Programmationen C norme ANSI

Référence : L1

Guide de I'étudiant

S

% SunSeruvice

A Sun Microsystems, Inc. Business

une division de

Sun Microsystems France S.A.
Service Formation

BP 53

13, avenue Morane-Saulnier
78142 Vélizy Cedex

tél : (1) 30 67 50 50

fax: (1) 3067 52 35

Révision C, Décembre 1994
Document non révisable

Credits and Trademarks

Copyright O 1994 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or by any
means—qraphic, electronic, or mechanical, including photocopying, recording, taping, or storage in an
information retrieval system— without the prior written permission of the copyright owner.

The OPEN LOOK and the Sun Graphical User Interface were developed by Sun Microsystems, Inc. for its uses
and licenses. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of

visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun’s licenses.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 [October 1988]
and FAR 52 227-19 [June 1987].

The products described in this manual may be protected by one or more U.S. patents, foreign patents, and/or
pending applications.

TRADEMARKS

The Sun logo, Sun Microsystems, Sun Workstation, SunLink, Sun Core, The Font Department, ImageSource,
Interpersonal, NeWS, NeWSware, NFS, PC-NFS, TypeMaker, and TypeScaler are registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

SunOS and SunView are unregistered trademarks of Sun Microsystems, Inc.
UNIX and OPEN LOOK are registered trademarks of UNIX Systems Laboratories, Inc.

PostScript is a registered trademark of Adobe Systems, Inc. Adobe also owns copyrights related to the
PostScript language and the PostScript interpreter. The trademark PostScript is used herein only to refer to
material supplied by Adobe or to programs written in the PostScript language as defined by Adobe.

X Window System is a product of the Massachusetts Institute of Technology.

SPARC is a registered trademark of SPARC International, Inc. Products bearing the SPARC trademark are based
on an architecture developed by Sun Microsystems, Inc. SPARCstation is a trademark of SPARC International,
Inc., licensed exclusively to Sun Microsystems, Inc.

Yellow Pages is a registered trademark in the United Kingdom of British Telecommunications plc., and may also
be a trademark of various telephone companies around the world. Sun will be revising future versions of
software and documentation to remove references to Yellow Pages.

All other products or services mentioned in this document are identified by the trademarks or service marks of
their respective companies or organizations and Sun Microsystems, Inc. disclaims any responsibility for
specifying which marks are owned by which companies or organizations.

Table des Matieres

Structures Fondamentales d’un Programme en C

Opérateurs Logiques et Relationnels
dans les Expressions Conditionnelles

Fonctions et <stdio.h>

Introduction au Compilateur C et au Préprocesseur
Structures Itératives

Tableaux

Classes d’Allocation

Pointeurs et Adresses

Chaines et Caracteres

Structures, Unions, Définition de Type et Enumérations
Opérateurs sur Bits

Passage d’Arguments a main()

Entrées/Sorties Fichiers Standard

Plus sur cc et le Préprocesseur

Allocation Dynamique de Mémaoire

Introduction aux Fonctions Récursives (facultatif)

© 0O N o ot A W N

e S T e e I
o o1 A WO N - O

SunService

|VX Reproduction Interdite

Annexes

Conseils de Mise au Point
Mots-Clefs et Table ASCII
Mémento du C

Mémento vi

Savoir Lirele C

Exemples de Programmes Divers

Internationalisation, Grands Caracteres
et Caracteres Multi-octets

Différences entre Sun C et Sun ANSI C
Programmes des Travaux Pratiques

Index

Programmation en C norme ANSI Reévision C, Décembre 1994

nm O O mw >

®

Objectifs

Evaluation

Structures Fondamentalesd’un
ProgrammeenC

m Ecrire des programmes C syntaxiqguement corrects.

m Identifier les éléments d’un programme C.
m Faire correspondre opérateurs et opérations.

m ldentifier et déclarer les types de base.

Travaux Pratiques 1 et révision de module.

1-1

<: — SunsService
==

reproduction interdite

Compilation Simple

m Le code source C doit étre mis dans un fichier dont le
nom se termine par .c

» Utiliser la commande cc avec I’'option -Xc pour
compiler les programmes C ANSI.

= Si la compilation réussit, le fichier exécutable sera appelé
a.out par deéefaut.

% cc -Xc prog.c

% a.out

<affichage de résultats s’il y en a>

1-2 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Caractéeristiquesdu C

s Bas niveau - haut niveau

s Tres Portable

m Mise en forme libre

= Aucune possibilité d’Entrée/Sortie intégrée :
beaucoup de fonctions en librairie Standard

Structures Fondamentales d’un Programme en C

1-3

<: — SunsService
==

reproduction interdite

Introduction au Source C-La Fonction main()

Tout programme C doit contenir la fonction main():

La fonction C universelle main()

et une fonction de sortie-écran:

/* Voila la fonction "main”
et ici des commentaires.
— | Y

— | int main (void) -«
{
— printf("Bienvenue en Programmation C!");
return O;

liste de parametres entre parenthéses
(pas d’argument dans I'exemple)

corps de fonction (ou bloc) entre 2 accolades

nom de fonction

commentaires entre les marques "/*" et "*/"

1-4 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Eléments de Base d’un Programme C

Un programme C se compose de déclarations et d’instructions.

/* Ceci montre uniquement un squelette de programme.
Ce n’est pas un programme compilable *

int main(void)

{
<data type> <identifier>; /* déclaration */
<data type> <identifier, identifier, ...>; /* déclaration */
<data type> <identifier> = <value>; /* initialisation */
<statements> /* instructions */
return 0;

} /*fin de la fonction main() */

Structures Fondamentales d’'un Programme en C 1-5

reproduction interdite

<: — SunsService
==

_I
<
L®)
(D
»
Q.
D
U
O
=
S
@
(D
»

m Ci-dessous, la liste des types du C et leurs tailles sur une

SPARCstation™:
mot-clef description Taille en octets
char caractere 1
short entier court 2
int entier 4
long entier long 4
float réel simple précision 4
double réel double précision 8
long double réel en précision étendue 16
void aucune valeur 0

m Lestypes char, short ,int ,etlong peuvent étre
précédés des attributs de types signed et unsigned
Exemples:

signed char ch;

unsigned int compteur,

unsigned long nombre;

1-6 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Attributs de Types

= Chaque type peut étre préfixé par un ou deux des
attributs suivant :

Mot-clef Description

const L’identifiant représente une constante qui doit
étre initialisée, mais jamais modifiée.

volatile Le compilateur doit générer des mises a jour de

I'identifiant a certains points du programme.

= Exemples :

const int constant=10;
volatile double Xyz;
const volatile int clock;

Structures Fondamentales d’un Programme en C

1-7

reproduction interdite

< > SunService
==

Identifiants du Langage C

1-8

Exemples d’identifiants Iégaux :
count

num_2

DayOfWeek

IDENT

Exemples d’identifiants illégaux :

not#me /*caractere spéecial "#" interdit/
101notme /* pas de chiffre en premier*/
-notme /* ™" erroné pour " "%

@%"&*?~+$ /* toutes les ponctuations et
autres caracteres spéciaux */

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Expressions et Valeurs Constantes

Constantes Entiéres Notation Base
1024 decimale 10
074 octale 8
OXFFFF hex 16
Oxa4d?2 hex 16

Constantes en virgule flottante

Notation Décimale 634.5789

Notation Exponentielle 8675309E3
986e-2

Notation Scientifique 5.76E1
1.0e3

Constantes caractéres et principales Séquences d’Escape
'a’’b’’'c’,’A’’'B’' 'C, etc. Caractéres alphabétiques
"1’'2''3"'4’’5’, etc. Caractéres numériques
@ >$ & etc. Autres caractéres imprimables
\n’ newline \f form feed
\b’ backspace \” single quote
\t tab \a’ bell character
\V backslash \?’ guestion mark
\x4c’ hex digits \127’ octal digits
\v’ vertical tab \O’ null character

Structures Fondamentales d’'un Programme en C 1-9

reproduction interdite

<: — SunsService
==

Suffixes de Constantes et Trigraphes

Suffixes de constantes entieres signification
13L entier long
123l entier long
25U entier non signé
33u entier non signé
12UL entier long non signé
54lu entier long non signé

Suffixes de constantes en virg.flot. signification
22E3f simple précision (float)
43.219F simple précision (float)
52e-3L précision etendue (long double)
2.124] précision etendue (long double)

Trigraphes Caracteres
??= #
??-
?2?(
??)
?7<
27>
?7?’

?7?!
??/

—— >

1-10 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Expressions et Instructions

n Exemples d’expressions :
= constantes
m expressions arithmétiqgues comme num * 7
m expressions logiques comme num <= 10
m affectations : num16 = 32767

= appels de fonctions

s Exemples d’instructions :
= structures itératives comme for ou while
s structures conditionnelles comme if ou switch
m expressions suivies d’un point-virgule
m affectations suivies d’un point-virgule

= appels de fonction suivis d’un point-virgule

Structures Fondamentales d’'un Programme en C 1-11

reproduction interdite

< > SunService
==

Introduction aux Fonctions d’Affichage

Sorties

= La fonction printf() est utilisée pour I'instant.
D’autres fonction seront vues plus loin.

m Tous les printf() vont ressembler a :

printf(<une chaine de caracteres et/ou une spécification de format>,
<arguments>);

= Pour écrire un entier, utiliser %6dcomme spécification de
format ; pour un caractere, utiliser %c

= Si aucune spécification de format n’est présente, la liste
d’argument doit étre vide.

= Exemples :

printf("Hello, ceci est juste une chaine de caracteres.\n");
printf("Ceci imprime un entier %d et un retour-chariot.\n", 100);

printf("Ceci imprime un caractere %c et un retour-chariot.\n", '2’);

1-12 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Introduction aux Fonctions de Saisie

Entrées
= La fonction scanf() est utilisée pour I’instant.
D’autres fonctions seront vues plus loin.
= Pour l'instant, tous les scanf() vont ressembler a :
scanf(<spécification de format>, &<nom_identifiant>);

= Pour lire un entier, utiliser le spécificateur %d; pour
lire un caractere, utiliser le spécificateur %c

= Exemples:

int intgr;

char ch;
scanf("%d", &intgr);
scanf("%c", &ch);

Structures Fondamentales d’'un Programme en C 1-13

<: — SunsService
==

reproduction interdite

Un Programme Exemple Simple

Ce programme montre plusieurs déclarations et instructions,
ainsi que l'utilisation de scanf() et printf()

/* Ce programme va déclarer quelques variables entiéres et
une variable caractere, leur affecter des valeurs (soit
explicitement soit par scanf()), et enfin imprimer ces valeurs */

int main(void)

{
int numl; /* déclaration de num1 */
int num2=10; /* déclaration et initialisation de num2 */
char ch; /* déclaration d’une variable caractere */
ch="a
numl = 5; /* instructions... */

printf("les entiers valent %d et %d.\n", num1, num2);
printf("le caractére est %c.\n", ch);
return O;

} I* fin de la fonction main */

1-14 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Blocs

= Les blocs peuvent contenir des déclarations et des

instructions.

= Les blocs sont aussi utilisés pour les contréles de flux et

les structures itératives.

m Le corps d’une fonction est contenu dans un bloc "{ }"

}r

int main(void)

int numl, num2;
int sum;

numl = 8; /* instructions d’affectation
num2 = 3;

{ I* autre bloc */

char letter; /* letter n'est vue que dans ce bloc
letter = 'z’;
printf("letter vaut : %c;inconnue hors ce bloc\n",
letter);
I* fin du bloc */

sum = numl + numz2;
printf ("La somme de %d et %d égale %d.\n",
numl,num2,sum);
printf ("Le produit est %d.\n", num1 * num2);
return 0;

fin du bloc de la fonction main */

Structures Fondamentales d’un Programme en C

*/

*

1-15

< > SunService
==

reproduction interdite

Opérateurs - Premier Exposé

1-16

Opérateurs arithmétiques

+

%
++, --

addition et plus unaire

soustraction et moins unaire
multiplication

division (entiere et virgule flottante)
modulo (reste)

incrément et décrément

Opérateurs Relationnels

1=
>
<
<=
>=

égal

différent

strictement supérieur
strictement inférieur
inférieur ou égal
supérieur ou égal

Opérateurs d’affectation

op=

affectation simple
affectation composée - ou op est n’importe quel
opérateur arithmétique ou sur bits

Opérateurs sur bits

&
I

N\

~

>>
<<

et bit-a-bit

ou inclusif bit-a-bit

ou exclusif bit-a-bit

non unaire bit-a-bit : complément a un, donc inverse
chaque bit

Décalage a droite

Décalage a gauche

Opérateurs logiques

&&
I
!

et logique
ou logique
non logique

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Les Opérateurs ++ et --

= L’opérateur ++ peut étre utilisé pour pré-incrémenter ou
post-incrementer. Il incrémente toujours son opérande de
1, la différence est le moment ou I’'opération est effectuée.

int x=4;

int v,z

y = ++X; /* x est incrémenté avant
'instruction (une affectation) */

Z = X++; /* X est incrémenté aprés

l'instruction d’affectation */

= L’opérateur -- peut étre utilisé pour pré-décrémenter ou
post-décrémenter. Il décrémente toujours son opérande
de 1, mais la différence est le moment ou I’'opération est

effectuée.
int x=4;
int vy, z;
= --X; /* x est décrémenté avant
l'instruction d’affectation */
Z=X-; /* x est décrementé apres
l'instruction d’affectation */

Structures Fondamentales d’'un Programme en C 1-17

<: — SunsService
==

reproduction interdite

Opérateurs op=

= Lesopérateurs ‘op=" comprennent : &=, |=, "=, ~=,
>>= <<= +=, -= *= [= Op=

= |l ne peut-y avoir d’espace entre "op" et le signe égal "="".

= Les opérateurs ‘op= "’ sont des raccourcis pour faire un
calcul avec une variable et affecter le résultat a cette
méme variable. La variable est le ler argument de
I’opération.

s Exemples :

int x=4;

int y=3;

X*=7,; I* raccourci pour: X =X * 7; */

y -= 6; I* raccourci pour:y =y - 6; */

X I=y; / * raccourci pour : X =Xx/y; */
X<<=2; I* raccourci pour : X =x << 2; */

1-18 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Révision Partielle

Cette page montre quelques exemples utilisant certains
opeérateurs de la page précedente et la déclaration ci-dessous
(Remarque : les exemples sont indépendants les uns des autres).

Remplir les blancs :

int num = 5; /* déclaration et initialisation */
L’Expression : sera évaluée a :
num = 2
num++
num += 3

num =num* 3

num *= 3

num %= 2

num /=2

num = num -7

num -=7

Structures Fondamentales d’'un Programme en C 1-19

< > SunService
==

reproduction interdite

O
o
)
=
QD
—+
[¢))
c
=
92]
92
C
1®)
j=
D
3
)
)
—+
=
=
()
w

1-20

Opérateurs Pointeur et Adresse

* opérateur d’indirection
& opérateur adresse

Opérateurs Fonction et Structure

0 Appel de Fonction

[Référence a un élément de Tableau

: Référence a un élément de structure

-> Référence par pointeur a un élement de structure

Opérateurs Divers

: opérateur séquence

sizeof taille d’un objet en octets

(type) opérateur cast - changement de type
? opérateur d’expression conditionnelle

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Table de Priorité et d’Associativité

Structures Fondamentales d’un Programme en C

1-21

SunsService
reproduction interdite

|%%‘C

Niveau Op Nom Associativité

1 0 Appel de fonction Gauche a Droite
1 1 élément de tableau Gauche a Droite
1 . membre de structure Gauche a Droite
1 -> pointeur sur structure Gauche a Droite
2 ! Non Logique Droite a Gauche
2 ~ Complément a un Droite a Gauche
2 - moins unaire Droite & Gauche
2 ++ Auto Incrément Droite & Gauche
2 -- Auto Décrément Droite & Gauche
2 & Adresse Droite a Gauche
2 * Indirection Droite a Gauche
2 (type) Cast Droite a Gauche
2 sizeof Taille en octets Droite & Gauche
3 * Multiplication Gauche a Droite
3 / Division Gauche a Droite
3 % Modulo Gauche a Droite
4 + Addition Gauche a Droite
4 - Soustraction Gauche a Droite
5 << Décalage a gauche Gauche a Droite
5 >> Décalage a droite Gauche a Droite
6 < Inférieur Gauche a Droite
6 <= Inférieur ou égal Gauche a Droite
6 > Supérieur Gauche a Droite
6 >= Supérieur ou égal Gauche a Droite
7 == Egalité Gauche a Droite
7 I= Différence Gauche a Droite
8 & ET binaire Gauche a Droite
9 A OU exclusif binaire Gauche a Droite
10 | OU inclusif binaire Gauche a Droite
11 && ET logique Gauche a Droite
12 I OU logique Gauche a Droite
13 ? Conditionnelle Droite a Gauche
14 = op= Affectation Droite a Gauche
15 : Séquence Gauche a Droite

1-22

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Conversions de Types

Hiérarchie des types:

Structures Fondamentales d’'un Programme en C

Si un opérateur a des opérandes de types différents, le
type de rang inférieur sera converti dans celui de rang
supérieur (promotion). Par exemple, int -> float

Dans tous les cas, les opérations sur les types char et
short , en I’absence d’autres types, seront converties en
int

Dans une affectation, le résultat est converti dans le type
de la variable a laquelle il est affecté. (Ceci pouvant
entrainer une promotion ou une dégradation.)

TYPE

haut long double

double

float

unsigned long
long

unsigned int
int

unsigned short
short
unsigned char
char

RANG

bas

L’arithmétique préserve les valeurs (value-preserving) :
les conversions arithmétiques qui impliquent une
promotion vont promouvoir vers le plus petit type
capable de prendre en compte toutes les valeurs.

1-23

reproduction interdite

<: — SunsService
==

Conversions explicites : Cast

Format
(type) <expression>

= La conversion explicite ou cast permet au programmeur
de forcer la dégradation et/ou la promotion des types.

» Exemples de conversions explicites :

int main(void)
{
float f=3.875;
int i,j=100;
i= (int) f*j;/ *f est dégradé, que vaut i?
*
f= (float) i *j17, /* la promotion forcée
va entrainer une division "réelle" */
return 0;
}* fin de la fonction main */

= Dans le programme ci-dessus, quels auraient éete les
résultats sans les conversions explicites ?

1-24 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Révisions de Module

4 N

Déclarations

Dans les lignes suivantes, quelles sont les déclarations (Iégales) ?

inti, j=5, limit;

X int;

final_val += (limit/16);
double float;

J++;

intx =1.0;

double f;

e N

Incrément

Soient les déclarations suivantes. Quelles seront les valeurs des variables apres éva-
luation des expressions ? (Remarque : les exemples s’exécutent en sequence)

int X,V;

X =D5;

y = X++; I* y ? X ? */
y = ++X; I* y ? X ? */
int a,b;

a=10;

b=a-; I* a-? b ? */
b=--2a; I* a-? b ? */

Structures Fondamentales d’'un Programme en C 1-25

0 SunService
|§f-\ reproduction interdite

Révision de Module

E’Fonction main

Dans la fonction main() , déclarer un entier index , une variable en virgule flottante
fval , et une variable caractére ch. affecter la somme de 42 et 21 a index , une
constante en virgule flottante a fval , et un caractere ASCII a ch. Enfin, utiliser un
printf() pour imprimer le résultat de I'expression suivante :

2 X256 -12 X 2
14 mod 6

1-26 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Révision de Module

E’ Conversions

Soient les déclarations :

char c;
int Xx;
float v;

Indiquer les résultats des différentes expressions ?
Remarque : Les exemples s’exécutent en sequence.

y:x:c:’A’;
c=c+1;
X=y+2*c
y=2/c+x;

ED‘Conversions ExplicitesK

Soient les déclarations :

int n;

float x;

int result_one, result_two;
n = 10;

Que vont produire les expressions suivantes ?

x=(float)n/3;
result_one =1.6 + 1.8;
result_two = (int)1.6+(int)1.8;

Structures Fondamentales d’'un Programme en C 1-27

< > SunService
==

reproduction interdite

Travaux Pratiques 1 : Les Fondamentaux du C

Présentation

Durant ces travaux pratiques, vous serez initiés a la programmation en
C en écrivant quelques programmes C simples.

Exercices

1. Niveau 1. Saisir le programme élaboré en Révision de Module.
Nommer le fichier first.c

% cc -Xc first.c (L*option -Xc implique le mode ANSI)
% a.out (Résultat par défaut de la compilation)

2. Niveau 2. Ecrire un programme qui va afficher la taille en octets
de chaque type de base. Nommer le fichier sizes.c

% cc -Xc sizes.c
% a.out

3. Niveau 3. Ecrire un programme pour :
Afficher un caractére comme un char puis comme un int
Affiche un int comme un caractére et un entier décimal.
Conseil : prendre un entier entre 33 et 126 ;
Nommer le fichier source printit.c

% cc -Xc printit.c
% a.out

1-28 Programmation en C norme ANSI Reévision C, Décembre 1994

Opeérateurs Logiqueset Relationnels
dans les Expressions Conditionnelles

Objectifs
m Utiliser correctement les opérateurs logiques.
m Calculer la valeur d’une expression relationnelle.
m Décrire la différence entre les opérateurs d’égalité et d’affectation.
m Utiliser les opérateurs logiques et relationnels pour programmer
des décisions.
m Utiliser les structures if et switch pour prendre des décisions.
Evaluation

Travaux Pratiques 2 et révisions de module.

2-1

reproduction interdite

<: — SunsService
==

Opérateurs Logigues et Relationnels

= Les opérateurs logiques et relationnels sont
généralement utilisés dans des structures décisionnelles.
L’ensemble de ces opérateurs est :

o OPERATEUR DESCRIPTION
Priorité
HAUTE L non unaire (logique)
S e e inférieur
(idem) > e superieur
S it inférieur ou égal
ST e supérieur ou égal
. D= e différent
(idem) { T ittty égal
T et logique
| ou logique
BASSE
= Si une expression logique est fausse, sa valeur est 0.
Si elle est vraie, sa valeur est 1.
= Toute expression non-nulle est prise pour vrai.
2-2 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

L’instruction if

L’instruction logique (ou branchement) la plus commune en C
est I'instruction if

Format 1: Format 2:
if (expression) if (expression)
instruction; instruction;
else
instruction;

int main(void)

{

int val;

printf("Entrez un nombre entier : ");
scanf("%d",&val);
if (val!=0)
printf("La valeur est non-nulle \n");
else [* pas de point virgule aprés un else */
printf("Vous avez tapé un zéro\n");
if ((val>0)&& (val <10))
printf("L’entier est un nombre positif a un chiffre\n");
return 0;

Opérateurs Logiques et Relationnels dans les Expressions Conditionnelles 2-3

=

SunService
reproduction interdite

L’instruction if

Exemples d’instructions if imbriquées :

Exemple 1
if (expl) {
if (exp2){
<instructions>
}
}
else {
if (exp3){
<instructions>
}
else {
<instructions>
}

2-4

Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

L’instruction if

Exemple 2

Le flux logique voulu est indiqué par I'indentation. Ce n’est pas celui exécuté.
Un else se rapporte au premier if possible.

if (expl)
if (exp2)
<instruction>
else if (exp3)
<instruction>
else if (exp4)
<instruction>
else

<instruction>

Exécution réelle;

if (expl)
if (exp2)
<instruction>
else if (exp3)
<instruction>
else if (exp4)
<instruction>

else
<instruction>

Opérateurs Logiques et Relationnels dans les Expressions Conditionnelles 2-5

reproduction interdite

<: — SunsService
==

L’instruction if

2-6

Une instruction if peut contenir une affectation :

int main(void)

{
int val, result;
printf("Entrez une valeur entre 10 et 100 : ");
scanf("%d", &val);
if ((result =val * 42) >=1024)
printf("Résultat supérieur ou égal a 1K.\n");
else
printf("Résultat plus petit que 1K.\n");
return 0;
}I* fin de la fonction main */

Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

L’instruction switch

s L’instruction switch est un branchement conditionnel

multiple :
WITC expression) {
case constantel
<instructions>;
break;
case constante2
<instructions>;
int main(void) break;
{ default:‘ _
char ch: <instructions>;
break;
printf("Entrez a ou b:"); !
scanf("%c", &ch);
switch (ch) {
case 'a’
printf("Une lettre de valeur \n");
break ;
case b
printf("une lettre qui suit : %c.\n", (ch-1));
break ;
default
printf("Réponse incorrecte.\n");
}* fin du switch */
return 0O,
}* fin de la fonction main */

= un break interrompt I’exécution du switch , sinon
toutes les instructions qui suivent sont exécuteés.

m default est activé si aucun case n’est déclenché. Il
peut étre placé a n’importe quel endroit dans le switch

Opérateurs Logiques et Relationnels dans les Expressions Conditionnelles 2-7

<: — SunsService
==

reproduction interdite

L’expression Conditionnelle ?:

Format
expr_test ? expr_si_vrai . expr_si_faux

= Si I’expression test est vraie, alors I’expression apres le ?
est évaluée. Sinon, c’est I’expression apres le : qui est
évaluée. La valeur finale de toute I’expression est soit
celle de expr_si_vrai |, soit celle de expr_si_faux

m L’expression conditionnelle ? et : peut remplacer une
structure if else

Utiliser :

expression_test ? expression_si_vrai : expression_si_faux

Au lieu de :

if (expression_test)
expression_si_vrai;
else

expression_si_faux;

2-8 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Révision de Module

4 N

Opérateurs

Pour les opérateurs suivants, donner le type par groupe et la fonction de chacun :

Type d’opérateur :

Type d’opérateur :

Type d’opérateur :

!
&&

I
EBranchementsbK

Q. Quelle structure peut-étre utilisée a la place de ’if else’ ?

R.

Q. Quelle est la regle d’appariement pour les if else imbriqués ?

R.

Q. Quel est le résultat de 'omission d’'un break dans un switch case?

R.

Q. Quelle est I'utilité de default, et quand le code du default sera-t-il exécuté?
R.

Opérateurs Logiques et Relationnels dans les Expressions Conditionnelles 2-9

<: — SunsService
==

reproduction interdite

Révision de Module

E switch HK

Ecrire un programme simple qui demande une appréciation (ABCDF) et répond

respectivement "Excellent”, "Trés Bien", "Bien", "Passable" ou "Insuffisant". Donner
un message en cas de saisie incorrecte.

2-10 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Travaux Pratiques 2 : Expressions Conditionnelles

Présentation

Le but de cette séance de TP est de vous amener a créer des structures
décisionnelles mettant en jeu différentes instructions de test.

Exercices

**

1.

- indique que la solution sera reprise dans une prochaine séance.

Niveau 1. Saisir, compiler et exécuter le programme de la révision
du module 2.

Nommer le fichier source letters.c:

% cc -Xc letters.c
% a.out

Niveau 2. Ecrire un programme qui va :
Demander un nombre entre 10 et 100.

Si le nombre saisi est en dehors de I'intervalle, afficher le message
"hors-limites".

Si le nombre est dans I'intervalle, vérifier sa divisibilité par 2, 3, 5,
ou 7.

Afficher un message pour chaque diviseur. Note : plusieurs
peuvent étre bons - comme pour 10 qui est divisible par 2 et 5.

Afficher un message si le nombre n’est divisible par aucun des
diviseurs proposés (exemple un nombre premier).

Conseil : L’opérateur %peut étre utilisé pour déterminer la
divisibilité.

- voir page suivante -

Opérateurs Logiques et Relationnels dans les Expressions Conditionnelles 2-11

< > SunService
==

reproduction interdite

Nommer le fichier source diviz.c

% cc -Xc diviz.c
% a.out

3. **Niveau 3. Ecrire un programme qui va :
Demander une année de naissance.

Vérifier que I’année est plausible (en I’occurence entre 1900 et
1975), pour éviter une faute de frappe. En cas de saisie erronée,
sortir avec un message d’erreur.

Dans le cas d’une date correcte, soit 1945, en déduire la valeur de
chaque chiffre séparément : 1, 9, 4 et 5.

Afficher un menu a 3 options :
1) SOMME,
2) PRODUIT,
3) Age actuel,

Faire le calcul indiqué en traitant le choix a I’aide d’un switch

Implémenter un cas default pour un message d’erreur en cas de
choix incorrect.

Nommer le fichier source ages.c :

%cc -Xc ages.c
% a.out

Conseil :

int main(void) /* extraction des chiffres */

int x = 1947;
int unites, dizaines, centaines, milliers;
unites = x % 10;

X =x/10;

dizaines = x % 10;
X =x/10;
centaines = x % 10;
X =x/10;

milliers = x % 10:
printf("%d\n%d\n%d\n%d\n", milliers, centaines,
dizaines,unites);

2-12 Programmation en C norme ANSI Reévision C, Décembre 1994

Fonctionset<stdio.h>

Objectifs
m Ecrire des programmes simples avec plusieurs fonctions.
m Utiliser le prototypage des fonctions pour les déclarations et
deéfinitions.
m Décrire I'interfacage des fonctions.
m lIdentifier le mécanisme de transfert de contrdle au programme
appelant.
m Utiliser correctement la fonction printf() pour afficher entiers,
caracteres et nombres en virgule flottante.
m Réaliser des conversions a la saisie avec la fonction scanf()
m Lire sur I’entrée standard caractére par caractére avec getchar()
m Ecrire caractere par caractere sur la sortie standard en utilisant
putchar()
Evaluation

Travaux Pratiques 3 et révision de Module.

<: — SunsService
==

reproduction interdite

Fonctions
= Les fonctions sont utilisées pour réaliser une petite partie
d’un travail.
= Lafonction main() a éte utilisée dans tous les exemples
jusqu’a maintenant. Elle est obligatoire dans tout
programme C.
= Les définitions de fonctions ne peuvent étre imbriquées
entre elles.
Format
Syntaxe ANSI C pour la définition de fonction (sans
correspondance en C traditionnel) :
<type> <id _de fonction> (<liste-de-types param>)
{
<déclarations>;
<instructions>;

3-2 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Exemple de Définition de Fonction

{

}

double

{

int main(void)

double dnum, rad = 5.67;
double circum(double);/* décla.*/

dnum = circum(rad);

/* suite du programme *
return 0O;

circum(double r) /* définition */

double pi=3.14159;
return (2 *pi*r);

Fonctions et <stdio.h>

3-3

<: — SunsService
==

reproduction interdite

Interface de Fonction

= Une fonction dont le type retourné est difféerent de int
doit étre déclarée au niveau de la fonction appelante.
Déclarer egalement les fonctions qui retournent un int
est une bonne habitude.

Format
<type> <idfonct> (<liste des types des param >);

» Dans I'appelant, I'appel de la fonction lui-méme est une
expression. Les arguments passes doivent avoir le méme
type que ceux définis pour la fonction.

= Le contréle revient a I’appelant lorsque I’on rencontre soit
le } de fin dans I’appelée, soit une instruction return

int main(void)

{
int cube(int); /* déclarationde lafonction cube */
int result;
int val;

printf("Entrer un entier : ");
scanf("%d", &val);
result = cube(val);
printf("Le cube de %d est %d.\n", val, result);
return O;
}I* fin de la fonction main */

int cube(int n) /* définition de la fonction cube */

{

return (n *n *n);

} I* fin de la fonction cube */

3-4 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Interface de Fonction - return

Une déclaration de fonction précédée du mot-clef void
informe le compilateur qu’aucune valeur n’est retournée.
Si la fonction retourne un type autre que int , celui-ci
doit étre indiqué. Mais il est bon de déclarer également
les fonctions retournant un int

L’instruction return ne peut passer qu’une seule valeur a
I’appelant.

L’expression évaluée dans I’'instruction return devient
la valeur de I’expression appel de fonction dans
I’appelant.

int main(void)

{
int cube(int);
int result;
int val;
printf("Entrer un entier: ");
scanf("%d", &val);
result = cube(val);
printf("Le cube de %d est %d.\n", val, result);
return 0;
} I* fin de la fonction main */
int cube(int n) /* définition de la fonction cube */
{
return (n*n*n);
} * fin de la fonction cube */

Fonctions et <stdio.h> 3-5

<: — SunsService
==

reproduction interdite

Fin de Programme - exit()

Format
void exit(int status);

= Par convention, status vaut 0 pour les retours sans
erreur et 1 si une erreur est survenue.

m exit() peut étre utilisee pour sortir d’'un programme
avant la rencontre de I'accolade de fin "}".

m exit() estune sortie propre d’un programme. On ne
revient pas d’un appel a la fonction exit()

int main(void)

{
void error(void);/*déclaration de la fonction error*/
int num;

printf("Entrer un entier entre -25 et 25: ");
scanf("%d", &num);
if ((num < -25) || (num > 25))
error();
else
printf("Le nombre entré est %d\n", num);
return O;
}* finde main */

void error(void)/*définition de la fonction error*/

{
printf("Entier hors intervalle, fin.\n");
exit(1);

}* fin de la fonction error */

3-6 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Arguments

= Les arguments sont passés par valeur a I’'appel des
fonctions.

= La valeur de chaque argument a I’appel est affectée au
parametre correspondant dans la fonction :

int main(void)

{
int num=5;
void func(int);

func(num);
printf("Main: num = %d.\n", num);
return O;

} I* fin de la fonction main */

void func(int number)

{

number += 2;
printf("Func: number = %d.\n", number);
} /*fin de la fonction func *

% a.out
Func: number = 7.
Main: num = 5.

%
dans num number dans
main() 5 7 func()

Fonctions et <stdio.h> 3-7

<: — SunsService
==

reproduction interdite

Révision Partielle

(Fonctions K

Ecrire un programme comportant une fonction addum() , prenant 2 arguments int
et retournant un int égal a leur somme :

3-8 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Inclusion de fichiers

La directive #include est utilisée pour inclure le contenu
d’autres fichiers dans un source. Par exemple,

#include <stdio.h>

Les signes < et > indiquent que le fichier a inclure doit
étre recherché dans une liste de réepertoires dépendant de
I'implémentation du compilateur. cc recherchera
d’abord dans (cas de la version 2.0 du Sun C)
/installation _dir /SUNWSste/SC2.0/include/cc

pour les fichiers header. En cas d’échec la recherche se
poursuivra dans /usr/include

/installation _dir /SUNWSste/SC2.0/include/cc
contient les fichiers suivants :

floatingpoint.h stab.h Sys

math.h sunmath.h

Par convention, les guillemets désignent le chemin de
fichiers non trouvés dans les répertoires standards,
comme pour "mydefs.h" , et "myincludes/defs.h"
Dans ce cas, le chemin indiqué est prioritaire sur les
répertoires standards.

Fonctions et <stdio.h> 3-9

reproduction interdite

< > SunService
==

N
%
—
Q.
O
>
Y

3-10

et <stddef.h>

<stdio.h> est le fichier /usr/include/stdio.h

Il définit les constantes et les fonctions utilisées
frequemment dans les entrées/sorties. Il est appelé le
fichier header des entrées/sorties standard.

<stdio.h> définit EOF;

La valeur de cette constante est habituellement définie de
telle sorte qu’elle ne corresponde a aucun caractere
existant. Elle est retournée pour une fin de fichier (End Of
File).

<stddef.n> définit NULL:

Cette constante est décrite comme un pointeur de type
void égal a 0. Beaucoup de fonctions retournent cette
valeur en cas d’erreur.

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Fonction d’écriture de base - printf()

Format

#include <stdio.h>
int printf(const char * format , ..),

Le code retourné par printf() est un entier.
Normalement égal au nombre de caracteres affiches
(transmis), il est négatif en cas d’erreur. (La plupart des
programmeurs ignorent le code retourné par

printf())

format indique le formatage des sorties :
chaine de caracteres
spécification de format

Les autres arguments (en nombre variable) représentent
les éléments a formater et a imprimer.

