ragnar Frisch, Econometrica, (1933), 1, pp. 1-2.

This definition remains valid today, although some terms have evolved somewhat in their usage.
Today, we would say that econometrics is the unified study of economic models, mathematical
statistics, and economic data.

Within the field of econometrics there are sub-divisions and specializations. Econometric the-
ory concerns the development of tools and methods, and the study of the properties of econometric
methods. Applied econometrics is a term describing the development of quantitative economic
models and the application of econometric methods to these models using economic data.

1.2 The Probability Approach to Econometrics

The unifying methodology of modern econometrics was articulated by Trygve Haavelmo (1911-
1999) of Norway, winner of the 1989 Nobel Memorial Prize in Economic Sciences, in his seminal

1
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paper “The probability approach in econometrics” (1944). Haavelmo argued that quantitative
economic models must necessarily be probability models (by which today we would mean stochas-
tic). Deterministic models are blatently inconsistent with observed economic quantities, and it
is incoherent to apply deterministic models to non-deterministic data. Economic models should
be explicitly designed to incorporate randomness; stochastic errors should not be simply added to
deterministic models to make them random. Once we acknowledge that an economic model is a
probability model, it follows naturally that an appropriate tool way to quantify, estimate, and con-
duct inferences about the economy is through the powerful theory of mathematical statistics. The
appropriate method for a quantitative economic analysis follows from the probabilistic construction
of the economic model.

Haavelmo’s probability approach was quickly embraced by the economics profession. Today no
quantitative work in economics shuns its fundamental vision.

While all economists embrace the probability approach, there has been some evolution in its
implementation.

The structural approach is the closest to Haavelmo’s original idea. A probabilistic economic
model is specified, and the quantitative analysis performed under the assumption that the economic
model is correctly specified. Researchers often describe this as “taking their model seriously.” The
structural approach typically leads to likelihood-based analysis, including maximum likelihood and
Bayesian estimation.

A criticism of the structural approach is that it is misleading to treat an economic model
as correctly specified. Rather, it is more accurate to view a model as a useful abstraction or
approximation. In this case, how should we interpret structural econometric analysis? The quasi-
structural approach to inference views a structural economic model as an approximation rather
than the truth. This theory has led to the concepts of the pseudo-true value (the parameter value
defined by the estimation problem), the quasi-likelihood function, quasi-MLE, and quasi-likelihood
inference.

Closely related is the semiparametric approach. A probabilistic economic model is partially
specified but some features are left unspecified. This approach typically leads to estimation methods
such as least-squares and the Generalized Method of Moments. The semiparametric approach
dominates contemporary econometrics, and is the main focus of this textbook.

Another branch of quantitative structural economics is the calibration approach. Similar
to the quasi-structural approach, the calibration approach interprets structural models as approx-
imations and hence inherently false. The difference is that the calibrationist literature rejects
mathematical statistics (deeming classical theory as inappropriate for approximate models) and
instead selects parameters by matching model and data moments using non-statistical ad hoc!
methods.

1.3 Econometric Terms and Notation

In a typical application, an econometrician has a set of repeated measurements on a set of vari-
ables. For example, in a labor application the variables could include weekly earnings, educational
attainment, age, and other descriptive characteristics. We call this information the data, dataset,
or sample.

We use the term observations to refer to the distinct repeated measurements on the variables.
An individual observation often corresponds to a specific economic unit, such as a person, household,
corporation, firm, organization, country, state, city or other geographical region. An individual
observation could also be a measurement at a point in time, such as quarterly GDP or a daily
interest rate.

L Ad hoc means “for this purpose” — a method designed for a specific problem — and not based on a generalizable
principle.
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Economists typically denote variables by the italicized roman characters y, =, and/or z. The
convention in econometrics is to use the character y to denote the variable to be explained, while
the characters = and z are used to denote the conditioning (explaining) variables.

Following mathematical convention, real numbers (elements of the real line R, also called
scalars) are written using lower case italics such as g, and vectors (elements of R¥) by lower
case bold italics such as z, e.g.

I
2

Tk

Upper case bold italics such as X are used for matrices.

We denote the number of observations by the natural number n, and subscript the variables
by the index 7 to denote the individual observation, e.g. 1;, ®; and z;. In some contexts we use
indices other than 7, such as in time-series applications where the index ¢ is common and 7 is used
to denote the number of observations. In panel studies we typically use the double index it to refer
to individual ¢ at a time period ¢.

The " observation is the set (yi, @i, z;). The sample is the set
{(yi, zi,24) i =1,...,n}.

It is proper mathematical practice to use upper case X for random variables and lower case x for
realizations or specific values. Since we use upper case to denote matrices, the distinction between
random variables and their realizations is not rigorously followed in econometric notation. Thus the
notation y; will in some places refer to a random variable, and in other places a specific realization.
This is undesirable but there is little to be done about it without terrifically complicating the
notation. Hopefully there will be no confusion as the use should be evident from the context.

We typically use Greek letters such as 3, @ and o2 to denote unknown parameters of an econo-
metric model, and will use boldface, e.g. B or 8, when these are vector-valued. Estimates are
typically denoted by putting a hat “~”, tilde “™” or bar “-” over the corresponding letter, e.g. 3
and B are estimates of f3.

The covariance matrix of an econometric estimator will typically be written using the capital

~

boldface V, often with a subscript to denote the estimator, e.g. VE = var (,6) as the covariance

matrix for B Hopefully without causing confusion, we will use the notation Vg = avar(fi) to denote
the asymptotic covariance matrix of \/n (B — B) (the variance of the asymptotic distribution).
Estimates will be denoted by appending hats or tildes, e.g. ‘A/g is an estimate of V.

1.4 Observational Data

A common econometric question is to quantify the impact of one set of variables on another
variable. For example, a concern in labor economics is the returns to schooling — the change in
earnings induced by increasing a worker’s education, holding other variables constant. Another
issue of interest is the earnings gap between men and women.

Ideally, we would use experimental data to answer these questions. To measure the returns
to schooling, an experiment might randomly divide children into groups, mandate different levels
of education to the different groups, and then follow the children’s wage path after they mature
and enter the labor force. The differences between the groups would be direct measurements of
the effects of different levels of education. However, experiments such as this would be widely
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condemned as immoral! Consequently, in economics non-laboratory experimental data sets are
typically narrow in scope.

Instead, most economic data is observational. To continue the above example, through data
collection we can record the level of a person’s education and their wage. With such data we
can measure the joint distribution of these variables, and assess the joint dependence. But from
observational data it is difficult to infer causality, as we are not able to manipulate one variable to
see the direct effect on the other. For example, a person’s level of education is (at least partially)
determined by that person’s choices. These factors are likely to be affected by their personal abilities
and attitudes towards work. The fact that a person is highly educated suggests a high level of ability,
which suggests a high relative wage. This is an alternative explanation for an observed positive
correlation between educational levels and wages. High ability individuals do better in school,
and therefore choose to attain higher levels of education, and their high ability is the fundamental
reason for their high wages. The point is that multiple explanations are consistent with a positive
correlation between schooling levels and education. Knowledge of the joint distribution alone may
not be able to distinguish between these explanations.

Most economic data sets are observational, not experimental. This means
that all variables must be treated as random and possibly jointly deter-
mined.

This discussion means that it is difficult to infer causality from observational data alone. Causal
inference requires identification, and this is based on strong assumptions. We will discuss these
issues on occasion throughout the text.

1.5 Standard Data Structures

There are five major types of economic data sets: cross-sectional, time-series, panel, clustered,
and spatial. They are distinguished by the dependence structure across observations.

Cross-sectional data sets have one observation per individual. Surveys and administrative
records are a typical source for cross-sectional data. In typical applications, the individuals surveyed
are persons, households, firms or other economic agents. In many contemporary econometric cross-
section studies the sample size n is quite large. It is conventional to assume that cross-sectional
observations are mutually independent. Most of this text is devoted to the study of cross-section
data.

Time-series data are indexed by time. Typical examples include macroeconomic aggregates,
prices and interest rates. This type of data is characterized by serial dependence. Most aggregate
economic data is only available at a low frequency (annual, quarterly or perhaps monthly) so the
sample size is typically much smaller than in cross-section studies. An exception is financial data
where data are available at a high frequency (weekly, daily, hourly, or by transaction) so sample
sizes can be quite large.

Panel data combines elements of cross-section and time-series. These data sets consist of a set
of individuals (typically persons, households, or corporations) measured repeatedly over time. The
common modeling assumption is that the individuals are mutually independent of one another,
but a given individual’s observations are mutually dependent. In some panel data contexts, the
number of time series observations 1" per individual is small while the number of individuals n is
large. In other panel data contexts (for example when countries or states are taken as the unit of
measurement) the number of individuals n can be small while the number of time series observations
T can be moderately large. An important issue in econometric panel data is the treatment of error
components.
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Clustered samples are increasing popular in applied economics, and is related to panel data.
In clustered sampling, the observations are grouped into “clusters” which are treated as mutually
independent, yet allowed to be dependent within the cluster. The major difference with panel data
is that clustered sampling typically does not explicitly model error component structures, nor the
dependence within clusters, but rather is concerned with inference which is robust to arbitrary
forms of within-cluster correlation.

Spatial dependence is another model of interdependence. The observations are treated as mutu-
ally dependent according to a spatial measure (for example, geographic proximity). Unlike cluster-
ing, spatial models allow all observations to be mutually dependent, and typically rely on explicit
modeling of the dependence relationships. Spatial dependence can also be viewed as a generalization
of time series dependence.

Data Structures

e Cross-section

e Time-series

Panel

Clustered

Spatial

As we mentioned above, most of this text will be devoted to cross-sectional data under the
assumption of mutually independent observations. By mutual independence we mean that the "
observation (y;, Z;, z;) is independent of the j!* observation (y;, x;, z;) for i # j. (Sometimes the
label “independent” is misconstrued. It is a statement about the relationship between observations
i and j, not a statement about the relationship between y; and x; and/or z;.) In this case we say
that the data are independently distributed.

Furthermore, if the data is randomly gathered, it is reasonable to model each observation as
a draw from the same probability distribution. In this case we say that the data are identically
distributed. If the observations are mutually independent and identically distributed, we say that
the observations are independent and identically distributed, iid, or a random sample. For
most of this text we will assume that our observations come from a random sample.

Definition 1.5.1 The observations (y;, x;, z;) are a sample from the dis-
tribution I if they are identically distributed across © = 1,...,n with joint
distribution F.

Definition 1.5.2 The observations (y;, x;, z;) are a random sample if
they are mutually independent and identically distributed (iid) across i =
1,...,n.
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In the random sampling framework, we think of an individual observation (y;, x;, z;) as a re-
alization from a joint probability distribution F' (y, x, z) which we can call the population. This
“population” is infinitely large. This abstraction can be a source of confusion as it does not cor-
respond to a physical population in the real world. It is an abstraction since the distribution F'
is unknown, and the goal of statistical inference is to learn about features of F' from the sample.
The assumption of random sampling provides the mathematical foundation for treating economic
statistics with the tools of mathematical statistics.

The random sampling framework was a major intellectual breakthrough of the late 19th century,
allowing the application of mathematical statistics to the social sciences. Before this conceptual
development, methods from mathematical statistics had not been applied to economic data as the
latter was viewed as non-random. The random sampling framework enabled economic samples to
be treated as random, a necessary precondition for the application of statistical methods.

1.6 Sources for Economic Data

Fortunately for economists, the internet provides a convenient forum for dissemination of eco-
nomic data. Many large-scale economic datasets are available without charge from governmental
agencies. An excellent starting point is the Resources for Economists Data Links, available at
rfe.org. From this site you can find almost every publically available economic data set. Some
specific data sources of interest include

e Bureau of Labor Statistics

e US Census

e Current Population Survey

e Survey of Income and Program Participation

e Panel Study of Income Dynamics

e Federal Reserve System (Board of Governors and regional banks)
e National Bureau of Economic Research

e U.S. Bureau of Economic Analysis

e CompuStat

e International Financial Statistics

Another good source of data is from authors of published empirical studies. Most journals
in economics require authors of published papers to make their datasets generally available. For
example, in its instructions for submission, Econometrica states:

Econometrica has the policy that all empirical, experimental and simulation results must
be replicable. Therefore, authors of accepted papers must submit data sets, programs,
and information on empirical analysis, experiments and simulations that are needed for
replication and some limited sensitivity analysis.

The American Economic Review states:

All data used in analysis must be made available to any researcher for purposes of
replication.

The Journal of Political Economy states:
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It is the policy of the Journal of Political Economy to publish papers only if the data
used in the analysis are clearly and precisely documented and are readily available to
any researcher for purposes of replication.

If you are interested in using the data from a published paper, first check the journal’s website,
as many journals archive data and replication programs online. Second, check the website(s) of
the paper’s author(s). Most academic economists maintain webpages, and some make available
replication files complete with data and programs. If these investigations fail, email the author(s),
politely requesting the data. You may need to be persistent.

As a matter of professional etiquette, all authors absolutely have the obligation to make their
data and programs available. Unfortunately, many fail to do so, and typically for poor reasons.
The irony of the situation is that it is typically in the best interests of a scholar to make as much of
their work (including all data and programs) freely available, as this only increases the likelihood
of their work being cited and having an impact.

Keep this in mind as you start your own empirical project. Remember that as part of your end
product, you will need (and want) to provide all data and programs to the community of scholars.
The greatest form of flattery is to learn that another scholar has read your paper, wants to extend
your work, or wants to use your empirical methods. In addition, public openness provides a healthy
incentive for transparency and integrity in empirical analysis.

1.7 Econometric Software

Economists use a variety of econometric, statistical, and programming software.

Stata (www.stata.com) is a powerful statistical program with a broad set of pre-programmed
econometric and statistical tools. It is quite popular among economists, and is continuously being
updated with new methods. It is an excellent package for most econometric analysis, but is limited
when you want to use new or less-common econometric methods which have not yet been programed.

R (www.r-project.org), GAUSS (www.aptech.com), MATLAB (www.mathworks.com), and Ox-
Metrics (www.oxmetrics.net) are high-level matrix programming languages with a wide variety of
built-in statistical functions. Many econometric methods have been programed in these languages
and are available on the web. The advantage of these packages is that you are in complete control
of your analysis, and it is easier to program new methods than in Stata. Some disadvantages are
that you have to do much of the programming yourself, programming complicated procedures takes
significant time, and programming errors are hard to prevent and difficult to detect and eliminate.
Of these languages, GAUSS used to be quite popular among econometricians, but currently MAT-
LAB is more popular. A smaller but growing group of econometricians are enthusiastic fans of R,
which of these languages is uniquely open-source, user-contributed, and best of all, completely free!

For highly-intensive computational tasks, some economists write their programs in a standard
programming language such as Fortran or C. This can lead to major gains in computational speed,
at the cost of increased time in programming and debugging.

As these different packages have distinct advantages, many empirical economists end up using
more than one package. As a student of econometrics, you will learn at least one of these packages,
and probably more than one.

1.8 Data Files for Textbook

On the textbook webpage http://www.ssc.wisc.edu/~bhansen/econometrics/ there are posted
a number of files containing data sets which are used in this textbook both for illustration and
for end-of-chapter empirical exercises. For each data sets there are four files: (1) Description (pdf
format); (2) Excel data file; (3) Text data file; (4) Stata data file. The three data files are identical
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in content, the observations and variables are listed in the same order in each, all have variable
labels.
For example, the text makes frequent reference to a wage data set extracted from the Current
Population Survey. This data set is named cpsO9mar, and is represented by the files cpsO9mar_description.pdf,
cpsO9mar.x1sx, cpsO9mar. txt, and cpsO9mar.dta.
The data sets currently included are

e cpsO9mar
— household survey data extracted from the March 2009 Current Population Survey
e DDK2011
— Data file from Duflo, Dupas and Kremer (2011)
e invest
— Data file from B.E. Hansen (1999), extracted from Hall and Hall (1993)
e Nerlovel963
— Data file from Nerlov (1963)
e MRW1992
— Data file from Mankiw, Romer and Weil (1992)
e Card1995
— Data file from Card (1995)
e AJR2001
— Data file from Acemoglu, Johnson and Robinson (2001)
e AK1991
— Data file from Angrist and Krueger (1991)
e hpricel

— Housing price data. The only files posted are hpricel.txt and hpricel.pdf which are
the data in text format and description, respectively

1.9 Reading the Manuscript

I have endeavored to use a unified notation and nomenclature. The development of the material
is cumulative, with later chapters building on the earlier ones. Nevertheless, every attempt has been
made to make each chapter self-contained, so readers can pick and choose topics according to their
interests.

To fully understand econometric methods, it is necessary to have a mathematical understanding
of its mechanics, and this includes the mathematical proofs of the main results. Consequently, this
text is self-contained, with nearly all results proved with full mathematical rigor. The mathematical
development and proofs aim at brevity and conciseness (sometimes described as mathematical
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elegance), but also at pedagogy. To understand a mathematical proof, it is not sufficient to simply
read the proof, you need to follow it, and re-create it for yourself.

Nevertheless, many readers will not be interested in each mathematical detail, explanation, or
proof. This is okay. To use a method it may not be necessary to understand the mathematical
details. Accordingly I have placed the more technical mathematical proofs and details in chapter
appendices. These appendices and other technical sections are marked with an asterisk (*). These
sections can be skipped without any loss in exposition.
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1.10 Common Symbols

k

(y)

var (y)
cov (z,y)
var (x)
corr(z,y)

SRRV

SR

scalar

vector

matrix

real line

Euclidean k space

mathematical expectation

variance

covariance

covariance matrix

correlation

probability

limit

convergence in probability
convergence in distribution
probability limit

standard normal distribution
normal distribution with mean p and variance o
chi-square distribution with & degrees of freedom
n X n identity matrix

trace

matrix transpose

matrix inverse

positive definite

positive semi-definite

Euclidean norm

matrix (Frobinius or spectral) norm
approximate equality

2

definitional equality
is distributed as
natural logarithm

10



Chapter 2

Conditional Expectation and
Projection

2.1 Introduction

The most commonly applied econometric tool is least-squares estimation, also known as regres-
sion. As we will see, least-squares is a tool to estimate an approximate conditional mean of one
variable (the dependent variable) given another set of variables (the regressors, conditioning
variables, or covariates).

In this chapter we abstract from estimation, and focus on the probabilistic foundation of the
conditional expectation model and its projection approximation.

2.2 The Distribution of Wages

Suppose that we are interested in wage rates in the United States. Since wage rates vary across
workers, we cannot describe wage rates by a single number. Instead, we can describe wages using a
probability distribution. Formally, we view the wage of an individual worker as a random variable
wage with the probability distribution

F(u) = Pr(wage < u).

When we say that a person’s wage is random we mean that we do not know their wage before it is
measured, and we treat observed wage rates as realizations from the distribution F. Treating un-
observed wages as random variables and observed wages as realizations is a powerful mathematical
abstraction which allows us to use the tools of mathematical probability.

A useful thought experiment is to imagine dialing a telephone number selected at random, and
then asking the person who responds to tell us their wage rate. (Assume for simplicity that all
workers have equal access to telephones, and that the person who answers your call will respond
honestly.) In this thought experiment, the wage of the person you have called is a single draw from
the distribution F' of wages in the population. By making many such phone calls we can learn the
distribution F' of the entire population.

When a distribution function F' is differentiable we define the probability density function

_4a
 du

f(u) F(u).

The density contains the same information as the distribution function, but the density is typically
easier to visually interpret.

11
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Figure 2.1: Wage Distribution and Density. All full-time U.S. workers

In Figure 2.1 we display estimates' of the probability distribution function (on the left) and
density function (on the right) of U.S. wage rates in 2009. We see that the density is peaked around
$15, and most of the probability mass appears to lie between $10 and $40. These are ranges for
typical wage rates in the U.S. population.

Important measures of central tendency are the median and the mean. The median m of a
continuous® distribution F' is the unique solution to

1
F =—.
(m) =3
The median U.S. wage ($19.23) is indicated in the left panel of Figure 2.1 by the arrow. The median
is a robust?® measure of central tendency, but it is tricky to use for many calculations as it is not a
linear operator.
The expectation or mean of a random variable y with density f is

o0
p=B() = [ ufdn
—0o0
Here we have used the common and convenient convention of using the single character y to denote
a random variable, rather than the more cumbersome label wage. A general definition of the mean
is presented in Section 2.30. The mean U.S. wage ($23.90) is indicated in the right panel of Figure
2.1 by the arrow.
We sometimes use the notation Ey instead of E (y) when the variable whose expectation is being
taken is clear from the context. There is no distinction in meaning.
The mean is a convenient measure of central tendency because it is a linear operator and
arises naturally in many economic models. A disadvantage of the mean is that it is not robust?
especially in the presence of substantial skewness or thick tails, which are both features of the wage

!The distribution and density are estimated nonparametrically from the sample of 50,742 full-time non-military
wage-earners reported in the March 2009 Current Population Survey. The wage rate is constructed as annual indi-
vidual wage and salary earnings divided by hours worked.

1

If F is not continuous the definition is m = inf{u : F(u) > 5}

3The median is not sensitive to pertubations in the tails of the distribution.

4The mean is sensitive to pertubations in the tails of the distribution.
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distribution as can be seen easily in the right panel of Figure 2.1. Another way of viewing this
is that 64% of workers earn less that the mean wage of $23.90, suggesting that it is incorrect to
describe the mean as a “typical” wage rate.

Log Wage Density

1 2 3 4 5 6

Log Dollars per Hour
Figure 2.2: Log Wage Density

In this context it is useful to transform the data by taking the natural logarithm®. Figure 2.2
shows the density of log hourly wages log(wage) for the same population, with its mean 2.95 drawn
in with the arrow. The density of log wages is much less skewed and fat-tailed than the density of

the level of wages, so its mean
E (log(wage)) = 2.95

is a much better (more robust) measure of central tendency of the distribution. For this reason,
wage regressions typically use log wages as a dependent variable rather than the level of wages.

Another useful way to summarize the probability distribution F'(u) is in terms of its quantiles.
For any a € (0,1), the ot quantile of the continuous’ distribution F is the real number ¢, which
satisfies

F (QCM) = .

The quantile function ¢, viewed as a function of «, is the inverse of the distribution function F.
The most commonly used quantile is the median, that is, go.5 = m. We sometimes refer to quantiles
by the percentile representation of «, and in this case they are often called percentiles, e.g. the

median is the 50" percentile.

2.3 Conditional Expectation

We saw in Figure 2.2 the density of log wages. Is this distribution the same for all workers, or
does the wage distribution vary across subpopulations? To answer this question, we can compare
wage distributions for different groups — for example, men and women. The plot on the left in
Figure 2.3 displays the densities of log wages for U.S. men and women with their means (3.05 and
2.81) indicated by the arrows. We can see that the two wage densities take similar shapes but the
density for men is somewhat shifted to the right with a higher mean.

’Throughout the text, we will use log(y) or logy to denote the natural logarithm of y.
5More precisely, the geometric mean exp (E (logw)) = $19.11 is a robust measure of central tendency.
If F is not continuous the definition is g, = inf{u : F(u) > a}
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Figure 2.3: Log Wage Density by Sex and Race

The values 3.05 and 2.81 are the mean log wages in the subpopulations of men and women
workers. They are called the conditional means (or conditional expectations) of log wages
given sex. We can write their specific values as

E (log(wage) | sex = man) = 3.05 (2.1)

E (log(wage) | sex = woman) = 2.81. (2.2)

We call these means conditional as they are conditioning on a fixed value of the variable sex.
While you might not think of a person’s sex as a random variable, it is random from the viewpoint
of econometric analysis. If you randomly select an individual, the sex of the individual is unknown
and thus random. (In the population of U.S. workers, the probability that a worker is a woman
happens to be 43%.) In observational data, it is most appropriate to view all measurements as
random variables, and the means of subpopulations are then conditional means.

As the two densities in Figure 2.3 appear similar, a hasty inference might be that there is not
a meaningful difference between the wage distributions of men and women. Before jumping to this
conclusion let us examine the differences in the distributions of Figure 2.3 more carefully. As we
mentioned above, the primary difference between the two densities appears to be their means. This
difference equals

E (log(wage) | sex = man) — E (log(wage) | sex = woman) = 3.05 — 2.81
= 0.24. (2.3)

A difference in expected log wages of 0.24 implies an average 24% difference between the wages
of men and women, which is quite substantial. (For an explanation of logarithmic and percentage
differences see Section 2.4.)

Consider further splitting the men and women subpopulations by race, dividing the population
into whites, blacks, and other races. We display the log wage density functions of four of these
groups on the right in Figure 2.3. Again we see that the primary difference between the four density
functions is their central tendency.



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 15

men women
white 3.07 2.82
black 2.86 2.73
other 3.03 2.86

Table 2.1: Mean Log Wages by Sex and Race

Focusing on the means of these distributions, Table 2.1 reports the mean log wage for each of
the six sub-populations.
The entries in Table 2.1 are the conditional means of log(wage) given sex and race. For example

E (log(wage) | sex = man, race = white) = 3.07

and
E (log(wage) | sex = woman, race = black) = 2.73.

One benefit of focusing on conditional means is that they reduce complicated distributions
to a single summary measure, and thereby facilitate comparisons across groups. Because of this
simplifying property, conditional means are the primary interest of regression analysis and are a
major focus in econometrics.

Table 2.1 allows us to easily calculate average wage differences between groups. For example,
we can see that the wage gap between men and women continues after disaggregation by race, as
the average gap between white men and white women is 25%, and that between black men and
black women is 13%. We also can see that there is a race gap, as the average wages of blacks are
substantially less than the other race categories. In particular, the average wage gap between white
men and black men is 21%, and that between white women and black women is 9%.

2.4 Log Differences*

A useful approximation for the natural logarithm for small x is
log (1+z) =~ . (2.4)

This can be derived from the infinite series expansion of log (1 + x) :

2 3 4
log(l—l—x):x—%+%_%+...
=2+ O(2?).

The symbol O(x?) means that the remainder is bounded by Ax? as z — 0 for some A < co. A plot
of log (1 + x) and the linear approximation z is shown in Figure 2.4. We can see that log (1 + z)
and the linear approximation z are very close for || < 0.1, and reasonably close for |z| < 0.2, but
the difference increases with |x|.

Now, if y* is ¢% greater than y, then

y* = (1+¢/100)y.

Taking natural logarithms,
log y* = logy + log(1 + ¢/100)

or
Cc

logy* —logy = log(1 + ¢/100) ~ 100
where the approximation is (2.4). This shows that 100 multiplied by the difference in logarithms
is approximately the percentage difference between y and y*, and this approximation is quite good

for |c| < 10.
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2.5 Conditional Expectation Function

An important determinant of wage levels is education. In many empirical studies economists
measure educational attainment by the number of years® of schooling, and we will write this variable
as education.

The conditional mean of log wages given sex, race, and education is a single number for each
category. For example

E (log(wage) | sex = man, race = white, education = 12) = 2.84.

We display in Figure 2.5 the conditional means of log(wage) for white men and white women as a
function of education. The plot is quite revealing. We see that the conditional mean is increasing in
years of education, but at a different rate for schooling levels above and below nine years. Another
striking feature of Figure 2.5 is that the gap between men and women is roughly constant for all
education levels. As the variables are measured in logs this implies a constant average percentage
gap between men and women regardless of educational attainment.

In many cases it is convenient to simplify the notation by writing variables using single charac-
ters, typically y,  and/or z. It is conventional in econometrics to denote the dependent variable
(e.g. log(wage)) by the letter y, a conditioning variable (such as sex) by the letter , and multiple
conditioning variables (such as race, education and sex) by the subscripted letters z1, 2, ..., Tk.

Conditional expectations can be written with the generic notation

E(y | z1, 22, ..., xk) = m(x1, 2, ..., Tg).

We call this the conditional expectation function (CEF). The CEF is a function of (z1, z2, ..., T)
as it varies with the variables. For example, the conditional expectation of y = log(wage) given
(x1,22) = (sex, race) is given by the six entries of Table 2.1. The CEF is a function of (sexz, race)
as it varies across the entries.

For greater compactness, we will typically write the conditioning variables as a vector in R¥ :

I

o I (2.5)

Tk

8Here, education is defined as years of schooling beyond kindergarten. A high school graduate has education=12,
a college graduate has education=16, a Master’s degree has education=18, and a professional degree (medical, law or
PhD) has education=20.
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Figure 2.5: Mean Log Wage as a Function of Years of Education

Here we follow the convention of using lower case bold italics & to denote a vector. Given this
notation, the CEF can be compactly written as

By |z)=m(z).

The CEF E(y | ) is a random variable as it is a function of the random variable . It is
also sometimes useful to view the CEF as a function of x. In this case we can write m (u) =
E (y | € = u), which is a function of the argument u. The expression E (y | « = wu) is the conditional
expectation of y, given that we know that the random variable x equals the specific value wu.
However, sometimes in econometrics we take a notational shortcut and use E (y | ) to refer to this
function. Hopefully, the use of E (y | ) should be apparent from the context.

2.6 Continuous Variables

In the previous sections, we implicitly assumed that the conditioning variables are discrete.
However, many conditioning variables are continuous. In this section, we take up this case and
assume that the variables (y, ) are continuously distributed with a joint density function f(y, x).

As an example, take y = log(wage) and x = experience, the number of years of potential labor
market experience’. The contours of their joint density are plotted on the left side of Figure 2.6
for the population of white men with 12 years of education.

Given the joint density f(y,x) the variable x has the marginal density

oo
fa(z) = / fy, z)dy.
—0o0
For any « such that fz(x) > 0 the conditional density of y given x is defined as

fly,z)
) ="—7F7"7T-7. 2.6
I r (26)
The conditional density is a (renormalized) slice of the joint density f(y,z) holding x fixed. The
slice is renormalized (divided by fz(z) so that it integrates to one and is thus a density.) We can

9Here, experience is defined as potential labor market experience, equal to age — education — 6
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Figure 2.6: White men with education=12

visualize this by slicing the joint density function at a specific value of x parallel with the y-axis.
For example, take the density contours on the left side of Figure 2.6 and slice through the contour
plot at a specific value of experience, and then renormalize the slice so that it is a proper density.
This gives us the conditional density of log(wage) for white men with 12 years of education and
this level of experience. We do this for four levels of ezperience (5, 10, 25, and 40 years), and plot
these densities on the right side of Figure 2.6. We can see that the distribution of wages shifts to
the right and becomes more diffuse as experience increases from 5 to 10 years, and from 10 to 25
years, but there is little change from 25 to 40 years experience.
The CEF of y given « is the mean of the conditional density (2.6)

o0

m(z) = E(y | z) = / uhye (v | ) dy. (2.7)

Intuitively, m (x) is the mean of y for the idealized subpopulation where the conditioning variables
are fixed at @. This is idealized since x is continuously distributed so this subpopulation is infinitely
small.

This definition (2.7) is appropriate when the conditional density (2.6) is well defined. However,
the conditional mean m(z) exists quite generally. In Theorem 2.32.1 in Section 2.32 we show that
m(z) exists so long as E|y| < co.

In Figure 2.6 the CEF of log(wage) given experience is plotted as the solid line. We can see
that the CEF is a smooth but nonlinear function. The CEF is initially increasing in experience,
flattens out around ezxperience = 30, and then decreases for high levels of experience.

2.7 Law of Iterated Expectations

An extremely useful tool from probability theory is the law of iterated expectations. An
important special case is the known as the Simple Law.
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Theorem 2.7.1 Simple Law of Iterated Expectations
IfE|y| < oo then for any random vector x,

EE(y|z)=E(y)

The simple law states that the expectation of the conditional expectation is the unconditional
expectation. In other words, the average of the conditional averages is the unconditional average.
When z is discrete

ZE | ;) Pr(z = x;)

and when x is continuous
BEW| )= [ Ble) ful)ds

Going back to our investigation of average log wages for men and women, the simple law states
that
E (log(wage) | sex = man) Pr (sex = man)
+ E (log(wage) | sex = woman) Pr (sex = woman)
= E (log(wage)) .
Or numerically,

3.0 x 0.57 +2.79 x 0.43 = 2.92.

The general law of iterated expectations allows two sets of conditioning variables.

Theorem 2.7.2 Law of Iterated Expectations
IfE|y| < oo then for any random vectors 1 and x2,

E(E(y |z, 22) | 1) =B (y | 1)

Notice the way the law is applied. The inner expectation conditions on x; and xo, while
the outer expectation conditions only on x;. The iterated expectation yields the simple answer
E(y | 1), the expectation conditional on x; alone. Sometimes we phrase this as: “The smaller
information set wins.”

As an example

E (log(wage) | sex = man, race = white) Pr (race = white|sex = man)
+ E (log(wage) | sex = man, race = black) Pr (race = black|sex = man)
+ E (log(wage) | sex = man, race = other) Pr (race = other|sex = man)

= E (log(wage) | sex = man)

or numerically

3.07 x 0.84 + 2.86 x 0.08 + 3.03 x 0.08 = 3.05.

A property of conditional expectations is that when you condition on a random vector & you
can effectively treat it as if it is constant. For example, E(z | ) = ¢ and E (g (z) | ) = g () for
any function g(-). The general property is known as the Conditioning Theorem.
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Theorem 2.7.3 Conditioning Theorem
IfE|y| < oo then

E(g(@)y|z)=g(z)E(y|z). (2.8)
In in addition
Elg (z)y| < oo (2.9)
then
E(g(z)y) =E(9(z)E(y|z)). (2.10)

The proofs of Theorems 2.7.1, 2.7.2 and 2.7.3 are given in Section 2.34.

2.8 CEF Error

The CEF error e is defined as the difference between y and the CEF evaluated at the random
vector x:
e=y—m(x).

By construction, this yields the formula
y =m(x)+e. (2.11)

In (2.11) it is useful to understand that the error e is derived from the joint distribution of
(y, ), and so its properties are derived from this construction.

A key property of the CEF error is that it has a conditional mean of zero. To see this, by the
linearity of expectations, the definition m(x) = E(y | ) and the Conditioning Theorem

E(elz) =E((y —m(z)) | z)
=E(y|z)-E(m(z)| )
= m(z) —m(z)
= 0.

This fact can be combined with the law of iterated expectations to show that the unconditional
mean is also zero.

E(e) =E(E(e | z)) = E(0) = 0.

We state this and some other results formally.

Theorem 2.8.1 Properties of the CEF error
IfE|y| < oo then

1. E(e|z)=0.
2. E(e) = 0.

3. If Bly|" < oo forr >1 then Ele|” < .

4. For any function h (x) such that E|h(z)e| < oo then E (h (x)e) = 0.

The proof of the third result is deferred to Section 2.34.
The fourth result, whose proof is left to Exercise 2.3, implies that e is uncorrelated with any
function of the regressors.
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Figure 2.7: Joint density of CEF error e and experience for white men with education=12.

The equations

y=m(z)+e
E(e|z)=0

together imply that m(x) is the CEF of y given . It is important to understand that this is not
a restriction. These equations hold true by definition.

The condition E (e | ) = 0 is implied by the definition of e as the difference between y and the
CEF m (z). The equation E (e | ) = 0 is sometimes called a conditional mean restriction, since
the conditional mean of the error e is restricted to equal zero. The property is also sometimes called
mean independence, for the conditional mean of e is 0 and thus independent of . However,
it does not imply that the distribution of e is independent of &. Sometimes the assumption “e is
independent of &” is added as a convenient simplification, but it is not generic feature of the con-
ditional mean. Typically and generally, e and x are jointly dependent, even though the conditional
mean of e is zero.

As an example, the contours of the joint density of e and ezperience are plotted in Figure 2.7
for the same population as Figure 2.6. The error e has a conditional mean of zero for all values of
experience, but the shape of the conditional distribution varies with the level of experience.

As a simple example of a case where z and e are mean independent yet dependent, let e = ze
where x and ¢ are independent N(0,1). Then conditional on z, the error e has the distribution
N(0,22). Thus E (e | #) = 0 and e is mean independent of z, yet e is not fully independent of z.
Mean independence does not imply full independence.

2.9 Intercept-Only Model

A special case of the regression model is when there are no regressors x. In this case m(z) =
E (y) = p, the unconditional mean of y. We can still write an equation for y in the regression
format:

y=p+e
E(e) =0.

This is useful for it unifies the notation.
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2.10 Regression Variance

An important measure of the dispersion about the CEF function is the unconditional variance
of the CEF error e. We write this as

o2 =var(e) =E <(e - Ee)2> =E (62) .

Theorem 2.8.1.3 implies the following simple but useful result.

Theorem 2.10.1 IfE (y2) < 00 then 0% < 0.

We can call 02 the regression variance or the variance of the regression error. The magnitude
of 02 measures the amount of variation in y which is not “explained” or accounted for in the
conditional mean E (y | x).

The regression variance depends on the regressors x. Consider two regressions

y=E(y|z1)+e
y=E(y|z1,z2) + e2.

We write the two errors distinctly as e; and ez as they are different — changing the conditioning
information changes the conditional mean and therefore the regression error as well.

In our discussion of iterated expectations, we have seen that by increasing the conditioning
set, the conditional expectation reveals greater detail about the distribution of y. What is the
implication for the regression error?

It turns out that there is a simple relationship. We can think of the conditional mean E (y | )
as the “explained portion” of y. The remainder e = y — E (y | ) is the “unexplained portion”. The
simple relationship we now derive shows that the variance of this unexplained portion decreases
when we condition on more variables. This relationship is monotonic in the sense that increasing
the amont of information always decreases the variance of the unexplained portion.

Theorem 2.10.2 IfE (y2) < 0o then

var (y) > var (y —E(y | 21)) = var (y — E(y | @1, 32)) .

Theorem 2.10.2 says that the variance of the difference between y and its conditional mean
(weakly) decreases whenever an additional variable is added to the conditioning information.
The proof of Theorem 2.10.2 is given in Section 2.34.

2.11 Best Predictor

Suppose that given a realized value of &, we want to create a prediction or forecast of y. We can
write any predictor as a function g () of @. The prediction error is the realized difference y — g(x).
A non-stochastic measure of the magnitude of the prediction error is the expectation of its square

B((—g(@)). (2.12)

We can define the best predictor as the function ¢ (z) which minimizes (2.12). What function
is the best predictor? It turns out that the answer is the CEF m(x). This holds regardless of the
joint distribution of (y, x).
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To see this, note that the mean squared error of a predictor g (x) is

E((y—9(@)) =E((e+m(®)—g <m>>2)

— B (¢?) + 2B (e (m (2) — g (@) + B ((m (2) - g (2)))
=E (62) < -9 (m))z)

>k (62)

-2 (i-m(e))

where the first equality makes the substitution y = m(x) + e and the third equality uses Theorem
2.8.1.4. The right-hand-side after the third equality is minimized by setting g (x) = m (x), yielding
the inequality in the fourth line. The minimum is finite under the assumption & (y2) < 00 as shown
by Theorem 2.10.1.

We state this formally in the following result.

Theorem 2.11.1 Conditional Mean as Best Predictor
If E (y?) < oo, then for any predictor g (),

B((y—g(@)?) > B ((y—m()?)

where m (xz) =B (y | ).

It may be helpful to consider this result in the context of the intercept-only model

y=p+e
E(e) = 0.

Theorem 2.11.1 shows that the best predictor for y (in the class of constants) is the unconditional
mean i = E(y), in the sense that the mean minimizes the mean squared prediction error.

2.12 Conditional Variance

While the conditional mean is a good measure of the location of a conditional distribution,
it does not provide information about the spread of the distribution. A common measure of the
dispersion is the conditional variance. We first give the general definition of the conditional
variance of a random variable w.

Definition 2.12.1 IfE (wg) < 00, the conditional variance of w given
T s
var (w | z) = B ((w—E(w | 2))2 | :c)

Notice that the conditional variance is the conditional second moment, centered around the
conditional first moment. Given this definition, we define the conditional variance of the regression
error.



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 24

Definition 2.12.2 If E (¢?) < oo, the conditional variance of the re-
gression error e is

o*(z) =var(e|z) =E (* | z).

Generally, 02 (z) is a non-trivial function of & and can take any form subject to the restriction
that it is non-negative. One way to think about o?(z) is that it is the conditional mean of e?
given . Notice as well that o%(z) = var (y | &) so it is equivalently the conditional variance of the
dependent variable.

The variance is in a different unit of measurement than the original variable. To convert the
variance back to the same unit of measure we define the conditional standard deviation as its
square root o(x) = \/o?(x).

As an example of how the conditional variance depends on observables, compare the conditional
log wage densities for men and women displayed in Figure 2.3. The difference between the densities
is not purely a location shift, but is also a difference in spread. Specifically, we can see that the
density for men’s log wages is somewhat more spread out than that for women, while the density
for women’s wages is somewhat more peaked. Indeed, the conditional standard deviation for men’s
wages is 3.05 and that for women is 2.81. So while men have higher average wages, they are also
somewhat more dispersed.

The unconditional error variance and the conditional variance are related by the law of iterated
expectations

0?=E (62) =E(E (| z)) =E (02(33)) .
That is, the unconditional error variance is the average conditional variance.

Given the conditional variance, we can define a rescaled error

= . 2.13
*= 5@ (2.13)
We can calculate that since o(x) is a function of @
B(c| o) =E(—=|z)=——B(c|2)=0
x) = — |z | =——E(e| x) =
) o(@) o(@)
and ) 2(z)
_ 2 o € o 1 2 . o“(x .
var (e | z) = E (¢* | @) —E(% | :13) = 0_2(23)15(6 | z) = ) 1.
Thus € has a conditional mean of zero, and a conditional variance of 1.
Notice that (2.13) can be rewritten as
e=o(x)e.
and substituting this for e in the CEF equation (2.11), we find that
y =m(x)+ o(x)e. (2.14)

This is an alternative (mean-variance) representation of the CEF equation.

Many econometric studies focus on the conditional mean m(z) and either ignore the condi-
tional variance o?(x), treat it as a constant o%(z) = o2, or treat it as a nuisance parameter (a
parameter not of primary interest). This is appropriate when the primary variation in the condi-
tional distribution is in the mean, but can be short-sighted in other cases. Dispersion is relevant
to many economic topics, including income and wealth distribution, economic inequality, and price
dispersion. Conditional dispersion (variance) can be a fruitful subject for investigation.

The perverse consequences of a narrow-minded focus on the mean has been parodied in a classic
joke:



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 25

An economist was standing with one foot in a bucket of boiling water
and the other foot in a bucket of ice. When asked how he felt, he
replied, “On average I feel just fine.”

Clearly, the economist in question ignored variance!

2.13 Homoskedasticity and Heteroskedasticity

An important special case obtains when the conditional variance o(x) is a constant and inde-
pendent of . This is called homoskedasticity.

Definition 2.13.1 The error is homoskedastic if E (¢? | ) = o2
does not depend on x.

In the general case where o?(z) depends on & we say that the error e is heteroskedastic.

Definition 2.13.2 The error is heteroskedastic if E (¢? | ) = o?(x)
depends on x.

It is helpful to understand that the concepts homoskedasticity and heteroskedasticity concern
the conditional variance, not the unconditional variance. By definition, the unconditional variance
02 is a constant and independent of the regressors . So when we talk about the variance as a
function of the regressors, we are talking about the conditional variance o?(z).

Some older or introductory textbooks describe heteroskedasticity as the case where “the vari-
ance of e varies across observations”. This is a poor and confusing definition. It is more constructive
to understand that heteroskedasticity means that the conditional variance o2 (z) depends on ob-
servables.

Older textbooks also tend to describe homoskedasticity as a component of a correct regression
specification, and describe heteroskedasticity as an exception or deviance. This description has
influenced many generations of economists, but it is unfortunately backwards. The correct view
is that heteroskedasticity is generic and “standard”, while homoskedasticity is unusual and excep-
tional. The default in empirical work should be to assume that the errors are heteroskedastic, not
the converse.

In apparent contradiction to the above statement, we will still frequently impose the ho-
moskedasticity assumption when making theoretical investigations into the properties of estimation
and inference methods. The reason is that in many cases homoskedasticity greatly simplifies the
theoretical calculations, and it is therefore quite advantageous for teaching and learning. It should
always be remembered, however, that homoskedasticity is never imposed because it is believed to
be a correct feature of an empirical model, but rather because of its simplicity.
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2.14 Regression Derivative

One way to interpret the CEF m(z) = E(y | ) is in terms of how marginal changes in the
regressors @ imply changes in the conditional mean of the response variable y. It is typical to
consider marginal changes in a single regressor, say x1, holding the remainder fixed. When a
regressor x1 is continuously distributed, we define the marginal effect of a change in z1, holding
the variables xo, ..., x; fixed, as the partial derivative of the CEF

9
8.’1}1

When x; is discrete we define the marginal effect as a discrete difference. For example, if z7 is
binary, then the marginal effect of 1 on the CEF is

m(l‘l,...,l’k).

m(1l, xo,...,xr) — m(0, xa, ..., T).

We can unify the continuous and discrete cases with the notation

0

%m(ajl, oy TR, if 1 is continuous
1

Vim(z) =
m(1, zo,...,x) — m(0,x9,...,x%), if 21 is binary.

Collecting the k effects into one k x 1 vector, we define the regression derivative with respect to
x:

Vim(x)
Vm(z) — | "
Vom(z)
When all elements of & are continuous, then we have the simplification Vm(z) = B%m($)’ the

vector of partial derivatives.

There are two important points to remember concerning our definition of the regression deriv-
ative.

First, the effect of each variable is calculated holding the other variables constant. This is the
ceteris paribus concept commonly used in economics. But in the case of a regression derivative,
the conditional mean does not literally hold all else constant. It only holds constant the variables
included in the conditional mean. This means that the regression derivative depends on which
regressors are included. For example, in a regression of wages on education, experience, race and
sex, the regression derivative with respect to education shows the marginal effect of education on
mean wages, holding constant experience, race and sex. But it does not hold constant an individual’s
unobservable characteristics (such as ability), nor variables not included in the regression (such as
the quality of education).

Second, the regression derivative is the change in the conditional expectation of y, not the
change in the actual value of y for an individual. It is tempting to think of the regression derivative
as the change in the actual value of y, but this is not a correct interpretation. The regression
derivative Vm(x) is the change in the actual value of y only if the error e is unaffected by the
change in the regressor &. We return to a discussion of causal effects in Section 2.29.

2.15 Linear CEF

An important special case is when the CEF m (z) = E (y | @) is linear in . In this case we can
write the mean equation as

m(x) =x101 + 2202 + - - + 10k + Br+1-



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 27

Notationally it is convenient to write this as a simple function of the vector . An easy way to do
so is to augment the regressor vector & by listing the number “1” as an element. We call this the
“constant” and the corresponding coefficient is called the “intercept”. Equivalently, specify that
the final element!? of the vector x is 23 = 1. Thus (2.5) has been redefined as the k x 1 vector

T = | (2.15)

With this redefinition, the CEF is

m(z) = x181 + w22 + - + B
=z'3 (2.16)
where
b1
g=| (2.17)
Bk
is a k x 1 coefficient vector. This is the linear CEF model. It is also often called the linear

regression model, or the regression of y on .
In the linear CEF model, the regression derivative is simply the coefficient vector. That is

Vm(z) = 3.

This is one of the appealing features of the linear CEF model. The coefficients have simple and
natural interpretations as the marginal effects of changing one variable, holding the others constant.

Linear CEF Model

y=x'B+e
E(e|z)=0

If in addition the error is homoskedastic, we call this the homoskedastic linear CEF model.

Homoskedastic Linear CEF Model

y=x'B+e
E(e|z)=0
E(e® | z) = o?

10The order doesn’t matter. It could be any element.
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2.16 Linear CEF with Nonlinear Effects

The linear CEF model of the previous section is less restrictive than it might appear, as we can
include as regressors nonlinear transformations of the original variables. In this sense, the linear
CEF framework is flexible and can capture many nonlinear effects.

For example, suppose we have two scalar variables 1 and xo. The CEF could take the quadratic
form

m(ml, xg) = 2101 + 2202 + x%ﬂg + x§ﬂ4 + 212905 + B¢ (2.18)

This equation is quadratic in the regressors (x1,x2) yet linear in the coefficients 8 = (51, ..., 8s)’.
We will descriptively call (2.18) a quadratic CEF, and yet (2.18) is also a linear CEF in the sense
of being linear in the coefficients. The key is to understand that (2.18) is quadratic in the variables
(1, x2) yet linear in the coefficients 3.

To simplify the expression, we define the transformations xg = x%, T4 = ZL‘%, T5 = X122, and
x¢ = 1, and redefine the regressor vector as ¢ = (1, ..., x¢) . With this redefinition,

m(z1,22) = '3

which is linear in 8. For most econometric purposes (estimation and inference on (3) the linearity
in @ is all that is important.

An exception is in the analysis of regression derivatives. In nonlinear equations such as (2.18),
the regression derivative should be defined with respect to the original variables, not with respect
to the transformed variables. Thus

0
Ere m(z1,x2) = 1 + 22153 + 2205
1

0
8—m(w1, x2) = B2 + 2x24 + 155.
€2

We see that in the model (2.18), the regression derivatives are not a simple coefficient, but are
functions of several coefficients plus the levels of (z1 x2). Consequently it is difficult to interpret
the coefficients individually. It is more useful to interpret them as a group.

We typically call 5 the interaction effect. Notice that it appears in both regression derivative
equations, and has a symmetric interpretation in each. If 85 > 0 then the regression derivative
with respect to z1 is increasing in the level of zo (and the regression derivative with respect to zo
is increasing in the level of x1), while if S5 < 0 the reverse is true.

2.17 Linear CEF with Dummy Variables

When all regressors take a finite set of values, it turns out the CEF can be written as a linear
function of regressors.

This simplest example is a binary variable, which takes only two distinct values. For example,
in most data sets the variable sex takes only the values man and woman (or male and female).
Binary variables are extremely common in econometric applications, and are alternatively called
dummy variables or indicator variables.

Consider the simple case of a single binary regressor. In this case, the conditional mean can
only take two distinct values. For example,

po if  sex=man
E(y | sex) =
p1 if  sex=woman

To facilitate a mathematical treatment, we typically record dummy variables with the values {0, 1}.
For example
{ 0 if sex=man
x] =

1 if sex=woman (2.19)
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Given this notation we can write the conditional mean as a linear function of the dummy variable
1, that is
E(y|z1) = Biz1 + B2

where 81 = pu1 — po and B2 = pg. In this simple regression equation the intercept s is equal to
the conditional mean of y for the ;1 = 0 subpopulation (men) and the slope 1 is equal to the
difference in the conditional means between the two subpopulations.

Equivalently, we could have defined x1 as

(2.20)

1 if sex=man
T = .
0 if sex=woman

In this case, the regression intercept is the mean for women (rather than for men) and the regression
slope has switched signs. The two regressions are equivalent but the interpretation of the coefficients
has changed. Therefore it is always important to understand the precise definitions of the variables,
and illuminating labels are helpful. For example, labelling x; as “sex” does not help distinguish
between definitions (2.19) and (2.20). Instead, it is better to label z; as “women” or “female” if
definition (2.19) is used, or as “men” or “male” if (2.20) is used.

Now suppose we have two dummy variables z; and xo. For example, o = 1 if the person is
married, else zo = 0. The conditional mean given x; and xo takes at most four possible values:

poo if 1 =0and zo =0 (unmarried men)
por if x1=0and zo =1 (married men)
p1o if 1 =1and x9 =0 (unmarried women)
p11 if zp=1and zo =1 (married women)

E(y | $17$2) =

In this case we can write the conditional mean as a linear function of z1, x2 and their product
Tr1x9
E(y | #1,22) = B171 + Baz2 + P3z172 + P4

where 81 = p10 — poo, B2 = Ho1 — poo, 83 = pi11 — H10 — Ho1 + poo, and B4 = pigo.

We can view the coeflicient 1 as the effect of sex on expected log wages for unmarried wage
earners, the coefficient By as the effect of marriage on expected log wages for men wage earners, and
the coefficient B3 as the difference between the effects of marriage on expected log wages among
women and among men. Alternatively, it can also be interpreted as the difference between the effects
of sex on expected log wages among married and non-married wage earners. Both interpretations
are equally valid. We often describe (33 as measuring the interaction between the two dummy
variables, or the interaction effect, and describe 53 = 0 as the case when the interaction effect is
ZEro.

In this setting we can see that the CEF is linear in the three variables (z1, 22, x122). Thus to
put the model in the framework of Section 2.15, we would define the regressor x3 = x1x2 and the
regressor vector as

gl

T2

T3
1

€Tr =

So even though we started with only 2 dummy variables, the number of regressors (including the
intercept) is 4.

If there are 3 dummy variables x1, z2, 23, then E (y | 1,2, x3) takes at most 23 = 8 distinct
values and can be written as the linear function

E(y | 1,22, 23) = f1z1 + Poxa + P33 + Pax122 + Psx123 + Peraxs + frrizaxs + Fs

which has eight regressors including the intercept.
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In general, if there are p dummy variables x1,...,z, then the CEF E(y | z1, 22, ...,xp) takes
at most 2P distinct values, and can be written as a linear function of the 2P regressors including
Z1,®2, ..., and all cross-products. This might be excessive in practice if p is modestly large. In
the next section we will discuss projection approximations which yield more parsimonious parame-
terizations.

We started this section by saying that the conditional mean is linear whenever all regressors
take only a finite number of possible values. How can we see this? Take a categorical variable,
such as race. For example, we earlier divided race into three categories. We can record categorical
variables using numbers to indicate each category, for example

1 if white
z3 =< 2 if black
3 if other

When doing so, the values of £3 have no meaning in terms of magnitude, they simply indicate the
relevant category.

When the regressor is categorical the conditional mean of y given x3 takes a distinct value for
each possibility:

M1 if Ir3 — 1
E(y|zs) =< po if xz3=2
M3 if T3 = 3

This is not a linear function of x3 itself, but it can be made a linear function by constructing
dummy variables for two of the three categories. For example

1 it black
4= 0 if not black

S 1 if other
=) 0 if not other

In this case, the categorical variable z3 is equivalent to the pair of dummy variables (x4, x5). The
explicit relationship is
1 if z4=0and 25=0
r3=< 2 if zgy=1land z5=0
3 if xgy=0andzs=1

Given these transformations, we can write the conditional mean of y as a linear function of x4 and
T5
E(y|z3) =E(y | z4,75) = Brza + P25 + Bs.

We can write the CEF as either E (y | x3) or E (y | x4, x5) (they are equivalent), but it is only linear
as a function of z4 and x5.

This setting is similar to the case of two dummy variables, with the difference that we have not
included the interaction term z4xs. This is because the event {z4 = 1 and z5 = 1} is empty by
construction, so z4x5 = 0 by definition.

2.18 Best Linear Predictor

While the conditional mean m(z) = E(y | @) is the best predictor of y among all functions
of @, its functional form is typically unknown. In particular, the linear CEF model is empirically
unlikely to be accurate unless x is discrete and low-dimensional so all interactions are included.
Consequently in most cases it is more realistic to view the linear specification (2.16) as an approx-
imation. In this section we derive a specific approximation with a simple interpretation.
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Theorem 2.11.1 showed that the conditional mean m (x) is the best predictor in the sense
that it has the lowest mean squared error among all predictors. By extension, we can define an
approximation to the CEF by the linear function with the lowest mean squared error among all
linear predictors.

For this derivation we require the following regularity condition.

Assumption 2.18.1
1. E (yz) < 00.
2. B|lz|? < co.

3. Quz = E(za') is positive definite.

In Assumption 2.18.1.2 we use the notation |z| = (:v’:c)l/2

the vector .

The first two parts of Assumption 2.18.1 imply that the variables y and x have finite means,
variances, and covariances. The third part of the assumption is more technical, and its role will
become apparent shortly. It is equivalent to imposing that the columns of the matrix Qg = E (zx')
are linearly independent, or that the matrix is invertible.

A linear predictor for y is a function of the form z/8 for some 8 € R¥. The mean squared
prediction error is

to denote the Euclidean length of

SB) =E((y-'8)").

The best linear predictor of y given x, written P(y | ), is found by selecting the vector 3 to
minimize S(3).

Definition 2.18.1 The Best Linear Predictor of y given x is

Py | @) = '8

where 3 minimizes the mean squared prediction error
2
S8 =E((y-=8)").

The minimizer

B = argmin S(b) (2.21)
beRk

is called the Linear Projection Coefficient.

We now calculate an explicit expression for its value. The mean squared prediction error can
be written out as a quadratic function of 3 :

S(B) =E (%) — 20'E (zy) + BE(za’) 8.

The quadratic structure of S(3) means that we can solve explicitly for the minimizer. The first-
order condition for minimization (from Appendix A.15) is

0

0= %S(ﬁ) = —2E (zy) + 2E (z2') B. (2.22)
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Rewriting (2.22) as
2E (zy) = 2E (zz') B
and dividing by 2, this equation takes the form
Q:cy = Qzz0 (2.23)

where Q,, = E(zy) is k x 1 and Qgz = E(z’) is k x k. The solution is found by inverting the
matrix Qgg, and is written

B = QuzQuy
or
B=(E (azaz'))fl E(zy). (2.24)
It is worth taking the time to understand the notation involved in the expression (2.24). Qg is a

B(zy)
E(xza’)

or E(zy) (E(za'))”" are incoherent and incorrect. We also can now see the role of Assumption
2.18.1.3. Tt is equivalent to assuming that Q,, has an inverse Q.. which is necessary for the
normal equations (2.23) to have a solution or equivalently for (2.24) to be uniquely defined. In the
absence of Assumption 2.18.1.3 there could be multiple solutions to the equation (2.23).

We now have an explicit expression for the best linear predictor:

Ply|z) = (E (mm’))_lE(my).

k x k matrix and Qg is a k x 1 column vector. Therefore, alternative expressions such as

This expression is also referred to as the linear projection of y on x.
The projection error is

e=y—z'p. (2.25)

This equals the error (2.11) from the regression equation when (and only when) the conditional
mean is linear in x, otherwise they are distinct.
Rewriting, we obtain a decomposition of y into linear predictor and error

y=2z'B+e (2.26)

In general we call equation (2.26) or '3 the best linear predictor of y given x, or the linear
projection of y on . Equation (2.26) is also often called the regression of y on x but this can
sometimes be confusing as economists use the term regression in many contexts. (Recall that we
said in Section 2.15 that the linear CEF model is also called the linear regression model.)

An important property of the projection error e is

E (ze) = 0. (2.27)

To see this, using the definitions (2.25) and (2.24) and the matrix properties AA™! = I and
Ia=a,

E(ze) =E (z (y — 2'8))

=E(zy) — E(z2') (E(zz'))  E(zy)
=0 (2.28)

as claimed.
Equation (2.27) is a set of k equations, one for each regressor. In other words, (2.27) is equivalent
to
E(zje) =0 (2.29)
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for j =1,....,k. As in (2.15), the regressor vector x typically contains a constant, e.g. xx = 1. In
this case (2.29) for j = k is the same as
E(e) =0. (2.30)

Thus the projection error has a mean of zero when the regressor vector contains a constant. (When
x does not have a constant, (2.30) is not guaranteed. As it is desirable for e to have a zero mean,
this is a good reason to always include a constant in any regression model.)

It is also useful to observe that since cov(z;,e) = E(zje) — E(x;)E(e), then (2.29)-(2.30)
together imply that the variables z; and e are uncorrelated.

This completes the derivation of the model. We summarize some of the most important prop-
erties.

Theorem 2.18.1 Properties of Linear Projection Model
Under Assumption 2.18.1,

1. The moments E(zx') and E (zy) exist with finite elements.

2. The Linear Projection Coefficient (2.21) exists, is unique, and equals
B=(E (mm’))_lE(my) :
3. The best linear predictor of y given x is
Ply|z)=2 (E (mm’))_lE(my) i
4. The projection error e =y — '3 exists and satisfies
E (e?) < o0

and
E (ze) = 0.

5. If © contains an constant, then

E(e) = 0.

6. IfEly|" < 0o and B ||z||" < oo for r > 2 then Ele|” < oo.

A complete proof of Theorem 2.18.1 is given in Section 2.34.

It is useful to reflect on the generality of Theorem 2.18.1. The only restriction is Assumption
2.18.1. Thus for any random variables (y, ) with finite variances we can define a linear equation
(2.26) with the properties listed in Theorem 2.18.1. Stronger assumptions (such as the linear CEF
model) are not necessary. In this sense the linear model (2.26) exists quite generally. However,
it is important not to misinterpret the generality of this statement. The linear equation (2.26) is
defined as the best linear predictor. It is not necessarily a conditional mean, nor a parameter of a
structural or causal economic model.
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Linear Projection Model
y==2x'8+e.
E(xze) =0
-1
B=(E(zz')) E(xy)

We illustrate projection using three log wage equations introduced in earlier sections.

For our first example, we consider a model with the two dummy variables for sex and race
similar to Table 2.1. As we learned in Section 2.17, the entries in this table can be equivalently
expressed by a linear CEF. For simplicity, let’s consider the CEF of log(wage) as a function of
Black and Female.

E(log(wage) | Black, Female) = —0.20Black — 0.24Female + 0.10Black x Female + 3.06. (2.31)

This is a CEF as the variables are binary and all interactions are included.
Now consider a simpler model omitting the interaction effect. This is the linear projection on
the variables Black and Female

P(log(wage) | Black, Female) = —0.15Black — 0.23Female + 3.06. (2.32)

What is the difference? The full CEF (2.31) shows that the race gap is differentiated by sex: it
is 20% for black men (relative to non-black men) and 10% for black women (relative to non-black
women). The projection model (2.32) simplifies this analysis, calculating an average 15% wage gap
for blacks, ignoring the role of sex. Notice that this is despite the fact that the sex variable is
included in (2.32).

Log Dollars per Hour

4 6 8 10 12 14 16 18 20

Years of Education
Figure 2.8: Projections of log(wage) onto Education

For our second example we consider the CEF of log wages as a function of years of education
for white men which was illustrated in Figure 2.5 and is repeated in Figure 2.8. Superimposed on
the figure are two projections. The first (given by the dashed line) is the linear projection of log
wages on years of education

P(log(wage) | Education) = 0.11 Education + 1.5.
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This simple equation indicates an average 11% increase in wages for every year of education. An
inspection of the Figure shows that this approximation works well for education> 9, but under-
predicts for individuals with lower levels of education. To correct this imbalance we use a linear
spline equation which allows different rates of return above and below 9 years of education:

P (log(wage) | Education, (Education — 9) x 1 (Education >9))
= 0.02Education + 0.10 x (Education — 9) x 1 (Education > 9) + 2.3.

This equation is displayed in Figure 2.8 using the solid line, and appears to fit much better. It
indicates a 2% increase in mean wages for every year of education below 9, and a 12% increase in
mean wages for every year of education above 9. It is still an approximation to the conditional
mean but it appears to be fairly reasonable.

4.0

—— Conditional Mean
-—- Linear Projection
- - Quadratic Projection

3.0
|

Log Dollars per Hour

25
|

2.0
|

T T T T T T
0 10 20 30 40 50

Labor Market Experience (Years)
Figure 2.9: Linear and Quadratic Projections of log(wage) onto Experience

For our third example we take the CEF of log wages as a function of years of experience for
white men with 12 years of education, which was illustrated in Figure 2.6 and is repeated as the
solid line in Figure 2.9. Superimposed on the figure are two projections. The first (given by the
dot-dashed line) is the linear projection on experience

P(log(wage) | Experience) = 0.011 Experience + 2.5
and the second (given by the dashed line) is the linear projection on experience and its square
P(log(wage) | Experience) = 0.046 Experience — 0.0007 Ezperience® + 2.3.

It is fairly clear from an examination of Figure 2.9 that the first linear projection is a poor approx-
imation. It over-predicts wages for young and old workers, and under-predicts for the rest. Most
importantly, it misses the strong downturn in expected wages for older wage-earners. The second
projection fits much better. We can call this equation a quadratic projection since the function
is quadratic in experience.
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Invertibility and Identification

The linear projection coefficient 8 = (B (za')) ' E (zy) exists and is
unique as long as the k x k matrix Qgzz = E (xa’) is invertible. The matrix
Qz2 is sometimes called the design matrix, as in experimental settings
the researcher is able to control Q. by manipulating the distribution of
the regressors x.

Observe that for any non-zero o € R¥,

o' Qura =E (a’:z::z:'a) =E (a’a:)2 >0

S0 Qg2 by construction is positive semi-definite. The assumption that
it is positive definite means that this is a strict inequality, E (a/z)* >
0. Equivalently, there cannot exist a non-zero vector « such that o’z =
0 identically. This occurs when redundant variables are included in .
Positive semi-definite matrices are invertible if and only if they are positive
definite. When Qg is invertible then 8 = (E (z2')) ' E (zy) exists and is
uniquely defined. In other words, in order for 3 to be uniquely defined, we
must exclude the degenerate situation of redundant variables.

Theorem 2.18.1 shows that the linear projection coefficient 3 is iden-
tified (uniquely determined) under Assumption 2.18.1. The key is invert-
ibility of Qgs. Otherwise, there is no unique solution to the equation

When Qg is not invertible there are multiple solutions to (2.33), all of
which yield an equivalent best linear predictor ’3. In this case the coeffi-
cient 3 is not identified as it does not have a unique value. Even so, the
best linear predictor '3 still identified. One solution is to set

B=(E(zz')) E(zy)

where A~ denotes the generalized inverse of A (see Appendix A.6).

2.19 Linear Predictor Error Variance

As in the CEF model, we define the error variance as
o2 =F (62) .

Setting Qyy = E (y°) and Q,, = E (y') we can write 02 as

o2 =E ((y — :c’,B)Q)
=E (y*) - 2E (y2') B+ BE (za') B
= Quy — 2Qu0 Qs Quy + Qi Qs Qv Qo Quy
=Qyy — Que Qra Qzy

de
L Q. (2.34)

One useful feature of this formula is that it shows that Qyya = Qyy — Qg Q;i Qz, equals the
variance of the error from the linear projection of y on .
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2.20 Regression Coefficients

Sometimes it is useful to separate the constant from the other regressors, and write the linear
projection equation in the format
y=x'B+a+e (2.35)

where « is the intercept and x does not contain a constant.
Taking expectations of this equation, we find

E (y) :E(:B’B) +E(a)+E(e)

or
Ky = lJ/,IB T

where p1y, = E(y) and p, = E (=), since E(e) = 0 from (2.30). (While  does not contain a
constant, the equation does so (2.30) still applies.) Rearranging, we find

Q= by — /"f;c/B
Subtracting this equation from (2.35) we find
Y— Uy = (iB - p’w)/ﬁ +e, (236)

a linear equation between the centered variables y — p1y, and & — p,,. (They are centered at their
means, so are mean-zero random variables.) Because  — p,, is uncorrelated with e, (2.36) is also
a linear projection, thus by the formula for the linear projection model,

B=(E(z—p) (1)) "Bz —pg) (Y — 1))

= var (2) ' cov (z, )

a function only of the covariances!! of & and y.

Theorem 2.20.1 In the linear projection model
y=xz'B+a+te,

then
0= py — 13 (2.37)

and
B =var (z) *cov(z,y). (2.38)

2.21 Regression Sub-Vectors

Let the regressors be partitioned as

z = < :; ) . (2.39)

"'The covariance matrix between vectors = and z is cov(x,z) = E ((x — Ex) (z — Ez)’) . The (co)variance
matrix of the vector « is var (z) = cov (z,z) = E ((x — Ez) (x — Bx)’) .
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We can write the projection of y on x as

y=x'B+e
= 21B + 75y + ¢ (2.40)
E (xze) = 0.

In this section we derive formula for the sub-vectors 8, and 3,.
Partition Qg conformably with @

Qu = [ Qu Qp ] _ [ E(ziz}) E(z125) ]
o Q1 Qo

and similarly Q,

o-[%]-[33]

Q2y E(mﬂ/)
By the partitioned matrix inversion formula (A.4)
-1 - _ _
Q! — [ Qu Qp } def [ Q; QZ } _ [ _9111-2 . _Q111~29112Q221 } ' (2.41)
o Q1 Qo Q" Q —Q2.1Q21Qn; Q221

def

where Q115 = Q11 — Q12Q% Qg and Qoyy

13 ( 51 >
Q11 2 Qll 2Q12 Q22 :| |: Qly :|
Q22 1 Q21 Qll Q22 1 Q2y

( Q112 Qly Q12Q22 Q2y) >

def

Q2 — Q2 Q17 Qpy. Thus

Q1 (Qy — Qu Qi Quy)

Q11 2Q1y 2 ) )
Q22 1Q2y 1

We have shown that

B = Qf11~2Q1y-2
52 = Q2_21-1Q2y~1'

2.22 Coefficient Decomposition

In the previous section we derived formulae for the coefficient sub-vectors 3 and 35. We now use
these formulae to give a useful interpretation of the coefficients in terms of an iterated projection.
Take equation (2.40) for the case dim(z1) = 1 so that 51 € R.

y =x101 + x50, +e. (2.42)
Now consider the projection of x1 on x5 :

T1 = ®Yyye + U
E (il:gul) =0.

From (2.24) and (2.34), ¥5 = Qy Qo1 and Eu? = Q1.5 = Q11 — Q15Qys Qs We can also calculate
that

E(uy) =E ((fBl - ’7/25132) y) =E(71y) - ’7’2E($2y) = Qly - Q12Q521 sz = Q1y~2'
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We have found that

fr = Q1_1142Q1y-2 =

the coeflicient from the simple regression of y on u;.

What this means is that in the multivariate projection equation (2.42), the coefficient /31 equals
the projection coefficient from a regression of y on uj, the error from a projection of z; on the
other regressors xs. The error u; can be thought of as the component of 1 which is not linearly
explained by the other regressors. Thus the coefficient 3; equals the linear effect of x1 on y, after
stripping out the effects of the other variables.

There was nothing special in the choice of the variable x1. This derivation applies symmetrically
to all coefficients in a linear projection. Each coefficient equals the simple regression of y on the
error from a projection of that regressor on all the other regressors. Each coefficient equals the
linear effect of that variable on y, after linearly controlling for all the other regressors.

2.23 Omitted Variable Bias

Again, let the regressors be partitioned as in (2.39). Consider the projection of y on x; only.
Perhaps this is done because the variables a2 are not observed. This is the equation

y=zi71tu (2.43)
E (mlu) =0.

Notice that we have written the coefficient on x; as «y; rather than 3; and the error as u rather

than e. This is because (2.43) is different than (2.40). Goldberger (1991) introduced the catchy

labels long regression for (2.40) and short regression for (2.43) to emphasize the distinction.
Typically, 3; # v;, except in special cases. To see this, we calculate

71 = (B (212})) " B(21y)
= (B (z121)) "B (21 (1) + 258, + ¢))
=B+ (B (a12})) " B (2125) B
= B4 + 128,

where I'1o = Ql_l1 Q5 is the coefficient matrix from a projection of x2 on x;, where we use the
notation from Section 2.21.

Observe that v; = By + I'198y # B unless I'yy = 0 or 35 = 0. Thus the short and long
regressions have different coefficients on x;. They are the same only under one of two conditions.
First, if the projection of &5 on @1 yields a set of zero coefficients (they are uncorrelated), or second,
if the coefficient on x2 in (2.40) is zero. In general, the coefficient in (2.43) is 7 rather than 3.
The difference I'1235 between v, and 3, is known as omitted variable bias. It is the consequence
of omission of a relevant correlated variable.

To avoid omitted variables bias the standard advice is to include all potentially relevant variables
in estimated models. By construction, the general model will be free of such bias. Unfortunately
in many cases it is not feasible to completely follow this advice as many desired variables are
not observed. In this case, the possibility of omitted variables bias should be acknowledged and
discussed in the course of an empirical investigation.

For example, suppose y is log wages, x1 is education, and zs is intellectual ability. It seems
reasonable to suppose that education and intellectual ability are positively correlated (highly able
individuals attain higher levels of education) which means I'1s > 0. It also seems reasonable to
suppose that conditional on education, individuals with higher intelligence will earn higher wages
on average, so that o > 0. This implies that I'1982 > 0 and v = (1 4+ I'1282 > (1. Therefore,
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it seems reasonable to expect that in a regression of wages on education with ability omitted, the
coefficient on education is higher than in a regression where ability is included. In other words,
in this context the omitted variable biases the regression coefficient upwards. It is possible, for
example, that 81 = 0 so that education has no direct effect on wages yet v = I'1282 > 0 meaning
that the regression coefficient on education alone is positive, but is a consequence of the unmodeled
correlation between education and intellectual ability.

Unfortunately the above simple characterization of omitted variable bias does not immediately
carry over to more complicated settings, as discovered by Luca, Magnus, and Peracchi (2017). For
example, suppose we compare three nested projections

y=xiv, +us
Yy = m’lél + 23/252 =+ U9
y =z B + x50, + 303 +e.

We can call them the short, medium, and long regressions. Suppose that the parameter of interest
is B in the long regression. We are interested in the consequences of omitting x3 when estimating
the medium regression, and of omitting both x2 and x3 when estimating the short regression. In
particular we are interested in the question: Is it better to estimate the short or medium regression,
given that both omit x3? Intuition suggests that the medium regression should be “less biased”
but it is worth investigating in greater detail. By similar calculations to those above, we find that

¥1 =B + 128, +T'1383
01 = B1 + 132085

where T13.2 = Q13 Qy3.0 using the notation from Section 2.21.

We see that the bias in the short regression coefficient is I'1235 + I'1385 which depends on both
B, and B33, while that for the medium regression coefficient is I'13.235 which only depends on 3;.
So the bias for the medium regression is less complicated, and intuitively seems more likely to be
smaller than that of the short regression. However it is impossible to strictly rank the two. It is
quite possible that ~y; is less biased than §;. Thus as a general rule it is strictly impossible to state
that estimation of the medium regression will be less biased than estimation of the short regression.

2.24 Best Linear Approximation

There are alternative ways we could construct a linear approximation '3 to the conditional
mean m(x). In this section we show that one alternative approach turns out to yield the same
answer as the best linear predictor.

We start by defining the mean-square approximation error of '3 to m(x) as the expected
squared difference between x’3 and the conditional mean m(x)

d(B) = E ((m(z) - 2'8)°) (2.44)

The function d(3) is a measure of the deviation of '3 from m(x). If the two functions are identical

then d(8) = 0, otherwise d(3) > 0. We can also view the mean-square difference d(3) as a density-
. . / 2 .

weighted average of the function (m(x) — ’8)", since

48 = [ (m(z) =B fo(a)de

where fz(x) is the marginal density of .
We can then define the best linear approximation to the conditional m(x) as the function '3
obtained by selecting 3 to minimize d(03) :

B = argmin d(b). (2.45)
beRk
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Similar to the best linear predictor we are measuring accuracy by expected squared error. The
difference is that the best linear predictor (2.21) selects 3 to minimize the expected squared predic-
tion error, while the best linear approximation (2.45) selects 3 to minimize the expected squared
approximation error.

Despite the different definitions, it turns out that the best linear predictor and the best linear
approximation are identical. By the same steps as in (2.18) plus an application of conditional
expectations we can find that

B=(E(zz')) " E(zm(z)) (2.46)
= (B (za')) " E(xy) (2.47)

(see Exercise 2.19). Thus (2.45) equals (2.21). We conclude that the definition (2.45) can be viewed
as an alternative motivation for the linear projection coefficient.

2.25 Regression to the Mean

The term regression originated in an influential paper by Francis Galton (1886), where he
examined the joint distribution of the stature (height) of parents and children. Effectively, he was
estimating the conditional mean of children’s height given their parent’s height. Galton discovered
that this conditional mean was approximately linear with a slope of 2/3. This implies that on
average a child’s height is more mediocre (average) than his or her parent’s height. Galton called
this phenomenon regression to the mean, and the label regression has stuck to this day to
describe most conditional relationships.

One of Galton’s fundamental insights was to recognize that if the marginal distributions of y
and z are the same (e.g. the heights of children and parents in a stable environment) then the
regression slope in a linear projection is always less than one.

To be more precise, take the simple linear projection

y=zf+a+e (2.48)

where y equals the height of the child and x equals the height of the parent. Assume that y and x
have the same mean, so that s, = p; = p. Then from (2.37)

a=(1=P8)p

so we can write the linear projection (2.48) as

Pyl|z)=0-08)p+xp.

This shows that the projected height of the child is a weighted average of the population average
height p and the parent’s height x, with the weight equal to the regression slope 5. When the
height distribution is stable across generations, so that var(y) = var(z), then this slope is the
simple correlation of y and z. Using (2.38)

= cov (z,y)

var(@) = corr(x, y).

By the properties of correlation (e.g. equation (??) in the Appendix), —1 < corr(z,y) < 1, with
corr(z,y) = 1 only in the degenerate case y = x. Thus if we exclude degeneracy, [ is strictly less
than 1.

This means that on average a child’s height is more mediocre (closer to the population average)
than the parent’s.



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 42

Sir Francis Galton

Sir Francis Galton (1822-1911) of England was one of the leading figures in
late 19th century statistics. In addition to inventing the concept of regres-
sion, he is credited with introducing the concepts of correlation, the standard
deviation, and the bivariate normal distribution. His work on heredity made
a significant intellectual advance by examing the joint distributions of ob-
servables, allowing the application of the tools of mathematical statistics to
the social sciences.

A common error — known as the regression fallacy — is to infer from 8 < 1 that the population
is converging, meaning that its variance is declining towards zero. This is a fallacy because we
derived the implication 5 < 1 under the assumption of constant means and variances. So certainly
B < 1 does not imply that the variance y is less than than the variance of x.

Another way of seeing this is to examine the conditions for convergence in the context of equation
(2.48). Since = and e are uncorrelated, it follows that

var(y) = 8% var(z) + var(e).

Then var(y) < var(z) if and only if
var(e)

B2 <1—

var(z)

which is not implied by the simple condition || < 1.

The regression fallacy arises in related empirical situations. Suppose you sort families into groups
by the heights of the parents, and then plot the average heights of each subsequent generation over
time. If the population is stable, the regression property implies that the plots lines will converge
— children’s height will be more average than their parents. The regression fallacy is to incorrectly
conclude that the population is converging. A message to be learned from this example is that such
plots are misleading for inferences about convergence.

The regression fallacy is subtle. It is easy for intelligent economists to succumb to its temptation.
A famous example is The Triumph of Mediocrity in Business by Horace Secrist, published in 1933.
In this book, Secrist carefully and with great detail documented that in a sample of department
stores over 1920-1930, when he divided the stores into groups based on 1920-1921 profits, and
plotted the average profits of these groups for the subsequent 10 years, he found clear and persuasive
evidence for convergence “toward mediocrity”. Of course, there was no discovery — regression to
the mean is a necessary feature of stable distributions.

2.26 Reverse Regression

Galton noticed another interesting feature of the bivariate distribution. There is nothing special
about a regression of y on x. We can also regress x on y. (In his heredity example this is the best
linear predictor of the height of parents given the height of their children.) This regression takes
the form

r=yB" +a" +e€". (2.49)

This is sometimes called the reverse regression. In this equation, the coefficients a*, * and
error e* are defined by linear projection. In a stable population we find that

pB* = corr(z,y) = 8

af=(1-p)p=a
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which are exactly the same as in the projection of y on x! The intercept and slope have exactly the
same values in the forward and reverse projections!

While this algebraic discovery is quite simple, it is counter-intuitive. Instead, a common yet
mistaken guess for the form of the reverse regression is to take the equation (2.48), divide through
by 8 and rewrite to find the equation

_____ . (2.50)

suggesting that the projection of z on y should have a slope coefficient of 1/4 instead of 3, and
intercept of —a// rather than a. What went wrong? Equation (2.50) is perfectly valid, because
it is a simple manipulation of the valid equation (2.48). The trouble is that (2.50) is neither a
CEF nor a linear projection. Inverting a projection (or CEF) does not yield a projection (or CEF).
Instead, (2.49) is a valid projection, not (2.50).

In any event, Galton’s finding was that when the variables are standardized, the slope in both
projections (y on x, and x and y) equals the correlation, and both equations exhibit regression to
the mean. It is not a causal relation, but a natural feature of all joint distributions.

2.27 Limitations of the Best Linear Projection

Let’s compare the linear projection and linear CEF models.

From Theorem 2.8.1.4 we know that the CEF error has the property E (xe) = 0. Thus a linear
CEF is the best linear projection. However, the converse is not true as the projection error does not
necessarily satisfy E (e | ) = 0. Furthermore, the linear projection may be a poor approximation
to the CEF.

To see these points in a simple example, suppose that the true process is y = = + z? with
x ~ N(0,1). In this case the true CEF is m(z) = z + 2? and there is no error. Now consider the
linear projection of y on x and a constant, namely the model y = Sz + « + u. Since x ~ N(0, 1)
then z and z? are uncorrelated and the linear projection takes the form P (y | ) = = + 1. This is
quite different from the true CEF m(z) = = + 2. The projection error equals e = x? — 1, which is
a deterministic function of x, yet is uncorrelated with x. We see in this example that a projection
error need not be a CEF error, and a linear projection can be a poor approximation to the CEF.

Another defect of linear projection is that it is sensitive to the marginal distribution of the
regressors when the conditional mean is non-linear. We illustrate the issue in Figure 2.10 for a
constructed!? joint distribution of y and =. The solid line is the non-linear CEF of y given x. The
data are divided in two groups — Group 1 and Group 2 — which have different marginal distributions
for the regressor z, and Group 1 has a lower mean value of x than Group 2. The separate linear
projections of y on z for these two groups are displayed in the Figure by the dashed lines. These
two projections are distinct approximations to the CEF. A defect with linear projection is that it
leads to the incorrect conclusion that the effect of x on y is different for individuals in the two
groups. This conclusion is incorrect because in fact there is no difference in the conditional mean
function. The apparent difference is a by-product of a linear approximation to a nonlinear mean,
combined with different marginal distributions for the conditioning variables.

2.28 Random Coefficient Model

A model which is notationally similar to but conceptually distinct from the linear CEF model
is the linear random coefficient model. It takes the form

y=a'n

"2The « in Group 1 are N(2,1) and those in Group 2 are N(4, 1), and the conditional distribution of y given = is
N(m(z), 1) where m(z) = 2z — 22 /6.
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Figure 2.10: Conditional Mean and Two Linear Projections

where the individual-specific coefficient 1 is random and independent of x. For example, if x is
years of schooling and y is log wages, then 7 is the individual-specific returns to schooling. If
a person obtains an extra year of schooling, 1 is the actual change in their wage. The random
coefficient model allows the returns to schooling to vary in the population. Some individuals might
have a high return to education (a high 1) and others a low return, possibly 0, or even negative.

In the linear CEF model the regressor coefficient equals the regression derivative — the change
in the conditional mean due to a change in the regressors, 3 = Vm(x). This is not the effect on a
given individual, it is the effect on the population average. In contrast, in the random coefficient
model, the random vector n = V (2'n) is the true causal effect — the change in the response variable
y itself due to a change in the regressors.

It is interesting, however, to discover that the linear random coefficient model implies a linear
CEF. To see this, let 8 and 3 denote the mean and covariance matrix of n :

B =E(n)
3 = var (n)

and then decompose the random coefficient as
n=pB+u

where u is distributed independently of & with mean zero and covariance matrix 3. Then we can
write

E(y | z) = 2'E(n | z) = 2'E(n) = 28

so the CEF is linear in «, and the coefficients 3 equal the mean of the random coefficient 7.
We can thus write the equation as a linear CEF

y=2'B+e (2.51)
where e = ’u and u = nn — 3. The error is conditionally mean zero:

E(e | z) = 0.
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Furthermore

var (e | ) = &’ var (n)z

=3z

so the error is conditionally heteroskedastic with its variance a quadratic function of .

Theorem 2.28.1 In the linear random coefficient model y = x'n with n
independent of @, B ||z||* < co, and E||n||* < co, then

E(y|=z) =28
var (y | ¢) = 2’3z

where B = E(n) and X = var (n).

2.29 Causal Effects

So far we have avoided the concept of causality, yet often the underlying goal of an econometric
analysis is to uncover a causal relationship between variables. It is often of great interest to
understand the causes and effects of decisions, actions, and policies. For example, we may be
interested in the effect of class sizes on test scores, police expenditures on crime rates, climate
change on economic activity, years of schooling on wages, institutional structure on growth, the
effectiveness of rewards on behavior, the consequences of medical procedures for health outcomes,
or any variety of possible causal relationships. In each case, the goal is to understand what is the
actual effect on the outcome y due to a change in the input z. We are not just interested in the
conditional mean or linear projection, we would like to know the actual change.

Two inherent barriers are that the causal effect is typically specific to an individual and that it
is unobserved.

Consider the effect of schooling on wages. The causal effect is the actual difference a person
would receive in wages if we could change their level of education holding all else constant. This
is specific to each individual as their employment outcomes in these two distinct situations is
individual. The causal effect is unobserved because the most we can observe is their actual level
of education and their actual wage, but not the counterfactual wage if their education had been
different.

To be even more specific, suppose that there are two individuals, Jennifer and George, and
both have the possibility of being high-school graduates or college graduates, but both would have
received different wages given their choices. For example, suppose that Jennifer would have earned
$10 an hour as a high-school graduate and $20 an hour as a college graduate while George would
have earned $8 as a high-school graduate and $12 as a college graduate. In this example the causal
effect of schooling is $10 a hour for Jennifer and $4 an hour for George. The causal effects are
specific to the individual and neither causal effect is observed.

A variable 1 can be said to have a causal effect on the response variable y if the latter changes
when all other inputs are held constant. To make this precise we need a mathematical formulation.
We can write a full model for the response variable y as

y = h (21, T2, u) (2.52)

where 1 and xo are the observed variables, u is an ¢ x 1 unobserved random factor, and h is a
functional relationship. This framework, called the potential outcomes framework, includes as
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a special case the random coefficient model (2.28) studied earlier. We define the causal effect of x;
within this model as the change in y due to a change in 1 holding the other variables 2 and u
constant.

Definition 2.29.1 In the model (2.52) the causal effect of x1 on y is
C(z1,z2,u) = Vih(v1, 22, u), (2.53)

the change in y due to a change in x1, holding &2 and u constant.

To understand this concept, imagine taking a single individual. As far as our structural model is
concerned, this person is described by their observables 1 and o and their unobservables u. In a
wage regression the unobservables would include characteristics such as the person’s abilities, skills,
work ethic, interpersonal connections, and preferences. The causal effect of z; (say, education) is
the change in the wage as z; changes, holding constant all other observables and unobservables.

It may be helpful to understand that (2.53) is a definition, and does not necessarily describe
causality in a fundamental or experimental sense. Perhaps it would be more appropriate to label
(2.53) as a structural effect (the effect within the structural model).

Sometimes it is useful to write this relationship as a potential outcome function

y(z1) = h (21, T2, u)

where the notation implies that y(x1) is holding x2 and u constant.

A popular example arises in the analysis of treatment effects with a binary regressor 1. Let 1 =
1 indicate treatment (e.g. a medical procedure) and z; = 0 indicate non-treatment. In this case
y(x1) can be written

y(0) = h (0, z2, w)
y(1) =h(1,z2,u).

In the literature on treatment effects, it is common to refer to y(0) and y(1) as the latent outcomes
associated with non-treatment and treatment, respectively. That is, for a given individual, y(0) is
the health outcome if there is no treatment, and y(1) is the health outcome if there is treatment.
The causal effect of treatment for the individual is the change in their health outcome due to
treatment — the change in y as we hold both x2 and u constant:

C (z2,u) = y(1) — y(0).

This is random (a function of 2 and w) as both potential outcomes y(0) and y(1) are different
across individuals.
In a sample, we cannot observe both outcomes from the same individual, we only observe the

realized value
y(0) if x3=0

y(l) if =z =1.

As the causal effect varies across individuals and is not observable, it cannot be measured on
the individual level. We therefore focus on aggregate causal effects, in particular what is known as
the average causal effect.
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Definition 2.29.2 In the model (2.52) the average causal effect of x;
on y conditional on xo is

ACE(xl,mg) :E(C(:pl,wg,u) ‘ .’L‘1,$2) (2.54)

=/, Vih (z1, 22, u) f(u | z1, z2)du
R

where f(u | x1,x2) is the conditional density of u given x1, Ta.

We can think of the average causal effect ACE(x,x2) as the average effect in the general
population. In our Jennifer & George schooling example given earlier, supposing that half of the
population are Jennifer’s and the other half George’s, then the average causal effect of college is
(10+4)/2 = $7 an hour. This is not the individual causal effect, it is the average of the causal effect
across all individuals in the population. Given data on only educational attainment and wages, the
ACE of $7 is the best we can hope to learn.

When we conduct a regression analysis (that is, consider the regression of observed wages
on educational attainment) we might hope that the regression reveals the average causal effect.
Technically, that the regression derivative (the coefficient on education) equals the ACE. Is this the
case? In other words, what is the relationship between the average causal effect ACE(x;, x2) and
the regression derivative Vim (x1, 2)? Equation (2.52) implies that the CEF is

m(z1, z2) = E(h(z1, 2, u) | x1, T2)

- / h (w1, @2, w) f(u | 21, 32)du,
R

the average causal equation, averaged over the conditional distribution of the unobserved component
Uu.
Applying the marginal effect operator, the regression derivative is

Vlm(xla (BQ) = /[ Vlh (zla o, ’LL) f(u | X1, CCQ)dU
R
+/ h (w1, 22, u) Vi f(u|z1, z2)du
R¢

:ACE(xl,w2)+/ h (01, @2, 1) Vi f(u | 21, @) du. (2.55)
R

Equation (2.55) shows that in general, the regression derivative does not equal the average
causal effect. The difference is the second term on the right-hand-side of (2.55). The regression
derivative and ACE equal in the special case when this term equals zero, which occurs when
Vif(u | z1,22) = 0, that is, when the conditional density of w given (x1, 22) does not depend on
1. When this condition holds then the regression derivative equals the ACE, which means that
regression analysis can be interpreted causally, in the sense that it uncovers average causal effects.

The condition is sufficiently important that it has a special name in the treatment effects
literature.

Definition 2.29.3 Conditional Independence Assumption (CIA).
Conditional on x2, the random wvariables x1 and u are statistically inde-
pendent.
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The CIA implies f(u | 21, 22) = f(u | z2) does not depend on z1, and thus Vi f(u | x1, z2) = 0.
Thus the CIA implies that Vim(x1, 22) = ACE(x1, x2), the regression derivative equals the average
causal effect.

Theorem 2.29.1 In the structural model (2.52), the Conditional Indepen-
dence Assumption implies

V1m<$1, :132) = ACE(.’L‘l, :132)

the regression derivative equals the average causal effect for x1 on y condi-
tional on x9.

This is a fascinating result. It shows that whenever the unobservable is independent of the
treatment variable (after conditioning on appropriate regressors) the regression derivative equals the
average causal effect. In this case, the CEF has causal economic meaning, giving strong justification
to estimation of the CEF. Our derivation also shows the critical role of the CIA. If CIA fails, then
the equality of the regression derivative and ACE fails.

This theorem is quite general. It applies equally to the treatment-effects model where x1 is
binary or to more general settings where x; is continuous.

It is also helpful to understand that the CIA is weaker than full independence of u from the
regressors (z1,x2). The CIA was introduced precisely as a minimal sufficient condition to obtain
the desired result. Full independence implies the CIA and implies that each regression derivative
equals that variable’s average causal effect, but full independence is not necessary in order to
causally interpret a subset of the regressors.

To illustrate, let’s return to our education example involving a population with equal numbers
of Jennifer’s and George’s. Recall that Jennifer earns $10 as a high-school graduate and $20 as a
college graduate (and so has a causal effect of $10) while George earns $8 as a high-school graduate
and $12 as a college graduate (so has a causal effect of $4). Given this information, the average
causal effect of college is $7, which is what we hope to learn from a regression analysis.

