
une division de
Sun Microsystems France S.A.
Service Formation
BP 53
13, avenue Morane-Saulnier
78142 Vélizy Cedex
tél : (1) 30 67 50 50
fax : (1) 30 67 52 35

Programmation en C norme ANSI

Révision C, Décembre 1994

Document non révisable

Référence : L1

Guide de l’étudiant

Credits and Trademarks

Copyright  1994 Sun Microsystems, Inc.

2550 Garcia Avenue, Mountain View, California 94043-1100

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or by any

means—graphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an

information retrieval system— without the prior written permission of the copyright owner.

The OPEN LOOK and the Sun Graphical User Interface were developed by Sun Microsystems, Inc. for its uses

and licenses. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of

visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to

the Xerox Graphical User Interface, which license also covers Sun’s licenses.

RESTRICTED RIGHTS LEGEND

 Use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in subparagraph

(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 [October 1988]

and FAR 52 227-19 [June 1987].

The products described in this manual may be protected by one or more U.S. patents, foreign patents, and/or

pending applications.

TRADEMARKS

The Sun logo, Sun Microsystems, Sun Workstation, SunLink, Sun Core, The Font Department, ImageSource,

Interpersonal, NeWS, NeWSware, NFS, PC-NFS, TypeMaker, and TypeScaler are registered trademarks of Sun

Microsystems, Inc. in the United States and other countries.

SunOS and SunView are unregistered trademarks of Sun Microsystems, Inc.

UNIX and OPEN LOOK are registered trademarks of UNIX Systems Laboratories, Inc.

PostScript is a registered trademark of Adobe Systems, Inc. Adobe also owns copyrights related to the

PostScript language and the PostScript interpreter. The trademark PostScript is used herein only to refer to

material supplied by Adobe or to programs written in the PostScript language as defined by Adobe.

X Window System is a product of the Massachusetts Institute of Technology.

SPARC is a registered trademark of SPARC International, Inc. Products bearing the SPARC trademark are based

on an architecture developed by Sun Microsystems, Inc. SPARCstation is a trademark of SPARC International,

Inc., licensed exclusively to Sun Microsystems, Inc.

Yellow Pages is a registered trademark in the United Kingdom of British Telecommunications plc., and may also

be a trademark of various telephone companies around the world. Sun will be revising future versions of

software and documentation to remove references to Yellow Pages.

All other products or services mentioned in this document are identified by the trademarks or service marks of

their respective companies or organizations and Sun Microsystems, Inc. disclaims any responsibility for

specifying which marks are owned by which companies or organizations.

i

Table des Matières

Structures Fondamentales d’un Programme en C 1

Opérateurs Logiques et Relationnels
dans les Expressions Conditionnelles 2

Fonctions et <stdio.h> 3

Introduction au Compilateur C et au Préprocesseur 4

Structures Itératives 5

Tableaux 6

Classes d’Allocation 7

Pointeurs et Adresses 8

Chaînes et Caractères 9

Structures, Unions, Définition de Type et Enumérations 10

Opérateurs sur Bits 11

Passage d’Arguments à main() 12

Entrées/Sorties Fichiers Standard 13

Plus sur cc et le Préprocesseur 14

Allocation Dynamique de Mémoire 15

Introduction aux Fonctions Récursives (facultatif) 16

ii Programmation en C norme ANSI Révision C, Décembre 1994

SunService
Reproduction Interdite

Annexes

Conseils de Mise au Point A

Mots-Clefs et Table ASCII B

Mémento du C C

Mémento vi D

Savoir Lire le C E

Exemples de Programmes Divers F

Internationalisation, Grands Caractères
et Caractères Multi-octets G

Différences entre Sun C et Sun ANSI C H

Programmes des Travaux Pratiques I

Index

1-1

Structures Fondamentales d’un
Programme en C 1

Objectifs

■ Ecrire des programmes C syntaxiquement corrects.

■ Identifier les éléments d’un programme C.

■ Faire correspondre opérateurs et opérations.

■ Identifier et déclarer les types de base.

Evaluation

Travaux Pratiques 1 et révision de module.

1

1-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Compilation Simple

■ Le code source C doit être mis dans un fichier dont le
nom se termine par .c

■ Utiliser la commande cc avec l’option -Xc pour
compiler les programmes C ANSI.

■ Si la compilation réussit, le fichier exécutable sera appelé
a.out par défaut.

% cc -Xc prog.c

% a.out

<affichage de résultats s’il y en a>

1

Structures Fondamentales d’un Programme en C 1-3

reproduction interdite

Caractéristiques du C

■ Bas niveau - haut niveau

■ Très Portable

■ Mise en forme libre

■ Aucune possibilité d’Entrée/Sortie intégrée :
beaucoup de fonctions en librairie Standard

1

1-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Introduction au Source C-La Fonction main()

Tout programme C doit contenir la fonction main():

nom de fonction

corps de fonction (ou bloc) entre 2 accolades

commentaires entre les marques "/*" et "*/"

/* Voilà la fonction "main"
et içi des commentaires.

*/

int main (void)
{

printf("Bienvenue en Programmation C!");
return 0;

}

liste de paramètres entre parenthèses
(pas d’argument dans l’exemple)

La fonction C universelle main()
et une fonction de sortie-écran:

1

Structures Fondamentales d’un Programme en C 1-5

reproduction interdite

Eléments de Base d’un Programme C

Un programme C se compose de déclarations et d’instructions.

/* Ceci montre uniquement un squelette de programme.
 Ce n’est pas un programme compilable */

int main(void)
{

<data type> <identifier>; /* déclaration */
<data type> <identifier, identifier, ...>; /* déclaration */
<data type> <identifier> = <value>; /* initialisation */

<statements> /* instructions */
return 0;

} /* fin de la fonction main() */

1

1-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Types de Données

■ Ci-dessous, la liste des types du C et leurs tailles sur une
SPARCstation™:

■ Les types char , short , int , et long peuvent être
précédés des attributs de types signed et unsigned .
Exemples:

mot-clef description Taille en octets

char caractère 1
short entier court 2
int entier 4
long entier long 4
float réel simple précision 4
double réel double précision 8
long double réel en précision étendue 16
void aucune valeur 0

signed char ch;

unsigned int compteur;

unsigned long nombre;

1

Structures Fondamentales d’un Programme en C 1-7

reproduction interdite

Attributs de Types

■ Chaque type peut être préfixé par un ou deux des
attributs suivant :

■ Exemples :

const int constant=10;
volatile double xyz;
const volatile int clock;

Mot-clef Description

const L’identifiant représente une constante qui doit
être initialisée, mais jamais modifiée.

volatile Le compilateur doit générer des mises à jour de
l’identifiant à certains points du programme.

1

1-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Identifiants du Langage C

■ Exemples d’identifiants légaux :

count

num_2

DayOfWeek

IDENT

■ Exemples d’identifiants illégaux :

not#me /*caractère spécial "#" interdit*/

101notme /* pas de chiffre en premier*/

-notme /* "-" erroné pour "_" */

@%^&*?~+$ /* toutes les ponctuations et
autres caractères spéciaux */

1

Structures Fondamentales d’un Programme en C 1-9

reproduction interdite

Expressions et Valeurs Constantes

Notation Décimale 634.5789
Notation Exponentielle 8675309E3

986e-2
Notation Scientifique 5.76E1

1.0e3

Constantes en virgule flottante

Constantes Entières Notation Base
1024 decimale 10

074 octale 8
0xFFFF hex 16
0xa4d2 hex 16

’a’ ’b’ ’c’, ’A’ ’B’ ’C’, etc. Caractères alphabétiques
’1’ ’2’ ’3’ ’4’ ’5’, etc. Caractères numériques
’!’ ’@’ ’>’ ’$’ ’&’, etc. Autres caractères imprimables

’\n’ newline ’\f’ form feed
’\b’ backspace ’\’’ single quote
’\t’ tab ’\a’ bell character
’\\’ backslash ’\?’ question mark
’\x4c’ hex digits ’\127’ octal digits
’\v’ vertical tab ’\0’ null character

 Constantes caractères et principales Séquences d’Escape

1

1-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Suffixes de Constantes et Trigraphes

Suffixes de constantes entières signification
13L entier long
123l entier long
25U entier non signé
33u entier non signé
12UL entier long non signé
54lu entier long non signé

Suffixes de constantes en virg.flot. signification
22E3f simple précision (float)
43.219F simple précision (float)
52e-3L précision étendue (long double)
2.124l précision étendue (long double)

Trigraphes Caractères
??= #
??- ~
??([
??)]
??< {
??> }
??’ ^
??! |
??/ \

1

Structures Fondamentales d’un Programme en C 1-11

reproduction interdite

Expressions et Instructions

■ Exemples d’expressions :

■ constantes

■ expressions arithmétiques comme num * 7

■ expressions logiques comme num <= 10

■ affectations : num16 = 32767

■ appels de fonctions

■ Exemples d’instructions :

■ structures itératives comme for ou while

■ structures conditionnelles comme if ou switch

■ expressions suivies d’un point-virgule

■ affectations suivies d’un point-virgule

■ appels de fonction suivis d’un point-virgule

1

1-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Introduction aux Fonctions d’Affichage

Sorties

■ La fonction printf() est utilisée pour l’instant.
D’autres fonction seront vues plus loin.

■ Tous les printf() vont ressembler à :

printf(<une chaîne de caractères et/ou une spécification de format>,
<arguments>);

■ Pour écrire un entier, utiliser %d comme spécification de
format ; pour un caractère, utiliser %c.

■ Si aucune spécification de format n’est présente, la liste
d’argument doit être vide.

■ Exemples :

printf("Hello, ceci est juste une chaîne de caractères.\n");

printf("Ceci imprime un entier %d et un retour-chariot.\n", 100);

printf("Ceci imprime un caractère %c et un retour-chariot.\n", ’Z’);

1

Structures Fondamentales d’un Programme en C 1-13

reproduction interdite

Introduction aux Fonctions de Saisie

Entrées

■ La fonction scanf() est utilisée pour l’instant.
D’autres fonctions seront vues plus loin.

■ Pour l’instant, tous les scanf() vont ressembler à :

scanf(<spécification de format>, &<nom_identifiant>);

■ Pour lire un entier, utiliser le spécificateur %d ; pour
lire un caractère, utiliser le spécificateur %c.

■ Exemples :

int intgr;
char ch;
scanf("%d", &intgr);
scanf("%c", &ch);

1

1-14 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Un Programme Exemple Simple

Ce programme montre plusieurs déclarations et instructions,
ainsi que l’utilisation de scanf() et printf() :

/* Ce programme va déclarer quelques variables entières et
 une variable caractère, leur affecter des valeurs (soit
 explicitement soit par scanf()), et enfin imprimer ces valeurs */

int main(void)
{

int num1; /* déclaration de num1 */
int num2 = 10; /* déclaration et initialisation de num2 */
char ch; /* déclaration d’une variable caractère */

ch = ’a’;
num1 = 5; /* instructions... */

printf("les entiers valent %d et %d.\n", num1, num2);

printf("le caractère est %c.\n", ch);

return 0;

} /* fin de la fonction main */

1

Structures Fondamentales d’un Programme en C 1-15

reproduction interdite

Blocs

■ Les blocs peuvent contenir des déclarations et des
instructions.

■ Les blocs sont aussi utilisés pour les contrôles de flux et
les structures itératives.

■ Le corps d’une fonction est contenu dans un bloc "{ }":

int main(void)
{

int num1, num2;
int sum;

num1 = 8; /* instructions d’affectation */
num2 = 3;

{ /* autre bloc */
char letter; /* letter n’est vue que dans ce bloc */
letter = ’z’;
printf("letter vaut : %c;inconnue hors ce bloc\n",

letter);
} /* fin du bloc */

sum = num1 + num2;
printf ("La somme de %d et %d égale %d.\n",
num1,num2,sum);
printf ("Le produit est %d.\n", num1 * num2);
return 0;

} /* fin du bloc de la fonction main */

1

1-16 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Opérateurs - Premier Exposé

Opérateurs arithmétiques

+ addition et plus unaire
- soustraction et moins unaire
* multiplication
/ division (entière et virgule flottante)
% modulo (reste)
++, -- incrément et décrément

Opérateurs Relationnels

== égal
!= différent
> strictement supérieur
< strictement inférieur
<= inférieur ou égal
>= supérieur ou égal

Opérateurs d’affectation

= affectation simple
op= affectation composée - où op est n’importe quel

opérateur arithmétique ou sur bits

Opérateurs sur bits

& et bit-à-bit
| ou inclusif bit-à-bit
^ ou exclusif bit-à-bit
~ non unaire bit-à-bit : complément à un, donc inverse

chaque bit
>> Décalage à droite
<< Décalage à gauche

Opérateurs logiques

&& et logique
|| ou logique
! non logique

1

Structures Fondamentales d’un Programme en C 1-17

reproduction interdite

Les Opérateurs ++ et --

■ L’opérateur ++ peut être utilisé pour pré-incrémenter ou
post-incrémenter. Il incrémente toujours son opérande de
1, la différence est le moment où l’opération est effectuée.

■ L’opérateur -- peut être utilisé pour pré-décrémenter ou
post-décrémenter. Il décrémente toujours son opérande
de 1, mais la différence est le moment où l’opération est
effectuée.

int x = 4;
int y, z;

y = ++x; /* x est incrémenté avant
l’instruction (une affectation) */

z = x++; /* x est incrémenté après
l’instruction d’affectation */

int x = 4;
int y, z;

y = --x; /* x est décrémenté avant
 l’instruction d’affectation */

z = x--; /* x est décrémenté après
l’instruction d’affectation */

1

1-18 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Opérateurs op=

■ Les opérateurs ‘op=’ comprennent : &=, |=, ^=, ~=,
>>=, <<=, +=, -=, *=, /=, %= .

■ Il ne peut-y avoir d’espace entre "op" et le signe égal "=".

■ Les opérateurs ‘op= ’ sont des raccourcis pour faire un
calcul avec une variable et affecter le résultat à cette
même variable. La variable est le 1er argument de
l’opération.

■ Exemples :

int x = 4;
int y = 3;

x *= 7; /* raccourci pour : x = x * 7; */

y -= 6; /* raccourci pour : y = y - 6; */

x /= y; / * raccourci pour : x = x / y; */

x <<= 2 ; /* raccourci pour : x = x << 2 ; */

1

Structures Fondamentales d’un Programme en C 1-19

reproduction interdite

Révision Partielle

Cette page montre quelques exemples utilisant certains
opérateurs de la page précédente et la déclaration ci-dessous
(Remarque : les exemples sont indépendants les uns des autres).

Remplir les blancs :

 int num = 5; /* déclaration et initialisation */

L’Expression : sera évaluée à :

num = 2

num++

num += 3

num = num * 3

num *= 3

num %= 2

num /= 2

num = num - 7

num -= 7

1

1-20 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Opérateurs Supplémentaires

Opérateurs Pointeur et Adresse

* opérateur d’indirection
& opérateur adresse

Opérateurs Fonction et Structure

() Appel de Fonction
[] Référence à un élément de Tableau
. Référence à un élément de structure
-> Référence par pointeur à un élément de structure

Opérateurs Divers

, opérateur séquence
sizeof taille d’un objet en octets
(type) opérateur cast - changement de type
? : opérateur d’expression conditionnelle

1

Structures Fondamentales d’un Programme en C 1-21

reproduction interdite

Table de Priorité et d’Associativité

1

1-22 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

11 && ET logique Gauche à Droite

12 || OU logique Gauche à Droite

9 ^ OU exclusif binaire Gauche à Droite

4 + Addition Gauche à Droite
4 - Soustraction Gauche à Droite

8 & ET binaire Gauche à Droite

7 == Egalité Gauche à Droite
7 != Différence Gauche à Droite

6 < Inférieur Gauche à Droite
6 <= Inférieur ou égal Gauche à Droite
6 > Supérieur Gauche à Droite
6 >= Supérieur ou égal Gauche à Droite

3 * Multiplication Gauche à Droite
3 / Division Gauche à Droite
3 % Modulo Gauche à Droite

Niveau Op Nom Associativité
1 () Appel de fonction Gauche à Droite
1 [] élément de tableau Gauche à Droite
1 . membre de structure Gauche à Droite
1 -> pointeur sur structure Gauche à Droite

2 ! Non Logique Droite à Gauche
2 ~ Complément à un Droite à Gauche
2 - moins unaire Droite à Gauche
2 ++ Auto Incrément Droite à Gauche
2 -- Auto Décrément Droite à Gauche
2 & Adresse Droite à Gauche
2 * Indirection Droite à Gauche
2 (type) Cast Droite à Gauche
2 sizeof Taille en octets Droite à Gauche

5 << Décalage à gauche Gauche à Droite
5 >> Décalage à droite Gauche à Droite

10 | OU inclusif binaire Gauche à Droite

13 ?: Conditionnelle Droite à Gauche
14 = op= Affectation Droite à Gauche

15 , Séquence Gauche à Droite

1

Structures Fondamentales d’un Programme en C 1-23

reproduction interdite

Conversions de Types

■ Si un opérateur a des opérandes de types différents, le
type de rang inférieur sera converti dans celui de rang
supérieur (promotion). Par exemple, int -> float .
Dans tous les cas, les opérations sur les types char et
short , en l’absence d’autres types, seront converties en
int .

■ Dans une affectation, le résultat est converti dans le type
de la variable à laquelle il est affecté. (Ceci pouvant
entraîner une promotion ou une dégradation.)

■ L’arithmétique préserve les valeurs (value-preserving) :
les conversions arithmétiques qui impliquent une
promotion vont promouvoir vers le plus petit type
capable de prendre en compte toutes les valeurs.

long double

double

float

unsigned long

long

unsigned int

int

unsigned short

short

unsigned char

char

TYPE

bas

haut

Hiérarchie des types:

RANG

1

1-24 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Conversions explicites : Cast

Format

(type) <expression>

■ La conversion explicite ou cast permet au programmeur
de forcer la dégradation et/ou la promotion des types.

■ Exemples de conversions explicites :

■ Dans le programme ci-dessus, quels auraient été les
résultats sans les conversions explicites ?

int main(void)
{

float f = 3.875;
int i, j = 100;

i = (int) f * j;/ * f est dégradé; que vaut i?
*/

f = (float) i * j / 7; /* la promotion forcée
va entrainer une division "réelle" */

return 0;
} /* fin de la fonction main */

1

Structures Fondamentales d’un Programme en C 1-25

reproduction interdite

Révisions de Module

Déclarations

Dans les lignes suivantes, quelles sont les déclarations (légales) ?

int i, j=5, limit;
x int;
final_val += (limit/16);
double float;
j++;
int x = 1.0;
double f;

Soient les déclarations suivantes. Quelles seront les valeurs des variables après éva-
luation des expressions ? (Remarque : les exemples s’exécutent en séquence)

int x, y;
x = 5;
y = x++; /* y ? x ? */

y = ++x; /* y ? x ? */

int a,b;
a = 10;
b = a--; /* a ? b ? */

b = --a; /* a ? b ? */

Incrément

1

1-26 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Révision de Module

Fonction main

2 x 256 - 12
14 mod 6

x 2

Dans la fonction main() , déclarer un entier index , une variable en virgule flottante
fval , et une variable caractère ch . affecter la somme de 42 et 21 à index , une
constante en virgule flottante à fval , et un caractère ASCII à ch . Enfin, utiliser un
printf() pour imprimer le résultat de l’expression suivante :

1

Structures Fondamentales d’un Programme en C 1-27

reproduction interdite

Révision de Module

Conversions

Soient les déclarations :

char c;
int x;
float y;

Indiquer les résultats des différentes expressions ?
Remarque : Les exemples s’exécutent en séquence.

y = x = c = ’A’;
c = c + 1;
x = y + 2 * c;
y = 2 / c + x;

Conversions Explicites

Soient les déclarations :

int n;
float x;
int result_one, result_two;
n = 10;

Que vont produire les expressions suivantes ?

x = (float)n/3;
result_one = 1.6 + 1.8;
result_two = (int)1.6 + (int)1.8;

1

1-28 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 1 : Les Fondamentaux du C

Présentation

Durant ces travaux pratiques, vous serez initiés à la programmation en

C en écrivant quelques programmes C simples.

Exercices

1. Niveau 1. Saisir le programme élaboré en Révision de Module.

Nommer le fichier first.c :

% cc -Xc first.c (L’option -Xc implique le mode ANSI)
% a.out (Résultat par défaut de la compilation)

2. Niveau 2. Ecrire un programme qui va afficher la taille en octets

de chaque type de base. Nommer le fichier sizes.c :

% cc -Xc sizes.c
% a.out

3. Niveau 3. Ecrire un programme pour :

Afficher un caractère comme un char puis comme un int .

Affiche un int comme un caractère et un entier décimal.

Conseil : prendre un entier entre 33 et 126 ;

Nommer le fichier source printit.c :

% cc -Xc printit.c
% a.out

2-1

Opérateurs Logiques et Relationnels
dans les Expressions Conditionnelles 2

Objectifs

■ Utiliser correctement les opérateurs logiques.

■ Calculer la valeur d’une expression relationnelle.

■ Décrire la différence entre les opérateurs d’égalité et d’affectation.

■ Utiliser les opérateurs logiques et relationnels pour programmer

des décisions.

■ Utiliser les structures if et switch pour prendre des décisions.

Evaluation

Travaux Pratiques 2 et révisions de module.

2

2-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Opérateurs Logiques et Relationnels

■ Les opérateurs logiques et relationnels sont
généralement utilisés dans des structures décisionnelles.
L’ensemble de ces opérateurs est :

■ Si une expression logique est fausse, sa valeur est 0.
Si elle est vraie, sa valeur est 1.

■ Toute expression non-nulle est prise pour vrai.

DESCRIPTIONOPERATEUR

! non unaire (logique)
<......................... inférieur
>......................... supérieur
<=....................... inférieur ou égal
>=....................... supérieur ou égal
!=........................ différent
==....................... égal
&& et logique
|| ou logique

BASSE

HAUTE

(idem)

(idem)

Priorité

2

Opérateurs Logiques et Relationnels dans les Expressions Conditionnelles 2-3

reproduction interdite

L’instruction if

L’instruction logique (ou branchement) la plus commune en C
est l’instruction if :

if (expression)
instruction;

int main(void)
{

int val;

printf("Entrez un nombre entier : ");
scanf("%d",&val);
if (val != 0)

printf("La valeur est non-nulle !\n");
else /* pas de point virgule après un else */

printf("Vous avez tapé un zéro\n");
if ((val > 0) && (val < 10))

printf("L’entier est un nombre positif à un chiffre\n");
return 0;

}

Format 1: Format 2:

if (expression)
instruction;

else
instruction;

2

2-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

L’instruction if

Exemples d’instructions if imbriquées :

Exemple 1

if (exp1) {
if (exp2) {

<instructions>
}

}
else {

if (exp3) {
<instructions>

}
else {

<instructions>
}

}

2

Opérateurs Logiques et Relationnels dans les Expressions Conditionnelles 2-5

reproduction interdite

L’instruction if

Exemple 2

if (exp1)
if (exp2)

<instruction>
else if (exp3)

<instruction>
else if (exp4)

<instruction>
else

<instruction>

Le flux logique voulu est indiqué par l’indentation. Ce n’est pas celui exécuté.
Un else se rapporte au premier if possible.

if (exp1)
if (exp2)

<instruction>
else if (exp3)

<instruction>
else if (exp4)

<instruction>
else

<instruction>

Exécution réelle:

2

2-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

L’instruction if

Une instruction if peut contenir une affectation :

int main(void)
{

int val, result;

printf("Entrez une valeur entre 10 et 100 : ");
scanf("%d", &val);
if ((result = val * 42) >= 1024)

printf("Résultat supérieur ou égal à 1K.\n");
else

printf("Résultat plus petit que 1K.\n");
return 0;

} /* fin de la fonction main */

2

Opérateurs Logiques et Relationnels dans les Expressions Conditionnelles 2-7

reproduction interdite

L’instruction switch

■ L’instruction switch est un branchement conditionnel
multiple :

■ un break interrompt l’exécution du switch , sinon
toutes les instructions qui suivent sont exécutés.

■ default est activé si aucun case n’est déclenché. Il
peut être placé à n’importe quel endroit dans le switch .

int main(void)
{

char ch;

printf("Entrez a ou b:");
scanf("%c", &ch);
switch (ch) {

case ’a’:
printf("Une lettre de valeur !\n");
break ;

case ’b’:
printf("une lettre qui suit : %c.\n", (ch - 1));
break ;

default :
printf("Réponse incorrecte.\n");

} /* fin du switch */
return 0;

} /* fin de la fonction main */

switch (expression) {
case constante1 :

<instructions>;
break;

case constante2 :
<instructions>;
break;

default:
<instructions>;
break;

}

2

2-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

L’expression Conditionnelle ?:

Format

expr_test ? expr_si_vrai : expr_si_faux

■ Si l’expression test est vraie, alors l’expression après le ?
est évaluée. Sinon, c’est l’expression après le : qui est
évaluée. La valeur finale de toute l’expression est soit
celle de expr_si_vrai , soit celle de expr_si_faux .

■ L’expression conditionnelle ? et : peut remplacer une
structure if else :

if (expression_test)
expression_si_vrai;

else
expression_si_faux;

expression_test ? expression_si_vrai : expression_si_faux

Au lieu de :

Utiliser :

2

Opérateurs Logiques et Relationnels dans les Expressions Conditionnelles 2-9

reproduction interdite

Révision de Module

Opérateurs

Pour les opérateurs suivants, donner le type par groupe et la fonction de chacun :

Type d’opérateur :

<
>
<=
>=

Type d’opérateur :

!=
==

Type d’opérateur :

!
&&
||

Q. Quelle structure peut-être utilisée à la place de ’if else’ ?

R.

Q. Quelle est la règle d’appariement pour les if else imbriqués ?

R.

Q. Quel est le résultat de l’omission d’un break dans un switch case?

R.

Q. Quelle est l’utilité de default, et quand le code du default sera-t-il exécuté?

R.

Branchements

2

2-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Révision de Module

switch

Ecrire un programme simple qui demande une appréciation (ABCDF) et répond
respectivement "Excellent", "Très Bien", "Bien", "Passable" ou "Insuffisant". Donner
un message en cas de saisie incorrecte.

2

Opérateurs Logiques et Relationnels dans les Expressions Conditionnelles 2-11

reproduction interdite

Travaux Pratiques 2 : Expressions Conditionnelles

Présentation

Le but de cette séance de TP est de vous amener à créer des structures

décisionnelles mettant en jeu différentes instructions de test.

Exercices

** - indique que la solution sera reprise dans une prochaine séance.

1. Niveau 1. Saisir, compiler et exécuter le programme de la révision

du module 2.

Nommer le fichier source letters.c:

% cc -Xc letters.c
% a.out

2. Niveau 2. Ecrire un programme qui va :

Demander un nombre entre 10 et 100.

Si le nombre saisi est en dehors de l’intervalle, afficher le message

"hors-limites".

Si le nombre est dans l’intervalle, vérifier sa divisibilité par 2, 3, 5,

ou 7.

Afficher un message pour chaque diviseur. Note : plusieurs

peuvent être bons - comme pour 10 qui est divisible par 2 et 5.

Afficher un message si le nombre n’est divisible par aucun des

diviseurs proposés (exemple un nombre premier).

Conseil : L’opérateur % peut être utilisé pour déterminer la

divisibilité.

- voir page suivante -

2

2-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Nommer le fichier source diviz.c :

% cc -Xc diviz.c
% a.out

3. **Niveau 3. Ecrire un programme qui va :

Demander une année de naissance.

Vérifier que l’année est plausible (en l’occurence entre 1900 et

1975), pour éviter une faute de frappe. En cas de saisie erronée,

sortir avec un message d’erreur.

Dans le cas d’une date correcte, soit 1945, en déduire la valeur de

chaque chiffre séparément : 1, 9, 4 et 5.

Afficher un menu à 3 options :

1) SOMME,

2) PRODUIT,

3) Age actuel,

Faire le calcul indiqué en traitant le choix à l’aide d’un switch .

Implémenter un cas default pour un message d’erreur en cas de

choix incorrect.

Nommer le fichier source ages.c :

% cc -Xc ages.c
% a.out

Conseil :

int main(void) /* extraction des chiffres */
{

int x = 1947;
int unites, dizaines, centaines, milliers;
unites = x % 10;
x = x / 10;
dizaines = x % 10;
x = x / 10;
centaines = x % 10;
x = x / 10;
milliers = x % 10:
printf("%d\n%d\n%d\n%d\n", milliers, centaines,

dizaines,unites);
}

3-1

Fonctions et<stdio.h> 3

Objectifs

■ Ecrire des programmes simples avec plusieurs fonctions.

■ Utiliser le prototypage des fonctions pour les déclarations et

définitions.

■ Décrire l’interfaçage des fonctions.

■ Identifier le mécanisme de transfert de contrôle au programme

appelant.

■ Utiliser correctement la fonction printf() pour afficher entiers,

caractères et nombres en virgule flottante.

■ Réaliser des conversions à la saisie avec la fonction scanf() .

■ Lire sur l’entrée standard caractère par caractère avec getchar() .

■ Ecrire caractère par caractère sur la sortie standard en utilisant

putchar() .

Evaluation

Travaux Pratiques 3 et révision de Module.

3

3-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Fonctions

■ Les fonctions sont utilisées pour réaliser une petite partie
d’un travail.

■ La fonction main() a été utilisée dans tous les exemples
jusqu’à maintenant. Elle est obligatoire dans tout
programme C.

■ Les définitions de fonctions ne peuvent être imbriquées
entre elles.

Format

Syntaxe ANSI C pour la définition de fonction (sans
correspondance en C traditionnel) :

<type> <id_de_fonction> (<liste-de-types_param>)
{

<déclarations>;
<instructions>;

}

3

Fonctions et <stdio.h> 3-3

reproduction interdite

Exemple de Définition de Fonction

int main(void)
{

double dnum, rad = 5.67;
double circum(double);/* décla.*/

dnum = circum(rad);

/* suite du programme */
return 0;

}
double circum(double r) /* définition */
{

double pi = 3.14159;
return (2 * pi * r);

}

3

3-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Interface de Fonction

■ Une fonction dont le type retourné est différent de int
doit être déclarée au niveau de la fonction appelante.
Déclarer également les fonctions qui retournent un int
est une bonne habitude.

Format

<type> <idfonct> (<liste des types des param .>);

■ Dans l’appelant, l’appel de la fonction lui-même est une
expression. Les arguments passés doivent avoir le même
type que ceux définis pour la fonction.

■ Le contrôle revient à l’appelant lorsque l’on rencontre soit
le "}" de fin dans l’appelée, soit une instruction return .

int main(void)
{

int cube(int); /* déclaration de la fonction cube */
int result;
int val;

printf("Entrer un entier : ");
scanf("%d", &val);
result = cube(val);
printf("Le cube de %d est %d.\n", val, result);
return 0;

} /* fin de la fonction main */

int cube(int n) /* définition de la fonction cube */
{

return (n * n * n);
} /* fin de la fonction cube */

3

Fonctions et <stdio.h> 3-5

reproduction interdite

Interface de Fonction - return

■ Une déclaration de fonction précédée du mot-clef void
informe le compilateur qu’aucune valeur n’est retournée.
Si la fonction retourne un type autre que int , celui-ci
doit être indiqué. Mais il est bon de déclarer également
les fonctions retournant un int .

■ L’instruction return ne peut passer qu’une seule valeur à
l’appelant.

■ L’expression évaluée dans l’instruction return devient
la valeur de l’expression appel de fonction dans
l’appelant.

int main(void)
{

int cube(int);
int result;
int val;

printf("Entrer un entier: ");
scanf("%d", &val);
result = cube(val);
printf("Le cube de %d est %d.\n", val, result);
return 0;

} /* fin de la fonction main */

int cube(int n) /* définition de la fonction cube */
{

return (n * n * n);
} /* fin de la fonction cube */

3

3-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Fin de Programme - exit()

Format

void exit(int status);

■ Par convention, status vaut 0 pour les retours sans
erreur et 1 si une erreur est survenue.

■ exit() peut être utilisée pour sortir d’un programme
avant la rencontre de l’accolade de fin "}".

■ exit() est une sortie propre d’un programme. On ne
revient pas d’un appel à la fonction exit() .

int main(void)
{

void error(void);/*déclaration de la fonction error*/
int num;

printf("Entrer un entier entre -25 et 25: ");
scanf("%d", &num);
if ((num < -25) || (num > 25))

error();
else

printf("Le nombre entré est %d\n", num);
return 0;

} /* fin de main */

void error(void)/*définition de la fonction error*/
{

printf("Entier hors intervalle, fin.\n");
exit(1);

 } /* fin de la fonction error */

3

Fonctions et <stdio.h> 3-7

reproduction interdite

Arguments

■ Les arguments sont passés par valeur à l’appel des
fonctions.

■ La valeur de chaque argument à l’appel est affectée au
paramètre correspondant dans la fonction :

int main(void)
{

int num = 5;
void func(int);

func(num);
printf("Main: num = %d.\n", num);
return 0;

} /* fin de la fonction main */

void func(int number)
{

number += 2;
printf("Func: number = %d.\n", number);

} /* fin de la fonction func */

5
num

7
numberdans

main()

% a.out
Func: number = 7.
Main: num = 5.
%

dans
func()

3

3-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Fonctions

Ecrire un programme comportant une fonction addum() , prenant 2 arguments int ,
et retournant un int égal à leur somme :

Révision Partielle

3

Fonctions et <stdio.h> 3-9

reproduction interdite

Inclusion de fichiers

■ La directive #include est utilisée pour inclure le contenu
d’autres fichiers dans un source. Par exemple,

#include <stdio.h>

■ Les signes < et > indiquent que le fichier à inclure doit
être recherché dans une liste de répertoires dépendant de
l’implémentation du compilateur. cc recherchera
d’abord dans (cas de la version 2.0 du Sun C)
/installation_dir /SUNWste/SC2.0/include/cc
pour les fichiers header. En cas d’échec la recherche se
poursuivra dans /usr/include .

■ /installation_dir /SUNWste/SC2.0/include/cc
contient les fichiers suivants :

floatingpoint.h stab.h sys
math.h sunmath.h

■ Par convention, les guillemets désignent le chemin de
fichiers non trouvés dans les répertoires standards,
comme pour "mydefs.h" , et "myincludes/defs.h" .
Dans ce cas, le chemin indiqué est prioritaire sur les
répertoires standards.

3

3-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

<stdio.h> et <stddef.h>

■ <stdio.h> est le fichier /usr/include/stdio.h .

Il définit les constantes et les fonctions utilisées
fréquemment dans les entrées/sorties. Il est appelé le
fichier header des entrées/sorties standard.

■ <stdio.h> définit EOF:

La valeur de cette constante est habituellement définie de
telle sorte qu’elle ne corresponde à aucun caractère
existant. Elle est retournée pour une fin de fichier (End Of
File).

■ <stddef.h> définit NULL :

Cette constante est décrite comme un pointeur de type
void égal à 0. Beaucoup de fonctions retournent cette
valeur en cas d’erreur.