Fonctions et <stdio.h> 3-11

reproduction interdite

< > SunService
==

Spécifications de format

» Les spécifications de format indiquent a printf() (et
scanf()) comment écrire (lire) la valeur d’une
expression. Elles comprennent :

%cC
%d

%i

%0

%s

%u

%X

%e, fou g
%m.nf
%-m.nf
%hi

%li

%lf
%L f

Conversion des int en unsigned char
Valeur entiere décimale

Valeur entiere décimale (I’'argument
correspondant détermine la base)

Valeur octale non signée

Chaine de caractéres (Tableau de char)
Valeur entiere décimale non signée

Valeur héxadécimale non signée

Valeur en virgule flottante

m est la taille du champ et n est

le nombre de chiffres aprés la virgule (.” ici)
le signe moins force la justification a gauche
dans le champ

short int (normalement avec scanf())

long int (normalement avec scanf())

double (normalement avec scanf())
long double

= L’indication de la taille du champ (m) et de la
justification a gauche (-) peut compléter toute
spécification de format.

3-12 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Utilisation de printf()

Exemples de printf()
format :

montrant des spécifications de

int

{

H*

#include <stdio.h>
main(void)

int x=10;
char c='q}
float f=1.23;

printf("Simplement une chaine de caracteres.\n");
printf("hexa:%x,octal: %o, flottant: %f\n",x,x,f);
printf("caractéere ¢ = %c\n",c);

return 0;
fin de la fonction main

Fonctions et <stdio.h>

*/

3-13

<: — SunsService
==

reproduction interdite

Conversion en entrée avec format - scanf()

Format

#include <stdio.h>
int scanf(const char * format , ...),

= Normalement, scanf() retourne le nombre d’items
correctement saisis. En cas d’erreur de lecture avant
toute conversion, scanf() retourne EOF

= Utilisation de scanf() pour lire sur I’entrée standard :

#include <stdio.h>
int main(void)
{
int ival, num;
float fval;
double dval;
printf("Entrer un entier et deux réels: ");
num = scanf("%d%f%lf",&ival, &fval, &dval);
if (num < 3){
printf("Erreur dans scanf()\n");
exit(1);
}
else {
printf("Vous avez saisi %d items, convertis en :\n",num);
printf("L’entier: %d,les réels: %f %f.\n", ival, fval, dval);

}

return 0O;
}I* fin de la fonction main */

3-14 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Saisie de caracteres - getchar()

Format

#include <stdio.h>
int getchar(void);

= En cas de succes, getchar() renvoie le caractere
suivant du flux entrée standard. Sur une fin de fichier ou
une erreur de lecture, getchar() renvoie EOF

= Exemple de lecture d’un caractere utilisant getchar()

#include <stdio.h>
int main(void)
{
int ch; /* ATTENTION : type int pour getchar() */

printf("Entrer un caractere : ");
ch = getchar();
printf("Vous avez saisi %c, exact ?\n", ch);
printf("Code ASCII %d décimal, %x hexa, %o octal.\n",
ch,ch,ch);
return 0;
}* fin de la fonction main */

Fonctions et <stdio.h> 3-15

reproduction interdite

<: — SunsService
==

Sortie d’un caractére - putchar()

Format

#include <stdio.h>
int putchar(int C);

= En cas de réussite, putchar() renvoie le caractére
transmis a sortie standard. Sur erreur, putchar() renvoie
EOF

= Le programme suivant répete ce qui est saisi en utilisant
getchar() et putchar()

#include <stdio.h>
int main(void)

{

int ch;

printf("Saisir un caractére : ");

ch = getchar();
printf("caractere saisi : ");
putchar(ch); /* écrit le caractere */
return O;

} /*fin de la fonction main *

3-16 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Révision de Module

Epéc.de FormaéK

Soient les déclarations suivantes, écrire un ou plusieurs printf() pour imprimer
les valeurs et indiquer le résultat attendu :

int numl=16*2;

int num2 = OxFF;

int num3=0777;

float fnum =42.0 + numl;
char chl="a’

char ch2 =chl + 1;

Affichage :

Apres les déclarations suivantes, écrire deux instructions, utilisant des fonctions
différentes, pour lire un caractére sur I' entrée standard :

char chr;
int ch;

Fonctions et <stdio.h> 3-17

< > SunService
==

reproduction interdite

Révision de Module

E scanf() K

Soient les scanf() et printf() et le jeu d’essai suivant. Quel est le résultat
attendu ?

int result, x;

float f;

X =0;

f=0.0;

printf("Entrer un entier puis un réel #: ");

result = scanf("%d%f",&x,&f);

printf("nb items lus : %d, x = %d, f = %f.\n", result,x,f);

saisie :

25 54.32E-1
impression :
saisie :

127 2+5
impression :
saisie :

12.5E2 17
impression :
saisie :

a 125
impression :

3-18 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Travaux Pratiques 3 : Fonctions et <stdio.h>

Présentation

Ces Travaux Pratiques permettent la prise en main des fonctions et des
appels de fonction, ainsi que la mise en ceuvre de quelques fonctions
de la librairie standard d’Entrée/Sortie.

Exercices

1. Niveau 1. Vérifier les résultats des questions de la révision en fin
de chapitre, en écrivant un programme faisant les mémes
déclarations, les mémes traitements d’E/S, et imprimant les
résultats. Nommer le programme source review_io.c:

% cc -Xc review_io.c
% a.out

2. Niveau 2. Ecrire un programme pour :
Demander un caractere alphabétique.
Tester la saisie (Est-ce bien un caractere alphabétique ?).
Imprimer le caractére ou afficher le message "ERREUR" .
Demander un entier.
Afficher cet entier en base 10, en base 8 et en base 16.
Demander un réel (virgule flottante).

Imprimer le produit de I’entier et du réel avec une précision de 5
chiffres apres la virgule.

Imprimer ce produit en notation exponentielle scientifique -
ie. 4.2000000E+1.

Afficher le message "Ou tu iras, je serai.\n".

- Voir page suivante -

Fonctions et <stdio.h> 3-19

< > SunService
==

reproduction interdite

Nommer le fichier source mixed_io.c:

% cc -Xc mixed_io.c
% a.out

3. Niveau 3. Ecrire un programme pour :
Demander le prix de quelque chose (lire un double).

Appeller une fonction tva() pour calculer et retourner une TVA
a 18,6%.

Imprimer le hors taxe, la TVA et le montant TTC.
Conseil : Exemples de déclaration et définitions :

/* définition de fonction... */

double tva(double valeur, double taux)

/* valeur est le montant hors-taxe et taux e
taux de TVA */

Nommer le fichier source tva.c:

% cc -Xc tva.c
% a.out

3-20 Programmation en C norme ANSI Reévision C, Décembre 1994

Objectif

Evaluation

Introductionau Compilateur Cet
au Préprocesseur

m Utiliser les options de compilation pour obtenir différents niveaux
de conformance ANSI.

m Générer des fichiers ./ ,.s , et .o en utilisant les options de cc
adéquates .

m Utiliser les options de spécification de chemin de recherche pour
les fichiers header et les librairies.

m Utiliser les directives du préprocesseur pour définir des constantes
et des fichiers d’include.

m Utiliser lint pour vérifier des sources C.

Travaux Pratiques 4 et révision de module.

4-1

<: — SunsService
==

reproduction interdite

Compilation de Programmes C

/* program foo */
#include <stdio.h>

main()

{

inti;

-exécutable-
% cc -Xc source.c

printf("Type an int: *);
scanf("%d", &i);

printf("%d\n", i);

} /* end main */

source.c a.out

m Les fichiers sources C doivent avoir I'extension .c

» La commande cc appelle le compilateur C ANSI acomp
(qui contient le préprocesseur et le compilateur
proprement dit), I'assembleur fbe , et le linker |d pour
créer le fichier executable, a.out

= Le résultat de cc est a.out par defaut, I'option -0
permettant d’indiquer le nom voulu.

4-2 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Phases de Compilation

prog.c Source

]

Préprocesseur

P prog.i Q

Compilateur
(acomp)

-S prog.s
Code Assembleur

Assembleur (fbe)

-C prog.o Q
Code Objet
Editeur de liens (Id) <:| ‘ ibrairie C I

-0 nom Ej programme exécutable

_BI

nom

]

]

]

]

]

Introduction au Compilateur C et au Préprocesseur 4-3

<: — SunsService
==

reproduction interdite

O
e
=
o
-
w
Q
)
O
o
-
m—tn
)
=
-
QD
-
o
g0
>
Z
2.

C

= Le degré de conformance au standard ANSI du Langage
C peut étre indiqué par les options de compilation
suivantes:

-Xt

(transition) Cette option donne une compatibilité ANSI C plus K&R
C, sans les changements sémantiques imposeés par le C ANSI. Ceci est
I’option par défaut.

(ANSI) Cette option donne une compatibilite ANSI C plus K&R C,
avec les changements sémantiques imposés par le C ANSI.

(conformance) Avec cette options, les sources et les header se
conforment au C ANSI, sans aucune extension K&R.

(senescent)(*'devenant vieux", option Sun C) Le langage compilé
inclut les possibilités pré-ANSI K&R. Le compilateur signale les
constructions ayant un comportement différent entre le C ANSI et le
C K&R.

4-4

» La macro predéfinie _ STDC _prend la valeur 1 avec
I’option -Xc ou la valeur 0 autrement. Le standard
ANSI du C définit __ STDC __comme étant a 1.

Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Compilation Séparée

% cc -Xc -c fl.c

fl.o

f2.0
N f3.0 -exécutable-

% cc-Xc-cf2.c % ccfl.of2.0f3.0-0 prog

f2.c % cc -Xc -

librairie C prog

f3.c

= Sivous avez séparé vos fonctions en les écrivant dans
des fichiers différents, vous pourrez les compiler
individuellement.

= Pour compiler sans linker, utiliser I’option -c. Le fichier
généreé aura la méme racine que le source mais avec
I’extension .o

m Utiliser cc pour linker les fichiers objets (et la librairie C)
et créer ainsi I’exécutable final.

Introduction au Compilateur C et au Préprocesseur 4-5

reproduction interdite

<: — SunsService
==

Compilation avec des Librairies d’Application

= Quand le programme appelle des fonctions d’une
librairie autre que la librairie C, le programmeur doit
linker avec la librairie contenant les fonctions.

= Voici les options de la commande cc requises
généralement pour le link avec les librairies

d’application :
Options et Syntaxe de cc Signification

-I<librairie> Link avec la librairie indiquée.

-I<repertoire> Répertoire de recherche pour les
fichiers #include dontle nom ne
commence pas par /, avant de chercher
dans les répertoires standards.

-L<repertoire> Répertoire de recherche pour les

librairies, avant de poursuivre dans les
répertoires standards.

4-6

L’option -I<librairie> doit suivre I'argument fichier source.

La recherche des fichiers #include est la suivante :

O le répertoire du source (si le nom du fichier est entre " "),

O les repertoires indiqués par -I<repertoire> :

O / install_dir/ SUNWSste/SC2.0/include, (si version 2.0)
0 /usr/include

Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Utilisation des Librairies d’Application

Ce programme a été compilé sur une SPARCStation 1+. Le
compilateur C ANSI était installe dans Zusr/opt.

trig.c

#include <stdio.h>
#include <math.h>

int main(void)

{

double val =-1.0;
printf("larc sinus de %f est %f.\n", val, asin(val));
return O;

sun% cc -Xc trig.c -o trig

Undefined first referenced
symbol in file
asin trig.o

Id: fatal: Symbol referencing errors. No output written to trig
sun% cc -Xc -# trig.c -o trig -Im
/usr/opt/SUNWSste/bin/../SC2.0/acomp -i trig.c -0
Ivar/tmp/ctm1BAAaO00BU -Qy -Xc
-I/usr/opt/SUNWSste/bin/../SC2.0/include/cc
/usr/opt/SUNWSste/bin/../SC2.0/fbe -o trig.o -s -q -Qy
Ivar/tmp/ctm1BAAa000BU

lusr/ccs/bin/ld -dy /usr/opt/SUNWSste/bin/../SC2.0/crti.o
/usr/opt/SUNWSste/bin/../SC2.0/crtl.0
/usr/opt/SUNWSste/bin/../SC2.0/__fstd.o /usr/ccs/lib/values-Xc.0 -0 trig
trig.o -Im -Y
P,/usr/opt/SUNWSste/bin/../SC2.0:/usr/ccs/lib:/ust/lib -Qy -Ic
/usr/opt/SUNWSste/bin/../SC2.0/crtn.o

sun% trig

L’arc sinus de -1.000000 est -1.570796.

sun%

Introduction au Compilateur C et au Préprocesseur 4-7

reproduction interdite

<: — SunsService
==

Directive du Préprocesseur : Définition de Constantes

= Une possibilité de la directive #define est de créer des
constantes symboliques.

m La valeur est substituée chaque fois que I'identifiant
apparait dans le source :

my_header.h

#define BUF_SIZE 512
#define MESSAGE "Programme avec constantes symboliques.”

prog.c

#include <stdio.h>
#include "my_header.h"

int main(void)

{
printf("Taille de tampon : %d.\n", BUF_SIZE);
printf("%s\n",MESSAGE);
printf"MESSAGE\n"); /* affiche: MESSAGE
et non la valeur de MESSAGE */
return 0O;
}I* fin de la fonction main */

4-8 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Vérification de Programmes C - lint

lint traite les fichiers sources.

lint réagit principalement dans 3 catégories de cas :
Usage inconsistant
Code non portable

Structures suspectes

lint travaille en deux passes :

Premiere passe : Vérification des erreurs possibles
internes au source.

Seconde passe : Vérification de I'intégrité entre plusieurs

sources.

lint -Xc demande a lint de vérifier la conformance
au standard ANSI.

lint -p pousse lint & vérifier plus précisément la
portabilite.

Introduction au Compilateur C et au Préprocesseur 4-9

reproduction interdite

= SunService
= _=

Vérification de Programmes C - lint

= lint signalera les inconsistances telles que :

1. Incohérence entre le type et/ou le nombre des arguments passés
aux fonctions. Le prototypage des interfaces de fonctions I’aide
dans cette tache.

2. Mauvaise utilisation de pointeurs (voir plus loin).
3. Variables et fonctions définies mais non-utilisées.

4. Ignorance des codes de retour des fonctions.

= Exemple de programme et rapport de lint

#include <stdio.h>
main(void)

{

int Xx;

char c;

float f;

X = 16;

c="R’

f=1.23;

printf("x = %d, ¢ = %c, f = %f\n",x,c,f);
printf("octal x = %0, hexa x = %x\n",x,X);

sun% lint -Xc types.c

(7) error: syntax error before or at: float
(10) error: undefined symbol: f

(11) error: newline in string literal

(12) error: syntax error before or at: printf

set but not used in function
(20) f in main
(6) cin main
(5) x in main

implicitly declared to return int
(11) printf

declaration unused in block

(11) printf
lint: errors in types.c; no output created
lint: pass2 not run - errors in types.c

4-10 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Vérification de Programmes C - lint

= Le programme suivant se compile mais lint se plaint
encore .

#include <stdio.h>
int main(void)
{ .
int Xx;
char c;
float f;
X = 16;
c="R’
f=1.23;
printf("x = %d, ¢ = %c, f = %f\n", X, c,);
printf("octal x = %0, hexa x = %x\n", X, X);
return O;

sun% lint -Xc types.c

function returns value which is always ignored
printf

<output from compatibility check with Ilib-lc.In>
sun%

m Pour éviter d’avoir un message de lint pour les
fonctions dont le code de retour est ignoré, forcer leur
type a void , si ce code est vraiment inutilisé.

Introduction au Compilateur C et au Préprocesseur 4-11

< > SunService
==

reproduction interdite

Révision de Module

(' compilation

Pour chacune des options de cc ci-dessous, indiquer le type et I'extension du fichier génére

type du fichier généré suffixe
% cc -Xc -P mumble.c
% cc -Xc -S mumble.c
% cc -Xc -c mumble.c
% cc -Xc -0 enunciate mumble.c

Egompilation séparéEK

Soient les 4 fichiers suivants (tous issus de sources C), quelle sera la commande pour les
linker tous en un exécutable nommeé concasseur -sel.c , poivre.o ,cumin.c ,
thym.s

Epréprocesseurg

Ecrire une directive pour créer une constante symbolique valant 42, une deuxieme directive
pour une constante égale a la précédente plus un entier, et une derniére pour une constante
représentant la chaine de caractere "La Légerete s'oppose a la Gravité":

4-12 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Travaux Pratiques 4 : cc, Préprocesseur et lint

Présentation

Ceci est une introduction a I'utilisation de quelgques options de
compilation, a la programmation des directives du préprocesseur, et a
la vérification de programmes a I'aide de lint

Exercices

1. Niveau 1. Recompiler les programmes des TP précédents en
utilisant les options de compilations suivantes :

-P, -S, -c, -o.

Noter le type et le nom des fichiers générés. Utiliser la commande
file

% file <fichier-généré>

pour déterminer le type de fichier. Si le contenu est du texte ascii,
le visualiser :

% cc -Xc -P mixed_io.c
% more mixed_io.i

2. Niveau 2. Faire tourner lint sur tous les sources créés jusqu’a
présent, rediriger les sorties vers un fichier de rapport de lint

% lint -Xc review_io.c > lint.log
% more lint.log

Introduction au Compilateur C et au Préprocesseur 4-13

<: — SunsService
==

reproduction interdite

4-14 Programmation en C norme ANSI Révision C, Décembre 1994

Objectifs

Evaluation

Structures Itératives

m Utiliser correctement les structures itératives du langage C.

Repérer les similitudes entre while et for .

Décider quand et comment placer des goto en C.

Travaux Pratiques 5 et révision de module.

5-1

<: — SunsService
==

reproduction interdite

L’instruction for

Format

for (<expressionl> ; <expression2> ; <expression3>)
<instruction> ;

m expressionl est appelée aussi initialisation.

m expression?2 est le "test". Si le test est omis, une boucle
infinie est déclenchée car il est pris comme vrai.

m expression3 est le pas.
= Toutes les trois sont optionnelles.

= La virgule est utilisée dans I’'une ou l'autre des
expressions pour séparer plusieurs instructions.

= Les points-virgules sont syntaxiquement indispensables :

#include <stdio.h>

int main(void)

{
int index;
int vy;

for (index=0; index <= 19; index++)
printf("%d\n",index); /* boucle a une seule instruction */
printf("Fin de boucle.\n");

for (index=5,y=1;(index >0) && (y < 10);index--, y += 3) {
printf("index = %d\n", index);
printf("y = %d\n", y);
} I* boucle sur un bloc */
return 0;
}* fin de la fonction main */

5-2 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

L’instruction while

Format

while (<expression>)

<instruction> .
m Sil’ expression estvraie, instruction est exécutee.
La boucle se termine quand et si I’expression devient
fausse.

m Sil’expression est fausse avant le premier passage
dans la boucle, I'instruction n’est pas exécutée du
tout.

#include <stdio.h>
int main(void)

{
int index = 0;
while (index <= 10)
printf("%d\n",index++);
printf("Fin de boucle.\n");
return 0;
} ¥ fin de la fonction main */

Structures Itératives 5-3

<: — SunsService
==

reproduction interdite

for contre while

= En général, une boucle for est équivalente a une boucle
while

= L’instruction for aide a garder le contrdle de la boucle a
un seul endroit.

= L’instruction for est habituellement utilisée lorsque les
valeurs initales, la condition de boucle, et la condition de
fin sont contrélées par la méme variable. Elle est utilisée
aussi lorsqu’on connait le nombre d’itérations a I’avance.

#include <stdio.h>
int main(void)

{

int index;

index = 0;

while (index < 100) {
[* corps de boucle */
index++;

Y+ fin du while */

[*for équivalent... */

for (index = 0; index < 100; index++) {
[* corps de boucle */
}* findu for */
return O;
}* fin de la fonction main */

5-4 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

L’instruction do while

Format

do
<instruction> ;
while (<expression>),

= Dans cette structure, I’expression est évaluée a la fin de
la boucle.

= L’instruction est toujours executée au moins une fois.

#include <stdio.h>
int main(void)
{
int val;
do {
printf("Une valeur entre 1 et 10: ");
scanf("%d", &val);
} while (val<1]|val>10);
printf("fin de boucle.\n");
return 0;
}* fin de la fonction main */

Structures Itératives 5-5

<: — SunsService
==

reproduction interdite

O
o
S
r—~+
=
=
D
Q
)
o
o
c
Q
)
1
o
)
)
o
=k

break force la sortie de la boucle ou il apparait:

#include <stdio.h>
int main(void)
{

int val;

for () {/* boucle infinie */
printf("Une valeur entre 1 et 10 : ");
scanf("%d", &val);
if (val >= 1 && val <= 10)
break ; /| *Sortie de boucle sur saisie correcte */
} [* fin du for %

/* suite du programme *

return 0;
}I* fin de la fonction main */

5-6 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Controéle de Boucle - continue

m continue saute a l'itération suivante de la boucle.

» Dans les do et les while , ceci correspond a I’évaluation

de la condition de boucle.

= Pour les for , ceci correspond a I’évaluation de la portion

pas du for :
#include <stdio.h>
int main(void)
{
int num;
while (1) {/* boucle infinie */

printf("Une valeur entre 1 et 10 : ");

scanf("%d", &num);

if (num <1 || num > 10) {
printf("Hors intervalle\n");

continue
}
printf("Vous savez lire \n");
break :
}
return 0;

} /*fin de la fonction main */

Structures Itératives

5-7

reproduction interdite

<: — SunsService
==

Controéle de Boucles Imbriquées

Exemples de contrdles de boucles imbriquées :

#include <stdio.h>
int main(void)

{

int wval, i

for (i=0;i<10;i++){
while (1) {
printf("Entrez un entier : ");
scanf("%d", &val);
if (val % 2) {
printf("Nombre impair.\n");
continue ;

}
printf("Nombre pair.\n");

break ;
} /* Fin du while *
} /*findufor?¥
return 0;
}* finde main */

5-8 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Traverser des boucles imbriquées - goto

Format

goto etiquette
etiquette . instruction :

m Les structures itératives peuvent étre aussi implémentées
en utilisant I'instruction de saut goto :

#include <stdio.h>
int main(void)
{

int a, b;

for (a=0;a<b5;at+)
for (b=0;b<5;b++){
printf("a=%d; b=%d\n", a, b);
if ((@a==3)&&(b==3))
goto fin_de_ boucle;

}

fin_de_boucle:
printf("C’est tout pour aujourd’hui\n");

return O;
}I* fin de la fonction main */

m Prenez garde a I’effet Spaghetti, trés fréquent avec les
goto .

Structures Itératives 5-9

<: — SunsService
==

reproduction interdite

Révision de Module

(boucles while kK

Q. Quelle est la principale différence entre une boucle while et une boucle

do - while ?

R.

Q. Quelles sont les conditions de sortie d’'une boucle while ?
R.

Q. Quelles regles peuvent aider a déterminer si une boucle for est plus adéquate
qgu’une boucle while ?
R.

Ecrire une boucle while qui s’exécute 10 fois, et a chaque itération imprime la va-
leur de I'index et le résultat de la somme de I'index avec une constante. Prendre les
instructions de boucle ainsi que lI'incrément dans un bloc :

5-10 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Révision de Module

7 N

boucles for

Q. Qu’est-ce que provogue I'omission de la deuxieme expression dans une ins-
truction for ?

R.

Q. Combien de fois une boucle for est-elle exécutée ?

Réécrire la boucle while précédente avec un for

Structures Itératives 5-11

< > SunService
==

reproduction interdite

Travaux Pratiques 5 : Itération

Présentation

Introduction aux structures itératives du Langage C.

Exercices

** | a solution sera utilisée dans les TP a venir.

1. Niveau 1. Vérifier Les résultats des deux programmes des
révisions en les compilant et en les exécutant.

2. Niveau 2. Ecrire un programme pour :

Afficher a I’écran un triangle rectangle fait d’astérisques "*" , et
avec une base de 40 caractéres. Exemple d’affichage :

*
**
*k%k

*kkk

*RRRx - (etc...)

Facultatif : Laisser I'utilisateur définir le caractére a afficher et la
taille de la base. Si la base est en dehors de I'intervalle [1-80], la
forcer a 40.

Nommer le fichier source triangle.c
% cc -Xc triangle.c -o triangle

3. **Niveau 3. Ecrire un programme pour :

Demander une minuscule a I'utilisateur, tant qu’il n’en rentre pas
une.

Remarque : Quand l'utilisateur entre un caractere, scanf() et
getchar() laissent un caractere newline dans le flux d’entrée standard.
Ce "\n’ doit étre pris en compte d’une maniére ou d’une autre.

- VOir page suivante -

5-12 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Déterminer si la majeure partie de I'alphabet minuscule est avant
ou apres ce char . 'n’ est considéré comme le milieu.

si le char est au début de I'alphabet, alors afficher les caractéres
jusqu’a la fin en ordre croissant, char compris. Si le char est
dans la deuxieme moitié, afficher I’alphabet a I’envers, a partir du
char jusqu’au début.

Nommer le fichier source loops.c
% cc -Xc loops.c -0 loops

Structures Itératives 5-13

<: — SunsService
==

reproduction interdite

5-14 Programmation en C norme ANSI Révision C, Décembre 1994

Objectifs

Evaluation

Tableaux

m Déclarer et utiliser correctement les tableaux.
m Traiter les tableaux avec des structures itératives.
= Manipuler des tableaux a plusieurs dimensions.

m Initialiser tous les types de tableaux.

Travaux Pratiques 6 et révision de module.

reproduction interdite

< > SunService
==

Déclarer un Tableau

Format
<type> <identifiant> [<nb d’éléments>];

s Un tableau est un ensemble ordonné de données de
méme type, réféerencé par un nom unique.

= Un tableau se définit plutét comme une variable scalaire
plus une spécification de taille de tableau.

= Les constantes symboliques sont tres utiles lorsqu’on
déclare et manipule les tableaux :

#define MAX INDEX 10

int main(void)

{
int int_array[25];/* & éviter */
float float_array[MAX_ INDEX];/* ok */
char char_array[MAX_INDEX * 4],

I* ici le code du programme */
return O;

6-2 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Référencer les Eléments de Tableaux

Format
<identifiant> [indice]

= L’acces a un élément de tableau se fait en indiquant le
nom du tableau suivi de I’indice entre crochets.

= La plage des indices valides d’un tableau est de
zéro a (nb éléments - 1) :

#define MAX 10
int main(void)

{
int int_array[MAX];

int_array[0] = 5;
int_array[1] = 10;

int_array[MAX - 1] = 50;

Tableaux

6-3

0 SunService
|§f-\ reproduction interdite

Manipuler les Tableaux

= Puisqu’un tableau est un ensemble ordonné, I'acces a ses
éléements peut s’automatiser avec une boucle.

= |l n’existe pas d’opération sur les tableaux - chaque
éléement doit étre manipulé séparément :

#include <stdio.h>
#define MAX 26
int main(void)
{
int counts[MAX], index, ret;
char ch;
I* init des comptes a 0... */
for (index = 0; index < MAX; index++)
counts[index] = 0;
[* saisie des valeurs... */
printf("Entrer des caracteres. Finir par D : ");
while ((ch = getchar()) '= EOF)
counts[ch - 'A’]++;
printf ("Liste des comptes :\n");
for (index = 0; index < MAX; index++)
printf ("counts[%d]=%d\n", index, counts[index]);
return 0;
}* fin de la fonction main */

6-4 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Tableaux a Plusieurs Dimensions

Exemple

int matrix [3][5];

Cette définition génére un tableau a deux dimensions :

3 lignes

5 colonnes

- L

réellement rangé en mémoire comme suit :

ligne O) ligne 1) ligne 2

Tableaux

6-5

<: — SunsService
==

reproduction interdite

Manipuler un Tableau Multi-dimensionnel

La méthode standard pour traiter les tableaux a plusieurs
dimensions est d’utiliser des boucles imbriguées, a raison
d’une boucle par dimension.

#define ROWS 10/* Indice maxi de ligne + 1 */

#define COLS 2/* Indice maxi de colonne + 1 */

#include <stdio.h>

int main(void)

{
int array[ROWS][COLS], row, col;

[* chargement du tableau avec des valeurs... */
for (row = 0; row < ROWS; row++) {
for (col =0; col < COLS; col++) {
array[row][col] = row + col,
printf("Ligne = %d, Colonne = %d.\n", row, col);
}/* findu for */
}y I+ findu for */

[* affichage des valeurs du tableau... */
for (row = 0; row < ROWS; row++) {
for (col = 0; col < COLS; col++) {
printf("Array[%d][%d] = %d.\n", row, col, array[row][col]);
}
}/* findu for */
return O;
}* fin de la fonction main */

6-6 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Initialisation des Tableaux

m On peut affecter des valeurs aux tableaux au moment de
leur déclaration. C’est I'initialisation des tableaux.

= Dans une initialisation de tableau, sa taille peut étre
indiquée ou pas. Si elle ne I'est pas, la taille du tableau
dépend du nombre de valeurs.

» Syntaxe de l'initialisation :

<type> <nom du tableau>[taille opt.] = {listes de
valeurs};

Les valeurs de la liste sont séparées par des virgules.

= Si la taille est indiquée, et qu’il n’y a pas autant de
valeurs, le reste du tableau est rempli par des 0.

s Exemples:

int arrl[] =41, 2, 3, 4, 5} /* tableau d’entiers a une dimension */
int arr2[20] = {0}; /* tableau de 20 entiers, ler élément a 0, les autres

non initialisés*/

char arr3[] ={a’, 'b’, ’'c’,'d, e} /*tableau de 5 caracteres */

double arr4[3][4] ={

{4.3,1.2,5.6, 8.7}, /*row 1%
{1.3,2.4,5.7, 6.8} /*row 2 *
h /*tableau de double a 2 dimension, 3eme ligne non initialisée*/
float arr5[3][4] = {{1.2}, {3.4}, {5.6}}; /* tableau de float a 2 dim,

col. 2, 3, et4 non initialisées. Col. 1 a les valeurs :
arr5[0J[0] = 1.2, arr5[1][0] = 3.4, et
arr5[2]J[0] = 5.6 */

Tableaux 6-7

< > SunService
==

reproduction interdite

Révision de Module

EﬂDéclarer des tableauaK

Remplir les blancs en se basant sur les 2 déclarations suivantes :

int arrl[14];
float arr2[5][5];

1. Le premier élément de arrl estréférencépar

2. En pensant a la disposition en mémoire des tableaux a plusieurs dimensions,
le troisieme élément a partir du début de la position en mémoire de arr2
est,

Tableaux

Q. En quoi un tableau différe-t-il d’'une variable ordinaire ?
R.

Q. Comment accede-t-on aux éléments d’'un tableau ?
R.

Q. Pourquoi est-il préférable de spécifier la taille des tableaux a I'aide de
constantes symboliques ?
R.

6-8 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Révision de Module

EManipulation de Tableau'qK

Ecrire un programme qui déclare un tableau de 5 entiers, demande une valeur
pour chaque élément, charge la valeur avec le bon indice, et enfin imprime tout
le contenu du tableau.

Tableaux 6-9

< > SunService
==

reproduction interdite

Travaux Pratiques 6 : Tableaux

Présentation

Introduction a la manipulation des tableaux, liée aux concepts vus
dans les TP précédents.

Exercices

** _ La solution sera utilisée dans des TP a venir.

1. Niveau 1. Vérifier les résultats des programmes vus en révision en
les compilant et en les exécutant.

2. **Niveau 2. Ecrire un programme pour :

Déclarer un tableau de 15 entiers et le remplir avec des valeurs de
10 a 150.

Afficher le contenu du tableau.

Apres affichage, inverser I’'ordre des valeurs (array[0] aura 150 et
array[14] aura 0). Ne pas utiliser de 2éme tableau pour la
transformation.

Afficher le tableau apres inversion.

Nommer le fichier source reverse.c:
% cc -XC reverse.c -0 reverse

3. Niveau 3. Ecrire un programme dimension2.c pour :

Déclarer un tableau d’entier bi-dimensionnel de 10 lignes et 2
colonnes. Utiliser des macros pour les dimension des lignes et des
colonnes.

Demander une valeur pour chague élément du tableau.
Afficher tout le tableau.

% cc -Xc dimension2.c -0 dimension2

6-10 Programmation en C norme ANSI Reévision C, Décembre 1994

Classesd’Allocation

Objectifs
m Décrire la configuration mémoire d’un programme tournant
sous SunOS.
m Donner la liste des types d’allocation.
m |dentifier les particularités de chaque classe.
Evaluation

Révision de module.

7-1

reproduction interdite

<: — SunsService
==

Définition et Déclaration

7-2

= Définition - La définition (ou déclaration de définition)
d’un identifiant provoque I’allocation de la mémoire
correspondante et I’association du nom avec ce bout de
meémoire. Les variables et les fonctions ne sont définies
gu’une fois.

/* définition de la variable c3 */
char c3; /* allocation d’un octet */

/* définition de my_func */
char my func(char cl1, char c2)

{

return ((cl<c2)?cl:c2);

}

m Déclaration - Une déclaration (ou déclaration de réference)
decrit un identifiant en termes de type et de durée de vie.
On suppose qu’une définition a été faite ailleurs. Cette
déeclaration donne les indications necessaires au
compilateur pour lui permettre de faire une
interprétation correcte du code.

Pour les fonctions en particulier, le fait de déclarer aussi
les types des arguments s’appelle un prototypage et
permet au compilateur, entre autre, de faire une
verification du type des arguments passes par I’appelant.

int some_func(void)

{

char my_func(char , char);
/*suite de la fonction */

Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Configuration Mémoire d’un Programme C

Un programme C tournant en mémoire s’appelle un
process et comporte 3 segments, stack, data et text :

mémoire haute

(D)

(@))

A

¢ _|_ Meémoire libre _

= —_ (hole) —_

©

©

2 | b

% heap ou tas

73

g DATA
TEXT

0x0

Classes d’Allocation

< > SunService
==

reproduction interdite

Classes d’Allocation des Variables du C

= Il y a deux facons de caractériser des variables - type et
classe d’allocation.

m La classe d’allocation détermine :
la valeur initiale - quelle est la valeur avant utilisation?
durée de vie - a quel moment la variable existe ?

visibilité - ou la variable est-elle connue (accessible) ?

7-4 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Allocation auto

s Valeur Initiale - indéfinie.

» Durée de vie - Apparait au moment de la déclaration et

cesse d’exister a la sortie du bloc.

= Visibilité - Les variables automatiques sont connues

seulement dans le bloc ou elles sont définies et dans les

blocs inclus dans le bloc de définition.

int

{

H*

main(void)

auto int index, value;
[* est équivalent a...

int index, value;

fin de la fonction main

Classes d’Allocation

*/

*/

7-5

<: — SunsService
==

reproduction interdite

Allocation en Registre (register)

Les propriétés de I'allocation register sont les mémes
que l'allocation automatique (essentiellement parce que
register est une sous-classe d’ auto) a une exception
pres - les registres de la machine n’ayant pas d’adresse
memoire, vous ne pouvez appliquer I'opérateur Adresse-
de (&) a une variable de la classe register

La plupart des machines sont limitées en nombre de
registres utilisables pour les besoins de vos programmes.

En général, compteurs de boucles, indices, pointeurs et
autres variables d’utilisation intensive sont de bons
candidats a I’allocation register

int

{

I

main(void)

register int index;

fin de la fonction main */

7-6 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Allocation static

= Valeur Initiale - Une donnée static est garantie d’étre
initalisée a zéro.

m Durée de vie - L’espace d’allocation statique est attribué
au process au début du programme, et lui est retiré a la
terminaison du programme.