Now suppose that while in high school all students take an aptitude test, and if a student gets
a high (H) score he or she goes to college with probability 3/4, and if a student gets a low (L)
score he or she goes to college with probability 1/4. Suppose further that Jennifer’s get an aptitude
score of H with probability 3/4, while George’s get a score of H with probability 1/4. Given this
situation, 62.5% of Jennifer’s will go to college'®, while 37.5% of George’s will go to college!?.

An econometrician who randomly samples 32 individuals and collects data on educational at-
tainment and wages will find the following wage distribution:

$8 $10 $12 $20 Mean
High-School Graduate 10 6 0 0 $8.75
College Graduate 0 0 6 10 $17.00

Let college denote a dummy variable taking the value of 1 for a college graduate, otherwise 0.
Thus the regression of wages on college attendance takes the form

E (wage | college) = 8.25¢college + 8.75.

The coefficient on the college dummy, $8.25, is the regression derivative, and the implied wage effect
of college attendance. But $8.25 overstates the average causal effect of $7. The reason is because

YPr (College|Jennifer) = Pr (College|H) Pr (H|Jennifer) + Pr (College|L) Pr (L|Jennifer) = (3/4)% + (1/4)?
Py (College|George) = Pr (College|H) Pr (H|George) + Pr (College|L) Pr (L|George) = (3/4)(1/4) + (1/4)(3/4)
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the CIA fails. In this model the unobservable w is the individual’s type (Jennifer or George) which
is not independent of the regressor x; (education), since Jennifer is more likely to go to college than
George. Since Jennifer’s causal effect is higher than George’s, the regression derivative overstates
the ACE. The coefficient $8.25 is not the average benefit of college attendance, rather it is the
observed difference in realized wages in a population whose decision to attend college is correlated
with their individual causal effect. At the risk of repeating myself, in this example, $8.25 is the true
regression derivative, it is the difference in average wages between those with a college education and
those without. It is not, however, the average causal effect of college education in the population.

This does not mean that it is impossible to estimate the ACE. The key is conditioning on the
appropriate variables. The CIA says that we need to find a variable x2 such that conditional on
x2, u and z1 (type and education) are independent. In this example a variable which will achieve
this is the aptitude test score. The decision to attend college was based on the test score, not on
an individual’s type. Thus educational attainment and type are independent once we condition on
the test score.

This also alters the ACE. Notice that Definition 2.29.2 is a function of xs (the test score).
Among the students who receive a high test score, 3/4 are Jennifer’s and 1/4 are George’s. Thus
the ACE for students with a score of H is (3/4) x 104 (1/4) x 4 = $8.50. Among the students who
receive a low test score, 1/4 are Jennifer’s and 3/4 are George’s. Thus the ACE for students with
a score of L is (1/4) x 10+ (3/4) x 4 = $5.50. The ACE varies between these two observable groups
(those with high test scores and those with low test scores). Again, we would hope to be able to
learn the ACE from a regression analysis, this time from a regression of wages on education and
test scores.

To see this in the wage distribution, suppose that the econometrician collects data on the
aptitude test score as well as education and wages. Given a random sample of 32 individuals we
would expect to find the following wage distribution:

$8 $10 $12 $20 Mean
High-School Graduate + High Test Score 1 3 0 0 $9.50
College Graduate + High Test Score 0 0 3 9 $18.00
High-School Graduate + Low Test Score 9 3 0 0 $8.50
College Graduate + Low Test Score 0 0 3 1 $14.00

Define the dummy variable highscore which takes the value 1 for students who received a
high test score, else zero. The regression of wages on college attendance and test scores (with
interactions) takes the form

E (wage | college, highscore) = 1.00highscore + 5.50college 4+ 3.00highscore x college + 8.50.

The coefficient on college, $5.50, is the regression derivative of college attendance for those with low
test scores, and the sum of this coefficient with the interaction coefficient, $8.50, is the regression
derivative for college attendance for those with high test scores. These equal the average causal
effect as calculated above. Furthermore, since 1/2 of the population achieves a high test score and
1/2 achieve a low test score, the measured average causal effect in the entire population is $7, which
precisely equals the true value.

In this example, by conditioning on the aptitude test score, the average causal effect of education
on wages can be learned from a regression analysis. What this shows is that by conditioning on the
proper variables, it may be possible to achieve the CIA, in which case regression analysis measures
average causal effects.
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2.30 Expectation: Mathematical Details*

We define the mean or expectation E (y) of a random variable y as follows. If y is discrete
on the set {71, 79,...} then

E(y) =Y 7Priy=m),
j=1

and if y is continuous with density f then

E(y) = /oo yf(y)dy.

We can unify these definitions by writing the expectation as the Lebesgue integral with respect to
the distribution function F

B = [ wF(), (256)
—00
In the event that the integral (2.56) is not finite, separately evaluate the two integrals
b= [ yirw) (2:57)
0
0
I, = —/ ydF(y). (2.58)

If I; = 0o and I < oo then it is typical to define E (y) = co. If I} < oo and s = oo then we define
E (y) = —oo. However, if both I} = co and I = oo then E (y) is undefined. If

WMZ/!WW@=h+b<w

—0o0
then E (y) exists and is finite. In this case it is common to say that the mean E (y) is “well-defined”.
More generally, y has a finite 7** moment if

Ely|" < cc. (2.59)

By Liapunov’s Inequality (B.13), (2.59) implies E |y|® < oo for all 1 < s < r. Thus, for example, if
the fourth moment is finite then the first, second and third moments are also finite, and so is the
3.9t moment.

It is common in econometric theory to assume that the variables, or certain transformations of
the variables, have finite moments of a certain order. How should we interpret this assumption?
How restrictive is it?

One way to visualize the importance is to consider the class of Pareto densities given by

fy)=ay™t,  y>1

The parameter a of the Pareto distribution indexes the rate of decay of the tail of the density.
Larger a means that the tail declines to zero more quickly. See Figure 2.11 below where we plot
the Pareto density for a = 1 and a = 2. The parameter a also determines which moments are finite.
We can calculate that

af Sy dy = if r<a

a—rT

Elyl" =
00 if r>a.
This shows that if y is Pareto distributed with parameter a, then the r** moment of y is finite if

and only if r < a. Higher a means higher finite moments. Equivalently, the faster the tail of the
density declines to zero, the more moments are finite.



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION

2.0

1.5

f(y)

Figure 2.11: Pareto Densities, a =1 and a = 2

This connection between tail decay and finite moments is not limited to the Pareto distribution.

We can make a similar analysis using a tail bound. Suppose that y has density f(y) which satisfies
the bound f(y) < Aly| ™" for some A < 0o and a > 0. Since f(y) is bounded below a scale of a
Pareto density, its tail behavior is similarly bounded. This means that for r < a

oo 1 oo
Bl = [ i< [ fody2a [ytay <1 =2

Thus if the tail of the density declines at the rate |y|_“_1 or faster, then y has finite moments up
to (but not including) a. Broadly speaking, the restriction that y has a finite *” moment means

that the tail of y’s density declines to zero faster than y~"~!. The faster decline of the tail means
that the probability of observing an extreme value of y is a more rare event.

< Q.

We complete this section by adding an alternative representation of expectation in terms of the
distribution function.

Theorem 2.30.1 For any non-negative random variable y

E(y)—/OOOPr(y>u)du

Proof of Theorem 2.30.1: Let F*(z) = Pr(y > z) = 1 — F(x), where F(z) is the distribution
function. By integration by parts

E(y)/Ooode(y)——/Ooode*(y)——[yF*(y)]8°+/OOOF*(y)dy—/OOOPr(y>U)du

as stated. |



CHAPTER 2. CONDITIONAL EXPECTATION AND PROJECTION 52

2.31 Moment Generating and Characteristic Functions™

For a random variable z with distribution F' its moment generating function (MGF) is

M(t) = E(exp (tz)) = /exp(tz)dF(z). (2.60)

This is also known as the Laplace transformation of the density of z. The MGF is a function of
the argument ¢, and is an alternative representation of the distribution F'. It is called the moment
generating function since the r** derivative evaluated at zero is the 7" uncentered moment. Indeed,

MM () =E <% exp(tz)) =E(z"exp (t2))

and thus the 7" derivative at t = 0 is

A major limitation with the MGF is that it does not exist for many random variables. Essen-
tially, existence of the integral (2.60) requires the tail of the density of z to decline exponentially.
This excludes thick-tailed distributions such as the Pareto.

This limitation is removed if we consider the characteristic function (CF) of z, which is
defined as

Clt) = B (exp (it2)) = / expl(itz)dF (2)

where i = v/—1. Like the MGF, the CF is a function of its argument ¢ and is a representation of
the distribution function F. The CF is also known as the Fourier transformation of the density
of z. Unlike the MGF, the CF exists for all random variables and all values of ¢ since exp (itz) =
cos (tz) + isin (¢z) is bounded.

Similarly to the MGF, the rt" derivative of the characteristic function evaluated at zero takes

the simple form
Cc0) =1"E (") (2.61)

when such expectations exist. A further connection is that the r** moment is finite if and only if
C(")(t) is continuous at zero.
For random vectors z with distribution F' we define the multivariate MGF as

M(t) =E (exp (t'z)) = /exp(t’z)dF(z) (2.62)

when it exists. Similarly, we define the multivariate CF as

C(t) =E (exp (it'z)) = /exp(it’z)dF(z).

2.32 Existence and Uniqueness of the Conditional Expectation®

In Sections 2.3 and 2.6 we defined the conditional mean when the conditioning variables x are
discrete and when the variables (y, ) have a joint density. We have explored these cases because
these are the situations where the conditional mean is easiest to describe and understand. However,
the conditional mean exists quite generally without appealing to the properties of either discrete
or continuous random variables.

To justify this claim we now present a deep result from probability theory. What it says is that
the conditional mean exists for all joint distributions (y, ) for which y has a finite mean.
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Theorem 2.32.1 Existence of the Conditional Mean
If E|y| < oo then there exists a function m(x) such that for all sets X for
which Pr (x € X) is defined,

E(l(z € X)y) =E(1l(z € X)m(z)). (2.63)

The function m(x) is almost everywhere unique, in the sense that if h(x)
satisfies (2.63), then there is a set S such that Pr(S) =1 and m(z) = h(x)
for ¢ € S. The function m(x) is called the conditional mean and is
written m(x) =E(y | z).

See, for example, Ash (1972), Theorem 6.3.3.

The conditional mean m(z) defined by (2.63) specializes to (2.7) when (y, ) have a joint density.
The usefulness of definition (2.63) is that Theorem 2.32.1 shows that the conditional mean m(x)
exists for all finite-mean distributions. This definition allows y to be discrete or continuous, for « to
be scalar or vector-valued, and for the components of & to be discrete or continuously distributed.

You may have noticed that Theorem 2.32.1 applies only to sets X for which Pr(x € X)) is
defined. This is a technical issue —measurability — which we largely side-step in this textbook.
Formal probability theory only applies to sets which are measurable — for which probabilities are
defined, as it turns out that not all sets satisfy measurability. This is not a practical concern for
econometrics, so we defer such distinctions for formal theoretical treatments.

2.33 Identification*

A critical and important issue in structural econometric modeling is identification, meaning that
a parameter is uniquely determined by the distribution of the observed variables. It is relatively
straightforward in the context of the unconditional and conditional mean, but it is worthwhile to
introduce and explore the concept at this point for clarity.

Let F' denote the distribution of the observed data, for example the distribution of the pair
(y,x). Let F be a collection of distributions F. Let 6 be a parameter of interest (for example, the
mean E (y)).

Definition 2.33.1 A parameter 6 € R is identified on F if for oll F' € F,
there is a uniquely determined value of 0.

Equivalently, 6 is identified if we can write it as a mapping 0 = g(F') on the set F. The restriction
to the set F is important. Most parameters are identified only on a strict subset of the space of all
distributions.

Take, for example, the mean p = E(y). It is uniquely determined if E |y| < oo, so it is clear
that p is identified for the set F = {F %yl dF(y) < oo}. However, p is also well defined when
it is either positive or negative infinity. Hence, defining I; and I3 as in (2.57) and (2.58), we can
deduce that p is identified on the set F = {F : {I; < oo} U{l2 < c0}}.

Next, consider the conditional mean. Theorem 2.32.1 demonstrates that E |y| < oo is a sufficient
condition for identification.
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Theorem 2.33.1 Identification of the Conditional Mean
If Ely| < oo, the conditional mean m(x) = E(y | ) is identified almost
everywhere.

It might seem as if identification is a general property for parameters, so long as we exclude
degenerate cases. This is true for moments of observed data, but not necessarily for more compli-
cated models. As a case in point, consider the context of censoring. Let y be a random variable
with distribution F. Instead of observing y, we observe y* defined by the censoring rule

= Y ify<r
T ify>r

That is, y* is capped at the value 7. A common example is income surveys, where income responses
are “top-coded”, meaning that incomes above the top code 7 are recorded as the top code. The
observed variable y* has distribution

s | F(u) foru <
F(u)—{ 1 for u > 7.

We are interested in features of the distribution F' not the censored distribution F*. For example,
we are interested in the mean wage p = E (y). The difficulty is that we cannot calculate p from
F* except in the trivial case where there is no censoring Pr(y > 7) = 0. Thus the mean p is not
generically identified from the censored distribution.

A typical solution to the identification problem is to assume a parametric distribution. For
example, let F be the set of normal distributions y ~ N(u,0?). It is possible to show that the
parameters (u, 02) are identified for all F' € F. That is, if we know that the uncensored distribution
is normal, we can uniquely determine the parameters from the censored distribution. This is often
called parametric identification as identification is restricted to a parametric class of distribu-
tions. In modern econometrics this is generally viewed as a second-best solution, as identification
has been achieved only through the use of an arbitrary and unverifiable parametric assumption.

A pessimistic conclusion might be that it is impossible to identify parameters of interest from
censored data without parametric assumptions. Interestingly, this pessimism is unwarranted. It
turns out that we can identify the quantiles q, of F for @ < Pr(y < 7). For example, if 20%
of the distribution is censored, we can identify all quantiles for a € (0,0.8). This is often called
nonparametric identification as the parameters are identified without restriction to a parametric
class.

What we have learned from this little exercise is that in the context of censored data, moments
can only be parametrically identified, while non-censored quantiles are nonparametrically identified.
Part of the message is that a study of identification can help focus attention on what can be learned
from the data distributions available.

2.34 Technical Proofs*

Proof of Theorem 2.7.1: For convenience, assume that the variables have a joint density f (y, x).
Since E (y | @) is a function of the random vector x only, to calculate its expectation we integrate
with respect to the density fz (z) of @, that is

BEW| )= [ Blo) fo(@)ds.
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Substituting in (2.7) and noting that f,, (y|z) fz () = f (y, x) , we find that the above expression

equals
q /Rk </Ryfygc (y|m)dy> fo (m)dm:/Rk/Ryf(y,a:)dydm:E(y)

the unconditional mean of y. |

Proof of Theorem 2.7.2: Again assume that the variables have a joint density. It is useful to
observe that

[y, z1,z2) f (21, 22)
= f Y, L2 | L1 2.64
Flanay) fla) o (264
the density of (y, x2) given x;. Here, we have abused notation and used a single symbol f to denote
the various unconditional and conditional densities to reduce notational clutter.
Note that

[ Wlzr, z2) f (x2|®1) =

E(y | @, x2) = /Ryf (ylz1, 22) dy. (2.65)

Integrating (2.65) with respect to the conditional density of s given @i, and applying (2.64) we
find that

EEy|z,z) | z1) = /sz E(y | 1, x2) f (x2|T1) d22

-/ ( [ v <yra:1,a:2>dy) 1 (@alr) das

:/ /yf (Y1, 2) f (T2|T1) dydx>
RF2
/ /yf (y, x2|z1) dyds
RF2
=E(y|=z1)
as stated. |

Proof of Theorem 2.7.3:
E(g(x)y | z) = /R 0 (@) yfye (Wl2) dy = g () /R yhye (Wlz) dy = g (2)E(y | z)

This is (2.8). Equation (2.10) follows by applying the Simple Law of Iterated Expectations to (2.8).
|

Proof of Theorem 2.8.1. Applying Minkowski’s Inequality (B.12) to e =y — m(x),
(Ble[)/" = By —m(2)[")"" < B[y + B m(@)]")" < o,

where the two parts on the right-hand are finite since E |y|” < oo by assumption and E |m(z)|" < co
by the Conditional Expectation Inequality (B.7). The fact that (E|e|”)*" < oo implies E|e|" <
00. |

Proof of Theorem 2.10.2: The assumption that E (y2) < oo implies that all the conditional
expectations below exist.

Using the law of iterated expectations E(y | 1) = E(E(y | 1, x2) | 1) and the conditional
Jensen’s inequality (B.6),

(B(y | 1))? = (B(E(y | 21,22) | 21))* < B ((B(y | 1, 22))? | 21) -
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Taking unconditional expectations, this implies

B ((B(y | 21)°) <E((B(y | 21.22))°).
Similarly,
E@)’ <E((E@y]21)) <E(By | z1,22))°). (2.66)

The variables y, E(y | 1) and E(y | «1, z2) all have the same mean E (y), so the inequality
(2.66) implies that the variances are ranked monotonically:

0 < var (E(y | 1)) < var (E(y | @1, 22)) - (2.67)
Define e =y —E(y | ) and u = E(y | ) — u so that we have the decomposition
y—p=e+u

Notice E(e | ) = 0 and u is a function of . Thus by the Conditioning Theorem, E(eu) = 0 so e
and u are uncorrelated. It follows that

var (y) = var (e) + var (u) = var (y — E(y | )) + var (E(y | )) . (2.68)

The monotonicity of the variances of the conditional mean (2.67) applied to the variance decom-
position (2.68) implies the reverse monotonicity of the variances of the differences, completing the
proof. |

Proof of Theorem 2.18.1. For part 1, by the Expectation Inequality (B.8), (A.24) and Assump-
tion 2.18.1,

|E (22 || < B [[oa’|| = B (Jl2|?) < oo.

Similarly, using the Expectation Inequality (B.8), the Cauchy-Schwarz Inequality (B.10) and As-
sumption 2.18.1,

B e < B 2] < (B (I=1?)) " (®(62)"* < .

Thus the moments E (zy) and E (zz') are finite and well defined.

For part 2, the coefficient 3 = (E (z2')) ' E (zy) is well defined since (B (zz')) " exists under
Assumption 2.18.1.

Part 3 follows from Definition 2.18.1 and part 2.

For part 4, first note that

The first inequality holds because E (yz') (E (zz')) ' E (zy) is a quadratic form and therefore nec-
essarily non-negative. Second, by the Expectation Inequality (B.8), the Cauchy-Schwarz Inequality
(B.10) and Assumption 2.18.1,

IB (ze)| < Ejze] = (E (||mu2))” " (B ()2 < .

It follows that the expectation E (ze) is finite, and is zero by the calculation (2.28).
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For part 6, Applying Minkowski’s Inequality (B.12) to e =y — '3,
r\1/r

(B ly|") ”T + (B8
< (Bly")Y" + Bl 18]
< 0

IN

the final inequality by assumption. |

o7
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Exercises

Exercise 2.1 Find E(E (E (y | 1, 2, x3) | 1, 22) | 1) .

Exercise 2.2 If E (y | ) = a + bz, find E (yz) as a function of moments of x.
Exercise 2.3 Prove Theorem 2.8.1.4 using the law of iterated expectations.

Exercise 2.4 Suppose that the random variables y and z only take the values 0 and 1, and have
the following joint probability distribution

y=20 Ad 2
y=1 A4 3

Find E(y | z), E(y? | z) and var (y | z) for =0 and = = 1.
Exercise 2.5 Show that o?(x) is the best predictor of €2 given x:
(a) Write down the mean-squared error of a predictor h(z) for e2.

(b) What does it mean to be predicting e2?

(c) Show that o?(z) minimizes the mean-squared error and is thus the best predictor.
Exercise 2.6 Use y = m(x) + e to show that
var (y) = var (m(z)) + o>

Exercise 2.7 Show that the conditional variance can be written as

oX(z) =E ()’ |z) — (E(y| z))*.

Exercise 2.8 Suppose that y is discrete-valued, taking values only on the non-negative integers,
and the conditional distribution of y given x is Poisson:

exp (—2'B) (z'8)’
j!

Pry=j|=)= , i=0,1,2,..

Compute E(y | ) and var (y | ). Does this justify a linear regression model of the form y =
'3 +e? _
Hint: If Pr(y =j) = ﬂfﬁ, then E (y) = A and var(y) = A.

Exercise 2.9 Suppose you have two regressors: x; is binary (takes values 0 and 1) and zy is
categorical with 3 categories (4, B,C). Write E (y | 1,x2) as a linear regression.

Exercise 2.10 True or False. If y =2+ ¢, x € R, and E (e | ) =0, then E (3726) =0.
Exercise 2.11 True or False. If y = 28 + ¢, z € R, and E (ze) = 0, then E (z%¢) = 0.
Exercise 2.12 True or False. If y = 2’3 + e and E (e | ) = 0, then e is independent of z.

Exercise 2.13 True or False. If y = '8 + ¢ and E(ze) = 0, then E (e | ) = 0.
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Exercise 2.14 True or False. If y = @/B+e¢, E(e|x) =0, and E (e? | ) = 02, a constant, then
e is independent of .

Exercise 2.15 Consider the intercept-only model y = a + e defined as the best linear predictor.
Show that o = E(y).

Exercise 2.16 Let z and y have the joint density f (z,y) = % (m2 + y2) om0<z<1,0<y<1.
Compute the coefficients of the best linear predictor y = a+ Sx +e. Compute the conditional mean
m(z) =E (y | x). Are the best linear predictor and conditional mean different?

Exercise 2.17 Let 2 be a random variable with y = E () and 02 = var(z). Define

ern= (ot )

Show that Eg (x | m, s) = 0 if and only if m = p and s = o2,

Exercise 2.18 Suppose that

and x3 = a1 + aoxo is a linear function of xs.

(a) Show that Q_, = E(zz’) is not invertible.

(b) Use a linear transformation of « to find an expression for the best linear predictor of y given
x. (Be explicit, do not just use the generalized inverse formula.)

Exercise 2.19 Show (2.46)-(2.47), namely that for
d(B) =E (m(z) — m’ﬁ)2
then

(B = argmin d(b)
beRk

= (E (:m:/))_l E (xm(x))
— (B (z')) "B (ay).
Hint: To show E (zm(x)) = E (xy) use the law of iterated expectations.

Exercise 2.20 Verify that (2.63) holds with m(z) defined in (2.7) when (y, ) have a joint density
fly, ).

Exercise 2.21 Consider the short and long projections
y=zmte
y =xf + P2 +u
(a) Under what condition does y1 = 317
(b) Now suppose the long projection is
y = xb; + 2305 + v

Is there a similar condition under which v; = 617
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Exercise 2.22 Take the homoskedastic model

y =101 + x50 +e
E(e|x1,22) =0
E(62 | :1:1,:1:2) = o2
E(zy | x1) =T
T 0

Suppose the parameter 3; is of interest. We know that the exclusion of x5 creates omited variable
bias in the projection coefficient on 5. It also changes the equation error. Our question is: what
is the effect on the homoskedasticity property of the induced equation error? Does the exclusion of
x5 induce heteroskedasticity or not? Be specific.



Chapter 3

The Algebra of Least Squares

3.1 Introduction

In this chapter we introduce the popular least-squares estimator. Most of the discussion will be
algebraic, with questions of distribution and inference deferred to later chapters.

3.2 Samples

In Section 2.18 we derived and discussed the best linear predictor of y given x for a pair of
random variables (y, ) € Rx R*. and called this the linear projection model. We are now interested
in estimating the parameters of this model, in particular the projection coefficient

8= (E(zz')) "B (ay). (3.1)

We can estimate 3 from observational data which includes joint measurements on the variables
(y,z). For example, supposing we are interested in estimating a wage equation, we would use
a dataset with observations on wages (or weekly earnings), education, experience (or age), and
demographic characteristics (gender, race, location). One possible dataset is the Current Popula-
tion Survey (CPS), a survey of U.S. households which includes questions on employment, income,
education, and demographic characteristics.

Notationally we wish to distinguish observations from the underlying random variables. The
convention in econometrics is to denote observations by appending a subscript ¢ which runs from
1 to n, thus the *" observation is (y;, ;), and n denotes the sample size. The dataset is then
{(ys,x;); i =1,...,n}. We call this the sample or the observations.

From the viewpoint of empirical analysis, a dataset is an array of numbers often organized as
a table, where the columns of the table correspond to distinct variables and the rows correspond
to distinct observations. For empirical analysis, the dataset and observations are fixed in the sense
that they are numbers presented to the researcher. For statistical analysis we need to view the
dataset as random, or more precisely as a realization of a random process.

In order for the coefficient 3 defined in (3.1) to make sense as defined, the expectations over the
random variables (z, y) need to be common across the observations. The most elegant approach to
ensure this is to assume that the observations are draws from an identical underlying population
F. This is the standard assumption that the observations are identically distributed:

Assumption 3.2.1 The observations {(yi,®1), ...y (Yi, i),y .ees (Yn, Tn)} are
identically distributed; they are draws from a common distribution F.

61
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This assumption does not need to be viewed as literally true, rather it is a useful modeling
device so that parameters such as 3 are well defined. This assumption should be interpreted as
how we view an observation a priori, before we actually observe it. If I tell you that we have
a sample with n = 59 observations set in no particular order, then it makes sense to view two
observations, say 17 and 58, as draws from the same distribution. We have no reason to expect
anything special about either observation.

In econometric theory, we refer to the underlying common distribution F' as the population.
Some authors prefer the label the data-generating-process (DGP). You can think of it as a the-
oretical concept or an infinitely-large potential population. In contrast we refer to the observations
available to us {(y;, ;); i = 1,...,n} as the sample or dataset. In some contexts the dataset con-
sists of all potential observations, for example administrative tax records may contain every single
taxpayer in a political unit. Even in this case we view the observations as if they are random draws
from an underlying infinitely-large population, as this will allow us to apply the tools of statistical
theory.

The linear projection model applies to the random observations (y;, ;). This means that the
probability model for the observations is the same as that described in Section 2.18. We can write
the model as

yi = ;B +e; (3:2)

where the linear projection coefficient 3 is defined as

B = argmin S(b), (3.3)
beRk

the minimizer of the expected squared error

$B) =B ((ui - =8)°)., (3.4)

and has the explicit solution .
B=(E(ziz;)  E(ziyi). (3.5)

3.3 Moment Estimators

We want to estimate the coefficient 8 defined in (3.5) from the sample of observations. Notice
that 3 is written as a function of certain population expectations. In this context an appropriate
estimator is the same function of the sample moments. Let’s explain this in detail.

To start, suppose that we are interested in the population mean p of a random variable y; with
distribution function F' -

p=B) = [ yiF(). (36)
—00
The mean p is a function of the distribution F' as written in (3.6). To estimate p given a sample
{y1,.--,yn} a natural estimator is the sample mean

1 n
ﬁI?:;;yi-
1=

Notice that we have written this using two pieces of notation. The notation i with the bar on top
is conventional for a sample mean. The notation 7 with the hat “~” is conventional in econometrics
to denote an estimator of the parameter y. In this case, the sample mean of y; is the estimator of u,
so it and 7 are the same. The sample mean 7 can be viewed as the natural analog of the population
mean (3.6) because 7 equals the expectation (3.6) with respect to the empirical distribution —
the discrete distribution which puts weight 1/n on each observation y;. There are many other
justifications for 7 as an estimator for u, we will defer these discussions for now. Suffice it to say
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that it is the conventional estimator in the lack of other information about p or the distribution of
Yi-

Now suppose that we are interested in a set of population means of possibly non-linear functions
of arandom vector y, say pu = E(h(y;)). For example, we may be interested in the first two moments
of yi, E(y;) and E(y?). In this case the natural estimator is the vector of sample means,

1 n
n=- E h(y,).
n = (i)

N 1 N 1 .. .
For example, i1 = = > " jyiand fig = — > " yl-g. This is not really a substantive change. We call
n n

1 the moment estimator for u.

Now suppose that we are interested in a nonlinear function of a set of moments. For example,
consider the variance of y

2
0% = var (y;) = E(y7) — (B(y:))" -

In general, many parameters of interest, say G, can be written as a function of moments of y.
Notationally,

B=g(n)

p=E(h(y;)).
Here, y, are the random variables, h(y,;) are functions (transformations) of the random variables,
and p is the mean (expectation) of these functions. (3 is the parameter of interest, and is the

(nonlinear) function g(-) of these means.
In this context a natural estimator of 3 is obtained by replacing pu with .

(

®)
I
)

h(y;)

M-

=
I
SEES

1

<.
I

The estimator B is often called a “plug-in” estimator, and sometimes a “substitution” estimator.
We typically call 3 a moment, or moment-based, estimator of 3, since it is a natural extension of
the moment estimator f.

Take the example of the variance o

1 ¢ 1\
32=ﬁ2—ﬁ%=EZy§—<gZyi> .
=1 =1

This is not the only possible estimator for o2 (there is the well-known bias-corrected version ap-
propriate for independent observations) but it a straightforward and simple choice.

2 = var (). Its moment estimator is

3.4 Least Squares Estimator

The linear projection coefficient 3 is defined in (3.3) as the minimizer of the expected squared
error S(B) defined in (3.4). For given 3, the expected squared error is the expectation of the
squared error (y; — 1132,@)2 . The moment estimator of S(3) is the sample average:

50)= -3 (i - =)’ (37)
=1

1
= ﬁSSE(IB)
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Figure 3.1: Sum-of-Squared Errors Function

where
n

SSEB) =" (v — =iB)" (3.8)
i=1
is called the sum-of-squared-errors function.
Since S (B) is a sample average, we can interpret it as an estimator of the expected squared
error S(3). Examining S(3) as a function of @ is informative about how S(8) varies with 3. Since
the projection coefficient minimizes S(3), an analog estimator minimizes (3.7):

~

B = argmin 5(8).
BER*

Alternatively, as S (8) is a scale multiple of SSE(B), we may equivalently define ,@ as the minimizer
of SSE,(B). Hence B is commonly called the least-squares (LS) estimator of 3. (The estimator
is also commonly refered to as the ordinary least-squares OLS estimator. For the origin of
this label see the historical discussion on Adrien-Marie Legendre below.) Here, as is common in
econometrics, we put a hat “~” over the parameter 3 to indicate that 3 is a sample estimate of 3.
This is a helpful convention. Just by seeing the symbol 8 we can immediately interpret it as an
estimator (because of the hat) of the parameter 3. Sometimes when we want to be explicit about
the estimation method, we will write B, to signify that it is the OLS estimator. It is also common
to see the notation 3,,, where the subscript “n” indicates that the estimator depends on the sample
size n.

It is important to understand the distinction between population parameters such as B and
sample estimates such as 3. The population parameter 3 is a non-random feature of the population
while the sample estimate 3 is a random feature of a random sample. 3 is fixed, while 3 varies
across samples. R

To visualize the quadratic function S(3), Figure 3.1 displays an example sum-of-squared errors
function SSE(3) for the case k = 2. The least-squares estimator 3 is the the pair (1, 32) which
minimize this function.
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3.5 Solving for Least Squares with One Regressor

For simplicity, we start by considering the case k = 1 so that the coefficient  is a scalar. Then
the sum of squared errors is a simple quadratic

n

SSE(B) = (yi — wiB)’

=1

(35) () o (54)

The OLS estimator B\ minimizes this function. From elementary algebra we know that the minimizer
of the quadratic function a — 2bx + cz? is x = b/c. Thus the minimizer of SSE(f) is

B _ 2?:1 TiYi
die $z2

The intercept-only model is the special case x; = 1. In this case we find

-~k o Z%—% (310)

the sample mean of y;. Here, as is common, we put a bar over y to indicate that the quantity
is a sample mean. This calculation shows that the OLS estimator in the intercept-only model is
the sample mean.

(3.9)

Q)

W=

3.6 Solving for Least Squares with Multiple Regressors

We now consider the case with k& > 1 so that the coefficient 3 is a vector.
To solve for 3, expand the SSE function to find

SSEB) = "y} —28'> zwyi+ 8> ziz)B.
=1 =1 =1

This is a quadratic expression in the vector argument 3 . The first-order-condition for minimization

of SSE(B) is

= %SSE = —QZ:I:Zy,—i-ZZ:B, 3. (3.11)
We have written this using a single expression, but it is actually a system of k equations with k
unknowns (the elements of 3).

The solution for 3 may be found by solving the system of k equations in (3.11). We can write
this solution compactly using matrix algebra. Inverting the k x k matrix > . ; z;2; we find an
explicit formula for the least-squares estimator

8= (Z «’Bﬁ;) (Z wﬂﬁ) . (3.12)
i=1 i=1

This is the natural estimator of the best linear projection coefficient 3 defined in (3.3), and can
also be called the linear projection estimator.

We see that (3.12) simplifies to the expression (3.9) when & = 1. The expression (3.12) is a
notationally simple generalization but requires a careful attention to vector and matrix manipula-
tions.
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Alternatively, equation (3.5) writes the projection coefficient 3 as an explicit function of the
population moments Q,, and Q. Their moment estimators are the sample moments

. 1<
me = n z; TiY;
1=

~ 1 &
Quw = ~ Z x; T
i=1
The moment estimator of 3 replaces the population moments in (3.5) with the sample moments:
—~ ~—]1~
B = Q:z:m wa

-1
1 & 1 &
= (az “) (zz my)
=1 =1

(%) (5e)

Least Squares Estimation

which is identical with (3.12).

Definition 3.6.1 The least-squares estimator E 18

B = argmin §(B)
BERE

where
n

S(B) =~ Z (yi — 332,3)2

1=1

and has the solution

n -1 n
B= (Z mﬂ%) (Z mﬂﬁ) :
=1 =1
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Adrien-Marie Legendre

The method of least-squares was first published in 1805 by the French math-
ematician Adrien-Marie Legendre (1752-1833). Legendre proposed least-
squares as a solution to the algebraic problem of solving a system of equa-
tions when the number of equations exceeded the number of unknowns. This
was a vexing and common problem in astronomical measurement. As viewed
by Legendre, (3.2) is a set of n equations with £ unknowns. As the equations
cannot be solved exactly, Legendre’s goal was to select 3 to make the set of
errors as small as possible. He proposed the sum of squared error criterion,
and derived the algebraic solution presented above. As he noted, the first-
order conditions (3.11) is a system of k equations with k£ unknowns, which
can be solved by “ordinary” methods. Hence the method became known
as Ordinary Least Squares and to this day we still use the abbreviation
OLS to refer to Legendre’s estimation method.

3.7 Illustration

We illustrate the least-squares estimator in practice with the data set used to calculate the
estimates reported in Chapter 2. This is the March 2009 Current Population Survey, which has
extensive information on the U.S. population. This data set is described in more detail in Section
3.19. For this illustration, we use the sub-sample of married (spouse present) black female wage
earners with 12 years potential work experience. This sub-sample has 20 observations. Let y; be
log wages and x; be years of education and an intercept. Then

" 995.86
> miyi = 62.64 )’

i=1
imm,'_ 5010 314
A 314 20 )

n —1

S el - 0.0125 —0.196
) -0196 324 )
G ( 00125 —0.19 995.86
—\ -0.196 3.124 62.64

(o) o2

We often write the estimated equation using the format

and

Thus

—

log(Wage) = 0.155 education + 0.698. (3.14)

An interpretation of the estimated equation is that each year of education is associated with a 16%
increase in mean wages.

Equation (3.14) is called a bivariate regression as there are only two variables. A multivari-
ate regression has two or more regressors, and allows a more detailed investigation. Let’s take
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an example similar to (3.14) but include all levels of experience. This time, we use the sub-sample
of single (never married) Asian men, which has 268 observations. Including as regressors years
of potential work experience (experience) and its square (experience?/100) (we divide by 100 to
simplify reporting), we obtain the estimates

log(/VV\age) = 0.143 education + 0.036 experience — 0.071 experience® /100 + 0.575. (3.15)

These estimates suggest a 14% increase in mean wages per year of education, holding experience
constant.

3.8 Least Squares Residuals

As a by-product of estimation, we define the fitted value

~

Ui = iL‘;B
and the residual R
€ =vi— Ui =y — z;. (3.16)

Sometimes 7; is called the predicted value, but this is a misleading label. The fitted value 7; is a
function of the entire sample, including y;, and thus cannot be interpreted as a valid prediction of
yi. It is thus more accurate to describe ¥; as a fitted rather than a predicted value.
Note that y; = y; + €; and R
Y = m;ﬁ + /6\1 (317)

We make a distinction between the error e; and the residual €;. The error e; is unobservable while
the residual €; is a by-product of estimation. These two variables are frequently mislabeled, which
can cause confusion.

Equation (3.11) implies that

n
> e =0. (3.18)
=1

To see this by a direct calculation, using (3.16) and (3.12),

n n
EICEDIE? (yi - 9325')
=1

i=1
n n
P
= miyi— Y wzB
i=1 i=1
n n n -1 n
/ /
:E wiyz-—E T, E T, E T;Yi
i=1 i=1 i=1 i=1
n n
= g TilYi — E LiYi
i=1 i=1

=0.

When z; contains a constant, an implication of (3.18) is

1 s
~ Z ¢ =0. (3.19)

Thus the residuals have a sample mean of zero and the sample correlation between the regressors
and the residual is zero. These are algebraic results, and hold true for all linear regression estimates.
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3.9 Demeaned Regressors

Sometimes it is useful to separate the constant from the other regressors, and write the linear
projection equation in the format
yi=zB+ate

where « is the intercept and x; does not contain a constant. The least-squares estimates and
residuals can be written as R
Y; = ZB;B + o + &
In this case (3.18) can be written as the equation system

i(yi—$§f3—a>—0

i=1
T; <yi—mgﬁ—a> =0
i=1

The first equation implies

Q)
Il
<
|
5|
)]

Subtracting from the second we obtain

> i (i —7) — (@ -7 B) =o.
=1
Solving for B we find

B= (Z x; (T — 5)') (Z x; (yi — ?))
= i—T)(x

lZ o §
(Z}$ i—ﬁj (Z}%—Eﬂw—m>. (3.20)
i=1 i=1

Thus the OLS estimator for the slope coefficients is a regression with demeaned data.
The representation (3.20) is known as the demeaned formula for the least-squares estimator.

3.10 Model in Matrix Notation

For many purposes, including computation, it is convenient to write the model and statistics in
matrix notation. The linear equation (2.26) is a system of n equations, one for each observation.
We can stack these n equations together as

y1=z18+el
Y2 = o0 + €2
Yn = 33;7,,8 + en.
Now define
Y1 T €1
/
Y2 T €2
y= ; X = 2. e=

y’I’L mn en
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Observe that y and e are n x 1 vectors, and X is an n X k matrix. Then the system of n equations
can be compactly written in the single equation

y=XpB+e (3.21)

Sample sums can be written in matrix notation. For example
n
/ !/
E iz, =X'X
i=1

n
> iy =X'y.
i=1
Therefore the least-squares estimator can be written as
o~ -1
B=(X'X)" (X'y). (3.22)
The matrix version of (3.17) and estimated version of (3.21) is
y=XpB+e,

or equivalently the residual vector is R
e=y—Xg.

Using the residual vector, we can write (3.18) as
X'e=0. (3.24)

Using matrix notation we have simple expressions for most estimators. This is particularly
convenient for computer programming, as most languages allow matrix notation and manipulation.

Important Matrix Expressions

y=XpB+e

B=(X'X)" (X'y)

e=y-XB
X'e=0.

Early Use of Matrices

The earliest known treatment of the use of matrix methods
to solve simultaneous systems is found in Chapter 8 of the
Chinese text The Nine Chapters on the Mathematical Art,
written by several generations of scholars from the 10th to
2nd century BCE.
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3.11 Projection Matrix
Define the matrix
P=X (X'X)' X"

Observe that
PX =X (X'X) ' X'X = X.

This is a property of a projection matrix. More generally, for any matrix Z which can be written
as Z = XT for some matrix I' (we say that Z lies in the range space of X)), then

PZ=PXT'=X (X'X)f1 X'XT'=XI'=7Z.
As an important example, if we partition the matrix X into two matrices X1 and X2 so that
X =[X1 Xqf,

then PX; = X ;. (See Exercise 3.7.)
The matrix P is symmetric (P’ = P) and idempotent (PP = P). (See Section ??.) To see
that it is symmetric,

To establish that it is idempotent, the fact that PX = X implies that
PP = PX (X'X) ' X'
- X (xX'X)7'x’
=P.
The matrix P has the property that it creates the fitted values in a least-squares regression:
Py=X (X'X) ' X'y=XB=7.
Because of this property, P is also known as the “hat matrix”.
A special example of a projection matrix occurs when X = 1 is an n-vector of ones. Then
P =1(11)""1
1
=—11'.
n
Note that
Piy=1(11)"1y
= ]_g
creates an n-vector whose elements are the sample mean gy of ;.
The it" diagonal element of P = X (X'X)" ' X' is
hi = @ (X'X) " @ (3.25)

which is called the leverage of the i*" observation.
Two useful properties of the the matrix P and the leverage values h;; are now summarized.
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Theorem 3.11.1 .
> hi=trP =k (3.26)
i=1

and
0<h; <L (3.27)

To show (3.26),

trP =t (X (X'X) " X')

or ((x'X) 7' X'X)
r(Ik)

I
>~

See Appendix A.5 for definition and properties of the trace operator. The proof of (3.27) is defered
to Section 3.21. One implication is that the rank of P is k.

3.12 Orthogonal Projection

Define
M=I,-P
—I,- X (X'X)"'x’
where I, is the n X n identity matrix. Note that
MX=(I,-P)X=X-PX=X-X=0. (3.28)

Thus M and X are orthogonal. We call M an orthogonal projection matrix, or more colorfully
an annihilator matrix, due to the property that for any matrix Z in the range space of X then

MZ=7-PZ =0.

For example, M X1 = 0 for any subcomponent X ; of X, and M P = 0 (see Exercise 3.7).
The orthogonal projection matrix M has similar properties with P, including that M is sym-
metric (M’ = M) and idempotent (MM = M). Similarly to (3.26) we can calculate

trM =n—k. (3.29)

(See Exercise 3.9.) One implication is that the rank of M is n — k.
While P creates fitted values, M creates least-squares residuals:

My=y—-Py=y— XB="¢ (3.30)

As discussed in the previous section, a special example of a projection matrix occurs when X =1
is an n-vector of ones, so that P; = 1(11)"" 1’ Similarly, set

M,=1,-P;
—I,-1(11)'1.
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While P creates a vector of sample means, M creates demeaned values:
My =y—17.

For simplicity we will often write the right-hand-side as y — 7. The *" element is y; — ¥, the
demeaned value of y;.

We can also use (3.30) to write an alternative expression for the residual vector. Substituting
y=XpB+ einto e = My and using M X = 0 we find

e=My=M(XB+e =Me (3.31)

which is free of dependence on the regression coefficient 3.

3.13 Estimation of Error Variance

The error variance 02 = E (ei?) is a moment, so a natural estimator is a moment estimator. If
e; were observed we would estimate o2 by

1
FZ==> el (3.32)

However, this is infeasible as e; is not observed. In this case it is common to take a two-step
approach to estimation. The residuals €; are calculated in the first step, and then we substitute ¢;
for e; in expression (3.32) to obtain the feasible estimator

JONS
5% = ~ Ze?. (3.33)

and
o2 =n"1¢% (3.34)

Recall the expressions € = My = M e from (3.30) and (3.31). Applied to (3.34) we find

62 =n"lee

=nly MMy

=n"ly My

=nleMe (3.35)
the third equality since MM = M.

An interesting implication is that
-5 =nltede—nteMe
=n"lePe
> 0.

The final inequality holds because P is positive semi-definite and € Pe is a quadratic form. This
shows that the feasible estimator 52 is numerically smaller than the idealized estimator (3.32).
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3.14 Analysis of Variance
Another way of writing (3.30) is
y=Py+ My=y+e. (3.36)
This decomposition is orthogonal, that is
ye=(Py) (My) =y PMy=0.

It follows that
yy=97+2e+ee=75+2°
or

n n n
2 ~2 -2
E Yi = Zyz + E €

Subtracting g from both sizes of (3.36) we obtain

under (3.19). It follows that
(y—19) (y—17) = (§ - 19)" (§ — 1) + €@
or
n
D wi-wt =) G-9+) e
i=1 i=1 i=1

This is commonly called the analysis-of-variance formula for least squares regression.
A commonly reported statistic is the coefficient of determination or R-squared:

~ —\2 ~
R — Z?:l (Ui —7) —1 Z:’L:I 61‘2

it (vi —9)? iy (wi —9)°
It is often described as the fraction of the sample variance of y; which is explained by the least-
squares fit. R? is a crude measure of regression fit. We have better measures of fit, but these require
a statistical (not just algebraic) analysis and we will return to these issues later. One deficiency
with R? is that it increases when regressors are added to a regression (see Exercise 3.16) so the
“fit” can be always increased by increasing the number of regressors.

3.15 Regression Components

Partition
X =[X; X3

~(5):

Then the regression model can be rewritten as

and

y=X10, + X208, + e (3.37)
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The OLS estimator of 8 = (3},35)" is obtained by regression of y on X = [X; X 3] and can be
written as

y=XB+¢=X 10+ XoB, +¢ (3.38)

We are interested in algebraic expressions for [Ail and BQ.

The algebra for the estimator is identical as that for the population coefficients as presented in
Section 2.21.

Partition (t:,)mc as

~ - 1, 1.,
N Qn Q2 EXle ﬁXle
e P 1
Qy Qo ;X’QXl 5X’2X2
and similarly (A,)my
~ 1 /
~ Qly Ele
Qay Exéy
By the partitioned matrix inversion formula (A.4)
~ ~ -1 ~11  ~12 ~—1 ~—1l A~ a1
. Qi Q2 def Q Q Qi12 —Q1.2Q12Q
Qua = ~ ~ - 21 22 - 1 1 1 (3:39)
Qa1 Qo Q Q — Q2.1 Q21 Qyy Q221
~ ~ PPN PN ~ ~ ~ a1~
where Q1.5 = Q11 — Q12Qa2 Q21 and Qg = Qo — Qa1 Q1 Q-
Thus
8= e
Bs
_ [ _1Qll-2 . —Q11~29112Q22 ] [ Qly]
—Q22.1Q21 Q14 Qa2 Q2y
~—1 ~
_ ( Q111-2Q1y.2 ) ‘
Q2.1 Q2.1
Now
~ ~ ~ ~—1~
Q12 = Q11 — Q12Q9 Qyy
1 1 1 1
1
= —X1MsX,
n
where

My =1, - Xo (X4Xo) ' X}

~ 1
is the orthogonal projection matrix for Xs. Similarly Qg = —X5M X5 where
n

M, =1,-X;(X\X,) ' X}
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is the orthogonal projection matrix for X ;. Also

~ ~ ~ A1~
Qly-2 = Qly - Q12 Q22 Q2y

1 1 1 11
= 5X,1y - EX3X2 (EX§X2> EXlzy
1
-~ 1 ,
and @y, = — XMy,
Therefore N .
and R .

These are algebraic expressions for the sub-coefficient estimates from (3.38).

3.16 Residual Regression

As first recognized by Frisch and Waugh (1933), expressions (3.40) and (3.41) can be used to
show that the least-squares estimators 8, and 85 can be found by a two-step regression procedure.
Take (3.41). Since M is idempotent, M1 = M 1M and thus

By = (X4M1X5) ™ (X4My)
= (X,M 1M1 X5) ! (X4M 1M y)
~~ \ —1 /~—
= (X;X2> (X/2E1)

where -
Xo=M;1X>

and
El = Mly.

Thus the coefficient estimate B2 is algebraically equal to the least-squares regression of ‘e; on
552. Notice that these two are y and X, respectively, premultiplied by M ;. But we know that
multiplication by M is equivalent to creating least-squares residuals. Therefore e; is simply the
least-squares residual from a regression of y on X1, and the columns of X9 are the least-squares
residuals from the regressions of the columns of X5 on X 7.

We have proven the following theorem.

Theorem 3.16.1 Frisch- Waugh-Lovell (FWL)

In the model (3.37), the OLS estimator of By and the OLS residuals &
may be equivalently computed by either the OLS regression (3.38) or via
the following algorithm:

1. Regress y on X1, obtain residuals €q;
2. Regress Xo on X1, obtain residuals X/g;

3. Regress ey on 3(12, obtain OLS estimates BQ and residuals e.
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In some contexts, the FWL theorem can be used to speed computation, but in most cases there
is little computational advantage to using the two-step algorithm.

This result is a direct analogy of the coefficient representation obtained in Section 2.22. The
result obtained in that section concerned the population projection coefficients, the result obtained
here concern the least-squares estimates. The key message is the same. In the least-squares
regression (3.38), the estimated coefficient 35 numerically equals the regression of y on the regressors
X2, only after the regressors X1 have been linearly projected out. Similarly, the coefficient estimate
B, numerically equals the regression of y on the regressors X, after the regressors Xo have been
linearly projected out. This result can be very insightful when interpreting regression coefficients.

A common application of the FWL theorem is the demeaning formula for regression obtained in
(3.20).. Partition X = [X; X 2| where X1 =1 is a vector of ones and X is a matrix of observed
regressors. In this case,

M, =1,-1(11)"'1.

Observe that - o
Xo=M;X2=X9— X5
and
Miy=y-79
are the “demeaned” variables. The FWL theorem says that BQ is the OLS estimate from a regression
of y; — 7 on xo; — Ta :

By = (Z(mzi —T2) (@2 —TZ)/> <Z(w2¢ —T2) (vi —?)> :

=1 i=1

This is (3.20).

Ragnar Frisch
Ragnar Frisch (1895-1973) was co-winner with Jan Tinbergen of the first
Nobel Memorial Prize in Economic Sciences in 1969 for their work in devel-
oping and applying dynamic models for the analysis of economic problems.
Frisch made a number of foundational contributions to modern economics
beyond the Frisch-Waugh-Lovell Theorem, including formalizing consumer
theory, production theory, and business cycle theory.

3.17 Prediction Errors

The least-squares residual €; are not true prediction errors, as they are constructed based on
the full sample including ;. A proper prediction for g; should be based on estimates constructed
using only the other observations. We can do this by defining the leave-one-out OLS estimator
of B as that obtained from the sample of n — 1 observations excluding the i*" observation:

-1

~ 1 1
B = n_lz""’j“’§' n_lzmjyj
i i

-1
= <X X H)) X ()Y (i) (3.42)
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Here, X (_; and y(_; are the data matrices omitting the it row. The leave-one-out predicted
value for y; is

gi = w;ﬁ(—zﬁ
and the leave-one-out residual or prediction error or prediction residual is
€ = Yi — Yi-
A convenient alternative expression for B(_i) (derived in Section 3.21) is

~

By=B—-(1—hy) " (X'X)"

where hj; are the leverage values as defined in (3.25).
Using (3.43) we can simplify the expression for the prediction error:

! il:l/é\Z (343)

& =yi— By
— vy — B+ (1—hy) 2l (X'X) "z
= + (1 — hii) " hiic
= (1—hy) e (3.44)

To write this in vector notation, define

M* = (I,, — diag{h11, .., hun}) "
= diag{(1 — h11)" ", .., (1 — hn) 1 (3.45)

Then (3.44) is equivalent to
e= M"e. (3.46)

A convenient feature of this expression is that it shows that computation of the full vector of
prediction errors e is based on a simple linear operation, and does not really require n separate
estimations.

One use of the prediction errors is to estimate the out-of-sample mean squared error

SR QLI
0'2 = E Ze?
=1
1 n
== (1-ha)?8. (3.47)
=1

This is also known as the sample mean squared prediction error. Its square root o = Vo2 is
the prediction standard error.

3.18 Influential Observations

Another use of the leave-one-out estimator is to investigate the impact of influential obser-
vations, sometimes called outliers. We say that observation ¢ is influential if its omission from
the sample induces a substantial change in a parameter estimate of interest.

For illustration, consider Figure 3.2 which shows a scatter plot of random variables (y;,z;).
The 25 observations shown with the open circles are generated by x; ~ U[1,10] and y; ~ N(z;,4).
The 26" observation shown with the filled circle is zog = 9, y26 = O. (Imagine that yo¢ = 0 was
incorrectly recorded due to a mistaken key entry.) The Figure shows both the least-squares fitted
line from the full sample and that obtained after deletion of the 26" observation from the sample.
In this example we can see how the 26" observation (the “outlier”) greatly tilts the least-squares
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o
S o

leave—-one-out OLS

Figure 3.2: Impact of an influential observation on the least-squares estimator

fitted line towards the 26! observation. In fact, the slope coefficient decreases from 0.97 (which
is close to the true value of 1.00) to 0.56, which is substantially reduced. Neither yog nor xgg are
unusual values relative to their marginal distributions, so this outlier would not have been detected
from examination of the marginal distributions of the data. The change in the slope coefficient of
—0.41 is meaningful and should raise concern to an applied economist.

From (3.43)-(3.44) we know that

B - B(—z) = (1 — hii)_l (X’X)il :J:[e\z
(X'X) " mié. (3.48)

By direct calculation of this quantity for each observation ¢, we can directly discover if a specific
observation ¢ is influential for a coefficient estimate of interest.

For a general assessment, we can focus on the predicted values. The difference between the
full-sample and leave-one-out predicted values is

Ui — i = =B — =By
— o} (X'X) " aie;

= hiie;

which is a simple function of the leverage values h; and prediction errors €;. Observation ¢ is
influential for the predicted value if |h;;¢;| is large, which requires that both h;; and |¢;| are large.
One way to think about this is that a large leverage value h;; gives the potential for observation
1 to be influential. A large h;; means that observation ¢ is unusual in the sense that the regressor x;
is far from its sample mean. We call an observation with large h;; a leverage point. A leverage
point is not necessarily influential as the latter also requires that the prediction error e; is large.
To determine if any individual observations are influential in this sense, several diagnostics have
been proposed (some names include DFITS, Cook’s Distance, and Welsch Distance). Unfortunately,
from a statistical perspective it is difficult to recommend these diagnostics for applications as they
are not based on statistical theory. Probably the most relevant measure is the change in the
coefficient estimates given in (3.48). The ratio of these changes to the coefficient’s standard error
is called its DFBETA, and is a postestimation diagnostic available in Stata. While there is no
magic threshold, the concern is whether or not an individual observation meaningfully changes an
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estimated coefficient of interest. A simple diagnostic for influential observations is to calculate
Influence = max |y; — yi| = max |hj&;| .
f 1§i§n|yZ yz| 1§7j§n’ 1 z|

This is the largest (absolute) change in the predicted value due to a single observation. If this diag-
nostic is large relative to the distribution of y;, it may indicate that that observation is influential.

If an observation is determined to be influential, what should be done? As a common cause
of influential observations is data entry error, the influential observations should be examined for
evidence that the observation was mis-recorded. Perhaps the observation falls outside of permitted
ranges, or some observables are inconsistent (for example, a person is listed as having a job but
receives earnings of $0). If it is determined that an observation is incorrectly recorded, then the
observation is typically deleted from the sample. This process is often called “cleaning the data”.
The decisions made in this process involve a fair amount of individual judgment. When this is done
it is proper empirical practice to document such choices. (It is useful to keep the source data in its
original form, a revised data file after cleaning, and a record describing the revision process. This
is especially useful when revising empirical work at a later date.)

It is also possible that an observation is correctly measured, but unusual and influential. In
this case it is unclear how to proceed. Some researchers will try to alter the specification to
properly model the influential observation. Other researchers will delete the observation from the
sample. The motivation for this choice is to prevent the results from being skewed or determined
by individual observations, but this practice is viewed skeptically by many researchers who believe
it reduces the integrity of reported empirical results.

For an empirical illustration, consider the log wage regression (3.15) for single Asian males.
This regression, which has 268 observations, has Influence = 0.29. This means that the most
influential observation, when deleted, changes the predicted (fitted) value of the dependent variable
log(Wage) by 0.29, or equivalently the wage by 29%. This is a meaningful change and suggests
further investigation. We examine the influential observation, and find that its leverage h;; is 0.33,
which is disturbingly large. (Recall that the leverage values are all positive and sum to k. One
twelfth of the leverage in this sample of 268 observations is contained in just this single observation!)
Examining further, we find that this individual is 65 years old with 8 years education, so that his
potential experience is 51 years. This is the highest experience in the subsample — the next highest
is 41 years. The large leverage is due to his unusual characteristics (very low education and very
high experience) within this sample. Essentially, regression (3.15) is attempting to estimate the
conditional mean at experience= 51 with only one observation, so it is not surprising that this
observation determines the fit and is thus influential. A reasonable conclusion is the regression
function can only be estimated over a smaller range of experience. We restrict the sample to
individuals with less than 45 years experience, re-estimate, and obtain the following estimates.

logme) = 0.144 education + 0.043 experience — 0.095 experience? /100 + 0.531. (3.49)

For this regression, we calculate that Influence = 0.11, which is greatly reduced relative to the
regression (3.15). Comparing (3.49) with (3.15), the slope coefficient for education is essentially
unchanged, but the coefficients in experience and its square have slightly increased.

By eliminating the influential observation, equation (3.49) can be viewed as a more robust
estimate of the conditional mean for most levels of experience. Whether to report (3.15) or (3.49)
in an application is largely a matter of judgment.

3.19 CPS Data Set

In this section we describe the data set used in the empirical illustrations.
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The Current Population Survey (CPS) is a monthly survey of about 57,000 U.S. households
conducted by the Bureau of the Census of the Bureau of Labor Statistics. The CPS is the primary
source of information on the labor force characteristics of the U.S. population. The survey covers
employment, earnings, educational attainment, income, poverty, health insurance coverage, job
experience, voting and registration, computer usage, veteran status, and other variables. Details
can be found at www.census.gov/cps and dataferrett.census.gov.

From the March 2009 survey we extracted the individuals with non-allocated variables who
were full-time employed (defined as those who had worked at least 36 hours per week for at least
48 weeks the past year), and excluded those in the military. This sample has 50,742 individ-
uals. We extracted 14 variables from the CPS on these individuals and created the data files
cpsO9mar.dta (Stata format), cpsO9mar.x1lsx (Excel format) and cpsO9mar.txt (text format).
The variables are described in the file cpsO9mar_description.pdf All data files are available at
http://www.ssc.wisc.edu/~bhansen/econometrics/

3.20 Programming

Most packages allow both interactive programming (where you enter commands one-by-one) and
batch programming (where you run a pre-written sequence of commands from a file). Interactive
programming can be useful for exploratory analysis, but eventually all work should be executed in
batch mode. This is the best way to control and document your work.

Batch programs are text files where each line executes a single command. For Stata, this file
needs to have the filename extension “.do”, and for MATLAB “.m”. For R there is no specific
naming requirements, though it is typical to use the extension “.r”.

To execute a program file, you type a command within the program.

Stata: do chapter3 executes the file chapter3.do

MATLAB: run chapter3 executes the file chapter3.m

R: source(“chapter3.r”) executes the file chapters.r

When writing batch files, it is useful to include comments for documentation and readability.

We illustrate programming files for Stata, R, and MATLAB, which execute a portion of the
empirical illustrations from Sections 3.7 and 3.18.

Stata do File

* Clear memory and load the data
clear

use cpsO09mar.dta

* Generate transformations

gen wage=In(earnings/(hours*week))
gen experience = age - education - 6
gen exp2 = (experience”2)/100

* Create indicator for subsamples

gen mbf = (race == 2) & (marital <= 2) & (female == 1)
gen sam = (race == 4) & (marital == 7) & (female == 0)
* Regressions

reg wage education if (mbf == 1) & (experience == 12)
reg wage education experience exp2 if sam ==

* Leverage and influence

predict leverage,hat

predict e,residual

gen d=e*leverage/(1-leverage)
summarize d if sam ==1
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R Program File

# Load the data and create subsamples

dat <- read.table("cpsO9mar.txt")

experience <- dat[,1]-dat[,4]-6

mbf <- (dat[,11]==2)&(dat[,12]<=2)&(dat[,2]==1)&(experience==12)
sam <- (dat[,11]==4)&(dat[,12]==7)&(dat[,2]==0)
datl <- dat[mbf,]

dat2 <- dat[sam,]

# First regression

y <- as.matrix(log(dat1[,5]/(dat1],6]*dat1[,7])))

x <- cbind(dat1[,4],matrix(1,nrow(dat1),1))

beta <- solve(t(x)%*%x,t(x)%*%y)

print(beta)

# Second regression

y <- as.matrix(log(dat2[,5]/(dat2[,6]*dat2[,7])))
experience <- dat2[,1]-dat2[,4]-6

exp2 <- (experience”~2)/100

x <- cbind(dat2[,4],experience,exp2,matrix(1,nrow(dat2),1))
beta <- solve(t(x)%*%x,t(x)%*%y)print(beta)

# Create leverage and influence

e <- y-x%*%beta

leverage <- rowSums(x*(x%*%solve(t(x)%*%x)))

r <- e/(1-leverage)

d <- leverage*e/(1-leverage)

print(max(abs(d)))

82
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MATLAB Program File

% Load the data and create subsamples

load cpsO09mar.txt;

dat=cps09mar;

experience=dat(:,1)-dat(:,4)-6;

mbf = (dat(:,11)==2)&(dat(:,12)<=2)&(dat(:,2)==1)&(experience==12)
sam = (dat(:,11)==4)&(dat(:,12)==T7)&(dat(:,2)==0);
datl=dat(mbf:);

dat2=dat(sam,:);

% First regression
y=log(dat1(:,5)./(dat1(:,6).*dat1(:,7)));
x=[dat1(:,4),ones(length(dat1),1)];
beta=inv(x’*x)*(x'*y);display(beta);

% Second regression
y=log(dat2(:,5)./(dat2(:,6).*dat2(:,7)));
experience=dat2(:,1)-dat2(:,4)-6;

exp2 = (experience.”2)/100;
x=[dat2(:,4),experience,exp2,ones(length(dat2),1)];
beta=inv(x*x)*(x*y);display(beta);

% Create leverage and influence

e=y-x*beta;
leverage=sum((x.*(x*inv(x'*x)))’)’;d=leverage.*e./(1-leverage);
influence=max(abs(d));

display (influence);

Instead,
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to load from an excel file, we can replace the first two lines (‘load’ and ‘dat=") with

dat=xlsread(’cps09mar.xlsx’);
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3.21 Technical Proofs*

Proof of Theorem 3.11.1, equation (3.27): First, h;; = « (X'X)_1 x; > 0 since it is a
quadratic form and X’X > 0. Next, since h;; is the it diagonal element of the projection matrix
P =X (X'X) "X, then

hii = SIP S
where
0
s = 1
0

is a unit vector with a 1 in the 7" place (and zeros elsewhere).
By the spectral decomposition of the idempotent matrix P (see equation (A.10))

Y Ik:O
PB[0 O}B

where B'B = I,,. Thus letting b = B's denote the i** column of B, and partitioning b = (b’l b’2)

then
h; = s'B’ [ Iy, O}Bs

0 0
I, 0
:bll[o o]bl
= b b
<Utb
=1

the final equality since b is the it" column of B and B'B = I,,. We have shown that h; < 1,
establishing (3.27). [

Proof of Equation (3.43). The Sherman-Morrison formula (A.3) from Appendix A.6 states that
for nonsingular A and vector b

(A — bb) -

oA (1WA AT AT
This implies

-1 1 1

(X'X —z2) " = (X'X) 7+ (1 b)) (X'X) i) (X'X)

and thus

X) ' X'y — (X'X) " @y,

hii)~ (X X) el (X'X) 7 (X y — miyi)
H(x'X)” L (mﬁ - hii%’)

i)
i ((1 — hii) yi — B+ hn‘yi)
i€

B z)—(XX—ﬂm ) X'y — iy
= (X'
(1-

_l’_

:,B—(XX)fliBz’yH-( hi

1—

—B-(1—hy) " (X'X) "2

—B-(1—hy) L (X'X) "2

the third equality making the substitutions B = (X/X)f1 X'y and h;; = (X’X)f1 z;, and the
remainder collecting terms. |
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Exercises

Exercise 3.1 Let y be a random variable with 1 = [E (y) and 02 = var(y). Define

9 (y,1.0%) = <( TR )

y — p)°

Let (11,52) be the values such that g,,(7i,02) = 0 where g,,(m,s) =n"1Y>"" | g (y;,m,s). Show that
i and 62 are the sample mean and variance.

Exercise 3.2 Consider the OLS regression of the n x 1 vector y on the n x k matrix X. Consider
an alternative set of regressors Z = X C, where C is a k X k non-singular matrix. Thus, each
column of Z is a mixture of some of the columns of X. Compare the OLS estimates and residuals
from the regression of y on X to the OLS estimates from the regression of y on Z.

Exercise 3.3 Using matrix algebra, show X'e = 0.
Exercise 3.4 Let € be the OLS residual from a regression of y on X = [X; X3]. Find X5e.

Exercise 3.5 Let e be the OLS residual from a regression of y on X. Find the OLS coefficient
from a regression of € on X.

Exercise 3.6 Let j = X(X'X)"!X’y. Find the OLS coefficient from a regression of § on X.
Exercise 3.7 Show that if X = [X; X5] then PX; = X; and MX; =0.

Exercise 3.8 Show that M is idempotent: MM = M.

Exercise 3.9 Show that tr M =n — k.

Exercise 3.10 Show that if X = [X; X3] and X} X2 =0 then P = Py + Ps.

1 ~
Exercise 3.11 Show that when X contains a constant, — Y " | 7 = 7.
n

Exercise 3.12 A dummy variable takes on only the values 0 and 1. It is used for categorical
data, such as an individual’s gender. Let d; and dy be vectors of 1’s and 0’s, with the i element
of dy equaling 1 and that of ds equaling 0 if the person is a man, and the reverse if the person is a
woman. Suppose that there are n; men and ny women in the sample. Consider fitting the following
three equations by OLS

y=p+dias+dazte (3.50)
Y= diag + docs + € (3.51)
y=u+dipg+e (3.52)

Can all three equations (3.50), (3.51), and (3.52) be estimated by OLS? Explain if not.

(a) Compare regressions (3.51) and (3.52). Is one more general than the other? Explain the
relationship between the parameters in (3.51) and (3.52).

(b) Compute ¢'dy and ¢'ds, where ¢ is an n X 1 vector of ones.

(c) Letting o = (a1 av2)’, write equation (3.51) as y = X a+e. Consider the assumption E(z;e;) =
0. Is there any content to this assumption in this setting?
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Exercise 3.13 Let d; and ds be defined as in the previous exercise.

(a) In the OLS regression
y = di71 + day2 + u,

show that 7 is the sample mean of the dependent variable among the men of the sample
(¥1), and that 72 is the sample mean among the women (7).

(b) Let X (n x k) be an additional matrix of regressors. Describe in words the transformations
Yy =y — diy, — oy
X*=X — diT| — doT,)
where T and @2 are the k x 1 means of the regressors for men and women, respectively.

(¢) Compare 3 from the OLS regression

with B from the OLS regression
Yy = diay + doyan —i—XB—F/é.

Exercise 3.14 Let 8, = (X, X,) ' X'y, denote the OLS estimate when y,, is n x 1 and X, is
n X k. A new observation (yn+1, n4+1) becomes available. Prove that the OLS estimate computed
using this additional observation is

1

B +1:B + —
' "t (X X)) @

(X0X0) " @ (1 — @1 By)

Exercise 3.15 Prove that R? is the square of the sample correlation between y and 3.
Exercise 3.16 Consider two least-squares regressions
y=X,p,te

and R R
y= X6+ X0, +e

Let R? and R2 be the R-squared from the two regressions. Show that R3 > R2. Is there a case
(explain) when there is equality R3 = R3?

Exercise 3.17 Show that 52 > 52. Is equality possible?
Exercise 3.18 For which observations will ,B(_z-) = B?
Exercise 3.19 Consider the least-squares regression estimates
yi = x1iB1 + 1252 + &
and the “one regressor at a time” regression estimates
yi = Pra1; + € yi = Paai + &

Under what condition does Bl = El and 52 = 52?
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Exercise 3.20 You estimate a least-squares regression
vi = 21,81 + Ui
and then regress the residuals on another set of regressors
ﬂi = m/QzB2 + g@

Does this second regression give you the same estimated coefficients as from estimation of a least-
squares regression on both set of regressors?

yi = 1,81 + T8 + &
In other words, is it true that BQ = BQ? Explain your reasoning.
Exercise 3.21 The data matrix is (y, X ) with X = [X;, X 3], and consider the transformed
regressor matrix Z = [X1, X2 — X1]. Suppose you do a least-squares regression of y on X, and a

least-squares regression of y on Z. Let 5% and 2 denote the residual variance estimates from the
two regressions. Give a formula relating 52 and ¢2? (Explain your reasoning.)

Exercise 3.22 Use the data set from Section 3.19 and the sub-sample used for equation (3.49)
(see Section 3.20) for data construction)

(a) Estimate equation (3.49) and compute the equation R? and sum of squared errors.

(b) Re-estimate the slope on education using the residual regression approach. Regress log(Wage)
on experience and its square, regress education on experience and its square, and the residuals
on the residuals. Report the estimates from this final regression, along with the equation R?
and sum of squared errors. Does the slope coefficient equal the value in (3.49)? Explain.

(c) Are the R? and sum-of-squared errors from parts (a) and (b) equal? Explain.

Exercise 3.23 Estimate equation (3.49) as in part (a) of the previous question. Let €; be the
OLS residual, 7; the predicted value from the regression, x1; be education and xo; be experience.
Numerically calculate the following;:

(a) Z?:l €

(g Z?:l /e\ZQ

Are these calculations consistent with the theoretical properties of OLS? Explain.

Exercise 3.24 Use the data set from Section 3.19.

(a) Estimate a log wage regression for the subsample of white male Hispanics. In addition to
education, experience, and its square, include a set of binary variables for regions and marital
status. For regions, you create dummy variables for Northeast, South and West so that
Midwest is the excluded group. For marital status, create variables for married, widowed or
divorced, and separated, so that single (never married) is the excluded group.

(b) Repeat this estimation using a different econometric package. Compare your results. Do they
agree?



Chapter 4

Least Squares Regression

4.1 Introduction

In this chapter we investigate some finite-sample properties of the least-squares estimator in the
linear regression model. In particular, we calculate the finite-sample mean and covariance matrix
and propose standard errors for the coefficient estimates.

4.2 Random Sampling

Assumption 3.2.1 specified that the observations have identical distributions. To derive the
finite-sample properties of the estimators we will need to additionally specify the dependence struc-
ture across the observations.

The simplest context is when the observations are mutually independent, in which case we
say that they are independent and identically distributed, or i.i.d. It is also common to
describe iid observations as a random sample. Traditionally, random sampling has been the
default assumption in cross-section (e.g. survey) contexts. It is quite conveneint as iid sampling
leads to straightforward expressions for estimation variance. The assumption seems appropriate
(meaning that it should be approximately valid) when samples are small and relatively dispersed.
That is, if you randomly sample 1000 people from a large country such as the United States it
seems reasonable to model their responses as mutually independent.

Assumption 4.2.1 The observations {(y1,€1), ..., (Yi, i), .., (Yn, Tn)} are in-
dependent and identically distributed.

For most of this chapter, we will use Assumption 4.2.1 to derive properties of the OLS estimator.

Assumption 4.2.1 means that if you take any two individuals ¢ # j in a sample, the values (y;, ;)
are independent of the values (y;, ;) yet have the same distribution. Independence means that
the decisions and choices of individual ¢ do not affect the decisions of individual j, and conversely.

This assumption may be violated if individuals in the sample are connected in some way, for
example if they are neighbors, members of the same village, classmates at a school, or even firms
within a specific industry. In this case, it seems plausible that decisions may be inter-connected
and thus mutually dependent rather than independent. Allowing for such interactions complicates
inference and requires specialized treatment. A currently popular approach which allows for mutual
dependence is known as clustered dependence, which assumes that that observations are grouped
into “clusters” (for example, schools). We will discuss clustering in more detail in Section 4.20.

88
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4.3 Sample Mean
To start with the simplest setting, we first consider the intercept-only model

Yi= 1+ e

which is equivalent to the regression model with & = 1 and x; = 1. In the intercept model, p = E (y;)
is the mean of y;. (See Exercise 2.15.) The least-squares estimator [ = 7 equals the sample mean
as shown in equation (3.10).

We now calculate the mean and variance of the estimator §. Since the sample mean is a linear
function of the observations, its expectation is simple to calculate

E(@) =E (%Z?ﬁ) = %ZE(%) = L.
=1 =1

This shows that the expected value of the least-squares estimator (the sample mean) equals the
projection coefficient (the population mean). An estimator with the property that its expectation
equals the parameter it is estimating is called unbiased.

Definition 4.3.1 An estimator gfor 0 is unbiased if & (5) =4.

We next calculate the variance of the estimator § under Assumption 4.2.1. Making the substi-
tution y; = p + €; we find

Then

The second-to-last inequality is because E (e;ej) = o for i = j yet E(e;e;) = 0 for i # j due to
independence.

We have shown that var (7) = %02. This is the familiar formula for the variance of the sample
mean.
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4.4 Linear Regression Model

We now consider the linear regression model. Throughout this chapter we maintain the follow-
ing.

Assumption 4.4.1 Linear Regression Model
The observations (y;, ;) satisfy the linear regression equation

yi = .8+ ¢; (4.1)
E (61‘ | :L'z) = 0. (42)

The variables have finite second moments
E (y7) < oo,

E ||zil|* < oo,

and an invertible design matriz

Q.. =E (a:za:;) > 0.

We will consider both the general case of heteroskedastic regression, where the conditional
variance

E (€} | &) = o*(@;) = 0]

is unrestricted, and the specialized case of homoskedastic regression, where the conditional variance
is constant. In the latter case we add the following assumption.

Assumption 4.4.2 Homoskedastic Linear Regression Model
In addition to Assumption 4.4.1,

is independent of x;.

4.5 Mean of Least-Squares Estimator

In this section we show that the OLS estimator is unbiased in the linear regression model. This
calculation can be done using either summation notation or matrix notation. We will use both.
First take summation notation. Observe that under (4.1)-(4.2)

E(yi | X)=E(y | z:) = ziB. (4.4)

The first equality states that the conditional expectation of y; given {1, ..., z,} only depends on
x;, since the observations are independent across i. The second equality is the assumption of a
linear conditional mean.



CHAPTER 4. LEAST SQUARES REGRESSION 91

Using definition (3.12), the conditioning theorem, the linearity of expectations, (4.4), and prop-
erties of the matrix inverse,

E(B | X> ~E (é::;:ﬂ) h (i::;;,) | X
(5) #((Ee) )
(zmz ) S B %)
(me> leciE(yHX)

[Eee) B

Now let’s show the same result using matrix notation. (4.4) implies

By X)= | Bu|X) |=| =8 | -x8. (45)

Similarly

B(e|X)=| E(e|X) |=| E(ei|z) | =o. (4.6)

Using definition (3.22), the conditioning theorem, the linearity of expectations, (4.5), and the
properties of the matrix inverse,

B(B]X)=B((X'X)" X'y| X)

1

= (X'X)" X'E(y| X)
- (X'X) X'X8
= 4.

At the risk of belaboring the derivation, another way to calculate the same result is as follows.
Insert y = X3 + e into the formula (3.22) for B to obtain

B=(X'X)" (X' (XB+e)
= (X'X) ' X'XB+ (X'X) 7 (Xe)
=B+ (X'X) " X'e. (4.7)

This is a useful linear decomposition of the estimator ,@ into the true parameter 3 and the stochastic
component (X’X) ™" X’e. Once again, we can calculate that

E(B-81X)=E((X'X)"'X'e|X)

= (X'X) " X'E(e| X)
= 0.
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Regardless of the method, we have shown that E (,@ | X ) = 0.
We have shown the following theorem.

Theorem 4.5.1 Mean of Least-Squares Estimator
pling (Assumption 4.2.1)

E(B]X)=8

In the linear regression model (Assumption 4.4.1) and i.i.d. sam-

(4.8)
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Equation (4.8) says that the estimator E is unbiased for B, conditional on X. This means
that the conditional distribution of 3 is centered at 3. By “conditional on X” this means that the
distribution is unbiased (centered at 3) for any realization of the regressor matrix X. In conditional

models, we simply refer to this as saying “@3 is unbiased for 3”.

Strictly speaking, “unbiasedness” is a property of the unconditional distribution. Assuming

the unconditional mean is well defined, that is E HBH < 00, then applying the law of iterated

expectations, we find that the unconditional mean of 3 is also 3
B(3) B (B (51 X)) - 8.

4.6 Variance of Least Squares Estimator

In this section we calculate the conditional variance of the OLS estimator.

For any r x 1 random vector Z define the r X r covariance matrix

var(Z) =E ((Z -E(Z))(Z -E(Z))')
=E(22') - (B(2)) (B(2))

and for any pair (Z, X)) define the conditional covariance matrix
var(Z | X)=E((Z -E(Z | X)) (Z -E(Z | b o)l X).

We define
V3 “ Gar (B ] X)

(4.9)

as the conditional covariance matrix of the regression coefficient estimates. We now derive its form.

The conditional covariance matrix of the n x 1 regression error e is the n X n matrix

var(e | X) =E (e€ | X) “I'p.
The i*" diagonal element of D is

E(e? | X) :E(e? | x;) =o?
while the " off-diagonal element of D is

E(eje; | X) =E (e | %) E(e; | ;) =0.
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where the first equality uses independence of the observations (Assumption 1.5.2) and the second

is (4.2). Thus D is a diagonal matrix with i*" diagonal element o?:

o2 0 0

0 o3 0
D = diag (a%, e 0721) = .2

0 0 - o2

In the special case of the linear homoskedastic regression model (4.3), then

E(ef | z;) =07 =0

and we have the simplification
D =1,0%

In general, however, D need not necessarily take this simplified form.
For any n x r matrix A = A(X),

var(A'y | X) =var(A’e| X) = A'DA.

In particular, we can write 8 = A’y where A = X (X'X)_1 and thus

B8
It is useful to note that .
X'DX =) zzio},
i=1

a weighted version of X'X.

V,=var(3| X) = A'DA = (X'X) ' X'DX (X'X) "

(4.10)

(4.11)

In the special case of the linear homoskedastic regression model, D = I, 02, so X'DX =

X'X o2, and the variance matrix simplifies to

Vi = (X'X) "o

Theorem 4.6.1 Variance of Least-Squares Estimator
sumption 4.2.1)
V5 = var (Z;‘ | X)
— (X'X) (X'DX) (X'X) "
where D is defined in (4.10).
sampling (Assumption 4.2.1)

Vi=0® (X'X)7.

In the linear regression model (Assumption 4.4.1) and i.i.d. sampling (As-

(4.12)

In the homoskedastic linear regression model (Assumption 4.4.2) and i.i.d.

(4.13)
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4.7 Gauss-Markov Theorem

Now consider the class of estimators of 3 which are linear functions of the vector y, and thus

can be written as B
B=Aly

where A is an n x k function of X. As noted before, the least-squares estimator is the special case
obtained by setting A = X (X’X)~!. What is the best choice of A? The Gauss-Markov theorem,
which we now present, says that the least-squares estimator is the best choice among linear unbiased
estimators when the errors are homoskedastic, in the sense that the least-squares estimator has the
smallest variance among all unbiased linear estimators. B

To see this, since E (y | X) = X3, then for any linear estimator 3 = A’y we have

E(B]X)=AB(y| X)=AX8,
so B is unbiased if (and only if) A’X = Ij. Furthermore, we saw in (4.11) that
var (B] X) = var (A'y | X) = A'DA = A'Ac?
the last equality using the homoskedasticity assumption D = I,0? . The “best” unbiased linear
estimator is obtained by finding the matrix Ag satisfying AjX = I such that AjAg is minimized

in the positive definite sense, in that for any other matrix A satisfying A’X = I, then A’A— A A,
is positive semi-definite.

Theorem 4.7.1 Gauss-Markov. In the homoskedastic linear regression
model (Assumption 4.4.2) and i.i.d. sampling (Assumption 4.2.1), if B is
a linear unbiased estimator of 3 then

var (B ] X) > o2 (X/X)_l.

The Gauss-Markov theorem provides a lower bound on the variance matrix of unbiased linear
estimators under the assumption of homoskedasticity. It says that no unbiased linear estimator
can have a variance matrix smaller (in the positive definite sense) than o2 (X'X )_1. Since the
variance of the OLS estimator is exactly equal to this bound, this means that the OLS estimator
is efficient in the class of linear unbiased estimator. This gives rise to the description of OLS as
BLUE, standing for “best linear unbiased estimator”. This is is an efficiency justification for the
least-squares estimator. The justification is limited because the class of models is restricted to
homoskedastic linear regression and the class of potential estimators is restricted to linear unbiased
estimators. This latter restriction is particularly unsatisfactory as the theorem leaves open the
possibility that a non-linear or biased estimator could have lower mean squared error than the
least-squares estimator.

We give a proof of the Gauss-Markov theorem below.

Proof of Theorem 4.7.1.1. Let A be any n x k function of X such that A’X = I;. The variance
of the least-squares estimator is (X'X )_1 o2 and that of A’y is A’Ac?. It is sufficient to show
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that the difference A’A — (X’X) ™" is positive semi-definite. Set C = A — X (X’X)". Note that
X'C = 0. Then we calculate that

Aa-(x'x)" = (crx (xx)) ( )—(X’XV1
=CC+OX (X'X)” ( )

+(X'X)T XX (X'X) T = (X X)
=C'C.

-1

The matrix C'C is positive semi-definite (see Appendix A.9) as required.

4.8 Generalized Least Squares
Take the linear regression model in matrix format
y=XpB+te. (4.14)

Consider a generalized situation where the observation errors are possibly correlated and/or het-
eroskedastic. Specifically, suppose that

E(e|X)=0 (4.15)

var(e | X) =Q (4.16)

for some n X n covariance matrix €2, possibly a function of X. This includes the iid sampling
framework where €2 = D but allows for non-diagonal covariance matrices as well.

Under these assumptions, by similar arguments we can calculate the mean and variance of the
OLS estimator:

E(B | X> -y (4.17)

-1

var(B| X) = (X'X) 1 (X'QX) (X'X) (4.18)

(see Exercise 4.5).
We have an analog of the Gauss-Markov Theorem.

Theorem 4.8.1 If (4.15)-(4.16) hold and z'fB is a linear unbiased esti-
mator of B then

var (B | X) > (x'07'x) 7

We leave the proof for Exercise 4.6.

The theorem provides a lower bound on the variance matrix of unbiased linear estimators. The
bound is different from the variance matrix of the OLS estimator except when Q = I,o%. This
suggests that we may be able to improve on the OLS estimator.

This is indeed the case when € is known up to scale. That is, suppose that Q = ¢?% where
c? > 0 is real and ¥ is n x n and known. Take the linear model (4.14) and pre-multiply by »-12,
This produces the equation .

y=XpB+e
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where § = £~1/2y, X = »1/2X, and € = ©7/2e. Consider OLS estimation of 3 in this equation
~ R e T
Bgls = (X X) Xy

(=) () () (5
— (X'=71x) 7 XSy (4.19)

This is called the Generalized Least Squares (GLS) estimator of 3.
You can calculate that

B (B | X) =8 (4.20)
var(By, | X) = (X'Q71X) 7, (4.21)

This shows that the GLS estimator is unbiased, and has a covariance matrix which equals the lower
bound from Theorem 4.8.1. This shows that the lower bound is sharp when 3 is known and the
GLS is efficient in the class of linear unbiased estimators.

In the linear regression model with independent observations and known conditional variances,
where 2 =¥ = D = diag (O’%, . 02), the GLS estimator takes the form

5 Yn

Bgs = (X'D7'X) ' X'D 'y

n -1 n
—2 / —2
= ZO’Z- T;T; ZO’Z- ;Y; | -
i=1 =1

In practice, the covariance matrix 2 is unknown, so the GLS estimator as presented here is
not feasible. However, the form of the GLS estimator motivates feasible versions, effectively by
replacing €2 with an estimate. We return to this issue in Section 20.2.

4.9 Residuals

What are some properties of the residuals e; = y; — m;B and prediction errors €; = y; — :B;B(,i),
at least in the context of the linear regression model?
Recall from (3.31) that we can write the residuals in vector notation as

e=Me

where M = I, — X (X'X) ' X' is the orthogonal projection matrix. Using the properties of
conditional expectation

E(e|X)=E(Me|X)=ME(e| X)=0

and
var (e | X)=var(Me| X)=Mvar(e| X)M = MDM (4.22)

where D is defined in (4.10).
We can simplify this expression under the assumption of conditional homoskedasticity

E(e? | z;) = o”.

In this case (4.22) simplifies to
var (¢ | X) = Mo”. (4.23)



CHAPTER 4. LEAST SQUARES REGRESSION 97

In particular, for a single observation i, we can find the (conditional) variance of e; by taking the
it diagonal element of (4.23). Since the i*" diagonal element of M is 1 — h;; as defined in (3.25)
we obtain

var (€; | X)=E (& | X) = (1 — hy) o™ (4.24)
As this variance is a function of h;; and hence x;, the residuals e; are heteroskedastic even if the

errors e; are homoskedastic. Notice as well that this implies 312 is a biased estimator of ¢2.

Similarly, recall from (3.46) that the prediction errors & = (1 —hy) ' & can be written in
vector notation as € = M*& where M* is a diagonal matrix with i diagonal element, (1 — h) .
Thus e = M*M e. We can calculate that

E(e|X)=M"ME(e| X)=0
and
var(e| X)=M*"Mvar(e| X) MM*=M*"MDMM*
which simplifies under homoskedasticity to
var (e | X) = M*M M M*o?
=M*MM*o*
The variance of the i*" prediction error is then
var (¢; | X) =E (&} | X)
= (1 — hii)_l (1 — h”) (1 — hii)_l O'2
= (1 - hii)il 0'2.

A residual with constant conditional variance can be obtained by rescaling. The standardized
residuals are

€; = (1 — hz‘z‘)_l/2 /e\z-, (425)
and in vector notation
e=(e1,...en) = M*/?2Me. (4.26)

From our above calculations, under homoskedasticity,
var (€ | X) = M*'\2M M*/25?
and
var(e; | X)=E (& | X) = o° (4.27)

and thus these standardized residuals have the same bias and variance as the original errors when
the latter are homoskedastic.

4.10 Estimation of Error Variance

The error variance o2 = (e?) can be a parameter of interest even in a heteroskedastic regression

or a projection model. o2 measures the variation in the “unexplained” part of the regression. Its
method of moments estimator (MME) is the sample average of the squared residuals:

In the linear regression model we can calculate the mean of 52. From (3.35) and the properties
of the trace operator, observe that

52 = le’Me: ltr(e’Me) = ltr(Mee').
n n n
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Then
1
E(@*|X) = —tr (B (Mee' | X))
1
=—tr (ME (e€ | X
L (ME (e | X))
1
= tr (M D). (4.28)
Adding the assumption of conditional homoskedasticity [ (el2 | :cz) = 02, so that D = I,02, then
(4.28) simplifies to

5 (5| X) = - tr (Mo?)

202<n—kz>7
n

the final equality by (3.29). This calculation shows that 2 is biased towards zero. The order of
the bias depends on k/n, the ratio of the number of estimated coefficients to the sample size.
Another way to see this is to use (4.24). Note that

B(3*| X) - LY B@ | X)
i=1
= %i(l —h“‘)O'z
=1
- <n — k) o (4.29)

n

the last equality using Theorem 3.11.1.
Since the bias takes a scale form, a classic method to obtain an unbiased estimator is by rescaling
the estimator. Define

1 n
2 ~2
s _n_k;ei. (4.30)
By the above calculation,
E(s*| X) =o? (4.31)
and
E (32) =02

Hence the estimator s? is unbiased for o2. Consequently, s% is known as the “bias-corrected esti-
mator” for o2 and in empirical practice s? is the most widely used estimator for o2.

Interestingly, this is not the only method to construct an unbiased estimator for o2. An esti-
mator constructed with the standardized residuals e; from (4.25) is

1< 1
F==Yd=—Y (1-h) e (4.32)
i=1 i=1
You can show (see Exercise 4.9) that
E (@ | X) =0 (4.33)

and thus 72 is unbiased for o2 (in the homoskedastic linear regression model).

When k/n is small (typically, this occurs when n is large), the estimators 52, s? and &2 are
likely to be close. However, if not then s? and 72 are generally preferred to 52. Consequently it is
best to use one of the bias-corrected variance estimators in applications.

2
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4.11 Mean-Square Forecast Error

A major purpose of estimated regressions is to predict out-of-sample values. Consider an out-
of—samplerbservation (Yn+1, Tn+1) where x, 11 is observed but not y,1. GivenAthe coefficient
estimate 3 the standard point estimate of E (yny1 | ni1) = ;18 18 Yny1 = 2,18 The forecast
error is the difference between the actual value y,,11 and the point forecast 7, +1. This is the forecast
eITOr €41 = Yn+1 — Yn+1. Lhe mean-squared forecast error (MSFE) is its expected squared value

MSFE, =E(&,,).

In the linear regression model, €,41 = €1 — 5,4 (B — ,6) , SO

MSFE, =E(e2,,) — 2B (en+1mn » (g B)) (4.34)
+8 (el (B-8) (B-5) 2uin).

The first term in (4.34) is 0. The second term in (4.34) is zero since e,;1,,,; is independent
of 3 — 3 and both are mean zero. Using the properties of the trace operator, the third term in

(4.34) is
tr (E (Zat12h41) B <B_B) (B _ﬁ>/>>

= tr (E (Tni12)41) B (B ((ﬂ ﬁ) (B B> |X>>>
(v

5(Vs))
:Etr<(wn+1mn+1 V)

—E (m; Hvﬁmnﬂ) (4.35)

I
-+
=

RS

)
E (€n12,, 1)
)

—~ ~ -~ !/
where we use the fact that x,1 is independent of 3, the definition VB =FE ((,8 — ,3) <B — B) | X>
and the fact that x, 1 is independent of VB' Thus

MSFE, =0 —i—E( z, 1 V3 zan)
Under conditional homoskedasticity, this simplifies to
MSFE, =0 (1+B (@) (X'X) " @0s1) ).

A simple estimator for the MSFE is obtained by averaging the squared prediction errors (3.47)
o 1
-1y
n-
=1

where ¢; = y; — $;B(_i) =2;(1 — h;;)~!. Indeed, we can calculate that

E (¢%) =E (¢7)

)

=B (ci—2!(Bey - 8))
=0’ +E <$; (B(fi) - ﬁ) (B(—i) - ﬁ)/ wz) :
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By a similar calculation as in (4.35) we find
B (5?) = o®+B (2} Vs _ @) = MSFE, 1.

This is the MSFE based on a sample of size n — 1, rather than size n. The difference arises because
the in-sample prediction errors ¢€; for 7 < n are calculated using an effective sample size of n—1, while
the out-of sample prediction error €, is calculated from a sample with the full n observations.
Unless n is very small we should expect M SFE, _; (the MSFE based on n — 1 observations) to
be close to MSFE, (the MSFE based on n observations). Thus &2 is a reasonable estimator for
MSFFE,.

Theorem 4.11.1 MSFE
In the linear regression model (Assumption 4.4.1) and i.i.d. sampling (As-
sumption 4.2.1)

MSFE, =E(2,,) = 0> +E (a;; +1V3mn+1)

where Vfi’ = var <B | X) . Furthermore, 5% defined in (8.47) is an unbiased
estimator of MSFE, 1 :

E (6°) = MSFE,_;.

4.12 Covariance Matrix Estimation Under Homoskedasticity

For inference, we need an estimate of the covariance matrix VB of the least-squares estimator.