3

Fonctions et <stdio.h> 3-11

reproduction interdite

Fonction d’écriture de base - printf()

Format

#include <stdio.h>
int printf(const char * format , ...);

■ Le code retourné par printf() est un entier.
Normalement égal au nombre de caractères affichés
(transmis), il est négatif en cas d’erreur. (La plupart des
programmeurs ignorent le code retourné par
printf() .)

■ format indique le formatage des sorties :

1. chaîne de caractères

2. spécification de format

■ Les autres arguments (en nombre variable) représentent
les éléments à formater et à imprimer.

3

3-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Spécifications de format

■ Les spécifications de format indiquent à printf() (et
scanf()) comment écrire (lire) la valeur d’une
expression. Elles comprennent :

%c Conversion des int en unsigned char

%d Valeur entière décimale

%i Valeur entière décimale (l’argument
correspondant détermine la base)

%o Valeur octale non signée

%s Chaîne de caractères (Tableau de char)

%u Valeur entière décimale non signée

%x Valeur héxadécimale non signée

%e, f ou g Valeur en virgule flottante

%m.nf m est la taille du champ et n est
le nombre de chiffres après la virgule (’.’ içi)

%-m.nf le signe moins force la justification à gauche
dans le champ

%hi short int (normalement avec scanf())
%li long int (normalement avec scanf())
%lf double (normalement avec scanf())
%Lf long double

■ L’indication de la taille du champ (m) et de la
justification à gauche (-) peut compléter toute
spécification de format.

3

Fonctions et <stdio.h> 3-13

reproduction interdite

Utilisation de printf()

Exemples de printf() montrant des spécifications de
format :

#include <stdio.h>
int main(void)
{

int x = 10;
char c = ’q’;
float f = 1.23;

printf("Simplement une chaine de caractères.\n");
printf("hexa:%x,octal: %o, flottant: %f\n",x,x,f);
printf("caractère c = %c\n",c);
return 0;

} /* fin de la fonction main */

3

3-14 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Conversion en entrée avec format - scanf()

Format

#include <stdio.h>
int scanf(const char * format , ...);

■ Normalement, scanf() retourne le nombre d’items
correctement saisis. En cas d’erreur de lecture avant
toute conversion, scanf() retourne EOF.

■ Utilisation de scanf() pour lire sur l’entrée standard :

#include <stdio.h>
int main(void)
{

int ival, num;
float fval;
double dval;

 printf("Entrer un entier et deux réels: ");
 num = scanf("%d%f%lf",&ival, &fval, &dval);

if (num < 3) {
printf("Erreur dans scanf()\n");
exit(1);

 }
else {
printf("Vous avez saisi %d items, convertis en :\n",num);
printf("L’entier: %d,les réels: %f %f.\n", ival, fval, dval);

 }
return 0;

} /* fin de la fonction main */

3

Fonctions et <stdio.h> 3-15

reproduction interdite

Saisie de caractères - getchar()

Format

#include <stdio.h>
int getchar(void);

■ En cas de succès, getchar() renvoie le caractère
suivant du flux entrée standard. Sur une fin de fichier ou
une erreur de lecture, getchar() renvoie EOF.

■ Exemple de lecture d’un caractère utilisant getchar() :

#include <stdio.h>
int main(void)
{

int ch; /* ATTENTION : type int pour getchar() */

 printf("Entrer un caractère : ");
 ch = getchar();
 printf("Vous avez saisi %c, exact ?\n", ch);
 printf("Code ASCII %d décimal, %x hexa, %o octal.\n",

ch,ch,ch);
return 0;

} /* fin de la fonction main */

3

3-16 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Sortie d’un caractère - putchar()

Format

#include <stdio.h>
int putchar(int c);

■ En cas de réussite, putchar() renvoie le caractère
transmis à sortie standard. Sur erreur, putchar() renvoie
EOF.

■ Le programme suivant répète ce qui est saisi en utilisant
getchar() et putchar() :

#include <stdio.h>
int main(void)
{

int ch;

printf("Saisir un caractère : ");

ch = getchar();
printf("caractère saisi : ");
putchar(ch); /* écrit le caractère */
return 0;

} /* fin de la fonction main */

3

Fonctions et <stdio.h> 3-17

reproduction interdite

Révision de Module

Spéc.de Format

Soient les déclarations suivantes, écrire un ou plusieurs printf() pour imprimer
les valeurs et indiquer le résultat attendu :

int num1 = 16 * 2;
int num2 = 0xFF;
int num3 = 0777;
float fnum = 42.0 + num1;
char ch1 = ’a’;
char ch2 = ch1 + 1;

Affichage :

Après les déclarations suivantes, écrire deux instructions, utilisant des fonctions
différentes, pour lire un caractère sur l’ entrée standard :

char chr;
int ch;

3

3-18 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Révision de Module

scanf()

Soient les scanf() et printf() et le jeu d’essai suivant. Quel est le résultat
attendu ?

saisie :
25 54.32E-1

impression :

saisie :
127 2+5

impression :

saisie :
12.5E2 17

impression :

saisie :
a 12.5

impression :

int result, x;
float f;
x = 0;
f = 0.0;
printf("Entrer un entier puis un réel #: ");
result = scanf("%d%f",&x,&f);
printf("nb items lus : %d, x = %d, f = %f.\n", result,x,f);

3

Fonctions et <stdio.h> 3-19

reproduction interdite

Travaux Pratiques 3 : Fonctions et <stdio.h>

Présentation

Ces Travaux Pratiques permettent la prise en main des fonctions et des

appels de fonction, ainsi que la mise en œuvre de quelques fonctions

de la librairie standard d’Entrée/Sortie.

Exercices

1. Niveau 1. Vérifier les résultats des questions de la révision en fin

de chapitre, en écrivant un programme faisant les mêmes

déclarations, les mêmes traitements d’E/S, et imprimant les

résultats. Nommer le programme source review_io.c:

% cc -Xc review_io.c
% a.out

2. Niveau 2. Ecrire un programme pour :

Demander un caractère alphabétique.

Tester la saisie (Est-ce bien un caractère alphabétique ?).

Imprimer le caractère ou afficher le message "ERREUR" .

Demander un entier.

Afficher cet entier en base 10, en base 8 et en base 16.

Demander un réel (virgule flottante).

Imprimer le produit de l’entier et du réel avec une précision de 5

chiffres après la virgule.

Imprimer ce produit en notation exponentielle scientifique -

ie. 4.2000000E+1.

Afficher le message "Où tu iras, je serai.\n".

- voir page suivante -

3

3-20 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Nommer le fichier source mixed_io.c:

% cc -Xc mixed_io.c
% a.out

3. Niveau 3. Ecrire un programme pour :

Demander le prix de quelque chose (lire un double).

Appeller une fonction tva() pour calculer et retourner une TVA

à 18,6%.

Imprimer le hors taxe, la TVA et le montant TTC.

Conseil : Exemples de déclaration et définitions :

/* définition de fonction... */
double tva(double valeur, double taux)
/* valeur est le montant hors-taxe et taux le

taux de TVA */

Nommer le fichier source tva.c:

% cc -Xc tva.c
% a.out

4-1

Introduction au Compilateur C et
au Préprocesseur 4

Objectif

■ Utiliser les options de compilation pour obtenir différents niveaux

de conformance ANSI.

■ Générer des fichiers .i , .s , et .o en utilisant les options de cc
adéquates .

■ Utiliser les options de spécification de chemin de recherche pour

les fichiers header et les librairies.

■ Utiliser les directives du préprocesseur pour définir des constantes

et des fichiers d’include.

■ Utiliser lint pour vérifier des sources C.

Evaluation

Travaux Pratiques 4 et révision de module.

4

4-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Compilation de Programmes C

■ Les fichiers sources C doivent avoir l’extension .c

■ La commande cc appelle le compilateur C ANSI acomp
(qui contient le préprocesseur et le compilateur
proprement dit), l’assembleur fbe , et le linker ld pour
créer le fichier executable, a.out .

■ Le résultat de cc est a.out par defaut, l’option -o
permettant d’indiquer le nom voulu.

source.c a.out

-exécutable-
% cc -Xc source.c

/* program foo */
#include <stdio.h>

main()
{

int i;

printf("Type an int: ");
scanf("%d", &i);
printf("%d\n", i);

} /* end main */

4

Introduction au Compilateur C et au Préprocesseur 4-3

reproduction interdite

Phases de Compilation

-P

-S

-c

-o nom

prog.i

prog.s

prog.o

Source

Préprocesseur

Assembleur (fbe)

Editeur de liens (ld)

prog.c

nom

programme exécutable

Code Assembleur

Code Objet

librairie C

Compilateur
(acomp)

4

4-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Options de Conformance ANSI C

■ Le degré de conformance au standard ANSI du Langage
C peut être indiqué par les options de compilation
suivantes:

■ La macro prédéfinie __STDC__ prend la valeur 1 avec
l’option -Xc ou la valeur 0 autrement. Le standard
ANSI du C définit __STDC__ comme étant à 1.

-Xt (transition) Cette option donne une compatibilité ANSI C plus K&R
C, sans les changements sémantiques imposés par le C ANSI. Ceci est
l’option par défaut.

-Xa (ANSI) Cette option donne une compatibilité ANSI C plus K&R C,
avec les changements sémantiques imposés par le C ANSI.

-Xc (conformance) Avec cette options, les sources et les header se
conforment au C ANSI, sans aucune extension K&R.

-Xs (senescent)("devenant vieux", option Sun C) Le langage compilé
inclut les possibilités pré-ANSI K&R. Le compilateur signale les
constructions ayant un comportement différent entre le C ANSI et le
C K&R.

4

Introduction au Compilateur C et au Préprocesseur 4-5

reproduction interdite

Compilation Séparée

■ Si vous avez séparé vos fonctions en les écrivant dans
des fichiers différents, vous pourrez les compiler
individuellement.

■ Pour compiler sans linker, utiliser l’option -c. Le fichier
généré aura la même racine que le source mais avec
l’extension .o

■ Utiliser cc pour linker les fichiers objets (et la librairie C)
et créer ainsi l’exécutable final.

% cc -Xc -c f2.c

-exécutable-
f1.c

f2.c

f3.c

% cc -Xc -c f1.c

% cc -Xc -c f3.c

% cc f1.o f2.o f3.o -o prog

f1.o
f2.o

f3.o

proglibrairie C

4

4-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Compilation avec des Librairies d’Application

■ Quand le programme appelle des fonctions d’une
librairie autre que la librairie C, le programmeur doit
linker avec la librairie contenant les fonctions.

■ Voici les options de la commande cc requises
généralement pour le link avec les librairies
d’application :

■ L’option -l<librairie> doit suivre l’argument fichier source.

■ La recherche des fichiers #include est la suivante :
➀ le répertoire du source (si le nom du fichier est entre " "),
➁ les repertoires indiqués par -I<repertoire> ,
➂ / install_dir/ SUNWste/SC2.0/include, (si version 2.0)
➃ /usr/include .

Options et Syntaxe de cc Signification

-l<librairie> Link avec la librairie indiquée.

-I<repertoire> Répertoire de recherche pour les
fichiers #include dont le nom ne
commence pas par /, avant de chercher
dans les répertoires standards.

-L<repertoire> Répertoire de recherche pour les
librairies, avant de poursuivre dans les
répertoires standards.

4

Introduction au Compilateur C et au Préprocesseur 4-7

reproduction interdite

Utilisation des Librairies d’Application

Ce programme a été compilé sur une SPARCStation 1+. Le
compilateur C ANSI était installé dans /usr/opt.

sun% cc -Xc trig.c -o trig
Undefined first referenced
 symbol in file
asin trig.o
ld: fatal: Symbol referencing errors. No output written to trig
sun% cc -Xc -# trig.c -o trig -lm
/usr/opt/SUNWste/bin/../SC2.0/acomp -i trig.c -o
/var/tmp/ctm1BAAa000BU -Qy -Xc
-I/usr/opt/SUNWste/bin/../SC2.0/include/cc
/usr/opt/SUNWste/bin/../SC2.0/fbe -o trig.o -s -q -Qy
/var/tmp/ctm1BAAa000BU
/usr/ccs/bin/ld -dy /usr/opt/SUNWste/bin/../SC2.0/crti.o
/usr/opt/SUNWste/bin/../SC2.0/crt1.o
/usr/opt/SUNWste/bin/../SC2.0/__fstd.o /usr/ccs/lib/values-Xc.o -o trig
trig.o -lm -Y
P,/usr/opt/SUNWste/bin/../SC2.0:/usr/ccs/lib:/usr/lib -Qy -lc
/usr/opt/SUNWste/bin/../SC2.0/crtn.o
sun% trig
L’arc sinus de -1.000000 est -1.570796.
sun%

trig.c

#include <stdio.h>
#include <math.h>

int main(void)
{

double val = -1.0;
printf("l’arc sinus de %f est %f.\n", val, asin(val));
return 0;

}

4

4-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Directive du Préprocesseur : Définition de Constantes

■ Une possibilité de la directive #define est de créer des
constantes symboliques.

■ La valeur est substituée chaque fois que l’identifiant
apparaît dans le source :

#include <stdio.h>
#include "my_header.h"

int main(void)
{

printf("Taille de tampon : %d.\n", BUF_SIZE);
printf("%s\n",MESSAGE);
printf("MESSAGE\n"); /* affiche: MESSAGE

et non la valeur de MESSAGE */
return 0;

} /* fin de la fonction main */

#define BUF_SIZE 512
#define MESSAGE "Programme avec constantes symboliques."

my_header.h

prog.c

4

Introduction au Compilateur C et au Préprocesseur 4-9

reproduction interdite

Vérification de Programmes C - lint

■ lint traite les fichiers sources.

■ lint réagit principalement dans 3 catégories de cas :

1. Usage inconsistant

2. Code non portable

3. Structures suspectes

■ lint travaille en deux passes :

Première passe : Vérification des erreurs possibles
internes au source.

Seconde passe : Vérification de l’intégrité entre plusieurs
sources.

■ lint -Xc demande à lint de vérifier la conformance
au standard ANSI.

■ lint -p pousse lint à vérifier plus précisément la
portabilité.

4

4-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Vérification de Programmes C - lint

■ lint signalera les inconsistances telles que :

1. Incohérence entre le type et/ou le nombre des arguments passés
aux fonctions. Le prototypage des interfaces de fonctions l’aide
dans cette tâche.

2. Mauvaise utilisation de pointeurs (voir plus loin).

3. Variables et fonctions définies mais non-utilisées.

4. Ignorance des codes de retour des fonctions.

■ Exemple de programme et rapport de lint :
#include <stdio.h>
main(void)
{

int x;
char c;
float f;
x = 16;
c = ’R’;
f = 1.23;
printf("x = %d, c = %c, f = %f\n",x,c,f);
printf("octal x = %o, hexa x = %x\n",x,x);

}

sun% lint -Xc types.c
(7) error: syntax error before or at: float
(10) error: undefined symbol: f
(11) error: newline in string literal
(12) error: syntax error before or at: printf

set but not used in function
 (10) f in main
 (6) c in main
 (5) x in main

implicitly declared to return int
 (11) printf

declaration unused in block
 (11) printf
lint: errors in types.c; no output created
lint: pass2 not run - errors in types.c

4

Introduction au Compilateur C et au Préprocesseur 4-11

reproduction interdite

Vérification de Programmes C - lint

■ Le programme suivant se compile mais lint se plaint
encore :

■ Pour éviter d’avoir un message de lint pour les
fonctions dont le code de retour est ignoré, forcer leur
type à void , si ce code est vraiment inutilisé.

#include <stdio.h>
int main(void)
{

int x;
char c;
float f;
x = 16;
c = ’R’;
f = 1.23;
printf("x = %d, c = %c, f = %f\n", x, c, f);
printf("octal x = %o, hexa x = %x\n", x, x);
return 0;

}

sun% lint -Xc types.c

function returns value which is always ignored
 printf

<output from compatibility check with llib-lc.ln>
sun%

4

4-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Révision de Module

Pour chacune des options de cc ci-dessous, indiquer le type et l’extension du fichier généré:

% cc -Xc -P mumble.c

% cc -Xc -S mumble.c

% cc -Xc -c mumble.c

% cc -Xc -o enunciate mumble.c

Soient les 4 fichiers suivants (tous issus de sources C), quelle sera la commande pour les
linker tous en un exécutable nommé concasseur - sel.c , poivre.o , cumin.c ,
thym.s :

Ecrire une directive pour créer une constante symbolique valant 42, une deuxième directive
pour une constante égale à la précédente plus un entier, et une dernière pour une constante
représentant la chaîne de caractère "La Légèreté s’oppose à la Gravité":

compilation séparée

préprocesseur

compilation

type du fichier généré suffixe

4

Introduction au Compilateur C et au Préprocesseur 4-13

reproduction interdite

Travaux Pratiques 4 : cc , Préprocesseur et lint

Présentation

Ceci est une introduction à l’utilisation de quelques options de

compilation, à la programmation des directives du préprocesseur, et à

la vérification de programmes à l’aide de lint .

Exercices

1. Niveau 1. Recompiler les programmes des TP précédents en

utilisant les options de compilations suivantes :

-P, -S, -c, -o.

Noter le type et le nom des fichiers générés. Utiliser la commande

file :

% file <fichier-généré>

pour déterminer le type de fichier. Si le contenu est du texte ascii,

le visualiser :

% cc -Xc -P mixed_io.c
% more mixed_io.i

2. Niveau 2. Faire tourner lint sur tous les sources créés jusqu’à

présent, rediriger les sorties vers un fichier de rapport de lint :

% lint -Xc review_io.c > lint.log
% more lint.log

4

4-14 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

5-1

Structures Itératives 5

Objectifs

■ Utiliser correctement les structures itératives du langage C.

■ Repérer les similitudes entre while et for .

■ Décider quand et comment placer des goto en C.

Evaluation

Travaux Pratiques 5 et révision de module.

5

5-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

L’instruction for

Format

for (<expression1> ; <expression2> ; <expression3>)
<instruction> ;

■ expression1 est appelée aussi initialisation.

■ expression2 est le "test". Si le test est omis, une boucle
infinie est déclenchée car il est pris comme vrai.

■ expression3 est le pas.

■ Toutes les trois sont optionnelles.

■ La virgule est utilisée dans l’une ou l’autre des
expressions pour séparer plusieurs instructions.

■ Les points-virgules sont syntaxiquement indispensables :

#include <stdio.h>

int main(void)
{

int index;
int y;

for (index=0; index <= 19; index++)
printf("%d\n",index); /* boucle à une seule instruction */

printf("Fin de boucle.\n");

for (index = 5, y = 1;(index > 0) && (y < 10);index--, y += 3) {
printf("index = %d\n", index);
printf("y = %d\n", y);

} /* boucle sur un bloc */
return 0;

} /* fin de la fonction main */

5

Structures Itératives 5-3

reproduction interdite

L’instruction while

Format

while (<expression>)
<instruction> ;

■ Si l’ expression est vraie, instruction est exécutée.
La boucle se termine quand et si l’expression devient
fausse.

■ Si l’expression est fausse avant le premier passage
dans la boucle, l’instruction n’est pas exécutée du
tout.

#include <stdio.h>
int main(void)
{

int index = 0;

while (index <= 10)
printf("%d\n",index++);

printf("Fin de boucle.\n");
return 0;

} /* fin de la fonction main */

5

5-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

for contre while

■ En général, une boucle for est équivalente à une boucle
while .

■ L’instruction for aide à garder le contrôle de la boucle à
un seul endroit.

■ L’instruction for est habituellement utilisée lorsque les
valeurs initales, la condition de boucle, et la condition de
fin sont contrôlées par la même variable. Elle est utilisée
aussi lorsqu’on connaît le nombre d’itérations à l’avance.

#include <stdio.h>
int main(void)
{

int index;

index = 0;
while (index < 100) {

/* corps de boucle */
index++;

} /* fin du while */

/* for équivalent... */

for (index = 0; index < 100; index++) {
/* corps de boucle */

} /* fin du for */
return 0;

} /* fin de la fonction main */

5

Structures Itératives 5-5

reproduction interdite

L’instruction do while

Format

do
<instruction> ;

while (<expression>);

■ Dans cette structure, l’expression est évaluée à la fin de
la boucle.

■ L’instruction est toujours exécutée au moins une fois.

#include <stdio.h>

int main(void)
{

int val;

do {
printf("Une valeur entre 1 et 10: ");
scanf("%d", &val);

} while (val < 1 || val > 10);

printf("fin de boucle.\n");
return 0;

} /* fin de la fonction main */

5

5-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Contrôle de boucle - break

break force la sortie de la boucle où il apparaît:

#include <stdio.h>
int main(void)
{

int val;

for (;;) { /* boucle infinie */
printf("Une valeur entre 1 et 10 : ");
scanf("%d", &val);
if (val >= 1 && val <= 10)

break ; / * Sortie de boucle sur saisie correcte */
} /* fin du for */

/* suite du programme */

return 0;
} /* fin de la fonction main */

5

Structures Itératives 5-7

reproduction interdite

Contrôle de Boucle - continue

■ continue saute à l’itération suivante de la boucle.

■ Dans les do et les while , ceci correspond à l’évaluation
de la condition de boucle.

■ Pour les for , ceci correspond à l’évaluation de la portion
pas du for :

#include <stdio.h>
int main(void)
{

int num;

while (1) { /* boucle infinie */
printf("Une valeur entre 1 et 10 : ");
scanf("%d", &num);
if (num < 1 || num > 10) {

printf("Hors intervalle!\n");
continue ;

}
printf("Vous savez lire !\n");
break ;

}
return 0;

} /* fin de la fonction main */

5

5-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Contrôle de Boucles Imbriquées

Exemples de contrôles de boucles imbriquées :

#include <stdio.h>
int main(void)
{

int val, i;

for (i = 0; i < 10; i++) {
while (1) {

printf("Entrez un entier : ");
scanf("%d", &val);
if (val % 2) {

printf("Nombre impair.\n");
continue ;

}
printf("Nombre pair.\n");
break ;

} /* Fin du while */
} /* fin du for */
return 0;

} /* fin de main */

5

Structures Itératives 5-9

reproduction interdite

 Traverser des boucles imbriquées - goto

Format

goto etiquette ;
etiquette : instruction ;

■ Les structures itératives peuvent être aussi implémentées
en utilisant l’instruction de saut goto :

■ Prenez garde à l’effet Spaghetti, très fréquent avec les
goto .

#include <stdio.h>
int main(void)
{

int a, b;

for (a = 0; a < 5; a++){
for (b = 0; b < 5; b++) {

printf("a=%d; b=%d\n", a, b);
if ((a == 3) && (b == 3))

goto fin_de_boucle;
}

}

fin_de_boucle:
printf("C’est tout pour aujourd’hui\n");

return 0;
} /* fin de la fonction main */

5

5-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Révision de Module

boucles while

Q. Quelle est la principale différence entre une boucle while et une boucle

do - while ?

R.

Q. Quelles sont les conditions de sortie d’une boucle while ?

R.

Q. Quelles règles peuvent aider à déterminer si une boucle for est plus adéquate

qu’une boucle while ?

R.

Ecrire une boucle while qui s’exécute 10 fois, et à chaque itération imprime la va-
leur de l’index et le résultat de la somme de l’index avec une constante. Prendre les
instructions de boucle ainsi que l’incrément dans un bloc :

5

Structures Itératives 5-11

reproduction interdite

Révision de Module

boucles for

Q. Qu’est-ce que provoque l’omission de la deuxième expression dans une ins-

truction for ?

R.

Q. Combien de fois une boucle for est-elle exécutée ?

Réécrire la boucle while précédente avec un for :

5

5-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 5 : Itération

Présentation

Introduction aux structures itératives du Langage C.

Exercices

** La solution sera utilisée dans les TP à venir.

1. Niveau 1. Vérifier Les résultats des deux programmes des

révisions en les compilant et en les exécutant.

2. Niveau 2. Ecrire un programme pour :

Afficher à l’écran un triangle rectangle fait d’astérisques "*" , et

avec une base de 40 caractères. Exemple d’affichage :

*

**

***** (etc…)

Facultatif : Laisser l’utilisateur définir le caractère à afficher et la

taille de la base. Si la base est en dehors de l’intervalle [1-80], la

forcer à 40.

Nommer le fichier source triangle.c :

% cc -Xc triangle.c -o triangle

3. **Niveau 3. Ecrire un programme pour :

Demander une minuscule à l’utilisateur, tant qu’il n’en rentre pas

une.

Remarque : Quand l’utilisateur entre un caractère, scanf() et
getchar() laissent un caractère newline dans le flux d’entrée standard.
Ce ’\n’ doit être pris en compte d’une manière ou d’une autre.

 - voir page suivante -

5

Structures Itératives 5-13

reproduction interdite

Déterminer si la majeure partie de l’alphabet minuscule est avant

ou après ce char . ’n’ est considéré comme le milieu.

si le char est au début de l’alphabet, alors afficher les caractères

jusqu’à la fin en ordre croissant, char compris. Si le char est

dans la deuxième moitié, afficher l’alphabet à l’envers, à partir du

char jusqu’au début.

Nommer le fichier source loops.c :

% cc -Xc loops.c -o loops

5

5-14 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

6-1

Tableaux 6

Objectifs

■ Déclarer et utiliser correctement les tableaux.

■ Traiter les tableaux avec des structures itératives.

■ Manipuler des tableaux à plusieurs dimensions.

■ Initialiser tous les types de tableaux.

Evaluation

Travaux Pratiques 6 et révision de module.

6

6-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Déclarer un Tableau

Format

<type> <identifiant> [<nb d’éléments>];

■ Un tableau est un ensemble ordonné de données de
même type, référencé par un nom unique.

■ Un tableau se définit plutôt comme une variable scalaire
plus une spécification de taille de tableau.

■ Les constantes symboliques sont très utiles lorsqu’on
déclare et manipule les tableaux :

#define MAX_INDEX 10
int main(void)
{

int int_array[25];/* à éviter */
float float_array[MAX_INDEX];/* ok */
char char_array[MAX_INDEX * 4];

/* ici le code du programme */
return 0;

}

6

Tableaux 6-3

reproduction interdite

Référencer les Eléments de Tableaux

Format

<identifiant> [indice]

■ L’accès à un élément de tableau se fait en indiquant le
nom du tableau suivi de l’indice entre crochets.

■ La plage des indices valides d’un tableau est de
zéro à (nb éléments - 1) :

#define MAX 10
int main(void)
{

int int_array[MAX];

int_array[0] = 5;
int_array[1] = 10;

 . . .
int_array[MAX - 1] = 50;

 . . .
}

6

6-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Manipuler les Tableaux

■ Puisqu’un tableau est un ensemble ordonné, l’accès à ses
éléments peut s’automatiser avec une boucle.

■ Il n’existe pas d’opération sur les tableaux - chaque
élément doit être manipulé séparément :

#include <stdio.h>
#define MAX 26
int main(void)
{

int counts[MAX], index, ret;
char ch;

/* init des comptes à 0... */
for (index = 0; index < MAX; index++)

counts[index] = 0;
/* saisie des valeurs... * /
printf("Entrer des caracteres. Finir par ^D : ");
while ((ch = getchar()) != EOF)

counts[ch - ’A’]++;
printf ("Liste des comptes :\n");
for (index = 0; index < MAX; index++)

printf ("counts[%d]=%d\n", index, counts[index]);
return 0;

} /* fin de la fonction main */

6

Tableaux 6-5

reproduction interdite

Tableaux à Plusieurs Dimensions

Exemple

int matrix [3][5];

Cette définition génère un tableau à deux dimensions :

0,0 0,1 0,2 0,3 0,4

1,0

2,0 2,4

réellement rangé en mémoire comme suit :

5 colonnes

3 lignes

ligne 0 ligne 1 ligne 2

6

6-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Manipuler un Tableau Multi-dimensionnel

La méthode standard pour traiter les tableaux à plusieurs
dimensions est d’utiliser des boucles imbriquées, à raison
d’une boucle par dimension.

#define ROWS 10/* Indice maxi de ligne + 1 */
#define COLS 2/* Indice maxi de colonne + 1 */
#include <stdio.h>
int main(void)
{

int array[ROWS][COLS], row, col;

/* chargement du tableau avec des valeurs... */
for (row = 0; row < ROWS; row++) {

for (col = 0; col < COLS; col++) {
array[row][col] = row + col;
printf("Ligne = %d, Colonne = %d.\n", row, col);

} /* fin du for */
} /* fin du for */

/* affichage des valeurs du tableau... */
for (row = 0; row < ROWS; row++) {

for (col = 0; col < COLS; col++) {
printf("Array[%d][%d] = %d.\n", row, col, array[row][col]);

}
} /* fin du for */
return 0;

} /* fin de la fonction main */

6

Tableaux 6-7

reproduction interdite

Initialisation des Tableaux

■ On peut affecter des valeurs aux tableaux au moment de
leur déclaration. C’est l’initialisation des tableaux.

■ Dans une initialisation de tableau, sa taille peut être
indiquée ou pas. Si elle ne l’est pas, la taille du tableau
dépend du nombre de valeurs.

■ Syntaxe de l’initialisation :

<type> <nom du tableau>[taille opt.] = {listes de
valeurs};

Les valeurs de la liste sont séparées par des virgules.

■ Si la taille est indiquée, et qu’il n’y a pas autant de
valeurs, le reste du tableau est rempli par des 0.

■ Exemples:

int arr1[] = {1, 2, 3, 4, 5}; /* tableau d’entiers à une dimension */

int arr2[20] = {0}; /* tableau de 20 entiers, 1er élément à 0, les autres
non initialisés*/

char arr3[] = {’a’, ’b’, ’c’, ’d’, ’e’}; /* tableau de 5 caractères */

double arr4[3][4] = {
{4.3, 1.2, 5.6, 8.7}, /* row 1 */
{1.3, 2.4, 5.7, 6.8} /* row 2 */

}; /* tableau de double à 2 dimension, 3eme ligne non initialisée*/

float arr5[3][4] = { {1.2}, {3.4}, {5.6}}; /* tableau de float à 2 dim,
col. 2, 3, et 4 non initialisées. Col. 1 a les valeurs :
arr5[0][0] = 1.2, arr5[1][0] = 3.4, et
arr5[2][0] = 5.6 */

6

6-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Révision de Module

Déclarer des tableaux

 Remplir les blancs en se basant sur les 2 déclarations suivantes :

int arr1[14];
float arr2[5][5];

1. Le premier élément de arr1 est référencé par

2. En pensant à la disposition en mémoire des tableaux à plusieurs dimensions,
 le troisième élément à partir du début de la position en mémoire de arr2
 est

3. référence le dernier élément de arr2 .

Q. En quoi un tableau diffère-t-il d’une variable ordinaire ?

R.

Q. Comment accède-t-on aux éléments d’un tableau ?

R.

Q. Pourquoi est-il préférable de spécifier la taille des tableaux à l’aide de

constantes symboliques ?

R.

Tableaux

6

Tableaux 6-9

reproduction interdite

Manipulation de Tableau

Ecrire un programme qui déclare un tableau de 5 entiers, demande une valeur
pour chaque élément, charge la valeur avec le bon indice, et enfin imprime tout
le contenu du tableau.

Révision de Module

6

6-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 6 : Tableaux

Présentation

Introduction à la manipulation des tableaux, liée aux concepts vus

dans les TP précédents.

Exercices

** - La solution sera utilisée dans des TP à venir.

1. Niveau 1. Vérifier les résultats des programmes vus en révision en

les compilant et en les exécutant.

2. **Niveau 2. Ecrire un programme pour :

Déclarer un tableau de 15 entiers et le remplir avec des valeurs de

10 à 150.

Afficher le contenu du tableau.

Après affichage, inverser l’ordre des valeurs (array[0] aura 150 et

array[14] aura 0). Ne pas utiliser de 2ème tableau pour la

transformation.

Afficher le tableau après inversion.

Nommer le fichier source reverse.c:
% cc -Xc reverse.c -o reverse

3. Niveau 3. Ecrire un programme dimension2.c pour :

Déclarer un tableau d’entier bi-dimensionnel de 10 lignes et 2

colonnes. Utiliser des macros pour les dimension des lignes et des

colonnes.

Demander une valeur pour chaque élément du tableau.

Afficher tout le tableau.

% cc -Xc dimension2.c -o dimension2

7-1

Classes d’Allocation 7

Objectifs

■ Décrire la configuration mémoire d’un programme tournant
sous SunOS.

■ Donner la liste des types d’allocation.

■ Identifier les particularités de chaque classe.

Evaluation

Révision de module.

7

7-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Définition et Déclaration

■ Définition - La définition (ou déclaration de définition)
d’un identifiant provoque l’allocation de la mémoire
correspondante et l’association du nom avec ce bout de
mémoire. Les variables et les fonctions ne sont définies
qu’une fois.

■ Déclaration - Une déclaration (ou déclaration de référence)
décrit un identifiant en termes de type et de durée de vie.
On suppose qu’une définition a été faite ailleurs. Cette
déclaration donne les indications nécessaires au
compilateur pour lui permettre de faire une
interprétation correcte du code.
Pour les fonctions en particulier, le fait de déclarer aussi
les types des arguments s’appelle un prototypage et
permet au compilateur, entre autre, de faire une
vérification du type des arguments passés par l’appelant.

/* définition de la variable c3 */
char c3 ; /* allocation d’un octet */

/* définition de my_func */
char my_func(char c1, char c2)
{

return ((c1 < c2) ? c1 : c2);
}

int some_func(void)
{

char my_func(char , char);
/* suite de la fonction */

}

7

Classes d’Allocation 7-3

reproduction interdite

Configuration Mémoire d’un Programme C

Un programme C tournant en mémoire s’appelle un
process et comporte 3 segments, stack, data et text :

0x0

Mémoire libre
 (hole)

STACK

DATA

TEXT

mémoire haute

pile runtime

Données

Instructions

heap ou tas

E
sp

a
ce

 d
’a

d
re

ss
a

g
e

7

7-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Classes d’Allocation des Variables du C

■ Il y a deux façons de caractériser des variables - type et
classe d’allocation.

■ La classe d’allocation détermine :

la valeur initiale - quelle est la valeur avant utilisation?

durée de vie - à quel moment la variable existe ?

visibilité - où la variable est-elle connue (accessible) ?

7

Classes d’Allocation 7-5

reproduction interdite

Allocation auto

■ Valeur Initiale - indéfinie.

■ Durée de vie - Apparaît au moment de la déclaration et
cesse d’exister à la sortie du bloc.

■ Visibilité - Les variables automatiques sont connues
seulement dans le bloc où elles sont définies et dans les
blocs inclus dans le bloc de définition.

int main(void)
{

auto int index, value;
 /* est équivalent à...

int index, value; */

} /* fin de la fonction main */

7

7-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Allocation en Registre (register)

■ Les propriétés de l’allocation register sont les mêmes
que l’allocation automatique (essentiellement parce que
register est une sous-classe d’ auto) à une exception
près - les registres de la machine n’ayant pas d’adresse
mémoire, vous ne pouvez appliquer l’opérateur Adresse-
de (&) à une variable de la classe register .