= Visibilité - Si la variable est définie dans une fonction
(locale), alors la variable n’est visible qu’a I'intérieur de
cette fonction. Si la variable est déefinie a I’extérieur d’une
fonction (globale), alors elle est visible dans toutes les
fonctions qui suivent sa définition, mais nulle part en
dehors du fichier source de definition.

int main(void)

{

static int index;

} ¥ fin de la fonction main *

m Les fonctions définies avec le mot-clef static ne sont
pas connues non-plus a I’extérieur de leur fichier de

définition.
static int func(int cnt, double 2)
{
}

Classes d’Allocation 7-7

|%%‘C

SunService
reproduction interdite

Allocation extern

s Valeur Initiale - Toute donnée en allocation extern

garantie d’étre initialisée a zéro.

s Durée de vie - La donnée extern

est

a une espeérance de

vie importante. Elle est allouée au commencement du
programme et désallouée a la fin.

» Visibilité - Une donnée extern

est visible dans les

fonctions qui suivent sa définition. Une déclaration
permet de I'utiliser dans un source différent.

% more sourcel.c

int index=4
extern int

//*déf.globale*/
display(void);* décla.*/

int main(void)

{
float value;
int result;
result = display();
}/* fin de main */

% more source2.c

int display(
{

void)

extern int

} /*fin de display *

%

index;

= Les fonctions peuvent avoir une spécification

d’allocation static

ou extern . extern

spécification par defaut.

7-8 Programmation en C norme ANSI Révision C, Décembre 1994

est la

reproduction interdite

Exemple: Initialisations et valeurs initiales

Relever les initialisations et les valeurs initiales que I’'on
peut supposer dans un programme comme ci-dessous :

[* initialisation d’un tableau externe bi-dimensionnel */
int matrix[3][5] = {

{1,2,3,4,5},

{6,7,8,9,10},

{11, 12, 13, 14, 15}
3

float x; /*valeur initale garantie a 0.0 */

int main(void)
{
/* initialisation de tableaux uni-dim. static et auto */
static int digits[10]={0, 1, 2, 3,4,5,6,7,8,9};
int int_array[20] ={-1, -2, -3, -4}, /* suite non
initialisée*/

float vy; /*variable auto : val.initiale indéfinie */
static float z; /*static : garantie de 0.0 inital */

[* corps du programme... */

}I* fin de la fonction main */

Classes d’Allocation 7-9

<: — SunsService
==

reproduction interdite

Table Récapitulative
mot-clef valeur durée-
d’allocation Initiale de vie Visibilité Localisation
auto Indéfinie bloc bloc la pile (STACK)
register Indéfinie bloc bloc registre(si possible
sinon STACK)
static 0 prog bloc (ou segment DATA
fichier source)
extern 0 prog fichier source segment DATA

(ou bloc)

7-10 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Révision de Module

Allocation

Q. Quelles sont les principales parties ou segments de 'image mémoire
d’'un process ?

R.

Q. Quelles différences entre définition et déclaration ?

R.

Q. Quelles sont les 4 classes d’allocation ?
R.

Q. Quels sont les 3 attributs d’une variable déterminés par sa classe
d’allocation?

R.

Q. Quel segment est utilisé pour l'allocation des variables automatiques?
R.

Q. Quel effet la déclaration static d’une variable dans une fonction

produit-elle?
R.
Q. Quelle classe d’allocation permet le partage de variables entre

fonctions ?
R.

Classes d’Allocation 7-11

<: — SunsService
==

reproduction interdite

7-12 Programmation en C norme ANSI Révision C, Décembre 1994

Objectifs

Evaluation

Pointeurset Adresses

m Ecrire des expressions qui donnent des adresses.

m Référencer indirectement des données a I’'aide de variables
pointeurs.

m Utiliser les pointeurs vers des variables.

m Passer des pointeurs vers des variables a des fonctions - appel par
référence.

m Utiliser I’'arithmétique des pointeurs.

Travaux Pratiques 8 et révision de module.

8-1

reproduction interdite

<: — SunsService
==

L’opérateur Adresse De

Format
& <lvalue>

= L’opérateur adresse est utilisé pour récupérer I’adresse
d’une variable - son emplacement en memoire :

#include <stdio.h>
int main(void)
{

int number;

printf("Entrer un entier : ");

scanf("%d", &number);

printf("L’adresse de \"number\" est 0x%x.\n", &number);
printf("La valeur de \"number\" est %d.\n", number);

return O;
}I* Fin de la fonction main */

= Sur les Stations de Travail Sun, les pointeurs sont sur 32
bits, quelle que soit le type de la variable pointée.

8-2 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Principes des Pointeurs et Declarations

» Une donnée élémentaire est stockée dans une cellule
mémoire a une adresse précise.

= Les variables pointeurs réprésentent I’emplacement d’une
donnée plutdt que sa valeur - ainsi, les pointeurs
contiennent I’adresse d’une donnée :

Format
<type>* identifiant;

vptr

int v =42; I* variable entiere */

int *vptr; /* pointeur vers une variable entiere */
vptr = &v;

[* qui peut aussi s’écrire... */

int v =42, *vptr = &v,

valeur de vptr valeur de v

ff40c62 | /v 42
fd10a08 ffA0C62 = ogesses
(pointeur vers un int) (variable int classique)

Pointeurs et Adresses 8-3

<: — SunsService
==

reproduction interdite

Nomenclature Conventionnelle des Pointeurs

Par convention, le nom d’une variable peut indiquer que
c’est un pointeur.

int

{

H*

8-4

#include <stdio.h>
main(void)

int * iptr, val;
float * fptr, real;

iptr = &val;

printf("Entrer un entier : ");
scanf("%d", iptr);

fptr = &real,

printf("Entrer un réel : ");
scanf("%f", fptr);

printf("valeur de val: %d, real: %f.\n", val, real);
printf("Adresse de val: 0x%x, de real: 0x%x.\n", iptr, fptr);
return 0O;

fin de main */

Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Opérateur d’indirection

Format
* <expression pointeur>

= L’Indirection ou adressage indirect s’utilise avec une
variable qui, plutdt que contenir des données, détient
I’adresse de ces donnees.

m L’opérateur d’indirection peut étre vu comme le
complément de I’'opérateur adresse de - & donne I’adresse
de la variable concernée, * donne les données pointées.

int

{

H*

#include <stdio.h>

main(void)

static int vall = 42;

int * ptr, val2;

[* affecte I'adresse de vall a ptr... */

ptr = &vall,;

I* Indirection: donne la valeur pointée par ptr a valZ... */
val2 = *ptr;

I* vall, val2, et *ptr sont maintenant égales... */
printf("vall=%d; val2=%d; *ptr=%d\n", vall, val2, * ptr);
return O;

fin de la fonction main */

= La déclaration void *ptr (pointeur vers void) est
légale. void * est un pointeur générique capable de
pointer tout type de donnée sans restriction. Il a la méme
représentation et le méme alignement qu’un pointeur sur
char , et il ne peut pas étre déeréférence. On utilise la
convertion explicite (cast) dans ce cas.

Pointeurs et Adresses 8-5

<: — SunsService
==

reproduction interdite

Résume sur les Opérateurs &et *

Opérateur Esperluette &

= Utilisé pour renvoyer I’adresse d’une variable :

int index;
printf("Adresse de index == %x", &index);

Opérateur Asterisque *

= Utilisé pour déclarer une variable pointeur :

int *iptr;
int **ipp; /* pointeur sur pointeur */
char *cptr,;

double *dptr;

» Utilisé pour déréférencer une variable ou une
expression pointeur - c’est-a-dire, accéder a la valeur
pointée par la variable ou I’expression :

/* Supposons que iptr contient I'adresse d’'une

variable index déclarée comme un entier : */
/* iptr = &index;... */
iptr = 5; / modification indirecte de la valeur */

printf("valeur chargée dans index = %d\n", index);

8-6 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Révision Partielle

4 N

Zopérateurs & et *Hz

A partir des déclarations suivantes, quelles sont les instructions ci-dessous valides ?
Justifier les réponses et indiquer les reésultats dans les cas valides. (Remarque : le ré-
sultat d’'une instruction - valide - dépend de la précédente.)

int *numptr, num;
char *chptr;

float *realptr;
float real;

1) *chptr ="A’;

2) numptr = #

3) *numptr = 5;

4) printf ("%d", num);

5)real =7,

6) *realptr = real,

7) realptr = &real,

8) *realptr = num++;

9) printf ("num = %d\n", num);

10) *chptr = &'A’;

Pointeurs et Adresses 8-7

<: — SunsService
==

reproduction interdite

Fonctions : Appel par Référence

= Les pointeurs sont passés aux fonctions lorsque les
arguments doivent étre modifies par celles-ci - appel par
réference

m L’opérateur d’indirection doit étre utilisé dans la fonction
pour accéder aux donnees :

#include <stdio.h>
int main(void)
{
int num =5;
void func(int *);

printf("Main: Avant I'appel, num = %d.\n", num);
func(&num));
printf("Main: Aprés I'appel, num = %d.\n", num);
return O;

}* finde main */

void func(int *ptr)
*ptr += 2; * plus 2 a travers le pointeur *

printf("Func: num = %d.\n", *ptr);
}* finde func */

% a.out

Main: Avant I'appel, num = 5.
Func: num =7.

Main: Apres 'appel, num = 7.

%
dans num pt dans
main() 7 func()
~_

8-8 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Pointeurs et Tableaux

= Le nom d’une variable tableau est une constante de type

pointeur vers le premier élément du tableau :

int array[] = {5, 10, 15}, *ptr = array;
array

5 10| | | 15
| | |

’ mémoire
ptr Soit la déclaration ;

#define MAX 12

#define LAST (MAX - 1)

int i, array[MAX], *ptr;
ce qui suit est équivalent :

ptr = array;
ptr = &array|[O];

et arrayl[i] est équivalent a *(ptr + i)

et toutes les propositions suivantes sont vraies :

array == ptr

&array[0] == ptr

array[0] == *ptr

array[4] == *(ptr + 4)
&array[7] == ptr + 7
array[LAST] == *(ptr + LAST)
&array[LAST] == ptr + LAST

Pointeurs et Adresses

8-9

reproduction interdite

<: — SunsService
==

>
-
—+
my
-
)
=
QO
-
)
Q
D
w
-
2
-
—+
g%
-
-
w

= Ensemble d’opérations définies sur les pointeurs :

1. L’addition ou la soustraction d’un entier avec un
pointeur donne un pointeur.

2. Comparaison de pointeurs.

3. Soustraction de Pointeurs. Le résultat est le nombre
d’objets entre les deux adresses. Le type de I’entier signé
résultat est ptrdiff t défini dans <stddef.h>

int *ptr2;
ptrdiff_t delta;

static int array[] = {5, 10, 15}, *ptr = array;

|
10 15

adresse d’origine

[ptr

ptr++;

/

méemoire

pointeur apres incrément

* addition d’un int et d’un pointeur */

D /* comparaison de pointeurs... */
if (ptr != ptr2) printf("Différents.\n");

[] delta= ptr - ptr2;

/* soustraction de pointeurs */

8-10 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Révision Partielle

e

2 Calculs de pointeurs\ g

Soient les déclarations suivantes, quels sont les résultats des instructions ?
Remarque : Les exemples sont inter-dépendants.

int index, numbers[5], *nptr = numbers;
numbers[0] = 2;

numbers[1] = 4;

numbers[2] = 6;

numbers[3] = 8;

numbers[4] = 10;

1) index = *nptr;

2) index = *(nptr + 2);

3) index = *(nptr++);

4) printf("*nptr = %d\n",*nptr);

5) index = nptr - numbers;

6) index = *nptr++;

7) printf("nptr pointe I'élément %d.\n", nptr - numbers);

8) index = ++(*nptr);

Pointeurs et Adresses 8-11

reproduction interdite

<: — SunsService
==

Les Notations Pointeur et Indice de Tableau

Les notations pointeur et indice de tableau sont équivalentes :

#include <stddef.h>
#include <stdio.h>
#define MAX 42
int main(void)
{
[* déclaration de tableau, pointeur et pointeur de fin... */
int index, array[MAX], *ptr, *end = &array[MAX-1];
ptrdiff_t delta;/* ptrdiff_t déf. dans stddef.h */
[* Notation indice... */
for (index = 0; index < MAX; index++)
array[index] = index;
I* notation pointeur équivalente */
for (ptr = array; ptr <= end; ptr++) {
delta = ptr - array;
printf("Array[%d] = %d.\n", delta, *ptr);
}I* fin de for */
return 0;
} ¥ fin de main */

8-12 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Passage de Tableaux aux Fonctions

Le contenu d’un tableau passé en argument a une fonction
peut étre modifié, car le nom du tableau est un pointeur sur
le premier élément. Ainsi les tableaux sont toujours passes
en référence

#include <stdio.h>
#define SIZE 15
int main(void)
{
double arr[SIZE], *ptr;
void load_array(double array[]);

load_array(arr); /* Remplissage du tableau *
for (ptr = arr; ptr < &arr[SIZE]; ptr++){
printf("Array[%d] = %f\n", ptr-arr, *ptr);
} /* fin de for
} /*fin de main */

void load_array(double array[])

{

int whole =1;
double *pos;
for (pos=array ; pos <= &array[SIZE]-1; pos++,whole++){
*pos = whole / 3.0 ;
} I* fin de for */
} /*finde load_array

Pointeurs et Adresses 8-13

< > SunService
==

reproduction interdite

Révision de Module

E Pointeurs K

Q. En quoi un pointeur differe-t-il d’'une variable ordinaire ?

R.

Q. Quelle est la définition du terme Ilvalue ?

R.

Q. Quel est I'opérateur adresse de et a quelles expressions s’applique-t-il ?
R.

Q. Quel opérateur est utilisé pour déclarer un pointeur ?

R.

Q. Pourquoi est-il important d’initialiser un pointeur avant de ['utiliser ?

R.

Q. Qu’est-ce que l'indirection, quand s’en sert-on et avec quel opérateur ?

R.

Q. Comment une fonction peut-elle modifier un argument dans I'appelant ?

R.

Q. Quelles sont les opérations autorisées sur les pointeurs ?

R.

Q. Décrire les relations entre la notation pointeur et indice dans le contexte de
I'acces aux tableaux. Donnes quelques exemples.

R.

8-14 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Eﬁppel par référenciK

Ecrire un programme contenant 2 fonctions main() et swap(). La fonction swap()
échange deux valeurs de variables de la fonction main().

Conseil : la fonction doit utiliser pointeurs et indirection pour modifier les varia-
bles dans I'appelant

Pointeurs et Adresses 8-15

< > SunService
==

reproduction interdite

Travaux Pratiques 8 : Pointeurs et Adresses

8-16

Présentation

Introduction a la programmation des pointeurs et de I'indirection.

Exercices

1. Niveau 1. Vérifier les résultats du programme swap de la révision
du module.

2. Niveau 2. Ecrire un programme pour :

Déclarer et initialiser un tableau d’int de 10 éléments avec des
valeurs quelconques.

Appeler une fonction qui trouve la moyenne des valeurs, change
les valeurs du tableau en (valeur initiale * moyenne), et retourne la
moyenne calculée - appeler cette fonction average() : utiliser la
notation pointeur.

Remarque: La fonction retournera un double et doit recevoir le
début et la fin du tableau.

Appeler une fonction qui affiche les valeurs du tableau, avant et
apres I'appel a average() . Appeler cette fonction
print_array()

Faire afficher par la fonction main la moyenne aprés I'appel a
average() . Pour tous les acces au tableau utiliser la notation
pointeur, jamais la notation indicée. Nommer le fichier source
average.c

% cc -Xc average.c -0 average

3. Niveau 3. Réécrire le programme des TP 6 reverse.c en utilisant
la notation pointeur au lieu de la notation indicée. Le nommer
preverse.c

En plus, écrire une fonction print_array() pour prendre en
charge tous les afffichages du contenu du tableau.
- voir page suivante -

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

4. Niveau 4. (Facultatif) : Ecrire un programme pour :
Déclarer une variable pointeur de fonction retournant un int
Affecter a la variable I’adresse de la fonction printf()

Afficher un message en utilisant la variable pour effectuer I'appel
a la fonction.

Nommer le programme funcptr.c

% cc -Xc funcptr.c -0 funcptr

Pointeurs et Adresses 8-17

<: — SunsService
==

reproduction interdite

8-18 Programmation en C norme ANSI Révision C, Décembre 1994

Chaineset Caracteres =

Objectifs
m Définir les chaines dans le contexte de SunOS et du Langage C.
m Inclure le package String dans un programme C.
m Utiliser le package String pour manipuler les chaines.
m Reconnaitre et utiliser les macros de classification et de traitement
des caracteres dans un programme C.
Evaluation

Travaux Pratiques 9 et révision de module.

9-1

reproduction interdite

<: — SunsService
==

Introduction aux Chaines de Caracteres

m Les chaines de caracteres et les constantes (chaines
littérales) sont des séquences de caracteres (octets ou
bytes) entre guillemets (") , terminées par le caractére
null -°\0":

char str[] = "Voici une chaine";

Vio|i|c|i uinfe| [c|hlali|n|e|\0
0] [1] [2] [3] .. \O == caractére NULL

Exemples de déclaration de chaines :

char *str2 ="Chaine deux"; /* en lecture/écriture */

char str3[] ="Chaine trois"; /* lecture seule */

= Les constantes chaines adjacentes sont automatiquement
concaténees :

printf("Cette chaine est concaténée avec \n"
"cette chaine pour qu’on puisse imprimer \n"
"plusieurs lignes avec printf() sans \n"
"aucun probleme.\n");

9-2 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Saisie de Chaines: scanf()

m Laspécification de format pour la lecture de chaines avec
scanf() est %s I'argument correspondant devant
pointer vers un tableau de caracteres.

» La valeur retournée par scanf() est un entier. En cas
de réussite, c’est le nombre d’items correctement entres.
En cas d’erreur avant toute conversion, scanf() renvoie
EOF

= Le méme %sest utilisé avec printf() pour imprimer
les chaines :

#include <stdio.h>
#define MSG "Amusez-vous bien !"
#define ASIZE 40

int main(void)

{
char first_name[ASIZE], last_name[ASIZE];

printf("Entrer vos nom et prenom : ");
scanf("%s%s", first_name,last_name);
printf("Merci %s %s,\n", first_name, last_name);
printf("%s\n", MSG);
return O;

} I+ fin de main */

Chaines et Caracteres 9-3

0 SunService
|§/-\ reproduction interdite

Lecture et Ecriture des Chaines: gets() et puts()

Format

#include <stdio.h>
char *gets(char * S);
int puts(const char * S);

La fonction gets() renvoie le pointeur que vous lui
passez en argument (assurez vous que l’'allocation est
bien faite), ou un pointeur NULL si aucune entrée n’a pu
étre réalisée sur I’entrée standard.

gets() n’a pas besoin d’indication de format.

puts() affiche une chaine sur la sortie standard et rajoute
un caractere newline.

Normalement, puts() renvoie une valeur non-négative,
et EOFsi une erreur d’ecriture arrive.

#include <stdio.h>
#define PSIZE 256

int main(void)

{

gets(input);

puts(input);/*

return 0;
}* fin de main

char input[PSIZE]; /* espace alloué en lecture/écriture */
printf("Taper une ligne suivie de <Retour-Chariot>: ");

printf("\n\nVous avez saisi la ligne suivante :\n");

puts rajoute un newline - ’\n’ */

*/

9-4 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Package Chaines de Caracteres (String)

» Les fonctions de manipulation des chaines de
caracteres sont incluses dans la librairie standard du
C.

= Pour éviter d’avoir a prototyper les fonctions de
manipulation de chaines dans vos programmes, vous
devez inclure le fichier <string.h>

Chaines et Caracteres 9-5

reproduction interdite

<: — SunsService
==

Copie et Concaténation de Chaines

Format

#include <string.h>
/* copie s2 dans s1 (écrase s1) */
char *strcpy(char * s1, const char * s2);

/* concatene s2 apres s1 */
char *strcat(char * s1, const char * s2),

m Strepy() et strecat() renvoient toutes les deux le
pointeur sl.

= Exemples d’utilisation de strcpy/() et strcat()

#include <stdio.h>

#include <string.h>

#define MAX 256

#define QUOTE "Le langage : une forme de bégaiement organise."

int main(void)
{
char stri[MAX], str2[MAX], both[2*MAX];

printf("Entrer votre citation préférée <%d caractéres: ",

MAX);
gets(strl);
strepy(str2, QUOTE);/* copie QUOTE dans str2 */
strcpy(both, strl); /* copie la lere chaine dans both */
strcat(both, str2); concaténe la 2eme chaine sur both *

printf("lere : \"%s\"", strl);
printf("2eme : \"%s\"", str2);
printf("ensemble : \"%s\"", both);

return 0;
}* fin de main */

9-6 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Comparaison et Longueur de Chaines

Format

#include <string.h>
size_t strlen(const char * s1);
int strcmp(const char * s1, const char * s2),

m Strlen() renvoie la longueur de s1, sans compter le
caractéere nul de fin.

m Strcmp() renvoie un entier négatif nul ou positif selon
gue la premiére chaine est respectivement inférieure,
égale ou supérieure, selon I’ordre lexicographique, a la
deuxiéme chaine.

#include <stdio.h>
#include <string.h>
#define MAX 80

int main(void)
{
char strl[MAX], str2[MAX], *ptr, ch;
int len =0, result = 0;
printf("Entrer une chaine <%d caracteres: ", MAX);
gets(strl);
len = strlen(strl); I* compte les octets de strl */
printf("Vous avez tape %d caracteres.\n", len);
printf("Entrer une autre chaine <%d caracteres : ", MAX);
gets(str2);
result = strcmp(strl, str2);/* compare strl et str2 */
if (result <0)
printf("Alphabétiguement, %s < %s.\n",strl,str2);
else if (result > 0)
printf("Alphabétiquement, %s > %s.\n", strl, str2);
else

printf("Les chaines sont €gales !.\n");
return O;
}* fin de main */

Chafnes et Caractéres 9-7

reproduction interdite

<: — SunsService
==

Recherche de Caracteres dans les Chaines

Format

#include <string.h>
char *strchr(const char * S, int C);

m Strchr() renvoie le pointeur sur la premiere occurence
de ¢ dans s, ou le pointeur NULLsi non-trouve.

#include <stddef.h>
#include <stdio.h>
#include <string.h>
#define MAX 40

int main(void)

{
char play[MAX], *cptr;
int ch, pos;

printf("Entrer votre piéce de Moliere préférée : ");
gets(play);
printf("Entrer un seul caractere : ");
ch = getchar();
cptr = strchr(play, ch);/* ch est-il dans play ? */
if (cptr == NULL)
printf("Le caractére '%c’ n’est pas dans [%s]\n",ch,play);
else {
pos = cptr - play;
printf("Nom tronqué : %s\n", cptr);
printf("play[%d] est '%c’.\n", pos, play[pos]);
Y+ finde if */
return O;
}* fin de main */

9-8 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Convertir les Chaines en Nombres

m Les fonctions de conversions de chaines sont utilisées
pour convertir des chaines représentant des nombres dans
leur véritable valeur.

m Les fonctions atoi() , atof() et atol() s’utilisent
obligatoirement en incluant <stdlib.h>

= Lavaleur retournée par atoi() , atof() etatol() est
le résultat de la conversion. Le code de retour de
sscanf() est EOFsi une erreur de lecture arrive avant
toute conversion ; sinon, c’est le nombre d’items saisis
qui est retourné.

#include <stdlib.h>
int atoi(const char * nptr) - conversion ASCII en entier. Exemple:
num = atoi("47");

double atof(const char * nptr) - conversion ASCII en double.Exemple:
dnum = atof("47");

long atol(const char * nptr)- conversion en long int. Exemple
Inum = atol("47");

#include <stdio.h>
int sscanf(const char * S, const char * format , ...) - lit un nombre

depuis une chaine s dans une variable selon format.
Exemple:

sscanf ("47", "%f", &num)
Lit un réel depuis la chaine "47" dans la variable fnum.

Remarque : atoi("abc") retourne 0 mais atoi("0") retourne aussi 0.
On ne peut pas faire la différence.

Chafnes et Caractéres 9-9

reproduction interdite

<: — SunsService
==

La Fonction sprintf()

Format

#include <stdio.h>
int sprintf(char * S, const char * format | ..);

= La fonction sprintf() est la fonction d’affichage
correspondant a sscanf()

m Sprintf() est similaire a printf() , mais au lieu
d’ecrire sur la sortie standard, le résultat est écrit dans le
tableau pointé par s.

m Sprintf() renvoie le nombre de caracteres écrits, non-
compris le caractére "\o’ qui est ajouté a la fin.

char str[256], *mess = "Utiliser sprintf";
int num = 13;

sprintf(str, "Nouvelle chaine avec les valeurs de\n"
" num (%d) et mess (%s).\n\n", num, mess);

9-10 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Conversions de Chaines en Nombres

Exemple de programme utilisant atoi() et sscanf()

#include <stdio.h>
#include <stdlib.h>
#define MAX 80

int main(void)
{
char stringl[MAX], string2[MAX];
int ival;
double dval;

printf("Entrer un entier : "),
gets(stringl);
ival = atoi(stringl);
printf("Entrer un réel : ");
gets(string2);
sscanf(string2, "%lf", &dval);
printf("%f plus %d = %f.\n", dval, ival, ival+dval);
return 0;
Yy * finde main */

Chafnes et Caractéres 9-11

SunsService
reproduction interdite

|%f‘c

Opérations sur les Caracteres

#include <ctype.h>

int isalpha(int
int isupper(int
int islower(int
int isdigit(int
int isxdigit(int
int isalnum(int
int isspace(int

int ispunct(int
int isprint(int
int iscntrl(int
int isgraph(int

int toupper(int
int tolower(int

9-12

Macros de classification et de conversion :

c);
c);
c);

Les macros ci-dessus prennent un int

c est-il un caractére alphabétique ?

c est-il une majuscule ?

¢ est-il une minuscule ?

c est-il un chiffre (0-9) ?

¢ est-il un chiffre hexadécimal (0-9, a-f or A-F) ?

¢ est-il un alphanumérique (a-zA-Z or 0-9) ?

c est-il un caractere d’espacement ?

(par exemple : espace, tabulation)

¢ est-il une ponctuation ?

(par exemple: 2, 1)

c est-il un caractére imprimable ?

(y-compris I’espace)

c est-il un caractére de contrdle ?

(par exemple : le caractére delete ou un caractere

de contréle classique)

c est-il un caractere dessinable ? (sans I’espace)
conversion en majuscule. (vérifie islower())(fonction)
conversion en minuscule. (vérifie isupper())(fonction)

en parametre, si

celui-ci peut étre représenté comme un unsigned char
ou est égal a EOF

La valeur retournée par les fonctions isxxx()

est soit

vraie (non nulle) soit fausse (nulle) . La valeur retournée

par les fonctions toxxx()

est soit le caractéere converti si

la conversion a pu étre faite, soit le parameétre inchange.

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Opérations sur les Caracteres (suite)

Exemple d’utilisation de isalpha()

et toupper()

int

{

H*

#include <stdio.h>
#include <ctype.h>
#define MAX 80

main(void)

char *aptr, *optr , alphas[MAX], other[MAX];
int ch;

aptr = alphas;/*
optr = other,;
printf("Entrer une série de caracteres : "),

while ((ch = getchar()) !I="\n") {
if (isalpha(ch)) {
*aptr = toupper(ch);

aptr++;
if (aptr == &alphas[MAX-1])
break ;
}
else {
*optr = ch;
optr++;
if (optr == &other[MAX-1])
break ;
}
}* fin de while */
aptr = "\0’;/ finir par un caractere nul...
*optr = "\0’;

printf("Caractéres alpha (en Maj.): %s\n", alphas);
printf("Autres caracteres : %s\n", other);
return 0O;

fin de main */

Chafnes et Caractéres

charge l'adresse du tableau...

*/

*/

9-13

< > SunService
==

reproduction interdite

Révision de Module

E Chaines K

Q. Quelles sont les différences entre une chaine et un tableau de char ?
R

Q. Quelle fonction peut-on utiliser pour compter les caracteres d’'une chaine ?
R.

Q.Quelle est la fonction qui concatene deux chaines ?
R

Q. Quelles sont les valeurs possibles en comparant 2 chaines avec strcmp() ?
R.

E Caracteres K

Q. Quel fichier doit-on inclure (#include) pour utiliser les macros de conversion de
caractéres ?
R.

Q. A part les guillemets, quelles sont les différences entre 'a’ et "a" ?
R

Q. Quelle macro de classification vérifie qu’un caractére est imprimable ?
R.

9-14 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Conversion K

Ecrire un programme qui déclare une chaine de 40 char , demande des
caracteres au hasard, charge la saisie dans le tableau de char , et affiche tous
les caracteres non-alphabétiques rencontreés.

Chafnes et Caractéres 9-15

< > SunService
==

reproduction interdite

Travaux Pratiques 9 : Chaines et Caracteres

Présentation

Familiarisation avec les chaines et les fonctions de manipulation, ainsi
gu’avec les macros de classification et de conversion de caractéres.

Exercices

1. Niveau 1. Vérifier Les résultats du programme de révision en le
compilant et en I’'exécutant.

2. Niveau 2. Réécrire le programme loops.c des TP 5 en utilisant
les macros de classification isalpha() et islower() , plutot
gu’en testant le code ASCII directement.

Nommer le programme lupes.c

facultatif : Convertir toutes les majuscules saisies en minuscules en
utilisant la macro tolower() . Ne pas oublier <ctype.h>

3. Niveau 3. Ecrire une fonction qui émule strlen() - 'appeler
slen() . Le programme doit :

Demander 2 chaines a l'utilisateur.

Appeler slen() pour compter les caracteres dans les chaines,
mais sans le caractére nul de fin - utiliser la notation pointeur.

Afficher la longueur de chaque chaine.

En utilisant les fonctions strcpy() et strcat() , concaténer
dans une troisiéme chaine, les 2 chaines saisies en insérant " *** "
entre les deux. S’assurer que la chaine de destination est assez
grande pour accueillir les deux chaines.

Afficher la chaine résultat.

Ne pas oublier <string.h> . Nommer le programme
stringy.c

% cc -Xc stringy.c -0 stringy

9-16 Programmation en C norme ANSI Reévision C, Décembre 1994

Objectifs

Evaluation

Structures, Unions, Définitionde
Typeet Type Enumeres

m Déclarer des variables structures.

m Initialiser des variables structures.

m Ecrire des expressions qui référencent des membres de structures.
m Utiliser la macro offsetof()

m Utiliser des structures imbriquées.

m Définir des pointeurs de structures et référencer des membres a
travers les pointeurs.

m Créer et utiliser des unions dans un programme C.
m Déclarer des données de type énuméreé.

m Créer de nouveaux types en utilisant typedef

Travaux Pratiques 10 et révision de module

10-1

reproduction interdite

<: — SunsService
==

Principes des Structures

= Uune structure est un agrégat, dont les éléments peuvent
étre de difféerents types :

struct {
int a;
int b;
} Xyz; /* Similaire a int xyz[2]; */

struct {
char name[40];
float salary; /* Contrairement aux tableaux,
les structures peuvent regrouper*/
int paygrade; /*des éléments de différents types. *
} employee;

m Les éléments d’une structure sont des membres ou
champs.

» Chaque membre d’une structure a un identifiant unique.

10-2 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Déclaration de Structure

Format

struct <id-de-structure> {
<membre 1>
<membre 2>

<membre n>
} <identifiant_de_variable> ;

= Quand I'id-de-structure est utilisé, un nouveau type de
donnée est ajouté au programme. Ce nouveau type
s’appelle struct <id-de-structure> et peut étre
utiliser par la suite pour déclarer des variables.

m L’ identifiant_de variable provoque l’'allocation
de mémoire correspondant. S’il est omis, aucun espace
mémoire n’est alloué.

#include <stdio.h>
int main(void)
{
struct db{
int entry_code;
short age;
char first_name[16];
char last_name[32];
}. I* fin de struct db, pas d’allocation */

[* déclaration de 3 variables,la mémoire est allouée */
struct db first, second, third;

I* ... suite du programme ... */
} I+ finde main */

Structures, Unions, Définition de Type et Type Enumerés 10-3

reproduction interdite

< > SunService
==

Forme et Taille d’'une Structure

= Toutes les machines/architectures ont leurs regles :

Architectures Sun4 (SPARC) : alignement aux frontiéres
naturelles des types : 8 octets pour double, 4 octets pour float,
4 octets pour int, 2 octets pour short, 1 octet pour char.

= La taille d’une structure est donnée par
sizeof (struct_identifier) . (Attention : la taille
d’une structure n’est pas forcement égale a la somme des
tailles de ses membres.)

s Dans I’exemple suivant sur Sun4 , il y a un trou de trois
octets non-utilises.

struct phone {
char name[25];
int pnumber;
} Xxphone;

[rontiere d'octet | [rontiere de 4 0. |

structure phone {‘%

trou |

name[25] pnumber

10-4 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Référencer des Membres de Structure

Format
<nom_de_struture> . <nom_de_membre>

m Les membres de structures sont référencés a I’aide de

I’opérateur "." .

= L’opérande de gauche de I'opérateur "." doit étre un nom
de variable structure.

m L’opérande a droite de I'opérateur "." doit étre un nom
de membre de structure :

#include <stdio.h>
int main(void)
{
struct record {
int key;
char first[16];
char last[32];
} rec;

printf("Entrer votre nom : ");
gets(rec.first);
printf("Entrer votre prénom : ");
gets(rec.last);
printf("Entrer un entier : ");
scanf("%d", &rec.key);
printf("Le nom est %s %s.\n", rec.first, rec.last);
printf("Le ler car. du nom est %c.\n", rec.first[0]);
printf("Le code est %d.\n", rec.key);
return 0;
Yy /* finde main */

Structures, Unions, Définition de Type et Type Enumerés 10-5

<: — SunsService
==

reproduction interdite

Utilisation de la macro offsetof()

Format

#include <stddef.h>
size_t offsetof(type , nom_de_membre),

s La macro offsetof() renvoie I’offset en octets du
membre de structure, nom_de _membre, depuis le début
de la structure, référencé par type .

{

struct
char
char
char
char
char
int

3

return

10-6

#include <stddef.h>
#include <stdio.h>

int main(void)

address {
first_name[32];
last_name[32];
street[128];
city[26];
state[3];
Zip_code;

printf("l'offset du membre zip_code dans struct address = %d\n",
offsetof(struct address, zip_code));

0;

} /*fin de main ¥

Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Imbrication de Structures et Acces

m Struct estun type de membre de structure valide, ainsi
on peut imbriquer des structures.

= Il n’y a pas de limite a la profondeur d’imbrication des
structures, si ce n’est la capacité du programmeur a s’y
retrouver.

#include <stdio.h>
int main(void)
{
struct xname {
char first[20];
char last[30];
%
struct record {
int key;
struct xname name;
} rec;

printf("Entrer un nom de famille : ");
gets(rec.name.first);
printf("Entrer un prénom : ");
gets(rec.name.last);
printf("Entrer un entier : ");
scanf("%d", &rec.key);
printf(*"Nom=%s %s.\n",
rec.name.first,rec.name.first);

printf("Code = %d.\n", rec.key);
return O;

} ¥ fin de main */

Structures, Unions, Définition de Type et Type Enumerés 10-7

reproduction interdite

<: — SunsService
==

Initialisation de Structure

= Les structures static , extern ,etauto sont
initialisées de la méme maniére que les tableaux, en
utilisant des expressions constantes.