In this section we consider the homoskedastic regression model (Assumption 4.4.2).
Under homoskedasticity, the covariance matrix takes the relatively simple form

Vi = (X'X) "o

which is known up to the unknown scale 0. In Section 4.10 we discussed three estimators of o2.
The most commonly used choice is s2, leading to the classic covariance matrix estimator

Vo= (X'X)"'s (4.36)
Since s? is conditionally unbiased for o2, it is simple to calculate that ‘Af% is conditionally

unbiased for VB under the assumption of homoskedasticity:

2 _ N 2
B(VslX)=(X'X)"B(s| X)
— (X'X) ' o?
= Vﬁ‘
This was the dominant covariance matrix estimator in applied econometrics for many years,

and is still the default method in most regression packages. For example, Stata uses the covariance
matrix estimator (4.36) by default in linear regression unless an alternative is specified.

~0
If the estimator (4.36) is used, but the regression error is heteroskedastic, it is possible for V3 to
be quite biased for the correct covariance matrix Vg = (X'X ) H(X'DX) (X'X) " . For example,
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suppose k = 1 and JZ-Q = xf with E(x;) = 0. The ratio of the true variance of the least-squares
estimator to the expectation of the variance estimator is

\ > T E(2}) des p

~

5(Valx) SXhel @)

(Notice that we use the fact that o? = z7 implies 02 = E (6?) = E (2?) .) The constant « is the
standardized fourth moment (or kurtosis) of the regressor x;, and can be any number greater than

one. For example, if x; ~ N (0,02) then x = 3, so the true variance VB is three times larger

=0
than the expected homoskedastic estimator Vig. But £ can be much larger. Suppose, for example,
that z; ~ x? — 1. In this case k = 15, so that the true variance VB is fifteen times larger than

=0
the expected homoskedastic estimator V. While this is an extreme and constructed example,
the point is that the classic covariance matrix estimator (4.36) may be quite biased when the
homoskedasticity assumption fails.

4.13 Covariance Matrix Estimation Under Heteroskedasticity

In the previous section we showed that that the classic covariance matrix estimator can be
highly biased if homoskedasticity fails. In this section we show how to construct covariance matrix
estimators which do not require homoskedasticity.

Recall that the general form for the covariance matrix is

V;=(X'X)" (X'DX) (X'X) .

This depends on the unknown matrix D which we can write as
D = diag (0%, v 0721)
=E (e€ | X)
=E (Do | X)

where Dy = diag (e%, . 62) . Thus Dy is a conditionally unbiased estimator for D. If the squared

ey €
errors eZ-Q were observable, we could construct the unbiased estimator

o iAdeal

V5 = (X'X) T (X'DoX) (X'X)”

= (x'x)"" (Zl mim;(ﬁ) (xX'x)"".

1

Indeed,
B(VE™IX)=(xx)" (Z 2B (e | X)) (x'x)7
=1
= (X'X)f1 (Z :L'Z:E;Ul2> (X'X)f1
=1

- (x'X)""(X'DX) (X'X)"!

=~ tideal
verifying that V% ““ is unbiased for VE"‘
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) ~ideal | . .
Since the errors e? are unobserved, V3 is not a feasible estimator. However, we can replace

the errors e; with the least-squares residuals €;. Making this substitution we obtain the estimator
~W n

Vi = (x'x)™" (E mmfﬁ?) (x'x)"". (4.37)
i=1

We know, however, that €2 is biased towards zero (recall equation (4.24)). To estimate the variance
02 the unbiased estimator s? scales the moment estimator 52 by n/(n — k) . Making the same
adjustment we obtain the estimator

Vs = (nﬁk> (x'x)" (z; mim;a?) (x'x)". (4.38)

While the scaling by n/(n — k) is ad hoc, it is recommended over the unscaled estimator (4.37).
Alternatively, we could use the prediction errors ¢; or the standardized residuals €;, yielding the
estimators

Vi=(X'X)" (i mm’g2> (x'x)"!

- (x'x)"! (Zn: (1 — hy) 2 xix;a?) (x'x)"! (4.39)

=1
and
n
V;= (x'x)"! (Z wim;éf) (x'x)"!
i=1
- (x'x)7! (Z (1—hy)~ " wiw;é\?> (xX'x)7". (4.40)
=1

~W ~ ~ —_
The four estimators Vg | VE’ VB’ and VB are collectively called robust, heteroskedasticity-

consistent, or heteroskedasticity-robust covariance matrix estimators. The estimator ‘Afg/
was first developed by Eicker (1963) and introduced to econometrics by White (1980), and is
sometimes called the Eicker-White or White covariance matrix estimator. The degree-of-freedom
adjustment in ffﬁ was recommended by Hinkley (1977), and is the default robust covariance matrix
estimator implemented in Stata. (It is implement by the “r” option, for example by a regression
executed with the command “reg y x, r”’. In current applied econometric practice, this is the method

used by most users.) The estimator T/B was introduced by Horn, Horn and Duncan (1975) (and is
implemented using the vce(hc2) option in Stata). The estimator {/5 was derived by MacKinnon and
White from the jackknife principle, and by Andrews (1991) based on the principle of leave-one-out

cross-validation (and is implemented using the vce(he3) option in Stata).
Since (1 — hy) 2 > (1 — hy) ' > 1 it is straightforward to show that

W -
Va < VB < VB (4.41)

(See Exercise 4.10). The inequality A < B when applied to matrices means that the matrix B — A
is positive definite.
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In general, the bias of the covariance matrix estimators is quite complicated, but they greatly
simplify under the assumption of homoskedasticity (4.3). For example, using (4.24),

B(Vs 1X)=(x'x)" (i 2 2/E (F | X)) (x'x)!
- 00x)” (S a1 7))
= (X’X)fla2 - (X’X)f1 (i :B@ivghn> (X/X)il o

< (X'X)7'o?

= V5

W
This calculation shows that V3 is biased towards zero.
By a similarly calculation (again under homoskedasticity) we can calculate that the estimator
VB is unbiased

E (‘_fﬁ | X> = (xX'X) ' o2 (4.42)

(See Exercise 4.11.)

It might seem rather odd to compare the bias of heteroskedasticity-robust estimators under the
assumption of homoskedasticity, but it does give us a baseline for comparison.

Another interesting calculation shows that in general (that is, without assuming homoskedas-
ticity) ‘7,@ is biased away from zero. Indeed, using the definition of the prediction errors (3.44)

G =y~ wfy=ei— <B(‘i) - B)
SO 2
# =t =20} (B - B) i+ (a1 (By - 8))
Note that e; and B(_i) are functions of non-overlapping observations and are thus independent.

Hence E <<B(7¢) — B) e | X) =0 and
B(# 1 X) = 5( | X) - 2015 (B - 8) e | X) +B( (o} (B - 8))” 1 X)

— 02 +E ((m’ (B0-8)) | X)

> 01-2.

It follows that
B(V5]X)=(xX'X)" (Z z.2E (2 | X)) (x'x)"!
=1
> (X'X)7" (Z mim;az?) (x'x)™"
=1

= V5

This means that V= is conservative in the sense that it is weakly larger (in expectation) than the
correct variance for any realization of X.
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=0 W o~ ~ —
We have introduced five covariance matrix estimators, Vg, Vg VB, VB’ and VE' Which
=0
should you use? The classic estimator V3 is typically a poor choice, as it is only valid under
the unlikely homoskedasticity restriction. For this reason it is not typically used in contemporary

econometric research. Unfortunately, standard regression packages set their default choice as i\/g,
so users must intentionally select a robust covariance matrix estimator.

Of the four robust estimators, VE is the most commonly used as it is the default robust

covariance matrix option in Stata. However, VB may be the preferred choice since it is conservative

for any X. As {/B is simple to implement, this should not be a barrier.

Halbert L. White

Hal White (1950-2012) of the United States was an influential econometri-
cian of recent years. His 1980 paper on heteroskedasticity-consistent covari-
ance matrix estimation for many years has been the most cited paper in
economics. His research was central to the movement to view econometric
models as approximations, and to the drive for increased mathematical rigor
in the discipline. In addition to being a highly prolific and influential scholar,
he also co-founded the economic consulting firm Bates White.

4.14 Standard Errors

A variance estimator such as V' is an estimate of the variance of the distribution of B A
more easily interpretable measure of spread is its square root — the standard deviation. This is
so important when discussing the distribution of parameter estimates, we have a special name for
estimates of their standard deviation.

Definition 4.14.1 A standard error S(B) for a real-valued estimator B
is an estimate of the standard deviation of the distribution of (.

When 3 is a vector with estimate 3 and covariance matrix estimate VB, standard errors for

individual elements are the square roots of the diagonal elements of ‘A/B. That is,

@)=V =[5 -
G =\vs, = [V,
When the classical covariance matrix estimate (4.36) is used, the standard error takes the particu-
larly simple form

s(B;) = 5 [(X’X)*Lj. (4.43)

As we discussed in the previous section, there are multiple possible covariance matrix estimators,
so standard errors are not unique. It is therefore important to understand what formula and method
is used by an author when studying their work. It is also important to understand that a particular
standard error may be relevant under one set of model assumptions, but not under another set of
assumptions.
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To illustrate, we return to the log wage regression (3.14) of Section 3.7. We calculate that
s2 = 0.160. Therefore the homoskedastic covariance matrix estimate is

-1
~0 5010 314 0.002  —0.031
Vs ( 314 20 ) 0160 = ( —0.031  0.499 >

We also calculate that
n

Nl a2 763.26 48.513
2(1 hia)  wiwiéi = < 48.513 3.1078 )°
1=
Therefore the Horn-Horn-Duncan covariance matrix estimate is

V. — ( 5010 314 >_1 < 763.26 48.513 ) < 5010 314 >_1

B\ 314 20 48.513 3.1078 314 20
0.001 —0.015
- ( —0.015 0.243 > (4.44)

The standard errors are the square roots of the diagonal elements of these matrices. A conventional
format to write the estimated equation with standard errors is

—

log(Wage) = 0.155 Education + 0.698
(0.031) (0.493)

Alternatively, standard errors could be calculated using the other formulae. We report the
different standard errors in the following table.

Education Intercept

Homoskedastic (4.36) 0.045 0.707
White (4.37) 0.029 0.461
Scaled White (4.38) 0.030 0.486
Andrews (4.39) 0.033 0.527
Horn-Horn-Duncan (4.40) 0.031 0.493

The homoskedastic standard errors are noticeably different (larger, in this case) than the others,
but the four robust standard errors are quite close to one another.

4.15 Covariance Matrix Estimation with Sparse Dummy Variables

The heteroskedasticity-robust covariance matrix estimators can be quite imprecise in some con-
texts. One is in the presence of sparse dummy variables — when a dummy variable only takes
the value 1 or 0 for very few observations. In these contexts one component of the variance matrix
is estimated on just those few observations and thus will be imprecise. This is effectively hidden
from the user.

To see the problem, let di; be a dummy variable (takes on the values 1 and 0) for “group 1”
and let do; = 1 — dy; be the complement for “group 2” Consider the dummy-only regression

yi = Bidi; + Pada; + €

which excludes the intercept for identification. The number of observations in the two “groups”
are ny — Z?_l dy; and ny = Z?_l d;. The least-squares estimates for 51 and [y are the averages
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within the two groups. We say the design is sparse if either n; or ng is small. One implication is
that the coefficient for the small group will be imprecisely estimated.

An extreme situation is when ny = 1, thus group 1 has only a single observation. This would be
unlikely to occur intentionally, but is actually remarkably likely when a large number of interactions
are included in a regression. In this context, the least-squares estimate for 1 is 81 = y1, where for
simplicity we have assumed that the first observation is the one for which di; = 1. This means that
the corresponding residual is e; = 0.

The implication for covariance matrix estimation is rather unpleasant. The White estimator is

2

where 0< is a variance estimator computed with all observations excluding the first. The covariance

matrix V%V is singular, and in particular produces the standard error s(gl) = 0! That is, the
standard regression package will print out a standard error of 0 for the least-precisely estimated
coefficient! R

The reason is that the estimator is effectively estimating the variance of ; from a single
observation. The point estimate of a variance from a single observation is 0. KEssentially, while
it is impossible to estimate a variance from a single observation the standard formula gives a
misleadingly precise answer.

In most practical regressions, estimated standard errors will not be zero as we typically estimate
models with an omitted dummy category and an intercept. What are the implications? In this
case, while the reported “standard errors” are non-zero, the covariance matrix estimator itself is
singular. This means that there is a linear combination of the estimates with a zero estimated
variance. This is generally troubling as this situation is largely hidden from the user.

This problem does not arise if the homoskedastic form of the covariance matrix estimate is used.
In the above example, the estimate is

Consequently, in models with sparse dummy variable designs, it may be prudent to use (or at least
check) the homoskedastic standard error formulae.

In general, users should be cautious about regression results when dummy variables (and inter-
actions of dummy variables) are sparse.

4.16 Computation

We illustrate methods to compute standard errors for equation (3.15) extending the code of
Section 3.20.

Stata do File (continued)

* Homoskedastic formula (4.36):

reg wage education experience exp2 if (mnwf == 1)

* Scaled White formula (4.38):

reg wage education experience exp2 if (mnwf == 1), r

* Andrews formula (4.39):

reg wage education experience exp2 if (mnwf == 1), vce(hc3)
*

Horn-Horn-Duncan formula (4.40):
reg wage education experience exp2 if (mnwf == 1), vce(hc2)
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R Program File (continued)

n <- nrow(y)

k <- ncol(x)

a <- n/(n-k)

sig2 <- (t(e) %*% e)/(n-k)

ul <- x*(e%*%matrix(1,1,k))

u2 <- x*((e/(1-leverage))%*%matrix(1,1,k))
u3 <- x*((e/sqrt(1-leverage))%*%matrix(1,1,k))
v0 <- xx*sig2

xx <- solve(t(x)%*%x)

vl <- xx %*% (t(ul)%*%ul) %*% xx

vlia <- a* xx %*% (t(ul)%*%ul) %*% xx
v2 <- xx %*% (t(u2)%*%u2) %*% xx

v3 <- xx %*% (t(u3)%*%u3) %*% xx

s0 <- sqrt(diag(v0)) # Homoskedastic formula

sl <- sqrt(diag(vl)) # White formula

sla <- sqrt(diag(vla)) # Scaled White formula

s2 <- sqrt(diag(v2)) # Andrews formula

83 <- sqrt(diag(v3)) # Horn-Horn-Duncan formula

MATLAB Program File (continued)

[n,k]=size(x);
a=n/(n-k);
sig2=(e*e)/(n-k);
ul=x.*(e*ones(1,k));
u2=x.*((e./(1-leverage))*ones(1,k));u3=x.*((e./sqrt(1-
leverage))*ones(1,k));
xx=inv(x’*x);
v0=xx*sig2;
vli=xx*(ul"*ul)*xx;
vla=a*xx*(ul"*ul)*xx;
v2=xx*(u2"*u2)*xx;
v3=xx*(u3"*u3)*xx;

sO0=sqrt(diag(v0)); # Homoskedastic formula
sl=sqrt(diag(vl)); # White formula
sla=sqrt(diag(vla)); # Scaled White formula
s2=sqrt(diag(v2)); # Andrews formula
s3=sqrt(diag(v3)); # Horn-Horn-Duncan formula

4.17 Measures of Fit

As we described in the previous chapter, a commonly reported measure of regression fit is the
regression R? defined as
RZ=1- Llé\iz -1 3_2'
Si (i —7) a;
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where 85 =n 1Y (yi— 7). R2 can be viewed as an estimator of the population parameter
! 2
o var (z8) ., o
var(y;) o2

However, 2 and 85 are biased estimators. Theil (1961) proposed replacing these by the unbi-

ased versions s* and & = (n — 1)7' >0 (yi — 7)? yielding what is known as R-bar-squared or
adjusted R-squared:

& (n—k) X0y (v = 7)°

052 . . . .
While R” is an improvement on R?, a much better improvement is

§2:1_L16?:1_&_2
S (v —7)? 7y

where €; are the prediction errors (3.44) and 62 is the MSPE from (3.47). As described in Section
(4.11), 52 is a good estimator of the out-of-sample mean-squared forecast error, so R? is a good
estimator of the percentage of the forecast variance which is explained by the regression forecast.
In this sense, R? is a good measure of fit.

One problem with R?, which is partially corrected by R and fully corrected by }~%2, is that R?
necessarily increases when regressors are added to a regression model. This occurs because R? is a
negative function of the sum of squared residuals which cannot increase when a regressor is added.
In contrast, R’ and R? are non-monotonic in the number of regressors. R? can even be negative,
which occurs when an estimated model predicts worse than a constant-only model.

In the statistical literature the MSPE &2 is known as the leave-one-out cross validation
criterion, and is popular for model comparison and selection, especially in high-dimensional (non-
pararrietric) contexts. It is equivalent to use R? or 52 to compare and select models. Models with
high R? (or low 72) are better models in terms of expected out of sample squared error. In contrast,
R? cannot be used for model selection, as it necessarily increases when regressors are added to a
regression model. R is also an inappropriate choice for model selection (it tends to select models
with too many parameters), though a justification of this assertion requires a study of the theory
of model selection. Unfortunately, R is routinely used by some economists, possibly as a hold-over
from previous generations. N

In summary, it is recommended to calculate and report R? and/or 52 in regression analysis,
and omit R? and R’

Henri Theil

Henri Theil (1924-2000) of the Netherlands invented R’ and two-stage least

squares, both of which are routinely seen in applied econometrics. He also
wrote an early influential advanced textbook on econometrics (Theil, 1971).

4.18 Empirical Example

We again return to our wage equation, but use a much larger sample of all individuals with at
least 12 years of education. For regressors we include years of education, potential work experience,
experience squared, and dummy variable indicators for the following: female, female union member,
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male union member, married female', married male, formerly married female?, formerly married
male, Hispanic, black, American Indian, Asian, and mixed race® . The available sample is 46,943
so the parameter estimates are quite precise and reported in Table 4.1. For standard errors we use
the unbiased Horn-Horn-Duncan formula.

Table 4.1 displays the parameter estimates in a standard tabular format. The table clearly
states the estimation method (OLS), the dependent variable (log(Wage)), and the regressors are
clearly labeled. Both parameter estimates and standard errors are reported for all coefficients. In
addition to the coefficient estimates, the table also reports the estimated error standard deviation
and the sample size. These are useful summary measures of fit which aid readers.

Table 4.1
OLS Estimates of Linear Equation for Log(Wage)

B s(B)
Education 0.117 0.001
Experience 0.033 0.001
Experience? /100 -0.056  0.002
Female -0.098 0.011
Female Union Member 0.023 0.020
Male Union Member 0.095 0.020
Married Female 0.016 0.010
Married Male 0.211  0.010

Formerly Married Female -0.006 0.012
Formerly Married Male 0.083 0.015

Hispanic -0.108 0.008
Black -0.096  0.008
American Indian -0.137  0.027
Asian -0.038 0.013
Mixed Race -0.041 0.021
Intercept 0.909 0.021
o 0.565

Sample Size 46,943

Note: Standard errors are heteroskedasticity-consistent (Horn-Horn-Duncan formula)

As a general rule, it is advisable to always report standard errors along with parameter estimates.
This allows readers to assess the precision of the parameter estimates, and as we will discuss in
later chapters, form confidence intervals and t-tests for individual coefficients if desired.

The results in Table 4.1 confirm our earlier findings that the return to a year of education is
approximately 12%, the return to experience is concave, that single women earn approximately
10% less then single men, and blacks earn about 10% less than whites. In addition, we see that
Hispanics earn about 11% less than whites, American Indians 14% less, and Asians and Mixed races
about 4% less. We also see there are wage premiums for men who are members of a labor union
(about 10%), married (about 21%) or formerly married (about 8%), but no similar premiums are
apparent for women.

!Defining “married” as marital code 1, 2, or 3.
?Defining “formerly married” as marital code 4, 5, or 6.
3Race code 6 or higher.
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4.19 Multicollinearity

If X’'X is singular, then (X'X )71 and ,@ are not defined. This situation is called strict
multicollinearity, as the columns of X are linearly dependent, i.e., there is some a # 0 such that
X a = 0. Most commonly, this arises when sets of regressors are included which are identically
related. For example, if X includes both the logs of two prices and the log of the relative prices,
log(p1), log(p2) and log(p1/p2), then X’'X will necessarily be singular. When this happens, the
applied researcher quickly discovers the error as the statistical software will be unable to construct
(X’X)~!. Since the error is discovered quickly, this is rarely a problem for applied econometric
practice.

The more relevant situation is near multicollinearity, which is often called “multicollinearity”
for brevity. This is the situation when the X’X matrix is near singular, when the columns of X are
close to linearly dependent. This definition is not precise, because we have not said what it means
for a matrix to be “near singular”. This is one difficulty with the definition and interpretation of
multicollinearity.

One potential complication of near singularity of matrices is that the numerical reliability of
the calculations may be reduced. In practice this is rarely an important concern, except when the
number of regressors is very large.

A more relevant implication of near multicollinearity is that individual coefficient estimates will
be imprecise. We can see this most simply in a homoskedastic linear regression model with two
regressors

Yi = 211 + w282 + €,

Ixyx— (17
n p 1)

~ o2 (1 p - o? 1 —p
Var(ﬁ’X>_;(p 1) - n(l—p?) ( —p 1 >
The correlation p indexes collinearity, since as p approaches 1 the matrix becomes singular. We
can see the effect of collinearity on precision by observing that the variance of a coefficient esti-
mate o2 [n (1 — p2)]_1 approaches infinity as p approaches 1. Thus the more “collinear” are the
regressors, the worse the precision of the individual coefficient estimates.

What is happening is that when the regressors are highly dependent, it is statistically difficult to
disentangle the impact of 51 from that of 85. As a consequence, the precision of individual estimates
are reduced. The imprecision, however, will be reflected by large standard errors, so there is no
distortion in inference.

Some earlier textbooks overemphasized a concern about multicollinearity. A very amusing
parody of these texts appeared in Chapter 23.3 of Goldberger’s A Course in Econometrics (1991),
which is reprinted below. To understand his basic point, you should notice how the estimation
variance o2 [n (1 — ,02)] ! depends equally and symmetrically on the correlation p and the sample
size n.

and

In this case
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Arthur S. Goldberger

Art Goldberger (1930-2009) was one of the most distinguished members
of the Department of Economics at the University of Wisconsin. His PhD
thesis developed an early macroeconometric forecasting model (known as the
Klein-Goldberger model) but most of his career focused on microeconometric
issues. He was the leading pioneer of what has been called the Wisconsin
Tradition of empirical work — a combination of formal econometric theory
with a careful critical analysis of empirical work. Goldberger wrote a series of
highly regarded and influential graduate econometric textbooks, including
Econometric Theory (1964), Topics in Regression Analysis (1968), and A
Course in Econometrics (1991).
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Micronumerosity
Arthur S. Goldberger
A Course in Econometrics (1991), Chapter 23.3

Econometrics texts devote many pages to the problem of multicollinearity in
multiple regression, but they say little about the closely analogous problem of
small sample size in estimating a univariate mean. Perhaps that imbalance is
attributable to the lack of an exotic polysyllabic name for “small sample size.” If
so, we can remove that impediment by introducing the term micronumerosity.

Suppose an econometrician set out to write a chapter about small sample size
in sampling from a univariate population. Judging from what is now written about
multicollinearity, the chapter might look like this:

1. Micronumerosity

The extreme case, “exact micronumerosity,” arises when n = 0, in which case
the sample estimate of y is not unique. (Technically, there is a violation of
the rank condition n > 0 : the matrix 0 is singular.) The extreme case is
easy enough to recognize. “Near micronumerosity” is more subtle, and yet
very serious. It arises when the rank condition n > 0 is barely satisfied. Near
micronumerosity is very prevalent in empirical economics.

2. Consequences of micronumerosity

The consequences of micronumerosity are serious. Precision of estimation is
reduced. There are two aspects of this reduction: estimates of p may have
large errors, and not only that, but Vj; will be large.

Investigators will sometimes be led to accept the hypothesis © = 0 because
y/oy is small, even though the true situation may be not that u = 0 but
simply that the sample data have not enabled us to pick u up.

The estimate of p will be very sensitive to sample data, and the addition of
a few more observations can sometimes produce drastic shifts in the sample
mean.

The true p may be sufficiently large for the null hypothesis ¢ = 0 to be
rejected, even though V5 = 02 /n is large because of micronumerosity. But if
the true p is small (although nonzero) the hypothesis g = 0 may mistakenly
be accepted.
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3. Testing for micronumerosity

Tests for the presence of micronumerosity require the judicious use
of various fingers. Some researchers prefer a single finger, others use
their toes, still others let their thumbs rule.

A generally reliable guide may be obtained by counting the number
of observations. Most of the time in econometric analysis, when n is
close to zero, it is also far from infinity.

Several test procedures develop critical values n*, such that micron-
umerosity is a problem only if n is smaller than n*. But those proce-
dures are questionable.

4. Remedies for micronumerosity

If micronumerosity proves serious in the sense that the estimate of p
has an unsatisfactorily low degree of precision, we are in the statistical
position of not being able to make bricks without straw. The remedy
lies essentially in the acquisition, if possible, of larger samples from
the same population.

But more data are no remedy for micronumerosity if the additional

data are simply “more of the same.” So obtaining lots of small samples
from the same population will not help.

4.20 Clustered Sampling

In Section 4.2 we briefly mentioned clustered sampling as an alternative to the assumption of
random sampling. We now introduce the framework in more detail and extend the primary results
of this Chapter to encompass clustered dependence.

It might be easiest to understand the idea of clusters by considering a concrete example. Duflo,
Dupas and Kremer (2011) investigate the impact of tracking (assigning students based on initial
test score) on educational attainment in a randomized experiment. An extract of their data set is
available on the textbook webpage in the file DDK2011.

In 2005, 140 primary schools in Kenya received funding to hire an extra first grade teacher to
reduce class sizes. In half of the schools (selected randomly), students were assigned to classrooms
based on an initial test score (“tracking”); in the remaining schools the students were randomly
assigned to classrooms. For their analysis, the authors restricted attention to the 121 schools which
initially had a single first-grade class, and if we further restrict attention to those with full data
availability the resulting sample has 111 schools.

The key regression in the paper takes the form

TestScore;g = —0.082 + 0.147T'rackingy + eiq (4.45)

where TestScore;q is the standardized test score (normalized to have mean 0 and variance 1) of
student ¢ in school g, and Tracking, is a dummy equal to 1 if school g was tracking. The OLS
estimates indicate that schools which tracked the students had an overall increase in test scores by
0.15 standard deviations, which is quite meaningful. More general versions of this regression are
estimated, many of which take the form

TestScoreiy = o +yTrackingg + ;.08 + eig (4.46)
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where x;4 is a set of controls specific to the student (including age, sex and initial test score).

A difficulty with applying the classical regression framework is that student achievement is likely
to be dependent within a given school. Student achievement may be affected by local demographics,
individual teachers, and classmates, all of which imply dependence within a school. These concerns,
however, do not suggest that achievement will be correlated across schools, so it seems reasonable
to model achievement across schools as mutually independent.

In clustering contexts it is convenient to double index the observations as (yiq, Zig) where
g = 1,...,G indexes the cluster and 7 = 1,...,n, indexes the individual within the gt" cluster.
The number of observations per cluster n, may vary across clusters. The number of clusters is G.
The total number of observations is n = 2521 ng. In the Kenyan schooling example, the number
of clusters (schools) in the estimation sample is G = 111, the number of students per school varies
from 19 to 62, and the total number of observations is n = 5269.

While it is typical to write the observations using the double index notation (yig, €ig), it is also
useful to use cluster-level notation. Let y, = (y1g, -, Yn,g)" and Xy = (14, ..., Tn,g)" denote the
ng x 1 vector of dependent variables and ny X k matrix of regressors for the g'" cluster. A linear
regression model can be written for the individual observations as

/
Yig = Tigl + €ig

and using cluster notation as
Yy, = X8+ ¢ (4.47)

where eg = (e1g, ..., €n,g)’ is a ng X 1 error vector.
Using this notation we can write the sums over the observations using the double sum Z?:l S
This is the sum across clusters of the sum across observations within each cluster. The OLS esti-

mator can be written as

-1

R ng G ng
B= (22D mmly | | 20D wiavio
g=11i=1 g=11=1
or 1
R G B G
B={> x,x, > Xy, |- (4.48)
g=1 g=1

The OLS residuals are e;; = y;g — m;g,@ in individual level notation and e, = y, — X gf'i‘ in cluster
level notation.

The standard clustering assumption is that the clusters are known to the researcher and that
the observations are independent across clusters.

Assumption 4.20.1 The clusters ('yg,Xg) are mutually independent across
clusters g.

In our example, clusters are schools. In other common applications, cluster dependence has
been assumed within individual classrooms, families, villages, regions, and within larger units such
as industries and states. This choice is up to the researcher, though the justification will depend on
the context, the nature of the data, and will reflect information and assumptions on the dependence
structure across observations.

The model is a linear regression under the assumption

E (e, | X,) =0. (4.49)
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This is the same as assuming that the individual errors are conditionally mean zero
E (eig | Xg) =0

or that the conditional mean of y, given X is linear. As in the independent case, equation (4.49)
means that the linear regression model is correctly specified. In the clustered regression model, this
requires that all all interaction effects within clusters have been accounted for in the specification
of the individual regressors x;.

In the regression (4.45), the conditional mean is necessarily linear and satisfies (4.49) since the
regressor T'rackingg is a dummy variable at the cluster level. In the regression (4.46) with individual
controls, (4.49) requires that the achievement of any student is unaffected by the individual controls
(e.g. age, sex and initial test score) of other students within the same school.

Given (4.49), we can calculate the mean of the OLS estimator. Substituting (4.47) into (4.48)
we find

R G 1 /G
on=2xx,| (XX
g=1 g=1

The mean of ,@ — 3 conditioning on all the regressors is
-1

¢ e
E(fa—mx): Y XX, S X!E (e | X)
g=1 g=1
G 1 /a
- ZX'ng ZX;E(eg’Xg)
g=1 g=1

=0.

The first equality holds by linearity, the second by Assumption 4.20.1 and the third by (4.49).
This shows that OLS is unbiased under clustering if the conditional mean is linear.

Theorem 4.20.1 In the clustered linear regression model (As-
sumption 4.20.1 and (4.49))

E(BlX)=p

Now consider the covariance matrix of B Let
/
3y =E(eg€; | Xy)

denote the n, X ng, conditional covariance matrix of the errors within the g"" cluster. Since the
observations are independent across clusters,

var ZX;eg | X :ZVar(X;eg|Xg)

=, (4.50)
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It follows that
V5 = var (B | X )

- (x'x)7', (x'x)""

(4.51)

where we write X'X = Zngl XX, = Zle S Tigk),.

This differs from the formula in the independent case due to the correlation between observations
within clusters. The magnitude of the difference depends on the degree of correlation between
observations within clusters and the number of observations within clusters. To see this, suppose

that all clusters have the same number of observations ny = N, E (e?g ] :lzg) =02, E (eigeey | 4) =

o%p for i # ¢, and the regressors x;; do not vary within a cluster. In this case the exact variance
of the OLS estimator equals
Vi=(X'X) " (1+p(N-1)).

If p > 0, this shows that the actual variance is appropriately a multiple pN of the conventional
formula. In the Kenyan school example, the average cluster size is 48, so if the correlation between
students is p = 0.25 the actual variance exceeds the conventional formula by a factor of about
twelve. In this case the correct standard errors (the square root of the variance) should be a
multiple of about three times the conventional formula. This is a substantial difference, and should
not be neglected.

The typical solution is to use a covariance matrix estimate which extends the robust White
formula to allow for general correlation within clusters. Recall that the insight of the White
covariance estimator is that the squared error e? is unbiased for E (e% | :1:1) = af. Similarly with

i
cluster dependence the matrix ege] is unbiased for E (eg4e} | X,) = X, This means that an

unbiased estimate for (4.50) is Q,, = chzl X ege;X ;. This is not feasible, but we can replace the
unknown errors by the OLS residuals to obtain the estimator

G
o P~
Q, = E Xgegeng
g=1
G ng ng

;] o~ o~
= E :ZE :migmegeigeﬂg

g=11=1 (=1
G ng ng !

=> ( miga-g> (Z mggé\gg> : (4.52)
g=1 \i=1 (=1

The three expressions in (4.50) give three equivalent formula which could be used to calculate Q.
The final expression writes §2, in terms of the cluster sums Z;ﬁ | Tpg€rg which is basis for our
example R and MATLAB codes shown below.

Given the expressions (4.50)-(4.51), a natural cluster covariance matrix estimator takes the form

1

Q, (X'x)"

Vi =a, (X'X)" (4.53)

where the term a,, is a possible finite-sample adjustment. The Stata cluster command uses

= <Z:i) (Gf 1) . (4.54)

The factor G/(G — 1) was derived by Chris Hansen (2007) in the context of equal-sized clusters
to improve performance when the number of clusters G is small. The factor (n —1)/(n — k) is an
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ad hoc generalization which nests the adjustment used in (4.38), since when G = n we have the
simplification a,, = n/(n — k).

Alternative cluster-robust covariance matrix estimators can be constructed using cluster-level
prediction errors such as

€g = Yy — Xgﬁ‘_g

where B,g is the least-squares estimator omitting cluster g. We then have the robust covariance
matrix estimator

G
V= (X'X)7 Y Xlge X, | (X'X)7
g=1

Similarly to the heteroskedastic-robust case, you can show that {/ﬁ is a conservative estimator

for VB in the sense that the conditional expectation of V- exceeds V4. This covariance matrix
estimator is more cumbersome to implement, however, as the cluster-level prediction errors do not
have a simple computational form so require a loop to estimate.

To illustrate in the context of the Kenyan schooling example, we present the regression of
student test scores on the school-level tracking dummy, with two standard errors displayed. The
first (in parenthesis) is the conventional robust standard error. The second [in square brackets] is
the clustered standard error, where clustering is at the level of the school.

TestScorejg = — 0.082 + 0.147 Trackingg + e;q (4.55)
(0.020)  (0.028)
0054  [0.077]

We can see that the cluster-robust standard errors are roughly three times the conventional
robust standard errors. Consequently, confidence intervals for the coefficients are greatly affected
by the choice.

For illustration, we list here the commands needed to produce the regression results with clus-
tered standard errors in Stata, R, and MATLAB.

Stata do File

* Load data:
use "DDK2011.dta"

* Standard the test score variable to have mean zero and unit variance:
egen testscore = std(totalscore)
* Regression with standard errors clustered at the school level:

reg testscore tracking, cluster(schoolid)

You can see that clustered standard errors are simple to calculate in Stata.
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R Program File

# Load the data and create variables

data <- read.table("DDK2011.txt" header=TRUE,sep="\t")
y <- scale(as.matrix(data$totalscore))

n <- nrow(y)

x <- cbind(as.matrix(data$tracking),matrix(1,n,1))
schoolid <- as.matrix(data$schoolid)

k <- ncol(x)

invx <- solve(t(x)%*%x)

beta <- invx%*%t(x)%* %y

xe <- x*rep(y-x%*%beta,times=Kk)

# Clustered robust standard error

xe sum <- rowsum(xe,schoolid)

G <- nrow(xe sum)

omega <- t(xe_ sum)%*%xe sum

scale <- G/(G-1)*(n-1)/(n-k)

V _clustered = scale*invx%*%omega%*%invx

se_ clustered <- sqrt(diag(V _ clustered))
print(beta)

print(se_clustered)

Programming clustered standard errors in R is also relatively easy due to the convenient rowsum
command, which sums variables within clusters.

MATLAB Program File

% Load the data and create variables
data = xlsread('DDK2011.xlsx’);
schoolid = dataf(:,2);

tracking = data(:,7);

totalscore = data(:,62);

y = (totalscore - mean(totalscore))./std(totalscore);
x = [tracking,ones(size(y,1),1)];

[n,k] = size(x);

invx = inv(x*x);

beta = invx*(x"*y);

e =y - x*beta;

% Clustered robust standard error
[schools, ™ ,schoolidx] = unique(schoolid);
G = size(schools,1);

cluster sums = zeros(G,k);

for j = Lk

cluster sums(:,j) = accumarray(schoolidx,x(:,j).*e);end
omega = cluster sums’*cluster sums;
scale = G/(G-1)*(n-1)/(n-k);

V _clustered = scale*invx*omega*invx;
se_clustered = sqrt(diag(V _clustered));
display(beta);

display(se_ clustered);
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Here we see that programming clustered standard errors in MATLAB is less convenient than
the other packages, but still can be executed with just a few lines of code. This example uses the
accumarray command, which is similar to the rowsum command in R, but only can be applied to
vectors (hence the loop across the regressors) and works best if the clusterid variable are indices
(which is why the original schoolid variable is transformed into indices in schoolidz. Application of
these commands requires considerable case and attention.

4.21 Inference with Clustered Samples

In this section we give some cautionary remarks and general advice about cluster-robust in-
ference in econometric practice. There has been remarkably little theoretical research about the
properties of cluster-robust methods — until quite recently — so these remarks may become dated
rather quickly.

In many respects cluster-robust inference should be viewed similarly to heteroskedaticity-robust
inference, with where a “cluster” in the cluster-robust case is interpreted similarly to an “observa-
tion” in the heteroskedasticity-robust case. In particular, the effective sample size should be viewed
as the number of clusters, not the “sample size” n. This is because the cluster-robust covariance
matrix estimator effectively treats each cluster as a single observation, and estimates the covari-
ance matrix based on the variation across cluster means. Hence if there are only G = 50 clusters,
inference should be viewed as (at best) similar to heteroskedasticity-robust inference with n = 50
observations. This is a bit unsettling, for if the number of regressors is large (say k& = 20), then the
covariance matrix will be estimated quite imprecisely.

Furthermore, most cluster-robust theory (for example, the work of Chris Hansen (2007)) as-
sumes that the clusters are homogeneous, including the assumption that the cluster sizes are all
identical. This turns out to be a very important simplication. When this is violated — when, for
example, cluster sizes are highly heterogeneous — this should be viewed as roughly equivalent to the
heteroskedasticity-robust case with an extremely high degree of heteroskedasticity. If observations
themselves are i.i.d. then cluster sums have variances which are proportional to the cluster sizes,
so if the latter is heterogeneous so will be the variances of the cluster sums. This also has a large
effect on finite sample inference. When clusters are heterogeneous then cluster-robust inference is
similar to heteroskedasticity-robust inference with highly heteroskedastic observations.

Put together, if the number of clusters GG is small and the number of observations per cluster
is highly varied, then we should interpret inferential statements with a great degree of caution.
Unfortunately, this is the norm. Many empirical studies on U.S. data cluster at the “state” level,
meaning that there are 50 or 51 clusters (the District of Columbia is typically treated as a state).
The number of observations vary considerably across states, since the populations are highly un-
equal. Thus when you read empirical papers with individual-level data but clustered at the “state”
level you should be very cautious, and recognize that this is equivalent to inference with a small
number of extremely heterogeneous observations.

A further complication occurs when we are interested in treatment, as in the tracking example
given in the previous section. In many cases (including Duflo, Dupas and Kremer (2011)) the
interest is in the effect of a specific treatment which is applied at the cluster level (in their case,
treatment applies to schools). In many cases (not, however, Duflo, Dupas and Kremer (2011)), the
number of treated clusters is small relative to the total number of clusters, in an extreme case there
is just a single treated cluster. Based on the reasoning given above, these applications should be
interpreted as equivalent to heteroskedasticity-robust inference with a sparse dummy variable, as
discussed in Section 4.15. As discussed there, standard error estimates can be erroneously small.
In the extreme of a single treated cluster (in the example, if only a single school was tracked)
then if the regression is estimated using the pure dummy (no intercept) design, the estimated
tracking coefficient will have a cluster standard error of 0. In general, reported standard errors will
understate the imprecision of parameter estimates.
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A practical question which arises in the context of cluster-robust inference is “At what level
should we cluster?” In some examples you could cluster at a very fine level, such as families or
classrooms, or at higher levels of aggregation, such as neighborhoods, schools, towns, counties, or
states. What is the correct level at which to cluster? Rules of thumb have been advocated by
practitioners, but at present there is little formal analysis to provide useful guidance. What do we
know? If cluster dependence is ignored or imposed at too fine a level, then variance estimators will
be biased and inference will be inaccurate. Typically this means that standard errors will be too
small, giving rise to spurious indications of significance and precision. On the other hand when
cluster-robust inference is based on higher levels of dependence, then the precision of the covariance
matrix estimators will decrease, meaning that standard errors will be very imprecise estimates of
the actual sampling uncertain. This means that there is a trade-off between bias and variance in
the estimation of the covariance matrix by cluster-robust methods. It is not at all clear — based on
current theory — what to do. I state this emphatically. We really do not know what is the “correct”
level at which to do cluster-robust inference. This is a very interesting question and should certainly
be explored by econometric research.
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Exercises

Exercise 4.1 For some integer k, set j, = E(y*).

(
(

a) Construct an estimator g for py.

)

b) Show that pj is unbiased for py.

(c) Calculate the variance of fig, say var(fix). What assumption is needed for var(jix) to be finite?
)

(d) Propose an estimator of var(fiy).

Exercise 4.2 Calculate E((7 — 11)*), the skewness of 7. Under what condition is it zero?

!/

Exercise 4.3 Explain the difference between 7 and p. Explain the difference between n™! >0 | x; ]

and E (x;z)).

Exercise 4.4 True or False. If y; = z;8 + ¢;, x; € R, E(e; | ;) = 0, and ¢; is the OLS residual
from the regression of y; on z;, then Y7, z2¢; = 0.

Exercise 4.5 Prove (4.17) and (4.18)
Exercise 4.6 Prove Theorem 4.8.1.

Exercise 4.7 Let 8 be the GLS estimator (4.19) under the assumptions (4.15) and (4.16). Assume

that Q = X with 3 known and ¢? unknown. Define the residual vector e = y — X B, and an
estimator for ¢?

2= ﬁz’z—lz.
(a) Show (4.20).

(b) Show (4.21).

(c) Prove that € = M e, where M; =1 — X (X'S71X) 7' X'sL,
(d) Prove that M{£'M; =¥ 1 —5-1X (X'27'X) ' X'5L.
(e) Find E (¢* | X) .

(f) Is ¢ a reasonable estimator for ¢??

Exercise 4.8 Let (y;, x;) be a random sample with E(y | X) = X 3. Consider the Weighted
Least Squares (WLS) estimator of 3

Bwls = (X/WX)_l (X/Wy)

—2

where W = diag (wy, ..., w,) and w; = T, where xj; is one of the z;.

(a) In which contexts would BWIS be a good estimator?

(b) Using your intuition, in which situations would you expect that Bwls would perform better
than OLS?

Exercise 4.9 Show (4.33) in the homoskedastic regression model.
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Exercise 4.10 Prove (4.41).

Exercise 4.11 Show (4.42) in the homoskedastic regression model.

Exercise 4.12 Let u =E (y;),0? =E ((yz — u)2> and uz = E ((yZ — u)3> and consider the sample

mean § = % S yi. Find E ((@ - ,u)?’) as a function of u, 02, 3 and n.

Exercise 4.13 Take the simple regression model y; = z;8 + ¢;, x; € R, E(e; | ;) = 0. Define
~ ~ 3
o2 =E(e? | z;) and ps; = E(e} | x;) and consider the OLS coefficient 3. Find E ((6 — ﬂ) | X) .

Exercise 4.14 Take a regression model with i.i.d. observations (y;, ;) and scalar x;
Yi =xib + e
E(e; | z;) =0
The parameter of interest is § = 32. Consider the OLS estimates B and 0 = B\Q.
(a) Find E(§|X) using our knowledge of E(B|X) and V5 = Var(B\|X). Is 0 biased for 67
(b) Suggest an (approximate) biased-corrected estimator 0* using an estimate 173 for V.

(c) For 0% to be potentially unbiased, which estimate of VB is most appropriate?

Under which conditions is 0* unbiased?

Exercise 4.15 Consider an iid sample {y;,x;} ¢ = 1,...,n where x; is k x 1. Assume the linear
conditional expectation model

yi = 8+ e;
E(ei | :L'Z'):O

Assume that n™1X’X = I}, (orthonormal regressors). Consider the OLS estimator B for .
(a) Find V= var(Q)
(b) In general, are B\j and Bg for j # £ correlated or uncorrelated?
(c) Find a sufficient condition so that Ej and By for j # ¢ are uncorrelated.

Exercise 4.16 Take the linear homoskedastic CEF
yr =B +ei (4.56)

E(e$|$l) =0

E(e?|x;) = o2
and suppose that y; is measured with error. Instead of vy, we observe y; which satisfies

Yi =y +ug

where u; is measurement error. Suppose that e; and u; are independent and
E(uz]mz) =0
B(uf|a;) = o (i)

)
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(a) Derive an equation for y; as a function of x;. Be explicit to write the error term as a function
of the structural errors e; and u;. What is the effect of this measurement error on the model

(4.56)?

(b) Describe the effect of this measurement error on OLS estimation of 3 in the feasible regression

of the observed y; on x;.

(c¢) Describe the effect (if any) of this measurement error on appropriate standard error calculation

for 3.

Exercise 4.17 Suppose that for a pair of observables (y;, z;) with z; > 0 that an economic model

implies
B (yi | i) = (v + 02:)"/*.

(4.57)

A friend suggests that (given an iid sample) you estimate v and @ by the linear regression of y? on

x;, that is, to estimate the equation

y? = a+ B + e

(a) Investigate your friend’s suggestion. Define u; = y; — (v + sz-)l/ 2 Show that B (u; | z;) =

is implied by (4.57).

(4.58)

0

(b) Use y; = (v + Hxi)l/ % 4 u; to calculate B (y2 | #;). What does this tell you about the implied

equation (4.58)7

(¢) Can you recover either v and/or 6 from estimation of (4.58)7 Are additional assumptions

required?
(d) Is this a reasonable suggestion?

Exercise 4.18 Take the model

yi = 1B + T8, + €
E(ei | :L'Z) = 0
E (e? | x;) = o2

where x; = (214, ©2;), with x1; k1 X 1 and xa; k2 x 1. Consider the short regression
yi = x1;,01 + &

and define the error variance estimator

n
1 ~
s% = E ez,
n—ki 4
i=1

Find E (s | X)

Exercise 4.19 Let y be n x 1, X be n x k, and X* = X C where C is k x k and full-rank. Let
B be the least-squares estimator from the regressmn of y on X, and let V be the estimate of its
asymptotic covarlance matrix. Let ,3 and V' Dbe those from the regression of 4y on X *. Derive an

expression for V" as a function of V.
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Exercise 4.20 Take the model

y=XpG+e
E(e| X)=0
E(ed | X) =9

Assume for simplicity that €2 is known. Consider the OLS and GLS estimators 8 = (X'X) " (X'y)
and B = (X QX )_1 (X ! Qfly) . Compute the (conditional) covariance between 3 and B :

B((3-6) (5-5)1%)

Find the (conditional) covariance matrix for B — B :

5((8-5) (B-5) 1 x)
Exercise 4.21 The model is

yi = ;B +e
E(e| i) =0
E (e? | ;) = o?

Q = diag(o?,...,02).

n

The parameter § is estimated both by OLS 3 = (X’X)_1 X'y and GLS B = (X’Qle)_l

X'Q:ly . Let e = y— X3 and ¢ = y — XS denote the residuals. Let R2 =1 —¢'e (y*y*)
and R? = 1 — €'e/ (y”y*)_denote the equation R? where y* = y — 3. If the error ¢; is truly
heteroskedastic will R? or R? be smaller?

Exercise 4.22 An economist friend tells you that the assumption that the observations (y;, x;)
are 1.i.d. implies that the regression y; = 3+ ¢; is homoskedastic. Do you agree with your friend?
How would you explain your position?

Exercise 4.23 Take the linear regression model with E (y | X ) = X 3. Define the ridge regression
estimator R
B=(X'X+I;)) ' X'y

where A > 0 is a fixed constant. Find FE (,@ | X ) s ,@ biased for 37

Exercise 4.24 Continue the empirical analysis in Exercise 3.22.

(a) Calculate standard errors using the homoskedasticity formula and using the four covariance
matrices from Section 4.13.

(b) Repeat in your second programming language. Are they identical?

Exercise 4.25 Continue the empirical analysis in Exercise 3.24. Calculate standard errors using
the Horn-Horn-Duncan method. Repeat in your second programming language. Are they identical?

Exercise 4.26 Extend the empirical analysis reported in Section 4.20. Do a regression of stan-
dardized test score (totalscore normalized to have zero mean and variance 1) on tracking, age, sex,
being assigned to the contract teacher, and student’s percentile in the initial distribution. Calculate
standard errors using both the conventional robust formula, and clustering based on the school.
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(a) Compare the two sets of standard errors. Which standard error changes the most by cluster-
ing? Which changes the least?

(b) How does the coefficient on tracking change by inclusion of the individual controls (in com-
parison to the results from (4.55))?



Chapter 5

Normal Regression and Maximum
Likelihood

5.1 Introduction

This chapter introduces the normal regression model and the method of maximum likelihood.
The normal regression model is a special case of the linear regression model. It is important as
normality allows precise distributional characterizations and sharp inferences. It also provides a
baseline for comparison with alternative inference methods, such as asymptotic approximations and
the bootstrap.

The method of maximum likelihood is a powerful statistical method for parametric models (such
as the normal regression model) and is widely used in econometric practice.

5.2 The Normal Distribution

We say that a random variable X has the standard normal distribution, or Gaussian,
written X ~ N (0, 1), if it has the density

o(x) = \/%7 exp <—%2> , —00 < T < 00. (5.1)

The standard normal density is typically written with the symbol ¢ () and the corresponding
distribution function by ®(z). It is a valid density function by the following result.

Theorem 5.2.1
T

/00 exp (—2%/2) dz = 5 (5.2)
0

All moments of the normal distribution are finite. Since the density is symmetric about zero
all odd moments are zero. By integration by parts, you can show (see Exercises 5.2 and 5.3) that
E (XQ) =1and E (X4) = 3. In fact, for any positive integer m,

E(X*™) =2m-1l=2m—-1)-(2m—3)--- 1.

The notation k!! =k - (k—2)---1 is known as the double factorial. For example, E (Xﬁ) =15,
E (X®) =105, and E (X'9) = 945.

126
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We say that X has a univariate normal distribution, written X ~ N (,u, 02) , if it has the

density
1 (z — p)?
f($) = W exp —T s o0 << o.

The mean and variance of X are p and o2, respectively.
We say that the k-vector X has a multivariate normal distribution, written X ~ N (u, ¥),
if it has the joint density

fl@) = 1 WP Eo) pewt

ex —
) 2 det (2) 27 ( 2

The mean and covariance matrix of X are pu and X, respectively. By setting £ = 1 you can check
that the multivariate normal simplifies to the univariate normal.

For technical purposes it is useful to know the form of the moment generating and characteristic
functions.

Theorem 5.2.2 If X ~ N (u,X) then its moment generating funtion is
1
M(t)=E X)) = tp+-t'St
(t) =E (exp (¥ X)) eXP<u+2 )
(see Ezercise 5.8) and its characteristic function is
1
C(t)=E it'X)) = i’ A — -t'St
(t) (exp (i’ X)) = exp <1u 5 >

(see Exercise 5.9).

An important property of normal random vectors is that affine functions are also multivariate
normal.

Theorem 5.2.3 If X ~ N(u,X) and Y = a + BX, then Y ~
N(a+ Bu,BXB’).

One simple implication of Theorem 5.2.3 is that if X is multivariate normal, then each compo-
nent of X is univariate normal.

Another useful property of the multivariate normal distribution is that uncorrelatedness is
the same as independence. That is, if a vector is multivariate normal, subsets of variables are
independent if and only if they are uncorrelated.

Theorem 5.2.4 If X = (X, X}%) is multivariate normal, X1 and X4
are uncorrelated if and only if they are independent.
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The normal distribution is frequently used for inference to calculate critical values and p-values.
This involves evaluating the normal cdf ®(z) and its inverse. Since the cdf ®(x) is not available
in closed form, statistical textbooks have traditionally provided tables for this purpose. Such
tables are not used currently as now these calculations are embedded in statistical software. For
convenience, we list the appropriate commands in MATLAB and R to compute the cumulative
distribution function of commonly used statistical distributions.

Numerical Cumulative Distribution Function Calculation
To calculate Pr(X < z) for given x

MATLAB R Stata
N(0,1) normcdf (x) pnorm(x) normal (x)
X% chi2cdf (x,r) pchisq(x,r) chi2(r,x)
t, tcdf (x,1) pt(x,r) 1-ttail(r,x)
F.x fcdf (x,r,k) pf(x,r,k) F(r,k,x)

x2(d) ncx2cdf (x,r,d)  pchisq(x,r,d) nchi2(r,d,x)
F,r(d) ncfcdf(x,r,k,d) pf(x,r,k,d) 1-nFtail(r,k,d,x)

Here we list the appropriate commands to compute the inverse probabilities (quantiles) of the
same distributions.

Numerical Quantile Calculation
To calculate x which solves p = Pr(X < x) for given p

MATLAB R Stata
N(0,1) norminv(p) qnorm(p) invnormal (p)
X2 chi2inv(p,r) qchisq(p,r) invchi2(r,p)
ty tinv(p,r) qt(p,r) invttail(r,1-p)
Fk finv(p,r,k) qf (p,r,k) invF(r,k,p)

x2(d) ncx2inv(p,r,d)  qchisq(p,r,d) invnchi2(r,d,p)
F,k(d) mncfinv(p,r,k,d) qf(p,r,k,d) invnFtail(r,k,d,1-p)

5.3 Chi-Square Distribution

Many important distributions can be derived as transformation of multivariate normal random
vectors, including the chi-square, the student ¢, and the F'. In this section we introduce the chi-
square distribution.

Let X ~ N(0,I,) be multivariate standard normal and define Q = X’X. The distribution of
Q is called chi-square with 7 degrees of freedom, written as Q ~ x2.

The mean and variance of QQ ~ x? are r and 2r, respectively. (See Exercise 5.10.)

The chi-square distribution function is frequently used for inference (critical values and p-
values). In practice these calculations are performed numerically by statistical software, but for
completeness we provide the density function.
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Theorem 5.3.1 The density of 2 is

1 oy
f(.%') = m&? /2 16 /2, x>0 (53)
2

where T'(t) = [ u'~te "du is the gamma function (Section 5.18).

For some theoretical applications, including the study of the power of statistical tests, it is useful
to define a non-central version of the chi-square distribution. When X ~ N (u, I,) is multivariate
normal, we say that Q = X’X has a non-central chi-square distribution, with r degrees of
freedom and non-centrality parameter A = p'u, and is written as Q@ ~ x2()\). The non-central
chi-square simplifies to the central (conventional) chi-square when A = 0, so that x2(0) = x2.

Theorem 5.3.2 The density of x2(\) is

0 A2 i
f(z) = Z , ()\> fryoi(z), x>0 (5.4)

' 2
- 2

where fri2i(x) is the X2, ; density function (5.3).

Interestingly, as can be seen from the formula (5.4), the distribution of x2()\) only depends on
the scalar non-centrality parameter A\, not the entire mean vector p.

A useful fact about the central and non-central chi-square distributions is that they also can be
derived from multivariate normal distributions with general covariance matrices.

Theorem 5.3.3 If X ~ N(u,A) with A > 0, r x r, then X'A7'X ~
X2(\), where A = w' A" .

In particular, Theorem 5.3.3 applies to the central chi-squared distribution, so if X ~ N(0, A)
then X'A71X ~ 2.

5.4 Student t Distribution

Let Z ~ N(0,1) and Q ~ x?2 be independent, and define T = Z/,/Q/r. The distribution of T
is called the student t with r degrees of freedom, and is written 1" ~ t,.. Like the chi-square, the
distribution only depends on the degree of freedom parameter r.

Theorem 5.4.1 The density of T is

x—ir(%l) :c_2 R —00 < 1 < 00
f()_\/ﬁl“(g)<1+r> , <1< o0
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The density function of the student ¢ is bell-shaped like the normal density function, but the ¢
has thicker tails. The ¢ distribution has the property that moments below r are finite, but absolute
moments greater than or equal to r are infinite.

The student ¢ can also be seen as a generalization of the standard normal, for the latter is
obtained as the limiting case where r is taken to infinity.

Theorem 5.4.2 Let f.(x) be the student t density. As r — oo, fr(z) —
o ().

Another special case of the student ¢ distribution occurs when » = 1 and is known as the
Cauchy distribution. The Cauchy density function is

1
A Cauchy random variable T' = Z;/Z5 can also be derived as the ratio of two independent N (0, 1)
variables. The Cauchy has the property that it has no finite integer moments.

William Gosset

William S. Gosset (1876-1937) of England is most famous for his derivation
of the student’s t distribution, published in the paper “The probable error
of a mean” in 1908. At the time, Gosset worked at Guiness Brewery, which
prohibited its employees from publishing in order to prevent the possible
loss of trade secrets. To circumvent this barrier, Gosset published under the
pseudonym “Student”. Consequently, this famous distribution is known as
the student ¢ rather than Gosset’s ¢!

5.5 F Distribution

Let Qm ~ x2, and Q. ~ x2 be independent. The distribution of F' = (Q,,/m) / (Q,/r) is called
the F' distribution with degree of freedom parameters m and r, and we write F' ~ I, ..

Theorem 5.5.1 The density of I is

m m/2 m/2—1 m+r
f(z) = () "o r(25) 5> z > 0.
T (2)T(5) (1+2a) "

If m = 1 then we can write Q1 = Z2 where Z ~ N(0,1), and F = Z%/(Q,/r) = <Z/\/Qr/r>2 =
T2, the square of a student ¢ with r degree of freedom. Thus the F distribution with m = 1 is
equal to the squared student ¢ distribution. In this sense the F' distribution is a generalization of
the student ¢.

As a limiting case, as » — oo the F' distribution simplifies to F' — Q,,/m, a normalized x2,.
Thus the F distribution is also a generalization of the x2, distribution.
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Theorem 5.5.2 Let fy, (x) be the density of mF. Asr — 00, fmr(x) —
fm(z), the density of x2,.

Similarly with the non-central chi-square we define the non-central F' distribution. If Q,, ~
x2,(\) and @, ~ x? are independent, then F' = (Q,,/m) / (Q,/r) is called a non-central F with
degree of freedom parameters m and r and non-centrality parameter A.

5.6 Joint Normality and Linear Regression

Suppose the variables (y, ) are jointly normally distributed. Consider the best linear predictor
of y given x
y=2'B+a+e.

By the properties of the best linear predictor, E (xze) = 0 and E (e) = 0, so « and e are uncorrelated.
Since (e, x) is an affine transformation of the normal vector (y, ), it follows that (e, x) is jointly
normal (Theorem 5.2.3). Since (e, x) is jointly normal and uncorrelated they are independent
(Theorem 5.2.4). Independence implies that

E(e|z)=E(e) =0

and
E(€2 | z) :E(ez) =02

which are properties of a homoskedastic linear CEF.
We have shown that when (y, ) are jointly normally distributed, they satisfy a normal linear
CEF
y=x'B+a+e

where
e ~N(0,0?)

is independent of x.
This is a classical motivation for the linear regression model.

5.7 Normal Regression Model
The normal regression model is the linear regression model with an independent normal error

y=x'B+e (5.5)
e ~ N(0,0?).

As we learned in Section 5.6, the normal regression model holds when (y, ) are jointly normally
distributed. Normal regression, however, does not require joint normality. All that is required is
that the conditional distribution of y given « is normal (the marginal distribution of x is unre-
stricted). In this sense the normal regression model is broader than joint normality. Notice that
for notational convenience we have written (5.5) so that & contains the intercept.

Normal regression is a parametric model, where likelihood methods can be used for estimation,
testing, and distribution theory. The likelihood is the name for the joint probability density of the
data, evaluated at the observed sample, and viewed as a function of the parameters. The maximum
likelihood estimator is the value which maximizes this likelihood function. Let us now derive the
likelihood of the normal regression model.
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First, observe that model (5.5) is equivalent to the statement that the conditional density of y
given x takes the form

flylz)= mexp <—27i2 (y— $/5)2> :

Under the assumption that the observations are mutually independent, this implies that the con-
ditional density of (y1,...,yn) given (1, ..., &) is

n
f(yla"'ayn | ml?"'amn) = Hf Yi | mi
n
1 /2
I oy oo (g (= 0°)

_ L a2
= G exp< 202;(% wﬁ))

“ 1B, 0%

.
—_

and is called the likelihood function.
For convenience, it is typical to work with the natural logarithm

n

952 (yz - 37; )2
i=1

I og L(B, 0?) (5.6)

n
log f (Y1, yn | Z1, ..., Tn) = -3 log(2mo2) —

which is called the log-likelihood function.

The maximum likelihood estimator (MLE) (ﬁmle, 52..) is the value which maximizes the
log-likelihood. (It is equivalent to maximize the likelihood or the log-likelihood. See Exercise 5.15.)
We can write the maximization problem as

(ﬁmlm 81211153) = argmax lOg L(:@a 02)' (57)
BERE, 02>0

In most applications of maximum likelihood, the MLE must be found by numerical methods.
However, in the case of the normal regression model we can find an explicit expression for 3, and
02, as functions of the data.

The maximizers (,@mle, 52..) of (5.7) jointly solve the first-order conditions (FOC)

n

0 1 ~
0= —logL(B,07%) = xi (¥ — TP (5.8)
aIB _ﬁmlera2_o-12nl O-Eﬂle ; < )
0 n 1 < ~ 2
0= —=logL =+ — pp— . 5.9
a2 BB L = (v — @B (5.9)

The first FOC (5.8) is proportional to the first-order conditions for the least-squares minimization
problem of Section 3.6. It follows that the MLE satisfies

n -1 n
Bmle = (Z mlw;) (Z mzyl) = ﬁols'
=1 =1

That is, the MLE for 3 is algebraically identical to the OLS estimator.
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Solving the second FOC (5.9) for 62 we find

n n n
~92 _1 ' 15 2_1 ' P 2_1 o
Omle — E Yi — mz'IBInle - E Yi — mz’ﬁols - E €; = Ools-
=1

=1 =1

Thus the MLE for o2 is identical to the OLS/moment estimator from (3.33).

Since the OLS estimate and MLE under normality are equivalent, 3 is described by some
authors as the maximum likelihood estimator, and by other authors as the least-squares estimator.
It is important to remember, however, that 3 is only the MLE when the error e has a known normal
distribution, and not otherwise.

Plugging the estimators into (5.6) we obtain the maximized log-likelihood

~

108 L (Bues 72e ) = =7 log (270%,) — - (5.10)

The log-likelihood is typically reported as a measure of fit.

It may seem surprising that the MLE 3, is numerically equal to the OLS estimator, despite
emerging from quite different motivations. It is not completely accidental. The least-squares
estimator minimizes a particular sample loss function — the sum of squared error criterion — and
most loss functions are equivalent to the likelihood of a specific parametric distribution, in this case
the normal regression model. In this sense it is not surprising that the least-squares estimator can
be motivated as either the minimizer of a sample loss function or as the maximizer of a likelihood
function.

Carl Friedrich Gauss

The mathematician Carl Friedrich Gauss (1777-1855) proposed the normal
regression model, and derived the least squares estimator as the maximum
likelihood estimator for this model. He claimed to have discovered the
method in 1795 at the age of eighteen, but did not publish the result until
1809. Interest in Gauss’s approach was reinforced by Laplace’s simultane-
ous discovery of the central limit theorem, which provided a justification for
viewing random disturbances as approximately normal.

5.8 Distribution of OLS Coefficient Vector

In the normal linear regression model we can derive exact sampling distributions for the
OLS/MLE estimates, residuals, and variance estimate. In this section we derive the distribution of
the OLS coefficient estimate.

The normality assumption e; | €; ~ N (()7 02) combined with independence of the observations

has the multivariate implication
e| X ~N(0,I,07%).

That is, the error vector e is independent of X and is normally distributed.
Recall that the OLS estimator satisfies
B-p=(X'X)

1
X'e
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which is a linear function of e. Since linear functions of normals are also normal (Theorem 5.2.3),
this implies that conditional on X,

B-a ~(x'x)

~N(0,0% (X'X) ' X'X (X'X) ")

L XN (0,1,0?)

=N (0,07 (x'x)7").
An alternative way of writing this is
B‘X ~N (5,02 (X’X)*l) .

This shows that under the assumption of normal errors, the OLS estimate has an exact normal
distribution.

Theorem 5.8.1 In the linear regression model,

~

Bl ~N (;3,02 (X’X)_1> :

x

Theorems 5.2.3 and 5.8.1 imply that any affine function of the OLS estimate is also normally
distributed, including individual estimates. Letting [3; and 3; denote the 4t elements of 3 and 3,
we have

@(X ~N (b’j,aQ [(X’X)l}jj) . (5.11)

5.9 Distribution of OLS Residual Vector

Now consider the OLS residual vector. Recall from (3.31) that € = Me where M = I,, —
X (X'X)"' X'. This shows that @ is lincar in e. So conditional on X,
e= Me|x ~N(0,0?°MM) =N (0,0°M)

the final equality since M is idempotent (see Section 3.12). This shows that the residual vector
has an exact normal distribution. R

Furthermore, it is useful to understand the joint distribution of 3 and e. This is easiest done
by writing the two as a stacked linear function of the error e. Indeed,

B-8\ ([ (xX'X)'X'e\ [ (X'X)'X
(520 (F5) (7).
which is is a linear function of e. The vector thus has a joint normal distribution with covariance
matrix
a2(X'X)" 0
0 oM )

The covariance is zero because (X'X )"'X'M =0as X'M =0 from (3.28). Since the covariance
is zero, it follows that 3 and e are statistically independent (Theorem 5.2.4).

Theorem 5.9.1 In the linear regression model, €|y ~ N (0,0‘zM) and is
independent of 3.

The fact that B and € are independent implies that B is independent of any function of the
residual vector, including individual residuals €; and the variance estimate s and 2.
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5.10 Distribution of Variance Estimate

Next, consider the variance estimator s? from (4.30). Using (3.35), it satisfies (n — k) s> = €'e =

€ M e. The spectral decomposition of M (see equation (A.10)) is M = HAH' where HH =1,
and A is diagonal with the eigenvalues of M on the diagonal. Since M is idempotent with rank
n — k (see Section 3.12) it has n — k eigenvalues equalling 1 and k eigenvalues equalling 0, so

| In—x O
A= o)

Let u = H'e ~ N (0,1,,0?) (see Exercise 5.13) and partition u = (u}, u})’ where u; ~ N (0,I,,_10?).
Then

(n—k)s*=¢eMe

I, ;. O

o n—k /

—eH[ 0 O]He
I, ;. O

o n—k

_u[ ; O}U

= ujuy

N‘72X721—k‘

We see that in the normal regression model the exact distribution of s? is a scaled chi-square.
Since € is independent of 3 it follows that s? is independent of 3 as well.

Theorem 5.10.1 In the linear regression model,

(n—k)s® ~ X2
o2 n—k

and is independent of ,@

5.11 t-statistic

An alternative way of writing (5.11) is
B =B
ol
3j

This is sometimes called a standardized statistic, as the distribution is the standard normal.
Now take the standardized statistic and replace the unknown variance o2 with its estimate s°.
We call this a t-ratio or t-statistic

~N(0,1).

T — Bi—B; :Bj:ﬁj

\/32 [(X’X)*Lj s(5;)

where S(,/B\j) is the classical (homoskedastic) standard error for Bj from (4.43). We will sometimes
write the t-statistic as T'(3;) to explicitly indicate its dependence on the parameter value 3;, and
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sometimes will simplify notation and write the t-statistic as 1" when the dependence is clear from
the context.

By some algebraic re-scaling we can write the t-statistic as the ratio of the standardized statistic
and the square root of the scaled variance estimate. Since the distributions of these two components
are normal and chi-square, respectively, and independent, then we can deduce that the t-statistic

has the distribution
S Sy ey
Jor [ ’
Jj

N(0,1)
X?L_k/ (n—k)

~ty_k

a student t distribution with n — k degrees of freedom.

This derivation shows that the t-ratio has a sampling distribution which depends only on the
quantity n— k. The distribution does not depend on any other features of the data. In this context,
we say that the distribution of the t-ratio is pivotal, meaning that it does not depend on unknowns.

The trick behind this result is scaling the centered coefficient by its standard error, and recog-
nizing that each depends on the unknown o only through scale. Thus the ratio of the two does not
depend on o. This trick (scaling to eliminate dependence on unknowns) is known as studentiza-
tion.

Theorem 5.11.1 In the normal regression model, T ~ t,,_p.

An important caveat about Theorem 5.11.1 is that it only applies to the t-statistic constructed
with the homoskedastic (old-fashioned) standard error estimate. It does not apply to a t-statistic
constructed with any of the robust standard error estimates. In fact, the robust t-statistics can
have finite sample distributions which deviate considerably from ¢,_; even when the regression
errors are independent N (0,?). Thus the distributional result in Theorem 5.11.1, and the use of
the t distribution in finite samples, should only be applied to classical t-statistics.

5.12 Confidence Intervals for Regression Coefficients

~

An OLS estimate § is a point estimate for a coefficient 5. A broader concept is a set or
interval estimate which takes the form C = [E, U |]. The goal of an interval estimate C is to
contain the true value, e.g. 8 € 5, with high probability.

The interval estimate C is a function of the data and hence is random.

An interval estimate C is called a 1 — o confidence interval when Pr(p € 6) =1l—-afora
selected value of o. The value 1 — « is called the coverage probability. Typical choices for the
coverage probability 1 — « are 0.95 or 0.90.

The probability calculation Pr(g € 6’) is easily mis-interpreted as treating 8 as random and C
as fixed. (The probability that ( is in C .) This is not the appropriate interpretation. Instead, the
correct interpretation is that the probability Pr(S € 6) treats the point 5 as fixed and the set C as
random. It is the probability that the random set C covers (or contains) the fixed true coefficient

B.
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There is not a unique method to construct confidence intervals. For example, one simple (yet
silly) interval is
& R with probability 1 — «
- { B } with probability o

If 3 has a continuous distribution, then L by construction Pr(8 € C) = 1 — a, so this confidence
interval has perfect coverage. However, C is uninformative about ﬁ and is therefore not useful.

Instead, a good choice for a confidence interval for the regression coefficient 3 is obtained by
adding and subtracting from the estimate 8 a fixed multiple of its standard error:

C=[B-c-s(B), B+cs(B) (5.12)

where ¢ > 0 is a pre- specified constant. This confidence interval is symmetric about the point
estimate 5 ; and its length is proportional to the standard error s(ﬁ)

Equivalently, C is the set of parameter values for 3 such that the t-statistic 7'(3) is smaller (in
absolute value) than c, that is

5—{6:|T(6)!§c}—{ﬁ:—c§Biﬁgc}.

The coverage probability of this confidence interval is

Pr (5 e 6) = Pr(IT(8)| < ¢)
=Pr(—c<T(B)<c). (5.13)

Since the t-statistic 7'(f) has the ¢, distribution, (5.13) equals F'(c) — F(— ) where F'(u) is the
student ¢ distribution function with n — k degrees of freedom. Since F'(—c) = 1— F\(c) (see Exercise
5.19) we can write (5.13) as

Pr(ﬂea):2F(c)—

This is the coverage probability of the interval C , and only depends on the constant c.

As we mentioned before, a confidence interval has the coverage probability 1 — «. This requires
selecting the constant ¢ so that F'(¢) = 1 — /2. This holds if ¢ equals the 1 — /2 quantile of the
t,_x distribution. As there is no closed form expression for these quantiles, we compute their values
numerically. For example, by tinv(1-alpha/2,n-k) in MATLAB. With this choice the confidence
interval (5.12) has exact coverage probability 1 — . By default, Stata reports 95% confidence
intervals C for each estimated regression coefficient using the same formula.

Theorem 5.12.1 In the normal regression model, (5.12) with c = F~1(1—
a/2) has coverage probability Pr (B € 6) =1-a.

When the degree of freedom is large the distinction between the student ¢ and the normal
distribution is negligible. In particular, for n — k > 61 we have ¢ < 2.00 for a 95% interval. Using
this value we obtain the most commonly used confidence interval in applied econometric practice:

C=|B-2s(8), B+2s(B). (5.14)

This is a useful rule-of-thumb. This 95% confidence interval C is simple to compute and can be
easily calculated from coefficient estimates and standard errors.
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Theorem 5.12.2 In the normal regression model, if n—k > 61 then (5.14)
has coverage probability Pr (6 € 6) > 0.95.

Confidence intervals are a simple yet effective tool to assess estimation uncertainty. When
reading a set of empirical results, look at the estimated coefficient estimates and the standard
errors. For a parameter of interest, compute the confidence interval C and consider the meaning of
the spread of the suggested values. If the range of values in the confidence interval are too wide to
learn about 3, then do not jump to a conclusion about 3 based on the point estimate alone.

5.13 Confidence Intervals for Error Variance

We can also construct a confidence interval for the regression error variance o2 using the sam-

pling distribution of s? from Theorem 5.10.1, which states that in the normal regression model

n — k) s
L (5.15)

Let F(u) denote the x2 , distribution function, and for some a set ¢ = F~1(a/2) and c; =
F~1(1 — a/2) (the a/2 and 1 — /2 quantiles of the x2_, distribution). Equation (5.15) implies
that

o2

—k)s?
Pr <01 < u S@) =F(cg) — F(e1) =1-a.
Rewriting the inequalities we find
Pr((n—k) s%/cy < 0% < (n—k) 52/61) =1-a.

This shows that an exact 1 — « confidence interval for o2 is

o [(n—k)s2 (n—k)sQ]

(5.16)

)

2 C1

Theorem 5.13.1 In the normal regression model, (5.16) has coverage
probability Pr (02 € C’) =1—-a.

The confidence interval (5.16) for o2 is asymmetric about the point estimate s%, due to the
latter’s asymmetric sampling distribution.

5.14 t Test

A typical goal in an econometric exercise is to assess whether or not coefficient 5 equals a
specific value Sy. Often the specific value to be tested is By = 0 but this is not essential. This is
called hypothesis testing, a subject which will be explored in detail in Chapter 9. In this section
and the following we give a short introduction specific to the normal regression model.

For simplicity write the coefficient to be tested as 5. The null hypothesis is

Ho : 8 = So. (5.17)
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This states that the hypothesis is that the true value of the coefficient 5 equals the hypothesized
value (.
The alternative hypothesis is the complement of Hy, and is written as

Hy : 8 # Bo-

This states that the true value of 8 does not equal the hypothesized value.

We are interested in testing Hp against H;. The method is to design a statistic which is
informative about H;. If the observed value of the statistic is consistent with random variation
under the assumption that Hy is true, then we deduce that there is no evidence against Hy and
consequently do not reject Hy. However, if the statistic takes a value which is unlikely to occur
under the assumption that Hy is true, then we deduce that there is evidence against Hp, and
consequently we reject Hy in favor of Hj. The steps are to design a test statistic and characterize
its sampling distribution under the assumption that Hy is true to control the probability of making
a false rejection.

The standard statistic to test Hp against H is the absolute value of the t-statistic
B = bo

—~

s(B)

If H is true, then we expect |T'| to be small, but if Hj is true then we would expect |T| to be large.
Hence the standard rule is to reject Hy in favor of H for large values of the t-statistic |7'|, and
otherwise fail to reject Hy. Thus the hypothesis test takes the form

T =

. (5.18)

Reject Hy if |T'| > c.

The constant ¢ which appears in the statement of the test is called the critical value. Its value
is selected to control the probability of false rejections. When the null hypothesis is true, |T'| has
an exact student ¢ distribution (with n — k& degrees of freedom) in the normal regression model.
Thus for a given value of ¢ the probability of false rejection is

Pr (Reject Hy | Hg) = Pr (|T| > ¢ | Hp)
=Pr(T > c|Hpy) +Pr(T < —c|Hy)
=1—F(c)+ F(—c)
=2(1 - F(c))

where F'(u) is the t,_j distribution function. This is the probability of false rejection, and is
decreasing in the critical value c. We select the value ¢ so that this probability equals a pre-selected
value called the significance level, which is typically written as «. It is conventional to set
a = 0.05, though this is not a hard rule. We then select ¢ so that F'(¢) = 1 —«/2, which means that
¢ is the 1 — /2 quantile (inverse CDF) of the ¢,,_j distribution, the same as used for confidence
intervals. With this choice, the decision rule “Reject Hy if |T| > ¢” has a significance level (false
rejection probability) of a.

Theorem 5.14.1 In the normal regression model, if the null hypothesis
(5.17) is true, then for |T| defined in (5.18), |T'| ~ t—k. If ¢ is set so that
Pr (|t,—k| > ¢) = «a, then the test “Reject Hy in favor of Hy if |T'| > ¢” has
significance level .
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To report the result of a hypothesis test we need to pre-determine the significance level « in
order to calculate the critical value c¢. This can be inconvenient and arbitrary. A simplification is
to report what is known as the p-value of the test. In general, when a test takes the form “Reject
Hp if S > ¢” and S has null distribution G(u), then the p-value of the test is p = 1 — G(S). A
test with significance level a can be restated as “Reject Hyg if p < . It is sufficient to report the
p-value p, and we can interpret the value of p as indexing the test’s strength of rejection of the null
hypothesis. Thus a p-value of 0.07 might be interpreted as “nearly significant”, 0.05 as “borderline
significant”, and 0.001 as “highly significant”. In the context of the normal regression model, the
p-value of a t-statistic |T'| is p = 2(1 — F,,—(|T'])) where F,,_j is the CDF of the student ¢ with
n — k degrees of freedom. For example, in MATLAB the calculation is 2% (1-tcdf (abs(t) ,n-k)).
In Stata, the default is that for any estimated regression, t-statistics for each estimated coefficient
are reported along with their p-values calculated using this same formula. These t-statistics test
the hypotheses that each coefficient is zero.

A p-value reports the stength of evidence against Hy but is not itself a probability. A common
misunderstanding is that the p-value is the “probability that the null hypothesis is true”. This is
an incorrect interpretation. It is a statistic, and is random, and is a measure of the evidence against
Hp, nothing more.

5.15 Likelihood Ratio Test

In the previous section we described the t-test as the standard method to test a hypothesis on
a single coefficient in a regression. In many contexts, however, we want to simultaneously assess
a set of coefficients. In the normal regression model, this can be done by an F test, which can be
derived from the likelihood ratio test.

Partition the regressors as x; = (), 5;) and similarly partition the coefficient vector as B =
(B71,85)". Then the regression model can be written as

yi = 1,81 + 5,8, + €5 (5.19)

Let k = dim(z;), k1 = dim(x1;), and ¢ = dim(xy;), so that k = kj + ¢. Partition the variables so
that the hypothesis is that the second set of coefficients are zero, or

Ho : B, = 0. (5.20)

If Hp is true, then the regressors xo; can be omitted from the regression. In this case we can write
(5.19) as
yi = 1,01 + €. (5.21)

We call (5.21) the null model. The alternative hypothesis is that at least one element of 3, is
non-zero and is written as

H11,82¢0.

When models are estimated by maximum likelihood, a well-accepted testing procedure is to
reject Hg in favor of H for large values of the Likelihood Ratio — the ratio of the maximized
likelihood function under Hy and Hy, respectively. We now construct this statistic in the normal
regression model. Recall from (5.10) that the maximized log-likelihood equals
log L(B,82) = —g log (2%32) - g

We similarly need to calculate the maximized log-likelihood for the constrained model (5.21). By
the same steps for derivation of the unconstrained MLE, we can find that the MLE for (5.21) is
OLS of y; on x1;. We can write this estimator as

By = (X1X1) ' Xy
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with residual B
€ =yi— 33,11'51

and error variance estimate
n

- 1
F=1y 2
n

=1

We use the tildes “7” rather than the hats “°” above the constrained estimates to distinguish
them from the unconstrained estimates. You can calculate similar to (5.10) that the maximized
constrained log-likelihood is

~ n _ n
log L(B,7°%) = —3 log (27?02) — 3

A classic testing procedure is to reject Hy for large values of the ratio of the maximized likeli-
hoods. Equivalently, the test rejects Hy for large values of twice the difference in the log-likelihood
functions. (Multiplying the likelihood difference by two turns out to be a useful scaling.) This
equals

LR =2 ((—g log (27r82) — g) — (—g log (27r52) — g))
52
= nlog <§> . (5.22)
The likelihood ratio test rejects for large values of LR, or equivalently (see Exercise 5.21), for large
values of

(52 — 32) /q

o%/(n—k)
This is known as the F statistic for the test of hypothesis Hy against Hj.
To develop an appropriate critical value, we need the null distribution of F. Recall from
(3.35) that 762 = €Me where M = I, — P with P = X (X’X)™' X’. Similarly, under Hy,
no? = €Me where M = I,, — P; with P; = X (X'le)_1 X. You can calculate that

M; - M = P — P; is idempotent with rank ¢. Furthermore, (M; — M)M = 0. It follows
that € (M1 — M) e ~ x2 and is independent of &’ M e. Hence

F= (5.23)

p_€Mi-Melqg X/
eMe/(n—k) Xi_k/(n — k)

an exact F' distribution with degrees of freedom ¢ and n — k, respectively. Thus under Hy, the F
statistic has an exact F' distribution.

The critical values are selected from the upper tail of the F' distribution. For a given significance
level a (typically a = 0.05) we select the critical value ¢ so that Pr (F,,,—; > ¢) = . (For example,
in MATLAB the expression is finv(1-a,q,n-k).) The test rejects Hy in favor of H; if F' > ¢ and
does not reject Hy otherwise. The p-value of the test is p = 1 — Gy — (F') where G p,—j (u) is the
Fyn—i distribution function. (In MATLAB, the p-value is computed as 1-fcdf (f,q,n-k).) It is
equivalent to reject Hy if F' > c or p < a.

In Stata, the command to test multiple coefficients takes the form ‘test X1 X1’ where X1 and
X2 are the names of the variables whose coefficients are tested. Stata then reports the F statistic
for the hypothesis that the coefficients are jointly zero along with the p-value calculated using the
F distribution.

~ Fq,nfk

Theorem 5.15.1 In the normal regression model, if the null hypothesis
(5.20) is true, then for F' defined in (5.23), F ~ Fyn_j. If ¢ is set so that
Pr(Fy -k > c) = o, then the test “Reject Hg in favor of Hy if F' > ¢” has
significance level a.
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Theorem 5.15.1 justifies the F' test in the normal regression model with critical values taken
from the F' distribution.

5.16 Likelihood Properties

In this section we present some general properties of the likelihood which hold broadly — not
just in normal regression.

Suppose that a random vector y has the conditional density f (y | «,0) where the function f
is known, and the parameter vector 6 takes values in a parameter space ®. The log-likelihood
function for a random sample {y; | ¢; : i = 1,...,n} takes the form

log L(0) = log f (y; | ©:,6).
=1

A key property is that the expected log-likelihood is maximized at the true value of the parame-
ter vector. At this point it is useful to make a notational distinction between a generic parameter
value 0 and its true value 6y. Set X = (@1, ..., Ty).

Theorem 5.16.1 0y = argmaxgy.g E (log L(0) | X)

This motivates estimating @ by finding the value which maximizes the log-likelihood function.
This is the maximum likelihood estimator (MLE):

0= argmax log L(0).
0cO

The score of the likelihood function is the vector of partial derivatives with respect to the
parameters, evaluated at the true values,

0 "0
59 108 L(6) = 59 08 f (yi | i, 0)

0=600 =1

6=0¢

The covariance matrix of the score is known as the Fisher information:

0
T = var <%logL(00) | X> .

Some important properties of the score and information are now presented.

Theorem 5.16.2 Iflog f (y | x,0) is second differentiable and the support
of y does not depend on 0 then

1. E(a%logL(e)\e:eo |X> =0
2. L= ;E (%logf(yi | z,00) a%logf(yi ‘ 1%90), ‘ *’Bz)

) (% log L(60) | X)
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The first result says that the score is mean zero. The second result shows that the variance of
the score equals the negative expectation of the second derivative matrix. This is known as the
Information Matrix Equality.

We now establish the famous Cramér-Rao Lower Bound.

Theorem 5.16.3 (Cramér-Rao) Under the assumptions of Theorem
5.16.2, zfé s an unbiased estimator of @, then var <5 | X) >7 %

Theorem 5.16.3 shows that the inverse of the information matrix is a lower bound for the
covariance matrix of unbiased estimators. This result is similar to the Gauss-Markov Theorem
which established a lower bound for unbiased estimators in homoskedastic linear regression.

Ronald Fisher

The British statistician Ronald Fisher (1890-1962) is one of the core founders

of modern statistical theory. His contributions include the F' distribution,
p-values, the concept of Fisher information, and that of sufficient statistics.

5.17 Information Bound for Normal Regression

Recall the normal regression log-likelihood which has the parameters 3 and o2. The likelihood
scores for this model are

d
log L(8, o 22@ y; — z0)

B
= ; Z €Ir;e;
i=1

and

It follows that the information matrix is

(BN - (T L) e

(see Exercise 5.22). The Cramér-Rao Lower Bound is

2 ryy—1
. 2 (X'X)" 0
I - < 0 204 .
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This shows that the lower bound for estimation of 3 is o2 (X’ X)_1 and the lower bound for o2 is
204 /n.

Since in the homoskedastic linear regression model the OLS estimator is unbiased and has
variance o2 (X /X)fl, it follows that OLS is Cramér-Rao efficient in the normal regression model,
in the sense that no unbiased estimator has a lower variance matrix. This expands on the Gauss-
Markov theorem, which stated that no linear unbiased estimator has a lower variance matrix in the
homoskedastic regression model. Notice that that the results are complementary. Gauss-Markov
efficiency concerns a more narrow class of estimators (linear) but allows a broader model class
(linear homoskedastic rather than normal regression). The Cramér-Rao efficiency result is more
powerful in that it does not restrict the class of estimators (beyond unbiasedness) but is more
restrictive in the class of models allowed (normal regression).

In contrast, the unbiased estimator s? of 02 has variance 20/(n — k) (see Exercise 5.23) which
is larger than the Cramér-Rao lower bound 20%/n. Thus in contrast to the coefficient estimator,
the variance estimator is not Cramér-Rao efficient.

5.18 Gamma Function*

The normal and related distributions make frequent use of the what is known as the gamma
function. For a > 0 it is defined as

INa) = /000 z Lexp (—z) du. (5.25)

While it appears quite simple, it has some advanced properties. One is that I'(«) does not have
a close-form solution (except for special values of «). Thus it is typically represented using the
symbol I'(a) and implemented computationally using numerical methods.

Special values include

ra= /000 exp (—x)dz =1 (5.26)

and

T (%) _ 7 (5.27)

The latter holds by making the change of variables = u? in (5.25) and applying (5.2).
By integration by parts you can show that it satisfies the property

I'l+a) =T(a)a
Combined with (5.26) we find that for positive integers n,
I'(n) =(n—-1)!

This shows that the gamma function is a continuous version of the factorial.
A useful fact is

/OOO y* Lexp (—by) dy = b T(a) (5.28)

which can be found by applying change-of-variables to the definition (5.25).
Another useful fact is for for « € R
I'n+a)

lim ———= =1. 2
nLH;o T (n) n& (5 9)
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5.19 Technical Proofs*

Proof of Theorem 5.2.1. Squaring expression (5.2)

(/Ooo exp (—2%/2) dx>2 _ /OOO exp (—2%/2) dx /Ooo exp (—u2/2) du
- /Oo /OO exp (= (2% +u?) /2) dwdu

/ / rexp ( 2/2) dodr

5/0 rexp (—r?/2) dr

™
5 .