■ La plupart des machines sont limitées en nombre de
registres utilisables pour les besoins de vos programmes.

■ En général, compteurs de boucles, indices, pointeurs et
autres variables d’utilisation intensive sont de bons
candidats à l’allocation register .

int main(void)
{

register int index;

} /* fin de la fonction main */

7

Classes d’Allocation 7-7

reproduction interdite

Allocation static

■ Valeur Initiale - Une donnée static est garantie d’être
initalisée à zéro.

■ Durée de vie - L’espace d’allocation statique est attribué
au process au début du programme, et lui est retiré à la
terminaison du programme.

■ Visibilité - Si la variable est définie dans une fonction
(locale), alors la variable n’est visible qu’à l’intérieur de
cette fonction. Si la variable est définie à l’extérieur d’une
fonction (globale), alors elle est visible dans toutes les
fonctions qui suivent sa définition, mais nulle part en
dehors du fichier source de définition.

■ Les fonctions définies avec le mot-clef static ne sont
pas connues non-plus à l’extérieur de leur fichier de
définition.

int main(void)
{

static int index;

} /* fin de la fonction main */

static int func(int cnt, double z)
{

}

7

7-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Allocation extern

■ Valeur Initiale - Toute donnée en allocation extern est
garantie d’être initialisée à zéro.

■ Durée de vie - La donnée extern a une espérance de
vie importante. Elle est allouée au commencement du
programme et désallouée à la fin.

■ Visibilité - Une donnée extern est visible dans les
fonctions qui suivent sa définition. Une déclaration
permet de l’utiliser dans un source différent.

■ Les fonctions peuvent avoir une spécification
d’allocation static ou extern . extern est la
spécification par défaut.

% more source1.c

int index = 4 ;/*déf.globale*/
extern int display(void);/* décla.*/

int main(void)
{

float value;
int result;

result = display();

} /* fin de main */

%

% more source2.c

int display(void)
{

extern int index;

} /* fin de display */

%

7

Classes d’Allocation 7-9

reproduction interdite

Exemple : Initialisations et valeurs initiales

Relever les initialisations et les valeurs initiales que l’on
peut supposer dans un programme comme ci-dessous :

/* initialisation d’un tableau externe bi-dimensionnel */
int matrix[3][5] = {

{ 1, 2, 3, 4, 5 },
{ 6, 7, 8, 9, 10 },
{ 11, 12, 13, 14, 15 }

};

float x; /* valeur initale garantie à 0.0 */

int main(void)
{

/* initialisation de tableaux uni-dim. static et auto */
static int digits[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int int_array[20] = { -1, -2, -3, -4}; /* suite non

initialisée*/

float y; /* variable auto : val.initiale indéfinie */
static float z; /* static : garantie de 0.0 inital */

/* corps du programme... */

} /* fin de la fonction main */

7

7-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Table Récapitulative

mot-clef valeur durée-
d’allocation Initiale de vie Visibilité Localisation

auto Indéfinie bloc bloc la pile (STACK)

register Indéfinie bloc bloc registre(si possible
sinon STACK)

static 0 prog bloc (ou segment DATA
fichier source)

extern 0 prog fichier source segment DATA
(ou bloc)

7

Classes d’Allocation 7-11

reproduction interdite

Révision de Module

Allocation

Q. Quelles sont les principales parties ou segments de l’image mémoire

d’un process ?

R.

Q. Quelles différences entre définition et déclaration ?

R.

Q. Quelles sont les 4 classes d’allocation ?

R.

Q. Quels sont les 3 attributs d’une variable déterminés par sa classe

d’allocation?

R.

Q. Quel segment est utilisé pour l’allocation des variables automatiques?

R.

Q. Quel effet la déclaration static d’une variable dans une fonction

produit-elle?

R.

Q. Quelle classe d’allocation permet le partage de variables entre

fonctions ?

R.

7

7-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

8-1

Pointeurs et Adresses 8

Objectifs

■ Ecrire des expressions qui donnent des adresses.

■ Référencer indirectement des données à l’aide de variables

pointeurs.

■ Utiliser les pointeurs vers des variables.

■ Passer des pointeurs vers des variables à des fonctions - appel par
référence.

■ Utiliser l’arithmétique des pointeurs.

Evaluation

Travaux Pratiques 8 et révision de module.

8

8-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

L’opérateur Adresse De

Format

& <lvalue>

■ L’opérateur adresse est utilisé pour récupérer l’adresse
d’une variable - son emplacement en mémoire :

■ Sur les Stations de Travail Sun, les pointeurs sont sur 32
bits, quelle que soit le type de la variable pointée.

#include <stdio.h>
int main(void)
{

int number;

printf("Entrer un entier : ");
scanf("%d", &number);
printf("L’adresse de \"number\" est 0x%x.\n", &number);
printf("La valeur de \"number\" est %d.\n", number);

return 0;
} /* Fin de la fonction main */

8

Pointeurs et Adresses 8-3

reproduction interdite

Principes des Pointeurs et Déclarations

■ Une donnée élémentaire est stockée dans une cellule
mémoire à une adresse précise.

■ Les variables pointeurs réprésentent l’emplacement d’une
donnée plutôt que sa valeur - ainsi, les pointeurs
contiennent l’adresse d’une donnée :

valeur de vptr valeur de v

42

(pointeur vers un int) (variable int classique)

adresses
mémoire

Format
<type> * identifiant;

vptr

int v = 42; /* variable entière */
int *vptr; /* pointeur vers une variable entière */
vptr = &v;

/* qui peut aussi s’écrire... */
int v = 42, *vptr = &v;

fd10a08 ff40c62

ff40c62 v

8

8-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Nomenclature Conventionnelle des Pointeurs

Par convention, le nom d’une variable peut indiquer que
c’est un pointeur.

#include <stdio.h>
int main(void)
{

int * iptr, val;
float * fptr, real;

iptr = &val;
printf("Entrer un entier : ");
scanf("%d", iptr);
fptr = ℜ
printf("Entrer un réel : ");
scanf("%f", fptr);

printf("valeur de val: %d, real: %f.\n", val, real);
printf("Adresse de val: 0x%x, de real: 0x%x.\n", iptr, fptr);
return 0;

} /* fin de main */

8

Pointeurs et Adresses 8-5

reproduction interdite

Opérateur d’indirection

Format

* <expression pointeur>

■ L’Indirection ou adressage indirect s’utilise avec une
variable qui, plutôt que contenir des données, détient
l’adresse de ces données.

■ L’opérateur d’indirection peut être vu comme le
complément de l’opérateur adresse de - & donne l’adresse
de la variable concernée, * donne les données pointées.

■ La déclaration void *ptr (pointeur vers void) est
légale. void * est un pointeur générique capable de
pointer tout type de donnée sans restriction. Il a la même
représentation et le même alignement qu’un pointeur sur
char , et il ne peut pas être déréférencé. On utilise la
convertion explicite (cast) dans ce cas.

#include <stdio.h>
int main(void)
{

static int val1 = 42;
int * ptr, val2;
/* affecte l’adresse de val1 à ptr... */
ptr = &val1;
/* Indirection: donne la valeur pointée par ptr à val2... */
val2 = * ptr;
/* val1, val2, et *ptr sont maintenant égales... */
printf("val1=%d; val2=%d; *ptr=%d\n", val1, val2, * ptr);
return 0;

} /* fin de la fonction main */

8

8-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Résumé sur les Opérateurs & et *

Opérateur Esperluette &

■ Utilisé pour renvoyer l’adresse d’une variable :

int index;
printf("Adresse de index == %x", &index);

Opérateur Asterisque *

■ Utilisé pour déclarer une variable pointeur :

 int *iptr;
int **ipp; /* pointeur sur pointeur */
char *cptr;
double *dptr;

■ Utilisé pour déréférencer une variable ou une
expression pointeur - c’est-à-dire, accéder à la valeur
pointée par la variable ou l’expression :

/* Supposons que iptr contient l’adresse d’une

 variable index déclarée comme un entier : */

/* iptr = &index;... */

iptr = 5; / modification indirecte de la valeur */

printf("valeur chargée dans index = %d\n", index);

8

Pointeurs et Adresses 8-7

reproduction interdite

Révision Partielle

opérateurs & et *

A partir des déclarations suivantes, quelles sont les instructions ci-dessous valides ?
Justifier les réponses et indiquer les résultats dans les cas valides. (Remarque : le ré-
sultat d’une instruction - valide - dépend de la précédente.)

int *numptr, num;

char *chptr;

float *realptr;

float real;

1) *chptr = ’A’;

2) numptr = #

3) *numptr = 5;

4) printf ("%d", num);

5) real = 7;

6) *realptr = real;

7) realptr = ℜ

8) *realptr = num++;

9) printf ("num = %d\n", num);

10) *chptr = &’A’;

8

8-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Fonctions : Appel par Référence

■ Les pointeurs sont passés aux fonctions lorsque les
arguments doivent être modifiés par celles-ci - appel par
référence

■ L’opérateur d’indirection doit être utilisé dans la fonction
pour accéder aux données :

#include <stdio.h>
int main(void)
{

int num = 5;
void func(int *);

printf("Main: Avant l’appel, num = %d.\n", num);
func(&num);
printf("Main: Après l’appel, num = %d.\n", num);
return 0;

} /* fin de main */

void func(int *ptr)
{

ptr += 2; / plus 2 à travers le pointeur */
printf("Func: num = %d.\n", *ptr);

} /* fin de func */

7
numdans

main()
dans
func()

% a.out
Main: Avant l’appel, num = 5.
Func: num = 7.
Main: Après l’appel, num = 7.
%

ptr

8

Pointeurs et Adresses 8-9

reproduction interdite

Pointeurs et Tableaux

■ Le nom d’une variable tableau est une constante de type
pointeur vers le premier élément du tableau :

Soit la déclaration :
#define MAX 12
#define LAST (MAX - 1)
int i, array[MAX], *ptr;

ce qui suit est équivalent :

ptr = array;
ptr = &array[0];

et array[i] est équivalent à *(ptr + i)

et toutes les propositions suivantes sont vraies :

array == ptr
&array[0] == ptr
array[0] == *ptr
array[4] == *(ptr + 4)
&array[7] == ptr + 7
array[LAST] == *(ptr + LAST)
&array[LAST] == ptr + LAST

int array[] = {5, 10, 15}, *ptr = array;

5 10 15

array

ptr

mémoire

8

8-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Arithmétique des Pointeurs

■ Ensemble d’opérations définies sur les pointeurs :

1. L’addition ou la soustraction d’un entier avec un
pointeur donne un pointeur.

2. Comparaison de pointeurs.

3. Soustraction de Pointeurs. Le résultat est le nombre
d’objets entre les deux adresses. Le type de l’entier signé
résultat est ptrdiff_t défini dans <stddef.h> .

mémoire

① ptr

ptr++; / * addition d’un int et d’un pointeur */

②/* comparaison de pointeurs... */

if (ptr != ptr2) printf("Différents.\n");

③ delta = ptr - ptr2; /* soustraction de pointeurs */

5 10 15

int *ptr2;
ptrdiff_t delta;
static int array[] = {5, 10, 15}, *ptr = array;

pointeur après incrémentadresse d’origine

8

Pointeurs et Adresses 8-11

reproduction interdite

Révision Partielle

Calculs de pointeurs

Soient les déclarations suivantes, quels sont les résultats des instructions ?
Remarque : Les exemples sont inter-dépendants.

int index, numbers[5], *nptr = numbers;
numbers[0] = 2;
numbers[1] = 4;
numbers[2] = 6;
numbers[3] = 8;
numbers[4] = 10;

1) index = *nptr;

2) index = *(nptr + 2);

3) index = *(nptr++);

4) printf("*nptr = %d\n",*nptr);

5) index = nptr - numbers;

6) index = *nptr++;

7) printf("nptr pointe l’élément %d.\n", nptr - numbers);

8) index = ++(*nptr);

8

8-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Les Notations Pointeur et Indice de Tableau

Les notations pointeur et indice de tableau sont équivalentes :

#include <stddef.h>
#include <stdio.h>
#define MAX 42
int main(void)
{
/* déclaration de tableau, pointeur et pointeur de fin... */

int index, array[MAX], *ptr, *end = &array[MAX-1];
ptrdiff_t delta;/* ptrdiff_t déf. dans stddef.h */

/* Notation indice... */
for (index = 0; index < MAX; index++)

array[index] = index;

/* notation pointeur équivalente */
for (ptr = array; ptr <= end; ptr++) {

delta = ptr - array;
printf("Array[%d] = %d.\n", delta, *ptr);

} /* fin de for */
return 0;

} /* fin de main */

8

Pointeurs et Adresses 8-13

reproduction interdite

Passage de Tableaux aux Fonctions

Le contenu d’un tableau passé en argument à une fonction
peut être modifié, car le nom du tableau est un pointeur sur
le premier élément. Ainsi les tableaux sont toujours passés
en référence

:

#include <stdio.h>
#define SIZE 15
int main(void)
{

double arr[SIZE], *ptr;
void load_array(double array[]);

load_array(arr); /* Remplissage du tableau */
for (ptr = arr; ptr < &arr[SIZE]; ptr++){

printf("Array[%d] = %f\n", ptr-arr, *ptr);
} /* fin de for

} /* fin de main */

void load_array(double array[])
{

int whole = 1;
double *pos;
for (pos=array ; pos <= &array[SIZE]-1; pos++,whole++){

*pos = whole / 3.0 ;
} /* fin de for */

} /* fin de load_array

8

8-14 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Q. En quoi un pointeur diffère-t-il d’une variable ordinaire ?

R.

Q. Quelle est la définition du terme lvalue ?

R.

Q. Quel est l’opérateur adresse de et à quelles expressions s’applique-t-il ?

R.

Q. Quel opérateur est utilisé pour déclarer un pointeur ?

R.

Q. Pourquoi est-il important d’initialiser un pointeur avant de l’utiliser ?

R.

Q. Qu’est-ce que l’indirection, quand s’en sert-on et avec quel opérateur ?

R.

Q. Comment une fonction peut-elle modifier un argument dans l’appelant ?

R.

Q. Quelles sont les opérations autorisées sur les pointeurs ?

R.

Q. Décrire les relations entre la notation pointeur et indice dans le contexte de

l’accès aux tableaux. Donnes quelques exemples.

R.

Pointeurs

Révision de Module

8

Pointeurs et Adresses 8-15

reproduction interdite

Appel par référence

Ecrire un programme contenant 2 fonctions main() et swap(). La fonction swap()
échange deux valeurs de variables de la fonction main().
Conseil : la fonction doit utiliser pointeurs et indirection pour modifier les varia-
bles dans l’appelant

8

8-16 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 8 : Pointeurs et Adresses

Présentation

Introduction à la programmation des pointeurs et de l’indirection.

Exercices

1. Niveau 1. Vérifier les résultats du programme swap de la révision

du module.

2. Niveau 2. Ecrire un programme pour :

Déclarer et initialiser un tableau d’int de 10 éléments avec des

valeurs quelconques.

Appeler une fonction qui trouve la moyenne des valeurs, change

les valeurs du tableau en (valeur initiale * moyenne), et retourne la

moyenne calculée - appeler cette fonction average() : utiliser la

notation pointeur.

Remarque: La fonction retournera un double et doit recevoir le

début et la fin du tableau.

Appeler une fonction qui affiche les valeurs du tableau, avant et

après l’appel à average() . Appeler cette fonction

print_array() .

Faire afficher par la fonction main la moyenne après l’appel à

average() . Pour tous les accès au tableau utiliser la notation

pointeur, jamais la notation indicée. Nommer le fichier source

average.c :

% cc -Xc average.c -o average

3. Niveau 3. Réécrire le programme des TP 6 reverse.c en utilisant

la notation pointeur au lieu de la notation indicée. Le nommer

preverse.c .

En plus, écrire une fonction print_array() pour prendre en

charge tous les afffichages du contenu du tableau.

 - voir page suivante -

8

Pointeurs et Adresses 8-17

reproduction interdite

4. Niveau 4. (Facultatif) : Ecrire un programme pour :

Déclarer une variable pointeur de fonction retournant un int .

Affecter à la variable l’adresse de la fonction printf() .

Afficher un message en utilisant la variable pour effectuer l’appel

à la fonction.

Nommer le programme funcptr.c :

% cc -Xc funcptr.c -o funcptr

8

8-18 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

9-1

Chaînes et Caractères 9

Objectifs

■ Définir les chaînes dans le contexte de SunOS et du Langage C.

■ Inclure le package String dans un programme C.

■ Utiliser le package String pour manipuler les chaînes.

■ Reconnaître et utiliser les macros de classification et de traitement

des caractères dans un programme C.

Evaluation

Travaux Pratiques 9 et révision de module.

9

9-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Introduction aux Chaînes de Caractères

■ Les chaînes de caractères et les constantes (chaînes
littérales) sont des séquences de caractères (octets ou
bytes) entre guillemets (") , terminées par le caractère
null - ’\0’ :

■ Les constantes chaînes adjacentes sont automatiquement
concaténées :

printf("Cette chaîne est concaténée avec \n"
"cette chaîne pour qu’on puisse imprimer \n"
"plusieurs lignes avec printf() sans \n"
"aucun problème.\n");

char str[] = "Voici une chaine";

V o i c i u e c h a i n \0e
\0 == caractère NULL

Exemples de déclaration de chaînes :

char *str2 = "Chaine deux"; /* en lecture/écriture */

char str3[] = "Chaine trois"; /* lecture seule */

[0] [1] [2] [3] ..
n

9

Chaînes et Caractères 9-3

reproduction interdite

Saisie de Chaînes : scanf()

■ La spécification de format pour la lecture de chaînes avec
scanf() est %s, l’argument correspondant devant
pointer vers un tableau de caractères.

■ La valeur retournée par scanf() est un entier. En cas
de réussite, c’est le nombre d’items correctement entrés.
En cas d’erreur avant toute conversion, scanf() renvoie
EOF.

■ Le même %s est utilisé avec printf() pour imprimer
les chaînes :

#include <stdio.h>
#define MSG "Amusez-vous bien !"
#define ASIZE 40

int main(void)
{

char first_name[ASIZE], last_name[ASIZE];

printf("Entrer vos nom et prenom : ");
scanf("%s%s", first_name,last_name);
printf("Merci %s %s,\n", first_name, last_name);
printf("%s\n", MSG);
return 0;

} /* fin de main */

9

9-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Lecture et Ecriture des Chaînes : gets() et puts()

Format

#include <stdio.h>
char *gets(char * s);
int puts(const char * s);

■ La fonction gets() renvoie le pointeur que vous lui
passez en argument (assurez vous que l’allocation est
bien faite), ou un pointeur NULL si aucune entrée n’a pu
être réalisée sur l’entrée standard.

■ gets() n’a pas besoin d’indication de format.

■ puts() affiche une chaîne sur la sortie standard et rajoute
un caractère newline.

■ Normalement, puts() renvoie une valeur non-négative,
et EOF si une erreur d’écriture arrive.

#include <stdio.h>
#define PSIZE 256

int main(void)
{

char input[PSIZE]; /* espace alloué en lecture/écriture */

printf("Taper une ligne suivie de <Retour-Chariot>: ");
gets(input);
printf("\n\nVous avez saisi la ligne suivante :\n");
puts(input);/* puts rajoute un newline - ’\n’ */

return 0;
} /* fin de main */

9

Chaînes et Caractères 9-5

reproduction interdite

Package Chaînes de Caractères (String)

■ Les fonctions de manipulation des chaînes de
caractères sont incluses dans la librairie standard du
C.

■ Pour éviter d’avoir à prototyper les fonctions de
manipulation de chaînes dans vos programmes, vous
devez inclure le fichier <string.h> .

9

9-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Copie et Concaténation de Chaînes

Format

#include <string.h>
/* copie s2 dans s1 (écrase s1) */

char *strcpy(char * s1 , const char * s2);

/* concatène s2 après s1 */
char *strcat(char * s1 , const char * s2);

■ strcpy() et strcat() renvoient toutes les deux le
pointeur s1.

■ Exemples d’utilisation de strcpy() et strcat() :

#include <stdio.h>
#include <string.h>
#define MAX 256
#define QUOTE "Le langage : une forme de bégaiement organisé."

int main(void)
{

char str1[MAX], str2[MAX], both[2*MAX];

printf("Entrer votre citation préférée <%d caractères: ",
 MAX);

gets(str1);
strcpy(str2, QUOTE);/* copie QUOTE dans str2 */
strcpy(both, str1); /* copie la 1ere chaîne dans both */
strcat(both, str2); /* concatène la 2eme chaîne sur both */
printf("1ere : \"%s\"", str1);
printf("2eme : \"%s\"", str2);
printf("ensemble : \"%s\"", both);

return 0;
} /* fin de main */

9

Chaînes et Caractères 9-7

reproduction interdite

Comparaison et Longueur de Chaînes

Format

#include <string.h>
size_t strlen(const char * s1);
int strcmp(const char * s1 , const char * s2);

■ strlen() renvoie la longueur de s1 , sans compter le
caractère nul de fin.

■ strcmp() renvoie un entier négatif nul ou positif selon
que la première chaîne est respectivement inférieure,
égale ou supérieure, selon l’ordre lexicographique, à la
deuxième chaîne.

#include <stdio.h>
#include <string.h>
#define MAX 80

int main(void)
{

char str1[MAX], str2[MAX], *ptr, ch;
int len = 0, result = 0;
printf("Entrer une chaîne <%d caractères: ", MAX);
gets(str1);
len = strlen(str1); /* compte les octets de str1 */
printf("Vous avez tape %d caractères.\n", len);
printf("Entrer une autre chaîne <%d caractères : ", MAX);
gets(str2);
result = strcmp(str1, str2);/* compare str1 et str2 */
if (result < 0)

printf("Alphabétiquement, %s < %s.\n",str1,str2);
else if (result > 0)

printf("Alphabétiquement, %s > %s.\n", str1, str2);
else

printf("Les chaînes sont égales !.\n");
return 0;

} /* fin de main */

9

9-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Recherche de Caractères dans les Chaînes

Format

#include <string.h>
char *strchr(const char * s, int c);

■ strchr() renvoie le pointeur sur la première occurence
de c dans s , ou le pointeur NULL si non-trouvé.

#include <stddef.h>
#include <stdio.h>
#include <string.h>
#define MAX 40

int main(void)
{

char play[MAX], *cptr;
int ch, pos;

printf("Entrer votre pièce de Molière préférée : ");
gets(play);
printf("Entrer un seul caractère : ");
ch = getchar();
cptr = strchr(play, ch);/* ch est-il dans play ? */
if (cptr == NULL)

printf("Le caractère ’%c’ n’est pas dans [%s]\n",ch,play);
else {

pos = cptr - play;
printf("Nom tronqué : %s\n", cptr);
printf("play[%d] est ’%c’.\n", pos, play[pos]);

} /* fin de if */
return 0;

} /* fin de main */

9

Chaînes et Caractères 9-9

reproduction interdite

Convertir les Chaînes en Nombres

■ Les fonctions de conversions de chaînes sont utilisées
pour convertir des chaînes représentant des nombres dans
leur véritable valeur.

■ Les fonctions atoi() , atof() et atol() s’utilisent
obligatoirement en incluant <stdlib.h> .

■ La valeur retournée par atoi() , atof() et atol() est
le résultat de la conversion. Le code de retour de
sscanf() est EOF si une erreur de lecture arrive avant
toute conversion ; sinon, c’est le nombre d’items saisis
qui est retourné.

Remarque : atoi("abc") retourne 0 mais atoi("0") retourne aussi 0.

On ne peut pas faire la différence.

#include <stdlib.h>
int atoi(const char * nptr) - conversion ASCII en entier. Exemple:

num = atoi("47");

double atof(const char * nptr) - conversion ASCII en double.Exemple:
dnum = atof("47");

long atol(const char * nptr)- conversion en long int. Exemple
lnum = atol("47");

#include <stdio.h>
int sscanf(const char * s, const char * format , ...) - lit un nombre

 depuis une chaîne s dans une variable selon format.
Exemple:

sscanf ("47", "%f", &fnum)
Lit un réel depuis la chaîne "47" dans la variable fnum .

!

9

9-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

La Fonction sprintf()

Format

#include <stdio.h>
int sprintf(char * s, const char * format , ...);

■ La fonction sprintf() est la fonction d’affichage
correspondant à sscanf() :

■ sprintf() est similaire à printf() , mais au lieu
d’écrire sur la sortie standard, le résultat est écrit dans le
tableau pointé par s .

■ sprintf() renvoie le nombre de caractères écrits, non-
compris le caractère ’\o’ qui est ajouté à la fin.

...
char str[256], *mess = "Utiliser sprintf";
int num = 13;
...
sprintf(str, "Nouvelle chaîne avec les valeurs de\n"

" num (%d) et mess (%s).\n\n", num, mess);
...

9

Chaînes et Caractères 9-11

reproduction interdite

Conversions de Chaînes en Nombres

Exemple de programme utilisant atoi() et sscanf() :

#include <stdio.h>
#include <stdlib.h>
#define MAX 80

int main(void)
{

char string1[MAX], string2[MAX];
int ival;
double dval;

printf("Entrer un entier : ");
gets(string1);
ival = atoi(string1);
printf("Entrer un réel : ");
gets(string2);
sscanf(string2, "%lf", &dval);
printf("%f plus %d = %f.\n", dval, ival, ival+dval);
return 0;

} /* fin de main */

9

9-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Opérations sur les Caractères

■ Macros de classification et de conversion :

#include <ctype.h>

int isalpha(int c); c est-il un caractère alphabétique ?
int isupper(int c); c est-il une majuscule ?
int islower(int c); c est-il une minuscule ?
int isdigit(int c); c est-il un chiffre (0-9) ?
int isxdigit(int c); c est-il un chiffre hexadécimal (0-9, a-f or A-F) ?
int isalnum(int c); c est-il un alphanumérique (a-zA-Z or 0-9) ?
int isspace(int c); c est-il un caractère d’espacement ?

(par exemple : espace, tabulation)
int ispunct(int c); c est-il une ponctuation ?

(par exemple : ?, !)
int isprint(int c); c est-il un caractère imprimable ?

(y-compris l’espace)
int iscntrl(int c); c est-il un caractère de contrôle ?

(par exemple : le caractère delete ou un caractère
 de contrôle classique)

int isgraph(int c); c est-il un caractère dessinable ? (sans l’espace)
int toupper(int c); conversion en majuscule. (vérifie islower())(fonction)
int tolower(int c); conversion en minuscule. (vérifie isupper())(fonction)

■ Les macros ci-dessus prennent un int en paramètre, si
celui-ci peut être représenté comme un unsigned char
ou est égal à EOF.

■ La valeur retournée par les fonctions isxxx() est soit
vraie (non nulle) soit fausse (nulle) . La valeur retournée
par les fonctions toxxx() est soit le caractère converti si
la conversion a pu être faite, soit le paramètre inchangé.

9

Chaînes et Caractères 9-13

reproduction interdite

Opérations sur les Caractères (suite)

Exemple d’utilisation de isalpha() et toupper() :

#include <stdio.h>
#include <ctype.h>
#define MAX 80

int main(void)
{

char *aptr, *optr , alphas[MAX], other[MAX];
int ch;

aptr = alphas;/* charge l’adresse du tableau... */
optr = other;
printf("Entrer une série de caractères : ");

while ((ch = getchar()) != ’\n’) {
if (isalpha(ch)) {

*aptr = toupper(ch);
aptr++;
if (aptr == &alphas[MAX-1])

break ;
}
else {

*optr = ch;
optr++;
if (optr == &other[MAX-1])

break ;
}

} /* fin de while */

aptr = ’\0’;/ finir par un caractère nul... */
*optr = ’\0’;
printf("Caractères alpha (en Maj.): %s\n", alphas);
printf("Autres caractères : %s\n", other);
return 0;

} /* fin de main */

9

9-14 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Révision de Module

Chaînes

Caractères

Q. Quel fichier doit-on inclure (#include) pour utiliser les macros de conversion de
caractères ?
R.

Q. A part les guillemets, quelles sont les différences entre ’a’ et "a" ?
R.
Q. Quelle macro de classification vérifie qu’un caractère est imprimable ?
R.

Q. Quelles sont les différences entre une chaîne et un tableau de char ?
R.
Q. Quelle fonction peut-on utiliser pour compter les caractères d’une chaîne ?
R.

Q.Quelle est la fonction qui concatène deux chaînes ?
R.
Q. Quelles sont les valeurs possibles en comparant 2 chaînes avec strcmp() ?
R.

9

Chaînes et Caractères 9-15

reproduction interdite

Conversion

Ecrire un programme qui déclare une chaîne de 40 char , demande des
caractères au hasard, charge la saisie dans le tableau de char , et affiche tous
les caractères non-alphabétiques rencontrés.

9

9-16 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 9 : Chaînes et Caractères

Présentation

Familiarisation avec les chaînes et les fonctions de manipulation, ainsi

qu’avec les macros de classification et de conversion de caractères.

Exercices

1. Niveau 1. Vérifier Les résultats du programme de révision en le

compilant et en l’exécutant.

2. Niveau 2. Réécrire le programme loops.c des TP 5 en utilisant

les macros de classification isalpha() et islower() , plutôt

qu’en testant le code ASCII directement.

Nommer le programme lupes.c .

facultatif : Convertir toutes les majuscules saisies en minuscules en

utilisant la macro tolower() . Ne pas oublier <ctype.h> .

3. Niveau 3. Ecrire une fonction qui émule strlen() - l’appeler

slen() . Le programme doit :

Demander 2 chaînes à l’utilisateur.

Appeler slen() pour compter les caractères dans les chaînes,

mais sans le caractère nul de fin - utiliser la notation pointeur.

Afficher la longueur de chaque chaîne.

En utilisant les fonctions strcpy() et strcat() , concaténer

dans une troisième chaîne, les 2 chaînes saisies en insérant " *** "

entre les deux. S’assurer que la chaîne de destination est assez

grande pour accueillir les deux chaînes.

Afficher la chaîne résultat.

Ne pas oublier <string.h> . Nommer le programme

stringy.c :

% cc -Xc stringy.c -o stringy

10-1

Structures, Unions, Définition de
Type et Type Enumerés 10

Objectifs

■ Déclarer des variables structures.

■ Initialiser des variables structures.

■ Ecrire des expressions qui référencent des membres de structures.

■ Utiliser la macro offsetof() .

■ Utiliser des structures imbriquées.

■ Définir des pointeurs de structures et référencer des membres à

travers les pointeurs.

■ Créer et utiliser des unions dans un programme C.

■ Déclarer des données de type énuméré.

■ Créer de nouveaux types en utilisant typedef .

Evaluation

Travaux Pratiques 10 et révision de module

10

10-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Principes des Structures

■ une structure est un agrégat, dont les éléments peuvent
être de différents types :

■ Les éléments d’une structure sont des membres ou
champs.

■ Chaque membre d’une structure a un identifiant unique.

struct {
int a;
int b;

} xyz; /* Similaire à int xyz[2]; */

struct {
char name[40];
float salary; /* Contrairement aux tableaux,

les structures peuvent regrouper*/
int paygrade; /* des éléments de différents types. */

} employee;

10

Structures, Unions, Définition de Type et Type Enumerés 10-3

reproduction interdite

Déclaration de Structure

Format

struct <id-de-structure> {
<membre 1>
<membre 2>
...
<membre n>

} <identifiant_de_variable> ;

■ Quand l’id-de-structure est utilisé, un nouveau type de
donnée est ajouté au programme. Ce nouveau type
s’appelle struct <id-de-structure> et peut être
utiliser par la suite pour déclarer des variables.

■ L’ identifiant_de_variable provoque l’allocation
de mémoire correspondant. S’il est omis, aucun espace
mémoire n’est alloué.

#include <stdio.h>
int main(void)
{

struct db {
int entry_code;
short age;
char first_name[16];
char last_name[32];

}; /* fin de struct db, pas d’allocation */

/* déclaration de 3 variables,la mémoire est allouée */
struct db first, second, third;

/* ... suite du programme ... */
} /* fin de main */

10

10-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Forme et Taille d’une Structure

■ Toutes les machines/architectures ont leurs règles :

Architectures Sun4 (SPARC) : alignement aux frontières
naturelles des types : 8 octets pour double, 4 octets pour float,
4 octets pour int, 2 octets pour short, 1 octet pour char.

■ La taille d’une structure est donnée par
sizeof (struct_identifier) . (Attention : la taille
d’une structure n’est pas forcément égale à la somme des
tailles de ses membres.)

■ Dans l’exemple suivant sur Sun4 , il y a un trou de trois
octets non-utilisés.

frontière de 4 o.

...
struct phone {

char name[25];
int pnumber;

} xphone;
...

structure phone

name[25] pnumber

trou

frontière d’octet

10

Structures, Unions, Définition de Type et Type Enumerés 10-5

reproduction interdite

Référencer des Membres de Structure

Format

<nom_de_struture> . <nom_de_membre>

■ Les membres de structures sont référencés à l’aide de
l’opérateur "." .

■ L’opérande de gauche de l’opérateur "." doit être un nom
de variable structure.

■ L’opérande à droite de l’opérateur "." doit être un nom
de membre de structure :

#include <stdio.h>
int main(void)
{

struct record {
int key;
char first[16];
char last[32];

} rec;

printf("Entrer votre nom : ");
gets(rec.first);
printf("Entrer votre prénom : ");
gets(rec.last);
printf("Entrer un entier : ");
scanf("%d", &rec.key);
printf("Le nom est %s %s.\n", rec.first, rec.last);
printf("Le 1er car. du nom est %c.\n", rec.first[0]);
printf("Le code est %d.\n", rec.key);
return 0;

} /* fin de main */

10

10-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Utilisation de la macro offsetof()

Format

#include <stddef.h>
size_t offsetof(type , nom_de_membre);

■ La macro offsetof() renvoie l’offset en octets du
membre de structure, nom_de_membre, depuis le début
de la structure, référencé par type .

#include <stddef.h>
#include <stdio.h>

int main(void)
{

struct address {
char first_name[32];
char last_name[32];
char street[128];
char city[26];
char state[3];
int zip_code;

};

printf("l’offset du membre zip_code dans struct address = %d\n",
 offsetof(struct address, zip_code));
return 0;

} /* fin de main */

10

Structures, Unions, Définition de Type et Type Enumerés 10-7

reproduction interdite

Imbrication de Structures et Accès

■ struct est un type de membre de structure valide, ainsi
on peut imbriquer des structures.

■ Il n’y a pas de limite à la profondeur d’imbrication des
structures, si ce n’est la capacité du programmeur à s’y
retrouver.

#include <stdio.h>
int main(void)
{

struct xname {
char first[20];
char last[30];

};
struct record {

int key;
struct xname name;

} rec;

printf("Entrer un nom de famille : ");
gets(rec.name.first);
printf("Entrer un prénom : ");
gets(rec.name.last);
printf("Entrer un entier : ");
scanf("%d", &rec.key);
printf("Nom=%s %s.\n",

rec.name.first,rec.name.first);
printf("Code = %d.\n", rec.key);
return 0;

} /* fin de main */

10

10-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Initialisation de Structure

■ Les structures static , extern , et auto sont
initialisées de la même manière que les tableaux, en
utilisant des expressions constantes.

