v
Darryl Gove

Multicore Application
Programming

For Windows, Linux, and
Oracle® Solaris

Developer 3 lerary

Multicore
Application
Programming

Multicore
Application
Programming

For Windows, Linux, and
Oracle® Solaris

Darryl Gove

vvAddison-Wesley

Upper Saddle River, NJ ¢ Boston e Indianapolis ¢ San Francisco
New York ¢ Toronto « Montreal ¢ London ¢ Munich e Paris « Madrid
Capetown e Sydney ¢ Tokyo e Singapore » Mexico City

Download at www.wowebook.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital let-
ters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Gove, Darryl.
Multicore application programming : for Windows, Linux, and Oracle
Solaris / Darryl Gove.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-321-71137-3 (pbk. : alk. paper)
1. Parallel programming (Computer science) . Title.
QA76.642.G68 2011
005.2'75-dc22

2010033284

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding per-
missions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax: (617) 671-3447

ISBN-13: 978-0-321-71137-3

ISBN-10: 0-321-71137-8

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, IN.
First printing, October 2010

Download at www.wowebook.com

Editor-in-Chief
Mark Taub
Acquisitions Editor
Greg Doench
Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Kim Wimpsett
Indexer

Ted Laux

Proofreader
Lori Newhouse

Editorial Assistant
Michelle Housley

Cover Designer
Gary Adair

Cover Photograph
Jenny Gove

Compositor
Rob Mauhar

Contents at a Glance

Preface xv
Acknowledgments xix
About the Author xxi
1 Hardware, Processes, and Threads 1
2 Coding for Performance 31
3 Identifying Opportunities for Parallelism 85
4 Synchronization and Data Sharing 121
5 Using POSIX Threads 143
6 Windows Threading 199
7 Using Automatic Parallelization and OpenMP 245
8 Hand-Coded Synchronization and Sharing 295
9 Scaling with Multicore Processors 333
10 Other Parallelization Technologies 383
11 Concluding Remarks 411
Bibliography 417

Index 419

Download at www.wowebook.com

This page intentionally left blank

Download at www.wowebook.com

Contents

Preface xv
Acknowledgments xix
About the Author xxi

1 Hardware, Processes, and Threads 1
Examining the Insides of a Computer 1
The Motivation for Multicore Processors 3
Supporting Multiple Threads on a Single Chip 4

Increasing Instruction Issue Rate with Pipelined
Processor Cores 9

Using Caches to Hold Recently Used Data 12
Using Virtual Memory to Store Data 15

Translating from Virtual Addresses to Physical
Addresses 16

The Characteristics of Multiprocessor Systems 18
How Latency and Bandwidth Impact Performance 20

The Translation of Source Code to Assembly
Language 21

The Performance of 32-Bit versus 64-Bit Code 23

Ensuring the Correct Order of Memory Operations 24

The Differences Between Processes and Threads 26
Summary 29

2 Coding for Performance 31
Defining Performance 31
Understanding Algorithmic Complexity 33
Examples of Algorithmic Complexity 33
Why Algorithmic Complexity Is Important 37
Using Algorithmic Complexity with Care 38
How Structure Impacts Performance 39

Performance and Convenience Trade-Offs in Source
Code and Build Structures 39

Using Libraries to Structure Applications 42
The Impact of Data Structures on Performance 53

Download at www.wowebook.com

viii Contents

The Role of the Compiler 60
The Two Types of Compiler Optimization 62
Selecting Appropriate Compiler Options 64

How Cross-File Optimization Can Be Used to Improve
Performance 65

Using Profile Feedback 68

How Potential Pointer Aliasing Can Inhibit Compiler
Optimizations 70

Identifying Where Time Is Spent Using Profiling 74
Commonly Available Profiling Tools 75

How Not to Optimize 80

Performance by Design 82

Summary 83

3 Identifying Opportunities for Parallelism 85

Using Multiple Processes to Improve System
Productivity 85

Multiple Users Utilizing a Single System 87
Improving Machine Efficiency Through Consolidation 88

Using Containers to Isolate Applications Sharing a
Single System 89

Hosting Multiple Operating Systems Using
Hypervisors 89

Using Parallelism to Improve the Performance of a Single
Task 92

One Approach to Visualizing Parallel Applications 92

How Parallelism Can Change the Choice of
Algorithms 93

Amdahl’s Law 94

Determining the Maximum Practical Threads 97

How Synchronization Costs Reduce Scaling 98
Parallelization Patterns 100

Data Parallelism Using SIMD Instructions 101

Parallelization Using Processes or Threads 102

Multiple Independent Tasks 102

Multiple Loosely Coupled Tasks 103

Multiple Copies of the Same Task 105

Single Task Split Over Multiple Threads 106

Download at www.wowebook.com

Contents iX

Using a Pipeline of Tasks to Work on a Single
ltem 106

Division of Work into a Client and a Server 108

Splitting Responsibility into a Producer and a
Consumer 109

Combining Parallelization Strategies 109

How Dependencies Influence the Ability Run Code in
Parallel 110

Antidependencies and Output Dependencies 111
Using Speculation to Break Dependencies 113
Critical Paths 117
Identifying Parallelization Opportunities 118
Summary 119

Synchronization and Data Sharing 121
Data Races 121
Using Tools to Detect Data Races 123
Avoiding Data Races 126
Synchronization Primitives 126
Mutexes and Critical Regions 126
Spin Locks 128
Semaphores 128
Readers-Writer Locks 129
Barriers 130
Atomic Operations and Lock-Free Code 130
Deadlocks and Livelocks 132
Communication Between Threads and Processes 133

Memory, Shared Memory, and Memory-Mapped
Files 134

Condition Variables 135

Signals and Events 137

Message Queues 138

Named Pipes 139

Communication Through the Network Stack 139

Other Approaches to Sharing Data Between Threads
140

Storing Thread-Private Data 141
Summary 142

Download at www.wowebook.com

Contents

5 Using POSIX Threads 143

6

Creating Threads 143
Thread Termination 144
Passing Data to and from Child Threads 145
Detached Threads 147
Setting the Attributes for Pthreads 148
Compiling Multithreaded Code 151
Process Termination 153
Sharing Data Between Threads 154
Protecting Access Using Mutex Locks 154
Mutex Attributes 156
Using Spin Locks 157
Read-Write Locks 159
Barriers 162
Semaphores 163
Condition Variables 170
Variables and Memory 175
Multiprocess Programming 179
Sharing Memory Between Processes 180
Sharing Semaphores Between Processes 183
Message Queues 184
Pipes and Named Pipes 186
Using Signals to Communicate with a Process 188
Sockets 193
Reentrant Code and Compiler Flags 197
Summary 198

Windows Threading 199

Creating Native Windows Threads 199
Terminating Threads 204
Creating and Resuming Suspended Threads 207
Using Handles to Kernel Resources 207

Methods of Synchronization and Resource Sharing 208

An Example of Requiring Synchronization Between
Threads 209

Protecting Access to Code with Critical Sections 210
Protecting Regions of Code with Mutexes 213

Download at www.wowebook.com

Contents Xi

Slim Reader/Writer Locks 214
Semaphores 216
Condition Variables 218

Signaling Event Completion to Other Threads or
Processes 219

Wide String Handling in Windows 221
Creating Processes 222
Sharing Memory Between Processes 225
Inheriting Handles in Child Processes 228

Naming Mutexes and Sharing Them Between
Processes 229

Communicating with Pipes 231
Communicating Using Sockets 234
Atomic Updates of Variables 238
Allocating Thread-Local Storage 240
Setting Thread Priority 242
Summary 244

Using Automatic Parallelization and OpenMP 245

Using Automatic Parallelization to Produce a Parallel
Application 245

Identifying and Parallelizing Reductions 250
Automatic Parallelization of Codes Containing

Calls 251
Assisting Compiler in Automatically Parallelizing
Code 254

Using OpenMP to Produce a Parallel Application 256
Using OpenMP to Parallelize Loops 258
Runtime Behavior of an OpenMP Application 258

Variable Scoping Inside OpenMP Parallel
Regions 259

Parallelizing Reductions Using OpenMP 260

Accessing Private Data Outside the Parallel
Region 261

Improving Work Distribution Using Scheduling 263

Using Parallel Sections to Perform Independent
Work 267

Nested Parallelism 268

Download at www.wowebook.com

Contents

Using OpenMP for Dynamically Defined Parallel
Tasks 269

Keeping Data Private to Threads 274
Controlling the OpenMP Runtime Environment 276
Waiting for Work to Complete 278

Restricting the Threads That Execute a Region of
Code 281

Ensuring That Code in a Parallel Region Is Executed in
Order 285

Collapsing Loops to Improve Workload Balance 286
Enforcing Memory Consistency 287

An Example of Parallelization 288

Summary 293

8 Hand-Coded Synchronization and Sharing 295
Atomic Operations 295

Using Compare and Swap Instructions to Form More
Complex Atomic Operations 297

Enforcing Memory Ordering to Ensure Correct
Operation 301

Compiler Support of Memory-Ordering Directives 303
Reordering of Operations by the Compiler 304
Volatile Variables 308

Operating System-Provided Atomics 309

Lockless Algorithms 312
Dekker’s Algorithm 312
Producer-Consumer with a Circular Buffer 315
Scaling to Multiple Consumers or Producers 318

Scaling the Producer-Consumer to Multiple
Threads 319

Modifying the Producer-Consumer Code to Use
Atomics 326

The ABA Problem 329
Summary 332

9 Scaling with Multicore Processors 333
Constraints to Application Scaling 333
Performance Limited by Serial Code 334

Download at www.wowebook.com

Contents Xiii

Superlinear Scaling 336
Workload Imbalance 338
Hot Locks 340
Scaling of Library Code 345
Insufficient Work 347
Algorithmic Limit 350
Hardware Constraints to Scaling 352
Bandwidth Sharing Between Cores 353
False Sharing 355
Cache Conflict and Capacity 359
Pipeline Resource Starvation 363
Operating System Constraints to Scaling 369
Oversubscription 369

Using Processor Binding to Improve Memory
Locality 371

Priority Inversion 379
Multicore Processors and Scaling 380
Summary 381

Other Parallelization Technologies 383
GPU-Based Computing 383
Language Extensions 386
Threading Building Blocks 386
Cilk++ 389
Grand Central Dispatch 392

Features Proposed for the Next C and
C++ Standards 394

Microsoft's C++/CLI 397
Alternative Languages 399
Clustering Technologies 402
MPI 402
MapReduce as a Strategy for Scaling 406
Grids 407
Transactional Memory 407
Vectorization 408
Summary 409

Download at www.wowebook.com

Xiv

Contents

11 Concluding Remarks 411
Writing Parallel Applications 411
Identifying Tasks 411
Estimating Performance Gains 412
Determining Dependencies 413

Data Races and the Scaling Limitations of Mutex
Locks 443

Locking Granularity 413
Parallel Code on Multicore Processors 414
Optimizing Programs for Multicore Processors 415
The Future 416

Bibliography 447

Books 417
POSIX Threads 4417
Windows 417
Algorithmic Complexity 447
Computer Architecture 417
Parallel Programming 417
OpenMP 418

Online Resources 418
Hardware 418
Developer Tools 418
Parallelization Approaches 418

Index 419

Download at www.wowebook.com

Preface

For a number of years, home computers have given the illusion of doing multiple tasks
simultaneously. This has been achieved by switching between the running tasks many
times per second. This gives the appearance of simultaneous activity, but it is only an
appearance. While the computer has been working on one task, the others have made no
progress. An old computer that can execute only a single task at a time might be referred
to as having a single processor, a single CPU, or a single “core.” The core is the part of
the processor that actually does the work.

Recently, even home PCs have had multicore processors. It is now hard, if not impossi-
ble, to buy a machine that is not a multicore machine. On a multicore machine, each
core can make progress on a task, so multiple tasks really do make progress at the same
time.

The best way of illustrating what this means is to consider a computer that is used for
converting film from a camcorder to the appropriate format for burning onto a DVD.
This is a compute-intensive operation—a lot of data is fetched from disk, a lot of data is
written to disk—but most of the time is spent by the processor decompressing the input
video and converting that into compressed output video to be burned to disk.

On a single-core system, it might be possible to have two movies being converted at
the same time while ignoring any issues that there might be with disk or memory
requirements. The two tasks could be set off at the same time, and the processor in the
computer would spend some time converting one video and then some time converting
the other. Because the processor can execute only a single task at a time, only one video
is actually being compressed at any one time. If the two videos show progress meters, the
two meters will both head toward 100% completed, but it will take (roughly) twice as
long to convert two videos as it would to convert a single video.

On a multicore system, there are two or more available cores that can perform the
video conversion. Each core can work on one task. So, having the system work on two
films at the same time will utilize two cores, and the conversion will take the same time
as converting a single film. Twice as much work will have been achieved in the same
time.

Multicore systems have the capability to do more work per unit time than single-core
systems—two films can be converted in the same time that one can be converted on a
single-core system. However, it’s possible to split the work in a different way. Perhaps the
multiple cores can work together to convert the same film. In this way, a system with
two cores could convert a single film twice as fast as a system with only one core.

Download at www.wowebook.com

Xvi Preface

This book is about using and developing for multicore systems. This is a topic that is
often described as complex or hard to understand. In some way, this reputation is justi-
fied. Like any programming technique, multicore programming can be hard to do both
correctly and with high performance. On the other hand, there are many ways that multi-
core systems can be used to significantly improve the performance of an application or
the amount of work performed per unit time; some of these approaches will be more
difficult than others.

Perhaps saying “multicore programming is easy” is too optimistic, but a realistic way
of thinking about it is that multicore programming is perhaps no more complex or no
more difficult than the step from procedural to object-oriented programming. This book
will help you understand the challenges involved in writing applications that fully utilize
multicore systems, and it will enable you to produce applications that are functionally
correct, that are high performance, and that scale well to many cores.

Who Is This Book For?

If you have read this far, then this book is likely to be for you.The book is a practical
guide to writing applications that are able to exploit multicore systems to their full
advantage. It is not a book about a particular approach to parallelization. Instead, it covers
various approaches. It is also not a book wedded to a particular platform. Instead, it pulls
examples from various operating systems and various processor types. Although the book
does cover advanced topics, these are covered in a context that will enable all readers to
become familiar with them.

The book has been written for a reader who is familiar with the C programming lan-
guage and has a fair ability at programming. The objective of the book is not to teach
programming languages, but it deals with the higher-level considerations of writing code
that is correct, has good performance, and scales to many cores.

The book includes a few examples that use SPARC or x86 assembly language.
Readers are not expected to be familiar with assembly language, and the examples are
straightforward, are clearly commented, and illustrate particular points.

Objectives of the Book

By the end of the book, the reader will understand the options available for writing pro-
grams that use multiple cores on UNIX-like operating systems (Linux, Oracle Solaris,
OS X) and Windows. They will have an understanding of how the hardware implemen-
tation of multiple cores will affect the performance of the application running on the
system (both in good and bad ways). The reader will also know the potential problems to
avoid when writing parallel applications. Finally, they will understand how to write
applications that scale up to large numbers of parallel threads.

Download at www.wowebook.com

Preface Xvii

Structure of This Book

This book 1s divided into the following chapters.

Chapter 1 introduces the hardware and software concepts that will be encountered
in the rest of the book. The chapter gives an overview of the internals of processors. It is
not necessarily critical for the reader to understand how hardware works before they can
write programs that utilize multicore systems. However, an understanding of the basics of
processor architecture will enable the reader to better understand some of the concepts
relating to application correctness, performance, and scaling that are presented later in
the book. The chapter also discusses the concepts of threads and processes.

Chapter 2 discusses profiling and optimizing applications. One of the book’s prem-
ises is that it is vital to understand where the application currently spends its time before
work is spent on modifying the application to use multiple cores. The chapter covers all
the leading contributors to performance over the application development cycle and dis-
cusses how performance can be improved.

Chapter 3 describes ways that multicore systems can be used to perform more work
per unit time or reduce the amount of time it takes to complete a single unit of work. It
starts with a discussion of virtualization where one new system can be used to replace
multiple older systems. This consolidation can be achieved with no change in the soft-
ware. It is important to realize that multicore systems represent an opportunity to change
the way an application works; they do not require that the application be changed. The
chapter continues with describing various patterns that can be used to write parallel
applications and discusses the situations when these patterns might be useful.

Chapter 4 describes sharing data safely between multiple threads. The chapter leads
with a discussion of data races, the most common type of correctness problem encoun-
tered in multithreaded codes. This chapter covers how to safely share data and synchro-
nize threads at an abstract level of detail. The subsequent chapters describe the operating
system—specific details.

Chapter 5 describes writing parallel applications using POSIX threads. This is the
standard implemented by UNIX-like operating systems, such as Linux, Apple’s OS X,
and Oracle’s Solaris. The POSIX threading library provides a number of useful building
blocks for writing parallel applications. It offers great flexibility and ease of development.

Chapter 6 describes writing parallel applications for Microsoft Windows using
Windows native threading. Windows provides similar synchronization and data sharing
primitives to those provided by POSIX. The differences are in the interfaces and require-
ments of these functions.

Chapter 7 describes opportunities and limitations of automatic parallelization pro-
vided by compilers. The chapter also covers the OpenMP specification, which makes it
relatively straightforward to write applications that take advantage of multicore processors.

Chapter 8 discusses how to write parallel applications without using the functional-
ity in libraries provided by the operating system or compiler. There are some good rea-
sons for writing custom code for synchronization or sharing of data. These might be for

Download at www.wowebook.com

xviii Preface

finer control or potentially better performance. However, there are a number of pitfalls
that need to be avoided in producing code that functions correctly.

Chapter 9 discusses how applications can be improved to scale in such a way as to
maximize the work performed by a multicore system. The chapter describes the common
areas where scaling might be limited and also describes ways that these scaling limitations
can be identified. It is in the scaling that developing for a multicore system is differenti-
ated from developing for a multiprocessor system; this chapter discusses the areas where
the implementation of the hardware will make a difference.

Chapter 10 covers a number of alternative approaches to writing parallel applica-
tions. As multicore processors become mainstream, other approaches are being tried to
overcome some of the hurdles of writing correct, fast, and scalable parallel code.

Chapter 11 concludes the book.

Download at www.wowebook.com

Acknowledgments

A number of people have contributed to this book, both in discussing some of the issues
that are covered in these pages and in reviewing these pages for correctness and coher-
ence. In particular, I would like to thank Miriam Blatt, Steve Clamage, Mat Colgrove,
Duncan Coutts, Harry Foxwell, Karsten Guthridge, David Lindt, Jim Mauro, Xavier
Palathingal, Rob Penland, Steve Schalkhauser, Sukhdeep Sidhu, Peter Strazdins, Ruud
van der Pas, and Rick Weisner for proofreading the drafts of chapters, reviewing sections
of the text, and providing helpful feedback. I would like to particularly call out Richard
Friedman who provided me with both extensive and detailed feedback.

I'd like to thank the team at Addison-Wesley, including Greg Doench, Michelle
Housley, Anna Popick, and Michael Thurston, and freelance copy editor Kim Wimpsett
for providing guidance, proofreading, suggestions, edits, and support.

I'd also like to express my gratitude for the help and encouragement I've received
from family and friends in making this book happen. It’s impossible to find the time to
write without the support and understanding of a whole network of people, and it’s
wonderful to have folks interested in hearing how the writing is going. I'm particularly
grateful for the enthusiasm and support of my parents, Tony and Maggie, and my wife’s
parents, Geoff and Lucy.

Finally, and most importantly, I want thank my wife, Jenny; our sons, Aaron and
Timothy; and our daughter, Emma. I couldn’t wish for a more supportive and enthusias-
tic family. You inspire my desire to understand how things work and to pass on that
knowledge.

Download at www.wowebook.com

This page intentionally left blank

Download at www.wowebook.com

About the Author

Darryl Gove is a senior principal software engineer in the Oracle Solaris Studio
compiler team. He works on the analysis, parallelization, and optimization of both
applications and benchmarks. Darryl has a master’s degree as well as a doctorate degree
in operational research from the University of Southampton, UK. He is the author of
the books Solaris Application Programming (Prentice Hall, 2008) and The Developer’s Edge
(Sun Microsystems, 2009), as well as a contributor to the book OpenSPARC Internals
(lulu.com, 2008). He writes regularly about optimization and coding and maintains a
blog at www.darrylgove.com.

Download at www.wowebook.com

www.darrylgove.com

This page intentionally left blank

Download at www.wowebook.com

1

Hardware, Processes,

and Threads

It is not necessary to understand how hardware works in order to write serial or parallel
applications. It is quite permissible to write code while treating the internals of a com-
puter as a black box. However, a simple understanding of processor internals will make
some of the later topics more obvious. A key difference between serial (or single-threaded)
applications and parallel (or multithreaded) applications is that the presence of multiple
threads causes more of the attributes of the system to become important to the applica-
tion. For example, a single-threaded application does not have multiple threads contend-
ing for the same resource, whereas this can be a common occurrence for a multithreaded
application. The resource might be space in the caches, memory bandwidth, or even just
physical memory. In these instances, the characteristics of the hardware may manifest in
changes in the behavior of the application. Some understanding of the way that the
hardware works will make it easier to understand, diagnose, and fix any aberrant applica-
tion behaviors.

Examining the Insides of a Computer

Fundamentally a computer comprises one or more processors and some memory. A
number of chips and wires glue this together. There are also peripherals such as disk
drives or network cards.

Figure 1.1 shows the internals of a personal computer. A number of components go
into a computer. The processor and memory are plugged into a circuit board, called the
motherboard. Wires lead from this to peripherals such as disk drives, DVD drives, and so
on. Some functions such as video or network support either are integrated into the
motherboard or are supplied as plug-in cards.

It is possibly easier to understand how the components of the system are related if the
information is presented as a schematic, as in Figure 1.2. This schematic separates the
compute side of the system from the peripherals.

Download at www.wowebook.com

Chapter 1 Hardware, Processes, and Threads

Processor

Figure 1.1 Insides of a PC

—>| DVD drive

Y —| Hard disks

Processor |«

Graphics
card

Network
— card

Compute Peripherals

Figure 1.2 Schematic representation of a PC

Download at www.wowebook.com

The Motivation for Multicore Processors 3

The compute performance characteristics of the system are basically derived from the
performance of the processor and memory. These will determine how quickly the
machine is able to execute instructions.

The performance characteristics of peripherals tend to be of less interest because their
performance is much lower than that of the memory and processor. The amount of data
that the processor can transfer to memory in a second is measured in gigabytes. The
amount of data that can be transferred to disk is more likely to be measured in mega-
bytes per second. Similarly, the time it takes to get data from memory is measured in
nanoseconds, and the time to fetch data from disk is measured in milliseconds.

These are order-of-magnitude differences in performance. So, the best approach to
using these devices is to avoid depending upon them in a performance-critical part of
the code. The techniques discussed in this book will enable a developer to write code so
that accesses to peripherals can be placed off the critical path or so they can be sched-
uled so that the compute side of the system can be actively completing work while the
peripheral is being accessed.

The Motivation for Multicore Processors

Microprocessors have been around for a long time. The x86 architecture has roots going
back to the 8086, which was released in 1978. The SPARC architecture is more recent,
with the first SPARC processor being available in 1987. Over much of that time per-
formance gains have come from increases in processor clock speed (the original 8086
processor ran at about 5MHz, and the latest is greater than 3GHz, about a 600X increase
in frequency) and architecture improvements (issuing multiple instructions at the same
time, and so on). However, recent processors have increased the number of cores on the
chip rather than emphasizing gains in the performance of a single thread running on the
processor. The core of a processor is the part that executes the instructions in an applica-
tion, so having multiple cores enables a single processor to simultaneously execute multi-
ple applications.

The reason for the change to multicore processors is easy to understand. It has
become increasingly hard to improve serial performance. It takes large amounts of area
on the silicon to enable the processor to execute instructions faster, and doing so
increases the amount of power consumed and heat generated. The performance gains
obtained through this approach are sometimes impressive, but more often they are rela-
tively modest gains of 10% to 20%. In contrast, rather than using this area of silicon to
increase single-threaded performance, using it to add an additional core produces a
processor that has the potential to do twice the amount of work; a processor that has
four cores might achieve four times the work. So, the most eftective way of improving
overall performance is to increase the number of threads that the processor can support.
Obviously, utilizing multiple cores becomes a software problem rather than a hardware
problem, but as will be discussed in this book, this is a well-studied software problem.

The terminology around multicore processors can be rather confusing. Most people
are familiar with the picture of a microprocessor as a black slab with many legs sticking

Download at www.wowebook.com

Chapter 1 Hardware, Processes, and Threads

out of it. A multiprocessor system is one where there are multiple microprocessors
plugged into the system board. When each processor can run only a single thread, there
is a relatively simple relationship between the number of processors, CPUs, chips, and
cores in a system—they are all equal, so the terms could be used interchangeably. With
multicore processors, this is no longer the case. In fact, it can be hard to find a consensus
for the exact definition of each of these terms in the context of multicore processors.

This book will use the terms processor and chip to refer to that black slab with many
legs. It’s not unusual to also hear the word socket used for this. If you notice, these are all
countable entities—you can take the lid off the case of a computer and count the num-
ber of sockets or processors.

A single multicore processor will present multiple virtual CPUs to the user and oper-
ating system.Virtual CPUs are not physically countable—you cannot open the box of a
computer, inspect the motherboard, and tell how many virtual CPUs it is capable of sup-
porting. However, virtual CPUs are visible to the operating system as entities where
work can be scheduled.

It is also hard to determine how many cores a system might contain. If you were to
take apart the microprocessor and look at the silicon, it might be possible to identify the
number of cores, particularly if the documentation indicated how many cores to expect!
Identifying cores is not a reliable science. Similarly, you cannot look at a core and iden-
tify how many software threads the core is capable of supporting. Since a single core can
support multiple threads, it is arguable whether the concept of a core is that important
since it corresponds to neither a physical countable entity nor a virtual entity to which
the operating system allocates work. However, it is actually important for understanding
the performance of a system, as will become clear in this book.

One further potential source of confusion is the term threads. This can refer to either
hardware or software threads. A software thread is a stream of instructions that the
processor executes; a hardware thread is the hardware resources that execute a single soft-
ware thread. A multicore processor has multiple hardware threads—these are the virtual
CPUs. Other sources might refer to hardware threads as strands. Each hardware thread
can support a software thread.

A system will usually have many more software threads running on it than there are
hardware threads to simultaneously support them all. Many of these threads will be inac-
tive. When there are more active software threads than there are hardware threads to run
them, the operating system will share the virtual CPUs between the software threads.
Each thread will run for a short period of time, and then the operating system will swap
that thread for another thread that is ready to work. The act of moving a thread onto or
off the virtual CPU is called a context switch.

Supporting Multiple Threads on a Single Chip

The core of a processor is the part of the chip responsible for executing instructions. The
core has many parts, and we will discuss some of those parts in detail later in this chap-
ter. A simplified schematic of a processor might look like Figure 1.3.

Download at www.wowebook.com

The Motivation for Multicore Processors 5

Core Cache

Rest of system

Figure 1.3 Single-core processor

Cache is an area of memory on the chip that holds recently used data and instruc-
tions. When you look at the piece of silicon inside a processor, such as that shown in
Figure 1.7, the core and the cache are the two components that are identifiable to the
eye. We will discuss cache in the “Caches” section later in this chapter.