The third equality is the key. It makes the change-of-variables to polar coordinates © = r cos § and
w = rsinf so that 22 +u? = 2. The Jacobian of this transformation is 7. The region of integration
in the (x,u) units is the positive orthont (upper-right region), which corresponds to integrating 6
from 0 to m/2 in polar coordinates. The final two equalities are simple integration. Taking the
square root we obtain (5.2). [ |

Proof of Theorem 5.2.3. Let M, (t) = exp (t’ n+ %t’ Et) be the moment generating function of
X by Theorem 5.2.2. Then the MGF of Y is
E(exp( )) Eexp(s' (a+ BX) )
= exp( ! )Eexp( 'BX)
= exp (s'a) M,
=exp (s'a) ex ( 'Bu + —s 'BXB s)

1
= exp (s/ (a+ Bp)+ 53/ (BEB') s)

which is the MGF of N (a + By, BEB'). Thus Y ~ N (a + Bu, BXB’) as claimed. |

Proof of Theorem 5.2.4. Let k1 and ko denote the dimensions of X1 and X5 and set k = k1 +ko.
If the components are uncorrelated then the covariance matrix for X takes the form

=0
[0 5]

In this case the joint density function of X equals

f@n @) = o W e (z;) det (35))
exp <_ (21— 1) 57 (21— ) -2F (zg — po)' Ty " (w2 — u2)>
N (2m)F/2 (dlet (31))Y/2 P (_ S 2211 s m))
o (dlet(gz))lﬂ exp< (22 — pp)' 22 Uy — Hz)) .
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This is the product of two multivariate normal densities in 1 and x3. Joint densities factor if (and
only if) the components are independent. This shows that uncorrelatedness implies independence.
The converse (that independence implies uncorrelatedness) holds generally. |

Proof of Theorem 5.3.1. We demonstrate that Q = X’X has density function (5.3) by verifying
that both have the same moment generating function (MGF). First, the MGF of X'X is

E (eXp (tX'X)) = /OO exp (t:c'a:) ﬁ exp <—$> dx

—00 2T

© 1 'z
= /_OO —(27r)k/2 exp <——2 (1— 2t)> dx
B e [ 1 u'u

=12t (5.30)

The fourth equality uses the change of variables u = (1 — 2t)1/ 22 and the final equality is the
normal probability integral. Second, the MGF of the density (5.3) is

[ e st@a = [ e it0) gy e (-ar2)d

I'(3

[e.e] 1
— g/t —q(1/2=1)d
/O O exp (—q(1/2 —1))dq

1 /o (T
=Ty 1207 (5)
=(1-2t)""2, (5.31)

the third equality using the gamma integral (5.28). The MGF's (5.30) and (5.31) are equal, verifying
that (5.3) is the density of @ as claimed. [ |

Proof of Theorem 5.3.2. As in the proof of Theorem 5.3.1 we verify that the MGF of Q = X'X
when X ~ N (u, I,) is equal to the MGF of the density function (5.4).
First, we calculate the MGF of @ = X’X when X ~ N (u, I,). Construct an orthogonal 7 x r

matrix H = [hy, Hs] whose first column equals h; = ,u(y,'u,)_l/2. Note that hjpu = A2 and
H5p = 0. Define Z = H'X ~ N(p*,I,) where

/ 1/2
* o 1K _ A 1
et ()=o)

It follows that Q = X'X = Z'Z = 7?2 + Z4LZ 5 where Z; ~ N ()\1/2,1) and Zo ~ N (0,I,_1) are
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independent. Notice that Z5Zo ~ x2_; so has MGF (1 — 2t)7(T71)/2 by (5.31). The MGF of Z? is

B (e (121)) = [ o; exp (t27) le_ﬂ exp <_% (2 - ﬁ)z) da
_/Oo 127Texp< ;<x2(1—2t)—2xﬁ+A)>dx
:(1—2t)_1/2exp<—%>/oo 127Texp< ( A%))

25) [ (e Zm) ) -

= (1—2t)"?exp <—L>

=(1- 2t)71/2 exp <

1—-2¢

where the third equality uses the change of variables u = (1 — 2t)1/ 2 2. Thus the MGF of Q=
72+ Z4YZs is
E (exp (tQ)) = E (exp (t (27 + Z5Z2)))
=L (exp (tZlg)) E (exp (tZ/2Z2))
At

=(1-2t)""exp (—m> . (5.32)

Second, we calculate the MGF of (5.4). It equals

o) o —)/2 )
/0 eXP(tl‘)Zei! (%) fry2i(z)dx

=0
O e=N2 /) i roo
Z e <§> / exp (tx) fr+2i ($)d$
=0 0
e M2 AN —(r42i)/2
; <§> (1—2t)

—/\2 7"/2 ’
/ ZZ‘( 1—2t>

— —r A
= e >\/2 (1 — 2t) /2 €xXp <m)

(-2 exp (—1 igt) (5.33)

where the second equality uses (5.31), and the fourth uses exp(z) = > 2, ‘;—,1 We can see that

(5.32) equals (5.33), verifying that (5.4) is the density of @) as stated. |

Proof of Theorem 5.3.3. The fact that A > 0 means that we can write A = CC’ where C is
non-singular (see Section A.9). Then A~! = C~YC™! and by Theorem 5.2.3

C'X ~N(C'p,c'AC")=N(C'p,Cc'CcC’'C™Y) =N (p*,1,)
where pu* = C~!u. Thus by the definition of the non-central chi-square

XIA—1X _ ch—llc—lx — (C—lx)’ (C_1X) ~ Xr (u*l“*)
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Since

u*/y,* — ulc—llc—lu — ,u,A_ly, _ )\’
this equals x2 ()\) as claimed. [ |

Proof of Theorem 5.4.1. Using the simple law of iterated expectations, T" has density

Z
f(x):%Pr<\/T/T§x>
d Q
:%E{ng\/;}
Pr (Zg:c\/gM))]

Vol ( T
using the gamma integral (5.28). |

Proof of Theorem 5.4.2. Notice that for large r, by the properties of the logarithm

x2 -(%9) r+1 x2 r+1Y\ z2 x2
log| 1+ — = — log(1+— | ~— Sl
T 2 r 2 T 2

the limit as r — oo, and thus

2\ ~ (%) 2
Tli—>Holo (1 + %) = exp (—%) . (5.34)

Using a property of the gamma function (5.29)

Proof of Theorem 5.5.1. Let U ~ x2, and V ~ x2 be independent and set S = U/V. Let f,,(u)
be the x2, density. By a similar argument as in the proof of Theorem 5.4.1, S has the density
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function

fs(s) =B (fm (sV)V)
[ et

> m/2—-1 _—sv/2, r/2 —v/2
= ST (j)r(%)/o (sv) e v e dy

B sm/2—1 / > o(MAT)/2=1 = (s+1)v/2 g,
2mtn)/2 (BT (5) Jy

sm/2—1 oo
_ / flmetr) /21—t gy
D($)T(5) @+

i (24

CB)T(5) (o)

The fifth equality make the change-of variables v = 2¢/(1 + s), and the sixth uses the definition of
the Gamma function I'(z) = [;°t*"'e~'dt. Making the change-of-variables = sr/m, we obtain

the density as stated. |

Proof of Theorem 5.5.2. The density of mF' is

xm/2—lr (m;rr)

L ()0 (5) (15
Using (5.29) with n = r/2 and o = m/2 we have

r (err
T )

(5.35)

_ 2—m/2

and similarly to (5.34) we have
lim (1 + E)_( =) = exp (—E) .
r—00 T 2

27 exp (=5)
27T (3)

Together, (5.35) tends to

which is the x?2, density. |

Proof of Theorem 5.16.1. Since log(u) is concave we apply Jensen’s inequality (B.5), take ex-
pectations are with respect to the true density f (y | z, 0p), and note that the density f (y; | ;,0),
integrates to 1 for any 6 € O, to find that

L(6) L(0)
o (e iy | X) =55 (g X)
ﬁf(yi | @i,60) dy, - - - dy,

log/ /
yZ’wZ,Oo) i=1
zlog/-~-/Hf(yiIwi,é’)dylmdy
=1

=logl
= 0.

f(y; | =i, 0)

I ::13 I ::]:



CHAPTER 5. NORMAL REGRESSION AND MAXIMUM LIKELIHOOD 150

This implies for any 8 € O, E(log L(6)) < E(log L(6y)). Hence 6y maximizes E (log L(0)) as
claimed. [

Proof of Theorem 5.16.2. For part 1, Since the support of y does not depend on 6 we can
exchange integration and differentiation:

0
( 20 log L(0)

Theorem 5.16.1 showed that E (log L(€)) is maximized at 6y, which has the first-order condition

E (log L(6)lg—g, | X) =0

0
| X) = %E(logL(e)b:eo | X).
0=0,

0
06

as needed.
For part 2, using part 1 and the fact the observations are independent

3}
T = var <% log L(6y) | X)

=E ((aae log L(00)> <889 log L(00)>/ | X)
S (fron o) G ) 1)

which is the first equahty.
For the second, observe that

0 Zf(y|z,0)
aQlogf(ylﬂc 0) = EICIER
and
9 g ylz.0)  Zf(ylz6) i (yl=0)
s f(ylz,0) 9

8 /
- f(y|:1:0) _%logf(ylm,e)%logf(y‘m70)'

It follows that

7= 35 (g 00712200 ) (51085 0] 1)
7 i 7,70
:_Z (aoae’f (y; | zi,60) |:cz> ZE<6089 - T/mi,meo) 0) ‘xi)'

However, by exchanglng integration and differentiation we can check that the second term is zero:

2 e o557 f (u | @i, 60)
E (3089’f(y2 | 11,'1,00) ’ mz) :/ 0006 0 ‘0:00 f(y‘BO) dy

f(yi | zi, 00) f(y | i, 00)

——f(y | z;,00) dy
/ 9000’ oo,

= W/f(y | $i790)dy|e:00
2
_ 9
0000’
=0
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This establishes the second inequality. |

n

Proof of Theorem 5.16.3 Let Y = (y, ..., y,,) be the sample, let f(Y,0) = [] f (y;,0) denote
i=1

the joint density of the sample, and note log L(6) = log f (Y, 0). Set

0
S = % log L(6o)

which by Theorem (5.16.2) has mean zero and variance Z conditional on X. Write the estimator
6=06 (Y) as a function of the data. Since 6 is unbiased, for any 6,

0:E(5\X> :/5(Y)f(Y,0)dY

Differentiating with respect to 6

In:/é(Y)%f(Y,B)dY

:/0( )ai,logf(Y 0)f(Y,0)dY.

Evaluating at 0 yields
In:E<5S’ | X) :E((E—eo) S| X) (5.36)

the second equality since E (S | X) = 0.
By the matrix Cauchy-Schwarz inequality (B.11), (5.36),and var (S | X) =E(SS’| X) =T,

v (61 X) =5 ( (8- 00) (- 00) 1 X)
>E((0-60)S'|X) (B(SS'| X)) "B <s (6- 90)' | X>

= (B(ss'| X))
T 1

as stated. |
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Exercises
Exercise 5.1 For the standard normal density ¢(z), show that ¢'(z) = —zd(z).

Exercise 5.2 Use the result in Exercise 5.1 and integration by parts to show that for X ~ N (0, 1),
EX?2=1.

Exercise 5.3 Use the results in Exercises 5.1 and 5.2, plus integration by parts, to show that for
X ~N(0,1), EX* = 3.

Exercise 5.4 Show that the moment generating function (mgf) of X ~ N (0,1) ism(t) = E (exp (tX)) =
exp (t2/2). (For the definition of the mgf see Section 2.31).

Exercise 5.5 Use the mgf from Exercise 5.4 to verify that for X ~ N (0,1), E (X?) = m”(0) =1
and E (X*) = m®(0) = 3.

Exercise 5.6 Write the multivariate N (0, I) density as the product of N (0, 1) density functions.
That is, show that
1 m’m)
—a P |~ | = o) - (xp).
(2m)*/2 ( 2

Exercise 5.7 Show that the mgf of X ~ N (0,1I}) is E (exp (¢ X)) = exp (5¢'t) .
Hint: Use Exercise 5.4 and the fact that the elements of X are independent.

Exercise 5.8 Show that the mgf of X ~ N (u, ¥) is

1
M(t)=E X)) = t —t>t).
(t) (exp( )) exp( u+2 )
Hint: Write X = p 4+ 2Y2Z where Z ~ N (0,I},).

Exercise 5.9 Show that the characteristic function of X ~ N (u,X) is
1
C(t) =E (exp (it X)) = exp <i,u'/\ — 5t’2t> :
For the definition of the characteristic function see Section 2.31
Hint: For X ~ N(0,1), establish E (exp (itX)) = exp (—1t?) by integration. Then generalize

to X ~ N (p, ) using the same steps as in Exercises 5.7 and 5.8.

Exercise 5.10 Show that if Q ~ x2, then E (Q) = r and var (Q) = 2r.
Hint: Use the representation @ = > I ; X? with X; independent N (0,1).

Exercise 5.11 Show that if @ ~ x2()\), then E(Q) = k + .

Exercise 5.12 Suppose X; are independent N (,ui, 0'1-2). Find the distribution of the weighted sum
Z?:l wz-XZ-.

Exercise 5.13 Show that if e ~ N (0,I,06%) and H'H =1I,, then u = H'e ~ N (0,1,,0%).
Exercise 5.14 Show that if e ~ N (0,%) and ¥ = AA’ then u = A 'e~N(0,1,).

Exercise 5.15 Show that 6 = argmaxgcg log L(0) = argmaxgcg L(6).
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Exercise 5.16 For the regression in-sample predicted values y; show that 7i|x ~ N (m;ﬁ,a%ii)
where h;; are the leverage values (3.25).

Exercise 5.17 In the normal regression model, show that the leave-one out prediction errors €;
and the standardized residuals é; are independent of 3, conditional on X.
Hint: Use (3.46) and (4.26).

W
Exercise 5.18 In the normal regression model, show that the robust covariance matrices Vg ,

‘Afa, {/E, and ‘_fa are independent of the OLS estimate ,[A‘i’, conditional on X.

Exercise 5.19 Let F(u) be the distribution function of a random variable X whose density is
symmetric about zero. (This includes the standard normal and the student ¢.) Show that F'(—u) =
1— F(u).

Exercise 5.20 Let Cg = [L,U] be a 1 —« confidence interval for 3, and consider the transformation
0 = g(B) where g(-) is monotonically increasing. Consider the confidence interval Cy = [g(L), g(U)]
for 6. Show that Pr (0 € Cy) = Pr (8 € Cg). Use this result to develop a confidence interval for o.

Exercise 5.21 Show that the test “Reject Hy if LR > ¢1” for LR defined in (5.22), and the test
“Reject Hy if F' > ¢p” for F' defined in (5.23), yield the same decisions if ¢ = (exp(c1/n) — 1) (n —
k)/q. Why does this mean that the two tests are equivalent?

Exercise 5.22 Show (5.24).

Exercise 5.23 In the normal regression model, let s? be the unbiased estimator of the error vari-
ance o2 from (4.30).

(a) Show that var (s?) = 20%/(n — k).

(b) Show that var (s?) is strictly larger than the Cramér-Rao Lower Bound for o2.



Chapter 6

An Introduction to Large Sample
Asymptotics

6.1 Introduction

For inference (confidence intervals and hypothesis testing) on unknown parameters we need
sampling distributions, either exact or approximate, of estimates and other statistics.

In Chapter 4 we derived the mean and variance of the least-squares estimator in the context of
the linear regression model, but this is not a complete description of the sampling distribution and
is thus not sufficient for inference. Furthermore, the theory does not apply in the context of the
linear projection model, which is more relevant for empirical applications.

In Chapter 5 we derived the exact sampling distribution of the OLS estimator, t-statistics,
and F-statistics for the normal regression model, allowing for inference. But these results are
narrowly confined to the normal regression model, which requires the unrealistic assumption that
the regression error is normally distributed and independent of the regressors. Perhaps we can
view these results as some sort of approximation to the sampling distributions without requiring
the assumption of normality, but how can we be precise about this?

To illustrate the situation with an example, let y; and z; be drawn from the joint density

1 1
exp (—5 (logy — log x)2> exp <—§ (log x)2>

flz,y) = Smzy

and let E be the slope coefficient estimate from a least-squares regression of y; on z; and a constant.
Using simulation methods, the density function of 8 was computed and plotted in Figure 6.1 for
sample sizes of n = 25, n = 100 and n = 800. The vertical line marks the true projection coefficient.

From the figure we can see that the density functions are dispersed and highly non-normal. As
the sample size increases the density becomes more concentrated about the population coefficient.
Is there a simple way to characterize the sampling distribution of 57

In principle the sampling distribution of 8 is a function of the joint distribution of (y;,x;)
and the sample size n, but in practice this function is extremely complicated so it is not feasible to
analytically calculate the exact distribution of 5 except in very special cases. Therefore we typically
rely on approximation methods.

In this chapter we introduce asymptotic theory, which approximates by taking the limit of the
finite sample distribution as the sample size n tends to infinity. It is important to understand that
this is an approximation technique, as the asymptotic distributions are used to assess the finite
sample distributions of our estimators in actual practical samples. The primary tools of asymptotic
theory are the weak law of large numbers (WLLN), central limit theorem (CLT), and continuous
mapping theorem (CMT). With these tools we can approximate the sampling distributions of most
econometric estimators.

154
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n=25
/\ — — n=100
I -—-- n=800

0.75

0.50

0.25

0.00

Figure 6.1: Sampling Density of B

In this chapter we provide a concise summary. It will be useful for most students to review this
material, even if most is familiar.

6.2 Asymptotic Limits

“Asymptotic analysis” is a method of approximation obtained by taking a suitable limit. There
is more than one method to take limits, but the most common is to take the limit of the sequence
of sampling distributions as the sample size tends to positive infinity, written “as n — o0.” It is
not meant to be interpreted literally, but rather as an approximating device.

The first building block for asymptotic analysis is the concept of a limit of a sequence.

Definition 6.2.1 A sequence a, has the limit a, written a, — a as
n — oo, or alternatively as lim, o0 an = a, if for all 6 > 0 there is some
ns < oo such that for all n > ng, |a, —a| < 9.

In words, a, has the limit a if the sequence gets closer and closer to a as n gets larger. If a
sequence has a limit, that limit is unique (a sequence cannot have two distinct limits). If a, has
the limit a, we also say that a,, converges to a as n — oo.

Not all sequences have limits. For example, the sequence {1,2,1,2,1,2,...} does not have a
limit. It is therefore sometimes useful to have a more general definition of limits which always
exist, and these are the limit superior and limit inferior of a sequence.

Definition 6.2.2 liminf,, .~ a, def limy, o0 infy,>p G

ops . d .
Definition 6.2.3 limsup,,_, an 2] limy, .00 SUP,, >y, Gm
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The limit inferior and limit superior always exist (including oo as possibilities), and equal
when the limit exists. In the example given earlier, the limit inferior of {1,2,1,2,1,2,...} is 1, and
the limit superior is 2.

6.3 Convergence in Probability

A sequence of numbers may converge to a limit, but what about a sequence of random variables?
For example, consider a sample meanj = n > -1 yi based on an random sample of n observations.
As n increases, the distribution of 7 changes. In what sense can we describe the “limit” of y? In
what sense does it converge?

Since ¥ is a random variable, we cannot directly apply the deterministic concept of a sequence of
numbers. Instead, we require a definition of convergence which is appropriate for random variables.
There are more than one such definition, but the most commonly used is called convergence in
probability.

Definition 6.3.1 A random variable z, € R converges in probability
to z as n — oo, denoted z, LN z, or alternatively plim,,_, o z, = 2, if for
all 6 > 0,
lim Pr(|z, — 2| <) =1. (6.1)
n—oo

We call z the probability limit (or plim) of z,.

The definition looks quite abstract, but it formalizes the concept of a sequence of random
variables concentrating about a point. The event {|z, — z| <} occurs when z, is within § of
the point z. Pr(|z, — z| <) is the probability of this event — that z, is within § of the point
z. Equation (6.1) states that this probability approaches 1 as the sample size n increases. The
definition of convergence in probability requires that this holds for any d. So for any small interval
about z the distribution of z, concentrates within this interval for large n.

You may notice that the definition concerns the distribution of the random variables z,, not
their realizations. Furthermore, notice that the definition uses the concept of a conventional (deter-
ministic) limit, but the latter is applied to a sequence of probabilities, not directly to the random
variables z, or their realizations.

Two comments about the notation are worth mentioning. First, it is conventional to write the
convergence symbol as L, where the “p” above the arrow indicates that the convergence is “in
probability”. You should try and adhere to this notation, and not simply write z, — z. Second,
it is important to include the phrase “as n — oo0” to be specific about how the limit is obtained.

A common mistake is to confuse convergence in probability with convergence in expectation:

E (z,) — B (2). (6.2)

They are related but distinct concepts. Neither (6.1) nor (6.2) implies the other.
To see the distinction it might be helpful to think through a stylized example. Consider a
discrete random variable z, which takes the value 0 with probability 1 —n~! and the value a,, # 0

with probability n~!, or

- % (6.3)
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In this example the probability distribution of z,, concentrates at zero as n increases, regardless of
the sequence a,. You can check that z, L,0asn — oco.
In this example we can also calculate that the expectation of z, is

an

E(zn) = 0

Despite the fact that z, converges in probability to zero, its expectation will not decrease to zero
unless ap/n — 0. If a, diverges to infinity at a rate equal to n (or faster) then E(z,) will not
converge to zero. For example, if a, = n, then E(z,) = 1 for all n, even though z, 2, 0. This
example might seem a bit artificial, but the point is that the concepts of convergence in probability
and convergence in expectation are distinct, so it is important not to confuse one with the other.
Another common source of confusion with the notation surrounding probability limits is that
the expression to the right of the arrow —2.” must be free of dependence on the sample size n.

Thus expressions of the form “z, —— ¢,” are notationally meaningless and should not be used.

6.4 Weak Law of Large Numbers

In large samples we expect parameter estimates to be close to the population values. For
example, in Section 4.3 we saw that the sample mean 7 is unbiased for 1 = E (y) and has variance
o2 /n. As n gets large its variance decreases and thus the distribution of 7 concentrates about the
population mean p. It turns out that this implies that the sample mean converges in probability
to the population mean.

When y has a finite variance there is a fairly straightforward proof by applying Chebyshev’s
inequality.

Theorem 6.4.1 Chebyshev’s Inequality. For any random variable z,
and constant § > 0

var(zp)
52

Pr(|z, —Ez,| >0) <

Chebyshev’s inequality is terrifically important in asymptotic theory. While its proof is a
technical exercise in probability theory, it is quite simple so we discuss it forthwith. Let F),(u)
denote the distribution of z,, — Ez,. Then

Pr(|z, —Ez,| > 0) =Pr ((zn —Ez,)? > 52> = / dF,(u).
{u?>6}

2

The integral is over the event {u2 > 62}, so that the inequality 1 < % holds throughout. Thus

u? u? E(zn — Bzp)?  var(zn)
< v < (¥ _ _
/{u2>52} dF,(u) < /{u2>52} 52 dF,(u) < / 52 dF,(u) 52 52

which establishes the desired inequality.
Applied to the sample mean 7 which has variance o /n , Chebyshev’s inequality shows that for
any 6 > 0

a%/n
52

Pr(fg—E (@) =20 <
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For fixed 02 and 4, the bound on the right-hand-side shrinks to zero as n — oo. (Specifically, for any
e>0setn>o?/ (626). Then the right-hand-side is less than or equal to £.) Thus the probability
that 7 is within 0 of E () = u approaches 1 as n gets large, or

lim Pr(|y —p| <d) =1.
n—oo
This means that § converges in probability to p as n — oo.

This result is called the weak law of large numbers. Our derivation assumed that y has a
finite variance, but with a more careful derivation all that is necessary is a finite mean.

Theorem 6.4.2 Weak Law of Large Numbers (WLLN)
If y; are independent and identically distributed and E|y| < oo, then as
n — o9,
Y= liyz — E(y).
n

=1

The proof of Theorem 6.4.2 is presented in Section 6.16.
The WLLN shows that the estimator 3y converges in probability to the true population mean .
In general, an estimator which converges in probability to the population value is called consistent.

Definition 6.4.1 An estimator 0 of a parameter 0 is consistent z'fa L0
as n — oo.

Theorem 6.4.3 If y; are independent and identically distributed and
E|y| < oo, then 1 =7 is consistent for the population mean pu.

Consistency is a good property for an estimator to possess. It means thatAfor any given data
distribution, there is a sample size n sufficiently large such that the estimator 6 will be arbitrarily
close to the true value 6 with high probability. The theorem does not tell us, however, how large
this n has to be. Thus the theorem does not give practical guidance for empirical practice. Still,
it is a minimal property for an estimator to be considered a “good” estimator, and provides a
foundation for more useful approximations.

6.5 Almost Sure Convergence and the Strong Law™

Convergence in probability is sometimes called weak convergence. A related concept is
almost sure convergence, also known as strong convergence. (In probability theory the term
“almost sure” means “with probability equal to one”. An event which is random but occurs with
probability equal to one is said to be almost sure.)
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Definition 6.5.1 A random variable z, € R converges almost surely
to z as n — 0o, denoted z, == z, if for every § > 0

Pr <nh_>nolo |zn, — 2| < 5) = 1. (6.4)

The convergence (6.4) is stronger than (6.1) because it computes the probability of a limit
rather than the limit of a probability. Almost sure convergence is stronger than convergence in
probability in the sense that z, &3 implies z, L,

In the example (6.3) of Section 6.3, the sequence z, converges in probability to zero for any
sequence a,, but this is not sufficient for z, to converge almost surely. In order for z, to converge
to zero almost surely, it is necessary that a, — 0.

In the random sampling context the sample mean can be shown to converge almost surely to
the population mean. This is called the strong law of large numbers.

Theorem 6.5.1 Strong Law of Large Numbers (SLLN)
If y; are independent and identically distributed and E|y| < oo, then as
n — oo,

I 5.
yZE;yi&E(y)-
1=

The proof of the SLLN is technically quite advanced so is not presented here. For a proof see
Billingsley (1995, Theorem 22.1) or Ash (1972, Theorem 7.2.5).

The WLLN is sufficient for most purposes in econometrics, so we will not use the SLLN in this
text.

6.6 Vector-Valued Moments

Our preceding discussion focused on the case where y is real-valued (a scalar), but nothing
important changes if we generalize to the case where y € R™ is a vector. To fix notation, the
elements of y are

Y1
Y2
y= .
Ym
The population mean of y is just the vector of marginal means
E (y1)
E (y2)
p=E(y) = :

E (ym)

When working with random vectors y it is convenient to measure their magnitude by their
Fuclidean length or Euclidean norm

lyll = (W2 + - +12)"
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In vector notation we have
2
lyll” = v'y.

It turns out that it is equivalent to describe finiteness of moments in terms of the Euclidean
norm of a vector or all individual components.

Theorem 6.6.1 For y € R™, E|y| < oo if and only if El|y;| < oo for
7=1,....,m.

The m x m variance matrix of y is
V=var(y) =B ((y—p) (y—n)').

V is often called a variance-covariance matrix. You can show that the elements of V are finite if

2
Elyl” < oc.
A random sample {yq, ..., y,,} consists of n observations of independent and identically distrib-

uted draws from the distribution of y. (Each draw is an m-vector.) The vector sample mean

Y1

I Ya
y—ﬁzyz‘_ .
=1 _

Ym

is the vector of sample means of the individual variables.

Convergence in probability of a vector can be defined as convergence in probability of all ele-
ments in the vector. Thus § —— p if and only if Y; LN p; for j =1,...,m. Since the latter holds
if E|y;| < oo for j =1,...,m, or equivalently E ||y|| < oo, we can state this formally as follows.

Theorem 6.6.2 WLLN for random vectors
If y,; are independent and identically distributed and B ||y|| < oo, then as

n — 00,
RNl

= — . — .

Yy ni:lyl Yy

6.7 Convergence in Distribution

The WLLN is a useful first step, but does not give an approximation to the distribution of an
estimator. A large-sample or asymptotic approximation can be obtained using the concept of
convergence in distribution.

We say that a sequence of random vectors z, converges in distribution if the sequence of
distribution functions Fj,(u) = Pr(z, < u) converges to a limit distribution function.
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Definition 6.7.1 Let z, be a random vector with distribution F,(u) =
Pr(z, < u). We say that z, converges in distribution to z as n — oo,

denoted z, — z, if for all w at which F(u) = Pr(z < u) is continuous,
F.(u) — F(u) as n — oc.

Under these conditions, it is also said that F),, converges weakly to F. It is common to refer
to z and its distribution F'(u) as the asymptotic distribution, large sample distribution, or
limit distribution of z,,.

When the limit distribution z is degenerate (that is, Pr(z = ¢) = 1 for some ¢) we can write

the convergence as z, -, ¢, which is equivalent to convergence in probability, z, L e

Technically, in most cases of interest it is difficult to establish the limit distributions of sample
statistics z, by working directly with their distribution function. It turns out that in most cases it is
easier to work with their characteristic function Cp,(A) = E (eXp (i)\'zn)), which is a transformation
of the distribution. (See Section 2.31 for the definition.) While this is more technical than needed
for most applied economists, we introduce this material to give a complete reference for large sample
approximations.

The characteristic function C),(t) completely describes the distribution of z,,. It therefore seems
reasonable to expect that if C),(t) converges to a limit function C(%), then the the distribution of
zp, converges as well. This turns out to be true, and is known as Lévy’s continuity theorem.

Theorem 6.7.1 Lévy’s Continuity Theorem. z, Az if and only if
E (exp (it z,)) — E (exp (it'2)) for every t € R,

While this result seems quite intuitive, a rigorous proof is quite advanced and so is not presented
here. See Van der Vaart (2008) Theorem 2.13.

Finally, we mention a standard trick which is commonly used to establish multivariate conver-
gence results.

Theorem 6.7.2 Cramér-Wold Device. =z, B if and only if
Nz, BN\ for every A € RF with X'\ = 1.

We present a proof in Section 6.16 which is a simple application of Lévy’s continuity theorem.

6.8 Central Limit Theorem

We would like to obtain a distributional approximation to the sample mean . We start un-
der the random sampling assumption so that the observations are independent and identically
distributed, and have a finite mean p = E (y) and variance 02 = var (y).

Let’s start by finding the asymptotic distribution of ¥, in the sense that i @, 2 for some random
variable z. From the WLLN we know that 7 —— 1. Since convergence in probability to a constant
is the same as convergence in distribution, this means that 3y 4, w as well. This is not a useful
distributional result as the limit distribution is a constant. To obtain a non-degenerate distribution
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we need to rescale 7. Recall that var (J — p) = 02/n, which means that var (/n (§ — p)) = o2
This suggests renormalizing the statistic as

2= Vn(j—n.

Notice that E(z,) = 0 and var(z,) = o2. This shows that the mean and variance have been
stabilized. We now seek to determine the asymptotic distribution of z,.

The answer is provided by the central limit theorem (CLT) which states that standardized
sample averages converge in distribution to normal random vectors. There are several versions
of the CLT. The most basic is the case where the observations are independent and identically
distributed.

Theorem 6.8.1 Lindeberg—Lévy Central Limit Theorem. If y; are
independent and identically distributed and (yf) < 00, then asn — oo

\/ﬁ@—,u) i)N(070-2)

where =B (y) and 0% = B(y; — p)2.

The proof of the CLT is rather technical (so is presented in Section 6.16) but at the core is a
quadratic approximation of the log of the characteristic function.

As we discussed above, in finite samples the standardized sum z,, = \/n (7,, — ) has mean zero
and variance 02. What the CLT adds is that z, is also approximately normally distributed, and
that the normal approximation improves as n increases.

The CLT is one of the most powerful and mysterious results in statistical theory. It shows that
the simple process of averaging induces normality. The first version of the CLT (for the number
of heads resulting from many tosses of a fair coin) was established by the French mathematician
Abraham de Moivre in an article published in 1733. This was extended to cover an approximation
to the binomial distribution in 1812 by Pierre-Simon Laplace in his book Théorie Analytique des
Probabilités, and the most general statements are credited to articles by the Russian mathematician
Aleksandr Lyapunov (1901) and the Finnish mathematician Jarl Waldemar Lindeberg (1920, 1922).
The above statement is known as the classic (or Lindeberg-Lévy) CLT due to contributions by
Lindeberg (1920) and the French mathematician Paul Pierre Lévy.

A more general version which allows heterogeneous distributions was provided by Lindeberg
(1922). The following is the most general statement.

Theorem 6.8.2 Lindeberg-Feller Central Limit Theorem. Suppose
Yni are independent but not necessarily identically distributed with finite
means fni = B (yn;) and variances wa = B(yni — pini)?. Set 72 =

n~IS" 02 If52 >0 and for all e > 0

lim % iE ((yni — pini)? 1 ((ym' — pini)® > 671531)) =0 (6.5)
i=1

n—oo no'n -

then as n — oo \/_(_ E @)
n\y — Yy d
T_)N(()’l)‘
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The proof of the Lindeberg-Feller CLT is substantially more technical, so we do not present it
here. See Billingsley (1995, Theorem 27.2).

The Lindeberg-Feller CLT is quite general as it puts minimal conditions on the sequence of
means and variances. The key assumption is equation (6.5) which is known as Lindeberg’s
Condition. In its raw form it is difficult to interpret. The intuition for (6.5) is that it excludes
any single observation from dominating the asymptotic distribution. Since (6.5) is quite abstract,
in most contexts we use more elementary conditions which are simpler to interpret.

One such alternative is called Lyapunov’s condition: For some § > 0

- 1 = 246
R R oy Y E (’yni — fini ) =0. (6.6)
no il

Lyapunov’s condition implies Lindeberg’s condition, and hence the CLT. Indeed, the left-side of
(6.5) is bounded by

. 1 & Yni — poni|* 2 2
Jim — B[Sl (!ym — pnil” > mon)

0
n =1 |Yni — il
1 n
. 246
< - E - )
- nh—r}c}o £9/2n1+8/252+9 — B <|ym i )

=0

by (6.6).
Lyapunov’s condition is still awkward to interpret. A still simpler condition is a uniform moment
bound: For some § > 0

supE\yni]2+5 < 0. (6.7)

n,i
This is typically combined with the lower variance bound

lim inf 72 > 0. (6.8)

n—oo
These bounds together imply Lyapunov’s condition. To see this, (6.7) and (6.8) imply there is
some C' < oo such that sup,, ; [E ]ym-\2+5 < C and liminf,,_,s Ei > C~!. Without loss of generality
assume fi,; = 0. Then the left side of (6.6) is bounded by

02+5/2

lim ——— =0
n—00 n5/2 ’

so Lyapunov’s condition holds and hence the CLT.

An alternative to (6.8) is to assume that the average variance 72 converges to a constant, that
is,
n
G2 =n"" Zafn — 02 < oo (6.9)
i=1

This assumption is reasonable in many applications.
We now state the simplest and most commonly used version of a heterogeneous CLT based on
the Lindeberg-Feller Theorem.

Theorem 6.8.3 Suppose yy; are independent but not necessarily identi-
cally distributed. If (6.7) and (6.9) hold, then as n — oo

Vi (G- E (@) -5 N(0,6%). (6.10)

One advantage of Theorem 6.8.3 is that it allows 02 = 0 (unlike Theorem 6.8.2).
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6.9 Multivariate Central Limit Theorem

Multivariate central limit theory applies when we consider vector-valued observations y, and
sample averages Y. In the i.i.d. case we know that the mean of g is the mean vector p = E(y)
and its variance is n ™'V where V =E ((y — p) (y — p)’). Again we wish to transform ¥ so that
its mean and variance do not depend on n. We do this again by centering and scaling, by setting
zn = /1 (Y,, — p). This has mean 0 and variance V, which are independent of n as desired.

To develop a distributional approximation for z, we use a multivariate central limit theorem.
We present three such results, corresponding to the three univariate results from the previous
section. Each is derived from the univariate theory by the Cramér-Wold device (Theorem 6.7.2).

We first present the multivariate version of Theorem 6.8.1.

Theorem 6.9.1 Multivariate Lindeberg—Lévy Central Limit Theo-
rem. If y; € R* are independent and identically distributed and B |y;|* <
oo, then as n — oo

Vi (G —p) = N(0,V)
where p=E(y) and V=E ((y — p) (y —p)’)

We next present a multivariate version of Theorem 6.8.2.

Theorem 6.9.2 Multivariate  Lindeberg-Feller CLT. Suppose
¥, € RF are independent but mnot necessarily identically dis-
tributed with finite means p,; = BE(y,;) and variance matrices
an' = E ((ynz - um) (ynz - p’nz),) . Set T/ﬂ = n_l Z?:l an and
V2 = Auin(Vyn). If v2 > 0 and for all e > 0

1
lim —— "B (Y — il®1 (1905 = pil® = en2)) =0 (6.17)
=1

n—o0 N2

then as n — oo

V,2n (@ -E@) -5 N(©0,1)).

We finally present a multivariate version of Theorem 6.8.3.

Theorem 6.9.3 Suppose y,; € R¥ are independent but not necessarily
identically distributed with finite means p,; = E(y,;) and variance matri-

ces an =E ((ynz - u’nz) (ynz - u’ni),) . Set Vn = n_l Z?:l an . If
V,— V>0 (6.12)

and for some § >0
sup B ||ymH2+6 < 00 (6.13)

n,t

then as n — oo
Vi (G- E(3) -5 N(O, V).
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Similarly to Theorem 6.8.3, an advantage of Theorem 6.9.3 is that it allows the variance matrix
V to be singular.

6.10 Higher Moments

Often we want to estimate a parameter p which is the expected value of a transformation of a
random vector y. That is, u can be written as

p=E(h(y))

for some function h : R™ — RF. For example, the second moment of y is E (y?), the rth is B (y"),

the moment generating function is E (exp (ty)) , and the distribution function is E (1{y < z}).
Estimating parameters of this form fits into our previous analysis by defining the random

variable z = h (y) for then p = E(z) is just a simple moment of z. This suggests the moment

estimator .
~ 1 1
n= EZZZ = EZ"(?JZ)

For example, the moment estimator of E (y") is n ! > i1 yr, that of the moment generating function
is n=1>°" | exp (ty;), and for the distribution function the estimator is n=1 Y"1 | 1{y; < z}.

Since p is a sample average, and transformations of iid variables are also i.i.d., the asymptotic
results of the previous sections immediately apply.

Theorem 6.10.1 If y, are independent and identically distributed, p =
E(h(y)), and E|[h(y)| < oo, then for fp = 537 h(y,), as n — oo,

ﬁLu.

Theorem 6.10.2 If y, are independent and identically distributed, p =
E(h(y)), and B |k (y)||* < oo, then for i = £ 377, h(y;), asn — oo,

V(- p) -5 N(0,V)

where V=B ((h(y) — p) (h(y) - p)’) -

Theorems 6.10.1 and 6.10.2 show that the estimate p is consistent for p and asymptotically
normally distributed, so long as the stated moment conditions hold.

A word of caution. Theorems 6.10.1 and 6.10.2 give the impression that it is possible to estimate
any moment of y. Technically this is the case so long as that moment is finite. What is hidden
by the notation, however, is that estimates of high order moments can be quite imprecise. For
example, consider the sample 8 moment jig = %Z?:l y?, and suppose for simplicity that y is
N(0,1). Then we can calculate! that var (zig) = n 12,016,000, which is immense, even for large n!
In general, higher-order moments are challenging to estimate because their variance depends upon
even higher moments which can be quite large in some cases.

'By the formula for the variance of a mean var (jis) = n™* (E (y*°) — (E (yS))z) . Since y is N(0,1), E (y*°) =
15! = 2,027,025 and E (ys) = Tl = 105 where k!! is the double factorial.
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6.11 Functions of Moments

We now expand our investigation and consider estimation of parameters which can be written
as a continuous function of g = E (h (y)). That is, the parameter of interest can be written as

B=g(n) =g(E(y)) (6.14)

for some functions g : R¥ — R? and h : R — RF,
As one example, the geometric mean of wages w is

v = oxp (B (log (w))) (6.15)

This is (6.14) with g(u) = exp (u) and h(w) = log(w).
A simple yet common example is the variance

o? =E(w—E(w))?
=E (w?) — (B (w))>.

This is (6.14) with

and
g (pa, p2) = po — M%-

Similarly, the skewness of the wage distribution is

B ((w-B(w)’)

sk = .
3/2
(B(w-E@)?))
This is (6.14) with
w
h(w) = | w?
w3
and 5
— Bl + 2
g (1, pa, pg) = 222 (6.16)

(n2 — 12)*?

The parameter 3 = g(u) is not a population moment, so it does not have a direct moment

estimator. Instead, it is common to use a plug-in estimate formed by replacing the unknown p
with its point estimate g and then “plugging” this into the expression for 3. The first step is

1
= n Z h(y;)
i=1
and the second step is R
B=gn).
Again, the hat “~” indicates that B is a sample estimate of 3.
For example, the plug-in estimate of the geometric mean  of the wage distribution from (6.15)
is
7 = exp(f)
with
=

Z log (wage;) .
i=1
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The plug-in estimate of the variance is

The estimator for the skewness is
— i3 — 3figf1 + 23
S fr—y
9\ 3/2
(M2 - Ml)
—\3
% Z?:l (w; —w)

(i > iy (wi — m)2> 3/2

where
n
~ 1 j
,u-:—g w; .
y) n 4 7
=1

A useful property is that continuous functions are limit-preserving.

Theorem 6.11.1 Continuous Mapping Theorem (CMT). If z, -
¢ asn — oo and g(-) is continuous at ¢, then g(z,) —— g(c) as n — co.

The proof of Theorem 6.11.1 is given in Section 6.16.
For example, if z, —— ¢ as n — oo then

P
Znt+a—c+a

P
az, — ac

2 P2
2y = C

2

as the functions g (u) = u + a, g (u) = au, and g (u) = u* are continuous. Also

a p @
L2
Zn c
if ¢ # 0. The condition ¢ # 0 is important as the function g(u) = a/u is not continuous at u = 0.
If y, are independent and identically distributed, p = E (h(y)), and E||h (y)| < oo, then for
fi=%> h(y;), as n — oo, i = p. Applying the CMT, B = g (i) = g (1) = B.

Theorem 6.11.2 If y, are independent and identically distributed, B =
g(E(h(y)), E|h(y)| < oo, and g (u) is continuous at w = p, then for

B=g(:Xih(y)), asn— oo, B 6.

To apply Theorem 6.11.2 it is necessary to check if the function g is continuous at . In our

first example g(u) = exp (u) is continuous everywhere. It therefore follows from Theorem 6.6.2 and

Theorem 6.11.2 that if E|log (wage)| < oo then as n — 0o, § —— 7.

In the example of the variance, g is continuous for all g. Thus if E (wz) < 00 then as n — oo,
52 -2, 52,

In our third example g defined in (6.16) is continuous for all g such that var(w) = ug — u? > 0,
which holds unless w has a degenerate distribution. Thus if E |w\3 < oo and var(w) > 0 then as

— )
n — oo, sk — sk.
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6.12 Delta Method

In this section we introduce two tools — an extended version of the CMT and the ]/)\elta Method
— which allow us to calculate the asymptotic distribution of the parameter estimate (3.

We first present an extended version of the continuous mapping theorem which allows conver-
gence in distribution.

Theorem 6.12.1 Continuous Mapping Theorem
If z, 4, 2 asn — oo and g : R™ — R* has the set of discontinuity points
Dy such that Pr(z € Dy) =0, then g(zy) <, g(z) as n — oo.

For a proof of Theorem 6.12.1 see Theorem 2.3 of van der Vaart (1998). It was first proved by
Mann and Wald (1943) and is therefore sometimes referred to as the Mann-Wald Theorem.

Theorem 6.12.1 allows the function g to be discontinuous only if the probability at being at a
discontinuity point is zero. For example, the function g(u) = u~! is discontinuous at u = 0, but if
PR ~N(0,1) then Pr(z =0) =0so z,! 4, 1

A special case of the Continuous Mapping Theorem is known as Slutsky’s Theorem.

Theorem 6.12.2 Slutsky’s Theorem

d p
If zp, — z and ¢, — ¢ as n — o0, then

1. zn+cni>z+c

d
2. zpCnh — ZC

3. z—”i>§z'fc;éo

Cn

Even though Slutsky’s Theorem is a special case of the CMT, it is a useful statement as it
focuses on the most common applications — addition, multiplication, and division.

Despite the fact that the plug-in estimator 3 is a function of g for which we have an asymptotic
distribution, Theorem 6.12.1 does not directly give us an asymptotic distribution for 8. This is
because 3 = g (u) is written as a function of g, not of the standardized sequence \/n (pt — ).
We need an intermediate step — a first order Taylor series expansion. This step is so critical to
statistical theory that it has its own name — The Delta Method.

Theorem 6.12.3 Delta Method:

If V/n(p— ) LN &, where g(u) is continuously differentiable in a neigh-
borhood of p then as n — oo

Vin(g (@) — g(w) —= G’ (6.17)
where G(u) = a%g(u)' and G = G(w). In particular, if € ~ N (0, V) then

V(g (@) — g(w) =N (0,G'VG). (6.18)
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The Delta Method allows us to complete our derivation of the asymptotic distribution of the
estimator 3 of 8. By combining Theorems 6.10.2 and 6.12.3 we can find the asymptotic distribution
of the plug-in estimator 3.

Theorem 6.12.4 If y, are independent and identically distributed, p =
B (h (), 8= g(), Ellh ()| < o0, and G (u) = =g () is continuous
in a neighborhood of u, then for B =g (% i h (yl)) , as M — 00

N (B _ [3) 4. N(0,GVG)

where V=E ((h(y) — p) (h(y) — p)') and G= G (p).

Theorem 6.11.2 established the consistency of B for 3, and Theorem 6.12.4 established its
asymptotic normality. It is instructive to compare the conditions required for these results. Consis-
tency required that h (y) have a finite mean, while asymptotic normality requires that this variable
have a finite variance. Consistency required that g(w) be continuous, while our proof of asymptotic
normality used the assumption that g(u) is continuously differentiable.

6.13 Stochastic Order Symbols

It is convenient to have simple symbols for random variables and vectors which converge in
probability to zero or are stochastically bounded. In this section we introduce some of the most
commonly found notation.

It might be useful to review the common notation for non-random convergence and boundedness.
Let z,, and a,, n = 1,2, ..., be non-random sequences. The notation

xn = o(1)
(pronounced “small oh-one”) is equivalent to z, — 0 as n — oco. The notation

xn = o(ay)

1

is equivalent to a,,“x,, — 0 as n — oco. The notation

xn = O(1)

(pronounced “big oh-one”) means that z;, is bounded uniformly in n — there exists an M < co such
that |z,| < M for all n. The notation
xn = O(ay)

is equivalent to a, 'z, = O(1).
We now introduce similar concepts for sequences of random variables. Let z,, and a,, n = 1,2, ...
be sequences of random variables. (In most applications, a,, is non-random.) The notation

zn = 0p(1)

(“small oh-P-one”) means that z, 2,0 asn — oo. For example, for any consistent estimator ,@
for 3 we can write

B=B+0p(1).
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We also write
zn = op(an)
if a;,lz, = op(1).

Similarly, the notation z, = O,(1) (“big oh-P-one”) means that z, is bounded in probability.
Precisely, for any € > 0 there is a constant M. < oo such that

limsup Pr (|z,| > M,) <e¢
n—oo
Furthermore, we write
zn = Op(an)
if aylz, = Op(1).

Op(1) is weaker than o,(1) in the sense that z, = op(1) implies z, = O,(1) but not the reverse.
However, if z, = Op(ay,) then z, = opy(by,) for any b, such that a, /b, — 0.

If a random vector converges in distribution 2, 2 2 (for example, if z ~ N(0,V)) then
zn = Op(1). It follows that for estimators 3 which satisfy the convergence of Theorem 6.12.4 then
we can write

B=8+0,nY?.
In words, this statement says that the estimator ,@ equals the true coefficient 3 plus a random
component which is bounded when scaled by n'/2. Equivalently, we can write

n'/2 (B~ B) = 0,(1).

Another useful observation is that a random sequence with a bounded moment is stochastically
bounded.

Theorem 6.13.1 If z, is a random vector which satisfies
E ||zn||6 =0 (an)
for some sequence a, and § > 0, then
Zn = Op(arlz/é)-

Similarly, Bz, = o(ay) implies z, = op(a}l/é).

This can be shown using Markov’s inequality (B.14). The assumptions imply that there is some

1/6
M < oo such that E || z,||° < Ma,, for all n. For any ¢ set B = <?> . Then

~1/5 5 Ma 13
Pr <an1/ 2] >B) — Pr (Han > 6”) < ¥
as required.

There are many simple rules for manipulating 0, (1) and Op(1) sequences which can be deduced
from the continuous mapping theorem or Slutsky’s Theorem. For example,

()+0p() op(1)

0p(1) + Op(1) = Op(1)

Op(1) + (1)=0p()

op(1)op(1) = 0p
(1) = 0p
(1)

5 <.

1

0p(1)0p(1
Op(1)0,(1
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6.14 Uniform Stochastic Bounds*

For some applications it can be useful to obtain the stochastic order of the random variable

max |y .

1o S}% |yl

This is the magnitude of the largest observation in the sample {yi, ...,y }. If the support of the
distribution of y; is unbounded, then as the sample size n increases, the largest observation will
also tend to increase. It turns out that there is a simple characterization.

Theorem 6.14.1 If y, are identically distributed and B |y|" < oo, then as
n — oo

1/r | P
lrél%)% lyi| — 0. (6.19)

-
Furthermore, if B (exp(ty)) < oo for some t > 0 then for any n >0

(log n) =G+ max lyi| 2= 0. (6.20)

The proof of Theorem 6.14.1 is presented in Section 6.16.
Equivalently, (6.19) can be written as

| — 1/r
max [yi| = op(n/") (6.21)
and (6.22) as
Jnax. lyi| = op(logn). (6.22)

Equation (6.21) says that if y has 7 finite moments, then the largest observation will diverge
at a rate slower than n'/". As r increases this rate decreases. Equation (6.22) shows that if we
strengthen this to y having all finite moments and a finite moment generating function (for example,
if y is normally distributed) then the largest observation will diverge slower than logn. Thus the
higher the moments, the slower the rate of divergence.

To simplify the notation, we write (6.21) as y; = op(nl/r) uniformly in 1 < ¢ < n. It is important
to understand when the O, or o, symbols are applied to subscript ¢ random variables whether the
convergence is pointwise in ¢, or is uniform in ¢ in the sense of (6.21)-(6.22).

Theorem 6.14.1 applies to random vectors. For example, if E ||y||” < oo then

| = op(n/"
max [ly;[| = op(n'/).

6.15 Semiparametric Efficiency

In this section we argue that the sample mean g and plug-in estimator B = g (u) are efficient
estimators of the parameters u and 3. Our demonstration is based on the rich but technically
challenging theory of semiparametric efficiency bounds. An excellent accessible review has been
provided by Newey (1990). We will also appeal to the asymptotic theory of maximum likelihood
estimation (see Chapter 5). R

We start by examining the sample mean u, for the asymptotic efficiency of 3 will follow from
that of p.

Recall, we know that if E <||y||2> < oo then the sample mean has the asymptotic distribution
Vn(p — p) 4N (0, V). We want to know if g is the best feasible estimator, or if there is another
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estimator with a smaller asymptotic variance. While it seems intuitively unlikely that another
estimator could have a smaller asymptotic variance, how do we know that this is not the case?
When we ask if i is the best estimator, we need to be clear about the class of models — the class
of permissible distributions. For estimation of the mean p of the distribution of y the broadest
conceivable class is £1 = {F : E||y|| < oo} . This class is too broad for our current purposes, as

is not asymptotically N (0, V') for all F' € £;. A more realistic choice is L9 = {F :E <HyH2) < oo}

— the class of finite-variance distributions. When we seek an efficient estimator of the mean g in
the class of models L2 what we are seeking is the best estimator, given that all we know is that
F e 52.

To show that the answer is not immediately obvious, it might be helpful to review a set-
ting where the sample mean is inefficient. Suppose that y € R has the double exponential den-
sity f(y|p) = 27 2exp (= ly — ul \/5) . Since var (y) = 1 we see that the sample mean satis-

fies \/n (1 — p) N N(0,1). In this model the maximum likelihood estimator (MLE) g for u
is the sample median. Recall from the theory of maximum likelihood that the MLE satisfies

NI 4N <0, (E (SZ))_l) where § = a% log f (y | p) = —v/2sgn (y — p) is the score. We

can calculate that E (5?) = 2 and thus conclude that /n (11 — ) 4N (0,1/2). The asymptotic
variance of the MLE is one-half that of the sample mean. Thus when the true density is known to
be double exponential the sample mean is inefficient.

But the estimator which achieves this improved efficiency — the sample median — is not generi-
cally consistent for the population mean. It is inconsistent if the density is asymmetric or skewed.
So the improvement comes at a great cost. Another way of looking at this is that the sample
median is efficient in the class of densities {f (y | pn) = 2-1/2 exp (= |y — plv2)} but unless it is
known that this is the correct distribution class this knowledge is not very useful.

The relevant question is whether or not the sample mean is efficient when the form of the
distribution is unknown. We call this setting semiparametric as the parameter of interest (the
mean) is finite dimensional while the remaining features of the distribution are unspecified. In the
semiparametric context an estimator is called semiparametrically efficient if it has the smallest
asymptotic variance among all semiparametric estimators.

The mathematical trick is to reduce the semiparametric model to a set of parametric “submod-
els”. The Cramer-Rao variance bound can be found for each parametric submodel. The variance
bound for the semiparametric model (the union of the submodels) is then defined as the supremum
of the individual variance bounds.

Formally, suppose that the true density of y is the unknown function f(y) with mean p =
E(y) = [yf(y)dy. A parametric submodel n for f(y) is a density f, (y | @) which is a smooth
function of a parameter @, and there is a true value 6y such that f, (y | 6o) = f(y). The index
n indicates the submodels. The equality f, (y | @o) = f(y) means that the submodel class passes
through the true density, so the submodel is a true model. The class of submodels  and parameter
6o depend on the true density f. In the submodel f, (y | 0), the mean is u,(0) = [ yf, (y | 0)dy
which varies with the parameter 8. Let n € R be the class of all submodels for f.

Since each submodel 7 is parametric we can calculate the efficiency bound for estimation of @
within this submodel. Specifically, given the density f, (y | €) its likelihood score is

0
Sy = 5108 5 (y | 00)

~1
so the Cramer-Rao lower bound for estimation of 6 is <E <SnS;’>) . Defining M,, = 8%“7)(00),7
by Theorem 5.16.3 the Cramer-Rao lower bound for estimation of p within the submodel 7 is
-1
V=M, (B(S,S,)) M,
As V, is the efficiency bound for the submodel class f;, (y | @), no estimator can have an
asymptotic variance smaller than V;, for any density f, (y | €) in the submodel class, including the
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true density f. This is true for all submodels 7. Thus the asymptotic variance of any semiparametric
estimator cannot be smaller than V,, for any conceivable submodel. Taking the supremum of the
Cramer-Rao bounds from all conceivable submodels we define?

V =supV,.
neN

The asymptotic variance of any semiparametric estimator cannot be smaller than V, since it cannot
be smaller than any individual V. We call 'V the semiparametric asymptotic variance bound
or semiparametric efficiency bound for estimation of u, as it is a lower bound on the asymptotic
variance for any semiparametric estimator. If the asymptotic variance of a specific semiparametric
estimator equals the bound V we say that the estimator is semiparametrically efficient.

For many statistical problems it is quite challenging to calculate the semiparametric variance
bound. However, in some cases there is a simple method to find the solution. Suppose that we can
find a submodel 79 whose Cramer-Rao lower bound satisfies V;,; = V|, where V, is the asymptotic
variance of a known semiparametric estimator. In this case, we can deduce that V = Vi = Vi
Otherwise (that is, if V;, is not the efficiency bound) there would exist another submodel 7; whose
Cramer-Rao lower bound satisfies V,,, < V,, (because V,, is not the supremum). This would
imply V,, < V), which contradicts the Cramer-Rao Theorem (since when submodel 7, is true
then no estimator can have a lower variance than V).

We now find this submodel for the sample mean . Our goal is to find a parametric submodel
whose Cramer-Rao bound for p is V. This can be done by creating a tilted version of the true
density. Consider the parametric submodel

Fo(y160)=fly) 1+ V! (y—p) (6.23)
where f(y) is the true density and p = Ey. Note that
/fn (y|0)dy = /J”(.v)cly+6”V‘1 /f(y) (y—p)dy=1

and for all @ close to zero f,, (y | €) > 0. Thus f, (y | ) is a valid density function. It is a parametric
submodel since f, (y | 89) = f(y) when 6y = 0. This parametric submodel has the mean

1(0) :/yfn (y|0)dy
- / yf (y)dy + / F@)y (y—w) V'edy
=pn+0

which is a smooth function of 6.
Since

) 0 A __ Vily-p
96 1081 (v 10) = 5glog (1+ 6"V (y — ) = -5 =

it follows that the score function for @ is

Sy = S low fy (3| 60) = V™' (y— ). (6.24)

By Theorem 5.16.3 the Cramer-Rao lower bound for 6 is

(E(S,8) ' =(V'E(y-p(y—p) V) =V (6.25)

2Tt is not obvious that this supremum exists, as V', is a matrix so there is not a unique ordering of matrices.
However, in many cases (including the ones we study) the supremum exists and is unique.
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The Cramer-Rao lower bound for pu(0) = p+ 0 is also V, and this equals the asymptotic variance
of the moment estimator . This was what we set out to show.

In summary, we have shown that in the submodel (6.23) the Cramer-Rao lower bound for
estimation of p is V which equals the asymptotic variance of the sample mean. This establishes
the following result.

Proposition 6.15.1 In the class of distributions F € Lo, the semipara-
metric variance bound for estimation of p is V = var(y;), and the sample
mean [ is a semiparametrically efficient estimator of the population mean

.

We call this result a proposition rather than a theorem as we have not attended to the regularity
conditions. R

It is a simple matter to extend this result to the plug-in estimator 3 = g (u). We know from
Theorem 6.12.4 that if E Hy||2 < oo and g (u) is continuously differentiable at w = p then the plug-

in estimator has the asymptotic distribution /n (B — ,3) 4N (0, G’V Q) . We therefore consider

the class of distributions

La(g) = {F ‘E|ly|? < oo, g(u) is continuously differentiable at u = E (y)} .

For example, if § = p1/ps where g = E (y1) and pe = E(y2) then
Ly(g) ={F:E (y%) <oo, E (y%) < 00, and E (y2) # 0} .

For any submodel 7 the Cramer-Rao lower bound for estimation of 8 = g(u) is G'V,G. For
the submodel 16.23) this bound is G/ VG which equals the asymptotic variance of 3 from Theorem
6.12.4. Thus 3 is semiparametrically efficient.

Proposition 6.15.2 In the class of distributions F € Ls(g) the semi-
parametric variance bound for estimation of B = g (n) is G VG, and the
plug-in estimator B = g (1) is a semiparametrically efficient estimator of

B.

The result in Proposition 6.15.2 is quite general. Smooth functions of sample moments are
efficient estimators for their population counterparts. This is a very powerful result, as most
econometric estimators can be written (or approximated) as smooth functions of sample means.

6.16 Technical Proofs*

In this section we provide proofs of some of the more technical points in the chapter. These
proofs may only be of interest to more mathematically inclined students.

Proof of Theorem 6.4.2: Without loss of generality, we can assume E(y;) = 0 by recentering y;
on its expectation.

We need to show that for all § > 0 and 1 > 0 there is some N < oo so that for all n > N,
Pr(|g| > ) <n. Fix § and 7. Set € = dn/3. Pick C' < oo large enough so that

B (il 1 (lyil > C)) <e (6.26)
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(where 1 () is the indicator function) which is possible since E |y;| < oo. Define the random variables

wi =yl (lyi| <C) =B (yil (lyi| <C))
zi = yil (lyil > C) — B (il (Jyi| > C))
so that
y=w+7z
and
Ely| <E[w|+E|z|. (6.27)

We now show that sum of the expectations on the right-hand-side can be bounded below 3e.
First, by the Triangle Inequality (A.26) and the Expectation Inequality (B.8),

E|zi| = Elyil (lyil > C) = E(vil (Juil > ©))]
<Elyil (|lyil > O) + [E (vl (lys| > C))
< 2E |yl (|ly:| > O]
< 2, (6.28)

and thus by the Triangle Inequality (A.26) and (6.28)

1 n
_§ %
n

=1

E[z|=E

1n
<=3 Elxl < 2. 6.29
=2 |zi| < 2e (6.29)

Second, by a similar argument

lwil = lyil (Jyil < C) =B (wil (lys| < O))]
<yl (vl < O) + [E (il (lys| < C))
<2yl (Jyil <O
<20 (6.30)

where the final inequality is (6.26). Then by Jensen’s Inequality (B.5), the fact that the w; are iid
and mean zero, and (6.30),
E (w2)

)

4C2
S R

< g2 6.31
- <S¢ (6.31)

(E[w)) <E([wf) =

the final inequality holding for n > 4C?/e? = 36C2/6%n%. Equations (6.27), (6.29) and (6.31)
together show that
E(7] < 3¢ (6.32)

as desired.
Finally, by Markov’s Inequality (B.14) and (6.32),

E [yl
4]
the final equality by the definition of €. We have shown that for any § > 0 and n > 0 then for all

n > 36C?/5%n?, Pr (|| > 6) < 7, as needed. [ |

Pr(y > 0) <~ < Z =,

Proof of Theorem 6.6.1: By Loéve’s ¢, Inequality (A.16)

1/2

m m
lyl =D uf | <D lyil.
j=1 j=1
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Thus if E |y;| < oo for j =1,...,m, then

m
Elly| <> By < .
j=1

For the reverse inequality, the Euclidean norm of a vector is larger than the length of any individual
component, so for any j, |y;| < ||y|| . Thus, if E||y| < oo, then E |y;| < oo for j =1, ..., m. [ |

Proof of Theorem 6.7.2: By Lévy’s Continuity Theorem (Theorem 6.7.1), z, 4, zif and only
if B (exp (is'z,)) — B (exp (is'z)) for every s € R¥. We can write s = t\ where ¢t € R and A € R”
with A’A = 1. Thus the convergence holds if and only if E (exp (it/\'zn)) — E (exp (it/\'z)) for
every t € R and A € R* with A = 1. Again by Lévy’s Continuity Theorem, this holds if and only

if Nz, % Nz for every A € RF and with A’ = 1. [ |

Proof of Theorem 6.8.1: The moment bound E (yf) < oo is sufficient to guarantee that p and
o2 are well defined and finite. Without loss of generality, it is sufficient to consider the case u = 0.
Our proof method is to calculate the characteristic function of \/ng,, and show that it converges

pointwise to exp (—/\202 / 2), the characteristic function of N (0, 02). By Lévy’s Continuity Theorem
(Theorem 6.7.1) this implies \/ny,, 4N (0,0%).

Let C (t) = Eexp (ity;) denote the characteristic function of y; and set ¢ (¢) = log C(t), which is
sometimes called the cumulant generating function. We start by calculating a second order Taylor
series expansion of ¢(t) about ¢ = 0, which requires computing the first two derivatives of c(t) at
t = 0. These derivatives are

/ C'(t)
c(t) = 0

wen  C'(E) (C')?
=G ()

Using (2.61) and = 0 we find

c(0)=0
d(0)=0
C”(O) — _0_2

Then the second-order Taylor series expansion of ¢(t) about ¢t = 0 equals

o(t) = ¢(0) + ¢ (0)t + %c”(t*)tQ
1 /!

5 () (6.33)

where t* lies on the line segment joining 0 and ¢.
We now compute C,,(t) = Eexp (ity/ny,,) , the characteristic function of \/ng,,. By the properties
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of the exponential function, the independence of the y;, and the definition of ¢(t)

log Cy(t) = logE (exp (1% Z tyi>>

For n large the argument ¢/y/n is in a neighborhood of 0. Since the second moment of y; is finite,
d’(t) is continuous at ¢ = 0. Thus we can apply a second order Taylor series expansion about 0,
and apply ¢ (0) = ¢/(0) = 0 to find that

log Cy(t) = ne (\%)

L) e
2 vn

where t,, lies on the line segment joining 0 and ¢. Since t,, is bounded we deduce that ¢’ (¢,/y/n) —
c’(0) = —o2. Hence, as n — oo,

1
log Cy(t) — —5027&2

and

1
Cp(t) — exp <—§02t2>

which is the characteristic function of the N (0, 0'2) distribution, as shown in Exercise 5.9. This
completes the proof. |

Proof of Theorem 6.8.3: Suppose that 02 = 0. Then var (v/n (¥ —E (7)) = 52 — 0% = 0 so

Vi (G —E (7)) == 0 and hence \/n (7 — E (7)) ~%, 0. The random variable N (0,0%) =N (0,0) is
0 with probability 1, so this is /n (7 — E (7)) AN (0,0?) as stated.

Now suppose that 02 > 0. This implies (6.8). Together with (6.7) this implies Lyapunov’s
condition, and hence Lindeberg’s condition, and hence Theorem 6.8.2, which states

n(y—E(y
f(yﬁ “B®) 4, 50,1,

Combined with (6.9) we deduce v/n (7 — E (7)) 4N (0,0?) as stated. [
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Proof of Theorem 6.9.1: Set A € R* with A\ = 1 and define u; = X’ (y; — ) . The u; are i.i.d
with E (u?) = X' VA < co. By Theorem 6.8.1,

1 & d
/ — _ . /
NVn(g—p) = NG ;_1 u; = N (0, N VA)
Notice that if z ~ N (0, V) then A’z ~ N (0,\'VX). Thus

Nn (@ —p) -5 Nz,

Since this holds for all A, the conditions of Theorem 6.7.2 are satisfied and we deduce that

Vi (G —p) -5 2~ N(0,V)
as stated. [ ]

Proof of Theorem 6.9.2: Set A € R¥ with with A’A = 1 and define u,; = A'V,, 12 (Yni — Boni)-
1/QVmV 1/2 Aand a2 =n= 1Y " 02 =

Notice that uy,; are independent and has variance 02, = X'V im1 Oni

1. It is sufficient to verify (6.5). By the Cauchy—Schwarz 1nequahty,

(XV Y (i - um)>2

X7 2
S )‘/Vn A Hym - :U‘mH
2

N )\min (‘_fn)
— Hynz — y’nzH2
v2 '
Then
1 n
WZE(U% u? >5na ZE ui26n))
n =1

2 2
§—nV%X;E<||ym—Mm|| 1 (19s = pil> = en02) )
1=

— 0

by (6.11). This establishes (6.5). We deduce from Theorem 6.8.2 that
Zum = NVaV, 2 (G -E@) -5 N(0,1) = Nz

where z ~ N (0,I). Since this holds for all A, the conditions of Theorem 6.7.2 are satisfied and
we deduce that

—1/2 ,_ .\ d
Vv, 2§~ E(g)) % N(0,I)
as stated. |

Proof of Theorem 6.9.3: Set A € R* with A\ = 1 and define u,; = N (y,,; — t,,;). Using the
triangle inequality and (6.13) we obtain

supE <|uni‘2+6) S SHPE (Hym an||2+5> o0

n,i n,t
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which is (6.7). Notice that

n

1 1 < —
~ ;E (i) = X' ; Vil = XV,A — NV

which is (6.9). Since the u,; are independent, by Theorem 6.9.1,

Avm@m@»;%gymiwmAvwzxz

where z ~ N (0, V). Since this holds for all A, the conditions of Theorem 6.7.2 are satisfied and
we deduce that

Vi (@ -E(7) -5 N0, V)
as stated. [ |

Proof of Theorem 6.12.3: By a vector Taylor series expansion, for each element of g,
9i(0n) = g;(0) + g;6(05,) (0 — 0)

where 6y, lies on the line segment between 8,, and 6 and therefore converges in probability to 6.

It follows that aj, = g;9(07,) — gj6 250. Stacking across elements of g, we find

Vi (g(8,) — 9(0)) = (G+an) Vi (6, — ) - G&. (6.34)

The convergence is by Theorem 6.12.1, as G+ a, 4, G, \/n (0, —0) 4, &, and their product is
continuous. This establishes (6.17)
When € ~ N (0, V), the right-hand-side of (6.34) equals

G't=G'N(0,V)=N(0,GVG)
establishing (6.18). [ |

Proof of Theorem 6.14.1: First consider (6.19). Take any § > 0. The event {maxi<j<y, |y;| > 5n1/7"}
means that at least one of the |y;| exceeds dn'/", which is the same as the event (JI" ; {|yi| > 5n1/’”}
or equivalently (J;~; {|yi|" > 6"n} . Since the probability of the union of events is smaller than the
sum of the probabilities,

—1/r ) _ r r
Pr <n lrél%xn\yz\ > 6) =Pr (L_Jl {lyil" > ¢ n})

< ZPr(|yi|T >nd")
=1
n

1 T s T
< ==Y B (lul 1 (5l > n8")
=1

1 r r T
= yE(|yi| L(lys|" > nd"))

where the second inequality is the strong form of Markov’s inequality (Theorem B.15) and the
final equality is since the y; are iid. Since E (|y|") < oo this final expectation converges to zero as
n — oo. This is because

mmmz/mwmw<w
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implies
B (lyil" L (luil” > o)) = /| ) o (6.35)
Y| >c

as ¢ — oo. This establishes (6.19).
Now consider (6.20). Take any § > 0 and pick n large enough so that (logn)’té > 1. By a

similar calculation

Pr ((log n)~ 1+ max lyi| > 5) =Pr (U {exp [tyi| > exp <(log n)t t5> })
== i=1

n
<> Pr(exp [tyi| > n)
=1

< E (exp [ty| 1 (exp [ty| > n))

where the second line uses exp <(log n) t6> > exp (logn) = n. The assumption E (exp(ty)) <
oo means E (exp |ty|1 (exp|ty] > n)) — 0 as n — oo by the same argument as in (6.35). This
establishes (6.20). [
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Exercises

Exercise 6.1 For the following sequences, show a,, — 0 as n — oo

(a) ap=1/n
(b) a, = %sin (gn>

T
Exercise 6.2 Does the sequence a,, = sin (571) converge? Find the liminf and limsup as n — oc.

Exercise 6.3 A weighted sample mean takes the form 7* = %Z?:l w;y; for some non-negative
constants w; satisfying %Z?:l w; = 1. Assume y; is iid.

(a) Show that 7* is unbiased for p = E (y;).

(b) Calculate var(y*).

2

(¢) Show that a sufficient condition for 7* -2~ 1 is that # Yo wg — 0.

(d) Show that a sufficient condition for the condition in part 3 is max;<, w; = o(n).

Exercise 6.4 Consider a random variable X,, with the probability distribution

-n with probability 1/n
Xp = 0 with probability 1 —2/n
n with probability 1/n

(a) Does X,, —p 0 as n — oo?
(b) Calculate E(X,,)

(c) Calculate var(X,,)

)

(d) Now suppose the distribution is

Y. — 0 with probability 1 —n
" n with probability 1/n

Calculate E(X,,)

(e) Conclude that X,, —, 0 as n — oo and E(X,,) — 0 are unrelated.

Exercise 6.5 A weighted sample mean takes the form 7* = %Z?:l w;y; for some non-negative
constants w; satisfying %2?21 w; = 1. Assume y; is iid.

(a) Show that 7* is unbiased for p = E (y;) .

(b) Calculate var(g*).

(¢) Show that a sufficient condition for 7* -2 1 is that # S wE—0.

(d) Show that a sufficient condition for the condition in part ¢ is max;<, w;/n — 0.

Exercise 6.6 Take a random sample {yi,...,y,}. Which statistics converge in probability by the
weak law of large numbers and continuous mapping theorem, assuming the moment exists?

(a) % anl yz2
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(b) % Z?:l Z/i3

<C) maxi;<n Yi

n n 2
(d) % dic1 yz2 - (% >ic yz)
(e) %Z%llz’j assuming B (y;) > 0
0 1A > 0) where
1(a) = 1 if a is true
10 if @ is not true

Exercise 6.7 Take a random sample {Xi,..., X,,} where X > 0. Consider the sample geometric

mean
n 1/n
=1

p = exp (E (log X))

Assuming p is finite, show that i —, pu as n — oo.

and population geometric mean

Exercise 6.8 Take a random variable Z such that E(Z) = 0 and var(Z) = 1. Use Chebyshev’s
inequality to find a § such that Pr(]Z| > ) < 0.05. Contrast this with the exact § which solves
Pr(|Z| > 0) = 0.05 when Z ~ N (0,1). Comment on the difference.

Exercise 6.9 Find the moment estimator fi3 of uz = E (y?) and show that /n (ds — p3) ,
N (O, 112) for some v2. Write v? as a function of the moments of y;.

Exercise 6.10 Suppose z, —— ¢ as n — oo. Show that 22 L2
of convergence in probability, but not appealing to the CMT.

as n — oo using the definition

Exercise 6.11 Let pup =E (yk) for some integer k£ > 1.

(a) Write down the natural moment estimator iy, of 1.

(b) Find the asymptotic distribution of \/n (i, — px) as n — oco. (Assume E (X?*) < o0.)
Exercise 6.12 Let my = (E (yk))l/k for some integer k£ > 1.

(a) Write down an estimator my, of my.

(b) Find the asymptotic distribution of \/n (my — mg) as n — oo.
Exercise 6.13 Suppose /1 (1 — p) 4N (0,v?) and set 8 = p? and B= 02

(a) Use the Delta Method to obtain an asymptotic distribution for /n (3 — B) .

(b) Now suppose p = 0. Describe what happens to the asymptotic distribution from the previous
part.

(c) Improve on the previous answer. Under the assumption p = 0, find the asymptotic distribu-
tion for nf = nju?.

(d) Comment on the differences between the answers in parts 1 and 3.
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Exercise 6.14 Let y be distributed Bernoulli P(y = 1) = p and P(y = 0) = 1 — p for some
unknown 0 < p < 1.

(
(

a) Show that p = E (y)

)
b) Write down the natural moment estimator p of p.
(c¢) Find var (p)

)

(d) Find the asymptotic distribution of \/n (p — p) as n — oo.



Chapter 7

Asymptotic Theory for Least Squares

7.1 Introduction

It turns out that the asymptotic theory of least-squares estimation applies equally to the pro-
jection model and the linear CEF model, and therefore the results in this chapter will be stated for
the broader projection model described in Section 2.18. Recall that the model is

yi = ;8 +e;
for ¢ =1, ...,n, where the linear projection 3 is
-1

Some of the results of this section hold under random sampling (Assumption 1.5.2) and finite
second moments (Assumption 2.18.1). We restate this condition here for clarity.

Assumption 7.1.1

1. The observations (y;, x;), i = 1,...,n, are independent and identically
distributed.

2. E (y2) < 00.
3. Blz|? < .

4. Que = E (xx') is positive definite.

Some of the results will require a strengthening to finite fourth moments.

Assumption 7.1.2 In addition to Assumption 7.1.1, E(yf) < oo and
E ||2]|* < co.

184



CHAPTER 7. ASYMPTOTIC THEORY FOR LEAST SQUARES 185

7.2 Consistency of Least-Squares Estimator

In this section we use the weak law of large numbers (WLLN, Theorem 6.4.2 and Theorem
6.6.2) and continuous mapping theorem (CMT, Theorem 6.11.1) to show that the least-squares
estimator 3 is consistent for the projection coefficient 3.

This derivation is based on three key components. First, the OLS estimator can be written as
a continuous function of a set of sample moments. Second, the WLLN shows that sample moments
converge in probability to population moments. And third, the CMT states that continuous func-
tions preserve convergence in probability. We now explain each step in brief and then in greater
detail.

First, observe that the OLS estimator

(1 1 010
i=1 i=1

is a function of the sample moments Q,, = LS @iz} and (A;)wy =15 2y

Second, by an application of the WLLN these sample moments converge in probability to the
population moments. Specifically, the fact that (y;, ;) are mutually independent and identically
distributed implies that any function of (y;, #;) is iid, including z;x} and z;y;. These variables also
have finite expectations under Assumption 7.1.1. Under these conditions, the WLLN (Theorem
6.6.2) implies that as n — oo,

~ 1 &
i=1
and
~ 1< »
Quy = > iy - B(@iyi) = Quy (7.2)
i=1

Third, the CMT ( Theorem 6.11.1) allows us to combine these equations to show that B con-
verges in probability to 8. Specifically, as n — oo,

—~ ~—1~
B = Qmm wa
= Qg Quy
= 0. (7.3)
We have shown that ,@ L, 3, as n — oco. In words, the OLS estimator converges in probability to

the projection coefficient vector 3 as the sample size n gets large.
To fully understand the application of the CMT we walk through it in detail. We can write

B=g (@m, @wy>

where g (A, b) = A7'b is a function of A and b. The function g (A, b) is a continuous function of
A and b at all values of the arguments such that A~! exists. Assumption 7.1.1 specifies that Q;%
exists and thus g (A, b) is continuous at A = Q. This justifies the application of the CMT in

(7.3).
For a slightly different demonstration of (7.3), recall that (4.7) implies that
—~ ~—1~
/6 - ﬁ = meQme (74)
where

n
Qo=
= — Z;€;.
e n ' A
=1
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The WLLN and (2.27) imply
Quc — E(zie;) = 0. (7.5)

Therefore

B-B=QuQu

which is the same as ,CA‘S’ 2. 8.

Theorem 7.2.1 Consistency of Least-Squares
~ ~ ~—1
Under Assumption 7.1.1, Quy —~ Quar Quy =~ Quys Quw —— Qiay

@weLO, andBLﬁ as n — 00.

Theorem 7.2.1 states that the OLS estimator B converges in probability to 8 as n increases,
and thus 3 is consistent for 3. In the stochastic order notation, Theorem 7.2.1 can be equivalently
written as

B=B+0y(1). (7.6)

To illustrate the effect of sample size on the least-squares estimator consider the least-squares
regression

In(Wage;) = f1Education; + Ba Experience; + B3 Experience? + By + €;.

We use the sample of 24,344 white men from the March 2009 CPS. Randomly sorting the observa-
tions, and sequentially estimating the model by least-squares, starting with the first 5 observations,
and continuing until the full sample is used, the sequence of estimates are displayed in Figure 7.1.
You can see how the least-squares estimate changes with the sample size, but as the number of
observations increases it settles down to the full-sample estimate 3; = 0.114.

7.3 Asymptotic Normality

We started this chapter discussing the need for an approximation to the distribution of the OLS
estimator 3. In Section 7.2 we showed that 3 converges in probability to 3. Consistency is a good
first step, but in itself does not describe the distribution of the estimator. In this section we derive
an approximation typically called the asymptotic distribution.

The derivation starts by writing the estimator as a function of sample moments. One of the
moments must be written as a sum of zero-mean random vectors and normalized so that the central
limit theorem can be applied. The steps are as follows.

Take equation (7.4) and multiply it by /n. This yields the expression

n -1 n
vn (B - B) = (% ; zczzc;) (% ; :Bi@) : (7.7)

This shows that the normalized and centered estimator \/n (B — ﬁ) is a function of the sample

average % >, @iz, and the normalized sample average ﬁ > i, @ie;. Furthermore, the latter has
mean zero so the central limit theorem (CLT, Theorem 6.8.1) applies.
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Figure 7.1: The least-squares estimator Bl as a function of sample size n

The product x;e; is iid (since the observations are iid) and mean zero (since E (x;e;) = 0).

Define the k& x k covariance matrix
Q=E (z;zje]) . (7.8)

We require the elements of €2 to be finite, written €2 < oco. It will be useful to recall that Theorem
2.18.1.6 shows that Assumption 7.1.2 implies that (e‘il) < 00.

The j¢*" element of Q is E ($ji$gi612). By the Expectation Inequality (B.8), the j¢*" element of
Qis

B (zjizge})| < Blejizge;| =B (lojl |zl e]) -

By two applications of the Cauchy-Schwarz Inequality (B.10), this is smaller than

(B (e%a2))"? (B () < (B(e4)"* (B () B (e)"* < o0

where the finiteness holds under Assumption 7.1.2.

An alternative way to show that the elements of € are finite is by using a matrix norm |||
(See Appendix A.18). Then by the Expectation Inequality, the Cauchy-Schwarz Inequality, and
Assumption 7.1.2

1/2
Q) < Bzl =B <||mi||2e?) < (E||a;i||4) (B ()" < .

This is a more compact argument (often described as more elegant) but such manipulations should
not be done without understanding the notation and the applicability of each step of the argument.

Regardless, the finiteness of the covariance matrix means that we can then apply the CLT
(Theorem 6.8.1).

Theorem 7.3.1 Under Assumption 7.1.2,

Q< oo (7.9)

and

1 n
NG 3 wiei 4 N(0,0) (7.10)
=1

as n — oQ.
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Putting together (7.1), (7.7), and (7.10),

5 d _
=N (0, Qz.2Q;;)
as n — 0o, where the final equality follows from the property that linear combinations of normal
vectors are also normal (Theorem 5.2.3).

We have derived the asymptotic normal approximation to the distribution of the least-squares
estimator.

Theorem 7.3.2 Asymptotic Normality of Least-Squares Estima-
tor
Under Assumption 7.1.2, as n — oo

Vi (B -8) -5 N (0, Vp)

where
Vi = Qur0Qss, (7.11)
Qur =E(ziz)), and @ =E (z;zle?) .

In the stochastic order notation, Theorem 7.3.2 implies that

B=B+0,(n"? (7.12)
which is stronger than (7.6).
The matrix Vg = Q;%QQ;; is the variance of the asymptotic distribution of \/n (B — B) .

Consequently, Vg is often referred to as the asymptotic covariance matrix of B The expression
Vg = Q,10Q,. is called a sandwich form, as the matrix € is sandwiched between two copies of
Qo

It is useful to compare the variance of the asymptotic distribution given in (7.11) and the
finite-sample conditional variance in the CEF model as given in (4.12):

Vp—var (B]X) = (X'X)" (X'DX) (X'X) .

5 (7.13)

Notice that VE‘ is the exact conditional variance of B and Vg is the asymptotic variance of

n B— B). Thus Vg should be (roughly) n times as large as V4, or Vg ~ nV5. Indeed,
B B B
multiplying (7.13) by n and distributing, we find

L) Ly Loig )
nVz=(=-X'X —X'DX | (=X'X
n n n

which looks like an estimator of V. Indeed, as n — oo
nVE L Vﬁ.

The expression VB is useful for practical inference (such as computation of standard errors and

tests) since it is the variance of the estimator B , while Vg is useful for asymptotic theory as it
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is well defined in the limit as n goes to infinity. We will make use of both symbols and it will be
advisable to adhere to this convention.
There is a special case where 2 and Vg simplify. Suppose that
cov(z;x}, e?) = 0. (7.14)
Condition (7.14) holds in the homoskedastic linear regression model, but is somewhat broader.
Under (7.14) the asymptotic variance formulae simplify as

Q=E(z;z)) E (€7) = Qpp0? (7.15)
Vi = QpoQqp = Qup0” = Vi (7.16)

In (7.16) we define V% = Q.. 0% whether (7.14) is true or false. When (7.14) is true then Vg = V%,

otherwise Vg # V% We call VOB the homoskedastic asymptotic covariance matrix.

Theorem 7.3.2 states that the sampling distribution of the least-squares estimator, after rescal-
ing, is approximately normal when the sample size n is sufficiently large. This holds true for all joint
distributions of (y;, ;) which satisfy the conditions of Assumption 7.1.2, and is therefore broadly
applicable. Consequently, asymptotic normality is routinely used to approximate the finite sample
distribution of y/n (B - ,8) .

A difficulty is that for any fixed n the sampling distribution of ,[A‘i’ can be arbitrarily far from the
normal distribution. In Figure 6.1 we have already seen a simple example where the least-squares
estimate is quite asymmetric and non-normal even for reasonably large sample sizes. The normal
approximation improves as n increases, but how large should n be in order for the approximation
to be useful? Unfortunately, there is no simple answer to this reasonable question. The trouble
is that no matter how large is the sample size, the normal approximation is arbitrarily poor for
some data distribution satisfying the assumptions. We illustrate this problem using a simulation.
Let y; = pix; + P2 + e; where z; is N(0,1), and e; is independent of z; with the Double Pareto
density f(e) = § le| 77, |e| > 1. If @ > 2 the error ¢; has zero mean and variance a/(a — 2).
As « approaches 2, however, its variance diverges to infinity. In this context the normalized least-

squares slope estimator \/TLO‘T*Q (B\l — 51) has the N(0, 1) asymptotic distribution for any o > 2.

In Figure 7.2 we display the finite sample densities of the normalized estimator 4/ no‘T_Q (Bl — ﬁ1> ,
setting n = 100 and varying the parameter a. For oo = 3.0 the density is very close to the N(0, 1)
density. As « diminishes the density changes significantly, concentrating most of the probability
mass around zero.
Another example is shown in Figure 7.3. Here the model is y; = 3 + e; where
ul — B (u])

)

(B @) - @@p?)”

(7.17)

and u; ~ N(0, 1) and some integer r > 1. We show the sampling distribution of \/n (,73’\ - ﬂ) setting
n = 100, for r = 1, 4, 6 and 8. As r increases, the sampling distribution becomes highly skewed
and non-normal. The lesson from Figures 7.2 and 7.3 is that the N(0, 1) asymptotic approximation
is never guaranteed to be accurate.

7.4 Joint Distribution

Theorem 7.3.2 gives the joint asymptotic distribution of the coefficient estimates. We can use
the result to study the covariance between the coefficient estimates. For simplicity, suppose k = 2
with no intercept, both regressors are mean zero and the error is homoskedastic. Let o7 and 02 be
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Figure 7.2: Density of Normalized OLS estimator with Double Pareto Error
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Figure 7.3: Density of Normalized OLS estimator with error process (7.17)



CHAPTER 7. ASYMPTOTIC THEORY FOR LEAST SQUARES 191

Bz
0

B1

Figure 7.4: Contours of Joint Distribution of (Bl, BQ), homoskedastic case

the variances of x1; and x9;, and p be their correlation. Then using the formula for inversion of a

2 X 2 matrix,
2 2

_ 201 _ g 02 —po102
V% = Qua = 0202 (1 — p?) | —po102 ot
Thus if z1; and z9; are positively correlated (p > 0) then Bl and ,/8\2 are negatively correlated (and
vice-versa).

_For illustration, Figure 7.4 displays the probability contours of the joint asymptotic distribution
of 81 — 1 and By — B2 when 51 = 52 =0, a% = O'% =02 =1, and p = 0.5. The coefficient estimates
are negatively correlated since the regressors are positively correlated. This means that if Bl is
unusually negative, it is likely that (S is unusually positive, or conversely. It is also unlikely that
we will observe both ; and (82 unusually large and of the same sign.

This finding that the correlation of the regressors is of opposite sign of the correlation of the coef-
ficient estimates is sensitive to the assumption of homoskedasticity. If the errors are heteroskedastic
then this relationship is not guaranteed.

This can be seen through a simple constructed example. Suppose that x1; and x9; only take
the values {—1,+1}, symmetrically, with Pr(x1; = x9; =1) = Pr(zy; = z9; = —1) = 3/8, and
Pr(zy; = 1,29; = =1) = Pr(z1; = —1,29; = 1) = 1/8. You can check that the regressors are mean
zero, unit variance and correlation 0.5, which is identical with the setting displayed in Figure 7.4.

Now suppose that the error is heteroskedastic. Specifically, suppose that [ (eZ2 | 21, = wgi) =

5 1
1 and E (eZ2 | z1; # xgi) =7 You can check that E(e?) =1, E(w%ze?) =E (x%zef) = 1 and
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Bz
0

Figure 7.5: Contours of Joint Distribution of 31 and 32, heteroskedastic case

7
E (:Ulixgie?) = 3 Therefore

Vs = Q.. 0Q,;

|
=
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—
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— 0ol
o

— =

Thus the coefficient estimates Bl and 32 are positively correlated (their correlation is 1/4.) The
joint probability contours of their asymptotic distribution is displayed in Figure 7.5. We can see
how the two estimates are positively associated.

What we found through this example is that in the presence of heteroskedasticity there is no
simple relationship between the correlation of the regressors and the correlation of the parameter
estimates.

We can extend the above analysis to study the covariance between coefficient sub-vectors. For
example, partitioning z} = (&}, };) and B’ = (8], 85) , we can write the general model as

yi = T8 + T8, + €

~/ ~/ ~/
and the coeflicient estimates as B = (ﬁl, B2> . Make the partitions

_ | Qu Q2 _ | Q2 Qa2
Qoo — [ o 2 } Q- [ o e } (7.18)
From (2.41)
Q. = [ 91_11-2 ) _(‘?1_11.2(9112(‘?2_21 ]
e — Q551 Q1 Qyy Q21
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where Q1.5 = Qi1 — Q12Qp Qo1 and Qupq = Qo — Q51 Q' Qyp. Thus when the error is ho-

moskedastic,
2 73 -1 -1
cov (517:32> = _02Q11~2Q12Q22
which is a matrix generalization of the two-regressor case.
In the general case, you can show that (Exercise 7.5)

| Vi1 Vi
Ve = [ Va1 Vao ]

where
Vi = Qi (21 — Q12Q% Qo1 — Q12Q5) Qo + Q12Q5; 222Q55 Qyy) Q1

Vor = Qa1 (D21 — Qo Q17 Q1 — 222Q55 Qo + Qo Q1 R12Q5) Q1) Qs
Vi = Qpy (22 — Q21 Q11 Q12 — 1Q77' Qo + Qy, Q1 211 QY Q) Q1

Unfortunately, these expressions are not easily interpretable.

7.5 Consistency of Error Variance Estimators

Using the methods of Section 7.2 we can show that the estimators 52 = %Zn

—nik Yoy /6\22 are consistent for o2.

The trick is to write the residual €; as equal to the error e; plus a deviation term

€ =Yi — T

Thus the squared residual equals the squared error plus a deviation

&2 — e 20! (B—ﬁ) + (B—ﬁ>,mim§ (B—ﬁ>.

(7.19)

(7.20)
(7.21)
(7.22)

" €2 and % =

(7.23)

So when we take the average of the squared residuals we obtain the average of the squared errors,

plus two terms which are (hopefully) asymptotically negligible.
1 ¢ 1 ¢ ~
52 — _Ze? -2 (—Zemé) (,@ —,@)
i nia
~ 11 & ~
+(B-8) (;Zmiw;> (B-8).
i=1

Indeed, the WLLN shows that
1 n
Lyt
n -
=1
1 n
— Zeiwg 2R (eim;) =0
n
i=1

1 & »
i—1

(7.24)

and Theorem 7.2.1 shows that B 2., 8. Hence (7.24) converges in probability to o2, as desired.



CHAPTER 7. ASYMPTOTIC THEORY FOR LEAST SQUARES 194

Finally, since n/(n — k) — 1 as n — o0, it follows that

n ~ p
52: 0'2—)0'2.
n—=k

Thus both estimators are consistent.

Theorem 7.5.1 Under Assumption 7.1.1, 52 2502 and 2 25 02 as

n — Q.

7.6 Homoskedastic Covariance Matrix Estimation

Theorem 7.3.2 shows that /n (B — B) is asymptotically normal with asymptotic covariance
matrix Vg. For asymptotic inference (confidence intervals and tests) we need a consistent estimate
of Vg. Under homoskedasticity, Vg simplifies to V% = Q;alsaz, and in this section we consider the
simplified problem of estimating V%

The standard moment estimator of Q,,, is @Zw defined in (7.1), and thus an estimator for Q.

is @;glc Also, the standard estimator of o2 is the unbiased estimator s? defined in (4.30). Thus a
natural plug-in estimator for V% = Q lo? is ‘A/OB = A;alssz.

Consistency of f/,(; for VOB follows from consistency of the moment estimates @ww and 2,
and an application of the continuous mapping theorem. Specifically, Theorem 7.2.1 established
that (AQM; 2, Q.., and Theorem 7.5.1 established s? 2, 52, The function V% = Q,lo? is a
continuous function of Q,, and o so long as Q,,,, > 0, which holds true under Assumption 7.1.1.4.

It follows by the CMT that
~—1
:13:138

~0 P .
Vg = 5 Quao’ =V

~0
so that Vg is consistent for V%, as desired.

Theorem 7.6.1 Under Assumption 7.1.1, {/Oﬁ 2, V% as n — oo.

It is instructive to notice that Theorem 7.6.1 does not require the assumption of homoskedastic-
=0
ity. That is, Vg is consistent for V% regardless if the regression is homoskedastic or heteroskedastic.

~ -0
However, V% = Vg = avar(8) only under homoskedasticity. Thus in the general case, Vg is con-
sistent for a well-defined but non-useful object.

7.7 Heteroskedastic Covariance Matrix Estimation

Theorems 7.3.2 established that the asymptotic covariance matrix of \/n (B — ﬁ) is Vg =

Q,202Q,L. We now consider estimation of this covariance matrix without imposing homoskedas-
ticity. The standard approach is to use a plug-in estimator which replaces the unknowns with
sample moments.

~—1 ~
As described in the previous section, a natural estimator for Q1 is Q,,,, where Q,, defined
in (7.1).
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The moment estimator for €2 is .
~ 1
Q= - g x; e (7.25)

You can check that ‘A/;V = ni\/g/ where ‘A/[%V is the White covariance matrix estimator introduced
n (4.37).

As shown in Theorem 7.2.1, 6);; 2, Q;x, so we just need to verify the consistency of €.
The key is to replace the squared residual € e with the squared error e , and then show that the
difference is asymptotically negligible.

Specifically, observe that

Q= —me/’Q
:—me'62+ Zml ez —¢e? (7.27)

The first term is an average of the iid random variables x;z}e?, and therefore by the WLLN
converges in probability to its expectation, namely,

1 n
— E x; e 2R (:c :c’62) = Q.
n

i=1

Technically, this requires that € has finite elements, which was shown in (7.9).
So to establish that €2 is consistent for {2 it remains to show that

L L —e?) 0. (7.28)
=1

There are multiple ways to do this. A reasonable straightforward yet slightly tedious derivation is
to start by applying the Triangle Inequality (A.26) using a matrix norm:

Zaa e2 —¢e? S—ZHwZ e; —e)H

— _anznﬂe —é?|. (7.29)

Then recalling the expression for the squared residual (7.23), apply the Triangle Inequality and
then the Schwarz Inequality (A.20) twice

e, (B-8)|+ (B-8) wal (8- 5)
s (5-8)|+|(3-9) =]
< 2leil il [[B — 8 + il B - 5| (7.30)

‘e —e2|<2

= 2]e4
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Combining (7.29) and (7.30), we find

1 Xn:az-az’- (@2 — 62)
n 4 [(2ad? 1 7
1=1

§2<%2N@WMOHB—@
+(%§ymmﬂHB—ﬂW
[0)

p(1). (7.31)

The expression is op(1) becauseH B -8B H 2, 0 and both averages in parenthesis are averages of

random variables with finite mean under Assumption 7.1.2 (and are thus Op(1)). Indeed, by
Holder’s Inequality (B.9)

B <||f‘%”3 |€z‘|> < (E (sz‘||3>4/3> 3 (B (e?))1/4
= (B (=) B () < .

We have established (7.28), as desired.

Theorem 7.7.1 Under Assumption 7.1.2, as n — 00, Q-2 Q and
~W

For an alternative proof of this result, see Section 7.21.

7.8 Summary of Covariance Matrix Notation

The notation we have introduced may be somewhat confusing so it is helpful to write it down in
one place. The exact variance of 8 (under the assumptions of the linear regression model) and the

asymptotic variance of \/n (,@ — ,6) (under the more general assumptions of the linear projection
model) are
-~ -1 -1
Vs =var (B]X) = (X'X) " (X'DX) (X'X)
Vi = avar (Vi (B - B)) = Qz20Q.