■ L’ordre dans lequel on place les constantes doit
correspondre à l’ordre d’apparition des membres :

#include <stdio.h>
int main(void)
{

struct database {
char name[40];
int key;

};

/* initialisation de rec.name et rec.key... */
static struct database rec = {"Michel Martin", 42};
struct database rec1 = { "Alain Dupont", 24};

printf("Champ nom : %s, %s.\n", rec.name, rec1.name);
printf("Code : %d, %d.\n", rec.key, rec1.key);
return 0;

} /* fin de main */

10

Structures, Unions, Définition de Type et Type Enumerés 10-9

reproduction interdite

Tableaux de Structures

Les éléments de tableaux peuvent être des structures :

#include <stdio.h>
#define MAXITEMS 3
#define ITEM 20

int main(void)
{

int index;
float total;
struct info {

char item[ITEM];
float cost;
int count;

} stock[MAXITEMS];

for (index = 0; index < MAXITEMS; index++) {
printf("Entrer le nom numero %d: ", index + 1);
scanf("%s", stock[index].item);
printf("Entrer son coût : ");
scanf("%f", &stock[index].cost);
printf("Entrer la quantité commandée : ");
scanf("%d", &stock[index].count);
total = stock[index].cost * stock[index].count;
printf("Coût total pour %s: %.2f F\n\n",

 stock[index].item, total);
} /* fin de for */

return 0;
} /* fin de main */

10

10-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Initialisation des Tableaux de Structures

Attention à l’ordre des données dans l’initialisation des
tableaux de structures :

#include <stdio.h>
int main(void)
{

struct database {
char name[40];
int key;

};

struct database list[3] = { "Marc Dupas", 42,
"Michel Dufour", 256,
"Henri Dupont", 0 };

printf("Premier nom = %s.\n", list[0].name);
printf("Le 3eme entier = %d.\n", list[2].key);
return 0;

} /* fin de main */

10

Structures, Unions, Définition de Type et Type Enumerés 10-11

reproduction interdite

Pointeurs de Structures

■ On peut déclarer un pointeur vers un type structure.

■ Les membres d’une structure sont référencés à travers un
pointeur par l’opérateur -> :

#include <stdio.h>
int main(void)
{

struct employee {
char first_name[40];
char last_name[40];
int age;
float salary;

};
struct employee person[5], *emptr;
int i;

emptr = person;
for (i = 0; i < 5; ++i, ++emptr) {

printf("Nom et prénom de l’employé : ");
scanf("%s%s", emptr->first_name, emptr->last_name);

printf("Age de l’employé : ");
scanf("%d", &emptr->age);

printf("Salaire : ");
scanf("%f", &emptr->salary);

while (getchar() != ’\n’);/* raz du clavier */
}
return 0;

} /* fin de main */

10

10-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Révision Partielle

Structure

Soient les déclarations suivantes, donner l’instruction satisfaisant à chaque question :

struct inventory {

char model[20];

float cost;

int count;

} cars[50];

struct inventory *mycar = &cars[0];

1) Copier jaguar dans le membre model de la 5ème voiture du tableau cars.

2) Copier jeep dans le membre model de mycar.

3) Lire un coût dans le membre cost de la 3ème voiture du tableau cars.

4) Afficher le coût du dernier élément du tableau.

5) Affecter 75000 F au coût de mycar.

6) Saisir le nom du modèle de la 8ème voiture du tableau.

10

Structures, Unions, Définition de Type et Type Enumerés 10-13

reproduction interdite

Introduction aux Unions

■ Une union est un espace mémoire partagé par plusieurs
objets, généralement de types différents.

■ L’information stockée dans une union est vue du même
type que le membre référencé, et la référence est faite de
la même manière que pour un membre de structure.

■ Une union est seulement aussi grande que son plus grand
élément :

mémoire

union hypothetical {
double real;
int val;
char ch;

}u;

sizeof(u.val) == 4

sizeof(u.ch) == 1

sizeof(u.real) == 8

sizeof(u) == 8

10

10-14 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Introduction aux Enumérations

Format

enum<id-type> { membre1, ..., membre_n} <variables> ;
ou

enum <id-type> {membre1, ..., membre_n };
enum <id-type> <vars> ;

■ Un type énumérés ou énumération est défini par le mot-clef
enum.

■ Une énumération est un ensemble nommé de constantes
entières.

■ Les Enumérations peuvent être employées pour améliorer
la lisibilité et la clarté d’un programme :

#include <stdio.h>
int main(void)
{

enum fruit {pomme = 1, orange, poire, kiwi, raisin};
enum fruit fruit_choice;

printf("Entrer votre choix:\t1 - pomme\n\t\t\t2 - orange\n"
"\t\t\t3 - poire\n\t\t\t4 - kiwi\n\t\t\t5 - raisin\n"
"Choix :______\b\b\b");

scanf("%d", &fruit_choice);
switch (fruit_choice) {

case pomme:
printf("Votre choix correspond à une pomme.\n");
break ;

case orange:
printf("Votre choix correspond à une orange.\n");
break ;

/* ... suites des case */
} /* fin de switch */
return 0;

} /* fin de main */

10

Structures, Unions, Définition de Type et Type Enumerés 10-15

reproduction interdite

Introduction à typedef

Format

typedef <type_existant> <nouveau_type> ;

typedef permet de donner un nouveau nom (créer un
synonyme) pour un type de donnée déjà existant :

#include <stdio.h>
#define MAX 80
int main(void)
{

typedef char String[MAX];
typedef union {

int word32;
short word16[2];
char bytes[4];

} Mask;
typedef struct {

int num;
String text;
Mask flags;

} Record;
Record rec1, rec2;/* <- déclaration simplifiée ! */

/* déroulement simulé... */
printf("Entrer une chaîne : ");
gets(rec1.text);
printf("Entrer votre tour de tête : ");
scanf("%d", &(rec1.flags.word32));
printf("Votre QI est %d.\n", rec1.flags.word32 * 2);
return 0;

} /* fin de main */

10

10-16 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Révision de Module

Structures

Soient les déclarations suivantes, décrire les structures et la manière d’accéder
à leurs membres :

Q. Quelle est la principale propriété qui rend une structure différente d’un

tableau ?

R.

Q. Quelles sont les types qui peuvent être membres de struct ?

R.

Q. Combien de niveaux d’imbrication de structure sont permis ?

R.

Q. Comment déterminer la taille d’une structure ?

R.

Q. Qu’est-ce que l’identifiant de structure et quelle est son importance ?

R.

struct record{
int data;
char name[16];

} rec1;

struct record rec2[2] = {128, "chaîne1", 256, "chaîne2"};

struct record *rptr = &rec1;

10

Structures, Unions, Définition de Type et Type Enumerés 10-17

reproduction interdite

Structures

Conseil : vous pouvez utiliser strcpy() pour charger une valeur dans
data .

Ecrire un programme qui déclare une structure à 3 membres : une chaîne de 40
caractères nommée data , un entier key et un double dub . Afficher la taille de la
structure, faire des affectations de valeur à chaque membre, et afficher chaque
membre :

10

10-18 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 10 : Structures

Présentation

Introduction à l’utilisation des structures, unions, typedefs, et enums

dans un programme C.

Exercices

** - La solution sera utilisée dans les TP à venir.

1. Niveau 1. Vérifier les résultats du programme de révision en le

compilant et en le lançant.

2. **Niveau 2. Reprendre le programme ages.c des TP 2. Le

programme doit déclarer une structure (avec identifiant de structure)

comportant les membres suivants :

char name[20]
int birth_year;
short age;
short sum;
short product;

Le programme doit demander la valeur de chaque champ, et

stocker la valeur dans une structure après avoir vérifié sa validité.

Une fois la structure entièrement renseignée, proposer un menu

pour le choix d’un champ. Après choix de l’utilisateur, afficher le

contenu du champ demandé.

- voir page suivante -

10

Structures, Unions, Définition de Type et Type Enumerés 10-19

reproduction interdite

3. **Niveau 3. Ecrire un programme pour :

Déclarer une structure avec les membres suivants :

char first[20]
char last[20]
short age;

Déclarer un tableau de 4 éléments du type structure.

Définir une fonction print_strux() qui affiche une structure

comme ci-dessus.

Dans une boucle, demander à l’utilisateur des valeurs pour les 4

structures du tableau. Saisir l’âge comme une chaîne de caractère

et la convertir avec atoi() .

Faire une fonction qui affiche une des structures à partir d’un

indice utilisateur (c’est-à-dire entre 1 et 4 et non entre 0 et 3).

Facultatif : Faire une boucle autour de la dernière fonction

d’impression pour que l’utilisateur puisse visualiser autant de

structures qu’il veut et non pas une seule.

Nommer le fichier source strux.c .

Conseil : Définir la structure avant la fonction main() .

10

10-20 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

11-1

Opérateurs sur Bits 11

Objectifs

■ Utiliser l’opérateur sur bits "&" pour masquer des bits à 0 dans un

entier.

■ Utiliser l’opérateur sur bits "|" pour positionner des bits à 1 dans

un entier.

■ Utiliser les opérateurs de décalage de bits sur des entiers.

■ Manipuler individuellement les bits d’un entier avec les champs

de bits des structures.

Evaluation

Travaux Pratiques 11 et révision de module.

11

11-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Tables de Vérité Logiques.

■ Les tables de vérité : P et Q représentent des bits :

■ "&" donne le bit 1 si et seulement si les deux bits
opérandes sont à 1, et 0 dans les autres configurations.

■ "|" donne le bit 0 si et seulement si les deux bits
opérandes sont à 0, et 1 dans les autres cas.

■ "^" donne le bit 1 si et seulement si un seul des deux bits
est à 1, sinon 0.

■ "~" donne le complément à 1 de chaque bit, autrement
dit si le bit est 1 le résultat est 0, si le bit est 0 le résultat
est 1.

& et bit à bit (AND)
|. ou bit à bit (OR)
^. ou exclusif bit à bit (XOR)
~ non bit à bit unaire : inversion de chaque bit (NOT)

P Q P&Q P|Q P^Q ~P ~Q

0 0 0 0 0 1 1
1 0 0 1 1 0 1
0 1 0 1 1 1 0
1 1 1 1 0 0 0

11

Opérateurs sur Bits 11-3

reproduction interdite

Définitions Diverses

■ least significant bit (LSB)- (bit de poids faîble) le bit le plus à
droite dans l’octet ou le champ de bits.

■ most significant bit (MSB)- (bit de poids fort) le bit le plus à
gauche dans l’octet ou le champ de bits.

■ masque - configuration de bits utilisée pour remettre à
zéro (raz) ou forcer à 1 certains bits dans un octet ou un
champ de bit, en vue de modification ou de test.

■ masquer- utiliser une configuration de bits pour retenir
ou éliminer certains bits d’un octet.

position des bits et des octets dans une adresse (32 bits)
(stations de travail Sun SPARC)

31 30 29 012......

Bits de poids fort
MSB

Bits de poids
faîbles (LSB)

11

11-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Opérateurs sur Bits - et &

Vue de détail sur l’opérateur logique sur bits et & - forcer
à 0 les 3 octets de poids fort :

0 1 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1

0 1 0 1 1 0 0 1

A =

B =

C = B & A;

unsigned int A = 0xFF, B = 0x339ddb59, C;

C =

#include <stdio.h>
#define READY 0x1 /* périphérique prêt */
#define RESET 0x2 /* périphérique initialisé */
#define DATA 0x4 /* données dispo sur périphérique */
#define BROKEN 0x8 /* périphérique coupé */
int main(void)
{

unsigned char devstatus(char devname[]);
unsigned char status;
status = devstatus("/dev/printer_one");
if (status & READY)

printf("le bit READY est présent dans status.\n");
if (status & RESET)

printf("le bit RESET est présent dans le status.\n");
/* tests similaires pour DATA et BROKEN */

}
unsigned char devstatus(char devname[])
{

/* retourner la configuration 5 == ’0101’
bit 0 == 1 READY
bit 1 == 0 pas de RESET
bit 2 == 1 DATA (données disponibles)
bit 3 == 0 pas de bit BROKEN (ligne ok)

/*
return 0x5;

} /* fin de main */

11

Opérateurs sur Bits 11-5

reproduction interdite

Opérateurs sur Bits - ou |

Démonstration de ou logique sur bit, pour positionner à 1
l’octet de poids faible d’un entier :

0 1 1 1 1 1 1 1 1A =

B =

C = B | A;

unsigned int A = 0xFF, B=0x510, C;

C =

#include <stdio.h>
#define PRIZE1 0x001
#define PRIZE2 0x100
int main(void)
{

int some_function(int val), num, bflags = 0;
printf("Entrer un entier positif : ");
scanf("%d", &num);
bflags = some_function(num);
if (bflags & PRIZE1)

printf("Vous gagnez le premier prix !\n");
if (bflags & PRIZE2)

printf("Vous gagnez le deuxième prix !\n");
} /* fin de main */

int some_function(int val)
{

if (val < 256) /* 256=0x100 */
return (val | PRIZE1);

else if (val >= 256)
return (val | PRIZE2);

else
 return 0;

} /* fin de some_function */

0 1 0 1 0 0 0 1 0 0 0 0

0 1 0 1 1 1 1 1 1 1 1 1

11

11-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Opérateurs sur Bits - xor et complément à un

Voyons de plus près l’opérateur logique sur bits xor et le
complément à un :

0 1 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1

0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 0

A =

B =

C = B ^ A;

unsigned int A = 0xFF, B = 0x339ddb59, C;

C =

1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1C =

C = ~C;

11

Opérateurs sur Bits 11-7

reproduction interdite

Opérateurs sur Bits - ">> et <<" Décalage

Format

variable << nombre_de_positions
variable >> nombre_de_positions

Exemples d’utilisation d’opérateur décalage à gauche et à
droite "<<" et ">>" - pour un décalage à gauche de 1 bit :

0 1 0 1

0 1 0 1 0

5 ==

10 ==

B = A << 1; /* décalage gauche de 1 */

 unsigned int A = 5, B;

#include <stdio.h>
int main(void)
{

int i, num;
unsigned int mask;
printf("Entrer un entier en base 10 : ");
scanf("%d", &num);

printf("Octal:\t0%o\n", num);
printf("Hexa:\t0x%x\n", num);
printf("Binaire:\t0b");
mask = 1 << (sizeof(int) * 8 - 1) ;

for (i = sizeof(int) << 3 ; i > 0; i-- , mask >>= 1) {
putchar(num & mask ? ’1’: ’0’);

}
putchar(’\n’);
return 0;

} /* fin de main */

11

11-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Retour sur les Structures - Les Champs de Bits

Format

struct <id_de_structure> {
<type_d’int> <identifiant> :<nb de bits>
...

} <id_de_variable> ;

 Les champs de bits des structures fournissent un moyen
commode d’accéder individuellement aux bits, et permet
une utilisation plus efficace de la mémoire - les indicateurs
binaires (flags ou drapeaux) peuvent être regroupés dans
des entiers :

struct packed_flags {
unsigned int f1:1;
unsigned int f2:1;
unsigned int f3:1;
unsigned int f4:1;
unsigned int type:4;
unsigned int index:24;

} flags;

0 0

flags.index

flags.type

flags.f4

flags.f3

flags.f2

flags.f1

structure packed_flags

11

Opérateurs sur Bits 11-9

reproduction interdite

Révision de Module

Manipulation de bit

Q. Quel opérateur met les bits/octets à 0 ? Lequel les met à 1 ?

R.

Q. Décrire l’effet de l’opérateur sur bits non-unaire (complément à un) :

R.

Q. Décrire les effets des opérateurs de décalage à droite >> et à gauche << :

R.

Ecrire une déclaration qui fasse l’ union d’un unsigned int et d’une struct
comprenant un tampon de 3 octets suivi de 8 champs d’1 bit (unsigned int) .

11

11-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 11 : Manipulation de Bit

Présentation

Introduction aux opérateurs sur bits et aux champs de bits des

structures du C.

Exercices

1. Niveau 1. Ecrire un programme qui, à partir des déclarations de la

révision du module, affecte des 1 à chaque champ de bit (dans le

sens décroissant : 8-1). Afficher la taille de la structure et de

l’union, puis la valeur de chaque champ et du mot entier à chaque

affectation (en hexa et/ou décimal).

2. Niveau 2. Ecrire un programme pour :

#define un masque d’un octet pour l’octet de poids faîble et un

pour le second octet de poids faîble (LSB).

Déclarer un short int .

Positionner et tester à l’aide des masques, les deux octets de

l’entier court.

Facultatif : (Niveau 3)

Ecrire une fonction dans le programme qui positionne le bit 0 ou le

bit 8 à 1 selon que la première lettre du nom de l’utilisateur est

respectivement dans la première ou la deuxième partie de

l’alphabet. La fonction main doit afficher un message différent

selon le bit positionné par la fonction.

Nommer le fichier source masks.c

12-1

Passage d’Arguments à main() 12

Objectifs

■ Retrouver et traiter des arguments de la ligne de
commande dans un programme C.

Evaluation

Travaux Pratiques 12 et révision de module.

12

12-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Récupérer les Arguments de la Ligne de Commande

■ Le compte d’argument est dans la variable argc .

■ L’argument argv pointe vers un tableau de pointeurs
sur char (les chaînes de caractères des arguments) , dont
le dernier est le pointeur NULL.

 argv

argv[4]argv[3]argv[2]argv[1]argv[0]

argc == 5

% a.out -f file1 file2 file3

a.out\0 -f\0 file1\0 file2\0 file3\0

12

Passage d’Arguments à main() 12-3

reproduction interdite

Récupérer les Arguments de la Ligne de Commande

 Exemple de traitement des arguments de main avec une
notation indicée :

#include <stdio.h>
int main (int argc, char *argv[])
{

int index;

if (argc > 1) {
printf("%d arguments:\n", argc - 1);
for (index=1; index<argc; index++)

printf("%s\n",argv[index]);
}
else

printf("Pas d’arguments.\n");
return 0;

} /* fin de main */

12

12-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Récupérer les Arguments de la Ligne de Commande

Autre exemple utilisant la notation pointeur :

#include <stdio.h>
#define MIN_ARGS 2 /* 1 argument minimum */

int main (int argc, char **argv)
{

int index = 0;
char **temp = argv; /* sauvegarde de argv */
void usage(char *); /* déclaration de la fonction usage */

if (argc < MIN_ARGS) /*1 argument au moins, quoi ! */
usage(*argv);

while (*temp) /* tant que différent de NULL... */
/* affiche tous les arguments... */
printf("L’argument #%d est \"%s\"\n",index++, *temp++);

return 0;
} /* fin de main */

void usage(char *prog_name)
{

printf("\nUsage:\n");
printf("\t%s <argument> [<argument>...]\n\n", prog_name);
exit (1); /* fin du programme après le message */

} /* fin de usage */

12

Passage d’Arguments à main() 12-5

reproduction interdite

Révision de Module

Arguments

En utilisant la notation indicée, écrire un programme add qui additionne 2
 entiers passés en paramètre suivant la syntaxe :

add <n1> <n2> .
Le programme doit vérifier qu’on lui passe 3 arguments et afficher un
message d’aide sinon.

Q. Quel est le nom conventionnel des arguments de main() et leur ordre ?

R.

Q. Quelles sont les deux manières de déclarer les arguments de main ?

R.

12

12-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 12 : Arguments de la Ligne de Commande

Présentation

Familiarisation avec la déclaration et l’utilisation des arguments de la

ligne de commande dans un programme C.

Exercices

1. Niveau 1. Vérifier les résultats du programme de révision en le

compilant et en l’exécutant.

2. Niveau 2. Ecrire un programme pour :

Utiliser un pointeur pour argv et un indice pour les chaînes.

Afficher les arguments caractères par caractères avec putchar() .

Si pas d’argument, afficher un message et sortir.

3. Niveau 3. (facultatif) Le programme doit prendre 2 arguments.

Comparer le 1er avec -n (normal), ou - i (inverse). Si le 1er

argument n’est aucun des 2 précédents, donner un message

d’usage et sortir. Si l’option est -n afficher le 2eme argument

normalement, sinon l’afficher en inversant l’ordre des lettres,

caractère par caractère avec putchar() .Une fonction peut gérer

l’affichage de l’argument. Ne pas coder en dur le nom du

programme dans le message d’usage, mais utiliser plutôt

argv[0] .

Appeler le programme argmanip.c

Conseil : Le message d’usage ressemblera à :

Usage :

argmanip [-f | -r] <chaîne_de_caractère>

Assurez vous de bien inclure <string.h> .

13-1

Entrées/Sorties Fichiers Standard 13

Objectifs

■ Réaliser des E/S (Entrées/Sorties) en utilisant la librairie standard.

■ Ouvrir un fichier avec fopen() .

■ Lire dans un fichier avec fread() , fgets() , fgetc() et

fscanf() .

■ Ecrire dans un fichier avec fwrite() , fputs() , fputc() et

fprintf() .

■ Positionner le pointeur de lecture/écriture avec fseek() .

■ Récupérer la position courante avec ftell() .

■ Fermer un fichier avec fclose() .

■ Vider un tampon de sortie avec fflush() .

Evaluation

Travaux Pratiques 13 et révisions de module.

13

13-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Définition des Entrées/Sorties niveau User

■ FILE est la structure de contrôle des fichiers.

■ Les objets stdin, stdout et stderr, du type FILE *, peuvent
être utilisés comme arguments des fonctions standard
d’E/S fichiers (à voir plus loin) :

Process
Utilisateurstdin

stderr

stdout

stdin "entrée standard"

stdout "sortie standard"

stderr "sortie erreur standard"

13

Entrées/Sorties Fichiers Standard 13-3

reproduction interdite

Ouvrir un fichier avec fopen()

Format

#include <stdio.h>
FILE *fopen(const char * nomfi c, const char * mode)

■ Les routines de lecture, écriture, déplacement, etc, sur
fichiers, sont fournies dans la librairie standard du C
(voir man -s 3s function)

■ fopen() renvoie un pointeur sur une structure de
contrôle FILE qui mémorise les informations sur le
fichier ouvert. Ce pointeur est souvent stocké dans une
variable nommée fp .

■ fopen() renvoie le pointeur NULL sur erreur d’ouverture

■ Le mode fourni à fopen() indique comment se fera
l’accès au fichier après l’ouverture :

"r" fichier texte pour lecture.
"w" vider ou créer un fichier texte pour écriture.
"a" append ; ouvrir ou créer un fichier texte pour écriture en fin de

fichier

"rb " fichier binaire pour lecture.
"wb " vider ou créer un fichier binaire pour écriture.
"ab" ouvrir ou créer un fichier binaire pour écriture en fin de fichier.

"r+" ouvrir un fichier texte en lecture/écriture.
"w+" vider ou créer un fichier texte en lecture/écriture.
"a+" ouvrir ou créer un fichier texte en lecture/écriture, pointeur en

fin de fichier.

"rb+ " ou "r+b " ouvrir un fichier binaire en lecture/écriture.
"wb+ " ou "w+b " vider ou créer un fichier binaire en lecture/écriture
"ab+" ou "a+b" ouvrir ou créer un fichier binaire en lecture/écriture

pointeur d’écriture en fin de fichier.

13

13-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Fermer un Fichier avec fclose()

Format

#include <stdio.h>
int fclose(FILE * fp);

■ fclose() finit d’écrire toutes les donnée bufferisées et
ferme le flux (stream) (une source ou une destination de
données) associé à fp .

■ fclose() renvoie 0 en cas de réussite, et EOF sur erreur.

■ fclose() est implicite si exit() est appellée ou si le
programme se termine. Il vaut tout de même mieux
fermer explicitement les fichiers avant la fin d’un
programme.

#include <stdio.h>
int main(void)
{

FILE *fp;

if ((fp = fopen("/etc/passwd", "r")) == NULL) {
printf("Ouverture impossible /etc/passwd.\n");
exit(1);

} /* fin de if */

/* traitement des données du fichier... */

fclose(fp);/* fermer le fichier */
return 0;

} /* fin de la fonction main */

13

Entrées/Sorties Fichiers Standard 13-5

reproduction interdite

E/S Formatées et Pointeurs de Fichiers

Format

#include <stdio.h>
int fscanf(FILE * fp , const char * format , ...);

■ fscanf() est similaire à scanf() , sauf que les données
sont lues à partir du fichier associé à fp plutôt que sur
l’entrée standard.

■ En cas de succés, fscanf() retourne le nombre d’items
correctement saisis. Si une erreur survient avant toute
conversion, alors fscanf() renvoie EOF.

Format

#include <stdio.h>
int fprintf(FILE * fp , const char * format , ...);

■ fprintf() est similaire à printf() , sauf que la sortie
se fait sur le fichier pointé par fp plutôt que sur la sortie
standard.

■ Normalement, fprintf() renvoie le nombre de
caractères écrits. Sur erreur d’écriture, une valeur
négative est retournée.

13

13-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Lecture Simple sur un Fichier

Format

#include <stdio.h>
int fgetc(FILE * fp);

■ Sans erreur, fgetc() renvoie le prochain caractère à lire
sur le fichier pointé par fp . Sur fin-de-fichier ou sur
erreur de lecture, fgetc() renvoie EOF.

■ Programme démontrant l’utilisation de fopen() pour
l’ouverture d’un fichier, de la fonction d’entrée fgetc() ,
et de la fonction de sortie fprintf() :

#include <stddef.h>
#include <stdio.h>
int main(int argc, char *argv[])
{

FILE *fp;
int ch;
void usage(char *);

if (argc != 2)
usage(argv[0]);

if ((fp = fopen(argv[1], "r")) == NULL) { /* afficher sur stderr
*/

fprintf(stderr, "Erreur d’ouverture de %s\n", argv[1]);
exit(1);

} /* fin de if */
while ((ch = fgetc(fp)) != EOF)/* lecture car/car sur le fichier */

putchar(ch); /* sortie sur stdout */
fclose(fp); /* fermeture */
return 0;

} /* fin de main */

void usage(char *prog_name)
{

fprintf(stderr, "\nUsage:\n");
fprintf(stderr, "\t%s <chemin>\n\n", prog_name);
exit(1);

13

Entrées/Sorties Fichiers Standard 13-7

reproduction interdite

Lecture Simple sur Fichier

Format

#include <stdio.h>
char *fgets(char * s, int n, FILE * fp);

■ En cas de réussite, fgets() renvoie s . Si la fin de
fichier est rencontrée ou qu’une erreur de lecture
survient, le pointeur NULL est renvoyé.

■ Exemple de programme illustrant l’usage de fopen() et
de fgets() :

#include <stddef.h>
#include <stdio.h>
#define BUFSIZE 256

int main(int argc, char *argv[])
{

FILE *fp;
char str[BUFSIZE];
void usage(char *prog_name);

if (argc != 2) usage(argv[0]);
if ((fp = fopen(argv[1], "r")) == NULL) {

fprintf(stderr, "Erreur d’ouverture de %s\n", argv[1]);
exit(1);

} /* fin de if */
while (fgets(str, BUFSIZE, fp) != NULL) /* lecture/fichier */

printf("%s", str);/* affichage sur stdout */
fclose(fp); /* fermeture */
return 0;

} /* fin de main */

void usage(char *prog_name)
{

fprintf(stderr, "\nUsage:\n");
fprintf(stderr, "\t%s <chemin>\n\n", prog_name);
exit(1);

} /* fin de usage */

13

13-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Ecriture Simple sur Fichier

Format

#include <stdio.h>
int fputc(int c, FILE * fp);

■ fputc() renvoie le caractère écrit. Sur erreur, c’est EOF
qui est retournée.

■ Exemple de programme pour l’utilisation de fopen() ,
fgetc() et fputc() :

#include <stddef.h>
#include <stdio.h>
int main(int argc, char *argv[])
{

FILE *fpin, *fpout;
int ch;
void usage(char *), err(char *);
if (argc != 3)

usage(argv[0]);
if ((fpin = fopen(argv[1], "r")) == NULL)

err(argv[1]);
if ((fpout = fopen(argv[2], "a+")) == NULL)

err(argv[2]);
while ((ch = fgetc(fpin)) != EOF)

fputc(ch, fpout);
fclose(fpin); /* fermeture des fichiers */
fclose(fpout);
return 0;

} /* fin de main */
void usage(char *prog_name)
{

fprintf(stderr, "\nUsage:\n");
fprintf(s tderr, "\t%s <f_entree> <f_sortie>\n \n", prog_name);
exit(1);

} /* fin de usage */
void err(char * file)
{

fprintf(stderr, "Ouverture impossible de %s\n", file);
exit(1);

} /* fin de err */

13

Entrées/Sorties Fichiers Standard 13-9

reproduction interdite

Ecriture Simple sur Fichier

Format

#include <stdio.h>
int fputs(const char * s, FILE * fp);

■ En cas de succès, fputs() renvoie une valeur non-
négative. La fonction renvoie EOFen cas d’erreur.

■ Exemple de programme utilisant fopen() , fgets()
en entrée, et fputs() en sortie :

#include <stddef.h>
#include <stdio.h>
#define BUFSIZE 256
int main(int argc, char *argv[])
{

FILE *fpin, *fpout;
char str[BUFSIZE];
void usage(char *), err(char *);
if (argc != 3)

usage(argv[0]);
if ((fpin = fopen(argv[1], "r")) == NULL)

err(argv[1]);
if ((fpout = fopen(argv[2], "a+")) == NULL)

err(argv[2]);
while (fgets(str, BUFSIZE, fpin) != NULL)

fputs(str, fpout);
fclose(fpin); /* fermeture des fichiers */
fclose(fpout);
return 0;

} /* fin de main */
void usage(char *prog_name)
{

fprintf(stderr, "\nUsage:\n");
fprintf(stderr, "\t%s <f_entree> <f_sortie>\n\n", prog_name);
exit(1);

} /* fin de usage */
void err(char *file)
{

fprintf(stderr, "Erreur d’ouverture de %s\n", file);
exit(1);

} /* fin de err */

13

13-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Lecture de Données depuis un Fichier.

Format

#include <stdio.h>
size_t fread(void * ptr ,size_t taille ,size_t nitems ,FILE * fp) ;

■ fread() peut lire de grandes quantités de données,
comme indiqué par taille. Cette fonction est utilisée pour
des fichiers binaires dont on connaît la taille des
enregistrements, créés avec fwrite() .

■ fread() renvoie le nombre d’items lus. Ce nombre est
différent de nitems sur erreur ou fin de fichier (EOF).

■ Exemple de l’utilisation de fopen() , et de la fonction
d’entrée fread () :

#include <stddef.h>
#include <stdio.h>
#define ITEMSIZE 25
#define INVCOUNT 3
typedef struct {

char item[ITEMSIZE];
float cost;

} Data;
int main(void)
{

FILE *indev;
Data inventory[INVCOUNT];
int c, itemsread;
if ((indev = fopen("inv.dat", "r")) == NULL){

fprintf(stderr, "Erreur d’ouv. de ’inv.dat’en lecture\n");
exit(1);

}
itemsread = fread(inventory, sizeof(Data), INVCOUNT, indev);
fclose(indev);
for (c = 0; c < itemsread; c++){

printf("Item %2d: %25s - %.2f F\n", c, inventory[c].item,
inventory[c].cost);

}
return 0;

} /* fin de main */

13

Entrées/Sorties Fichiers Standard 13-11

reproduction interdite

Ecriture dans un Fichier - fwrite()

Format

#include <stdio.h>
size_t fwrite(const void * ptr ,size_t size ,size_t nitems ,FILE * fp) ;

■ fwrite() renvoie le nombre d’éléments écrits. Ce
nombre est inférieur à nitems en cas d’erreur.

■ Exemple de programme utilisant fopen() , et fwrite()
en sortie :

#include <stddef.h>
#include <stdio.h>
#define ITEMSIZE 25
#define INVCOUNT 3

typedef struct {
char item[ITEMSIZE];
float cost;

} Data;
int main(void)
{

FILE *outdev;
static Data inventory[INVCOUNT] = {

"crayon", 0.15,
"stylo", 0.49,
"surligneur", 1.25

};

if ((outdev = fopen("inv.dat", "w")) == NULL){
fprintf(stderr, "Ouv. impossile de ’inv.dat’ en écriture\n");
exit(1);

} /* fin de if */
fwrite(inventory, sizeof(Data), INVCOUNT, outdev);
fclose(outdev);
return 0;

} /* fin de main */

13

13-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Trouver la Position Courante du Pointeur d’un Fichier

Format

#include <stdio.h>
long ftell(FILE * fp);

■ Le tampon pointé au travers de fp contient un pointeur
relatif au début du fichier, sur le prochain caractère lu ou
écrit dans le fichier. Au fur et à mesure des lectures
et/ou écritures, ce pointeur de fichier est déplacé en
avant dans le fichier.

■ La fonction ftell() renvoie la position courante en
octets dans le fichier représenté par fp . En cas d’erreur,
ftell() renvoie -1L .

#include <stddef.h>
#include <stdio.h>
int main(void)
{

FILE *fp;
long pos;

... /* autres déclarations ... */

if ((fp = fopen(argv[1], "r")) == NULL){
fprintf(stderr, "fopen raté\n");
exit(1);

}

... /* après quelques lectures dans le fichier */

pos = ftell(fp);

... /* suite du programme */
} /* fin de main */

13

Entrées/Sorties Fichiers Standard 13-13

reproduction interdite

Déplacer le Pointeur de Fichier

Format
#include <stdio.h>
void rewind(FILE * fp);

■ Le pointeur de fichier peut être remis au début avec
rewind() . rewind() ne renvoie aucune valeur :

#include <stddef.h>
#include <stdio.h>
#define MAX 4
#define BUFSIZE 40
int main(int argc, char *argv[])
{

FILE *fp;
struct db_record {

char name[BUFSIZE];
short age;

} rex[MAX], rec;
int size = sizeof (rec), i;
char temp[BUFSIZE];
void usage(char *), err(char *); /* fonctions définies ailleurs */
if (argc != 2)

usage(argv[0]);
if ((fp = fopen(argv[1], "a+")) == NULL)

err(argv[1]);
for (i = 0; i < MAX; i++) {

printf("Entrer le nom numéro %d: ", i + 1);
fgets(rex[i].name, BUFSIZE, stdin);
printf("Entrer l’age du %s : ", rex[i].name);
rex[i].age = (short) atoi(fgets(temp, BUFSIZE, stdin));
if (!(fwrite(&rex[i], size, 1, fp)))

err(argv[1]);
} /* fin du for */
rewind(fp);/* pointeur de fichier au début */
for (i = 0; i < MAX; i++) {

if (!(fread(&rec, size, 1, fp)))
err(argv[1]);

printf("Nom n˚%d: %s, age: %d\n",i+1, rec.name, rec.age);
} /* fin de for */
fclose (fp);/* fermer le fichier */
return 0;

} /* fin de main */

13

13-14 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Déplacer le Pointeur de Fichier

Format

#include <stdio.h>
int fseek(FILE * fp ,long int deplacement ,int mode);

■ fseek() est utilisée pour déplacer le pointeur du fichier fp . La
nouvelle position est à deplacement de la position spécifiée par
mode.