The simplest way of enabling a chip to run multiple threads is to duplicate the core
multiple times, as shown in Figure 1.4.The earliest processors capable of supporting mul-
tiple threads relied on this approach. This is the fundamental idea of multicore proces-
sors. It is an easy approach because it takes an existing processor design and replicates it.
There are some complications involved in making the two cores communicate with each
other and with the system, but the changes to the core (which is the most complex part
of the processor) are minimal. The two cores share an interface to the rest of the system,
which means that system access must be shared between the two cores.

Rest of system

Figure 1.4 Dual-core processor capable of running two simultaneous
hardware threads

However, this is not the only approach. An alternative is to make a single core execute
multiple threads of instructions, as shown in Figure 1.5.There are various refinements on
this design:

Download at www.wowebook.com

Chapter 1 Hardware, Processes, and Threads

= The core could execute instructions from one software thread for 100 cycles and
then switch to another thread for the next 100.

= The core could alternate every cycle between fetching an instruction from one
thread and fetching an instruction from the other thread.

= The core could simultaneously fetch an instruction from each of multiple threads
every cycle.
= The core could switch software threads every time the stream that is currently

executing hits a long latency event (such as a cache miss, where the data has to be
fetched from memory).

Thread 1

Core

Thread 2

Rest of system

Figure 1.5 Single-core processor with two hardware threads

With two threads sharing a core, each thread will get a share of the resources. The size
of the share will depend on the activity of the other thread and the number of resources
available. For example, if one thread is stalled waiting on memory, then the other thread
may have exclusive access to all the resources of the core. However, if both threads want
to simultaneously issue the same type of instruction, then for some processors only one
thread will be successful, and the other thread will have to retry on the next opportunity.

Most multicore processors use a combination of multiple cores and multiple threads
per core. The simplest example of this would be a processor with two cores with each
core being capable of supporting two threads, making a total of four threads for the
entire processor. Figure 1.6 shows this configuration.

‘When this ability to handle multiple threads is exposed to the operating system, it
usually appears that the system has many virtual CPUs. Therefore, from the perspective
of the user, the system is capable of running multiple threads. One term used to describe
this is chip multithreading (CMT)—one chip, many threads. This term places the emphasis
on the fact that there are many threads, without stressing about the implementation
details of how threads are assigned to cores.

The UltraSPARC T2 is a good example of a CMT processor. It has eight replicated
cores, and each core is capable of running eight threads, making the processor capable of
running 64 software threads simultaneously. Figure 1.7 shows the physical layout of the
processor.

Download at www.wowebook.com

The Motivation for Multicore Processors 7

Thread 1
Core

Thread 2

Cache

Thread 1
Core

Thread 2

Rest of system

Figure 1.6 Dual-core processor with a total of four hardware threads

=]] - 35
SPARG SBEARCG =

(Eore I35) [Corel5F

Figure 1.7 Floorplan of the UltraSPARC T2 processor

Download at www.wowebook.com

Chapter 1 Hardware, Processes, and Threads

The UltraSPARC T2 floor plan has a number of different areas that offer support
functionality to the cores of the processor; these are mainly located around the outside
edge of the chip. The eight processor cores are readily identifiable because of their struc-
tural similarity. For example, SPARC Core 2 is the vertical reflection of SPARC Core 0,
which is the horizontal reflection of SPARC Core 4. The other obvious structure is the
crosshatch pattern that is caused by the regular structure elements that form the second-
level cache area; this is an area of on-chip memory that is shared between all the cores.
This memory holds recently used data and makes it less likely that data will have to be
fetched from memory; it also enables data to be quickly shared between cores.

It is important to realize that the implementation details of CMT processors do have
detectable eftects, particularly when multiple threads are distributed over the system. But
the hardware threads can usually be considered as all being equal. In current processor
designs, there are not fast hardware threads and slow hardware threads; the performance
of a thread depends on what else is currently executing on the system, not on some
invariant property of the design.

For example, suppose the CPU in a system has two cores, and each core can support
two threads. When two threads are running on that system, either they can be on the
same core or they can be on different cores. It is probable that when the threads share a
core, they run slower than if they were scheduled on different cores. This is an obvious
result of having to share resources in one instance and not having to share resources in
the other.

Fortunately, operating systems are evolving to include concepts of locality of memory
and sharing of processor resources so that they can automatically assign work in the best
possible way. An example of this is the locality group information used by the Solaris oper-
ating system to schedule work to processors. This information tells the operating system
which virtual processors share resources. Best performance will probably be attained by
scheduling work to virtual processors that do not share resources.

The other situation where it is useful for the operating system to understand the
topology of the system is when a thread wakes up and is unable to be scheduled to
exactly the same virtual CPU that was running it earlier. Then the thread can be sched-
uled to a virtual CPU that shares the same locality group. This is less of a disturbance
than running it on a virtual processor that shares nothing with the original virtual
processor. For example, Linux has the concept of affinity, which keeps threads local to
where they were previously executing.

This kind of topological information becomes even more important in systems where
there are multiple processors, with each processor capable of supporting multiple threads.
The difference in performance between scheduling a thread on any of the cores of a sin-
gle processor may be slight, but the difference in performance when a thread is migrated
to a different processor can be significant, particularly if the data it is using is held in
memory that is local to the original processor. Memory affinity will be discussed further
in the section “The Characteristics of Multiprocessor Systems.”

In the following sections, we will discuss the components of the processor core. A
rough schematic of the critical parts of a processor core might look like Figure 1.8.This

Download at www.wowebook.com

The Motivation for Multicore Processors 9

Branch Instruction
pipeline cache
FP Instruction
pipeline TLB Sl
level
Integer Data cache
pipeline cache
Load/Store Data
pipeline TLB
System interconnect

Figure 1.8 Block diagram of a processor core

shows the specialized pipelines for each instruction type, the on-chip memory (called
cache), the translation look-aside buffers (TLBs) that are used for converting virtual mem-
ory addresses to physical, and the system interconnect (which is the layer that is responsi-
ble for communicating with the rest of the system).

The next section, “Increasing Instruction Issue Rate with Pipelined Processor Cores,”
explains the motivation for the various “pipelines” that are found in the cores of modern
processors. Sections “Using Caches to Hold Recently Used Data,” “Using Virtual Memory
to Store Data,” and “Translating from Virtual Addresses to Physical Addresses” in this

chapter cover the purpose and functionality of the caches and TLBs.

Increasing Instruction Issue Rate with Pipelined Processor Cores

As we previously discussed, the core of a processor is the part of the processor responsible
for executing instructions. Early processors would execute a single instruction every
cycle, so a processor that ran at 4MHz could execute 4 million instructions every sec-
ond. The logic to execute a single instruction could be quite complex, so the time it
takes to execute the longest instruction determined how long a cycle had to take and
therefore defined the maximum clock speed for the processor.

To improve this situation, processor designs became “pipelined.” The operations nec-
essary to complete a single instruction were broken down into multiple smaller steps.
This was the simplest pipeline:

» Fetch. Fetch the next instruction from memory.

» Decode. Determine what type of instruction it is.

Download at www.wowebook.com

10 Chapter 1 Hardware, Processes, and Threads

= Execute. Do the appropriate work.

= Retire. Make the state changes from the instruction visible to the rest of the
system.

Assuming that the overall time it takes for an instruction to complete remains the
same, each of the four steps takes one-quarter of the original time. However, once an
instruction has completed the Fetch step, the next instruction can enter that stage. This
means that four instructions can be in execution at the same time. The clock rate, which
determines when an instruction completes a pipeline stage, can now be four times faster
than it was. It now takes four clock cycles for an instruction to complete execution. This
means that each instruction takes the same wall time to complete its execution. But there
are now four instructions progressing through the processor pipeline, so the pipelined
processor can execute instructions at four times the rate of the nonpipelined processor.

For example, Figure 1.9 shows the integer and floating-point pipelines from the
UltraSPAR C T2 processor. The integer pipeline has eight stages, and the floating-point
pipeline has twelve stages.

Integer Fetch Cache Pick Decode | Execute | Memory | Bypass |Writeback

Floating point Execute FX1 FX2 FX3 FX4 FX5 Bypass | Writeback

Figure 1.9 UltraSPARC T2 execution pipeline stages

The names given to the various stages are not of great importance, but several aspects
of the pipeline are worthy of discussion. Four pipeline stages are performed regardless of
whether the instruction is floating point or integer. Only at the Execute stage of the
pipeline does the path diverge for the two instruction types.

For all instructions, the result of the operation can be made available to any subse-
quent instructions at the Bypass stage. The subsequent instruction needs the data at the
Execute stage, so if the first instruction starts executing at cycle zero, a dependent
instruction can start in cycle 3 and expect the data to be available by the time it is
needed. This is shown in Figure 1.10 for integer instructions. An instruction that is
fetched in cycle O will produce a result that can be bypassed to a following instruction
seven cycles later when it reaches the Bypass stage. The dependent instruction would
need this result as input when it reaches the Execute stage. If an instruction is fetched
every cycle, then the fourth instruction will have reached the Execute stage by the time
the first instruction has reached the Bypass stage.

The downside of long pipelines is correcting execution in the event of an error; the
most common example of this is mispredicted branches.

Download at www.wowebook.com

The Motivation for Multicore Processors 11

Cycle 0 Fetch Cache Pick Decode | Execute | Memory | Bypass | Writebac

Cycle 1 Fetch Cache Pick Decode | Execute | Memory | Bypas

Decode | Execute | Memo

Cycle 2 Fetch Cache Pick

Cycle 3 Decode

Figure 1.10 Pipelined instruction execution including bypassing of results

To keep fetching instructions, the processor needs to guess the next instruction that
will be executed. Most of the time this will be the instruction at the following address in
memory. However, a branch instruction might change the address where the instruction
is to be fetched from—but the processor will know this only once all the conditions that
the branch depends on have been resolved and once the actual branch instruction has
been executed.

The usual approach to dealing with this is to predict whether branches are taken and
then to start fetching instructions from the predicted address. If the processor predicts
correctly, then there is no interruption to the instruction steam—and no cost to the
branch. If the processor predicts incorrectly, all the instructions executed after the branch
need to be flushed, and the correct instruction stream needs to be fetched from memory.
These are called branch mispredictions, and their cost is proportional to the length of the
pipeline. The longer the pipeline, the longer it takes to get the correct instructions
through the pipeline in the event of a mispredicted branch.

Pipelining enabled higher clock speeds for processors, but they were still executing
only a single instruction every cycle. The next improvement was “super-scalar execution,’
which means the ability to execute multiple instructions per cycle. The Intel Pentium
was the first x86 processor that could execute multiple instructions on the same cycle; it
had two pipelines, each of which could execute an instruction every cycle. Having two
pipelines potentially doubled performance over the previous generation.

More recent processors have four or more pipelines. Each pipeline is specialized to
handle a particular type of instruction. It is typical to have a memory pipeline that han-
dles loads and stores, an integer pipeline that handles integer computations (integer addi-
tion, shifts, comparison, and so on), a floating-point pipeline (to handle floating-point
computation), and a branch pipeline (for branch or call instructions). Schematically, this
would look something like Figure 1.11.

The UltraSPAR C T2 discussed earlier has four pipelines for each core: two for inte-
ger operations, one for memory operations, and one for floating-point operations. These
four pipelines are shared between two groups of four threads, and every cycle one thread
from both of the groups can issue an instruction.

Download at www.wowebook.com

12 Chapter 1 Hardware, Processes, and Threads

o Integer
pipeline
. Memory
pipeline

Retired
instructions

Instructions

Floating-point
pipeline

Branch
pipeline

Figure 1.11 Multiple instruction pipelines

Using Caches to Hold Recently Used Data

When a processor requests a set of bytes from memory, it does not get only those bytes
that it needs. When the data is fetched from memory, it is fetched together with the sur-
rounding bytes as a cache line, as shown in Figure 1.12. Depending on the processor in a
system, a cache line might be as small as 16 bytes, or it could be as large as 128 (or more)
bytes. A typical value for cache line size is 64 bytes. Cache lines are always aligned, so a
64-byte cache line will start at an address that 1s a multiple of 64.This design decision
simplifies the system because it enables the system to be optimized to pass around aligned
data of this size; the alternative is a more complex memory interface that would have to
handle chunks of memory of different sizes and differently aligned start addresses.

N
N
N
~ N N ~
- N
~ s
~ N
' -
- 7
Phe -
- 7
P s
7
7
-
7
Cache line Memory

Figure 1.12 Fetching data and surrounding cache line from memory

Download at www.wowebook.com

The Motivation for Multicore Processors

When a line of data is fetched from memory;, it is stored in a cache. Caches improve
performance because the processor is very likely to either reuse the data or access data
stored on the same cache line. There are usually caches for instructions and caches for
data. There may also be multiple levels of cache.

The reason for having multiple levels of cache is that the larger the size of the cache,
the longer it takes to determine whether an item of data is held in that cache. A proces-
sor might have a small first-level cache that it can access within a few clock cycles and
then a second-level cache that is much larger but takes tens of cycles to access. Both of
these are significantly faster than memory, which might take hundreds of cycles to access.
The time it takes to fetch an item of data from memory or from a level of cache is
referred to as its latency. Figure 1.13 shows a typical memory hierarchy.

Second-
level
cache

Core Memory

1-3 cycles

20-30 cycles

|
> 100 cycles

Figure 1.13 Latency to caches and memory

The greater the latency of accesses to main memory, the more benefit there is from
multiple layers of cache. Some systems even benefit from having a third-level cache.

Caches have two very obvious characteristics: the size of the cache lines and the size
of the cache. The number of lines in a cache can be calculated by dividing one by the
other. For example, a 4KB cache that has a cache line size of 64 bytes will hold 64 lines.

Caches have other characteristics, which are less obviously visible and have less of a
directly measurable impact on application performance. The one characteristic that it is
worth mentioning is the associativity. In a simple cache, each cache line in memory
would map to exactly one position in the cache; this is called a direct mapped cache. If we
take the simple 4KB cache outlined earlier, then the cache line located at every 4KB
interval in memory would map to the same line in the cache, as shown in Figure 1.14.

Obviously, a program that accessed memory in 4KB strides would end up just using a
single entry in the cache and could sufter from poor performance if it needed to simul-
taneously use multiple cache lines.

The way around this problem is to increase the associativity of the cache—that is, make
it possible for a single cache line to map into more positions in the cache and therefore
reduce the possibility of there being a conflict in the cache. In a two-way associative

Download at www.wowebook.com

13

14 Chapter 1 Hardware, Processes, and Threads

4KB

Cache Y

Memory

Figure 1.14 Mapping of memory to cache lines in a directed
mapped cache

cache, each cache line can map into one of two locations. The location is chosen accord-
ing to some replacement policy that could be random replacement, or it could depend
on which of the two locations contains the oldest data (least recently used replacement).
Doubling the number of potential locations for each cache line means that the interval
between lines in memory that map onto the same cache line is halved, but overall this
change will result in more effective utilization of the cache and a reduction in the num-
ber of cache misses. Figure 1.15 shows the change.

Cache

Memory

Figure 1.15 Mapping of memory to cache lines in a two-way set
associative cache

A fully associative cache is one where any address in memory can map to any line in the
cache. Although this represents the approach that is likely to result in the lowest cache
miss rate, it is also the most complex approach to implement; hence, it is infrequently
implemented.

On systems where multiple threads share a level of cache, it becomes more important
for the cache to have higher associativity. To see why this is the case, imagine that two
copies of the same application share a common direct-mapped cache. If each of them
accesses the same virtual memory address, then they will both be attempting to use the
same line in the cache, and only one will succeed. Unfortunately, this success will be

Download at www.wowebook.com

The Motivation for Multicore Processors 15

short-lived because the other copy will immediately replace this line of data with the
line of data that they need.

Using Virtual Memory to Store Data

Running applications use what is called virfual memory addresses to hold data. The data
is still held in memory, but rather than the application storing the exact location in the

memory chips where the data is held, the application uses a virtual address, which then
gets translated into the actual address in physical memory. Figure 1.16 shows schemati-

cally the process of translating from virtual to physical memory.

Memory
access

Translation

Page of virtual
memory

Page of physical
memory

Figure 1.16 Mapping virtual to physical memory

This sounds like an unnecessarily complex way of using memory, but it does have
some very significant benefits.

The original aim of virtual memory was to enable a processor to address a larger
range of memory than it had physical memory attached to the system; at that point in
time, physical memory was prohibitively expensive. The way it would work was that
memory was allocated in pages, and each page could either be in physical memory or be
stored on disk. When an address was accessed that was not in physical memory, the
machine would write a page containing data that hadn’t been used in a while to disk
and then fetch the data that was needed into the physical memory that had just been
freed. The same page of physical memory was therefore used to hold different pages of
virtual memory.

Now, paging data to and from disk is not a fast thing to do, but it allowed an applica-
tion to continue running on a system that had exhausted its supply of free physical
memory.

There are other uses for paging from disk. One particularly useful feature is accessing
files. The entire file can be mapped into memory—a range of virtual memory addresses
can be reserved for it—but the individual pages in that file need only be read from disk
when they are actually touched. In this case, the application is using the minimal amount
of physical memory to hold a potentially much larger data set.

Download at www.wowebook.com

16

Chapter 1 Hardware, Processes, and Threads

The other advantage to using virtual memory is that the same address can be reused
by multiple applications. For example, assume that all applications are started by calling
code at 0x10000. If we had only physical memory addresses, then only one application
could reside at 0x10000, so we could run only a single application at a time. However,
given virtual memory addressing, we can put as many applications as we need at the
same virtual address and have this virtual address map to different physical addresses. So,
to take the example of starting an application by calling 0x10000, all the applications
could use this same virtual address, but for each application, this would correspond to a
different physical address.

‘What is interesting about the earlier motivators for virtual memory is that they
become even more important as the virtual CPU count increases. A system that has
many active threads will have some applications that reserve lots of memory but make
little actual use of that memory. Without virtual memory, this reservation of memory
would stop other applications from attaining the memory size that they need. It is also
much easier to produce a system that runs multiple applications if those applications do
not need to be arranged into the one physical address space. Hence, virtual memory is
almost a necessity for any system that can simultaneously run multiple threads.

Translating from Virtual Addresses to Physical Addresses

The critical step in using virtual memory is the translation of a virtual address, as used by
an application, into a physical address, as used by the processor, to fetch the data from
memory. This step is achieved using a part of the processor called the translation look-aside
buffer (TLB). Typically, there will be one TLB for translating the address of instructions
(the instruction TLB or ITLB) and a second TLB for translating the address of data (the
data TLB, or DTLB).

Each TLB is a list of the virtual address range and corresponding physical address
range of each page in memory. So when a processor needs to translate a virtual address
to a physical address, it first splits the address into a virtual page (the high-order bits) and
an offset from the start of that page (the low-order bits). It then looks up the address of
this virtual page in the list of translations held in the TLB. It gets the physical address of
the page and adds the offset to this to get the address of the data in physical memory. It
can then use this to fetch the data. Figure 1.17 shows this process.

Unfortunately, a TLB can hold only a limited set of translations. So, sometimes a
processor will need to find a physical address, but the translation does not reside in the
TLB. In these cases, the translation is fetched from an in-memory data structure called a
page table, and this structure can hold many more virtual to physical mappings. When a
translation does not reside in the TLB, it is referred to as a TLB miss, and TLB misses
have an impact on performance. The magnitude of the performance impact depends on
whether the hardware fetches the TLB entry from the page table or whether this task is
managed by software; most current processors handle this in hardware. It is also possible
to have a page table miss, although this event is very rare for most applications. The page
table is managed by software, so this typically is an expensive or slow event.

Download at www.wowebook.com

The Motivation for Multicore Processors 17

High-order Low-order
bits bits
Address Address
(
[Offset R
g\ B Memory
> TLB Page

Figure 1.17 Virtual to physical memory address translation

TLBs share many characteristics with caches; consequently, they also share some of
the same problems. TLBs can experience both capacity misses and conflict misses. A
capacity miss is where the amount of memory being mapped by the application is
greater than the amount of memory that can be mapped by the TLB. Conflict misses are
the situation where multiple pages in memory map into the same TLB entry; adding a
new mapping causes the old mapping to be evicted from the TLB. The miss rate for
TLBs can be reduced using the same techniques as caches do. However, for TLBs, there
is one further characteristic that can be changed—the size of the page that is mapped.

On SPARC architectures, the default page size is 8KB; on x86, it is 4KB. Each TLB
entry provides a mapping for this range of physical or virtual memory. Modern proces-
sors can handle multiple page sizes, so a single TLB entry might be able to provide a
mapping for a page that is 64KB, 256KB, megabytes, or even gigabytes in size. The obvi-
ous benefit to larger page sizes is that fewer TLB entries are needed to map the virtual
address space that an application uses. Using fewer TLB entries means less chance of
them being knocked out of the TLB when a new entry is loaded. This results in a lower
TLB miss rate. For example, mapping a 1GB address space with 4MB pages requires 256
entries, whereas mapping the same memory with 8KB pages would require 131,072. It
might be possible for 256 entries to fit into a TLB, but 131,072 would not.

The following are some disadvantages to using larger page sizes:

= Allocation of a large page requires a contiguous block of physical memory to allo-
cate the page. If there is not sufficient contiguous memory, then it is not possible
to allocate the large page. This problem introduces challenges for the operating sys-
tem in handling and making large pages available. If it is not possible to provide a
large page to an application, the operating system has the option of either moving
other allocated physical memory around or providing the application with multi-
ple smaller pages.

= An application that uses large pages will reserve that much physical memory even
if the application does not require the memory. This can lead to memory being

Download at www.wowebook.com

18 Chapter 1 Hardware, Processes, and Threads

used inefficiently. Even a small application may end up reserving large amounts of
physical memory.

= A problem particular to multiprocessor systems is that pages in memory will often
have a lower access latency from one processor than another. The larger the page
size, the more likely it is that the page will be shared between threads running on
different processors. The threads running on the processor with the higher mem-
ory latency may run slower. This issue will be discussed in more detail in the next
section, “The Characteristics of Multiprocessor Systems.”

For most applications, using large page sizes will lead to a performance improvement,
although there will be instances where other factors will outweigh these benefits.

The Characteristics of Multiprocessor Systems

Although processors with multiple cores are now prevalent, it is also becoming more
common to encounter systems with multiple processors. As soon as there are multiple
processors in a system, accessing memory becomes more complex. Not only can data be
held in memory, but it can also be held in the caches of one of the other processors. For
code to execute correctly, there should be only a single up-to-date version of each item
of data; this feature is called cache coherence.

The common approach to providing cache coherence is called snooping. Each proces-
sor broadcasts the address that it wants to either read or write. The other processors
watch for these broadcasts. When they see that the address of data they hold can take one
of two actions, they can return the data if the other processor wants to read the data and
they have the most recent copy. If the other processor wants to store a new value for the
data, they can invalidate their copy.

However, this is not the only issue that appears when dealing with multiple proces-
sors. Other concerns are memory layout and latency.

Imagine a system with two processors. The system could be configured with all the
memory attached to one processor or the memory evenly shared between the two
processors. Figure 1.18 shows these two alternatives.

CPUO CPU1 Memory

Memory CPUO CPU1 Memory

Figure 1.18 Two alternative memory configurations

Download at www.wowebook.com

The Characteristics of Multiprocessor Systems 19

Each link between processor and memory will increase the latency of any memory
access by that processor. So if only one processor has memory attached, then that proces-
sor will see low memory latency, and the other processor will see higher memory
latency. In the situation where both processors have memory attached, then they will
have both local memory that is low cost to access and remote memory that is higher
cost to access.

For systems where memory is attached to multiple processors, there are two options
for reducing the performance impact. One approach is to interleave memory, often at a
cache line boundary, so that for most applications, half the memory accesses will see the
short memory access, and half will see the long memory access; so, on average, applica-
tions will record memory latency that is the average of the two extremes. This approach
typifies what is known as a uniform memory architecture (UMA), where all the processors
see the same memory latency.

The other approach is to accept that different regions of memory will have different
access costs for the processors in a system and then to make the operating system aware
of this hardware characteristic. With operating system support, this can lead to applica-
tions usually seeing the lower memory cost of accessing local memory. A system with
this architecture is often referred to as having cache coherent nonuniform memory architecture
(ccNUMA).

For the operating system to manage ccNUMA memory characteristics effectively, it
has to do a number of things. First, it needs to be aware of the locality structure of the
system so that for each processor it is able to allocate memory with low access latencies.
The second challenge is that once a process has been run on a particular processor, the
operating system needs to keep scheduling that process to that processor. If the operating
system fails to achieve this second requirement, then all the locally allocated memory
will become remote memory when the process gets migrated.

Consider an application running on the first processor of a two-processor system.
The operating system may have allocated memory to be local to this first processor.
Figure 1.19 shows this configuration of an application running on a processor and using
local memory. The shading in this figure illustrates the application running on processor 1
and accessing memory directly attached to that processor. Hence, the process sees local
memory latency for all memory accesses.

Local access

plication

o

Figure 1.19 Process running with local memory

Download at www.wowebook.com

20

Chapter 1 Hardware, Processes, and Threads

The application will get good performance because the data that it frequently accesses
will be held in the memory with the lowest access latency. However, if that application
then gets migrated to the second processor, the application will be accessing data that is
remotely held and will see a corresponding drop in performance. Figure 1.20 shows an
application using remote memory. The shading in the figure shows the application run-
ning on processor 2 but accessing data held on memory that is attached to processor 1.
Hence, all memory accesses for the application will fetch remote data; the fetches of data
will take longer to complete, and the application will run more slowly.

Remote access

Application

Processor 1 Processor 2

Figure 1.20 Process running using remote memory

How Latency and Bandwidth Impact Performance

Memory latency is the time between a processor requesting an item of data and that
item of data arriving from memory. The more processors there are in a system, the
longer the memory latency. A system with a single processor can have memory latency
of less than 100ns; with two processors this can double, and when the system gets large
and comprises multiple boards, the memory latency can become very high. Memory
latency is a problem because there is little that a processor can do while it is waiting for
data that it needs to be returned from memory. There are techniques, such as out-of-
order (O00Q) execution, which enable the processor to make some forward progress
while waiting for data from memory. However, it is unlikely that these techniques will
hide the entire cost of a memory miss, although they may manage to cover the time it
takes to get data from the second-level cache. These techniques also add significant com-
plexity and implementation area to the design of the processor core.

Cores that support multiple hardware threads are an alternative solution to the prob-
lem of memory latency. When one thread is stalled waiting for data to be returned from
memory, the other threads can still make forward progress. So although having multiple
hardware threads does not improve the performance of the stalled thread, it improves the
utilization of the core and consequently improves the throughput of the core (that is,
there are threads completing work even if one thread is stalled).

The other measurement that is relevant to discussions of memory is bandwidth. The
bandwidth measures how much data can be returned from memory per second. For
example, imagine that in one second a virtual CPU issues 10 million load instructions

Download at www.wowebook.com

The Translation of Source Code to Assembly Language 21

and each request misses cache. Each cache miss will fetch a 64-byte cache line from
memory so that a single virtual CPU has consumed a bandwidth of 640MB in a second.
A CMT chip can make large demands of memory bandwidth since, at any one time,
each thread could possibly have one or more outstanding memory requests. Suppose that
there are 64 threads on a processor, the memory latency is 100 cycles, and the processor
is clocked at a modest rate of 1GHz. If each thread is constantly issuing requests for new
cache lines from memory, then each thread will issue one such request every 100 cycles
(100 cycles being the time it takes for the previous request to complete). This makes
1 billion / 100 * 64 = 640 million memory requests per second. If each request is for a
fresh 64-byte cache line, then this represents an aggregate bandwidth of approximately
41GB/s.