= L’ordre dans lequel on place les constantes doit
correspondre a I’ordre d’apparition des membres :

#include <stdio.h>
int main(void)
{
struct database {
char name[40];
int key;
¥
I* initialisation de rec.name et rec.key... */
static struct database rec = {"Michel Martin", 42},
struct database recl = { "Alain Dupont", 24};
printf("Champ nom : %s, %s.\n", rec.name, recl.name);
printf("Code : %d, %d.\n", rec.key, recl.key);
return O;
} I+ finde main */

10-8 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Tableaux de Structures

Les éléments de tableaux peuvent étre des structures :

#include <stdio.h>
#define MAXITEMS 3
#define ITEM 20

int main(void)
{
int index;
float total,
struct info {
char item[ITEM];
float cost;
int count;
} stock[MAXITEMS];

for (index = 0; index < MAXITEMS; index++) {
printf("Entrer le nom numero %d: ", index + 1);
scanf("%s", stock[index].item);
printf("Entrer son codt : ");
scanf("%f", &stock[index].cost);
printf("Entrer la quantité commandée : ");
scanf("%d", &stock[index].count);
total = stock[index].cost * stock[index].count;
printf("Codt total pour %s: %.2f F\n\n",

stock[index].item, total);
}I* fin de for */

return 0;
} I+ finde main */

Structures, Unions, Définition de Type et Type Enumerés 10-9

reproduction interdite

<: — SunsService
==

Initialisation des Tableaux de Structures

Attention a I’ordre des données dans l'initialisation des
tableaux de structures :

#include <stdio.h>
int main(void)
{
struct database {
char name[40];
int key;
3
struct database list[3] = { "Marc Dupas", 42,
"Michel Dufour", 256,
"Henri Dupont”, 0 };
printf("Premier nom = %s.\n", list[0].name);
printf("Le 3eme entier = %d.\n", list[2].key);
return 0;
}* fin de main */

10-10 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Pointeurs de Structures

= On peut déclarer un pointeur vers un type structure.

s Les membres d’une structure sont référencés a travers un
pointeur par I’opérateur ->

#include <stdio.h>
int main(void)

{

struct employee {
char first_name[40];
char last_name[40];
int age;
float salary;

3

struct employee person[5], *emptr;

int i

emptr = person;

for (i=0;i<5; ++i, ++emptr) {
printf("Nom et prénom de I'employé : ");
scanf("%s%s", emptr->first_name, emptr->last_name);
printf("Age de I'employé : ");
scanf("%d", &emptr->age);
printf("Salaire : ");
scanf("%f", &emptr->salary);
while (getchar() !="\n’);/* raz du clavier */

}

return 0O;

}/* finde main */

Structures, Unions, Définition de Type et Type Enumerés 10-11

<: — SunsService
==

reproduction interdite

Révision Partielle

e N

ZH Structure b&

Soient les déclarations suivantes, donner I'instruction satisfaisant a chaque question :

struct inventory {
char model[20];
float cost;
int count;
} cars[50];
struct inventory *mycar = &cars[0];

1) Copier jaguar dans le membre model de la 5éme voiture du tableau cars.

2) Copier jeep dans le membre model de mycar.

3) Lire un codt dans le membre cost de la 3eme voiture du tableau cars.

4) Afficher le colt du dernier élément du tableau.

5) Affecter 75000 F au colt de mycar.

6) Saisir le nom du modéle de la 8¢me voiture du tableau.

10-12 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Introduction aux Unions

= Une union est un espace mémoire partagé par plusieurs
objets, genéralement de types différents.

= L’information stockée dans une union est vue du méme
type que le membre référencé, et la référence est faite de
la méme maniére que pour un membre de structure.

= Une union est seulement aussi grande que son plus grand
élément :

union hypothetical {
double real;
int val;
char ch;

fu;

sizeof(u) ==

e

NN

sizeof(u.val) ==

AN

mémoire

sizeof(u.ch) ==

Structures, Unions, Définition de Type et Type Enumerés 10-13

<: — SunsService
==

reproduction interdite

Introduction aux Enumeérations

Format

enum <id-type> { membrel, .., membre_n} <variables> ;
ou

enum <id-type> {membrel, ..., membre_n k

enum <id-type> <vars> ;

= Un type énumérés ou énumération est défini par le mot-clef
enum.

» Une énumération est un ensemble nommé de constantes
entieres.

m Les Enumérations peuvent étre employées pour améliorer
la lisibilité et la clarté d’un programme :

#include <stdio.h>

int main(void)

{
enum fruit {pomme = 1, orange, poire, kiwi, raisin};
enum fruit fruit_choice;

printf("Entrer votre choix:\t1 - pomme\n\t\t\t2 - orange\n"
"\(\t\t3 - poire\n\t\t\t4 - kiwi\n\t\t\t5 - raisin\n"
"Choix : \b\b\b");
scanf("%d", &fruit_choice);
switch (fruit_choice) {
case pomme:
printf("Votre choix correspond a une pomme.\n");
break ;

case orange:
printf("Votre choix correspond a une orange.\n");
break ;
/* ... suites des case */
} /*fin de switch */
return O;
} /*fin de main */

10-14 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Introduction atypedef

Format

typedef <type existant> <nouveau_type> ;

typedef permet de donner un nouveau nom (créer un
synonyme) pour un type de donnée déja existant :

#include <stdio.h>
#define MAX 80
int main(void)
{
typedef char String[MAX];
typedef union {
int word32;
short word16[2];
char bytes[4];
} Mask;
typedef struct {
int num;
String text;
Mask flags;
} Record;
Record recl, rec2;/* <- déclaration simplifiée ! */

I* déroulement simulé... */
printf("Entrer une chaine : ");
gets(recl.text);
printf("Entrer votre tour de téte : ");
scanf("%d", &(recl.flags.word32));
printf("Votre QI est %d.\n", recl.flags.word32 * 2);
return O;
} I+ finde main */

Structures, Unions, Définition de Type et Type Enumerés

10-15

< > SunService
==

reproduction interdite

Révision de Module

Structures

Q. Quelle est la principale propriété qui rend une structure différente d’'un
tableau ?

R.

Q. Quelles sont les types qui peuvent étre membres de struct ~ ?

R.

Q. Combien de niveaux d’imbrication de structure sont permis ?

R.

Q. Comment déterminer la taille d’'une structure ?

R.

Q. Qu’est-ce que l'identifiant de structure et quelle est son importance ?
R.

Soient les déclarations suivantes, décrire les structures et la maniere d’accéder
a leurs membres :

struct record{
int data;
char name[16];
} recl;

struct record rec2[2] = {128, "chainel", 256, "chaine2"},

struct record *rptr = &recl;

10-16 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

(Structures K

Ecrire un programme qui déclare une structure a 3 membres : une chaine de 40
caracteres nommeée data , un entier key et un double dub. Afficher la taille de la
structure, faire des affectations de valeur a chaque membre, et afficher chaque

membre :

Conseil : vous pouvez utiliser strcpy() pour charger une valeur dans
data .

Structures, Unions, Définition de Type et Type Enumerés 10-17

< > SunService
==

reproduction interdite

Travaux Pratiques 10 : Structures

Présentation

Introduction a I'utilisation des structures, unions, typedefs, et enums
dans un programme C.

Exercices

** _ La solution sera utilisée dans les TP a venir.

1. Niveau 1. Vérifier les résultats du programme de révision en le
compilant et en le langant.

2. **Niveau 2. Reprendre le programme ages.c des TP 2. Le
programme doit déclarer une structure (avec identifiant de structure)
comportant les membres suivants :

char name[20]
int birth_year,;
short age;
short sum;
short product;

Le programme doit demander la valeur de chaque champ, et
stocker la valeur dans une structure apres avoir vérifié sa validité.
Une fois la structure entiérement renseignée, proposer un menu
pour le choix d’un champ. Apres choix de I'utilisateur, afficher le
contenu du champ demandé.

- voir page suivante -

10-18 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

3. **Niveau 3. Ecrire un programme pour :
Déclarer une structure avec les membres suivants :

char first[20]
char last[20]
short age;

Déclarer un tableau de 4 éléments du type structure.

Définir une fonction print_strux() qui affiche une structure
comme ci-dessus.

Dans une boucle, demander a I'utilisateur des valeurs pour les 4
structures du tableau. Saisir I’dge comme une chaine de caractere
et la convertir avec atoi()

Faire une fonction qui affiche une des structures a partir d’un
indice utilisateur (c’est-a-dire entre 1 et 4 et non entre 0 et 3).

Facultatif : Faire une boucle autour de la derniere fonction
d’impression pour que I'utilisateur puisse visualiser autant de
structures qu’il veut et non pas une seule.

Nommer le fichier source strux.c

Conseil : Définir la structure avant la fonction main() .

Structures, Unions, Définition de Type et Type Enumerés 10-19

<: — SunsService
==

reproduction interdite

10-20 Programmation en C norme ANSI Révision C, Décembre 1994

Objectifs

Evaluation

Opeérateurssur Bits

m Utiliser I'opérateur sur bits "&" pour masquer des bits a 0 dans un
entier.

m Utiliser I'opérateur sur bits "]" pour positionner des bits a 1 dans
un entier.

m Utiliser les opérateurs de décalage de bits sur des entiers.

m Manipuler individuellement les bits d’un entier avec les champs
de bits des structures.

Travaux Pratiques 11 et révision de module.

11-1

=== SunService
: @

reproduction interdite

Tables de Verité Logiques.

= Les tables de Vérité : P et Q représentent des bits :

& ...l et bit & bit (AND)
| ou bit & bit (OR)
N ou exclusif bit a bit (XOR)

~ non bit a bit unaire : inversion de chaque bit (NOT)

m "&" donne le bit 1 si et seulement si les deux bits
opérandes sont a 1, et 0 dans les autres configurations.

= "]" donne le bit 0 si et seulement si les deux bits
opérandes sont a 0, et 1 dans les autres cas.

m "N donne le bit 1 si et seulement si un seul des deux bits
est a 1, sinon O.

» "~"donne le complément a 1 de chaque bit, autrement
dit si le bit est 1 le résultat est 0, si le bit est 0 le résultat
est 1.

11-2 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Définitions Diverses

= least significant bit (LSB)- (bit de poids faible) le bit le plus a
droite dans I’octet ou le champ de bits.

= most significant bit (MSB)- (bit de poids fort) le bit le plus a
gauche dans I'octet ou le champ de bits.

= Mmasque - configuration de bits utilisée pour remettre a
zéro (raz) ou forcer a 1 certains bits dans un octet ou un
champ de bit, en vue de modification ou de test.

= masquer- utiliser une configuration de bits pour retenir
ou eliminer certains bits d’un octet.

(stations de travail Sun SPARC)

position des bits et des octets dans une adresse (32 bits)

MSB

313029 .. 21
Bits de poids fort Bits de poids

faibles (LSB)

Opérateurs sur Bits

11-3

reproduction interdite

< > SunService
==

Opérateurs sur Bits - et &

Vue de détail sur I'opérateur logique sur bits et & - forcer
a 0 les 3 octets de poids fort :

unsigned int A = OxFF, B = 0x339ddb59, C;

A= 0()00()00000000000000)OO)OllllIllll | | | | | | | | I
B= O()ll()OlLlO)lllOlllOllOl]lOlCllCOl | | | | | | | | I

C=B&A;

C= O()OO()OO()OOOOOOOOOOO)OO)OOlOlIlOOl | | | | | | | | I

#include <stdio.h>

#define READY 0x1 /* périphérique prét */

#define RESET 0x2 /* périphérique initialisé */

#define DATA 0x4 /* données dispo sur périphérique */
#define BROKEN 0x8 /* périphérique coupé */

int main(void)

{

unsigned char devstatus(char devnamel[]);
unsigned char status;
status = devstatus("/dev/printer_one");
if (status & READY)
printf("le bit READY est présent dans status.\n");
if (status & RESET)
printf("le bit RESET est présent dans le status.\n");
/* tests similaires pour DATA et BROKEN */
}
unsigned char devstatus(char devnamel])
{
/* retourner la configuration 5 == ‘0101’
bit 0 == 1 READY
bit 1 == 0 pas de RESET
bit 2 == 1 DATA (données disponibles)
bit 3 == 0 pas de bit BROKEN (ligne ok)

/*
return 0x5;
} ¥ fin de main */

11-4 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Opérateurs sur Bits - ou |

Démonstration de ou logique sur bit, pour positionner a 1
I’octet de poids faible d’un entier :

unsigned int A = OxFF, B=0x510, C;

0QopqgopagopqopqgopqgopqgopqgipyIpy1pn | | | | | | | | I

0QOopQopaopqopagopqgopqgipyopqgipqgop l | | | | | | | I

C=B|A;

0QopQgopagopqgopagopagopaipyIpIp1Ip | | | | | | | | I

#include <stdio.h>
#define PRIZE1 0x001
#define PRIZE2 0x100
int main(void)

{
int some_function(int val), num, bflags = 0;
printf("Entrer un entier positif : ");
scanf("%d", &num);
bflags = some_function(num);
if (bflags & PRIZE1)

printf("Vous gagnez le premier prix \n");
if (bflags & PRIZE2)
printf("Vous gagnez le deuxieme prix \n");
} /* fin de main */

int some_function(int val)

{
if (val <256) /* 256=0x100 */
return (val | PRIZEL);
else if (val >= 256)
return (val | PRIZE2);
else
return 0;
}/* fin de some_function */

Opérateurs sur Bits 11-5

SunsService
reproduction interdite

|%f‘c

O
o
D
=
b}
—
D
c
=
92]
wn
-
=
o
—
wn
S
\
D
—+
Q
3
S
®
3
®
)
~
Q
c
S

Voyons de plus pres I'opérateur logique sur bits xor et le
complément a un

unsigned int A = OxFF, B = 0x339ddb59, C;

A= 0Q0P0AQ0pPAQOPQopPQopPQopAOoPQgIp Y11 l | | | | | | | I
B= 011001010p031aQ1p30a10p30pqQipqQop l | | | | | | | I
C=B"A
C= 0110010100314 Q1p304100341Pp10PA1PD | | | | | | | | I
C=-~C;
C= 1900100011 4q0p10pQ1pagipqopqgipqop
11-6 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Opérateurs sur Bits - ">> et <<" Décalage

Format

variable << nombre_de_positions
variable >> nombre_de_positions

Exemples d’utilisation d’opérateur decalage a gauche et a
droite "<<" et ">>" - pour un décalage a gauche de 1 bit :

unsigned int A =5, B;

5==1000Q0pPQOpQopqopqopagopqgopqgopqgopion

B=A<<1; /* décalage gauche de 1 %/

10== |0pQopQgopqQopqgopqgopqgopqgopqopqgopqgip

#include <stdio.h>
int main(void)
{ . .
int i, num;
unsigned int mask;
printf("Entrer un entier en base 10 : ");
scanf("%d", &num);

printf("Octal:\t0%o0\n", num);
printf("Hexa:\tOx%x\n", num);
printf("Binaire:\tOb");

mask = 1 << (' sizeof(int) *8-1);

for (i = sizeof(int) << 3;i>0;i--, mask >>=1) {
putchar(num & mask ? '1":’0");

}

putchar(’\n’);

return O;

} /*fin de main */

Opérateurs sur Bits 11-7

0 SunService
|%f-\ reproduction interdite

Retour sur les Structures - Les Champs de Bits

Format

struct <id_de_structure> {
<type d’int> <identifiant> :<nb de bits>

} <id _de variable> ;

Les champs de bits des structures fournissent un moyen
commode d’accéder individuellement aux bits, et permet
une utilisation plus efficace de la mémoire - les indicateurs
binaires (flags ou drapeaux) peuvent étre regroupés dans
des entiers :

struct packed_flags {
unsigned int f1:1,
unsigned int f2:1;
unsigned int 3:1;
unsigned int f4:1;
unsigned int type:4;
unsigned int index:24;

flags.type
structure packed flags

opqgopagopqQopagopqgopqgopagopqopqgopaqaop

flags.f4 flags.index
flags.f3

flags.f2
flags.fl

11-8 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Révision de Module

E/Ianipulation de bEK

Q. Quel opérateur met les bits/octets a0 ? Lequellesmeta 1 ?
R.

Q. Décrire l'effet de I'opérateur sur bits non-unaire (complément a un) :
R.

Q. Décrire les effets des opérateurs de décalage a droite >> et & gauche << :
R.

Ecrire une déclaration qui fasse I’ union d’un unsigned int et d'une struct
comprenant un tampon de 3 octets suivi de 8 champs d’1 bit (unsigned int).

Opérateurs sur Bits 11-9

< > SunService
==

reproduction interdite

Travaux Pratiques 11: Manipulation de Bit

Présentation

Introduction aux opérateurs sur bits et aux champs de bits des
structures du C.

Exercices

1. Niveau 1. Ecrire un programme qui, a partir des déclarations de la
révision du module, affecte des 1 a chaque champ de bit (dans le
sens décroissant : 8-1). Afficher la taille de la structure et de
I’union, puis la valeur de chaque champ et du mot entier a chaque
affectation (en hexa et/ou décimal).

2. Niveau 2. Ecrire un programme pour :

#define un masque d’un octet pour I'octet de poids faible et un
pour le second octet de poids faible (LSB).

Déclarer un short int

Positionner et tester a I’aide des masques, les deux octets de
I’entier court.

Facultatif : (Niveau 3)

Ecrire une fonction dans le programme qui positionne le bit 0 ou le
bit 8 a 1 selon que la premiere lettre du nom de I'utilisateur est
respectivement dans la premiere ou la deuxiéme partie de
I'alphabet. La fonction main doit afficher un message différent
selon le bit positionné par la fonction.

Nommer le fichier source masks.c

11-10 Programmation en C norme ANSI Reévision C, Décembre 1994

Passage d’Arguments a main()

Objectifs

= Retrouver et traiter des arguments de la ligne de
commande dans un programme C.

Evaluation

Travaux Pratiques 12 et révision de module.

12-1

reproduction interdite

SunsService
|@ﬁ Serv

Récupeérer les Arguments de la Lighe de Commande

= Le compte d’argument est dans la variable argc .

m L’argument argv pointe vers un tableau de pointeurs
sur char (les chaines de caracteres des arguments) , dont
le dernier est le pointeur NULL

% a.out -f filel file2 file3

. e
~—
argc ==
argv
a.out\O -0 file1\O file2\0 file3\0

[

argv[0] | argv[1] | argv[2] | argVv[3] | argv[4]

12-2 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Récupeérer les Arguments de la Ligne de Commande

Exemple de traitement des arguments de main avec une

notation indicée :

#include <stdio.h>
int main(int argc, char *argv[])

{

int index;

if (argc>1){
printf("%d arguments:\n", argc - 1);
for (index=1; index<argc; index++)
printf("%s\n",argv[index]);

}
else

printf("Pas d’arguments.\n");
return O;

} /*fin de main */

Passage d’Arguments a main()

12-3

reproduction interdite

<: — SunsService
==

Récupeérer les Arguments de la Ligne de Commande

Autre exemple utilisant la notation pointeur :

#include <stdio.h>
#define MIN_ARGS 2 /* 1 argument minimum */

int main (int argc, char **argv)

{
int index = 0;
char **temp = argv; /* sauvegarde de argv */
void usage(char *); /*déclaration de la fonction usage *

if (argc <MIN_ARGS) /*1 argument au moins, quoi ! */
usage(*argv);
while (*temp) /* tant que différent de NULL... */
[* affiche tous les arguments... */
printf("L’argument #%d est\"%s\"\n",index++, *temp++);
return O;
} /*fin de main */

void usage(char *prog_name)

{

printf("\nUsage:\n");
printf("\t%s <argument> [<argument>...]\n\n", prog_name);
exit (1); /*fin du programme apres le message */

} /*fin de usage */

12-4 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Révision de Module

4 N

Arguments

Q. Quel est le nom conventionnel des arguments de main() et leur ordre ?
R.

Q. Quelles sont les deux manieres de déclarer les arguments de main ?
R.

En utilisant la notation indicée, écrire un programme add qui additionne 2
entiers passés en parametre suivant la syntaxe :

add <n1> <n2>
Le programme doit vérifier qu’on lui passe 3 arguments et afficher un
message d’aide sinon.

Passage d’Arguments a main() 12-5

< > SunService
==

reproduction interdite

Travaux Pratiques 12 : Arguments de la Ligne de Commande

Présentation

Familiarisation avec la déclaration et I'utilisation des arguments de la
ligne de commande dans un programme C.

Exercices

1. Niveau 1. Vérifier les résultats du programme de révision en le
compilant et en I’exécutant.

2. Niveau 2. Ecrire un programme pour :
Utiliser un pointeur pour argv et un indice pour les chaines.
Afficher les arguments caractéres par caractéres avec putchar()
Si pas d’argument, afficher un message et sortir.

3. Niveau 3. (facultatif) Le programme doit prendre 2 arguments.
Comparer le ler avec -n (normal), ou -i (inverse). Si le ler
argument n’est aucun des 2 précédents, donner un message
d’usage et sortir. Si I’option est -n afficher le 2eme argument
normalement, sinon I’afficher en inversant I’ordre des lettres,
caractére par caractere avec putchar() .Une fonction peut gérer
I’affichage de I’'argument. Ne pas coder en dur le nom du
programme dans le message d’usage, mais utiliser plutét

argv[0]
Appeler le programme argmanip.c

Conseil : Le message d’usage ressemblera a :

Usage :
argmanip [-f | -r] <chaine_de_caractére>

Assurez vous de bien inclure <string.h>

12-6 Programmation en C norme ANSI Reévision C, Décembre 1994

Entrées/SortiesFichiersStandard

Objectifs
m Réaliser des E/S (Entrées/Sorties) en utilisant la librairie standard.
m Ouvrir un fichier avec fopen()
m Lire dans un fichier avec fread() , fgets() , fgetc() et
fscanf()
m Ecrire dans un fichier avec fwrite() |, fouts() , fputc() et
fprintf()
m Positionner le pointeur de lecture/écriture avec fseek()
m Récupérer la position courante avec ftell()
m Fermer un fichier avec fclose()
= Vider un tampon de sortie avec fflush()
Evaluation

Travaux Pratiques 13 et révisions de module.

13-1

<: — SunsService
==

reproduction interdite

Définition des Entrées/Sorties niveau User

m FILE est la structure de controle des fichiers.

m Les objets stdin, stdout et stderr, du type FILE *, peuvent

étre utilises comme arguments des fonctions standard
d’E/S fichiers (a voir plus loin) :

. Process
stdin— |<«——\ Utjlisateur

» | Stdout

stderr
stdin "entrée standard"
stdout "sortie standard"
stderr "sortie erreur standard"

13-2 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Ouvrir un fichier avec fopen()

Format

#include <stdio.h>
FILE *fopen(const char * nomfi c, const char * mode

= Les routines de lecture, écriture, déplacement, etc, sur
fichiers, sont fournies dans la librairie standard du C
(voir man -s 3s function)

s fopen() renvoie un pointeur sur une structure de
contréle FILE qui mémorise les informations sur le
fichier ouvert. Ce pointeur est souvent stocké dans une
variable nommée fp .

n fopen() renvoie le pointeur NULLsur erreur d’ouverture

= Le mode fourni a fopen() indique comment se fera
I’acces au fichier aprés I’ouverture :

T fichier texte pour lecture. _

W vider ou créer un fichier texte pour écriture.

a” append ; ouvrir ou créer un fichier texte pour écriture en fin de
fichier

"rb" fichier binaire pour lecture. _

"wb" vider ou créer un fichier binaire pour écriture. _ o

"ab" ouvrir ou créer un fichier binaire pour écriture en fin de fichier.

r+ " ouvrir un fichier texte en lecture/écriture.

"W+" vider ou créer un fichier texte en lecture/écriture.

11, n

a+ ouvrir ou creer un fichier texte en lecture/écriture, pointeur en
fin de fichier.

"rb+" ou"r+b" ouvrir un fichier binaire en lecture/écriture.

"wb+" ou "w+b" V|der_ ou créer un flc_:hler bmalr_e en Iecture/écrlt_ure

"ab+" ou "a+b" ouvrir ou créer un fichier binaire en lecture/écriture

pointeur d’écriture en fin de fichier.

Entrées/Sorties Fichiers Standard 13-3

reproduction interdite

<: — SunsService
==

Fermer un Fichier avec fclose()

Format

#include <stdio.h>
int fclose(FILE * p);

m fclose() finit d’écrire toutes les donnée bufferisées et
ferme le flux (stream) (une source ou une destination de
données) associé a fp .

m fclose() renvoie 0 en cas de reussite, et EOFsur erreur.

m fclose() estimplicite si exit() est appellée ou si le
programme se termine. Il vaut tout de méme mieux
fermer explicitement les fichiers avant la fin d’un
programme.

#include <stdio.h>
int main(void)
{
FILE *fp;
if ((fp = fopen("/etc/passwd", "r")) == NULL) {
printf("Ouverture impossible /etc/passwd.\n");
exit(1);
Y+ findeif */
[* traitement des données du fichier... */
fclose(fp);/* fermer le fichier */
return 0O;
}* fin de la fonction main */

13-4 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

E/S Formatées et Pointeurs de Fichiers

Format

#include <stdio.h>
int fscanf(FILE * fp ,constchar* format , ..);

fscanf() estsimilaire a scanf() , sauf que les données
sont lues a partir du fichier associé a fp plutdt que sur
I’entrée standard.

En cas de succés, fscanf() retourne le nombre d’items
correctement saisis. Si une erreur survient avant toute
conversion, alors fscanf() renvoie EOF

Format

#include <stdio.h>
int fprintf(FILE * fp ,constchar* format , ..);

forintf() est similaire a printf() , sauf que la sortie
se fait sur le fichier pointé par fp plutdt que sur la sortie
standard.

Normalement, fprintf() renvoie le nombre de
caracteres écrits. Sur erreur d’écriture, une valeur
négative est retournée.

Entrées/Sorties Fichiers Standard 13-5

<: — SunsService
==

reproduction interdite

Lecture Simple sur un Fichier

Format

#include <stdio.h>
int fgetc(FILE * p);

m Sans erreur, fgetc() renvoie le prochain caractere a lire
sur le fichier pointé par fp . Sur fin-de-fichier ou sur
erreur de lecture, fgetc() renvoie EOF

s Programme démontrant I'utilisation de fopen() pour
I’ouverture d’un fichier, de la fonction d’entrée fgetc()
et de la fonction de sortie fprintf()

#include <stddef.h>
#include <stdio.h>
int main(int argc, char *argv|])
{
FILE *fp;
int ch;
void usage(char *);

if (argc!=2)
usage(argv[0]);
if ((fp =fopen(argv[l],"r")) == NULL) { /* afficher sur stderr
*/
fprintf(stderr, "Erreur d’ouverture de %s\n", argv[1]);
exit(1);
yr* finde if */
while ((ch=fgetc(fp))!=EOF)/* lecture car/car sur le fichier */
putchar(ch); /* sortie sur stdout */
fclose(fp); I* fermeture */
return 0;
}* fin de main */

void usage(char *prog_name)

{

fprintf(stderr, "\nUsage:\n");
fprintf(stderr, "\t%s <chemin>\n\n", prog_name);
exit(1);

13-6 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Lecture Simple sur Fichier

Format

#include <stdio.h>
char *fgets(char * s, int n, FILE* 1fp);

» En cas de réussite, fgets() renvoie s. Si la fin de
fichier ~ est rencontrée ou qu’une erreur de lecture
survient, le pointeur NULL est renvoyé.

s Exemple de programme illustrant I’'usage de fopen() et
de fgets()

#include <stddef.h>
#include <stdio.h>
#define BUFSIZE 256

int main(int argc, char *argv[])
{

FILE *fp;

char str[BUFSIZE];

void usage(char *prog_name);

if (argc != 2) usage(argv[0]);
if ((fp = fopen(argv[1], "r")) == NULL) {
fprintf(stderr, "Erreur d’ouverture de %s\n", argv[1]);

exit(1);

}Y* finde if */

while (fgets(str, BUFSIZE, fp) I= NULL) /* lecture/fichier */
printf("%s", str);/* affichage sur stdout */

fclose(fp); [* fermeture */

return O;

} I+ fin de main */

void usage(char *prog_name)

{

fprintf(stderr, "\nUsage:\n");
fprintf(stderr, "\t%s <chemin>\n\n", prog_name);
exit(1);

} I+ fin de usage */

Entrées/Sorties Fichiers Standard 13-7

|%fc

SunService
reproduction interdite

Ecriture Simple sur Fichier

Format

#include <stdio.h>
int fputc(int c, FILE* 1p);

m fputc() renvoie le caractére écrit. Sur erreur, c’est EOF

qui est retournée.

» Exemple de programme pour I'utilisation de fopen()

fgetc() et foutc()

#include <stddef.h>
#include <stdio.h>
int main(int argc, char *argv[])
{
FILE *fpin, *fpout;
int ch;
void usage(char *), err(char *);
if (argc!=23)
usage(argv[0]);
if ((fpin = fopen(argv[1], "r")) == NULL)
err(argv[l]);
if ((fpout = fopen(argv[2], "a+")) == NULL)
err(argv[2)]);
while ((ch = fgetc(fpin)) != EOF)
fputc(ch, fpout);
fclose(fpin); /* fermeture des fichiers */
fclose(fpout);
return O;
} I+ finde main */
void usage(char *prog_name)

{
fprintf(stderr, "\nUsage:\n");
fprintf(s tderr, "\t%s <f_entree> <f_sortie>\n \n", prog_name);
exit(1);

} I+ fin de usage */
void err(char* file)

{

fprintf(stderr, "Ouverture impossible de %s\n", file);
exit(1);
Y+ findeerr */

13-8 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Ecriture Simple sur Fichier

Format

#include <stdio.h>
int fputs(const char * s, FILE* fp);

= En cas de succes, fputs() renvoie une valeur non-
négative. La fonction renvoie EOFen cas d’erreur.

» Exemple de programme utilisant fopen() , fgets()
en entrée, et fputs() en sortie :

#include <stddef.n>
#include <stdio.h>
#define BUFSIZE 256
int main(int argc, char *argv[))
{
FILE *fpin, *fpout;
char str[BUFSIZE];

void usage(char *),err(char *);

if (argc!=3)
usage(argv(0]);

if ((fpin =fopen(argv[l], "r'")) == NULL)
err(argv[1]);

if ((fpout = fopen(argv[2], "a+")) == NULL)
err(argv2));

while (fgets(str, BUFSIZE, fpin) = NULL)
fputs(str, fpout);

fclose(fpin); * fermeture des fichiers */

fclose(fpout);

retun 0;

Y+ finde main *

void usage(char *prog_name)

{
fprintf(stderr, "\nUsage:\n");
fprintf(stderr, "\t%s <f_entree> <f_sortie>\n\n", prog_name);
exit(1);

}* finde usage */

void err(char *file)

{

fprintf(stderr, "Erreur d'ouverture de %s\n", file);
exit(1);
Y findeerr *

Entrées/Sorties Fichiers Standard 13-9

reproduction interdite

<: — SunsService
==

Lecture de Données depuis un Fichier.

Format

#include <stdio.h>
size_t fread(void * ptr size t taille Size_t nitems FILE* fo);

m fread() peut lire de grandes quantités de données,
comme indiqueé par taille. Cette fonction est utilisée pour
des fichiers binaires dont on connait la taille des
enregistrements, créés avec fwrite()

m fread() renvoie le nombre d’items lus. Ce nombre est
différent de nitems sur erreur ou fin de fichier (EOF).

s Exemple de I'utilisation de fopen() , et de la fonction
d’entrée fread () :

#include <stddef.h>
#include <stdio.h>
#define ITEMSIZE 25
#define INVCOUNT 3
typedef struct {
char item[ITEMSIZE];

float cost;
} Data;
int main(void)
{
FILE *indev;

Data inventory[INVCOUNT];
int c, itemsread,;
if ((indev = fopen("inv.dat", "r'")) == NULL){
fprintf(stderr, "Erreur d’ouv. de 'inv.dat’en lecture\n");
exit(1);
}
itemsread = fread(inventory, sizeof(Data), INVCOUNT, indev);
fclose(indev);
for (c =0; c <itemsread; c++){
printf("ltem %2d: %25s - %.2f F\n", ¢, inventory[c].item,
inventory|[c].cost);

}

return 0;
} I+ fin de main */

13-10 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Ecriture dans un Fichier - fwrite()

Format

#include <stdio.h>
size_t fwrite(const void * ptr size t size ,size t nitems FILE* fp);

n fwrite() renvoie le nombre d’éléements écrits. Ce
nombre est inférieur a nitems en cas d’erreur.

s Exemple de programme utilisant fopen() , et fwrite()
en sortie :

#include <stddef.h>
#include <stdio.h>
#define ITEMSIZE 25
#define INVCOUNT 3

typedef struct {
char item[ITEMSIZE];
float cost;
} Data;
int main(void)
{
FILE *outdev;
static Data inventory[INVCOUNT] ={
“crayon”, 0.15,
"stylo", 0.49,
"surligneur”, 1.25

if ((outdev = fopen("inv.dat", "w")) == NULL){
fprintf(stderr, "Ouv. impossile de 'inv.dat’ en écriture\n");
exit(1);

} /* fin de if */

fwrite(inventory, sizeof(Data), INVCOUNT, outdev);

fclose(outdev);

return 0;

} /*fin de main %/

Entrées/Sorties Fichiers Standard 13-11

<: — SunsService
==

reproduction interdite

Trouver la Position Courante du Pointeur d’un Fichier

Format

#include <stdio.h>
long ftell(FILE *);

= Le tampon pointé au travers de fp contient un pointeur
relatif au début du fichier, sur le prochain caractére lu ou
écrit dans le fichier. Au fur et a mesure des lectures
et/ou écritures, ce pointeur de fichier est déplacé en
avant dans le fichier.

= La fonction ftell() renvoie la position courante en
octets dans le fichier représenté par fp . En cas d’erreur,
ftell() renvoie -1L .

#include <stddef.h>
#include <stdio.h>
int main(void)
{
FILE *fp;
long pos;

/* autres déclarations ... */
if ((fp = fopen(argv[1], "r")) == NULL){
fprintf(stderr, "fopen raté\n");
exit(1);
/*apres quelques lectures dans le fichier */

pos = ftell(fp);

/* suite du programme *
} /*fin de main *

13-12 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Déplacer le Pointeur de Fichier

Format

#include <stdio.h>
void rewind(FILE *);

» Le pointeur de fichier peut étre remis au debut avec
rewind() . rewind() ne renvoie aucune valeur :

#include <stddef.h>
#include <stdio.h>
#define MAX 4
#define BUFSIZE 40
int main(int argc, char *argv[])
{
FILE *fp;
struct db_record {
char name[BUFSIZE];
short age;
} rex[MAX], rec;
int size = sizeof (rec), i;
char temp[BUFSIZE];
void usage(char *), err(char *);/* fonctions définies ailleurs */
if (argc!=2)
usage(argv[0]);
if ((fp = fopen(argv[1], "a+")) == NULL)
err(argv[1)]);
for (i=0;i<MAX;i++){
printf("Entrer le nom numeéro %d: ", i + 1);
fgets(rex[i].name, BUFSIZE, stdin);
printf("Entrer 'age du %s : ", rex[i].name);
rex[i].age = (short) atoi(fgets(temp, BUFSIZE, stdin));
if ((fwrite(&rex][i], size, 1, fp)))

err(argv[1]);
} I+ findu for */
rewind(fp);/* pointeur de fichier au début */

for (i=0;i<MAX;i++){

if (!(fread(&rec, size, 1, fp)))

err(argv[l));

printf("Nom n°%d: %s, age: %d\n",i+1, rec.name, rec.age);
}I* fin de for */
fclose (fp);/* fermer le fichier */
return O;

} I+ finde main */

Entrées/Sorties Fichiers Standard 13-13

<: — SunsService
==

reproduction interdite

Déplacer le Pointeur de Fichier

Format

#include <stdio.h>
int fseek(FILE * fp Jlongint deplacement nt mode),

m fseek() est utilisée pour déplacer le pointeur du fichier fp . La
nouvelle position est a deplacement de la position spécifiée par
mode.