■ mode prend 3 valeurs : SEEK_SET (début), SEEK_CUR (courant),
et SEEK_END (fin). (Inclure <stddef.h> pour les SEEK_*)

■ fseek() renvoie 0 normalement, et non-nul en cas d’erreur :

#include <stddef.h>
#include <stdio.h>
int main(int argc, char *argv[])
{

FILE *fp;
struct db_record {

char name[40];
short age;

} rec;
int size = sizeof (rec), recnum;
char str[6];
void usage(char *), err(char *); /* fonctions définies ailleurs */
if (argc != 2)

usage(argv[0]);
if ((fp = fopen(argv[1], "a+")) == NULL)

 err(argv[1]);
while (1) {

printf("Quel enregistrement (1-4) ? (0 pour fin):");
if (!(recnum = atoi(fgets(str, 6, stdin))))

break ;
if ((recnum < 0) || (recnum > 4))

continue ;
fseek(fp, (long int)(size*(recnum - 1)), SEEK_SET);
if (!(fread(&rec, size, 1, fp)))

err(argv[1]);
printf("Nom n˚%d: %s, age: %d\n", recnum, rec.name, rec.age);

} /* fin de while */
fclose (fp);/* fermer le fichier */
return 0;

} /* fin de main */

13

Entrées/Sorties Fichiers Standard 13-15

reproduction interdite

Vider la Mémoire Tampon associée à FILE

Format

#include <stdio.h>
int fflush(FILE * fp);

■ fflush() force l’écriture sur disque des données
présentes dans le tampon ; souvent utilisée pour rendre
immédiat l’affichage d’un message, ou toute autre
opération d’entrée/sortie.

■ Le buffer de stdout est vidé à chaque newline. Les
buffers de fichiers sont vidés lorsqu’un bloc est complet.
Le buffer de stderr est vidé à chaque caractère écrit.

■ Sans erreur, fflush() renvoie 0 ; sinon EOF.

#include <stdlib.h>
#include <stdio.h>
#define MIN 50
#define BUFSIZE 80
int main(void) {

int num_crunch(void);/* fonction faisant tout le travail */
int index, iq;
char str[BUFSIZE];
while (1) {

printf("Entrer votre QI : ");
fflush(stdout);
iq = atoi(fgets(str, BUFSIZE, stdin));
if (iq < MIN)

fprintf(stderr,"Quittez le navire, un idiot à la barre!");
index = num_crunch();
if ((iq + index) < (2 * MIN))

break ;
}
return 0;

} /* fin de main */

13

13-16 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Résumé des Fonctions
 Valeur retournée Code Code de

Fonction sans erreur D’erreur Fin de fichier

fopen() FILE * NULL sans objet
fclose() 0 EOF sans objet

scanf() nb d’affectations
sscanf() nb d’affectations
fscanf() nb d’affectations
getchar() caractère lu EOF EOF
fgetc() caractère lu EOF EOF
fgets() ptr sur chaîne lue NULL NULL
fread() N b d ’ i t e m s l u s d a n s t o u s l e s c a s

printf() nb car.écrits code < 0 sans objet
sprintf() l ’ ad resse du p remier a rgument dans tous les cas
fprintf() nb car.écrits code < 0 sans objet
putchar() car.écrit EOF sans objet
fputc() car.écrit EOF sans objet
fputs() code >= 0 EOF sans objet
fwrite() nb items écrits nb items écrits sans objet

ftell() position en octets -1L sans objet
fseek() 0 code != 0 sans objet
rewind() p a s d e v a l e u r r e t o u r n é e
fflush() 0 EOF sans objet

EOF est retournée si une erreur inter-
vient avant toute conversion.

13

Entrées/Sorties Fichiers Standard 13-17

reproduction interdite

Révision de Module

E/S Fichiers

Q. Quels sont les noms des pointeurs FILE pour les 3 fichiers ouverts par

défaut ?

R.

Q. Quel fichier .h faut-il inclure pour utiliser ces identifiants ?

R.

Q.Quelle est la fonction d’affichage formatée sur un fp donné ?

R.

Ecrire un programme utilisant fgets() pour lire le fichier /etc/motd et
printf() pour l’afficher à l’écran.

13

13-18 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 13 : E/S Fichiers

Présentation

Introduction à l’utilisation des fonctions d’E/S fichiers de niveau user

de la librairie standard du C.

Exercices

1. Niveau 1. Vérifier les résultats du programme de révision en le

compilant et en l’exécutant.

2. Niveau 2. Modifier aged.c (TP 10) comme suit :

En utilisant la structure existante, permettre à l’utilisateur de saisir

les champs name et data d’autant de structures que voulues,

calculer les autres champs et sauver dans un fichier (ouvert en

écriture) nommer data.rec , une structure à la fois. Gérer un

compteur d’enregistrements. Ne pas utiliser de tableau :

Quand l’utilisateur a fini, fermer le fichier.

Demander à l’utilisateur un numéro d’enregistrement, ouvrir le

fichier en lecture, lire l’enregistrement voulu et l’afficher.

Puis fermer le fichier et quitter.

Nommer le fichier source newaged.c .

3. Niveau 3. Ecrire un programme qui gère un fichier contenant les

chaînes saisies par l’utilisateur et triées. Le nom du fichier sera

passé par la ligne de commande :

Si aucun nom de fichier n’est passé en argument, sortir avec un

message d’usage.

Demander à l’utilisateur les chaînes d’un tableau (d’au moins 8

éléments) en les rangeant dans l’ordre alphabétique.

- voir page suivante -

13

Entrées/Sorties Fichiers Standard 13-19

reproduction interdite

Quand l’utilisateur a entré toutes ou quelques chaînes (au moins 2),

les écrires dans le fichier dont le nom est passé dans argv[1] .

Afficher les lignes/enregistrements et demander un numéro à

détruire.

Détruire les numéros demandés.

Afficher le nouveau contenu et sortir.

Conseil 1 : Détruire l’enregistrement dans le tableau et réécrire

tout le fichier. N’essayez pas de trier le fichier en place sauf si vous

le désirez. Assurez-vous que vous ouvrez le fichier avec le mode w

pour le créer ou l’effacer à l’ouverture.

Conseil 2 : strcmp() vous aidera à trier les chaînes en ordre

alphabétique. Mais pour ne pas rendre ce TP excessivement long,

vous trouverez ci-dessous une procédure de tri (remarquez les

arguments) :

void ssort(int cnt, char sa[AMAX][SMAX], char str[]);
/* nb de chaînes dans le tableau */
/* tableau des chaînes */
/* chaîne à ranger dans le tableau */
{

int ith;
static char temp[SMAX], nul[1] = {’\0’};

for (ith = 0; ith <= cnt; ith++) {
if ((strcmp(sa[ith], str) > 0) ||

 (strcmp(sa[ith], nul)== 0)) {
strcpy(temp, sa[ith]);
strcpy(sa[ith], str);
strcpy(str, temp);

}
}

} /* fin de ssort */

Conseil 3 : La fonction pour réarranger le tableau après

suppression est similaire mais plus simple.

Nommer le fichier source alphile.c

13

13-20 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

14-1

Plus sur cc et le Préprocesseur 14

Objectifs

■ Ecrire et utiliser les directives simples du préprocesseur et
écrire des macros.

■ Faire des compilations conditionnelles à l’aide des directives
#ifdef .

■ Définir des macros comme des fonctions en utilisant les
marqueurs # et ## du préprocesseur.

14

14-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Macros du Préprocesseur

Macros prédéfinies :

__TIME__ chaîne de la forme : "hh:mm:ss"
indiquant l’heure de la compilation.

__DATE__ chaîne de la forme : "Mmm dd yyyy",
Indiquant la date de compilation.
Exemple : Dec 25 1991

__FILE__ Chaîne de caractère correspondant au nom du
fichier source utilisé durant la compilation.

__LINE__ No de lignes dans le fichier courant.
(constante décimale)

__STDC__ 1 pour le mode de conformance -Xc ; 0 sinon.

#include <stdio.h>

int main(void)
{

printf("Programme : %s.\nDate de compil.: %s.\n",__FILE__,
 __DATE__);

return 0;
} /* fin de main */

14

Plus sur cc et le Préprocesseur 14-3

reproduction interdite

Macros du Préprocesseur (suite)

■ Définition de macros objets :

#define <identitifiant> <liste de remplacement> newline

■ Exemples

#define SIZE 256
#define MESSAGE "Enchanté de vous voir!"

■ Définition des macros fonctions :

#define ident(liste opt.) liste de remplacement newline

■ Exemples :

#define SQ(X) ((X) * (X))
#define PRINT(S1) printf("Date %s\n",(S1))

■ L’identifiant immédiatement après le #define est
appelé le nom de la macro.

14

14-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Macros Fonctions

Les macros fonctions produisent du code in-line, et ainsi
repésentent un gain de vitesse en évitant le temps dû à
l’appel de fonction.

#include <stdio.h>
#define ABS(a) ((a)<0?-(a):(a))/* renvoie la valeur abs. de a */
#define CUBE(b) ((b)*(b)*(b))/* renvoie le cube de b */
#define MIN(a, b) ((a)<(b)?(a):(b))/* renvoie le min. de a et b */

int main(void)
{

int num1, num2;

printf("Entrer un entier à élever au cube : ");
scanf("%d", &num1);
printf("Le cube de %d = %d!\n", num1, CUBE(num1));
printf("Entrer un autre entier : ");
scanf("%d", &num2);
printf("La valeur absolue de %d = %d.\n", num2, ABS(num2));
printf("Le plus petit de %d et %d = %d.\n", num1, num2,

 MIN(num1,num2));
return 0;

} /* fin de main */

14

Plus sur cc et le Préprocesseur 14-5

reproduction interdite

Précautions à L’Utilisation des Macros

■ Si la macro SQRest utilisée de la manière suivante,
l’argument sera incrémenté deux fois ce qui ne
correspond pas au résultat attendu !

■ Les parenthèses doivent être utilisées autour de la macro
et de chaque argument pour s’assurer une évaluation
correcte. (voir ABS) :

#include <stdio.h>
#define SQR(a) ((a)*(a)) /* renvoie le carré de a */
#define ABS(b) b < 0 ? -b:b /* renvoie la valeur abs de b ? */
int main(void)
{

int num1, num2;

printf("Entrer un entier à élever au carré : ");
scanf("%d", &num1);
printf("Le carré de %d = %d!\n", num1, SQR(++num1));
printf("La valeur abs. de 3-5 = %d.\n",ABS(3-5));

return 0;
} /* fin de main */

/ * Avec les déclarations ci-dessus... */

SQR(++num1); /* est étendu comme... */
((++num1) * (++num1)); /* PAS bon ! */

ABS(3-5); /* est étendu comme... */
3-5 < 0 ? -3-5 : 3-5; /* PAS bon! */

14

14-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Le Marqueur # du Préprocessseur

■ Si le marqueur # précède immédiatement un argument
dans la liste de remplacement d’une macro-fonction
l’ensemble est remplacé par une chaine de caractère
correspondant à l’argument (transformation en littéral).

■ Il ne peut y avoir que des espaces entre le # et l’argument
dans la liste de remplacement ; ne pas mettre de
parenthèses autour de l’argument.

Soit :
#define MAKESTR(X) # X "!"
int abc, xyz;

et les appels :
MAKESTR(abc);
MAKESTR(abc xyz);

Donnent :
“abc””!”
“abc xyz””!”

14

Plus sur cc et le Préprocesseur 14-7

reproduction interdite

Le Marqueur ## du Préprocesseur

■ Si le marqueur ## précède ou suit immédiatement un
argument dans la liste de remplacement, l’ensemble sera
remplacé par l’argument lui-même (collage des 2
arguments).

■ Avant de reparcourir la macro pour d’autres noms
d’arguments, le marqueur ## est effacé et concaténé avec
l’élément suivant.

■ Il ne peut y avoir que des espaces entre ## et le
paramètre dans la liste de remplacement. Ne pas mettre
de parenthèses autour de l’argument.

Soit :
#define PASTE(X,Y) X ## Y
int a, xyz;

Les appels:
PASTE(a, xyz);
PASTE(a, 1);
PASTE(1., 34);

Donnent :
axyz /* ceci n’est pas une chaîne */
a1
1.34

14

14-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Compilation Conditionnelle

■ Le préprocesseur fournit des possibilités de compilation
conditionnelle, qui permettent à certaines portions de
code d’être soit compilées soit ignorées en fonction de
certaines conditions.

■ Il y a trois types de directives conditionnelles. Chacune
des directives contrôle la compilation des lignes de code
en-dessous, jusqu’à la rencontre de la directive #endif :

#if /* vrai si la constante qui suit est différente de 0 */

#ifdef /* vrai si l’argument est défini par #define avant */

#ifndef /* vrai si l’argument n’est pas défini par #define avant */

#elif /* avec une expression constante, else conditionnel */

#else /* complément de #if, #ifdef ou #ifndef *

#endif /* fin de la portion de code concernée par la compilation
conditionnelle */

14

Plus sur cc et le Préprocesseur 14-9

reproduction interdite

Compilation Conditionnelle

Exemples de compilation conditionnelle :

% more my_prog.c
...
#ifdef DEBUG

/* printf de debug... */
printf("my_func : compteur de boucle %d\n", index);

#endif
...
% cc -DDEBUG -Xc my_prog.c -o my_prog
% more my_prog.c
...
#if (DEBUG > 50)

/* printf de debug lourd ... */
printf("Gros debug!\n");

#else
printf("Petit debug.\n");

#endif
...
% cc -DDEBUG=42 -Xc my_prog.c -o my_prog
% more my_prog.c
...
#define DEBUG
#ifdef DEBUG

/* printf de debug... */
printf("Gros debug!\n");

#endif
...

14

14-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Annuler la Définition de Constantes

■ Un nom #define (#define NOM) peut être oublié de
force par la directive #undef (#undef NOM).

■ Tous les #ifdef NOM à suivre dans le source seront
évalués FAUX.

■ Inversement, tous les #ifndef NOM seront évalués
VRAI :

% more my_prog.c
...
#undef NOM
#ifnde f NOM

printf("NOM est non-défini !\n");
#endif
#ifdef sun

printf("sun est défini.\n");
#endif
#ifdef sparc

printf("sparc est défini.\n");
#endif
...

(annulation sur la ligne de commande)
% cc -Usun -Xa my_prog.c -o my_prog

15-1

Allocation Dynamique de Mémoire 15

Objectifs

■ Allouer dynamiquement la mémoire dans un programme C.

■ Libérer la mémoire allouée dynamiquement au préalable.

■ Programmer une liste simplement chaînée.

Evaluation

Travaux Pratiques 15 et révision de module.

15

15-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Image Mémoire d’un Process

■ Il y a essentiellement 2 manières pour un programme
d’acquérir de la mémoire pour ses données. L’une est la
déclaration de variables. L’autre est l’allocation
dynamique (au moment de l’exécution).

■ L’allocation dynamique de mémoire met à disposition du
programme, de la mémoire additionnelle par extension
du tas (heap), une des parties du segment data du
process.

STACK

DATA

TEXT

(tas ou heap)
break

Image du process

mémoire "libre"

15

Allocation Dynamique de Mémoire 15-3

reproduction interdite

 Allocation Dynamique de Mémoire – malloc()

Format

#include <stdlib.h>
void *malloc(size_t taille)

■ malloc() est la manière la plus banale pour demander
de la mémoire dynamique à SunOS. La quantité de
mémoire allouée est au moins de taille octets.

■ malloc() renvoie un pointeur sur la mémoire allouée.
Si rien n’a été alloué ou qu’une erreur s’est produite,
malloc() renvoie le pointeur NULL.

■ On peut forcer le type de l’adresse retournée par
malloc() en préfixant l’appel avec (type), afin de
l’adapter au type d’objet pour lequel l’allocation est faite.

#include <stddef.h>
#include <stdlib.h> /* déclaration de malloc() */
#include <stdio.h> /* déclaration de gets() */
#include <string.h> /* déclaration de strcpy() */

#define BUFFER 100

int main(void){
char *dynarr;

dynarr = (char *) malloc(BUFFER);

strcpy(dynarr, "hello");
puts(dynarr);

printf("Entrer une chaîne : ");
fgets(dynarr, BUFFER, stdin);
printf("Chaîne saisie = %s \n", dynarr);
return 0;

}

15

15-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

 Allocation Dynamique de Mémoire – calloc()

Format

#include <stdlib.h>
void *calloc(size_t nelem , size_t taille)

■ calloc() est utilisé pour alloué l’espace d’un tableau.
Ce tableau a nelem éléments, et l’espace contigu alloué
est au moins de (nelem * taille) octets.

■ En cas de succès, calloc() renvoie un pointeur sur la
mémoire allouée. En cas d’erreur ou d’impossibilité
d’allocation, la fonction renvoie le pointeur NULL.

■ calloc() renvoie de la mémoire initialisée à 0.

■ Un tableau créé dynamiquement (avec calloc() ou
malloc()) peut être traité exactement comme un tableau
statique classique :

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h> /* déclaration de calloc() */
int main(void) {

int *int_ptr, *ip, num = 0, index, asize;
char tmp[16];
printf("Quelle taille pour le tableau ?: ");
asize = atoi(fgets(tmp, 16, stdin));/* saisie/conversion */
if ((int_ptr = (int *)calloc(asize, sizeof (int))) != NULL) {

for (ip = int_ptr; ip < (int_ptr + asize); ip++, num++) {
/* initialisation notation pointeur... */
*ip = num;

} /* fin de for */
/* c’est possible autrement... */
for (index = 0; index < asize; index++) {

/* initialisation mode tableau, notation indicée... */
int_ptr[index] = index % 3;

} /* fin de for */
 }

return 0;
} /* fin de main */

15

Allocation Dynamique de Mémoire 15-5

reproduction interdite

Allocation Dynamique de Mémoire – free()

Format

#include <stdlib.h>
void free(void * ptr)

■ free() est utilisée pour rendre au système la mémoire
allouée avec malloc() ou calloc() .

■ L’argument free() est le pointeur retourné
préalablement par malloc() ou calloc() :

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h> /*déclarations de malloc(), free(), et atof()*/
#define BUFSIZE 40
struct record {

char name[BUFSIZE];
float salary;
int age;

};
int main(void)
{

struct record *sptr;
char tmp[BUFSIZE];
int size = sizeof (struct record);
void some_func(struct record *);
if ((sptr = (struct record *)malloc(size)) != NULL) {

printf("Entrez votre nom : ");
fgets(sptr->name, BUFSIZE, stdin);
printf("Entrez votre âge : ");
sptr->age = atoi(fgets(tmp, BUFSIZE, stdin));
printf("Votre salaire annuel : ");
sptr->salary = atof(fgets(tmp, BUFSIZE, stdin));

} /* fin de if */
/* traitement quelconque de la structure... */
some_func(sptr);
free(sptr);/* restitution de la mémoire au système */
return 0;

} /* fin de main */

15

15-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Révision Partielle

malloc()

Q. En quoi l’allocation de mémoire peut-elle être dynamique ?

R.

Q. Qu’est-ce que représente la valeur retournée par malloc() ?

R.

Q. Que fait l’instruction ptr=(struct record *)malloc(size); ?

R.

Q. Quelle est l’instruction qui rend la mémoire au système, et pourquoi doit-on

l’utiliser ?

R.

Ecrire un bout de programme qui déclare une structure avec un tableau de 24
caractères, un entier, un flottant, et un pointeur. Utiliser malloc() pour allouer
dynamiquement la mémoire pour une structure (attention, juste un bout de pgm) :

15

Allocation Dynamique de Mémoire 15-7

reproduction interdite

Après les Tableaux - La Liste Chaînée

■ Les listes chaînées sont une forme fréquente de structure
de données dynamiques.

■ Les listes chaînées sont utilisées notamment dans 2 cas.
Pour les tableaux de taille inconnue, et pour le traitement
et le stockage de base de données.

■ Les listes sont généralement soit simplement chaînées, ou
doublement chaînées. Ceci fait référence au nombre de
pointeurs vers d’autres éléments de la liste que l’on
trouve dans la structure d’un nœud de liste :

data

ptr

data

ptr

data

ptr

data

tête

Liste simplement chaînée

15

15-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Construction d’une Liste Simplement Chaînée

■ Les listes peuvent être construites d’au moins deux
manières : en ajoutant simplement des éléments à la fin,
ou en insérant les éléments à des emplacements
spécifiques pour un ordre donné (listes triées).

■ Toute l’attention doit être portée à la conservation de la
tête de la liste, et à la terminaison de la liste par un
pointeur NULL :

struct node {
int data; /* les données sont là */
struct node *suivant;/* pointeur vers le nœud suivant */

} *tete, *fin; /* pointeurs de type (struct *node) */
int cntr = 1;
tete = (struct node *)malloc(sizeof (struct node)); /* 1er élément */
fin = tete; /* conservation de la tête de liste */
fin->data = cntr; /* renseignement du 1er élément */
fin->suivant = NULL; /* fin de liste sur NULL */
while (encore) {

fin->suivant=(struct node *)malloc(sizeof (struct node));/* suivant */
fin = fin->suivant; /* avance de un dans la liste */
fin->data = ++cntr; /* renseignement de l’élément courant */
fin->suivant = NULL; /* fin sur NULL */

} /* fin de while */
...

data

suivant

fin

data

tete

data

suivant

fin->suivant = NULL

data

suivant

15

Allocation Dynamique de Mémoire 15-9

reproduction interdite

Parcourir une Liste Simplement Chaînée

■ Dans un parcours de liste, tous les éléments de la liste
doivent être consultés pour trouver le suivant.

■ Le pointeur NULL est l’indicateur de fin. Une liste est
parcourue en passant de suivant en suivant, tant que le
pointeur NULL n’est pas rencontré :

fin

struct node {
int data; /* données de la liste */
struct node *suivant;/* pointe vers le suivant */

} *tete, *fin; /* pointeur de type (struct *node) */
int cntr = 1;

fin = tete ; /* préserve la tête de liste */
while (fin != NULL) {

printf("élém %d: donnée= %d\n", cntr, fin->data);
cntr++;
fin = fin->suivant; /* pointe sur le suivant */

} /* fin de while */

...

data

tete

data

suivant

fin->suivant == NULL

fin = fin->suivant;

data

suivant

data

suivant

15

15-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

La Liste Simplement Chaînée en Action

■ Exemple de programme montrant l’utilisation d’une liste
simplement chaînée pour mémoriser les enregistrements d’un
fichier :

#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h> /* déclarations de malloc(), et free() */
#define TAILLE 256
int main(void) {

struct db {
char data[TAILLE];
struct db *suivant;

 } *tete, *fin, *temp;
char str[TAILLE];
int db_size = sizeof (struct db);

 printf("Entrer une chaîne de caractères : ");
 if (fgets(str, TAILLE, stdin) == NULL) {

 fprintf(stderr, "Erreur sur fgets\n");
 exit(1);
 }

tete = (struct db *)malloc(db_size);
strcpy(tete->data, str);

 fin = tete;
printf("Entrer une chaîne de caractères : ");
while (fgets(str, TAILLE , stdin) != NULL) {

fin->suivant = (struct db *)malloc(db_size);
fin = fin->suivant;
strcpy(fin->data, str);
printf("Entrer une chaîne de caractères : ");

 }
 fin->suivant = NULL;
 fin = tete ;
 printf("\n\n");

while (fin) {
 printf("Enregistrement: %s\n", fin->data);
 temp = fin;
 fin = fin->suivant;
 free(temp);
 }

return 0;
} /* fin de main */

15

Allocation Dynamique de Mémoire 15-11

reproduction interdite

PAGE INTENTIONNELLEMENT BLANCHE

15

15-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Un Autre Exemple de Liste Chaînée

15

Allocation Dynamique de Mémoire 15-13

reproduction interdite

#include <stddef.h>
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#define DATA_LENGTH 100
typedef struct link {

char data[DATA_LENGTH];
struct link *next;

} Link;
void add(void), delete(void), print(void);
Link *new_link(char *), *head, *curr;
int main(void) {

int ch;
head = curr = new_link("");
fo r (;;) {

printf("Ajoute, Détruit, Suivant, Tête, Impression,"
" Quitte : ");
ch = getchar();
while (getchar() != ’\n’);
switch (isupper(ch) ? tolower(ch) : ch) {

case ’a’:
add();
break ;

case ’d’:
delete();
break ;

case ’s’:
if (curr->next == NULL)

printf(".fin.\n");
else {

curr = curr->next;
printf("%s", curr->data);

}
break ;

case ’t’:
curr = head;
printf(".top.\n");
break ;

case ’i’:
print();
break;

case ’q’:
exit(0);
break ;

} /* fin de switch */
} /* fin de for */
return 0;

} /* fin de main */

15

15-14 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Un Autre Exemple de Liste Chaînée (suite)

Link *new_link(char *data)
{

Link *temp;
if ((temp = (Link *)malloc(sizeof(Link))) == NULL) {

fprintf(stderr, "Erreur de malloc\n");
exit(1);

}
strcpy(temp->data, data);
temp->next = NULL;
return temp;

}
void add(void)
{

Link *temp;
char data[DATA_LENGTH];
printf("donnée ?: ");
fgets(data, DATA_LENGTH, stdin);
temp = new_link(data);
temp->next = curr->next;
curr = curr->next = temp;

}
void delete(void)
{

Link *prev;
if (head->next == NULL)

return ; /* liste vide */
if (curr == head)

head = head->next;
else { /* recherche l’élément précédent */

for (prev = head; prev->next != curr; prev = prev->next);
prev->next = curr->next;

}
free(curr);
curr = head;

}
void print(void)
{

Link *temp;
printf(".tête.\n");
for (temp=head->next; temp != NULL; temp=temp->next)

printf("%s", temp->data);
printf(".fin.\n");

}

15

Allocation Dynamique de Mémoire 15-15

reproduction interdite

15

15-16 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 15 : Mémoire Dynamique et Listes

Présentation

Introduction au concept et à l’utilisation de l’allocation dynamique de

mémoire et aux listes simplement chaînées.

Exercices

1. Niveau 1. Vérifier les résultats du bout de code de révision, en le

complétant (en faire un programme), en le compilant et en

l’exécutant.

2. Niveau 2. Modifier le programme du TP 10 strux.c :

Au lieu d’un tableau de 4 éléments, gérer une liste chaînée de

longueur indéterminée. Continuer d’ajouter des éléments tant que

l’utilisateur le demande (ajouter au moins un élément).

Sauver les informations dans un fichier à la fin de la saisie, et

rendre la mémoire dynamique au système. Le nom du fichier sera

passé par la ligne de commande. Sinon, donner un message

d’erreur et quitter le programme.

Après sauvegarde dans le fichier, le relire et reconstruire la liste.

Après reconstruction, demander à l’utilisateur soit un nom, soit s’il

veut visualiser toute la liste.

3. Ecrire une fonction qui affiche toute la liste et/ou affiche juste

l’élément demandé par l’utilisateur, et un message en cas de

recherche vaine.

Quand c’est fini rendre la mémoire au système et quitter.

Utiliser des fonctions chaque fois que possible, afin de découper le

programme.

4. Niveau 3 (facultatif). Gérer la liste triée par âge.

Nommer le fichier source listrux.c .

16-1

Introduction aux Fonctions
Récursives 16

Objectifs

■ Expliquer la définition d’une fonction récursive.

■ Ecrire des fonctions récursives simples en C.

Evaluation

Travaux Pratiques 16.

16

16-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

 Définition de la Pile

■ Une pile est un ensemble de registres câblés ou une
portion de la mémoire principale, qui sont utilisés pour
des calculs arithmétiques ou pour des opérations
internes. Les piles fonctionnent sur le principe dernier
entré-premier sorti (last-in-first-out) (LIFO).

■ En informatique, le terme empiler (push) revient à ajouter
un élément en haut d’une pile (top).

■ En informatique toujours, le terme dépiler (pop) revient à
enlever l’élément en haut de pile :

Remarque : Le pointeur de pile "descend" lorsqu’on empile quelque

chose, car, en mémoire, la pile est toujours allouée depuis les

adresses hautes vers les adresses basses.

vide push push

42004200

560

4200
top

top top

top

pop

16

Introduction aux Fonctions Récursives 16-3

reproduction interdite

Qu’est-ce que la récursivité?

■ Une fonction récursive est une fonction qui, pour
remplir sa mission, doit s’appeler elle-même :

■ Généralement, une fonction récursive n’est jamais
appelée indéfiniment. Il doit exister une ou plusieurs
conditions de fin de boucle récursive.

#include <stdio.h>
int main(void) {

void recurser(int);

printf("L’infinité est le possible rendu inévitable.\n");
recurser(1);
return 0;

} /* fin de main */

void recurser(int n) {
if (n > 4)

return ;
recurser(n + 1);
printf("%d\n", n);

} /* fin de recurser */

16

16-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Mécanismes d’une Fonction Récursive

■ Pour chaque instance de fonction, un ensemble
unique/différent de variables locales (toutes ayant les
mêmes noms) est créé dans la pile.

■ Les fonctions récursives semblent souvent s’exécuter en
sens inverse des appels. Dans l’exemple, tous les appels
sont faits avant la 1ère impression de n ; l’impression
commence à 4 puis redescend :

Métaphore de la Pile

2me instancen == 2

3me instancen == 3

4me instancen == 4

n == 5

if (n > 4)
return ;

recurser(n + 1);
printf("%d\n", n);

 dernière
instance

imprime n en 1er...

imprime n en 2me...

imprime n en 3me...

quitte

16

Introduction aux Fonctions Récursives 16-5

reproduction interdite

 Applications de la Récursivité

■ La fonction la plus présentée comme exemple de
récursivité est celle qui calcule la factorielle d’un nombre.
On la note : n! (factorielle n).

■ La factorielle d’un nombre positif n est le produit des
nombres de 1 à n. Si n == 4 alors n! == 4 * 3 * 2 * 1 == 24.
Si n <= 1, alors n! == 1.

■ Exemple de fonction récursive calculant des factorielles :

#include <stdio.h>
int main(void)
{

unsigned int num, factorial(unsigned int);
char tmp[8];

printf("Entrer un nombre (n <= 13): ");
num = atoi(fgets(tmp, 8, stdin));
printf("La factorielle de %d = %d.\n",num, factorial(num));
return 0;

} /* fin de main */

unsigned int factorial(unsigned int n)
{

if (n <= 1)
return (1);

else
return (n * factorial(n - 1));

} /* fin de factorial */

16

16-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 16 : Récursivité (Facultatif)

Présentation

Compilation et utilisation d’un programme contenant la fonction

récursive factorial() .

Exercices

1. Niveau 1 : Vérifier que le programme de la page 16-5 fonctionne

en le compilant et en l’exécutant.

Ajouter une boucle pour que le programme calcule toutes les

factorielles entre 1 et un nombre saisi par l’utilisateur. Si

l’utilisateur saisit 10, le programme affiche les factorielles de 1, 2,

3, 4, 5, 6, 7, 8, 9, et 10.

Si l’utilisateur entre un nombre supérieur ou égal à 14 donner un

message d’erreur ou d’usage et quitter le programme.

2. Niveau 2 : (facultatif) Faire un programme qui vérifie la limite de

calcul de factorielle. On peut utiliser une boucle for. Utiliser des

unsigned int et afficher les résultats.

Nommer le programme factorial.c

A-1

Conseils de Mise au Point A

Cette annexe contient quelques informations utiles pour régler des

erreurs de compilation ou d’exécution.

A

A-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Erreurs Fréquentes

Généralités

variables non-initialisées.

Erreur de dépassement de 1.

Traiter les tableaux en commençant les indices à 1 au lieu de 0.

Oublier la fin des commentaires */ .

Pas de point-virgule en fin d’instruction.

Types, Opérateurs et Expressions

Utiliser char pour int pour la valeur retournée par getchar() .

Backslash (\) tapé pour (/), comme dans /n au lieu de \n.

Déclarer des arguments de fonction (non prototypée) après l’accolade.

Utiliser des opérateurs relationnels sur les chaînes, comme s == "end",

au lieu de strcmp() .

Oublier le caractère ’\0’ à la fin d’une chaîne de caractères.

Utiliser = pour ==.

Erreur de 1 dans les boucles avec indices.

Erreur de priorité ou d’associativité des opérateurs.

A

Conseils de Mise au Point A-3

reproduction interdite

Erreurs Fréquentes

Structures de Contrôle

else mal placé.

break manquant dans un switch .

Boucle accidentellement jamais exécutée.

Structures des Fonctions et Programmes

Mauvais ordre d’argument.

Mauvais type d’argument (fonctions non ou mal prototypées).

Penser qu’une variable static soit réinitialisée à chaque appel.

Manque de parenthèses dans la définition d’une macro.

Pointeurs et Tableaux

Passer une valeur au lieu d’un pointeur, et vice-versa.

Confondre char avec char * .

Déclarer des pointeurs sur chaînes de caractères sans allocation de

mémoire avant utilisation.

Confondre quotes (’\n’) et guillemets ("\n").

A

A-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

B-1

Mots-Clefs et Table ASCII B

Cette annexe présente les informations suivantes :

■ Mots-Clefs réservés

■ La table ASCII (Décimale)

B

B-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Mots-clefs Réservés

Les mots-clefs suivants sont réservés en C ANSI et ne peuvent être

utilisés comme identifiants :

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Sun ANSI C définit un mot-clef de plus, asm. Mais asm n’est pas
accepté dans le mode de conformance -Xc . L’usage de asm est pris
comme une common extension.

B

Mots-Clefs et Table ASCII B-3

reproduction interdite

La Table ASCII (Décimale)

Noter que les majuscules, les minuscules et les chiffres sont des

ensembles de valeurs consécutives. Mais ces ensembles sont séparés.

0 nul 1 soh 2 stx 3 etx

4 eot 5 enq 6 ack 7 bel
8 bs 9 ht 10 nl 11 vt

12 np 13 cr 14 so 15 si

16 dle 17 dc1 18 dc2 19 dc3

20 dc4 21 nak 22 syn 23 etb

24 can 25 em 26 sub 27 esc

28 fs 29 gs 30 rs 31 us

32 sp 33 ! 34 " 35 #

36 $ 37 % 38 & 39 ’

40 (41) 42 * 43 +

44 , 45 - 46 . 47 /

48 0 49 1 50 2 51 3

52 4 53 5 54 6 55 7

56 8 57 9 58 : 59 ;

60 < 61 = 62 > 63 ?