The Translation of Source Code to
Assembly Language

Processors execute instructions. Instructions are the basic building blocks of all computa-
tion; they perform tasks such as add numbers together, fetch data from memory, or store
data back to memory. The instructions operate on registers that hold the current values
of variables and other machine state. Consider the snippet of code shown in Listing 1.1,
which increments an integer variable pointed to by the pointer ptr.

Listing 1.1 Code to Increment Variable at Address

void func(int * ptr)
{

(*ptr)++;

Listing 1.2 shows this snippet of code compiled to SPARC assembly code.

Listing 1.2 SPARC Assembly Code to Increment a Variable at an Address

1d [%00], %05 // Load value from address %00 in to register %05
add %05, 1, %05 // Add one to value in register %05

st %05, [%00] // Store value in register %05 into address %00
retl // Return from routine

The SPARC code! has the pointer ptr passed in through register $00. The load
instruction loads from this address into register $05. Register $05 is incremented. The
store instruction stores the new value of the integer held in register %05 into the mem-
ory location pointed to by %00, and then the return instruction exits the routine.

1. This is a slightly simplified SPARC assembly that neglects to include the effect of the branch
delay slot on instruction ordering. The true order would exchange the store and return instructions.

Download at www.wowebook.com

22

Chapter 1 Hardware, Processes, and Threads

Listing 1.3 shows the same source code compiled for 32-bit x86. The x86 code is
somewhat different. The first difference is that the x86 in 32-bit mode has a stack-based
calling convention. This means that all the parameters that are passed into a function are
stored onto the stack, and then the first thing that the function does is to retrieve these
stored parameters. Hence, the first thing that the code does is to load the value of the
pointer from the stack—in this case, at the address $esp+4—and then it places this value
into the register $eax.

Listing 1.3 32-Bit x86 Assembly Code to Increment a Variable at an Address

movl 4(%esp), %eax // Load value from address %esp + 4 into %eax
addl $1, (%eax) // Add one to value at address %eax
ret // Return from routine

We then encounter a second difference between x86 and and SPARC assembly lan-
guage. SPARC is a reduced instruction set computer (RISC), meaning it has a small number
of simple instructions, and all operations must be made up from these simple building
blocks. x86 is a complex instruction set computer (CISC), so it has instructions that perform
more complex operations. The x86 instruction set has a single instruction that adds an
increment to a value at a memory location. In the example, the instruction is used to add
1 to the value held at the address held in register 2eax. This is a single CISC instruction,
which contrasts with three RISC instructions on the SPARC side to achieve the same result.

Both snippets of code used two registers for the computation. The SPARC code used
registers $00 and %05, and the x86 code used %$esp and %eax. However, the two snippets
of code used the registers for different purposes. The x86 code used %esp as the stack
pointer, which points to the region of memory where the parameters to the function
call are held. In contrast, the SPARC code passed the parameters to functions in regis-
ters. The method of passing parameters is called the calling convention, and it is part of the
application binary interface (ABI) for the platform.This specification covers how programs
should be written in order to run correctly on a particular platform.

Both the code snippets use a single register to hold the address of the memory being
accessed. The SPAR C code used %00, and the x86 code used $eax. The other difference
between the two code snippets is that the SPARC code used the register 201 to hold
the value of the variable. The SPARC code had to take three instructions to load this
value, add 1 to it, and then store the result back to memory. In contrast, the x86 code
took a single instruction.

A further difference between the two processors is the number of registers available.
SPARC actually has 32 general-purpose registers, whereas the x86 processor has eight
general-purpose registers. Some of these general-purpose registers have special functions.
The SPARC processor ends up with about 24 registers available for an application to
use, while in 32-bit mode the x86 processor has only six. However, because of its CISC
instruction set, the x86 processor does not need to use registers to hold values that are
only transiently needed—in the example, the current value of the variable in memory

Download at www.wowebook.com

The Translation of Source Code to Assembly Language 23

was not even loaded into a register. So although the x86 processor has many fewer regis-
ters, it is possible to write code so that this does not cause an issue.

However, there is a definite advantage to having more registers. If there are insuffi-
cient registers available, a register has to be freed by storing its contents to memory and
then reloading them later. This is called register spilling and filling, and it takes both addi-
tional instructions and uses space in the caches.

The two performance advantages introduced with the 64-bit instruction set exten-
sions for x86 were a significant increase in the number of registers and a much improved
calling convention.

The Performance of 32-Bit versus 64-Bit Code

A 64-bit processor can, theoretically, address up to 16 exabytes (EB), which is 4GB
squared, of physical memory. In contrast, a 32-bit processor can address a maximum of
4GB of memory. Some applications find only being able to address 4GB of memory to
be a limitation—a particular example is databases that can easily exceed 4GB in size.
Hence, a change to 64-bit addresses enables the manipulation of much larger data sets.

The 64-bit instruction set extensions for the x86 processor are referred to as AMD64,
EMT64, x86-64, or just x64. Not only did these increase the memory that the processor
could address, but they also improved performance by eliminating or reducing two
problems.

The first issue addressed is the stack-based calling convention. This convention leads
to the code using lots of store and load instructions to pass parameters into functions. In
32-bit code when a function is called, all the parameters to that function needed to be
stored onto the stack. The first action that the function takes is to load those parameters
back off the stack and into registers. In 64-bit code, the parameters are kept in registers,
avoiding all the load and store operations.

We can see this when the earlier code is compiled to use the 64-bit x86 instruction
set, as is shown in Listing 1.4.

Listing 1.4 64-Bit xX86 Assembly Code to Increment a Variable at an Address

addl $1, (%rdi) // Increment value at address %rdi
ret // Return from routine

In this example, we are down to two instructions, as opposed to the three instructions
used in Listing 1.3.The two instructions are the increment instruction that adds 1 to the
value pointed to by the register $rdi and the return instruction.

The second issue addressed by the 64-bit transition was increasing the number of
general-purpose registers from about 6 in 32-bit code to about 14 in 64-bit code.
Increasing the number of registers reduces the number of register spills and fills.

Because of these two changes, it is very tempting to view the change to 64-bit code
as a performance gain. However, this is not strictly true. The changes to the number of
registers and the calling convention occurred at the same time as the transition to 64-bit

Download at www.wowebook.com

24

Chapter 1 Hardware, Processes, and Threads

but could have occurred without this particular transition—they could have been intro-
duced on the 32-bit x86 processor. The change to 64-bit was an opportunity to reevalu-
ate the architecture and to make these fundamental improvements.

The actual change to a 64-bit address space is a performance loss. Pointers change
from being a 4-byte structure into an 8-byte structure. In Unix-like operating systems,
long-type variables also go from 4 to 8 bytes. When the size of a variable increases, the
memory footprint of the application increases, and consequently performance decreases.
For example, consider the C data structure shown in Listing 1.5.

Listing 1.5 Data Structure Containing an Array of Pointers to Integers

struct s
{

int *ptr[8];
}i

When compiled for 32-bits, the structure occupies 8 * 4 bytes = 32 bytes. So, every
64-byte cache line can contain two structures. When compiled for 64-bit addresses, the
pointers double in size, so the structure takes 64 bytes. So when compiled for 64-bit, a
single structure completely fills a single cache line.

Imagine an array of these structures in a 32-bit version of an application; when one
of these structures is fetched from memory, the next would also be fetched. In a 64-bit
version of the same code, only a single structure would be fetched. Another way of look-
ing at this is that for the same computation, the 64-bit version requires that up to twice
the data needs to be fetched from memory. For some applications, this increase in mem-
ory footprint can lead to a measurable drop in application performance. However, on
x86, most applications will see a net performance gain from the other improvements.
Some compilers can produce binaries that use the EMT64 instruction set extensions and
ABI but that restrict the application to a 32-bit address space. This provides the perform-
ance gains from the instruction set improvements without incurring the performance
loss from the increased memory footprint.

It is worth quickly contrasting this situation with that of the SPARC processor. The
SPARC processor will also see the performance loss from the increase in size of pointers
and longs. The SPARC calling convention for 32-bit code was to pass values in registers,
and there were already a large number of registers available. Hence, codes compiled for
SPARC processors usually see a small decrease in performance because of the memory
footprint.

Ensuring the Correct Order of Memory Operations

There is one more concern to discuss when dealing with systems that contain multiple
processors or multiple cores: memory ordering. Memory ordering is the order in which
memory operations are visible to the other processors in the system. Most of the time,
the processor does the right thing without any need for the programmer to do anything.

Download at www.wowebook.com

The Translation of Source Code to Assembly Language 25

However, there are situations where the programmer does need to step in. These can
be either architecture specific (SPARC processors and x86 processors have different
requirements) or implementation specific (one type of SPARC processor may have dif-
ferent needs than another type of SPARC processor). The good news is that the system
libraries implement the appropriate mechanisms, so multithreaded applications that use
system libraries should never encounter this.

On the other hand, there is some overhead from calling system libraries, so there
could well be a performance motivation for writing custom synchronization code. This
situation is covered in Chapter 8, “Hand-Coded Synchronization and Sharing.”

The memory ordering instructions are given the name memory barriers (membar) on
SPARC and memory fences (mfence) on x86. These instructions stop memory opera-
tions from becoming visible outside the thread in the wrong order. The following exam-
ple will illustrate why this is important.

Suppose you have a variable, count, protected by a locking mechanism and you want
to increment that variable. The lock works by having the value 1 stored into it when it is
acquired and then the value 0 stored into it when the lock is released. The code for
acquiring the lock is not relevant to this example, so the example starts with the assump-
tion that the lock is already acquired, and therefore the variable lock contains the value
1. Now that the lock is acquired, the code can increment the variable count. Then, to
release the lock, the code would store the value O into the variable lock. The process of
incrementing the variable and then releasing the lock with a store of the value 0 would
look something like the pseudocode shown in Listing 1.6.

Listing 1.6 Incrementing a Variable and Freeing a Lock

LOAD [&count], %A
INC %A

STORE %A, [&count]
STORE 0, [&lock]

As soon as the value O is stored into the variable lock, then another thread can come
along to acquire the lock and modify the variable count. For performance reasons, some
processors implement a weak ordering of memory operations, meaning that stores can be
moved past other stores or loads can be moved past other loads. If the previous code is
run on a machine with a weaker store ordering, then the code at execution time could
look like the code shown in Listing 1.7.

Listing 1.7 Incrementing and Freeing a Lock Under Weak Memory Ordering

LOAD [&count], %A
INC %A

STORE 0, [&lock]
STORE %A, [&count]

Download at www.wowebook.com

26

Chapter 1 Hardware, Processes, and Threads

At runtime, the processor has hoisted the store to the lock so that it becomes visible
to the rest of the system before the store to the variable count. Hence, the lock is
released before the new value of count is visible. Another processor could see that the
lock was free and load up the old value of count rather than the new value.

The solution is to place a memory barrier between the two stores to tell the processor
not to reorder them. Listing 1.8 shows the corrected code. In this example, the membar
instruction ensures that all previous store operations have completed before the next
store instruction is executed.

Listing 1.8 Using a Memory Bar to Enforce Store Ordering

LOAD [&count], %A

INC %A

STORE %A, [&count]
MEMBAR #store, #store
STORE 0, [&lock]

There are other types of memory barriers to enforce other orderings of load and
store operations. Without these memory barriers, other memory ordering errors could
occur. For example, a similar issue could occur when the lock is acquired. The load that
fetches the value of count might be executed before the store that sets the lock to be
acquired. In such a situation, it would be possible for another processor to modify the
value of count between the time that the value was retrieved from memory and the
point at which the lock was acquired.

The programmer’s reference manual for each family of processors will give details
about the exact circumstances when memory barriers may or may not be required, so it
is essential to refer to these documents when writing custom locking code.

The Differences Between Processes and Threads

It is useful to discuss how software is made of both processes and threads and how these
are mapped into memory. This section will introduce some of the concepts, which will
become familiar over the next few chapters. An application comprises instructions and
data. Before it starts running, these are just some instructions and data laid out on disk, as
shown in Figure 1.21.

Initialized .
Instructions

data

Figure 1.21 Application image stored on disk

Download at www.wowebook.com

The Translation of Source Code to Assembly Language 27

An executing application is called a process. A process is a bit more than instructions
and data, since it also has state. State is the set of values held in the processor registers,
the address of the currently executing instruction, the values held in memory, and any
other values that uniquely define what the process is doing at any moment in time. The
important difference is that as a process runs, its state changes. Figure 1.22 shows the lay-
out of an application running in memory.

Initialized Uninitialized .
Instructions
data data
Heap Stack
Library Library
data Instructions

Figure 1.22 Single-threaded application loaded into memory

Processes are the fundamental building blocks of applications. Multiple applications
running simultaneously are really just multiple processes. Support for multiple users is
typically implemented using multiple processes with different permissions. Unless the
process has been set up to explicitly share state with another process, all of its state is pri-
vate to the process—no other process can see in. To take a more tangible example, if you
run two copies of a text editor, they both might have a variable current_line, but
neither could read the other one’s value for this variable.

A vparticularly critical part of the state for an application is the memory that has been
allocated to it. Recall that memory is allocated using virtual addresses, so both copies of
the hypothetical text editor might have stored the document at virtual addresses
0x111000 to 0x11a000. Each application will maintain its own TLB mappings, so identi-
cal virtual addresses will map onto different physical addresses. If one core is running
these two applications, then each application should expect on average to use half the
TLB entries for its mappings—so multiple active processes will end up increasing the
pressure on internal chip structures like the TLBs or caches so that the number of TLB
or cache misses will increase.

Each process could run multiple threads. A thread has some state, like a process does,
but its state is basically just the values held in its registers plus the data on its stack.
Figure 1.23 shows the memory layout of a multithreaded application.

A thread shares a lot of state with other threads in the application. To go back to the
text editor example, as an alternative implementation, there could be a single text editor
application with two windows. Each window would show a different document, but the

Download at www.wowebook.com

28

Chapter 1 Hardware, Processes, and Threads

Initialized Uninitialized Instructions
data data
Heap Thread 0
Thread 1 Thread 2 Thread 3
stack stack stack
Library Library
data instructions

Figure 1.23 Multithreaded application loaded into memory

two documents could no longer both be held at the same virtual address; they would
need different virtual addresses. If the editor application was poorly coded, activities in
one window could cause changes to the data held in the other.

There are plenty of reasons why someone might choose to write an application that
uses multiple threads. The primary one is that using multiple threads on a system with
multiple hardware threads should produce results faster than a single thread doing the
work. Another reason might be that the problem naturally decomposes into multiple
threads. For example, a web server will have many simultaneous connections to remote
machines, so it is a natural fit to code it using multiple threads. The other advantage of
threads over using multiple processes is that threads share most of the machine state, in
particular the TLB and cache entries. So if all the threads need to share some data, they
can all read it from the same memory address.

What you should take away from this discussion is that threads and processes are ways
of getting multiple streams of instructions to coordinate in delivering a solution to a
problem. The advantage of processes is that each process is isolated—if one process dies,
then it can have no impact on other running processes. The disadvantages of multiple
processes is that each process requires its own TLB entries, which increases the TLB and
cache miss rates. The other disadvantage of using multiple processes is that sharing data
between processes requires explicit control, which can be a costly operation.

Multiple threads have advantages in low costs of sharing data between threads—one
thread can store an item of data to memory, and that data becomes immediately visible
to all the other threads in that process. The other advantage to sharing is that all threads
share the same TLB and cache entries, so multithreaded applications can end up with
lower cache miss rates. The disadvantage is that one thread failing will probably cause the
entire application to fail.

Download at www.wowebook.com

Summary 29

The same application can be written either as a multithreaded application or as a
multiprocess application. A good example is the recent changes in web browser design.
Google’s Chrome browser is multiprocess. The browser can use multiple tabs to display
different web pages. Each tab is a separate process, so one tab failing will not bring down
the entire browser. Historically, browsers have been multithreaded, so if one thread exe-
cutes bad code, the whole browser crashes. Given the unconstrained nature of the Web, it
seems a sensible design decision to aim for robustness rather than low sharing costs.

Summary

This chapter introduced some of the terminology of processor architecture. The impor-
tant points to be aware of are how caches are used to improve the performance of appli-
cations and how TLBs are used to enable the use of virtual memory. The chapter
introduced the various ways that multiple threads can be supported on a single processor.
Although at a high level of abstraction the implementation details of this resource shar-
ing are not important, we will discuss later how they do produce visible performance
impacts. Finally, the chapter described how processes and software threads are mapped
into memory and the important differences between multithreaded and multiprocess
applications.

Download at www.wowebook.com

This page intentionally left blank

Download at www.wowebook.com

2

Coding for Performance

-I-his chapter discusses how to design and write programs with performance in mind.
Serial performance remains important even for parallel applications. There are two rea-
sons for this. Each thread in a parallel application is a serial stream of instructions.
Making these instructions execute as fast as possible will lead to better performance for
the entire application. The second reason is that it is rare to find a parallel application
that contains no serial code. As the number of threads increases, it is the performance of
the serial sections of code that will ultimately determine how fast the application runs.

There are two approaches for improving the performance of an application. The first,
which is unfortunately typical of many projects, is that performance is the problem to be
solved once the program is functionally correct. The alternative approach is that per-
formance is considered as one of the up-front specifications for the application. Taking
performance into consideration in the initial phases of application design will lead to a
better final product. This chapter discusses where performance can be gained (or lost)
and how early consideration of performance can lead to an improved product.

Defining Performance

There are two common metrics for performance:

= Items per unit time. This might be transactions per second, jobs per hour, or
some other combination of completed tasks and units of time. Essentially, this is a
measure of bandwidth. It places the emphasis on the ability of the system to com-
plete tasks rather than on the duration of each individual task. Many benchmarks
are essentially a measure of bandwidth. If you examine the SPEC Java Application
Server benchmark (SPEC jAppServer!), you’ll find that final results are reported as
transactions per second. Another example is the linpack benchmark used as a basis
for the TOP5002 list of supercomputers. The metric that is used to form the
TOP500 list is the peak number of floating-point operations per second.

1. www.spec.org/jAppServer/
2. www.top500.org/

Download at www.wowebook.com

www.spec.org/jAppServer/
www.top500.org/

32 Chapter 2 Coding for Performance

= Time per item. This is a measure of the time to complete a single task. It is basi-
cally a measure of latency or response time. Fewer benchmarks specifically target
latency. The most obvious example of a latency-driven benchmark is the SPEC
CPU benchmark suite, which has a speed metric as well as a rate metric.

Although these are both common expressions of performance, it can be specified as a
more complex mix. For example, the results that e-commerce benchmark SPECweb
publishes are the number of simultaneous users that a system can support, subject to
meeting criteria on throughput and response time.

Many systems have a quality of service (QoS) metric that they must meet. The QoS
metric will specify the expectations of the users of the system as well as penalties if the
system fails to meet these expectations. These are two examples of alternative metrics:

= Number of transactions of latency greater than some threshold. This will probably
be set together with an expectation for the average transaction. It is quite possible
to have a system that exceeds the criteria for both the number of transactions per
second that it supports and the average response time for a transaction yet have
that same system fail due to the criteria for the number of responses taking longer

than the threshold.

= The amount of time that the system is unavailable, typically called downtime or
availability. This could be specified as a percentage of the time that the system is
expected to be up or as a number of minutes per year that the system is allowed to
be down.

The metrics that are used to specify and measure performance have many ramifica-
tions in the design of a system to meet those metrics. Consider a system that receives a
nightly update. Applying this nightly update will make the system unavailable. Using the
metrics that specify availability, it is possible to determine the maximum amount of time
that the update can take while still meeting the availability criteria. If the designer knows
that the system is allowed to be down for ten minutes per night, then they will make
different design decisions than if the system has only a second to complete the update.

Knowing the available time for an update might influence the following decisions:

= How many threads should be used to process the update. A single thread may not
be sufficient to complete the update within the time window. Using the data, it
should be possible to estimate the number of threads that would be needed to
complete the update within the time window. This will have ramifications for the
design of the application, and it may even have ramifications for the method and
format used to deliver the data to the application.

= If the update has to be stored to disk, then the write bandwidth of the disk storage
becomes a consideration. This may be used to determine the number of drives
necessary to deliver that bandwidth, the use of solid-state drives, or the use of a
dedicated storage appliance.

Download at www.wowebook.com

Understanding Algorithmic Complexity 33

= If the time it takes to handle the data, even with using multiple threads or multiple
drives, exceeds the available time window, then the application might have to be
structured so that the update can be completed in parallel with the application
processing incoming transactions. Then the application can instantly switch
between the old and new data. This kind of design might have some underlying
complexities if there are pending transactions at the time of the swap. These trans-
actions would need to either complete using the older data or be restarted to use
the latest version.

In fact, defining the critical metrics and their expectations early in the design helps
with three tasks:

» Clearly specified requirements can be used to drive design decisions, both for
selecting appropriate hardware and in determining the structure of the software.

» Knowing what metrics are expected enables the developers to be confident that
the system they deliver fulfills the criteria. Having the metrics defined up front
makes it easy to declare a project a success or a failure.

» Defining the metrics should also define the expected inputs. Knowing what the
inputs to the system are likely to look like will enable the generation of appropri-
ate test cases. These test cases will be used by the designers and developers to test
the program as it evolves.

Understanding Algorithmic Complexity

Algorithmic complexity is a measure of how much computation a program will perform
when using a particular algorithm. It is a measure of its efficiency and estimate of opera-
tion count. It is not a measure of the complexity of the code necessary to implement a
particular algorithm. An algorithm with low algorithmic complexity is likely to be more
difficult to implement than an algorithm with higher algorithmic complexity. The most
important fact is that the algorithmic complexity is not a model of the execution time
but a model of the way execution time changes as the size of the input changes. It is
probably best to illustrate this through some examples.

Examples of Algorithmic Complexity

Suppose you want to write a program that sums the first N numbers. You would proba-
bly write something like the code shown in Listing 2.1.

Listing 2.1 Sum of the First N Numbers

void sum(int N)

{
int total=0;
for (int i=1; i<=N; i++)
{

Download at www.wowebook.com

34

Chapter 2 Coding for Performance

total += i;

}

printf("Sum of first %i integers is %i\n", N, total);

}

For a given input value N, the code will take N trips around the loop and do N
additions. The algorithmic complexity focuses on the number of operations, which in
this case are the N additions. It assumes that any additional costs are proportional to this
number. The time it would take to complete this calculation is some cost per addition, k,
multiplied by the number of additions, N. So, the time would be k * N.The algorithmic
complexity is a measure of how this time will change as the size of the input changes, so
it is quite acceptable to ignore the (constant) scaling factor and say that the calculation
will take of the order of N computations. This is typically written O(N). It is a very use-
ful measure of the time it will take to complete the program as the size of the input
changes. If N is doubled in value, then it will take twice as long for the program to
complete.

Another example will probably clarify how this can be useful. Assume that you want
to sum the total of the first N factorials (a factorial is N * (N-1) * (N-2) * ... * 1); you
might write a program similar to the one shown in Listing 2.2.

Listing 2.2 Sum of the First N Factorials

int factorial(int F)
{
int £ = 1;
for (int i=1; i<=F; i++)
{
f = f*i;
}
return f;

}

void fsum(int N)
{
int total = 0;
for (int i=1; i<N; i++)
{
total+=factorial(i);
}
}

This program contains a doubly nested loop. The outer loop will do N iterations, and
the inner loop will do an average (over the run) of N/2 iterations. Consequently, there
will be about N * N/2 multiply operations and N additions. The algorithmic complex-

Download at www.wowebook.com

Understanding Algorithmic Complexity 35

ity is concerned only with the dominant factor, which is N * N. So, the entire calcula-
tion is O(N2). If N doubles in size, the time that this algorithm takes will go up by a
factor of 4.

The complexity is represented by the dominant term in the function. If the complex-
ity turned out to be (N+1)2, then as N increased, there would eventually be little differ-
ence between this and N2. In the limit, as N becomes larger, O(N?) will dominate the
complexity of O(N).

The previous examples are somewhat contrived, and in both cases there are more
efficient ways to provide the required result.

A more common programming problem is sorting data. The domain of sorting has
many different algorithms, of which the two most famous are probably bubble sort and
quicksort.

Bubble sort iterates through a list of numbers, comparing adjacent pairs of numbers. If
the pair is not in the correct sort order, the pair is swapped. Listing 2.3 shows a simple
implementation.

Listing 2.3 Implementation of Bubble Sort

void bubble sort(int*array, int N)

{

int sorted =0;

while (!sorted)
{
sorted=1;
for (int i=0; i < N-1; i++)
{
if (array[i] > array[i+l])
{
int temp = array[i+l];
array[i+l] = array[i];
array[i] = temp;
sorted=0;
}
}
}

The smallest elements “bubble” to the top of the array, which is why it’s called a bub-
ble sort. It also leads to the optimization, omitted from this implementation, that it is not
necessary to sort the bottom of the list, because it will gradually fill with previously
sorted largest elements.

Using the algorithm as written, it will take N comparisons to get each element into
the correct place. There are N elements, so it will take N * N comparisons to sort the
entire list. For unsorted data, this leads to an algorithmic complexity of O(N2).

Download at www.wowebook.com

36

Chapter 2 Coding for Performance

On the other hand, quicksort, as might be expected by its name, is a much faster algo-
rithm. It relies on splitting the list of elements into two: a list of elements that are smaller
than a “pivot” element and elements that are larger. Once the list has been split, the algo-
rithm repeats on each of the smaller lists. An implementation of the quicksort algorithm
might look like the code shown in Listing 2.4.

Listing 2.4 Implementation of Quicksort

void quick_sort(int * array, int lower, int upper)

{
int tmp;
int mid = (upper+lower)/2;
int pivot = array[mid];

int tlower = lower

int tupper = upper;

while (tlower <= tupper)

{
while (array[tlower] < pivot) { tlower++; }
while (array[tupper] > pivot) { tupper--; }
if (tlower <= tupper)

{
tmp = array[tlower];
array[tlower] = array|[tupper];
array[tupper] = tmp;
tupper--;
tlower++;

}
if (lower<tupper) { quick sort(array, lower, tupper); }
if (tlower<upper) { quick sort(array, tlower, wupper); }

The algorithmic complexity of quicksort is hard to calculate. For the average case, it is
possible to prove that the complexity is O(N#*log,(IN)). This can be explained using the
following reasoning. Assume a uniform distribution of items, and that every time the
array is split, it will result in two equal halves. For a given N, it will take log,(N) splits
before the array is split into a sequence of N individual elements and the sort is com-
plete. Each time the array splits, there are two function calls, one to sort the lower half
and one to sort the upper half. So, at every split, the entire array of N elements will be
iterated through. Therefore, the algorithmic complexity is O(N*log,(N)).

To see the practical impact of this difference in the complexity of sorting operations,
consider sorting a list of 10 items. The bubble sort algorithm will perform about 10 * 10
= 100 operations, whereas quicksort will perform about 10 * log,(10) = 30 operations,
which is about three times fewer operations. However, the time taken to sort a 10-element

Download at www.wowebook.com

Understanding Algorithmic Complexity 37

list is unlikely to be a significant factor in the runtime of an application. It is more inter-
esting to consider a list of 1,000 elements. The bubble sort will take about 1,000,000
operations, while quicksort will take about 3,000 operations—a ratio of about 300X.