The White estimates of these two covariance matrices are

f/%v - (x'x)"" (Z mim;é?) (x'x)™"
=1

and satisfy the simple relationship

Similarly, under the assumption of homoskedasticity the exact and asymptotic variances simplify
to
o / -1 2
VE=(X'X) o
-1_2
V% = QL0
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and their standard estimators are

Vs = (X'X) 72

VI@ = xS
which also satisfy the relationship
=0 =0

The exact formula and estimates are useful when constructing test statistics and standard errors.
However, for theoretical purposes the asymptotic formula (variances and their estimates) are more
useful, as these retain non-generate limits as the sample sizes diverge. That is why both sets of
notation are useful.

7.9 Alternative Covariance Matrix Estimators*

~W ~W oW

In Section 7.7 we introduced Vg as an estimator of Vg. Vg is a scaled version of V3 from
Section 4.13, where we also introduced the alternative heteroskedasticity-robust covariance matrix
estimators VE’ VB and Vfi" We now discuss the consistency properties of these estimators.

To do so we introduce their scaled versions, e.g. f/ﬁ = ni\/A, {/ﬁ = n{/A, and T/ﬂ = nT/B.
These are (alternative) estimates of the asymptotic covariance matrix Vg.

N = BN ~W W

First, consider Vig. Notice that Vg = nV3z = - Vg where Vg was defined in (7.26) and

shown consistent for Vg in Theorem 7.7.1. If kg is fixed as n — oo, then —*+ — 1 and thus

~ ~W
Vi =(1+0(1))Vg > V.

Thus ‘Afg is consistent for Vg.
The alternative estimators Vg and V@ take the form (7.26) but with € replaced by

3

- 1 ~ »
Q== (1-hy) 2zzie?
n 4
=1
and .
= 1 N=1_ 12
Q = E (1 — hn) $’L$i€i,

1

~

respectively. To show that these estimators also consistent for Vg, given Q- Q, it is sufficient
to show that the differences © — Q and © — © converge in probability to zero as n — oo.
The trick is to use the fact that the leverage values are asymptotically negligible:

hy, = max hi; = op(1). (7.32)

1<i<n

(See Theorem 7.22.1 in Section 7.22).) Then using the Triangle Inequality

1 & e
=3 [mial @
=1

(%irm#é) 1 -np) 1),

The sum in parenthesis can be shown to be O,(1) under Assumption 7.1.2 by the same argument
as in in the proof of Theorem 7.7.1. (In fact, it can be shown to converge in probability to

<]
|
2

I

(1—hy) ' - 1‘

VAN
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E (H$1H2€@2> .) The term in absolute values is o0,(1) by (7.32). Thus the product is 0,(1), which

means that € = Q + op(1) — Q.
Similarly,

n
-2 < 3 o

1 ¢ 2.2 ’ “\—2 ‘
< | = ; : 1—-~h —1
< (n ;:1 (Al 61> ( n)

= op(1).

(1— hi) 2 — 1(

'Eheorem 7.9.1 Under Assump_tion 7.1.2, as n — o0, Q- Q,0 2, Q,
Vﬁ L Vﬂ, V,B L) Vﬁ, and Vﬁ L Vﬂ.

Theorem 7.9.1 shows that the alternative covariance matrix estimators are also consistent for
the asymptotic covariance matrix.

7.10 Functions of Parameters

In most serious applications the researcher is actually interested in a specific transformation
of the coefficient vector 3 = (S, ..., Br). For example, he or she may be interested in a single
coefficient f3;, or a ratio 3;/5;. More generally, interest may focus on a quantity such as consumer
surplus which could be a complicated function of the coefficients. In any of these cases we can
write the parameter of interest @ as a function of the coefficients, e.g. 8 = r(3) for some function
r: R*¥ — R%. The estimate of 0 is

~ ~

6 = r(B).

By the continuous mapping theorem (Theorem 6.11.1) and the fact B 2, B we can deduce
that @ is consistent for @ (if the function r(-) is continuous).

Theorem 7.10.1 Under Assumption 7.1.1, if 7(8) is continuous at the
true value of B, then as n — oo, 6 2. 0.

Furthermore, if the transformation is sufficiently smooth, by the Delta Method (Theorem 6.12.3)
we can show that 6 is asymptotically normal.

Assumption 7.10.1 7(3) : R¥ — RY is continuously differentiable at the

true value of B and R = %T(B)’ has rank q.
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Theorem 7.10.2 Asymptotic Distribution of Functions of Para-
meters
Under Assumptions 7.1.2 and 7.10.1, as n — oo,

Jn (5 - 9) 4, N(0, V) (7.33)

where
Vg = R'VQR (7.34)

In many cases, the function r(3) is linear:

r(8)=R3

for some k x ¢ matrix R. In particular, if R is a “selector matrix”

R-— ( é ) (7.35)

then we can partition B = (8], 35)’ so that R'@ = 3, for 8 = (3],35)’. Then
Vo= (1 0)Vs( g )=Vvn
the upper-left sub-matrix of V; given in (7.20). In this case (7.33) states that
vn (31 - 51) L N(0, V).

That is, subsets of ,@ are approximately normal with variances given by the conformable subcom-
ponents of V.
To illustrate the case of a nonlinear transformation, take the example 8 = 3/, for j # [. Then

o5 (8i/6) 0
, 2 (8i/5) 16
R = 52r(B) = : = : (7.36)
25 (Bi/B) —Bi /B
B (3/8) 0

SO
Vo= V;;/B + VuB:/B —2V;i8;/ 58}

where V;, denotes the ab?” element of V.

For inference we need an estimate of the asymptotic variance matrix Vg = R'V3R, and for
this it is typical to use a plug-in estimator. The natural estimator of R is the derivative evaluated
at the point estimates

- b o~
R=—r(3). 7.37
5@ (7.37)
The derivative in (7.37) may be calculated analytically or numerically. By analytically, we mean
working out for the formula for the derivative and replacing the unknowns by point estimates. For
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example, if 6 = 3;/3;, then %r(ﬁ) is (7.36). However in some cases the function r(3) may be
extremely complicated and a formula for the analytic derivative may not be easily available. In
this case calculation by numerical differentiation may be preferable. Let §; = (0 --- 1 - O) be
the unit vector with the “1” in the [** place. Then the jl’th element of a numerical derivative Ris

(B + 0e) — r;(B)

Rj = .
for some small €.
The estimate of Vg is
~ ~) A~ o~
Vo =R VgR. (7.38)

Alternatively, ‘A/g, ‘73 or V@ may be used in place of ‘A/,g. For example, the homoskedastic covari-
ance matrix estimator is 0
Vo=RViR=RQ,,Rs (7.39)

Given (7.37), (7.38) and (7.39) are simple to calculate using matrix operations.

As the primary justification for ‘A/g is the asymptotic approximation (7.33), i\/g is often called
an asymptotic covarlance matrix estimator.

The estimator Vg is consistent for Vg under the conditions of Theorem 7.10.2 since VB 2, Vs
by Theorem 7.7.1, and

0 2V P 0 !’
25" B T 55r8) =R

since E -2, B8 and the function %r(,@)' is continuous in 8.

R=

Theorem 7.10.3 Under Assumptions 7.1.2 and 7.10.1, as n — oo,

Vo -2 V.

Theorem 7.10.3 shows that f/g is consistent for Vg and thus may be used for asymptotic
inference. In practice, we may set

~ ~) ~ _ ~
Vo=RVzR=n"'RVgR (7.40)

as an estimate of the variance of @ , or substitute an alternative covariance estimator such as VB'

7.11 Asymptotic Standard Errors

As described in Section 4.14, a standard error is an estimate of the standard deviation of the
distribution of an estimator. Thus if V7 is an estimate of the covariance matrix of 3, then standard
errors are the square roots of the diagonal elements of this matrix. These take the form

_m_m

Standard errors for 6 are constructed similarly. Supposing that ¢ =1 (so h(/3) is real-valued), then
the standard error for 6 is the square root of (7.40)

~ PUPSEPN \/?
s(@)=4/R 3R =1/n""RVgR.
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When the justification is based on asymptotic theory we call 5(@) or 8(5) an asymptotic standard
error for Bj or §. When reporting your results, it is good practice to report standard errors for each
reported estimate, and this includes functions and transformations of your parameter estimates.
This helps users of the work (including yourself) assess the estimation precision.

We illustrate using the log wage regression

log(Wage) = 1 education + By experience + B3 experience? /100 + f4 + e.
Consider the following three parameters of interest.

1. Percentage return to education:
01 = 10081

(100 times the partial derivative of the conditional expectation of log wages with respect to
education.)

2. Percentage return to experience for individuals with 10 years of experience:

0o = 10052 + 2033

(100 times the partial derivative of the conditional expectation of log wages with respect to
experience, evaluated at experience = 10.)

3. Experience level which maximizes expected log wages:
03 = —5082/ 3

(The level of experience at which the partial derivative of the conditional expectation of log
wages with respect to experience equals 0.)

The 4 x 1 vector R for these three parameters is

100 0 0
rR_| © 100 —50/ 83
N U 20 |° 5082/83 |
0 0 0

respectively.
We use the subsample of married black women (all experience levels), which has 982 observa-

tions. The point estimates and standard errors are

log(/I/V\age) = 0.118 education + 0.016 experience — 0.022 experience®/100+ 0.947
(0.008) (0.006) (0.012) (0.157)
(7.41)

The standard errors are the square roots of the Horn-Horn-Duncan covariance matrix estimate

0.632 0.131 -0.143 -11.1

< | 0131 0390 -0.731 —6.25 »
Va=| —oa3 —or31 148 943 | <10 (7.42)

—11.1 —6.25 9.43 246
We calculate that
0, = 1005,
=100 x 0.118
=11.8
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s(61) = v/100% x 0.632 x 10—4
=0.8

05 = 100535 + 20733
— 100 x 0.016 — 20 x 0.022
—1.16

=R 0.390 —-0.731 100
5(62) = \/( 100 20 ) ( —0.731 1.48 ) ( 20 > X107

=0.55

03 = —5052/53
= 50 x 0.016/0.022
=35.2

. SO 0.390 —0.731 —50/p:
s(8s) = \| ( —50/B5 505:/53 ) < ~0.731 148 > ( 5052//%;% ) 10

=17.0.

The calculations show that the estimate of the percentage return to education (for married
black women) is about 12% per year, with a standard error of 0.8. The estimate of the percentage
return to experience for those with 10 years of experience is 1.2% per year, with a standard error
of 0.6. And the estimate of the experience level which maximizes expected log wages is 35 years,
with a standard error of 7.

7.12 t-statistic

~

Let & = r(B) : R¥ — R be a parameter of interest, 0 its estimate and s(0) its asymptotic
standard error. Consider the statistic

T(0) = —. (7.43)

Different writers have called (7.43) a t-statistic, a t-ratio, a z-statistic or a studentized sta-
tistic, sometimes using the different labels to distinguish between finite-sample and asymptotic
inference. As the statistics themselves are always (7.43) we won’t make this distinction, and will
simply refer to T'(0) as a t-statistic or a t-ratio. We also often suppress the parameter dependence,
writing it as T. The t-statistic is a simple function of the estimate, its standard error, and the
parameter.

By Theorems 7.10.2 and 7.10.3, \/n (5— 9) 4. N(0,Vp) and Vp -2 Vp. Thus




CHAPTER 7. ASYMPTOTIC THEORY FOR LEAST SQUARES 203

The last equality is by the property that affine functions of normal distributions are normal (The-
orem 5.2.3).

Thus the asymptotic distribution of the t-ratio T'(#) is the standard normal. Since this distrib-
ution does not depend on the parameters, we say that 7'(0) is asymptotically pivotal. In finite
samples T'(6) is not necessarily pivotal (as in the normal regression model) but the property states
that the dependence on unknowns diminishes as n increases.

As we will see in the next section, it is also useful to consider the distribution of the absolute
t-ratio |T°(9)|. Since T'(0) —%, 7, the continuous mapping theorem yields |T'(9)| 4, |Z| . Letting
®(u) = Pr(Z < wu) denote the standard normal distribution function, we can calculate that the
distribution function of |Z| is

Pr(|Z| <u)=Pr(—u<Z<u)
=Pr(Z<u)—Pr(Z< —u)
= ®(u) — B(-u)
=20(u) —1 (7.44)
Theorem 7.12.1 Under Assumptions 7.1.2 and 7.10.1, T(6) 47 ~

N (0,1) and |t,(0)] % |Z|.

The asymptotic normality of Theorem 7.12.1 is used to justify confidence intervals and tests for
the parameters.

7.13 Confidence Intervals

The estimate 8 is a point estimate for 6, meaning that 0is a single value in R?. A broader
concept is a set estimate C which is a collection of values in R?. When the parameter 6 is real-
valued then it is common to focus on sets of the form C = [E, U | which is called an interval
estimate for 6.

An interval estimate C i Is a function of the data and hence is random. The coverage proba-
bility of the interval C = [L, U] is Pr( € C). The randomness comes from C as the parameter 6 is
treated as fixed. In Section 5.12 we introduced confidence intervals for the normal regression model,
which used the finite sample distribution of the t-statistic to construct exact confidence intervals
for the regression coefficients. When we are outside the normal regression model we cannot rely
on the exact normal distribution theory, but instead use asymptotic approximations. A benefit is
that we can construct confidence intervals for general parameters of interest 8, not just regression
coeflicients. R

An interval estimate C is called a confidence interval when the goal is to set the coverage
probability to equal a pre- specified target such as 90% or 95%. C is called a 1 — a confidence
interval if infy Pry(6 € O)=1-a.

When 0 is asymptotically normal with standard error 5(0) the conventional confidence interval
for 6 takes the form R L R

C = [9—0-5(9), 0+ c-s(0) (7.45)

where ¢ equals the 1 — a quantile of the distribution of |Z|. Using (7.44) we calculate that c is
equivalently the 1 — a;/2 quantile of the standard normal distribution. Thus, ¢ solves

20(c)—1=1-a.
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This can be computed by, for example, norminv(1-a/2) in MATLAB. The confidence interval
(7.}5) is symmetric about the point estimate 6, and its length is proportional to the standard error
s(6).

Equivalently, (7.45) is the set of parameter values for § such that the t-statistic 7'(6) is smaller
(in absolute value) than ¢, that is

C={0:]T0)| <c}= {9:—c§ -0 §c}.
s(0)
The coverage probability of this confidence interval is
Pr (9 e 6) —Pr(T(0)| <c) = Pr(|Z|<c)=1—a

where the limit is taken as n — oo, and holds since T'(6) is asymptotically |Z| by Theorem 7.12.1. We
call the limit the asymptotic coverage probability, and call C an asymptotic 1 —a% confidence
interval for 6. Since the t-ratio is asymptotically pivotal, the asymptotic coverage probability is
independent of the parameter 6.

It is useful to contrast the confidence interval (7.45) with (5.12) for the normal regression
model. They are similar, but there are differences. The normal regression interval (5.12) only
applies to regression coefficients [, not to functions 6 of the coefficients. The normal interval
(5.12) also is constructed with the homoskedastic standard error, while (7.45) can be constructed
with a heteroskedastic-robust standard error. Furthermore, the constants ¢ in (5.12) are calculated
using the student ¢ distribution, while ¢ in (7.45) are calculated using the normal distribution. The
difference between the student ¢ and normal values are typically small in practice (since sample sizes
are large in typical economic applications). However, since the student ¢ values are larger, it results
in slightly larger confidence intervals, which is probably reasonable. (A practical rule of thumb is
that if the sample sizes are sufficiently small that it makes a difference, then probably neither (5.12)
nor (7.45) should be trusted.) Despite these differences, the coincidence of the intervals means that
inference on regression coefficients is generally robust to using either the exact normal sampling
assumption or the asymptotic large sample approximation, at least in large samples.

In Stata, by default the program reports 95% confidence intervals for each coefficient where
the critical values ¢ are calculated using the ¢,,_j distribution. This is done for all standard error
methods even though it is only justified for homoskedastic standard errors and under normality.

The standard coverage probability for confidence intervals is 95%, leading to the choice ¢ = 1.96
for the constant in (7.45). Rounding 1.96 to 2, we obtain what might be the most commonly used
confidence interval in applied econometric practice

~ ~

C=|0-2s0), 0+2s0)|. (7.46)

This is a useful rule-of thumb. This asymptotic 95% confidence interval Cis simple to compute and
can be roughly calculated from tables of coefficient estimates and standard errors. (Technically, it
is an asymptotic 95.4% interval, due to the substitution of 2.0 for 1.96, but this distinction is overly
precise.)

Theorem 7.13.1 Under Assumptions 7.1.2 and 7.10.1, for C defined in
(7.45), with ¢ = ®~1(1 — /2), Pr <9 € 6’) — 1 — a. For ¢ = 1.96,

Pr (9 € 6) — 0.95.
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Confidence intervals are a simple yet effective tool to assess estimation uncertainty. When
reading a set of empirical results, look at the estimated coeflicient estimates and the standard
errors. For a parameter of interest, compute the confidence interval C,, and consider the meaning
of the spread of the suggested values. If the range of values in the confidence interval are too wide
to learn about 0, then do not jump to a conclusion about 6 based on the point estimate alone.

For illustration, consider the three examples presented in Section 7.11 based on the log wage
regression for married black women.

Percentage return to education. A 95% asymptotic confidence interval is 11.84+1.96x0.8 = [10.2,
13.3].

Percentage return to experience for individuals with 10 years experience. A 90% asymptotic
confidence interval is 1.1 +1.645 x 0.4 = [0.5, 1.8].

Experience level which maximizes expected log wages. An 80% asymptotic confidence interval
is 35+ 1.28 x 7 = [26, 44].

7.14 Regression Intervals
In the linear regression model the conditional mean of y; given x; = @ is
m(z) =E(y | z; = z) = 2'B.

In some cases, we want to estimate m(x) at a particular point x. Notice thaAt this is a linear
function of 3. Letting r(3) = /8 and 6 = r(3), we see that m(z) = § = '3 and R = =z, so

s(0) = /=’ ‘A/'B:c. Thus an asymptotic 95% confidence interval for m(x) is

[:B’B +1.964 /:B"A/Bw} .

It is interesting to observe that if this is viewed as a function of x, the width of the confidence set
is dependent on .
To illustrate, we return to the log wage regression (3.14) of Section 3.7. The estimated regression
equation is -
log(Wage) = '8 = 0.155z + 0.698

where x = education. The covariance matrix estimate from (4.44) is

o _ ( 0001 —0.015
B\ —0015 0243 )

Thus the 95% confidence interval for the regression takes the form

0.155z + 0.698 £ 1.96\/0.0013!32 —0.030z 4 0.243.

The estimated regression and 95% intervals are shown in Figure 7.6. Notice that the confidence
bands take a hyperbolic shape. This means that the regression line is less precisely estimated for
very large and very small values of education.

Plots of the estimated regression line and confidence intervals are especially useful when the
regression includes nonlinear terms. To illustrate, consider the log wage regression (7.41) which
includes experience and its square, with covariance matrix (7.42). We are interested in plotting
the regression estimate and regression intervals as a function of experience. Since the regression
also includes education, to plot the estimates in a simple graph we need to fix education at a
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Hducation

Figure 7.6: Wage on Education Regression Intervals

specific value. We select education=12. This only affects the level of the estimated regression, since
education enters without an interaction. Define the points of evaluation

12
X

2@) = | 27100
1

where x =ezperience.
Thus the 95% regression interval for education=12, as a function of = =ezperience is

0.118 x 12 4+ 0.016 = — 0.022 ZL‘2/1OO +0.947

0.632 0.131 -0.143 -11.1
0.131 0390 —-0.731 —6.25
—-0.143 —-0.731 1.48 9.43
-11.1  —6.25 9.43 246

= 0.016 z — .00022 2% + 2.36
4 0.01961/70.608 — 9.356 z + 0.54428 22 — 0.01462 23 + 0.000148 z*.

+1.96 | z(z) z(z) x 1074

The estimated regression and 95% intervals are shown in Figure 7.7. The regression interval
widens greatly for small and large values of experience, indicating considerable uncertainty about
the effect of experience on mean wages for this population. The confidence bands take a more
complicated shape than in Figure 7.6 due to the nonlinear specification.

7.15 Forecast Intervals

Suppose we are given a value of the regressor vector ¢, 1 for an individual outside the sample,
and we want to forecast (guess) yn+1 for this individual. This is equivalent to forecasting y,+1
given ¢, 41 = x, which will generally be a function of x. A reasonable forecasting rule is the condi-
tional mean m(z) as it is the mean-square-minimizing forecast. A point forecast is the estimated
conditional mean m(x) = ’B3. We would also like a measure of uncertainty for the forecast.
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log(wage)

Experience

Figure 7.7: Wage on Experience Regression Intervals

The forecast error is €,4+1 = Yn+1—M(x) = epy1 — (E — ,3). As the out-of-sample error e,

is independent of the in-sample estimate B, this has conditional variance
B (€i+1’$n+1 = :13) =B (€i+1 — 22 (:3 - ,3> eny1+ ' (;3 - ,3> <5 - ﬁ) T|Ty 1 = iB)

=E (e}, | Tuy1 = z) + 2B (B—B> (B —5>I$
= o?(x) + z' V3.

Under homoskedasticity B (€2 | €n41) = 02, the natural estimate of this variance is 0% + 2’ {/B T,

so a standard error for the forecast is §(x) = /02 + @’ i\/ﬁw. Notice that this is different from the

standard error for the conditional mean.
The conventional 95% forecast interval for y,,11 uses a normal approximation and sets

[m'fa + 2§(m)} .

It is difficult, however, to fully justify this choice. It would be correct if we have a normal approx-
imation to the ratio R
enr1—a' (B— 1)
5(x)
The difficulty is that the equation error e, is generally non-normal, and asymptotic theory cannot
be applied to a single observation. The only special exception is the case where e, has the exact
distribution N(0, 02), which is generally invalid.
To get an accurate forecast interval, we need to estimate the conditional distribution of e,
given x,+1 = @, which is a much more difficult task. Perhaps due to this difficulty, many applied

forecasters use the simple approximate interval [m’BiQé\(m)} despite the lack of a convincing

justification.
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7.16 Wald Statistic

Let & = r(B) : R¥ — R be any parameter vector of interest, 0 its estimate and ‘Afg its
covariance matrix estimator. Consider the quadratic form

W() = (5—9)'?/51 (@—0) :n(é—e)'ffgl (5—9). (7.47)

where Vg = n‘Afg. When ¢ = 1, then W (0) = T(0)? is the square of the t-ratio. When ¢ > 1, W (6)
is typically called a Wald statistic. We are interested in its sampling distribution.

The asymptotic distribution of W (#) is simple to derive given Theorem 7.10.2 and Theorem
7.10.3, which show that

\/ﬁ@—e) 4, 7~ N(0, V)

and R
Vg -2 V.

Note that Vg > 0 since R is full rank under Assumption 7.10.1. It follows that
~ I ~
W(9) = va (9 - 9) vV, Vv (9 - 0) 4 v,z (7.48)

a quadratic in the normal random vector Z. As shown in Theorem 5.3.3, the distribution of this
quadratic form is Xg, a chi-square random variable with ¢ degrees of freedom.

Theorem 7.16.1 Under Assumptions 7.1.2 and 7.10.1, as n — oo,

w(0) LR XZ.

Theorem 7.16.1 is used to justify multivariate confidence regions and multivariate hypothesis
tests.

7.17 Homoskedastic Wald Statistic

2

Under the conditional homoskedasticity assumption E (e? | (I:Z) = ¢0“ we can construct the Wald

~0
statistic using the homoskedastic covariance matrix estimator Vg defined in (7.39). This yields a
homoskedastic Wald statistic

Wwo(g) = (5 - 9)' (f/%)_l (5 - 9) =n (5 - 0)' (ffg)_l (5 - 9) . (7.49)

Under the additional assumption of conditional homoskedasticity, it has the same asymptotic
distribution as W (6).

Theorem 7.17.1 Under Assumptions 7.1.2 and 7.10.1, and E (ez2 | :L'z) =

o2, as n — oo,

W) -4 2.
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7.18 Confidence Regions

A confidence region C is a set estimator for @ € RY when q > 1. A confidence region C is a set in
RY intended to cover the true parameter value with a pre-selected probability 1 — «. Thus an ideal
confidence region has the coverage probability Pr(6 € 5’) = 1 — a. In practice it is typically not
possible to construct a region with exact coverage, but we can calculate its asymptotic coverage.

When the parameter estimate satisfies the conditions of Theorem 7.16.1, a good choice for a

confidence region is the ellipse R
C={0:W(0)<ci_a}.

with ¢1_4 the 1 — a quantile of the x7 distribution. (Thus Fy(c1—o) = 1 — a.) It can be computed
by, for example, chi2inv(1-a,q)in MATLAB.
Theorem 7.16.1 implies

Pr(HGCA’)HPr(ngcl,a)zl—a

which shows that C has asymptotic coverage 1 — a.
To illustrate the construction of a confidence region, consider the estimated regression (7.41) of
the model

logmge) = B education + B experience + P3 experience? /100 + f4.

Suppose that the two parameters of interest are the percentage return to education #; = 10057 and
the percentage return to experience for individuals with 10 years experience 03 = 10052 4+ 2005s.
These two parameters are a linear transformation of the regression parameters with point estimates

5 (100 0 0 0Y_ (118
0‘< 0 100 20 o>ﬂ—( 1.2 )

and have the covariance matrix estimate

0 0
o 0 100 0 0\ [ 100 0
V5_<0 0 100 20>VB 0 100

0 20

~( 0.632 0.103
~\ 0.103 0.157

1 177 -1.16
i _<—1.16 7.13 )

W) =(b- 0)' Vs (6-0)

(118 —6,\' [ 177 116 11.8 — 6,
“\ 1206, ~1.16 7.3 1.2 — 6

= 1.77(11.8 — 61)* — 2.32(11.8 — 6;) (1.2 — 62) + 7.13 (1.2 — 6)%.

with inverse

Thus the Wald statistic is

The 90% quantile of the x3 distribution is 4.605 (we use the x3 distribution as the dimension
of @ is two), so an asymptotic 90% confidence region for the two parameters is the interior of the
ellipse W (0) = 4.605 which is displayed in Figure 7.8. Since the estimated correlation of the two
coefficient estimates is modest (about 0.3) the region is modestly elliptical.
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Return to Hxperience (%)

“““““““

Return to Hducation (%)

Figure 7.8: Confidence Region for Return to Experience and Return to Education

7.19 Semiparametric Efficiency in the Projection Model

In Section 4.7 we presented the Gauss-Markov theorem, which stated that in the homoskedastic
CEF model, in the class of linear unbiased estimators the one with the smallest variance is least-
squares. As we noted in that section, the restriction to linear unbiased estimators is unsatisfactory
as it leaves open the possibility that an alternative (non-linear) estimator could have a smaller
asymptotic variance. In addition, the restriction to the homoskedastic CEF model is also unsatis-
factory as the projection model is more relevant for empirical application. The question remains:
what is the most efficient estimator of the projection coefficient B (or functions 8 = h(3)) in the
projection model?

It turns out that it is straightforward to show that the projection model falls in the estimator
class considered in Proposition 6.15.2. It follows that the least-squares estimator is semiparametri-
cally efficient in the sense that it has the smallest asymptotic variance in the class of semiparametric
estimators of 3. This is a more powerful and interesting result than the Gauss-Markov theorem.

To see this, it is worth rephrasing Proposition 6.15.2 with amended notation. Suppose that
a parameter of interest is @ = g(u) where p = E(2;), for which the moment estimators are

p=215" 2 and 0 = g(j). Let
La(g) = {F B ||z||* < 00, g(u) is continuously differentiable at u = B (z)}

be the set of distributions for which 6 satisfies the central limit theorem.

Proposition 7.19.1 In the class of distributions F € La(g), 0 is semi-
parametrically efficient for 0 in the sense that its asymptotic variance equals
the semiparametric efficiency bound.

Proposition 7.19.1 says that under the minimal conditions in which 0 is asymptotically normal,
then no semiparametric estimator can have a smaller asymptotic variance than 6.
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To show that an estimator is semiparametrically efficient it is sufficient to show that it falls in
the class covered by this Proposition. To show that the projection model falls in this class, we write
B = Q.. Qyy = g (1) where p = E(2;) and z; = (z;%], z;y;) . The class La(g) equals the class of
distributions

L4(B) = {F :E (y4) < oo, Bllz|* < oo, B (zix)) > 0} .

Proposition 7.19.2 In the class of distributions F' € L4(B), the least-
squares estimator B is semiparametrically efficient for (3.

The least-squares estimator is an asymptotically efficient estimator of the projection coefficient
because the latter is a smooth function of sample moments and the model implies no further
restrictions. However, if the class of permissible distributions is restricted to a strict subset of L4(3)
then least-squares can be inefficient. For example, the linear CEF model with heteroskedastic errors
is a strict subset of £4(8), and the GLS estimator has a smaller asymptotic variance than OLS. In
this case, the knowledge that true conditional mean is linear allows for more efficient estimation of
the unknown parameter. R R

From Proposition 7.19.1 we can also deduce that plug-in estimators @ = h(3) are semiparamet-
rically efficient estimators of @ = h(3) when h is continuously differentiable. We can also deduce
that other parameters estimators are semiparametrically efficient, such as 2 for o2. To see this,
note that we can write

o =B ( (v - =i8)’)
=B (4}) - 2E (yi@}) B + B (z:7}) B
= ny - anr: Q;alz wa

which is a smooth function of the moments @y, Q,, and Q. Similarly the estimator 52 equals

o I
=Ly e
niZl
~ ~ Al
:ny_ Qmea:chmy'

Since the variables y?, y;x. and z;z} all have finite variances when F' € £4(3), the conditions of
Proposition 7.19.1 are satisfied. We conclude:

Proposition 7.19.3 In the class of distributions F € L4(B), 52 is semi-
parametrically efficient for o.

7.20 Semiparametric Efficiency in the Homoskedastic Regression
Model*

In Section 7.19 we showed that the OLS estimator is semiparametrically efficient in the projec-
tion model. What if we restrict attention to the classical homoskedastic regression model? Is OLS
still efficient in this class? In this section we derive the asymptotic semiparametric efficiency bound
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for this model, and show that it is the same as that obtained by the OLS estimator. Therefore it
turns out that least-squares is efficient in this class as well.

_ Recall that in the homoskedastic regression model the asymptotic variance of the OLS estimator
B for Bis V§ = Q,lo2. Therefore, as described in Section 6.15, it is sufficient to find a parametric
submodel whose Cramer-Rao bound for estimation of 3 is V% This would establish that V% is

the semiparametric variance bound and the OLS estimator ,@ is semiparametrically efficient for 3.

Let the joint density of y and x be written as f (y,z) = f1 (y | ) f2 (x), the product of the
conditional density of y given x and the marginal density of . Now consider the parametric
submodel

fz|0)=Ffi(ylz)(1+ (y—2'B)(20)/0?) f(z). (7.50)

You can check that in this submodel the marginal density of « is f2 () and the conditional density
of y given z is f1(y|z) (14 (y — 'B) (2'0) /6?) . To see that the latter is a valid conditional
density, observe that the regression assumption implies that [y fi (v | ) dy = 2’3 and therefore

[ £l o) 1+ (v -a'B) () /)y
—/f1 (ylw)dy+/f1 (y | z) (y — 2'8) dy ('6) /o
=1.
In this parametric submodel the conditional mean of y given x is
Eo (| @) = [ufi (v | @) (1+ (s~ @'B) (2'9) /%) dy
= /yf1 (y | =) dy+/yf1 (y | ) (y — 2'B) (¢'8) /o>dy
~ [uhwiody+ [ (5-a'8) i (w] o) (2'9) /oy
+ [ -oB) 1w ) dy (a'8) (a'6) o*
=’ (ﬁ + 0) )
using the homoskedasticity assumption [ (y — ' 6)2 fi(y | x)dy = 0% This means that in this
parametric submodel, the conditional mean is linear in  and the regression coefficient is 3 (0) =

B+ 0.

We now calculate the score for estimation of 6. Since

o o , , x(y—a'B8) /o>
1081 (12 0) = S log 1+ (y = '8) (20) Jo) = L LBUE__

the score is

_ 8 _ 2
= %logf(y,w | 60) = xe/o”.

The Cramer-Rao bound for estimation of € (and therefore 3 (0) as well) is

(B (s8')) " = (0B ((ze) (ze))) ™" = 02 Qyt = VY.

We have shown that there is a parametric submodel (7.50) whose Cramer-Rao bound for estimation
of 3 is identical to the asymptotic variance of the least-squares estimator, which therefore is the
semiparametric variance bound.

S
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Theorem 7.20.1 In the homoskedastic regression model, the semipara-
metric variance bound for estimation of B is VO = 0?QgL and the OLS
estimator is semiparametrically efficient.

This result is similar to the Gauss-Markov theorem, in that it asserts the efficiency of the least-
squares estimator in the context of the homoskedastic regression model. The difference is that the
Gauss-Markov theorem states that OLS has the smallest variance among the set of unbiased linear
estimators, while Theorem 7.20.1 states that OLS has the smallest asymptotic variance among all
regular estimators. This is a much more powerful statement.

7.21 Uniformly Consistent Residuals®

It seems natural to view the residuals €; as estimates of the unknown errors e;. Are they
consistent estimates? In this section we develop an appropriate convergence result. This is not a
widely-used technique, and can safely be skipped by most readers.

Notice that we can write the residual as

& =yi— i
— e+ a8 — 2
= — (B - g) . (7.51)

Since ,CA‘S’ - B 2, 0 it seems reasonable to guess that e; will be close to e; if n is large.
We can bound the difference in (7.51) using the Schwarz inequality (A.20) to find

€ — e =

] (B—ﬁ)‘ < [l Hﬁ—ﬁH. (7.52)

To bound (7.52) we can use HB—BH = Op(n~/?) from Theorem 7.3.2, but we also need to
bound the random variable ||x;||. If the regressor is bounded, that is, ||z;]| < B < oo, then
lei —ei| < B HB — ,BH = O,(n~1/2). However if the regressor does not have bounded support then
we have to be more careful.

The key is Theorem 6.14.1 which shows that E||z;|" < oo implies #; = o, (n'/") uniformly in
i, or

—1/r

n max ||z;]| — 0.
<n

1<s

Applied to (7.52) we obtain

= . < . A_
g@lleﬁ e < gg\lwzll HB BH

— Op(n71/2+1/r)‘

We have shown the following.

Theorem 7.21.1 Under Assumption 7.1.2 and B ||z;||" < oo, then uni-
formly in1 <i<mn
€ = e+ op(n~ /AT, (7.53)
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The rate of convergence in (7.53) depends on r. Assumption 7.1.2 requires r > 4, so the rate
of convergence is at least op(n_l/ 4). As r increases, the rate improves. As a limiting case, from

Theorem 6.14.1 we see that if E (exp(t'x;)) < oo for some ¢t # 0 then x; = o, ((log n)H") uniformly
in ¢, and thus €; = e; + o) (n‘1/2 (log n)H") .
We mentioned in Section 7.7 that there are multiple ways to prove the consistent of the co-

variance matrix estimator €2. We now show that Theorem 7.21.1 provides one simple method to
establish (7.31) and thus Theorem 7.7.1. Let ¢, = maxi<i<p |€; — ;] = op(n_1/4). Since

@ —ef=2¢,(E—e)+ @ —e),

then

1 . ! (52 2
Ezmlﬂfz (ez' —67;)
=1

< 1S ol [ - 2]
n 4
=1
2 & N 1 <& R
EZH%'v:H2\€iH€i—€z\+52H$1HQ\%—ez'!2
i=1 =1

2 — 1 &
2 2
<=3 N2l leilgn+ — > leill* 4
i=1 =1

< Op(n_1/4)-

IN

7.22 Asymptotic Leverage*

Recall the definition of leverage from (3.25)
hii = (IZ{L (}(—/;X.-)_1 ZT;.

These are the diagonal elements of the projection matrix P and appear in the formula for leave-
one-out prediction errors and several covariance matrix estimators. We can show that under iid
sampling the leverage values are uniformly asymptotically small.

Let Amin(A) and Apax(A) denote the smallest and largest eigenvalues of a symmetric square
matrix A, and note that Apax(A™") = (Amin(A)) .

Since 1X'X % Q,, > 0 then by the CMT, Amin (2X'X) 2 Amin (Qgg) > 0. (The latter
is positive since Q.. is positive definite and thus all its eigenvalues are positive.) Then by the
Quadratic Inequality (A.28)

hi =« (X'X) '

< Amax ((X'X) ) ()

-1
_ (Amm (lex>) L2
n n

< i (Qu) +0,(1) ™" = amass [ (7.54)

Theorem 6.14.1 shows that B|jz;||" < oo implies maxi<;<, ||#]|* = (maxi<i<n |z:]))? = o, (n2/7)
and thus (7.54) is o, (ng/r_l).
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Theorem 7.22.1 If x; is independent and identically distributed and

E||z;||" < oo for some r > 2, then uniformly in 1 < i < n, hy =
2/r—1

op (n2/71).

For any r > 2 then h;; = op (1) (uniformly in ¢ < n). Larger r implies a stronger rate of
convergence, for example r = 4 implies h;; = o, (n‘l/ 2) .

Theorem (7.22.1) implies that under random sampling with finite variances and large samples,
no individual observation should have a large leverage value. Consequently individual observations
should not be influential, unless one of these conditions is violated.
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Exercises

Exercise 7.1 Take the model y; = x},8; + x4,8, + ¢; with E (x;e;) = 0. Suppose that 3 is
estimated by regressing 1; on x1; only. Find the probability limit of this estimator. In general, is
it consistent for 3,7 If not, under what conditions is this estimator consistent for 3,7

Exercise 7.2 Let y benx 1, X be nx k (rank k). y = X3+ e with E(x;e;) = 0. Define the ridge

regression estimator
n -1 n
8= (Z T+ )\Ik> (Z :J:ZyZ) (7.55)
i=1

i=1

here A > 0 is a fixed constant. Find the probability limit of B asn — 00. Is B consistent for 37

Exercise 7.3 For the ridge regression estimator (7.55), set A = cn where ¢ > 0 is fixed as n — oo.
Find the probability limit of 3 as n — oo.

Exercise 7.4 Verify some of the calculations reported in Section 7.4. Specifically, suppose that
x1; and xo; only take the values {—1,+41}, symmetrically, with

g

r(wli = X9 — —1) = 3/8
=Pr(zy; =—-1,29;,=1)=1/8

Pr (.’L’M = X9 = 1) =
Pr(zy; = 1,29, = —1

5
4
9 1
E (& | z1i # 22 =7
Verify the following:
(a) E (.’Eh) =0
(b) B (2%;) =1
(c) E(z1ime) = =
) E(ef) =
) E (x e )
7
E (wlz$2z ) -3
Exercise 7.5 Show (7.19)-(7.22).
Exercise 7.6 The model is
yi = T8+ ¢
E ((Bei) =0
Q =E (z;zie?) .

Find the method of moments estimators (B, ﬁ) for (8,9Q).

(a) In this model, are (B, €) efficient estimators of (3, 2)?

(b) If so, in what sense are they efficient?
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Exercise 7.7 Of the variables (y},y;, ;) only the pair (y;, ;) are observed. In this case, we say
that y is a latent variable. Suppose

yi = ;B8 + e
E (:I:zez) =0
vi =y; +u

where u; is a measurement error satisfying

E (yiui) =0

Let B denote the OLS coefficient from the regression of y; on x;.

(a) Is B the coefficient from the linear projection of y; on ;7

(b) Is B consistent for B as n — co?

(¢) Find the asymptotic distribution of y/n (B — ,6) as n — oo.

Exercise 7.8 Find the asymptotic distribution of \/n (82 — 02) as n — oo.
Exercise 7.9 The model is

Yi =i + e
E(ei]:ri):o

where z; € R. Consider the two estimators

Zz 1%%
Zz 11;2

ik

(a) Under the stated assumptions, are both estimators consistent for 37

8

(b) Are there conditions under which either estimator is efficient?

Exercise 7.10 In the homoskedastic regression model y = X3 + e with E(e; | z;) = 0 and
E(e? | ;) = 02, suppose ,6 is the OLS estimate of 3 with covariance matrix estimate VA, based

on a sample of size n. Let 52 be the estimate of o2. You wish to forecast an out-of-sample value
of yn+1 glven that x,11 = @. Thus the available information is the sample (y, X), the estimates
(B, 72), the residuals €, and the out-of-sample value of the regressors, &, 1.

(a) Find a point forecast of v, 1.
(b) Find an estimate of the variance of this forecast.
Exercise 7.11 Take a regression model with i.i.d. observations (y;, z;) and scalar x;
vi=zib+e

E(ei | {IZZ) = 0
Q=E (1312612)
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Let B be the OLS estimate of § with residuals e; = y; — ng . Consider the estimates of 2

AN
I
S|
ngh
8
<N
O
=N

)
I
SRS
Ingb
8
SN
smlz;

(a) Find the asymptotic distribution of \/n (§~2 - Q) as n — oQ.

(b) Find the asymptotic distribution of \/n (ﬁ - Q) as n — oo.
(¢) How do you use the regression assumption E(e; | ;) = 0 in your answer to (b)?
Exercise 7.12 Consider the model

Yi = o+ fxi + e
E(ez) =0
E(wzez) =0

with both y; and x; scalar. Assuming o > 0 and 8 < 0, suppose the parameter of interest is the
area under the regression curve (e.g. consumer surplus), which is A = —a?/24.

Let 6 = (@, B)' be the least-squares estimates of @ = (a, 3)' so that /1 (5 - 9) —q N(0, Vg)

and let ‘A/'g be a standard consistent estimate for V.
(a) Given the above, describe an estimator of A.
(b) Construct an asymptotic (1 — 1) confidence interval for A.

Exercise 7.13 Consider an iid sample {y;, z;} ¢ = 1,...,n where y; and z; are scalar. Consider the
reverse projection model

Ti =YiY + Ui
E (yiui) =0

and define the parameter of interest as 6 = 1/~
(a) Propose an estimator 7 of .
(b) Propose an estimator 0 of 6.
(c¢) Find the asymptotic distribution of 0.
(d) Find an asymptotic standard error for .
Exercise 7.14 Take the model

Yi = T1381 + 2282 + €
E (xle,) =0

with both 81 € R and §2 € R, and define the parameter

0 = 3152
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(a) What is the appropriate estimator 9 for 67
(b) Find the asymptotic distribution of 6 under standard regularity conditions.

(¢) Show how to calculate an asymptotic 95% confidence interval for 6.
Exercise 7.15 Take the linear model

Yi=zi8+ €
E(ei|a:i):0

with n observations and z; is scalar (real-valued). Consider the estimator

B _ > iy a::?yz
> i 33;'1

Find the asymptotic distribution of \/n (B — ﬁ) as n — oo.

Exercise 7.16 Out of an iid sample (y;, ;) of size n, you randomly take half the observations and
estimate the least-squares regression of y; on x; using only this sub-sample.

yi =B +&

Is the estimated slope coeflicient ,@ consistent for the population projection coefficient? Explain
your reasoning.

Exercise 7.17 An economist reports a set of parameter estimates, including the coefficient esti-
mates 31 = 1.0, B> = 0.8, and standard errors 5(51) = 0.07 and 5(52) = 0.07. The author writes
“The estimates show that (5 is larger than (£s.”

(a) Write down the formula for an asymptotic 95% confidence interval for 8 = 31 — 3o, expressed
as a function of 81, fa, (61) (,82) and p, where p is the estimated correlation between 61
and fs.

(b) Can p be calculated from the reported information?
(c) Is the author correct? Does the reported information support the author’s claim?
Exercise 7.18 Suppose an economic model suggests
9(x) =B (yi | i = x) = Bo + frz + Pz
where z; € R. You have a random sample (y;, x;), i =1,...,n
(a) Describe how to estimate g(z) at a given value x.
(b) Describe (be specific) an appropriate confidence interval for g(x).

Exercise 7.19 Take the model

yi = ;8 + e
E (:clez) =0
and suppose you have observations ¢ = 1,...,2n. (The number of observations is 2n.) You ran-

domly split the sample in half, (each has n observations), calculate Bl by least-squares on the first
sample, and B, by least-squares on the second sample. What is the asymptotic distribution of

Vit (B = B.)?



CHAPTER 7. ASYMPTOTIC THEORY FOR LEAST SQUARES 220

Exercise 7.20 The data {y;, z;,w;} is from a random sample, i = 1,...,n. The parameter 3 is
estimated by minimizing the criterion function

S(B) = Zwi (yi — 113;5)2
=1

That is 3 = argming S(3).

(a) Find an explicit expression for B

(b) What population parameter 3 is B estimating? (Be explicit about any assumptions you need
to impose. But don’t make more assumptions than necessary.)

(c) Find the probability limit for B as n — occ.
(d) Find the asymptotic distribution of \/n (B — B) as n — oo.
Exercise 7.21 Take the model

yi = ¢+ ¢
E(e; | z;) =0
E (el2 ] :DZ) = 03 = ziy
where z; is a (vector) function of x;. The sample is 7 = 1, ...,n with iid observations. For simplicity,
assume that z/vy > 0 for all z;. Suppose you are interested in forecasting vy, 41 given x,11 =

and z,11 = z for some out-of-sample observation n 4 1. Describe how you would construct a point
forecast and a forecast interval for g,y1.

Exercise 7.22 Take the model

yi = T8+ €
E(ei|x)=0

%= (2iB) v + i
E(u; | i) =0

Your goal is to estimate «y. (Note that v is scalar.) You use a two-step estimator:
e Estimate B by least-squares of y; on ;.
e Estimate 7 by least-squares of z; on m;,@
(a) Show that 7 is consistent for ~.
(b) Find the asymptotic distribution of 4 when ~ = 0.

Exercise 7.23 The model is

Yi=zi0+ €
E (ei | xl) =0
where z; € R. Consider the the estimator
j_lsu
n “ xX;
=1

Find conditions under which B is comsistent for 5 as n — oo.
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Exercise 7.24 Of the random variables (y),y;, z;) only the pair (y;, ;) are observed. (In this
case, we say that yf is a latent variable.) Suppose E(y} | z;) = ;8 and y = y} + u;, where u;
is a measurement error satisfying E (u; | y/, ;) = 0. Let B denote the OLS coefficient from the
regression of y; on x;.

(a) Find E (y; | ;) -
(b) Is 3 consistent for B as n — co?
(c) Find the asymptotic distribution of \/n <B - B) as n — oo.
Exercise 7.25 The parameter of § is defined in the model
yi=z;B+ei
where e; is independent of z, E (e;) =0, E (e?) = 02. The observables are (y;, ;) where
X = T,

and v; > 0 is random measurement error. Assume that v; is independent of ] and e;. Also assume
that x; and z] are non-negative and real-valued. Consider the least-squares estimator 3 for /.

(a) Find the plim of B , expressed in terms of 5 and moments of (x;, v;, €;)

(b) Can you find a non-trivial condition under which B is consisent for 87 (By non-trivial, we
mean something other than v; = 1.)

Exercise 7.26 Take the standard model

yi = z;B+e;
E (:czez) =0

For a positive function w(z), let w; = w(x;). Consider the estimator

" n -1 n
B = (Z wzmzm;> (Z wﬂ%?h) .
i=1 i=1
Find the probability limit (as n — oco) 0f~B- (Do you need to add an assumption?) Is ,@ consistent
for 37 If not, under what assumption is 3 consistent for 37

Exercise 7.27 Take the regression model

yi = ziB+ei
E(ei\mi)zo

E (612 | mZ) = O'z-2
with x; € R*. Assume that Pr (e; = 0) = 0. Consider the infeasible estimator
_ n -1 n
i=1 i=1
This is a WLS estimator using the weights 6;2.

(a) Find the asymptotic distribution of 3
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(b) Contrast your result with the asymptotic distribution of infeasible GLS.
Exercise 7.28 The model is
yi = ziB+ei
E (ei | :BZ) =0.

An econometrician is worried about the impact of some unusually large values of the regressors.
The model is thus estimated on the subsample for which |z;| < ¢, for some fixed ¢. Let 3 denote
the OLS estimator on this subsample. It equals

n —1 n
B = (Z z;iz)l (|| < c)) (Z wiyil (|| < C))
=1 i=1
where 1 () denotes the indicator function.
(a) Show that 3 —, B.
(b) Find the asymptotic distribution of \/n (B — ﬁ)

Exercise 7.29 As in Exercise 3.24, use the CPS dataset and the subsample of white male Hispan-
ics. Estimate the regression

logmge) = B education + B experience + P3 experience? /100 + f4.

(a) Report the coefficients and robust standard errors.

(b) Let 0 be the ratio of the return to one year of education to the return to one year of experi-
ence. Write 6 as a function of the regression coefficients and variables. Compute 6 from the
estimated model.

(c) Write out the formula for the asymptotic standard error for 8 as a function of the covariance
matrix for 3. Compute 5() from the estimated model.

(d) Construct a 90% asymptotic confidence interval for 6 from the estimated model.

(e) Compute the regression function at edu = 12 and experience=20. Compute a 95% confidence
interval for the regression function at this point.

(f) Consider an out-of-sample individual with 16 years of education and 5 years experience.
Construct an 80% forecast interval for their log wage and wage. [To obtain the forecast
interval for the wage, apply the exponential function to both endpoints.]



Chapter 8

Restricted Estimation

8.1 Introduction

In the linear projection model

yi = ;3 + ¢
E (:Iziel) =0

a common task is to impose a constraint on the coefficient vector 3. For example, partitioning
z, = (@};, ;) and B = (B],8,), a typical constraint is an exclusion restriction of the form
B = 0. In this case the constrained model is

yi = x1;,01 + e
E (x;e;) =0

At first glance this appears the same as the linear projection model, but there is one important
difference: the error e; is uncorrelated with the entire regressor vector x, = (&};, z5;) not just the
included regressor xi;.

In general, a set of ¢ linear constraints on 3 takes the form

RB=c¢c (8.1)

where R is k X ¢, rank(R) = ¢ < k and ¢ is ¢ X 1. The assumption that R is full rank means that
the constraints are linearly independent (there are no redundant or contradictory constraints). We
can define the restricted parameter space B g as the set of values of 3 which satisfy (8.1), that is

Br={B:RB=c}

The constraint 8, = 0 discussed above is a special case of the constraint (8.1) with

0
(). 62
a selector matrix, and ¢ = 0.

Another common restriction is that a set of coefficients sum to a known constant, i.e. S1+82 = 1.
This constraint arises in a constant-return-to-scale production function. Other common restrictions
include the equality of coefficients 51 = B2, and equal and offsetting coefficients 51 = — (5.

A typical reason to impose a constraint is that we believe (or have information) that the con-
straint is true. By imposing the constraint we hope to improve estimation efficiency. The goal is
to obtain consistent estimates with reduced variance relative to the unconstrained estimator.

The questions then arise: How should we estimate the coefficient vector 8 imposing the linear
restriction (8.1)7 If we impose such constraints, what is the sampling distribution of the resulting
estimator? How should we calculate standard errors? These are the questions explored in this
chapter.

223
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8.2 Constrained Least Squares

An intuitively appealing method to estimate a constrained linear projection is to minimize the
least-squares criterion subject to the constraint R'3 = c.
The constrained least-squares estimator is

Bds = argmin SSE(3) (8.3)
R'B=c
where .
SSEB) =Y (yi—=iB)" =y — 20/ XB+FX'X. (8.4)

i=1
The estimator Eds minimizes the sum of squared errors over all 3 such that 3 € B g, or equivalently
such that the restriction (8.1) holds. We call 3,5 the constrained least-squares (CLS) estimator.
We follow the convention of using a tilde “~” rather than a hat “*” to indicate that B is a restricted
estimator in contrast to the unrestricted least-squares estimator 3, and write it as B to be clear
that the estimation method is CLS.
One method to find the solution to (8.3) uses the technique of Lagrange multipliers. The
problem (8.3) is equivalent to the minimization of the Lagrangian

1
L(8.X) = 35SE(B) + X (R8¢ (8.5)
over (8,A), where X is an s x 1 vector of Lagrange multipliers. The first-order conditions for
minimization of (8.5) are

0 .~ = ~ ~
555 Bas Mas) = X'y + X'X By, + RAas =0 (8.6)

and 5
ﬁﬁ(ﬁdg? Aas) = R'B—c=0. (8.7)

Premultiplying (8.6) by R/ (X’X) ™" we obtain
~RB+R By + R (X'X) ' RAg, =0 (8.8)

where B = (X'X )71 X 'y is the unrestricted least-squares estimator. Imposing R’ Bds —c¢ =0 from
(8.7) and solving for Ags we find

At = [R’ (x'x)"! R} - (R’B _ c) .

Notice that (X’X)™" > 0 and R full rank imply that R’ (X'X) ' R > 0 and is hence invertible.
(See Section A.9.) N

Substituting this expression into (8.6) and solving for B we find the solution to the constrained
minimization problem (8.3)

Bus=B- (X'X)'R [R’ (x'x)" R} - (R’B - c) . (8.9)

(See Exercise 8.5 to verify that (8.9) satisfies (8.1).)
This is a general formula for the CLS estimator. It also can be written as
~ ~ ~_1 ~—1 -1 ~
Ba=08- Q..R <R’QmR> (R’B - c) : (8.10)
The CLS residuals are _
& = yi — T;Bas
and the n x 1 vector of residuals are written in vector notation as e.
In Stata, constrainded least squares is implemented using the cnsreg command.
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8.3 Exclusion Restriction

While (8.9) is a general formula for the CLS estimator, in most cases the estimator can be
found by applying least-squares to a reparameterized equation. To illustrate, let us return to the
first example presented at the beginning of the chapter — a simple exclusion restriction. Recall the
unconstrained model is

Yi = ;01 + 5B + € (8.11)
the exclusion restriction is 8, = 0, and the constrained equation is
yi = 1,01 + ei. (8.12)

In this setting the CLS estimator is OLS of y; on x1;. (See Exercise 8.1.) We can write this as

n -1 n
Bl = (Z mhm'h) (Z $1iy¢) . (813)
i=1 i=1
The CLS estimator of the entire vector 3 = (6/1,,6’2) is
2 _ Bl
ﬁ—(o : (8.14)

It is not immediately obvious, but (8.9) and (8.14) are algebraically (and numerically) equivalent.
To see this, the first component of (8.9) with (8.2) is

~ ~ ~_1 0 ~—1 0 -1 ~
Br=(1I o)lﬁ—Qm(I>[(0 I)%(I)] (o I)B]-
Using (3.39) this equals
DI P S
ﬁ1 = 51 - Q12 (Q22> 52
= B1 + @;11-2 @12 @;21 @22-132
= Q1 (@1~ Q10 Q)
+ @;11.2@12 @;21 @22.1 @2721-1 <@2y - @21 @;11 @1y>
= @;11-2 <@1y - @12@;21 @21 @;11 @1;,)
= Qi (Qu — Q02 Q) Q' Qy,

~—1 ~

= Qll Qly
which is (8.14) as originally claimed.

8.4 Finite Sample Properties

In this section we explore some of the properties of the CLS estimator in the linear regression
model

yi = ;B +e; (8.15)

E (el- ‘ ZBZ) =0. (8.16)

First, it is useful to write the estimator, and the residuals, as linear functions of the error vector.
These are algebraic relationships and do not rely on the linear regression assumptions.
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Theorem 8.4.1 Define P = X (X'X)f1 X' and
A=(x'X)"'R(R (X'X)" R)fl R (X'X)".
Then
1. RB-—c=R (X'X)'X'e
2 By —B= ((X'X)*1 X' - AX/) e
3. e=(I-P+XAX')e

4. I — P+ XAX is symmetric and idempotent
5. tr(I-P+XAX)=n—-k+q.

See Exercise 8.6.

Given the linearity of Theorem 8.4.1.2, it is not hard to show that the CLS estimator is unbiased
for B

Theorem 8.4.2 In the linear regression model (8.15-(8.16) under 8.6.1,
E </6cls | X) =pB.

See Exercise 8.7. B
Given the linearity we can also calculate the variance matrix of B.,. For this we will add the
assumption of conditional homoskedasticity to simplify the expression.

Theorem 8.4.3 In the homoskedastic linear regression model (8.15-(8.16)
with B (€2 | @;) = 02, under 8.6.1,

V4 = v (B 1 %)

— <(X’X)‘1 - (x'X)"R(R (x'X) R)A R (X’X)‘1> o2

See Exercise 8.8. We use the V2 notation to emphasize that this is the variance matrix under
the assumption of conditional homoskedasticity.
For inference we need an estimate of V% A natural estimator is

Vs = <(X’X)‘1 - (x'X)" R(R (X'X)'R) R (X’X)‘1> 52

where

1 n
2 ~2
Scls = n—k+ q i_zlei (817)
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is a biased-corrected estimator of 2. Standard errors for the components of 3 are then found by
taking the squares roots of the diagonal elements of VB’ for example

-~

~0
s(B) = /| V5] -
(B =1/[Vs] |
The estimator (8.17) has the property that it is unbiased for o under conditional homoskedas-

ticity. To see this, using the properties of Theorem 8.4.1,

(n—k+q)sh,=¢e
=€ (I—P—i—XAX/) (I—P+XAX’) e
=€ (I - P —i—XAX/) e. (8.18)

We defer the remainder of the proof to Exercise 8.9.

Theorem 8.4.4 In the homoskedastic linear regression model (8.15-(8.16)
with B (¢ | @) = o2, under 8.6.1, B (s, | X) = o* and B (V5| X) =

cls
V%

Now consider the distributional properties in the normal regression model
yi =z + e
€; ~ N(O, g 2).

By the linearity of Theorem 8.4.1.2, conditional on X, [Nicls — (B is normal. Given Theorems
8.4.2 and 8.4.3, we deduce that 38,4 ~ N(3, V%)

Similarly, from Exericise 8.4.1 we know € = (I — P + X AX’) e is linear in e so is also condi-

tionally normal. Furthermore, since (I — P + X AX") (X (X'X)" = XA) =0, € and B, are

uncorrelated and thus independent. Thus s%_ and Bds are independent.
From (8.18) and the fact that I — P + X AX' is idempotent with rank n — k + ¢, it follows that

Sgls ~ U2X$L*k+q/ (TL —k+ Q) .
It follows that the t-statistic has the exact distribution
g
s(B;)

N (0,1)

\/X%]Hq/ (n—k+q)

~ tnkarq

~

a student ¢ distribution with n — k 4 g degrees of freedom.

The relevance of this calculation is that the “degrees of freedom” for a CLS regression problem
equal n — k + ¢ rather than n — k as in the OLS regression problem. Essentially, the model has k — ¢
free parameters instead of k. Another way of thinking about this is that estimation of a model
with k coefficients and ¢ restrictions is equivalent to estimation with k — ¢ coefficients.

We summarize the properties of the normal regression model
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Theorem 8.4.5 In the normal linear regression model linear regression
model (8.15-(8.16), under 8.6.1,

Bcls ~ N(ﬁ? V%)

(n—k+q) sgls

2
o2 ~ Xn7k+q

T~ tn7k+q

An interesting relationship is that in the homoskedastic regression model
(Bols ~ Buas: Bds) =E ((Bols - Bcls) (Bcls - ﬁ>,>

~B((AX') (X (X'X) ' - XA4))o* =0

SO Bols - ECIS and BCIS are uncorrelated and hence independent. One corollary is
cov <Bolsa Ecls) = var (Bcls)
A second corollary is
var (Bols - Ecls) = var (Bols) — var (Bm) (8.19)
- (x'X)"'R(R (X'X)" R>_1 R (X'X) " 0%

This also shows us the difference between the CLS and OLS variances

var (Eols) — var <Bds> = (X'X)_1 R (R’ (X'X)_1 R)71 R’ (X'X)_1 o2>0

the final equality meaning positive semi-definite. It follows that var (Bols) > var (Bds) in the

positive definite sense, and thus CLS is more efficient than OLS. Both estimators are unbiased (in
the linear regression model), and CLS has a lower variance matrix (in the linear homoskedastic
regression model).

The relationship (8.19) is rather interesting and will appear again. The expression says that the
variance of the difference between the estimators is equal to the difference between the variances.
This is rather special. It occurs (generically) when we are comparing an efficient and an inefficient
estimator. We call (8.19) the Hausmann Equality as it was first pointed out in econometrics by
Hausman (1978).

8.5 Minimum Distance

The previous section explored the finite sample distribution theory under the assumptions of
the linear regression model, homoskedastic regression model, and normal regression model. We
now return to the general projection model where we do not impose linearity, homoskedasticity,
nor normality. We are interested in the question: Can we do better than CLS in this setting?

A minimum distance estimator tries to find a parameter value which satisfies the constraint
which is as close as possible to the unconstrained estimate. Let 8 be the unconstrained least-
squares estimator, and for some k x k positive definite weight matrix W > 0 define the quadratic
criterion function

J(ﬁ)zn@—ﬁi’),ﬁ’(@—ﬂ). (8.20)
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This is a (squared) weighted Euclidean distance between B and 3. J (B) is small if 3 is close to B,
and is minimized at zero only if 8 = 8. A minimum distance estimator 3,4 for 8 minimizes
J (B) subject to the constraint (8.1), that is,

Bmd = argmin J (3). (8.21)
R'B=c

The CLS estimator is the special case when W= @m, and we write this criterion function as
~ !~ ~
1) =n(B-8) Que (B-8). (8:22)

To see the equality of CLS and minimum distance, rewrite the least-squares criterion as follows.
Write the unconstrained least-squares fitted equation as y; = x;3 + €; and substitute this equation
into SSE(B) to obtain

n

SSEB) =Y (i — ziB)”

i=1

n ~ 2
=3 («iB+a - =)
i=1

-y @+ (5-5) (Z a:as) (8-5)
i=1 =1
=ng’+ J°(B) (8.23)

where the third equality uses the fact that > " | @;e; = 0, and the last line uses > ;" | z;x} = nQoe-
The expression (8.23) only depends on 3 through J? (B) . Thus minimization of SSE(B) and J° (3)

are equivalent, and hence 8,4 = B¢ when W = Q.-
We can solve for 3,4 explicitly by the method of Lagrange multipliers. The Lagrangian is

L(BA) = %J (8.W)+ XN (RB-¢)
which is minimized over (3, A). The solution is
Amd = 1 <R’W_1R> - (R’B - c) (8.24)
Boa=B-W 'R (R’W71R>_l (RB-c). (8.25)
(See > Exercise 8.10.) Comparing (8.25) with (8.10) we can see that 3,4 specializes to B, when we
set W= Q..

An obvious question is which weight matrix W is best. We will address this question after we
derive the asymptotic distribution for a general weight matrix.

8.6 Asymptotic Distribution

We first show that the class of minimum distance estimators are consistent for the population
parameters when the constraints are valid.

Assumption 8.6.1 R'3 = c where R is k x ¢ with rank(R) = q.
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Assumption 8.6.2 w2 wW>o.

Theorem 8.6.1 Consistency

Under Assumptions 7.1.1, 8.6.1, and 8.6.2, Bmd LN B asn — oo.

For a proof, see Exercise 8.11.

230

Theorem 8.6.1 shows that consistency holds for any weight matrix with a positive definite limit,

so the result includes the CLS estimator.

Similarly, the constrained estimators are asymptotically normally distributed.

Theorem 8.6.2 Asymptotic Normality
Under Assumptions 7.1.2, 8.6.1, and 8.6.2,

Vi (Buna — B) =5 N(0, Va(W))
as n — 0o, where
V(W)= Vg - W 'R(RW'R) 'RV
~V4R(RW'R) 'RW!
+WR(RW'R) 'R'VER(RW 'R) ' RW!

and Vg = Qzz0Q4,

(8.26)

(8.27)

For a proof, see Exercise 8.12.

Theorem 8.6.2 shows that the minimum distance estimator is asymptotically normal for all
positive definite weight matrices. The asymptotic variance depends on W. The theorem includes

the CLS estimator as a special case by setting W = Q...

Under Assumptions 7.1.2 and 8.6.1, as n — oo
~ d
Vit (Bas — B) 5 N (0, Vagy)
where

Vas = Vs — QAR (R'Q,.R) 'R’V
~ V4R (R'Q;:R) ' R'Q;.

Theorem 8.6.3 Asymptotic Distribution of CLS Estimator

+ Q. R(R'Q,\R) "R'VsR(RQ,'R)'RQ;}

For a proof, see Exercise 8.13.
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8.7 Variance Estimation and Standard Errors

Earlier we intruduce the covariance matrix estimator under the assumption of conditional ho-
moskedasticity. We now introduce an estimator which does not impose homoskedasticity.

The asymptotic covariance matrix Vs may be estimated by replacing Vg with a consistent
estimates such as ‘A/'g. A more efficient estimate is obtained by using the restricted estimates.
Given the constrained least-squares squares residuals €; = y; — :B;BCIS we can estimate the matrix
Q =E (z;z}e?) by

1 n
Q=—" 2.
g el

Notice that we have defined €2 using an adjusted degrees of freedom. This is an ad hoc adjustment
designed to mimic that used for estimation of the error variance o2. Given €2 the moment estimator
of Vg is

and that for Vg is
~ ~ ~— ~— -1 ~
Vao= Vs - QR (RQ,R) RV
~ ~— -1 ~—
- VsR(R'Q,R) RQ,
~-1 1L -1 s 1AL -1 a1
+Q.R(RQ.,R) RVsR(RQ,R) RQ,.

We can calculate standard errors for any linear combination h' Bds so long as h does not lie in
the range space of R. A standard error for '3 is

~ ~ 1/2
S(hIIBCIS) = (n_lh/ Vclsh'> .

8.8 Efficient Minimum Distance Estimator

Theorem 8.6.2 shows that the minimum distance estimators, which include CLS as a special
case, are asymptotically normal with an asymptotic covariance matrix which depends on the weight
matrix W. The asymptotically optimal weight matrix is the one which minimizes the asymptotic
variance Vg(W). This turns out to be W = Vgl as is shown in Theorem 8.8.1 below. Since Vlgl

is unknown this weight matrix cannot be used for a feasible estimator, but we can replace VBI with
~—1
a consistent estimate Vg and the asymptotic distribution (and efficiency) are unchanged. We call

—~ -1
the minimum distance estimator setting W = V3 the efficient minimum distance estimator
and takes the form

Bema =B — VsR (R’%R)_1 (RB-c). (8.28)

The asymptotic distribution of (8.28) can be deduced from Theorem 8.6.2. (See Exercises 8.14 and
8.15.)
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Theorem 8.8.1 Efficient Minimum Distance Estimator
Under Assumptions 7.1.2 and 8.6.1,

= d
\/ﬁ <16emd - ﬁ) — N (07 Vﬁ,emd)
as n — 0o, where
Vgema = Vg — VgR(R'V5R) ' R' V. (8.29)

Since
Vgemd < Vg (8.30)

the estimator (8.28) has lower asymptotic variance than the unrestricted
estimator. Furthermore, for any W,

Vgemd < V(W) (8.31)

so (8.28) is asymptotically efficient in the class of minimum distance esti-
mators.

Theorem 8.8.1 shows that the minimum distance estimator with the smallest asymptotic vari-
ance is (8.28). Omne implication is that the constrained least squares estimator is generally inef-
ficient. The interesting exception is the case of conditional homoskedasticity, in which case the
optimal weight matrix is W = (V%)_1 so in this case CLS is an efficient minimum distance esti-
mator. Otherwise when the error is conditionally heteroskedastic, there are asymptotic efficiency
gains by using minimum distance rather than least squares.

The fact that CLS is generally inefficient is counter-intuitive and requires some reflection to
understand. Standard intuition suggests to apply the same estimation method (least squares) to
the unconstrained and constrained models, and this is the most common empirical practice. But
Theorem 8.8.1 shows that this is not the efficient estimation method. Instead, the efficient minimum
distance estimator has a smaller asymptotic variance. Why? The reason is that the least-squares
estimator does not make use of the regressor xs;. It ignores the information E (xg;e;) = 0. This
information is relevant when the error is heteroskedastic and the excluded regressors are correlated
with the included regressors. B

Inequality (8.30) shows that the efficient minimum distance estimator Bey,q has a smaller as-
ymptotic variance than the unrestricted least squares estimator . This means that estimation is
more efficient by imposing correct restrictions when we use the minimum distance method.

8.9 Exclusion Restriction Revisited
We return to the example of estimation with a simple exclusion restriction. The model is
yi = 21,81 + ;85 + €

with the exclusion restriction 8, = 0. We have introduced three estimators of B;. The first is
unconstrained least-squares applied to (8.11), which can be written as

—~ ~—1 ~
B1 = Qu12Quy2-
From Theorem 7.33 and equation (7.20) its asymptotic variance is

avar(B;) = Qs (211 — Q12Q5) Qa1 — 212Q5;5 Qs + Q12 Q55 R22Q0; Qo) Q.
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The second estimator of 3 is the CLS estimator, which can be written as

~ ~—1~
Bl,cls = Qll Qly‘

Its asymptotic variance can be deduced from Theorem 8.6.3, but it is simpler to apply the CLT
directly to show that

avar(lél,cls) = Qfllﬂll Qfll- (832)
The third estimator of 3, is the efficient minimum distance estimator. Applying (8.28), it equals

~ ~ ~ o~
Bimd =B1— V12V By (8.33)

where we have partitioned

V. }?11 ‘:/12
p Vo Vo |

From Theorem 8.8.1 its asymptotic variance is
aV&r(Bl,md) = Vi1 — V12V, Vo (8.34)

See Exercise 8.16 to verify equations (8.32), (8.33), and (8.34).

In general, the three estimators are different, and they have different asymptotic variances.

It is quite instructive to compare the asymptotic variances of the CLS and unconstrained least-
squares estimators to assess whether or not the constrained estimator is necessarily more efficient
than the unconstrained estimator.

First, consider the case of conditional homoskedasticity. In this case the two covariance matrices
simplify to R

avar(3,) = Qi
and B
avar(ﬁl,cls) = 02 Qfll‘

If Q2 = 0 (so x1; and x9; are orthogonal) then these two variance matrices are equal and the
two estimators have equal asymptotic efficiency. Otherwise, since Q5 Q521 Qy; > 0, then Q1 >

Q- Qy, Q2_21 Q,;, and consequently
- _ -1
Qi'0” < (Qu — QuQn Q) o>

This means that under conditional homoskedasticity, Bl,cls has a lower asymptotic variance matrix

than Bl. Therefore in this context, constrained least-squares is more efficient than unconstrained
least-squares. This is consistent with our intuition that imposing a correct restriction (excluding
an irrelevant regressor) improves estimation efficiency.

However, in the general case of conditional heteroskedasticity this ranking is not guaranteed.
In fact what is really amazing is that the variance ranking can be reversed. The CLS estimator
can have a larger asymptotic variance than the unconstrained least squares estimator.

To see this let’s use the simple heteroskedastic example from Section 7.4. In that example,

1
Qi1 =Qau=1 Q1= 2 Q11 = Qoo = 1, and Q9 = g We can calculate (see Exercise 8.17) that

3

Q2 =7 and

avar(B) =

avar (B qs) =

(8.35)

=Wl

(8.36)
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5

avar(,@17md) =3 (8.37)

Thus the restricted least-squares estimator ELCIS has a larger variance than the unrestricted least-

squares estimator Bll The minimum distance estimator has the smallest variance of the three, as
expected.

What we have found is that when the estimation method is least-squares, deleting the irrelevant
variable x9; can actually increase estimation variance, or equivalently, adding an irrelevant variable
can actually decrease the estimation variance.

To repeat this unexpected finding, we have shown in a very simple example that it is possible
for least-squares applied to the short regression (8.12) to be less efficient for estimation of 3; than
least-squares applied to the long regression (8.11), even though the constraint 3, = 0 is valid!
This result is strongly counter-intuitive. It seems to contradict our initial motivation for pursuing
constrained estimation — to improve estimation efficiency.

It turns out that a more refined answer is appropriate. Constrained estimation is desirable,
but not constrained least-squares estimation. While least-squares is asymptotically efficient for
estimation of the unconstrained projection model, it is not an efficient estimator of the constrained
projection model.

8.10 Variance and Standard Error Estimation

We have discussed covariance matrix estimation for the CLS estimator, but not yet for the
EMD estimator.

The asymptotic covariance matrix (8.29) may be estimated by replacing Vg with a consistent
estimate. It is best to construct the variance estimate using Bemd. The EMD residuals are €; =
Yi — @ Bemq- Using these we can estimate the matrix = E (z;z}e?) by

1 n
Q=— 2.
n_k_i_qi_zlmzmzez

Following the formula for CLS we recommend an adjusted degrees of freedom. Given €2 the moment
estimator of Vg is

Given this, we construct the variance estimator
- - - - -1 -
Vgemd = Vg — VsR (R’ VgR) R'V,. (8.38)
A standard error for A’ is then
13 —137%; 1/2
s(h'B) = (n h Vﬁ,emdh) . (8.39)
8.11 Hausman Equality
Form (8.28) we have
~ ~ ~ ~ ~1 ~
\/ﬁ </3015 - ﬂemd) = V,BR (R, V,BR> \/ﬁ (R,ﬁols - C)

~5N (0, VgR (R'VR) ' R'Vg) .



CHAPTER 8. RESTRICTED ESTIMATION 235

It follows that the asymptotic variances of the estimators satisfy the relationship

avar <Bols — Bemd) = avar (Bols) — avar (Bemd) . (8.40)

We call (8.40) the Hausman Equality: the asymptotic variance of the difference between an efficient
and inefficient estimator is the difference in the asymptotic variances.

8.12 Example: Mankiw, Romer and Weil (1992)

We illustrate the methods by replicating some of the estimates reported in a well-known paper
by Mankiw, Romer, and Weil (1992). The paper investigates the implications of the Solow growth
model using cross-country regressions. A key equation in their paper regresses the change between
1960 and 1985 in log GDP per capita on (1) log GDP in 1960, (2) the log of the ratio of aggregate
investment to GDP, (3) the log of the sum of the population growth rate n, the technological
growth rate g, and the rate of depreciation 0, and (4) the log of the percentage of the working-age
population that is in secondary schoool (School), the latter a proxy for human-capital accumulation.

The data is available on the textbook webpage in the file MRW1992.

The sample is 98 non-oil-producing countries, and the data was reported in the published paper.
As g and § were unknown the authors set g +d = 0.05. We report least-squares estimates in the
first column of the table below, using the authors’ original data. The estimates are consistent with
the Solow theory due to the positive coefficients on investment and human capital and negative
coeflicient for population growth. The estimates are also consistent with the convergence hypothesis
(that income levels tend towards a common mean over time) as the coefficient on intial GDP is
negative.

The authors show that in the Solow model the 27¢, 3" and 4" coefficients sum to zero. They
reestimated the equation imposing this contraint. We present constrained least-squares estimates
in the second column, and efficient minimum distance estimates in the third column. Most of
the coefficients and standard errors only exhibit small changes by imposing the constaint. The one
exception is the coefficient on log population growth, which increases in magnitude and its standard
error decreases substantially. The differences between the CLS and EMD estimates are modest but
not inconsequential.

Table
Estimates of Solow Growth Model
Dependent Variable log g%;ﬁ%
B\OLS B\C'LS BEM D
log G D Piggp —0.29 —0.30 —0.30

(0.05)  (0.05)  (0.05)

log 755 0.52 0.50 0.46
(0.11)  (0.09)  (0.08)

log(n+g+0d8) —051  —0.74  —0.71
(0.25)  (0.08)  (0.08)

log S'chool 0.23 0.24 0.25
(0.07) (0.07) (0.07)

Intercept 3.02 2.46 2.48
(0.74) (0.44) (0.44)
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Note: Standard errors are heteroskedasticity-consistent

We now present Stata, R and MATLAB code which implements these estimates.

You may notice that the Stata code has a section which uses the Mata matrix programming
language. This is used because Stata does not implement the efficient minimum distance estimator,
so needs to be separately programmed. As illustrated here, the Mata language allows a Stata user
to implement methods using commands which are quite similar to MATLAB.

Stata do File

use "MRW1992.dta", clear

gen IndY = log(Y85)-log(Y60)

gen InY60 = log(Y60)

gen Inl = log(invest/100)

gen InG = log(pop _growth/100+0.05)

gen InS = log(school/100)

// Unrestricted regression

reg IndY InY60 Inl InG InS if N==1, r

// Store result for efficient minimum distance

mat b = e(b)’
scalar k = e(rank)
mat V = e(V)

// Constrained regression
constraint define 1 InI+InG+InS=0
cnsreg IndY InY60 Inl InG InS if N==1, constraints(1) r
// Efficient minimum distance
mataq
data = st_data(.,("InY60","nl","InG","InS","IndY","N"))
data_select = select(data,datal.,6]:==1)
y = data_select|.,5]
n = rows(y)
x = (data_select[.,1..4],J(n,1,1))
k = cols(x)
invx = invsym(x'*x)
b_ols = st_matrix("b")
V_ols = st_matrix("V")
R = (0\1\1\1\0)
b _emd =b_ols-V_ols*R*invsym(R’*V_ols*R)*R’*b_ ols
e _emd = J(1,k,y-x*b_emd)
xe_emd = x:*e _emd
xe_emd’*xe emd
V2 = (n/(n-k+1))*invx*(xe _emd*xe emd)*invx
V_emd = V2 - V2*R*invsym(R’*V2*R)*R’'*V2
se_emd = diagonal(sqrt(V _emd))
st_matrix("b_emd",b _emd)
st_matrix("se _emd",se _emd)}
mat list b_emd
mat list se _emd




CHAPTER 8. RESTRICTED ESTIMATION 237

R Program File

# Load the data and create variables

data <- read.table("MRW1992.txt" header=TRUE)

N <- matrix(data$N ncol=1)

IndY <- matrix(log(data$Y85)-log(data$Y60),ncol=1)

InY60 <- matrix(log(data$Y60),ncol=1)

InT <- matrix(log(data$invest/100),ncol=1)

InG <- matrix(log(data$pop growth/100+40.05),ncol=1)

InS <- matrix(log(data$school/100),ncol=1)

xx <- as.matrix(cbind(InY60,Inl,InG,InS, matrix(1,nrow(IndY),1)))
x <- xx[N==1|]

y <- IndY[N==1]

n <- nrow(x)

k <- ncol(x)

# Unrestricted regression

invx <-solve(t(x)%*%x)

beta_ols <- invx%*%t(x)%*%y

e_ols <- rep((y-x%*%beta_ols),times=k)

xe_ols <- x*e_ols

V_ols <- (n/(n-k))*invx%*%(t(xe_ols)%*%xe ols)%*%invx
se_ols <- sqrt(diag(V _ols))

print(beta_ols)

print(se_ols)

# Constrained regression

R <- ¢(0,1,1,1,0)

iR = invx%*%R%*%solve(t(R) %*%invx%*%R) %*%t(R)

b cls <-b_ols - iR%*%b _ols

e_cls <- rep((y-x%*%b_ cls),times=k)

xe cls <- x*e cls

V_tilde <- (n/(n-k+1))*invx%*%(t(xe_cls)%*%xe cls)%*%invx
V_cls <- V_tilde - iR%*%V _tilde - V_tilde%*%t(iR) +
R%*%V _ tilde%* %t (iR)

print(b_cls)

print(se_cls)

# Efficient minimum distance

Vr = V_ols%*%R%*%solve(t(R)%*%V _ols%*%R)%*%t(R)
b _emd <- b_ols - Vi%*%b_ols

e_emd <- rep((y-x%*%b_emd),times=k)

xe_emd <- x*e emd

V2 <- (n/(n-k+1))*invx%*%(t(xe _emd)%*%xe emd)%*%invx
V_emd <- V2 - V2%*%R%*%solve(t(R)%* % V2%*%R) %* %t (R) %% V2
se_emd <- sqrt(diag(V_emd))
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MATLAB Program File

% Load the data and create variables

data = xlsreadC(MRW1992.xlsx’);

N = data(:,1);

Y60 = data(:,4);

Y85 = dataf(:,5);

pop_growth = data(:,7);

invest = data(:,8);

school = dataf(:,9);

IndY = log(Y85)-log(Y60);

InY60 = log(Y60);

InI = log(invest/100);

InG = log(pop_growth/100+40.05);

InS = log(school/100);

xx = [InY60,InI,InG,InS,ones(size(IndY,1),1)];

x = xx(N==1,:);

y = IndY(N==1);

[n,k] = size(x);

% Unrestricted regression

invx = inv(x’*x);

beta_ols = invx*x*y;

e_ols = repmat((y-x*beta_ols),1k);

xe ols = x.*e_ ols;

V_ols = (n/(n-k))*invx*(xe ols™*xe ols)*invx;
se_ols = sqrt(diag(V_ols));

display(beta_ols);

display(se_ols);

% Constrained regression

R = [0;1;1;1;0];

iR = invx*R*inv(R™*invx*R)*R’;

beta_cls = beta_ols - iR*beta_ ols;

e _cls = repmat((y-x*beta_ cls),1,k);

xe cls = x.*e_cls;

V_tilde = (n/(n-k+1))*invx*(xe_cls*xe cls)*invx;
V _cls =V _tilde - iR*V_tilde - V_tilde*(iR’)...
+R*V_tilde*(iR));

se_cls = sqrt(diag(V_cls));

display(beta_ cls);

display(se_cls);

% (3) Efficient minimum distance

beta _emd = beta_ols-V_ols*R*inv(R’*V _ols*R)*R*beta_ ols;
e_emd = repmat((y-x*beta_emd),1,k);
xe_emd = x.*e_emd;

V2 = (n/(n-k+1))*invx*(xe__emd*xe _emd)*invx;
V_emd = V2 - V2*R*inv(R™*V2*R)*R’*V2;
se_emd = sqrt(diag(V_emd));

display(beta emd);display(se emd);

238
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8.13 Misspecification

What are the consequences for a constrained estimator B if the constraint (8.1) is incorrect?
To be specific, suppose that
R,,ﬁ — C*

where ¢* is not necessarily equal to c.

This situation is a generalization of the analysis of “omitted variable bias” from Section 2.23,
where we found that the short regression (e.g. (8.13)) is estimating a different projection coefficient
than the long regression (e.g. (8.11)).

One mechanical answer is that we can use the formula (8.25) for the minimum distance estimator
to find that B

Bd = Bia=B—- WIR(RW'R) ' (¢" - ). (8.41)

The second term, W'R (R’ W*IR) - (¢* — ¢), shows that imposing an incorrect constraint leads
to inconsistency — an asymptotic bias. We can call the limiting value 8} 4 the minimum-distance
projection coefficient or the pseudo-true value implied by the restriction.

However, we can say more.

For example, we can describe some characteristics of the approximating projections. The CLS
estimator projection coefficient has the representation

. 2
Bhs = argmin E (yi — :B;ﬁ) ,
R'B=c
the best linear predictor subject to the constraint (8.1). The minimum distance estimator converges
to

Braa = argmin (8 — B,)' W (8 — By)

R/'B=c

where 3 is the true coefficient. That is, 3 4 is the coefficient vector satisfying (8.1) closest to
the true value in the weighted Euclidean norm. These calculations show that the constrained
estimators are still reasonable in the sense that they produce good approximations to the true
coefficient, conditional on being required to satisfy the constraint.

We can also show that 8,4 has an asymptotic normal distribution. The trick is to define the
pseudo-true value

B =8-W R (R”W’lR)_l (¢ —¢). (8.42)
(Note that (8.41) and (8.42) are different!) Then
Vit (Bua -~ 8;) =i (B-8) - W 'R(RW 'R) " vii (RB- <)

_ <1 _W 'R (.lf.z”vfflR)*1 R’) NG (B - 5)

5 (1- WR(RW™'R)"'R))N(0, V)

=N (0, Vg(W)). (8.43)
In particular

VI (Bema = B3) =5 N (0, V).

This means that even when the constraint (8.1) is misspecified, the conventional covariance matrix
estimator (8.38) and standard errors (8.39) are appropriate measures of the sampling variance,
though the distributions are centered at the pseudo-true values (or projections) 3 rather than 3.
The fact that the estimators are biased is an unavoidable consequence of misspecification.
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An alternative approach to the asymptotic distribution theory under misspecification uses the
concept of local alternatives. It is a technical device which might seem a bit artificial, but it is a
powerful method to derive useful distributional approximations in a wide variety of contexts. The
idea is to index the true coefficient 3,, by n via the relationship

R'B, = c+ dn~ Y2 (8.44)

Equation (8.44) specifies that 3,, violates (8.1) and thus the constraint is misspecified. However,
the constraint is “close” to correct, as the difference R'3,, — ¢ = dn /2 is “small” in the sense that
it decreases with the sample size n. We call (8.44) local misspecification.

The asymptotic theory is then derived as n — oo under the sequence of probability distributions
with the coefficients 3,,. The way to think about this is that the true value of the parameter is
B,,, and it is “close” to satisfying (8.1). The reason why the deviation is proportional to n~12 ig
because this is the only choice under which the localizing parameter § appears in the asymptotic
distribution but does not dominate it. The best way to see this is to work through the asymptotic
approximation.

Since 3,, is the true coefficient value, then y; = }3,,+e; and we have the standard representation
for the unconstrained estimator, namely

n -1 n
- 1 , 1
v <B . Bn) B (E ; mm) (\/ﬁ ; we)
4, N(0, V). (8.45)

There is no difference under fixed (classical) or local asymptotics, since the right-hand-side is
independent of the coefficient 3,,.
A difference arises for the constrained estimator. Using (8.44), ¢ = R'3,, — dn~ /2, so

RB—c=R (B — ,Bn) 4 onY2
and
—~—1 —1 ~
(R’W R) (R’ﬁ — c)
T oL o e ! —1/2
(RW R> R (5—5n>+w R(RW R> on~1/2,
It follows that
~ o o -1 ~
Vit (Buaa — B,) = (1 - W 'R(RW R) R’) Vi (B-8,)
-1 yem—1 o\ L
+W R(RW R) o
The first term is asymptotically normal (from 8.45)). The second term converges in probability to
a constant. This is because the n~/2 local scaling in (8.44) is exactly balanced by the y/n scaling
of the estimator. No alternative rate would have produced this result.
Consequently, we find that the asymptotic distribution equals
Vit (Bua = B,) = N (0, V) + W'R(RW'R) "5
— N (&, V(W) (8.46)

where
& =W IR(RW'R) 6.
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The asymptotic distribution (8.46) is an approximation of the sampling distribution of the
restricted estimator under misspecification. The distribution (8.46) contains an asymptotic bias
component §*. The approximation is not fundamentally different from (8.43) — they both have the
same asymptotic variances, and both reflect the bias due to misspecification. The difference is that
(8.43) puts the bias on the left-side of the convergence arrow, while (8.46) has the bias on the
right-side. There is no substantive difference between the two, but (8.46) is more convenient for
some purposes, such as the analysis of the power of tests, as we will explore in the next chapter.

8.14 Nonlinear Constraints

In some cases it is desirable to impose nonlinear constraints on the parameter vector 3. They
can be written as
r(3)=0 (8.47)
where 7 : R¥ — R?. This includes the linear constraints (8.1) as a special case. An example of
(8.47) which cannot be written as (8.1) is $182 = 1, which is (8.47) with r(8) = f162 — 1.

The constrained least-squares and minimum distance estimators of 3 subject to (8.47) solve the
minimization problems

B = argmin SSE(3) (8.48)
(8)=0
Bouq = argmin J (3) (8.49)
r(8)=0

where SSE(B) and J (B) are defined in (8.4) and (8.20), respectively. The solutions minimize the
Lagrangians

L(BN) = 5SSE(B) + Nr(B) (5.50)
L(8.X) = 37 (8) + Nr(8) (3.51)
over (B, ).

Computationally, there is no general closed-form solution for the estimator so they must be
found numerically. Algorithms to numerically solve (8.48) and (8.49) are known as constrained

optimization methods, and are available in programming languages including MATLAB, GAUSS
and R.

Assumption 8.14.1 r(3) = 0, r(3) is continuously differentiable at the

true B, and rank(R) = ¢, where R = %r(,@)’.

The asymptotic distribution is a simple generalization of the case of a linear constraint, but the
proof is more delicate.
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Theorem 8.14.1 Under Assumptions 7.1.2, 8.14.1, and 8.6.2, for B =
Bma and B = B defined in (8.48) and (8.49),

> d
Vi (B-8) 5 N(0, V(W)
as n — oo, where Vg(W) is defined in (8.27). For Bas: W = Q,, and
Vg(W) = Vs as defined in Theorem 8.6.3. Vg(W) is minimized with

W = VEI, i which case the asymptotic variance is

V=V - VgR(R'V3R) ' R'Vp.

The asymptotic variance matrix for the efficient minimum distance estimator can be estimated
by

~ ~ ~ o~ [t~ ~\—1 )~
Vs=Va- VsR(RVsR) RV
where

0 ~ /
= %r(ﬁmd) : (8.52)

Standard errors for the elements of Bmd are the square roots of the diagonal elements of ff% =
n_lf/;.

=

8.15 Inequality Restrictions
Inequality constraints on the parameter vector 3 take the form
r(8) >0 (8.53)
for some function r : R¥ — RY. The most common example is a non-negative constraint
B1 > 0.

The constrained least-squares and minimum distance estimators can be written as

B, = argmin SSE(3) (8.54)
7(8)=>0
and B
Ba = argmin J (3). (8.55)
(8)=0

Except in special cases the constrained estimators do not have simple algebraic solutions. An
important exception is when there is a single non-negativity constraint, e.g. 51 > 0 with ¢ = 1.
In this case the constrained estimator can be found by two-step approach First compute the
uncontrained estimator B If 51 > 0 then 6‘ ,6 Second, if 61 < 0 then impose f; = 0 (eliminate
the regressor X1) and re-estimate. This yields the constrained least-squares estimator. While this
method works when there is a single non-negativity constraint, it does not immediately generalize
to other contexts.

The computational problems (8.54) and (8.55) are examples of quadratic programming
problems. Quick and easy computer algorithms are available in programming languages including
MATLAB, GAUSS and R.
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Inference on inequality-constrained estimators is unfortunately quite challenging. The conven-
tional asymptotic theory gives rise to the following dichotomy. If the true parameter satisfies the
strict inequality r(3) > 0, then asymptotically the estimator is not subject to the constraint and the
inequality-constrained estimator has an asymptotic distribution equal to the unconstrained case.
However if the true parameter is on the boundary, e.g. r(3) = 0, then the estimator has a trun-
cated structure. This is easiest to see in the one-dimensional case. If we have an estimator B which

satisfies \/n (B ﬁ) — 7Z = N(0,V3) and § = 0, then the constrained estimator 5 = maX[B, 0]

will have the asymptotic distribution \/ﬁB 4, max[Z,0], a “half-normal” distribution.

8.16 Technical Proofs*

Proof of Theorem 8.8.1, Equation (8.31). Let R, be a full rank £ x (k — ¢) matrix satisfying
R/ VgR = 0 and then set C = [R, R, | which is full rank and invertible. Then we can calculate
that
R'VEFR R'VZR
C'V5C = B gL ]
s [ R, V3R R/ V3R,

B [ 0 0 ]
0 R, VsR,

and
C'Vz(W)C
_[ R'V4(W)R R'Vy(W)R, }
R V4(W)R R, V4W)R,
Jo 0
~ |10 R,VsR, +R,WR(RWR) 'R'VgR(RWR) 'R'WR, |’
Thus

C' (Vg(W) - V3) C
= C'Vg(W)C - C'VjC

0 0
B [ 0 R,WR(R'WR) 'R'VsR(R'WR) 'R'WR, ]
>0

Since C is invertible it follows that Vg(W) — Vg > 0 which is (8.31). [ |

cls
Proof of Theorem 8.14.1. We show the result for the minimum distance estimator ,5 Bmd, as
the proof for the constrained least- squares estimator is similar. For simplicity we assume that the
constrained estimator is consistent 3 2, (3. This can be shown with more effort, but requires a
deeper treatment than appropriate for this textbook.