64 @ 65 A 66 B 67 C

68 D 69 E 70 F 71 G

72 H 73 I 74 J 75 K

76 L 77 M 78 N 79 O

80 P 81 Q 82 R 83 S

84 T 85 U 86 V 87 W

88 X 89 Y 90 Z 91 [

92 \ 93] 94 ^ 95 _

96 ‘ 97 a 98 b 99 c

100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k

108 l 109 m 110 n 111 o

112 p 113 q 114 r 115 s

116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 {

124 | 125 } 126 ~ 127 del

B

B-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

C-1

Mémento du C C

C

C-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Mémento du C

Squelette de Prototype de Fonction Déclarations

#include <file.h> char a, string [], *cptr;

int main(void) int i, iarr[], *iptr;

{ float f, flarr[], *fptr;

déclarations; double dd, dblarr[], *dptr;

instructions; struct tagname {

} /*déclaration de membres*/

type }variable-list;

function(paramètres) typedef old-type new-name;

{

/*corps de fonction */

}

Fonctions d’entrée Fonctions de sortie

scanf("%d%f%c%s",&i,&f,&c,string); printf("%d%.2 %c%s\n",i,f,c,string);
while ((c=getchar()) != ’\n’)

Opérateurs Relationnels Opérateurs d’affectation

< > <= >= == != && || = += -= *= /= %=

/* commentaires en slash étoile et étoile slash */

C

Mémento du C C-3

reproduction interdite

Mémento du C (suite)

do {
instructions;
} while (expression);

switch (expression) {
case valeur1:
instructions;
break;
case valeur2:
instructions;
break;

<etc>

default:
instructions;
break;
}

Structures de Contrôle

condition ? exp_si_vrai:exp_si_faux

if (expression) {
instructions;

}
else if (expression) {

instructions;
}
else {

instructions;
}

for (initialisation; condition; pas) {
instructions;

}

while (expression) {
instructions;

}

Pointeurs

int i, iptr*;
char string[], *stptr;
iptr = &i;
strptr = string;
*iptr = 5;
strptr = "Une chaîne";
*strptr = ’A’ ;

C

C-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

D-1

Mémento vi D

D

D-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Déplacements du curseur :

h, j, k et l ,très bien pour les pros du clavier

^H (backspace), + (ou <CR>), -, barre d’espace

Touches flêchées comme diagramme ci-dessus

Déplacements page à page :

^f une page en avant

^b une page en arrière

^d une demie page en avant

^u une demie page en arrière

Déplacement sur l’écran

H Home, haut d’écran

M MIDDLE milieu d’écran

L LAST dernière ligne de l’écran

G GOTO dernière ligne du fichier

nG GOTO n-ième ligne du fichier (ou :n)

^G GIVES status du fichier

Déplacements sur la ligne

w mot suivant

b mot prècédent

e fin du mot

0 début de ligne (ou ^)

$ fin de ligne

k (-)

l (sp)h (bs)

j (+)

D

Mémento vi D-3

reproduction interdite

Recherche

/chaîne recherche en avant de ’chaîne’ (exemple: /while)

n next : occurence suivante de ’chaîne’ (N - précédente)

Sortie de vi

:q! "laissez moi sortir" QUITTER sans sauver

:w sauver sans quitter vi
:wq sauver puis quitter vi
ZZ sauver puis quitter vi (depuis le mode commande)

Passer en mode Insertion

Remarque : utiliser la touche ESC pour sortir de ce mode.

i insérer avant le curseur

I insérer en début de ligne

a insérer après le curseur

A ajouter en fin de ligne

o ajouter une ligne sous le curseur

O ajouter une ligne au-dessus du curseur

r remplacer un caractère sans passer en insertion

R mode refrappe, écrire sur le texte existant (ESC pour fin)

cw change mot (cnw change n mots)

C change jusqu’à la fin de ligne

u "Ce n’est pas ce que je voulais" annule la dernière modification

U Récupère la ligne complète

Note: Les caractères i, a, o, r, c et s (majuscules et minuscules)

passent en mode insertion. Si le mode insertion est déclenché

involontairement, taper ESC, puis u.

Copie de texte

Y copier une ligne vers un buffer

nY copier n lignes

nyy copier n lignes

D

D-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Effacer

x effacer un caractère (comme ’d espace’)

dw effacer un mot

D effacer jusqu’à la fin de ligne

dd effacer la ligne (en la mettant dans un buffer = couper)

ndd effacer n lignes (10dd efface 10 lignes)

Placer

p placer le contenu du buffer sur la ligne suivante

P placer le contenu du buffer sur la ligne précédente

xp permuter deux caractères

Recherche/Remplace (exemple)

/chaîne rechercher la chaîne à remplacer

cw remplacer de la manière adéquate (dw, r, s, etc.)

n passer à l’occurence suivante de ’chaîne’

. répéter la commande

Remplacement Global

:1,$s/old/new/g de la ligne 1 à la fin de fichier ($) remplacer

"old" par "new". Exemple.

:1,$s/sun/Sun/g

Effacement global

:g/chaîne/d effacer les lignes contenant une chaîne (exp.reg.)

Exemple :g/###/d pour effacer les lignes contenant

"###".

Insérer des fichiers

:r fichier insère le contenu du fichier à l’emplacement du

 curseur.

D

Mémento vi D-5

reproduction interdite

Travailler sur 2 fichiers

:w sauver fichier1 avant tout

:e file2 éditer un fichier2

:w sauver le fichier2 avant de revenir au 1

:e # retour au fichier1

Commandes Diverses

:! cmd lancer une commande shell depuis l’éditeur

~ (tilde) MAJ->min et min->MAJ

% mise en correspondance de parenthèses, accolades...

mx pose la marque ’x’ (:d’x efface jusqu’à la marque ’x’

^V insertion de caractères spéciaux (exemple ^L)

?chaîne recherche (comme /) mais en arrière

:n,n w fichier sauve les lignes n à m dans fichier (exemple:2,20 w ff)

J concatène la ligne suivante avec la ligne courante

:set ai mode auto-indentation (crénelage de la marge gauche)

:set list montre les fins de ligne et les caractères de contrôle

:set nows arrête le rebouclage en début de fichier sur recherches

:set ts=n change la valeur d’une tabulation (par défaut 8)

:set wm=n inserer un newline à la colonne n

D

D-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

E-1

Savoir Lire le C E

Cette annexe vous donne des informations concernant :

■ La lecture de déclarations

■ La lecture d’instructions

E

E-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Déclarations

Règle : trouver l’identifiant et s’en écarter en spirale dans le sens des

aiguilles d’une montre. Traiter l’intérieur des parenthèses avant

l’extérieur et lire le type (le premier mot de la déclaration) en dernier.

Certains éléments de syntaxe doivent être lus comme suit :

* est un pointeur sur un ou pointe sur un

[n] est un tableau de n
() est une fonction qui retourne

Exemples :

int x; x est un int

int *y; y est un pointeur sur un int

int *e[3]; e est un tableau de 3 pointeurs sur int

int (*c)[5]; c est un pointeur sur un tableau de 5 int

int f(); f est une fonction qui retourne un int

int *b(); b est une fonction qui retourne un pointeur sur int

int (*r)(); r pointe sur une fonction qui renvoie un int

int **u; u pointe sur un pointeur sur int

int *(*t)(); t pointe une fonction renvoyant un pointeur sur int

Instructions

Règle : interpréter comme ci-dessous. Toutes les expressions, sauf la

dernière, sont lues de la gauche vers la droite.

s = a s prend la valeur de a
x == y x est égal à y
k[3] k indice 3 (ou "k trois")

m(r) m de r

*t l’objet pointé par t
&v l’adresse de v
q->r r est un membre de la structure pointée par q

E

Savoir Lire le C E-3

reproduction interdite

Exercices de Lecture de Déclarations

Exprimer en français les déclarations suivantes :

1. float velocity;

2. char CommandString [25];

3. int *CurrentSector;

4. char **argv;

5. int *ViewscreenStatus[5];

6. float (*ShieldPower) [6];

7. int *NotIntuitive [900][36];

8. int (*ScreenDisplay) [900][36];

9. float *StarDate ();

10.int (*Acceleration) ();

E

E-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

F-1

Exemples de Programmes Divers F

Cette annexe contient des exemples tels que :

■ Fonction à nombre variable d’arguments et __STDC__

■ getstring()

■ getfloat()

■ Plus sur les unions

■ Plus sur les listes chaînées

■ Plus sur les fonctions chaînes de caractères

■ Pointeurs sur fonctions

■ Exemples divers

F

F-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

/* Définition d’une fonction à nombre variable d’arguments.
Utilisation de la macro __STDC__ pour déterminer si la compilation se
fait en ANSI C ou en C traditionnel.Compilation en C ANSI par "acc -
Xc var.c -o var"et en C traditionnel par "cc var.c -o var". */
#include <stdio.h>
#ifdef __STDC__
#include <stdarg.h> /* fichier .h ANSI pour les arg. variables */
#else
#include <varargs.h> /* fichier .h en C traditionnel */
#endif
#ifdef __STDC__
int fun(int , ...); /* prototypage ANSI C */
#endif
main(){

fun(0);
fun(2,3,"wokka");
fun(4,12, "hello", 47, "goodbye");

}
#ifdef __STDC__
int fun(int count, ...)
#else
fun(va_alist)
va_dcl
#endif
{
#ifndef __STDC__

int count;
#endif

va_list argptr;
int i, intparam;
char *string;

#ifdef __STDC__
va_start(argptr, count);

#else
va_start(argptr);
count = va_arg(argptr, int);

#endif
printf("%d parameters\n", count);
for (i = 0; i < count; i += 2) {

intparam = va_arg(argptr, int);
string = va_arg(argptr, char *);
printf("entier = %d\nchaîne = %s\n", intparam, string);

}
va_end(argptr);

} /* fin */

F

Exemples de Programmes Divers F-3

reproduction interdite

/***
**
** getstring - affiche le message d’invite passé en paramètre suivi
** d’une virgule et d’un espace,lit une chaîne de N-1
** caractères maximum, enlève le newline de fin (si besoin)
** et traite les caractères restants éventuellement
** dans le buffer d’entrée.
**
** retourne un pointeur vers la chaîne ou le pointeur
** NULL si la saisie rate
**
** usage - char name[40];
** if (getstring("Entrer votre nom", name, 40) == NULL)
** {
** fprintf(stderr, "Impossible de lire le nom\n");
** exit(1);
** }
** note -compiler sans linker, puis linker avec votre programme.
** note -assurez vous d’inclure stddef.h pour la définition de
** NULL
*/
char *getstring(char *prompt, char *inbuf, int bufsize)
{

int len;

printf("%s: ", prompt);
if (fgets(inbuf, bufsize, stdin) == NULL)

return (NULL);
else {

len = strlen(inbuf) - 1;
if (inbuf[len] == ’\n’)

inbuf[len] = ’\0’;
else /* pas de ’\n’ trouvé dans */

while (getchar() != ’\n’);/* inbuf, donc vide le */
/* buffer clavier */

return (inbuf);
}

} /* fin de getstring */

F

F-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

/***
**
** getfloat -affiche l’invite en paramètre suivi d’une virgule
** et d’un espace, lit un réel sur stdin, puis retire
** tous les caractères en trop du buffer clavier.
**
** Si l’utilisateur entre autre chose qu’un nombre
** getfloat affiche à nouveau l’invite et attend une
** nouvelle saisie
**
** La valeur obtenue auprès de l’utilisateur est la valeur
** retournée par la fonction.
**
** usage -float x;
** x = getfloat("Entrer votre balance");
** remarque -compiler sans linker puis linker avec votre prog.
*/
float getfloat(char *prompt)
{

float val;
int status = 0;

while (1) {
printf("%s: ", prompt);
status = scanf("%f", &val);
while (getchar() != ’\n’);/* nettoyage des caractères */

/* laissés dans le buffer clavier */
if (status)

break ;
else

printf("Veuillez reprendre la saisie.\n");
}
return (val);

} /* fin getfloat */

F

Exemples de Programmes Divers F-5

reproduction interdite

/* Utilisation d’une union */
#include <stdio.h>
#define A 0x41
int main(void)
{

int index;
union device_register {

char byte[4];
int word;

} reg;

printf("\n");
for (index = 0; index < 4; index++) {

reg.byte[index] = A + index;
printf("Octet[%d]: ’%c’,", index, reg.byte[index]);
printf(" en hexa : 0x%x.\n", reg.byte[index]);

} /* fin de for */
printf("\n");
printf("Le mot entier : 0x%x.\n", reg.word);
printf("\n");
return 0;

} /* fin de main */

% a.out

Octet[0]: ’A’, en hexa : 0x41.
Octet[1]: ’B’, en hexa : 0x42.
Octet[2]: ’C’, en hexa : 0x43.
Octet[3]: ’D’, en hexa : 0x44.

Le mot entier : 0x41424344.

%

F

F-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

/* Manipulation de membres d’UNION. Ce programme s’appuie sur l’idée
d’une table de symboles d’un compilateur, et les constantes peuvent
être int, float ou char. Cela pourrait être pratique si tous les
types prenaient le même encombrement. */

#include <stdio.h>
int main(void)
{

union int_float_ou_char {/* forme de l’union */
int i_val;
float f_val;
char c_val;

};
union int_float_ou_char value ;/* déclare une variable */
char c, *ptr;
int i;
char value_type;
for (; (value_type = getchar()) != ’*’;) {

/* Il est de la responsabilité du programmeur de connaître le type de
la valeur conservée dans l’union int_float_ou_char, en donnant à
value_type une valeur caractérisant ce type. */

if (value_type == ’i’)
scanf("%d", &value.i_val);

else if (value_type == ’f’)
scanf("%f", &value.f_val);

else if (value_type == ’c’) {
c = getchar();
value.c_val = getchar();

}
if (value_type == ’i’)

printf("La valeur est %d \n", value.i_val);
else if (value_type == ’f’)

printf("La valeur est %f \n", value.f_val);
else if (value_type == ’c’)

printf("La valeur est %c \n", value.c_val);
else

printf("Type %c de value_type erroné\n",
 value_type);

c = getchar();/* retire le newline */
} /* fin de for */
return 0;

}

F

Exemples de Programmes Divers F-7

reproduction interdite

/* Utilisation d’une liste simplement chaînée */

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#define MAXBUF 120
#define PROMPT "Entrer du texte (^D pour quitter): "
typedef struct node {

char line [MAXBUF];
struct node *next;

} node_t;

int main(void)
{

node_t *head = NULL, *temp;
char buf [MAXBUF];

printf (PROMPT);/* construction de la 1ere entrée */
if (gets(buf)) {

head = (node_t *)malloc(sizeof (node_t));
strcpy(head->line, buf);
head->next = NULL;
temp = head;
printf(PROMPT);

} /* fin de if */

while (gets(buf)) { /* en faire tant qu’il faut */
temp->next = (node_t *)malloc(sizeof (node_t));
temp = temp->next;
strcpy (temp->line, buf);
temp->next = NULL;
printf (PROMPT);

} /* fin de while */

printf("\n");
temp = head;/* affiche toute la liste */
while (temp != NULL) {

printf ("%s\n", temp->line);
temp = temp->next;

} /* fin de while */
return 0;

} /* fin de main */

F

F-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

/* Autre exemple de liste simplement chaînée */

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#define MAXBUF 120
#define PROMPT "Entrer du texte (^D pour quitter): "
typedef struct node {

char line [MAXBUF];
struct node *next;
} node_t;

int main(void)
{

node_t head, *temp;/* remarque:head n’est pas un pointeur */
char buf [MAXBUF];

head.next = NULL;/* Dans ce cas il n’y a pas de code */
temp = &head; /* spécial au premier élément */
printf(PROMPT);
while (gets(buf)) { /* ajouter tant qu’il faut */

temp->next = (node_t *)malloc(sizeof (node_t));
temp = temp->next;
strcpy (temp->line, buf);
temp->next = NULL;
printf(PROMPT);

} /* fin de while */

printf("\n");
temp = head.next;/* ATTENTION : différence avec l’exemple

précédent */
while (temp != NULL) {

printf("%s\n", temp->line);
temp = temp->next;

} /* fin de while */
return 0;

} /* fin de main */

F

Exemples de Programmes Divers F-9

reproduction interdite

/* Déclaration d’un structure de liste chaînée. Au fur et à mesure de
la saisie de nouveaux noms, la mémoire est allouée puis ajoutée à la
structure existante. */

#define EOS 0
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
int main(void)
{

typedef struct person {
struct person *link;
char name[32];

} Node, *Nodeptr;
Nodeptr current, start, last;
char temp_name[32];
/* Saisie du 1er nom... */
printf("Entrer un nom suivi de entrée : ");
gets(temp_name);
start = NULL; /* La liste n’est pas encore commencée */
while (temp_name[0] != EOS) {

/* allocation de l’espace pour un nouveau nom */
current = (Nodeptr)malloc(sizeof (Node));
if (start == NULL) { /* Si 1er de liste */

start = current; /* début de liste */
strcpy(current->name, temp_name); /* met en liste */

} else { /* liste déjà faite */
strcpy(current->name, temp_name); /* met en liste */
last->link = current; /* pointe plus loin */

}
last = current; /* mémorise le dernier */
printf("Entrer un nom suivi de entrée : ");
gets(temp_name);

} /* fin de while */
current->link = NULL; /* fin de liste */
return 0;

}

F

F-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

/* Utilisation de strspn(), strpbrk(), strtok() */

#include <stdio.h>
#include <string.h> /* déclaration de strspn(),strpbrk(), strtok()*/
#define NUMS "0123456789"
int main(void) {

static char s3[]="ces/mots/sont/des/tokens";
char s1[255], *s2;
int len;
printf("Entrer une ligne suivie de entrée : ");
gets(s1);
if (strspn(s1, NUMS) == strlen(s1))

printf("Une ligne que de chiffres !\n");
if ((s2 = strpbrk(s1, " ~@#*&")) != NULL)

printf("\"%s\" débute à s1[%d].\n",s2,
(strlen(s1)-strlen(s2)));

s2 = strtok(s3, "/");
while ((s2 != (char *)NULL)) {

printf("%s\n", s2);
s2 = strtok((char *)NULL, "/");

} /* fin de while */
return 0;

} /* fin de main */

% a.out
Entrer un ligne suivie de entrée : This is a str@ing I’m typing
"@ing I’m typing" débute à s1[13].
ces
mots
sont
des
tokens
% a.out
Entrer un ligne suivie de entrée : 895720659237810392106
Une ligne que de chiffres !
ces
mots
sont
des
tokens
%

F

Exemples de Programmes Divers F-11

reproduction interdite

/* Utilisation de pointeurs sur fonction */

#include <stdio.h>
#define MAXFA 5
int main(void)
{

int c = 1;
int f1(void), f2(void), f3(void), f4(void);
int (*fa[MAXFA])(); /* tableau de pointeur sur fonctions */

/*Renseigne ’fa’ avec l’adresse des 4 fonctions. Aucune parenthèse
n’apparaît : le nom d’une fonction est l’adresse de la fonction */

fa[0] = 0;
fa[1] = f1;
fa[2] = f2;
fa[3] = f3;
fa[4] = f4;

srandom(time(0)%getpid()); /*initialise le générateur random()*/
while (c = fa[c]()); /* tant que retour de f. diff. de 0 */
return 0;

}
int f1(void) {

int x = random() % MAXFA; /* nombre aléatoire entre 0 et 4 */
printf("f1: %d\n", x); /*afficher le nombre aléatoire */
return(x); /* retourne le nombre aléatoire entre 0 et 4 */

}

int f2(void) {
int x = random() % MAXFA;
printf("f2: %d\n", x);
return(x);

}

int f3(void) {
int x = random() % MAXFA;
printf("f3: %d\n", x);
return(x);

}

int f4(void) {
int x = random() % MAXFA;
printf("f4: %d\n", x);
return(x);

}

F

F-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

/* Démonstration des classes d’allocation... */

#include <stdio.h>
#define NL putchar(’\n’)

int i = 1; /* i est global au programme et initialisée à 1 */
int main(void) {

auto int j; /* j est local à main() */
static int next(void);/* visible seulement dans le fichier */
int new(int);
for (j = 1; j <= 3; j++) {

printf("ici next() %d", next()); NL;
printf("ici new() %d", new(i + j)); NL;

}
return 0;

}

static int next(void)
{

 return (i += 1);
}

int new(int k)
{

return (k += i);
}

F

Exemples de Programmes Divers F-13

reproduction interdite

/* Exemple d’appel par référence. Le programme donne des valeurs à
i et j, puis appelle une fonction qui assure que i est inférieur à j */

#include <stdio.h>
void main(void)
{

int i = 9, j = 7;
int order(int *, int *);
order(&i, &j);/* passe les adresses */
printf("i est maintenant %d et j %d \n", i, j);

}

int order(int *p, int *q)
{

int temp;/* compare les valeurs pointées */
if (*p > *q)/* si celle pointée par p est supérieure à q,

 échanger */
{

temp = *p;
*p = *q;
*q = temp;

}
}

F

F-14 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

/* Exemple de tableau en argument de fonction. Ensuite, 2 fonctions
qui renvoient la somme de tableaux de réels. Le tableau est le 1 er
argument et le nombre d’éléments est le 2 ème. */
#include <stdio.h>
int main(void)
{

float f_arr[100], f_sum, sum_1(float [], int), sum_2(float *, int
);

int num, i = 0;

puts("Combien de réels à ajouter ?");
scanf("%d", &num);
while (i < num) {

scanf("%f", &f_arr[i]);
i++;

}
if (num < 50)

f_sum = sum_1(f_arr, num);
else

f_sum = sum_2(f_arr, num);
printf("La somme des nombres est %9.6f \n", f_sum);
return 0;

}

float sum_1(float array[], int n)/* notation indicée */
{

int i;
float sum = 0;

for (i = 0; i < n; ++i)
sum += array[i];

return (sum);
}

float sum_2(float *ap, int n)/* notation pointeur */
{

int i;
float sum = 0;

for (i = 0; i < n; ++i)
sum += *(ap + i);

return (sum);
}

F

Exemples de Programmes Divers F-15

reproduction interdite

/* Exemple d’appel par référence avec des tableaux en argument. Deux
fonctions STRCAT() et STRCPY() concatènent 2 chaînes. */

#include <string.h> /* déclaration de strcpy() et strcat() */
#define MAXLEN 100
int main(void)
{

char first[MAXLEN], second[MAXLEN], result[MAXLEN];

printf("Entrer un mot : ");
gets(first);
printf("Entrer un autre mot : ");
gets(second);
puts("\n \n");
strcpy(result, first);/* copie ’first’ dans ’result’ */
strcat(result, second);/* ajouter ’second’ à ’result’ */
printf("Première chaîne : %s \n", first);
printf("Deuxième chaîne : %s \n", second);
printf("Les deux jointes : %s \n", result);
return 0;

}

void strcpy(char *to, char *from)/* adresses origines */
{

while (*to++ = *from++);/* affectation puis incrément */
}

void strcat(char *to, char *from)/* concaténation */
{

/* aller à la fin de la chaîne ’to’ */
while (*to) to++;/* compte chaque caractère */

/* jusqu’au caractère nul */
/* copie le contenu de ’from’ à la fin de ’to’ */
do {

*to++ = *from;/* à la fin de ’to’, affectation de */
} while (*from++);/* chaque car. de ’from’, jusqu’à la */

/* rencontre du caractère nul */
}

F

F-16 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

/* Création et tri d’un tableau de pointeurs. Ce programme lit un
nombre de mots et les range à la suite dans un tableau. Puis le tableau
est trié, et la liste des mots ainsi triés est affichée. */
#include <stdio.h>
#define MAXWORDS 100
#define MAXSPACE 3000
int main(void) {

char *p[MAXWORDS];/* tableau de pointeurs sur char */
char w[MAXSPACE];
char *q = w;/* initialise q sur l’origine de w */
int i, n;
void bubble(char *[], int);
printf("\n Combien de mots à trier ? ");
scanf("%d", &n);
if (n <= MAXWORDS) {

printf("\n Entrer les %d mots : ", n);
for (i = 0; i < n; ++i) {

/* puisque w[MAXSPACE] est fixe, q représente l’adresse courante dans
w[MAXSPACE]. Chaque mot lu est rangé à partir de q, puis après calcul
de sa longueur, ajout de 1 pour ’\0’ et incrément de q */

scanf("%s", p[i] = q);
q += strlen(q) + 1;

} /* fin de for */
bubble(p, n);
printf("\n %14s", "liste triée : ");
for (i = 0; i < n; ++i)

printf("%s \n %14s", p[i], "");
printf("\n");

} else
printf("\n \nTrop de mots : %d maximums admis",

 MAXWORDS);
return 0;

} /* fin de main */
void bubble(char *p[], int n)/* tableau de pointeurs sur char */
{

char *temp;
int i, j;

for (i = 0; i < n - 1; ++i)/* boucle for sur n mots */
for (j = n - 1; i < j; --j)/* boucle pour comparer 2 */

if (strcmp(p[j-1], p[j]) > 0) {/* mots adjacents */
temp = p[j-1]; /* échange */
p[j-1] = p[j];
p[j] = temp;

}
}

F

Exemples de Programmes Divers F-17

reproduction interdite

/* Entrée/Sortie caractère/caractère sur fichier. Copie un fichier
dans un autre. */

#include <stdio.h>
int main(void)
{

int c;
FILE *fp1, *fp2;/* Pointeurs de fichier */
char name1[32], name2[32];

puts("Entrer les noms des 2 fichiers sur 2 lignes. \n");
gets(name1);/* saisie des noms de fichiers */
gets(name2);
fp1 = fopen(name1, "r");/* ouverture pour lecture */
fp2 = fopen(name2, "w");/* ouverture pour écriture */
while ((c = getc(fp1)) != EOF)/* lit un char */

putc(c, fp2);/* écrit un char */
fclose(fp1); /* fermeture des fichiers */
fclose(fp2);
return 0;

}

F

F-18 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

/* Arguments passés sur la ligne de commande. Ce programme ouvre un
fichier puis lit chaque ligne comme une chaîne de caractères */

#include <stdio.h>
int main(int argc, char *argv)
{

char record[128];
FILE *filename;/* pointeur vers une structure FILE */

puts("\n \n \n \t \t \t Lecture d’un fichier ASCII \n");
if (argc != 2) {/* vérifie le nombre des arguments */

puts("Entrer le nom du fichier sur la ligne de commande \n");
exit(1);/* sortie du programme */

}
/* ouvre un fichier ASCII en lecture, sortie du prog. si erreur */
if (!(filename = fopen(argv[1], "r"))) {

fprintf(stderr, "Erreur d’ouverture de %s \n", argv[1]);
exit(1);

}
/* Lit une ligne à concurrence de 128 caractères */
while (fgets(record, 128, filename) != 0)

printf("%s", record);
fclose(filename);
return 0;

}

F

Exemples de Programmes Divers F-19

reproduction interdite

/* Exemple d’utilisation de variables structures. */

#include <stdio.h>

struct pencil {/* nom de structure (comme type) */
int hardness;
char maker;
int number;

};
int main(void)
{

struct pencil p[4];/* tableau de structures */
struct pencil *pen_ptr;/* pointeur sur structure */

p[0].hardness = 2;/* initialisation des membres de structures */
p[0].maker = ’F’;
p[0].number = 482;
p[1].hardness = 0;
p[1].maker = ’G’;
p[1].number = 33;
p[2].hardness = 3;
p[2].maker = ’E’;
p[2].number = 107;
p[3] = p[2];
printf(" Numéro de fabricant de harnais \n\n");

/* initialise le pointeur pen_ptr au début du tableau, teste la fin
 et incrémente d ’élément en élément */

for (pen_ptr = p; pen_ptr <= p + 3; ++pen_ptr)
/* imprime chaque membre... */

printf(" %d %c %d\n",
pen_ptr -> hardness, pen_ptr -> maker,
pen_ptr -> number);

return 0;
}

F

F-20 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

/* Exemple d’utilisation de champs de bits. */

#include <stdio.h>

struct word_bytes {
unsigned int byte0 : 8,
byte1 : 8,
byte2 : 8,
byte3 : 10;

 };
int main(void)
{

struct word_bytes y;

y.byte0 = 128;
y.byte1 = 129;
y.byte2 = 130;
y.byte3 = 131;
printf("%u \n", y.byte0);
return 0;

}

F

Exemples de Programmes Divers F-21

reproduction interdite

/* Exemple de déclaration de nouveau type par typedef. Le nouveau type
est utilisé pour déclarer a et b. Les valeurs des tableaux a et b sont
utilisées pour calculer celles de c. */

#include <stdio.h>
#define N 3
/* initialisation de matrices 3X3... */
typedef int MATRIX;
MATRIX a[N][N] = {

{1, 2, 3},
{4, 5, 6},
{7, 8, 9}

};
MATRIX b[N][N] = {

{10, 20, 30},
{10, 20, 30},
{10, 20, 30}

};
MATRIX c[N][N];

int main(void)
{

int i, j, k;

for (i=0; i < N; ++i)
for (j = 0; j < N; ++j) {

c[i][j] = a[i][j] * b[i][j];
printf("valeur de c[%d][%d] = %d \n", i, j, c[i][j]);

}
return 0;

}

F

F-22 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

/* Exemple de conversion explicite (CAST) pour un argument de la
fonction sqrt. */

#include <stdio.h>
#include <math.h>/* déclaration de la fonction sqrt */
#define BEGIN 1
#define END 20
int main(void)
{

int count;
double root;
int square;

printf("\t Table des carrés et des racines carrées \n \n");
for (count = BEGIN; count <= END; count++) {

square = count * count;/* élévation au carré */
root = sqrt((double) count);/*racine carrée */

/* sqrt() demande un argument */
/* de type double */

printf("Nombre : %d \t carré: %d \t racine: %10.3f \n"
, count, square, root);

}
return 0;

}

F

Exemples de Programmes Divers F-23

reproduction interdite

/* Manipulation de bits. */

#include <stdio.h>
int main(void)
{

struct pcard {
unsigned values : 4;
unsigned suit : 2;

} hand;
void bit_print(int);

printf("%d %d \n",(hand.values = 1), (hand.suit = 2));
bit_print(hand.values);
bit_print(hand.suit);
return 0;

}

void bit_print(int v)
{

int i, mask = 1;

mask <<= 31;/* décalage à gauche de 31 bits */
for (i = 1; i <=32; ++i) {

putchar(((v & mask) == 0) ? ’0’ : ’1’);
v <<= 1;

}
putchar(’\n’);

}

F

F-24 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

/* Utilisation de calloc() pour l’espace alloué dynamiquement pour la
chaîne newstr. */

#include <stdio.h>
#include <stdlib.h>
int main(void)
{

int i, nelem;
char *newstr;

puts("Entrer le nombre de caractères : ");
scanf("%d", &nelem);
newstr = calloc(nelem, sizeof (char));
puts("Entrer une chaîne de caractères :");
scanf("%s", newstr);
for (i = 0; i < nelem; ++i)

printf("%c", newstr[i]);
putchar(’\n’);
free(newstr);/* rend la mémoire allouée au système */
return 0;

}

G-1

Internationalisation, Grands
Caractères et Caractères Multi-
octets G

Cette annexe donne des informations sur :

■ Les jeux de caractères

■ Idéogrammes et caractères multioctets

■ Grands caractères et constantes chaînes de grands caractères

■ Fonctions sur les chaînes et caractères multioctets

■ Caractères nationaux et répertoires associés

■ Exemple simple

G

G-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Jeux de caractères

Le code de caractères utilisé généralement pour l’anglais est le code

ASCII. Ce code est basé sur des caractères pouvant être codés sur 7

bits. Beaucoup de caractères utilisés dans les langages asiatiques et

d’autres langages différents de l’anglais, nécessitent un codage sur

plus d’un seul octet.

Comme les caractères sont représentés par des nombres, un type entier

assez grand pour contenir les valeurs numériques des caractères est

indispensable. L’ANSI C définit le type fondamental wchar_t (wide

character type), dans <stddef.h> . C’est un typedef sur un type

assez grand pour le plus grand des jeux de caractères supportés. (En

Sun ANSI C, wchar_t est un typedef sur long (4 octets).)

Idéogrammes et Caractères Multioctets

Les langues asiatiques comportent beaucoup d’idéogrammes. Les

idéogrammes sont codés sur des séquences d’octets, et le procédé de

codage doit être capable d’identifier la séquence d’octets comme un

idéogramme en particulier. L’ANSI C utilise des caractères multioctets
pour les séquences d’octets des idéogrammes. Les caractères habituels

sur un octets sont traités comme des cas particuliers de caractères

multioctets.

Constantes grands caractères et chaînes de grands
caractères

Une constante grand caractère est indiquée en faisant précéder une

constante entre quotes de la lettre L :

L’x’

L’abc’

De même, une constante chaîne de grands caractères est signalée par la

lettre L devant les guillemets, comme : L"abcxyz ". De telles

constantes peuvent servir à initialiser un tableau de grands caractères

(un tableau de wchar_t) :

wchar_t x []=L"abcxyz";

Equivalent à :

G

Internationalisation, Grands Caractères et Caractères Multi-octets G-3

reproduction interdite

wchar_t x[]={L’a’, L’b’, L’c’, L’x’, L’y’, L’z’, 0};

Remarquer que le tableau contient un 0 à la fin (comme avec une

chaîne de caractères habituelle qui rajoute ‘\0’.)

Un grand caractère a un codage externe multioctets et un codage

interne en wchar_t .

Identité

Pour chaque grand caractère il existe un code multioctets

correspondant et pour chaque caractère multioctet (comme défini dans

le jeu de caractères), il existe un grand caractère correspondant.

Egalement, chaque caractère multioctets a une valeur représentable en

wchar_t .

La valeur d’un caractère multioctets correspondant à un caractère

monooctet doit être la même que dans le code sur un seul octet. Le

nombre d’octets utilisé pour représenter un grand caractère ne peut

être supérieur à MB_LEN_MAX(5 pour le Sun ANSI C).

Fonctions sur les Caractères Multioctets

Les fonctions de la librairie de l’ANSI C traitant les grands caractères

sont : mblen() , mbtowc() , et wctomb() . La signification et la

syntaxe de ces fonctions sont les suivantes :

#include <stdlib.h>
#include <limits.h>
int mblen(const char *s, size_t n)

Retourne le nombre de caractères contenus dans le caractère

multioctets pointé par s , si s n’est pas nul et si les n octets suivants ou

moins forment un caractère multioctets valide (défini).

#include <stdlib.h>

#include <limits.h>

int mbtowc(wchar_t *pwc, const char *s, size_t n)

Retourne le nombre d’octets du caractère multioctets pointé par s , si

s n’est pas nul ; en plus, la valeur numérique de type wchar_t qui

correspond au caractère est déterminée (voir "Identité" ci-dessus). Si

G

G-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

pwc n’est pas nul, et que le caractère est valide, le code numérique est

placé dans l’objet pointé par pwc. La fonction mbtowc() examine au

plus n octets du tableau pointé par s .

Cette fonction ne retourne pas de valeur supérieure à n ni à

MB_CUR_MAX.

#include <stdlib.h>
#include <limits.h>
int wctomb(char *s, wchar_t wchar)

wctomb() retourne le nombre d’octets nécessaires pour représenter le

caractère correspondant à wchar (voir également "Identité"). La

fonction stocke la représentation multioctets dans le tableau pointé par

s , si s est non-nul.

La valeur retournée par wctomb() ne dépasse jamais MB_CUR_MAX.