Why Algorithmic Complexity Is Important

Algorithmic complexity represents the expected performance of a section of code as the
number of elements being processed increases. In the limit, the code with the greatest
algorithmic complexity will dominate the runtime of the application.

Assume that your application has two regions of code, one that is O(N) and another
that is O(N?). If you run a test workload of 100 elements, you may find that the O(N)
code takes longer to execute, because there may be more instructions associated with the
computation on each element. However, if you were to run a workload of 10,000 ele-
ments, then the more complex routine would start to show up as important, assuming it
did not completely dominate the runtime of the application.

Picking a small workload will mislead you as to which parts of the code need to be
optimized. You may have spent time optimizing the algorithmically simpler part of the
code, when the performance of the application in a real-world situation will be domi-
nated by the algorithmically complex part of the code. This emphasizes why it is impor-
tant to select appropriate workloads for developing and testing the application. Different
parts of the application will scale differently as the workload size changes, and regions
that appear to take no time can suddenly become dominant.

Another important point to realize is that a change of algorithm is one of the few
things that can make an order of magnitude difference to performance. It 80% of the
application’s runtime was spent sorting a 1,000-element array, then switching from a
bubble sort to a quicksort could make a 300X difference to the performance of that
function, making the time spent sorting 300X smaller than it previously was. The 80% of
the runtime spent sorting would largely disappear, and the application would end up
running about five times faster.

Table 2.1 shows the completion time of a task with different algorithmic complexities
as the number of elements grows. It is assumed that the time to complete a single unit of
work is 100ns. As the table illustrates, it takes remarkably few elements for an O(N?)
algorithm to start consuming significant amounts of time.

Table 2.1 Execution Duration at Different Algorithm Complexities

Elements 0(1) O(N) O(N log, N) O(N?)

1 100ns 100ns 100ns 100ns

10 100ns 1,000ns 3,322ns 10,000ns

100 100ns 10,000ns 66,439ns 1,000,000ns
1,000 100ns 100,000ns 996,578ns 100,000,000ns
10,000 100ns 1,000,000ns 13,287,712ns 10,000,000,000ns

Download at www.wowebook.com

38

Chapter 2 Coding for Performance

The same information can be presented as a chart of runtimes versus the number of
elements. Figure 2.1 makes the same point rather more dramatically. It quickly becomes
apparent that the runtime for an O(N2) algorithm will be far greater than one that is
linear or logarithmic with respect to the number of elements.

160000

140000

120000
N

.

100000

80000

Runtime

60000

40000

20000

o) (N* \0o9 Z(N)) ..

... o

T T T T
20 25 30 35 40

Number of elements

Figure 2.1 Different orders of algorithmic complexity

Using Algorithmic Complexity with Care

Although algorithmic complexity is a very good guide to where time could be spent,
several issues need to be considered.

It may be tempting to select the most efficient algorithms for every aspect of the
code. Compare the lines of code necessary to implement the quicksort with those
required for the bubble sort as well as how easy it is to read those lines of code and
understand how the algorithm works. Algorithms with lower algorithmic complexity are
usually more difficult to implement and more difficult to understand. Both of these fac-
tors will lead to more developer time needed for the implementation, and the code may

Download at www.wowebook.com

How Structure Impacts Performance 39

potentially need a more experienced developer to maintain it. The point is that using
more complex algorithms can have an impact on developer time and cost. A simpler
algorithm might be easier to implement and result in lower development costs. It may
also be possible that the code does not need a more complex algorithm for typical
workloads.

A second point to consider is that algorithmic complexity is concerned with the
operation count. It does not consider the cost of those instructions. It may weigh the
cost of an add operation the same as a multiply yet be possible to have algorithms that
perform the same task with very different numbers of add and multiply operations. At
another level, the algorithms don’t consider implementation details such as caches. One
algorithm might be very cache friendly, whereas another could incur many cache misses.
In any code, stall time because of cache misses can easily dominate the performance.
Therefore, it is necessary to both look at the algorithmic complexity and evaluate the
actual implementation of the algorithm to determine whether the implementation is
likely to achieve good performance.

It is possible to look at an algorithm in the context of the number of loads that it will
take and how likely each load is to miss cache. This would give an estimate of the
amount of time spent waiting for data to arrive from memory. Of course, changing the
algorithm will impact both the complexity and the probability of events. In the example
of load misses, one algorithm might have higher miss rates but a lower-order complexity
versus another algorithm.

One final consideration in the selection of algorithms may be whether the algorithms
scale to multiple processors. If the algorithm has low algorithmic complexity but does
not scale beyond a single thread, it could be slower than an algorithm of higher com-
plexity that can be parallelized to run over multiple threads.

How Structure Impacts Performance

Three attributes of the construction of an application can be considered as “structure.”
The first of these is the build structure, such as how the source code is distributed
between the source files. The second structure is how the source files are combined into
applications and supporting libraries. Finally, and probably the most obvious, is that way
data is organized in the application. How these three structures influence performance is
the subject of the following sections.

Performance and Convenience Trade-Offs in Source Code and
Build Structures

The structure of the source code for an application can cause differences to its perform-
ance. Source code is often distributed across source files for the convenience of the
developers. It is appropriate that the developers’ convenience is one of the main criteria
for structuring the sources, but care needs to be taken that it does not cause inconven-
ience to the user of an application.

Download at www.wowebook.com

40

Chapter 2 Coding for Performance

Performance opportunities are lost when the compiler sees only a single file at a time.
The single file may not present the compiler with all the opportunities for optimizations
that it might have had if it were to see more of the source code. This kind of limitation
is visible when a program uses an accessor function—a short function that returns the
value of some variable. A trivial optimization is for the compiler to replace this function
call with a direct load of the value of the variable. Consider the code sequence shown in
Listing 2.5 for an example of accessor functions.

Listing 2.5 Accessor Functions

#include <stdio.h>

int a;

void setvalue(int v) { a = v; }
int getvalue() { return a; }
void main()

{

setvalue(3);
printf("The value of a is %i\n", getvalue());

The code in Listing 2.5 can be replaced with the equivalent but faster code shown in
Listing 2.6.This is an example of inlining within a source file. The calls to the routines
getvalue() and setvalue() are replaced by the actual code from the functions.

Listing 2.6 Pseudosource Code After Inlining Optimization

#include <stdio.h>

int a;

void main()
{
a = 3;
printf("The value of a is %i\n", a);

At some optimization level, most compilers support inlining within the same source
file. Hence, the transformation in Listing 2.6 is relatively straightforward for the compiler
to perform. The problem is when the functions are distributed across multiple source files.

Fortunately, most compilers support cross-file optimization where they take all the
source code and examine whether it is possible to further improve performance by

Download at www.wowebook.com

How Structure Impacts Performance 41

inlining a routine from one source file into the place where it’s called in another source
file. This can negate much of any performance loss incurred by the structure used to
store the source code. Cross-file optimization will be discussed in more detail in the sec-
tion “How Cross-File Optimization Can Be Used to Improve Performance.”

Some build methodologies reduce the ability of the compiler to perform optimizations
across source files. One common approach to building is to use either static or archive
libraries as part of the build process. These libraries combine a number of object files into
a single library, and at link time, the linker extracts the relevant code from the library.

Listing 2.7 shows the steps in this process. In this case, two source files are combined
into a single archive, and that archive is used to produce the application.

Listing 2.7 Creating an Archive Library

$ cc -¢ a.c

$ cc -c b.c

$ ar -r lib.a a.o b.o
ar: creating lib.a

$ cc main.c lib.a

There are three common reasons for using static libraries as part of the build process:

» For “aesthetic” purposes, in that the final linking of the application requires fewer
objects. The build process appears to be cleaner because many individual object
files are combined into static libraries, and the smaller set appears on the link line.
The libraries might also represent bundles of functionality provided to the executable.

= To produce a similar build process whether the application is built to use static or
dynamic libraries. Each library can be provided as either a static or a dynamic ver-
sion, and it is up to the developer to decide which they will use. This is common
when the library is distributed as a product for developers to use.

= To hide build issues, but this is the least satisfactory reason. For example, an archive
library can contain multiple versions of the same routine. At link time, the linker
will extract the first version of this routine that it encounters, but it will not warn
that there are multiple versions present. If the same code was linked using individ-
ual object files without having first combined the object files into an archive, then
the linker would fail to link the executable.

Listing 2.8 demonstrates how using static libraries can hide problems with multiply
defined functions. The source files a.c and b.c both contain a function status().
When they are combined into an archive and linked into an executable, the linker will
extract one of the two definitions of the function. In the example, the linker selects the
definition from a.c. However, the build fails with a multiply defined symbol error if an
attempt is made to directly link the object files into an executable.

Download at www.wowebook.com

42

Chapter 2 Coding for Performance

Listing 2.8 Example of a Static Library Hiding Build Issues

$ more a.c
#include <stdio.h>
void status()

{
printf("In status of A\n");

$ more b.c
#include <stdio.h>
void status()

{

printf("In status of B\n");

$ cc -c a.c

$ cc -¢ b.c

$ ar -r lib.a a.o b.o
ar: creating lib.a

$ more main.c
void status();
void main()

{

status();

}
$ cc main.c lib.a
$ a.out

In status of A

$ cc main.c a.o b.o

1d: fatal: symbol 'status' is multiply-defined:
(file a.o type=FUNC; file b.o type=FUNC);
1d: fatal: File processing errors. No output written to a.out

An unfortunate side effect of using static libraries is that some compilers are unable to
perform cross-file optimization of code contained in the static libraries. This may mean
that functions are not inlined from the static library into the executable or that the code
held in the static library does not take any part in cross-file optimization.

Using Libraries to Structure Applications

Libraries are the usual mechanism for structuring applications as they become larger.

There are some good technical reasons to use libraries:

Download at www.wowebook.com

How Structure Impacts Performance 43

» Common functionality can be extracted into a library that can be shared between
different projects or applications. This can lead to better code reuse, more efficient
use of developer time, and more effective use of memory and disk space.

» Placing functionality into libraries can lead to more convenient upgrades where
only the library is upgraded instead of replacing all the executables that use the
library.

» Libraries can provide better separation between interface and implementation. The
implementation details of the library can be hidden from the users, allowing the
implementation of the library to evolve while maintaining a consistent interface.

» Stratifying functionality into libraries according to frequency of use can improve
application start-up time and memory footprint by loading only the libraries that
are needed. Functionality can be loaded on demand rather than setting up all pos-
sible features when the application starts.

» Libraries can be used as a mechanism to dynamically provide enhanced functional-
ity. The functionality can be made available without having to change or even
restart the application.

» Libraries can enable functionality to be selected based on the runtime environ-
ment or characteristics of the system. For instance, an application may load differ-
ent optimized libraries depending on the underlying hardware or select libraries at
runtime depending on the type of work it is being asked to perform.

On the other hand, there are some nontechnical reasons why functionality gets placed
into libraries. These reasons may represent the wrong choice for the user.

» Libraries often represent a convenient product for an organizational unit. One
group of developers might be responsible for a particular library of code, but that
does not automatically imply that a single library represents the best way for that
code to be delivered to the end users.

» Libraries are also used to group related functionality. For example, an application
might contain a library of string-handling functions. Such a library might be
appropriate if it contains a large body of code. On the other hand, if it contains
only a few small routines, it might be more appropriate to combine it with
another library.

There is a strong attraction to breaking applications down into a set of libraries.
Libraries make sense for all the reasons outlined previously, but it is quite possible to
have either inappropriate splits of functionality or libraries that implement too little
functionality.

There are costs associated with libraries. A call into a function provided by a library
will typically be more costly than a call into a function that is in the main executable.
Code provided in a library may also have more overhead than code provided in the exe-
cutable. There are a few contributors to cost:

Download at www.wowebook.com

44

Chapter 2 Coding for Performance

= Library calls may be implemented using a table of function addresses. This table
may be a list of addresses for the routines included in a library. A library routine
calls into this table, which then jumps to the actual code for the routine.

= Each library and its data are typically placed onto new TLB entries. Calls into a
library will usually also result in an ITLB miss and possibly a DTLB miss if the
code accesses library-specific data.

= If the library is being lazy loaded (that is, loaded into memory on demand), there
will be costs associated with disk access and setting up the addresses of the library
functions in memory.

= Unix platforms typically provide libraries as position-independent code. This
enables the same library to be shared in memory between multiple running appli-
cations. The cost of this is an increase in code length. Windows makes the opposite
trade-off; it uses position-dependent code in libraries, reducing the opportunity of
sharing libraries between running applications but producing slightly faster code.

Listing 2.9 shows code for two trivial libraries that can be used to examine how
memory is laid out at runtime.

Listing 2.9 Defining Two Libraries

$ more liba.c
#include <stdio.h>

void ina()

{
printf("In library A\n");

}

$ more libb.c
#include <stdio.h>

void inb()
{

printf("In library B\n");
}

Listing 2.10 shows the process of compiling these two libraries on Solaris.

Listing 2.10 Compiling Two Libraries

$ cc -G -Kpic -o liba.so liba.c
$ cc -G -Kpic -o libb.so libb.c

Download at www.wowebook.com

How Structure Impacts Performance 45

The compiler flag -G tells the compiler to make a library, while the flag -Kpic tells
the compiler to use position-independent code. The advantage of position-independent
code is that the library can reside at any location in memory. The same library can even
be shared between multiple applications and have each application map it at a different
address.

The main program shown in Listing 2.11 will call the code in liba.so and then
pause so we can examine the memory layout of the application.

Listing 2.11 Calling Library Code

$ more libmain.c
#include <unistd.h>

void ina();
void inb();

void main()
{
ina();
sleep(20);
}
$ cc libmain.c -L. -R. -la -lb

The compile command in Listing 2.11 builds the main executable. The flag -L tells
the linker where to find the library at link time. The flag -R tells the runtime linker
where to locate the file at runtime. In the example, these two flags are set to the current
directory. The application will link and execute only if the current directory does con-
tain the library. However, other approaches are more resilient. Running this application
enables us to look at the memory map using the utility pmap. Listing 2.12 shows the
memory map.

Listing 2.12 Memory Map of Application and Libraries on Solaris

$./a.out&

In library A

[1] 1522

$ pmap -x 1522

1522: ./a.out

Address Kbytes RSS Anon Locked Mode Mapped File
08046000 8 8 8 - IWX-- [stack]
08050000 4 4 - - r-x-- a.out

08060000 4 4 4 - IWX-- a.out

D29E0000 24 12 12 - IWX-- [anon]
D29F0000 4 4 4 - IWX-- [anon]
D2A00000 1276 936 - - r-x-- libc_hwcap3.so.1
D2B4F000 32 32 32 - rwx-- libc_hwcap3.so.1l
D2B57000 8 8 8 - rwx-- libc_hwcap3.so.1
D2B60000 4 4 - - I-X-- libb.so

Download at www.wowebook.com

46

Chapter 2 Coding for Performance

D2B70000 4 4 4 - rwx-- libb.so
D2B80000 4 4 - - r-x-- liba.so
D2B90000 4 4 4 - rwx-- liba.so
D2BB0000 4 4 4 - rwx-- [anon]
D2BBE000 184 184 - - r-x-- 1ld.so.1
D2BFC000 8 8 8 - rwx-- 1d.so.1
D2BFE000 4 4 4 - rwx-—- ld.so.1
total Kb 1576 1224 92 -

In the memory map shown in Listing 2.12, each library has at least two mapped seg-
ments. The first is mapped with read and execute permissions that contain the code in
the library. The second contains data and is mapped with read, write, and execute per-
missions. Both libraries are mapped in, even though the code does not contain any calls
to 1ibb.so and makes no use of the library. The RSS column indicates that the library
has been loaded into memory. The x86 processor uses a 4KB default page size, so pages
of memory are allocated in 4KB chunks. Although both liba.so and libb.so contain
only a few bytes of code, both libraries are allocated 4KB of memory for instructions.
The same is true for data. The concern is that each 4KB will require a single TLB entry
for a virtual address to physical address mapping when a routine in that page is called. If
liba.so and 1libb.so had been combined, the functions in the two libraries could have
been placed into a single 4KB segment for each of the instructions and data.

It is possible to look at the sequence of events when the application is loaded by set-
ting the environment variable LD_DEBUG=flags. Listing 2.13 shows an edited form of
the output

Listing 2.13 Output from Setting the Environment Variable LD DEBUG=files

$ LD_DEBUG=files ./a.out

01615: file=/export/home/darryl/a.out [ELF]; generating link map
01615: file=a.out; analyzing

01615: file=liba.so; needed by a.out
01615: file=./liba.so [ELF]; generating link map

01615: file=libb.so; needed by a.out
01615: file=./libb.so [ELF]; generating link map

01615: file=libc.so.l; needed by a.out
01615: file=/1lib/libc.so.l [ELF]; generating link map

01615: file=./liba.so; analyzing
01615: file=./libb.so; analyzing
01615: file=/1lib/libc.so.l; analyzing

01615: 1: transferring control: a.out

Download at www.wowebook.com

How Structure Impacts Performance 47

This shows the sequence of starting the application, having the runtime linker exam-
ine the application, and identifying the need for the libraries 1iba.so, 1ibb.so, and
libc.so.1. Once those libraries are loaded, it examines them for other libraries that
might be needed.

The linker performs a sizable amount of work. However, the time spent processing
the libraries is likely to be dominated by the time spent fetching them from disk. The
more data and instructions a library contains, the more time it will take to read the
library from disk. It is possible to use lazy loading to avoid loading libraries from disk
until they are actually used. Listing 2.14 shows the application built with lazy loading
enabled and the resulting runtime linking.

Listing 2.14 Linking a Library to Use Lazy Loading

$ cc libmain.c -L. -R. -z lazyload -la -1b

$ LD_DEBUG=files ./a.out

01712: file=/export/home/darryl/a.out [ELF]; generating link map
01712: file=a.out; analyzing

01712: file=libc.so.l; needed by a.out

01712: file=/lib/libc.so.l; analyzing
01712: 1: transferring control: a.out

01712: 1: file=liba.so; lazy loading from file=a.out: symbol=ina
01712: 1: file=./liba.so [ELF]; generating link map
01712: 1: file=./liba.so; analyzing

—

In library A

In this instance, the application runs without loading either 1iba.so or libb.so up
until the point where the symbol ina() is required from the library 1iba.so. At that
point, the runtime linker loads and processes the library. The lazy loading of libraries has
meant that the application did not need to load 1ibb.so at all, thus reducing application
start-up time.

One more thing to consider for the costs for libraries is the cost of calling code resid-
ing in libraries. The easiest way to demonstrate this is to modify the example code so it
calls the routine ina() twice and then to use the debugger to examine what happens at
runtime. The first call will load the library into memory, but that will happen only once
and can be ignored. The second time the routine is called will be representative of all
calls to all library routines. Listing 2.15 shows the output from the Solaris Studio debug-
ger, dbx, showing execution up until the first call to the routine ina().

Download at www.wowebook.com

48

Chapter 2 Coding for Performance

Listing 2.15 Execution Until the First Call to the Routine ina

$ dbx a.out

Reading a.out

Reading 1ld.so.l

Reading libc.so.1l

(dbx) stop in main

dbx: warning: 'main' has no debugger info
-- will trigger on first instruction

(2) stop in main

(dbx) run

Running: a.out

(process id 1744)

stopped in main at 0x08050ab0

0x08050ab0: main : pushl %ebp

(dbx) nexti

stopped in main at 0x08050abl

0x08050abl: main+0x0001: movl %esp, %ebp

(dbx) nexti

stopped in main at 0x08050ab3

0x08050ab3: main+0x0003: call ina [PLT] [0x8050964, .-0x14f]

At this stage, the application has reached the first call to the routine ina().As can be
seen from the disassembly, this call is actually a call to the procedure linkage table (PLT).
This table contains a jump to the actual start address of the routine. However, the first
time that the routine is called, the runtime linker will have to load the lazily loaded
library from disk. Listing 2.15 earlier skips this first call. Listing 2.16 shows the code as it
steps through the second call to the routine ina().

Listing 2.16 Jumping Through the PLT to the Routine ina

(dbx) nexti

Reading liba.so

In library A

stopped in main at 0x08050ab8

0x08050ab8: main+0x0008: call ina [PLT] [0x8050964, .-0x154]
(dbx) stepi

stopped in (unknown) at 0x08050964

0x08050964: ina [PLT]: jmp *_GLOBAL_OFFSET TABLE_+0xlc [0x8060b24]
(dbx) stepi

stopped in ina at 0xd2990510

0xd2990510: ina : pushl %ebp

By the second time the call to ina() is encountered, the library has already been
loaded, and the call is again into the PLT. Using the debugger to step into the call, we
can see that this time the target is a jump instruction to the start of the routine.

Download at www.wowebook.com

How Structure Impacts Performance 49

All calls to library functions, possibly even those within the library, will end up routed
through the PLT. This imposes a small overhead on every call. There are ways to limit the
scope of library functions so they are not visible outside the library and so calls within
the library to those functions will not need to be routed through the PLT.

The same procedure can be followed on Linux. Listing 2.17 shows the steps necessary
to compile the application on Linux.

Listing 2.17 Compiling Libraries and Application on Linux

$ gcc -shared -fpic -o liba.so liba.c
$ gcc -shared -fpic -o libb.so libb.c
$ gcc libmain.c “pwd”/liba.so “pwd™/libb.so

Listing 2.18 shows the steps to use the Linux debugger, gdb, to step through the
process of calling the library function ina().

Listing 2.18 Stepping Through Library Call on Linux

$ gdb a.out
(gdb) display /i $eip

(gdb) break main

Breakpoint 1 at 0x8048502

(gdb) run

Starting program: /home/darryl/a.out
Breakpoint 1, 0x08048502 in main ()
0x8048502 <main+14>: sub $0x4,%esp

(gdb) nexti
0x8048505 <main+17>: call 0x804841c <ina@plt>
(gdb) nexti

In library A
0x804850a <main+22>: call 0x804841c <ina@plt>

(gdb) stepi
0x804841c <ina@plt>: jmp *0x804a008
(gdb) stepi

Oxb7eded42c <ina>: push %ebp

The sequence for Linux shown in Listing 2.18 is basically the same as the sequence
for Solaris shown in Listing 2.15 and Listing 2.16. The executable calls into the PLT, and
then the application jumps from there into the routine.

The memory map for Linux shown in Listing 2.19 looks very similar to the memory
map for Solaris shown in Listing 2.12. In the Linux memory map, both liba.so and
libb.so are mapped onto three 4KB pages.

Download at www.wowebook.com

50

Chapter 2 Coding for Performance

Listing 2.19 Application Memory Map on Linux

$ pmap 14392

14392: ./a.out

08048000 4K r-x-- /home/darryl/a.out

08049000 4K r---- /home/darryl/a.out

0804a000 4K rw--- /home/darryl/a.out

b7e43000 4K rw--- [anon]

b7e44000 1392K r-x-- /lib/tls/i686/cmov/1libc-2.9.s0
b7£a0000 4R ——-—- /1ib/t1ls/1686/cmov/1ibc-2.9.s0
b7£a1000 8K r---- /1lib/tls/i686/cmov/1libc-2.9.s0
b7£a3000 4K rw--- /1ib/tls/i686/cmov/1libc-2.9.s0
b7£a4000 16K rw--- [anon]

b7fb4000 4K rw--- [anon]

b7£b5000 4K r-x-- /home/darryl/libb.so

b7£b6000 4K r---- /home/darryl/libb.so

b7£b7000 4K rw--- /home/darryl/libb.so

b7£b8000 4K r-x-- /home/darryl/liba.so

b7£b9000 4K r---- /home/darryl/liba.so

b7£fba000 4K rw--- /home/darryl/liba.so

b7£fbb000 8K rw--- [anon]

b7£fbd000 4K r-x-- [anon]

b7£fbe000 112K r-x-- /1lib/1d-2.9.so0

b7£da000 4K r---- /lib/1d-2.9.so

b7£db000 4K rw--- /1lib/1d-2.9.so

bfcc6000 84K rw--- [stack]

total 1684K

Therefore, there is a balance between the convenience of the developers of libraries

and the convenience of the libraries’ users. Rough guidelines for when to use libraries

are as follows:

= Libraries make sense when they contain code that is rarely executed. If a substan-
tial amount of code does not need to be loaded from disk for the general use of
the application, then the load time of the application can be reduced if this func-
tionality is placed in a library that is loaded only when needed.

= It is useful to place code that is common to multiple applications into shared
libraries, particularly if the applications are out of the control of the developers of
the libraries. This is the situation with most operating systems, where the applica-
tions that use the libraries will be developed separately from the core operating
system. Most applications use libc, the C standard library, so it makes sense to
deliver this library as a shared library that all applications can use. If the internals of
the operating system change or if a bug is fixed, then the libraries can be modified
without needing to change the applications that use those libraries. This is a form
of encapsulation.

Download at www.wowebook.com

How Structure Impacts Performance 51

» Device drivers are usually packaged as libraries. There is a temptation to produce
multiple libraries, some of which are core and some of which are device specific. If
there is likely to only ever be a single device of a specific type attached to a sys-
tem, then it is better to provide a single library. If there are likely to be multiple
types of devices attached that all share the common core, then it might be appro-
priate to split the code into device-specific and common code.

» Libraries can also provide dynamically loaded functionality. A library could be
released to provide an existing application with new functionality. Placing as much
functionality into as few libraries as possible is the most efficient approach, but in
many instances the need to dynamically manage functionality will outweigh any
overhead induced by packaging the functionality as libraries.

In general, it is best to make libraries lazy loaded when needed rather than have all
the libraries load at start-up time. This will improve the application start-up time. Listing
2.20 shows code for a simple library that will be lazy loaded.

Listing 2.20 Simple Library with Initialization Code

#include <stdio.h>

void initialise()
{

printf("Initialisation code run\n");

}

#pragma init (initialise)

void doStuff()

{
printf("Doing stuff\n");

}

The application shown in Listing 2.21 uses the library from Listing 2.20.

Listing 2.21 Application That Calls Library Code

#include <stdio.h>
void doStuff();
void main()

{
printf("Application now running\n");
doStuff();
printf("Application now exiting\n");
}

Download at www.wowebook.com

52

Chapter 2 Coding for Performance

Listing 2.22 shows the results of compiling, linking, and running this application on
Solaris without lazy loading.

Listing 2.22 Using Library Code Without Lazy Loading

$ cc -0 -G -0 liba.so liba.c

$ cc -0 -o main main.c -L. -R. -la
$./main

Initialisation code run
Application now running

Doing stuff

Application now exiting

Listing 2.23 shows the same test but with the library being lazy loaded.

Listing 2.23 Using Library Code with Lazy Loading

$ cc -0 -G -0 liba.so liba.c

$ cc -0 -o main main.c -L. -R. -zlazyload -la
$./main

Application now running

Initialisation code run

Doing stuff

Application now exiting

This change in the linking has enabled the library to be loaded after the application
has started. Therefore, the start-up time of the application is not increased by having to
load the library first. It is not a significant issue for the example code, which uses one
small library, but can be a significant issue when multiple large libraries need to be
loaded before the application can start.