» modeprend 3 valeurs : SEEK SET(début), SEEK CURcourant),
et SEEK_ENLOfin). (Inclure <stddef.h> pour les SEEK *)

n fseek() renvoie 0 normalement, et non-nul en cas d’erreur :
#include <stddef.h>
#include <stdio.h>
int main(int argc, char *argv[])

FILE *fp;
struct db_record {
char name[40];
short age;
} rec;
int size = sizeof (rec), recnum;
char str[6];
void usage(char *),err(char *);/* fonctions définies ailleurs */
if (argc!=2)
usage(argVv[0]);
if ((fp = fopen(argv[l], "a+")) == NULL)
err(argv[l]);
while (1) {
printf("Quel enregistrement (1-4) ? (0 pour fin):");
if (!(recnum = atoi(fgets(str, 6, stdin))))
break ;
if ((recnum < 0) || (recnum > 4))
continue ;
fseek(fp, (long int)(size*(recnum - 1)), SEEK_SET);
if (!(fread(&rec, size, 1, fp)))
err(argv[l)]);
printf("Nom n°%d: %s, age: %d\n", recnum, rec.name, rec.age);
Y I* fin de while */
fclose (fp);/* fermer le fichier */
return 0;
}* finde main */

13-14 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Vider la Mémoire Tampon associée a FILE

Format

#include <stdio.h>
int filush(FILE *);

n fflush() force I’écriture sur disque des données
presentes dans le tampon ; souvent utilisée pour rendre
immédiat I'affichage d’un message, ou toute autre
opeération d’entrée/sortie.

m Le buffer de stdout est vidé a chague newline. Les
buffers de fichiers sont vidés lorsqu’un bloc est complet.
Le buffer de stderr est vidé a chaque caractére écrit.

m Sans erreur, fflush() renvoie 0 ; sinon EOF

#include <stdlib.h>
#include <stdio.h>
#define MIN 50
#define BUFSIZE 80
int main(void){
int num_crunch(void);/* fonction faisant tout le travail */
int index, iq;
char str[BUFSIZE];
while (1) {
printf("Entrer votre QI : ");
fflush(stdout);
ig = atoi(fgets(str, BUFSIZE, stdin));
if (ig <MIN)
fprintf(stderr,"Quittez le navire, un idiot a la barre!");
index = num_crunch();
if ((ig + index) < (2 * MIN))
break ;

}

return 0;
}* fin de main */

Entrées/Sorties Fichiers Standard 13-15

SunsService
reproduction interdite

|%f‘c

Résumeé des Fonctions

Valeur retournée Code Code de
Fonction sans erreur D’erreur Fin de fichier
fopen() FILE * NULL sans objet
fclose() 0 EOF sans objet
scanf() nb d’affectations EOF est retournée si une erreur inter-
sscanf() nb d’affectations vient avant toute conversion.
fscanf|() nb d’affectations
getchar() caractere lu EOF EOF
fgetc() caractere lu EOF EOF
fgets() ptr sur chaine lue NULL NULL
fread() Nb d’'items lus dans tous les cas
printf() nb car.écrits code <0 sans objet
sprintf() I’adresse du premier argument dans tous les cas
fprintf() nb car.écrits code <0 sans objet
putchar() car.ecrit EOF sans objet
fputc() car.ecrit EOF sans objet
fputs() code >=0 EOF sans objet
fwrite() nb items écrits nb items écrits sans objet
ftell() position en octets -1L sans objet
fseek() 0 code =0 sans objet
rewind() pas de valeur retournée
fflush() 0 EOF sans objet

13-16 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Révision de Module

E E/S Fichiers K

Q. Quels sont les noms des pointeurs FILE pour les 3 fichiers ouverts par
défaut ?
R.

Q. Quel fichier .h faut-il inclure pour utiliser ces identifiants ?
R.

Q.Quelle est la fonction d’affichage formatée sur un fp donné ?
R.

Ecrire un programme utilisant fgets() pour lire le fichier /tc/motd et
printf() pour I'afficher a I'écran.

Entrées/Sorties Fichiers Standard 13-17

< > SunService
==

reproduction interdite

Travaux Pratiques 13 : E/S Fichiers

Présentation

Introduction a l'utilisation des fonctions d’E/S fichiers de niveau user
de la librairie standard du C.

Exercices

1. Niveau 1. Vérifier les résultats du programme de révision en le
compilant et en I’exécutant.

2. Niveau 2. Modifier aged.c (TP 10) comme suit :

En utilisant la structure existante, permettre a I’utilisateur de saisir
les champs name et data d’autant de structures que voulues,
calculer les autres champs et sauver dans un fichier (ouvert en
écriture) nommer data.rec , une structure a la fois. Gérer un
compteur d’enregistrements. Ne pas utiliser de tableau :

Quand l'utilisateur a fini, fermer le fichier.

Demander a I'utilisateur un numéro d’enregistrement, ouvrir le
fichier en lecture, lire I’enregistrement voulu et I’afficher.

Puis fermer le fichier et quitter.
Nommer le fichier source newaged.c .

3. Niveau 3. Ecrire un programme qui gére un fichier contenant les
chaines saisies par I'utilisateur et triées. Le nom du fichier sera
passé par la ligne de commande :

Si aucun nom de fichier n’est passé en argument, sortir avec un
message d’usage.

Demander a I'utilisateur les chaines d’un tableau (d’au moins 8
éléments) en les rangeant dans I’ordre alphabétique.

- voir page suivante -

13-18 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Quand I'utilisateur a entré toutes ou quelques chaines (au moins 2),
les écrires dans le fichier dont le nom est passé dans argv[1]

Afficher les lignes/enregistrements et demander un numéro a
deétruire.
Détruire les numeéros demandes.

Afficher le nouveau contenu et sortir.

Conseil 1: Détruire I’enregistrement dans le tableau et réécrire
tout le fichier. N’essayez pas de trier le fichier en place sauf si vous
le désirez. Assurez-vous que vous ouvrez le fichier avec le mode w
pour le créer ou I'effacer a I’ouverture.

Conseil 2 : stremp() vous aidera a trier les chaines en ordre
alphabétique. Mais pour ne pas rendre ce TP excessivement long,
vous trouverez ci-dessous une proceédure de tri (remarquez les
arguments) :

void ssort(int cnt, char sa]JAMAX][SMAX], char str]);
/* nb de chaines dans le tableau */
/* tableau des chaines *
/* chaine a ranger dans le tableau */
{
int ith;
static char temp[SMAX], nul[1] = {\0'};

for (ith = O; ith <= cnt; ith++) {
if ((strcmp(salith], str) > 0) ||
(strcmp(salith], nul)== 0)) {
strcpy(temp, salith]);
strcpy(salith], str);
strcpy(str, temp);

}
}
} /*fin de ssort */

Conseil 3 : La fonction pour réarranger le tableau apres
suppression est similaire mais plus simple.

Nommer le fichier source alphile.c

Entrées/Sorties Fichiers Standard 13-19

<: — SunsService
==

reproduction interdite

13-20 Programmation en C norme ANSI Révision C, Décembre 1994

Objectifs

Plussur cc etlePréprocesseur

m Ecrire et utiliser les directives simples du préprocesseur et

écrire des macros.

m Faire des compilations conditionnelles a I’aide des directives

#ifdef

m Définir des macros comme des fonctions en utilisant les

marqueurs # et ## du préprocesseur.

14-1

reproduction interdite

<: — SunsService
==

Macros du Préprocesseur

Macros prédéfinies :

__TIME__ chaine de la forme : "hh:mm:ss"
indiquant I'heure de la compilation.

__DATE__ chaine de la forme : "Mmm dd yyyy",
Indiquant la date de compilation.
Exemple : Dec 25 1991

__FILE__ Chaine de caractere correspondant au nom du
fichier source utilisé durant la compilation.

__LINE___ No de lignes dans le fichier courant.
(constante décimale)

__STDC___ 1 pour le mode de conformance -Xc ; 0 sinon.

#include <stdio.h>

int main(void)

{
printf("Programme : %s.\nDate de compil.: %s.\n",__ FILE _,
__DATE_);
return 0;
}* finde main */

14-2 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Macros du Préprocesseur (suite)

= Définition de macros objets :
#define <identitifiant> <liste de remplacement> newline
= Exemples

#define SIZE 256
#define MESSAGE "Enchanté de vous voir!"

= Définition des macros fonctions :
#define ident(liste opt.) liste de remplacement newline
= Exemples :

#define SQ(X) ((X) * (X))
#define PRINT(S1) printf("Date %s\n",(S1))

» L’identifiant immédiatement apres le #define est
appelé le nom de la macro.

Plussurcc etle Préprocesseur 14-3

<: — SunsService
==

reproduction interdite

Macros Fonctions

Les macros fonctions produisent du code in-line, et ainsi
repesentent un gain de vitesse en évitant le temps dd a
I’appel de fonction.

#include <stdio.h>

#define ABS(a) ((a)<0?-(a):(a))/* renvoie la valeur abs. de a */
#define CUBE(b) ((b)*(b)*(b))/* renvoie le cube de b */

#define MIN(a, b) ((a)<(b)?(a):(b))/* renvoie le min. deaetb *

int main(void)

{

int numl, num2;

printf("Entrer un entier a élever au cube : ");
scanf("%d", &numl);
printf("Le cube de %d = %d\n", num1, CUBE(numl));
printf("Entrer un autre entier : ");
scanf("%d", &numz2);
printf("La valeur absolue de %d = %d.\n", num2, ABS(humz2));
printf("Le plus petit de %d et %d = %d.\n", num1, numz2,
MIN(num1,num2));
return 0;
}* finde main */

14-4 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Précautions a L’Utilisation des Macros

= Sila macro SQRest utilisée de la maniere suivante,
I’'argument sera incrementé deux fois ce qui ne
correspond pas au résultat attendu !

m Les parenthéses doivent étre utilisées autour de la macro
et de chaque argument pour s’assurer une evaluation
correcte. (voir ABS :

#include <stdio.h>

#define SQR(a) ((a)*(a)) I* renvoie le carré de a */
#define ABS(b) b<0?-b:b /* renvoie la valeur abs de b ? */
int main(void)

{

int numl, num2;

printf("Entrer un entier a élever au carré : ");
scanf("%d", &numl);

printf("Le carré de %d = %d\n", num1, SQR(++num1l));
printf("La valeur abs. de 3-5 = %d.\n",ABS(3-5));

return 0;
}* fin de main */

/* Avec les déclarations ci-dessus... */
SQR(++numl); /* est étendu comme... ¥/
((++num1l) * (++num1l)); /* PAS bon !/
ABS(3-5); /* est étendu comme... */
3-5<07?-3-5:3-5; /* PAS bon! */

Plussurcc et le Préprocesseur 14-5

<: — SunsService
==

reproduction interdite

Le Marqueur # du Préprocessseur

= Sile marqueur # précéde immédiatement un argument
dans la liste de remplacement d’une macro-fonction
I’ensemble est remplacé par une chaine de caractere
correspondant a I’largument (transformation en littéral).

Soit :
#define MAKESTR(X) #X"I"
int abc, xyz;

et les appels :
MAKESTR(abc);
MAKESTR(abc xyz);

Donnent :
“abC”H!”
“abc XyZ”” ! ”

= |l ne peuty avoir que des espaces entre le # et I'argument
dans la liste de remplacement ; ne pas mettre de
parentheses autour de I’'argument.

14-6 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Le Marqueur ## du Préprocesseur

m Si le marqueur ## précéde ou suit immédiatement un
argument dans la liste de remplacement, I’ensemble sera
remplacé par I'argument lui-méme (collage des 2
arguments).

= Avant de reparcourir la macro pour d’autres noms
d’arguments, le marqueur ## est effacé et concaténé avec
I’élément suivant.

Soit :
#define PASTE(X)Y) X##Y
int a, xyz;

Les appels:
PASTE(a, xyz);
PASTE(a, 1);
PASTE(1., 34);

Donnent :
axyz /* ceci n’est pas une chaine */

= |l ne peut y avoir que des espaces entre ## et le
parametre dans la liste de remplacement. Ne pas mettre
de parentheses autour de I'argument.

Plussurcc et le Préprocesseur 14-7

<: — SunsService
==

reproduction interdite

Compilation Conditionnelle

= Le préprocesseur fournit des possibilités de compilation
conditionnelle, qui permettent a certaines portions de
code d’étre soit compilées soit ignorées en fonction de
certaines conditions.

= |l y atrois types de directives conditionnelles. Chacune
des directives contrdle la compilation des lignes de code
en-dessous, jusqu’a la rencontre de la directive #endif

#if

#ifdef

#ifndef

#elif

#else

#endif

14-8

/* vrai si la constante qui suit est différente de 0 */

/* vrai si 'argument est défini par #define avant *

/* vrai si 'argument n’est pas défini par #define avant */
/* avec une expression constante, else conditionnel */

/* complément de #if, #ifdef ou #ifndef *

/* fin de la portion de code concernée par la compilation
conditionnelle */

Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Compilation Conditionnelle

Exemples de compilation conditionnelle :

% more my_prog.c

#ifdef DEBUG

/* printf de debug... *

printf("my_func : compteur de boucle %d\n", index);
#endif

% cc -DDEBUG -Xc my_prog.c -0 my_prog
% more my_prog.c

#if (DEBUG > 50)

/* printf de debug lourd ... %/

printf("Gros debug\n");
#else

printf("Petit debug.\n");
#endif

% cc -DDEBUG=42 -Xc my_prog.c -0 my_prog
% more my_prog.c

#define DEBUG

#ifdef DEBUG
/* printf de debug... */
printf("Gros debug\n");

#endif

Plussurcc et le Préprocesseur 14-9

<: — SunsService
==

reproduction interdite

Annuler la Définition de Constantes

14-10

= Un nom #define (#define NOM) peut étre oublié de
force par la directive #undef (#undef NOM).

m Tous les #ifdef NOM a suivre dans le source seront
évalués FAUX.

» Inversement, tous les #ifndef NOM seront évalués
VRAI :

% more my_prog.c

#undef NOM
#ifnde fNOM

printf("NOM est non-défini \n");
#endif
#ifdef sun

printf("sun est défini.\n");
#endif
#ifdef sparc

printf("sparc est défini.\n");
#endif

(annulation sur la ligne de commande)
% cc -Usun -Xa my_prog.c -0 my_prog

Programmation en C norme ANSI Révision C, Décembre 1994

Objectifs

Evaluation

Allocation Dynamique de Mémoire

Allouer dynamiquement la mémoire dans un programme C.

Libérer la mémoire allouée dynamiquement au préalable.

Programmer une liste simplement chainée.

Travaux Pratiques 15 et révision de module.

15-1

0 SunService
|%f-\ reproduction interdite

Image Mémoire d’un Process

15-2

s |l y aessentiellement 2 maniéres pour un programme
d’acquérir de la mémoire pour ses donnees. L’une est la
declaration de variables. L’autre est I'allocation
dynamique (au moment de I’exécution).

= L’allocation dynamique de mémoire met a disposition du
programme, de la mémoire additionnelle par extension
du tas (heap), une des parties du segment data du
process.

mémoire "libre"

break —3=--G-< 50 hieap)

DATA

TEXT

Image du process

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Allocation Dynamique de Mémoire — malloc()

Format

#include <stdlib.h>
void *malloc(size t taille)

m malloc() estla maniére la plus banale pour demander
de la mémoire dynamique a SunOS. La quantité de
mémoire allouée est au moins de taille octets.

m malloc() renvoie un pointeur sur la mémoire allouée.
Si rien n’a été alloué ou qu’une erreur s’est produite,
malloc() renvoie le pointeur NULL.

= On peut forcer le type de I’adresse retournée par
malloc() en preéfixant I’'appel avec (type), afin de
I’adapter au type d’objet pour lequel I’allocation est faite.

#include
#include
#include
#include

t#define

<stddef.h>
<stdlib.h> /* déclaration de malloc() */
<stdio.h> /* déclaration de gets() */

<string.h> /* déclaration de strcpy() */

BUFFER 100

int main(void ®

char *dynatrr;
dynarr=(char *) malloc(BUFFER);

strepy(dynarr, "hello™);
puts(dynarr);

printf("Entrer une chaine : ");
fgets(dynarr, BUFFER, stdin);
printf("Chaine saisie = %s \n", dynarr);
return O;

Allocation Dynamique de Mémoire 15-3

0 SunService
|§f-\ reproduction interdite

Allocation Dynamique de Mémoire — calloc()

Format

#include <stdlib.h>
void *calloc(size _t nelem , size t taille)

m calloc() est utilisé pour alloué I’espace d’un tableau.
Ce tableau a nelem éléments, et I’espace contigu alloué
est au moins de (nelem * taille) octets.

= En cas de succes, calloc() renvoie un pointeur sur la
mémoire allouée. En cas d’erreur ou d’impossibilité
d’allocation, la fonction renvoie le pointeur NULL.

m calloc() renvoie de la mémoire initialisée a 0.

= Un tableau créé dynamiquement (avec calloc() ou
malloc()) peut étre traité exactement comme un tableau
statique classique :

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h> /*déclaration de calloc() *
int main(void){
int *int_ptr, *ip, num = 0, index, asize;
char tmp[16];
printf("Quelle taille pour le tableau ?: ");

asize = atoi(fgets(tmp, 16, stdin));/* saisie/conversion */
if ((int_ptr =(int *)calloc(asize, sizeof (int))) = NULL) {
for (ip = int_ptr; ip < (int_ptr + asize); ip++, num++) {
[* initialisation notation pointeur... */
*ip = num;
} /* fin de for */
[* c’est possible autrement... */
for (index = 0; index < asize; index++) {
[* initialisation mode tableau, notation indicée... */

int_ptr{index] = index % 3;
} I* fin de for */
}

return 0;

} I+ fin de main */

15-4 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Allocation Dynamique de Mémoire - free()

Format

#include <stdlib.h>
void free(void * ptr)

m free() est utilisée pour rendre au systéeme la mémoire
allouée avec malloc() ou calloc()

m L’argument free() est le pointeur retourné
préalablement par malloc() ou calloc()

#Include <stddetr.n>
#include <stdio.h>
#include <stdlib.h> /*déclarations de malloc(), free(), et atof()*/
#define BUFSIZE 40
struct record {
char name[BUFSIZE];
float salary;

int age;
I3
int main(void)
{

struct record *sptr;

char tmp[BUFSIZE];

int size= sizeof (struct record);

void some_func(struct record *);

it ((sptr=(struct record *)malloc(size)) '= NULL) {
printf("Entrez votre nom : ");
fgets(sptr->name, BUFSIZE, stdin);
printf("Entrez votre age : ");
sptr->age = atoi(fgets(tmp, BUFSIZE, stdin));
printf("Votre salaire annuel : ");
sptr->salary = atof(fgets(tmp, BUFSIZE, stdin));

}* findeif */

[* traitement quelconque de la structure... */
some_func(sptr);

free(sptr);/* restitution de la mémoire au systeme *
return O;

} I+ finde main */

Allocation Dynamique de Mémoire 15-5

< > SunService
==

reproduction interdite

Révision Partielle

E malloc() K

Q. En quoi I'allocation de mémoire peut-elle étre dynamique ?

R.

Q. Qu’est-ce que représente la valeur retournée par malloc() 7
R.

Q. Que fait l'instruction ptr=(struct record *)malloc(size); ?

R.

Q. Quelle est l'instruction qui rend la mémoire au systeme, et pourquoi doit-on
I'utiliser ?

R.

Ecrire un bout de programme qui déclare une structure avec un tableau de 24
caractéres, un entier, un flottant, et un pointeur. Utiliser malloc() pour allouer
dynamiguement la mémoire pour une structure (attention, juste un bout de pgm) :

15-6 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Apres les Tableaux - La Liste Chainée

= Les listes chainées sont une forme fréquente de structure
de donneées dynamiques.

= Les listes chainées sont utilisées notamment dans 2 cas.
Pour les tableaux de taille inconnue, et pour le traitement
et le stockage de base de données.

= Les listes sont généralement soit simplement chainées, ou
doublement chainées. Ceci fait référence au nombre de
pointeurs vers d’autres eléments de la liste que I'on
trouve dans la structure d’un nceud de liste :

téte

data data data data

ptr ptr ptr 0)

Liste simplement chainée

Allocation Dynamique de Mémoire 15-7

0 SunService
|§/-\ reproduction interdite

Construction d’une Liste Simplement Chainée

m Les listes peuvent étre construites d’au moins deux
manieres : en ajoutant simplement des élements a la fin,
ou en insérant les éléments a des emplacements
spécifiques pour un ordre donné (listes triées).

= Toute I'attention doit étre portée a la conservation de la
téte de la liste, et a la terminaison de la liste par un
pointeur NULL :

struct _node {

int data; I* les données sont la */
struct node *suivant;/* pointeur vers le nceud suivant */
} *tete, *fin; I* pointeurs de type (struct *node) */
int cntr=1;
tete = (struct node *)malloc(sizeof (struct node)); I* lerélément */
fin = tete; I* conservation de la téte de liste */
fin->data = cntr; I* renseignement du ler élément */
fin->suivant = NULL; * fin de liste sur NULL */
while (encore) {
fin->suivant=(struct node *)malloc(sizeof (struct node));/* suivant*/
fin = fin->suivant; * avance de un dans la liste */
fin->data = ++cntr; I* renseignement de I'élément courant */
fin->suivant = NULL; I* fin sur NULL */

}I* fin de while */

tete fin

fin->suivant = NULL

data data data data

suivant suivant suivant @

15-8 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Parcourir une Liste Simplement Chainee

= Dans un parcours de liste, tous les éléments de la liste
doivent étre consultés pour trouver le suivant.

= Le pointeur NULL est I'indicateur de fin. Une liste est
parcourue en passant de suivant en suivant, tant que le
pointeur NULL n’est pas rencontre :

struct node {
int data; I*

} *tete, *fin; I*

int cntr=1;

while (fin != NULL) {
cntr++;

Y+ fin de while */

suivant

Allocation Dynamique de Mémoire

données de la liste

struct node *suivant;/* pointe vers le suivant */

*/

pointeur de type (struct *node)

fin = tete ; I* préserve la téte de liste */

fin = fin->suivant; /*

data

suivant

fin = fin->suivant;

printf("élém %d: donnée= %d\n", cntr, fin->data);

pointe sur le suivant

*/

*/

data

suivant

Y

fin->suivant == NULL

15-9

0 SunService
|§f-\ reproduction interdite

La Liste Simplement Chainée en Action

m Exemple de programme montrant I'utilisation d’une liste
simplement chainée pour mémoriser les enregistrements d’un
fichier :

#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h> /* déclarations de malloc(), et free() */
#define TAILLE 256
int main(void) {
struct db{
char data[TAILLE];
struct db *suivant;
} *tete, *fin, *temp;
char str[TAILLE];
int db_size = sizeof (struct db);
printf("Entrer une chaine de caracteres : ");
if (fgets(str, TAILLE, stdin) == NULL) {
fprintf(stderr, "Erreur sur fgets\n");
exit(1);

tete=(struct db *)malloc(db_size);
strcpy(tete->data, str);
fin = tete;
printf("Entrer une chaine de caracteres : ");
while (fgets(str, TAILLE , stdin) '= NULL) {
fin->suivant = (struct db *)malloc(db_size);
fin = fin->suivant;
strcpy(fin->data, str);
printf("Entrer une chaine de caracteres : ");

}
fin->suivant = NULL;
fin = tete ;
printf("\n\n");
while (fin) {
printf("Enregistrement: %s\n", fin->data);
temp = fin;
fin = fin->suivant;
free(temp);
}
return 0O;

}/* finde main */

15-10 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

PAGE INTENTIONNELLEMENT BLANCHE

Allocation Dynamique de Mémoire 15-11

=

SunService
reproduction interdite

Un Autre Exemple de Liste Chainée

15-12 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

#include <stddet.n>

#include <stdio.h>

#include <ctype.h>

#include <stdlib.h>

#define DATA LENGTH 100

typedef struct link {

char data[DATA_LENGTH];
struct link *next;

" Quitte : ");
ch = getchar();
while (getchar() '="\n’);
switch (isupper(ch) ? tolower(ch) : ch) {
case 'a’
add();
break ;
case 'd"
delete();
break ;
case s’
if (curr->next == NULL)
printf(".fin.\n");
else {
curr = curr->next;
printf("%s", curr->data);
}
break ;
case 't
curr = head;
printf(".top.\n");
break ;
case i’
print();
break;
case Q"
exit(0);
break ;
} /*fin de switch */
} /* fin de for */
return O;
} /*fin de main */

} Link;
void add(void), delete(void), print(void);
Link *new_link(char *), *head, *curr;
int main(void) {
int ch;
head = curr = new_Ilink("");
for(:){

printf("Ajoute, Détruit, Suivant, Téte, Impression,"

Allocation Dynamique de Mémoire

15-13

0 SunService
|§/-\ reproduction interdite

Un Autre Exemple de Liste Chainée (suite)

Link *new_link(char *data)
{
Link *temp;
if ((temp = (Link *)malloc(sizeof(Link))) == NULL) {
fprintf(stderr, "Erreur de malloc\n");
exit(1);

strcpy(temp->data, data);
temp->next = NULL,;
return temp;

}

void add(void)

{

Link *temp;

char data[DATA_LENGTH];
printf("donnée ?: ");

fgets(data, DATA_LENGTH, stdin);
temp = new_link(data);
temp->next = curr->next;

curr = curr->next = temp;

void delete(void)
{
Link *prev;
if (head->next == NULL)
return ; /*liste vide */
if (curr == head)
head = head->next;
else { /*recherche I'élément précédent */
for (prev=head; prev->next!=curr; prev = prev->next);
prev->next = curr->next;
}
free(curr);
curr = head;
}
void print(void)
{

Link *temp;
printf(".téte.\n");
for (temp=head->next; temp != NULL; temp=temp->next)

printf("%s", temp->data);
printf(".fin.\n");

15-14 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Allocation Dynamique de Mémoire 15-15

%f-\: reproduction interdite

Travaux Pratiques 15 : Mémoire Dynamique et Listes

Présentation

Introduction au concept et a I'utilisation de I’allocation dynamique de
mémoire et aux listes simplement chainées.

Exercices

1. Niveau 1. Vérifier les résultats du bout de code de révision, en le
complétant (en faire un programme), en le compilant et en
I’exécutant.

2. Niveau 2. Modifier le programme du TP 10 strux.c

Au lieu d’un tableau de 4 éléments, gérer une liste chainée de
longueur indéterminée. Continuer d’ajouter des éléments tant que
I’'utilisateur le demande (ajouter au moins un élément).

Sauver les informations dans un fichier a la fin de la saisie, et
rendre la mémoire dynamique au systeme. Le nom du fichier sera
passé par la ligne de commande. Sinon, donner un message
d’erreur et quitter le programme.

Apreés sauvegarde dans le fichier, le relire et reconstruire la liste.

Apres reconstruction, demander a I’utilisateur soit un nom, soit s’il
veut visualiser toute la liste.

3. Ecrire une fonction qui affiche toute la liste et/ou affiche juste
I’élément demandé par I'utilisateur, et un message en cas de
recherche vaine.

Quand c’est fini rendre la mémoire au systeme et quitter.

Utiliser des fonctions chaque fois que possible, afin de découper le
programme.

4. Niveau 3 (facultatif). Gérer la liste triée par age.
Nommer le fichier source listrux.c

15-16 Programmation en C norme ANSI Reévision C, Décembre 1994

Introduction aux Fonctions

Récursives EEs
Objectifs

m Expliquer la définition d’une fonction récursive.

m Ecrire des fonctions récursives simples en C.
Evaluation

Travaux Pratiques 16.

16-1

reproduction interdite

< > SunService
==

Définition de la Pile

= Une pile est un ensemble de registres cablés ou une
portion de la mémoire principale, qui sont utilisés pour
des calculs arithmétiques ou pour des opérations
internes. Les piles fonctionnent sur le principe dernier
entré-premier sorti (last-in-first-out) (LIFO).

= En informatique, le terme empiler (push) revient a ajouter
un élément en haut d’une pile (top).

= En informatique toujours, le terme dépiler (pop) revient a
enlever I’élément en haut de pile :

vide push push pop
top
4200 4200 4200
top top
560
top

Remarque : Le pointeur de pile "descend" lorsqu’on empile quelque
chose, car, en mémoire, la pile est toujours allouée depuis les
adresses hautes vers les adresses basses.

16-2 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Qu’est-ce que larecursivite?

= Une fonction récursive est une fonction qui, pour
remplir sa mission, doit s’appeler elle-méme :

#include <stdio.h>
int main(void){

void recurser(int);

printf("L’infinité estle possible rendu inévitable.\n");
recurser(l);
return 0O;

} ¥ fin de main */

void recurser(int n){
if (n>4)
return ;
recurser(n + 1);
printf("%d\n", n);

}/* finde recurser */

m Généralement, une fonction récursive n’est jamais
appelée indéfiniment. Il doit exister une ou plusieurs
conditions de fin de boucle récursive.

Introduction aux Fonctions Récursives 16-3

0 SunService
|%f-\ reproduction interdite

Mécanismes d’une Fonction Récursive

= Pour chaque instance de fonction, un ensemble
unique/différent de variables locales (toutes ayant les
mémes noms) est créé dans la pile.

= Les fonctions récursives semblent souvent s’exécuter en
sens inverse des appels. Dans I’'exemple, tous les appels
sont faits avant la 1ére impression de n ; I'impression
commence a 4 puis redescend :

n==2 [Pme instance |
n==3 Bme Insfance]
n == fme ingtance]
imprime nen 3me...
n==5 derniere
instance
Imprime nen 2m|e... it (n>4)
return
imprime n en lef recurser(n + 1)
Y printf("%d\n", n);

quitte

Métaphore de la Pile

16-4 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Applications de la Récursivité

= La fonction la plus présentée comme exemple de
récursivité est celle qui calcule la factorielle d’'un nombre.
On la note : n! (factorielle n).

» La factorielle d’'un nombre positif n est le produit des
nombresdelan.Sin==4alorsn! ==4*3*2*1==24.
Sin<=1, alors n! == 1.

Exemple de fonction récursive calculant des factorielles :

#include <stdio.h>

int main(void)

{
unsigned int num, factorial(unsigned int);
char tmpl[8];

printf("Entrer un nombre (n <= 13): ");
num = atoi(fgets(tmp, 8, stdin));
printf("La factorielle de %d = %d.\n",num, factorial(num));
return O;
} /*fin de main ¥/

unsigned int factorial(unsigned int n)
{
if (n<=1)
return (1);
else
return (n * factorial(n - 1));

} /*fin de factorial */

Introduction aux Fonctions Récursives 16-5

0 SunService
|%f-\ reproduction interdite

Travaux Pratiques 16 : Récursivité (Facultatif)

16-6

Exercices

Présentation

Compilation et utilisation d’'un programme contenant la fonction
récursive factorial()

Niveau 1 : Vérifier que le programme de la page 16-5 fonctionne
en le compilant et en I’exécutant.

Ajouter une boucle pour que le programme calcule toutes les
factorielles entre 1 et un nombre saisi par I'utilisateur. Si
I'utilisateur saisit 10, le programme affiche les factorielles de 1, 2,
3,4,5,6,7,8,09, et 10.

Si l'utilisateur entre un nombre supérieur ou égal a 14 donner un
message d’erreur ou d’usage et quitter le programme.

Niveau 2 : (facultatif) Faire un programme qui vérifie la limite de
calcul de factorielle. On peut utiliser une boucle for. Utiliser des
unsigned int et afficher les résultats.

Nommer le programme factorial.c

Programmation en C norme ANSI Reévision C, Décembre 1994

Consellsde Mise au Point

Cette annexe contient quelques informations utiles pour régler des
erreurs de compilation ou d’exécution.

A-1

< > SunService
==

reproduction interdite

Erreurs Fréquentes

Géneralités
variables non-initialisées.
Erreur de dépassement de 1.
Traiter les tableaux en commencant les indices a 1 au lieu de 0.
Oublier la fin des commentaires */ .

Pas de point-virgule en fin d’instruction.

Types, Opérateurs et Expressions

Utiliser char pour int pour la valeur retournée par getchar()
Backslash (\) tapé pour (/), comme dans /n au lieu de \n.
Déclarer des arguments de fonction (non prototypée) aprés I’accolade.

Utiliser des opérateurs relationnels sur les chaines, comme s == "end",
au lieu de stremp()

Oublier le caractére "\0’ a la fin d’'une chaine de caractéres.
Utiliser = pour ==.
Erreur de 1 dans les boucles avec indices.

Erreur de priorité ou d’associativité des opérateurs.

A-2 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Erreurs Fréquentes

Structures de Controéle

else mal placé.
break manguant dans un switch .

Boucle accidentellement jamais exécutée.

Structures des Fonctions et Programmes

Mauvais ordre d’argument.
Mauvais type d’argument (fonctions non ou mal prototypées).
Penser qu’une variable static soit réinitialisée a chaque appel.

Manque de parentheses dans la définition d’une macro.

Pointeurs et Tableaux

Passer une valeur au lieu d’un pointeur, et vice-versa.
Confondre char avec char * .

Déclarer des pointeurs sur chaines de caracteres sans allocation de
mémoire avant utilisation.

Confondre quotes ('\n”) et guillemets ("\n").

Conseils de Mise au Point A-3

<: — SunsService
==

reproduction interdite

A-4 Programmation en C norme ANSI Révision C, Décembre 1994

Mots-Clefset Table ASCI|I

Cette annexe présente les informations suivantes :
m Mots-Clefs réservés

m La table ASCII (Décimale)

B-1

< > SunService
==

reproduction interdite

Mots-clefs Réservés

Les mots-clefs suivants sont réservés en C ANSI et ne peuvent étre
utilisés comme identifiants :

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Sun ANSI C définit un mot-clef de plus, asm. Mais asm n’est pas
accepté dans le mode de conformance -Xc. Lusage de asmest pris
comme une common extension.

B-2 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

La Table ASCII (Décimale)

Noter que les majuscules, les minuscules et les chiffres sont des
ensembles de valeurs consécutives. Mais ces ensembles sont sépareés.