For each element r;(3) of the g-vector r(3), by the mean value theorem there exists a 3; on

the line segment joining 3 and 3 such that

r(B) = ri(8) + 35 (85) (B~ 8). (8.56)

Let R; be the k x ¢ matrix

R = | (B 25 () |
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Since E L, B it follows that B; -2, 3, and by the CMT, R* 2> R. Stacking the (8.56), we obtain

r(B) = r(8)+ R (B-8).
Since 'I“(B) = 0 by construction and 7(3) = 0 by Assumption 8.6.1, this implies
0=R" (B - 6) . (8.57)
The first-order condition for (8.51) is
w (B - B) = RX.

where R is defined in (8.52).

—1

Premultiplying by R”W ', inverting, and using (8.57), we find
X = (R*”W‘lﬁ>_l R (fa - B’) - (R*’W‘lﬁ)_l R” (B - ;3) .
Thus
B-3= <1 - W 'R (R;’W‘lﬁ>_1 R;;’) (B . 5) : (8.58)
From Theorem 7.3.2 and Theorem 7.7.1 we find
vii(B-p) = (1-W'R(RYW'R)RY) Vi (5 5)
5 (1-W'R(RW™'R)"'R))N(0, V)
=N(0, V(W)).
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Exercises

Exercise 8.1 In the model y = X18; + X285 + e, show directly from definition (8.3) that the
CLS estimate of B = (31, 85) subject to the constraint that 3, = 0 is the OLS regression of y on
X7.

Exercise 8.2 In the model y = X183, + X285 + e, show directly from definition (8.3) that the
CLS estimate of 8 = (B, 3,), subject to the constraint that 3; = ¢ (where ¢ is some given vector)

is the OLS regression of y — X ¢ on Xo.

Exercise 8.3 In the model y = X18; + X208, + e, with X1 and X2 each n x k, find the CLS
estimate of 3 = (81, 3,), subject to the constraint that 3; = —3,.

Exercise 8.4 In the linear projection model y; = o + @3 + ¢;, consider the restriction 3 = 0.

(a) Find the constrained least-squares (CLS) estimator of o under the restriction 3 = 0.

(b) Find an expression for the efficient minimum distance estimator of « under the restriction

B=o0.
Exercise 8.5 Verify that for 3., defined in (8.9) that R/8,, = c.
Exercise 8.6 Prove Theorem 8.4.1

Exercise 8.7 Prove Theorem 8.4.2, that is, E (Bcls | X ) = 3, under the assumptions of the linear

regression regression model and (8.1).
Hint: Use Theorem 8.4.1.

Exercise 8.8 Prove Theorem 8.4.3.

Exercise 8.9 Prove Theorem 8.4.4, that is, E (sgls | X) = ¢2, under the assumptions of the ho-
moskedastic regression model and (8.1).

Exercise 8.10 Verify (8.24) and (8.25), and that the minimum distance estimator Boq With W=
Q... equals the CLS estimator.

Exercise 8.11 Prove Theorem 8.6.1.

Exercise 8.12 Prove Theorem 8.6.2.

Exercise 8.13 Prove Theorem 8.6.3. (Hint: Use that CLS is a special case of Theorem 8.6.2.)
Exercise 8.14 Verify that (8.29) is Vg(W) with W = VEI.

Exercise 8.15 Prove (8.30). Hint: Use (8.29).

Exercise 8.16 Verify (8.32), (8.33) and (8.34)

Exercise 8.17 Verify (8.35), (8.36), and (8.37).
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Exercise 8.18 Suppose you have two independent samples

/
Y1i = il’uﬁl +e1;

and
!
Y2i = To; 3o + €2;

both of sample size n, and both x1; and xg; are k X 1. You estimate 8, and B, by OLS on each
sample, B; and 3., say, with asymptotic covariance matrix estimators ‘Afﬁl and ‘Afﬁz (which are
consistent for the asymptotic covariance matrices Vg, and Vg, ). Consider efficient minimimum
distance estimation under the restriction 3; = 3,.

(a) Find the estimator 8 of 8 = 8, = B
(b) Find the asymptotic distribution of 3.

(¢) How would you approach the problem if the sample sizes are different, say n; and ng?

Exercise 8.19 As in Exercise 7.29 and 3.24, use the CPS dataset and the subsample of white male
Hispanics.

(a) Estimate the regression

log(/I/V\age) = By education + By experience + B3 experience? /100 + ByMarried;
+ BsMarrieds + BeMarrieds + S7Widowed + g Divorced + By Separated + (g

where Marriedy, Marrieds, and Marrieds are the first three marital status codes as listed
in Section 3.19.

(b) Estimate the equation using constrained least-squares, imposing the constraints 84 = 7 and
Bs = B9, and report the estimates and standard errors

(c) Estimate the equation using efficient minimum distance, imposing the same constraints, and
report the estimates and standard errors

(d) Under what constraint on the coefficients is the wage equation non-decreasing in experience
for experience up to 507

(e) Estimate the equation imposing 84 = 7, fs = B9, and the inequality from part (d).
Exercise 8.20 Take the model

yi = m(z;) + e
m(z) = fo+ bz + Pox® + - - + Bpa?
E(ziei) =0
Z; = (l,xi, ...,:Uf)/
d
o(@) = L)

with iid observations (y;,x;), ¢ = 1,...,n. The order of the polynomial p is known.

(a) How should we interpret the function m(z) given the projection assumption? How should we
interpret g(x)? (Briefly)

(b) Describe an estimator g(z) of g(z).
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(¢) Find the asymptotic distribution of v/n (g(x) — g(z)) as n — oo.

(d) Show how to construct an asymptotic 95% confidence interval for g(z) (for a single x).

(e) Assume p = 2. Describe how to estimate g(x) imposing the constraint that m(z) is concave.
(f)

f) Assume p = 2. Describe how to estimate g(z) imposing the constraint that m(u) is increasing
on the region u € [z, zy].

Exercise 8.21 Take the linear model with restrictions

yi =z + e
E ((I:ZGZ) =0
RB=c

with n observations. Consider three estimators for 3

e (3, the unconstrained least squares estimator
e (3, the constrained least squares estimator
e (3, the constrained efficient minimum distance estimator

For each estimator, define the residuals €; = v; — mgﬁ, € =Y — :B;,g, € = yi — =3, and variance
. N 1 o~ 1 _ 1 _
estimators 52 = - S e 5= - S €2, and 52 = - e
(a) As B is the most efficient estimator and ,@ the least, do you expect that 3% < 2 < &2, in
large samples?

(b) Consider the statistic

T,=572) (@-&)

i=1

Find the asymptotic distribution for 7T}, when R'3 = ¢ is true.

(¢) Does the result of the previous question simplify when the error e; is homoskedastic?
Exercise 8.22 Take the linear model

Vi = 101 + 2202 + €
E (:I:Zel) =0

with n observations. Consider the restriction

B _
5272

(a) Find an explicit expression for the constrained least-squares (CLS) estimator 8 = (81, 32) of
B = (B1, P2) under the restriction. Your answer should be specific to the restriction, it should
not be a generic formula for an abstract general restriction.

(b) Derive the asymptotic distribution of El under the assumption that the restriction is true.



Chapter 9

Hypothesis Testing

In Chapter 5 we briefly introduced hypothesis testing in the context of the normal regression
model. In this chapter we explore hypothesis testing in greater detail, with a particular emphasis
on asymptotic inference.

9.1 Hypotheses

In Chapter 8 we discussed estimation subject to restrictions, including linear restrictions (8.1),
nonlinear restrictions (8.47), and inequality restrictions (8.53). In this chapter we discuss tests of
such restrictions.

Hypothesis tests attempt to assess whether there is evidence to contradict a proposed parametric
restriction. Let

0 = r(8)

be a ¢ x 1 parameter of interest where 7 : R¥ — © C RY is some transformation. For example, 0
may be a single coefficient, e.g. 8 = 3}, the difference between two coefficients, e.g. 8 = 5; — 3¢, or
the ratio of two coefficients, e.g. @ = 3;/5,.

A point hypothesis concerning 6 is a proposed restriction such as

0 = 6, (9.1)

where 6 is a hypothesized (known) value.

More generally, letting 3 € B C R¥ be the parameter space, a hypothesis is a restriction 3 € By
where By is a proper subset of B. This specializes to (9.1) by setting Bo = {3 € B : r(3) = 6y}.

In this chapter we will focus exclusively on point hypotheses of the form (9.1) as they are the
most common and relatively simple to handle.

The hypothesis to be tested is called the null hypothesis.

Definition 9.1.1 The null hypothesis, written Hy, is the restriction 0 =
6y or B € By.

We often write the null hypothesis as Hy : @ = 8¢ or Hy : 7(3) = 0.
The complement of the null hypothesis (the collection of parameter values which do not satisfy
the null hypothesis) is called the alternative hypothesis.

Definition 9.1.2 The alternative hypothesis, written Hi, is the set
{0€O®:0+£00} or {B € B: ¢ By}.

248
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We often write the alternative hypothesis as H;j : 6 # g or Hj : r(3) # 6. For simplicity, we
often refer to the hypotheses as “the null” and “the alternative”.

In hypothesis testing, we assume that there is a true (but unknown) value of 8 and this value
either satisfies Hy or does not satisfy Hy. The goal of hypothesis testing is to assess whether or not
Hy is true, by asking if Hy is consistent with the observed data.

To be specific, take our example of wage determination and consider the question: Does union
membership affect wages? We can turn this into a hypothesis test by specifying the null as the
restriction that a coefficient on union membership is zero in a wage regression. Consider, for
example, the estimates reported in Table 4.1. The coefficient for “Male Union Member” is 0.095 (a
wage premium of 9.5%) and the coefficient for “Female Union Member” is 0.022 (a wage premium of
2.2%). These are estimates, not the true values. The question is: Are the true coefficients zero? To
answer this question, the testing method asks the question: Are the observed estimates compatible
with the hypothesis, in the sense that the deviation from the hypothesis can be reasonably explained
by stochastic variation? Or are the observed estimates incompatible with the hypothesis, in the
sense that that the observed estimates would be highly unlikely if the hypothesis were true?

9.2 Acceptance and Rejection

A hypothesis test either accepts the null hypothesis or rejects the null hypothesis in favor of
the alternative hypothesis. We can describe these two decisions as “Accept Hy” and “Reject Hp”.
In the example given in the previous section, the decision would be either to accept the hypothesis
that union membership does not affect wages, or to reject the hypothesis in favor of the alternative
that union membership does affect wages.

The decision is based on the data, and so is a mapping from the sample space to the decision
set. This splits the sample space into two regions Sy and S7 such that if the observed sample
falls into Sy we accept Hg, while if the sample falls into S; we reject Hy. The set Sy is called the
acceptance region and the set S7 the rejection or critical region.

It is convenient to express this mapping as a real-valued function called a test statistic

r=T ((y17 33‘1) IEEED (yn, $n))

relative to a critical value c. The hypothesis test then consists of the decision rule
1. Accept Hp if T < c.
2. Reject Hy if T > c.

A test statistic 1" should be designed so that small values are likely when Hl is true and large
values are likely when Hj is true. There is a well developed statistical theory concerning the design
of optimal tests. We will not review that theory here, but instead refer the reader to Lehmann
and Romano (2005). In this chapter we will summarize the main approaches to the design of test
statistics.

The most commonly used test statistic is the absolute value of the t-statistic

T = [T(6o)| (9-2)

where ~

0—0
0) = — (9.3)

s(0)

is the t-statistic from (7.43), fis a point estimate, and s(g) its standard error. T is an appropriate

statistic when testing hypotheses on individual coefficients or real-valued parameters § = h(3)

and 6y is the hypothesized value. Quite typically, 65 = 0, as interest focuses on whether or not

a coefficient equals zero, but this is not the only possibility. For example, interest may focus on

whether an elasticity 6 equals 1, in which case we may wish to test Hy : 6 = 1.




CHAPTER 9. HYPOTHESIS TESTING 250

9.3 Typel Error

A false rejection of the null hypothesis Hy (rejecting Hy when Hy is true) is called a Type I
error. The probability of a Type I error is

Pr (Reject Hy | Hy true) = Pr (T > ¢ | Hy true). (9.4)

The finite sample size of the test is defined as the supremum of (9.4) across all data distributions
which satisfy Hgy. A primary goal of test construction is to limit the incidence of Type I error by
bounding the size of the test.

For the reasons discussed in Chapter 7, in typical econometric models the exact sampling
distributions of estimators and test statistics are unknown and hence we cannot explicitly calculate
(9.4). Instead, we typically rely on asymptotic approximations. Suppose that the test statistic has
an asymptotic distribution under Hy. That is, when Hy is true

T4 (9.5)

as n — oo for some continuously-distributed random variable £&. This is not a substantive restriction,
as most conventional econometric tests satisfy (9.5). Let G(u) = Pr (¢ < u) denote the distribution
of . We call ¢ (or G) the asymptotic null distribution.

It is generally desirable to design test statistics T° whose asymptotic null distribution G is
known and does not depend on unknown parameters. In this case we say that the statistic T is
asymptotically pivotal.

For example, if the test statistic equals the absolute t-statistic from (9.2), then we know from

Theorem 7.12.1 that if @ = 6y (that is, the null hypothesis holds), then T' 4, |Z| as n — oo where
Z ~ N(0,1). This means that G(u) = Pr(|Z] < u) = 2®(u) — 1, the distribution of the absolute
value of the standard normal as shown in (7.44). This distribution does not depend on unknowns
and is pivotal.

We define the asymptotic size of the test as the asymptotic probability of a Type I error:

lim Pr(T > ¢ | Hp true) = Pr (£ > ¢)
=1—-G(c).

We see that the asymptotic size of the test is a simple function of the asymptotic null distribution G
and the critical value c. For example, the asymptotic size of a test based on the absolute t-statistic
with critical value ¢ is 2 (1 — ®(c)) .

In the dominant approach to hypothesis testing, the researcher pre-selects a significance level
a € (0,1) and then selects ¢ so that the (asymptotic) size is no larger than a. When the asymptotic
null distribution G is pivotal, we can accomplish this by setting ¢ equal to the 1 — a quantile of
the distribution G. (If the distribution G is not pivotal, more complicated methods must be used,
pointing out the great convenience of using asymptotically pivotal test statistics.) We call ¢ the
asymptotic critical value because it has been selected from the asymptotic null distribution.
For example, since 2 (1 — ®(1.96)) = 0.05, it follows that the 5% asymptotic critical value for
the absolute t-statistic is ¢ = 1.96. Calculation of normal critical values is done numerically in
statistical software. For example, in MATLAB the command is norminv(1-a/2).

9.4 t tests

As we mentioned earlier, the most common test of the one-dimensional hypothesis

Hy : 6 = 6, (9.6)
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against the alternative
H; : 0 # 6y (9.7)

is the absolute value of the t-statistic (9.3). We now formally state its asymptotic null distribution,
which is a simple application of Theorem 7.12.1.

Theorem 9.4.1 Under Assumptions 7.1.2, 7.10.1, and Hy : 0 = 6,
T(6) % 7.
For ¢ satisfying o = 2 (1 — ®(c)),
Pr(|T(6p)| > ¢ | Hp) — o,

and the test “Reject Hy if |T(00)| > ¢” has asymptotic size a.

The theorem shows that asymptotic critical values can be taken from the normal distribution.
As in our discussion of asymptotic confidence intervals (Section 7.13), the critical value could
alternatively be taken from the student ¢ distribution, which would be the exact test in the normal
regression model (Section 5.14). Indeed, t critical values are the default in packages such as Stata.
Since the critical values from the student ¢ distribution are (slightly) larger than those from the
normal distribution, using student ¢ critical values decreases the rejection probability of the test.
In practical applications the difference is typically unimportant unless the sample size is quite small
(in which case the asymptotic approximation should be questioned as well).

The alternative hypothesis 6 # 6y is sometimes called a “two-sided” alternative. In contrast,
sometimes we are interested in testing for one-sided alternatives such as

Hy : 0 > 6y (98)

or

Hy : 0 < 6. (99)

Tests of 6§ = 0y against 6 > 0y or 6 < 6y are based on the signed t-statistic " = T'(6p). The
hypothesis 8 = 6 is rejected in favor of 8 > 6y if T > ¢ where c satisfies « = 1 — ®(¢). Negative
values of T are not taken as evidence against Hy, as point estimates 0 less than 0y do not point to
0 > 6. Since the critical values are taken from the single tail of the normal distribution, they are
smaller than for two-sided tests. Specifically, the asymptotic 5% critical value is ¢ = 1.645. Thus,
we reject 8 = 0y in favor of 0 > 0y if T > 1.645.

Conversely, tests of § = 6y against 8 < g reject Hy for negative t-statistics, e.g. if T < —c.
For this alternative large positive values of T' are not evidence against Hy. An asymptotic 5% test
rejects if T < —1.645.

There seems to be an ambiguity. Should we use the two-sided critical value 1.96 or the one-
sided critical value 1.6457 The answer is that we should use one-sided tests and critical values only
when the parameter space is known to satisfy a one-sided restriction such as 6 > 6. This is when
the test of 6 = 6y against 6 > 6y makes sense. If the restriction 6 > 6y is not known a priori,
then imposing this restriction to test § = 6y against 6 > 6y does not makes sense. Since linear
regression coefficients typically do not have a priori sign restrictions, the standard convention is to
use two-sided critical values.

This may seem contrary to the way testing is presented in statistical textbooks, which often
focus on one-sided alternative hypotheses. The latter focus is primarily for pedagogy, as the one-
sided theoretical problem is cleaner and easier to understand.
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9.5 Type II Error and Power

A false acceptance of the null hypothesis Hy (accepting Hy when Hj is true) is called a Type 11
error. The rejection probability under the alternative hypothesis is called the power of the test,
and equals 1 minus the probability of a Type II error:

7(0) = Pr (Reject Hp | Hy true) = Pr (7" > c | Hj true).

We call 7(0) the power function and is written as a function of 6 to indicate its dependence on
the true value of the parameter 6.

In the dominant approach to hypothesis testing, the goal of test construction is to have high
power subject to the constraint that the size of the test is lower than the pre-specified significance
level. Generally, the power of a test depends on the true value of the parameter 8, and for a well
behaved test the power is increasing both as @ moves away from the null hypothesis 8y and as the
sample size n increases.

Given the two possible states of the world (Hy or H;) and the two possible decisions (Accept Hpy
or Reject Hy), there are four possible pairings of states and decisions as is depicted in the following
chart.

Hypothesis Testing Decisions

Accept Hy Reject Hy
Hp true | Correct Decision | Type I Error
H; true | Type II Error Correct Decision

Given a test statistic T', increasing the critical value ¢ increases the acceptance region Sy while
decreasing the rejection region Si. This decreases the likelihood of a Type I error (decreases the
size) but increases the likelihood of a Type II error (decreases the power). Thus the choice of ¢
involves a trade-off between size and the power. This is why the significance level « of the test
cannot be set arbitrarily small. (Otherwise the test will not have meaningful power.)

It is important to consider the power of a test when interpreting hypothesis tests, as an overly
narrow focus on size can lead to poor decisions. For example, it is easy to design a test which has
perfect size yet has trivial power. Specifically, for any hypothesis we can use the following test:
Generate a random variable U ~ U|0, 1] and reject Hy if U < «. This test has exact size of a. Yet
the test also has power precisely equal to a. When the power of a test equals the size, we say that
the test has trivial power. Nothing is learned from such a test.

9.6 Statistical Significance

Testing requires a pre-selected choice of significance level «, yet there is no objective scientific
basis for choice of a.. Nevertheless the common practice is to set a = 0.05 (5%). Alternative values
are a = 0.10 (10%) and a = 0.01 (1%). These choices are somewhat the by-product of traditional
tables of critical values and statistical software.

The informal reasoning behind the choice of a 5% critical value is to ensure that Type I errors
should be relatively unlikely — that the decision “Reject Hy” has scientific strength — yet the test
retains power against reasonable alternatives. The decision “Reject Hp” means that the evidence
is inconsistent with the null hypothesis, in the sense that it is relatively unlikely (1 in 20) that data
generated by the null hypothesis would yield the observed test result.

In contrast, the decision “Accept Hy” is not a strong statement. It does not mean that the
evidence supports Hy, only that there is insufficient evidence to reject Hy. Because of this, it is
more accurate to use the label “Do not Reject Hp” instead of “Accept Hy”.
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When a test rejects Hy at the 5% significance level it is common to say that the statistic is
statistically significant and if the test accepts Hy it is common to say that the statistic is not
statistically significant or that it is statistically insignificant. It is helpful to remember that
this is simply a compact way of saying “Using the statistic 7', the hypothesis Hy can [cannot] be
rejected at the asymptotic 5% level.” Furthermore, when the null hypothesis Hy : 8 = 0 is rejected
it is common to say that the coefficient 6 is statistically significant, because the test has rejected
the hypothesis that the coefficient is equal to zero.

Let us return to the example about the union wage premium as measured in Table 4.1. The
absolute t-statistic for the coefficient on “Male Union Member” is 0.095/0.020 = 4.7, which is
greater than the 5% asymptotic critical value of 1.96. Therefore we reject the hypothesis that
union membership does not affect wages for men. In this case, we can say that union membership
is statistically significant for men. However, the absolute t-statistic for the coefficient on “Female
Union Member” is 0.023/0.020 = 1.2, which is less than 1.96 and therefore we do not reject the
hypothesis that union membership does not affect wages for women. In this case we find that
membership for women is not statistically significant.

When a test accepts a null hypothesis (when a test is not statistically significant) a common
misinterpretation is that this is evidence that the null hypothesis is true. This is incorrect. Failure
to reject is by itself not evidence. Without an analysis of power, we do not know the likelihood of
making a Type II error, and thus are uncertain. In our wage example, it would be a mistake to
write that “the regression finds that female union membership has no effect on wages”. This is an
incorrect and most unfortunate interpretation. The test has failed to reject the hypothesis that the
coefficient is zero, but that does not mean that the coefficient is actually zero.

When a test rejects a null hypothesis (when a test is statistically significant) it is strong evi-
dence against the hypothesis (since if the hypothesis were true then rejection is an unlikely event).
Rejection should be taken as evidence against the null hypothesis. However, we can never conclude
that the null hypothesis is indeed false, as we cannot exclude the possibility that we are making a
Type I error.

Perhaps more importantly, there is an important distinction between statistical and economic
significance. If we correctly reject the hypothesis Hp : € = 0 it means that the true value of 4 is
non-zero. This includes the possibility that # may be non-zero but close to zero in magnitude. This
only makes sense if we interpret the parameters in the context of their relevant models. In our
wage regression example, we might consider wage effects of 1% magnitude or less as being “close
to zero”. In a log wage regression this corresponds to a dummy variable with a coefficient less
than 0.01. If the standard error is sufficiently small (less than 0.005) then a coefficient estimate
of 0.01 will be statistically significant, but not economically significant. This occurs frequently in
applications with very large sample sizes where standard errors can be quite small.

The solution is to focus whenever possible on confidence intervals and the economic meaning of
the coefficients. For example, if the coefficient estimate is 0.005 with a standard error of 0.002 then
a 95% confidence interval would be [0.001, 0.009] indicating that the true effect is likely between
0% and 1%, and hence is slightly positive but small. This is much more informative than the
misleading statement “the effect is statistically positive”.

9.7 P-Values

Continuing with the wage regression estimates reported in Table 4.1, consider another question:
Does marriage status affect wages? To test the hypothesis that marriage status has no effect on
wages, we examine the t-statistics for the coefficients on “Married Male” and “Married Female” in
Table 4.1, which are 0.211/0.010 = 22 and 0.016/0.010 = 1.7, respectively. The first exceeds the
asymptotic 5% critical value of 1.96, so we reject the hypothesis for men, though not for women.
But the statistic for men is exceptionally high, and that for women is only slightly below the
critical value. Suppose in contrast that the t-statistic had been 2.0, which is more than the critical
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value. This would lead to the decision “Reject Hy” rather than “Accept Hp”. Should we really
be making a different decision if the t-statistic is 1.7 rather than 2.07 The difference in values is
small, shouldn’t the difference in the decision be also small? Thinking through these examples it
seems unsatisfactory to simply report “Accept Hy” or “Reject Hy”. These two decisions do not
summarize the evidence. Instead, the magnitude of the statistic 1" suggests a “degree of evidence”
against Hy. How can we take this into account?

The answer is to report what is known as the asymptotic p-value

p=1-G(T).

Since the distribution function G is monotonically increasing, the p-value is a monotonically de-
creasing function of 7" and is an equivalent test statistic. Instead of rejecting Hy at the significance
level v if T' > ¢, we can reject Hy if p < «. Thus it is sufficient to report p, and let the reader
decide. In practice, the p-value is calculated numerically. For example, in MATLAB the command
is 2x (1-normalcdf (abs(t))).

In is instructive to interpret p as the marginal significance level: the largest value of « for
which the test T' “rejects” the null hypothesis. That is, p = 0.11 means that T rejects Hy for all
significance levels greater than 0.11, but fails to reject Hy for significance levels less than 0.11.

Furthermore, the asymptotic p-value has a very convenient asymptotic null distribution. Since

T4 & under Hy, then p =1 - G(7T) LI G(&), which has the distribution

Pr(1— G(€) <w) = Pr(1—u < G(¢))
= 1—Pr(§§G*1(1—u))
=1-G(G ' (1-w)
=1-(1—-u)

:u’

which is the uniform distribution on [0, 1]. (This calculation assumes that G(u) is strictly increasing
which is true for conventional asymptotic distributions such as the normal.) Thus p , Ulo, 1].
This means that the “unusualness” of p is easier to interpret than the “unusualness” of T.

An important caveat is that the p-value p should not be interpreted as the probability that
either hypothesis is true. A common mis-interpretation is that p is the probability “that the null
hypothesis is true.” This is incorrect. Rather, p is the marginal significance level — a measure of
the strength of information against the null hypothesis.

For a t-statistic, the p-value can be calculated either using the normal distribution or the student
t distribution, the latter presented in Section 5.14. p-values calculated using the student ¢ will be
slightly larger, though the difference is small when the sample size is large.

Returning to our empirical example, for the test that the coefficient on “Married Male” is zero,
the p-value is 0.000. This means that it would be nearly impossible to observe a t-statistic as large
as 22 when the true value of the coeflicient is zero. When presented with such evidence we can say
that we “strongly reject” the null hypothesis, that the test is “highly significant”, or that “the test
rejects at any conventional critical value”. In contrast, the p-value for the coefficient on “Married
Female” is 0.094. In this context it is typical to say that the test is “close to significant”, meaning
that the p-value is larger than 0.05, but not too much larger.

A related (but somewhat inferior) empirical practice is to append asterisks (*) to coefficient
estimates or test statistics to indicate the level of significance. A common practice to to append
a single asterisk (*) for an estimate or test statistic which exceeds the 10% critical value (i.e., is
significant at the 10% level), append a double asterisk (**) for a test which exceeds the 5% critical
value, or append a triple asterisk (***) for a test which exceeds the 1% critical value. Such a practice
can be better than a table of raw test statistics as the asterisks permit a quick interpretation of
significance. On the other hand, asterisks are inferior to p-values, which are also easy and quick to
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interpret. The goal is essentially the same; it seems wiser to report p-values whenever possible and
avoid the use of asterisks.

Our recommendation is that the best empirical practice is to compute and report the asymptotic
p-value p rather than simply the test statistic 7', the binary decision Accept/Reject, or appending
asterisks. The p-value is a simple statistic, easy to interpret, and contains more information than
the other choices.

We now summarize the main features of hypothesis testing.

1. Select a significance level a.

2. Select a test statistic T" with asymptotic distribution T’ -, & under Hy.

3. Set the asymptotic critical value ¢ so that 1 — G(c) = «, where G is the distribution function

of .
4. Calculate the asymptotic p-value p = 1 — G(T).
5. Reject Hg if T' > ¢, or equivalently p < .
6. Accept Hg if T' < ¢, or equivalently p > «a.

7. Report p to summarize the evidence concerning Hy versus Hj.

9.8 t-ratios and the Abuse of Testing

In Section 4.18, we argued that a good applied practice is to report coefﬁcjen‘c estimates 0 and
standard errors s() for all coefficients of interest in estimated models. With 6 and s(@) the reader

can easily construct confidence intervals [5 + 25(5)] and t-statistics (g— 9[)) / 8(5) for hypotheses

of interest.

Some applied papers (especially older ones) report t-ratios T' = ) / s(@\) instead of standard errors.
This is poor econometric practice. While the same information is being reported (you can back out
standard errors by division, e.g. s(f) = 0/T), standard errors are generally more helpful to readers
than t-ratios. Standard errors help the reader focus on the estimation precision and confidence
intervals, while t-ratios focus attention on statistical significance. While statistical significance
is important, it is less important that the parameter estimates themselves and their confidence
intervals. The focus should be on the meaning of the parameter estimates, their magnitudes, and
their interpretation, not on listing which variables have significant (e.g. non-zero) coefficients.
In many modern applications, sample sizes are very large so standard errors can be very small.
Consequently t-ratios can be large even if the coefficient estimates are economically small. In
such contexts it may not be interesting to announce “The coefficient is non-zero!” Instead, what is
interesting to announce is that “The coefficient estimate is economically interesting!”

In particular, some applied papers report coefficient estimates and t-ratios, and limit their
discussion of the results to describing which variables are “significant” (meaning that their t-ratios
exceed 2) and the signs of the coefficient estimates. This is very poor empirical work, and should be
studiously avoided. It is also a recipe for banishment of your work to lower tier economics journals.

Fundamentally, the common t-ratio is a test for the hypothesis that a coefficient equals zero.
This should be reported and discussed when this is an interesting economic hypothesis of interest.
But if this is not the case, it is distracting.

One problem is that standard packages, such as Stata, by default report t-statistics and p-values
for every estimated coefficient. While this can be useful (as a user doesn’t need to explicitly ask
to test an desired coefficient) it can be misleading as it may unintentionally suggest that the entire
list of t-statistics and p-values are important. Instead, a user should focus on tests of scientifically
motivated hypotheses.
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In general, when a coefficient 6 is of interest, it is constructive to focus on the point estimate,
its standard error, and its confidence interval. The point estimate gives our “best guess” for the
value. The standard error is a measure of precision. The confidence interval gives us the range
of values consistent with the data. If the standard error is large then the point estimate is not
a good summary about #. The endpoints of the confidence interval describe the bounds on the
likely possibilities. If the confidence interval embraces too broad a set of values for 6, then the
dataset is not sufficiently informative to render useful inferences about 6. On the other hand if
the confidence interval is tight, then the data have produced an accurate estimate, and the focus
should be on the value and interpretation of this estimate. In contrast, the statement “the t-ratio
is highly significant” has little interpretive value.

The above discussion requires that the researcher knows what the coefficient # means (in terms
of the economic problem) and can interpret values and magnitudes, not just signs. This is critical
for good applied econometric practice.

For example, consider the question about the effect of marriage status on mean log wages. We
had found that the effect is “highly significant” for men and “close to significant” for women. Now,
let’s construct asymptotic 95% confidence intervals for the coefficients. The one for men is [0.19,
0.23] and that for women is [—0.00, 0.03]. This shows that average wages for married men are
about 19-23% higher than for unmarried men, which is substantial, while the difference for women
is about 0-3%, which is small. These magnitudes are more informative than the results of the
hypothesis tests.

9.9 Wald Tests

The t-test is appropriate when the null hypothesis is a real-valued restriction. More generally,
there may be multiple restrictions on the coefficient vector 8. Suppose that we have g > 1 restric-
tions which can be written in the form (9.1). It is natural to estimate 8 = r(3) by the plug-in
estimate @ = 7(3). To test Hy : 8 = ¢ against H;y : 6 # 60y one approach is to measure the
magnitude of the discrepancy 0— 0. As this is a vector, there is more than one measure of its
length. One simple measure is the weighted quadratic form known as the Wald statistic. This is
(7.47) evaluated at the null hypothesis

N F 1 g
W =W (6) = (0 - 90) ' (0 - 90) (9.10)
where i\/'g = ﬁ,f/ﬁﬁ is an estimate of V5 and R = %T(B)/ . Notice that we can write W

alternatively as
— I a1
W:n<0—00> vV, (0—00)

using the asymptotic variance estimate ‘A/g, or we can write it directly as a function of B as
~ AN PPN —1 ~
W= (r(B) - 60) (RV5R) (r(B)-60). (9.11)
Also, when 7(8) = R’ is a linear function of 3, then the Wald statistic simplifies to
~ ! ~ -1 ~
W — (R’ﬁ _ 90) (R’ VBR> (R’ﬁ _ 90) .

The Wald statistic W is a weighted Euclidean measure of the length of the vector 0— 6p. When
q = 1 then W = T2, the square of the t-statistic, so hypothesis tests based on W and |T| are
equivalent. The Wald statistic (9.10) is a generalization of the t-statistic to the case of multiple
restrictions. As the Wald statistic is symmetric in the argument 0— 0y it treats positive and
negative alternatives symmetrically. Thus the inherent alternative is always two-sided.
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As shown in Theorem 7.16.1, when 3 satisfies r(3) = 0y then W -, X?y a chi-square random
variable with ¢ degrees of freedom. Let G4(u) denote the X?I distribution function. For a given
significance level «, the asymptotic critical value c satisfies & = 1 — Gg4(c). For example, the 5%
critical values for ¢ = 1, ¢ = 2, and ¢ = 3 are 3.84, 5.99, and 7.82, respectively, and in general
the level « critical value can be calculated in MATLAB as chi2inv(1-a,q). An asymptotic test
rejects Hy in favor of Hy if W > c. As with t-tests, it is conventional to describe a Wald test as
“significant” if W exceeds the 5% asymptotic critical value.

Theorem 9.9.1 Under Assumptions 7.1.2 and 7.10.1, and Hy : 8 = 6y,
then .
W — XZ;
and for ¢ satisfying o =1 — G4(c),
Pr(W >c|Hpy) — «

so the test “Reject Hy if W > ¢” has asymptotic size .

Notice that the asymptotic distribution in Theorem 9.9.1 depends solely on ¢, the number of
restrictions being tested. It does not depend on k, the number of parameters estimated.

The asymptotic p-value for W is p = 1 — G4(W), and this is particularly useful when testing
multiple restrictions. For example, if you write that a Wald test on eight restrictions (¢ = 8) has
the value W = 11.2, it is difficult for a reader to assess the magnitude of this statistic unless they
have quick access to a statistical table or software. Instead, if you write that the p-value is p = 0.19
(as is the case for W = 11.2 and ¢ = 8) then it is simple for a reader to interpret its magnitude
as “insignificant”. To calculate the asymptotic p-value for a Wald statistic in MATLAB, use the
command 1-chi2cdf (w,q).

Some packages (including Stata) and papers report F' versions of Wald statistics. That is, for
any Wald statistic W which tests a g-dimensional restriction, the F' version of the test is

F=W/q.

When [ is reported, it is conventional to use Fj ,_j critical values and p-values rather than XZ
values. The connection between Wald and F statistics is demonstrated in Section 9.14 we show
that when Wald statistics are calculated using a homoskedastic covariance matrix, then F' = W/q
is identicial to the F statistic of (5.23). While there is no formal justification to using the Fj ,_j
distribution for non-homoskedastic covariance matrices, the F, ,,_ distribution provides continuity
with the exact distribution theory under normality and is a bit more conservative than the Xg
distribution. (Furthermore, the difference is small when n — & is moderately large.)

To implement a test of zero restrictions in Stata, an easy method is to use the command “test
X1 X2” where X1 and X2 are the names of the variables whose coefficients are hypothesized to equal
zero. This command should be executed after executing a regression command. The F' version of
the Wald statistic is reported, using the covariance matrix calculated using the method specified
in the regression command. A p-value is reported, calculated using the F, ,,_; distribution.

To illustrate, consider the empirical results presented in Table 4.1. The hypothesis “Union
membership does not affect wages” is the joint restriction that both coefficients on “Male Union
Member” and “Female Union Member” are zero. We calculate the Wald statistic for this joint
hypothesis and find W = 23 (or F = 12.5) with a p-value of p = 0.000. Thus we reject the null
hypothesis in favor of the alternative that at least one of the coefficients is non-zero. This does not
mean that both coefficients are non-zero, just that one of the two is non-zero. Therefore examining
both the joint Wald statistic and the individual t-statistics is useful for interpretation.
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As a second example from the same regression, take the hypothesis that married status has
no effect on mean wages for women. This is the joint restriction that the coefficients on “Married
Female” and “Formerly Married Female” are zero. The Wald statistic for this hypothesis is W = 6.4
(F = 3.2) with a p-value of 0.04. Such a p-value is typically called “marginally significant”, in the
sense that it is slightly smaller than 0.05.

Abraham Wald

The Hungarian mathematician/statistician/econometrician Abraham Wald
(1902-1950) developed an optimality property for the Wald test in terms of
weighted average power. He also developed the field of sequential testing
and the design of experiments.

9.10 Homoskedastic Wald Tests

If the error is known to be homoskedastic, then it is appropriate to u&,e the homoskedastic Wald
statistic (7.49) which replaces VA with the homoskedastic estimate Ve This statistic equals

W= (0-0,) (V5)  (6-00)
- (r(B) - 00)' <R’ (x'x)~" ﬁ>_1 (r(B) - 00> /82, (9.12)
In the case of linear hypotheses Hy : R'3 = 0y we can write this as
W~ (RB - 00)' (R (x'x)™ R>_1 (RB-60) /52 (9.13)

We call (9.12) or (9.13) a homoskedastic Wald statistic as it is an appropriate test when the
errors are conditionally homoskedastic.

As for W, when ¢ = 1 then W° = T2, the square of the t-statistic where the latter is computed
with a homoskedastic standard error.

Theorem 9.10.1 Under Assumptions 7.1.2 and 7.10.1, E (e? | mz) =02,

and Hy : @ = 0y, then
d

WO - Xga
and for c satisfying « =1 — Gy(c),
Pr(W0>c\]HI0) —

s0 the test “Reject Hy if W° > ¢” has asymptotic size a.
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9.11 Criterion-Based Tests

The Wald statistic is based on the length of the vector 0— 6y: the discrepancy between the
estimate @ = r(3) and the hypothesized value 8y. An alternative class of tests is based on the
discrepancy between the criterion function minimized with and without the restriction.

Criterion-based testing applies when we have a criterion function, say J(3) with 3 € B, which
is minimized for estimation, and the goal is to test Hy : 3 € Bg versus H; : 3 ¢ By where
By C B. Minimizing the criterion function over B and By we obtain the unrestricted and restricted
estimators

B = argmin J (B)
BeB

B = argmin J (8).
BeBo

The criterion-based statistic for Hy versus H is proportional to

J:ﬂnelglo J(B)—ﬁmei]g J(B)

= J(B) - J(B).

The criterion-based statistic J is sometimes called a distance statistic, a minimum-distance
statistic, or a likelihood-ratio-like statistic.

~ ~

Since By is a subset of B, J(3) > J(B) and thus J > 0. The statistic J measures the cost (on
the criterion) of imposing the null restriction 8 € By.

9.12 Minimum Distance Tests

The minimum distance test is a criterion-based test where J (3) is the minimum distance
criterion (8.20)

J(B):n(ﬁ—ﬂ)/ﬁ’(@—ﬁ) (9.14)

with B the unrestricted (LS) estimator. The restricted estimator B.q minimizes (9.14) subject to
B € By. Observing that J(8) = 0, the minimum distance statistic simplifies to

= JBua) =1 (B~ Brna) W (B~ Bra) - (9.15)

~ — ~—1
The efficient minimum distance estimator B,,,q is obtained by setting W = V" in (9.14) and
(9.15). The efficient minimum distance statistic for Hy : 3 € By is therefore

T =1 (B~ Buna) V' (B~ Bena) - (9.16)

Consider the class of linear hypotheses Hy : R'3 = 6g. In this case we know from (8.28) that
the efficient minimum distance estimator 3,4 subject to the constraint R'3 = 6y is

Buna =B — VsR (R’ff,gRy1 (R’ﬁ _ 00)

and thus .
B —Boma = VR (R/f/ﬂR) (R’B - 90) .
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Substituting into (9.16) we find
J'=n(RB- 00)' (R"A/gR>_1 R'VsV, ViR (R"A/gR>_1 (RB-60)

—n (R’B — 90)' (R’ %Ry1 (R’B — 90)
W, (9.17)

which is the Wald statistic (9.10).

Thus for linear hypotheses Hy : R'3 = 0y, the efficient minimum distance statistic J* is identical
to the Wald statistic (9.10). For non-linear hypotheses, however, the Wald and minimum distance
statistics are different.

Newey and West (1987) established the asymptotic null distribution of J* for linear and non-
linear hypotheses.

Theorem 9.12.1 Under Assumptions 7.1.2 and 7.10.1, and Hy : 8 = Oy,
then J* —% Xg-

Testing using the minimum distance statistic J* is similar to testing using the Wald statistic W.
Critical values and p-values are computed using the Xf21 distribution. Hy is rejected in favor of Hy
if J* exceeds the level « critical value, which can be calculated in MATLAB as chi2inv(1-«,q).
The asymptotic p-value is p = 1 — G4(J*). In MATLAB, use the command 1-chi2cdf (J,q).

9.13 Minimum Distance Tests Under Homoskedasticity
If we set W = Q,,/s? in (9.14) we obtain the criterion (8.22)
o~ I ~ ~
J(B)=n(B-B) Que (B-8) /5
A minimum distance statistic for Hy : 8 € By is

J% = min J(B).
i (B)

Equation (8.23) showed that
SSE(B) =na* + s2J°(8)

and so the minimizers of SSE(B) and J°(8) are identical. Thus the constrained minimizer of
J?(B) is constrained least-squares

B, = argmin J° (3) = argmin SSE(B) (9.18)
BeBy BEBy

and therefore
Jg = Jg(Bcls)
=n (B - Bds)/ @mm <B - Bm) /32-

In the special case of linear hypotheses Hy : R'3 = 0y, the constrained least-squares estimator
subject to R'3 = 6y has the solution (8.10)

B =B~ QuaR (RQR) (RB-6))
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and solving we find
0 P ! A1\t 3 2 0
J'=n (R’B - 00> (R’QmR) (R’B _ 00> /5% = WO (9.19)
This is the homoskedastic Wald statistic (9.13). Thus for testing linear hypotheses, homoskedastic

minimum distance and Wald statistics agree.
For nonlinear hypotheses they disagree, but have the same null asymptotic distribution.

Theorem 9.13.1 Under Assumptions 7.1.2 and 7.10.1, E (ez2 | azz) = o2,
and Hy : 6 = 60, then JO — x2.

9.14 F Tests

In Section 5.15 we introduced the F' test for exclusion restrictions in the normal regression
model. More generally, the F' statistic for testing Hy : 8 € By is

(62 —5?) /q

iy ey

(9.20)

where
n

N 1 ~\2
7= (- =iB)

=1

and ,@ are the unconstrained estimators of 8 and o2,

1 « ~ \2
52 = ﬁ Z (yz - mélgds)

i=1

and Bcls are the constrained least-squares estimators from (9.18), ¢ is the number of restrictions,
and k is the number of unconstrained coefficients.

We can alternatively write N R
— SSE(/BCIS) — SSE(IB)

F
qs?

(9.21)

where
n

2
SSEB) = (vi — =iB)
i=1
is the sum-of-squared errors. Thus F' is a criterion-based statistic. Using (8.23) we can also write
F as
F =7,

so the F' statistic is identical to the homoskedastic minimum distance statistic divided by the
number of restrictions q.

As we discussed in the previous section, in the special case of linear hypotheses Hy : R'3 = 0y,
JO = WO, It follows that in this case F' = W°/q. Thus for linear restrictions the F statistic equals
the homoskedastic Wald statistic divided by ¢. It follows that they are equivalent tests for Hy
against Hj.
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Theorem 9.14.1 For tests of linear hypotheses Hy : R'3 = 0,
F=W%q

the F statistic equals the homoskedastic Wald statistic divided by the degrees
of freedom. Thus under 7.1.2 and 7.10.1, & (el2 | :1:1) =02, andHy : 6 = 0y,
then

F-%32/q.

When using an F' statistic, it is conventional to use the Fj,_j distribution for critical val-
ues and p-values. Critical values are given in MATLAB by finv(1-a,q,n-k), and p-values by
1-fcdf (F,q,n-k). Alternatively, the Xg /q distribution can be used, using chi2inv(1-«,q)/q and
1-chi2cdf (F*q,q), respectively. Using the Fj,_; distribution is a prudent small sample adjust-
ment which yields exact answers if the errors are normal, and otherwise slightly increasing the
critical values and p-values relative to the asymptotic approximation. Once again, if the sample
size is small enough that the choice makes a difference, then probably we shouldn’t be trusting the
asymptotic approximation anyway!

An elegant feature about (9.20) or (9.21) is that they are directly computable from the standard
output from two simple OLS regressions, as the sum of squared errors (or regression variance) is
a typical printed output from statistical packages, and is often reported in applied tables. Thus
F' can be calculated by hand from standard reported statistics even if you don’t have the original
data (or if you are sitting in a seminar and listening to a presentation!).

If you are presented with an F statistic (or a Wald statistic, as you can just divide by ¢) but
don’t have access to critical values, a useful rule of thumb is to know that for large n, the 5%
asymptotic critical value is decreasing as ¢ increases, and is less than 2 for ¢ > 7.

A word of warning: In many statistical packages, when an OLS regression is estimated an
“F-statistic” is automatically reported, even though no hypothesis test was requested. What the
package is reporting is an F' statistic of the hypothesis that all slope coefficients! are zero. This was
a popular statistic in the early days of econometric reporting when sample sizes were very small
and researchers wanted to know if there was “any explanatory power” to their regression. This is
rarely an issue today, as sample sizes are typically sufficiently large that this F' statistic is nearly
always highly significant. While there are special cases where this F' statistic is useful, these cases
are not, typical. As a general rule, there is no reason to report this F' statistic.

9.15 Hausman Tests

Hausman (1978) introduced a general idea about how to test a hypothesis Hy. If you have
two estimators, one which is efficient under Hy but inconsistent under H;, and another which is
consistent under Hj, then construct a test as a quadratic form in the differences of the estimators.
In the case of testing a hypothesis Ho : 7(8) = 6 let 3,5 denote the unconstrained least-squares
estimator and let B,,,q denote the efficient minimum distance estimator which imposes 7(3) = 0.
Both estimators are consistent under Hp, but Bemd is asymptotically efficient. Under Hj, Bols is
consistent for B but B,,,q is inconsistent. The difference has the asymptotic distribution

i (B~ Buns) N (0. ViR (V) V).

LAll coefficients except the intercept.
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Let A~ denote the Moore-Penrose generalized inverse. The Hausman statistic for Hy is
H = <Bols - Bemd)l avar (Bols - Bemd) ) <Bols - Bemd)
=1 (B~ Bna) (VR (RVAR) " BV5) (Bt~ Buna)-

~1/2 ~ At~ ~\—1 ~ ~1/2
The matrix VB/ R (RI VgR) R VB/ idempotent so its generalized inverse is itself. (See Section
??.) It follows that

~ o~ [t~ ~\—1 /)~ - ~— ~ ~ f~f~ ~\—1 ~y~ -
(VgR(R/VBR) R/Vg> _ ﬂ1/2 <VL1.3/2R(R/ BR> R/V;.B/2> Vﬁl/z
~—1/251/2 (1o S\ Tl ~71/25-1/2
~ Vs Vg R(RVaR) RVy v,
o~ ~] ~ ~\ —1 ~/
- R(R'VR)

Thus the Hausman statistic is
~ ~ I < ~f~ ~\—1 ) s~ ~
H=n <Bols - ﬁemd) R (R VﬂR> R <ﬁols - ﬁemd) s
In the context of linear restrictions, R =R and R’B = 6 so the statistic takes the form
—~ I~ ~ -1 ~
H=n (R’,Bols . 90) R (R’ VﬁR) (R’ﬁols - 90) ,
which is precisely the Wald statistic. With nonlinear restrictions then can differ.
In either case we see that that the asymptotic null distribution of the Hausman statistic H is

X37 so the appropriate test is to reject Hy in favor of Hy if H > ¢ where c is a critical value taken
from the XZ distribution.

Theorem 9.15.1 For general hypotheses the Hausman test statistic is
~ ~ I ~ ~f~ ~\—1 ~y s~ ~
H =1 (Bos — Bema) B(RVsR) R (Boss — Bema)
and has the asymptotic distribution under Hy : v(3) = 6y,

d
H—>X2-

Jerry Hausman

Jerry Hausman (1946- ) of the United States is a leading micro-

econometrician, best known for his influential contributions on specification
testing and panel data.
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9.16 Score Tests

Score tests are traditionally derived in likelihood analysis, but can more generally be constructed
from first-order conditions evaluated at restricted estimates. We focus on the likelihood derivation.

Given the log likelihood function log L(3,0?), a restriction Hy : 7 (8) = 69, and restricted
estimators 3 and 2, the score statistic for Hy is defined as

S = <a log L(3 ~2)>/<— G, L(3 &2)>1 < 9 1 L(B,5 )>
o8 "> opog "> op e rT )

The idea is that if the restriction is true, then the restricted estimators should be close to the
maximum of the log-likelihood where the derivative should be small. However if the restriction is
false then the restricted estimators should be distant from the maximum and the derivative should
be large. Hence small values of .S are expected under Hy and large values under H;. Tests of Hy
thus reject for large values of S.

We explore the score statistic in the context of the normal regression model and linear hypotheses
r(8) = R'3. Recall that in the normal regression log-likelihood function is

n

log L(B, 0°) = —% log(2m0?) — %ﬂ Z (yz - mgﬂ)2.

The constrained MLE under linear hypotheses is constrained least squares
B=B- (X'X)'R|R (X'X) 'R - (RB-c)
& =y — i

n
- 1
F=1y 2
mn
=1

We can calculate that the derivative and Hessian are

8 = ~92 " )~
%logL(B,o )= Z ( —mzﬁ) 2X e
0? -
3398 -log L(B,5%) = —221 :—XX
Sincee=y— X B we can further calculate that
0 ~ 1 ~
95 08 L(B.7) = = (X'X) (x'x)" X'y - (X'X) "' X'XB)
1

== (x’ ( -3
:—R[R’(X X))~ 1R} (RB-c).
Together we find that
§ = (R’B — c)' <R’ (x'x)™" R)il (R’fa — c) Yoz

This is identical to the homoskedastic Wald statistic, with s? replaced by 2. We can also write
S as a monotonic transformation of the F' statistic, since

(32— 52) 52 1
S=n——s—~= l-=| = 1—— .
T2 n( 02) " 1+-4LF
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The test “Reject Hy for large values of S” is identical to the test “Reject Hy for large values of
F” | so they are identical tests. Since for the normal regression model the exact distribution of F
is known, it is better to use the F statistic with F' p-values.

In more complicated settings a potential advantage of score tests is that they are calculated
using the restricted parameter estimates 6‘ rather than the unrestricted estimates ,6 Thus when
3 is relatively easy to calculate there can be a preference for score statistics. This is not a concern
for linear restrictions.

More generally, score and score-like statistics can be constructed from first-order conditions
evaluated at restricted parameter estimates. Also, when test statistics are constructed using co-
variance matrix estimators which are calculated using restricted parameter estimates (e.g. restricted
residuals) then these are often described as score tests.

An example of the latter is the Wald-type statistic

—~ I fmt e A\~ —~
W= (r(8)—60) (RV3R) (r(B)—60)
where the covariance matrix estimate {/B is calculated using the restricted residuals €; = y; — m;B

This may be done when 3 and 0 are high-dimensional, so there is wory that the estimator i\/ﬁ is
imprecise.

9.17 Problems with Tests of Nonlinear Hypotheses

While the t and Wald tests work well when the hypothesis is a linear restriction on 3, they
can work quite poorly when the restrictions are nonlinear. This can be seen by a simple example
introduced by Lafontaine and White (1986). Take the model

yi=B+e
e; ~ N(0,0?)
and consider the hypothesis
Hy:5=1.
Let B and 62 be the sample mean and variance of y;. The standard Wald test for Hy is
~ 2
(i-1)
W = nT.
Now notice that Hy is equivalent to the hypothesis
Ho(s) . BS =1

for any positive integer s. Letting r(3) = 3%, and noting R = s~ !, we find that the standard
Wald test for Ho(s) is
~ 2
(1)
W(s) = n———=—+

 52s2[25-2°

While the hypothesis 8° = 1 is unaffected by the choice of s, the statistic W (s) varies with s. This
is an unfortunate feature of the Wald statistic.

To demonstrate this effect, we have plotted in Figure 9.1 the Wald statistic W (s) as a function
of s, setting n/62 = 10. The increasing solid line is for the case B = 0.8. The decreasing dashed
line is for the case ﬁ = 1.6. It is easy to see that in each case there are values of s for which the
test statistic is significant relative to asymptotic critical values, while there are other values of s
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Figure 9.1: Wald Statistic as a function of s

for which the test statistic is insignificant. This is distressing since the choice of s is arbitrary and
irrelevant to the actual hypothesis.

Our first-order asymptotic theory is not useful to help pick s, as W (s) , X% under Hy for any
s. This is a context where Monte Carlo simulation can be quite useful as a tool to study and
compare the exact distributions of statistical procedures in finite samples. The method uses random
simulation to create artificial datasets, to which we apply the statistical tools of interest. This
produces random draws from the statistic’s sampling distribution. Through repetition, features of
this distribution can be calculated.

In the present context of the Wald statistic, one feature of importance is the Type I error
of the test using the asymptotic 5% critical value 3.84 — the probability of a false rejection,
Pr (W (s) > 3.84 | = 1). Given the simplicity of the model, this probability depends only on s, n,
and o2. In Table 9.1 we report the results of a Monte Carlo simulation where we vary these three
parameters. The value of s is varied from 1 to 10, n is varied among 20, 100 and 500, and o is
varied among 1 and 3. The Table reports the simulation estimate of the Type I error probability
from 50,000 random samples. Each row of the table corresponds to a different value of s — and thus
corresponds to a particular choice of test statistic. The second through seventh columns contain the
Type I error probabilities for different combinations of n and ¢. These probabilities are calculated
as the percentage of the 50,000 simulated Wald statistics W (s) which are larger than 3.84. The
null hypothesis 5° = 1 is true, so these probabilities are Type I error.

To interpret the table, remember that the ideal Type I error probability is 5% (.05) with devia-
tions indicating distortion. Type I error rates between 3% and 8% are considered reasonable. Error
rates above 10% are considered excessive. Rates above 20% are unacceptable. When comparing
statistical procedures, we compare the rates row by row, looking for tests for which rejection rates
are close to 5% and rarely fall outside of the 3%-8% range. For this particular example the only
test which meets this criterion is the conventional W = W (1) test. Any other choice of s leads to
a test with unacceptable Type I error probabilities.

Table 9.1
Type I Error Probability of Asymptotic 5% W (s) Test
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c=1 oc=3
s|nmn=20 n=100 n=9500 | n=20 n=100 n =500
1 .06 .05 .05 .07 .05 .05
2 .08 .06 .05 .15 .08 .06
3 .10 .06 .05 21 12 .07
4 13 .07 .06 .25 .15 .08
5 15 .08 .06 .28 18 .10
6 A7 .09 .06 .30 .20 1
7 .19 .10 .06 31 .22 13
8 .20 12 .07 .33 .24 .14
9 .22 13 .07 .34 .25 .15
10 .23 .14 .08 .35 .26 .16

Note: Rejection frequencies from 50,000 simulated random samples

In Table 9.1 you can also see the impact of variation in sample size. In each case, the Type I
error probability improves towards 5% as the sample size n increases. There is, however, no magic
choice of n for which all tests perform uniformly well. Test performance deteriorates as s increases,
which is not surprising given the dependence of W (s) on s as shown in Figure 9.1.

In this example it is not surprising that the choice s = 1 yields the best test statistic. Other
choices are arbitrary and would not be used in practice. While this is clear in this particular
example, in other examples natural choices are not always obvious and the best choices may in fact
appear counter-intuitive at first.

This point can be illustrated through another example which is similar to one developed in
Gregory and Veall (1985). Take the model

Yi = Bo + 11 + 22 + € (9.22)
E (wzez) =0
and the hypothesis
H : % =0y
where 6 is a known constant. Equivalently, define 6 = 31/f2, so the hypothesis can be stated as

HO 10 = 00.
Let B = (Bo,P1,52) be the least-squares estimates of (9.22), let VB be an estimate of the

covariance matrix for B and set 6 = Bl / B\g. Define

An alternative statistic can be constructed through reformulating the null hypothesis as

Ho : 81 — 6p32 = 0.
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A t-statistic based on this formulation of the hypothesis is

31 — 9032
Ty =
<R2 VBRZ)

where
0
Ry = 1
—0o
To compare 17 and T» we perform another simple Monte Carlo simulation. We let z1; and xo;

be mutually independent N(0, 1) variables, e; be an independent N(0,0?) draw with ¢ = 3, and

normalize Sy = 0 and 51 = 1. This leaves 32 as a free parameter, along with sample size n. We vary
B2 among .1, .25, .50, .75, and 1.0 and n among 100 and 500.

Table 9.2
Type I Error Probability of Asymptotic 5% t-tests
n = 100 n = 500
Pr(I < —1.645) | Pr(T > 1.645) | Pr(I < —1.645) | Pr(T > 1.645)

B2 | Th T Ty 15 Ty 15 Th 15
10 | .47 .06 .00 .06 .28 .05 .00 .05
.25 | .26 .06 .00 .06 .15 .05 .00 .05
.50 | .15 .06 .00 .06 .10 .05 .00 .05
75| 12 .06 .00 .06 .09 .05 .00 .05
1.00 | .10 .06 .00 .06 .07 .05 .02 .05

The one-sided Type I error probabilities Pr (7" < —1.645) and Pr (7 > 1.645) are calculated
from 50,000 simulated samples. The results are presented in Table 9.2. Ideally, the entries in the
table should be 0.05. However, the rejection rates for the 77 statistic diverge greatly from this
value, especially for small values of B2. The left tail probabilities Pr (77 < —1.645) greatly exceed
5%, while the right tail probabilities Pr (7} > 1.645) are close to zero in most cases. In contrast,
the rejection rates for the linear T5 statistic are invariant to the value of 35, and are close to the
ideal 5% rate for both sample sizes. The implication of Table 8.2 is that the two t-ratios have
dramatically different sampling behavior.

The common message from both examples is that Wald statistics are sensitive to the algebraic
formulation of the null hypothesis.

A simple solution is to use the minimum distance statistic JJ, which equals W with » = 1 in the
first example, and |T5] in the second example. The minimum distance statistic is invariant to the

algebraic formulation of the null hypothesis, so is immune to this problem. Whenever possible, the
Wald statistic should not be used to test nonlinear hypotheses.

9.18 Monte Carlo Simulation

In Section 9.17 we introduced the method of Monte Carlo simulation to illustrate the small
sample problems with tests of nonlinear hypotheses. In this section we describe the method in
more detail.

Recall, our data consist of observations (y;, ;) which are random draws from a population
distribution F. Let 6 be a parameter and let T = T ((y1, 1), ..., (Yn, Tn) ,0) be a statistic of
interest, for example an estimator 6 or a t-statistic (0 — 0)/s(0). The exact distribution of 7" is

Gu,F)=Pr(T'<u|F).
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While the asymptotic distribution of 7' might be known, the exact (finite sample) distribution G
is generally unknown.

Monte Carlo simulation uses numerical simulation to compute G(u, F) for selected choices of F.
This is useful to investigate the performance of the statistic 7" in reasonable situations and sample
sizes. The basic idea is that for any given F, the distribution function G(u, F) can be calculated
numerically through simulation. The name Monte Carlo derives from the famous Mediterranean
gambling resort where games of chance are played.

The method of Monte Carlo is quite simple to describe. The researcher chooses F' (the dis-
tribution of the data) and the sample size n. A “true” value of @ is implied by this choice, or
equivalently the value @ is selected directly by the researcher which implies restrictions on F'.

Then the following experiment is conducted by computer simulation:

1. n independent random pairs (y;,z}), ¢ = 1,...,n, are drawn from the distribution F' using
the computer’s random number generator.

2. The statistic T' =T ((y§, x7), ..., (y};, ;) , @) is calculated on this pseudo data.

For step 1, computer packages have built-in random number procedures including U|0, 1] and
N(0,1). From these most random variables can be constructed. (For example, a chi-square can be
generated by sums of squares of normals.)

For step 2, it is important that the statistic be evaluated at the “true” value of @ corresponding
to the choice of F.

The above experiment creates one random draw from the distribution G(u, F'). This is one
observation from an unknown distribution. Clearly, from one observation very little can be said.
So the researcher repeats the experiment B times, where B is a large number. Typically, we set
B = 1000 or B = 5000. We will discuss this choice later.

Notationally, let the b** experiment result in the draw Tp, b = 1, ..., B. These results are stored.
After all B experiments have been calculated, these results constitute a random sample of size B
from the distribution of G(u, F) = Pr(Ty <u)=Pr(T' <u | F).

From a random sample, we can estimate any feature of interest using (typically) a method of
moments estimator. We now describe some specific examples.

Suppose we are interested in the bias, mean-squared error (MSE), and/or variance of the dis-
tribution of § — #. We then set 7= 6 — 6, run the above experiment, and calculate

B'/Té) ! XB:T ! i? 0
ias(f) = = = — -
B b=1 ' B b=1 '
—_— 1 B 9 1 B —~ 2
MSE(©) = 5> (L) =35> (eb - 9)
b=1 b=1

var(9) = MSE(D) - (B@))Q

Suppose we are interested in the Type I error associated with an asymptotic 5% two-sided t-test.
We would then set T' = )9 - 9) /s(6) and calculate

B
~ 1
P== ; 1(Ty > 1.96), (9.23)

the percentage of the simulated t-ratios which exceed the asymptotic 5% critical value.
Suppose we are interested in the 5% and 95% quantile of T = 6 or T = ((/9\— (9) /s(8). We then
compute the 5% and 95% sample quantiles of the sample {7}}. The o sample quantile is a number
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da such that 100a% of the sample are less than ¢,. A simple way to compute sample quantiles is
to sort the sample {T}} from low to high. Then g, is the N** number in this ordered sequence,
where N = (B + 1)a. It is therefore convenient to pick B so that N is an integer. For example, if
we set B = 999, then the 5% sample quantile is 50" sorted value and the 95% sample quantile is
the 950" sorted value.

The typical purpose of a Monte Carlo simulation is to investigate the performance of a statistical
procedure (estimator or test) in realistic settings. Generally, the performance will depend on n and
F. In many cases, an estimator or test may perform wonderfully for some values, and poorly for
others. It is therefore useful to conduct a variety of experiments, for a selection of choices of n and
F.

As discussed above, the researcher must select the number of experiments, B. Often this is
called the number of replications. Quite simply, a larger B results in more precise estimates of
the features of interest of G, but requires more computational time. In practice, therefore, the
choice of B is often guided by the computational demands of the statistical procedure. Since the
results of a Monte Carlo experiment are estimates computed from a random sample of size B, it
is straightforward to calculate standard errors for any quantity of interest. If the standard error is
too large to make a reliable inference, then B will have to be increased.

In particular, it is simple to make inferences about rejection probabilities from statistical tests,
such as the percentage estimate reported in (9.23). The random variable 1 (T} > 1.96) is iid
Bernoulli, equalling 1 with probability p = E (1 (7, > 1.96)). The average (9.23) is therefore an
unbiased estimator of p with standard error s (p) = \/p(1 — p) /B. As p is unknown, this may be
approximated by replacing p with p or with an hypothesized value. For example, if we are assessing
an asymptotic 5% test, then we can set s (p) = 1/(.05) (.95) /B ~ .22/v/B. Hence, standard errors
for B =100, 1000, and 5000, are, respectively, s (p) = .022, .007, and .003.

Most papers in econometric methods, and some empirical papers, include the results of Monte
Carlo simulations to illustrate the performance of their methods. When extending existing results,
it is good practice to start by replicating existing (published) results. This is not exactly possible
in the case of simulation results, as they are inherently random. For example suppose a paper
investigates a statistical test, and reports a simulated rejection probability of 0.07 based on a
simulation with B = 100 replications. Suppose you attempt to replicate this result, and find a
rejection probability of 0.03 (again using B = 100 simulation replications). Should you conclude
that you have failed in your attempt? Absolutely not! Under the hypothesis that both simulations
are identical, you have two independent estimates, p1 = 0.07 and po = 0.03, of a common probability
p. The asymptotic (as B — o) distribution of their difference is /B (p; — p2) 4, N(0,2p(1—p)), so
a standard error for p; —py = 0.04 is s = /2p(1 — p)/B ~ 0.03, using the estimate p = (p1 +p2)/2.
Since the t-ratio 0.04/0.03 = 1.3 is not statistically significant, it is incorrect to reject the null
hypothesis that the two simulations are identical. The difference between the results p1 = 0.07 and
P2 = 0.03 is consistent with random variation.

What should be done? The first mistake was to copy the previous paper’s choice of B = 100.
Instead, suppose you set B = 5000. Suppose you now obtain py = 0.04. Then p; — p2 = 0.03 and
a standard error is 5 = /p(1 — p) (1/100 + 1/5000) ~ 0.02. Still we cannot reject the hypothesis
that the two simulations are different. Even though the estimates (0.07 and 0.04) appear to be
quite different, the difficulty is that the original simulation used a very small number of replications
(B = 100) so the reported estimate is quite imprecise. In this case, it is appropriate to conclude
that your results “replicate” the previous study, as there is no statistical evidence to reject the
hypothesis that they are equivalent.

Most journals have policies requiring authors to make available their data sets and computer
programs required for empirical results. They do not have similar policies regarding simulations.
Nevertheless, it is good professional practice to make your simulations available. The best practice
is to post your simulation code on your webpage. This invites others to build on and use your
results, leading to possible collaboration, citation, and/or advancement.
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9.19 Confidence Intervals by Test Inversion

There is a close relationship between hypothesis tests and confidence intervals. We observed in
Section 7.13 that the standard 95% asymptotic confidence interval for a parameter 6 is

~ ~ ~

C=16-196-5(6), 6+1.96-s(6) (9.24)
={0:|T(0)] <1.96}.

That is, we can describe C as “The point estimate plus or minus 2 standard errors” or “The set of
parameter values not rejected by a two-sided t-test.” The second definition, known as test statistic
inversion is a general method for finding confidence intervals, and typically produces confidence
intervals with excellent properties.

Given a test statistic T'(f) and critical value ¢, the acceptance region “Accept if T'(0) < ¢”
is identical to the confidence interval ¢ = {6:T(#) < c¢}. Since the regions are identical, the
probability of coverage Pr (9 € 6) equals the probability of correct acceptance Pr (Accept|d) which
is exactly 1 minus the Type I error probability. Thus inverting a test with good Type I error
probabilities yields a confidence interval with good coverage probabilities.

Now suppose that the parameter of interest # = r(3) is a nonlinear function of the coeflicient
vector B. In this case the standard confidence interval for 6 is the set C asin (9.24) where 6 = r(3)

is the point estimate and 3(5) = \/l?l/ ‘Afﬁﬁ is the delta method standard error. This confidence
interval is inverting the t-test based on the nonlinear hypothesis r(3) = 6. The trouble is that in
Section 9.17 we learned that there is no unique t-statistic for tests of nonlinear hypotheses and that
the choice of parameterization matters greatly.

For example, if 6 = (1/8, then the coverage probability of the standard interval (9.24) is 1
minus the probability of the Type I error, which as shown in Table 8.2 can be far from the nominal
5%.

In this example a good solution is the same as discussed in Section 9.17 — to rewrite the
hypothesis as a linear restriction. The hypothesis § = [31/82 is the same as 052 = (1. The t-
statistic for this restriction is A

B — B2t
—~ 1/2
(RV3R)

()

and V7 is the covariance matrix for (B\l Bg) A 95% confidence interval for § = (31 /2 is the set of
values of @ such that |7°(¢)| < 1.96. Since 6 appears in both the numerator and denominator, 7'(6)
is a non-linear function of # so the easiest method to find the confidence set is by grid search over
6.

For example, in the wage equation

T(0) =

where

log(Wage) = By Experience + faExperience® /100 4 - --

the highest expected wage occurs at Exzperience = —503;/02. From Table 4.1 we have the point
estimate 6 = 29.8 and we can calculate the standard error 5(5) = 0.022 for a 95% confidence interval
[29.8, 29.9]. However, if we instead invert the linear form of the test we can numerically find the
interval [29.1, 30.6] which is much larger. From the evidence presented in Section 9.17 we know the
first interval can be quite inaccurate and the second interval is greatly preferred.
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9.20 Multiple Tests and Bonferroni Corrections

In most applications, economists examine a large number of estimates, test statistics, and p-
values. What does it mean (or does it mean anything) if one statistic appears to be “significant”
after examining a large number of statistics? This is known as the problem of multiple testing
or multiple comparisons.

To be specific, suppose we examine a set of k coefficients, standard errors and t-ratios, and
consider the “significance” of each statistic. Based on conventional reasoning, for each coefficient
we would reject the hypothesis that the coefficient is zero with asymptotic size « if the absolute t-
statistic exceeds the 1 — « critical value of the normal distribution, or equivalently if the p-value for
the t-statistic is smaller than «. If we observe that one of the k statistics is “significant” based on
this criteria, that means that one of the p-values is smaller than «, or equivalently, that the smallest
p-value is smaller than a. We can then rephrase the question: Under the joint hypothesis that a set
of k£ hypotheses are all true, what is the probability that the smallest p-value is smaller than o7 In
general, we cannot provide a precise answer to this quesion, but the Bonferroni correction bounds
this probability by ak. The Bonferroni method furthermore suggests that if we want the familywise
error probability (the probability that one of the tests falsely rejects) is bounded below «, then
an appropriate rule is to reject only if the smallest p-value is smaller than «/k. Equivalenlty, the
Bonferroni familywise p-value is kminj<y p;.

Formally, suppose we have k hypotheses H;, j = 1, ..., k. For each we have a test and associated
p-value p; with the property that when Hj is true lim,, o Pr(p; < o) = a. We then observe that
among the £ tests, one of the £ will appear “significant” if min;<j, p; < a.. This event can be written
as

k
{I}ggpj < a} :jL—Jl {pj <aj.

k
Boole’s inequality states that for any k events A;, Pr UAj < Z§:1 Pr(Ag). Thus
j=1

k

P inp; < Pr(p;

r(IjIlSlilpj <a> _Z r(p; < a) — ka
j=1

as stated. This demonstates that the familywise rejection probability is at most k& times the

individual rejection probability.

Furthermore,
k
. - «
Pr (Ijnglilpj < %> < ;Pr (pj < E) — Q.

This demonstrates that the family rejection probability can be controlled (bounded below «) if
each individual test is subjected to the stricter standard that a p-value must be smaller than «o/k
to be labeled as “significant.”

To illustrate, suppose we have two coefficient estimates, with individual p-values 0.04 and
0.15. Based on a conventional 5% level, the standard individual tests would suggest that the first
coefficient estimate is “significant” but not the second. A Bonferroni 5% test, however, does not
reject as it would require that the smallest p-value be smaller than 0.025, which is not the case in
this example. Alternatively, the Bonferroni familywise p-value is 0.08, which is not significant at
the 5% level.

In contrast, if the two p-values are 0.01 and 0.15, then the Bonferroni familywise p-value is 0.02,
which is significant at the 5% level.
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9.21 Power and Test Consistency

The power of a test is the probability of rejecting Hy when Hj is true.
For simplicity suppose that y; is i.i.d. N(6,0%) with 0 known, consider the t-statistic 7'(0) =
Vn (5 —0) /o, and tests of Hy : = 0 against Hj : 6 > 0. We reject Hy if 7= T'(0) > ¢. Note that

T=T(9)+nb/o

and T'(f) has an exact N(0, 1) distribution. This is because T'(0) is centered at the true mean 6,
while the test statistic 7°(0) is centered at the (false) hypothesized mean of 0.
The power of the test is

Pr(T'>c|0)=Pr(Z++nb/oc>c)=1-®(c—+/nb/o).

This function is monotonically increasing in g and n, and decreasing in ¢ and c.

Notice that for any ¢ and 6 # 0, the power increases to 1 as n — oo. This means that for 8 € Hy,
the test will reject Hy with probability approaching 1 as the sample size gets large. We call this
property test consistency.

Definition 9.21.1 A test of Hy : @ € ©q is consistent against fixed
alternatives if for all @ € ©1, Pr(Reject Hy | ) — 1 as n — oc.

For tests of the form “Reject Hy if T > ¢”, a sufficient condition for test consistency is that the
T diverges to positive infinity with probability one for all 8 € ©;.

Definition 9.21.2 T -2 0o as n — oo if for all M < oo, Pr (T<M)—
0 as n — oo. Similarly, T L, —00 asn — oo if for all M < oo,
Pr(T"> —-M) — 0 as n — oo.

In general, t-tests and Wald tests are consistent against fixed alternatives. Take a t-statistic for
a test of Hp : 8 = 6
T=——
s(

where 6 is a known value and s(8) = \/n~1Vj . Note that

0—0 (06
T = —— .
RIS

The first term on the right-hand-side converges in distribution to N(0, 1). The second term on the
right-hand-side equals zero if 8 = 6y, converges in probability to +oc if # > 6y, and converges
in probability to —oo if < 6y. Thus the two-sided t-test is consistent against Hy : 8 # 6y, and
one-sided t-tests are consistent against the alternatives for which they are designed.

~—

Theorem 9.21.1 Under Assumptions 7.1.2 and 7.10.1, for @ = r(3) # 6y
and ¢ = 1, then |T| == oo, so for any ¢ < oo the test “Reject Hy if |[T| > ¢”
is consistent against fized alternatives.
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The Wald statistic for Hy : @ = r(3) = 6 against Hj : 6 # 0 is
o~ ! o~ _ ~
W:n<9—00> vV, (9—00).

o~ o~ !~ _ ~
Under Hy, 8 2+ 0 # ;. Thus (0 - 00) v, (0 - 00) 2, (60— 00) V5 (0 —6p) > 0. Hence

under Hy, W -2 . Again, this implies that Wald tests are consistent tests.

Theorem 9.21.2 Under Assumptions 7.1.2 and 7.10.1, for 8 = r(B) #
0g, then W £, 00, so for any ¢ < oo the test “Reject Hy if W > ¢” is
consistent against fived alternatives.

9.22 Asymptotic Local Power

Consistency is a good property for a test, but does not give a useful approximation to the power
of a test. To approximate the power function we need a distributional approximation.

The standard asymptotic method for power analysis uses what are called local alternatives.
This is similar to our analysis of restriction estimation under misspecification (Section 8.13). The
technique is to index the parameter by sample size so that the asymptotic distribution of the
statistic is continuous in a localizing parameter. In this section we consider t-tests on real-valued
parameters and in the next section consider Wald tests. Specifically, we consider parameter vectors
B3,, which are indexed by sample size n and satisfy the real-valued relationship

0, =r(8,) = 0o +n"/?h (9.25)

where the scalar h is called a localizing parameter. We index 3,, and 6, by sample size to
indicate their dependence on n. The way to think of (9.25) is that the true value of the parameters
are 3,, and 0,,. The parameter 6,, is close to the hypothesized value 6y, with deviation n~1/2hp.

The specification (9.25) states that for any fixed h , 6, approaches 6y as n gets large. Thus
0y, is “close” or “local” to #y. The concept of a localizing sequence (9.25) might seem odd since
in the actual world the sample size cannot mechanically affect the value of the parameter. Thus
(9.25) should not be interpreted literally. Instead, it should be interpreted as a technical device
which allows the asymptotic distribution of the test statistic to be continuous in the alternative
hypothesis.

To evaluate the asymptotic distribution of the test statistic we start by examining the scaled
estimate centered at the hypothesized value 6y. Breaking it into a term centered at the true value
0,, and a remainder we find

Vi (0= 60) = v (8- 6,) + v (6, — o)
=/n (@— en) +h
where the second equality is (9.25). The first term is asymptotically normal:
Jn (é— en) V.

where Z ~ N(0,1). Therefore

\/T_z<§—90> i>\/792+h
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Figure 9.2: Asymptotic Local Power Function of One-Sided t Test

or N(h, Vp). This is a continuous asymptotic distribution, and depends continuously on the localizing
parameter h.
Applied to the t statistic we find

d VVeZ+h
VvV
~Z+6 (9.26)

where § = h/\/Vjy. This generalizes Theorem 9.4.1 (which assumes Hy is true) to allow for local
alternatives of the form (9.25).

Consider a t-test of Hy against the one-sided alternative Hj : § > 6y which rejects Hg for 17" > ¢
where ®(¢) = 1 — . The asymptotic local power of this test is the limit (as the sample size
diverges) of the rejection probability under the local alternative (9.25)

lim Pr(Reject Hp) = lim Pr(T > ¢)

=Pr(Z+d6>¢)
=1-®(c—-9)
=P(6—c)
o s).

We call () the asymptotic local power function.

In Figure 9.2 we plot the local power function 7(d) as a function of 6 € [—1,4] for tests of
asymptotic size a = 0.10, « = 0.05, and @ = 0.01. § = 0 corresponds to the null hypothesis so
7m(0) = a. The power functions are monotonically increasing in §. Note that the power is lower
than « for § < 0 due to the one-sided nature of the test.

We can see that the three power functions are ranked by « so that the test with o = 0.10 has
higher power than the test with o = 0.01. This is the inherent trade-off between size and power.
Decreasing size induces a decrease in power, and conversely.
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The coefficient § can be interpreted as the parameter deviation measured as a multiple of the

standard error 5(5) To see this, recall that S(é\) = n~Y21/Vy ~ n~Y/2\/V; and then note that

h o n'2h 6, -6

"= 0 5(0)

-~

Thus ¢ approximately equals the deviation 6,, — 0y expressed as multiples of the standard error s(#).
Thus as we examine Figure 9.2, we can interpret the power function at 6 = 1 (e.g. 26% for a 5% size
test) as the power when the parameter 6,, is one standard error above the hypothesized value. For
example, from Table 4.1 the standard error for the coefficient on “Married Female” is 0.010. Thus
in this example, 6 = 1 corresponds to 6,, = 0.010 or an 1.0% wage premium for married females.
Our calculations show that the asymptotic power of a one-sided 5% test against this alternative is
about 26%.

The difference between power functions can be measured either vertically or horizontally. For
example, in Figure 9.2 there is a vertical dotted line at § = 1, showing that the asymptotic local
power function 7(J) equals 39% for a = 0.10, equals 26% for o = 0.05 and equals 9% for a = 0.01.
This is the difference in power across tests of differing size, holding fixed the parameter in the
alternative.

A horizontal comparison can also be illuminating. To illustrate, in Figure 9.2 there is a hori-
zontal dotted line at 50% power. 50% power is a useful benchmark, as it is the point where the
test has equal odds of rejection and acceptance. The dotted line crosses the three power curves at
=129 (¢ =0.10), 6 = 1.65 (o« = 0.05), and § = 2.33 (a = 0.01). This means that the parameter
6 must be at least 1.65 standard errors above the hypothesized value for a one-sided 5% test to
have 50% (approximate) power.

The ratio of these values (e.g. 1.65/1.29 = 1.28 for the asymptotic 5% versus 10% tests)
measures the relative parameter magnitude needed to achieve the same power. (Thus, for a 5% size
test to achieve 50% power, the parameter must be 28% larger than for a 10% size test.) Even more
interesting, the square of this ratio (e.g. (1.65/1.29)? = 1.64) can be interpreted as the increase
in sample size needed to achieve the same power under fixed parameters. That is, to achieve 50%
power, a 5% size test needs 64% more observations than a 10% size test. This interpretation follows
by the following informal argument. By definition and (9.25) § = h/\/Vy = \/n (0, — 6o) //Ve. Thus
holding € and Vj fixed, §2 is proportional to n.

The analysis of a two-sided t test is similar. (9.26) implies that

0 — 6o

~

S

T = 1z + 5|

and thus the local power of a two-sided t test is

lim Pr(Reject Hp) = lim Pr (7 > ¢)

n—od n—0o0
=Pr(|Z+46| >¢)
=®(f—c)—P(—d—c)

which is monotonically increasing in |d].
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Theorem 9.22.1 Under Assumptions 7.1.2 and 7.10.1, and 8, = r(8,,) =
ro +n~Y2h, then

T(6o) = 95153)0 SN/

where Z. ~ N(0,1) and § = h/\/Vy. For ¢ such that ®(c) =1 — «,
Pr(T(6y) >¢c) — @ (6 —¢).
Furthermore, for ¢ such that ®(c) =1 — /2,

Pr(|T(6p)] >¢c) — @ (0 —¢c)—P(=d—c).

9.23 Asymptotic Local Power, Vector Case

In this section we extend the local power analysis of the previous section to the case of vector-
valued alternatives. We generalize (9.25) to allow 8,, to be vector-valued. The local parameteriza-
tion takes the form

0, =r(3,) =60 +n"2h (9.27)

where h is ¢ x 1.
Under (9.27),

\/ﬁ(é—ao> :\/ﬁ(é—an)wz
L Zp ~ N(h, Vo),

a normal random vector with mean h and variance matrix Vy.
Applied to the Wald statistic we find

W=n (5—00)' Vo' (6-00)
7V T ~ 2N (9.28)

where A = 'V~ 1h. Xg()\) is a non-central chi-square random variable with non-centrality para-
meter A. (See Section 5.3 and Theorem 5.3.3.)

The convergence (9.28) shows that under the local alternatives (9.27), W <, X2(A). This
generalizes the null asymptotic distribution which obtains as the special case A = 0. We can use this
result to obtain a continuous asymptotic approximation to the power function. For any significance
level o > 0 set the asymptotic critical value ¢ so that Pr (Xg > c) = . Then as n — oo,

Pr(W >¢) — Pr (X?]()\) > ¢) = m(A).

The asymptotic local power function 7(A) depends only on «, ¢, and A.
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Figure 9.3: Asymptotic Local Power Function, Varying ¢

Theorem 9.23.1 Under Assumptions 7.1.2 and 7.10.1, and 0, =
r(B,) = 6o +n"Y2h, then

d
W =5 x2(N)
where X\ = h' V;lh. Furthermore, for ¢ such that Pr (Xg > c) =aq,

Pr(W >¢) — Pr (X?I()\) >c).

Figure 9.3 plots 7(\) as a function of A for ¢ = 1, ¢ = 2, and ¢ = 3, and a = 0.05. The
asymptotic power functions are monotonically increasing in A and asymptote to one.

Figure 9.3 also shows the power loss for fixed non-centrality parameter A\ as the dimensionality
of the test increases. The power curves shift to the right as ¢ increases, resulting in a decrease
in power. This is illustrated by the dotted line at 50% power. The dotted line crosses the three
power curves at A = 3.85 (¢ = 1), A = 4.96 (¢ = 2), and A\ = 5.77 (¢ = 3). The ratio of these A
values correspond to the relative sample sizes needed to obtain the same power. Thus increasing
the dimension of the test from ¢ = 1 to ¢ = 2 requires a 28% increase in sample size, or an increase
from ¢ = 1 to ¢ = 3 requires a 50% increase in sample size, to obtain a test with 50% power.

9.24 Technical Proofs*

Proof of Theorem 9.12.1. The conditions of Theorem 8.14.1 hold, since Hp implies Assumption
8.6.1. From (8.58) with W = Vg, we see that

~ ~ ~ o~ ~ ~\—1 ~
v (ﬁ - Bemd> = VpR <RZ'VﬁR> R}Vn (ﬁ - B)
. V4R (R'V3R) ' R'N(0, V)
— V4R Z
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where Z ~ N(0, (R'VgR) ™). Thus

T =1 (B~ Buna) Va' (B~ Buna)
L ZR'VgV;' V4R Z
— 7/ (R'VgR) 7
=2
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Exercises

Exercise 9.1 Prove that if an additional regressor X1 is added to X, Theil’s adjusted e
increases if and only if |Tjy1| > 1, where Ti11 = Br+1/5(Bk+1) is the t-ratio for Sx1q and

s(Brn) = (s[(X'X) Pgaprn)

is the homoskedasticity-formula standard error.

Exercise 9.2 You have two independent samples (y;, X 1) and (yy, X 2) which satisfy y; = X16;+
e; and y, = X208, + ez, where E (z15e1;) = 0 and E (z9;e2;) = 0, and both X7 and X, have k
columns. Let B; and B35 be the OLS estimates of 3; and 3,. For simplicity, you may assume that
both samples have the same number of observations n.

(a) Find the asymptotic distribution of v/n <<BQ - B1> —(By — ,61)> as n — 0o.

(b) Find an appropriate test statistic for Hy : 35 = 3.
(¢) Find the asymptotic distribution of this statistic under Hy.

Exercise 9.3 Let T be a t-statistic for Hp : 0 = 0 versus H;j : 6 # 0. Since |T'| —4 |Z| under Hy,
someone suggests the test “Reject Hy if |T'| < ¢1 or |T'| > c2, where ¢; is the a/2 quantile of |Z]
and cg is the 1 — /2 quantile of |Z|.

(a) Show that the asymptotic size of the test is .
(b) Is this a good test of Hy versus H;? Why or why not?

Exercise 9.4 Let W be a Wald statistic for Hg : @ = 0 versus Hj : 8 # 0, where 0 is ¢ x 1. Since
W —yq x3 under Hy, someone suggests the test “Reject Hy if W < ¢; or W > c¢o, where ¢; is the
a/2 quantile of XZ and ¢y is the 1 — a/2 quantile of Xg-

(a) Show that the asymptotic size of the test is a.

(b) Is this a good test of Hy versus H;? Why or why not?
Exercise 9.5 Take the linear model
yi = ;81 + 298, + €
E (:czez) =0
where both xj; and xy; are ¢ x 1. Show how to test the hypotheses Hy : B, = 35 against
H;y : B, # Bo.

Exercise 9.6 Suppose a researcher wants to know which of a set of 20 regressors has an effect on a
variable testscore. He regresses testscore on the 20 regressors and reports the results. One of the 20
regressors (studytime) has a large t-ratio (about 2.5), while other t-ratios are insignificant (smaller
than 2 in absolute value). He argues that the data show that studytime is the key predictor for
testscore. Do you agree with this conclusion? Is there a deficiency in his reasoning?

Exercise 9.7 Take the model

yi = 351 + B2 + €
E(ei|xz;)=0

where y; is wages (dollars per hour) and z; is age. Describe how you would test the hypothesis that
the expected wage for a 40-year-old worker is $20 an hour.
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Exercise 9.8 You want to test Hy : 35 = 0 against Hj : 39 # 0 in the model

yi = ;81 + 5,85 + €
E ((Biez) =0

You read a paper which estimates model
! = !~ -~
Yi = T1;Y1+ ($2i - mli) Yo + €

and reports a test of Hp : v, = 0 against Hj : 5 # 0. Is this related to the test you wanted to
conduct?

Exercise 9.9 Suppose a researcher uses one dataset to test a specific hypothesis Hy against Hjy,
and finds that he can reject Hy. A second researcher gathers a similar but independent dataset, uses
similar methods and finds that she cannot reject Hy. How should we (as interested professionals)
interpret these mixed results?

Exercise 9.10 In Exercise 7.8, you showed that /n (82 - 02) —4 N (0,V) as n — oo for some V.
Let V be an estimate of V.

(
(

a) Using this result, construct a t-statistic for Hg : 02 = 1 against Hj : 02 # 1.

)

b) Using the Delta Method, find the asymptotic distribution of v/n (¢ — o).

(c) Use the previous result to construct a t-statistic for Hy : 0 = 1 against H; : o # 1.
)

(d) Are the null hypotheses in (a) and (c) the same or are they different? Are the tests in (a)
and (c) the same or are they different? If they are different, describe a context in which the
two tests would give contradictory results.

Exercise 9.11 Consider a regression such as Table 4.1 where both experience and its square are
included. A researcher wants to test the hypothesis that experience does not affect mean wages,
and does this by computing the t-statistic for experience. Is this the correct approach? If not, what
is the appropriate testing method?

Exercise 9.12 A researcher estimates a regression and computes a test of Hy against H; and finds
a p-value of p = 0.08, or “not significant”. She says “I need more data. If I had a larger sample
the test will have more power and then the test will reject.” Is this interpretation correct?

Exercise 9.13 A common view is that “If the sample size is large enough, any hypothesis will be
rejected.” What does this mean? Interpret and comment.

Exercise 9.14 Take the model

yi = ;8 + e
E(wlez) =0

with parameter of interest # = R'3 with R k x 1. Let B be the least-squares estimate and ‘A/'B its
variance estimate.

(a) Write down 6, the 95% asymptotic confidence interval for #, in terms of B, VB, R, and
z = 1.96 (the 97.5% quantile of N(0,1)).

(b) Show that the decision “Reject Hy if 6 ¢ C” is an asymptotic 5% test of Hg : 6 = 6.
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Exercise 9.15 You are at a seminar where a colleague presents a simulation study of a test of
a hypothesis Hy with nominal size 5%. Based on B = 100 simulation replications under Hy the
estimated size is 7%. Your colleague says: “Unfortunately the test over-rejects.”

(a) Do you agree or disagree with your colleague? Explain. Hint: Use an asymptotic (large B)
approximation.

(b) Suppose the number of simulation replications were B = 1000 yet the estimated size is still
7%. Does your answer change?

Exercise 9.16 You have n iid observations (y;, z14, Z2;), and consider two alternative regression
models

yi = ;81 + e (9.29)
E (z1e15) =0

Yi = T B2 + €2 (9.30)
E (mgiegi) = 0

where x1; and x9; have at least some different regressors. (For example, (9.29) is a wage regression
on geographic variables and (2) is a wage regression on personal appearance measurements.) You
want to know if model (9.29) or model (9.30) fits the data better. Define 07 = E (e};) and
o3 = E (e3;). You decide that the model with the smaller variance fit (e.g., model (9.29) fits better
if 02 < 03.) You decide to test for this by testing the hypothesis of equal fit Hy : 0 = o3 against
the alternative of unequal fit Hj : O’% #* O’%. For simplicity, suppose that e;; and es; are observed.

(a) Construct an estimate 6 of 6 = o? —o2.

(b) Find the asymptotic distribution of \/n <§— 0> as n — 0o.

(c) Find an estimator of the asymptotic variance of 6.
(d) Propose a test of asymptotic size o of Hy against Hj .

(e) Suppose the test accepts Hy. Briefly, what is your interpretation?

Exercise 9.17 You have two regressors x; and z3, and estimate a regression with all quadratic
terms
Yi = a + Brzy; + Pt + B3ai; + Baad; + Bsa1iva + e

One of your advisors asks: Can we exclude the variable xg9; from this regression?
How do you translate this question into a statistical test? When answering these questions, be
specific, not general.

(
(

a) What is the relevant null and alternative hypotheses?

)

b) What is an appropriate test statistic? Be specific.

(c) What is the appropriate asymptotic distribution for the statistic? Be specific.
)

(d) What is the rule for acceptance/rejection of the null hypothesis?
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Exercise 9.18 The observed data is {y;, x;,2z;} E RxRF xR, k> 1and £ >1,i=1,...,n. An
econometrician first estimates R
yi = ;B8 + ¢
by least squares. The econometrician next regresses the residual €; on z;, which can be written as
/B\i = Z;:)v/ + ;.
(a) Define the population parameter v being estimated in this second regression.
(b) Find the probability limit for 7.