There is one situation where libraries that are tagged as being lazy loaded are loaded
anyway. If an application needs to find a symbol and the application was not explicitly
linked with the library containing that object at compile time, then the application will
load all the dependent libraries in order to resolve any unresolved symbols, undoing the
usefulness of lazy loading. Suppose we add a second library that prints the message
“Library B initializing” when it is loaded but contains no other code. Listing 2.24 shows
the command line to compile this library to have a lazy-loaded dependence on liba.

Listing 2.24 Compiling 1ibb to Have a Lazy-Loaded Dependence on liba

$ cc -0 -G -o libb.so libb.c -zlazyload -R. -L. -la

The next step, shown in Listing 2.25, is to deliberately link the application so that it
lazy loads 1ibb but does not have a dependence on 1liba.This would usually cause the

Download at www.wowebook.com

How Structure Impacts Performance 53

linker to fail with an unresolved symbol error, but we can switch that safety check off
using the -znodefs flag.

Listing 2.25 Compiling the Application to Only Recode the Dependence on 1ibb

$ cc -0 -G -0 main main.c -zlazyload -znodefs -R. -L. -lb

The resulting application contains an unresolved symbol for ina() but has a lazy-
loaded dependence on 1ibb. When the application is run, it will be unable to resolve
the symbol ina(), so the runtime linker will start loading all the lazy-loaded libraries.
Once it has loaded 1ibb, it will then lazy load the dependencies of 1ibb, where it will
finally load liba and locate the routine ina(). Listing 2.26 shows the resulting output.

Listing 2.26 Output Showing 1ibb Being Lazy Loaded as Part of Search for doStuff ()

$./main

Application now running
Library B initialising
Initialisation code run
Doing stuff

Application now exiting

The other reason that lazy loading would be unsuccessful is if the code is not opti-
mally distributed between the libraries. If each library requires code from another in
order to work, then there is no way that a subset can be loaded without pulling them all
into the application. Therefore, the distribution of code between the libraries is a critical
factor in managing the start-up time of an application.

The Impact of Data Structures on Performance

Data structure is probably what most people think of first when they hear the word
structure within the context of applications. Data structure is arguably the most critical
structure in the program since each data structure will potentially be accessed millions of
times during the run of an application. Even a slight gain in performance here can be
magnified by the number of accesses and become significant.

When an application needs an item of data, it fetches it from memory and installs it
in cache. The idea with caches is that data that is frequently accessed will become resi-
dent in the cache. The cost of fetching data from the cache is substantially lower than the
cost of fetching it from memory. Hence, the application will spend less time waiting for
frequently accessed data to be retrieved from memory. It is important to realize that each
fetch of an item of data will also bring adjacent items into the caches. So, placing data
that is likely to be used at nearly the same time in close proximity will mean that when
one of the items of data is fetched, the related data is also fetched.

Download at www.wowebook.com

54

Chapter 2 Coding for Performance

The amount of data loaded into each level of cache by a load instruction depends on
the size of the cache line. As discussed in “Using Caches to Hold Recently Used Data”
in Chapter 1, 64 bytes is a typical length for a cache line; however, some caches have
longer lines than this, and some caches have shorter lines. Often the caches that are closer
to the processor have shorter lines, and the lines further from the processor have longer
lines. Figure 2.2 illustrates what happens when a line is fetched into cache from memory.

64 bytes

16 bytes

Second- 64 bytes
level
cache
Memory

Figure 2.2 Fetching data from memory into caches

On a cache miss, a cache line will be fetched from memory and installed into the sec-
ond-level cache. The portion of the cache line requested by the memory operation is
installed into the first-level cache. In this scenario, accesses to data on the same 16-byte
cache line as the original item will also be available from the first-level cache. Accesses to
data that share the same 64-byte cache line will be fetched from the second-level cache.
Accesses to data outside the 64-byte cache line will result in another fetch from memory.

If data is fetched from memory when it is needed, the processor will experience the
entire latency of the memory operation. On a modern processor, the time taken to per-
form this fetch can be several hundred cycles. However, there are techniques that reduce
this latency:

= Qut-of-order execution is where the processor will search the instruction stream for
future instructions that it can execute. If the processor detects a future load
instruction, it can fetch the data for this instruction at the same time as fetching

Download at www.wowebook.com

How Structure Impacts Performance 55

data for a previous load instruction. Both loads will be fetched simultaneously, and
in the best case, the total cost of the loads can be potentially halved. If more than
two loads can be simultaneously fetched, the cost is further reduced.

» Hardware prefetching of data streams is where part of the processor is dedicated to
detecting streams of data being read from memory. When a stream of data is iden-
tified, the hardware starts fetching the data before it is requested by the processor.
If the hardware prefetch is successful, the data might have become resident in the
cache before it was actually needed. Hardware prefetching can be very effective in
situations where data is fetched as a stream or through a strided access pattern. It is
not able to prefetch data where the access pattern is less apparent.

» Software prefetching is the act of adding instructions to fetch data from memory
before it is needed. Software prefetching has an advantage in that it does not need
to guess where the data will be requested from in the memory, because the prefetch
instruction can fetch from exactly the right address, even when the address is not a
linear stride from the previous address. Software prefetch is an advantage when the
access pattern is nonlinear. When the access pattern is predictable, hardware
prefetching may be more efficient because it does not take up any space in the
instruction stream.

Another approach to covering memory latency costs is with CMT processors. When
one thread stalls because of a cache miss, the other running threads get to use the
processor resources of the stalled thread. This approach, unlike those discussed earlier,
does not improve the execution speed of a single thread. This can enable the processor to
achieve more work by sustaining more active threads, improving throughput rather than
single-threaded performance.

There are a number of common coding styles that can often result in suboptimal lay-
out of data in memory. The following subsections describe each of these.

Improving Performance Through Data Density and Locality

Paying attention to the order in which variables are declared and laid out in memory can
improve performance. As discussed earlier, when a load brings a variable in from memory,
it also fetches the rest of the cache line in which the variable resides. Placing variables
that are commonly accessed together into a structure so that they reside on the same
cache line will lead to performance gains. Consider the structure shown in Listing 2.27.

Listing 2.27 Data Structure

struct s
{
int varl;
int paddingl[15];
int var2;
int padding2[15];

Download at www.wowebook.com

56

Chapter 2 Coding for Performance

When the structure member varl is accessed, the fetch will also bring in the sur-
rounding 64 bytes. The size of an integer variable is 4 bytes, so the total size of varl plus
paddingl is 64 bytes. This ensures that the variable var2 is located on the next cache
line. Listing 2.28 shows the structure reordered so that varl and var2 are adjacent. This
will usually ensure that both are fetched at the same time.

Listing 2.28 Reordered Data Structure So That Important Structure Members Are Likely
to Share a Cache Line

struct s
{
int varl;
int var2;
int paddingl[15];
int padding2[15];

If the structure does not fit exactly into the length of the cache line, there will be
situations when the adjacent varl and var2 are split over two cache lines. This intro-
duces a dilemma. Is it better to pack the structures as close as possible to fit as many of
them as possible into the same cache line, or is it better to add padding to the structures
to make them consistently align with the cache line boundaries? Figure 2.3 shows the
two situations.

The answer will depend on various factors. In most cases, the best answer is probably
to pack the structures as tightly as possible. This will mean that when one structure is
accessed, the access will also fetch parts of the surrounding structures. The situation

varl | var2 | var3 | var1l | var2 | var3 | varl | var2 | var

struct s[0] struct s[1] struct s[2]

¢ ¢ | o
Cache line Cache line

varl | var2 | var3 | pad | varl | var2 | var3 | pad | var

struct s[1]

struct s[0]

Cache line Cache line

Figure 2.3 Using padding to align structures

Download at www.wowebook.com

How Structure Impacts Performance 57

where it is appropriate to add padding to the structure is when the structures are always
accessed randomly, so it is more important to ensure that the critical data is not split
across a cache line.

The performance impact of poorly ordered structures can be hard to detect. The cost
is spread over all the accesses to the structure over the entire application. Reordering the
structure members can improve the performance for all the routines that access the
structures. Determining the optimal layout for the structure members can also be diffi-
cult. One guideline would be to order the structure members by access frequency or
group them by those that are accessed in the hot regions of code. It is also worth consid-
ering that changing the order of structure members could introduce a performance
regression if the existing ordering happens to have been optimal for a different fre-
quently executed region of code.

A similar optimization is structure splitting, where an existing structure is split into
members that are accessed frequently and members that are accessed infrequently. If the
infrequently accessed structure members are removed and placed into another structure,
then each fetch of data from memory will result in more of the critical structures being
fetched in one action. Taking the previous example, where we assume that var3 is rarely
needed, we would end up with a resulting pair of structures, as shown in Figure 2.4.

vari | var2 | vari var2 | varl | var2 | varl var2 | var

struct sO[0] struct sO[1] struct s0[2] struct sO[3] str

g
Cache line Cache line

varli | var3 | var8 | var3 | var3 | var2 | var3 | var3 | var

s1[0] | s1[1] | s1[2] | s1[3] | s1[4] | s1[5] | s1[6] | s1[7] | s1[

Cache line Cache line

Figure 2.4 Using structure splitting to improve memory locality

In this instance, the original structure s has been split into two, with s0 containing all
the frequently accessed data and s1 containing all the infrequently accessed data. In the
limit, this optimization is converting what might be an array of structures into a set of
arrays, one for each of the original structure members.

Download at www.wowebook.com

58

Chapter 2 Coding for Performance

Selecting the Appropriate Array Access Pattern
One common data access pattern is striding through elements of an array. The perform-
ance of the application would be better if the array could be arranged so that the

selected elements were contiguous. Listing 2.29 shows an example of code accessing an
array with a stride.

Listing 2.29 Noncontiguous Memory Access Pattern

{
double ** array;
double total=0;
for (int i=0; i<cols; i++)
for (int j=0; j<rows; j++)
total += array[j][i];
}

C/C++ arrays are laid out in memory so that the adjacent elements of the final index
(in this case indexed by the variable i) are adjacent in memory; this is called row-major
order. However, the inner loop within the loop nest is striding over the first index into
the matrix and accessing the i element of that array. These elements will not be located
in contiguous memory.

In Fortran, the opposite ordering is followed, so adjacent elements of the first index
are adjacent in memory. This is called column-major order. Accessing elements by a stride
is a common error in codes translated from Fortran into C. Figure 2.5 shows how mem-
ory is addressed in C, where adjacent elements in a row are adjacent in memory.

Contiguous memory

|

Row 1

Row 2

Column 1

Row 3

Figure 2.5 Row major memory ordering

Download at www.wowebook.com

How Structure Impacts Performance 59

Fortunately, most compilers are often able to correctly interchange the loops and
improve the memory access patterns. However, there are many situations where the
compiler is unable to make the necessary transformations because of aliasing or the order
in which the elements are accessed in the loop. In these cases, it is necessary for the
developer to determine the appropriate layout and then restructure the code appropriately.

Choosing Appropriate Data Structures

Choosing the best structure to hold data, such as choosing an algorithm of the appropri-
ate complexity, can have a major impact on overall performance. This harks back to the
discussions of algorithmic complexity earlier in this chapter. Some structures will be effi-
cient when data is accessed in one pattern, while other structures will be more efficient
if the access pattern is changed.

Consider a simple example. Suppose you have a dictionary of words for a spell-
checker application. You don’t know at compile time how many words will be in the
dictionary, so the easiest way to cope with this might be to read in the words and place
them onto a linked list, as shown in Figure 2.6.

Words

Word Cat

{4

Word Dog

=
a

Fish
Figure 2.6 Using a linked list to hold an ordered list of words

Every time the application needs to check whether a word is in the dictionary, it
traverses the linked list of words, so a spell-check of the entire document is an O(N?)
activity.

An alternative implementation might be to allocate an array of known length to hold
pointers to the various words, as shown in Figure 2.7.

Although there might be some complications in getting the array to be the right
length to hold all the elements, the benefit comes from being able to do a binary search
on the sorted list of words held in the array. A binary search is an O(log,(N)) activity, so
performing a spell-check on an entire document would be an O(N*log,(N)) activity,
which, as indicated earlier, would be a significantly faster approach.

Download at www.wowebook.com

60 Chapter 2 Coding for Performance

Figure 2.7 Using an array to hold an ordered list of words

As in any example, there are undoubtedly better structures to choose for holding a
dictionary of words. Choosing the appropriate one for a particular application is a case of
balancing the following factors:

= Programmer time to implement the algorithm. There will probably be constraints
on the amount of time that a developer can spend on implementing a single part
of the application.

= User sensitivity to application performance. Some features are rarely used, so a user
might accept that, for example, performing a spell-check on an entire document
will take time. It may also be the case that the compute part of the task is not time
critical; in the case of a spell-check, if a spelling error is reported, the user may
spend time reading the text to determine the appropriate word to use, during
which the application could continue and complete the spell-check of the rest of
the document.

= The problem size is not large enough to justify the more complex algorithm. If
the application is limited to documents of only a few hundred words, it is unlikely
that a spell-check of the entire document would ever take more than about half a
second. Any performance gains from the use of an improved algorithm would be
unnoticeable.

In many situations, there are preexisting libraries of code that implement different
data management structures. For C++, the Standard Template Library provides a wealth
of data structures. Careful coding to encapsulate the use of the data structures can mini-
mize developer time by allowing the original structures to be easily replaced with more
efficient ones should that prove necessary.

The Role of the Compiler

The purpose of the compiler is to take the source code and produce a functionally cor-
rect implementation, using only the information that the developer provides either in
the source code or as part of the compilation process. It is important to recognize the
constraints that the compiler is working under—something that is obvious to the devel-
oper may not be obvious to the compiler.

Download at www.wowebook.com

The Role of the Compiler 61

Most applications have execution paths that are rarely executed. A developer inspect-
ing the code will probably be able to identify the paths that are likely to be executed
infrequently. However, the compiler will be rarely able to extract additional contextual
information from the source code to determine which path is most common. Consider
the code shown in Listing 2.30, which has variable names that might indicate the devel-
opers’ expectations of the frequency of execution of the two code paths.

Listing 2.30 Code Where a Developer Might Guess Common Path

if (error) { value=0.001; }
else { value=numerator/denominator; }

The use of pointer variables raises a common problem. To the compiler, a pointer can
point to any location in memory, including the address of other variables or the addresses
held by other pointers. Hence, any memory location accessed through a pointer may
modify or have been modified by a different memory access.

If two pointers hold the address of the same memory location, they are said to alias.
The safe assumption is for the compiler to assume that any pointer may alias with any
other data. In some cases, the compiler is able to prove that a particular memory location
was not accessed through the pointer, and then the compiler can avoid reloading or stor-
ing data. However, the presence of a pointer may mean that the compiler cannot safely
perform many optimizations. In Listing 2.31, the compiler has to assume that the two
pointers passed into the functions might alias the same location in memory.

Listing 2.31 Code Containing Potential Aliasing

void func(int * a, int *b)
{

*b = *b + *a;

*a = *a + 2;

If pointers a and b do not alias, then the value of a needs to be loaded only a single
time. If they do, then the store to b will change the value of a. In the absence of further
information, the compiler must assume that the two pointers do alias and that the vari-
able a needs to be loaded twice.

The compiler can sometimes determine from the source code that two pointers do
not alias. In other cases, the compiler may be able to produce multiversion code that, at
runtime, selects either the variant of the code where it is assumed that aliasing occurs or
another variant where it is assumed that aliasing does not occur. However, the compiler
should never produce code that will generate a wrong answer; optimizations that the

Download at www.wowebook.com

62

Chapter 2 Coding for Performance

compiler performs must either be provably safe or be specifically enabled, either implic-
itly or explicitly, by the user.

If the compiler is able to inspect more of the code, it is usually able to make better
decisions. Cross-file optimization allows the compiler to combine all the source code for
an executable. If the compiler can see all the source code, it knows how functions are
called and sees the code that gets executed in the function call so it can make better
inlining decisions. It can also see all the uses of a variable or memory region and can
better optimize the use of that variable. Allowing the compiler visibility into more of the
application will enable it to produce better-performing code.

The Two Types of Compiler Optimization

There are two fundamental types of optimization: elimination of work or restructuring
of work. Although there is a huge list of optimizations that can be performed by compil-
ers, all of them resolve to either not doing something or doing something in a more effi-
cient way. Consider the snippet of code shown in Listing 2.32.

Listing 2.32 Empty Loop

for (int i=0; i<1000; i++) { }

It quite clearly does not perform any useful work; a programmer might have included
it as a naive delay. An optimizing compiler will eliminate the entire loop. Consider the
variant of the code shown in Listing 2.33.

Listing 2.33 Loop Containing Function Call

for (int i=0; i<1000; i++) { do_nothing(); }

Unless the compiler can inspect the body of the function do_nothing() or the pro-
grammer has used some other mechanism to indicate to the compiler that the code does
nothing, then the compiler will have to leave this loop in the code.

Listing 2.34 shows another code snippet.

Listing 2.34 Loop Containing Floating-Point Arithmetic

double total=0.0;
for (int i=0; i<1000; i++) { total = total + 1.0;}

Although a human would determine that the code is equivalent to adding 1,000 to
the floating-point variable total, a compiler may perform all the individual additions.
This is in case there is some side effect from the floating-point computation that a dif-

Download at www.wowebook.com

The Role of the Compiler 63

ferent part of the code is watching for. For example, there might be a floating-point
exception handler that gets triggered by the computation of this loop. By default, some
compilers cannot eliminate this code, but when given suitable compiler flags, the com-
piler will remove the loop. This is a demonstration that the compiler needs to be given
appropriate instructions by the user in order for it to perform all the optimizations that
it is capable of.

The other fundamental type of optimization is an improvement in the efficiency of
the operations. In the section “Array Access Patterns,” we saw a potential example where
the compiler could interchange two loops in order to improve the pattern of memory
accesses. This improved the performance of the code by reducing the memory access
costs. Another example of this improvement in the efficiency of the code is where one
operation can be replaced by a less expensive one. This is called strength reduction. A good
demonstration of strength reduction is replacing integer division by a power of two with
a shift operation. The code in Listing 2.35 contains an integer division by two.

Listing 2.35 Code with Opportunity for Optimization

unsigned int b;

unsigned int a = b/2;

An integer division by two can be replaced by a shift right operation, as shown in
Listing 2.36.

Listing 2.36 Code After Optimization

unsigned int b;

unsigned int a = b>>1;

Another common optimization is to replace conditional code with logical operations.
The performance gains come from the ease with which the processor is able to execute
the resulting code. The improved sequence may eliminate branch instructions, therefore
eliminating branch misprediction stalls, or maybe the new sequence needs fewer instruc-
tions. Listing 2.37 shows code with an opportunity for the replacement of conditional
code with logical operations.

Listing 2.37 Conditional Code

if ((value & 1) ==)
{
odd = 1;
}
else

Download at www.wowebook.com

64

Chapter 2 Coding for Performance

odd = 0;

The code shown in Listing 2.37 can be replaced by the equivalent code shown in
Listing 2.38.

Listing 2.38 Logical Operations

odd = value & 1;

Selecting Appropriate Compiler Options

Compilers tend to have many possible command-line options, or flags. The programmer’s
task 1s to identify the smallest subset of flags that will provide the most appropriate set of
optimizations. Usually this falls into a set of three objectives for the build:

= The basic optimization level is the debug level. These are the flags necessary to
generate code that can be eftectively debugged. This kind of build is useful for
debugging logical errors in the code. If the code dies with a null-pointer excep-
tion, running the debug version of the code will allow the developer to determine
whether that exception is a result of optimization or an intrinsic property of the
code. It will also allow the developer to step through the code in the smallest pos-
sible steps to see exactly how the application gets into that state. However, this
capability usually comes at the cost of the reduced runtime performance.

= An optimized build of an application builds quickly and runs at a reasonable speed.
A developer will build and run the application many times over the development
cycle, so it is important that the compiler does not take long to compile the appli-
cation and that the application executes with reasonable performance. Typically,
compilers indicate an optimized compilation with the flag -0.The optimizations
performed by this flag typically represent a good trade-off between attaining fast
runtime performance and spending large amounts of time compiling.

= Higher optimizations levels may also be appropriate. The developer first needs to
evaluate whether a more aggressive compilation of the application provides further
gains. If a more highly optimized build of the application delivers no further per-
formance gains, then it is unnecessary to use higher levels of optimization. The
build with the lower level of optimization but identical performance can be deliv-
ered as the production version of the application. On the other hand, if higher
optimization levels deliver greater performance, a production build of the applica-
tion may get better performance at the expense of a longer build cycle. If more
aggressive compiler options deliver enhanced performance, it 1s recommended that
these options be investigated to determine exactly which options provide the per-

Download at www.wowebook.com

The Role of the Compiler 65

formance and whether they are appropriate to the application before being used
on the production build.

Most compilers have a set of flags that match this philosophy. A debug build of an
application is performed with either no optimization flags or a low optimization level
flag, together with the flags that generate debug information. As the optimization level is
increased, the compiler will examine the code, testing for an increasing range optimiza-
tion opportunities. The more opportunities that the compiler checks for, the longer it
takes to complete the compilation. Most compilers provide a flag, often -0, that selects a
level of optimization that will deliver a good proportion of the maximum possible per-
formance, without taking an unreasonable amount of compile time. Most compilers also
provide a macro-flag, such as -fast, that enables a selection of more advanced optimiza-
tions. These additional optimizations may result in the highest performance but at the
cost of a further increase in compile time.

There are two general optimizations worth exploring in some detail: cross-file opti-
mization and profile feedback.

How Cross-File Optimization Can Be Used to Improve
Performance

We have already discussed how the source structure of an application can impact the
performance of an application. In Figure 2.8, function A () calls function B(), but func-
tion B() is defined in the file b.c, and function A() is defined in the file a.c.

a.c b.c

Figure 2.8 Function calls

There are a number of costs to making this call:
» There will be a branch and return instruction to make the call.

= Registers might be stored to memory before the call and restored from memory
after the call because the called routine might use or modify the variables that they
currently hold.

= Registers might be spilled to memory to provide empty registers for the called
routine to use.

Download at www.wowebook.com

66

Chapter 2 Coding for Performance

= Both routine A() and routine B() might perform computations that could be
identified as unnecessary if the source for the combination of the two routines
were evaluated.

One way to overcome these limitations is by using cross-file optimization. This is typ-
ically a final step after the compiler has produced object files for all the source files in an
application. At this step, the compiler reads all the object files and looks for optimizations
it can perform using full knowledge of the entire application. For inlining, the compiler
will determine that there is a call from A() to B() and rewrite routine A() with a new
version that combines the code from A() with the code from B().This new version is
the one that appears in the final executable.

Inlining is a very good optimization to enable because it should have no impact on
the correctness of the application (the executed code should be equivalent to the origi-
nal code), but it reduces the execution costs and also introduces further opportunities for
optimization. Listing 2.39 shows code with an opportunity for an inlining optimization.

Listing 2.39 Code with an Inlining Opportunity

int B(int p, int q)

{
if (g==1)
{
return p;
}
else
{
return p * B(p, g-1);
}
}
int A(int p)
{
return B(p, 1);
}

In this example, the function B() is an inefficient way of calculating p”q. However, it
is called by routine A() with the value of g as a constant 1, so the return value of the
function will always be the value of the variable p.With inlining, the compiler can
choose to inline function B() into function A(), and it will discover that q is always 1
for this call and can eliminate both the conditional code and the untaken recursive
branch of the conditional code. In fact, the whole of routine A will collapse down to a
statement that returns the value of the variable p, as shown in Listing 2.40.

Download at www.wowebook.com

The Role of the Compiler 67

Listing 2.40 Code After Inlining Optimization

int A(int p)
{

return p;

This new version of the routine A() is also a very good candidate for inlining since
it only returns the value of the variable passed into it. Although this might appear to be
an unlikely example, there is a more generally occurring code pattern, as shown in
Listing 2.41.

Listing 2.41 Accessor Pattern

static int count;

int get_count()

{

return count;

It is very common to have routines that exist only to get and set the value of vari-
ables. These routines are very strong candidates for inlining since they contribute only
one useful instruction (the load of the variable) and at least two overhead instructions
(the call and return).

Another situation where inlining improves performance is where it can eliminate
loads and stores of variables to memory. Listing 2.42 shows code where inlining will
reduce the number of memory operations.

Listing 2.42 Code with Potential for Optimization by Function Inlining

int number of elements;
int max;

void calculate max(int* elements)
{
max=elements[0];
for (int i=1; i<number of_ elements; i++)

{
if (elements[i] > max)
{
max=elements[i];
}
}

Download at www.wowebook.com

68

Chapter 2 Coding for Performance

void doWork()
{

number of_ elements = ...;
calculate _max(elements);

The routine calculate max() needs the variable number of elements to be
updated before it is called. In the general case, the compiler needs to store all visible
variables to memory before calling the routine. This is necessary in case the routine reads
any of the variables. The variables need to be reloaded after the call in case the routine
has modified any of them. After inlining, the compiler does not need to include these
loads and stores because it can hold the necessary values in registers and execute only the
loads and stores that are necessary.

Cross-file optimization has a benefit in that it enables the compiler to generate opti-
mal code regardless of how the source code is distributed between source files. The only
limitation involves static or dynamic libraries, in which case the compiler may not be
able to perform the necessary cross-file inlining.

Using Profile Feedback

Most compilers support profile feedback, which is a mechanism that enables the com-
piler to gather information about the runtime behavior of the application. Consider the
snippet of code shown in Listing 2.43.

Listing 2.43 Code Where the Runtime Behavior of the Code Is Uncertain

if (a!=10)
{ d++; }
else

{d-—-;}

In this situation, the compiler has no idea whether the general case is to increment or
decrement the variable d. The usual solution is for the compiler to either guess one is
more likely than the other or produce code that favors neither assumption. However, if
the code is in the frequently executed part of the application, the appropriate choice
may lead to an observable improvement in performance.

Another case where knowledge of the runtime behavior of the application is useful is
in determining which routines to inline. As discussed in the previous section, picking the
correct routine to inline can lead to significant performance benefits. However, every
time a called routine gets inlined, it increases the number of instructions in the calling
routine. This code size increase is likely to cause the instruction cache to be less effi-
ciently utilized, leading to a drop in performance. Hence, it can be quite important to

Download at www.wowebook.com

The Role of the Compiler 69

inline routines that will benefit performance and avoid inlining those that will only
increase the instruction cache footprint.

Profile feedback, or feedback-directed optimization, allows the compiler the opportu-
nity to gather runtime information on the behavior of the application. It is a three-step
process. The first step is to build an instrumented version of the application to collect
runtime metrics. The next step is to run this application on a data set, which is “typical”
of the one that the application will really run on but whose runtime is much shorter.
The final step is to recompile the application using this profile information. Listing 2.44
shows the steps using the Solaris Studio compiler.

Listing 2.44 Steps for Using Profile Feedback with the Sun Studio Compiler

$ cc -0 -xprofile=collect:./profile -o a.out prog.c
$ a.out
$ cc -0 -xprofile=use:./profile -o a.out prog.c

The benefit of profile feedback depends on the application. Some applications will see
no benefit, while some may see a significant gain. As outlined earlier, the gains typically
come from either getting the compiler to lay out a performance-critical section of code
in an optimal way or inlining a performance-critical routine.

[t is interesting to observe that profile feedback tends to give the greatest benefit to
codes where there are lots of branches or calls rather than codes where there are a lot of
loops. The compiler can predict that loops will be iterated many times but has a harder
job correctly guessing for codes where there are plenty of control flow instructions.
Codes that have significant control flow instructions also tend to have few instructions
between control flow, so there are not many opportunities for the compiler to extract
performance in other ways. Hence, profile feedback can be the most effective way of
improving performance in a class of codes that is otherwise hard to optimize.