Fonctions Chaînes Multioctets

Les deux fonctions supportant les constantes chaînes de grands

caractères sont mbstowcs() et wcstombs() . Leurs syntaxes et

significations sont :

#include <stdlib.h>

size_t mbstowcs(wchar_t *pwcs, char *s,size_t n)

Cette fonction prend la série de caractères multioctets pointée par s et

la convertie dans la série de codes numériques correspondante. Les

codes sont placés dans le tableau pointé par pwcs . Pas plus de n
codes sont stockés dans le tableau. Les caractères après le caratère nul

ne sont pas traités. mbstowcs() retourne le nombre d’éléments

modifiés ou (size_t) -1 si un caractère invalide est trouvé.

#include <stdlib.h>
size_t wcstombs(char *s,wchar_t *pwcs,size_t n)

wcstombs() prend la série de codes numériques pointée par pwcs et

la convertit dans la séquence de caractères multioctets correspondante.

Les caractères sont placés dans le tableau pointé par s . Pas plus de n
caractères sont mis dans le tableau.

G

Internationalisation, Grands Caractères et Caractères Multi-octets G-5

reproduction interdite

Si un code sans correspondance est trouvé, la fonction retourne

(size_t) -1. Sinon, c’est le nombre d’octets modifiés qui est retourné.

Local

Un local est un modèle ou une définition d’un environnement de

langue native. Chaque programme d’application s’exécute dans le

local du programme. Ce local définit le jeu de caractères (vu

précédemment), les conventions de formatage de date et d’heure, le

formatage monétaire et décimal, et l’ordre de classement. Si un

programme utilise certaines fonctions (que nous verrons plus loin) qui

dépendent d’une de ces conventions de format, le programmeur doit

prendre en considération le local dans lequel le programme est utilisé.

Les catégories qui définissent le local d’un programme sont les

suivantes :

LC_CTYPE - contrôle le comportement des fonctions caractères (toutes

celles définies dans ctype(3)) et des fonctions sur les caractères

multioctets.

LC_TIME - contrôle le format date et heure de la fonction

strftime() .

LC_MONETARY - contrôle le format monétaire et les valeurs

retournées par localeconv() .

LC_NUMERIC - affecte le signe décimal pour les fonctions de lecture

et d’écriture, et pour les fonctions de conversion.

LC_COLLATE - affecte les fonctions strcoll() et strxfrm() .

LC_MESSAGES - affecte gettxt() , catopen() , catclose() , et

catgets() .

LC_ALL - nomme le local de tout le programme.

La fonction setlocale() peut être utilisée pour demander ou

positionner le local d’un programme dans une catégorie. Syntaxe :

#include <locale.h>

char *setlocale(int category, const char *locale)

G

G-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Une valeur "C" pour locale spécifie l’environnement par défaut -

l’environnement minimal pour les traductions C ; si la valeur de

locale est la chaîne vide "", le local est pris dans la variable

d’environnement dont le nom correspond à la catégorie. Si aucune

variable n’existe pour la catégorie, la variable LANG est vérifiée.

Si un programmeur désire que son programme suive les conventions
du pays où le programme sera utilisé, les instructions suivantes

doivent apparaître au début du code :

#include <locale.h>
...
setlocale(LC_ALL,""); /* toutes valeurs par défaut */

Un pointeur nul par l’argument locale dans setlocale() , comme ,

setlocale(category, (char *) 0);

demande à la fonction de renvoyer la valeur de local pour la

category spécifiée. Ceci est un moyen pour le programmeur de

connaître le local courant d’une catégorie.

Au début d’un programme, l’équivalent d’un

setlocale(LC_ALL, "C");

est exécuté.

Répertoires Associés au Local

Chaque catégorie correspond à un ensemble de fichiers qui

contiennent les informations définissant un local. L’emplacement de

ces fichiers est :

/usr/lib/locale/ locale_country/category/db_file_name .
Par exemple, le fichier pour la catégorie LC_NUMERIC du local "french"

se situe sous /usr/lib/locale/fr/LC_NUMERIC.

Habituellement, l’implémentation fournit les fichiers de description

des différents "local". Mais un programmeur peut définir lui-même un

local. Voir man chrtbl pour plus de détails.

G

Internationalisation, Grands Caractères et Caractères Multi-octets G-7

reproduction interdite

Exemple Simple

Cet exemple montre comment définir un fichier de description pour la

catégorie LC_CTYPE et comment l’installer dans le bon répertoire.

Puis un programme exemple montre comment utiliser ce nouveau

fichier de description.

La commande chrtbl(1M) est utilisée pour créer un fichier décrivant

les informations pour tous les jeux de caractères tenant sur un octet

(7-bit et 8-bit) (un fichier LC_CTYPE). Il indique comment déterminer

si un caractère est majuscule, minuscule, chiffre, ponctuation, espace,

caractère de contrôle ou héxadécimal. Il contient également une table

de conversion majuscules-minuscules. (La commande chrtbl crée

aussi un fichier LC_NUMERIC, non-abordé dans cet exemple.) Les

pages du man pour chrtbl(1M) décrivent le format du fichier de

spécification. Ce fichier est fourni en argument de chrtbl .

Le programme exemple utilise les classifications suivantes :

Chiffres : 0123456789
Hexa : 0123456789abcdefABCDEF
Espaces : Barre d’espace et Inséquable
Blancs : Barre d’espace
Ponctuation : ! " # $ % & ’ () * + , - . /

 : ; < = > ? @ [\] ^ { | } ~
Control Ch. Codes: 000 - 037 0177

Majuscules :
Minuscules :

Å Ë Ø Ç Ñ
å ë ø ç ñ

G

G-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Remarque : pour obtenir ces caractères, utiliser la touche compose

(clavier type 4) comme indiqué ci-dessous :

Pour créer le fichier de description LC_CTYPE avec la commande

chrtbl , un fichier de spécification doit d’abord être créé. Ce fichier

est listé ci-dessous. Le fichier de description est créé dans le répertoire

courant, au moment de l’exécution de la commande chrtbl et son

nom est sample_ch . Le fichier de spécification, sample_ch_sp , pour

le jeu de caractères cité est :

TOUCHES DESCRIPTION

compose * A A Angström
compose " E E tréma
compose / O O barré
compose , C C cédille
compose - D eth islandais majuscule
compose ~ N N tilde
compose H T thorn islandais majuscule

Remarque : Les minuscules s’obtiennent de la

même façon, en remplaçant les majuscules par

des minuscules.

LC_TYPE sample_ch

isupper 0305 0313 0330 0307 0320 0321 0336
islower 0345 0353 0370 0347 0360 0361 0376
isdigit 060-071
isspace 040 0240
ispunct 041-057 072-0100 0133-0140 0173-0176
iscntrl 000-037 0177
isblank 040 0240
isxdigit 060-071 0141-0146 0101-0106

ul <0305 0345> <0313 0353> <0330 0370> <0307 0347> \
<0320 0360> <0321 0361> <0336 0376>

G

Internationalisation, Grands Caractères et Caractères Multi-octets G-9

reproduction interdite

Une fois le fichier créé, lancer la commande :

% chrtbl sample_ch_sp

Le système va générer le fichier de description LC_CTYPE d’après le

fichier de spécification, avec le nom indiqué sur la ligne LC_CTYPE.
Une fois créé, placer ce fichier dans la directory "local" concernée.

Dans l’exemple, l’administrateur va créer un répertoire dans

/usr/lib/locale . Ce nouveau répertoire sera appelé sample_ch.

Le répertoire LC_CTYPE sera sous sample_ch . Le fichier de

description sample_ch sera placé dans ce sous-répertoire avec le nom

complet /usr/lib/sample_ch/LC_CTYPE/ctype.

G

G-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Maintenant, voici un programme locale.c qui change le local avec

setlocale() pour utiliser le nouveau fichier de description :

Compiler avec la commande :

cc -Xc locale.c -o locale

#include <locale.h>
#include <stdio.h>

int main(void)
{

char *locale;
char save_locale[100];
int ch;

 locale = setlocale(LC_CTYPE,(char *)0);
 printf("\nLocal courant : %s\n\n", locale);
 strcpy(save_locale,locale);
 locale = setlocale(LC_CTYPE, "sample_ch");
 printf("Nouveau local : %s\n\n",locale);
 printf("Entrer des majuscules, (ctrl-d pour quitter) : \n");

while ((ch=getchar()) != EOF){
if (isupper(ch))

 printf("%c minuscule = %c\n",ch, tolower(ch));
else if ((ch == ‘\n’) || (ch == ‘ ’)) /* newline ou espace */

continue ;
else

 printf("%c n’est pas une majuscule\n", ch);
 }
 locale=setlocale(LC_CTYPE, save_locale);

 printf("\nLe local est remis à %s\n", locale);
}

G

Internationalisation, Grands Caractères et Caractères Multi-octets G-11

reproduction interdite

Et lancer le programme pour obtenir :

% locale
Local courant : C
Nouveau local : sample_ch
Entrer des majuscules, (Ctrl-d pour quitter) :
A
A n’est pas une majuscule
B
B n’est pas une majuscule
29
2 n’est pas une majuscule
9 n’est pas une majuscule
a d
a n’est pas une majuscule
d n’est pas une majuscule
Å
Å minuscule = å

 minuscule =
 minuscule =

Ç
Ç minuscule = ç
Ñ
Ñ minuscule = ñ
å
å n’est pas une majuscule
Ø
Ø minuscule = ø

Le local est remis à C
%

G

G-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

H-1

Différences Entre Sun C et
Sun ANSI C H

La plupart de ces informations proviennent de l’Annexe A de la

documentation "SPARCompilers C 2.0 Transition Guide".

H

H-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Mots-Clef

const , volatile , et signed sont des mots-clef en ANSI C.

Ces mots sont traités comme des identifiants en Sun C.

asm est un mot-clef du Sun C. Il est traité comme un identifiant en

ANSI C et en Sun ANSI C dans le mode -Xc.

Identifiants

ANSI C n’autorise pas le dollar ($) dans les identifiants.

Sun C le permet.

Long Float

Sun C accepte les déclarations de long float et le traite en double .

ANSI C refuse ces déclarations.

Constantes Caractère Multioctets

Sun C et ANSI C représentent les caractères multioctets différemment :

int i, mc = ’abcd’;
char *cptr;
cptr = (char *)&mc;

for (i = 0; i < 4; i++){
printf("%c", *cptr);
cptr++;

}

donne :

abcd /* en Sun C */
dcba / * en ANSI C */

H

Différences Entre Sun C et Sun ANSI C H-3

reproduction interdite

Constantes Entières

Sun C accepte 8 ou 9 dans une séquence d’escape octale ; ANSI

C non :

char x, y;
x = ’\78’; /* Sun C interprète en \70 */
y = ’\79’; /* Sun C interprète en \71 */

Opérateurs d’Affectation

Sun C permet les espaces entre les paires suivantes, en les traitant

comme deux marqueurs, alors que l’ANSI C les traite comme un seul

marqueur. Aussi, ANSI C n’autorise pas les espaces (et génère un core

si besoin).

*=, /=, %=, +=, -=, <<=, >>=, &=, ^=, |=

Calculs en Simple/Double Précision

Sun C promouvoit les opérandes d’une expression virgule flottante en

double .

ANSI C permet les calculs sur les flottants en simple précision.

En Sun C les fonctions qui renvoient un float ont leur code de retour

promu en double .

ANSI C requiert des valeurs en float pour ces fonctions.

Conservation du Signe ou de la Valeur

Sun C supporte la conservation du signe. Ainsi les unsigned char et

unsigned short sont convertis en unsigned int .

ANSI C conserve la valeur. Les unsigned char et unsigned short
sont convertis en signed int si ce type peut représenter toutes les

valeurs du type d’origine ; sinon, ils sont convertis en unsigned int .

H

H-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Convertion Explicite (Cast) d’une lvalue

Sun C supporte la convertion explicite des lvalue(s) :

(char *)ip = &char;

ANSI C ne l’accepte pas.

Déclarations int Implicites

Le compilateur Sun C accepte les déclarations sans type :

num; /* implique : int num; */

ANSI C génère une erreur de syntaxe dans le cas ci-dessus.

Déclarations vides

Sun C accepte les déclarations vides :

int;

Sauf pour les tags de prototypage, ANSI C n’accepte pas les

déclarations vides.

Spécifications de type sur des Typedefs

Le compilateur Sun C permet les spécifications de types comme

unsigned , short , et long sur des déclarations de typedef :

typedef short small;
unsigned small x;

ANSI C ne permet pas la modification de déclarations typedef avec

des spécifications de type. On obtient le message suivant à la

compilation :

identifier redeclared: small
syntax error before or at: x

H

Différences Entre Sun C et Sun ANSI C H-5

reproduction interdite

Types autorisés sur les champs de bits

Sun C permet tous les types entiers sur les champs de bit, et même des

champs sans nom.

ANSI C ne supporte que les types int , unsigned int , et signed
int . Les autres types sont indéfinis.

Type de la Condition d’un switch

Sun C permet float et double comme types de condition d’un

switch en les convertissant en int :

main()
{
 float y = 4.3213;
 switch (y)
 {
 ...
 }
}

ANSI C ne permet que des entiers dans un switch : int , char , et

enum. L’exemple génère une erreur de compilation avec ANSI C.

Directives du préprocesseur #else et #endif

Le préprocesseur du Sun C ignore tout marqueur après les directives

#else ou #endif :

#ifdef TEST
#define YES_TEST 1
#else else of test /* ‘else of test’ est

ignoré sans message de compilation*/
#define YES_TEST 0
#endif test /* ‘test’ est ignoré */

ANSI C ne permet plus de marqueur après les directives du

préprocesseur.

H

H-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Collage de paramètres de macros et l’opérateur ##

En Sun C, le collage de paramètres se réalise avec un commentaire :

#define PASTE(A,B) A /* commentaire */ B

En ANSI C, le commentaire étant comme un blanc, il faut utiliser ## :

#define PASTE(A,B) A##B

Récursivité du Préprocesseur

Le préprocesseur du Sun C réalise des substitutions récursives.

En ANSI C, une macro n’est plus substituée si elle apparaît déjà dans

la liste des remplacements effectués :

#define F(X) X(arg)
F(F)

donne :

arg(arg) /* Sun C */
F(arg) /* ANSI C */

Substitution de Paramètre caractère dans les Macros

Le préprocesseur du Sun C substitue les caractères dans une constante

si celle-ci correspond à une macro :

#define charize(c) ’c’
charize(Z)

donne :

’Z’

En ANSI C, le caractère n’est pas remplacé et il n’y a pas d’opération

équivalente. La solution est d’utiliser la macro suivante :

#define charize(c) (c)
charize(’Z’)

H

Différences Entre Sun C et Sun ANSI C H-7

reproduction interdite

Substitution de Paramètres chaîne dans les Macros

Le préprocesseur du Sun C remplace un paramètre apparaissant dans

une chaîne de la définition de la macro :

#define str(a) "a!"
str(x y)

donne :

"x y!" /* en Sun C */
"a!" /* en ANSI C */

En ANSI C, l’opérateur # doit être utilisé. L’exemple s’écrit alors :

#define str(a) #a "!"
str(x y) /* donne "x y!" après substitution */

Noms typedef en paramètre de fontion

Sun C permet l’utilisation de noms typedef dans les paramètres

d’une fonction, ce qui en fait, cache la déclaration typedef .

ANSI C ne le permet pas.

Initialisation des agrégats propre à l’implémentation

Sun C utilise un algorithme de bas-en-haut pour l’analyse des

initialisations partiellement elidées. ANSI C recommande une analyse

descendante. Exemple :

struct {
int a[3];
int b;
} w[] = { {1}, 2 };

donne en Sun C :

sizeof(w) = 16

w[0].a = 1, 0, 0

w[0].b = 2

H

H-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

et en ANSI C :

sizeof(w) = 32

w[0].a = 1, 0, 0

w[0].b = 0

w[1].a = 2, 0, 0

w[1].b = 0

Visibilité des fonctions extern et static d’un bloc

Le standard ANSI ne garantit pas la visibilité dans tout le fichier de

fonctions déclarées dans un bloc, comme en Sun C.

L’Argument envp de main()

Sun C prend envp en troisième argument de main() .

Sun ANSI C permet aussi cet argument, mais ce n’est pas conforme au

standard ANSI du C.

Concatènation de ligne avec Backslash

L’ANSI C concatène les lignes se terminant par un backslash (\) (suivi

immédiatement par newline) avec la ligne suivante.

Sun C ne le fait pas.

H

Différences Entre Sun C et Sun ANSI C H-9

reproduction interdite

Les Trigraphes dans les Chaînes de Caractères

Le Sun C ne supporte pas cette caractéristique de l’ANSI C. Il y a neuf

séquences trigraphes qui sont :

trigraphe car. trigraphe car.
??= # ??> }

??- ~ ??’ ^

??([??! |

??)] ??/ \

??< {

Types

Le type ANSI long double n’existe pas en Sun C.

Constantes Virgule Flottante

Les suffixes ANSI : f, l, F et L ne sont pas reconnus en Sun C.

Les Constantes Entières peuvent avoir différents Types

Les suffixes U et u de constantes ANSI n’existent pas en Sun C.

En ANSI C, les constantes sans suffixe peuvent être non-signées et

ainsi impliquer une arithmétique non-signée des expressions dans

lesquelles elles apparaissent.

Constantes Caratères Larges

Le Sun C ne reconnaît pas la syntaxe ANSI des caractères larges

(préfixe L) :

wchar_t wc = L’x’;

H

H-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Constantes Caractères

L’ANSI C traite ‘\a’ (bell) et ‘\x’ (chiffre hexadécimal) comme des

séquences spéciales. En Sun C ces séquences sont interprétées comme

‘a’ et ‘x’. Exemple :

char bell = ‘\a’;
printf("Ding Dong ! %c\n", bell);
printf("L’hexa f en base 10 vaut : %d\n",
 ‘\xf’);

donne en Sun C :

Ding Dong ! /* pas de beep */
L’hexa f en base 10 vaut : 30822

et en ANSI C :

Ding Dong ! /* on entend un beep ! */
L’hexa f en base 10 vaut : 15

Chaînes Adjacentes

Le Sun C ne concatène pas les chaînes adjacentes comme l’ANSI C :

printf("Cette chaîne sera concaténée avec\n"
" celle là pour permettre de fractionner\n"
" de longues chaînes comme ça pour une\n"
" meilleure lisibilité\n");

Les Chaînes de Grands Caractères

La syntaxe ANSI n’est pas supportée en Sun C :

wchar_t *ws = L"hello" ; /* ANSI seulement */

Pointeurs : void * et char *

Le pointeur ANSI void * existe aussi en Sun C.

H

Différences Entre Sun C et Sun ANSI C H-11

reproduction interdite

L’Opérateur Plus Unaire : +

Cette fonctionnalité ANSI C n’est pas supportée en Sun C.

Prototypage de fonction - Ellipses

ANSI C permet l’usage d’ellipses "..." pour déclarer un nombre

variable d’arguments.

Sun C ne reconnait pas cet usage.

Définition de Types

ANSI C permet la redéclaration par typedef à l’intérieur d’un bloc.

Sun C refuse de telles redéclarations :

typedef int * iptr;
{

typedef double iptr; /* Bon pour l’ANSI C,
mais erreur de compilation en Sun C */

}

Initialisation des Variables extern

ANSI C traite l’initialisation des variables explicitement déclarées

extern comme des définitions.

Sun C ne supporte pas l’initialisation de variables déclarées

explicitement extern . L’exemple suivant fonctionne en ANSI C. Il ne

se compile pas en Sun C :

extern int x = 5;
main()
{

printf("value of x is %d\n", x);
}

H

H-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Initialisation d’Agrégats

Sun C ne supporte pas l’initialisation ANSI C des unions, tableaux et

structures de la classe d’allocation auto :

main()
{

union U {
double d;

} un = {1234.56789};
struct st{

int i;
char ch;

} s = { 5, ‘b’};
int arr[20] = {1, 2}; /* arr[0] = 1,

 arr[1] = 2, tous
les autres membres initialisés à 0 */

...
}

Syntaxe des Directives du Préprocesseur, #

ANSI C permet des blancs devant le # d’une directive.

En Sun C, le # d’une directive doit être en colonne 1.

Directive #error

Cette directive ANSI C n’est pas reconnue par le Sun C.

Noms de Macros Prédéfinis

Les macros suivantes sont définies en ANSI C mais pas en Sun C :

__STDC__ Dans une implémentation conforme ANSI cette

macro est définie et non-nulle.

__TIME__ La valeur de cette macro est l’heure de compilation

sous la forme "hh:mm:ss".

__DATE__ Macro donnant la date de compilation sous la forme

"Mmm dd yyyy", (par exemple, Feb 11 1991)

H

Différences Entre Sun C et Sun ANSI C H-13

reproduction interdite

Prototypage de fonction

Sun C ne supporte pas le prototypage ANSI des fonctions :

int main(void) /* prototypée */
{

double area_cir(double r); /* prototypée */
printf("Surface d’un cercle de 2.5 de rayon ="

" %lf\n", area_cir(2.5));
return 0;

}

double area_cir(double r) /* prototypée */
{

return(3.14159 * r * r);
}

H

H-14 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

I-1

Programmes des Travaux Pratiques I

I

I-2 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 1

Programme : sizes.c

/* afficher la taille en octets des types de base */
int main(void)
{

printf("taille d’un int \t= %d\n", sizeof(int));
printf("taille d’un short \t= %d\n", sizeof(short));
printf("taille d’un long \t= %d\n", sizeof(long));
printf("taille d’un char \t= %d\n", sizeof(char));
printf("taille d’un float \t= %d\n", sizeof(float));
printf("taille d’un double \t= %d\n", sizeof(double));

return 0;
} /* fin de main */

Programme : printit.c

int main(void)
{

int val;
char ch;

val = 42;
ch = ’z’;
printf("Le caractère comme un char : %c, comme un int :"

" %d\n", ch, ch);
printf("L’entier comme un char : %c, comme un int : %d\n",

 val, val);
return 0;

} /* fin de main */

I

Programmes des Travaux Pratiques I-3

reproduction interdite

Travaux Pratiques 2

Programme : diviz.c

int main(void)
{

int value, not_divisible;

not_divisible = 1;
printf("Entrer un nombre 10<=n<=100: ");
scanf("%d", &value);
if ((value < 10)||(value > 100)) printf("Hors limites.\n");
else
{

if (!(value % 2)) {
printf("%d divisible par 2.\n", value);
not_divisible = 0;

}
if (!(value % 3)) {

printf("%d divisible par 3.\n", value);
not_divisible = 0;

}
if (!(value % 5)) {

printf("%d divisible par 5.\n", value);
not_divisible = 0;

}
if (!(value % 7)) {

printf("%d divisible par 7.\n", value);
not_divisible = 0;

}
if (not_divisible)

printf("%d n’est pas divisible par 2, 3, 5, ni 7.\n",
 value);

} /* fin de if */
return 0;

} /* fin de main */

I

I-4 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Programme : ages.c

#define NOW 1991
int main(void) {

int date,temp,choice,ones,tens,hundreds,thousands,result ;
printf("Entrez votre année de naissance : ");
scanf("%d", &date);
if ((date < 1900) || (date > 1975))

printf("Hum, vérifiez.\n");
else {

temp = date;
ones = temp % 10;
temp = temp / 10;
tens = temp % 10;
temp = temp / 10;
hundreds = temp % 10;
temp = temp / 10;
thousands = temp % 10;
printf("\nFaites un choix :\n\n");
printf("\t1) Somme des chiffres.\n");
printf("\t2) Produit des chiffres.\n");
printf("\t3) Age courant.\n\n");
printf("Entrez 1, 2, ou 3: ");
scanf("%d", &choice);
switch (choice) {
case 1:

result = (thousands + hundreds + tens + ones);
printf("La somme des chiffres est %d.\n", result);
break;

case 2:
result = (thousands * hundreds * tens * ones);
printf("Le produit des chiffres est %d.\n", result);
break;

case 3:
result = NOW - date;
printf("Votre âge est env. %d.\n", result);
break;

default :
printf("Hors limites, fin.\n");
brea k;

} /* fin de switch */
} /* fin de if else */
return 0;

} /* fin de main */

I

Programmes des Travaux Pratiques I-5

reproduction interdite

Travaux Pratiques 3

Programme : review_io.c

#include <stdio.h>
#define BASE 16
int main(void)
{

int num1 = BASE * 2; /* décimal */
int num2 = 0xFF; /* hexa */
int num3 = 0777; / * octal */
int result, x=0, ch;
float fnum = 42.0 + (float)num1;
float f = 0.0;
char ch1 = ’a’;
char ch2 = ch1 + 1;
char ch;

printf("Num1 : %d, num2 : 0x%x, num3 : 0%o.\n",
 num1, num2, num3);

printf("Ch1: %c, ch2: %c.\n", ch1, ch2);
printf("Fnum: %f.\n", fnum);

printf("Entrez un caractère : ");
ch = getchar();
getchar(); /* enlève le newline */
printf("Le caractère est %c.\n", ch);

printf("Entrez un autre caractère : ");
scanf("%c", &chr);
getchar(); /* enlève le newline */
printf("Le 2ème caractère est %c.\n", chr);

printf("Entrez un entier puis un réel : ");
result = scanf("%d%f", &x, &f);
printf("Result = %d, x = %d, f = %f.\n", result, x, f);
return 0;

} /* fin de main */

I

I-6 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Programme : mixed_io.c

#include <stdio.h>
int main(void)
{

int num;
float val;
char ch;

printf("Entrez un caractère alphabétique : ");
scanf("%c", &ch);
getchar(); /* enlève le newline */
if ((ch > 64)&&(ch < 123))

printf("Le caractère est %c.\n", ch);
else

printf("Mauvaise saisie.\n");
printf("Entrez un entier : ");
scanf("%d", &num);
printf("Décimal : %d, hexa : 0X%x, octal : 0%o.\n",

 num, num, num);
printf("Entrez un entier : ");
scanf("%f", &val);
printf("Le produit de %d et %f est %.5f.\n",

 num, val, (num * val));
printf("Notation Scientifique : %E.\n", (num * val));
printf("Partout où vous irez, je serai.\n");
return 0;

} /* fin de main */

I

Programmes des Travaux Pratiques I-7

reproduction interdite

Programme : tva.c

#include <stdio.h>
#define RATE .186
int main(void)
{

double dollar, amt_pd, tax, s_tax(double , double);
int tmp, round;

printf("Entrez le montant de l’achat : ");
scanf("%lf", &dollar);
tax = s_tax(dollar, RATE);
amt_pd = dollar + tax;

/* Gestion des erreurs d’arrondi dans les conversions
décimal-binaire */

tmp = amt_pd * 1000.0;
if ((tmp % 10) > 4)

round = 1;
else

round = 0;
tmp = (tmp / 10) + round;
amt_pd = tmp / 100.0;
printf("Montant HT :\t%8.2f \nTVA :\t\t%9.3f TTC : \t %8.2f \n"

 ,dollar, tax, amt_pd);
return 0;

} /* fin de main */

double s_tax(double value, double rate)
{

return (value * rate);
} /* fin de la fonction s_tax */

I

I-8 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 5

Programme : triangle.c

#include <stdio.h>
int main(void)
{

int base, height, width, ch;

printf("Entrez un caractère : ");
ch = getchar();
printf("Entrez n tel que 1<n<=80 : ");
scanf("%d", &base);
if ((base > 80)||(base <= 1)) {

printf("Base Hors limite, forcée à 40.\n");
base = 40;

} /* fin de if */
for (height = 1; height <= base; height++) {

for (width = 1; width <= height; width++)
printf("%c",(char)ch);

printf("\n");
} /* fin de for */
return 0;

} /* fin de main */

I

Programmes des Travaux Pratiques I-9

reproduction interdite

Programme : loops.c

#include <stdio.h>
#define BEGIN 97 /* code ASCII de ’a’ */
#define END 122 /* code ASCII de ’z’ */
#define MIDDLE 110 /* code ASCII de ’n’ */
#define NEWLINE "\n" /* newline */
int main(void)
{

int index, step, limit;
char ch, ret;

printf(NEWLINE);
do {

printf("Entrez une minuscule : ");

/* lecture du caractère et du newline... */
scanf("%c%c", &ch, &ret);

} while ((ch > END) || (ch < BEGIN));

if (ch >= MIDDLE) { /* fin de l’alphabet */
step = -1;
limit = BEGIN - 1;

}
else { /* début de l’alphabet */

step = 1;
limit = END + 1;

} /* fin de if else */

for (index = ch; index != limit; index += step)
printf("%c ", index);

printf(NEWLINE);
return 0;

} /* fin de main */

I

I-10 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 6

Programme : reverse.c

#include <stdio.h>
#define MAX 15
int main(void)
{

int index, temp, mid, val;
int arr[MAX];

for (index = 0, val = 10; index < MAX; index++, val += 10)
arr[index] = val;

mid = MAX / 2;
for (index = 0; index < MAX; index++)

printf("%d ",arr[index]);
printf("\n");

for (index = 0; index < mid; index++) {
temp = arr[index];
arr[index] = arr[(MAX - index) - 1];
arr[(MAX - index) - 1] = temp;

} /* fin de for */

for (index = 0; index < MAX; index++)
printf("%d ",arr[index]);

printf("\n");
return 0;

} /* fin de main */

I

Programmes des Travaux Pratiques I-11

reproduction interdite

Programme : dimension2.c

#include <stdio.h>
#define ROWS 10
#define COLS 2
int main(void)
{

int row, col, iarray[ROWS][COLS];

for (row = 0; row < ROWS; row++) {
for (col = 0; col < COLS; col++) {

printf("Entrer tableau[%d][%d]: ", row, col);
scanf("%d", &iarray[row][col]);

}
}
for (row = 0; row < ROWS; row++) {

for (col = 0; col < COLS; col++) {
printf("%d ", iarray[row][col]);

}
printf("\n");

}
return 0;

} /* fin de main */

I

I-12 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 8

Programme : average.c

#include <stdio.h>
#define SIZE 10
#define COLUMNS 10
int main(void)
{

int ar[SIZE] = {5, 15, 25, 35, 45, 55, 65, 75, 85, 95};
int *end;
doubl e avg, average(int *, int *);
void print_array(int *, int *);

end = &ar[SIZE - 1];
print_array(ar, end); /* Affiche les initialisations */
avg = average(ar, end); /* calcul de la moyenne */
printf("La moyenne est %f.\n", avg);
print_array(ar, end); /* Affiche le tableau fois la moyenne */
return 0;

} /* fin de main */

double average(int *a, int *end)
{

int *p, sum;
double avg;
for (p = a; p <= end; p++)

sum += *p;
avg = (double) sum / (end - a +1);
for (p = a; p <= end; p++)

*p = (int) (*p * avg);/* modification du tableau */
return (avg);

} /* fin de average() */

void print_array(int *a, int *end)
{

int *p;
for (p = a; p <= end; p++)

printf("%d \n ",*p);
printf("\n");

} /* fin de print_array() */

I

Programmes des Travaux Pratiques I-13

reproduction interdite

Programme : preverse.c

#include <stdio.h>
#define MAX 15

int main(void)
{

int temp, index;
static int arr[MAX] ={10,20,30,40,50,60,70,80,

90,100,110,120,130,140,150};
int *ptr, *end, *mid;
void print_array(int *, int *);

end = &arr[MAX - 1];
mid = end -(MAX / 2);
print_array(arr, end);
for (ptr=arr,index=0; ptr<=mid; ptr++,index++) {

temp = *ptr;
*ptr = *(end - index);
*(end - index) = temp;

} /* fin de for */

print_array(arr, end);
return 0;

} /* fin de main */

void print_array(int *a, int *limit)
{

int *p;

for (p = a; p <= limit; p++)
printf("%d ",*p);

printf("\n");

} /* fin de print_array() */

I

I-14 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Programme : funcptr.c

#include <stdio.h> /* déclaration de printf() */

int main(void)
{

int (*fptr)(const char *, ...);
fptr = printf;
(*fptr)("Ici la chaîne que vous voulez.\n");
return 0;

}

I

Programmes des Travaux Pratiques I-15

reproduction interdite

Travaux Pratiques 9

Programme : lupes.c

#include <stdio.h>
#include <ctype.h> /* header pour les fonctions caractères */
#define BEGIN ’a’ /* code ASCII de ’a’ */
#define END ’z’ /* code ASCII de ’z’ */
#define MIDDLE ’n’ /* code ASCII de ’n’ */
#define NEWLINE "\n" /* newline */

int main(void)
{

int index, step, limit;
char ch, ret;

printf("\n");
do {

printf("Entrer une lettre : ");
scanf("%c%c", &ch, &ret);
/* conversion majuscule -> minuscule... */
if (isalpha(ch))

ch = tolower(ch);
} while (!(isalpha(ch))) ;

if (ch >= MIDDLE) {
step = -1;
limit = BEGIN - 1;

}
else {

step = 1;
limit = END + 1;

} /* fin de if */

for (index = ch; index != limit; index += step)
printf("%c ", index);

printf(NEWLINE);
return 0;

} /* fin de main */

I

I-16 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Programme : stringy.c

#include <string.h>
#define MAX 80
int main(void)
{

char first[MAX], second[MAX], both[(MAX * 2)+ 6];
int index, slen(char *);

printf("Entrez une chaîne l<=%d: ", MAX);
gets(first);
printf("Entrez une autre chaîne l<=%d: ", MAX);
gets(second);
printf("Longueur de la 1ère : %d.\n", slen(first));
printf("Longueur de la 2ème : %d.\n", slen(second));
strcpy(both, first);
strcat(both, " *** ");
strcat(both, second);
printf("Les deux réunies :\n");
printf("%s\n",both);
return 0;

} /* fin de main */

/* définition de fonction... */
int slen(char *str)
{

char *ptr;

/* incrément du pointeur jusqu’à la fin de la chaîne... */
for (ptr = str; *ptr != ’\0’; ptr++);
/* renvoie la différence, càd la longueur de la chaîne... */
return (ptr - str);

} /* fin de slen() */

I

Programmes des Travaux Pratiques I-17

reproduction interdite

Travaux Pratiques 10

Programme : aged.c

#include <stdio.h>
#define NOW 1991
int main(void) {

int date, temp, choice, ones, tens, hundreds, thousands;
struct record {

char name[20];
int birth_year;
short age;
short sum;
short product;

} rec;
printf("Entrez votre prénom et votre année de naissance : ");
scanf("%s %d", rec.name , &date);
if ((date < 1900) || (date > 1975))

printf("Hum, vérifiez bien l’année %d.\n",date);
else {

ones = (temp = rec.birth_year = date) % 10;
tens = (temp /= 10) % 10;
hundreds = (temp /= 10) % 10;
rec.sum=(thousands=(temp /= 10) % 10)+ hundreds + tens +ones;
rec.age = NOW - date;
rec.product = thousands * hundreds * tens * ones;
printf("1) Somme des chiffres 2) Produit 3) Age \n");
printf("Entrez 1, 2, ou 3 : ");
scanf("%d", &choice);
switch (choice) {
case 1:

printf("La somme des chiffres est %d.\n", rec.sum);
break ;

case 2:
printf("Le produit est %d.\n",rec.product);
break ;

case 3:
printf("%s, vous avez %d ans.\n",rec.name, rec.age);
break ;

default :
printf("Choix hors-limites, sortie.\n");

} /* fin de switch */
} /* fin de if */
return 0;