0 nul
4 eot
8 bs
12 np
16 dle
20 dc4
24 can
28 fs
32 sp
36 $
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96 ¢
100
104
108
112
116
120
124

/XATVFTU® AN ©® B O —~

-_—X T — o Q

1 soh
5eng
9 ht
13 cr
17 dcl
21 nak
25 em
29 gs
33 !
37
41
45
49
53
57
61
65
69
73
77
81
85
89
93
97
101
105
109
113
117
121
125

~<cag-—o® T XCOZTMP> ORI =Y

Mots-Clefs et Table ASCII

2 stx
6 ack
10 nl
14 so
18 dc2
22 syn
26 sub
30rs
34 "
38 &
42 *
46 .
50 2
54
58
62
66
70
74
78
82
86
90
94
98
102
106
110
114
118
122
126

[op}

INS s~ 5— = >N Z=TwV "

3 etx
7 bel
11 vt
15 si
19 dc3
23 eth
27 esc
31 us
35 #
39’
43
47
51
55
59
63
67
71
75
79
83
87
91
95
99
103 ¢
107 k
111 o
115 s
119 w
123 {
127 del

~w N\ 4+

mTSOOXROO Y

o |

B-3

<: — SunsService
==

reproduction interdite

B-4 Programmation en C norme ANSI Révision C, Décembre 1994

MémentoduC

C-1

SunsService
reproduction interdite

|%%‘C

Mémentodu C

/* commentaires en slash étoile et étoile slash */

Squelette de Prototype de Fonction

#include <file.h>
int main(void)

{
déclarations;
instructions;
}
type
function(parametres)
{
[*corps de fonction */
}

Déclarations

char a, string [], *cptr;

int i, iarr[], *iptr;

float f, flarr[], *fptr;

double dd, dblarr[], *dptr;

struct tagname {
[*déclaration de membres*/

}variable-list;

typedef old-type new-name;

Fonctions d’'entrée

scanf("%d%f%c%s",&i,&f,&c,string); printf("%
while ((c=getchar()) !="\n")

Fonctions de sortie

d%.2 %c%s\n",i,f,c,string);

Opérateurs Relationnels

<><:>:::!:&&|I

Opérateurs d’affectation

4= -=*= [= 0=

C-2 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Meémento du C (suite)

Structures de Controle
condition ? exp_si_vrai:exp_si_faux

if (expression) {
instructions;

else if (expression) {

do {
instructions;
} while (expression);

switch (expression) {

instructions;
case valeurl:
else { instructions;
instructions; break;

} case valeur2:
for (initialisation; condition; pas) { mstru.ctlons;
instructions; break;

}
<etc>

while (expression) {

instructions; default:

} instructions;
break;
}

Pointeurs

int i, iptr*;

char string[], *stptr;

iptr = &i;

strptr = string;

*iptr = 5;

strptr = "Une chaine";

*strptr = "A’ ;

Mémentodu C

<: — SunsService
==

reproduction interdite

C-4 Programmation en C norme ANSI Révision C, Décembre 1994

Mémento vi

D-1

0 SunService
|%f-\ reproduction interdite

D-2

k()

@@@
N/

1)

Déplacements du curseur :

h, j, k et | ,trés bien pour les pros du clavier
~H (backspace), + (ou <CR>), -, barre d’espace
Touches fléchées comme diagramme ci-dessus

Déplacements page a page :

N une page en avant
b une page en arriere
~d une demie page en avant
~u une demie page en arriére

Déplacement sur I’écran

Home, haut d’écran

MIDDLE milieu d’écran

LAST derniére ligne de I’écran
GOTO derniere ligne du fichier
GOTO n-ieme ligne du fichier (ou :n)
GIVES status du fichier

> 3 —
OOO <I

Déplacements sur la ligne

w mot suivant

b mot précédent

e fin du mot

0 début de ligne (ou ™)
$ fin de ligne

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Recherche

/chaine recherche en avant de ’chaine’ (exemple: /while)
n next : occurence suivante de 'chaine’ (N - précédente)

Sortie de vi

:q! "laissez moi sortir" QUITTER sans sauver

‘W sauver sans quitter vi

‘W(q sauver puis quitter vi

ZZ sauver puis quitter vi (depuis le mode commande)

Passer en mode Insertion

Remarque : utiliser la touche ESC pour sortir de ce mode.

insérer avant le curseur

insérer en début de ligne

insérer apres le curseur

ajouter en fin de ligne

ajouter une ligne sous le curseur

ajouter une ligne au-dessus du curseur

remplacer un caractére sans passer en insertion

mode refrappe, écrire sur le texte existant (ESC pour fin)
cw change mot (cnw change n mots)

C change jusqu’a la fin de ligne

u "Ce n’est pas ce que je voulais" annule la derniére modification
U Récupere la ligne compléte

TS Qo »e —

Note: Les caractéres i, a, o, r, ¢ et s (majuscules et minuscules)
passent en mode insertion. Si le mode insertion est déclenché
involontairement, taper ESC, puis u.

Copie de texte

Y copier une ligne vers un buffer
nY copier n lignes
nyy copier n lignes

Mémento vi D-3

< > SunService
==

reproduction interdite

D-4

Effacer
X effacer un caractére (comme ’'d espace’)
dw effacer un mot
D effacer jusqu’a la fin de ligne

dd effacer la ligne (en la mettant dans un buffer = couper)
ndd effacer n lignes (10dd efface 10 lignes)

Placer

p placer le contenu du buffer sur la ligne suivante
P placer le contenu du buffer sur la ligne précédente
Xp permuter deux caractéeres

Recherche/Remplace (exemple)

/chaine rechercher la chaine a remplacer
cwW remplacer de la maniére adéquate (dw, r, s, etc.)
n passer a I’occurence suivante de 'chaine’

répéter la commande

Remplacement Global
:1,$s/0ld/new/g de la ligne 1 a la fin de fichier ($) remplacer
"old" par "new". Exemple.
:1,$s/sun/Sun/g
Effacement global

:g/chaine/d effacer les lignes contenant une chaine (exp.reg.)
Exemple :g/###/d pour effacer les lignes contenant

VHE
Insérer des fichiers
:r fichier insére le contenu du fichier a I'emplacement du
curseur.

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Travailler sur 2 fichiers

W sauver fichierl avant tout

e file2 éditer un fichier2

Y sauver le fichier2 avant de revenir au 1
e# retour au fichierl

Commandes Diverses

Jemd

%

mx

NV
?chaine
:n,n w fichier
J

:set ai

set list
:set nows
:set ts=n
:set wm=n

Mémento vi

lancer une commande shell depuis I’éditeur

(tilde) MAJ->min et min->MAJ

mise en correspondance de parenthéses, accolades...
pose la marque 'x’ (:d’x efface jusqu’a la marque 'x’
insertion de caracteres spéciaux (exemple /L)
recherche (comme /) mais en arriére

sauve les lignes n & m dans fichier (exemple:2,20 w ff)
concaténe la ligne suivante avec la ligne courante
mode auto-indentation (crénelage de la marge gauche)
montre les fins de ligne et les caractéres de contréle
arréte le rebouclage en début de fichier sur recherches
change la valeur d’une tabulation (par défaut 8)
inserer un newline a la colonne n

<: — SunsService
==

reproduction interdite

D-6 Programmation en C norme ANSI Révision C, Décembre 1994

SavoirLireleC

Cette annexe vous donne des informations concernant :

m La lecture de déclarations

m La lecture d’instructions

< > SunService
==

reproduction interdite

Déclarations

Régle : trouver I'identifiant et s’en écarter en spirale dans le sens des
aiguilles d’une montre. Traiter I'intérieur des parenthéses avant
I’extérieur et lire le type (le premier mot de la déclaration) en dernier.

Certains €léments de syntaxe doivent étre lus comme suit :

* est un pointeur sur un ou pointe sur un
[n] est un tableau de n
() est une fonction qui retourne
Exemples :
int x; X estunint
int *y; y est un pointeur sur un int
int *e[3]; e est un tableau de 3 pointeurs sur int
int (*c)[5]; ¢ est un pointeur sur un tableau de 5 int
int f(); f est une fonction qui retourne un int
int *b(); b est une fonction qui retourne un pointeur sur int
int(*r)(), r pointe sur une fonction qui renvoie un int
int **u; u pointe sur un pointeur sur int
int *(*t)(); t pointe une fonction renvoyant un pointeur sur int

Instructions

Regle : interpréter comme ci-dessous. Toutes les expressions, sauf la
derniére, sont lues de la gauche vers la droite.

s=a s prend la valeur de a

X==y X estégalay

K[3] k indice 3 (ou "k trois")

m(r) mder

* I’objet pointé par t

&v I’adresse de v

g->r r est un membre de la structure pointée par g

E-2 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Exercices de Lecture de Déclarations

Exprimer en frangais les déclarations suivantes :

1.

9.

float velocity;

char CommandsString [25];

int *CurrentSector;

char **argv;

int *ViewscreenStatus[5];

float (*ShieldPower) [6];

int *NotlIntuitive [900][36];

int (*ScreenDisplay) [900][36];

float *StarDate ();

10.int (*Acceleration) ();

Savoir Lirele C

E-3

<: — SunsService
==

reproduction interdite

E-4 Programmation en C norme ANSI Révision C, Décembre 1994

Exemplesde Programmes Divers

Cette annexe contient des exemples tels que :

m Fonction a nombre variable d’arguments et _ STDC__
m getstring()

m getfloat()

m Plus sur les unions

m Plus sur les listes chainées

m Plus sur les fonctions chaines de caracteres

m Pointeurs sur fonctions

m Exemples divers

F-1

|%%‘C

SunsService
reproduction interdite

/* Définition d’une fonction a nombre variable d’arguments.
Utilisationde lamacro___STDC _ pour déterminer sila compilation se
fait en ANSI C ou en C traditionnel. Compilation en C ANSI par "acc -
Xc var.c -o var'et en C traditionnel par "cc var.c -o var". *

#include <stdio.h>

#ifdef _ STDC__

#include <stdarg.h> /*fichier .h ANSI pour les arg. variables *
#else

#include <varargs.h> /*fichier .h en C traditionnel */

#endif

#ifdef _ STDC__

int fun(int ,..); /* prototypage ANSI C */

#endif
main(){
fun(0);
fun(2,3,"wokka");
fun(4,12, "hello", 47, "goodbye");
}
#ifdef _ STDC__
int fun(int count, ...)
#else
fun(va_alist)
va_dcl
#endif
{
#ifndef _ STDC__
int count;
#endif

va_list argptr;
int i, intparam;
char *string;
#ifdef _ STDC__
va_start(argptr, count);
#else
va_start(argptr);
count = va_arg(argptr, int);
#endif
printf("%d parameters\n”, count);
for (i=0;i<count;i+=2){
intparam = va_arg(argptr, int);
string = va_arg(argptr, char *);
printf("entier = %d\nchaine = %s\n", intparam, string);
}
va_end(argptr);
} /*fin %/

F-2 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

/***

**

** getstring - affiche le message d’invite passé en parameétre suivi

* d’une virgule et d’'un espace,lit une chaine de N-1
* caracteres maximum, enleve le newline de fin (sibesoin)
* et traite les caracteres restants eventuellement
* dans le buffer d’entrée.
**
** retourne un pointeur vers la chaine ou le pointeur
* NULL si la saisie rate
**
** usage - char name[40];
* if (getstring("Entrer votre nom", name, 40) == NULL)
** {
** fprintf(stderr, "Impossible de lire le nom\n”);
* exit(1);
** }
** note -compiler sans linker, puis linker avec votre programme.
* note -assurez vous d’inclure stddef.h pour la définition de
il NULL
*/
char *getstring(char *prompt, char *inbuf, int bufsize)
{
int len;

printf("%s: ", prompt);
if (fgets(inbuf, bufsize, stdin) == NULL)
return (NULL);
else {
len = strlen(inbuf) - 1;
if (inbuf[len] =="\n")
inbufflen] ="\07;

else [* pas de '\n’ trouvé dans */
while (getchar() !="\n");/* inbuf, donc vide le */
I* buffer clavier */
return (inbuf);
}
}* fin de getstring */

Exemples de Programmes Divers F-3

— SunService
= @

reproduction interdite

/***

** getfloat -affiche l'invite en paramétre suivi d’une virgule

* et d’'un espace, lit un réel sur stdin, puis retire
i tous les caracteres en trop du buffer clavier.
**
* Si l'utilisateur entre autre chose qu’un nombre
i getfloat affiche a nouveau l'invite et attend une
** nouvelle saisie
%
** La valeur obtenue aupres de I'utilisateur est la valeur
** retournée par la fonction.
%
i usage -float x;
** X = getfloat("Entrer votre balance");
* remarque -compiler sans linker puis linker avec votre prog.
*
float getfloat(char *prompt)
{
float val;

int status =0;

while (1) {
printf("%s: ", prompt);
status = scanf("%f", &val);

while (getchar() !="\n");/* nettoyage des caracteres */
[* laissés dans le buffer clavier */
if (status)
break ;
else

printf("Veuillez reprendre la saisie.\n");
}

return (val);

} I+ fin getfloat */

F-4 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

[* Utilisation d’une union */
#include <stdio.h>
#define A 0x41
int main(void)
{
int index;
union device_register {
char byte[4];
int word;
}reg;

printf("\n");

for (index = 0; index < 4; index++) {
reg.byte[index] = A + index;
printf("Octet[%d]: '%c’,", index, reg.byte[index]);
printf(" en hexa : 0x%x.\n", reg.byte[index]);

} I+ finde for */

printf("\n");

printf("Le mot entier : 0x%x.\n", reg.word);

printf("\n");

return 0,

}/* finde main */

% a.out

Octet[0]: 'A’, en hexa : 0x41.
Octet[1]: 'B’, en hexa : 0x42.
Octet[2]: 'C’, en hexa : 0x43.
Octet[3]: 'D’, en hexa : 0x44.
Le mot entier : 0x41424344.

%

Exemples de Programmes Divers

F-5

< > SunService
==

reproduction interdite

[* Manipulation de membres d’UNION. Ce programme s’appuie sur l'idée
d’une table de symboles d’un compilateur, et les constantes peuvent
étre int, float ou char. Cela pourrait étre pratique si tous les

types prenaient le méme encombrement. */

#include <stdio.h>
int main(void)

{
union int_float_ou_char {/* forme de I'union */
int i val;
float f_val,
char c_val;
%
union int_float_ou_char value ;/* déclare une variable */
char c, *ptr;
int i

char value_type;
for (; (value_type = getchar())!="*;){
[* Il estde la responsabilité du programmeur de connaitre le type de
la valeur conservée dans I'union int_float_ou_char, en donnant a
value_type une valeur caractérisant ce type. */
if (value_type =="1")
scanf("%d", &value.i_val);
else if (value_type =="f)
scanf("%f", &value.f_val);
elseif (value type =='C) {
¢ = getchar();
value.c_val = getchar();
}
if (value_type =="")
printf("La valeur est %d \n", value.i_val);
elseif (value_type =="f)
printf("La valeur est %f \n", value.f_val);
elseif (value_type =='C)
printf("La valeur est %c \n", value.c_val);

else
printf("Type %c de value_type erroné\n",
value_type);
¢ = getchar();/* retire le newline */
}/* finde for */
return 0O;

F-6 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

[* Utilisation d’une liste simplement chainée */

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#define MAXBUF 120
#define PROMPT "Entrer du texte ("D pour quitter): "
typedef struct node {
char line [MAXBUF];
struct node *next;
} node _t;

int main(void)

{
node_t *head = NULL, *temp;
char buf [MAXBUF];
printf (PROMPT);/* construction de la lere entrée
if (gets(buf)) {
head = (node_t *)malloc(sizeof (node_t));
strcpy(head->line, buf);
head->next = NULL,;
temp = head,;
printf(PROMPT);
y 1+ findeif */
while (gets(buf)) { /* en faire tant qu’il faut
temp->next = (node_t *)malloc(sizeof (node._t));
temp = temp->next;
strcpy (temp->line, buf);
temp->next = NULL,
printf (PROMPT);
}I* fin de while */
printf("\n");
temp = head;/* affiche toute la liste */
while (temp != NULL) {
printf ("%s\n", temp->line);
temp = temp->next;
}I* fin de while */
return 0O;
} ¥ fin de main */

Exemples de Programmes Divers

*/

F-7

|%%‘C

SunService

reproduction interdite

~

* Autre exemple de liste simplement chainée */

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#define MAXBUF 120
#define PROMPT "Entrer du texte (*D pour quitter): "
typedef struct node {
char line [MAXBUF];
struct node *next;

} node _t;
int main(void)
{
node_t head, *temp;/* remarque:head n’est pas un pointeur

char buf [MAXBUF];

head.next = NULL;/* Dans ce cas il n’y a pas de code

temp = &head; /* spécial au premier élément */

printf(PROMPT));

while (gets(buf)) { /* ajouter tant qu’il faut */
temp->next = (node_t *)malloc(sizeof (node_t));

temp = temp->next;
strcpy (temp->line, buf);
temp->next = NULL,;
printf(PROMPT));

} ¥ fin de while */

printf("\n");
temp = head.next;/* ATTENTION : différence avec I'exemple
précédent */
while (temp != NULL) {
printf("%s\n", temp->line);
temp = temp->next;
}I* fin de while */
return 0O;
}r* finde main ¥

F-8 Programmation en C norme ANSI Révision C, Décembre 1994

*/

*/

reproduction interdite

/* Déclaration d’un structure de liste chainée. Au fur et a mesure de
la saisie de nouveaux noms, la mémoire est allouée puis ajoutée a la
structure existante. */

#define EOSO
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
int main(void)
{
typedef struct person {
struct person *link;
char name[32];
} Node, *Nodeptr;
Nodeptr current, start, last;
char temp_name[32];
[* Saisie du 1er nom... */
printf("Entrer un nom suivi de entrée : ");
gets(temp_name);
start = NULL,; I* La liste n’est pas encore commencée */
while (temp_name[0] = EOS) {

[* allocation de I'espace pour un nouveau nom */

current = (Nodeptr)malloc(sizeof (Node));

if (start == NULL) { * Si ler de liste */
start = current; I* début de liste */
strcpy(current->name, temp_name); /* meten liste */

} else { I* liste déja faite */
strcpy(current->name, temp_name); /* metenliste */
last->link = current; [* pointe plus loin */

}

last = current; I* mémorise le dernier */

printf("Entrer un nom suivi de entrée : ");

gets(temp_name);

} I+ fin de while */
current->link = NULL; [* fin de liste */
return 0;

Exemples de Programmes Divers F-9

<: — SunsService
==

reproduction interdite

*

~

Utilisation de strspn(), strpbrk(), strtok() */

#include <stdio.h>
#include <string.h> /* déclaration de strspn(),strpbrk(), strtok()*/
#define NUMS "0123456789"

int main(void){
static char s3[]="ces/mots/sont/des/tokens";
char sl1[255], *s2;
int len;
printf("Entrer une ligne suivie de entrée : ");
gets(sl);
if (strspn(sl, NUMS) == strlen(sl))
printf("Une ligne que de chiffres \n");
if ((s2 = strpbrk(s1, " ~@#*&")) = NULL)
printf("\"%s\" débute a s1[%d].\n",s2,
(strlen(s1)-strlen(s2)));
s2 = strtok(s3, "/");
while ((s2!=(char *)NULL)) {
printf("%s\n", s2);
s2 = strtok((char *)NULL, "/");
}* fin de while */
return 0;
}* fin de main */
% a.out
Entrer un ligne suivie de entrée : This is a str@ing I'm typing
"@ing I'm typing" débute & s1[13].
ces
mots
sont
des
tokens
% a.out
Entrer un ligne suivie de entrée : 895720659237810392106
Une ligne que de chiffres !
ces
mots
sont
des
tokens
%

F-10 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

/* Utilisation de pointeurs sur fonction */

#include <stdio.h>
#define MAXFA 5
int main(void)
{
int ¢c=1;
int f1(void), f2(void), f3(void), f4(void);
int (*fa[]MAXFA])(); /* tableau de pointeur sur fonctions */

/*Renseigne 'fa’ avec 'adresse des 4 fonctions. Aucune parenthése
n‘apparait : le nom d’une fonction est 'adresse de la fonction *

fa[0] = O;
fa[1] = f1;
fa[2] = f2;
fa[3] = f3;
fa[4] = f4;

srandom(time(0)%getpid()); /initialise le générateur random()*/
while (c = fa[c]()); /* tant que retour de f. diff. de 0 */
return 0O;

int f1(void) {
int x =random() % MAXFA; /* nombre aléatoire entre 0 et 4 %/
printf("f1: %d\n", x); /*afficher le nombre aléatoire */
return(x); /* retourne le nombre aléatoire entre O et 4 */

int f2(void) {
int x =random() % MAXFA;
printf("f2: %d\n", x);
return(x);

int f3(void) {
int x =random() % MAXFA;
printf("f3: %d\n", x);
return(x);

int f4(void) {
int x =random() % MAXFA;
printf("f4: %d\n", x);
return(x);

Exemples de Programmes Divers

F-11

|%%‘C

SunsService
reproduction interdite

*

~

Démonstration des classes d’allocation... */

#include <stdio.h>
#define NL putchar(\n’)

inti=1; I* i est global au programme et initialisée a 1
int main(void) {

autoint j; /* jestlocal a main() */

static int next(void);/* visible seulement dans le fichier

int new(int);

for(=1;j<=3;j+4) {
printf("ici next() %d", next()); NL;
printf("ici new() %d", new(i + j)); NL;

}

return 0O;
}
static int next(void)
{

return (i +=1);
}
int new(int k)
{

return (K +=1);
}
F-12 Programmation en C norme ANSI Reévision C, Décembre 1994

*/

*/

reproduction interdite

I* Exemple d’appel par référence. Le programme donne des valeurs a
i et j, puis appelle une fonction qui assure que i est inférieur a | */

#include <stdio.h>
void main(void)

{
int i=9,j=7,
int order(int * int *);
order(&i, &j);/* passe les adresses */
printf("i est maintenant %d et j %d \n", i, j);
}

int order(int *p, int *q)

{
int temp;/* compare les valeurs pointées */
if (*p >*q)/* si celle pointée par p est supérieure a q,
échanger *|
{
temp = *p;
*p =70,
*q = temp;
}
}

Exemples de Programmes Divers F-13

reproduction interdite

< > SunService
==

I* Exemple de tableau en argument de fonction. Ensuite, 2 fonctions
qui renvoient la somme de tableaux de réels. Le tableau est le 1 er
argument et le nombre d’éléments est le 2 éme. */
#include <stdio.h>

int main(void)

{
float f _arr[100],f_sum,sum_1(float [], int),sum_2(float * int
)i
int num, i=0;
puts("Combien de réels a ajouter ?");
scanf("%d", &num);
while (i < num){
scanf("%f", &f_arr[i]);
I++;
}
if (num < 50)
f_sum = sum_1(f_arr, num);
else
f_sum = sum_2(f_arr, num);
printf("La somme des nombres est %9.6f \n", f_sum);
return 0O;
}
float sum_1(float array[], int n)/* notation indicée */
{ “ .
int i;
float sum =0;
for (i=0;i<n;++i)
sum += array[i];
return (sum);
}
float sum_2(float *ap, int n)/* notation pointeur */
{ . .
int i;
float sum =0;
for (i=0;i<n;++)
sum +=*(ap + i);
return (sum);
}

F-14 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

I* Exemple d’appel par référence avec des tableaux en argument. Deux
fonctions STRCAT() et STRCPY() concatenent 2 chaines. */

#include <string.h> /* déclaration de strcpy() et strcat() */
#define MAXLEN 100
int main(void)
{
char firstfMAXLEN], second[MAXLEN], resultfMAXLEN];

printf("Entrer un mot : ");

gets(first);

printf("Entrer un autre mot : ");

gets(second);

puts("\n \n");

strcpy(result, first);/* copie ‘first’ dans ‘result’ */
strcat(result, second);/* ajouter 'second’ a 'result’ */
printf("Premiére chaine : %s \n", first);

printf("Deuxieme chaine : %s \n", second);

printf("Les deux jointes : %s \n", result);

return O;

void strcpy(char *to, char *from)/* adresses origines */

{
}

while (*to++ = *from++);/* affectation puis incrément */

void strcat(char *to, char *from)/* concaténation */
{
[* aller a la fin de la chaine 'to’ */
while (*to) to++;/* compte chaque caractere */
[* jusqu’au caractére nul */
[* copie le contenu de ‘from’ a la fin de 'to’ */
do {
*to++ = *from:/* a la fin de 'to’, affectation de */
} while (*from++);/* chaque car. de 'from’, jusqu’a la */
[* rencontre du caractere nul */

Exemples de Programmes Divers F-15

< > SunService
==

reproduction interdite

/* Création et tri d’un tableau de pointeurs. Ce programme lit un
nombre de mots etlesrange alasuite dansuntableau. Puis le tableau
est trié, et la liste des mots ainsi triés est affichée. */

#include <stdio.h>

#define MAXWORDS 100

#define MAXSPACE 3000

int main(void){

char *p[MAXWORDS];/* tableau de pointeurs sur char */
char W[MAXSPACE];

char *q=w;/* initialise q sur l'origine de w */

int i, n;

void bubble(char *], int);
printf("\n Combien de mots a trier ? ");
scanf("%d", &n);
if (n <= MAXWORDS) {
printf("\n Entrer les %d mots : ", n);
for (i=0;i<n;++i){
I* puisque WIMAXSPACE] estfixe, q représente 'adresse courante dans
WIMAXSPACE]. Chaque mot lu estrangé a partir de q, puis apres calcul
de sa longueur, ajout de 1 pour ’\0’ et incrément de q */
scanf("%s", p[i] = q);
g += strlen(q) + 1;
}/* finde for */
bubble(p, n);
printf("\n %14s", "liste triée : ");
for (i=0;i<n;++)
printf("%s \n %214s", p[i], ");

printf("\n");
} else
printf("\n \nTrop de mots : %d maximums admis",
MAXWORDS);
return 0O;
}* fin de main */
void bubble(char *p[], int n)/* tableau de pointeurs sur char */
{
char *temp;
int i, j;
for (i=0;i<n-1;++)* boucle for sur n mots */
for (j=n-1;i<j;--)I* boucle pour comparer 2
if (strcmp(p[j-1], p[j]) > 0) {/* mots adjacents
temp = p[j-1]; /* échange */
pli-1] = plil;
p[i] = temp;
}
}

F-16 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

/* Entrée/Sortie caractere/caractere sur fichier. Copie un fichier
dans un autre. */

#include

int main(void)

{

<stdio.h>

int c;
FILE *fp1l, *fp2;/* Pointeurs de fichier */
char namel[32], name2[32];

puts("Entrer les noms des 2 fichiers sur 2 lignes. \n");
gets(namel);/* saisie des noms de fichiers */
gets(name2);

fpl = fopen(namel, "r");/*
fp2 = fopen(name2, "w");/*

ouverture pour lecture
ouverture pour écriture

while ((c = getc(fpl)) '= EOF)/* lit un char */
putc(c, fp2);/* écrit un char */

fclose(fpl); I* fermeture des fichiers */

fclose(fp2);

return O;

Exemples de Programmes Divers

*/
*/

F-17

reproduction interdite

< > SunService
==

/* Arguments passeés sur la ligne de commande. Ce programme ouvre un
fichier puis lit chaque ligne comme une chaine de caracteres */

#include <stdio.h>
int main(int argc, char *argv)
{
char record[128];
FILE *filename;/* pointeur vers une structure FILE */

puts("\n \n \n \t \t \t Lecture d’un fichier ASCII \n");
if (argc!=2){/* vérifie le nombre des arguments */
puts("Entrer le nom du fichier sur la ligne de commande \n");
exit(1);/* sortie du programme */
}
I* ouvre unfichier ASCll enlecture, sortie du prog. si erreur */
if (!(flename = fopen(argv[1], "r"))) {
fprintf(stderr, "Erreur d’ouverture de %s \n", argv[1]);
exit(1);
}
[* Lit une ligne a concurrence de 128 caractéres */
while (fgets(record, 128, filename) != 0)
printf("%s", record);
fclose(filename);
return O;

F-18 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

/* Exemple d’utilisation de variables structures. */

#include <stdio.h>

struct pencil {/* nom de structure (comme type) */
int hardness;
char maker;
int number;
%
int main(void)
{
struct pencil p[4];/* tableau de structures */
struct pencil *pen_ptr;/* pointeur sur structure */
p[0].hardness = 2;/* initialisation des membres de structures

p[0].maker ="F’;

p[0].number = 482;

p[1].hardness = O;

p[1l].maker ='G’;

p[1].number = 33;

p[2].hardness = 3;

p[2].maker ='E’;

p[2].number = 107,

p[3] = p[2];

printf(" Numéro de fabricant de harnais \n\n");
[* initialise le pointeur pen_ptr au début du tableau, teste la fin

et incréemente d ‘élément en élément */
for (pen_ptr = p; pen_ptr <= p + 3; ++pen_ptr)
[* imprime chaque membre... */

printf(" %d %cC %d\n",
pen_ptr -> hardness, pen_ptr -> maker,
pen_ptr -> number);
return 0O;

Exemples de Programmes Divers

*/

F-19

|%%‘C

SunService
reproduction interdite

~

#include <stdio.h>

struct word_bytes {
unsigned int byteO : 8,

bytel : 8,
byte2 : 8,
byte3 : 10;
h

int main(void)

{
struct word_bytesy;
y.byteO = 128;
y.bytel = 129;
y.byte2 = 130;
y.byte3 = 131;
printf("%u \n", y.byte0);
return O;

}

* Exemple d’utilisation de champs de bits.

*/

F-20 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

/*Exemple de déclarationde nouveautype partypedef. Le nouveautype
estutilisé pourdéclareraetb. Les valeurs des tableaux a etb sont

utilisées pour calculer celles de c. */

#include <stdio.h>
#define N3
[* initialisation de matrices 3X3... */
typedef int MATRIX;
MATRIX a[N][N] = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9}
3
MATRIX b[N][N] ={
{10, 20, 30},
{10, 20, 30},
{10, 20, 30}
3
MATRIX c[N][N];

int main(void)

{
int i, j, k;
for (i=0;i < N; ++i)
for (j=0;j<N;++){
c[i]lil = afi]fil * bI]L;
printf("valeur de c[%d][%d] = %d \n", i, j, c[i][jD;
}
return O;
}

Exemples de Programmes Divers

F-21

< > SunService
==

reproduction interdite

I* Exemple de conversion explicite (CAST) pour un argument de la
fonction sqrt. */

#include <stdio.h>
#include <math.h>/* déclaration de la fonction sqrt */
#define BEGIN 1
#define END 20
int main(void)
{ “
int count;
double root;
int square;

printf("\t Table des carrés et des racines carrées \n \n");
for (count = BEGIN; count <= END; count++) {
square = count * count;/* élévation au carré */
root = sqrt((double) count);/*racine carrée */
[* sgrt() demande un argument */
[* de type double */
printf("Nombre : %d \t carré: %d \t racine: %10.3f \n"
, count, square, root);

}

return 0O;

F-22 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

/*

Manipulation de bits. */

#include <stdio.h>

int

{

}

main(void)

struct pcard {
unsigned values : 4;
unsigned suit : 2;

} hand;

void bit_print(int);

printf("%d %d \n",(hand.values = 1), (hand.suit = 2));
bit_print(hand.values);

bit_print(hand.suit);

return O;

void bit_print(int v)

{

int i, mask =1;
mask <<= 31;/* décalage a gauche de 31 bits
for (i=1;i<=32; ++i){

putchar(((v & mask) ==0) ?°'0": '1");

vV <<=1;

}
putchar(’\n’);

Exemples de Programmes Divers

*/

F-23

|%%‘C

SunsService
reproduction interdite

[* Utilisation de calloc() pour I'espace alloué dynamiquement pourla
chaine newstr. */

#include
#include
main(void)

int

~—=

F-24

<stdio.h>
<stdlib.h>

int i, nelem;
char *newstr;

puts("Entrer le nombre de caracteres : ");
scanf("%d", &nelem);
newstr = calloc(nelem, sizeof (char));
puts("Entrer une chaine de caractéres :");
scanf("%s", newstr);
for (i=0; i< nelem; ++i)
printf("%c", newstr[i]);
putchar(’\n’);
free(newstr);/* rend la mémoire allouée au systeme
return 0O;

Programmation en C norme ANSI Reévision C, Décembre 1994

*/

Internationalisation, Grands
Caractereset Caracteres Multi-
octets

Cette annexe donne des informations sur :

m Les jeux de caracteres

m ldéogrammes et caracteres multioctets

m Grands caractéres et constantes chaines de grands caractéres
m Fonctions sur les chaines et caractéres multioctets

m Caractéres nationaux et répertoires associés

m Exemple simple

G-1

0 SunService
|%f-\ reproduction interdite

Jeux de caracteres

Le code de caractéres utilisé généralement pour I’anglais est le code
ASCII. Ce code est basé sur des caractéres pouvant étre codés sur 7
bits. Beaucoup de caractéres utilisés dans les langages asiatiques et
d’autres langages différents de I’anglais, nécessitent un codage sur

plus d’un seul octet.

Comme les caractéres sont représentés par des nombres, un type entier
assez grand pour contenir les valeurs numériques des caractéres est
indispensable. L’ANSI C définit le type fondamental wchar_t (wide
character type), dans <stddef.h> . C’est un typedef sur un type
assez grand pour le plus grand des jeux de caractéres supportés. (En
Sun ANSI C, wchar_t est un typedef surlong (4 octets).)

Ideogrammes et Caracteres Multioctets

Les langues asiatiques comportent beaucoup d’idéogrammes. Les
idéogrammes sont codés sur des séquences d’octets, et le procédé de
codage doit étre capable d’identifier la séquence d’octets comme un
idéogramme en particulier. L’ANSI C utilise des caractéres multioctets
pour les séquences d’octets des idéogrammes. Les caractéres habituels
sur un octets sont traités comme des cas particuliers de caracteres
multioctets.

Constantes grands caracteres et chaines de grands
caracteres

Une constante grand caractere est indiquée en faisant précéder une
constante entre quotes de la lettre L :

L'X’

L’abc’
De méme, une constante chaine de grands caracteres est signalée par la
lettre L devant les guillemets, comme : L"abcxyz ". De telles

constantes peuvent servir a initialiser un tableau de grands caracteres
(un tableau de wchar_t):

wchar_t x []=L"abcxyz";

Equivalent a :

G-2 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

wchar_t x[]={L’'a’, L'b’, L'c’, L'xX, L'y’, L'z, O};

Remarquer que le tableau contient un 0 & la fin (comme avec une
chaine de caractéres habituelle qui rajoute \0’.)

Un grand caractére a un codage externe multioctets et un codage
interne en wchar_t .

Identité

Pour chaque grand caractere il existe un code multioctets
correspondant et pour chaque caractére multioctet (comme défini dans
le jeu de caracteres), il existe un grand caractére correspondant.
Egalement, chaque caractere multioctets a une valeur représentable en
wchar_t .

La valeur d’un caractere multioctets correspondant a un caractere
monooctet doit étre la méme que dans le code sur un seul octet. Le
nombre d’octets utilisé pour représenter un grand caractére ne peut
étre supérieur a MB_LEN_MAX5 pour le Sun ANSI C).

Fonctions sur les Caracteres Multioctets

Les fonctions de la librairie de I’ANSI C traitant les grands caractéres
sont : mblen() , mbtowc() , et wctomb() . La signification et la
syntaxe de ces fonctions sont les suivantes :

#include <stdlib.h>
#include <limits.h>
int mblen(const char *s, size_t n)

Retourne le nombre de caractéres contenus dans le caractére
multioctets pointé par s, si s n’est pas nul et si les n octets suivants ou
moins forment un caractére multioctets valide (défini).

#include <stdlib.h>
#include <limits.h>
int mbtowc(wchar_t *pwec, const char *s, size t n)

Retourne le nombre d’octets du caractére multioctets pointé par s, si
s n’est pas nul ; en plus, la valeur numérique de type wchar_t qui
correspond au caractére est déterminée (voir "ldentité" ci-dessus). Si

Internationalisation, Grands Caractéres et Caracteres Multi-octets G-3

< > SunService
==

reproduction interdite

pwc n’est pas nul, et que le caractere est valide, le code numeérique est
placé dans I'objet pointé par pwe. La fonction mbtowc() examine au
plus n octets du tableau pointé par s.