There are two concerns with using profile feedback. The first is that using profile
feedback complicates the build process and increases its duration. This can be controlled by
using profile feedback only on the release builds and not as part of the regular developer
builds. It can also be managed by ensuring that the build process is as efficient as possible.
For instance, the build process can be parallelized so that it takes advantage of multiple cores.

The other concern is that using profile feedback optimizes the application for one
particular scenario at the expense of the performance in other scenarios. This is the zero-
sum view of performance; a gain on one workload has to be compensated by a loss of
performance in another. In general, this concern is misplaced. Profile feedback helps the
compiler make decisions about the frequently executed paths and frequently called func-
tions. In most instances, the behavior of the application is only weakly dependent on the
input data set. For example, the same routines get called (although with a different fre-
quency), the same branches get taken, and so forth. This does not mean that every con-
trol transfer instruction has the same profile, but the majority of the control transfers in
the code have the same direction.

Download at www.wowebook.com

70

Chapter 2 Coding for Performance

The exception is an application that has different “modes”: explicit modes where the
application is requested to perform different tasks or implicit modes where some charac-
teristic of the input data causes the application to behave in a particular way.

An explicit mode might appear in the code as a switch/case statement that calls
entirely different code sections depending on an input condition. An implicit mode
might be an application that has multiple ways of solving a problem, and the problem-
solving approach used at each stage in the solution depends on the results of the previ-
ous steps.

If the application has modes of operation, then it is necessary to provide training
inputs that capture all the different modes of operation. The profile of the application
and the code coverage data for the particular training data used provide the best indica-
tion of whether the application has these modes. Input data sets that do not cover signif-
icant parts of the code base are a strong indicator for the existence of these modes and
definitely indicate that more input data sets should be used in providing training data for
the application’s build.

The performance benefit from compiling with profile feedback is variable. Codes
where the time is spent in loops tend to benefit less from profile feedback, whereas codes
containing high numbers of control transfer instructions tend to see a much greater ben-
efit. The typical gain is probably around 5% to 10%, but gains can be much greater if the
profile feedback happens to lead to other opportunities for further performance gains.
The developer’s choice to use profile feedback should be taken in light of whether using
it gets performance gains.

How Potential Pointer Aliasing Can Inhibit Compiler
Optimizations

One of the most common barriers to optimization with C and C++ codes is pointer
aliasing. In most situations, a compiler cannot tell whether two (or more) pointers point
to the same address in memory or to different addresses. The compiler needs to make the
safe choice, so it will often default to assuming that the pointers do alias, even when the
programmer knows that the pointers do not. In some cases, the compiler is able to work
around this problem by producing multiple versions of the code and using runtime check-
ing to determine which version is appropriate. Consider the code shown in Listing 2.45.

Listing 2.45 Code with Potential Pointer Aliasing

void sum(double * total, double * array, int len)

{ for (i=0; i<len; i++)
{
*total += array[i];
}
}

Download at www.wowebook.com

The Role of the Compiler 71

The compiler cannot determine whether the memory location where the variable
total is stored is part of the array. It has to make the safe assumption that the variable is
part of the array, which results in code that stores the value of the variable total back
to memory in every iteration. The loop shown in Listing 2.46 comes from the code
compiled at a low level of optimization.

Listing 2.46 Loop Containing Store Operation Because of Potential Aliasing

top:
1dd [$01],%£0 ! Load of array[i]
add %04,1,%04 ! Increment i
add %$0l1,8,%01 ! Increment pointer to array[i];
cmp %04,%05 ! Check for end of loop
faddd $f2,%£0,%f4 ! Perform addition
std $f4,[%00] ! Store of the variable total
bl,a,pt %icc,top ! Loop to top
ldd [%00],%£f2 ! Reload of the variable total

At higher levels of optimization, the compiler can version the loop so that the version
that performs the store to memory can be avoided if the loop contains no alias. Listing
2.47 shows the equivalent source code.

Listing 2.47 Source Code Showing Two Versions of Loop with Potential Pointer Aliasing

void sum(double * total, double * array, int len)

{
if ((total < array) || (total > array + len))
{
double tmp = *total;
for (int i=0; i<len; i++)
{
tmp += array[i];
}
*total = tmp;
}
else

for (int i=0; i<len; i++)
{

*total += array[i];

The modified source code uses a temporary variable to hold the calculated value so
that the compiler knows that no aliasing is possible. This is a good technique to use in
order to avoid possible aliasing issues with pointers to global data.

Download at www.wowebook.com

72

Chapter 2 Coding for Performance

There are two fundamental performance issues in the presence of potential aliasing.
The first is illustrated in the example disassembly in Listing 2.46. Aliasing requires the
compiler to include unnecessary stores or loads of variables. It is possible to identify this
problem by counting the generated memory operations and confirming that they corre-
spond to the expected number from the source code.

The second issue is more subtle and involves the ability of the compiler to reorder
instructions. Often, a compiler will move loads earlier in the instruction stream to give
them more time to complete and move stores to later in the instruction stream to give
more time for the instruction feeding data to them to complete. Unfortunately, aliasing
issues limit the ability of the compiler to do this. When the disassembly is viewed, the
problem appears as a store instruction followed immediately by a load instruction. This
schedule ensures the correct memory ordering, but it may not be optimal for perform-
ance. Listing 2.48 shows this problem.

Listing 2.48 Code with Potential Aliasing Issues

void func(int * a, int * b)
{

(*¥a)++;

(*b)++;

When compiled, this code produces the SPARC assembly code shown in Listing 2.49.

Listing 2.49 SPARC Assembly Code Produced in the Presence of Possible
Pointer Aliasing

1d [$00],%05 ! Load *a
add %o05,1,%05
st %05,[%00] Store *a // Store of first variable
1d [%01],%04 ! Load *b // Load of second variable
add %o04,1,%03
st %03,[%01]

Increment

Increment
Store *b

The store of the variable a needs to be completed before the load of the variable b is
issued. The code shown in Listing 2.50 has no pointer aliasing problems.

Listing 2.50 Code with No Aliasing Problems

void func(int * a)
{

a[0]++;

a[l]++;

Download at www.wowebook.com

The Role of the Compiler 73

Compiling the code shown in Listing 2.50 produces the SPARC assembly code
shown in Listing 2.51.

Listing 2.51 SPARC Assembly Code Produced in the Absence of Pointer Aliasing

1d [$00],%05 ! Load a[0]

ld [200+4],%04 ! Load a[l] // Load of second variable
add %o05,1,%05
st %05, [%00]
add %o04,1,%03
st %03, [%01]

Increment
Store a[0] // Store of first variable
Increment
Store a[l]

Because the compiler is able to tell that there is no aliasing between the two opera-
tions, it can reorder the instructions to ensure that both loads start as early as possible.

A bigger problem with aliasing is that it often inhibits the compiler’s ability to per-
form complex transformations of the code. Once a code has more than two streams of
input data, it becomes very difficult to produce runtime code that dynamically checks
for aliasing issues. For instance, the compiler would find runtime checking for aliasing
difficult for the code shown in Listing 2.52. In this code, the matrix a is accessed con-
tiguously so the compiler has knowledge of the range of memory that will be modified.
The matrix b is accessed through the first index, which is a pointer into multiple arrays.
Any of these arrays might overlap with the one pointed to by a.

Listing 2.52 Code Where Code Runtime Checking of Aliasing Is Difficult

void add(double **a, double **b)
{

for(int i=0; i<100; i++)
for(int j=0; 3j<100; j++)
a[i][j] += b[]1[i];

There are multiple ways to avoid aliasing issues. The first is to use local or stack-based
variables. The compiler knows that these variables cannot alias with global variables;
therefore, it can produce code based on this knowledge. For scalar variables with aliasing
problems, this can often be the simplest solution.

Another approach is to advise the compiler what assumptions it is allowed to make
about the code.The Solaris Studio compiler supports the flag -xalias_level=<level>,
which allows the developer to specify, per file, the degree of aliasing that the code uses.
The compiler also supports the flag —~xrestrict, which tells the compiler that pointers
passed into functions do not alias. Incidentally, this is the default for the Fortran standard.
The gcc compiler supports the flag ~fansi_alias, which tells the compiler that the
code has aliasing that conforms to the C standard. The biggest issue with these flags is
that they specify aliasing at the file or whole application level, and for large applications
it can be difficult or impossible to prove that applying the flags is safe.

Download at www.wowebook.com

74

Chapter 2 Coding for Performance

Compilers often support pragmas or directives that can be added to the source code
to indicate the degree of aliasing at a function level. The finer level of control means that
the directives can be added in places (a) where the biggest performance impact is seen
and (b) where the developer can be certain that aliasing does not occur. However, com-
piler pragmas or directives are rarely the same across multiple compilers, so using them may
lead to code that only compiles with a particular compiler and is not portable to others.

The most eftective solution to the aliasing problem for C-language programs may be
the restrict keyword. This enables the developer to use restrict-qualified pointers. These
tell the compiler that no other pointers point to the same memory at the position in the
code where the pointer is assigned. This is most useful for when pointers are passed into
functions. Listing 2.53 shows the code from Listing 2.52 modified to use the restrict
keyword.

Listing 2.53 Code Modified to Use the restrict Keyword

void add(double ** restrict a, double ** restrict b)

{

for(int i=0; i<100; i++)
for(int j=0; j<100; j++)
a[il[j1 += brjlrin;

The fact that either array a or b is restrict-qualified means that there is no aliasing
between the arrays and means the compiler can generate more efficient code.

Identifying Where Time Is Spent Using Profiling

As soon as it is possible to run the application with meaningful results, a runtime profile
of the application should be collected. Profiling is important for multiple reasons, the
most fundamental of which is that what is not measured is not managed. If the performance
of the application is not monitored as it develops, then there is no mechanism to identify
changes that impact the performance of the application. However, there are other reasons
for doing this:

» Verifying that the time is mainly spent in the functionally critical part of the code.
Applications will go through multiple states at runtime, some concerned with
start-up or teardown, but there will be a critical core of functionality that actually
defines the purpose of the application. The time should be spent in the critical sec-
tions of the code and not in the parts of the code that facilitate the critical code.
Imagine an application that loads data from a database, performs some analysis of
that data, and then produces a chart as output. Time spent doing the analysis is
probably the critical purpose of the application, and the bulk of the time should be
spent there. The other sections of code should be completed as quickly as possible.
If this is not the case, then you might question the code used in those stages.

Download at www.wowebook.com

Identifying Where Time Is Spent Using Profiling 75

Depending on where the time is spent, this might be the method of retrieving the
data or the complexity of the charts being printed.

= Avoid time spent in noncritical or error-handling code. A frequent performance
sink for applications is code that shouldn’t be executed. This might be exception-
handling code, writing error messages to stderr, or code that was meant to only
handle corner cases. Once an application is profiled, it is relatively easy to identify
sections of the code that were not expected to be visible in the profile.

» Checking the distribution of time between user, system, and other program states.
Some applications will spend significant time in system code or some kind of
waiting. System time might be necessary for the application to perform its task, but
it can be an indication of something either going wrong or being poorly coded.
An application might spend system time calling a heavyweight function to get the
data for a time stamp when a lighter-weight alternative exists. Similarly, an applica-
tion might spend significant time waiting for data to be returned across the net-
work or waiting for the screen to be redrawn; performance might be improved by
having a second thread carry on with computation while the main thread is in the
wait state.

= Detecting time spent in exceptional conditions. These might be software traps to
handle floating-point calculations involving subnormal numbers, or they could be
something as mundane as TLB misses. These conditions are often hard to detect
because they may not cause additional system time, but they are detectable either
through observation using hardware counters or by careful examination of the
exact assembly language instruction where the time is attributed.

Profiling applications as they are written and used is probably the most effective way
of managing the performance of the application and should be routinely done during
the development cycle as well as after any changes are made to the application.

Commonly Available Profiling Tools

Most modern profiling tools do not require you to do anything special to the applica-
tion. However, it is often beneficial to build the application with debug information. The
debug information can enable the tools to aggregate runtime at the level of individual
lines of source code. There are also two common approaches to profiling.

The first approach is system-wide profiling. This is the approach taken by tools such
as Intel’s VTune, AMD’s CodeAnalyst, and the open source profiling tool oprofile.The
entire system is inspected, and timing information is gathered for all the processes run-
ning on the system. This is a very useful approach when there are a number of coordi-
nating applications running on the system. During the analysis of the data, it is normal to
focus on a single application.

Figure 2.9 shows the output from the AMD CodeAnalyst listing all the active
processes on the system.

Download at www.wowebook.com

76 Chapter 2 Coding for Performance

(Session 107=Session 105 thp

- |timer-based profile V“ IManage]
Syskemn Data || Syskem Graph | Processes

o =}

Process Mame &4-bit | Timer samples ™
- loop.exe 59,74
- Float.exe 35.61
- Codefnalyst.exe 0.7z
- unknown module pidi4) 0.71
- SMcGEUiLexe 0.6
- unknown module pid{1404) 0.58
- WCExpress, exe 0.4
- unknown module pid{1400) 0.28
- unknown module pid{2768) 0.24
- Explorer EXE 0.21
- soffice.bin 0.21

Figure 2.9 AMD CodeAnalyst’s list of amount of time consumed by each
running application

In this instance, there are two applications using up almost all of the CPU resources
between them.

The second common approach is to profile just the application of interest. This
approach is exemplified by the Solaris Studio Performance Analyzer. Profiling a single
application enables the user to focus entirely on that application and not be distracted by
the other activity on the system.

Regardless of the tool used, there are a common set of necessary and useful features.
The most critical feature is probably the profile of the time spent in each function.
Figure 2.10 shows the time spent in each function as reported by the Solaris Studio
Performance Analyzer.

The profile for this code shows that about 70% of the user time is spent in the rou-
tine calc() with the remainder spent in the routine _ write().

Profile data at the function level can be useful for confirming that time is being spent
in the expected routines. However, more detail is usually necessary in order to improve the
application. Figure 2.11 shows time attributed to lines of source in the AMD CodeAnalyzer.

l/Functions rCaIIers—CaIIees rSource rDisassemth rTimeIine rExperimems |

52 User | S User | Name
CPU CPU

W o(=ec.) (sec.)
2,200 2,200 <Totals
1.320 1.320 calc
0,880 0.880 _write
0. 2,200 main
0. 0.880 _ndoprnt
0. 0,880 printT
0. 2,200 _start
0. 0,880 write
0. 0.880 _xflshuf

Figure 2.10 Solaris Studio Performance Analyzer showing hot functions

Download at www.wowebook.com

Address
= Ox4113c0

Ox4113c0
0:x4113de
Ox4113e3

0:x4113fe
Ox411407
Ox411409
Ox41140c
= Ox411430

Identifying Where Time Is Spent Using Profiling

Line | Trace Source

calc

/f float.cpp : Defines the entry po.

I
#include "stdafx.h"
double cale(double d)

{
double total=0.0;

for (int i=0; i<10000000;.

{
total+=d;
i
return d;
i
dotwark

void doWork()

Code Bytes

Figure 2.11 AMD’s CodeAnalyzer showing time attributed to

lines of source

Timer samples
100

oo oooooo

941

75.15
15.44

oo

o

Using the source-level profile, most developers can make decisions about how to

restructure their code to improve performance. It can also be reassuring to drop down

into assembly code level to examine the quality of the code produced by the compiler

and to identify the particular operations that are taking up the time. At the assembly

code level, it is possible to identify problems such as pointer aliasing producing subopti-

mal code, memory operations taking excessive amounts of time, or other instructions

that are contributing significant time. Figure 2.12 shows the disassembly view from the
AMD CodeAnalyst.

Address

0:x4113de
Ox4113e3
Ox4113e3
Ox4113ea
Ox4113ec
0:x4113ef
0:x4113F2
0:4113F5
0:x4113Fc

B

= 0:x4113fe
0x4113fe

Ox411401

411404

= Ox411407
0411407

Ox411409
Ox41140c

= Ox411430

Line Trace Source

double cale(double d)

double total=0.0;

Code Bytes

for (int i=0; i<10000000;.

mov [ebp-18h] , 00000000k
mp §+0bh [Ox4113£5)
mov eax, [ehp-18h]
add eax,01h
mov [ebp-18h] , eax
cmp [ehp-18h] , 009896800
dnl §+0dh ([0x411403)

{

total+=d;

fld gword [ebp-0ch]
fadd gword [ebp+03h]
f=tp guword [ebp-0ch]

i
Jmp §-1bh (Ox1004113ec)

return d;
i
dotwark

CP45ES00000...

EE 09

B 45 ES
830001
G945 ES

S17DESGS096 9.,

70 0B

DD 45 F4
DiC 45 05
DD 50 F4

EEEZ

Timer samples

4.04
1.25

4.1z

75.15
0.94
65,27
§.95
15.44
15.44

Figure 2.12 AMD’s CodeAnalyst showing time attributed to individual

instructions

Download at www.wowebook.com

77

78

Chapter 2 Coding for Performance

4. & fx1h5d Axlca?

Self Line & Code

18

CETUrT GUTU;

[Source J[A;semnly][_ Both J

! Comment

19

1

int inset(double ix, double iy)
{

I Early exit

int iterations=@;

double x-ix, y=iy, x2-x®x, yl-y*y;
while ((x24yZ<d) A& Citerations<1@@@))

X = x2 - y2 4 ix;

21.4% 38 x2 = x * x;
8.2% 31 yZ-y®y; This loep containg ecalar Hcm!ng-polnl computation. if you
| = . spend a large amount of time in this loop (le. it showsupasa
9.2% 32 1terationsii; hotspot in a time profile), and it does a significant amount of
33 1 n, you may be able o use SSE instructions fo
8.1% 34 return iterations; improve periormance. Consider using ICC of -firee-vectorize
0.1% 15|} with GCC to automatically generate SIMD code.
36 LY sl
37 |void worker(void ®arg) | 4
ETYE I 1
2629 of 21972 (12.0%) self samples, 1 of 51 (1.1%) lines selected
File: | (100.0%) main.c -] Function: | inset() =
o

Figure 2.13 Apple’s Shark profiling tool offering suggestions for

performance improvement

Some tools are able to provide suggestions on how to improve the performance of

the application. Figure 2.13 shows output from Apple’s Shark tool, which suggests

improving performance by recompiling the application to use SSE instructions.

Many performance problems can be analyzed and solved at the level of lines of source

code. However, in some instances, the problem is related to how the routine is used. In

this situation, it becomes important to see the call stack for a routine. Figure 2.14 shows

a call chart from Intel’s Vtune tool. The figure shows two threads in the application and

indicates the caller-callee relationship between the functions called by the two threads.

An alternative way of presenting caller-callee data is from the Oracle Solaris Studio

Performance Analyzer, as shown in Figure 2.15. This hierarchical view allows the user to

drill down into the hottest regions of code.

Another view of the data that can be particularly useful is the time line view. This

shows program activity over time. Figure 2.16 shows the time live view from the Solaris

Studio Performance Analyzer. In this case, the time line view shows both thread activity,

which corresponds to the shaded region of the horizontal bars, together with call stack

information, indicated by the different colors used to shade the bars. Examining the run

of an application over time can highlight issues when the behavior of an application

changes during the run. An example of this might be an application that develops a great

demand for memory at some point in its execution and consequently spends a period of

its runtime exclusively in memory allocation code.

Download at www.wowebook.com

Identifying Where Time Is Spent Using Profiling 79

B0 Fi o D4 1 ST 20 1) 5
Conrtar Mordos Rpsuds - Fi Jul Thesad_O(I0ED] - Tetsl
Fador, 4 218011 2000 S oL Theead Dr1C60

B Fun 1

UL LMHALTE

ST TR AN

5 20 FiJun 04 216042 2000 Samr

B Fun1

BaseProcessintPostimeon

Figure 2.14 Call graph information from Vtune

f Functions rCaIIers—CaIIees r Call Trei Source rDisassemhly r OpenMP Parallel Region r OpenMP ... ¥ |

4
-3 Call Tree: FUNCTIONS. Complete view. Metric: Attributed User CPU Time :
¢] 10.737 (100% <Total>
¢] 10.737 (100% _start
¢] 10.737 (100%) main
o3 10.647 (99%) calculate
10497 o7 msed
D 0.0 (0%) <OMP-implicit_barrier>
¢] 0.080 (1% draw
3 0.080 (1% XAllocColor
¢] 0.080 (1% _XReply
o= 0.060 (1% _XRead
~[J 0010 (0% _XFlushint
¢ 3 0.010 (0% setup
=3 0.010 (0% malloc
¢] 00 (0% end
=3 0.0 (0% XMNextEvent
[} 00 ©% <OMP-idie>

Figure 2.15 Call tree shown in the Oracle Solaris Studio Performance Analyzer

Download at www.wowebook.com

80

Chapter 2 Coding for Performance

File View Timeline Help

STLB8SET PVe Fing | Texe =
[allers-Callees | Call Tree | Source | Disassembly | OpenMP Pasallel Region | OpenMP Task | Timeline | <[5! Summary | Event

)u.| 1 4 3 4 H |5 7 L] 8 10 n 12 13
T e Tl A e e P e T L oy 5 i n 5

CE N L — -
by [

LT N | -
@
(&) H

Timeline Selected Event
& dka® aaaq

Experiment Mames TeoT
Event Type: ©
Leaf Fupction: ¢
Timestamp (seck 5.80

LWP 1

Threat 1

£PLE O

L.or
Profiling hata

Duration gmseck 10007
Micro States User CPU

Call Stack for Selected Fvent

. inset + Ox00000159, line 117 in "main.c’
calculate -~ Parallel loop from line 130 [_$d1A130
run_job_invoke_mfunc_ondce + 0x00000304
MasterFundtion + UxD0000E/ 3
—-mt_MasterFundlion_od_ + 0x00000020
calculate + OxO000000E 7, line 130 in "main.c”
main + 0x0000001%, line 149 In "main.c’

start + Ox00000078

Figure 2.16 Time line view of thread activity from the Oracle
Performance Analyzer

A similar view is available from Apple’s Instruments tool, as shown in Figure 2.17. An
instrument 1s the name given to a tool that gathers data about processor, disk, network,
and memory usage over the run of an application. This particular example shows proces-
sor utilization by the two threads over the run of the application. The time line view is
particularly useful for multithreaded applications. To get the best performance, the work
needs to be evenly divided between all threads. The time line view is a quick way of
telling whether some threads are more active than others. It can also be useful for codes
where a synchronization event, such as garbage collection in the case of Java, causes most
of the threads in an application to pause.

Performance analysis tools are critical in producing optimal serial and parallel codes.
Consequently, it is important to become familiar with the tools available on your system.
For serial codes, a performance analysis tool will identify the region of code that needs
to be improved to increase the performance of an application. For parallel codes, they
will allow you to identify regions of code where the parallelization could be improved
or where the work could be better distributed across the available processors or threads.

How Not to Optimize

When people talk about optimizing an application, there is a temptation to immediately
think of recoding the hot routines in assembly language or of reaching for one of the

Download at www.wowebook.com

How Not to Optimize 81

anNnnm Instruments []
(W(e)@) (musnser] (]S .-»-J| 00:00:26 © Im (B3] (=) (m)

Instruments _rmr_'oo : v
i —

Mok

% Time Profiler

[F1] @
Tirme Profiler - MandelProj Self Run % Rurming % ims Runningw | Library Symbol Name
* Sample Perspective { 96.7 6.7 15860.0 MandelProj Finset
All Sample Counts 2.8 28 496.0 MandeiPro) Pworker ©
ple Times 0.4 0.4 710 Mﬂnﬂqlm Fmain
o [} 5.0 libSystem Bdylib »_exit
 Separate by Thread
& rvert Call Tree
 Hide Missing Symbols.
) Hide System Libraries
O Show Obj-C Only
I Flatten Recursion
Call Tree Consuraints
i Specific Data Mining
¥ Active Thread
Al Threads
. - . LR = =il
#-|"w | 3 B | = |83)= | 4= | O | Samples Q- Involves Symbol

Figure 2.17 Time line information from Apple’s Instruments

many books about performance optimization that talk about loop unrolling, invariant
hoisting, and so on.

These do not represent the best place to start. In general, it is best to avoid optimiza-
tions that make the code less easy to read. The best approach is to make minimal changes
to the source code or to select improved compiler flags.

It used to be the case that optimization did mean writing in assembly language or
manually applying loop transformations in the source. That is why books on optimiza-
tions typically have extensive coverage of these topics. However, these optimizations are
usually trivial for any modern compiler to do, given the right flags. Using the compiler
to do the optimization has several benefits:

= First, the compiler will get the optimization correct. Manually undertaking com-
plex instructions can potentially lead to bugs.

= The second benefit is that the code remains manageable. If the details of algorithm
change, it will require only the minimal number of modifications to the source
code, and the compiler will reapply the same optimization.

= There is a third benefit—that the compiler will do the optimization only if it 1s
likely to result in a performance gain. Some optimizations might be a help on one
processor but result in performance loss on a difterent processor.

Download at www.wowebook.com

82

Chapter 2 Coding for Performance

Therefore, the important steps are to identify where the time is spent and then deter-
mine why the compiler isn’t performing an optimization. Often, solving the problem is
simply a minor change to the source code or the addition of a compiler flag.

Having said all that, there will be situations where it is impossible to coax optimal
code out of the compiler and where manually optimizing the code is unavoidable.
However, even before doing this, consider the gain that the optimization will provide.
Doubling the performance of part of the code where 10% of the runtime is spent will
result in a 5% gain in performance. This gain needs to be considered in light of the time
spent rewriting the code to get the gain and the maintenance costs of the new code.

Performance by Design

This chapter has outlined a number of different places in the design process that impact
performance. One way of visualizing this is to realize that there is a maximum possible
performance for a given combination of system and problem to be solved. The choices
made during design and implementation will either lead to the system meeting this
maximum upper bound or cause the performance to be below this.

Decisions made early in the design process potentially have the largest impact on the
performance of the application. The choice of algorithm can completely change the way
the application behaves as the size of the problem increases. Similarly, a poor choice of
algorithm can limit the scaling of the application as the number of available cores
increases.

In many cases, it is possible to write the application in such a way as to encapsulate
the choice of algorithm for critical parts of the code so that if it becomes critical to per-
formance, it can be replaced at a later point. With careful consideration, the code can be
structured so that the compiler can optimize away any inefficiencies introduced by this
encapsulation.

With all design processes, it is usually easy to make significant changes early in the
design process rather than later. Change introduced earlier takes less effort to implement
and is cheaper than late-introduced fixes. Hence, early consideration given to appropriate
workloads and use cases will lead to better choices during design and implementation.

All too often, performance tuning is considered at the point just before the applica-
tion ships or at the point that it becomes obvious that the application is too slow. At this
stage, it can be hard, and costly, to make the changes that are necessary to improve per-
formance. Figure 2.18 shows the traditional view of the impact of change over the
development cycle of an application.

Some program modifications are relatively easy to do at the end of the development
cycle, such as changing the compiler flags, but the impact is likely to be small. Other
actions, such as implementing a new algorithm, will have much higher costs if per-
formed at the end of the project but could have a much greater impact. Ideally, such
high-impact work should be completed early where it incurs less cost.