(c) Suppose the econometrician constructs a Wald statistic W,, for Hy : v = 0 from the second
regression, ignoring the regression. Write down the formula for W,,.

(d) Assuming E(z;z;) = 0, find the asymptotic distribution for W, under Hp : v = 0.
(e) If E(z;2;) # 0 will your answer to (d) change?

Exercise 9.19 An economist estimates y; = x1;81 + x2;02 + e; by least-squares and tests the
hypothesis Hy : f2 = 0 against Hj : #2 # 0. She obtains a Wald statistic W,, = 0.34. The sample
size is n = 500.

(a) What is the correct degrees of freedom for the y? distribution to evaluate the significance of
the Wald statistic?

(b) The Wald statistic W, is very small. Indeed, is it less than the 1% quantile of the appropriate
x? distribution? If so, should you reject Hy? Explain your reasoning.

Exercise 9.20 You are reading a paper, and it reports the results from two nested OLS regressions:
yi =18 + &
yi = 1B + T9:8; + &

Some summary statistics are reported:

Short Regression Long Regression
R? =20 R? = .26

I, @ — 106 S, @ — 100

# of coefficients=5 # of coefficients=8
n =50 n = 50

You are curious if the estimate ,32 is statistically different from the zero vector. Is there a way to
determine an answer from this information? Do you have to make any assumptions (beyond the
standard regularity conditions) to justify your answer?

Exercise 9.21 Take the model

Yi = 2101 + x2: P2 + x3: 03 + T4iPs + €;

E (:L'Zez) =0
Describe how you would test
T - B1 B3
0: % = o
B2 PBa
against
e

"B T B
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Exercise 9.22 You have a random sample from the model

Yi = ;51 + 72 P2 + €
E(ei|a:i):0

where y; is wages (dollars per hour) and z; is age. Describe how you would test the hypothesis that
the expected wage for a 40-year-old worker is $20 an hour.

Exercise 9.23 Let T,, be a test statistic such that under Hy, T}, —4 X%. Since P (X% > 7.815) =
0.05, an asymptotic 5% test of Hy rejects when T}, > 7.815. An econometrician is interested in the
Type I error of this test when n = 100 and the data structure is well specified. She performs the
following Monte Carlo experiment.

e B =200 samples of size n = 100 are generated from a distribution satisfying Hy.
e On each sample, the test statistic T},;, is calculated.
o She calculates p= & >p, 1 (T, > 7.815) = 0.070

e The econometrician concludes that the test 7;, is oversized in this context — it rejects too
frequently under Hy.

Is her conclusion correct, incorrect, or incomplete? Be specific in your answer.
Exercise 9.24 Do a Monte Carlo simulation. Take the model

Yi =a+zif+e
E (a:zel) =0

where the parameter of interest is § = exp(f). Your data generating process (DGP) for the
simulation is: x; is UJ0,1], e; is independent of x; and N(0,1), n = 50. Set o = 0 and 8 = 1.
Generate B = 1000 independent samples with «. On each, estimate the regression by least-squares,
calculate the covariance matrix using a standard (heteroskedasticity-robust) formula, and similarly

estimate 6 and its standard error. For each replication, store B, 5, tg = (E — 5) /s (3), and
= (5-0) /s ()

(a) Does the value of o matter? Explain why the described statistics are invariant to « and
thus setting o = 0 is irrelevant.

(b) From the 1000 replications estimate E (B) and [& (5) Discuss if you see evidence if either
estimator is biased or unbiased.

(c) From the 1000 replications estimate Pr (tg > 1.645) and Pr (9 > 1.645). What does asymp-
totic theory predict these probabilities should be in large samples? What do your simulation
results indicate?

Exercise 9.25 The data set invest on the textbook website contains data on 565 U.S. firms
extracted from Compustat for the year 1987. (This is one year from a panel data set used by B.
E. Hansen (1999). The original data was compiled by Hall and Hall (1993).) The variables are

o/ Investment to Capital Ratio (multiplied by 100).

e Total Market Value to Asset Ratio (Tobin’s Q).
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o (C Cash Flow to Asset Ratio.

e D Long Term Debt to Asset Ratio.
The flow variables are annual sums for 1987. The stock variables are beginning of year.

(a) Estimate a linear regression of I; on the other variables. Calculate appropriate standard
errors.

(b) Calculate asymptotic confidence intervals for the coefficients.

(c¢) This regression is related to Tobin’s ¢ theory of investment, which suggests that investment
should be predicted solely by @Q;. Thus the coefficient on @; should be positive and the others
should be zero. Test the joint hypothesis that the coefficients on C; and D; are zero. Test the
hypothesis that the coefficient on @Q); is zero. Are the results consistent with the predictions
of the theory?

(d) Now try a non-linear (quadratic) specification. Regress I; on Q;, Cy, Dy, Q2, C?, D?, Q;C;,
QiD;, C;D;. Test the joint hypothesis that the six interaction and quadratic coefficients are
ZEro.

Exercise 9.26 In a paper in 1963, Marc Nerlove analyzed a cost function for 145 American electric
companies. His data set Nerlove1963 is on the textbook website. The variables are

o C Total cost
e Q Output
e PL Unit price of labor
e PK Unit price of capital
e PL Unit price of labor
Nerlov was interested in estimating a cost function: C' = f(Q, PL, PF, PK).
(a) First estimate an unrestricted Cobb-Douglass specification
log C; = By + B2log Q; + B3log PL; + B4log PK; + (5 log PF; + e;. (9.31)
Report parameter estimates and standard errors.
(b) What is the economic meaning of the restriction Hy : S5 + B4 + 5 = 17

(c) Estimate (9.31) by constrained least-squares imposing $3+£4+ 05 = 1. Report your parameter
estimates and standard errors.

(d) Estimate (9.31) by efficient minimum distance imposing fs + 84 + 85 = 1. Report your
parameter estimates and standard errors.

(e) Test Hy : B3 + B4 + 5 = 1 using a Wald statistic.
(f) Test Ho : B3 + P4 + 5 = 1 using a minimum distance statistic.

Exercise 9.27 In Section 8.12 we report estimates from Mankiw, Romer and Weil (1992). We
reported estimation both by unrestricted least-squares and by constrained estimation, imposing
the constraint that three coefficients (27¢, 3¢ and 4*" coefficients) sum to zero, as implied by the
Solow growth theory. Using the same dataset MRW1992 estimate the unrestricted model and test
the hypothesis that the three coefficients sum to zero.
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Exercise 9.28 Using the CPS dataset and the subsample of non-hispanic blacks (race code = 2),
test the hypothesis that marriage status does not affect mean wages.

(a) Take the regression reported in Table 4.1. Which variables will need to be omitted to estimate
a regression for the subsample of blacks?

(b) Express the hypothesis “marriage status does not affect mean wages” as a restriction on the
coeflficients. How many restrictions is this?

(c) Find the Wald (or F) statistic for this hypothesis. What is the appropriate distribution for
the test statistic? Calculate the p-value of the test.

(d) What do you conclude?

Exercise 9.29 Using the CPS dataset and the subsample of non-hispanic blacks (race code = 2)
and whites (race code = 1), test the hypothesis that the returns to education is common across
groups.

(a) Allow the return to education to vary across the four groups (white male, white female, black
male, black female) by interacting dummy variables with education. Estimate an appropriate
version of the regression reported in Table 4.1.

(b) Find the Wald (or F) statistic for this hypothessis. What is the appropriate distribution for
the test statistic? Calculate the p-value of the test.

(c) What do you conclude?



Chapter 10

Multivariate Regression

10.1 Introduction

Multivariate regression is a system of regression equations. Multivariate regression is used
as reduced form models for instrumental variable estimation (explored in Chaper 11), vector au-
toregressions (explored in Chapter 15), demand systems (demand for multiple goods), and other
contexts.

Multivariate regression is also called by the name systems of regression equations. Closely
related is the method of Seemingly Unrelated Regressions (SUR) which we introduce in Section
10.7.

Most of the tools of single equation regression generalize naturally to multivariate regression.
A major difference is a new set of notation to handle matrix estimates.

10.2 Regression Systems

A system of linear regressions takes the form
Yji = Tjld + €ji (10.1)

for variables j = 1,...,m and observations ¢ = 1,...,n, where the regressor vectors x;; are k; x 1
and ej; is an error. The coefficient vectors 3; are k; x 1. The total number of coefficients are
k= 22}21 kj;. The regression system specializes to univariate regression when m = 1.

It is typical to treat the observations as independent across observations ¢ but correlated across
variables j. As an example, the observations y;; could be expenditures by household i on good j.
The standard assumptions are that households are mutually independent, but expenditures by an
individual household are correlated across goods.

To describe the dependence between the dependent variables, we can define the m x 1 error
vector e; = (e14, ..., €mi)’ and its m x m variance matrix

YX=E (eieg) .

The diagonal elements are the variances of the errors ej;, and the off-diagonals are the covariances
across variables. It is typical to allow 3 to be unconstrained.

We can group the m equations (10.1) into a single equation as follows. Let y; = (Y14, -, Ymi)’
be the m x 1 vector of dependent variables, define the k x m matrix of regressors

I1; 0 cee 0
Xi= : T2 ’
0 0 - X

287
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and define the k x 1 stacked coefficient vector

B1

®
I

B
Then the m regression equations can jointly be written as
y, = XiB+ e (10.2)
The entire system can be written in matrix notation by stacking the variables. Define
Y1 €1 X,
v, en X!
which are mn x 1, mn x 1, and mn x k, respectively. The system can be written as
y=XpB+e

In many (perhaps most) applications the regressor vectors j; are common across the variables
J, so zj; = x; and k; = k. By this we mean that the same variables enter each equation with no
exclusion restrictions. Several important simplifications occur in this context. One is that we can
write (10.2) using the notation

Y; = B'z; + ¢
where B = (3,85, -+ ,8,,) is k X m. Another is that we can write the system in the n x m matrix
notation
Y=XB+E
where ) . )
Y1 €1 Ty
Y= , E=| : |, Xx-=
Y, € T,

Another convenient implication of common regressors is that we have the simplification

z 0 - 0
Xi=| ' & P =In®w;
0 0 - =z

where ® is the Kronecker product (see Appendix A.16).

10.3 Least-Squares Estimator

Consider estimating each equation (10.1) by least-squares. This takes the form

n -1 n
i=1 i=1
The combined estimate of 3 is the stacked vector

B1

B=|
Brn
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It turns that we can write this estimator using the systems notation

n -1 n
- (x%) " (29) - (L) (S, 109
i=1 i=1

To see this, observe that

XX=(X, X,)|
X5,
n
-y xx,
i=1
o (=z; O - 0 Z, 0 - 0
=2 | ¢ e : Ll :
i=1 0 0 - =z o 0 - =z,
D1 TUTY; 0 T 0
= : Doy T2y, :
0 0 C i By
and
Y1
-/
Xy= (X, X,)| :
Yn
n
=Y X,
i=1
n xll 0 0 ylZ
= : To; :
=1 0 0 T Lmi Ymi
2?21 T1iY1s
S i Ymi
Hence
1 n -1 n
/I~ —/
(XX) (X) - (ZXX’> <ZXzyz>
i=1 i=1
( (X maxhy) (0 Tuyn)
(i wmiwlmi)_l (Ooi1 TmiYmi)
=0
as claimed.

The m x 1 residual vector for the it observation is

ei=y,— X8
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and the least-squares estimate of the m x m error variance matrix is
~ 1 .
$=-) %e, (10.4)

In the case of common regressors, observe that

n -1 n
i=1 i=1

B= <31,32,~-- ,Bm> - (x'x)"(X'Y). (10.5)

In Stata, multivariate regression can be implemented using the mvreg command.

We can set

10.4 Mean and Variance of Systems Least-Squares

We can calculate the finite-sample mean and variance of B under the conditional mean assump-
tion

E(ei | CCZ) =0 (106)

where ; is the union of the regressors zj;. Equation (10.6) is equivalent to E (y;; | z;) = @, 3;, or

that the regression model is correctly specified.
We can center the estimator as

35— (7’7)_1 (Y’e) - (gxim) B (il Xiei> .

Taking conditional expectations, we find [ <B | X > = 3. Consequently, systems least-squares is
unbiased under correct specification.
To compute the variance of the estimator, define the conditional covariance matrix of the errors
of the i*" observation
E (eie; | :L'z) = Ei

which in general is unrestricted. Observe that if the observations are mutually independent, then

ee ejeyg - e e,
E(ee | X)=E S : | X
e,e; epey --- epe,
31 0 0
0 0 Zn

Also, by independence across observations,

n n n
var (inel ’ X) = Zvar (Xl-ei ‘ wz) = ZXZEzX;
i=1 =1 i=1
It follows that

wr (31 %) = (X%) (ZXEX) (xx) "
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When the regressors are common so that X; = I,, ® x; then the covariance matrix can be
written as

var (B1X) = (oo (X'X) ™) (i (=i mim;)> (e (x'x)7").

i=1
Alternatively, if the errors are conditionally homoskedastic
E(e€|z) =% (10.7)

then the covariance matrix takes the form
- N1 [ N1
var (ﬁ | X) - (X’X) (inzxg) (X’X) .
i=1

If both simplifications (common regressors and conditional homoskedasticity) hold then we have
the considerable simplication

var <B | X) =3® (X'X)_l.

10.5 Asymptotic Distribution

For an asymptotic distribution it is sufficient to consider the equation-by-equation projection
model in which case
E (mjiejl-) =0. (10.8)

First, consider consistency. Since ,Bj are the standard least-squares estimators, they are consis-
tent for the projection coefficients 3;.

Second, consider the asymptotic distribution. Again by our single equation theory it is immedi-
ate that the 3; are asymptotically normally distributed. But our previous theory does not provide

a joint distribution of the Bj across j. For this we need a joint theory for the stacked estimates B,
which we now provide.

Since the vector
L1i€14

X 1€; =
LmiCmi

is i.i.d. across ¢ and mean zero under (10.8), the central limit theorem implies

1 < d
(% ;Xle,) 2, N(0,9)
where
Q=E(X;e€;X;) =E(X;%:X]).

The matrix €2 is the covariance matrix of the variables x ;e ; across equations. Under conditional
homoskedasticity (10.7) the matrix €2 simplifies to

Q=E(X,;3Xj) (10.9)
(see Exercise 10.1). When the regressors are common then it simplies to
Q=E (ee; ® ziz;) (10.10)

(see Exercise 10.2) and under both conditions (homoskedasticity and common regressors) it sim-
plifies to
Q=3 QE (z;z)) (10.11)
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(see Exercise 10.3).

Applied to the centered and normalized estimator we obtain the asymptotic distribution.

Theorem 10.5.1 Under Assumption 7.1.2,
Vit (B-8) -5 N (0, Vp)
where
Ve=QloQ!
E (:Bha’t/h) 0 ce 0
Q=E (XiX/') = : . :

(2

0 0 - E(xnux),)

For a proof, see Exercise 10.4.
When the regressors are common then the matrix @ simplies as

Q=1,3E (zx;) (10.12)

(See Exercise 10.5).
If both the regressors are common and the errors are conditionally homoskedastic (10.7) then
we have the simplication

-1

Vg =X ® (E(ziz;)) (10.13)

(see Exercise 10.6).

Sometimes we are interested in parameters @ = (8, ..., 3,,) = r(3) which are functions of the
coeflicients from multiple equations. In this case the least-squares estimate of 8 is 0= T(B) The
asymptotic distribution of 8 can be obtained from Theorem 10.5.1 by the delta method.

Theorem 10.5.2 Under Assumptions 7.1.2 and 7.10.1,

\/ﬁ(é—e) 4. N(0, Vo)

where
Voe=R VR
R= 50

For a proof, see Exercise 10.7.

Theorem 10.5.2 is an example where multivariate regression is fundamentally distinct from
univariate regression. Ounly by treating the least-squares estimates as a joint estimator can we
obtain a distributional theory for an estimator € which is a function of estimates from multiple
equations and thereby construct standard errors, confidence intervals, and hypothesis tests.
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10.6 Covariance Matrix Estimation

From the finite sample and asymptotic theory we can construct appropriate estimators for the
variance of 3. In the general case we have

v,- (X)) (i xg@;x;) (xx) "
=1

Under conditional homoskedasticity (10.7) an appropriate estimator is

V- (XX) (ZX z:X) (xx) "

When the regressors are common then these estimators equal

¥ (1o 00 (S a0 ma) ) (10 e )

and R
— S (X'X) ",

e

respectively.
Covariance matrix estimators for 8 are found as

Aézﬁ,/\ﬁ/\
A%ZE,A%A

~ ~\/
R = %r <B) .

Theorem 10.6.1 Under Assumption 7.1.2,
nVB i) V,B

and 0
59 p
nVz - Vj

For a proof, see Exercise 10.8.

10.7 Seemingly Unrelated Regression

Consider the systems regression model under the conditional mean and conditional homoskedas-
ticity assumptions

Y, = X8+ e (10.14)
E(ei€; | z;) =%
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Since the errors are correlated across equations we can consider estimation by Generalized Least
Squares (GLS). To derive the estimator, premultiply (10.14) by »~1/2 50 that the transformed error
vector is i.i.d. with covariance matrix I,,. Then apply least-squares and rearrange to find

n -1 n
Bys = (Z Xi21X§) (Z X,Elyi) : (10.15)
i=1 i=1
(see Exercise 10.9). Another approach is to take the vector representation

y=XB+e

and calculate that the equation error e has variance E (e€’) = I,, ® 3. Premultiply the equation
by I,,® »~1/2 50 that the transformed error has variance matrix I, and then apply least-squares
to find

o= (¥ 0.59%)” (X 1531) oo

(see Exercise 10.10).
Expressions (10.15) and (10.16) are algebraically equivalent. To see the equivalence, observe
that

> o ... 0 b ¢
X (LeshX=(X: - X,)| : 3z : :
o o ... x! X"
=y X;%7'X]
=1
and
>t o0 0 Yy
X' (o2 y=(X: - X,)| : 5 :
0 0 >t Y,

n
-yxsy,
=1

Since ¥ is unknown it must be replaced by an estimator. Using S from (10.4) we obtain a
feasible GLS estimator.

n -1 n
B = (zxiﬁ‘lx;) (zxii‘lyi)
i=1 =1

_ (Y’ (In ® i:’l> Y) ' (Y’ (In ® i:*l> y) . (10.17)
This is known as the Seemingly Unrelated Regression (SUR) estimator.

The estimator 3 can be updated by calculating the SUR residuals €; = y; — X ;B sur and the
covariance matrix estimate ¥ = LS~ €€ Substituted into (10.17) we find an iterated SUR
estimator, and this can be iterated until convergence.

Under conditional homoskedasticity (10.7) we can derive its asymptotic distribution.

Theorem 10.7.1 Under Assumption 7.1.2 and (10.7)
Vit (B — B) ~- N (0, V)

where )
Vi = (BE(X:27'X)) .
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For a proof, see Exercise 10.11.
Under these assumptions, SUR is more efficient than least-squares (in particular, under the
assumption of conditional homoskedasticity).

Theorem 10.7.2 Under Assumption 7.1.2 and (10.7)

V= (B(X.2'X))"
< (B(X,X)) 7 B(X,=X)) (B(X:X})~
— Vﬁ

1

and thus Bsur 15 asymptotically more efficient than BO LS

For a proof, see Exercise 10.12. R
An appropriate estimator of the variance of B¢y is

n -1
=1

Theorem 10.7.3 Under Assumption 7.1.2 and (10.7)
n‘A/'B 2, Vg

and thus BSUR 18 asymptotically more efficient than ,@OLS.

For a proof, see Exercise 10.13.
In Stata, the seemingly unrelated regressions estimator is implemented using the sureg com-
mand.

Arnold Zellner

Arnold Zellner (1927-2000 ) of the United States was a founding father of

the econometrics field. He was a pioneer in Bayesian econometrics. One of
his core contributions was the method of Seemingly Unrelated Regressions.

10.8 Maximum Likelihood Estimator

Take the linear model under the assumption that the error is independent of the regressors and
multivariate normally distributed. Thus
y,=XiB+e
€e; ~ N (0, 2) .
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In this case we can consider the maximum likelihood estimator (MLE) of the coefficients.
It is convenient to reparameterize the covariance matrix in terms of its inverse, thus § = 371,
With this reparameterization, the conditional denstiy of y, given X; equals

_ det(8)"? <

J ilX0) = <55 e

~5 (0= X19)'S (v~ X1) ).

The log-likelihood function for the sample is

n

log L(3,S) = —% log (27) + g log det (S) — % S (v - X18)'S (v — XiB).
=1

The maximum likelihood estimator (B, §> maximizes the log-likelihood function. The first

order conditions are

0= ilogL(,B,S)‘

9B B=B,5=8

= zn:Xig (%’ - X;B)
=1

and

The second equation uses the matrix results %log det (S) = S7! and a%tr (AB) = A’ from
Appendix A.15.

Solving and making the substitution =5 - we obtain
n -1 n
=1 =1
.~ 1 ~ N\
Y= —Z (yi - X;B) (yi —X;ﬁ) .
i

Notice that each equation refers to the other. Hence these are not closed-form expressions, but can
be solved via iteration. The solution is identical to the iterated SUR, estimator. Thus the SUR
estimator (iterated) is identical to the MLE under normality.

Recall that the SUR estimator simplifies to OLS when the regressors are common across equa-
tions. The same occurs for the MLE. Thus when X; = I, ® z; we find that BMLE = BOLS and
Yyre = XoLs -

10.9 Reduced Rank Regression

One context where systems estimation is important is when it is desired to impose or test
restrictions across equations. Restricted systems are commonly estimated by maximum likelihood
under normality. In this section we explore one important special case of restricted multivariate
regression known as reduced rank regression. The model was originally proposed by Anderson
(1951) and extended by Johansen (1995).
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The unrestricted model is

y;=B'z;+ C'zi + e (10.18)
E (ei€; | zj,2;) =%

where B is k x m, C is £ x m, and x; and z; are regressors. We separate the regressors x; and z;
because the coefficient matrix B will be restricted while C will be unrestricted.
The matrix B is full rank if
rank (B) = min(k, m).

The reduced rank restriction is that
rank (B) = r < min(k, m)

for some known r.
The reduced rank restriction implies that we can write the coefficient matrix B in the factored
form

B =GA’ (10.19)

where A is m x r and G is k x r. This representation is not unique (as we can replace G with
GQ and A with AQ™Y for any invertible Q and the same relation holds). Identification therefore
requires a normalization of the coefficients. A conventional normalization is

GDG=1,

for given D.

Equivalently, the reduced rank restriction can be imposed by requiring that B satisfy the
restriction BA| = GA’A; = 0 for some m x (m —r) coefficient matrix A . Since G is full rank
this requires that A’A| = 0, hence A is the orthogonal complement to A. Note that A is not
unique as it can be replaced by A Q for any (m —r) x (m — r) invertible Q. Thus if A, is to be
estimated it requires a normalization.

We discuss methods for estimation of G, A, 3, C, and A . The standard approach is maximum
likelihood under the assumption that e; ~ N (0, X). The log-likelihood function for the sample is

log L(G, A, C, %) = —% log (27) — glog det ()
(yi —AGz; — C'zi)/ »! (yi —AGz; — C’zi) .
=1

1
2

Anderson (1951) derived the MLE by imposing the constraint BA; = 0 via the method of
Lagrange multipliers. This turns out to be algebraically cumbersome.

Johansen (1995) instead proposed a concentration method which turns out to be relatively
straightforward. The method is as follows. First, treat G as if it is known. Then maximize the
log-likelihood with respect to the other parameters. Resubstituting these estimates, we obtain the
concentrated log-likelihood function with respect to G. This can be maximized to find the MLE for
G. The other parameter estimates are then obtain by substitution. We now describe these steps
in detail.

Given G, the likelihood is a normal multivariate regression in the variables G'z; and z;, so
the MLE for A, C and X are least-squares. In particular, using the Frisch-Waugh-Lovell residual
regression formula, we can write the estimators for A and X as

A(G) = (?’”X’G) <G’/X/VX/G>71

and
N 1 /[~~~ ~1—~ = N\ s
2(6) = ~ YY—YXG(GXXG) aX'y
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where

Y-Y-2Z(Z2)'2'Y
X=X-2(2'z)"'z'X.

Substituting these estimators into the log-likelihood function, we obtain the concentrated like-
lihood function, which is a function of G only

log L(G) = log L (G,A(G), C(Q), f:(G))

m n e ey i el S
— 2 (nlog (27) = 1) — 5 log det YY—YXG(GXXG) aX'y

XX-Xv(¥y)" st(f) G)

- . / det (G’ (
=5 (nlog (2m) — 1) — 5 log det (Y Y) —=
det (GX XG)

The third equality uses Theorem A.7.1.8. The MLE G for G is the maximizer of log Z(G), or
equivalently equals

(v Y (T -1 =
det G ([ XX -XY(YY YX )G

~

G = argmin —— (10.20)
G det (G’X X G)
'~ (5 vy
det [ @X Y(YY) YXG
= argmax ——— 10.21
!
G det (G’X X G)

={v1,..., v}

which are the generalized eigenvectors of Xy (?/ ?) B Y'X with respect to XX corresponding
to the r largest generalized eigenvalues. (Generalized eigenvalues and eigenvectors are discussed in
Section A.10.) The estimator satisfies the normalization GX'XG=1 r. Letting v} denote the
cigenvectors of (10.20), we can also express G = {vh, v}

This is computationally straightforward. In MATLAB, for example, the generalized eigenvalues

and eigenvectors of a matrix A with respect to B are found using the command eig(A,B).
~ ~ oA~ ~/
Given G, the MLE A, C, ¥ are found by least-squares regression of y;, on G z; and z;. In
o~~~

particular, A= E;'}Z'i/ since a,XAX G=1,.
We now discuss the estimator A of A . It turns out that

Yy Vv (Y -1 ~—r~
det [ A YY-YX (X X XY|A

det (A' Y ’YA)

A, = argmax (10.22)
A

={w1,..., Wy}
h e e o\ — 1y~ ~f
the eigenvectors of YYy-YXx (X /X ) X /Y with respect to Y'Y associated with the largest
m — r eigenvalues.
By the dual eigenvalue relation (Theorem A.10.1), the eigenvalue problems in equations (10.20)
and (10.22) have the same non-unit eigenvalues \;, and the associated eigenvectors v} and w; satisfy
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. : 12 (I LY : . D
the relationship w; = )\j (Y Y) YXv;f. Letting A = diag{ A, ..., Am—r4+1} this implies

paN—l
{wmy ooy Wrp—ri1} = (Y/Y> Y'X {vyp, vl 1} A

~ ) ~

— (Y Y>71 AA.

The second equality holds since G = {'u,*n, U +1} and A = Y XG. Since the eigenvectors
w; satisfy the orthogonality property 'w; Y ?’UM =0 for j # £, it follows that

~ o~ )~ ~1 ~
0=A Y Y{wn, ..., wm_rs1} = A AA.

Since A > 0 we conclude that :&:_:4 = 0 as desired.
The solution A, in (10.22) can be represented several ways. One which is computationally
convenient is to observe that

~ )~ ~ fe g~ — 1 ~p—
YY-YX (X'X) YX =YMx Y =2¢

where Mx 7z =1,— (X, Z) ((X,Z) (X, Z))’1 (X,Z) and e = M x zY is the residual from the
unrestricted least-squares regression of Y on X and Z. The first equality follows by the Frisch-
Waugh-Lovell theorem. This shows that A are the generalized eigenvectors of €e with respect

to Y'Y corresponding to the m — r largest eigenvalues. In MATLAB, for example, these can be
computed using the eig(A,B) command.
Another representation is to write Mz = I,, — Z (Z'Z) "' Z' so that

A et (AYMxzYA) L det (A'Y'MYA)
LA Tt (AY Mz YA) e it (AY' M x z YA)

We summarize our findings.

Theorem 10.9.1 The MLE for the reduced rank model (10.18) under e; ~ N (0,X) is given as
~ e fganN—l i
follows. G = {wvy,..., v}, the generalized eigenvectors ofX/Y (Y/Y) Y' X with respect to X'X

corresponding to the r largest eigenvalues. A , C and S are obtained by the least-squares regression

o~/ ~/ -
Y =AGxz;+ Cz;+¢
o 1
EZE € €.

@
Il
MR

A | equals the generalized eigenvectors of € e with respect to Y'Yy corresponding to the m — r
smallest eigenvalues.
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Exercises
Exercise 10.1 Show (10.9) when the errors are conditionally homoskedastic (10.7).
Exercise 10.2 Show (10.10) when the regressors are common across equations Tj; = T

Exercise 10.3 Show (10.11) when the regressors are common across equations ;; = x; and the
errors are conditionally homoskedastic (10.7).

Exercise 10.4 Prove Theorem 10.5.1.
Exercise 10.5 Show (10.12) when the regressors are common across equations ¢ j; = x;

Exercise 10.6 Show (10.13) when the regressors are common across equations ;; = x; and the
errors are conditionally homoskedastic (10.7).

Exercise 10.7 Prove Theorem 10.5.2.

Exercise 10.8 Prove Theorem 10.6.1.

Exercise 10.9 Show that (10.15) follows from the steps described.
Exercise 10.10 Show that (10.16) follows from the steps described.
Exercise 10.11 Prove Theorem 10.7.1.

Exercise 10.12 Prove Theorem 10.7.2.
Hint: First, show that it is sufficient to show that

B (X X)) (B(X;27'X)) B (X,X)) <E(X;ZX}).

1/2
)

Second, rewrite this equation using the transformations U; = X V2 and V; = X2 and

then apply the matrix Cauchy-Schwarz inequality (B.11).
Exercise 10.13 Prove Theorem 10.7.3

Exercise 10.14 Take the model

yi =B+ ei
™, = E (:I:,\zl) = I‘,Zi
E(ez]zz) =0

where y;, is scalar, x; is a k vector and z; is an £ vector. 3 and 7; are k X 1 and I is £ x k. The
sample is (y;, €;, 2; : © = 1,...,n) with 7; unobserved.

Consider the estimator B for B by OLS of y; on 7w; = f‘,zi where T is the OLS coefficient from
the multivariate regression of x; on z;

(a) Show that B is consistent for 3
(b) Find the asymptotic distribution y/n (E — ﬁ) as n — oo assuming that 3 = 0.
(¢) Why is the assumption 3 = 0 an important simplifying condition in part (b)?

(d) Using the result in (c), construct an appropriate asymptotic test for the hypothesis Hy : 8 = 0.
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Exercise 10.15 The observations are iid, (y1;,y2i,%; : @ = 1,...,n). The dependent variables yi;
and y9; are real-valued. The regressor x; is a k-vector. The model is the two-equation system

!
Y1 = ;3 + e

E ($i€1i) =0
Yoi = 2385 + €2
E (zie2;) =0

(a) What are the appropriate estimators Bl and BQ for B, and B57
(b) Find the joint asymptotic distribution of 8; and 35.

(c) Describe a test for Hp : B, = Bs.



Chapter 11

Instrumental Variables

11.1 Introduction

We say that there is endogeneity in the linear model
yi = ;8 + e (11.1)

if 3 is the parameter of interest and
E(:czez) 7é 0. (11.2)

This is a core problem in econometrics and largely differentiates econometrics from many branches
of statistics. To distinguish (11.1) from the regression and projection models, we will call (11.1)
a structural equation and 3 a structural parameter. When (11.2) holds, it is typical to say
that z; is endogenous for 3.

Endogeneity cannot happen if the coefficient is defined by linear projection. Indeed, we can
define the linear projection coefficient 8* = E (wim;)_l E (x;y;) and linear projection equation

yi =z + ¢
E(ziel) = 0.

However, under endogeneity (11.2) the projection coefficient 3* does not equal the structural pa-
rameter. Indeed,

,@*:(E(mm)) E (z;y:)
= (B (zie})) " B(zi (wﬂ+€z))
-9+ (B (aiel)) " Bloie)
# 0B

the final relation since E (x;e;) # 0.

Thus endogeneity requires that the coefficient be defined differently than projection. We de-
scribe such definitions as structural. We will present three examples in the following section.

Endogeneity implies that the least-squares estimator is inconsistent for the structural parameter.
Indeed, under i.i.d. sampling, least-squares is consistent for the projection coefficient, and thus is
inconsistent for 3. R

B (E (wiwg))ilE(wiyi) =B #B.

The inconsistency of least-squares is typically referred to as endogeneity bias or estimation
bias due to endogeneity. (This is an imperfect label as the actual issue is inconsistency, not bias.)

As the structural parameter 3 is the parameter of interest, endogeneity requires the development
of alternative estimation methods. We discuss those in later sections.

302
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11.2 Examples

The concept of endogeneity may be easiest to understand by example. We discuss three dis-
tinct examples. In each case it is important to see how the structural parameter 3 is defined
independently from the linear projection model.

Example: Measurement error in the regressor. Suppose that (y;, z;) are joint random
variables, E(y; | z;) = 2.0 is linear, 3 is the structural parameter, and z; is not observed. Instead
we observe x; = z; + u; where u; is a k£ X 1 measurement error, independent of e; and z;. This
is an example of a latent variable model, where “latent” refers to a structural variable which is
unobserved.

The model z; = z; + u; with z; and u; independent and E(u;) = 0 is known as classical
measurement error. This means that x; is a noisy but unbiased measure of z;.

By substitution we can express y; as a function of the observed variable ;.

yi =z +ei
= (i —w) B+e
=z/B+v;
where v; = ¢; — u;ﬁ. This means that (y;, ;) satisfy the linear equation
yi = ;B3 + v;
with an error v;. But this error is not a projection error. Indeed,
E (zv;) =B [(2 + u;) (e; — ujB8)] = —E (uwju;) B #0

if B # 0 and E (u;u}) # 0. As we learned in the previous section, if E (x;v;) # 0 then least-squares
estimation will be inconsistent.

We can calculate the form of the projection coefficient (which is consistently estimated by
least-squares). For simplicity suppose that £ = 1. We find

o _ g, Blw) E (u)

Since E (uf) JE (:BZQ) < 1 the projection coefficient shrinks the structural parameter 3 towards zero.
This is called measurement error bias or attenuation bias.

Example: Supply and Demand. The variables ¢; and p; (quantity and price) are determined
jointly by the demand equation
g = —bipi t e

and the supply equation
¢ = Pa2pi + €.

€2;
question is: if we regress ¢; on p;, what happens?
It is helpful to solve for g; and p; in terms of the errors. In matrix notation,

L)) =)

Assume that e; = < e ) is i.i.d., E(e;) = 0 and E (e;e;) = Iy (the latter for simplicity). The
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o] ()

:[512 f”(:::)(&i&)

_ ( (/3261%1‘/31?2i) /(B1 + B2) ) ‘
(e1i —€2i) /(B1 + B2)

SO

The projection of g; on p; yields

¢ =F"pi+e;
E (pie;) =0

where

E(pigi) _ B2— 5

E (v7) 2

Thus the projection coefficient 5* equals neither the demand slope 81 nor the supply slope G2, but
equals an average of the two. (The fact that it is a simple average is an artifact of the simple
covariance structure.)

Hence the OLS estimate satisfies 3 -2, *, and the limit does not equal either 3; or 8. The
fact that the limit is neither the supply nor demand slope is called simultaneous equations bias.
This occurs generally when y; and x; are jointly determined, as in a market equilibrium.

Generally, when both the dependent variable and a regressor are simultaneously determined,
then the variables should be treated as endogenous.

B =

Example: Choice Variables as Regressors. Take the classic wage equation
log (wage) = Peducation + e

with g the average causal effect of education on wages. If wages are affected by unobserved ability,
and individuals with high ability self-select into higher education, then e contains unobserved
ability, so education and e will be positively correlated. Hence education is endogenous. The
positive correlation means that the linear projection coefficient 8* will be upward biased relative
to the structural coefficient 5. Thus least-squares (which is estimating the projection coefficient)
will tend to over-estimate the causal effect of education on wages.

This type of endogeneity occurs generally when y and x are both choices made by an economic
agent, even if they are made at different points in time.

Generally, when both the dependent variable and a regressor are choice variables made by the
same agent, the variables should be treated as endogenous.

11.3 Instrumental Variables

We have defined endogeneity as the context where the regressor is correlated with the equation
error. In most applications we only treat a subset of the regressors as endogenous; most of the
regressors will be treated as exogenous, meaning that they are assumed uncorrelated with the
equation error. To be specific, we make the partition

z1 | ki
i = 11.3
v ( T ) ko (11.3)

(B k1
B_<52> )

and similarly
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so that the structural equation is

yi = z;B + e (11.4)
= 21,81 + 05 + €.

The regressors are assumed to satisfy

E(mliei) =0
E(CCQi@Z‘) 75 0.

We call x1; exogenous and x2; endogenous for the structural parameter 3. As the dependent
variable y; is also endogenous, we sometimes differentiate xo; by calling ®s; the endogenous
right-hand-side variables.

In matrix notation we can write (11.4) as

y=XB+e (11.5)
= X168, + X208, t e

The endogenous regressors xs; are the critical variables discussed in the examples of the previous
section — simultaneous variables, choice variables, mis-measured regressors — that are potentially
correlated with the equation error e;. In most applications the number ko of variables treated as
endogenous is small (1 or 2). The exogenous variables x1; are the remaining regressors (including
the equation intercept) and can be low or high dimensional.

To consistently estimate 3 we require additional information. One type of information which
is commonly used in economic applications are what we call instruments.

Definition 11.3.1 The £ x 1 random vector z; is an instrumental vari-

able for (11.4) if

E (ziei) =0 (11.6)
E (ziz;) > 0 (11.7)
rank (E (z;z})) = k. (11.8)

There are three components to the definition as given. The first (11.6) is that the instruments
are uncorrelated with the regression error. The second (11.7) is a normalization which excludes
linearly redundant instruments. The third (11.8) is often called the relevance condition and is
essential for the identification of the model, as we discuss later. A necessary condition for (11.8) is
that ¢ > k.

Condition (11.6) — that the instruments are uncorrelated with the equation error, is often
described as that they are exogenous in the sense that they are determined outside the model for
Y-

Notice that the regressors xj; satisfy condition (11.6) and thus should be included as instru-
mental variables. It is thus a subset of the variables z;. Notationally we make the partition

oz _ [ T\ R
() () 15

Here, x1; = z1; are the included exogenous variables, and zo; are the excluded exogenous
variables. That is, z9; are variables which could be included in the equation for y; (in the sense
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that they are uncorrelated with e;) yet can be excluded, as they would have true zero coefficients
in the equation.

Many authors simply label x1; as the “exogenous variables”, xs; as the “endogenous variables”,
and z9; as the “instrumental variables”.

We say that the model is just-identified if / = k (and ¢2 = k2) and over-identified if ¢ > k
(and 3 > ka).

What variables can be used as instrumental variables? From the definition E (z;e;) = 0 we see
that the instrument must be uncorrelated with the equation error, meaning that it is excluded from
the structural equation as mentioned above. From the rank condition (11.8) it is also important
that the instrumental variable be correlated with the endogenous variables x9; after controlling for
the other exogenous variables x1;. These two requirements are typically interpreted as requiring
that the instruments be determined outside the system for (y;, €2;), causally determine x9;, but do
not causally determine y; except through xo;.

Let’s take the three examples given above.

Measurement error in the regressor. When x; is a mis-measured version of z;, a common
choice for an instrument zo; is an alternative measurement of z;. For this zs; to satisfy the property
of an instrumental variable the measurement error in zo; must be independent of that in ;.

Supply and Demand. An appropriate instrument for price p; in a demand equation is a
variable zy; which influences supply but not demand. Such a variable affects the equilibrium values
of p; and ¢; but does not directly affect price except through quantity. Variables which affect supply
but not demand are typically related to production costs.

An appropriate instrument for price in a supply equation is a variable which influences demand
but not supply. Such a variable affects the equilibrium values of price and quantity but only affects
price through quantity.

Choice Variable as Regressor. An ideal instrument affects the choice of the regressor
(education) but does not directly influence the dependent variable (wages) except through the
indirect effect on the regressor. We will discuss an example in the next section.

11.4 Example: College Proximity

In a influential paper, David Card (1995) suggested if a potential student lives close to a college,
this reduces the cost of attendence and thereby raises the likelihood that the student will attend
college. However, college proximity does not directly affect a student’s skills or abilities, so should
not have a direct effect on his or her market wage. These considerations suggest that college
proximity can be used as an instrument for education in a wage regression. We use the simplist
model reported in Card’s paper to illustrate the concepts of instrumental variables throughout the
chapter.

Card used data from the National Longitudinal Survey of Young Men (NLSYM) for 1976. A
baseline least-squares wage regression for his data set is reported in the first column of Table
11.1. The dependent variable is the log of weekly earnings. The regressors are education (years
of schooling), experience (years of work experience, calculated as age (years) less education+6),
experience? /100, black, south (an indicator for residence in the southern region of the U.S.), and
urban (an indicator for residence in a standard metropolitan statistical area). We drop observations
for which wage is missing. The remaining sample has 3,010 observations. His data is the file
Card1995 on the textbook website.

The point estimate obtained by least-squares suggests an 8% increase in earnings for each year
of education.

Table 11.1
Dependent variable log(wage)
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OLS 1V(a) IV(b) 2SLS(a) 2SLS(b) LIML

education 0.074 0.132 0.133 0.161 0.160 0.164
(0.004) (0.049) (0.051)  (0.040)  (0.041) (0.042)
experience 0.084 0.107 0.056 0.119 0.047 0.120

(0.007) (0.021) (0.026)  (0.018)  (0.025) (0.019)
experience?/100 —0.224 —0.228 —0.080 —0.231 —0.032 —0.231
(0.032) (0.035) (0.133)  (0.037)  (0.127) (0.037)

black -0.190 -0.131 -0.103 -0.102 —0.064 —0.099
(0.017) (0.051) (0.075)  (0.044)  (0.061) (0.045)
south —-0.125 —-0.106 —-0.098 —0.095 —0.086 —0.094
(0.015) (0.023) (0.0287) (0.022)  (0.026) (0.022)
urban 0.161 0.131 0.108 0.116 0.083 0.115
(0.015) (0.030) (0.049)  (0.026)  (0.041) (0.027)
Sargan 0.82 0.52 0.82
p-value 0.36 0.47 0.37
Notes:

[

. IV(a) uses college as an instrument for education.

[\]

. IV(b) uses college, age, and age? as instruments for education, experience, and experience? /100.
3. 2SLS(a) uses public and private as instruments for education.

4. 2SLS(b) uses public, private, age, and age? as instruments for education, experience, and
experience? /100.

5. LIML uses public and private as instruments for education.

As discussed in the previous sections, it is reasonable to view years of education as a choice
made by an individual, and thus is likely endogenous for the structural return to education. This
means that least-squares is an estimate of a linear projection, but is inconsistent for coefficient
of a structural equation representing the causal impact of years of education on expected wages.
Labor economics predicts that ability, education, and wages will be positively correlated. This
suggests that the population projection coeflicient estimated by leat-squares will be higher than
the structural parameter (and hence upwards biased). However, the sign of the bias is uncertain
since there are multiple regressors and there are other potential sources of endogeneity.

To instrument for the endogeneity of education, Card suggested that a reasonable instrument
is a dummy variable indicating if the individual grew up near a college. We will consider three

measures:
college  Grew up in same county as a 4-year college

public  Grew up in same county as a 4-year public college
private  Grew up in same county as a 4-year private college.

David Card

David Card (1956- ) is a Canadian-American labor economist whose research
has changed our understanding of labor markets, the impact of minimum
wage legislation, and immigration. His methodological innovations in applied
econometrics have transformed empirical microeconomics.
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11.5 Reduced Form

The reduced form is the relationship between the regressors «; and the instruments z;. A linear
reduced form model for x; is
z; =TIz + u,;. (11.10)

This is a multivariate regression as introduced in Chapter 10. The ¢ x k coefficient matrix I' can
be defined by linear projection. Thus

I =E(ziz;) E(z;) (11.11)
so that
E (zju;) = 0.
In matrix notation, we can write (11.10) as
X=ZI+U (11.12)

where U is n x k. Notice that the projection coefficient (11.11) is well defined and unique under
(11.7).

Since z; and x; have the common variables x1;, we can focus on the reduced form for the the
endogenous regressors Tz;. Recalling the partitions (11.3) and (11.9) we can partition I" conformably
as

k1 ko
I' = [ I'ii T } 4
Lo T lo
- I Ty
e i

and similarly partition u;. Then (11.10) can be rewritten as two equation systems

Lr1; = Z1; (11.14)
To; = 1_‘/12211‘ + 1_‘/2222¢ + uo;. (11.15)
The first equation (11.14) is a tautology. The second equation (11.15) is the primary reduced form
equation of interest. It is a multivariate linear regression for xs; as a function of the included and

excluded exogeneous variables z1; and z9;.
We can also construct a reduced form equation for y;. Substituting (11.10) into (11.4), we find

yi= (T'zi+w) B+e

= ZIA+v; (11.16)
where
A=Ig3 (11.17)
and
V; = u;,B + €.

Observe that
E (Zi’l}i) =k (ziu;) ,6 +E (zl-ei) =0.

Thus (11.16) is a projection equation. It is the reduced form for y;, as it expresses y; as a function
of exogeneous variables only. Since it is a projection equation we can write the reduced form
coefficient as

A=E (ziz)  E(zy) (11.18)
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which is well defined under (11.7).
Alternatively, we can substitute (11.15) into (11.4) and use x1; = z1; to obtain

yi = @18, + (I‘fuzli + Doz + u2i),132 t €

= 211 + 25 X2 +v; (11.19)

where
Al = ﬁl + I‘1262 (11.20)
Ay = T903,. (11.21)

which is an alternative (and equivalent) expression of (11.17) given (11.13).
(11.10) and (11.16) together (or (11.15) and (11.19) together) are the reduced form equations
for the system

Y = zgz\—i-vi

T; = I‘/Zi + u;.

The relationships (11.17) and (11.20)-(11.21) are critically important for understanding the
identification of the structural parameters 3; and 3,, as we discuss below. These equations show
the tight relationship between the parameters of the structural equations (3; and 3,) and those of
the reduced form equations (A1, Ag, I'12 and T'yy).

11.6 Reduced Form Estimation

The reduced form equations are projections, so the coefficient matrices may be estimated by
least-squares (see Chapter 10). The least-squares estimate of (11.10) is

n -1 n
T= (Z ziz;) (Z zm:é) ) (11.22)
i=1 i=1
The estimates of equation (11.10) can be written as
~/ -
xz;, =1 z;,+ u;. (11.23)
In matrix notation, these can be written as
T=(2'z)" (2'X)

and L
X=ZT+ U.

Since X and Z have a common sub-matrix, we have the partition

T I Ty
0 Ty

The reduced form estimates of equation (11.15) can be written as

~/ ~/ -
zoi = 921 + Toygzoi + Uy

or in matrix notation as

Xy = Z1T19 + ZoT9s + Us.
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We can write the submatrix estimates as

1] (5 (o)

The reduced form estimate of equation (11.16) is

n -1 n
x= (Z Zﬂé) (Z zi?Ji)
i=1 1=1

Yi = z;X +
= 2} A1+ 20 + T
or in matrix notation
A= (2'2)" (2'y)
y=ZX+7
= Z1A\1 + Zods + B

11.7 Identification

A parameter is identified if it is a unique function of the probability distribution of the ob-
servables. One way to show that a parameter is identified is to write it as an explicit function of
population moments. For example, the reduced form coefficient matrices I' and A are identified
since they can be written as explicit functions of the moments of the observables (y;, i, z;). That
is,

r=E (ziz;)fl E (zz}) (11.24)

7

A=E(z2) ' E(ziy) . (11.25)

These are uniquely determined by the probability distribution of (y;, ;, z;) if Definition 11.3.1
holds, since this includes the requirement that [ (z;2}) is invertible.
We are interested in the structural parameter 3. It relates to (A, T') through (11.17), or

A=T3. (11.26)

It is identified if it uniquely determined by this relation. This is a set of £ equations with k£ unknowns

with £ > k. From standard linear algebra we know that there is a unique solution if and only if '
has full rank k.
rank (T') = k. (11.27)

Under (11.27), B can be uniquely solved from the linear system A = I'3. On the other hand if
rank (T') < k£ then A = I'3 has fewer mutually independent linear equations than coefficients so
there is not a unique solution.

From the definitions (11.24)-(11.25) the identification equation (11.26) is the same as

E(ziyi) = E (ziz}) B
which is again a set of ¢ equations with k£ unknowns. This has a unique solution if (and only if)
rank (E (z;7)) =k (11.28)

which was listed in (11.8) as a conditions of Definition 11.3.1. (Indeed, this is why it was listed as
part of the definition.) We can also see that (11.27) and (11.28) are equivalent ways of expressing the
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same requirement. If this condition fails then 3 will not be identified. The condition (11.27)-(11.28)
is called the relevance condition.

It is useful to have explicit expressions for the solution 3. The easiest case is when ¢ = k. Then
(11.27) implies T is invertible, so the structural parameter equals 8 = T'"'A. It is a unique solution
because I' and A are unique and T’ is invertible.

When ¢ > k we can solve for 3 by applying least-squares to the system of equations A =T'3 .
This is £ equations with k& unknowns and no error. The least-squares solution is 3 = (T ]f‘)f1 '
Under (11.27) the matrix I''T is invertible so the solution is unique.

3 is identified if rank(I") = k, which is true if and only if rank(I'22) = k2 (by the upper-diagonal
structure of T'). Thus the key to identification of the model rests on the ¢ x kg matrix I'yy in
(11.15). To see this, recall the reduced form relationships (11.20)-(11.21). We can see that B, is
identified from (11.21) alone, and the necessary and sufficient condition is rank(I'a2) = ko. If this
is satisfied then the solution can be written as 3, = (1'"221"22)71 I'%5A2 . Then 3 is identified from
this and (11.20), with the explicit solution B; = A; — 12 (ThoT22) ' ThyAe. In the just-identified
case (f3 = ko) these equations simplify to take the form 8y = F;ZIAQ and B; = A\ — I‘lgI‘;Ql)\g.

11.8 Instrumental Variables Estimator

In this section we consider the special case where the model is just-identified, so that £ = k.
The assumption that z; is an instrumental variable implies that

E (ziei) =0.
Making the substitution e; = y; — ;3 we find
E (zi (yi - :c;ﬁ)) =0.
Expanding,
E (ziyi) — E (ziz}) B =0.
This is a system of ¢ = k equations and k& unknowns. Solving for 3 we find

8= (E (zifcg))_l E (ziyi) -

This solution assumes that the matrix E (z;2}) is invertible, which holds under (11.8) or equivalently
(11.27).
The instrumental variables (IV) estimator 3 replaces the population moments by their

sample versions. We find
- 1 n -1 1 n
Biy = (ﬁ E zz‘”i) (ﬁ E_ zi%‘)

ni:l / \ =1
() (5
= (2'X)7" (2'y). (11.29)

More generally, it is common to refer to any estimator of the form
o~ -1
B = (W'X) " (W)

given an n x k matrix W as an IV estimator for 3 using the instrument W.
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Alternatively, recall that when ¢ = k the structural parameter can be written as a function of
the reduced form parameters as 8 = I' "' X. Replacing I and A by their least-squares estimates we
can construct what is called the Indirect Least Squares (ILS) estimator:

~ ~—]~

:Bils =T A

= (7)) " ((22)" (29)
= (2'X) "' (2'2) (2'2) " (2'y)
= (2'X)" (2'y).

We see that this equals the IV estimator (11.29). Thus the ILS and IV estimators are equivalent.
Given the IV estimator we define the residual vector

/é:y_Xﬁiv

which satisfies
Z'e=2Z'y-Z'X (Z'X)" (Z'y) =0. (11.30)

Since Z includes an intercept, this means that the residuals sum to zero, and are uncorrelated with
the included and excluded instruments.

To illustrate, we estimate the reduced form equations corresponding to the college proximity
example of Table 11.1, now treating education as endogenous and using college as an instrumental
variable. The reduced form equations for log(wage) and education are reported in the first and
second columns of Table 11.2.

Table 11.2
Reduced Form Regressions

log(wage) education education experience experience?/100 education
experience 0.053 —0.410 —0.413
(0.007) (0.032) (0.032)
experience?/100  —0.219 0.073 0.093
(0.033) (0.170) (0.171)
black —0.264 —1.006 —1.468 1.468 0.282 —1.006
(0.018) (0.088) (0.115) (0.115) (0.026) (0.088)
south —0.143 —0.291 —0.460 0.460 0.112 —0.267
(0.017) (0.078) (0.103) (0.103) (0.022) (0.079)
urban 0.185 0.404 0.835 —0.835 —0.176 0.400
(0.017) (0.085) (0.112) (0.112) (0.025) (0.085)
college 0.045 0.337 0.347 —0.347 —0.073
(0.016) (0.081) (0.109) (0.109) (0.023)
public 0.430
(0.086)
private 0.123
(0.101)
age 1.061 —0.061 —0.555
(0.296) (0.296) (0.065)
age? /100 —1.876 1.876 1.313
(0.516) (0.516) (0.116)
F 17.51 8.22 1581 1112 13.87

Of particular interest is the equation for the endogenous regressor (education), and the coef-
ficients for the excluded instruments — in this case college. The estimated coefficient equals 0.346
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with a small standard error. This implies that growing up near a 4-year college increases average
educational attainment by 0.3 years. This seems to be a reasonable magnitude.

Since the structural equation is just-identified with one right-hand-side endogenous variable,
we can calculate the ILS/IV estimate for the education coefficient as the ratio of the coefficient
estimates for the instrument college in the two equations, e.g. 0.346/0.047 = 0.135, implying a 13%
return to each year of education. This is substantially greater than the 8% least-squares estimate
from the first column of Table 11.1.

The IV estimates of the full equation are reported in the second column of Table 11.1.

Card (1995) also points out that if education is endogenous, then so is our measure of experience,
since it is calculated by subtracting education from age. He suggests that we can use the variables
age and age? as instruments for experience and experience?, as they are clearly exogeneous and yet
highly correlated with experience and experience?. Notice that this approach treats experience® as
a variable separate from experience. Indeed, this is the correct approach.

Following this recommendation we now have three endogenous regressors and three instruments.
We present the three reduced form equations for the three endogenous regressors in the third
through fifth columns of Table 11.2. It is interesting to compare the equations for education and
experience. The two sets of coefficients are simply the sign change of the other, with the exception
of the coefficient on age. Indeed this must be the case, because the three variables are linearly
related. Does this cause a problem for 2SLS? Fortunately, no. The fact that the coefficient on age
is not simply a sign change means that the equations are not linearly singular. Hence Assumption
(11.27) is not violated.

The IV estimates using the three instruments college, age and age? for the endogenous regressors
education, experience and experience? is presented in the third column of Table 11.1. The estimate
of the returns to schooling is not affected by this change in the instrument set, but the estimated
return to experience profile flattens (the quadratic effect diminishes).

The IV estimator may be calculated in Stata using the ivregress 2sls command.

11.9 Demeaned Representation

Does the well-known demeaned representation for linear regression (3.20) carry over to the IV
estimator? To see this, write the linear projection equation in the format

yi=zB+a+e

where « is the intercept and x; does not contain a constant. Similarly, partition the instrument as
(1, z;) where z; does not contain an intercept. We can write the IV estimates as

13 ~ ~
Yi = By + Qiv + €

The orthogonality (11.30) implies the two-equation system

n
Z (Z/i — ;B — aiv) =0
i=1

n

Z zZ; (yi — ZB;BiV — aiv> = 0.

i=1
The first equation implies R
aiv = y - E,/Biv'
Substituting into the second equation

n

Zzi ((yi -7 — (@i — 5)IBiv)

=1
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and solving for Biv we find

n -1 n
B = ( zi (x; — 5)') (Z zi (Yi — @))
i1 i=1
n -1 n
= ( (zi —Z) (®i — T)’) (Z (zi — %) (yi — ?)) : (11.31)
i—1

i=1

Thus the demeaning equations for least-squares carry over to the IV estimator. The coefficient
estimate (3;, is a function only of the demeaned data.

11.10 Wald Estimator

In many cases, including the Card proximity example, the excluded instrument is a binary
(dummy) variable. Let’s focus on that case, and suppose that the model has just one endogenous
regressor and no other regressors beyond the intercept. Thus the model can be written as

yi = zif + o+ e
E (67; | Zz) =0
with z; binary.

Notice that if we take expectations of the structural equation given z; = 1 and z; = 0, respec-
tively, we obtain

E(ilzi=1)=E(z |zi=1)8+
E(yi|z=0)=E(zi|z=0)8+a
Subtracting and dividing, we obtain an expression for the slope coefficient

. E(yi|z=1) —E(y|2=0)
E(xi|zi:1)—E(aji|zi:0)’

(11.32)

The natural moment estimator for S replaces the expectations by the averages within the
“grouped data” where z; = 1 and z; = 0, respectively. That is, define the group means

_ > i1 ZiYi — Do (L—2)yi
b Doz Yo = >y (1= 2)
L= D oisy Ziti Ty = Dy (1= 2i) @i

D% Doy (1= 2)

<<

S|

and the moment estimator L
B=D"bo (11.33)
T1 — Zo
This is known as the “Wald estimator” as it was proposed by Wald (1940).

These expressions are rather insightful. (11.32) shows that the structural slope coefficient is the
expected change in y; due to changing the instrument divided by the expected change in x; due to
changing the instrument. Informally, it is the change in y (due to z) over the change in = (due to
z). Equation (11.33) shows that slope coefficient can be estimated by a simple ratio in means.

The expression (11.33) may appear like a distinct estimator from the IV estimator G;,, but it

turns out that they are the same. That is, 8 = 3;,. To see this, use (11.31) to find
5 - Zisu=)
Y Yz (i —T)
_Ti-7
T —T
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Then notice

1 & 1 @ 1 o
yl—y—y1—<EZz¢yl+52<1—zz )‘;Z 1—2) (71 — To)

and similarly

and hence

B' _ 0 Z? 1 (1= 2) (W1 — Yo)
vl 7 i1 (1= z) (T — To)
as defined in (11.33). Thus the Wald estimator equals the IV estimator.
We can illustrate using the Card proximity example. If we estimate a simple IV model with
no covariates we obtain the estimate 3, = 0.19. If we estimate the group-mean log wages and
education levels based on the instrument college, we find

=5

near college not near college
log(wage) 6.311 6.156
education 13.527 12.698

Based on these estimates the Wald estimator of the slope coefficient is (6.311 — 6.156) / (13.527 — 12.698) =
0.19, the same as the I'V estimator.
11.11 Two-Stage Least Squares

The IV estimator described in the previous section presumed ¢ = k. Now we allow the general
case of ¢ > k. Examining the reduced-form equation (11.16) we see

yi = 2, LB + v
E (zivl-) =0.

Defining w; = I''z; we can write this as
yi = wiB +v;
E (’wﬂ)z) =0.
Suppose that I' were known. Then we would estimate 3 by least-squares of y; on w; = I'"2;
~ -1
B=(WW)  (Wy)
— (I'z'zr) ' (T'Z'y) .
While this is infeasible, we can estimate I' from the reduced form regression. Replacing I' with its
estimate I' = (Z’Z)_1 (Z'X) we obtain
- 1
182315 = <F Z ZI‘) < Z/y)
- (x'z (z ) Z'z
-1

Z ( ~1
(Xz Z'X ) X'z (2'2)"' 2'y. (11.34)

z'z)'z )_1X’Z (2'2)' 2’y

This is called the two-stage-least squares (2SLS) estimator. It was originally proposed by Theil
(1953) and Basmann (1957), and is a standard estimator for linear equations with instruments.
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If the model is just-identified, so that &k = ¢, then 2SLS simplifies to the IV estimator of the
previous section. Since the matrices X'Z and Z’X are square, we can factor
/ 1r7\—1 7/ -1 / -1 N 1\ —1
(x'z(zz)'zx) = (2x)" ((z2)") (X'7)
—(z'x)"(2'2) (x'Z)".

(Once again, this only works when k& = £.) Then

o= (X2 (22 X X2 (22) 21y
—(z’X)"(2'2) (X'Z)” XZ(Z Z) ' Z'y
—(z'X)(2'2) (2'2) ' Z'y
— (2'X) 7" 2"y
= By

as claimed. This shows that the 2SLS estimator as defined in (11.34) is a generalization of the IV
estimator defined in (11.29).

There are several alternative representations of the 2SLS estimator which we now describe.
First, defining the projection matrix

-1

P;=2(2'2) 7' (11.35)
we can write the 2SLS estimator more compactly as
r -1
/6251s = (X/PZX) X/PZy- (1136)

This is useful for representation and derivations, but is not useful for computation as the n x n
matrix Pz is too large to compute when n is large.
Second, define the fitted values for X from the reduced form

X =PzX = 2ZT.
Then the 2SLS estimator can be written as
~ —~ -1 _—y
B2sls = (X X) X Y.
This is an IV estimator as defined in the previous section using X as the instrument.
Third, since Pz is idempotent, we can also write the 2SLS estimator as
~ -1
,82515 = (X/PszX) X'sz
o~ —~\ —1 ~
- (X’X) X'y
which is the least-squares estimator obtained by regressing y on the fitted values X.
This is the source of the “two-stage” name is since it can be computed as follows.
e First regress X on Z, vis., I' = (Z'Z) "' (Z'X) and X = ZT = P;X.

— —~ e —1
e Second, regress y on X, vis., Byqs = (X/X) X/y.
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It is useful to scrutinize the projection X. Recall, X = [X1, X5 and Z = [X 1, Z;]. Notice
X1 =PzX; = X; since X lies in the span of Z. Then

—

X — [3(\1,5(\2} - [Xl,ic}} .

Thus in the second stage, we regress y on X1 and /)Zg. So only the endogenous variables X9 are
replaced by their fitted values: e R R
Xo =X 1T'19 + ZoT9.

This least squares estimator can be written as
y= X108, + X2, +&.
A fourth representation of 2SLS can be obtained from the previous representation for BQ. Set
P, =X, (X!X,)"' X!. Applying the FWL theorem we obtain
~ ~ —~\—-1
By = (Xz (In — Pl)X2) (X2 (In—P1) y)
— (X4Pz (I, — P1)PzX,)  (X4Pz (I, — P1)y)
— (X4 (Pz —P1)Xy) ' (X4(Pz—P1)y)

since PzP, = P;.
A fifth representation can be obtained by a further projection. The projection matrix Pz can
be replaced by the projection onto the pair [X 1, Z9] where Zo = (I,, — P1)Z2 is Z9 projected

.

orthogonal to X 1. Since X1 and 22 are orthogonal, Pz = P{+P3 where Py = 22 (2;22) Z,.
Thus Pz — P = Py and
By = (X4P2X5) ' (X5 Pay)
_ <X522 (2,2,) " z;x2>_1 <x;z2 (2,2,) " z;y> (11.37)
Given the 2SLS estimator we define the residual vector
e=y—-X BZSIS'
When the model is overidentified, the instruments and residuals are not orthogonal. That is
Z'e # 0.

It does, however, satisfy

Returning to Card’s college proxity example, suppose that we treat experience as exogeneous,
but that instead of using the single instrument college (grew up near a 4-year college) we use the
two instruments (public, private) (grew up near a public/private 4-year college, respectively). In
this case we have one endogenous variable (education) and two instruments (public, private). The
estimated reduced form equation for education is presented in the sixth column of Table 11.2. In
this specification, the coefficient on public — growing up near a public 4-year college — is larger
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than that found for the variable college in the previous specification (column 2). Furthermore, the
coeflicient on private — growing up near a private 4-year college — is much smaller. This indicates
that the key impact of proximity on education is via public colleges rather than private colleges.

The 2SLS estimates obtained using these two instruments are presented in the fourth column
of Table 11.1. The coefficient on education increases to 0.162, indicating a 16% return to a year
of education. This is roughly twice as large as the estimate obtained by least-squares in the first
column.

Additionally, if we follow Card and treat experience as endogenous and use age as an instru-
ment, we now have three endogenous variables (education, experience, experience? /100) and four
instruments (public, private, age, age®). We present the 2SLS estimates using this specification in
the fifth column of Table 11.1. The estimate of the return to education remains about 16%, but
again the return to experience flattens.

You might wonder if we could use all three instruments — college, public, and private. The
answer is no. This is because college = public + private so the three variables are colinear. Since
the instruments are linearly related, the three together would violate the full-rank condition (11.7).

The 2SLS estimator may be calculated in Stata using the ivregress 2sls command.

11.12 Limited Information Maximum Likeihood

An alternative method to estimate the parameters of the structural equation is by maximum
likelihood. Anderson and Rubin (1949) derived the maximum likelihood estimator for the joint
distribution of (y;, €2;). The estimator is known as limited information maximum likelihood,
or LIML.

This estimator is called “limited information” because it is based on the structural equation
for y; combined with the reduced form equation for xo;. If maximum likelihood is derived based
on a structural equation for xo; as well, then this leads to what is known as full information
maximum likelihood (FIML). The advantage of the LIML approach relative to FIML is that the
former does not require a structural model for xo;, and thus allows the researcher to focus on the
structural equation of interest — that for y;. We do not describe the FIML estimator here as it is
not commonly used in applied econometric practice.

While the LIML estimator is less widely used among economists than 2SLS, it has received a
resurgence of attention from econometric theorists.

To derive the LIML estimator, start by writing the joint reduced form equations (11.19) and

(11.15) as
L Yi
v=(a)

. All )\,2 Z14 Vi
o by T 29 + Y
12 22 2i 21

=12 + I 29 + & (11.38)

where II; = [ A1 T'o ], II, = [ Ao T'yo ]and 5; = [ Vi 11/2Z ] The LIML estimator is derived
under the assumption that &; is multivariate normal.
Define v/ = [ 1 —85 |. From (11.21) we find

Hg")’ = AQ — F22,62 = 0.

Thus the ¢3 x (k2 + 1) coefficient matrix ITy in (11.38) has deficient rank. Indeed, its rank must be
ks, since I'99 has full rank.

This means that the model (11.38) is precisely the reduced rank regression model of Section
10.9. Theorem 10.9.1 presents the maximum likelihood estimators for the reduced rank parameters.
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In particular, the MLE for -y is
. . YW MW~
= argmin ———————
VT A W M Wiy

where W is the n X (1 4 k) matrix of the stacked w} = (y; 5, ), M1 =1,—Z; (z42,)"' 7,
and Mz =1, — Z (Z'Z)"" Z'. The minimization (11.39) is sometimes called the “least variance
ratio” problem.

The minimization problem (11.39) is invariant to the scale of v (that is, 4c is equivalently the
argmin for any c¢) so a normalization is required. For estimation of the structural parameters a
convenient normalization is 4/ = [ 1 -3 ] Another is to set v W Mz W= = 1. In this case,
from the theory of the minimum of quadratic forms (Section A.11), 4 is the generalized eigenvector
of W/ MW with respect to W Mz W associated with the smalled generalized eigenvalue. (See
Section A.10 for the definition of generalized eigenvalues and eigenvectors.) Computationally this
is straightforward. For example, in MATLAB, the generalized eigenvalues and eigenvectors of the
matrix A with respect to B is found by the command eig(A,B). Once ~ is found, to obtain the
MLE for 3y, make the partition 5 = [ 71 75 | and set By = =7, /7.

To obtain the MLE for (3;, recall the structural equation y; = @},8; + 5,85 + €;. Replacing
B9 with the MLE Bz and then applying regression we obtain the MLE for 3;. Thus

(11.39)

B = (X}X,) ' X} (Y—XZB2>- (11.40)

These solutions are the MLE (known as the LIML estimator) for the structural parameters 3, and
Bs.

Many previous econometrics textbooks do not present a derivation of the LIML estimator as
the original derivation by Anderson and Rubin (1949) is lengthy and not particularly insightful. In
contrast, the derivation given here based on reduced rank regression is relatively simple.

There is an alternative (and traditional) expression for the LIML estimator. Define the minimum
obtained in (11.39)

~ . ")’/ W' M 1 W’y
T W M, Wy
which is the smallest generalized eigenvalue of W/ MW with respect to W/ Mz W. The LIML
estimator then can be written as

(11.41)

Bimi = (X' (I, ="M ) X) ™' (X' (I, — #M 2) y) . (11.42)

We defer the derivation of (11.42) until the end of this section. Expression (11.42) does not simplify
the computation (since K requires solving the same eigenvector problem that yields 35). However
(11.42) is important for the distribution theory of of the LIML estimator, and to reveal the algebraic
connection between LIML, least-squares, and 2SLS.

The estimator class (11.42) with arbitrary  is known as a k class estimator of 3. While the
LIML estimator obtains by setting k = &, the least-squares estimator is obtained by setting x = 0
and 2SLS is obtained by setting k = 1. It is worth observing that the LIML solution to (11.41)
satisfies & > 1.

When the model is just-identified, the LIML estimator is identical to the IV and 2SLS estimators.
They are only different in the over-identified setting. (One corollary is that under just-identification
the IV estimator is MLE under normality.) R

For inference, it is useful to observe that (11.42) shows that (3}, can be written as an IV

estimator .
~ —~ - -/
Blim1 = <X X) (X y>
using the instrument

~ ~ X
X =(I, 7Mgz)X = L
(In—KMz) <X2—5U2>
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where Uy = MzX are the (reduced-form) residuals from the multivariate regression of the en-
dogenous regressors ®g; on the instruments z;. Expressing LIML using this IV formula is useful
for variance estimation.

Asymptotically the LIML estimator has the same distribution as 2SLS. However, they can have
quite different behaviors in finite samples. There is considerable evidence that the LIML estimator
has superior finite sample performance to 2SLS when there are many instruments or the reduced
form is weak. (We review these cases in the following sections.) However, on the other hand there is
worry that since the LIML estimator is derived under normality it may not be robust in non-normal
settings.

We now derive the expression (11.42). Use the normaliaation v/ = [ 1 —8% | to write (11.39)

as
~ Y- X "M{(Y-X
B, = argmin ( 2ﬁ2)/ 1 ( 2033)
B, (Y —=X28:) Mz (Y —X203,)
The first-order-condition for minimization
/ 2 =Y 2
XoM; (Y—X252> (Y—X2ﬁ2> M, (Y—X252>

<Y_X2@2>,MZ <Y_XQB2> (Y_Xzfi'z)/MZ (Y—XQB2>2X/2MZ (Y_X2B2> =0

! —
Multiplying by (Y — X2,32> Mz (Y — X252> /2 and using definition (11.41) we find

X, M; (Y - X2[§2) _RXLMy (Y - XQBQ) —0.

Rewriting, R
X5L(M; —EMz) X28, = X5(M1 —rfMz)y. (11.43)
Equation (11.42) is the same as the two equation system
XX 1B, + X[ XoB, = X'y
X45X 18, + (X5 (I, —RMz) X2) By = X4 (I, —"’M z) y.

The first equation is (11.40). Using (11.40), the second is

1 o~ —~ - ~

X5X, (X5 X)X, (Y— X262> + (X4 (I, — RM z) X3) By = X4 (I, — RM ) y

which is (11.43) when rearranged. We have thus shown that (11.42) is equivalent to (11.40) and
(11.43) and is thus a valid expression for the LIML estimator.

Returning to the Card college proximity example, we now present the LIML estimates of the
equation with the two instruments (public, private). They are reported in the final column of Table
11.1. They are quite similar to the 2SLS estimates in this application.

The LIML estimator may be calculated in Stata using the ivregress liml command.

Theodore Anderson

Theodore (Ted) Anderson (1918-2016) was a American statistician and
econometrician, who made fundamental contributions to multivariate sta-
tistical theory. Important contributions include the Anderson-Darling dis-
tribution test, the Anderson-Rubin statistic, the method of reduced rank
regression, and his most famous econometrics contribution — the LIML es-
timator. He continued working throughout his long life, even publishing
theoretical work at the age of 97!
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11.13 Consistency of 2SLS

We now present a demonstration of the consistency of the 2SLS estimate for the structural
parameter. The following is a set of regularity conditions.

Assumption 11.13.1

1. The observations (yi, i, 2;), i = 1, ...,n, are independent and identi-
cally distributed.

2. B (y?) < oc.

E|z|? < oc.

E|z|* < co.

E (z2') is positive definite.
E (z2') has full rank k.

N S T

E(ze) =0.

Assumptions 11.13.1.2-4 state that all variables have finite variances. Assumption 11.13.1.5
states that the instrument vector has an invertible design matrix, which is identical to the core
assumption about regressors in the linear regression model. This excludes linearly redundant in-
struments. Assumptions 11.13.1.6 and 11.13.1.7 are the key identification conditions for instru-
mental variables. Assumption 11.13.1.6 states that the instruments and regressors have a full-rank
cross-moment matrix. This is often called the relevance condition. Assumption 11.13.1.7 states
that the instrumental variables and structural error are uncorrelated. Assumptions 11.13.1.5-7 are
identical to Definition 11.3.1.

Theorem 11.13.1 Under Assumption 11.13.1, BQSIS LN B as n — oo.

The proof of the theorem is provided below

This theorem shows that the 2SLS estimator is consistent for the structural coefficient 3 under
similar moment conditions as the least-squares estimator. The key differences are the instrumental
variables assumption E (ze) = 0 and the identification assumption rank (E (zz')) = k.

The result includes the IV estimator (when ¢ = k) as a special case.

The proof of this consistency result is similar to that for the least-squares estimator. Take the
structural equation y = X3 + e in matrix format and substitute it into the expression for the
estimator. We obtain

Bou = (X’Z (z'z)™" Z/Xyl X'7(2'2) 2 (XB+e)

-8+ (x'z(z'2)" Z’X>_1 X'7(2'Z) " Z'e. (11.44)
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This separates out the stochastic component. Re-writing and applying the WLLN and CMT

0= ((2x2) (322) " (32))
(es)(2r4)

— (sz Q;;sz)il szQ;zlE (ziei) =0

where
Qa:z =K ("B’Lz;)
Q..=E (zzz;)
Qza: - E (Z',,illi)

The WLLN holds under the i.i.d. Assumption 11.13.1.1 and the finite second moment Assumptions
11.13.1.2-4. The continuous mapping theorem applies if the matrices Q,, and Q,,Q;lQ,, are
invertible, which hold under the identification Assumptions 11.13.1.5 and 11.13.1.6. The final
equality uses Assumption 11.13.1.7.

11.14 Asymptotic Distribution of 2SLS

We now show that the 2SLS estimator satisfies a central limit theorem. We first state a set of
sufficient regularity conditions.

Assumption 11.14.1 In addition to Assumption 11.13.1,
1. E (y4) < 00.

2. B|z|* < cc.

Assumption 11.14.1 strengthens Assumption 11.13.1 by requiring that the dependent variable
and instruments have finite fourth moments. This is used to establish the central limit theorem.

Theorem 11.14.1 Under Assumption 11.14.1, as n — 00.
> d
\/T_Z <ﬁ2sls - ﬁ) — N (07 Vﬂ)
where

VB = (szQ;lezw)il (szQ;zlﬂQ;lezw) (szQ;leza:)il

and
Q =E (zizje?).




CHAPTER 11. INSTRUMENTAL VARIABLES 323

This shows that the 2SLS estimator converges at a y/n rate to a normal random vector. It
shows as well the form of the covariance matrix. The latter takes a substantially more complicated
form than the least-squares estimator.

As in the case of least-squares estimation, the asymptotic variance simplifies under a conditional
homoskedasticity condition. For 2SLS the simplification occurs when E (e? | z;) = 0. This holds
when z; and e; are independent. It may be reasonable in some contexts to conceive that the error e;
is independent of the excluded instruments zs;, since by assumption the impact of z9; on y; is only
through x;, but there is no reason to expect e; to be independent of the included exogenous variables
x1;. Hence heteroskedasticity should be equally expected in 2SLS and least-squares regression.
Nevertheless, under the homoskedasticity condition then we have the simplifications Q = Q,,0?
and Vg = V4 2 (Q.Q:1 Q) ' 0.

The derivation of the asymptotic distribution builds on the proof of consistency. Using equation

(11.44) we have
Vit (Boas — B) = ((%XZ> <%Z’Z> B <%ZX))
. <%Xz) (%z'z) - (%Z’e) |

We apply the WLLN and CMT for the moment matrices involving X and Z the same as in the
proof of consistency. In addition, by the CLT for i.i.d. observations

1 1 — d
—=Z'e=—=Y zie; - N(0,Q
Vn © \/ﬁizlzzez (.9)

because the vector z;e; is i.i.d. and mean zero under Assumptions 11.13.1.1 and 11.13.1.7, and has
a finite second moment as we verify below.

‘We obtain
-1 -
\/ﬁ (16281S - 6) = <<%X,Z> <%Z,Z> <%Z,X>)
1, 1., \N‘/1
(ix2) (G72) (57)
i> (szQz_zl sz)_l szQ;le (07 Q) =N (07 Vﬁ)
as stated.

For completeness, we demonstrate that z;e; has a finite second moment under Assumption
11.14.1. To see this, note that by Minkowski’s inequality

(B ()" = (B(y-28)"))
< @)+ 181 (Blel*) " < o0

under Assumptions 11.14.1.1 and 11.14.1.2. Then by the Cauchy-Schwarz inequality

1/4

1/2
Elzel? < (Bll2lY) " (B (%) < o0

using Assumptions 11.14.1.3.
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11.15 Determinants of 2SLS Variance

It is instructive to examine the asymptotic variance of the 2SLS estimator to understand the
factors which determine the precision (or lack thereof) of the estimator. As in the least-squares
case, it is more transparent to examine the variance under the assumption of homoskedasticity. In
this case the asymptotic variance takes the form

V9= (Qn.Q:lQ,) to?
~ (Ble) (B () "B (za)) " B().

As in the least-squares case, we can see that the variance is increasing in the variance of the error
e;, and decreasing in the variance of ;. What is different is that the variance is decreasing in the
(matrix-valued) correlation between x; and z;.

It is also useful to observe that the variance expression is not affected by the variance structure
of z;. Indeed, V% is invariant to rotations of z; (if you replace z; with Cz; for invertible C the
expression does not change). This means that the variance expression is not affected by the scaling
of z;, and is not directly affected by correlation among the z;.

We can also use this expression to examine the impact of increasing the instrument set. Suppose
we partition z; = (244, 2p;) Where dim(z4;) > k so we can construct the 2SLS estimator using z;.
Let Ba and B denote the 2SLS estimators constructed using the instrument sets z4; and (244, 2p;),
respectively. Without loss of generality we can assume that z,; and zp; are uncorrelated (if not,
replace zp; with the projection error after projecting onto z4;). In this case both E (z;2]) and
(E (ziz;))_l are block diagonal, so

with strict inequality if E (x;2};) # 0. Thus the 2SLS estimator with the full instrument set has a
smaller asymptotic variance than the estimator with the smaller instrument set.

What we have shown is that the asymptotic variance of the 2SLS estimator is decreasing as the
number of instruments increases. From the viewpoint of asymptotic efficiency, thie means that it is
better to use more instruments (when they are available and are all known to be valid instruments)
rather than less.

Unfortunately, there is always a catch. In this case it turns out that the finite sample bias of the
2SLS estimator (which cannot be calculated exactly, but can be approximated using asymptotic
expansions) is generically increasing linearily as the number of instruments increases. We will see
some calculations illustrating this phenomenon in Section 11.33. Thus the choice of instruments in
practice induces a trade-off between bias and variance.

11.16 Covariance Matrix Estimation

Estimation of the asymptotic variance matrix Vg is done using similar techniques as for least-
squares estimation. The estimator is constructed by replacing the population moment matrices by
sample counterparts. Thus

-1

Vo= (@:0:000) (Q-0:00.00.,) (2..021Q..) (11.45)
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where
n
~ 1
! !
Q.. =— ziz; =—24'7Z
n “
=1
n
~ 1 1
Q.. =— :I:izé =-X'Z
n n

Q:—E 22}

€ = Yi — wiﬁ2sls'

The homoskedastic variance matrix can be estimated by
~0 ~—1~ 1 9
Vﬁ = (sz sz sz> o
1 n
5% = - N
i=1

Standard errors for the coefficients are obtained as the square roots of the diagonal elements of
n*IVg. Confidence intervals, t-tests, and Wald tests may all be constructed from the coefficient
estimates and covariance matrix estimate exactly as for least-squares regression.

In Stata, the ivregress command by default calculates the covariance matrix estimator using
the homoskedastic variance matrix. To obtain covariance matrix estimation and standard errors
with the robust estimator f/g, use the “,r” option.

Theorem 11.16.1 Under Assumption 11.14.1, as n — 00,
Vi 5 VY
B~ VB

Vg 2 v

To prove Theorem 11.16.1 the key is to show Q - Q as the other convergence results were
established in the proof of consistency. We defer this to Exercise 11.6.

It is important that the covariance matrix be constructed using the correct residual formula
€ = yi — T,Bsgs This is different than what would be obtained if the “two-stage” computation
method is used. To see this, let’s walk through the two-stage method. First, we estimate the
reduced form N

z, =TI z; +u;
to obtain the predicted values z; = f‘/zi. Second, we regress y; on &; to obtain the 2SLS estimator
Bags- This latter regression takes the form

Yi = /w\;/GQsls + i)\% (11'46)

where v; are least-squares residuals. The covariance matrix (and standard errors) reported by this
regression are constructed using the residual v;. For example, the homoskedastic formula is

—1~

~ 1 —~r— 1/\ ~ 1
Vﬁ_< XX) 67 = (Q0:Qe2Qur) 3

~ 1 .
52 Ly g
n

i=1
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which is proportional to the variance estimate o2 rather than 2. This is important because the

residual v; differs from €;. We can see this because the regression (11.46) uses the regressor ;
rather than x;. Indeed, we can calculate that

Bi = yi — TiBogs + (i — 3i) Bags
=& + Wi Bogs
# €
This means that standard errors reported by the regression (11.46) will be incorrect.

This problem is avoided if the 2SLS estimator is constructed directly and the standard errors
calculated with the correct formula rather than taking the “two-step” shortcut.

11.17 Asymptotic Distribution and Covariance Estimation for LIML

Recall, the LIML estimator has several representations, including
~ =N —1 ~
IBIiml:(X/(In_’{MZ)X) (X,(IH_RMZ)y)
= (X'PzX —iX'MzX) " (X'Pzy — iX'M zy)
where 1 =k — 1 and
7 — min LW MWy
v YW MzWx
Using multivariate regression analysis, we can show that & 2,1 and thus n L50. Tt follows
that

1 1
—X'Pgze—11—X'M
NN Ze)
1

— <%X’PZX - op(1)> - <%X/Pze - Op(1)>
= Vi (Boas = B) + 0,(1)

which means that LIML and 2SLS have the same asymptotic distribution. This holds under the

same assumptions as for 2SLS, and in particular does not require normality of the errors.
Consequently, one method to obtain an asymptotically valid covariance estimate for LIML is

to use the same formula as for 25LS. However, this is not the best choice. Rather, consider the IV

representation for LIML
~ — -1 ,—y
Bim = (X' X)) (X'y)

— X,
X = ~
(XQ—//%UQ )

and ﬂQ = MzX 5. The asymptotic covariance matrix formula for an IV estimator is

-1
N (mal - ﬁ) - <%X’PZX _ ﬁ%X/MZX> <

where

R 1 -1 _ /4 . -1
Vg=|-XX Q-X'X (11.47)
n n
where
PO AR
Q= mlmlef
n

€ = Yi — T;Bim-
This simplifies to the 2SLS formula when & = 1 but otherwise differs. The estimator (11.47) is a

better choice than the 2SLS formula for covariance matrix estimation as it takes advantage of the
LIML estimator structure.
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11.18 Functions of Parameters

327

Given the distribution theory in Theorems 11.14.1 and 11.16.1 it is straightforward to derive

the asymptotic distribution of smooth nonlinear functions of the coefficients.
Specifically, given a function r(3) : R¥ — © € R? we define the parameter

6 =r(B)
Given B2Sls a natural estimator of 6 is Bags = 7 (BQSIS .

Consistency follows from Theorem 11.13.1 and the continuous mapping theorem.

Theorem 11.18.1 Under Assumption 11.13.1, if r(B) is continuous at
3, then Oy 250 asn — oo.

If 7(3) is differentiable then an estimator of the asymptotic covariance matrix for 0 is
Vo=RVsR
-9 o~
R= %T(IBQSIS)/

We similarly define the homoskedastic variance estimator as

~1 ~0 ~

Vo= RV,R.

The asymptotic distribution theory follows from Theorems 11.14.1 and 11.16.1, and the delta

method.

Theorem 11.18.2 Under Assumption 11.14.1, if v(3) is continuously
differentiable at 3, then as n — oo

Vit (6205 — 8) <5 N (0, Vo)

where
Vo = R’VﬁR
0
R=— !
7570
and R
Vo -2 V.

When ¢ = 1, a standard error for 52315 is 3(52515) = \/n—lffg )

For example, let’s take the parameter estimates from the fifth column of Table 11.1, which are
the 2SLS estimates with three endogenous regressors and four excluded instruments. Suppose we
are interested in the return to experience, which depends on the level of experience. The estimated
return at experience = 10 is 0.0473 — 0.032 % 2 % 10/100 = 0.041 and its standard error is 0.003.
This implies a 4% increase in wages per year of experience and is precisely estimated. Or suppose
we are interested in the level of experience at which the function maximizes. The estimate is
50 % 0.047/0.032 = 73. This has a standard error of 249. The large standard error implies that the

estimate (73 years of experience) is without precision and is thus uninformative.
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11.19 Hypothesis Tests

As in the previous section, for a given function r(3) : R¥ — © C R? we define the parameter
0 = r(B) and consider tests of hypotheses of the form

Hp: @ = 6
against
Hl : 0 75 00.
The Wald statistic for Hy is
~ I ~_1 /~
W:n<0—00> v, (0—00>.

From Theorem 11.18.2 we deduce that W is asymptotically chi-square distributed. Let G,(u)
denote the Xf21 distribution function.

Theorem 11.19.1 Under Assumption 11.14.1, if v(3) is continuously
differentiable at 3, and Hy holds, then as n — oo,

W — x§~
For c satisfying a =1 — Gy(c),
Pr(W >c¢|Hy) — «

so the test “Reject Hy if W > ¢” has asymptotic size .

In linear regression we often report the F' version of the Wald statistic (by dividing by degrees
of freedom) and use the F' distribution for inference, as this is justified in the normal sampling
model. For 2SLS estimation, however, this is not done as there is no finite sample F justification
for the F' version of the Wald statistic.

To illustrate, once again let’s take the parameter estimates from the fifth column of Table 11.1
and again consider the return to experience which is determined by the coefficients on experience
and experience? /100. Neither coefficient is statisticially signfiicant at the 5% level, so it is unclear
from a casual look if the overall effect is statistically significant. We can assess this by testing the
joint hypothesis that both coefficients are zero. The Wald statistic for this hypothesis is W = 254,
which is highly significant with an asymptotic p-value of 0.0000. Thus by examining the joint test,
in contrast to the individual tests, is quite clear that experience has a non-zero effect.

11.20 Finite Sample Theory

In Chapter 5 we reviewed the rich exact distribution available for the linear regression model
under the assumption of normal innovations. There was a similarly rich literature in econometrics
which developed a distribution theory for IV, 2SLS and LIML estimators. This theory is reviewed
by Peter Phillips (1983), and much of the theory was developed by Peter Phillips in a series of
papers in the 1970s and early 1980s.

This theory was developed under the assumption that the structural error vector e and reduced
form error ug are multivariate normally distributed. The challenge is that the IV estimators are non-
linear functions of uo and are thus non-normally distributed. Formulae for the exact distributions
have been derived, but are unfortunately functions of model parameters and hence are not directly
useful for finite sample inference.
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One important implication of this literature is that it is quite clear that even in this optimal
context of exact normal innovations, the finite sample distributions of the IV estimators are non-
normal and the finite sample distributions of test statistics are not chi-squared. The normal and chi-
squared approximations hold asymptotically, but there is no reason to expect these approximations
to be accurate in finite samples.

11.21 Clustered Dependence

In Section 4.20 we introduced clustered dependence. We can also use the methods of clustered
dependence for 2SLS estimation. Recall, the ¢! cluster has the observations Y, = (Y1gs -+ Ungg)'s
Xy = (x1gy .- Tnyg)', and Zy = (214, ..., Zn,g)’. The structural equation for the gt" cluster can be
written as the matrix system

Yg = X 916 + egq.
Using this notation the centere 2SLS estimator can be written as

B —B= (X' (2'2)" Z’X)il X'7(2'2)" Z'e

- (x'z (z'z)™ z’X) X'Z ( Zz’ e

The cluster-robust covariance matrix estimator for Bles thus takes the form

-1 -1

Vo= (Xx'z(2'2)" z’x)flx/z (2'2)7'8(z'2)' 2'x (X'z (2'2) "' Z'X)

with
G
VA /\/
Z 9€9€5Z

and the clustered residuals R
€y = Yg — X gBsls-
The difference between the heteroskedasticity-robust estimator and the cluster-robust estimator
is the covariance estimator S.

11.22 Generated Regressors

The “two-stage” form of the 2SLS estimator is an example of what is called “estimation with
generated regressors”. We say a regressor is a generated if it is an estimate of an idealized
regressor, or if it is a function of estimated parameters. Typically, a generated regressor w; is an
estimate of an unobserved ideal regressor w;. As an estimate, w; is a function of the sample, not
just observation . Hence it is not “i.i.d.” as it is dependent across observations, which invalidates
the conventional regression assumptions. Consequently, the sampling distribution of regression
estimates is affected. Unless this is incorporated into our inference methods, covariance matrix
estimates and standard errors will be incorrect.

The econometric theory of generated regressors was developed by Pagan (1984) for linear models,
and extended to non-linear models and more general two-step estimators by Pagan (1986). Here
we focus on the linear model:

yi = wiB +v; (11.48)
w; = A'z;
E (z;v;) = 0.
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The observables are (y;, z;). We also have an estimate Aof A.

~ A, . . A
Given A we construct the estimate w; = A z; of w;, replace w; in (11.48) with w;, and then
estimate 3 by least-squares, resulting in the estimator

n -1 n
B= ( ﬁm?/) (Z ﬁ;iyz) . (11.49)
=1 =1

The regressors w; are called generated regressors. The properties of B are different than least-
squares with i.i.d. observations, since the generated regressors are themselves estimates.

This framework includes the 2SLS estimator as well as other common estimators. The 2SLS
model can be written as (11.48) by looking at the reduced form equation (11.16), with w; = I z;,
A=T,and A =T is (11.22).

The examples which motivated Pagan (1984) emerged from the macroeconomics literature,
in particular the work of Barro (1977) which examined the impact of inflation expectations and
expectation errors on economic output. For example, let m; denote realized inflation and z; be the
information available to economic agents. A model of inflation expectations sets w; = E (m;|2;) =
~'z; and a model of expectation error sets w; = m; — BE(m;|z;) = m — v'z;. Since expectations
and errors are not observed they are replaced in applications with the fitted values @; = 7'z, or
residuals w; = m; — ﬁ'zi where 7 is a coefficient estimate from a regression of m; on z;.

The generated regressor framework includes all of these examples.

The goal is to obtain a distributional approximation for B in order to construct standard errors,
confidence intervals and conduct tests. Start by substituting equation (11.48) into (11.49). We

obtain .
5o (z ww) (z w <w;a+m>) |
i=1 i=1

Next, substitute w}3 = @3 + (w; — w;)' B. We obtain

n -1 n
B-pB= ( fva’) (Z W; ((w; — @i)lﬂ+vi)). (11.50)
=1

=1

Effectively, this shows that the distribution of ,@— 3 has two random components, one due to the con-
ventional regression component w;v;, and the second due to the generated regressor (w; — 1717;)' 3.
Conventional variance estimators do not address this second component and thus will be biased.