Cette fonction ne retourne pas de valeur supérieure a n ni a
MB_CUR_MAX

#include <stdlib.h>
#include <limits.h>
int wctomb(char *s, wchar_t wchar)

wctomb() retourne le nombre d’octets nécessaires pour représenter le
caractere correspondant a wchar (voir également "Identité"). La
fonction stocke la représentation multioctets dans le tableau pointé par
S, si s est non-nul.

La valeur retournée par wctomb() ne dépasse jamais MB_CUR_MAX

Fonctions Chaines Multioctets

Les deux fonctions supportant les constantes chaines de grands
caracteres sont mbstowcs() et westombs() . Leurs syntaxes et
significations sont :

#include <stdlib.h>
size_t mbstowcs(wchar_t *pwecs, char *s,size_t n)

Cette fonction prend la série de caractéres multioctets pointée par s et
la convertie dans la série de codes numériques correspondante. Les
codes sont placés dans le tableau pointé par pwcs. Pas plus de n
codes sont stockés dans le tableau. Les caractéres apres le caratere nul
ne sont pas traités. mbstowcs() retourne le nombre d’éléments
modifiés ou (size_t) -1 si un caractére invalide est trouvé.

#include <stdlib.h>
size_t wcstombs(char *s,wchar_t *pwcs,size_t n)

wcstombs() prend la série de codes numériques pointée par pwcs et
la convertit dans la séquence de caractéres multioctets correspondante.
Les caracteres sont placés dans le tableau pointé par s. Pas plus de n
caractéres sont mis dans le tableau.

G-4 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Local

Si un code sans correspondance est trouvé, la fonction retourne
(size_t) -1. Sinon, c’est le nombre d’octets modifiés qui est retourné.

Un local est un modele ou une définition d’un environnement de
langue native. Chaque programme d’application s’exécute dans le
local du programme. Ce local définit le jeu de caractéres (vu
précédemment), les conventions de formatage de date et d’heure, le
formatage monétaire et décimal, et I'ordre de classement. Si un
programme utilise certaines fonctions (que nous verrons plus loin) qui
dépendent d’une de ces conventions de format, le programmeur doit
prendre en considération le local dans lequel le programme est utilisé.

Les catégories qui définissent le local d’'un programme sont les
suivantes :

LC_CTYPE - contréle le comportement des fonctions caractéres (toutes
celles définies dans ctype(3)) et des fonctions sur les caracteres
multioctets.

LC_TIME - contrdle le format date et heure de la fonction
stritime()

LC_MONETARY - contréle le format monétaire et les valeurs
retournées par localeconv()

LC_NUMERIC - affecte le signe décimal pour les fonctions de lecture
et d’écriture, et pour les fonctions de conversion.

LC_COLLATE - affecte les fonctions strcoll() et strxfrm()

LC_MESSAGES - affecte gettxt() , catopen() , catclose() et
catgets()

LC_ALL - nomme le local de tout le programme.

La fonction setlocale() peut étre utilisée pour demander ou
positionner le local d’un programme dans une catégorie. Syntaxe :

#include <locale.h>
char *setlocale(int category, const char *locale)

Internationalisation, Grands Caractéres et Caracteres Multi-octets G-5

< > SunService
==

reproduction interdite

Une valeur "C" pour locale spécifie I’environnement par défaut -
I’environnement minimal pour les traductions C ; si la valeur de
locale est la chaine vide ", le local est pris dans la variable
d’environnement dont le nom correspond a la catégorie. Si aucune
variable n’existe pour la catégorie, la variable LANGest vérifiée.

Si un programmeur désire que son programme suive les conventions
du pays ou le programme sera utilisé, les instructions suivantes
doivent apparaitre au début du code :

#include <locale.h>

setlocale(LC_ALL,™); /* toutes valeurs par défaut */

Un pointeur nul par I'argument /ocale dans setlocale() , comme ,

setlocale(category, (char *) 0);

demande a la fonction de renvoyer la valeur de local pour la
category spécifiée. Ceci est un moyen pour le programmeur de
connaitre le local courant d’une catégorie.

Au début d’un programme, I’équivalent d’un

setlocale(LC_ALL, "C");

est exécuté.

Répertoires Associés au Local

Chaque catégorie correspond a un ensemble de fichiers qui
contiennent les informations définissant un local. L’emplacement de
ces fichiers est :

lusr/lib/locale/ locale_country/category/db_file_name .
Par exemple, le fichier pour la catégorie LC_NUMERIQu local "french”
se situe sous /ust/lib/locale/fr/lLC_NUMERIC.

Habituellement, I'implémentation fournit les fichiers de description
des différents "local". Mais un programmeur peut définir lui-méme un
local. Voir man chrtbl pour plus de détails.

G-6 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Exemple Simple

Cet exemple montre comment définir un fichier de description pour la
catégorie LC_CTYPEet comment I'installer dans le bon répertoire.
Puis un programme exemple montre comment utiliser ce nouveau
fichier de description.

La commande chrtbl(1M) est utilisée pour créer un fichier décrivant
les informations pour tous les jeux de caractéres tenant sur un octet
(7-bit et 8-bit) (un fichier LC_CTYPE). Il indiqgue comment déterminer
si un caractére est majuscule, minuscule, chiffre, ponctuation, espace,
caractere de contrble ou héxadécimal. Il contient également une table
de conversion majuscules-minuscules. (La commande chrtbl crée
aussi un fichier LC_NUMERICnon-abordé dans cet exemple.) Les
pages du man pour chrtbl(1M) décrivent le format du fichier de
spécification. Ce fichier est fourni en argument de chrtbl

Le programme exemple utilise les classifications suivantes :

Majuscules : AE@C KN

Minuscules : dégc A

Chiffres : 0123456789

Hexa : 0123456789abcdefABCDEF

Espaces : Barre d’espace et Inséquable

Blancs : Barre d’espace

Ponctuation : " # 3% &' ()*+,-.1
s<=>2@ [\ {1}~

Control Ch. Codes: 000 - 037 0177

Internationalisation, Grands Caractéres et Caractéres Multi-octets G-7

<: — SunsService
==

reproduction interdite

Remarque : pour obtenir ces caractéres, utiliser la touche compose
(clavier type 4) comme indigqué ci-dessous :

TOUCHES DESCRIPTION
compose * A A Angstrom

compose " E E tréma

compose / O O barré

compose , C C cédille

compose - D eth islandais majuscule
compose ~ N N tilde

compose H T thorn islandais majuscule

Remarque : Les minuscules s’obtiennent de la
méme facon, en remplagant les majuscules par
des minuscules.

Pour créer le fichier de description LC_CTYPEavec la commande
chrtbl , un fichier de spécification doit d’abord étre créé. Ce fichier
est listé ci-dessous. Le fichier de description est créé dans le répertoire
courant, au moment de I’exécution de la commande chrtbl et son
nom est sample_ch . Le fichier de spécification, sample_ch_sp , pour
le jeu de caractéres cité est :

LC TYPE sample_ch

isupper 0305 0313 0330 0307 0320 0321 0336
islower 0345 0353 0370 0347 0360 0361 0376

isdigit 060-071

iIsspace 040 0240

ispunct 041-057 072-0100 0133-0140 0173-0176
iscntrl 000-037 0177

isblank 040 0240

isxdigit 060-071 0141-0146 0101-0106

ul <0305 0345> <0313 0353> <0330 0370> <0307 0347>\

<0320 0360> <0321 0361> <0336 0376>

G-8

Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Une fois le fichier créé, lancer la commande :

% chrtbl sample_ch_sp

Le systéme va générer le fichier de description LC_CTYPEd’apreés le
fichier de spécification, avec le nom indiqué sur la ligne LC_CTYPE
Une fois créé, placer ce fichier dans la directory "local" concernée.

Dans I’exemple, I’'administrateur va créer un répertoire dans
lusr/lib/locale . Ce nouveau répertoire sera appelé sample_ch.
Le répertoire LC_CTYPEsera sous sample_ch . Le fichier de
description sample_ch sera placé dans ce sous-répertoire avec le nom
complet /usr/lib/sample_ch/LC_CTYPE/ctype.

Internationalisation, Grands Caractéres et Caracteres Multi-octets G-9

reproduction interdite

<: — SunsService
==

Maintenant, voici un programme locale.c qui change le local avec
setlocale() pour utiliser le nouveau fichier de description :

#include <locale.h>
#include <stdio.h>

int main(void)

char *locale;
char save_locale[100];
int ch;
locale = setlocale(LC_CTYPE,(char *)0);
printf("\nLocal courant : %s\n\n", locale);
strcpy(save_locale,locale);
locale = setlocale(LC_CTYPE, "sample_ch");
printf("Nouveau local : %s\n\n",locale);
printf("Entrer des majuscules, (ctrl-d pour quitter) : \n");
while ((ch=getchar()) = EOF){
if (isupper(ch))
printf("%c minuscule = %c\n",ch, tolower(ch));
else if ((ch==1n")|| (ch=="")) /* newline ou espace */
continue ;
else
printf("%c n’est pas une majuscule\n”, ch);

locale=setlocale(LC_CTYPE, save_locale);
printf("\nLe local est remis a %s\n", locale);

Compiler avec la commande :

cc -Xc locale.c -o locale

G-10 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

Et lancer le programme pour obtenir :

% locale

Local courant : C

Nouveau local : sample ch
Entrer des majuscules, (Ctrl-d pour quitter) :
A

A n’est pas une majuscule
B

B n’est pas une majuscule
29

2 n'est pas une majuscule
9 n'est pas une majuscule
ad

a n’est pas une majuscule
d n’est pas une majuscule

A

A minuscule = &

minuscule =
minuscule =
C
C minuscule = ¢
N
N minuscule = fi
a

a n'est pas une majuscule
%)
@ minuscule = g

Le local est remisa C
%

Internationalisation, Grands Caractéres et Caractéres Multi-octets G-11

<: — SunsService
==

reproduction interdite

G-12 Programmation en C norme ANSI Révision C, Décembre 1994

DifféerencesEntreSunCet
Sun ANSIC

La plupart de ces informations proviennent de I’Annexe A de la
documentation "SPARCompilers C 2.0 Transition Guide".

H-1

< > SunService
==

reproduction interdite

Mots-Clef

const , volatile |, et signed sont des mots-clef en ANSI C.
Ces mots sont traités comme des identifiants en Sun C.

asm est un mot-clef du Sun C. Il est traité comme un identifiant en
ANSI C et en Sun ANSI C dans le mode -Xc.

Identifiants

ANSI C n’autorise pas le dollar ($) dans les identifiants.
Sun C le permet.

Long Float

Sun C accepte les déclarations de long float et le traite en double .
ANSI C refuse ces déclarations.

Constantes Caractere Multioctets

Sun C et ANSI C représentent les caractéres multioctets différemment :

int i, mc = 'abcd’;
char *cptr;
cptr = (char *)&mc;
for (i = 0; i < 4; i++){
printf("%c", *cptr);
cptr++;

}

donne ;

abcd /*en Sun C %
dcba [*en ANSI C */

H-2 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Constantes Entieres

Sun C accepte 8 ou 9 dans une séquence d’escape octale ; ANSI

C non :
char x, vy;
x ='\78’; /* Sun C interprete en \70 */
y ='\79’; /* Sun C interprete en \71 */

Opérateurs d’Affectation

Sun C permet les espaces entre les paires suivantes, en les traitant
comme deux marqueurs, alors que I’ANSI C les traite comme un seul
marqueur. Aussi, ANSI C n’autorise pas les espaces (et généere un core
si besoin).

*= /:, %=, +=, -=, <<=, >>= &=, "= I:

Calculs en Simple/Double Précision

Sun C promouvoit les opérandes d’une expression virgule flottante en
double .

ANSI C permet les calculs sur les flottants en simple précision.

En Sun C les fonctions qui renvoient un float ont leur code de retour
promu en double .
ANSI C requiert des valeurs en float pour ces fonctions.

Conservation du Signe ou de la Valeur

Sun C supporte la conservation du signe. Ainsi les unsigned char et
unsigned short sont convertis en unsigned int

ANSI C conserve la valeur. Les unsigned char et unsigned short
sont convertis en signed int si ce type peut représenter toutes les
valeurs du type d’origine ; sinon, ils sont convertis en unsigned int

Différences Entre Sun C et Sun ANSI C H-3

reproduction interdite

< > SunService
==

H-4

Convertion Explicite (Cast) d’une Ivalue

Sun C supporte la convertion explicite des Ivalue(s) :
(char *)ip = &char;

ANSI C ne I'accepte pas.

Déclarationsint Implicites

Le compilateur Sun C accepte les déclarations sans type :
num; /* implique : int num; *

ANSI C géneére une erreur de syntaxe dans le cas ci-dessus.

Déclarations vides

Sun C accepte les déclarations vides :
int;

Sauf pour les tags de prototypage, ANSI C n’accepte pas les
déclarations vides.

Spécifications de type sur des Typedefs

Le compilateur Sun C permet les spécifications de types comme
unsigned , short , et long sur des déclarations de typedef

typedef short small;
unsigned small x;

ANSI C ne permet pas la modification de déclarations typedef avec
des spécifications de type. On obtient le message suivant a la
compilation :

identifier redeclared: small
syntax error before or at: x

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Types autorisés sur les champs de bits

Sun C permet tous les types entiers sur les champs de bit, et méme des
champs sans nom.

ANSI C ne supporte que les types int , unsigned int , et signed

int . Les autres types sont indéfinis.

Type de la Condition d’un switch

Sun C permet float et double comme types de condition d’un
switch en les convertissant en int

main()
{
float y = 4.3213;
switch (y)
{
}
}

ANSI C ne permet que des entiers dans un switch :int , char , et
enum. L’exemple génére une erreur de compilation avec ANSI C.

Directives du preprocesseur #else et#endif

Le préprocesseur du Sun C ignore tout marqueur apres les directives
#else ou #endif

#ifdef TEST
#define YES_TEST 1
#else else of test /* ‘else of test’ est
ignoré sans message de compilation*/
#define YES_TEST 0O
#endif test /* ‘test’ est ignoré */

ANSI C ne permet plus de marqueur apres les directives du
préprocesseur.

Différences Entre Sun C et Sun ANSI C H-5

< > SunService
==

reproduction interdite

H-6

Collage de paramétres de macros et I’opérateur ##

En Sun C, le collage de paramétres se réalise avec un commentaire :
#define PASTE(A,B) A /* commentaire */ B
En ANSI C, le commentaire étant comme un blanc, il faut utiliser ## :

#define PASTE(A,B) A##B

Récursivité du Préprocesseur

Le préprocesseur du Sun C réalise des substitutions récursives.
En ANSI C, une macro n’est plus substituée si elle apparait déja dans
la liste des remplacements effectués :

#define F(X) X(arg)
F(F)

donne :

arg(arg) /*Sun C %/
F(arg) /* ANSI C */

Substitution de Parametre caractere dans les Macros

Le préprocesseur du Sun C substitue les caractéres dans une constante
si celle-ci correspond a une macro :

#define charize(c) 'c’
charize(2)

donne :
1Zl

En ANSI C, le caractére n’est pas remplacé et il n’y a pas d’opération
équivalente. La solution est d’utiliser la macro suivante :

#define charize(c) (c)
charize('Z’)

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Substitution de Parametres chaine dans les Macros

Le préprocesseur du Sun C remplace un parametre apparaissant dans
une chaine de la définition de la macro :

#define str(a) "a!"

str(x y)

donne :
"x y!" /*en Sun C %
"al" /*en ANSI C */

En ANSI C, I'opérateur # doit étre utilisé. L’exemple s’écrit alors :

#define str(a) #a "!"
str(x y) /* donne "x y!" apres substitution */

Nomstypedef en parametre de fontion

Sun C permet l'utilisation de noms typedef dans les paramétres
d’une fonction, ce qui en fait, cache la déclaration typedef
ANSI C ne le permet pas.

Initialisation des agrégats propre a I'implémentation

Sun C utilise un algorithme de bas-en-haut pour I’'analyse des
initialisations partiellement elidées. ANSI C recommande une analyse
descendante. Exemple :

struct {

int a[3];

int b;
powll={{1} 2}

donne en Sun C :
sizeof(w) = 16

w[0].a=1,0,0
w[0].b = 2

Différences Entre Sun C et Sun ANSI C H-7

reproduction interdite

< > SunService
==

H-8

eten ANSI C :

sizeof(w) = 32

w[0]l.a=1,0,0
w([0]l.b =0
w[l]la=2,0,0
w[l]l.b =0

Visibilité des fonctions extern et static d’un bloc

Le standard ANSI ne garantit pas la visibilité dans tout le fichier de
fonctions déclarées dans un bloc, comme en Sun C.

L’Argumentenvp de main()

Sun C prend envp en troisieme argument de main() .
Sun ANSI C permet aussi cet argument, mais ce n’est pas conforme au
standard ANSI du C.

Concatenation de ligne avec Backslash

L’ANSI C concaténe les lignes se terminant par un backslash (\) (suivi
immédiatement par newline) avec la ligne suivante.
Sun C ne le fait pas.

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Les Trigraphes dans les Chaines de Caracteres

Le Sun C ne supporte pas cette caractéristique de I’ANSI C. Il y a neuf
séquences trigraphes qui sont :

trigraphe car. trigraphe car.
7= # 277> }
7?- ~ 2?7’ N
22([272! |
??)] 7/ \
77< {

Types
Le type ANSI long double n’existe pas en Sun C.

Constantes Virgule Flottante

Les suffixes ANSI : f, |, F et L ne sont pas reconnus en Sun C.

Les Constantes Entiéres peuvent avoir différents Types

Les suffixes U et u de constantes ANSI n’existent pas en Sun C.
En ANSI C, les constantes sans suffixe peuvent étre non-signées et
ainsi impliquer une arithmétique non-signée des expressions dans
lesquelles elles apparaissent.

Constantes Caratéres Larges

Le Sun C ne reconnait pas la syntaxe ANSI des caractéres larges
(préfixe L) :

wchar_t wc = L'x;

Différences Entre Sun C et Sun ANSI C H-9

< > SunService
==

reproduction interdite

H-10

Constantes Caracteres

L’ANSI C traite "\a’ (bell) et “\x’ (chiffre hexadécimal) comme des
séguences spéciales. En Sun C ces séquences sont interprétées comme
‘a’ et ‘x’. Exemple :

char bell = \a’;

printf("Ding Dong ! %c\n", bell);
printf("L’hexa f en base 10 vaut : %d\n",
“\xf");

donne en Sun C :

Ding Dong ! /* pas de beep */
L’hexa f en base 10 vaut : 30822

et en ANSI C:

Ding Dong ! /* on entend un beep ! */
L’hexa f en base 10 vaut : 15

Chaines Adjacentes

Le Sun C ne concatene pas les chaines adjacentes comme I’ANSI C :

printf("Cette chaine sera concaténée avec\n"
" celle la pour permettre de fractionner\n"

" de longues chaines comme ca pour une\n”
" meilleure lisibilité\n");

Les Chaines de Grands Caracteres

La syntaxe ANSI n’est pas supportée en Sun C :

wchar_t *ws = L"hello” ; /* ANSI seulement */

Pointeurs: void* etchar*

Le pointeur ANSI void * existe aussi en Sun C.

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

L’Opérateur Plus Unaire : +

Cette fonctionnalité ANSI C n’est pas supportée en Sun C.

Prototypage de fonction - Ellipses

ANSI C permet I'usage d’ellipses "..." pour déclarer un nombre
variable d’arguments.

Sun C ne reconnait pas cet usage.

Définition de Types

ANSI C permet la redéclaration par typedef a I'intérieur d’un bloc.
Sun C refuse de telles redéclarations :

typedef int * iptr;
{
typedef double iptr; /* Bon pour 'ANSI C,
mais erreur de compilation en Sun C */

Initialisation des Variables extern

ANSI C traite I'initialisation des variables explicitement déclarées
extern comme des définitions.

Sun C ne supporte pas I'initialisation de variables déclarées
explicitement extern . L’exemple suivant fonctionne en ANSI C. Il ne
se compile pas en Sun C :

extern int x = 5;
main()

{
}

printf("value of x is %d\n", x);

Différences Entre Sun C et Sun ANSI C H-11

< > SunService
==

reproduction interdite

H-12

Initialisation d’Agrégats

Sun C ne supporte pas I'initialisation ANSI C des unions, tableaux et
structures de la classe d’allocation auto :

main()
{
union U {
double d;
} un = {1234.56789};
struct st{
int i;
char ch;
} s={5 b}
int arr[20] = {1, 2}; /* arr[0] = 1,
arr[1] = 2, tous
les autres membres initialisés a 0 */

Syntaxe des Directives du Préprocesseur, #

ANSI C permet des blancs devant le # d’une directive.
En Sun C, le # d’une directive doit étre en colonne 1.

Directive #error

Cette directive ANSI C n’est pas reconnue par le Sun C.

Noms de Macros Prédéfinis

Les macros suivantes sont définies en ANSI C mais pas en Sun C :

__STDC__ Dans une implémentation conforme ANSI cette
macro est définie et non-nulle.

__TIME__ La valeur de cette macro est I’heure de compilation
sous la forme "hh:mm:ss".

__ DATE__ Macro donnant la date de compilation sous la forme

"Mmm dd yyyy", (par exemple, Feb 11 1991)

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Prototypage de fonction

Sun C ne supporte pas le prototypage ANSI des fonctions :

int main(void) /* prototypée */
{
double area_cir(double r); /* prototypée *
printf("Surface d’'un cercle de 2.5 de rayon ="
" %If\n", area_cir(2.5));

return O;
}
double area_cir(double r) /* prototypée */
{
return(3.14159 * r * r);
}

Différences Entre Sun C et Sun ANSI C

H-13

|%%‘C

SunService
reproduction interdite

H-14

Programmation en C norme ANSI Révision C, Décembre 1994

Programmes des Travaux Pratiques

0 SunService
|I=<=

reproduction interdite

Travaux Pratiques 1

Programme : sizes.c

/* afficher la taille en octets des types de base */

int main(

~=

void)

printf("taille d’'un int \t= %d\n", sizeof(int));
printf("taille d’un short \t= %d\n", sizeof(short));
printf("taille d’'un long \t= %d\n", sizeof(long));
printf(“taille d’'un char \t= %d\n", sizeof(char));
printf("taille d’un float \t= %d\n", sizeof(float));
printf("taille d’'un double \t= %d\n", sizeof(double));

return O

} /*fin de main */

int

{

Programme : printit.c

main(void)

int val;
char ch;
val = 42;
ch="z"

printf("Le caractére comme un char : %c, comme un int ;"
" %d\n", ch, ch);

printf("L’entier comme un char : %c, comme un int : %d\n",
val, val);

return 0O,

} /*fin de main */

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Travaux Pratiques 2

Programme : diviz.c

int main(void)

{

int value, not_divisible;

not_divisible = 1;
printf("Entrer un nombre 10<=n<=100: ");
scanf("%d", &value);
if ((value < 10)||(value > 100)) printf("Hors limites.\n");
else
{
if (!(value % 2)) {
printf("%d divisible par 2.\n", value);
not_divisible = 0;

f (Y(value % 3)) {
printf("%d divisible par 3.\n", value);
not_divisible = 0;

if (!(value % 5)) {
printf("%d divisible par 5.\n", value);
not_divisible = 0;

if (Y(value % 7)) {
printf("%d divisible par 7.\n", value);
not_divisible = 0;

if (not_divisible)
printf("%d n’est pas divisible par 2, 3, 5, ni 7.\n",
value);
} /*findeif*
return 0;
} /% fin de main */

Programmes des Travaux Pratiques 1-3

0 SunService
|I=<=

reproduction interdite

Programme : ages.c

#define NOW 1991
int main(void){
int date,temp,choice,ones,tens,hundreds,thousands,result ;
printf("Entrez votre année de naissance : ");
scanf("%d", &date);
if ((date < 1900) || (date > 1975))
printf("Hum, vérifiez.\n");
else {
temp = date;
ones =temp % 10;
temp =temp / 10;
tens = temp % 10;
temp =temp / 10;
hundreds = temp % 10;
temp = temp / 10;
thousands = temp % 10;
printf("\nFaites un choix :\n\n");
printf("\t1) Somme des chiffres.\n");
printf("\t2) Produit des chiffres.\n");
printf("\t3) Age courant.\n\n");
printf("Entrez 1, 2, ou 3: ");
scanf("%d", &choice);
switch (choice) {
case 1:
result = (thousands + hundreds + tens + ones);
printf("La somme des chiffres est %d.\n", result);
break;
case 2:
result = (thousands * hundreds * tens * ones);
printf("Le produit des chiffres est %d.\n", result);
break;
case 3:
result = NOW - date;
printf("Votre age est env. %d.\n", result);
break;
default
printf("Hors limites, fin.\n");
brea k;
} /*fin de switch */
} /*finde if else ¥
return 0;
} /*fin de main */

I-4 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Travaux Pratiques 3

Programme : review_io.c

#include <stdio.h>
#define BASE 16
int main(void)

{
int numl = BASE * 2; /* décimal */
int num2 = OxFF; /* hexa */
int num3 =0777; / *octal */
int result, x=0, ch;
float fnum =42.0 + (float)numl;
float f=0.0;

char chl="a’;
char ch2 =chl + 1;
char ch;

printf("Num1 : %d, num2 : 0x%x, num3 : 0%o0.\n",
numl, num2, numa3);

printf("Ch1: %c, ch2: %c.\n", chl, ch2);

printf("Fnum: %f.\n", fnum);

printf("Entrez un caractere : ");

ch = getchar();

getchar(); /* enleve le newline */
printf("Le caractére est %c.\n", ch);

printf("Entrez un autre caractere : ");
scanf("%c", &chr);

getchar(); /* enleve le newline *
printf("Le 2éme caractére est %c.\n", chr);

printf("Entrez un entier puis un réel : ");
result = scanf("%d%f", &x, &f);
printf("Result = %d, x = %d, f = %f.\n", result, x, f);
return 0O,
} /*fin de main */

Programmes des Travaux Pratiques I-5

|%%‘C

SunService
reproduction interdite

#include

int

{

Programme : mixed_io.c

<stdio.h>

main(void)

int num;
float val;
char ch;

printf("Entrez un caractere alphabétique : ");
scanf("%c", &ch);
getchar(); /* enleve le newline *
if ((ch>64)&&(ch < 123))
printf("Le caractere est %c.\n", ch);
else
printf("Mauvaise saisie.\n");
printf("Entrez un entier : ");
scanf("%d", &num);
printf("Décimal : %d, hexa : 0X%x, octal : 0%0.\n",
num, num, num);
printf("Entrez un entier : ");
scanf("%f", &val);
printf("Le produit de %d et %f est %.5f.\n",
num, val, (num * val));
printf("Notation Scientifique : %E.\n", (num * val));
printf("Partout ou vous irez, je serai.\n");
return 0;

} /*fin de main */

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Programme : tva.c

#include <stdio.h>
#define RATE .186

int

{

main(void)

double dollar, amt_pd, tax, s_tax(double , double);
int tmp, round;

printf("Entrez le montant de I'achat : ");
scanf("%lf", &dollar);

tax = s_tax(dollar, RATE);

amt_pd = dollar + tax;

/* Gestion des erreurs d’arrondi dans les conversions
décimal-binaire */

tmp = amt_pd * 1000.0;

if ((tmp % 10) > 4)
round = 1;

else
round = 0;

tmp = (tmp / 10) + round;

amt_pd =tmp / 100.0;

printf("Montant HT :\t%8.2f \nTVA :\t\t%9.3f TTC : \t %8.2f \n"
,dollar, tax, amt_pd);

return 0;

} /*fin de main */

double s tax(double value, double rate)

{

return (value * rate);

} /*fin de la fonction s_tax */

Programmes des Travaux Pratiques I-7

|%%‘C

SunService
reproduction interdite

#include
main(void)

int

~=

Travaux Pratiques 5

Programme : triangle.c

<stdio.h>

int base, height, width, ch;

printf("Entrez un caractere : ");

ch = getchar();

printf("Entrez n tel que 1<n<=80:");

scanf("%d", &base);

if ((base > 80)||(base <= 1)) {
printf("Base Hors limite, forcée a 40.\n");
base = 40;

} /*findeif*

for (height = 1; height <= base; height++) {
for (width = 1; width <= height; width++)

printf("%c",(char)ch);

printf("\n");

} /*fin de for %

return 0;

} /*fin de main */

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

#include
#define
#define
#define
#define

Programme : loops.c

<stdio.h>
BEGIN 97 /* code ASCII de 'a’ */
END 122 /* code ASCIl de 'z’ */
MIDDLE 110 /* code ASCIl de 'n’ */
NEWLINE "\n" /* newline */

int main(void)

{

int index, step, limit;
char ch, ret;

printf(NEWLINE);
do {
printf("Entrez une minuscule : ");

/* lecture du caracteére et du newline... */
scanf("%c%c", &ch, &ret);
} while ((ch >END) || (ch < BEGIN));

if (ch >=MIDDLE) { /* fin de 'alphabet */
step = -1;
limit = BEGIN - 1;

}

else { /* début de l'alphabet */
step = 1;
limit = END + 1;

} /*finde if else ¥

for (index = ch; index != limit; index += step)
printf("%c ", index);

printf(NEWLINE);

return 0O,

} /*fin de main */

Programmes des Travaux Pratiques

0 SunService
|I=<=

reproduction interdite

Travaux Pratiques 6

Programme : reverse.c

#include <stdio.h>

#define MAX 15

int main(void)

{
int index, temp, mid, val;
int arr[MAX];

for (index =0, val = 10; index < MAX; index++, val += 10)
arr[index] = val,

mid = MAX / 2;

for (index = 0; index < MAX; index++)
printf("%d ",arr[index]);

printf("\n");

for (index = 0; index < mid; index++) {
temp = arr[index];
arrlindex] = arr[(MAX - index) - 1];
arr[(MAX - index) - 1] = temp;

} /*fin de for */

for (index = 0; index < MAX; index++)
printf("%d ",arr[index]);
printf("\n");
return 0;
} /*fin de main */

1-10 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Programme : dimension2.c

#include <stdio.h>

#define ROWS 10
#define COLS 2
int main(void)

{

int row, col, iarray[ROWS][COLS];
for (row = 0; row < ROWS; row++) {
for (col =0; col < COLS; col++) {
printf("Entrer tableau[%d][%d]: ", row, col);
scanf("%d", &iarray[row][col]);
}
}
for (row = 0; row < ROWS; row++) {
for (col =0; col < COLS; col++) {
printf("%d ", iarray[row][col]);
}
printf("\n");
}
return 0;

} /*fin de main */

Programmes des Travaux Pratiques

I-11

reproduction interdite

0 SunService
|I=<=

Travaux Pratiques 8

Programme : average.c

#include <stdio.h>
#define SIZE 10
#define COLUMNS 10
int main(void)

{
int ar[SIZE] = {5, 15, 25, 35, 45, 55, 65, 75, 85, 95}
int *end;
doubl e avg, average(int * int *);
void print_array(int * int *);

end = &ar[SIZE - 1];

print_array(ar, end); /* Affiche les initialisations */

avg = average(ar, end); /* calcul de la moyenne */
printf("La moyenne est %f.\n", avg);

print_array(ar, end); /*Affiche le tableau fois la moyenne */
return 0;

} /*fin de main */

double average(int *a, int *end)
{
int *p, sum;
double avg;
for (p=a; p<=end; p++)
sum +=*p;
avg = (double) sum/ (end - a +1);
for (p=a; p<=end; p++)
*p = (int) (*p * avg);/* modification du tableau */
return (avg);
} /*fin de average() */

void print_array(int *a, int *end)
{
int *p;
for (p=a;p<=end; p+t+)
printf("%d \n ",*p);
printf("\n");
} /*fin de print_array() *

1-12 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Programme : preverse.c

#include <stdio.h>
#define MAX 15

int main(void)
{
int temp, index;
static int arr[MAX] ={10,20,30,40,50,60,70,80,
90,100,110,120,130,140,150};
int *ptr, *end, *mid;
void print_array(int * int *);

end = &arr[MAX - 1];

mid = end -(MAX / 2);

print_array(arr, end);

for (ptr=arr,index=0; ptr<=mid; ptr++,index++) {
temp = *ptr;
*ptr = *(end - index);
*(end - index) = temp;

} /*fin de for */

print_array(arr, end);

return 0O,
} /*fin de main */
void print_array(int *a, int *limit)
{

int *p;

for (p=a;p <= limit; p++)

printf("%d ",*p);
printf("\n");

} /*fin de print_array() ¥/

Programmes des Travaux Pratiques

1-13

0 SunService

| reproduction interdite

Programme : funcptr.c
#include <stdio.h> /* déclaration de printf() */

int main(void)

{
int (*fptr)(constchar *, ..);
fptr = printf;
(*fptr)("Ici la chaine que vous voulez.\n");
return 0;
}

I-14 Programmation en C norme ANSI Révision C, Décembre 1994

reproduction interdite

#include
#include
#define
#define
#define
#define

Travaux Pratiques 9

Programme : lupes.c

<stdio.h>

<ctype.h> /* header pour les fonctions caracteres */
BEGIN 'a’ /* code ASCII de ‘a’ */
END 'z’ /* code ASCIl de 'z’ %/
MIDDLE 'n’ /* code ASCIl de 'n’ */

NEWLINE "\n" /* newline *

int main(void)

{

int index, step, limit;
char ch, ret;

printf("\n");
do {
printf("Entrer une lettre : ");
scanf("%c%c", &ch, &ret);
/* conversion majuscule -> minuscule... *
if (isalpha(ch))
ch = tolower(ch);
} while (!(isalpha(ch))) ;

if (ch>= MIDDLE) {
step = -1;
limit = BEGIN - 1,

}
else {
step = 1;
limit = END + 1,

} /*findeif*/

for (index = ch; index != limit; index += step)
printf("%c ", index);

printf(NEWLINE);

return 0;

} /*fin de main */

Programmes des Travaux Pratiques

1-15

0 SunService
|I=<=

reproduction interdite

Programme : stringy.c

#include <string.h>
#define MAX 80
int main(void)

~=

char firstfMAX], second[MAX], both[(MAX * 2)+ 6];
int index, slen(char *);

printf("Entrez une chaine I<=%d: ", MAX);
gets(first);
printf("Entrez une autre chaine I1<=%d: ", MAX);
gets(second);
printf("Longueur de la 1ére : %d.\n", slen(first));
printf("Longueur de la 2éme : %d.\n", slen(second));
strcpy(both, first);
strcat(both, " ***);
strcat(both, second);
printf("Les deux réunies :\n");
printf("%s\n",both);
return 0O,

} /*fin de main */

/* définition de fonction... */
int slen(char *str)

{

char *ptr;

/* incrément du pointeur jusqu’a la fin de la chaine... */
for (ptr = str; *ptr 1="\0’; ptr++);

/* renvoie la différence, cad la longueur de la chaine... */
return (ptr - str);

} /*fin de slen() */

1-16 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Travaux Pratiques 10

#include

Programme : aged.c

<stdio.h>

#define NOW 1991

int main(

void) {

int date, temp, choice, ones, tens, hundreds, thousands;
struct record {

} rec;

char name[20];
int birth_year;
short age;
short sum;
short product;

printf("Entrez votre prénom et votre année de naissance : ");
scanf("%s %d", rec.name , &date);
if ((date < 1900) || (date > 1975))

else

printf("Hum, vérifiez bien I'année %d.\n",date);
{
ones = (temp = rec.birth_year = date) % 10;
tens = (temp /= 10) % 10;
hundreds = (temp /= 10) % 10;
rec.sum=(thousands=(temp/=10) % 10)+ hundreds + tens +ones;
rec.age = NOW - date;
rec.product = thousands * hundreds * tens * ones;
printf("1) Somme des chiffres 2) Produit 3) Age \n");
printf("Entrez 1, 2, ou 3 : ");
scanf("%d", &choice);
switch (choice) {
case 1:
printf("La somme des chiffres est %d.\n", rec.sum);
break ;
case 2:
printf("Le produit est %d.\n",rec.product);
break ;
case 3:
printf("%s, vous avez %d ans.\n",rec.name, rec.age);
break ;
default
printf("Choix hors-limites, sortie.\n");
} /*fin de switch */