Download at www.wowebook.com

Summary 83

Figure 2.18 Cost of change and impact on performance over project
life cycle

Summary

From this chapter you should have gained an understanding of how performance needs
to be engineered into an application. Understanding the desirable performance charac-
teristics of the solution to the problem will help guide development of a product that
will meet those characteristics. That performance can be reduced by a poor choice of
algorithms, data structures, compiler flags, or other decisions made during the process of
design and implementation. Rectifying these decisions has engineering costs, and the
later fixes have greater cost.

You should have gained an appreciation of how a compiler can be used to produce
the best code possible and how good development practices can enable the compiler to
do a better job.

One important point to take away from this chapter is that it is important to profile
an application during the development process to ensure both that it is fast enough to
meet the acceptance criteria and that it is spending its runtime in useful work and not
suboptimal code.

Download at www.wowebook.com

This page intentionally left blank

Download at www.wowebook.com

3

Identifying Opportunities
for Parallelism

This chapter discusses parallelism, from the use of virtualization to support multiple
operating systems to the use of multiple threads within a single application. It also covers
the concepts involved in writing parallel programs, some ways of visualizing parallel
tasks, and ways of architecting parallel applications. The chapter continues with a discus-
sion of various parallelization strategies, or patterns. It concludes by examining some of
the limitations to parallelization. By the end of the chapter, you should be in a position
to understand some of the ways that a system can support multiple applications and that
an existing application might be modified to utilize multiple threads.You will also be
able to identify places in the code where parallelization might be applicable.

Using Multiple Processes to Improve System
Productivity

Consider a home computer system. This will probably have only one active user at a
time, but that user might be running a number of applications simultaneously. A system
where there is a single core produces the illusion of simultaneous execution of multiple
applications by switching between the active applications many times every second. A
multicore system has the advantage of being able to truly run multiple applications at the
same time.

A typical example of this happens when surfing the Web and checking e-mail. You
may have an e-mail client downloading your e-mail while at the same time your
browser is rendering a web page in the background. Although these applications will uti-
lize multiple threads, they do not tend to require much processor time; their perform-
ance is typically dominated by the time it takes to download mail or web pages from
remote machines. For these applications, even a single-core processor often provides suf-
ficient processing power to produce a good user experience. However, a single-core
processor can get saturated if the e-mail client is indexing mail while an animation-

heavy web page is being displayed.

Download at www.wowebook.com

86

Chapter 3 Identifying Opportunities for Parallelism

In fact, these applications will probably already take advantage of multiple threads.
Figure 3.1 shows a newly opened instance of Mozilla Firefox launching 20 threads. A
consequence of this is that just by having a multicore processor, the performance of the
system will improve because multiples of those threads can be executed simultaneously—
and this requires no change to the existing applications.

Alternatively, there are a number of tasks we perform on our personal computer sys-
tems that are inherently compute intensive, such as playing computer games, encoding
audio for an MP3 player, transforming one video format into another suitable for burn-
ing to DVD, and so on. In these instances, having multiple cores can enable the work to
take less time by utilizing additional cores or can keep the system responsive while the
task is completed in the background.

Figure 3.2 shows the system stack when a single user runs multiple applications on a
system.

=il
TCRIIP I Security I Environment I Skrings |
Image I Performance I Performance Graph Threads
Count: 20
7D [cPu| cSwit. ~ | StatéAddiess |
3568 521 wgusb.cpl+0x19(0

110 MOZCRT13. dllendthreadex-+0xal

fi +[]| 0

5 MOZCRT19.dilendthreadex+0xal
MOZCRT19.dllendthreadex+0xal
MOZCRT19.dllendthreadex+0xal
‘MM, dllFlayS oundw'+ 047 7h
sl dil gfsdSurface:: SurfaceD estroyFun...
mawzock, dilwSPStartup+04102b
MOZCRT19.dllendthreadex+0xal
MOZCRT19.dllendthreadex+0xal
kemel32.dl CreateT hread+0x22
MOZCRT19.dllendthreadex+0xal
MOZCRT19.dllendthreadex+0xal
MOZCRT19.dllendthreadex+0xal
MOZCRT19.dllendthreadex+0xal
wdmaud. drvlmidk ezsage+ 0306
ADVAPI32 ditw miFreeBuffer+0xa?

MOZCRT19.dllendthreadex+0xal

RPCRT4.dIll_RpcBCacheFree+0x5ea

Thread I 1552 Stack. Module
Skark: Time: WIN4IPM 6f17/2010

State: ‘Waik:WrllserRequest Base Priority: g

Kernel Time: 0:00:00,954 Drynarnic Prioriby: 10

User Time: 0:00:01.234

Context Switches: 7,073

Permissions | Kill | Suspend |

OF Cancel |

4

Figure 3.1 Windows Process Explorer showing thread activity in
Mozilla Firefox

Download at www.wowebook.com

Multiple Users Utilizing a Single System 87

User

App1 App2

Operating
system

Hardware

Figure 3.2 Single user on system

It is also possible to have multiple users in a home environment. For example, on
Windows, it is quite possible for one user to be logged in and using the computer while
another user, having logged in earlier, has set some other applications running. For
example, you may have left some DVD-authoring package running in the background
while another user logs into their account to check their e-mail.

Multiple Users Utilizing a Single System

In business and enterprise computing, it is much more common to encounter systems
with multiple simultaneous users. This is often because the computer and software being
shared are more powerful and more costly than the typical consumer system. To maxi-
mize efficiency, a business might maintain a database on a single shared system. Multiple
users can simultaneously access this system to add or retrieve data. These users might just
as easily be other applications as well as humans.

For many years, multiuser operating systems like UNIX and Linux have enabled shar-
ing of compute resources between multiple users. Each user gets a “slice” of the available
compute resources. In this way, multicore systems provide more compute resources for
the users to share.

Figure 3.3 illustrates the situation with multiple users of the same system.

Multicore systems can be very well utilized running multiple applications, running
multiple copies of the same application, and supporting multiple simultaneous users. To
the OS, these are all just multiple processes, and they will all benefit from the capabilities
of a multicore system.

Multiuser operating systems enforce separation between the applications run by dif-
ferent users. If a program one user was running were to cause other applications to crash
or to write randomly to disk, the damage is limited to only those applications owned by
that user or the disk space they have permission to change.

Download at www.wowebook.com

88

Chapter 3 Identifying Opportunities for Parallelism

User 1 User 2

App1 App2 App1 App2

Operating
system

Hardware

Figure 3.3 A single system supporting multiple users

Such containment and security is critical for supporting multiple simultaneous users.
As the number of users increases, so does the chance that one of them will do something
that could “damage” the rest of the system. This could be something as simple as deleting
critical files or enabling someone to get unauthorized access to the system.

Improving Machine Efficiency Through
Consolidation

Multicore computing is really just the continuing development of more powerful system
architectures. Tasks that used to require a dedicated machine can now be performed
using a single core of a multicore machine. This is a new opportunity to consolidate
multiple tasks from multiple separate machines down to a single multicore machine. An
example might be using a single machine for both a web server and e-mail where previ-
ously these functions would be running on their own dedicated machines.

There are many ways to achieve this. The simplest would be to log into the machine
and start both the e-mail and web server. However, for security reasons, it is often neces-
sary to keep these functions separated. It would be unfortunate if it were possible to send
a suitably formed request to the web server allowing it to retrieve someone’s e-mail
archive.

The obvious solution would be to run both servers as difterent users. This could use
the default access control system to stop the web server from getting access to the e-mail
server’s file. This would work, but it does not guard against user error. For example,
someone might accidentally put one of the mail server’s files under the wrong permis-
sions, leaving the mail open to reading or perhaps leaving it possible to install a back
door into the system. For this reason, smarter technologies have evolved to provide bet-
ter separation between processes running on the same machine.

Download at www.wowebook.com

Improving Machine Efficiency Through Consolidation 89

Using Containers to Isolate Applications Sharing a Single System

One such technology is containerization. The implementations depend on the particular
operating system, for example, Solaris has Zones, whereas FreeBSD has Jails, but the con-
cept is the same. A control container manages the host operating system, along with a
multitude of guest containers. Each guest container appears to be a complete operating
system instance in its own right, and an application running in a guest container cannot
see other applications on the system either in other guest containers or in the control
container. The guests do not even share disk space; each guest container can appear to
have its own root directory system.

The implementation of the technology is really a single instance of the operating sys-
tem, and the illusion of containers is maintained by hiding applications or resources that
are outside of the guest container. The advantage of this implementation is very low
overhead, so performance comes very close to that of the full system. The disadvantage
is that the single operating system image represents a single point of failure. If the operat-
ing system crashes, then all the guests also crash, since they also share the same image.
Figure 3.4 illustrates containerization.

Guest container 1 Guest container 2

User User User User
1 2 3 4

Host operating
system

Hardware

Figure 3.4 Using containers to host multiple guest operating systems in
one system

Hosting Multiple Operating Systems Using Hypervisors

Two other approaches that enforce better isolation between guests’ operating systems also
remove the restriction that the guests run the same operating system as the host. These
approaches are known as type 1 and type 2 hypervisors.

Type 1 hypervisors replace the host operating system with a very lightweight but
high-level system supervisor system, or hypervisor, that can load and initiate multiple
operating system instances on its own. Each operating system instance is entirely isolated
from the others while sharing the same hardware.

Download at www.wowebook.com

90

Chapter 3 Identifying Opportunities for Parallelism

Each operating system appears to have access to its own machine. It is not apparent,
from within the operating system, that the hardware is being shared. The hardware has
effectively been virtualized, in that the guest operating system will believe it is running
on whatever type of hardware the hypervisor indicates.

This provides the isolation that is needed for ensuring both security and robustness,
while at the same time making it possible to run multiple copies of different operating
systems as guests on the same host. Each guest believes that the entire hardware resources
of the machine are available. Examples of this kind of hypervisor are the Logical
Domains provided on the Sun UltraSPARC T'1 and T2 product lines or the Xen hyper-
visor software on x86. Figure 3.5 illustrates a type 1 hypervisor.

Guest Guest
operating system 1 | operating system 2

User User User User
1 2 3 4
Hypervisor
Hardware

Figure 3.5 Type 1 hypervisor

A type 2 hypervisor is actually a normal user application running on top of a host
operating system. The hypervisor software is architected to host other operating systems.
Good examples of type 2 hypervisors are the open source VirtualBox software, VMware,
or the Parallels software for the Apple Macintosh. Figure 3.6 illustrates a type 2 hypervisor.

Clearly, it is also possible to combine these strategies and have a system that supports
multiple levels of virtualization, although this might not be good for overall performance.

Even though these strategies are complex, it is worth exploring why virtualization is
an appealing technology.

= Security. In a virtualized or containerized environment, it is very hard for an
application in one virtualized operating system to obtain access to data held in a
different one. This also applies to operating systems being hacked; the damage that
a hacker can do is constrained by what is visible to them from the operating sys-
tem that they hacked into.

= Robustness. With virtualization, a fault in a guest operating system can affect
only those applications running on that operating system, not other applications
running in other guest operating systems.

Download at www.wowebook.com

Improving Machine Efficiency Through Consolidation 91

User
Type 2 hypervisor
Guest Guest
operating operating
system 1 system 2

Host operating
system

Hardware

Figure 3.6 Type 2 hypervisor

Configuration isolation. Some applications expect to be configured in particular
ways: They might always expect to be installed in the same place or find their con-
figuration parameters in the same place. With virtualization, each instance believes it
has the entire system to itself, so it can be installed in one place and not interfere with
another instance running on the same host system in a different virtualized container.

Restricted control. A user or application can be given root access to an instance
of a virtualized operating system, but this does not give them absolute control over
the entire system.

Replication. There are situations, such as running a computer lab, where it is nec-
essary to be able to quickly reproduce multiple instances of an identical configura-
tion. Virtualization can save the effort of performing clean reinstalls of an operating
system. A new guest operating system can be started, providing a new instance of
the operating system. This new instance can even use a preconfigured image, so it
can be up and running easily.

Experimentation. It is very easy to distribute a virtualized image of an operating
system. This means a user can try a new operating system without doing any dam-
age to their existing configuration.

Hardware isolation. In some cases, it is possible to take the running image of a
virtualized operating system and move that to a new machine. This means that old
or broken hardware can be switched out without having to make changes to the
software running on it.

Scaling. It is possible to dynamically respond to increased requests for work by
starting up more virtual images. For example, a company might provide a web-
hosted computation on-demand service. Demand for the service might peak on
weekday evenings but be very low the rest of the time. Using virtualization, it

Download at www.wowebook.com

92 Chapter 3 Identifying Opportunities for Parallelism

would be possible to start up new virtual machines to handle the load at the times
when the demand increases.

= Consolidation. One of the biggest plays for virtualization is that of consolidating
multiple old machines down to fewer new machines. Virtualization can take the
existing applications, and their host operating systems can move them to a new
host. Since the application is moved with its host operating system, the transition is
more likely to be smooth than if the application had to be reconfigured for a new
environment.

All these characteristics of virtualization make it a good fit for cloud computing. Cloud
computing is a service provided by a remote farm of machines. Using virtualization, each
user can be presented with root access to an unshared virtual machine. The number of
machines can be scaled to match the demand for their service, and new machines can
quickly be brought into service by replicating an existing setup. Finally, the software is
isolated from the physical hardware that it is running on, so it can easily be moved to
new hardware as the farm evolves.

Using Parallelism to Improve the Performance of
a Single Task

Virtualization provides one way of utilizing a multicore or multiprocessor system by
extracting parallelism at the highest level: running multiple tasks or applications simulta-
neously. For a user, a compelling feature of virtualization is that utilizing this level of par-
allelism becomes largely an administrative task.

But the deeper question for software developers is how multiple cores can be
employed to improve the throughput or computational speed of a single application. The
next section discusses a more tightly integrated parallelism for enabling such perform-
ance gains.

One Approach to Visualizing Parallel Applications

One way to visualize parallelization conceptually is to imagine that there are two of you;
each thinks the same thoughts and behaves in the same way. Potentially, you could
achieve twice as much as one of you currently does, but there are definitely some issues
that the two of you will have to face.

You might imagine that your double could go out to work while you stay at home
and read books. In this situation, you are implicitly controlling your double: You tell
them what to do.

However, if you’re both identical, then your double would also prefer to stay home
and read while you go out to work. So, perhaps you would have to devise a way to
determine which of you goes to work today—maybe splitting the work so that one
would go one week, and the other the next week.

Download at www.wowebook.com

Using Parallelism to Improve the Performance of a Single Task 93

Of course, there would also be problems on the weekend, when you both would
want to read the same newspaper at the same time. So, perhaps you would need two
copies of the paper or work out some way of sharing it so only one of you had the
paper at a time.

On the other hand, there would be plenty of benefits. You could be painting one
wall, while your double is painting another. One of you could mow the lawn while the
other washes the dishes.You could even work together cooking the dinner; one of you
could be chopping vegetables while the other is frying them.

Although the idea of this kind of double person is fanciful, these examples represent
very real issues that arise when writing parallel applications. As a thought experiment,
imagining two people collaborating on a particular task should help you identify ways to
divide the task and should also indicate some of the issues that result.

The rest of the chapter will explore some of these opportunities and issues in more
detail. However, it will help in visualizing the later parts of the chapter if you can take some
of these more “human” examples and draw the parallels to the computational problems.

Parallelism provides an opportunity to get more work done. This work might be
independent tasks, such as mowing the lawn and washing the dishes. These could corre-
spond to different processes or perhaps even different users utilizing the same system.
Painting the walls of a house requires a little more communication—you might need to
identify which wall to paint next—but generally the two tasks can proceed independ-
ently. However, when it comes to cooking a meal, the tasks are much more tightly cou-
pled. The order in which the vegetables are chopped should correspond to the order in
which they are needed. You might even need messages like “Stop what you’re doing and
get me more olive oil, now!” Preparing a meal requires a high amount of communica-
tion between the two workers.

The more communication is required, the more likely it is that the effect of the two
workers will not be a doubling of performance. An example of communication might be
to indicate which order the vegetables should be prepared in. Inefficiencies might arise
when the person cooking is waiting for the other person to complete chopping the next
needed vegetable.

The issue of accessing resources, for example, both wanting to read the same newspaper,
is another important concern. It can sometimes be avoided by duplicating resources—
both of you having your own copies—but sometimes if there is only a single resource,
we will need to establish a way to share that resource.

In the next section, we will explore this thought experiment further and observe how
the algorithm we use to solve a problem determines how efficiently the problem can be
solved.

How Parallelism Can Change the Choice of Algorithms

Algorithms have characteristics that make them more or less appropriate for a multi-
threaded implementation. For example, suppose you have a deck of playing cards that are
in a random order but you would like to sort them in order. One way to do this would

Download at www.wowebook.com

94

Chapter 3 Identifying Opportunities for Parallelism

be to hold the unsorted cards in one hand and place each card into its appropriate place
in the other hand. There are N cards, and a binary search is needed to locate each card
into its proper place. So, going back to the earlier discussion on algorithmic complexity,
this is an O(n*log(n)) algorithm.

However, suppose you have someone to help, and you each decide to sort half the
pack. If you did that, you would end up with two piles of sorted cards, which you would
then have to combine. To combine them, you could each start with a pile of cards, and
then whoever had the next card could place it onto the single sorted stack. The com-
plexity of the sort part of this algorithm would be O(n*log(n)) (for a value of n that was
half the original), and the combination would be O(n). So although we have increased
the number of “threads,” we do not guarantee a doubling of performance.

An alternative way of doing this would be to take advantage of the fact that playing
cards have an existing and easily discernible order. If instead of sorting the cards, you just
place them at the correct place on a grid. The grid could have the “value” of the card as
the x-axis and the “suit” of the card as the y-axis. This would be an O(n) operation since
the time it takes to place a single card does not depend on the number of cards that are
present in the deck.This method is likely to be slightly slower than keeping the cards in
your hands because you will have to physically reach to place the cards into the appro-
priate places in the grid. However, if you have the benefit of another person helping,
then the deck can again be split into two, and each person would have to sort only half
the cards. Assuming you don’t obstruct each other, you should be able to attain a near
doubling of performance. So, comparing the two algorithms, using the grid method
might be slower for a single person but would scale better with multiple people.

The point here is to demonstrate that the best algorithm for a single thread may not
necessarily correspond to the best parallel algorithm. Further, the best parallel algorithm
may be slower in the serial case than the best serial algorithm.

Proving the complexity of a parallel algorithm is hard in the general case and is typi-
cally handled using approximations. The most common approximation to parallel per-
formance is Amdahl’s law.

Amdahl’s Law

Amdahl’s law is the simplest form of a scaling law. The underlying assumption is that the
performance of the parallel code scales with the number of threads. This is unrealistic, as
we will discuss later, but does provide a basic starting point. If we assume that S repre-
sents the time spent in serial code that cannot be parallelized and P represents the time
spent in code that can be parallelized, then the runtime of the serial application is as
follows:

Runtime =S+ P

The runtime of a parallel version of the application that used N processors would
take the following:

Download at www.wowebook.com

Using Parallelism to Improve the Performance of a Single Task 95

Runtime =S + £
N

It is probably easiest to see the scaling diagrammatically. In Figure 3.7, we represent
the runtime of the serial portion of the code and the portion of the code that can be
made to run in parallel as rectangles.

< Runtime -~

Serial Parallel '

Figure 3.7 Single-threaded runtime

If we use two threads for the parallel portion of the code, then the runtime of that
part of the code will halve, and Figure 3.8 represents the resulting processor activity.

Runtime

Parallel
Parallel

Figure 3.8 Runtime with two threads

If we were to use four threads to run this code, then the resulting processor activity
would resemble Figure 3.9.

3 Runtime >
Serial Parallel
Parallel
Parallel

Parallel

Figure 3.9 Runtime with four threads

There are a couple of things that follow from Amdahl’s law. As the processor count
increases, performance becomes dominated by the serial portion of the application. In

Download at www.wowebook.com

96

Chapter 3 Identifying Opportunities for Parallelism

the limit, the program can run no faster than the duration of the serial part, S. Another
observation is that there are diminishing returns as the number of threads increases: At
some point adding more threads does not make a discernible difference to the total
runtime.

These two observations are probably best illustrated using the chart in Figure 3.10,
which shows the parallel speedup over the serial case for applications that have various
amounts of code that can be parallelized.

Speed up relative to serial case

16
\
\C
o 14 z@
e o\o?
E A e
3 12 ?Q@
s g@olo
2 10 —
s |
3 & _ _-—“’/' Pa\’a\\e\
a -
a
B 6 e —_ el _
o g 90% paralle
n —
4 =
7 70% Parallel
2 o =
S 50% Parallel
0 T T T T T T T T
0 2 4 6 8 10 12 14 16 18

Number of threads

Figure 3.10 Scaling with diminishing parallel regions

If all the code can be made to run in parallel, the scaling is perfect; a code run with
18 threads will be 18x faster than the serial version of the code. However, it is surprising
to see how fast scaling declines as the proportion of code that can be made to run in
parallel drops. If 99% of the application can be converted to parallel code, the application
would scale to about 15x the serial performance with 18 threads. At 95% serial, this
would drop to about 10x the serial performance. If only half the application can be run
in parallel, then the best that can be expected is for performance to double, and the code
would pretty much attain that at a thread count of about 8.

There is another way of using Amdahl’s law, and that is to look at how many threads
an application can scale to given the amount of time it spends in code that can be
parallelized.

Download at www.wowebook.com

Using Parallelism to Improve the Performance of a Single Task 97

Determining the Maximum Practical Threads

If we take Amdahl’s law as a reasonable approximation to application scaling, it becomes
an interesting question to ask how many threads we should expect an application to scale to.

If we have an application that spends only 10% of its time in code that can be paral-
lelized, it is unlikely that we’ll see much noticeable gain when using eight threads over
using four threads. If we assume it took 100 seconds to start with, then four threads
would complete the task in 92.5 seconds, whereas eight threads would take 91.25 sec-
onds. This is just over a second out of a total duration of a minute and a half. In case the
use of seconds might be seen as a way of trivializing the difference, imagine that the
original code took 100 days; then the difference is equivalent to a single day out of a
total duration of three months.

There will be some applications where every last second is critical and it makes sense
to use as many resources as possible to increase the performance to as high as possible.
However, there are probably a large number of applications where a small gain in per-
formance is not worth the effort.

We can analyze this issue assuming that a person has a tolerance, T, within which they
cease to care about a difference in performance. For many people this is probably 10%; if
the performance that they get is within 10% of the best possible, then it is acceptable.
Other groups might have stronger or weaker constraints.

Returning to Amdahl’s law, recall that the runtime of an application that has a pro-
portion P of parallelizable code and S of serial code and that is run with N threads is as
follows:

. P
Runtime, =§+ N

The optimal runtime, when there are an infinite number of threads, is S. So, a run-
time within T percent of the optimal would be as follows:

Acceptable runtime = S*(1+7)

We can compare the acceptable runtime with the runtime with N threads:
S*(1+T)=| S+ L
N

We can then rearrange and solve for N to get the following relationship for N:

Download at www.wowebook.com

98 Chapter 3 Identifying Opportunities for Parallelism

200
180
160 /
140 /
120 /
100

80 /
60 /
o /

20

Minimum number of threads

0 — T 1 T T T T T T T T T T T T T T 1
0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

Percentage of code parallel

Figure 3.11 Minimum number of threads required to get 90% of
peak performance

Using this equation, Figure 3.11 shows the number of threads necessary to get a run-
time that is within 10% of the best possible.

Reading this chart, it is clear that an application will have only limited scalability until
it spends at least half of its runtime in code that can be parallelized. For an application to
scale to large numbers of cores, it requires that 80%+ of the serial runtime is spent in
parallelizable code.

If Amdahl’s law were the only constraint to scaling, then it is apparent that there is lit-
tle benefit to using huge thread counts on any but the most embarrassingly parallel
applications. If performance is measured as throughput (or the amount of work done), it
is probable that for a system capable of running many threads, those threads may be bet-
ter allocated to a number of processes rather than all being utilized by a single process.

However, Amdahl’s law is a simplification of the scaling situation. The next section
will discuss a more realistic model.

How Synchronization Costs Reduce Scaling

Unfortunately, there are overhead costs associated with parallelizing applications. These
are associated with making the code run in parallel, with managing all the threads, and
with the communication between threads.You can find a more detailed discussion in
Chapter 9, “Scaling on Multicore Systems.”

In the model discussed here, as with Amdahl’s law, we will ignore any costs intro-
duced by the implementation of parallelization in the application and focus entirely on
the costs of synchronization between the multiple threads. When there are multiple
threads cooperating to solve a problem, there is a communication cost between all the

Download at www.wowebook.com

Using Parallelism to Improve the Performance of a Single Task 99

threads. The communication might be the command for all the threads to start, or it
might represent each thread notifying the main thread that it has completed its work.

We can denote this synchronization cost as some function F(N), since it will increase
as the number of threads increases. In the best case, F(IN) would be a constant, indicating
that the cost of synchronization does not change as the number of threads increases. In
the worst case, it could be linear or even exponential with the number threads. A fair
estimate for the cost might be that it is proportional to the logarithm of the number of
threads (F(IN)=K*In(N)); this is relatively easy to argue for since the logarithm represents
the cost of communication if those threads communicated using a balanced tree. Taking
this approximation, then the cost of scaling to N threads would be as follows:

Runtime=S+£+Kln(N)

The value of K would be some constant that represents the communication latency
between two threads together with the number of times a synchronization point is
encountered (assuming that the number of synchronization points for a particular appli-
cation and workload is a constant). K will be proportional to memory latency for those
systems that communicate through memory, or perhaps cache latency if all the commu-
nicating threads share a common level of cache. Figure 3.12 shows the curves resulting
from an unrealistically large value for the constant K, demonstrating that at some thread
count the performance gain over the serial case will start decreasing because of the syn-
chronization costs.

Speed up relative to serial case

100% Parallg|

n

90% Paralig]

70%

Paralle|

Speed up over serial runtime

0 T T T T T T T T
0 2 4 6 8 10 12 14 16 18
Number of threads

Figure 3.12 Scaling with exaggerated synchronization overheads

Download at www.wowebook.com

Chapter 3 Identifying Opportunities for Parallelism

It is relatively straightforward to calculate the point at which this will happen:

d runtime _ —P + K
N

dN N?

Solving this for N indicates that the minimal value for the runtime occurs when

N=2
K

This tells us that the number of threads that a code can scale to is proportional to the
ratio of the amount of work that can be parallelized and the cost of synchronization. So,
the scaling of the application can be increased either by making more of the code run in
parallel (increasing the value of P) or by reducing the synchronization costs (reducing the
value of K). Alternatively, if the number of threads is held constant, then reducing the
synchronization cost (making K smaller) will enable smaller sections of code to be made
parallel (P can also be made smaller).

‘What makes this interesting is that a multicore processor will often have threads shar-
ing data through a shared level of cache. The shared level of cache will have lower
latency than if the two threads had to communicate through memory. Synchronization
costs are usually proportional to the latency of the memory through which the threads
communicate, so communication through a shared level of cache will result in much
lower synchronization costs. This means that multicore processors have the opportunity
to be used for either parallelizing regions of code where the synchronization costs were
previously prohibitive or, alternatively, scaling the existing code to higher thread counts
than were previously possible.

So far, this chapter has discussed the expectations that a developer should have when
scaling their code to multiple threads. However, a bigger issue is how to identify work
that can be completed in parallel, as well as the patterns to use to perform this work. The
next section discusses common parallelization patterns and how to identify when to use
them.