} /* fin de main */

I

I-18 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Programme : strux.c

#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#define SMAX 4
#define MAX 20
struct record {

char first[MAX];
char last[MAX];
short age;

};
int main(void)
{

int index, choice;
char temp[SMAX];
struct record rex[SMAX];
void print_strux(struct record);

for (index = 0; index < SMAX; index++) {
printf("Entrez le prénom du N˚%d: ", index+1);
gets(rex[index].first);
printf("Entrez le nom du N˚%d: ", index+1);
gets(rex[index].last);
printf("Entrez l’âge de %s : ", rex[index].first);
gets(temp);
rex[index].age = atoi(temp);

} / * fin de for */

do {
printf("Entrez le N˚ à afficher (1-4): ");
scanf("%d", &choice);
if ((choice > 4)||(choice < 1))

break ;
print_strux(rex[(choice-1)]);

} while (1);
return 0;

} /* fin de main */

/* Définition de la fonction print_strux() ... */
void print_strux(struct record rec)
{

printf("%s %s\n", rec.first, rec.last);
printf("%d\n",rec.age);

} /* fin de print_strux() */

I

Programmes des Travaux Pratiques I-19

reproduction interdite

Travaux Pratiques 11

Programme : mod11_review.c

#include <stdio.h>
int main(void) {

struct bit_fields {
char pad[3];
unsigned int f1:1;
unsigned int f2:1;
unsigned int f3:1;
unsigned int f4:1;
unsigned int f5:1;
unsigned int f6:1;
unsigned int f7:1;
unsigned int f8:1;

};
union status_flags {

unsigned int word;
struct bit_fields bflags;

} flags;

printf("Taille de bit_fields: %d\n",sizeof(struct bit_fields));
printf("Taille de status_flags: %d\n",sizeof(flags));
flags.bflags.f8 = 1;
printf("F8 = %d\n", flags.bflags.f8);
printf("Word = 0x%x\n", flags.word);
flags.bflags.f7 = 1;
printf("F7 = %d\n", flags.bflags.f7);
printf("Word = 0x%x\n", flags.word);
flags.bflags.f6 = 1;
printf("F6 = %d\n", flags.bflags.f6);
printf("Word = 0x%x\n", flags.word);
flags.bflags.f5 = 1;
printf("F5 = %d\n", flags.bflags.f5);
printf("Word = 0x%x\n", flags.word);
flags.bflags.f4 = 1;
printf("F4 = %d\n", flags.bflags.f4);
printf("Word = 0x%x\n", flags.word);
flags.bflags.f3 = 1;
printf("F3 = %d\n", flags.bflags.f3);
printf("Word = 0x%x\n", flags.word);
flags.bflags.f2 = 1;
printf("F2 = %d\n", flags.bflags.f2);
printf("Word = 0x%x\n", flags.word);

I

I-20 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

flags.bflags.f1 = 1;
printf("F1 = %d\n", flags.bflags.f1);
printf("Word = 0x%x\n", flags.word);
return 0;

} /* fin de main */

Programme : masks.c

#include <stdio.h>
#include <ctype.h>
#define LB 0xFF
#define HB 0xFF00

int main(void) {
unsigned short num16, get_name(void);
void error(void);

num16 = get_name();
if (num16 == 0) error();
else if (num16 & LB)

printf("Lettre dans la 1ère moitié de l’alphabet\n");
else if (num16 & HB)

printf("Lettre dans la 2ème moitié de l’alphabet\n");
return 0;

} /* fin de main */

void error(void) {
fprintf(stderr, "Erreur, et fin de programme.\n");
exit(1);

} /* fin de error */

unsigned short get_name(void) {
char name[20], *ch = &name[0];

printf("Entrez votre prénom : ");
gets(name);
if (isalpha(*ch)) {

if (islower(*ch))
*ch = toupper(*ch); /* Conv. en Majuscule */

if (*ch <= ’M’)
return (1); /* retourne le bit le moins fort */

else
return (1<<8); /* retourne le bit le plus fort */

} else
return (0);

} /* fin de get_name() */

I

Programmes des Travaux Pratiques I-21

reproduction interdite

Travaux Pratiques 12

Programme : argmanip.c

#include <string.h>
int main(int argc, char **argv)
{

void usage(char *), print_arg(char *, char , int);

if ((argc > 3) || (argc < 2))
usage(*argv);

if (argc == 2)
print_arg(*(argv+1), ’f’, strlen(*(argv+1)));

else {
if ((strcmp(*(argv+1),"-f"))&&(strcmp(*(argv+1),"-r")))

usage(*argv);
if (!(strcmp(*(argv+1), "-f")))

print_arg(*(argv+2), ’f’, strlen(*(argv+2)));
else

print_arg(*(argv+2), ’r’, strlen(*(argv+2)));
} /* fin de if */
return 0;

} /* fin de main */

void print_arg(char *str, char order, int len)
{

int m, bumper=1, start=0, end=len;

if (order == ’r’) {
end = bumper = -1;
start = len-1;

}
for (m=start; m != end; m += bumper)

putchar(str[m]);
putchar(’\n’);

} /* fin de print_arg() */

void usage(char *prog)
{

printf("\nUsage:\n");
printf("\t%s [-f | -r] <argument>\n\n", prog);
exit(1);

} /* fin de usage() */

I

I-22 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 13

Programme : newaged.c
#include <stddef.h>
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#define NOW 1991
#define PATH "data.rec" /* nom codé en dur */

/* typedef global : visibilité depuis toutes les fonctions... */
typedef struct {

char name[20];
int birth_year;
short age;
short sum;
short product;

} Record;

int main(void) {
void read_file(int);
int write_file(void);

read_file(write_file());
return 0;

} /* fin de main */

/******************** Définition des fonctions ******************/
int write_file(void) {

void f_error(int , FILE *);
char str[5];
FILE *fp;
Record rec;
int date, temp, ones, tens, hundreds, thousands, cnt = 0;

if ((fp = fopen(PATH, "w")) == NULL)
f_error(1, fp);

do {
cnt++;
printf("\nEntrez le prénom du %d : ", cnt);
gets(rec.name);
printf("Entrez l’année de naissance de %s : ", rec.name);
temp = rec.birth_year = date = atoi(fgets(str, 6, stdin));
ones = temp % 10;
tens = (temp /= 10) % 10;

I

Programmes des Travaux Pratiques I-23

reproduction interdite

hundreds = (temp /= 10) % 10;
thousands = (temp /= 10) % 10;
rec.age = NOW - date;
rec.sum = thousands + hundreds + tens + ones;
rec.product = thousands * hundreds * tens * ones;
if (!(fwrite(&rec, sizeof(rec), 1, fp)))

f_error(2, fp);
printf("\nEncore une saisie [O] : ");
fgets(str,5, stdin);
if ((str[0] != ’\0’) && (str[0] != ’o’) && (str[0] != ’O’)){

fclose(fp);
printf("\n");
break ;

}
} while (1);
return (cnt);

} /* fin de write_file() */

void read_file(int cnt) {
void f_error(int , FILE *);
FILE *fp;
Record rec;
int choice, rnum = 0;
char str[5];

if ((fp = fopen(PATH, "r")) == NULL) f_error(1, fp);
do {

printf("Entrez le N˚(1-%d) à voir, <CR> pour fin : ", cnt);
rnum = atoi(fgets(str, 5, stdin));
if ((rnum < 1) || (rnum > cnt)) {

fclose(fp);
break ;

}
if (fseek(fp, (long)(sizeof(rec) * (rnum - 1)), SEEK_SET))

f_error(4, fp);
if (!(fread(&rec, sizeof(rec), 1, fp)))

f_error(3, fp);
printf("\nPour %s, Entrez un choix :\n\n", rec.name);
printf("\t1) Somme des chiffres.\n");
printf("\t2) Produit des chiffres.\n");
printf("\t3) Age actuel.\n\n");
printf("Entrez 1, 2, ou 3 : ");
choice = atoi(fgets(str, 5, stdin));
switch (choice) {
case 1:

printf("La somme est %d.\n\n", rec.sum);

I

I-24 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

break ;
case 2:

printf("Le produit est %d.\n\n", rec.product);
break ;

case 3:
printf("%s a env. %d ans.\n\n", rec.name, rec.age);
break ;

default :
printf("Choix hors-limites.\n\n");
continue ;

} /* fin de switch */
} while (1);

} /* fin de read_file() */

void f_error(int etype, FILE *fp) {
switch (etype) {
case 1:

fprintf(stderr, "Erreur d’ouv. de \"%s\", fin.\n", PATH);
break ;

case 2:
fprintf(stderr, "Erreur d’écriture : \"%s\", fin.\n", PATH);
fclose(fp);
break ;

case 3:
fprintf(stderr, "Erreur de lecture : \"%s\", fin.\n", PATH);
fclose(fp);
break ;

case 4:
fprintf(stderr, "Erreur en seek : \"%s\", fin.\n", PATH);
fclose(fp);
break ;

default :
fprintf(stderr, "Erreur inconnue, fin.\n");
break ;

} /* fin de switch */
exit(1);

} /* fin de f_error() */

I

Programmes des Travaux Pratiques I-25

reproduction interdite

Programme : alphile.c

#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define AMAX 16 /* indice de tableau maxi + 1 */
#define SMAX 81 /* longueur maxi de chaîne */

void f_error(char *, int , FILE *);

int main(int argc, char *argv[]) {
void usage(char *);
void ssort(int , char [][], char *);
void shuffle(int , char [][], int);
void print_array(char [][], int);
voi d write_array(char *, int , char [][]);
FILE *fp;
static int cnt = 0;
int index, rnum;
char ans[4];
static char sarray[AMAX][SMAX], temp[SMAX];

if (argc != 2)
usage(argv[0]); /* il faut un nom de fichier ! */

printf("\n");
while (cnt < AMAX) { /* boucle sur le tableau avec saisie...*/

printf("Enter string #%d (<=80 chars): ", cnt+1);
fgets(temp, SMAX, stdin);
if ((temp[0] == ’\0’) && (cnt >= 2))

break ;
else if ((temp[0] == ’\0’) && (cnt < 2)) {

printf("Au moins 2 chaînes !\n");
continue ;

}
if (cnt == 0) { /* 1ère chaîne saisie */

strcpy(sarray[cnt], temp);
cnt++;
continue ;

}
ssort(cnt++, sarray, temp); /* tri du tableau */

} /* fin de while */
printf("\n");
print_array(sarray, cnt); /* affichage du tableau */
write_array(argv[1], cnt, sarray); /* écriture dans fichier */
printf("Suppression d’enregistrements ? [O]: ");

I

I-26 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

fgets(ans, 4, stdin);
while ((ans[0] == ’\0’)||(ans[0] == ’O’)||(ans[0] == ’o’)) {

printf("Entrez le numéro à détruire (1-%d): ", cnt);
rnum = atoi(fgets(ans, 4, stdin));
if ((rnum < 1)||(rnum > cnt))

break ;
shuffle(cnt--, sarray, rnum - 1); /* nouvel ordre */
printf("Autre enregistrement ? [O]: ");
fgets(ans, 4, stdin);
print_array(sarray, cnt);

} /* fin de while */
write_array(argv[1],cnt,sarray); /* écriture nouveau tableau */
return 0;

} /* fin de main */

void print_array(char arr[AMAX][SMAX], int cnt) {
int index;

printf("\n");
for (index = 0; index < cnt; index++)

printf("Chaîne N˚ %d : %s\n", index + 1, arr[index]);
printf("\n");

} /* fin de print_array() */

void write_array(char *file, int cnt, char arr[AMAX][SMAX]) {
FILE *fp;
int index;

if ((fp = fopen(file, "w")) == NULL)
f_error(file, 1, fp);

for (index = 0; index < cnt; index++) {
if (fprintf(fp, "%s\n", arr[index]) == EOF)

f_error(file, 2, fp);
}
fclose(fp);

} /* fin de write_array() */

void ssort(int cnt, char sa[AMAX][SMAX], char str[]) {
/* cnt = compteur de chaînes (dernier indice valide) *
 * sa[][] = tableau de chaînes *
 * str[] = chaîne à insérer dans le tableau */

int height;
static char temp[SMAX] ;
for (height = 0; height <= cnt; height++) {

if (strcmp(sa[height], str) > 0 || sa[height][0]== 0)) {
strcpy(temp, sa[height]);

I

Programmes des Travaux Pratiques I-27

reproduction interdite

strcpy(sa[height], str);
strcpy(str, temp);

}
}

} /* fin de ssort() */

void shuffle(int cnt, char sa[AMAX][SMAX], int pos) {
/* pos = position à détruire dans le tableau */

int height;
char temp[AMAX];
if (cnt == pos) /* la chaîne à enlever est la dernière... */

sa[pos][0] = ’\0’; /* supprime la dernière */
else {

for (height = pos + 1; height < cnt; height++)
strcpy(sa[height-1], sa[height]);

sa[cnt][0] = ’\0’;
}

} /* fin de shuffle() */

void usage(char *prog) {
fprintf(stderr, "\nUsage:\n");
fprintf(stderr, "\t%s <chemin>\n\n", prog);
exit(1);

} /* fin de usage */

void f_error(char *path, int etype, FILE *fp) {
switch (etype) {

case 1:
fprintf(stderr,"Erreur d’ouv. \"%s\", fin.\n", path);
break ;

case 2:
fprintf(stderr, "Err. d’écriture : \"%s\",fin.\n",path);
fclose(fp);
break ;

default :
fprintf(stderr, "Err. inconnue, fin.\n");
break ;

} /* fin de switch */
exit(1);

} /* fin de f_error() */

I

I-28 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Travaux Pratiques 15

Programme : listrux.c

#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#define MAX 20
/* Définition des structures de la base... */
struct record {

char first[MAX];
char last[MAX];
short age;
struct record *next;

};
/ * Raccourcis globaux pour les déclarations... */
typedef struct record Rec;
#define SNULL (Rec *)NULL
#define SIZE sizeof(Rec)

int main(int argc, char *argv[]) {
FILE *fp;
int fwrite_list(FILE *, Rec *);
Rec *head, *build_list(void), *fread_list(FILE *);
void display_list(Rec *), insert_node(Rec **, Rec *);
void free_list(Rec *), usage(char *);
void err(char *, char *, int, FILE *);
if (argc != 2)

usage(argv[0]);
printf("\n\n");
head = build_list();
if ((fp = fopen(argv[1], "w")) == NULL)

err(argv[0], argv[1], 1, fp);
if (fwrite_list(fp, head))

err (argv[0], argv[1], 2, fp);
if ((fp = fopen(argv[1], "r")) == NULL)

err(argv[0], argv[1], 1, fp);
head = fread_list(fp);
display_list(head);
printf("\n");
free_list(head);

return 0;
} /* end main */

I

Programmes des Travaux Pratiques I-29

reproduction interdite

/********************Définitions des Fontions *********************/

/* Fonction de construction de liste *
 * boucle tant que l’utilisateur entre des chaînes non-nulles. */
Rec *build_list(void) {

Rec *head, *crnt, *temp;
void insert_node(Rec **, Rec *);
char ans[4];

head = (Rec *)malloc(SIZE);
crnt = head; /* sauvegarde la tête de liste */
crnt->next = SNULL; /* fin de liste */
do {

printf("Entrez le prénom : ");
gets(crnt->first);
if (crnt->first[0]==’\0’){ /*fin de saisie ?*/

if (crnt == head) {
printf("Au moins 1 enregistrement !\n");
continue ; /*boucle pour au moins 1 enregistrement */

}
free(crnt); /* libère le dernier malloc */
break ;

} /* fin de if */
printf("Entrez le prénom : ");
fgets(crnt->last, MAX, stdin);
printf("Entrez l’âge de %s : ", crnt->first);
crnt->age = (short)atoi(fgets(ans, 4, stdin));
printf("\n");
insert_node(&head, crnt); /*insertion dans la liste */
crnt = (Rec *)malloc(SIZE);
crnt->next = SNULL;

} while (1);
return (head);

} /* fin de build_list */

/* Fonction d’insertion d’un élément de liste, triée *
 * par âges croissants. */
void insert_node(Rec **head, Rec *crnt)
{

Rec *temp, *prev;

temp = *head;
if (temp == crnt) /* premier élément de liste */

return ;
else if (temp->age >= crnt->age){ /* le nouveau est au début*/

crnt->next = temp;

I

I-30 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

head = crnt; / nouvelle tête de liste */
} else {

while (crnt->age > temp->age) { /* boucle sur la liste */
prev = temp;
temp = temp->next;
if (temp == SNULL)

break; /* fin de liste */
}

prev->next = crnt;
crnt->next = temp;

} /* fin de if */
return ;

} /* fin de insert_node() */

/* Fonction d’écriture de la liste dans le fichier ‘argv[1]’. */
int fwrite_list(FILE *fp, Rec *head) {

Rec *crnt;
do {

crnt = head;
head = crnt->next;
crnt->next = SNULL; /* RAZ, l’ancienne adr. est non-valide */
if (!(fwrite(crnt, SIZE, 1, fp)))

return (2);
free(crnt); /* destruction à chaque pas */

} while (head);
fclose(fp);
return (0);

} /* fin de fwrite_list */

/* Fonction de reconstruction de liste à partir du fichier argv[1] */
Rec *fread_list(FILE *fp) {

Rec *head, *crnt, *prev;

head = (Rec *)malloc(SIZE);
crnt = head;
while (fread(crnt, SIZE, 1, fp)) {

prev = crnt;
crnt->next = (Rec *)malloc(SIZE);
crnt = crnt->next;

}
prev->next = SNULL;
free(crnt); /* libère le dernier alloué inutilisé */
return (head);

} /* end fread_list */

I

Programmes des Travaux Pratiques I-31

reproduction interdite

/* Affiche le contenu de la liste, soit un élément à la fois *
 * soit toute la liste. */
void display_list(Rec *head) {

int cnt, choice;
char ans[40];
Rec *crnt;

do {
printf("\nFaites votre choix parmi :\n");
printf("\t(1) voir un élément\n");
printf("\t(2) voir toute la liste\n");
printf("\t(3) fin du programme\n");
printf("Entrez 1, 2 ou 3 : ");
choice = atoi(fgets(ans, 40, stdin));
switch (choice) {

case 1:
while (choice) {

crnt = head; /* commence par le début... */
printf("\nEntrez le prénom à visualiser : ");
gets(ans);
while (crnt && strcmp(crnt->first, ans)) {

crnt = crnt->next;
} /* fin du while intérieur */
if (crnt == SNULL)

printf("Enreg. de \"%s\" NON-TROUVE !\n", ans);
else {

printf("\nEnreg. de %s :-----------------\n", ans);
printf("\tName: %s %s\n", crnt->first, crnt->last);
printf("\tAge: %d\n", crnt->age);
printf("--------------------------------------\n");

} /* fin de if else */
printf("Un autre ? [O]: ");
fgets(ans,40,stdin);
if ((ans[0] != ’\0’)&&(ans[0] != ’O’)&&(ans[0] != ’o’))

choice = 0; /* fin de boucle */
} /* fin de while extérieur */
break ;

case 2:
cnt = 0; /* Compteur d’enreg. à 0 */
crnt = head; /* pointeur sur la tête */
printf("\n");
while (crnt) {

printf("Enreg n˚ %d :\n", ++cnt);

I

I-32 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

printf("---------------------------------\n");
printf("\tNom : %s %s\n", crnt->first, crnt->last);
printf("\tAge: %d\n", crnt->age);
printf("---------------------------------\n\n");
crnt = crnt->next;

} /* fin de while */
break ;

case 3:
default :

exit(0);
} /* fin de switch */

} while (1); /* fin de do-while */
} /* fin de display_list() */
/* Libération de la mémoire et destruction de liste */
void free_list(Rec *head) {

Rec *prev;
while (head) {

prev = head;
head = head->next;
free(prev);

}
} /* fin de free_list() */
/* Fonction d’affichage d’usage, en cas de mauvais appel du prog. */
void usage(char *prog) {

printf("\nUsage:\n");
printf("\t%s <nomdefichier>\n\n", prog);
exit(0);

} /* fin de usage() */
/* Fonction d’information sur les erreurs d’E/S. */
void err(char *prog, char *file, int type, FILE *fp) {

switch (type) {
case 1:

fprintf(stderr,"%s : erreur d’ouv. de %s, fin\n", prog, file);
break ;

case 2:
fprintf(stderr,"%s err. d’écriture sur %s fin\n",prog,file);
fclose(fp);
break ;

default :
fprintf(stderr, "%s : erreur inconnue, fin.\n", prog);

}
exit(1);
} / * fin de err() */

I

Programmes des Travaux Pratiques I-33

reproduction interdite

Travaux Pratiques 16

Programme (facultatif) : factorial.c

#include <stdio.h>
int main(void)
{

unsigned int num, factorial(int);
int index;
char tmp[8];
void err(void);

printf("\nEntrez un nombre à factorialiser (n <= 13) : ");
num = (unsigned int)atoi(fgets(tmp, 8, stdin));
if (num >= 14)

err();

/* affiche toutes les factorielles de 1 à num... */
for (index = 1; index <= num; index++)

printf("%d! est %d.\n", index, factorial(index));
/* affiche les factorielles de 1 à trop_grand !... */
printf("\n\n**** Test de limite n = 1 à n = 42...\n");

for (index = 1; index <= 42; index++)
printf("%d! est %u.\n", index, factorial(index));

printf("\n");}
return 0;

} /* fin de main */

unsigned int factorial(int n)
{

if (n <= 1)
return (1);

else
return (n * factorial(n - 1));

} /* fin de factorial */

void err(void)
{

fprintf(stderr,"Saisie hors-limites, fin.\n");
exit(1);

} /* fin de err */

I

I-34 Programmation en C norme ANSI Révision C, Décembre 1994

SunService
reproduction interdite

Index-1

 Index

Symboles
- 4-2
-- 1-17
du préprocesseur14-6
du préprocesseur14-7
#define4-8, 14-3
#elif 14-8
#else14-8
#endif14-8
#if 14-8
#ifndef 14-8
#include3-9
#undef14-10
%s9-3
& (adresse de)8-2
&(et) 11-2, 11-4
* 8-5
++ 1-17
.(point)10-5
-> 10-11
?: 2-8
^(xor) 11-2, 11-6
__DATE__14-2
__FILE__14-2
__LINE__14-2
__STDC__4-4, 14-2
__TIME__14-2
|(ou)11-2, 11-5
~(not)11-2, 11-6

A
a.out1-2, 4-2
acomp4-3
adresse de8-2
affectation1-16
affectation composée1-18
affichage - printf()3-11
allocation

classes d’7-4
allocation dynamique

de mémoire15-2
ANSI 4-4
appel par référence8-8
argc12-2
arguments de fonctions3-7
arguments de la ligne

de commande12-2
argv12-2

notation pointeur12-4
arithmétique des pointeurs8-10
arithmétiques (opérateurs)1-16
assembleur fbe4-2
associativité1-21
atof() 9-9
atoi() 9-9
atol() 9-9
attributs de types

const1-7
signed1-6
unsigned1-6
volatile 1-7

automatic7-5

Index-2 Programmation en C ANSI - Révision C, Décembre 1994

B
bit-à-bit 1-16
bits de poids faîbles11-3
bits de poids forts11-3
blocs1-15
boucles sur tableau6-4
break5-6

C
calloc()15-4
caractères

putchar()3-16
caractéristiques du C1-3
cast1-20, 1-23
cc 4-2

option -Xc1-2
chaîne (longueur de)9-7
chaînes (comparaison de)9-7
chaînes (recherche de caractère)9-8
chaînes de caractères9-2

copie et concaténation9-6
champs de bit11-8
champs de structures10-2
classes d’allocation7-4

automatic7-5
extern7-8
register7-6
static7-7

classification et conversion
 de caractères9-12

code (segment de)7-3
code assembleur4-3
code intermédiaire4-3
code objet4-3
comparaison de chaînes9-7
compilation4-2

phases4-3
compilation avec les

libraires d’application4-6
compilation conditionnelle14-8
compilation séparée4-5
compilation simple1-2
complément à un11-2, 11-6
concaténation d’arguments14-7
concaténation de chaînes9-2

conditionnelle ?:2-8
conformance ANSI4-4
conformance ANSI C

option -Xa4-4
option -Xc4-4
option -Xs4-4
transition

option -Xt4-4
constantes

__STDC__4-4
caractères1-9
entières1-9
EOF3-10
NULL 3-10
virgule flottante1-9

constantes chaînes adjacentes9-2
constantes symboliques4-8
Construction d’une Liste

Simplement Chaînée15-8
continue5-7
contrôle de boucle

break5-6
continue5-7
imbriquée5-8

conversion et classification
de caractères9-12

conversions
chaîne en nombre9-9
de type1-22
explicites1-20, 1-23
implicites1-22
scanf()3-14
sprintf() 9-10
sscanf()9-9

création de noms de types10-15
ctype.h9-12

D
data7-3
décalage11-7
déclaration et définition7-2
déclarations1-5

de pointeurs8-3
de structures10-3
de tableau6-2, 6-5
pointeurs de fonctions8-14

Index-3

définition d’une fonction3-2
définition de la pile16-2
définition des macros fonctions14-3
définitions

EOF3-10
FILE 13-2
NULL 3-10
pointeurs de fonctions8-14

définitions et déclaration7-2
démotion1-22
dépiler16-2
déplacer le pointeur de fichier13-13
dernier entré-premier sorti16-2
directives

#define4-8
#include3-9

do while5-5
doublement chaînées15-7

E
E/S Formatées13-5
écriture dans un fichier13-11
écriture simple d’un fichier13-8
égalité1-16
empiler16-2
entête

ctype.h9-12
stddef.h3-10, 10-6
stdio.h3-9, 3-10

entrée standard3-15, 9-4, 13-2
Entrées/Sorties niveau user13-2
enum10-14
énumérés10-14
EOF3-10, 9-3, 9-4, 13-4
et bit-à-bit11-2, 11-4
exécutable4-2, 4-3
exemple arguments sur la

ligne de commande12-3
Exemple de définition

de fonction3-3
Exemple de fonction récursive16-5
exemple de liste

simplement chaînée15-10
exemple de macros fonctions14-4
exemple de

pointeurs de fonctions8-15

exemple isalpha et toupper9-13
exemple simple1-14
exemples

initialisation de variables7-9
exemples de compilation

conditionnelle14-9
exemples sscanf et atoi9-11
exit() 3-6
expressions

conditionnelle ?:2-8
conditionnelles1-20

expressions et instructions1-11
expressions et valeurs constantes1-9
extern7-8

F
factorielle16-5
fclose()13-4
fermer un fichier avec fclose13-4
fflush() 13-15
fgetc()13-6
fgets()13-7
fichier

ctype.h9-12
stddef.h10-6

fichiers
a.out4-2
exécutables4-2
fin de -3-10
inclus3-9
stddef.h3-10
stdio.h3-9, 3-10
stdlib.h9-9
string.h9-5

FILE 13-2
fin de fichiers3-10
fin de programmes3-6
fonction1-20
fonction récursive16-3
fonctions

arguments3-7
atof() 9-9
atoi() 9-9
atol() 9-9
calloc()15-4
définition 3-2

Index-4 Programmation en C ANSI - Révision C, Décembre 1994

définition,exemple3-3
exit() 3-6
fclose()13-4
fflush() 13-15
fgetc()13-6
fgets()13-7
fopen()13-3
fprintf() 13-5
fputc() 13-8
fputs()13-9
fread()13-10
free()15-5
fscanf()13-5
fseek()13-14
ftell() 13-12
fwrite() 13-11
getchar()3-15
gets()9-4
interface3-4
main()1-4
malloc()15-3
param. en réf.8-8
printf() 1-12, 3-11
prototypage3-2
putchar()3-16
puts()9-4
rewind()13-13
scanf()1-13, 3-14, 9-3
sortie de -3-5
sprintf() 9-10
sscanf()9-9
strcat()9-6
strchr()9-8
strcmp()9-7
strcpy()9-6
strlen()9-7
tolower()9-12
toupper()9-12

fopen()13-3
for 5-2, 5-4
format - printf()3-12
format - scanf()3-12
fprintf() 13-5
fputc() 13-8
fputs()13-9
fread()13-10

free()15-5
fscanf()13-5
fseek()13-14
ftell() 13-12
fwrite() 13-11

G
getchar()3-15
gets()9-4
goto5-9

H
header3-9

ctype.h9-12
stddef.h3-10
stdio.h3-9, 3-10
stdlib.h9-9
string.h9-5

hiérarchie des types1-22

I
if 2-3

exemple2-6
image d’un process7-3, 15-2
imbrication de structure10-7
imbriquées

if 2-4
inclusion de fichiers3-9
Indentifiants du langage C1-8
indice de tableau6-3
indirection8-5
initialisations

de structures10-8
de tableau6-7
de variables7-9

instructions1-5
break5-6
continue5-7
do while5-5
for 5-2, 5-4
goto5-9
if imbriqués2-4
if, if-else 2-3
if,exemple2-6
return3-5
switch2-7

Index-5

while 5-3, 5-4
interface de fonction3-4
introduction aux fonctions

d’affichage1-12
introduction aux fonctions

de saisie1-13
isalnum()9-12
isalpha()9-12
iscntrl() 9-12
isdigit() 9-12
isgraph()9-12
islower()9-12
isprint() 9-12
ispunct()9-12
isspace()9-12
isupper()9-12
isxdigit() 9-12

L
last-in-first-out (LIFO)16-2
lecture de chaînes9-3
Lecture de Données depuis

un Fichier13-10
lecture simple d’un fichier13-6
librairie C4-3, 4-5
librairies4-6, 4-7
LIFO 16-2
ligne de commande12-2
linker ld 4-2
lint 4-9
listes chaînées15-7
logiques1-16, 2-2
longueur de chaîne9-7
LSB 11-3
lvalue8-14

M
macros

__DATE__14-2
__FILE__14-2
__LINE__14-2
__STDC__14-2
__TIME__14-2
définition de macros objets14-3
effets de bords14-5
isalnum()9-12

isalpha()9-12
iscntrl() 9-12
isdigit() 9-12
isgraph()9-12
islower()9-12
isprint() 9-12
ispunct()9-12
isspace()9-12
isupper()9-12
isxdigit 9-12
offsetof()10-6
prédéfinies

__STDC__4-4
macros de caractères9-12
malloc()15-3
masque11-3
Mécanismes d’une

Fonction Récursive16-4
membres de structures10-2
MSB 11-3

N
n! 16-5
nœud de liste15-7
nom des pointeurs8-4
nombre d’arguments (argc)12-2
not bit-à-bit11-6
not logique11-2
notation pointeur et indice8-12
NULL 3-10, 9-4

O
offsetof()10-6
opérateurs11-2

& 11-2
++ et --1-17
.(point)10-5
->(pointeurs de structures)10-11
| 11-2
~ 11-2
adresse1-20
adresse de (&)8-2
arithmétiques1-16
associativité des -1-21
cast1-20
complément à un11-6

Index-6 Programmation en C ANSI - Révision C, Décembre 1994

conditionnels1-20
d’affectation1-16
d’égalité1-16
décalage >11-7
et bit-à-bit11-4
fonction1-20
indirection(*) 8-5
logiques1-16, 2-2
op=1-18
ou bit-à-bit11-5
pointeur1-20
priorité des -1-21
relationels2-2
relationnels1-16
sizeof1-20
structure1-20
virgule 1-20
xor 11-6

opérateurs sur bits1-16
options

-c 4-3, 4-5
-D 14-9
de conformance ANSI C4-4
-I 4-6
-L 4-6
-l 4-6
-o 4-2, 4-3
-P 4-3
-S 4-3
-Xa 4-4
-Xc 4-4
-Xs 4-4
-Xt 4-4

options ou bit-à-bit11-2, 11-5
ouvrir un fichier avec fopen13-3

P
package string9-5
paramètres

tableaux8-13
Parcourir une Liste Simplement

Chaînée15-9
passage d’argument3-7
passage de paramètres

par référence8-8
passage de tableaux8-13

passés par valeur3-7
phases de compilation4-3
pile 7-3, 16-2
pointeur NULL9-4, 15-8
pointeurs8-3

de fonctions8-14
NULL 3-10
void 8-5

Pointeurs de Fichiers13-5
pointeurs et tableaux8-9
pop16-2
Position Courante du Pointeur d’un

Fichier13-12
post-décrément, --1-17
post-incrément, ++1-17
précautions avec les macros14-5
pré-décrément, --1-17
pré-incrément, ++1-17
préprocesseur4-8
préprocesseur et compilateur C

acomp4-3
principe des structures10-2
printf() 1-12, 3-11, 3-12

exemple3-13
priorité 1-21
process7-3
programme exécutable4-3
programmes

compilation4-2
promotion1-22
prototypage de fonction3-2
ptrdiff_t 8-10
purchar()3-16
push16-2
puts()9-4

R
recherche de caractère9-8
récursivité16-3
référencer les membres

d’une structure10-5
register7-6
relationels2-2
relationnels1-16
return3-5
rewind()13-13

Index-7

S
saisie de caractères

getchar()3-15
saisie de chaînes9-3
scanf()1-13, 3-12, 3-14, 9-3
SEEK_CUR13-14
SEEK_END13-14
SEEK_SET13-14
segments

data7-3
stack7-3
text 7-3

séquences d’escape1-9
séquences trigraphes1-10
simplement chaînées (listes)15-7
sizeof1-20
sortie de caractères

putchar()3-16
sortie de fonction3-5
sortie de programmes3-6
sortie erreur standard13-2
sortie standard3-16, 9-4, 9-10, 13-2
spécifications de format -

printf() 3-12
sprintf() 9-10
sscanf()9-9
stack16-2
static7-7
stddef.h3-10, 8-10, 10-6
stderr13-2
stdin13-2
stdio.h3-9, 3-10, 13-3
stdlib.h9-9, 15-3
stdout13-2
strcat()9-6
strchr()9-8
strcmp()9-7
strcpy()9-6
string.h9-5
strings9-2
strlen()9-7
structure1-20
structure de données

dynamiques15-7
structures10-2

champs de bit11-8
structures imbriquées10-7
suffixes de constantes1-10
switch2-7

T
table de priorité et d’associativité

1-21
tableau6-2

initialisation6-7
multidimensionnel6-5

tableau des arguments (argv)12-2
tableaux de structures10-9
tableaux et pointeurs8-9
tables de vérité11-2
taille d’une structure10-4
text 7-3
tolower()9-12
toupper()9-12
traitement de tableau6-4
type de données

int 1-6
type énumérés10-14
typedef10-15
types

hiérarchie1-22
types de données

char1-6
double1-6
float 1-6
long 1-6
long double1-6
short1-6
void 1-6

U
unions10-13
utilisation des librairies4-7

V
valeur initiale7-9
value-preserving1-22
vérification de programmes

avec lint4-9
vider le buffer d’un fichier13-15
virgule 1-20

Index-8 Programmation en C ANSI - Révision C, Décembre 1994

void *ptr 8-5

W
while 5-3, 5-4

X
-Xa 4-4
-Xc 4-4
xor 11-2
xor bit-à-bit11-6
-Xs 4-4