Interestingly, the distribution in (11.50) dramatically simplifies in the special case that the
“generated regressor term” (w; — w;)' B disappears. This occurs when the slope coefficients on
the generated regressors are zero. To be specific, partition w; = (wy;, we;), w; = (wy;, W),
and B = (8, 8,) so that wy; are the conventional observed regressors and ws; are the generated
regressors. Then (w; — ;) B = (wa; — Wa;)' By. Thus if By = 0 this term disappears. In this case
(11.50) equals

. N n -1 n
B-p3= (Z @ﬁ/) (E @v) :
=1 =1
This is a dramatic simplification.

~1

Furthermore, since w; = A z; we can write the estimator as a function of sample moments:

-1
~ (1 & S\ A ~1 1 &
Jn (ﬁ - 5) - (A (E z_;zzz> A) A (W z_;zv> .
If A 25 A we find from standard manipulations that

\/ﬁ@_g) ~4,N(0, V)
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where
Vg = (A'E (2;2)) A)f1 (A'E (2;2jv?) A) (A'E (2;2)) A)f1 . (11.51)
The conventional asymptotic covariance matrix estimator for B takes the form
1 & AR 1 o -
Vs = (E > ﬁ:ﬂ;’) (E Z; @i@;@?) (E > ﬁ;ﬁ;’) (11.52)

where v; = y; — @;B Under the given assumptions, ‘Afﬁ L, V. Thus inference using ‘Afﬁ is
asymptotically valid. This is useful when we are interested in tests of 85 = 0. Often this is of
major interest in applications.

To test Hp : B, = 0 we partition B = (Bl, 2\‘5‘2> and construct a conventional Wald statistic

-1 ~

W:nfi; ([‘Afﬁ}ﬂ) Ba-

Theorem 11.22.1 Take model (11.48) with E (y}) < oo, E|zi* < oo,
A'E (zz)) A >0, A -2 A and ; = (wii, Wai). Under Hy : By = 0, then

as m — 0o,
3 d

ﬁ(ﬁ_ﬁ) 4N (0, V)

where Vg is given in (11.51). For ‘Afﬁ given in (11.52),
Vg 2 v
Furthermore,
W L 2
where ¢ = dim(B,). For c satisfying a =1 — Gy(c)
Pr(W >c¢|Hy) — «

so the test “Reject Hy if W > ¢” has asymptotic size .

In the special case that A=A (X,Z) and v;|@;, z; ~ N (0, 02) then there is a finite sample
version of the previous result. Let W be the Wald statistic constructed with a homoskedastic
variance matrix estimator, and let

F=W/q (11.53)
be the the F statistic, where ¢ = dim(3,).

Theorem 11.22.2 Tuke model (11.48) with A = A (X, Z), vi|ws, z; ~
N (0,02) and w; = (wi;, wy;). Under Hy : By = 0, t-statistics have ex-
act N (0,1) distributions, and the F' statistic (11.53) has an exact Fy
distribution, where ¢ = dim(85) and k = dim(3).
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The theory introduced above allows tests of Hy : B, = 0 but does not lead to methods to
construct standard errors or confidence intervals. For this, we need to work out the distribution
without imposing the simplification 35 = 0. This often needs to be worked out case-by-case,
or by using methods based on the generalized method of moments to be introduced in Chapter
12. However, in some important set of examples it is straightforward to work out the asymptotic
distribution.

For the remainder of this section we examine the setting where the estimators A take a least-
squares form, so for some X can be written as A = (Z'Z )_1 (Z'X). Such estimators correspond
to the multivariate projection model

=A'z;+u; (11.54)
E (ziu ) =0.

This class of estimators directly includes 25LS and the expectation model described above. We can
write the matrix of generated regressors as W = ZA and then (11.50) as

B (W) (W (W W)))

where
e; = v —u,B=vy; — 6. (11.55)

This estimator has the asymptotic distribution
Vi (B-8) 5 N(0, Vp)

where
Vi = (A'E (z:2)) A) " (A'E (2:i2}e?) A) (AE (2:2)) A) . (11.56)

Under conditional homoskedasticity the covariance matrix simplifies to

Vg = (AE (zi%)) A)f1 E (e?).

)

An appropriate estimator of Vg is

Vs = (iW’ﬁf) ( ZA A’AQ) (1’W'W> - (11.57)

a- =Y; — wé,@

Under the assumption of conditional homoskedasticity this can be simplified as usual.

This appears to be the usual covariance matrix estimator, but it is not, because the least-squares
residuals 9; = y; — w3 have been replaced with &; = y; — xB. This is exactly the substitution
made by the 2SLS covariance matrix formula. Indeed, the covariance matrix estimator ‘Afg precisely
equals the estimator (11.45).
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Theorem 11.22.3 Take model (11.48) and (11.54) with E (y}) < oo,
E||zi|* < 0o, A'E(2:2}) A >0, and A = (Z'Z)"" (Z'X). Asn — o,

> d
Vi (B-8) 5N (0, V)
where Vg is gien in (11.56) with e; defined in (11.55). For ‘A/'g given in

(11.57),
Vs 2 V.

Since the parameter estimates are asymptotically normal and the covariance matrix is consis-
tently estimated, standard errors and test statistics constructed from Vg are asymptotically valid
with conventional interpretations.

We now summarize the results of this section. In general, care needs to be exercised when
estimating models with generated regressors. As a general rule, generated regressors and two-
step estimation affects sampling distributions and variance matrices. An important simplication
occurs for tests that the generated regressors have zero slopes. In this case conventional tests have
conventional distributions, both asymptotically and in finite samples. Another important special
case occurs when the generated regressors are least-squares fitted values. In this case the asymptotic
distribution takes a conventional form, but the conventional residual needs to be replaced by one
constructed with the forecasted variable. With this one modification asymptotic inference using
the generated regressors is conventional.

11.23 Regression with Expectation Errors

In this section we examine a generated regressor model which includes expectation errors in the
regression. This is an important class of generated regressor models, and is relatively straightfor-
ward to characterize.

The model is

/ !/
yi = w;B + u;e +v;
w; = A'z;

T, = w; + u;

E(Zi&‘) =0
E(’ui&) =0
E (zZ ) =0.

The observables are (y;, i, z;). This model states that w; is the expectation of ; (or more generally,
the projection of x; on z;) and wu; is its expectation error. The model allows for exogenous regressors
as in the standard IV model if they are listed in w;, x; and z;. This model is used, for example, to
decompose the effect of expectations from expectation errors. In some cases it is desired to include
only the expecation error u;, not the expecation w;. This does not change the results described
here.

The model is estlmated as follows. First, A is estimated by multivariate least-squares of x;
on z;, 4 A= (Z Z) (Z 'X’), which yields as by-products the fitted values W = ZA and residuals
U=X-W. Second, the coefficients are estimated by least-squares of y; on the fitted values w;
and residuals u; R

y; = w8 + u,a + ;.

We now examine the asymptotic distributions of these estimates.
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A~ ] ~ A~ o~
By the first-step regression Z'U =0, W U = 0 and WU = 0. This means that 3 and & can
be computed separately. Notice that

B (W”W)‘l Wy

and
yZ/W,@+Ua+(W—/V§\7>,3+v.

Substituting, using WU=0and W—-W=_-Z (Z'Z) Z'U we find

-1

B-p=(WW)

- (A’z’ZA

/W/<UO£+ (W— /W)B+v>
) "(Ua — UB + v)
- (A’Z’ZA) 1A Z'e

where
ei:vi—i—u;(a—ﬁ):yi—m;,ﬁ.
We also find

~) A~

(U U)_l Uy.
Since UW =0, U~ U=Z(Z'Z)"'Z'U and UZ = 0 then
—a= (VD) U (Wa+ (U-D)atw)

_ (ff’ﬂ)* U'v.

Q)

Together, we establish the following distributional result.

Theorem 11.23.1 For the model and estimates described in this section,
with B (y}) < oo, E|z|* < oo, Elz;||* < oo, A'E(ziz)) A > 0, and
E(u;u}) >0, as n — o0

\/ﬁ( B-p ) 4, N(0, V) (11.58)
o —
where
\% \%
v_( Ves Vea )
< Va,@ Vaa
and

Vg = (A'E (z;2}) A)_1 (A'E (2;2}e}) A) (A'E (2:2;) A)~ -
Vag = (E (uzu;))f1 (E (uizjevi) A) (A'E (2;2]) A)f1
Vaa = (E (uzu;))_1 E (ulu’fu2) (E (uzu;))_l )
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The asymptotic covariance matrix is estimated by

- TN I~
Vag = <E > (E uiw;eivi> <
i=1
1
n

where

€ = Yi w;ﬁ
b=y — w8 — o

Under conditional homoskedasticity, specifically

2 s
E <( G il > |zi) —C
€;U; v;

then Vo3 = 0 and the coefficient estimates B and & are asymptotically independent. The variance
components also simplify to

Vg = (A'E (22]) A) E (e?)
Voo = (B (wiu))) B (v?).

7 7

In this case we have the covariance matrix estimators

~0
and Vo5 =0.

11.24 Control Function Regression

In this section we present an alternative way of computing the 2SLS estimator by least squares.
It is useful in more complicated nonlinear contexts, and also in the linear model to construct tests
for endogeneity.

The structural and reduced form equations for the standard IV model are

! !
Yi = ;081 + T8, + €
! /
T2 = Igz1i + Tygzoi + u;.

Since the instrumental variable assumption specifies that E (z;e;) = 0, x9; is endogenous (correlated
with e;) if and only if ug; and e; are correlated. We can therefore consider the linear projection of
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€; O U2;

e = uha+¢;
a=(E (uziuéi))_l E (ug;e;)
E (’U,szi) =0.

Substituting this into the structural form equation we find

Yi = 53/11‘51 + 58y + Uy + g (11.59)
E (z156:) =
E (z9igi) =
E (ugiei) =
Notice that xo; is uncorrelated with €;. This is because xo; is correlated with e; only through ws;,
and ¢g; is the error after e; has been projected orthogonal to wuo;.

If ug; were observed we could then estimate (11.59) by least-squares. While it is not observed,
we can estimate wuo; by the reduced-form residual

R ~/ ~/
Ug; = To; — I'1921; — Igg29;

as defined in (11.23). Then the coefficients (3, 35, &) can be estimated by least-squares of y; on
(x14, 24, U2i). We can write this as
yi = B + Uy + & (11.60)
or in matrix notation as R
y=XpB+ Ua+ce.
This turns out to be an alternative algebraic expression for the 25LS estimator.
Indeed, we now show that 3 = B,. First, note that the reduced form residual can be written

as N
Uy=(I,-Pz) X,

where Pz is defined in (11.35). By the FWL representation
~— ~
B= (X X) (X y) (11.61)
where X = [il, Xg}, with
PN I
X=X, U, <U2U2) U,X, = X,
(since ff;Xl =0) and
—_— ~ ~) ~ -1
Xy =Xy — Uy <U2U2> U,X

— Xy — Uy (X4(I,— Pz) Xs) !

— X, — Uy
—PsXo.

X, (I,—Pz) X,

Thus X = [X 1, PzX,] = PzX. Substituted into (11.61) we find

B= (X’PZX)_l (X'P2y) = Bogs
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which is (11.36) as claimed.

Again, what we have found is that OLS estimation of equation (11.60) yields algebraically the
2SLS estimator B%IS.

We now consider the distribution of the control function estimates. It is a generated regression
model, and in fact is covered by the model examined in Section 11.23 after a slight reparametriza-
tion. Let w; = I'z; and w; = @, —TV2; = (0, ub;)’. Then the main equation (11.59) can be written
as

yi = wif + uyy + &
where v = a + 3,. This is the model in Section 11.23.
Set 4 = & + B4 It follows from (11.58) that as n — oo we have the joint distribution

, — B2 > 4,N(0,V)
e

a

where

Vo Vo
V= v
( Vyz Viay >

(I'B (2:2) 1) (B (=2elT)) (T'B (i) T) |
Voo = | (B (uasuy;)) " (B (wizjess) T) (DB (z:2) T) ']
(

Voyy = (E (U2iul2i))71 B (uguy;e?) (B (“’21'“,21))71

The asymptotic distribution of ¥ = & — BQ can then be deduced.

Theorem 11.24.1 If E(y}) < oo, E|zi* < oo, Efaz|* < oo,
A'E (z;2)) A >0, and E (u;u;) >0, as n — oo

V(@ —a) -5 N0, Vy)

where
Va=Vay+ V’Y’Y — VQ-Y — V.Yg.

V(@ —a) -5 N (0, Vy)

where
Va=Va+ V,y - Vo, — Voo

Under conditional homoskedasticity we have the important simplifications
-1
Var = (B (2:2)T) | E(e})
Vyy = (E (“22‘“/21))_1 E (<)
Viye=0
Va= Vo + V4.

An estimator for Vy in the general case is

A~ ~ A~

Va=Vo+ Vyy— Vo — Vi (11.62)
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where
Va2 = [l (X'PzX)"'X'Z ( (Zm MQ) Z'7z) 'z'x (X’PZX)f1
K 22
3 I EYES PPNPN ’ -1
vﬂ—[ (VD) <§:mwe@>_XPZX)]
2
€ = Yi —1131',3

~ 12 ~] ~
Ei = Vi — x;0 — Uy

Under the assumption of conditional homoskedasticity we have the estimator

11.25 Endogeneity Tests

The 2SLS estimator allows the regressor x2; to be endogenous, meaning that xg; is correlated
with the structural error e;. If this correlation is zero, then x9; is exogenous and the structural
equation can be estimated by least-squares. This is a testable restriction. Effectively, the null
hypothesis is

HO : E(mgiei) =0
with the alternative
Hl : E($2Z’€z‘) 7£ 0.
The maintained hypothesis is E(z;¢;) = 0. Since x1; is a component of z;, this implies E(xz;¢;) = 0.
Consequently we could alternatively write the null as Hy : E(x;e;) = 0 (and some authors do so).
Recall the control function regression (11.59)

yi = ;01 + B2 + upx + &
-1

o = (E (UQZUIQZ)) E (uQiei) .
Notice that E(xg;e;) = 0 if and only if E (ug;e;) = 0, so the hypothesis can be restated as Hy : o« = 0
against H; : @ # 0. Thus a natural test is based on the Wald statistic W for &« = 0 in the
control function regression (11.24). Under Theorem 11.22.1 and Theorem 11.22.2, under Hy, W
is asymptotically chi-square with ko degrees of freedom. In addition, under the normal regression
assumptions the F statistic has an exact F'(ko,n — k1 — 2ky) distribution. We accept the null
hypothesis that xy; is exogenous if W (or F) is smaller than the critical value, and reject in favor

of the hypothesis that xs; is endogenous if the statistic is larger than the critical value.
Specifically, estimate the reduced form by least squares

~/ ~/ R
xoi = Lg9z1i + Dopzoi + Uy
to obtain the residuals. Then estimate the control function by least squares
yi = @B + e + & (11.63)

Let W, W?and F = W9 /ky denote the Wald statistic, homoskedastic Wald statistic, and F' statistic
for a = 0.
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Theorem 11.25.1 Under Hy, W 4, X%Z. Let c¢1_o solve
Pr ()&2 < lea) = 1—a. The test “Reject Hg if W > c1_o” has asymptotic
size Q.

Theorem 11.25.2 Suppose e;|xi, z; ~ N (0, 02). Under Hy, F ~
F(ka,n—ki—2ks). Let c1—o solve Pr(F(ka,n — ki —2ke) < c1-q) =1—a.
The test “Reject Hy if ' > c1_o” has exact size .

Since in general we do not want to impose homoskedasticity, these results suggest that the
most appropriate test is the Wald statistic constructed with the robust heteroskedastic covariance
matrix. This can be computed in Stata using the command estat endogenous after ivregress
when the latter uses a robust covariance option. Stata reports the Wald statistic in F' form (and
thus uses the F' distribution to calculate the p-value) as “Robust regression F”. Using the F' rather
than the x? distribution is not formally justified but is a reasonable finite sample adjustment. If
the command estat endogenous is applied after ivregress without a robust covariance option,
Stata reports the F' statistic as “Wu-Hausman F”.

There is an alternative (and traditional) way to derive a test for endogeneity. Under Hy, both
OLS and 2SLS are consistent estimators. But under Hj, they converge to different values. Thus
the difference between the OLS and 2SLS estimators is a valid test statistic for endogeneity. It also
measures what we often care most about — the impact of endogeneity on the parameter estimates.
This literature was developed under the assumption of conditional homoskedasticity (and it is
important for these results) so we assume this condition for the development of the statistics.

Let B = (Bl, Bg> be the OLS estimator and let [Ni = (Bl, §2> be the 2SLS estimator. Under Hy
(and homoskedasticity) the OLS estimator is Gauss-Markov efficient, so by the Hausman equality

var (,@2 — Eg) = var <[~32> — var <B2>

_ ((X'2 (Pz—P1)Xs) '

~ (X5M1X2) ) o?

where Py = Z(Z'2) "2, P, = X (X}X1) ' X!, and M; = I,, — P;. Thus a valid test
statistic for Hy is

. <B2_B2>/((X,2(PZ_P1)X2)71_(X/2M1X2)71>_1 (5.~ ) (11.64)

52

for some estimate 52 of o2. Durbin (1954) first proposed T as a test for endogeneity in the context
of IV estimation, setting 52 to be the least-squares estimate of 2. Wu (1973) proposed T as a
test for endogeneity in the context of 2SLS estimation, considering a set of possible estimates &2,
including the regression estimate from (11.63). Hausman (1978) proposed a version of 7" based on
the full contrast 3 — 3, and observed that it equals the regression Wald statistic W° described
earlier. In fact, when &2 is the regression estimate from (11.63), the statistic (11.64) algebraically
equals both W and the version of (11.64) based on the full contrast 3 — 3 . We show these
equalities below. Thus these three approaches yield exactly the same statistic except for possible
differences regarding the choice of 2. Since the regression F' test described earlier has an exact
F' distribution in the normal sampling model, and thus can exactly control test size, this is the
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preferred version of the test. The general class of tests are called Durbin-Wu-Hausman tests,
Wu-Hausman tests, or Hausman tests, depending on the author.

When kg = 1 (there is one right-hand-side endogenous variable) which is quite common in
applications, the endogeneity test can be equivalently expressed at the t-statistic for @ in the
estimated control function. Thus it is sufficient to estimate the control function regression and
check the t-statistic for a. If |a| > 2 then we can reject the hypothesis that x; is exogenous for 3.

We illustrate using the Card proximity example using the two instruments public and private.
We first estimate the reduced form for education, obtain the residual, and then estimate the control
function regression. The residual has a coefficient —0.088 with a standard error of 0.037 and a
t-statistic of 2.4. Since the latter exceeds the 5% crtical value (its p-value is 0.017) we reject
exogeneity. This means that the 2SLS estimates are statistically different from the least-squares
estimates of the structural equation and supports our decision to treat education as an endogenous
variable. (Alternatively, the F statistic is 2.42 = 5.7 with the same p-value).

We now show the equality of the various statistics.

We first show that the statistic (11.64) is not altered if based on the full contrast ,@ ﬂ Indeed,
61 ,61 is a linear function of 62 B, so there is no extra information in the full contrast. To see
this, observe that given 52, we can solve by least-squares to find

By = (X'1X1)_1 (X/1 (y—X2B2>>
and similarly
B = (xiX1) " (X} (v - P2X2B))
-~ (xix) ! (x4 (v x:B))
the second equality since PzX 1 = X 1. Thus
Br— By = (XiX1) T X (y - XoBy) — (X1 X1) ' X (y - P2X20)
= (X1X1) " XXz (B, - B)

as claimed.

We next show that T in (11.64) equals the homoskedastic Wald statistic W0 for a from the
regression (11.63). Consider the latter regression. Slnce X7 is contained in X, the coefficient esti-
mate & is invariant to replacing U2 = Xq9— X 9 with X 2 = —PzX5. By the FWL representation,
setting Mx =TI, — X (X'X) ' X'

—~ N
6 —— (X;MXX2> XyM xy (11.65)
— (X4PzMxPzX5) ' X4PzMxy.

It follows that

YMxPzXo(X4PzMxPzXs) ' X4PzMxy

wo = =
02

N . e N —1
Our goal is to show that 7' = W°. Define X5 = (I,, — P1) X3 50 B = <X,2X2) X;y. Then
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—1

defining using (Pz — P1) (I, — P1) = (Pz — P1) and defining Q = X» (’X'{}Q) X,

-1y

o~ ~
5(Pz—P1)y— (X5(Pz—P1)X>) <X2X2) Xy
!
2

The third-to-last equality is P1Q = 0 and the final uses M x = I,, — P; — Q. We also calculate
that

QY (X4(Py - P1)X,) ((X'2 (Pz—P1)X5)~

(X5 (Pz — P1)X,)
(Pz—P1—(Pz—-P1)Q(Pz— P1)) X,

o (XM X))

—~

= X4,PzMxPzX,.
Thus
A, *—lA
T = Q/\—Q
g
_ YMxPzX3(X4PzMxPzXs) X3Pz Mxy
o2
=W
as claimed.

11.26 Subset Endogeneity Tests

In some cases we may only wish to test the endogeneity of a subset of the variables. In the Card
proximity example, we may wish test the exogeneity of education separately from experience and
its square. To execute a subset endogeneity test it is useful to partition the regressors into three
groups, so that the structural model is

Yyi = 1,81 + T9;,82 + ©3,83 + €
E (zz-ei) =0.

As before, the instrument vector z; includes x1;. The variables xs; is treated as endogenous, and
xo; is treated as potentially endogenous. The hypothesis to test is that xg; is exogenous, or

HO : E(mgiei) =0

against
Hl : E(:Bgz‘ei) 7é 0.

Under homoskedasticity, a straightfoward test can be constructed by the Durbin-Wu-Hausman
principle. Under Hp, the appropriate estimator is 2SLS using the instruments (z;, ;). Let this
estimator of B, be denoted B,. Under Hj, the appropriate estimator is 2SLS using the smaller
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instrument set z;. Let this estimator of 39 be denoted BQ. A Durbin-Wu-Hausman-type test of Hy

against H is .
~ ~\/ ~ ~ -1 s~ ~
T=(B,—B,) (@ (B:) - (B))  (Bo—5n)-
The asymptotic distribution under Hy is Xé where k2 = dim(zg;), so we reject the hypothesis that
the variables xo; are exogenous if T exceeds an upper critical value from the Xé distribution.

Instead of using the Wald statistic, one could use the F' version of the test by dividing by ko
and using the F' distribution for critical values. There is no finite sample justification for this
modification, however, since x3; is endogenous under the null hypothesis.

In Stata, the command estat endogenous (adding the variable name to specify which variable
to test for exogeneity) after ivregress without a robust covariance option reports the F' version
of this statistic as “Wu-Hausman F”. For example, in the Card proximity example using the four
instruments public, private, age and age?, if we estimate the equation by 2SLS with a non-robust
covariance matrix, and then compute the endogeneity test for education, we find F' = 272 with a
p-value of 0.0000, but if we compute the test for experience and its square we find F' = 2.98 with
a p-value of 0.051. In this equation, education is clearly endogenous but the experience variables
are unclear.

A heteroskedasticity or cluster-robust test cannot be constructed easily by the Durbin-Wu-
Hausman approach, since the covariance matrix does not take a simple form. Instead, we can use
the regression approach if we account for the generated regressor problem.The ideal control function
regression takes the form

Yi = x; 3 + up;cp + uz;a3 + €5

where uo; and us; are the reduced-form errors from the projections of 2; and x3; on the instruments
z;. The coeflicients as and a3 solve the equations

< E(umu’m) E(Um’u,éz) ) ( (85) > _ ( E(UQiei) )
E(u;:,lu’%) E(uszuéz) a3 E(U3i€i) ’
The null hypothesis E(xz2;e;) = 0 is equivalent to E(uge;) = 0. This implies

\If’< 2 ) =0 (11.66)

a3

where
- ( E(uz;us;) ) .
E(usiuy;)
This suggests that an appropriate regression-based test of Hg versus Hj is to construct a Wald
statistic for the restriction (11.66) in the control function regression

yi = B + Uy Gz + U3 + 5 (11.67)

where uo; and wug; are the least-squares residuals from the regressions of xo; and x3; on the instru-
ments z;, respectively, and W is estimated by

U — ( %Z?:l a2zﬁ,21) ) .

= 1 noo~ o~
7 D Uiy,

A complication is that the regression (11.67) has generated regressors which have non-zero coef-
ficients under Hy. The solution is to use the control-function-robust covariance matrix estimator
(11.62) for (o2, ax3). This yields a valid Wald statistic for Hy versus H;. The asymptotic dis-
tribution of the statistic under Hy is X%z where ko = dim(x2;), so the null hypothesis that xg; is
exogenous is rejected if the Wald statistic exceeds the upper critical value from the X%Z distribution.

Heteroskedasticity-robust and cluster-robust subset endogeneity tests are not currently imple-
mented in Stata.
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11.27 Overldentification Tests

When ¢ > k the model is overidentified meaning that there are more moments than free
parameters. This is a restriction and is testable. Such tests are callled overidentification tests.
The instrumental variables model specifies that

E (ziei) =0.

Equivalently, since e; = y; — 3, this is the same as
E (ziyi) — E (ziz}) B = 0.

This is an ¢ x 1 vector of restrictions on the moment matrices E (z;y;) and E (z;x}). Yet since 3 is
of dimension k& which is less than ¢, it is not certain if indeed such a 3 exists.

To make things a bit more concrete, suppose there is a single endogenous regressor xs;, no i,
and two instruments z1; and zo;. Then the model specifies that

BE(z1:9i) = E(z172:) 8

and
E(z2iyi) = E(z2i72:) 5.

Thus 3 solves both equations. This is rather special.

Another way of thinking about this is that in this context we could solve for S using either
one equation or the other. In terms of estimation, this is equivalent to estimating by IV using just
the instrument z; or instead just using the instrument zs. These two estimators (in finite samples)
will be different. But if the overidentification hypothesis is correct, both are estimating the same
parameter, and both are consistent for § (if the instruments are relevant). In contrast, if the
overidentification hypothesis is false, then the two estimators will converge to different probability
limits and it is unclear if either probability limit is interesting.

For example, take the 2SLS estimates in the fourth column of Table 11.1, which use public
and private as instruments for education. Suppose we instead estimate by IV, using just public
as an instrument, and then repeat using private. The IV coefficient for education in the first case
is 0.17, and in the second case 0.27. These appear to be quite different. However, the second
estimate has quite a large standard error (0.17) so perhaps the difference is sampling variation. An
overidentification test addresses this question formally.

For a general overidentification test, the null and alternative hypotheses are

HO : E(ziei) =0
Hl : E(ziei) 75 0.
We will also add the conditional homoskedasticity assumption
E(e?|z;) = o2 (11.68)

To avoid imposing (11.68), it is best to take a GMM approach, which we defer until Chapter 12.
To implement a test of Hy, consider a linear regression of the error e; on the instruments z;

e = zio + g (11.69)

with

a = (E(ziz}))  E(zie;).

We can rewrite Hy as o = 0. While e; is not observed we can replace it with the 2SLS residual €;,
and estimate o by least-squares regression
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Sargan (1958) proposed testing Hy via a score test, which takes the form

¢z (Z2'Z) " 7'

S =a (var(a)) a = 11.70
a (var(a))” a = ( )
where 62 = %@'E. Basmann (1960) independently proposed a Wald statistic for Hy, which is S

with &2 replaced with 62 = n~1€'€ where € = € — Za. By the equivalence of homoskedastic score

and Wald tests (see Section 9.16), Basmann’s statistic is a monotonic function of Sargan’s statistic
and hence they yield equivalent tests. Sargan’s version is more typically reported.

The Sargan test rejects Hy in favor of Hy if S > ¢ for some critical value ¢. An asymptotic
test sets ¢ as the 1 — a quantile of the Xi ;. distribution. This is justified by the asymptotic null
distribution of S which we now derive.

Theorem 11.27.1 Under Assumption 11.14.1 and B(e?|z;) = o2, then as
n — 0o .
S == Xi_p

For ¢ satisfying o =1 — Gy_g(c),

Pr(S>c|Hy) — «

so the test “Reject Hy if S > ¢” has asymptotic size .

We prove Theorem 11.27.1 below.

The Sargan statistic S is an asymptotic test of the overidentifying restrictions under the as-
sumption of conditional homoskedasticity. It has some limitations. First, it is an asymptotic test,
and does not have a finite sample (e.g. F') counterpart. Simulation evidence suggests that the test
can be oversized (reject too frequently) in small and moderate sample sizes. Consequently, p-values
should be interpreted cautiously. Second, the assumption of conditional homoskedasticity is unre-
alistic in applications. The best way to generalize the Sargan statistic to allow heteroskedasticity
is to use the GMM overidentification statistic — which we will examine in Chapter 12. For 2SLS,
Wooldrige (1995) suggested a robust score test, but Baum, Schaffer and Stillman (2003) point out
that it is numerically equivalent to the GMM overidentification statistic. Hence the bottom line
appears to be that to allow heteroskedasticity or clustering, it is best to use a GMM approach.

In overidentified applications, it is always prudent to report an overidentification test. If the
test is insignificant it means that the overidentifying restrictions are not rejected, supporting the
estimated model. If the overidentifying test statistic is highly significant (if the p-value is very
small) this is evidence that the overidentifying restrictions are violated. In this case we should be
concerned that the model is misspecified and interpreting the parameter estimates should be done
cautiously.

When reporting the results of an overidentification test, it seems reasonable to focus on very
small sigificance levels, such as 1%. This means that we should only treat a model as “rejected” if
the Sargan p-value is very small, e.g. less than 0.01. The reason to focus on very small significance
levels is because it is very difficult to interpret the result “The model is rejected”. Stepping back
a bit, it does not seem credible that any overidentified model is literally true, rather what seems
potentially credible is that an overidentified model is a reasonable approximation. A test is asking
the question “Is there evidence that a model is not true” when we really want to know the answer
to “Is there evidence that the model is a poor approximation”. Consequently it seems reasonable
to require strong evidence to lead to the conclusion “Let’s reject this model”. The recommendation
is that mild rejections (p-values between 1% and 5%) should be viewed as mildly worrisome, but
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not critical evidence against a model. The results of an overidentification test should be integrated
with other information before making a strong decision.

We illustrate the methods with the Card college proximity example. We have estimated two
overidentified models by 2SLS, in columns 4 & 5 of Table 11.1. In each case, the number of overi-
dentifying restrictions is 1. We report the Sargan statistic and its asymptotic p-value (calculated
using the x? distribution) in the table. Both p-values (0.36 and 0.52) are far from significant,
indicating that there is no evidence that the models are misspecified.

We now prove Theorem 11.27.1. The statistic S is invariant to rotations of Z (replacing Z with

Z C) so without loss of generality we assume B (2;2}) = I;. Asn — oo, n~'/2Z'e %, 67 where
Z ~N(0,I). Also 1Z'Z "5 I, and 1Z'X 5 Q, say. Then

—1 —1
n12z'e = (Ig — <%Z’X> <%X’PZX> (%X’Z) (%z'z) >n1/2Z’e

L, (15 - Q(QQ™ Q’) Z.

2 P, 52 it follows that

$ 57 (L-Q(QQ) " Q) 7z~ i

Since ¢

The distribution is x2_, since Iy — Q(Q Q)fl Q' is idempotent with rank ¢ — k.

The Sargan statistic test can be implemented in Stata using the command estat overid after
ivregress 2sls or ivregres liml if a standard (non-robust) covariance matrix has been specified
(that is, without the ‘,r’ option), or by the command estat overid, forcenonrobust otherwise.

11.28 Subset Overldentification Tests

Tests of Hy : E(z;e;) = 0 are typically interpreted as tests of model specification. The alternative
H; : E(z;e;) # 0 means that at least one element of z; is correlated with the error e; and is thus
an invalid instrumental variable. In some cases it may be reasonable to test only a subset of the
moment conditions.

As in the previous section we restrict attention to the homoskedasticity case E(e?|z;) = o2.

Partition z; = (2, ;) with dimensions ¢, and ¢, respectively, where z,; contains the instru-
ments which are believed to be uncorrelated with e;, and z;; contains the instruments which may be
correlated with e;. It is necessary to select this partition so that ¢, > k, or equivalently £, < £ — k.
This means that the model with just the instruments z,; is over-identified, or that ¢ is smaller
than the number of overidentifying restrictions. (If ¢, = k then the tests described here exist but
reduce to the Sargan test so are not interesting.) Hence the tests require that ¢ — k > 1, that the
number of overidentifying restrictions exceeds one.

Given this partition, the maintained hypothesis is that E(z4e;) = 0. The null and alternative
hypotheses are

Ho : E(zbiei) =0
Hl : E(zbiei) 75 0.

That is, the null hypothesis is that the full set of moment conditions are valid, while the alternative
hypothesis is that the instrument subset zp; is correlated with e; and thus an invalid instrument.
Rejection of Hy in favor of Hjy is then interpreted as evidence that zp; is misspecified as an instru-
ment.

Based on the same reasoning as described in the previous section, to test Hy against H; we
consider a partitioned version of the regression (11.69)

/ /
€ = Z4iQg + Zp;0p + €
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but now focus on the coefficient . Given E(z45¢;) = 0, Hy is equivalent to a, = 0. The equation
is estimated by least-squares, replacing the unobseved e; with the 2SLS residual €;. The estimate
of o is

~ / -1 / ~

oy, = (Z,MoZ,) " ZyM,e

where M, = I, — Zo(Z.,Z,) " Z',. Newey (1985) showed that an optimal (asymptotically most
powerful) test of Hy against Hj is to reject for large values of the score statistic

N =g, <V3LT@>)> ap

PR -1
R (R’R _R'X (X'X) X’R) R'e

= =
where X = PX, P=Z (Z'Z) ' Z', R= M,Z;, and 52 = 1¢%.

Independently from Newey (1985), Eichenbaum, Hansen, and Singleton (1988) proposed a test
based on the difference of Sargan statistics. Letting S be the Sargan test statistic (11.70) based
on the full instrument set and .S, be the Sargan test based on the instrument set z,;, the Sargan
difference statistic is

C=5-5,.

Specifically, let B2sls be the 2SLS estimator using the instruments z,; only, set e; = y; — m;BQSIS,
and set o2 = %E'E. Then
VAN BN

&’2

S:

An advantage of the C statistic is that it is quite simple to calculate from the standard regression
output.

At this point it is useful to reflect on our stated requirement that by > k. Indeed, if ¢, < k
then z,; fails the order condition for identification and By, cannot be calculated. Thus ¢, > k is
necessary to compute S, and hence S. Furthermore, if £, = k then z,; is just identified so while
Boqs can be calculated, the statistic S, = 0 so C' = S. Thus when £, = k the subset test equals the
full overidentification test so there is no gain from considering subset tests.

The C statistic S, is asymptotically equivalent to replacing 62 in S, with 72, yielding the
statistic
¥z(z'z)'z'e¢ ¥Z,(2.2,) " Ze

o2 o2

C*

It turns out that this is Newey’s statistic V. These tests have chi-square asymptotic distributions.
Let ¢ satisfy o =1 — Gy, (¢).

Theorem 11.28.1 Algebraically, N = C*. Under Assumption 11.14.1
and B(e?|z;) = 0%, asn — oo, N , X%b and C -% X%b. Thus the
tests “Reject Hy if N > ¢” and “Reject Hg if C' > ¢” are asymptotically
equivalent and have asymptotic size a.

Theorem 11.28.1 shows that N and C* are identical, and are near equivalents to the convenient
statistic C*, and the appropriate asymptotic distribution is X?b. Computationally, the easiest
method to implement a subset overidentification test is to estimate the model twice by 2SLS, first
using the full instrument set z; and the second using the partial instrument set z,;. Compute
the Sargan statistics for both 2SLS regressions, and compute C' as the difference in the Sargan
statistics. In Stata, for example, this is simple to implement with a few lines of code.
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We illustrate using the Card college proximity example. Our reported 2SLS estimates have
¢—Fk = 1 so there is no role for a subset overidentification test. (Recall, the number of overidentifying
restrictions must exceed one.) To illustrate we consider adding extra instruments to the estimates
in column 5 of Table 1.1 (the 2SLS estimates using public, private, age, and age? as instruments
for education, experience, and experience®/100). We add two instruments: the years of education
of the father and the mother of the worker. These variables had been used in the earlier labor
economics literature as instruments, but Card did not. (He used them as regression controls in some
specifications.) The motivation for using parent’s education as instruments is the hypothesis that
parental education influences children’s educational attainment, but does not directly influence
their ability. The more modern labor economics literature has disputed this idea, arguing that
children are educated in part at home, and thus parent’s education has a direct impact on the skill
attainment of children (and not just an indirect impact via educational attainment). The older
view was that parent’s education is a valid instrument, the modern view is that it is not valid. We
can test this dispute using a overidentification subset test.

We do this by estimating the wage equation by 2SLS using public, private, age, age?, father,
and mother, as instruments for education, experience, and experience?/100). We do not report
the parameter estimates here, but observe that this model is overidentified with 3 overidentifying
restrictions. We calculate the Sargan overidentification statistic. It is 7.9 with an asymptotic
p-value (calculated using x3) of 0.048. This is a mild rejection of the null hypothesis of correct
specification. As we argued in the previous section, this by itself is not reason to reject the model.
Now we consider a subset overidentification test. We are interested in testing the validity of the
two instruments father and mother, not the instruments public, private, age, age®. To test the
hypothesis that these two instruments are uncorrelated with the structural error, we compute the
difference in Sargan statistic, C = 7.9 — 0.5 = 7.4, which has a p-value (calculated using x3) of
0.025. This is marginally statistically significant, meaning that there is evidence that father and
mother are not valid instruments for the wage equation. Since the p-value is not smaller than 1%,
it is not overwhelming evidence, but it still supports Card’s decision to not use parental education
as instruments for the wage equation.

We now prove the results in Theorem 11.28.1.

We first show that N = C*. Define Py = Z,(Z.Z,) ' Z! and P = R(R'R)"' R. Since
[Z,, R] span Z we find P = Pr + P, and PrP, = 0. It will be useful to note that

PrX = PRPX = PpX
XX -XPrX=X'(P-Pgr)X =X'P,X.
The fact that X'Pé =X e=0 = implies X'Pre = —X'P,e. Finally, since y = X8 + ¢,
- <1n ~X (X'P.X)"! X’Pa> C

SO
@P,e=¢ (P,~ P,X (X'P,X) ' X'P,) e

Applying the Woodbury matrix equality to the definition of NV, and the above algebraic rela-
tionships,

o~~~ —~ —~\ —1 ~
dPré+¢PrX (X’X — X'PRX> X Pre
N = —
g
_ ¢Pe-¢P,e+¢P,X (X'P,X) " X'P,e
— =
_ €Pe-¢€P,e
- =

=C*
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as claimed.
We next establish the asymptotic distribution. Since Z, is a subset of Z, PM, = M,P, thus
PR =R and R'’X = R'X. Consequently

%R’E - R (y _ XB)
gy~ —1 ~y
I,-X (X X) X ) e

R (In -X(xx) 32) e

R/

Si-5- -

. N(0, V)

where .
Vs = plim <1R’R lpx (55’55) 155’11) :
mn n

n—oo \ n

It follows that N = C* —% Xz; as claimed. Since C' = C* + 0p(1) it has the same limiting
distribution.

11.29 Local Average Treatment Effects

In a pair of influential papers, Imbens and Angrist (1994) and Angrist, Imbens and Rubin
(1996) proposed an new interpretation of the instrumental variables estimator using the potential
outcomes model introduced in Section 2.29.

We will restrict attention to the case that the endogenous regressor x and excluded instrument
z are binary variables. We write the model as a pair of potential outcome functions. The dependent
variable y is a function of the regressor and an unobservable vector u

y=nh (LE, ’U,)
and the endogenous regressor x is a function of the instrument z and u

r=g(z,u).

By specifying u as a vector there is no loss of generality in letting both equations depend on w.

In this framework, the outcomes are determined by the random vector u and the exogenous
instrument z. This determines x, which determines y. To put this in the context of the college prox-
imity example, the variable u is everything specific about an individual. Given college proximity
z, the person decides to attend college or not. The person’s wage is determined by the individual
attributes u as well as college attendence x, but is not directly affected by college proximity z.

We can omit the random variable u from the notation as follows. An individual ¢ has a re-
alization w;. We then set y;(x) = h(z,u;) and z;(z) = g (z,u;). Also, given a realization z; the
observables are z; = x;(z) and y; = y;(x;).

In this model the causal effect of college is for individual ¢ is

Ci = yi(1) — i (0).

As discussed in Section 2.29, in general this is individual-specific.
We would like to learn about the distribution of the causal effects, or at least features of the
distribution. A common feature of interest is the average treatment effect (ATE)

ATE = E(C;) = E (y:i(1) — 4:(0)) .
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This, however, it typically not feasible to estimate allowing for endogenous x without strong as-
sumptions (such as that the causal effect C; is constant across individuals). The treatment effect
literature has explored what features of the distribution of C; can be estimated.

One particular feature of interest, and emphasized by Imbens and Angrist (1994), is known as the
local average treatment effect (LATE), and is roughly the average effect upon those effected by the
instrumental variable. To understand LATE, it is helpful to consider the college proximity example
using the potential outcomes framework. In this framework, each person is fully characterized by
their individual unobservable u;. Given wu;, their decision to attend college is a function of the
proximity indicator z;. For some students, proximity has no effect on their decision. For other
students, it has an effect in the specific sense that given z; = 1 they choose to attend college while
if z; = 0 they choose to not attend. We can summarize the possibilites with the following chart,
which is based on labels developed by Angrist, Imbens and Rubin (1996).

z(0) =0 z(0) =1
(1) =0 Never Takers Deniers
z(1)=1  Compliers  Always Takers

The columns indicate the college attendence decision given z = 0. The rows indicate the college
attendence decision given z = 1. The four entries are labels given four types of individuals based on
these decisions. The upper-left entry are the individuals who do not attend college regardless of z.
They are called “Never Takers”. The lower-right entry are the individuals who conversely attend
college regardless of z. They are called “Always Takers”. The bottom left are the individuals who
only attend college if they live close to one. They are called “Compliers”. The upper right entry
is a bit of a challenge. These are individuals who attend college only if they do not live close to
one. They are called “Deniers”. Imbens and Angrist discovered that to identify the parameters
of interest we need to assume that there are no Deniers, or equivalently that x(1) > x(0), which
they label as a “monotonicity” condition — that increasing the instrument cannot decrease x for
any individual.

We can distinguish the types in the table by the relative values of (1) —z(0). For Never-Takers
and Always-Takers, z(1) — z(0) = 0, while for Deniers, z(1) — z(0) =1

We are interested in the causal effect C; = h(1,u) — h(0,u) of college attendence on wages.
Consider the average causal effect among the different types. Among Never-Takers and Always-
Takers, (1) = z(0) so

E (yi(1) = %i(0)]z(1) = (0))

Suppose we try and estimate its average value, conditional for each the three types of individuals:
Never-Takers, Always-Takers, and Compliers. It would impossible for the Never-Takers and Always-
Takers. For the former, none attend college so it would be impossible to ascertain the effect of college
attendence, and similarly for the latter since they all attend college. Thus the only group for which
we can estimate the average causal effect are the Compliers. This is

LATE = E (yi(1) — 5i(0)|zi(1) > i(0)) .

Imbens and Angrist called this the local average treatment effect (LATE) as it is the
average treatment effect for the sub-population whose endogenous regressor is affected by changes
in the instrumental variable.

Interestingly, we show below that

E(yi|zi=1)—E(y; | 2 =0)
E(z;|zi=1)—E(z; | 2, =0)
That is, LATE equals the Wald expression (11.32) for the slope coefficient in the IV regression
model. This means that the standard IV estimator is an estimator of LATE. Thus when treatment

effects are potentially heterogeneous, we can interpret IV as an estimator of LATE. The equality
(11.71) occurs under the following conditions.

LATE = (11.71)
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Assumption 11.29.1 wu; and z; are independent; and Pr (z;(1) — x;(0) < 0) = 0.

One interesting feature about LATE is that its value can depend on the instrument z; and the
distribution of causal effects C; in the population. To make this concrete, suppose that instead
of the Card proximity instrument, we consider an instrument based on the financial cost of local
college attendence. It is reasonable to expect that while the set of students affected by these two
instruments are similar, the two sets of students will not be the same. That is, some students may
be responsive to proximity but not finances, and conversely. If the causal effect C; has a different
average in these two groups of students, then LATE will be different when calculated with these
two instruments. Thus LATE can vary by the choice of instrument.

How can that be? How can a well-defined parameter depend on the choice of instrument?
Doesn’t this contradict the basic IV regression model? The answer is that the basic IV regression
model is more restrictive — it specifies that the causal effect 8 is common across all individuals.
Thus its value is the same regardless of the choice of specific instrument (so long as it satisfies
the instrumental variables assumptions). In contrast, the potential outcomes framework is more
general, allowing for the causal effect to vary across individuals. What this analysis shows us is
that in this context is quite possible for the LATE coefficient to vary by instrument. This occurs
when causal effects are heterogeneous.

One implication of the LATE framework is that IV estimates should be interpreted as causal
effects only for the population of compliers. Interpretation should focus on the population of
potential compliers and extension to other populations should be done with caution. For example,
in the Card proximity model, the IV estimates of the causal return to schooling presented in Table
11.1 should be interpreted as applying to the population of students who are incentivized to attend
college by the presence of a college within their home county. The estimates should not be applied
to other students.

Formally, the analysis of this section examined the case of a binary instrument and endogenous
regressor. How does this generalize? Suppose that the regressor x is discrete, taking J + 1 discrete
values. We can then rewrite the model as one with J binary endogenous regressors. If we then have
J binary instruments, we are back in the Imbens-Angrist framework (assuming the instruments have
a monotonic impact on the endogenous regressors). A benefit is that with a larger set of instruments
it is plausible that the set of compliers in the population is expanded.

We close this section by showing (11.71) under Assumption 11.29.1. The realized value of x;
can be written as

i = (1 —2;) 2i(0) + ziz; (1) = 2;(0) + 2 (z3(1) — 2;(0)) .
Similarly
yi = 4i(0) + =i (%:(1) — wi(0)) = %i(0) + z:C;.
Combining,
Yi = yi(0) + 2i(0)Ci + zi (zi(1) — z:(0)) Cs.
The independence of u; and z; implies independence of (y;(0), yi(1),2i(0),z;(1),C;) and z;. Thus

i(
E (yilzi = 1) = E(y:(0)) + B (2;(0)C;) + E ((zi(1) — 2:(0)) C;)
and
B (yilzi = 0) = E(y:(0)) + E (2:(0)C;) .

Subtracting we obtain

B (yilzi = 1) — B (yilzi = 0) = E ((2i(1) — 2:(0)) Cy)
=1-E(Cilzi(1) — 2;(0) = 1) Pr (;(1) — x;(0) = 1)
+0-E(Cilzi(1) — z;i(0) = 0) Pr(x;(1) — z;(0) = 0)
+(=1) B (Cilzi(1) — 25(0) = —1) Pr (w:(1) — 24(0) = —1)
=E (Cilzi(1) —2:(0) = 1) (B (z; | zi = 1) = B (@ | z: = 0))
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where the final equality uses Pr (z;(1) — z;(0) < 0) = 0 and
Pr (xl(l) - JZZ(O) = 1) = E(xl(l) - xZ(O)) = E(aﬁz ’ Zi = 1) - E(a:l | Z; = O) .
Rearranging

B (yilzi = 1) — E(yi]z = 0)

LATE = B (Ci|zi(1) —2:(0) = 1) = E(zi|2z=1) —E(z;| 2 =0)

as claimed.

11.30 Identification Failure

Recall the reduced form equation
xo; = Dpz1; + Thyzoi + ug;.

The parameter 3 fails to be identified if I'oo has deficient rank. The consequences of identification
failure for inference are quite severe.
Take the simplest case where k1 = 0 and ko = 5 = 1. Then the model may be written as

yi =z + € (11.72)

Ti = 2V + Uy

and 'y = 7 = E(ziz;) /E (ZZQ) . We see that 3 is identified if and only if v # 0, which occurs
when E (x;z;) # 0. Thus identification hinges on the existence of correlation between the excluded
exogenous variable and the included endogenous variable.

Suppose this condition fails. In this case v = 0 and E (x;2;) = 0. We now analyze the distribution
of the least-squares and IV estimators of 5. For simplicity we assume conditional homoskedasticity
and normalize the variances to unity. Thus

var (( Z > |zi> = ( ; T ) (11.73)

E (z?) = 1.

The errors have non-zero correlation p # 0 which occurs when the variables are endogenous.
By the CLT we have the joint convergence

wx ()= (8)-~00 1) 3179

It is convenient to define &y = &1 — p& which is normal and independent of &o.
As a benchmark, it is useful to observe that the least-squares estimator of 5 satisfies

-1 n
nT Yo Ui€i p

N 0 11.75
iy 7 (11.75)

so endogeneity causes Eols to be inconsistent for 3.
Under identification failure v = 0 the asymptotic distribution of the IV estimator is

B\ols - /8 =

BIV + .

5 sz 1 %i€i R S &o
\/_27, 1 Ridq 62 52
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This asymptotic convergence result uses the continuous mapping theorem, which applies since the
function &1 /&2 is continuous everywhere except at & = 0, which occurs with probability equal to
Zero.

This limiting distribution has several notable features.

First, B;, does not converge in probability to a limit, rather it converges in distribution to a
random variable. Thus the IV estimator is inconsistent. Indeed, it is not possible to consistently
estimate an unidentified parameter and § is not identified when ~ = 0.

Second, the ratio o /&2 is symmetrically distributed about zero, so the median of the limiting
distribution of i, is 8 + p. This means that the IV estimator is median biased under endogeneity.
Thus under identification failure the IV estimator does not correct the centering (median bias) of
least-squares.

Third, the ratio £y/&s of two independent normal random variables is Cauchy distributed. This
is particularly nasty, as the Cauchy distribution does not have a finite mean. The distribution
has thick tails meaning that extreme values occur with higher frequency than the normal, and
inferences based on the normal distribution can be quite incorrect.

Together, these results show that v = 0 renders the IV estimator particularly poorly behaved —
it is inconsistent, median biased, and non-normally distributed.

We can also examine the behavior of the t-statistic. For simplicity consider the classical (ho-
moskedastic) t-statistic. The error variance estimate has the asymptotic distribution

1 < ~\2
62 == Z (y¢ - xiﬁiv)
n =1
DI D DY () R S ()
=1 i=1

i=1
i>1—2pé+ (é>2

&2 &2
Thus the t-statistic has the asymptotic distribution
T_ Biv — B d, §1/6

A~ 2 :
52 Y0 22/ [0y e w o+ (2)

The limiting distribution is non-normal, meaning that inference using the normal distribution will
be (considerably) incorrect. This distribution depends on the correlation p. The distortion from the
normal is increasing in p. Indeed as p — 1 we have & /& —, 1 and the unexpected finding 52 —,, 0.
The latter means that the conventional standard error S(,/B\iv) for Biv also converges in probability
to zero. This implies that the t-statistic diverges in the sense |T| —, oco. In this situations users
may incorrectly interpret estimates as precise, despite the fact that they are useless.

11.31 Weak Instruments

In the previous section we examined the extreme consequences of full identification failure.
Unfortunately many of the same problems extend to the context where identification is weak in the
sense that the reduced form coefficient matrix I'go is full rank but small.

A rich asymptotic distribution theory has been developed to understand this setting by modeling
I'99 as “local-to-zero”. The seminal contributions are Staiger and Stock (1997) and Stock and Yogo
(2005). The theory was extended to nonlinear GMM estimation by Stock and Wright (2000).

In this section we focus exclusively on the case of one right-hand-side endogenous variable
(k2 = 1). We consider the case of multiple endogenous variables in the next section. Our general
theory will allow for any arbitrary number of instruments and regressors, but for the sake of clear
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exposition we will focus on the very simple case of no included exogenous variables (k; = 0) and
just one exogenous instrument (¢ = 1), which is model (11.72) from the previous section

Yi = xiff + €
2y + Uy

Z;

Furthermore, as in Section 11.30 we assume conditional homoskedasticity and normalize the vari-
ances as in (11.73).

The question of primary interest is to determine conditions on the reduced form under which
the IV estimator of the structural equation is well behaved, and secondly, what statistical tests can
be used to learn if these conditions are satisfied.

In Section 11.30 we assumed complete identification failure in the sense that v = 0. We now
want to assume that identification does not completely fail, but is weak in the sense that v is small.
The technical device which yields a useful distributional theory is to assume that the reduced form
parameter is local-to-zero, specifically

y=n""2y (11.76)

where 1 is a free parameter. The n~1/2 scaling is picked because it provides just the right balance
to allow a useful distribution theory. The local-to-zero assumption (11.76) is not meant to be taken
literally but rather is meant to be a useful distributional approximation. The parameter p indexes
the degree of identification. Larger |u| implies stronger identification; smaller || implies weaker
identification.

We now derive the asymptotic distribution of the least-squares and IV estimators under the
local-to-unity assumption (11.76).

First, the least-squares estimator satisfies

nTl Y wie _ nt Yo wie
n=1y %2 n=tyh “12

which is the same as in (11.75). Thus the least-squares estimator is inconsistent for S under
endogeneity.

Second, we derive the distribution of the IV estimator. The joint convergence (11.74) holds,
and the local-to-zero assumption implies

Bols - B =

+0p(1)i>P7é0

This allows us to calculate the asymptotic distribution of the IV estimator.

1 Zn .
N i—1 <i€i
Vn &1 d &1

Bots — B = .
o® ﬁzzﬂ:l 2% p+ o

This asymptotic convergence result uses the continuous mapping theorem, which applies since the
function &1 /(u + &2) is a continuous function everywhere except at {3 = —p, which occurs with
probability equal to zero.

As in the case of complete identification failure, we find that Biv is inconsistent for § and its
asymptotic distribution is non-normal. The distortion is affected by the coefficient pu. As p — oo
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the distribution converges in probability to zero, meaning that Eiv is consistent for 5. This is the
classic “strong identification” context.

We also examine the behavior of the classical (homoskedastic) t-statistic for the IV estimator.
Note

n

. 1 2
5% = ﬁz (yz —xzﬂiv>

i=1
1 <& 2 <& ~ 1 & ~ 2
==Y -2 e <5iv —ﬁ> +=> @ (Biv —5>
i i ni4
2
A 2 &1 n ( 1 ) .
pt &2 &
Thus N
T = Ay D B 3 s, (11.77)
g2y " 22 "z 13 ¢
S 2| ziwil \/1 2,8 + (55

In general, S is non-normal, and its distribution depends on the parameters p and pu.

Can we use the distribution S for inference on 57 The distribution depends on two unknown
parameters, and neither is consistently estimable. (Thus we cannot simply use the distribution in
(11.77) with p and p replaced with estimates.) To eliminate the dependence on p one possibility
is to use the “worst case” value, which turns out to be p = 1. By worst-case we mean that value
which causes the greatest distortion away from normal critical values. Setting p = 1 we have the
considerable simplification

8:5’1:5‘1+§’ (11.78)

where & ~ N(0,1). When the model is strongly identified (so |u| is very large) then S; ~ & is
standard normal, consistent with classical theory. However when |u| is very small (but non-zero)
|S1| &~ €2/ (in the sense that this term dominates), which is a scaled x7 and quite far from normal.
As |p] — 0 we find the extreme case |Si| — co.

While (11.78) is a convenient simplification it does not yield a useful approximation for inference
since the distribution in (11.78) is highly dependent on the unknown pu. If we try to take the worst-
case value of u, which is p = 0, we find that |S;| diverges and all distributional approximations
fail.

To break this impasse, Stock and Yogo (2005) recommended a constructive alternative. Rather
than using the worst-case u, they suggested finding a threshold such that if p exceeds this threshold
then the distribution (11.78) is not “too badly” distorted from the normal distribuiton.

Specifically, the Stock-Yogo recommendation can be summarized by two steps. First, the dis-
tribution result (11.78) can be used to find a threshold value 72 such that if 42 > 72 then the
size of the nominal! 5% test “Reject if |T'| > 1.96” has asymptotic size Pr (]S1]| > 1.96) < 0.15.
This means that while the goal is to obtain a test with size 5%, we recognize that there may be
size distortion due to weak instruments and are willing to tolerate a specific size distortion, for
example 10% distortion (allow for actual size up to 15%, or more generally ). Second, they use the
asymptotic distribution of the reduced-form (first stage) F' statistic to test if the actual unknown
value of u? exceeds the threshold 72. These two steps together give rise to the rule-of-thumb that
the first-stage F' statistic should exceed 10 in order to achieve reliable IV inference. (This is for
the case of one instrumental variable. If there is more than one instrument then the rule-of-thumb
changes.) We now describe the steps behind this reasoning in more detail.

'The term “nominal size” of a test is the official intended size — the size which would obtain under ideal circum-
stances. In this context the test “Reject if || > 1.96” has nominal size 0.05 as this would be the asymptotic rejection
probability in the ideal context of strong instruments.
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The first step is to use the distribution (11.77) to determine the threshold 72. Formally, the
goal is to find the value of 72 = p? at which the asymptotic size of a nominal 5% test is actually r
(e.g. 7 =0.15)

Pr(]S1] > 1.96) <r.

By some algebra and using the quadratic formula the event |€ (1 4 &/u)| < x is the same as

2 2 2

0 ( u) p

— —zp< =) <= :

T &+ > 1 +

The random variable between the inequalities is distributed x?(u?/4), a noncentral chi-square with
one degree of freedom and noncentrality parameter u2/4. Thus

2 2 2 2
Pr (S| > z) =Pr (X% (Mz) > Mz +96M> + Pr (x% <%> < MZ —96M>

2 2 2 2
—1_c(*- Lol L
=1 G<4+:1:u,4>+G<4 :L‘/,L,4> (11.79)

where G (u, \) is the distribution function of x3(\). Hence the desired threshold 72 solves

7_2 7_2 7_2 7_2
1—G<Z+196T,Z> +G<Z —1.96T,Z> =T

or effectively

72 -2
G(Z+1'96T’Z> =1-r

since 72/4 — 1.967 < 0 for relevant values of 7. The numerical solution (computed with the non-
central chi-square distribution function, e.g. ncx2cdf in MATLAB) is 72 = 1.70 when r = 0.15.
(That is, the command ncx2cdf(1.7/4+1.96xsqrt(1.7),1,1.7/4) yields the answer 0.8500.
Stock and Yogo (2005) approximate the same calculation using simulation methods and report
72 =1.82.)

This calculation means that if the true reduced form coefficient satisfies u? > 1.7, or equivalently
if ¥2 > 1.7/n, then the (asymptotic) size of a nominal 5% test on the structural parameter is no
larger than 15%.

To summarize the Stock-Yogo first step, we calculate the minimum value 72 for p? sufficient to
ensure that the asymptotic size of a nominal 5% t-test does not exceed r, and find that 72 = 1.70
for r = 0.15.

The Stock-Yogo second step is to find a critical value for the first-stage F' statistic sufficient to
reject the hypothesis that Hg : p? = 72 against Hy : 2 > 72. We now describe this procedure.

They suggest testing Hy : u? = 72 at the 5% size using the first stage F' statistic. If the I
statistic is small so that the test does not reject then we should be worried that the true value of
1?2 is small and there is a weak instrument problem. On the other hand if the F' statistic is large
so that the test rejects then we can have some confidence that the true value of u? is sufficiently
large that the weak instrument problem is not too severe.

To implement the test we need to calculate an appropriate critical value. It should be calculated
under the null hypothesis Hy : y? = 72. This is different from a conventional F test (which has the
null hypothesis Hy : 2 = 0).

We start by calculating the asymptotic distribution of F'. Since there is just one regressor and
one instrument in our simplified setting, the first-stage F' statistic is the squared t-statistic from
the reduced form, and given our previous calculations has the asymptotic distribution

~2 n 2
F— v (X iy zimi)” d (1 + 52)2 - X% (MQ) _

= e

s@?  (Ziei)an
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This is a non-central chi-square distribution with one degree of freedom and non-centrality para-
meter p2. The distribution function of the latter is G(u, u?).

To test Hg : 2 = 72 against Hy : u? > 72 we reject for F' > ¢ where c is selected so that the
asymptotic rejection probability

Pr(F>¢)—Pr(xi(1?) >c)=1-G(c,1?)

2

equals 0.05 under Hy : u? = 72, or equivalently

G (c,7*) = G (c¢,1.7) = 0.95.

This can be found using the non-central chi-square quantile function, e.g. the function Q(p,d)
which solves G(Q(p,d),d) = p. We find that

c=Q(0.95,1.7) = 8.7.

In MATLAB, this can be computed by ncx2inv(.95,1.7). (Stock and Yogo (2005) report ¢ = 9.0
since they used 72 = 1.82.)

This means that if ' > 8.7 we can reject Hy : 42 = 1.7 against Hj : p? > 1.7 with an asymptotic
5% test. In this context we should expect the IV estimate and tests to be reasonably well behaved.
However, if F' < 8.7 then we should be cautious about the IV estimator, confidence intervals, and
tests. This finding led Staiger and Stock (1997) to propose the informal “rule of thumb” that the
first stage F' statistic should exceed 10. Notice that F' exceeding 8.7 (or 10) is equivalent to the
reduced form t-statistic exceeding 2.94 (or 3.16), which is considerably larger than a conventional
check if the t-statistic is “significant”. Equivalently, the recommended rule-of-thumb for the case
of a single instrument is to estimate the reduced form and verify that the t-statistic for exclusion
of the instrumental variable exceeds 3 in absolute value.

Does the proposed procedure control the asymptotic size of a 2SLS test? The first step has
asymptotic size bounded below 7 (e.g. 15%). The second step has asymptotic size 5%. By the
Bonferroni bound (see Section 9.20) the two steps together have asymptotic size bounded below
r 4+ 0.05 (e.g. 20%). We can thus call the Stock-Yogo procedure a rigorous test with asymptotic
size r + 0.05 (or 20%).

Our analysis has been confined to the case ko = o = 1. Stock and Yogo (2005) also examine
the case of ¢3 > 1 (which requires numerical simulation to solve), and both the 2SLS and LIML
estimators. They show that the F' statistic critical values depend on the number of instruments £
as well as the estimator. We report their calculations here.

F Statistic 5% Critical Value for Weak Instruments, ko = 1

Maximal Size r
2SLS LIML
fy | 0.10 0.15 0.20 0.25 | 0.10 0.15 0.20 0.25
11164 90 6.7 55164 90 6.7 55
21199 116 87 72| 87 53 44 39
31223 128 95 78| 6.5 44 37 33
41246 140 103 83| 54 39 33 3.0
51269 151 11.0 88| 48 36 3.0 28
61292 162 11.7 94| 44 33 29 26
71315 174 125 99| 42 32 27 25
81338 185 13.2 105 40 3.0 26 24
91362 19.7 140 11.1| 3.8 29 25 23
10 | 38.5 209 148 116 | 3.7 28 25 22
15 | 50.4 26.8 187 122 | 33 25 22 20
201623 328 227 176| 3.2 23 21 1.9
25| 742 388 26.7 206| 3.8 22 20 1.8
30| 86.2 44.8 30.7 236| 39 22 19 17
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One striking feature about these critical values is that those for the 2SLS estimator are strongly
increasing in ¢ while those for the LIML estimator are decreasing in #3. This means that when the
number of instruments /5 is large, 2SLS requires a much stronger reduced form (larger y?) in order
for inference to be reliable, but this is not the case for LIML. This is direct evidence that inference
is less sensitive to weak instruments when estimation is by LIML rather than 2SLS. This makes a
strong case for using LIML rather than 2SLS, especially when /5 is large or the instruments are
potentially weak.

We now summarize the recommended Staiger-Stock/Stock-Yogo procedure for ky > 1, ko = 1,
and /o > 1. The structural equation and reduced form equations are

/
yi = 1,081 + 22 + €
!/ /
Toi = T1Y1 + 2272 T Ui

The reduced form is estimated by least-squares

T2 = TY1 + 2oV + Ui
and the structural equation by either 2SLS or LIML:

yi = ;B + 12:P2 + ;.

Let F' be the F' statistic for Hp : v9 = 0 in the reduced form equation. Let S(BQ) be a standard
error for By in the structural equation. The procedure is:

1. Compare F' with the critical values ¢ in the above table, with the row selected to match the
number of excluded instruments /3, and the columns to match the estimation method (2SLS
or LIML) and the desired size r.

2. If F > ¢ then report the 2SLS or LIML estimates with conventional inference.

The Stock-Yogo test can be implemented in Stata using the command estat firststage after
ivregress 2sls or ivregres liml if a standard (non-robust) covariance matrix has been specified
(that is, without the ¢,r’ option).

There are possible extensions to the Stock-Yogo procedure.

One modest extension is to use the information to convey the degree of confidence in the
accuracy of a confidence interval. Suppose in an application you have 5 = 5 excluded instruments
and have estimated your equation by 2SLS. Now suppose that your reduced form F' statistic equals
12. You check the Stock-Yogo table, and find that F' = 12 is significant with » = 0.20. Thus we
can interpret the conventional 2SLS confidence interval as having coverage of 80% (or 75% if we
make the Bonferroni correction). On the other hand if F' = 27 we would conclude that the test
for weak instruments is significant with » = 0.10, meaning that the conventional 2SLS confidence
interval can be interpreted as having coverage of 90% (or 85% after Bonferroni correction).

A more substantive extension, which we now discuss, reverses the steps. Unfortunately this
discussion will be limited to the case ¢ = 1, where 2SLS and LIML are equivalent. First, use
the reduced form F statistic to find a one-sided confidence interval for u? of the form [u?,00).
Second, use the lower bound u% to calculate a critical value C' for S; such that the 2SLS test
has asymptotic size bounded below 0.05. This produces better size control than the Stock-Yogo
procedure and produces more informative confidence intervals for 5. We now describe the steps
in detail.

The first goal is to find a one-sided confidence interval for p2. This is found by test inversion.
As we described earlier, for any 72 we reject Hg : pu? = 72 in favor of Hy : p? > 72 if F > ¢
where G(c,72) = 0.95. Equivalently, we reject if G(F,72) > 0.95. By the test inversion principle,
an asymptotic 95% confidence interval [p2,00) can be formed as the set of all values of 72 which
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are not rejected by this test. Since G(F,72?) > 0.95 for all 72 in this set, the lower bound u?
satisfies G(F, %) = 0.95. The lower bound is found from this equation. Since this solution is not
generally programmed, it needs to be found numerically. In MATLAB, the solution is mu2 when
ncx2cdf (F,1,mu2) returns 0.95.

The second goal is to find the critical value C' such that Pr(|S;| > C) = 0.05 when p? = p2.
From (11.79), this is achieved when

2 2 2 2
1-G (B v op B2 v o (EL —opup, B2 ) = 0.05. (11.80)
4 4 4 4
This can be solved as
G (Z +Cur, T) =

(The third term on the left-hand-side of (11.80) is zero for all solutions so can be ignored.) Using
the non-central chi-square quantile function Q(p,d), this C' equals

Q (095,4) - 4k
mr '

For example, in MATLAB this is found as C=(ncx2inv(.95,1,mu2/4)-mu2/4)/sqrt (mu2). 95%
confidence intervals for Sy are then calculated as

Brv £ Cs(B).

We can also calculate a p-value for the t-statistic T" for S2. These are

2 2 2 2
M M 15 M
pzl—G(IL+|T|,uL,IL>+G<TL—|T|;LL,—L>

C =

where the third term equals zero if |T'| > pr /4. In MATLAB, for example, this can be calculated
by the commands

T1 = mu2/4 + abs(T) * sqrt(mu2);

T2 = mu2/4 — abs(T) * sqrt(mu2);

p = —ncx2cdf(T1, 1,mu2/4) + ncx2cdf (T2, 1, mu2/4);

These confidence intervals and p-values will be larger than the conventional intervals and p-
values, reflecting the incorporation of information about the strength of the instruments through
the first-stage F' statistic. Also, by the Bonferroni bound these tests have asymptotic size bounded
below 10% and the confidence intervals have asymptotic converage exceeding 90%, unlike the Stock-
Yogo method which has size of 20% and coverage of 80%.

The augmented procedure suggested here, only for the ¢5 = 1 case, is

1. Find ,u% which solves G (F, u%) = 0.95. In MATLAB, the solution is mu2 when ncx2cdf (F,1,mu?2)
returns 0.95.

2. Find C which solves G (3 /4 + Cpr, p3 /4) = 0.95. In MATLAB, the command is
C=(ncx2inv(.95,1,mu2/4)-mu2/4) /sqrt (mu2)

3. Report the confidence interval Bg + CS(BQ) for fs.

4. For the t statistic T' = (Bg - 52) /S(B\Q) the asymptotic p-value is
2 2 2 2
KL KL KL KL
—1-G (2L 47| ;. BE PL iy, PL

which is computed in MATLAB by T1=mu2/4+abs(T)*sqrt (mu2) ; T2=mu2/4-abs(T)*sqrt (mu2) ;
and p=1-ncx2cdf (T1,1,mu2/4)+ncx2cdf (T2,1,mu2/4).
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We have described an extension to the Stock-Yogo procedure for the case of one instrumental
variable fo = 1. This restriction was due to the use of the analytic formula (11.80) for the asymptotic
distribution, which is only available when ¢5 > 0. In principle the procedure could be extended using
simulation or bootstrap methods, but this has not been done to my knowledge.

To illustrate the Stock-Yogo and extended procedures, let us return to the Card proximity
example. First, let’s take the IV estimates reported in the second column of Table 11.1 which used
college proximity as a single instrument. The reduced form estimates for the endogenous variable
education is reported in the second column of Table 11.2. The excluded instrument college has a
t-ratio of 4.2 which implies an F’ statistic of 17.8. The F’ statistic exceeds the rule-of thumb of 10, so
the structural estimates pass the Stock-Yogo threshold. Based on the Stock-Yogo recommendation,
this means that we can interpret the estimates conventionally. However, the conventional confidence
interval, e.g. for the returns to education, 0.132 + 0.049 % 1.96 = [0.04, 0.23] has an asymptotic
coverage of 80%, rather than the nominal 95% rate.

Now consider the extended procedure. Given F = 17.8 we can calculate the lower bound
,u% = 6.6. This implies a critical value of C' = 2.7. Hence an improved confidence interval for the
returns to education in this equation is 0.132 £0.049 % 2.7 = [0.01, 0.26]. This is a wider confidence
interval, but has improved asymptotic coverage of 90%. The p-value for 52 = 0 is p = 0.012.

Next, let’s take the 2SLS estimates reported in the fourth column of Table 11.1 which use the
two instruments public and private. The reduced form equation is reported in column six of Table
11.2. An F statistic for exclusion of the two instruments is F = 13.9, which exceeds the 15% size
threshold for 2SLS and all thresholds for LIML, indicating that the structural estimates pass the
Stock-Yogo threshold test and can be interpreted conventionally.

The weak instrument methods described here are important for applied econometrics as they
discipline researchers to assess the quality of their reduced form relationships before reporting
structural estimates. The theory, however, has limitations and shortcomings. A major limitation
is that the theory requires the strong assumption of conditional homoskedasticity. Despite this
theoretical limitation, in practice researchers apply the Stock-Yogo recommendations to estimates
computed with heteroskedasticity-robust standard errors as it is the currently the best known
approach. This is an active area of research so the recommended methods may change in the years
ahead.

James Stock

James Stock (1955-) is a American econometrician and empirical macro-
economist who has made several important contributions, most notably his
work on weak instruments, unit root testing, cointegration, and forecast-
ing. He is also well-known for his undergraduate textbook Introduction to
Econometrics (2014) co-authored with Mark Watson

11.32 Weak Instruments with ks > 1

When there are more than one endogenous regressor (kg > 1) it is better to examine the reduced
form as a system. Staiger and Stock (1997) and Stock and Yogo (2005) provided an analysis of
this case and constructed a test for weak instruments. The theory is considerably more involved
than the ko = 1 case, so we briefly summarize it here excluding many details, emphasizing their
suggested methods.
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The structural equation and reduced form equations are

/ /
Yi = 1,01 + 202 + €
/ /

As in the previous section we assume that the errors are conditionally homoskedastic.
Identification of 3, requires the matrix I'go to be full rank. A necessary condition is that each
row of 'y, is non-zero, but this is not sufficient.
We focus on the size performance of the homoskedastic Wald statistic for the 2SLS estimator
of B,. For simplicity assume that the variance of e; is known and normalized to one. Using
representation (11.37), the Wald statistic can be written as

~ f~)~ \—1l ~y ~ f~p~ \—1l ~y -1 ~ f~p~ \—1l ~y
W= €Z, (zzzz) Z)X <X’2Z2 (2222) ZQX2> <X;ZQ (Z2Z2> de>
where Zy = (I, — P1) Z5 and P; = X1 (X} X1) " X/,
Stock and Staiger model the excluded instruments zs; as weak by setting T'ap = n~Y2C for
some matrix C. This is the multivariate analog of the simple case examined in the previous section.
In this framework we have the asymptotic distribution results

1~/ ~ _
~Zy7> " Q= E(aizy) — Bz2i2)y) (B(z1i21))  B(z1i2),)

1 ~/ d
—Zye — QI/Q&)

Vn
where & is a matrix normal variate whose columns are independent N(0, I). Furthermore, setting
Y = B(ugul;) and C = QV2Cx71/2,

1 ~ 1~/ ~ 1 ~ d —
%ZQXQ = EZ2Z2 C+ %Z2U2 — Ql/QCzl/Q + Q1/2£221/2
where &, is a matrix normal variates whose columns are independent N(0, I'). The variables £, and
&, are correlated. Together we obtain the asymptotic distribution of the Wald statistic

d Jp— ——=\ ! —= /
W-Ls=¢(C+e) (TT) (T+e) e

Using the spectral decomposition, C'C = H'AH where HH = I and A is diagonal. Thus we
can write

S = &&A ¢
where €&, = CH' + £,H'. The matrix £€* = (§,,£,) is multivariate normal, so £”&* has what is
called a non-central Wishart distribution. It only depends on the matrix C through H C'CH' = A,
which are the eigenvalues of 'C'C. Since S is a function of &* only through 2/250 we conclude that
S is a function of C only through these eigenvalues.

This is a very quick derivation of a rather involved derivation, but the conclusion drawn by Stock
and Yogo is that the asymptotic distribution of the Wald statistic is non-standard, and a function
of the model parameters only through the eigenvalues of C'C and the correlations between the
normal variates €, and €. The worst-case can be summarized by the maximal correlation between
€, and &€, and the smallest eigenvalue of C'C. For convenience, they rescale the latter by dividing
by the number of endogenous variables. Define

G=TCTlky=312C'QCE "2k,

and

9= Amin (G) = Amin (2—1/2C’Q02—1/2) Jks.
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This can be estimated from the reduced-form regression
~/ ~/ N
x2; = Lyp21; + Dogzoi + Uy;.

The estimator is

G=%"""T, (2,2:) TS ks
~— ~ ~) ~ -1 o~
_s2 (X’2Z2 (Z;zg> z;X2> Sk
~ 1 oo
Y= n—Fk u2iu/2i
=1
?j = )‘min (a> .

G is a matrix F-type statistic for the coefficient matrix f‘gg.

The statistic g was proposed by Craig and Donald (1993) as a test for underidentification. Stock
and Yogo (2005) use it as a test for weak instruments. Using simulation methods, they determined
critical values for g similar to those for the ko = 1 case. For given size r > 0.05, there is a critical
value ¢ (reported in the table below) such that if g > ¢, then the 2SLS (or LIML) Wald statistic
W for 3, has asymptotic size bounded below r. On the other hand, if g < ¢ then we cannot bound
the asymptotic size below r and we cannot reject the hypothesis of weak instruments.

The Stock-Yogo critical values for ke = 2 are presented in the following table. The methods and
theory applies to the cases ko > 2 as well, but those critical values have not been calculated. As for
the ke = 1 case, the critical values for 2SLS are dramatically increasing in ¢5. Thus when the model
is over-identified, we need quite a large value of g to reject the hypothesis of weak instruments. This
is a strong cautionary message to check the g statistic in applications. Furthermore, the critical
values for LIML are generally decreasing in ¢2 (except for » = 0.10, where the critical values are
increasing for large ¢3). This means that for over-identified models, LIML inference is much less
sensitive to weak instruments than 2SLS, and may be the preferred estimation method.

The Stock-Yogo test can be implemented in Stata for ky < 2 using the command estat
firststage after ivregress 2sls or ivregres liml if a standard (non-robust) covariance matrix
has been specified (that is, without the ‘,r’ option).

g 5% Critical Value for Weak Instruments, ko = 2

Maximal Size r
2SLS LIML
51010 0.15 0.20 0.25(0.10 0.15 0.20 0.25
21 70 46 39 36| 70 46 39 3.6
31134 82 64 54| 54 38 33 31
41169 99 75 63| 47 34 3.0 28
51194 11.2 84 69| 43 31 28 26
6217 123 91 74| 41 29 26 25
71237 133 98 79| 39 28 25 24
81256 143 104 84| 38 27 24 23
91275 152 11.0 8.8 3.7 2.7 2.4 2.2
101293 162 116 93| 36 26 23 21
151 38.0 206 146 11.6 3.5 2.4 2.1 2.0
20 | 46.6 25.0 17.6 138| 3.6 24 20 19
251 55.1 29.3 20.6 16.1| 3.6 24 197 1.8
30| 635 33.6 235 183 | 41 24 195 1.7
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11.33 Many Instruments

Some applications have available a large number ¢ of instruments. If they are all valid, using a
large number should reduce the asymptotic variance relative to estimation with a smaller number
of instruments. Is it then good practice to use many instruments? Or is there a cost to this
practice? Bekker (1994) initiated a large literature investigating this question by formalizing the
idea of “many instruments”. Bekker proposed an asymptotic approximation which treats the
number of instruments £ as proportional to the sample size, that is £ = an, or equivalently that
(/N — a€0,1).

We examine this idea in the simplified setting of one endogenous regressor and no included
€X0genous regressors

Y = Bxi + e (11.81)

/
X = z2;7%Y + u;

with z; £ x 1. As in the previous two sections we make the simplifying assumption that the errors
are conditionally homoskedastic and unit variance

var<< Z% ) |zi> = < ; f ) (11.82)

In addition we assume that the conditional fourth moments are bounded
E(ef|z)<C<oo E(ul|z)<C<oo. (11.83)

The idea that there are “many instruments” is formalized by the assumption that the number
of instruments is increasing proportionately with the sample size
14
— — . (11.84)
n
The best way to think about this is to view « as the ratio of £ to n in a given sample. Thus if an
application has n = 100 observations and ¢ = 10 instruments, then we should treat o = 0.10.
Consider the variance of the endogenous regressor z; from the reduced form: var (z;) = var (z}v)+
var (u;). Suppose that var (z;) and var (u;) are unchanging as ¢ increases. This implies that var (z}7)
is unchanging as well. This will be a useful assumption, as it implies that the population R? of the
reduced form is not changing with £. We don’t need this exact condition, rather we simply assume
that the sample version converges in probability to a fixed constant

1 n
=3 Vmdy Lo (11.85)
=1

for 0 < ¢ < co. Again, this essentially implies that the R? of the reduced form regression for x;
converges to a constant.

As a baseline it is useful to examine the behavior of the least-squares estimator of 5. First,
observe that the variances of n™t > | v'zie; and n=! 3" | v'2;u;, conditional on Z, are both
equal to

n
n=?2 Z’y'ziz;'y 250
i=1

by (11.85). Thus they converge in probability to zero:

'Y Y zie =0 (11.86)
=1
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and .
n 'y Y ziu; =5 0. (11.87)
i=1
Combined with (11.85) and the WLLN we find

n
—ZmzeZ = ny’ziemtézuiei L
P

i=1
1 — 1 — 2 — 1 —
2 _ - ', .0 “ ln). - 2 p
E;xi—n;'yz,zn—kn;'yzzul—i—n;ul—>c+1.

1
) ez P P
Bols B + I 2 o - B +—.
Zz 1 1 c+1
Thus least-squares is inconsistent for 5 under endogeneity.

Now consider the 2SLS estimator. In matrix notation, setting P = Z (Z'Z) ' Z',

Hence

1y 1 17/ 1,7

~ =X'Pe 2~'Z'e+ =u'Pe

Pasis — B = 1'% =T oo T T oo (11.88)
=~ X'PX  NZ'Zy+ 2v'Z'u+ - u/'Pu

In the expression on the right-side of (11.88), three of the components have been examined in
(11.85), (11.86), and (11.87). We now examine the remaining components 1u/Pe and 2u/Pe = w.

First, it it simple to take their expectations under the conditional homoskedasticity assumption.
We have

1 1 1 L
E (—u'Pe) =—trE(Peu)=—tr (P)p=—p (11.89)
n n n n
since tr (P) = ¢. Similarly
1 1 1
E (—u/Pu) = —trE (Puv) = —tr (P) = £
n n n n

. . . . . ~1
Second, we examine their variances, which is a more cumbersome exercise. Let P;j = 2, (Z'Z)"" z

be the ij element of P. Then w/'Pe= )", Z;’L:I uiejPij and w'Pu =", Z?:I uuj Py
The matrix P is idempotent. It therefore has the properties Y ;" ; P; = tr(P) = ¢ and
0 < P; < 1. The property PP = P also implies > 7_; PZ% = P;;. Then

2

1 1 " < o
var <EU/P6> :EE ZZ(UiGj—pl(Z:]))Pij

i=1 j=1

B %E DD (uiej —pl(i=j)) Py (urer — pl (k =1)) Py

i=1 j=1 k=1 1=1

= ZE ( uie; — sz> (11.90)

+_222E 2:2p2) (11.91)

i=1 j#i

1 n
+— > D B (uiejein; P) (11.92)

i=1 j£i

J
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n n
:%ZE 2¢2P2) —2p ZE wiei P p2%ZE P2
i=1 i=1
The third equality holds because the remaining cross-products have zero expectation since the
observations are independent and the errors have zero mean. We then calculate that (11.90) is
bounded by

14

ZE < (C-p? RQZE i) = (C=p%) =5 — 0

under (11.84). The first inequality is P; < 1 and the equality is Y ;" ; P;; = £. Next, the conditional
homoskedasticity assumption implies that (11.91) plus (11.92) equals (1 + p?) times

1 n n 1 n ,
QZZE S—Q;;E(E%)ZEZ;E(&FEQO

1=1 j#i

under (11.84). The first equality is 37, PZQJ = P;;. Together, we have shown that

var (lu/Pe> — 0.
n

Using (11.89) and Markov’s inequality

1 14
~—u'Pe— —p £0.
n n

Combined with (11.84) we find

1
—u'Pe 2 ap. (11.93)
n

The analysis for %u’ Pu is quite similar. We deduce that

1
Eu'Pu 2 a. (11.94)

Returning to the 2SLS estimator (11.88) and combining (11.85), (11.86), (11.87), (11.93) and

(11.94), we find
ap

c+a

/82515 —> 5 +

We can state this formally.

Theorem 11.33.1 In model (11.81), under assumptions (11.82), (11.83)
and (11.84), then as n — oc.

> p
BolsLﬁ‘i‘c_i_—l
ap

c+a

/BQSIS —> 5 +

This result is quite insightful. It shows that while endogeneity (p # 0) renders the least-squares
estimator inconsistent, the 2SLS estimator is also inconsistent if the number of instruments diverges
proportionately with n. The limit in Theorem 11.33.1 shows a continuity between least-squares and
2SLS. The probability limit of the 2SLS estimator is continuous in «, with the extreme case (v = 1)
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implying that 2SLS and least-squares have the same probability limit. The general implication is
that the inconsistency of 2SLS is increasing in a.

Hence using a large number of instruments in an application comes at a cost.

In an application, users should calculate the “many instrument ratio” «a = ¢/n. Unfortunately
there is no known rule-of-thumb for « which should lead to acceptable inference, but a minimum
criterion is that if a > 0.05 you should be seriously concerned about the many-instrument problem.
In general, if it is desired to use a large number of instruments then it is recommended to use an
estimation method other than 2SLS such as LIML.

11.34 Example: Acemoglu, Johnson and Robinson (2001)

One particularly well-cited instrument variable regression is in Acemoglu, Johnson and Robinson
(2001) with additional details published in (2012). They are interested in the effect of political
institutions on economic performance. The theory is that good institutions (rule-of-law, property
rights) should result in a country having higher long-term economic output than if the same country
had poor institutions. To investigate this question, they focus on a sample of 64 former European
colonies. Their data is in the file AJR2001 on the textbook website.

The authors’ premise is that modern political institutions will have been influenced by the
colonizing country. In particular, they argue that colonizing countries tended to set up colonies
as either an “extractive state” or as a “migrant colony”. An extractive state was used by the
colonizer to extract resources for the colonizing country, but was not largely settled by the European
colonists. In this case the colonists would have had no incentive to set up good political institutions.
In contrast, if a colony was set up as a “migrant colony”, then large numbers of European settlers
migrated to the colony to live. These settlers would have desired institutions similar to those in their
home country, and hence would have had a positive incentive to set up good political institutions.
The nature of institutions is quite persistent over time, so these 19*"-century foundations would
affect the nature of modern institutions. The authors conclude that the 19**-century nature of
the colony should be predictive of the nature of modern institutions, and hence modern economic
growth.

To start the investigation they report an OLS regression of log GDP per capita in 1995 on a
measure of political institutions they call “risk”, which is a measure of the protection against expro-
priation risk. This variable ranges from 0 to 10, with 0 the lowest protection against appropriation,
and 10 the highest. For each country the authors take the average value of the index over 1985 to
1995 (the mean is 6.5 with a standard deviation of 1.5). Their reported OLS estimates (intercept
omitted) are

log(GDP per Capita) = 0.52 risk. (11.95)
(0.06)

These estimates imply a 52% difference in GDP between countries with a 1-unit difference in risk.

The authors argue that the risk is likely endogenous, since economic output influences political
institutions, and because the variable risk is undoubtedly measured with error. These issues induce
least-square bias in different directions and thus the overall bias effect is unclear.

To correct for the endogeneity bias the authors argue the need for an instrumental variable which
does not directly affect economic performance yet is associated with political institutions. Their
innovative suggestion was to use the mortality rate which faced potential European settlers in the
19*" century. Colonies with high expected mortality would have been less attractive to European
setters, resulting in lower levels of European migrants. As a consequence the authors expect such
colonies to have been more likely structured as an extractive state rather than a migrant colony.
To measure the expected mortality rate the authors use estimates provided by historical research
of the annualized deaths per 1000 soldiers, labeled mortality. (They used military mortality rates
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as the military maintained high-quality records.) The first-stage regression is

risk = —0.61 log(mortality) + u. (11.96)
(0.13)

These estimates confirm that 19t"-century high settler mortality rates are associated with countries
with lower quality modern institutions. Using log(mortality) as an instrument for risk, they
estimate the structural equation using 2SLS and report

log(GDP/p;C’apita) = 094 risk. (11.97)
(0.16)

This estimate is much higher than the OLS estimate from (11.95). The estimate is consistent with
a near doubling of GDP due to a 1-unit difference in the risk index.

These are simple regressions involving just one right-hand-side variable. The authors considered
a range of other models. Included in these results are a reversal of a traditional finding. In a
conventional (least-squares) regression two relevant varibles for output are latitude (distance from
the equator) and africa (a dummy variable for countries from Africa), both of which are difficult
to interpret causally. But in the proposed instrumental variables regression the variables latitude
and africa have much smaller — and statistically insignificant — coefficients.

To assess the specification, we can use the Stock-Yogo and endogeneity tests. The Stock-Yogo
test is from the reduced form (11.96). The instrument has a t-ratio of 4.8 (or F' = 23) which
exceeds the Stock-Yogo critical value and hence can be treated as strong. For an endogeneity test,
we take the least-squares residual @ from this equation and include it in the structural equation and
estimate by least-squares. We find a coefficient on u of —0.57 with a t-ratio of 4.7, which is highly
significant. We conclude that the least-squares and 2SLS estimates are statistically different, and
reject the hypothesis that the variable risk is exogenous for the GDP structural equation.

In Exercise 11.23 you will replicate and extend these results using the authors’ data.

This paper is a creative and careful use of the instrumental variables method. The creativity
stems from the careful historical analysis which lead to the focus on mortality as a potential
predictor of migration choices. The care comes in the implementation, as the authors needed to
gather country-level data on political institutions and mortality from distinct sources. Putting
these pieces together is the art of the project.

11.35 Example: Angrist and Krueger (1991)

Another influential instrument variable regression is in Angrist and Krueger (1991). Their
concern, similar to Card (1995), is estimation of the structural returns to education while treating
educational attainment as endogenous. Like Card, their goal is to find an instrument which is
exogenous for wages yet has an impact on educational attainment. A subset of their data in the
file AK1991 on the textbook website.

Their creative suggestion was to focus on compulsory school attendance policies and their
interaction with birthdates. Compulsory schooling laws vary across states in the United States, but
typically require that youth remain in school until their sixteenth or seventeenth birthday. Angrist
and Krueger argue that compulsory schooling has a causal effect on wages — youth who would have
chosen to drop out of school stay in school for more years — and thus have more education which
causally impacts their earnings as adults.

Angrist and Krueger next observe that these policies have differential impact on youth who
are born early or late in the school year. Students who are born early in the calendar year are
typically older when they enter school. Conseqeuntly when they attain the legal dropout age they
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have attended less school than those born near the end of the year. This means that birthdate
(early in the calendar year versus late) exogenously impacts educational attainment, and thus wages
through education. Yet birthdate must be exogenous for the structural wage equation, as there is
no reason to believe that birthdate itself has a causal impact on a person’s ability or wages. These
considerations together suggest that birthdate is a valid instrumental variable for education in a
causal wage equation.

Typical wage datasets include age, but not birthdates. To obtain information on birthdate,
Angrist and Krueger used a U.S. Census data which includes an individual’s quarter of birth
(January-March, April-June, etc.). They use this variable to construct 2SLS estimates of the
return to education.

Their paper carefully documents that educational attainment varies by quarter of birth (as
predicted by the above discussion), and reports a large set of least-squares and 2SLS estimates.
We focus on two estimates at the core of their analysis, reported in column (6) of their Tables
V and VII. This involves data from the 1980 census with men born in 1930-1939, with 329,509
observations. The first equation is

10@]6): 0.080 edu— 0.230 black+ 0.158 wurban+ 0.244 married  (11.98)
(0.016) (0.026) (0.017) (0.005)

where edu years of education, and black, urban, and married are dummy variables indicating race
(1 if black, 0 otherwise), lives in a metropolitan area, and if married. In addition to the reported
coefficients, the equation also includes as regressors nine year-of-birth dummies and eight region-
of-residence dummies. The equation is estimated by 2SLS. The instrumental variables are the 30
interactions of three quarter-of-birth times ten year-of-birth dummy variables.

This equation indicates an 8% increase in wages due to each year of education.

Angrist and Krueger observe that the effect of compulsory education laws are likely to vary
across states, so expand the instrument set to include interactions with state-of-birth. They esti-
mate the following equation by 2SLS

o —

log(wage) = 0.083 edu— 0.233 black+ 0.151 wrban+ 0.244 married.  (11.99)
(0.010) (0.011) (0.010) (0.003)

This equation also adds fifty state-of-birth dummy variables as regressors. The instrumental vari-
ables are the 180 interactions of quarter-of-birth times year-of-birth dummy variables, plus quarter-
of-birth times state-of-birth interactions.

This equation shows a similar estimated causal effect of education on wages as in (11.98). More
notably, the standard error is smaller in (11.99), suggesting improved precis