Parallelization Patterns

There are many ways that work can be divided among multiple threads. The objective of
this section is to provide an overview of the most common approaches and to indicate
when these might be appropriate.

Broadly speaking, there are two categories of parallelization, often referred to as data
parallel and task parallel.

A data parallel application has multiple threads performing the same operation on
separate items of data. For example, multiple threads could each take a chunk of itera-

Download at www.wowebook.com

Parallelization Patterns 101

tions from a single loop and perform those iterations on different elements in a single
array. All the threads would perform the same task but to different array indexes.

A task parallel application would have separate threads performing different operations
on different items of data. For example, an animated film could be produced having one
process render each frame and then a separate process take each rendered frame and
incorporate it into a compressed version of the entire film.

Data Parallelism Using SIMD Instructions

Although this book discusses data parallelism in the context of multiple threads cooper-
ating on processing the same item of data, the concept also extends into instruction sets.
There are instructions, called single instruction multiple data (SIMD) instructions, that load
a vector of data and perform an operation on all the items in the vector. Most processors
have these instructions: the SSE instruction set extensions for x86 processors, the VIS
instructions for SPARC processors, and the AltiVec instructions on Power/
PowerPC processors.

The loop shown in Listing 3.1 is ideal for conversion into SIMD instructions.

Listing 3.1 Loop Adding Two Vectors

void vadd(double * restrict a, double * restrict b , int count)

{for (int i=0; i < count; i++)
{
a[i] += b[i];
}
}

Compiling this on an x86 box without enabling SIMD instructions generates the
assembly language loop shown in Listing 3.2.

Listing 3.2 Assembly Language Code to Add Two Vectors Using x87 Instructions

loop:
f1dl (%edx) // Load the value of a[i]
faddl (%ecx) // Add the value of b[i]
fstpl (%edx) // Store the result back to a[i]
addl 8,%edx // Increment the pointer to a
addl 8,%ecx // Increment the pointer to b
addl 1,%esi // Increment the loop counter

cmp %eax,%esi // Test for the end of the loop
jle loop // Branch back to start of loop if not complete

Compiling with SIMD instructions produces code similar to that shown in Listing 3.3.

Download at www.wowebook.com

102 Chapter 3 Identifying Opportunities for Parallelism

Listing 3.3 Assembly Language Code to Add Two Vectors Using SSE Instructions

loop:
movupd (%edx),%xmm0 // Load a[i] and a[i+l] into vector register
movupd ($ecx),%xmml // Load b[i] and b[i+l] into vector register
addpd %xmml,%xmm0 // Add vector registers
movpd %xmm0, (%edx) // Store a[i] and a[i+l] back to memory

addl 16,%edx // Increment pointer to a
addl 16,%ecx // Increment pointer to b
addl 2,%esi // Increment loop counter

cmp $eax, %esi // Test for the end of the loop
jle loop // Branch back to start of loop if not complete

Since two double-precision values are computed at the same time, the trip count
around the loop is halved, so the number of instructions is halved. The move to SIMD
instructions also enables the compiler to avoid the inefficiencies of the stack-based x87
floating-point architecture.

SIMD and parallelization are very complementary technologies. SIMD is often useful
in situations where loops perform operations over vectors of data. These same loops
could also be parallelized. Simultaneously using both approaches enables a multicore chip
to achieve high throughput. However, SIMD instructions have an additional advantage in
that they can also be useful in situations where the amount of work is too small to be
effectively parallelized.

Parallelization Using Processes or Threads

The rest of the discussion of parallelization strategies in this chapter will use the word
tasks to describe the work being performed and the word thread to describe the instruc-
tion stream performing that work. The use of the word thread is purely a convenience.
These strategies are applicable to a multithreaded application where there would be a
single application with multiple cooperating threads and to a multiprocess application
where there would be an application made up of multiple independent processes (with
some of the processes potentially having multiple threads).

The trade-offs between the two approaches are discussed in Chapter 1, “Hardware,
Processes, and Threads.” Similarly, these patterns do not need to be restricted to a single
system. They are just as applicable to situations where the work is spread over multiple
systems.

Multiple Independent Tasks

As discussed earlier in the chapter, the easiest way of utilizing a CMT system is to per-
form many independent tasks. In this case, the limit to the number of independent tasks
is determined by resources that are external to those tasks. A web server might require a
large memory footprint for caching recently used web pages in memory. A database
server might require large amounts of disk I/O. These requirements would place load on

Download at www.wowebook.com

Parallelization Patterns 103

the system and on the operating system, but there would be no synchronization con-
straints between the applications running on the system.

A system running multiple tasks could be represented as a single system running three
independent tasks, A, B, and C, as shown in Figure 3.13.

System

A B C

Figure 3.13 Three independent tasks

An example of this kind of usage would be consolidation of multiple machines down
to a single machine. This consolidation might just be running the web server, e-mail
server, and so on, on the same machine or might involve some form of virtualization
where different tasks are isolated from each other.

This approach is very common but not terribly interesting from a parallelization strat-
egy since there is no communication between the components. Such an approach would
increase the utilization of the machine and could result in space or power savings but
should not be expected to lead to a performance change (except that which is attained
from the intrinsic differences in system performance).

One place where this strategy is common is in cluster, grid, or cloud computing. Each
individual node (that is, system) in the cloud might be running a different task, and the
tasks are independent. If a task fails (or a node fails while completing a task), the task can
be retried on a different node. The performance of the cloud is the aggregate throughput
of all the nodes.

‘What is interesting about this strategy is that because the tasks are independent, per-
formance (measured as throughput) should increase nearly linearly with the number of
available threads.

Multiple Loosely Coupled Tasks

A slight variation on the theme of multiple independent tasks would be where the tasks
are different, but they work together to form a single application. Some applications do
need to have multiple independent tasks running simultaneously, with each task generally
independent and often different from the other running tasks. However, the reason this is
an application rather than just a collection of tasks is that there is some element of com-
munication within the system. The communication might be from the tasks to a central
task controller, or the tasks might report some status back to a status monitor.

Download at www.wowebook.com

104 Chapter 3 Identifying Opportunities for Parallelism

In this instance, the tasks themselves are largely independent. They may occasionally
communicate, but that communication is likely to be asynchronous or perhaps limited to
exceptional situations.

Figure 3.14 shows a single system running three tasks. Task A is a control or supervi-
sor, and tasks B and C are reporting status to task A.

Figure 3.14 Loosely coupled tasks

The performance of the application depends on the activity of these individual tasks.
If the CPU-consuming part of the “application” has been split off into a separate task,
then the rest of the components may become more responsive. For an example of this
improved responsiveness, assume that a single-threaded application is responsible for
receiving and forwarding packets across the network and for maintaining a log of packet
activity on disk. This could be split into two loosely coupled tasks—one receives and for-
wards the packets while the other is responsible for maintaining the log. With the origi-
nal code, there might be a delay in processing an incoming packet if the application is
busy writing status to the log. If the application is split into separate tasks, the packet can
be received and forwarded immediately, and the log writer will record this event at a
convenient point in the future.

The performance gain arises in this case because we have shared the work between
two threads. The packet-forwarding task only has to process packets and does not get
delayed by disk activity. The disk-writing task does not get stalled reading or writing
packets. If we assume that it takes 1ms to read and forward the packet and another 1ms
to write status to disk, then with the original code, we can process a new packet every
2ms (this represents a rate of 5,000 packets per second). Figure 3.15 shows this situation.

2ms

Forward
packet

Forward
packet

Log to disk Log to disk

ims 1ms

Figure 3.15 Single thread performing packet forwarding and log writing

Download at www.wowebook.com

Parallelization Patterns

If we split these into separate tasks, then we can handle a packet every 1ms, so
throughput will have doubled. It will also improve the responsiveness because we will
handle each packet within 1ms of arrival, rather than within 2ms. However, it still takes
2ms for the handling of each packet to complete, so the throughput of the system has
doubled, but the response time has remained the same. Figure 3.16 shows this situation.

~ 1ms -~
Forward Forward Forward Forward
packet packet packet packet

Logtodisk | Logtodisk | Logtodisk | Log to disk

2ms

Figure 3.16 Using two threads to perform packet forwarding and
log writing

Multiple Copies of the Same Task

An easy way to complete more work is to employ multiple copies of the same task. Each
individual task will take the same time to complete, but because multiple tasks are com-
pleted in parallel, the throughput of the system will increase.

This is a very common strategy. For example, one system might be running multiple
copies of a rendering application in order to render multiple animations. Each applica-
tion is independent and requires no synchronization with any other.

Figure 3.17 shows this situation, with a single system running three copies of task A.

System

Figure 3.17 Multiple copies of a single task

Download at www.wowebook.com

105

106 Chapter 3 Identifying Opportunities for Parallelism

Once again, the performance of the system is an increase in throughput, not an
improvement in the rate at which work is completed.

Single Task Split Over Multiple Threads

Splitting a single task over multiple threads is often what people think of as paralleliza-
tion. The typical scenario is distributing a loop’s iterations among multiple threads so that
each thread gets to compute a discrete range of the iterations.

This scenario is represented in Figure 3.18 as a system running three threads and each
of the threads handling a separate chunk of the work.

Figure 3.18 Multiple threads working on a single task

In this instance, a single unit of work is being divided between the threads, so the
time taken for the unit of work to complete should diminish in proportion to the num-
ber of threads working on it. This is a reduction in completion time and would also rep-
resent an increase in throughput. In contrast, the previous examples in this section have
represented increases in the amount of work completed (the throughput), but not a
reduction in the completion time for each unit of work.

This pattern can also be considered a fork-join pattern, where the fork is the division
of work between the threads, and the join is the point at which all the threads synchro-
nize, having completed their individual assignments.

Another variation on this theme is the divide-and-conquer approach where a prob-
lem is recursively divided as it is divided among multiple threads.

Using a Pipeline of Tasks to Work on a Single Item

A pipeline of tasks is perhaps a less obvious strategy for parallelization. Here, a single unit
of work is split into multiple stages and is passed from one stage to the next rather like
an assembly line.

Figure 3.19 represents this situation. A system has three separate threads; when a unit
of work comes in, the first thread completes task A and passes the work on to task B,
which is performed by the second thread. The work is completed by the third thread
performing task C.As each thread completes its task, it is ready to accept new work.

Download at www.wowebook.com

Parallelization Patterns 107

Figure 3.19 Pipeline of tasks

There are various motivations for using a pipeline approach. A pipeline has some
amount of flexibility, in that the flow of work can be dynamically changed at runtime. It
also has some implicit scalability because an implementation could use multiple copies of
a particular time-consuming stage in the pipeline (combining the pipeline pattern with
the multiple copies of a single task pattern), although the basic pipeline model would
have a single copy of each stage.

This pattern is most critical in situations where it represents the most effective way the
problem can be scaled to multiple threads. Consider a situation where packets come in for
processing, are processed, and then are retransmitted. A single thread can cope only with a
certain limit of packets per second. More threads are needed in order to improve perform-
ance. One way of doing this would be to increase the number of threads doing the receiv-
ing, processing, and forwarding. However, that might introduce additional complexity in
keeping the packets in the same order and synchronizing the multiple processing threads.

In this situation, a pipeline looks attractive because each stage can be working on a
separate packet, which means that the performance gain is proportional to the number
of active threads. The way to view this is to assume that the original processing of a
packet took three seconds. So, every three seconds a new packet could be dealt with.
When the processing is split into three equal pipeline stages, each stage will take a sec-
ond. More specifically, task A will take one second before it passes the packet of work on
to task B, and this will leave the first thread able to take on a new packet of work. So,
every second there will be a packet starting processing. A three-stage pipeline has
improved performance by a factor of three. The issues of ordering and synchronization
can be dealt with by placing the items in a queue between the stages so that order is
maintained.

Notice that the pipeline does not reduce the time taken to process each unit of work.
In fact, the queuing steps may slightly increase it. So, once again, it is a throughput
improvement rather than a reduction in unit processing time.

One disadvantage to pipelines is that the rate that new work can go through the
pipeline is limited by the time that it takes for the work of the slowest stage in the
pipeline to complete. As an example, consider the case where task B takes two seconds.
The second thread can accept work only every other second, so regardless of how much
faster tasks A and C are to complete, task B limits the throughput of the pipeline to one
task every two seconds. Of course, it might be possible to rectify this bottleneck by having

Download at www.wowebook.com

108

Chapter 3 Identifying Opportunities for Parallelism

two threads performing task B. Here the combination would complete one task every
second, which would match the throughput of tasks A and C. It is also worth consider-
ing that the best throughput occurs when all the stages in the pipeline take the same
amount of time. Otherwise, some stages will be idle waiting for more work.

Division of Work into a Client and a Server

With a client-server configuration, one thread (the clienf) communicates requests to
another thread (the server), and the other thread responds. The split into client and server
might provide a performance improvement, because while the server is performing some
calculation, the client can be responding to the user; the client might be the visible Ul
to the application, and the server might be the compute engine that is performing the
task in the background. There are plenty of examples of this approach, such as having
one thread to manage the redraw of the screen while other threads handle the activities
of the application. Another example is when the client is a thread running on one sys-
tem while the server is a thread running on a remote system; web browsers and web
servers are obvious, everyday examples.

A big advantage of this approach is the sharing of resources between multiple clients.
For example, a machine might have a single Ethernet port but have multiple applications
that need to communicate through that port. The client threads would send requests to a
server thread. The server thread would have exclusive access to the Ethernet device and
would be responsible for sending out the packets from the clients and directing incom-
ing packets to the appropriate client in an orderly fashion.

This client-server relationship can be represented as multiple clients: A, communicat-
ing with a server, B, as shown in Figure 3.20. Server B might also control access to a set
of resources, which are not explicitly included in the diagram.

System

Figure 3.20 Client-server division of work

Implicit in the client-server pattern is the notion that there will be multiple clients
seeking the attention of a single server. The single server could, of course, be imple-
mented using multiple threads.

The client-server pattern does not improve responsiveness but represents a way of
sharing the work between multiple threads, especially where the server thread actually does
some work. Alternatively, it represents a way of sharing a common resource between

Download at www.wowebook.com

Parallelization Patterns 109

multiple clients (in which case any gains in throughput are a fortunate by-product rather
than a design goal).

Splitting Responsibility into a Producer and a Consumer

A producer-consumer model is similar to both the pipeline model and the client-server.
Here, the producer is generating units of work, and the consumer is taking those units of
work and performing some kind of process on them.

For example, the movie-rendering problem described earlier might have a set of pro-
ducers generating rendered frames of a movie. The consumer might be the task that has
the work of ordering these frames correctly and then saving them to disk.

This can be represented as multiple copies of task A sending results to a single copy of
task B, as shown in Figure 3.21. Alternatively, there could be multiple producers and a
single consumer or multiple producers and consumers.

System

A\B
7

Figure 3.21 Producer-consumer division of work

Again, this approach does not necessarily reduce the latency of the tasks but provides
an improvement in throughput by allowing multiple tasks to progress simultaneously. In
common with the client-server task, it may also provide a way of reducing the complex-
ity of combining the output from multiple producers of data.

Combining Parallelization Strategies

In many situations, a single parallelization strategy might be all that is required to pro-
duce a parallel solution for a problem. However, in other situations, there is no single
strategy sufficient to solve the problem eftectively, and it is necessary to select a combina-
tion of approaches.

The pipeline strategy represents a good starting point for a combination of
approaches. The various stages in the pipeline can be further parallelized. For example,
one stage might use multiple threads to perform a calculation on one item of data. A dif-
terent stage might have multiple threads working on separate items of data.

When mapping a process to an implementation, it is important to consider all the
ways that it is possible to exploit parallelism and to avoid limiting yourself to the first
approach that comes to mind. Consider a situation where a task takes 100 seconds to

Download at www.wowebook.com

110 Chapter 3 Identifying Opportunities for Parallelism

complete. Suppose that it’s possible to take 80 of those seconds and use four threads to
complete the work. Now the runtime for the task is 20 serial seconds, plus 20 seconds
when four threads are active, for a total of 40 seconds. Suppose that it is possible to use a
different strategy to spread the serial 20 seconds over two threads, leading to a perform-
ance gain of 10 seconds, so the total runtime is now 30 seconds: 10 seconds with two
threads and 20 seconds with four threads. The first parallelization made the application
two and a half times faster. The second parallelization made it 1.3x faster, which is not
nearly as great but is still a significant gain. However, if the second optimization had
been the only one performed, it would have resulted in only a 1.1x performance gain,
not nearly as dramatic a pay-off as the 1.3x gain that it obtained when other parts of the
code had already been made parallel.

How Dependencies Influence the Ability Run
Code in Parallel

Dependencies within an application (or the calculation it performs) define whether the
application can possibly run in parallel. There are two types of dependency: loop- or data-
carried dependencies and memory-carried dependencies.

With a loop-carried dependency, the next calculation in a loop cannot be performed
until the results of the previous iteration are known. A good example of this is the loop
to calculate whether a point is in the Mandelbrot set. Listing 3.4 shows this loop.

Listing 3.4 Code to Determine Whether a Point Is in the Mandelbrot Set

int inSet(double ix, double 1iy)

{
int iterations=0;
double x = ix, y = iy, X2 = x*x, y2 = y*y;
while ((x2+y2 < 4) && (iterations < 1000))
{
y =2*x*y+iy;
X = x2 - y2 + ix;
X2 = X * Xx;
y2 =y *vy;
iterations++;
}
return iterations;
}

Each iteration of the loop depends on the results of the previous iteration. The loop
terminates either when 1,000 iterations have been completed or when the point escapes
a circle centered on the origin of radius two. It is not possible to predict how many iter-
ations this loop will complete. There is also insufficient work for each iteration of the
loop to be split over multiple threads. Hence, this loop must be performed serially.

Download at www.wowebook.com

How Dependencies Influence the Ability Run Code in Parallel 111

Memory-carried dependencies are more subtle. These represent the situation where a
memory access must be ordered with respect to another memory access to the same
location. Consider the snippet of code shown in Listing 3.5.

Listing 3.5 Code Demonstrating Ordering Constraints

int val=0;

void g()
{

val = 1;

void h()
{

val = val + 2;

If the routines g() and h() are executed by different threads, then the result depends
on the order in which the two routines are executed. If g () is executed followed by
h(), then the val will hold the result 3. If they are executed in the opposite order, then
val will contain the result 1. This is an example of a memory-carried dependence
because to produce the correct answer, the operations need to be performed in the cor-
rect order.

Antidependencies and Output Dependencies

Suppose one task, A, needs the data produced by another task, B; A depends on B and
cannot start until B completes and releases the data needed by A.This is often referred to
as true dependency. Typically, B writes some data, and A needs to read that data. There are
other combinations of two threads reading and writing data. Table 3.1 illustrates the four
ways that tasks might have a dependency.

Table 3.1 Possible Ordering Constraints

Second task

Read Write
First task Read Read after read (RAR) Write after read (WAR)
No dependency Antidependency
Write Read after write (RAW) Write after write (WAW)
True dependency Output dependency

When both threads perform read operations, there is no dependency between them,
and the same result is produced regardless of the order the threads run in.

Download at www.wowebook.com

112 Chapter 3 Identifying Opportunities for Parallelism

With an antidependency, or write after read, one task has to read the data before the
second task can overwrite it. With an output dependency, or write after write, one of the
two tasks has to provide the final result, and the order in which the two tasks write their
results is critical. These two types of dependency can be most clearly illustrated using
serial code.

In the code shown in Listing 3.6, there is an antidependency on the variable datal.
The first statement needs to complete before the second statement because the second
statement reuses the variable datal.

Listing 3.6 An Example of an Antidependency

void anti-dependency()

{

resultl = calculation(datal); // Needs to complete first
datal = result2 + 1; // Will overwrite datal

If one of the statements was modified to use an alternative or temporary variable, for
example, datal_prime, then both statements could proceed in any order. Listing 3.7
shows this modified code.

Listing 3.7 Fixing an Antidependency

void anti-dependency()

{

datal_prime = datal; // Local copy of datal

resultl = calculation(datal_prime);

datal = result2 + 1; // No longer has antidependence
}

The code shown in Listing 3.8 demonstrates an output dependency on the variable
datal.The second statement needs to complete after the first statement only because
they both write to the same variable.

Listing 3.8 An Output Dependency

void output-dependency()

{
datal = resultl + 2;
datal = result2 + 2; // Overwrites same variable

If the first target variable was renamed datal_prime, then both statements could
proceed in any order. Listing 3.9 shows this fix.

Download at www.wowebook.com

How Dependencies Influence the Ability Run Code in Parallel 113

Listing 3.9 Fixing an Output Dependency

void output-dependency ()
{
datal_prime = resultl + 2;
datal result2 + 2; // No longer has output-dependence

What is important about these two situations is that both output and antidependen-
cies can be avoided by renaming the data being written, so the final write operation goes
to a different place. This might involve taking a copy of the object and having each task
work on their own copy, or it might be a matter of duplicating a subset of the active
variables. In the worst case, it could be resolved by both tasks working independently
and then having a short bit of code that sets the variables to the correct state.

Using Speculation to Break Dependencies

In some instances, there is a clear potential dependency between different tasks. This
dependency means it is impossible to use a traditional parallelization approach where the
work is split between the two threads. Even in these situations, it can be possible to
extract some parallelism at the expense of performing some unnecessary work. Consider
the code shown in Listing 3.10.

Listing 3.10 Code with Potential for Speculative Execution

void doWork(int x, int y)
{
int value = longCalculation(x, y);
if (value > threshold)
{
return value + secondLongCalculation(x, y);
}

else

{

return value;

In this example, it is not known whether the second long calculation will be per-
formed until the first one has completed. However, it would be possible to speculatively
compute the value of the second long calculation at the same time as the first calculation
is performed. Then depending on the return value, either discard the second value or use
it. Listing 3.11 shows the resulting code parallelized using pseudoparallelization directives.

Download at www.wowebook.com

114 Chapter 3 Identifying Opportunities for Parallelism

Listing 3.11 Speculatively Parallelized Code

void doWork(int x, int y)
{
int valuel, value2;
#pragma start parallel region

{
#pragma perform parallel task
{
valuel = longCalculation(x, y);
}
#pragma perform parallel task
{
value2 = secondLongCalculation(x, y);
}
}

#pragma wait for parallel tasks to complete
if (valuel > threshold)

{

return valuel + value2;

}

else

{

return valuel;

The #pragma directives in the previous code are very similar to those that are actu-
ally used in OpenMP, which we will discuss in Chapter 7, “OpenMP and Automatic
Parallelization.” The first directive tells the compiler that the following block of code
contains statements that will be executed in parallel. The two #pragma directives in the
parallel region indicate the two tasks to be performed in parallel. A final directive indi-
cates that the code cannot exit the parallel region until both tasks have completed.

Of course, it is important to consider whether the parallelization will slow perform-
ance down more than it will improve performance. There are two key reasons why the
parallel implementation could be slower than the serial code.

= The overhead from performing the work and synchronizing after the work is close

in magnitude to the time taken by the parallel code.

= The second long calculation takes longer than the first long calculation, and the
results of it are rarely used.

It is possible to put together an approximate model of this situation. Suppose the first
calculation takes T'1 seconds and the second calculation takes T2 seconds; also suppose
that the probability that the second calculation is actually needed is P. Then the total
runtime for the serial code would be T1 + P * T2.

Download at www.wowebook.com

How Dependencies Influence the Ability Run Code in Parallel 115

For the parallel code, assume that the calculations take the same time as they do in
the serial case and the probability remains unchanged, but there is also an overhead from
synchronization, S. Then the time taken by the parallel code is S + max (T1,T2).

Figure 3.22 shows the two situations.

Original serial code

T1 ' (1-P)

T1 T2 P

Parallel code

T1

T2

Figure 3.22 Parallelization using speculative execution

We can further deconstruct this to identify the constraints on the two situations
where the parallel version is faster than the serial version:

» IfT1 > T2, then for the speculation to be profitable, S+T1 < T1+P*T2, or
S < P*T2. In other words, the synchronization cost needs to be less than the aver-
age amount of time contributed by the second calculation. This makes sense if the
second calculation is rarely performed, because then the additional overhead of
synchronization needed to speculatively calculate it must be very small.

» IfT2 >T1 (as shown in Figure 3.21), then for speculation to be profitable, S+T2
<T1+P*T2 or P > (T2 +S -T1)/T2.This is a more complex result because the
second task takes longer than the first task, so the speculation starts oft with a
longer runtime than the original serial code. Because T2 > T1,T2 + S -T1 is
always >0.T2 + S -T1 represents the overhead introduced by parallelization. For
the parallel code to be profitable, this has to be lower than the cost contributed by
executing T2. Hence, the probability of executing T2 has to be greater than the
ratio of the additional cost to the original cost. As the additional cost introduced
by the parallel code gets closer to the cost of executing T2, then T2 needs to be
executed increasingly frequently in order to make the parallelization profitable.

The previous approach is speculative execution, and the results are thrown away if they
are not needed. There is also value speculation where execution is performed, speculating
on the value of the input. Consider the code shown in Listing 3.12.

Download at www.wowebook.com

116 Chapter 3 Identifying Opportunities for Parallelism

Listing 3.12 Code with Opportunity for Value Speculation

void doWork(int x, int y)

{
int value = longCalculation(x, y);
return secondLongCalculation(value);

In this instance, the second calculation depends on the value of the first calculation.
If the value of the first calculation was predictable, then it might be profitable to specu-
late on the value of the first calculation and perform the two calculations in parallel.
Listing 3.13 shows the code parallelized using value speculation and pseudoparallelization
directives.

Listing 3.13 Parallelization Using Value Speculations

void doWork(int x, int y)

{
int valuel, value2;
static int last value;
#pragma start parallel region

{
#pragma perform parallel task
{
valuel = longCalculation(x, y);
}
#pragma perform parallel task
{
value2 = secondLongCalculation(lastValue);
}
}
#pragma wait for parallel tasks to complete
if (valuel == lastvalue)
{
return value2;
}
else
{

lastValue = valuel;
return secondLongCalculation(valuel);

The value calculation for this speculation is very similar to the calculation performed
for the speculative execution example. Once again, assume that T1 and T2 represent the

Download at www.wowebook.com

How Dependencies Influence the Ability Run Code in Parallel 117

Original serial code

T1 T2

Parallel code

T1

(1-P)
T2

T1

T2 T2

Figure 3.23 Parallelization using value speculation

costs of the two routines. In this instance, P represents the probability that the specula-
tion is incorrect. S represents the synchronization overheads. Figure 3.23 shows the costs
of value speculation.

The original code takes T1+T2 seconds to complete. The parallel code takes

max(T1,T2)+S+P*T2. For the parallelization to be profitable, one of the following con-
ditions needs to be true:

» I[fT1 > T2, then for the speculation to be profitable, T1 + S + P*T2 <T1 +T2.
So, S < (1-P) * T2. If the speculation is mostly correct, the synchronization costs
just need to be less than the costs of performing T2. If the synchronization is often
wrong, then the synchronization costs need to be much smaller than T2 since T2
will be frequently executed to correct the misspeculation.

= If T2 >T1, then for the speculation to be profitable, T2 + S + P*T2 <T1 +T2.
So, S <T1 — P*T2.The synchronization costs need to be less than the cost of T'1
after the overhead of recomputing T2 is included.

As can be seen from the preceding discus