} /Afindeif*
return O;

} /*finde

main *

Programmes des Travaux Pratiques

1-17

|%%‘C

SunService
reproduction interdite

Programme : strux.c

#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#define SMAX 4
#define MAX 20
struct record {
char firstfMAX];
char last[MAX];

short age;
3
int main(void)
{

int index, choice;
char temp[SMAX];
struct record rex[SMAX];

void print_strux(struct record);

for (index = 0; index < SMAX; index++) {
printf("Entrez le prénom du N°%d: ", index+1);

gets(rex[index].first);

printf("Entrez le nom du N°%d: ", index+1);

gets(rex[index].last);

printf("Entrez I'age de %s : ", rex[index].first);

gets(temp);
rex[index].age = atoi(temp);
}/ *fin de for %

do {
printf("Entrez le N° a afficher (1-4): ");
scanf("%d", &choice);
if ((choice > 4)||(choice < 1))
break ;
print_strux(rex[(choice-1)]);
} while (1);
return 0;

} /*fin de main */

/* Définition de la fonction print_strux() ... */
void print_strux(struct record rec)

{

printf("%s %s\n", rec.first, rec.last);

printf("%d\n",rec.age);
} /*fin de print_strux() */

1-18 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Travaux Pratiques 11

Programme : mod11_review.c

#include <stdio.h>

int

main(void) {

struct bit_fields {
char pad[3];
unsigned int f1:1,
unsigned int f2:1;
unsigned int f3:1;
unsigned int f4:1,
unsigned int f5:1;
unsigned int f6:1;
unsigned int f7:1,
unsigned int f8:1;

3

union status_flags {
unsigned int word;
struct bit_fields bflags;

} flags;

printf("Taille de bit_fields: %d\n",sizeof(struct bit_fields));
printf("Taille de status_flags: %d\n",sizeof(flags));

flags.bflags.f8 = 1;

printf("F8 = %d\n", flags.bflags.f8);
printf("Word = 0x%x\n", flags.word);
flags.bflags.f7 = 1;

printf("F7 = %d\n", flags.bflags.f7);
printf("Word = 0x%x\n", flags.word);
flags.bflags.f6 = 1;

printf("F6 = %d\n", flags.bflags.f6);
printf("Word = 0x%x\n", flags.word);
flags.bflags.f5 = 1;

printf("F5 = %d\n", flags.bflags.f5);
printf("Word = 0x%x\n", flags.word);
flags.bflags.f4 = 1;

printf("F4 = %d\n", flags.bflags.f4);
printf("Word = 0x%x\n", flags.word);
flags.bflags.f3 = 1;

printf("F3 = %d\n", flags.bflags.f3);
printf("Word = 0x%x\n", flags.word);
flags.bflags.f2 = 1;

printf("F2 = %d\n", flags.bflags.f2);
printf("Word = 0x%x\n", flags.word);

Programmes des Travaux Pratiques

1-19

|%%‘C

SunService
reproduction interdite

flags.bflags.fl1 = 1,
printf("F1 = %d\n", flags.bflags.f1);
printf("Word = 0x%x\n", flags.word);
return 0;

} /*fin de main */

Programme : masks.c

#include <stdio.h>
#include <ctype.h>
#define LB OXFF

#define HB OxFFOO

int main(void){
unsigned short numle6, get name(void);
void error(void);

numl6 = get_name();
if (num16 == 0) error();
else if (num16 & LB)
printf("Lettre dans la 1ére moitié de I'alphabet\n™);
elseif (numl6 & HB)
printf("Lettre dans la 2éme moitié de I'alphabet\n");
return O;
} /*fin de main */

void error(void) {
fprintf(stderr, "Erreur, et fin de programme.\n");
exit(1);

} /*fin de error */

unsigned short get_name(void) {
char name[20], *ch = &name[0];

printf("Entrez votre prénom : ");
gets(nhame);
if (isalpha(*ch)) {

if (islower(*ch))

*ch = toupper(*ch); /* Conv. en Majuscule */

if (*ch <='M)

return (1); /* retourne le bit le moins fort */

else

return (1<<8); /*retourne le bit le plus fort */

} else
return (0);
} /*fin de get_name() ¥/

1-20 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Travaux Pratiques 12

Programme : argmanip.c

#include <string.h>
int main(int argc, char **argv)

{

void usage(char *), print_arg(char *, char, int);

if ((argc > 3) || (argc < 2))

usage(*argv);
if (argc==2)
print_arg(*(argv+1), 'f, strlen(*(argv+1)));
else {
if ((strcmp(*(argv+1),"-f"))&&(strcmp(*(argv+1),"-r")))
usage(*argv);

if (!(strcmp(*(argv+1), "-f"))
print_arg(*(argv+2), 'f, strlen(*(argv+2)));
else
print_arg(*(argv+2), 'r’, strlen(*(argv+2)));
} /*findeif*
return 0O,
} /*fin de main */

void print_arg(char *str, char order, int len)

{

int m, bumper=1, start=0, end=len;

if (order=="r){
end = bumper = -1;
start = len-1,

}

for (m=start; m I= end; m += bumper)
putchar(str[m]);

putchar(’\n’);

} /*finde print_arg() ¥/

void usage(char *prog)

{
printf("\nUsage:\n");
printf("\t%s [-f | -r] <argument>\n\n", prog);
exit(1);

} /*fin de usage() */

Programmes des Travaux Pratiques

1-21

0 SunService
|I=<=

reproduction interdite

Travaux Pratiques 13

Programme : newaged.c

#include <stddef.h>

#include <stdio.h>

#include <ctype.h>

#include <stdlib.h>

#define NOW 1991

#define PATH "data.rec" /* nom codé en dur */

/* typedef global : visibilité depuis toutes les fonctions... */
typedef struct {

char name[20];

int birth_year,

short age;
short sum;
short product;
} Record;
int main(void){
void read_file(int);
int write_file(void);

read_file(write_file());
return 0O;
} /*fin de main */

/******************** Déflnlthn des fOI’ICtIOnS ******************/
int write_file(void) {
void f_error(int , FILE *);
char str[5];
FILE *fp;
Record rec;
int date, temp, ones, tens, hundreds, thousands, cnt = O;

if ((fp = fopen(PATH, "w")) == NULL)
f_error(1, fp);

do {
cnt++;
printf("\nEntrez le prénom du %d : ", cnt);
gets(rec.name);
printf("Entrez I'année de naissance de %s : ", rec.name);
temp = rec.birth_year = date = atoi(fgets(str, 6, stdin));
ones =temp % 10;
tens = (temp /= 10) % 10;

1-22 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

hundreds = (temp /= 10) % 10;
thousands = (temp /= 10) % 10;
rec.age = NOW - date;
rec.sum = thousands + hundreds + tens + ones;
rec.product = thousands * hundreds * tens * ones;
if (!(fwrite(&rec, sizeof(rec), 1, fp)))
f _error(2, fp);
printf("\nEncore une saisie [O] : ");
fgets(str,5, stdin);
if ((str[0]'="\0") && (str[0] !="0") && (str[0] '="O")){
fclose(fp);
printf("\n");
break ;
}
} while (1);
return (cnt);

} /*fin de write_file() *

void

read_file(int cnt) {

void f_error(int , FILE *);
FILE *fp;

Record rec;

int choice, rnum =0;
char str[5];

if ((fp = fopen(PATH, "r")) == NULL) f_error(1, fp);

do {
printf("Entrez le N°(1-%d) a voir, <CR> pour fin : ", cnt);
rnum = atoi(fgets(str, 5, stdin));
if ((rnum < 1) || (rnum > cnt)) {

fclose(fp);
break ;
}
if (fseek(fp, (long)(sizeof(rec) * (rnum - 1)), SEEK_SET))

f_error(4, fp);
if (!(fread(&rec, sizeof(rec), 1, fp)))

f _error(3, fp);
printf("\nPour %s, Entrez un choix :\n\n", rec.name);
printf("\t1) Somme des chiffres.\n");
printf("\t2) Produit des chiffres.\n");
printf("\t3) Age actuel.\n\n");
printf("Entrez 1, 2, ou 3 :);
choice = atoi(fgets(str, 5, stdin));
switch (choice) {
case 1:

printf("La somme est %d.\n\n", rec.sum);

Programmes des Travaux Pratiques 1-23

0 SunService
|I=<=

reproduction interdite

break ;

case 2:
printf("Le produit est %d.\n\n", rec.product);
break ;

case 3:
printf("%s a env. %d ans.\n\n", rec.name, rec.age);
break ;

default
printf("Choix hors-limites.\n\n");
continue ;

} /*fin de switch %

} while (1);

} /*fin de read file() *

void f_error(int etype, FILE *fp) {

switch (etype) {

case 1:
fprintf(stderr, "Erreur d’ouv. de \"%s\", fin.\n", PATH);
break ;

case 2:
fprintf(stderr, "Erreur d’écriture : \"%s\", fin.\n", PATH);
fclose(fp);
break ;

case 3:
fprintf(stderr, "Erreur de lecture : \"%s\", fin.\n", PATH);
fclose(fp);
break ;

case 4.
fprintf(stderr, "Erreur en seek : \"%s\", fin.\n", PATH);
fclose(fp);
break ;

default
fprintf(stderr, "Erreur inconnue, fin.\n");
break ;

} /*fin de switch */

exit(1);

} /*finde f_error() */

1-24

Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Programme : alphile.c

#include <stddef.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define AMAX 16 /* indice de tableau maxi + 1 */
#define SMAX 81 /* longueur maxi de chaine */

void f_error(char *, int , FILE®);

int main(int argc, char *argv[]){
void usage(char *);

void ssort(int , char [][], char *);
void shuffle(int , char][], int);
void print_array(char][], int);

voi d write_array(char *, int , char [][]);
FILE *fp;

static int cnt = 0;

int index, rnum;
char ans[4];
static char sarray[AMAX][SMAX], temp[SMAX];

if (argc!=2)
usage(argVv[0]); /* il faut un nom de fichier ! %
printf("\n");

while (cnt < AMAX) { /* boucle sur le tableau avec saisie...*/

printf("Enter string #%d (<=80 chars): ", cnt+1);

fgets(temp, SMAX, stdin);

if ((temp[0] =="\0") && (cnt >= 2))
break ;

else if ((temp[0] =="\0") && (cnt < 2)) {
printf("Au moins 2 chaines \n");
continue ;

}

if (cnt==0){ /* 1ére chaine saisie */
strcpy(sarray[cnt], temp);

cnt++;
continue ;
}
ssort(cnt++, sarray, temp); /* tri du tableau *
} /*fin de while */
printf("\n");
print_array(sarray, cnt); /* affichage du tableau *
write_array(argv[1], cnt, sarray); /* écriture dans fichier */

printf("Suppression d’enregistrements ? [O]: ");

Programmes des Travaux Pratiques 1-25

reproduction interdite

0 SunService
== ion i

fgets(ans, 4, stdin);
while ((ans[0] =="\0’)||(ans[0] =="0O’)||(ans[0] =="0")) {
printf("Entrez le numéro a détruire (1-%d): ", cnt);
rnum = atoi(fgets(ans, 4, stdin));
if ((rnum < 1)||(rnum > cnt))
break ;
shuffle(cnt--, sarray, rnum - 1); /* nouvel ordre */
printf("Autre enregistrement ? [O]: ");
fgets(ans, 4, stdin);
print_array(sarray, cnt);
} /*fin de while */
write_array(argv[l],cnt,sarray); /* écriture nouveau tableau */
return 0;
} /*fin de main */

void print_array(char arrfAMAX][SMAX], int cnt) {
int index;

printf("\n");
for (index = 0; index < cnt; index++)
printf("Chaine N° %d : %s\n", index + 1, arr[index]);
printf("\n");
} /*fin de print_array() *

void write_array(char *file, int cnt, char arr[AMAX][SMAX]) {
FILE *fp;
int index;

if ((fp = fopen(file, "w")) == NULL)
f_error(file, 1, fp);
for (index = 0; index < cnt; index++) {
if (fprintf(fp, "%s\n", arr[index]) == EOF)
f_error(file, 2, fp);
}
fclose(fp);
} /*fin de write_array() ¥

void ssort(int cnt, char sa[JAMAX][SMAX], char str[]) {
/*cnt = compteur de chaines (dernier indice val/de) *
* saf][] = tableau de chaines
*str[] = chaine a insérer dans le tableau *
int height;
static char temp[SMAX] ;
for (height = 0; height <= cnt; height++) {
if (strcmp(salheight], str) > 0 || sa[height][0]== 0)) {
strcpy(temp, sa[height]);

1-26 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

strcpy(sa[height], str);
strcpy(str, temp);

}
}
} /*fin de ssort() */

void shuffle(int cnt, char sa]JAMAX][SMAX], int pos) {
/* pos = position a détruire dans le tableau */

int height;

char temp[AMAX];

if (cnt == pos) /* la chaine a enlever est la derniere... */
sa[pos][0] = "\0’; /* supprime la derniere */

else {

for (height = pos + 1; height < cnt; height++)
strcpy(sa[height-1], sa[height]);
sa[cnt][0] = "\0’;
}
} /*fin de shuffle() *

void usage(char *prog) {
fprintf(stderr, "\nUsage:\n");
fprintf(stderr, "\t%s <chemin>\n\n", prog);
exit(1);

} /*fin de usage */

void f_error(char *path, int etype, FILE *fp) {
switch (etype) {

case 1.
fprintf(stderr,"Erreur d’ouv. \"%s\", fin.\n", path);
break ;
case 2.
fprintf(stderr, "Err. d’écriture : \"%s\",fin.\n",path);
fclose(fp);
break ;
default
fprintf(stderr, "Err. inconnue, fin.\n");
break ;
} /*fin de switch */
exit(1);

} /*findef _error() ¥

Programmes des Travaux Pratiques 1-27

|%%‘C

SunService
reproduction interdite

Travaux Pratiques 15

Programme :listrux.c

#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#define MAX 20
/* Définition des structures de la base... */
struct record {
char firstfMAX];
char last[MAX];
short age;
struct record *next;

h

| * Raccourcis globaux pour les déclarations...

typedef struct record Rec;
#define SNULL (Rec *)NULL
#define SIZE sizeof(Rec)

int main(int argc, char *argv[]){
FILE *fp;
int fwrite_list(FILE *, Rec *);

Rec *head, *build_list(void), *fread_list(FILE *);
void display_list(Rec *), insert_node(Rec **, Rec *);

void free_list(Rec *), usage(

if (argc!=2)
usage(argVv[0]);

printf("\n\n");

head = build_list();

if ((fp = fopen(argv[1], "w")) == NULL)
err(argv[0], argv[1], 1, fp);

if (fwrite_list(fp, head))
err (argv[0], argv[1], 2, fp);

if ((fp = fopen(argv[1], "r")) == NULL)
err(argv[0], argv[1], 1, fp);

head = fread_list(fp);

display_list(head);

printf("\n");

free_list(head);
return 0;

} /*end main *

1-28 Programmation en C norme ANSI

char *);
void err(char *, char *, int, FILE *);

Révision C, Décembre 1994

reproduction interdite

/******************** Défl n |t| ons d es FO ntl ons *********************/

/* Fonction de construction de liste *
* boucle tant que I'utilisateur entre des chaines non-nulles. */
Rec *build_list(void) {

Rec *head, *crnt, *temp;
void insert_node(Rec **, Rec *);
char ans[4];

head = (Rec *)malloc(SIZE);
crnt = head, /* sauvegarde la téte de liste */
crnt->next = SNULL; /* fin de liste */
do {
printf("Entrez le prénom : ");
gets(crnt->first);
if (crnt->first[0]=="\0"){ /*fin de saisie ?*
if (crnt == head) {
printf("Au moins 1 enregistrement \n");
continue ; /*boucle pour au moins 1 enregistrement */
}
free(crnt); /* libére le dernier malloc */
break ;
} /*findeif*
printf("Entrez le prénom : ");
fgets(crnt->last, MAX, stdin);
printf("Entrez I'age de %s : ", crnt->first);
crnt->age = (short)atoi(fgets(ans, 4, stdin));
printf("\n");
insert_node(&head, crnt); /*insertion dans la liste *
crnt = (Rec *)malloc(SIZE);
crnt->next = SNULL,
} while (2);
return (head);
} /*fin de build_list %/

/* Fonction d'insertion d’'un élément de liste, triée *
* par 4ges croissants. *
void insert_node(Rec **head, Rec *crnt)

{

Rec *temp, *prev,

temp = *head,;

if (temp == crnt) /* premier élément de liste */
return ;
else if (temp->age >= crnt->age){ /* le nouveau est au début*/

crnt->next = temp;

Programmes des Travaux Pratiques 1-29

0 SunService
|I=<=

reproduction interdite

head = crnt; / nouvelle téte de liste */
} else {
while (crnt->age > temp->age) { /* boucle sur la liste */
prev = temp;

temp = temp->next;
if (temp == SNULL)
break; /* fin de liste */
}
prev->next = crnt;
crnt->next = temp;
} /*findeif*
return ;
} /*fin de insert_node() *

/* Fonction d’écriture de la liste dans le fichier ‘argv[1]’. */
int fwrite_list(FILE *fp, Rec *head) {
Rec *crnt;
do {
crnt = head;
head = crnt->next;
crnt->next = SNULL; /* RAZ, I'ancienne adr. est non-valide */
if (!(fwrite(crnt, SIZE, 1, fp)))
return (2);
free(crnt); /* destruction a chaque pas */
} while (head);
fclose(fp);
return (0);
} /*fin de fwrite_list %/

/* Fonction de reconstruction de liste a partir du fichier argv[1] *
Rec *fread_list(FILE *fp) {
Rec *head, *crnt, *prev;

head = (Rec *)malloc(SIZE);

crnt = head,

while (fread(crnt, SIZE, 1, fp)) {
prev = crnt;
crnt->next = (Rec *)malloc(SIZE);
crnt = crnt->next;

}
prev->next = SNULL,
free(crnt); /* libére le dernier alloué inutilisé */

return (head);
} /*end fread list */

1-30 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

/* Affiche le contenu de la liste, soit un élément a la fois
* soit toute la liste. */
void display_list(Rec *head) {
int cnt, choice;
char ans[40];
Rec *crnt;

do {
printf("\nFaites votre choix parmi :\n");
printf("\t(1) voir un élément\n™);
printf("\t(2) voir toute la liste\n");
printf("\t(3) fin du programme\n");
printf("Entrez 1, 2 ou 3 : ");
choice = atoi(fgets(ans, 40, stdin));
switch (choice) {
case 1:
while (choice) {

*

crnt = head; /* commence par le début... */

printf("\nEntrez le prénom a visualiser :
gets(ans);

")

while (crnt && strcmp(crnt->first, ans)) {

crnt = crnt->next;
} /* fin du while intérieur */
if (crnt == SNULL)

printf("Enreg. de \"%s\" NON-TROUVE \n", ans);

else {

printf("\nEnreg. de %s :-----------------

\n", ans);

printf("\tName: %s %s\n", crnt->first, crnt->last);

printf("\tAge: %d\n", crnt->age);

} /*finde if else ¥/
printf("Un autre ? [O]: ");
fgets(ans,40,stdin);

if ((ans[0] !="\0")&&(ans[0] !="'0O")&&(ans[0] !="0"))

choice = 0; /* fin de boucle */
} /*fin de while extérieur */

break ;

case 2:
cnt=0; /* Compteur d’enreg. a 0 */
crnt = head; /* pointeur sur la téte */
printf("\n");

while (crnt) {
printf("Enreg n° %d :\n", ++cnt);

Programmes des Travaux Pratiques

1-31

reproduction interdite

0 SunService
|I=<=

printf("\tNom : %s %s\n", crnt->first, crnt->last);
printf("\tAge: %d\n", crnt->age);

crnt = crnt->next;
} /* fin de while */
break ;
case 3:
default
exit(0);
} /*fin de switch %
} while (1); /* fin de do-while */
} /*fin de display list() */
/* Libération de la mémoire et destruction de liste */
void free_list(Rec *head) {
Rec *prev;
while (head) {
prev = head;
head = head->next;
free(prev);
}
} /*fin de free_list() %
/* Fonction d’affichage d’usage, en cas de mauvais appel du prog. */
void usage(char *prog){
printf("\nUsage:\n");
printf("\t%s <nomdefichier>\n\n", prog);
exit(0);
} /*fin de usage() */
/* Fonction d’information sur les erreurs d’E/S. */
void err(char *prog, char *file, int type, FILE *fp) {
switch (type) {
case 1:
fprintf(stderr,"%s : erreur d’ouv. de %s, fin\n", prog, file);
break ;
case 2:
fprintf(stderr,"%s err. d’écriture sur %s fin\n",prog,file);
fclose(fp);
break ;
default
fprintf(stderr, "%s : erreur inconnue, fin.\n", prog);
}
exit(1);
Y/ *finde err() */

1-32 Programmation en C norme ANSI Reévision C, Décembre 1994

reproduction interdite

Travaux Pratiques 16

Programme (facultatif) : factorial.c

#include <stdio.h>
int main(void)
{
unsigned int num, factorial(int);
int index;
char tmp[8];
void err(void);

printf("\nEntrez un nombre a factorialiser (n <= 13) : *);
num = (unsigned int)atoi(fgets(tmp, 8, stdin));
if (num >=14)

err();

/* affiche toutes les factorielles de 1 a num... */
for (index = 1; index <= num; index++)

printf("%d! est %d.\n", index, factorial(index));
/* affiche les factorielles de 1 a trop_grand !... */
printf("\n\n**** Test de limite n =1 a n = 42...\n");

for (index = 1;index <= 42; index++)
printf("%d! est %u.\n", index, factorial(index));
printf("\n");}
return 0;
}/* fin de main */

unsigned int factorial(int n)
{
if (n<=1)
return (1);
else

return (n * factorial(n - 1));
} /*fin de factorial */

void err(void)

{

fprintf(stderr,"Saisie hors-limites, fin.\n");
exit(1);
} /*findeerr?*/

Programmes des Travaux Pratiques

1-33

0 SunService

reproduction interdite

1-34 Programmation en C norme ANSI Révision C, Décembre 1994

Index

Symboles

-4-2
- 1-17

du préprocesse-6
du préprocesseis-7

#define4-8, 14-3
#elif 14-8
#elsel4-8
#endif14-8

#if 14-8

#ifndef 14-8
#include3-9
#undefl4-10
%s9-3

& (adresse dej-2
&(et) 11-2, 11-4
* 8-5

++1-17

.(point) 10-5
->10-11

?.2-8

~(xor) 11-2, 11-6

__ DATE__14-2
__FILE__14-2
__LINE__14-2
__STDC__4-4,14-2
__TIME__14-2

|(ou)11-2, 11-5
~(not)11-2, 11-6

A

a.outl-2, 4-2
acomp4-3
adresse d8-2
affectationl-16
affectation composék 18
affichage - printf()3-11
allocation
classes d7-4
allocation dynamique
de mémoirel5-2
ANSI 4-4
appel par référend8
argcl2-2
arguments de fonctiorss7
arguments de la ligne
de commandé2-2
argv12-2
notation pointeu2-4
arithmétique des pointeugs10
arithmétiques (opérateurs)16
assembleur fbé-2
associativitél-21
atof() 9-9
atoi() 9-9
atol() 9-9
attributs de types
constl-7
signedl1-6
unsignedL-6
volatile 1-7
automatic7-5

Index-1

Index-2

B

bit-a-bit1-16

bits de poids faible¥l-3
bits de poids fort41-3
blocs1-15

boucles sur tableai+4
break5-6

C

calloc() 15-4
caracteres

putchar()3-16
caractéristiques du G3
castl-20, 1-23
cc4-2

option -Xc1-2
chaine (longueur dé)7
chaines (comparaison d&y
chaines (recherche de caract®r8)
chaines de caracterg

copie et concaténatici6
champs de bit1-8
champs de structuré§-2
classes d’allocatior-4

automaticr-5

extern7-8

register7-6

static7-7
classification et conversion

de caractere®-12

code (segment d&)3
code assembledr3
code intermédiairé-3
code objet-3
comparaison de chaings/
compilation4-2

phased-3
compilation avec les

libraires d’applicatiort-6

compilation conditionnellé4-8
compilation séparéé-5
compilation simplet-2
complément a uthl-2, 11-6
concaténation d’argumentg-7
concaténation de chain@g

conditionnelle ?2-8
conformance ANS#-4
conformance ANSI C
option -Xa4-4
option -Xc4-4
option -Xs4-4
transition
option -Xt4-4
constantes
__STDC__4-4
caractereg-9
entieresl-9
EOF3-10
NULL 3-10
virgule flottantel-9
constantes chaines adjacerdes
constantes symboliquéds3
Construction d’'une Liste
Simplement Chainéks-8
continues-7
contrble de boucle
break5-6
continues-7
imbriquée5-8
conversion et classification
de caracteres-12
conversions
chaine en nombr&9
de typel-22
explicites1-20, 1-23
implicites1-22
scanf()3-14
sprintf() 9-10
sscanf(®-9
création de noms de typ#8-15
ctype.h9-12

D

data7-3
décalagd1-7
déclaration et définitioid-2
déclarationd-5
de pointeurs-3
de structured0-3
de tablea-2, 6-5
pointeurs de fonction®-14

Programmation en C ANSI - Révision C, Décembre 1994

définition d’'une fonctior8-2
définition de la pilel6-2
définition des macros fonctionid-3
définitions

EOF3-10

FILE 13-2

NULL 3-10

pointeurs de fonction%-14
définitions et déclaratioR-2
démotionl-22
dépiler16-2
déplacer le pointeur de fichi&B-13
dernier entré-premier soft6-2
directives

#define4-8

#include3-9
do while5-5
doublement chainéds-7

E

E/S Formatée$3-5
écriture dans un fichier3-11
écriture simple d'un fichiet3-8
égalitél-16
empiler16-2
entéte
ctype.h9-12
stddef.h3-10, 10-6
stdio.h3-9, 3-10
entrée standar@t15, 9-4, 13-2
Entrées/Sorties niveau us-2
enuml10-14
enumeréd0-14
EOF3-10, 9-3, 9-4, 13-4
et bit-a-bit11-2, 11-4
exécutablel-2, 4-3
exemple arguments sur la
ligne de commandg&2-3
Exemple de définition
de fonction3-3
Exemple de fonction récursiié-5
exemple de liste
simplement chainéks-10
exemple de macros fonctioh4-4
exemple de
pointeurs de fonction&-15

exemple isalpha et toupp@l3
exemple simplé-14
exemples

initialisation de variable-9
exemples de compilation

conditionnellel4-9

exemples sscanf et a®ill
exit() 3-6
expressions

conditionnelle ?2-8

conditionnellesl-20
expressions et instructiofsl1
expressions et valeurs constarités
extern7-8

F

factorielle16-5
fclose()13-4
fermer un fichier avec fclosks-4
fflush() 13-15
fgetc()13-6
fgets()13-7
fichier
ctype.h9-12
stddef.h10-6
fichiers
a.out4-2
exécutabled-2
fin de -3-10
inclus3-9
stddef.h3-10
stdio.h3-9, 3-10
stdlib.h9-9
string.h9-5
FILE 13-2
fin de fichiers3-10
fin de programme83-6
fonction1-20
fonction récursive 6-3
fonctions
arguments-7
atof() 9-9
atoi() 9-9
atol() 9-9
calloc() 15-4
définition 3-2

Index-3

Index-4

définition,exemple3-3
exit() 3-6
fclose()13-4
fflush() 13-15
fgetc()13-6
fgets()13-7
fopen()13-3
fprintf() 13-5
fputc() 13-8
fputs() 13-9
fread()13-10
free()15-5
fscanf()13-5
fseek()13-14
ftell() 13-12
fwrite() 13-11
getchar()3-15
gets()9-4
interface3-4
main()1-4
malloc()15-3
param. en réB-8
printf() 1-12, 3-11
prototypages-2
putchar()3-16
puts()9-4
rewind() 13-13
scanf()1-13, 3-14, 9-3
sortie de 3-5
sprintf() 9-10
sscanf()-9
strcat()9-6
strchr()9-8
strcmp()9-7
strcpy()9-6
strlen()9-7
tolower()9-12
toupper()9-12

fopen()13-3

for 5-2,5-4

format - printf()3-12

format - scanf(B-12

fprintf() 13-5

fputc() 13-8

fputs() 13-9

fread()13-10

free()15-5
fscanf()13-5
fseek()13-14
ftell() 13-12
fwrite() 13-11

G

getchar()3-15
gets()9-4
goto5-9

H

headeB-9
ctype.h9-12
stddef.h3-10
stdio.h3-9, 3-10
stdlib.h9-9
string.h9-5
hiérarchie des typels22

if 2-3

exemple2-6
image d’un process-3, 15-2
imbrication de structur&0-7
imbriquées

if 2-4
inclusion de fichier8-9
Indentifiants du langage G8
indice de tablea6-3
indirection8-5
initialisations

de structured0-8

de tablea-7

de variableg-9
instructionsl-5

break5-6

continues-7

do while5-5

for 5-2,5-4

goto5-9

if imbriqués2-4

if, if-else 2-3

if, exemple2-6

return3-5

switch2-7

Programmation en C ANSI - Révision C, Décembre 1994

while 5-3, 5-4

interface de fonctio3-4

introduction aux fonctions
d’affichagel-12

introduction aux fonctions
de saisiel-13

isalnum()9-12

isalpha()9-12

iscntrl() 9-12

isdigit() 9-12

isgraph()9-12

islower()9-12

isprint() 9-12

iIspunct()9-12

isspace(p-12

isupper()9-12

isxdigit() 9-12

L

last-in-first-out (LIFO)16-2

lecture de chaines3

Lecture de Données depuis
un Fichierl3-10

lecture simple d’'un fichiet3-6

librairie C4-3, 4-5

librairies4-6, 4-7

LIFO 16-2

ligne de command#&2-2

linker Id 4-2

lint 4-9

listes chainéess-7

logiquesl-16, 2-2

longueur de chaing7

LSB 11-3

lvalue8-14

M

macros
__ DATE__14-2
__FILE__14-2
__LINE__14-2
__STDC__14-2
__TIME__14-2

définition de macros objefsl-3
effets de bord$4-5
isalnum()9-12

isalpha()9-12
iscntrl() 9-12
isdigit() 9-12
isgraph()9-12
islower()9-12
isprint() 9-12
ispunct()9-12
isspace(p-12
isupper()9-12
isxdigit 9-12
offsetof() 10-6
prédéfinies
__STDC__4-4
macros de caracter@sl2
malloc()15-3
masquell-3
Mécanismes d’'une
Fonction Récursivé6-4
membres de structurés-2
MSB 11-3

N

n! 16-5

nceud de listé5-7

nom des pointeur&-4

nombre d’arguments (argt®-2
not bit-a-bit11-6

not logiquell-2

notation pointeur et indic& 12
NULL 3-10, 9-4

@)

offsetof() 10-6
opérateurd 1-2
& 11-2
++ et --1-17
.(point) 10-5
->(pointeurs de structures)-11
|11-2
~11-2
adressd.-20
adresse de (&3-2
arithmeétiqued-16
associativité dest21
cast1-20
complément a uthl-6

Index-5

Index-6

conditionnelsl-20
d’affectation1-16
d’égalité1-16
décalage 411-7
et bit-a-bit11-4
fonction1-20
indirection(*) 8-5
logiquesl-16, 2-2
op=1-18

ou bit-a-bit11-5
pointeurl-20
priorité des 1-21
relationel2-2
relationnelsl-16
sizeof1-20
structurel-20
virgule 1-20

xor 11-6

opérateurs sur bits16
options

-c4-3,4-5
-D 14-9
de conformance ANSI €-4
-l 4-6

-L 4-6

-1 4-6
-04-2, 4-3
-P4-3
-S4-3
-Xa 4-4
-Xc 4-4
-Xs 4-4
Xt 4-4

options ou bit-a-bit1-2, 11-5

ouvrir un fichier avec fopeih3-3

P

package strin§-5
parametres

Parcourir

tableaux8-13

Chainéels-9

passage d’argumeBt7
passage de parametres

par référenc8-8

passage de tablea8x13

une Liste Simplement

passés par valeGr7
phases de compilatigh3
pile 7-3, 16-2
pointeur NULL9-4, 15-8
pointeurs3-3
de fonctions8-14
NULL 3-10
void 8-5
Pointeurs de Fichierk3-5
pointeurs et tableauBe9
pop16-2

Position Courante du Pointeur d’'un

Fichier13-12
post-décrément, +-17
post-incrément, +1-17

précautions avec les macrbs5

pré-décrément, 1-17
pré-incrément, +#-17
préprocesseut-8

préprocesseur et compilateur C

acomp4-3
principe des structurd9-2
printf() 1-12, 3-11, 3-12
exemple3-13
priorité 1-21
process/-3
programme exécutable3
programmes
compilation4-2
promotionl-22
prototypage de fonctio82
ptrdiff_t 8-10
purchar()3-16
push16-2
puts()9-4

R

recherche de caracteges

récursivitél6-3

référencer les membres
d’'une structurd0-5

register7-6

relationels2-2

relationnelsl-16

return3-5

rewind() 13-13

Programmation en C ANSI - Révision C, Décembre 1994

S

saisie de caracteres
getchar()3-15
saisie de chainds3
scanf()1-13, 3-12, 3-14, 9-3
SEEK_CURI13-14
SEEK END13-14
SEEK SET13-14
segments
data7-3
stack7-3
text7-3
séquences d’escaped
séquences trigraphé&sl0
simplement chainées (listeld)-7
sizeof1-20
sortie de caractéres
putchar()3-16
sortie de fonctior3-5
sortie de programmess6
sortie erreur standad$-2
sortie standar@-16, 9-4, 9-10, 13-2
spécifications de format -
printf() 3-12
sprintf() 9-10
sscanf()-9
stack16-2
static7-7
stddef.h3-10, 8-10, 10-6
stderr13-2
stdin13-2
stdio.h3-9, 3-10, 13-3
stdlib.h9-9, 15-3
stdout13-2
strcat()9-6
strchr()9-8
strcmp()9-7
strcpy()9-6
string.h9-5
strings9-2
strlen()9-7
structurel-20
structure de données
dynamiqued5-7
structuresl0-2

champs de bit1-8
structures imbriquées)-7
suffixes de constantdsl0
switch 2-7

T

table de priorité et d’associativité

1-21

tableaus-2

initialisation6-7

multidimensionneb-5
tableau des arguments (ard2)2
tableaux de structurd$-9
tableaux et pointeui&9
tables de véritél-2
taille d’'une structurd0-4
text7-3
tolower()9-12
toupper()9-12
traitement de tableai+4
type de données

int 1-6
type énuméres0-14
typedefl0-15
types

hiérarchiel-22
types de données

charl-6

doublel-6

float 1-6

long 1-6

long doublel-6

short1-6

void 1-6

U

unionsl10-13
utilisation des librairied-7

V

valeur initiale7-9

value-preserving-22

vérification de programmes
avec lint4-9

vider le buffer d'un fichied3-15

virgule 1-20

Index-7

void *ptr 8-5
W
while 5-3, 5-4

X

-Xa 4-4

-Xc 4-4

xor 11-2

xor bit-a-bit11-6
-Xs 4-4

Index-8 Programmation en C ANSI - Révision C, Décembre 1994

